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ABSTRACT

FORMALIZATION AND VERIFICATION OF PROPERTY SPECIFICATION
PATTERNS

by

Dmitriy Bryndin

Finite-state veri�cation (FSV) techniques are intended for proving properties of software

systems. Although signi�cant progress has been made in the last decade automating FSV

techniques, the adoption of these techniques by software developers is low. The Speci�cation

Pattern System (SPS) is intended to assist users in creating such speci�cations. It identi�es

common speci�cation patterns and indicates how to translate the patterns into a variety of

di�erent speci�cation languages. However, the patterns in the SPS are de�ned informally

and their translations are not veri�ed. This work discusses the informal nature of these

de�nitions, proposes a formalization for them and provides formal proofs for the translation

of patterns to Linear Temporal Logic.
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Chapter 1

INTRODUCTION

Property speci�cations are intended to be used in software development to describe di�erent

parts of a system behavior. They can help to detect design �aws in early stages of develop-

ment, serve as a reference for programmers in later stages of software development, and be

used for the veri�cation of an implementation. Being developed by humans, the initial speci-

�cations are never formal [12]. Developers usually represent initial speci�cations graphically

or using the natural language [13]. Property speci�cations often stay in this form for the

rest of the development process. While still useful, these informal speci�cations are often

ambiguous and inconsistent with the actual system's behavior and the cost of the related

errors is high, as they are usually detected on the later stages of development.

When property speci�cations are formalized, developers obtain precise speci�cations,

which can be formally analyzed for consistency, completeness, and other desirable (or absence

of undesirable) properties. Tools automating such analysis typically require some special

types of formalisms, such as temporal logic [4]. The use of these formalisms requires expertise

and signi�cantly limits adoption of FSV techniques by the developers.

1.1 Speci�cation Pattern System

M.Dwyer et al. in [6, 7] proposed an approach that helps developers in mapping informal

property speci�cations to the formalisms accepted by a variety of automated veri�cation

tools. Similarly to the idea of Design Patterns [9], M.Dwyer et al. came up with a set

of parameterized patterns that are independent of the formalisms used in the veri�cation

tools. These patterns were obtained from a survey of commonly occurring properties that

users verify with the �nite-state veri�cation tools, such as SPIN [11], SMV [16], CWB-NC,

INCA [5] and FLAVERS [8].
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Finite-state veri�cation tools model a system execution by a (possibly event driven)

�nite-state machine. A property pattern restricts some aspect of system behavior, namely

the occurrence of some state/event or the order in which multiple state/events occur in the

execution. For example, to say that a deadlock never occurs, we use the �Absence� pattern, or

to say that a thread has to eventually release memory that has been dynamically allocated

to it, we use the �Response� pattern. These patterns are described in greater details in

Section 2.1.

Each pattern is associated with a scope that describes a sequence of states/events over

which the restrictions imposed by the pattern apply. A scope can de�ne the entire execution

of a system, a part between the moment when a thread is created and the moment when it

is terminated, etc. Scopes are described in Section 2.2.

The crucial part of the work done by M.Dwyer et al. in [1] is a translation of pairs

of patterns and scopes to the following speci�cation formalisms, which are used by di�er-

ent veri�cation tools: Linear Temporal Logic [14], Computation Tree Logic [3], Quanti�ed

Regular Expressions [19] and INCA Queries [5]. Other researchers have developed map-

pings for: Action Computation Tree Logic [18], Graphical Interval Logic [20] and Regular

Alternation-Free Mu-Calculus [15].

1.2 Linear Temporal Logic

Linear Temporal Logic (LTL) [14] is commonly used in software veri�cation to specify and

reason about behaviors that are modeled as linear state sequences, with states denoting

�nite sets of propositions (the propositions that are true). There are several model checkers

available that support LTL: SPIN [11], Java PathFinder [24], NuSMV [2] and others.

Denote a set of atomic propositions by A. A state gives an interpretation to propositions

in A. A state formula is a formula in ordinary �rst-order logic over the propositions in A. We

use s ⊫ P to say that P holds on S or that s is a P -state. LTL extends ordinary predicate

logic with a set of temporal operators presented in Table 1.1.
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◻P Henceforth P

◇P Eventually P

PUQ P Until Q

PWQ P Waiting-for Q

◯P Next P

Table 1.1: LTL, Future Temporal Operators.

An LTL formula is de�ned as

� each proposition in A is an LTL formula

� if P and Q are LTL formulas, ¬P , P ∧ Q, P ∨ Q, P → Q, P ↔ Q, ◻P , ◇P , PUQ,

PWQ, ◯P are also LTL formulas.

In LTL formulas we use → to denote implication and ↔ to denote equivalence, using the

more common Ô⇒ and ⇐⇒ as meta notation.

LTL formulas are interpreted over a model, which is an in�nite sequence of states,

σ ∶ s0, s1, . . .. We write (σ, i) ⊧ P to say that P holds at a position i ≥ 0 in σ, for a

given model σ and an LTL formula P . For a state formula P , (σ, i) ⊧ P ⇐⇒ si ⊫ P .

For the LTL formulas P and Q:

� (σ, i) ⊧ ¬P ⇐⇒ ¬(σ, i) ⊧ P .

� (σ, i) ⊧ P ∨Q ⇐⇒ (σ, i) ⊧ P ∨ (σ, i) ⊧ Q, with ∧,→ and ↔ de�ned similarly.

� (σ, i) ⊧ ◻P ⇐⇒ ∀k ≥ i ● (σ, k) ⊧ P .

� (σ, i) ⊧ ◇P ⇐⇒ ∃k ≥ i ● (σ, k) ⊧ P .

� (σ, i) ⊧ PUQ ⇐⇒ ∃k ≥ i ● ((σ, k) ⊧ Q ∧ ∀j ∶ i ≤ j < k ● (σ, j) ⊧ P ).

� (σ, i) ⊧ PWQ ⇐⇒ (σ, i) ⊧ PUQ ∨ (σ, i) ⊧ ◻P .

� (σ, i) ⊧ ◯P ⇐⇒ (σ, i + 1) ⊧ P .
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1.3 Structure of this work

In this work we check for inconsistencies between the informal de�nitions of patterns and

scopes in the Speci�cation Pattern System proposed in [6, 7] and their translations to LTL,

presented in [1]. We give a formal interpretation for these de�nitions, removing all incon-

sistencies and ambiguities. Finally, the largest part of this work provides proofs of the

equivalence between the pattern/scope combinations and their translations to LTL. Because

this work only considers the translation to LTL, we consider only the state-based de�nitions

presented in [1].

Chapter 2 provides the de�nitions of patterns and scopes, as they are given in [6, 7] and

highlights several problems related to the informal nature of these de�nitions.

In Chapter 3, we formalize the original informal de�nitions of scopes and patterns and

discuss their translations to LTL.

Appendix A is the reference for the original LTL formulas in [1].

Appendix B contains all proofs for the translations to LTL.

Appendix C provides counterexamples for the cases when our proposed LTL formulas are

not equivalent to the original formulas in [1].

4



Chapter 2

INFORMAL DEFINITIONS

2.1 Informal De�nitions of Patterns

Figure 2.1 illustrates the hierarchy of patterns. Figure 2.2 provides the explanations for

the two major groups of patterns, classi�ed by the system behaviors. Figures 2.3 and 2.4

describe the intent of all patterns. The contents of all �gures are reproduced from [1].

Property Patterns

Occurrence Order

Absence

Universality Existence

Bounded
Existence Precedence

Response
Chain
Precedence

Chain
Response

Figure 2.1: Classi�cation of patterns in terms of system behaviors, as it appears in [1]

Occurrence Patterns talk about the occurrence of a given event/state during system exe-
cution.
Order Patterns talk about relative order in which multiple events/states occur during
system execution.

Figure 2.2: Classi�cation of patterns, as it appears in [1]

2.2 Informal De�nitions of Scopes

Figure 2.5 illustrates the de�nitions of scopes, provided in Figure 2.6. The content of both

�gures is reproduced exactly as in [1].
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Absence
To describe a portion of a system's execution that is free of certain events or states. Also
known as Never.
Universality
To describe a portion of a system's execution which contains only states that have a desired
property. Also known as Henceforth and Always.
Existence
To describe a portion of a system's execution that contains an instance of certain events or
states. Also known as Eventually
Bounded Existence
To describe a portion of a system's execution that contains at most a speci�ed number of
instances of a designated state transition or event.

Figure 2.3: Intent of occurrence patterns, as it appears in [1]

Precedence
To describe relationships between a pair of events/states where the occurrence of the �rst is
a necessary pre-condition for an occurrence of the second. We say that an occurrence of the
second is enabled by an occurrence of the �rst.
Response
To describe cause-e�ect relationships between a pair of events/states. An occurrence of the
�rst, the cause, must be followed by an occurrence of the second, the e�ect. Also known as
Follows and Leads-to.
Chain patterns are used to express requirements related to complex combinations of individ-
ual state/event relationships. These include precedence/response relationships consisting of
sequences of individual states/events. We call these chain patterns.
Chain Precedence
This is a scalable pattern. We describe the 1 cause - 2 e�ect version here.
To describe a relationship between an event/state P and a sequence of events/states (S, T) in
which the occurrence of S followed by T within the scope must be preceded by an occurrence
of the the sequence P within the same scope. In state-based formalisms, the beginning of
the enabled sequence (S, T) may be satis�ed by the same state as the enabling condition
(i.e., P and S may be true in the same state).
Chain Response
This is a scalable pattern. We describe the intent of the 1 stimulus - 2 response version here.
To describe a relationship between a stimulus event (P) and a sequence of two response events
(S,T) in which the occurrence of the stimulus event must be followed by an occurrence of the
sequence of response events within the scope. In state-based formalisms, the states satisfying
the response must be distinct (i.e., S and T must be true in di�erent states to count as a
response), but the response may be satis�ed by the same state as the stimulus (i.e., P and
S may be true in the same state).

Figure 2.4: Intent of order patterns, as it appears in [1]
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Global

Before R

After Q

Between Q and R

After Q until R

Q Q

Q Q Q Q

Q QQ

R R

R

R

R

Figure 2.5: The illustration of scopes, as it appears in [1]

Each pattern has a scope, which is the extent of the program execution over which the
pattern must hold. There are �ve basic kinds of scopes: global (the entire program
execution), before (the execution up to a given state/event), after (the execution after
a given state/event), between (any part of the execution from one given state/event to
another given state/event) and after-until (like between but the designated part of the
execution continues even if the second state/event does not occur). The scope is determined
by specifying a starting and an ending state/event for the pattern: the scope consists of
all states/events beginning with the starting state/event and up to but not including the
ending state/event.

We note that a scope itself should be interpreted as optional; if the scope delimiters are not
present in an execution then the speci�cation will be true.

Figure 2.6: The de�nitions of scopes, as they appear in [1]

2.3 Problems with the Interpretation

The sections 2.1 and 2.2 provide informal de�nitions of patterns and scopes, as they are

presented in [1]. But are these de�nitions good? According to [12], good de�nitions must

be consistent and unambiguous. Unfortunately, informal de�nitions tend to give rise to
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ambiguity and inconsistency. We illustrate some ambiguities in the informal de�nitions

provided for the pattern system and use the translations to LTL presented in [1] to motivate

more precise de�nitions, which we then formalize in Chapter 3.

We start from the de�nitions of scopes, listed in Section 2.2.

2.3.1 Multiple delimiters in �Before� and �After� scopes

The �rst question arises from the �Before R� scope. From it's de�nition, the given state R is

the right delimiter for this scope. It is not immediately clear which R-state is the delimiter

for this scope, in case there are several R-states present in the execution. The illustration

in Figure 2.5 suggests that the scope goes up to the �rst R-state. The constructions in the

corresponding LTL formulas

. . .UR or . . .WR

suggest that this interpretation is correct.

Therefore, we re�ne the informal de�nition of the �Before R� scope to

Before: from the beginning of the execution up to the �rst occurrence of a given state.

We treat the case of multiple Q-states in �After Q� scope similarly. The illustration

in Figure 2.5 suggests that the �rst occurrence of the Q-state serves as the left delimiter.

Indeed, the constructions

◻ (Q→ . . .), for Absence, Universality, Response and Chain Response

◻ (¬Q) ∨◇(Q ∧ . . .), for Existence and Precedence

◇Q→ (¬Q)U(Q ∧ . . .) for Bounded Existence

◻ (¬Q) ∨ (¬Q)U(Q ∧ . . .) for Precedence Chain

in the LTL formulas are consistent with the interpretation that the restrictions on the system

execution start to apply from the �rst occurrence of aQ-state (inclusive). Therefore, we re�ne

the informal de�nition of the �After Q� scope to

8



Q RP QQ RP Q

(a) (b)

Figure 2.7: Possible interpretations of �Between Q and R� scopes.

After: from the �rst occurrence of a given state until the end of the execution.

2.3.2 Multiple delimiters in �Between� and �After-Until� scopes

The �After-Until� scope is an unambiguously extended version of �Between� scope and, there-

fore, everything that we clarify for the �Before� scope also applies to the �After-Until� scope.

Consider the �Between Q and R� scope. The illustration in Figure 2.5 suggests that this

scope consists of �maximal� intervals, where each interval ends with an R-state and starts

with a Q-state that is the farthermost from this R-state, while not including other R-states.

In the case of several R-states after a Q-state, the constructions

◻(Q ∧ . . .→ . . .UR) or ◻ (Q→ (¬R)W(. . . ∧ ¬R)

of LTL formulas are consistent with saying that the restrictions apply only until the closest

R.

The case of several Q-states is slightly di�erent. For all patterns except �Existence�, the

constructions of LTL formulas

◻(Q ∧ . . .→ . . .)

agree with the illustration.

Existence of P , Between Q and R: ◻ (Q ∧ ¬R → (¬R)W(P ∧ ¬R)) (2.1)

Consider the example, shown in Figure 2.7a. The informal de�nition of the �Existence�

pattern holds on this �maximal� interval, however, the corresponding LTL formula (2.1) fails.

9



The construction

◻(Q ∧ . . .→ . . .)

implies that each Q-state starts the interval, as it is shown in Figure 2.7b, and for the

�Existence� pattern it is not a �maximal�, but a �minimal� interval. In this case the informal

de�nition is ambiguous, and the provided illustration fails to clarify it. Instead we propose

the following de�nitions

Between Q and R scope consists of all intervals that start with a Q-state and extends to

the next R-state.

After Q Until R extends �Between� scope with all su�xes that begin with a Q-state and

have no subsequent R-states.

2.3.3 Empty intervals

According to the de�nitions of scopes, the left delimiter is included in and the right delimiter

is excluded from the scope. In the case the delimiters are not present, the speci�cation is

vacuously True. The natural question here is how we treat empty intervals in the scopes.

The �Global� scope is never empty. The �After Q� scope is not empty if there is a Q-state

in the execution.

Consider the scope �Before R�, when the initial state in the execution is an R-state.

The initial state is not included in the scope and, therefore, the scope consists of an empty

interval. The speci�cation is not vacuously true, as the delimiter R is actually present. With

the �Before R� scope, the LTL formulas for all patterns except the �Existence� has the form

. . .UR

which is True. However, the LTL for the �Existence� pattern

(¬R)W(P ∧ ¬R)

is False.
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For the �Between Q and R� and �After Q until R� scopes, it is possible to have an empty

interval when a state is both a Q-state and an R-state. The LTL formulas for these scopes

have the forms

◻ (Q→ . . .UR) for the Bounded Existence and Chain patterns

◻ (Q ∧ ¬R → . . .) for the rest of the patterns

It is easy to see that all of them are True on the (Q ∧R) empty interval.

The last two examples show some ambiguity in the interpretation of an empty interval

for the �Existence� pattern with the �Before� and the �Between� scopes.

If we treat the empty interval as a part of a scope, we expect the �Existence� pattern

to fail. This interpretation is consistent with all scopes except �Between� and �After-Until�

scopes for the �Existence� pattern. If we assume that an empty interval is not a part of

a scope, then having no other states in the scope results the �Existence� pattern being

vacuously true, by the informal de�nition of scopes. This interpretation is consistent with

all scopes, except the �Before� scope for the �Existence� pattern.

As there is no reasonable argument against any of these interpretations of scopes, we

propose a formalization for each of them.
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Chapter 3

PROPOSED FORMALIZATION

3.1 Formal De�nitions of Strong Scopes

We use commas between predicates in the meaning of conjunctions, to increase the readability

of formulas. We assume placeholders P,Q,R and S are state formulas.

A scope S is relative to a given model of execution σ ∶ s0, s1, s2, . . .. We represent a scope

as a set of intervals, where an interval is a nonempty sequence of consecutive numbers,

corresponding to indices of the states in the model σ.

Globally:

The scope consists of one interval listing all the indexes of the states in the model

SG = {[0,∞)} (3.1)

Before R:

The scope contains one interval at most. This interval includes the indices of all states

before (but not including) the �rst R-state. If an R-state is absent or in position 0,

the scope is empty

SBR
= {[0, i) ∣ s0 ⊫ ¬R, i =min({k > 0 ∣ sk ⊫ R})} (3.2)

After Q:

The scope contains one interval at most. This interval corresponds to all states occur-

ring after (and including) the �rst Q-state. If no Q-state exists, the scope is empty

SAQ
= {[i,∞) ∣ i =min({k ≥ 0 ∣ sk ⊫ Q})} (3.3)

Between Q and R:

This scope may consist of multiple intervals. Each interval starts with an index of a
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Q-state that is not an R-state, (inclusive) and extends to the index of the next R-state

(not inclusive). A Q-state that is also an R-state is not an interval.

SBWQR
= {[i, j) ∣ i ≥ 0, si ⊫ (Q ∧ ¬R), j =min({k > i ∣ sk ⊫ R})} (3.4)

After Q until R:

This scope extends �Between Q and R� with all su�xes that begin with a Q-state that

is not an R-state (inclusive) and have no subsequent R-states.

SAUQR
= SBWQR

∪ {[i,∞) ∣ i ≥ 0, si ⊫ Q, (∀j ≥ i ● sj ⊫ ¬R)} (3.5)

3.2 Formal De�nitions of Weak Scopes

The scopes de�ned in Section 3.1 contain no empty intervals by construction, in this section

we weaken this restriction. Depending on a model the weak scope SW is either a scope S

from Section 3.1, or the scope S extended with the empty interval.

There are only two cases when a scope SW may contain an empty interval:

� initial state is an R-state in �Before R� scope, i.e. s0 ⊫ R

� there is a (Q ∧R)-state in �Between Q and R� or �After Q until R� scopes, i.e. ∃n ≥

0 ● sn ⊫ Q ∧R

Here we provide weak de�nitions only for �Before R�, �Between Q and R� and �After Q until

R� scopes. The rest of the scopes can't possibly contain an empty interval and, therefore,

their weaken versions coincide with the versions de�ned in Section 3.1.

Weak Before R:

The scope contains one interval at most. This interval includes the indices of all states

before (but not including) the �rst R-state. If an R-state is absent, the scope is empty.

If R-state is in position 0, the scope consists of an empty interval.
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SWBR
= {[0, i) ∣ i =min({k ≥ 0 ∣ sk ⊫ R})} (3.6)

Weak Between Q and R:

This scope may consist of multiple intervals. Each interval starts with an index of a

Q-state (inclusive) and extends to the index of the next R-state (not inclusive). A

Q-state that is also an R-state is an empty interval.

SWBWQR
= {[i, j) ∣ si ⊫ Q, j =min({k ≥ i ∣ sk ⊫ R})} (3.7)

Weak After Q until R:

This scope extends �Weak Between Q and R� with all su�xes that begin with a Q-state

that is not an R-state (inclusive) and have no subsequent R-states.

SWAUQR
= SAUQR

∪ SWBWQR
(3.8)

When we switch from S to the weak version of scope SW , LTL formulas for the constraints

that use a universal quanti�cation over the elements of the intervals, does not change. How-

ever, the use of an existential quanti�er in �Existence� and �Strong Existence� will fail the

constraint on an empty interval.

3.3 Formal De�nitions of Patterns

According to the informal de�nition of scopes, when there is no scope, all patterns listed in

Section 2.1 are True. However, similarly to an existence being False on an empty set, one

may require the �Existence� pattern to be False, when the scope is absent (i.e. empty). We

introduce the �Strong Existence� pattern with exactly that additional requirement.

Absence:

There is no P -state in the scope.

∀I ∈ S,∀n ∈ I ● sn ⊫ ¬P (3.9)
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Existence:

Each interval contains a P -state.

∀I ∈ S,∃n ∈ I ● sn ⊫ P (3.10)

Strong Existence:

The scope is nonempty and each of it's intervals contains a P -state.

S ≠ ∅, ∀I ∈ S,∃n ∈ I ● sn ⊫ P (3.11)

Universality:

Every state in the scope is a P -state.

∀I ∈ S,∀n ∈ I ● sn ⊫ P (3.12)

k - Bounded Existence:

Given an interval I in the scope S, we de�ne Max(I,P ) as a set of maximal P -state

subintervals of I.

Max(I,P ) = {[i, j) ∣ [i, j) ⊆ I,∀m ∈ [i, j) ● sm ⊫ P,

(i − 1 ∉ I ∨ si−1 ⊫ ¬P ), (j ∉ I ∨ sj ⊫ ¬P )} (3.13)

No interval in the scope contains more than k maximal P -state subintervals.

∀I ∈ S ● ∣Max(I,P )∣ ≤ k (3.14)

Precedence:

If there is a P -state, either it is an S-state or there is an S-state before it in the same

interval.

∀I ∈ S,∀n ∈ I ● (sn ⊫ P Ô⇒ ∃m ∈ I ● (m ≤ n, sm ⊫ S)) (3.15)
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Response:

If there is a P -state, either it is an S-state or there is an S-state after it in the same

interval.

∀I ∈ S,∀n ∈ I ● (sn ⊫ P Ô⇒ ∃m ∈ I ● (m ≥ n, sm ⊫ S)) (3.16)

Precedence Chain:

A subsequence of states satisfying S1, . . . , Sk precedes each subsequence of states sat-

isfying P1, . . . , Pl, if the later exists. It is possible for the Sk-state to coincide with

the P1-state. However, an Si-state strictly precedes Sj-state for i < j; with the similar

requirement for the P sequence.

∀I ∈ S, ∀n1 ∈ I, . . . ,∀nl ∈ I ∶ n1 < . . . < nl ● (sn1 ⊫ P1, . . . , snl ⊫ Pl Ô⇒

∃m1 ∈ I, . . . ,∃mk ∈ I ∶m1 < . . . <mk ≤ n1 ● (sm1 ⊫ S1, . . . , smk
⊫ Sk))

(3.17)

Response Chain:

A subsequence of states satisfying S1, . . . , Sk follows each subsequence of states satis-

fying P1, . . . , Pl, if the later exists. It is possible for the Pl-state to coincide with the

S1-state. However, an Si-state strictly precedes the Sj-state for i < j, with the similar

requirement for the P sequence.

∀I ∈ S, ∀n1 ∈ I, . . . ,∀nl ∈ I ∶ n1 < . . . < nl ● (sn1 ⊫ P1, . . . , snl ⊫ Pl Ô⇒

∃m1 ∈ I, . . . ,∃mk ∈ I ∶ nl ≤m1 < . . . <mk ● (sm1 ⊫ S1, . . . , smk
⊫ Sk))

(3.18)

3.4 Pattern Mappings for LTL

Parenthesizes in the formulas below are set according to the notation introduced in [14]:

temporal operators have higher binding power that the boolean ones. '→' in LTL formulas

is equivalent to 'Ô⇒ ' used everywhere else in this paper and stands for the implication.

To map the informal de�nitions of patterns and scopes into a precise formula in common

formal speci�cation languages, one has to guess the formula �rst and then verify that this
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formula is consistent with the de�nitions. Based on the formal de�nitions introduced in

Sections 3.1, 3.2 and 3.3, we were able to formally derive corresponding LTL formulas,

thereby ensuring that the translations are consistent with our de�nitions. This is a major

improvement over the way the formulas in [1] were created. The formulas that we derived are

not necessarily identical to the formulas in [1]. In cases where the formula that we derived

di�ers from the translation in [1], we provide a proof that the formulas are equivalent or a

counterexample that shows they are not equivalent.

Due to the overall complexity of manual derivation of these formulas, we decided to

limit the extent of this work to the �Absence�, �Existence�, �Strong Existence� and �Uni-

versality� patterns with both Strong and Weak versions of all scopes, and the �Precedence�

and �Response� patterns with the �Globally� scope. By doing so, we cover 89% of the 555

pattern/scope combinations mentioned in the survey in [7].

Our LTL formulas in Table 3.1 are proven to be equivalent to the corresponding original

formulas by M.Dwyer et al. [1]. The proofs are listed in the Appendix B.

We simpli�ed the LTL formulas for the �Absence� and �Universality� patterns with both

�Between� and �After-Until� scopes by removing the redundant ¬R term from the antecedent

of the implication. We also �xed a typographical error in the �Existence� pattern with �After�

scope.

In Section 2.3.3 we described the inconsistent treatment of empty intervals in the original

work by M.Dwyer et al. To resolve this problem we proposed two possible formalizations:

strong scopes and weak scopes (Sections 3.1 and 3.2 respectively). We show the correspond-

ing LTL formulas for these versions of scopes in Table 3.2. It is enough to list only the

formulas related to existential patterns, as there is no essential di�erence between strong

and weak scopes for the other patterns and these formulas are listed in Table 3.1.

For both cases, if we ignore empty intervals (strong scopes) or take them into account

(weak scopes), we propose the LTL formulas. All formulas in Table 3.2 are proven to be

consistent with our de�nitions of strong and weak scopes in Appendix B. We highlight in
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Property Pattern New Original (if di�erent)

Absence of P
Globally ◻(¬P )

Before R ◇R → (¬P )UR
After Q ◻(Q→ ◻(¬P ))

Between Q and R ◻(Q ∧◇R → (¬P )UR) ◻(Q ∧ ¬R ∧◇R → (¬P )UR)

After Q until R ◻(Q→ (¬P )WR) ◻(Q ∧ ¬R → (¬P )WR)

Existence of P
Globally ◇P
Before R see Table 3.2 (¬R)W(P ∧ ¬R)

After Q ◻(¬Q) ∨◇(Q ∧◇P ) ◻(¬Q) ∨◇(Q ∧◇P )) typo
Between Q and R see Table 3.2 ◻(Q ∧ ¬R → (¬R)W(P ∧ ¬R))

After Q until R see Table 3.2 ◻(Q ∧ ¬R → (¬R)U(P ∧ ¬R))

Universality of P
Globally ◻P
Before R ◇R → PUR
After Q ◻(Q→ ◻P )

Between Q and R ◻(Q ∧◇R → PUR) ◻(Q ∧ ¬R ∧◇R → PUR)

After Q until R ◻(Q→ PWR) ◻(Q ∧ ¬R → PWR)

S precedes P
Globally (¬P )WS

S responds to P
Globally ◻(P →◇S)

Table 3.1: Proposed LTL formulas vs. original formulas by M.Dwyer et al.

bold the formulas that are equivalent to the the original formulas by M.Dwyer et al. As it

was stated in Section 2.3.3, original formulas for the �Existence� pattern with the �Between�

and �After-Until� scopes ignore empty intervals, while the formula for the �Before� scope

does not.

While the proposed pattern �Strong Existence� is not equivalent to the �Existence� pat-

tern by M.Dwyer et al., we think some users may �nd this alternative interpretation to be

valuable.
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Property Pattern LTL formula for:
Strong scopes Weak scopes

Existence of P

Globally ◇P ◇P

Before R R ∨ ¬(¬P )UR ¬(¬P )UR

After Q ◻(¬Q) ∨◇(Q ∧◇P ) ◻(¬Q) ∨◇(Q ∧◇P )

Between Q and R ◻(Q ∧ ¬R → ¬(¬P )UR) ◻(Q→ ¬(¬P )UR)

After Q until R ◻(Q ∧ ¬R → ¬(¬P )WR) ◻(Q→ ¬(¬P )WR)

Strong Existence of P

Globally ◇P ◇P

Before R ◇R ∧ ¬(¬P )UR ◇R ∧ ¬(¬P )UR

After Q ◇(Q ∧◇P ) ◇(Q ∧◇P )

Between Q and R ◇(Q ∧ ¬R ∧◇R)∧ ◇(Q ∧◇R)∧

◻(Q ∧ ¬R → ¬(¬P )UR) ◻(Q→ ¬(¬P )UR)

After Q until R ◇(Q ∧ ¬R)∧ ◇(Q ∧ (¬R ∨◇R))∧

◻(Q ∧ ¬R → ¬(¬P )WR) ◻(Q→ ¬(¬P )WR)

Table 3.2: Proposed LTL formulas for Weak and Strong scopes. Bold formulas are equivalent
to original formulas of M.Dwyer et al.
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Chapter 4

RELATED WORK

This work is based on the speci�cation pattern system (SPS) described in Dwyer et al. [6, 7]

and the translations of patterns to LTL in [1].

Several approaches were proposed to formalize and extend SPS, and to verify the trans-

lations to di�erent formalisms. PROPEL [23] uses the disciplined natural language (DNL)

and the �nite-state automaton (FSA) notations to formalize most common patterns in SPS.

This approach assumes only the event-based formalism and translates patterns only between

DNL and FSA.

Prospec [17] extends SPS with 12 classes of composite propositions (CP), allowing the

use of multiple propositions in a pattern or as a delimiter of the scope. A tool interactively

guide the user during the speci�cation process and translates the speci�cation to future

interval logic or LTL. However [17] does not provide any details about the correctness of the

generated LTL formulas.

Salamah et al. [21] extend ideas of Prospect. The paper considers 4 patterns out of the

8, de�ned by Dwyer et al. and CPs from Prospec, translates CP classes to LTL, extends

LTL with an additional conjunction operator and translates 4 patterns and 5 scopes into

the extended LTL. In [22], Salamah formally proves correctness of the formulas within the

�Global� scope and tests the formulas within the �Before R� scope. He elaborates on the CP

extension, uses non-standard extension of LTL for the translation and does not verify most

of the formulas.

Garcia and Roach [10] developed the Property Testing Tool (Protest), which automati-

cally generates and tests LTL formulas representing speci�cations. They did some additional

testing of the formulas in [21], but their tests covered only a small subset of properties and

CP classes.
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Chapter 5

CONCLUSIONS

The use of patterns is a way for experts to share their knowledge. Like design patterns,

speci�cation patterns prepared by an expert speed up the process of writing speci�cations and

widen the use of formal methods in software development. The SPS developed by Dwyer et al.

is well known and easily accessible through a web site [1]. While being prepared and reviewed

by experts, this collection is not guaranteed to be correct. The de�nitions of patterns and

scopes have to be precise and their translation to other formalisms have to be veri�ed. As

we showed in Section 2.3 the original de�nitions contain some ambiguity and their manner

of interpretation does not appear to always be consistent. It makes little sense to verify the

formal LTL formulas obtained from the informal de�nitions. We proposed a formalization

of patterns and scopes that is easy to read, closely resembles the original de�nitions, and

is precise. These formal de�nitions were used to formally derive the corresponding LTL

formulas. We veri�ed the formulas provided in [1] by showing their equivalence to the

formulas we derived. Because of the complexity of the manual proofs, we considered only the

most popular combinations of patterns and scopes. �Absence�, �Existence� and �Universality�

patterns are veri�ed with all �ve scopes; �Precedence� and �Response� are veri�ed with

�Global� scope only. From 555 patterns/scopes listed in the survey [7] we covered 89% of

them. We provide the additional pattern, �Strong Existence�, which is False on the empty

scope. The corresponding LTL formulas for this pattern with all �ve scopes were derived

and also veri�ed.
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Appendix A

ORIGINAL LTL FORMULAS

Parenthesizes in the formulas below are set according to the notation introduced in [14]:

temporal operators have higher binding power that the boolean ones.
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Property Pattern LTL formulas by M.Dwyer et al.

Absence of P

Globally ◻(¬P )

Before R ◇R → (¬P )UR

After Q ◻(Q→ ◻(¬P ))

Between Q and R ◻(Q ∧ ¬R ∧◇R → (¬P )UR)

After Q until R ◻(Q ∧ ¬R → (¬P )WR)

Existence of P

Globally ◇P

Before R (¬R)W(P ∧ ¬R)

After Q ◻(¬Q) ∨◇(Q ∧◇P )) typo

Between Q and R ◻(Q ∧ ¬R → (¬R)W(P ∧ ¬R))

After Q until R ◻(Q ∧ ¬R → (¬R)U(P ∧ ¬R))

Universality of P

Globally ◻P

Before R ◇R → PUR

After Q ◻(Q→ ◻P )

Between Q and R ◻(Q ∧ ¬R ∧◇R → PUR)

After Q until R ◻(Q ∧ ¬R → PWR)

S precedes P

Globally (¬P )WS

Before R ◇R → (¬P )W(S ∨R)

After Q (¬Q)W(Q ∧ (¬P )WS)

Between Q and R ◻((Q ∧ ¬R ∧◇R) → (¬P )W(S ∨R))

After Q until R ◻(Q ∧ ¬R → (¬P )W(S ∨R))

S responds to P

Globally ◻(P →◇S)

Before R ◇R → (P → (¬R)U(S ∧ ¬R))UR

After Q (¬Q)W(Q ∧ ◻(P →◇S))

Between Q and R ◻((Q ∧ ¬R ∧◇R) →

(P → (¬R)U(S ∧ ¬R))UR)

After Q until R ◻(Q ∧ ¬R →
((P → (¬R)U(S ∧ ¬R)))WR)

Table A.1: LTL formulas presented in [1]
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Appendix B

PROOFS OF EQUIVALENCE

Before starting the proofs of equivalences, we de�ne and prove two auxiliary claims.

Claim 1.

¬(¬P )UR ⇐⇒ (¬R)W(P ∧ ¬R) (B.1)

Proof of the Claim 1. We want to show

¬(¬P )UR ⇐⇒ ◻(¬R) ∨ (¬R)U(P ∧ ¬R)

Suppose there is no R-state in our model. It is easy to see that both LTLs are True.

For the rest of the proof we assume an R-state exists and show

¬(¬P )UR ⇐⇒ (¬R)U(P ∧ ¬R)

If ¬(¬P )UR is True, (¬P )UR is False. As an R-state exists by our assumption, there is

a P -state before the �rst R-state. Therefore (¬R)U(P ∧ ¬R) is True.

If (¬R)U(P ∧ ¬R) is True, there exists a P -state before any R-state. Then (¬P )UR is

False and ¬(¬P )UR is True. We proved the i� relation in (B.1). ∎

Claim 2.

¬(¬P )WR ⇐⇒ (¬R)U(P ∧ ¬R) (B.2)

Proof of the Claim 2.

¬(¬P )WR = ¬(◻(¬P ) ∨ (¬P )UR) = ◇P ∧ ¬(¬P )UR

Suppose there is no R-state in our model. Both ¬(¬P )WR and (¬R)U(P ∧ ¬R) reduce to

◇P .

For the rest of the proof we assume there is an R-state. In the proof of Claim 1 we've

shown (¬R)U(P ∧ ¬R) ⇐⇒ ¬(¬P )UR.
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If (¬R)U(P ∧ ¬R) is False, ◇P ∧ ¬(¬P )UR is also False.

If ◇P ∧¬(¬P )UR is False, either ◇P , ¬(¬P )UR or both are False. It is easy to see that

(¬R)U(P ∧ ¬R) is False in all these cases. This proves (B.2). ∎

B.0.1 Absence

B.0.1.1 Globally

◻(¬P ) ≈ Absence of P, Globally

Proof.

Absence of P, Globally ≡ ∀I ∈ SG,∀n ∈ I ● sn ⊫ ¬P, where SG = {[0,∞)}

SG has only one interval, [0,∞), so the RHS of the equation above is

∀n > 0 ● sn ⊫ ¬P

. This is exactly the meaning of ◻(¬P ) in �rst-order predicate logic. ∎

B.0.1.2 Before R

Claim 3.

∀i ≥ 0 ● (s0 ⊫ ¬R, i =min({k > 0 ∣ sk ⊫ R}) Ô⇒ φ(i)) ≡

∃j ≥ 0 ● sj ⊫ R Ô⇒ ∃i ≥ 0 ● (si ⊫ R, φ(i)) (B.3)
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Proof.

∀i ≥ 0 ● (s0 ⊫ ¬R, i =min({k > 0 ∣ sk ⊫ R}) Ô⇒ φ(i)) ⇐⇒

s0 ⊫ R ∨ ∀i ≥ 0 ● (i =min({k > 0 ∣ sk ⊫ R}) Ô⇒ φ(i)) ⇐⇒

s0 ⊫ R ∨ ∀j ≥ 0 ● sj ⊫ ¬R ∨ ∃i > 0 ● (i =min({k > 0 ∣ sk ⊫ R}), φ(i)) ⇐⇒

∀j ≥ 0 ● sj ⊫ ¬R ∨ ∃i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ R}), φ(i)) ⇐⇒

∃j ≥ 0 ● sj ⊫ R Ô⇒ ∃i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ R}), φ(i)) ⇐⇒

∃j ≥ 0 ● sj ⊫ R Ô⇒ ∃i ≥ 0 ● (si ⊫ R, φ(i))

∎

◇R → (¬P )UR ≈ Absence of P, Before R (B.4)

Proof. According to (3.9)

Absence of P, Before R ≡ ∀I ∈ SBR
,∀n ∈ I ● sn ⊫ ¬P

it follows from (3.2) that

∀I ∈ SBR
,∀n ∈ I ● sn ⊫ ¬P ≡

∀i ≥ 0 ● (s0 ⊫ ¬R, i =min({k > 0 ∣ sk ⊫ R}) Ô⇒ ∀n ∈ [0, i) ● sn ⊫ ¬P )

by Claim 3, the RHS of the equivalence holds i� the following holds

∃j ≥ 0 ● sj ⊫ R Ô⇒ ∃i ≥ 0 ● (si ⊫ R, ∀n ∈ [0, i) ● sn ⊫ ¬P )

this is the de�nition of ◇R → (¬P )UR. ∎

B.0.1.3 After Q

◻(Q→ ◻(¬P )) ≈ Absence of P, After Q (B.5)
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Proof. According to (3.9)

Absence of P, After Q ≡ ∀I ∈ SAQ
,∀n ∈ I ● sn ⊫ ¬P

it follows from (3.3) that

∀I ∈ SAQ
,∀n ∈ I ● sn ⊫ ¬P ≡

∀i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ Q}) Ô⇒ ∀n ∈ [i,∞) ● sn ⊫ ¬P )

the RHS of the equivalence holds i� the following holds

∀i ≥ 0 ● (si ⊫ Q Ô⇒ ∀n ∈ [i,∞) ● sn ⊫ ¬P )

this is the de�nition of ◻(Q→ ◻(¬P )). ∎

B.0.1.4 Between Q and R

◻(Q ∧◇R → (¬P )UR) ≈ Absence of P,Between Q and R (B.6)

Proof. According to (3.9)

Absence of P, Between Q and R ≡ ∀I ∈ SBWQR
,∀n ∈ I ● sn ⊫ ¬P

it follows from (3.4) that

∀I ∈ SBWQR
,∀n ∈ I ● sn ⊫ ¬P ≡

∀i ≥ 0,∀j ≥ 0 ● (i ≥ 0, si ⊫ (Q ∧ ¬R), j =min({k > i ∣ sk ⊫ R}) Ô⇒

∀n ∈ [i, j) ● sn ⊫ ¬P )
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the RHS of the equivalence holds i� the following holds

∀i ≥ 0,∀j ≥ 0 ● (si ⊫ (Q ∧ ¬R), j =min({k > i ∣ sk ⊫ R}) Ô⇒

∀n ∈ [i, j) ● sn ⊫ ¬P ) ⇐⇒

∀i ≥ 0 ● (si ⊫ ¬(Q ∧ ¬R) ∨

∀j ≥ 0 ● (j =min({k > i ∣ sk ⊫ R}) Ô⇒ ∀n ∈ [i, j) ● sn ⊫ ¬P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ ¬Q ∨ si ⊫ R ∨ ∀m > i ● sm ⊫ ¬R ∨

∃j ≥ 0 ● (j =min({k > i ∣ sk ⊫ R}), ∀n ∈ [i, j) ● sn ⊫ ¬P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ ¬Q ∨ si ⊫ R ∨ ∀m ≥ i ● sm ⊫ ¬R ∨

∃j ≥ 0 ● (j =min({k > i ∣ sk ⊫ R}), ∀n ∈ [i, j) ● sn ⊫ ¬P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ ¬Q ∨ ∀m ≥ i ● sm ⊫ ¬R ∨

∃j ≥ 0 ● (j =min({k ≥ i ∣ sk ⊫ R}), ∀n ∈ [i, j) ● sn ⊫ ¬P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ Q, ∃m ≥ i ● sm ⊫ R Ô⇒

∃j ≥ 0 ● (j =min({k ≥ i ∣ sk ⊫ R}), ∀n ∈ [i, j) ● sn ⊫ ¬P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ Q, ∃m ≥ i ● sm ⊫ R Ô⇒

∃j ≥ 0 ● (sj ⊫ R, ∀n ∈ [i, j) ● sn ⊫ ¬P ))

this is the de�nition of ◻(Q ∧◇R → (¬P )UR). ∎

B.0.1.5 After Q until R

◻(Q → (¬P )WR) ≈ Absence of P, After Q until R (B.7)

Proof. According to (3.9)

Absence of P, After Q until R ≡ ∀I ∈ SAUQR
,∀n ∈ I ● sn ⊫ ¬P
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it follows from (3.5) that

∀I ∈ SAUQR
,∀n ∈ I ● sn ⊫ ¬P ⇐⇒

(∀I ∈ SBWQR
,∀n ∈ I ● sn ⊫ ¬P ) ∧ (∀I ∈ (SAUQR

− SBWQR
),∀n ∈ I ● sn ⊫ ¬P )

For the left part of the conjunction

∀I ∈ SBWQR
,∀n ∈ I ● sn ⊫ ¬P ≡

∀i ≥ 0,∀j ≥ 0 ● (i ≥ 0, si ⊫ (Q ∧ ¬R), j =min({k > i ∣ sk ⊫ R}) Ô⇒

∀n ∈ [i, j) ● sn ⊫ ¬P )

in (B.6) we have shown, it is ◻(Q ∧◇R → (¬P )UR).

In the right part of the conjunction

∀I ∈ (SAUQR
− SBWQR

),∀n ∈ I ● sn ⊫ ¬P ≡

∀i ≥ 0 ● (i ≥ 0, si ⊫ Q, ∀j ≥ i ● sj ⊫ ¬R Ô⇒ ∀n ≥ i ● sn ⊫ ¬P )

the RHS of the equivalence holds i� the following holds

∀i ≥ 0 ● (si ⊫ Q, ∀j ≥ i ● sj ⊫ ¬R Ô⇒ ∀n ≥ i ● sn ⊫ ¬P )

this is the de�nition of ◻(Q ∧ ◻(¬R) → ◻(¬P )).

Conjunction of these LTL

◻ (Q ∧◇R → (¬P )UR) ∧ ◻(Q ∧ ◻(¬R) → ◻(¬P )) =

◻ ((Q ∧◇R → (¬P )UR) ∧ (Q ∧ ◻(¬R) → ◻(¬P ))) =

◻ (¬Q ∨ (◇R ∨ ◻(¬P )) ∧ (◻(¬R) ∨ (¬P )UR)) (B.8)

Consider two cases: ◇R =True or ◇R =False for the formula

(◇R ∨ ◻(¬P )) ∧ (◻(¬R) ∨ (¬P )UR)
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If ◇R =True, we have

True ∧ (¬P )UR = (¬P )UR

If ◇R =False,

◻(¬P ) ∧ True = ◻(¬P )

therefore,

(◇R ∨ ◻(¬P )) ∧ (◻(¬R) ∨ (¬P )UR) = (¬P )UR ∨ ◻(¬P ) (B.9)

�nally, from (B.8) and (B.9) it follows

◻(¬Q ∨ (¬P )UR ∨ ◻(¬P )) = ◻(Q → (¬P )WR)

∎

B.0.2 Existence with Strong Scopes

B.0.2.1 Globally

◇P ≈ Existence of P, Globally

Proof.

∀I ∈ SG,∃n ∈ I ● sn ⊫ P, where SG = {[0,∞)}

The scope �Globally�, SG, contains only one interval [0,∞). For this case the de�nition of

�Existence� transforms to

∃n ∈ [0,∞) ● sn ⊫ P

This is exactly the meaning of ◇P . ∎

B.0.2.2 Before R

R ∨ ¬(¬P )UR ≈ Existence of P, Before R (B.10)
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Proof. According to (3.10)

Existence of P, Before R ≡ ∀I ∈ SBR
,∃n ∈ I ● sn ⊫ P

it follows from (3.2) that

∀I ∈ SBR
,∃n ∈ I ● sn ⊫ P ≡

∀i ≥ 0 ● (s0 ⊫ ¬R, i =min({k > 0 ∣ sk ⊫ R}) Ô⇒ ∃n ∈ [0, i) ● sn ⊫ P )

the RHS of the equivalence holds i� the following holds

s0 ⊫ R ∨ ∀i ≥ 0 ● (i =min({k > 0 ∣ sk ⊫ R}) Ô⇒ ∃n ∈ [0, i) ● sn ⊫ P ) ⇐⇒

s0 ⊫ R ∨ ∀i ≥ 0,∃n ∈ [0, i) ● (i =min({k > 0 ∣ sk ⊫ R}) Ô⇒ sn ⊫ P ) ⇐⇒

s0 ⊫ R ∨ ∀i ≥ 0,∃n ∈ [0, i) ● (i =min({k ≥ 0 ∣ sk ⊫ R}) Ô⇒ sn ⊫ P ) ⇐⇒

s0 ⊫ R ∨ ∀i ≥ 0,∃n ∈ [0, i) ● (si ⊫ R Ô⇒ sn ⊫ P ) ⇐⇒

s0 ⊫ R ∨ ∀i ≥ 0,∃n ∈ [0, i) ● (si ⊫ ¬R ∨ sn ⊫ P ) ⇐⇒

s0 ⊫ R ∨ ¬(∃i ≥ 0,∀n ∈ [0, i) ● (si ⊫ R,sn ⊫ ¬P ))

this is the de�nition of R ∨ ¬(¬P )UR. ∎

Applying Claim 1, we show

R ∨ ¬(¬P )UR ⇐⇒ R ∨ (¬R)W(P ∧ ¬R)

B.0.2.3 After Q

◻(¬Q) ∨◇(Q ∧◇P ) ≈ Existence of P, After Q (B.11)

Proof. According to (3.10)

Existence of P, After Q ≡ ∀I ∈ SAQ
,∃n ∈ I ● sn ⊫ P

32



it follows from (3.3) that

∀I ∈ SAQ
,∃n ∈ I ● sn ⊫ P ≡

∀i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ Q}) Ô⇒ ∃n ∈ [i,∞) ● sn ⊫ P )

the RHS of the equivalence holds i� the following holds

(∀j ≥ 0 ● sj ⊫ ¬Q) ∨ (∃i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ Q}) ∧ ∃n ∈ [i,∞) ● sn ⊫ P )

(∀j ≥ 0 ● sj ⊫ ¬Q) ∨ (∃i ≥ 0 ● (si ⊫ Q ∧ ∃n ∈ [i,∞) ● sn ⊫ P )

this is the de�nition of ◻(¬Q) ∨◇(Q ∧◇P ). ∎

B.0.2.4 Between Q and R

◻(Q ∧ ¬R → (¬R)W(P ∧ ¬R)) ≈ Existence of P,Between Q and R (B.12)

Proof. According to (3.10)

Existence of P, Between Q and R ≡ ∀I ∈ SBWQR
,∃n ∈ I ● sn ⊫ P

it follows from (3.4) that

∀I ∈ SBWQR
,∃n ∈ I ● sn ⊫ P ≡

∀i ≥ 0,∀j ≥ 0 ● ((si ⊫ (Q ∧ ¬R), j =min({k > i ∣ sk ⊫ R})) Ô⇒

∃n ∈ [i, j) ● sn ⊫ P )

the RHS of the equivalence holds i� the following holds

∀i ≥ 0,∀j > i,∃n ∈ [i, j) ● ((si ⊫ (Q ∧ ¬R), sj ⊫ R) Ô⇒ sn ⊫ P ) ⇐⇒

∀i ≥ 0,∀j ≥ i,∃n ∈ [i, j) ● ((si ⊫ (Q ∧ ¬R), sj ⊫ R) Ô⇒ sn ⊫ P ) ⇐⇒

∀i ≥ 0,∀j ≥ i,∃n ∈ [i, j) ● (si ⊫ (Q ∧ ¬R) Ô⇒ (sj ⊫ ¬R ∨ sn ⊫ P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒ ∀j ≥ i,∃n ∈ [i, j) ● (sj ⊫ ¬R ∨ sn ⊫ P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒ ¬(∃j ≥ i,∀n ∈ [i, j) ● (sj ⊫ R,sn ⊫ ¬P )))

this is the de�nition of ◻(Q ∧ ¬R → ¬(¬P )UR). ∎
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Applying Claim 1 we show equivalence

◻(Q ∧ ¬R → ¬(¬P )UR) ⇐⇒ ◻(Q ∧ ¬R → (¬R)W(P ∧ ¬R))

B.0.2.5 After Q until R

◻(Q ∧ ¬R → (¬R)U(P ∧ ¬R)) ≈ Existence of P, After Q until R (B.13)

Proof. According to (3.10)

Existence of P, After Q until R ≡ ∀I ∈ SAUQR
,∃n ∈ I ● sn ⊫ P

it follows from (3.5) that

∀I ∈ SAUQR
,∃n ∈ I ● sn ⊫ P ⇐⇒

(∀I ∈ SBWQR
,∃n ∈ I ● sn ⊫ P ) ∧ (∀I ∈ (SAUQR

− SBWQR
),∃n ∈ I ● sn ⊫ P )

(∀I ∈ SBWQR
,∃n ∈ I ● sn ⊫ P ) ∧ (∀I ∈ (SAUQR

− SBWQR
),∃n ∈ I ● sn ⊫ P ) ≡

∀i ≥ 0,∀j ● ((si ⊫ (Q ∧ ¬R), j =min({k > i ∣ sk ⊫ R})) Ô⇒ ∃n ∈ [i, j) ● sn ⊫ P ) ∧

∀i ≥ 0 ● ((si ⊫ Q, ∀j ≥ i ● sj ⊫ ¬R) Ô⇒ ∃n ≥ i ● sn ⊫ P )

the RHS of the equivalence holds i� the following holds

∀i ≥ 0,∀j > i ● ((si ⊫ (Q ∧ ¬R), sj ⊫ R) Ô⇒ ∃n ∈ [i, j) ● sn ⊫ P ) ∧

∀i ≥ 0 ● ((si ⊫ (Q ∧ ¬R), ∀j > i ● sj ⊫ ¬R) Ô⇒ ∃n ≥ i ● sn ⊫ P )

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒ ∀j > i ● (sj ⊫ ¬R ∨ ∃n ∈ [i, j) ● sn ⊫ P )) ∧

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒ (∃j > i ● sj ⊫ R ∨ ∃n ≥ i ● sn ⊫ P ))

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒

∀j > i ● (sj ⊫ ¬R ∨ ∃n ∈ [i, j) ● sn ⊫ P ) ∧

(∃j > i ● sj ⊫ R ∨ ∃n ≥ i ● sn ⊫ P ))
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∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒

¬(¬(∀j > i ● (sj ⊫ ¬R ∨ ∃n ∈ [i, j) ● sn ⊫ P )) ∨

¬(∃j > i ● sj ⊫ R ∨ ∃n ≥ i ● sn ⊫ P ) ))

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒

¬(∃j > i ● (sj ⊫ R ∧ ∀n ∈ [i, j) ● sn ⊫ ¬P ) ∨

(∀j > i ● sj ⊫ ¬R ∧ ∀n ≥ i ● sn ⊫ ¬P ) )) (B.14)

assume si ⊫ (Q ∧ ¬R) holds in (B.14), then we can switch to weak inequalities

∃j > i ● (sj ⊫ R ∧ ∀n ∈ [i, j) ● sn ⊫ ¬P ) ⇐⇒ ∃j ≥ i ● (sj ⊫ R ∧ ∀n ∈ [i, j) ● sn ⊫ ¬P )

∀j > i ● sj ⊫ ¬R ⇐⇒ ∀j ≥ i ● sj ⊫ ¬R

therefore (B.14) holds i�

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒

¬( ∃j ≥ i ● (sj ⊫ R ∧ ∀n ∈ [i, j) ● sn ⊫ ¬P ) ∨

(∀j ≥ i ● sj ⊫ ¬R ∧ ∀n ≥ i ● sn ⊫ ¬P ) )) (B.15)

To show ∀j ≥ i ● sj ⊫ ¬R is redundant, it is enough to consider the case

∃j ≥ i ● (sj ⊫ R ∧ ∀n ∈ [i, j) ● sn ⊫ ¬P ) = False

∀j ≥ i ● sj ⊫ ¬R = False

∀j ≥ i ● sj ⊫ ¬R is the negation of ∃j ≥ i ● sj ⊫ R, therefore

∀n ∈ [i, j) ● sn ⊫ ¬P = False

it follows

∀n ≥ i ● sn ⊫ ¬P = False
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and ∀j ≥ i ● sj ⊫ ¬R is redundant.

∀i ≥ 0 ● (si ⊫ (Q ∧ ¬R) Ô⇒

¬( ∃j ≥ i ● (sj ⊫ R ∧ ∀n ∈ [i, j) ● sn ⊫ ¬P ) ∨ (∀n ≥ i ● sn ⊫ ¬P ) )) (B.16)

�nally, using the following

◻(¬P ) ∨ (¬P )UR = (¬P )WR

∃j ≥ i ● (sj ⊫ R ∧ ∀n ∈ [i, j) ● sn ⊫ ¬P ) ≡ (¬P )UR

∀n ≥ i ● sn ⊫ ¬P ≡ ◻(¬P )

we show that (B.16) is equivalent to

◻(Q ∧ ¬R → ¬(¬P )WR) (B.17)

∎

Finally, we apply Claim 2 to show

◻(Q ∧ ¬R → ¬(¬P )WR) ⇐⇒ ◻(Q ∧ ¬R → (¬R)U(P ∧ ¬R))

B.0.3 Strong Existence with Strong Scopes

Comparing to �Existence�, �Strong Existence� adds the requirement for a scope not to be

empty. In the following proofs, we start from deriving the LTL formula for this requirement,

then conjoining this derived formula with LTLs for �Existence�, obtained in Section B.0.2.

B.0.3.1 Globally

◇P ≈ Strong Existence of P, Globally

Proof. The scope SG = {[0,∞)} is not empty, thus �Strong Existence� is equivalent to �Ex-

istence� on this scope. ∎
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B.0.3.2 Before R

We prove the equivalence using the proposed formula

◇R ∧ ¬(¬P )UR ≈ Strong Existence of P, Before R (B.18)

Proof. According to (3.2)

SBR
≠ ∅ ≡ ∃i ≥ 0 ● (s0 ⊫ ¬R, i =min({k > 0 ∣ sk ⊫ R}))

∃i ≥ 0 ● (s0 ⊫ ¬R, i =min({k > 0 ∣ sk ⊫ R})) ⇐⇒

s0 ⊫ ¬R, ∃i ≥ 0 ● (i =min({k > 0 ∣ sk ⊫ R})) ⇐⇒

s0 ⊫ ¬R, ∃i ≥ 0 ● si ⊫ R

this is the de�nition of ¬R ∧◇R. Conjoining with LTL from (B.10), we get

(¬R ∧◇R) ∧ (R ∨ ¬(¬P )UR) ⇐⇒

◇R ∧ (¬R ∧ (R ∨ ¬(¬P )UR)) ⇐⇒

◇R ∧ ((¬R ∧R) ∨ (¬R ∧ ¬(¬P )UR) ⇐⇒

◇R ∧ ¬R ∧ ¬(¬P )UR (B.19)

The ¬R term is redundant. To prove it, it is enough to show that (B.19) is False, if ¬R is

False:

R is True and (¬P )UR is also True, thus, ¬(¬P )UR is False and the formula is False.

We have shown the equivalence with the following LTL formula

◇R ∧ ¬(¬P )UR (B.20)

This �nishes the proof of equivalence. ∎

We apply Claim 1 to show it is equivalent to

◇R ∧ (¬R)W(P ∧ ¬R))
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B.0.3.3 After Q

We prove the following equivalence

◇(Q ∧◇P ) ≈ Strong Existence of P, After Q (B.21)

Proof. According to (3.3)

SAQ
≠ ∅ ≡ ∃i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ Q}))

∃i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ Q})) ⇐⇒

∃i ≥ 0 ● si ⊫ Q

this is the de�nition of ◇Q. Conjoining with LTL from (B.11), we get

◇Q ∧ (◻(¬Q) ∨◇(Q ∧◇P )) ⇐⇒

(◇Q ∧ ◻(¬Q)) ∨ (◇Q ∧◇(Q ∧◇P )) ⇐⇒

◇Q ∧◇(Q ∧◇P ) ⇐⇒

◇ (Q ∧◇P )

This �nishes the proof of equivalence. ∎

B.0.3.4 Between Q and R

We propose the following formula

◇ (Q ∧ ¬R ∧◇R) ∧ ◻(Q ∧ ¬R → ¬(¬P )UR) ≈

Strong Existence of P,Between Q and R (B.22)

Proof. According to (3.4)

SBWQR
≠ ∅ ≡ ∃m ≥ 0,∃n ● (sm ⊫ (Q ∧ ¬R), n =min({k >m ∣ sk ⊫ R}))
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∃m ≥ 0,∃n ● (sm ⊫ (Q ∧ ¬R), n =min({k >m ∣ sk ⊫ R})) ⇐⇒

∃m ≥ 0,∃n >m ● (sm ⊫ (Q ∧ ¬R), sn ⊫ R)) ⇐⇒

∃m ≥ 0,∃n ≥m ● (sm ⊫ (Q ∧ ¬R), sn ⊫ R))

this is exactly the de�nition of ◇(Q ∧ ¬R ∧ ◇R). Conjoining with LTL from (B.12), we get

◇(Q ∧ ¬R ∧◇R) ∧ ◻(Q ∧ ¬R → ¬(¬P )UR)

This �nishes the proof of equivalence. ∎

We apply Claim 1 to show it is equivalent to

◇(Q ∧ ¬R ∧◇R) ∧ ◻(Q ∧ ¬R → (¬R)W(P ∧ ¬R))

B.0.3.5 After Q until R

We propose the following formula

◇ (Q ∧ ¬R) ∧ ◻(Q ∧ ¬R → ¬(¬P )WR) ≈

Strong Existence of P, After Q until R

Proof. According to (3.5)

SAUQR
≠ ∅ ⇐⇒ SBWQR

≠ ∅ ∨ (SAUQR
− SBWQR

) ≠ ∅

SBWQR
≠ ∅ ∨ (SAUQR

− SBWQR
) ≠ ∅ ≡

∃i ≥ 0,∃j ● (si ⊫ (Q ∧ ¬R), j =min({k > i ∣ sk ⊫ R})) ∨

∃i ≥ 0,∀j ≥ i ● (si ⊫ Q,sj ⊫ ¬R)

the RHS of the equivalence holds i� the following holds

∃i ≥ 0,∃j > i ● (si ⊫ (Q ∧ ¬R), sj ⊫ R) ∨ ∃i ≥ 0,∀j ≥ i ● (si ⊫ Q,sj ⊫ ¬R)

∃i ≥ 0 ● (si ⊫ (Q ∧ ¬R), (∃j > i ● sj ⊫ R ∨ ∀j > i ● sj ⊫ ¬R))

∃i ≥ 0 ● si ⊫ (Q ∧ ¬R)

39



this is the de�nition of

◇(Q ∧ ¬R) (B.23)

Conjoining with LTL from (B.13), we get

◇(Q ∧ ¬R) ∧ ◻(Q ∧ ¬R → ¬(¬P )WR)

This �nishes the proof of equivalence. ∎

We apply Claim 2 to show it is equivalent to

◇(Q ∧ ¬R) ∧ ◻(Q ∧ ¬R → (¬R)U(P ∧ ¬R))

B.0.4 Universality

�Universally P � is the same as �Absence of ¬P �. Therefore we reuse LTLs and proofs from

that section.

B.0.5 Existence with Weak Scopes, SW

B.0.5.1 (Before R)W

¬(¬P )UR ≈ Existence of P, (Before R)
W (B.24)

Proof. According to (3.10)

Existence of P, (Before R)
W

≡ ∀I ∈ SWBR
,∃n ∈ I ● sn ⊫ P

it follows from (3.6) that

∀I ∈ SWBR
,∃n ∈ I ● sn ⊫ P ≡

∀i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ R}) Ô⇒ ∃n ∈ [0, i) ● sn ⊫ P )
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the RHS of the equivalence holds i� the following holds

∀i ≥ 0,∃n ∈ [0, i) ● (si ⊫ R Ô⇒ sn ⊫ P ) ⇐⇒

∀i ≥ 0,∃n ∈ [0, i) ● (si ⊫ ¬R ∨ sn ⊫ P ) ⇐⇒

¬(∃i ≥ 0,∀n ∈ [0, i) ● (si ⊫ R ∧ sn ⊫ ¬P )

this is the de�nition of ¬(¬P )UR. ∎

We apply Claim 1 to show it is equivalent to

(¬R)W(P ∧ ¬R)

B.0.5.2 (Between Q and R)W

◻(Q → ¬(¬P )UR) ≈ Existence of P, (Between Q and R)
W (B.25)

Proof. According to (3.10)

Existence of P, (Between Q and R)
W

≡ ∀I ∈ SWBWQR
,∃n ∈ I ● sn ⊫ P

it follows from (3.7) that

∀I ∈ SWBWQR
,∃n ∈ I ● sn ⊫ P ≡

∀i ≥ 0,∀j ≥ 0 ● (si ⊫ Q, j =min({k ≥ i ∣ sk ⊫ R}) Ô⇒

∃n ∈ [i, j) ● sn ⊫ P )

the RHS of the equivalence holds i� the following holds

∀i ≥ 0,∀j ≥ i,∃n ∈ [i, j) ● (si ⊫ Q,sj ⊫ R Ô⇒ sn ⊫ P ) ⇐⇒

∀i ≥ 0,∀j ≥ i,∃n ∈ [i, j) ● (si ⊫ Q Ô⇒ (sj ⊫ ¬R ∨ sn ⊫ P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ Q Ô⇒ ∀j ≥ i,∃n ∈ [i, j) ● (sj ⊫ ¬R ∨ sn ⊫ P )) ⇐⇒

∀i ≥ 0 ● (si ⊫ Q Ô⇒ ¬(∃j ≥ i,∀n ∈ [i, j) ● (sj ⊫ R,sn ⊫ ¬P )))

this is the de�nition of ◻(Q → ¬(¬P )UR). ∎
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We apply Claim 1 to show it is equivalent to

◻(Q→ (¬R)W(P ∧ ¬R))

B.0.5.3 (After Q until R)W

◻(Q → ¬(¬P )WR) ≈ Existence of P, (After Q until R)
W (B.26)

Proof. According to (3.10)

Existence of P, (After Q until R)
W

≡ ∀I ∈ SWAUQR
,∃n ∈ I ● sn ⊫ P

it follows from (3.8) that

∀I ∈ SWAUQR
,∃n ∈ I ● sn ⊫ P ⇐⇒

(∀I ∈ SAUQR
,∃n ∈ I ● sn ⊫ P ) ∧ (∀I ∈ SWBWQR

,∃n ∈ I ● sn ⊫ P )

in (B.13) and (B.28) we have derived the corresponding LTLs

◻ (Q ∧ ¬R → ¬(¬P )WR) ∧ ◻(Q → ¬(¬P )UR) ⇐⇒

◻ ((Q ∧ ¬R → ¬(¬P )WR) ∧ (Q → ¬(¬P )UR)) ⇐⇒

It is easy to see that ¬R term is redundant

◻ ((Q → ¬(¬P )WR) ∧ (Q → ¬(¬P )UR)) ⇐⇒

◻ ((Q → (¬ ◻ (¬P ) ∧ ¬(¬P )UR)) ∧ (Q → ¬(¬P )UR)) ⇐⇒

◻ (Q → (¬ ◻ (¬P ) ∧ ¬(¬P )UR)) ⇐⇒

◻ (Q → ¬(¬P )WR)

This proves the equivalence. ∎

Finally, we apply Claim 2 to show

◻(Q → ¬(¬P )WR) ⇐⇒ ◻(Q → (¬R)U(P ∧ ¬R))
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B.0.6 Strong Existence with Weak Scopes, SW

As in the Section B.0.3, it is enough to derive the LTL for the case of an empty scope and

conjoin this LTL with the one derived in Section B.0.5.

B.0.6.1 (Before R)W

◇R ∧ ¬(¬P )UR ≈ Strong Existence of P, (Before R)
W (B.27)

Proof. According to (3.6)

SWBR
≠ ∅ ≡ ∃i ≥ 0 ● (i =min({k ≥ 0 ∣ sk ⊫ R}))

and the corresponding LTL is ◇R. Conjoining with (B.24)

◇R ∧ ¬(¬P )UR

this is our �nal formula. ∎

We apply Claim 1 to show it is equivalent to

◇R ∧ (¬R)W(P ∧ ¬R)

B.0.6.2 (Between Q and R)W

◇(Q ∧◇R) ∧ ◻(Q → ¬(¬P )UR) ≈ Existence of P, (Between Q and R)
W (B.28)

Proof. According to (3.7)

SWBWQR
≠ ∅ ≡ ∃i ≥ 0,∃j ≥ 0 ● (si ⊫ Q, j =min({k ≥ i ∣ sk ⊫ R}))

and the corresponding LTL is

◇(Q ∧◇R) (B.29)

Conjoining with (B.25)

◇(Q ∧◇R) ∧ ◻(Q → ¬(¬P )UR)

this is our �nal formula. ∎

43



We apply Claim 1 to show it is equivalent to

◇(Q ∧◇R) ∧ ◻(Q→ (¬R)W(P ∧ ¬R))

B.0.6.3 (After Q until R)W

◇ (Q ∧ (¬R ∨◇R)) ∧ ◻(Q → ¬(¬P )WR) ≈

Existence of P, (After Q until R)
W

Proof. According to (3.8)

SWAUQR
≠ 0 ⇐⇒ SAUQR

≠ 0 ∨ SWBWQR
≠ 0

it follows from (B.23) and (B.29)

◇ (Q ∧ ¬R) ∨◇(Q ∧◇R) ⇐⇒ (B.30)

◇ ((Q ∧ ¬R) ∨ (Q ∧◇R)) ⇐⇒ (B.31)

◇ (Q ∧ (¬R ∨◇R)) (B.32)

Conjoining with LTL from (B.26), we get

◇(Q ∧ (¬R ∨◇R)) ∧ ◻(Q → ¬(¬P )WR)

This �nishes the proof of equivalence. ∎

Finally, we apply Claim 2 to show it is equivalent

◇(Q ∧ (¬R ∨◇R)) ∧ ◻(Q → (¬R)U(P ∧ ¬R))

B.0.7 Precedence

B.0.8 Globally

(¬P )WS ≈ S Precedes P , Globally

44



Proof. According to (3.1) and (3.15)

S Precedes P , Globally ≡ ∀n ∈ [0,∞) ● (sn ⊫ P Ô⇒ ∃m ∈ [0, n] ● sm ⊫ S)

the LHS holds i�

∀n ≥ 0 ● (sn ⊫ ¬P ∨ ∃m ∈ [0, n] ● sm ⊫ S) ⇐⇒

∀n ≥ 0 ● (sn ⊫ (¬P ∨ S) ∨ ∃m ∈ [0, n) ● sm ⊫ S) ⇐⇒

¬(∃n ≥ 0 ● (sn ⊫ (P ∧ ¬S), ∀m ∈ [0, n) ● sm ⊫ ¬S))

this is the de�nition of ¬((¬S)U(P ∧ ¬S)). By (B.2) in Claim 2

¬((¬S)U(P ∧ ¬S)) ⇐⇒ (¬P )WS

this �nishes the proof of equivalence. ∎

B.0.9 Response

B.0.10 Globally

◻(P →◇S) ≈ S Responses to P , Globally

Proof. According to (3.1) and (3.16)

S Responses to P , Globally ≡ ∀n ∈ [0,∞) ● (sn ⊫ P Ô⇒ ∃m ≥ n ● sm ⊫ S)

this is the de�nition of ◻(P →◇S). ∎
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Appendix C

PROOFS OF NON EQUIVALENCE

C.1 Existence

R ∨ ¬(¬P )UR /≈ Existence of P , Before R

Proof. Suppose the initial state of our model is an R-state (s0 ⊫ R). The LTL formula on

the LHS is True, however, the original LTL formula de�ned in [1], (¬R)W(P ∧¬R), is False

on this model. ∎

◻(Q→ ¬(¬P )UR) /≈ Existence of P, Between Q and R

Proof. Suppose the initial state of our model is a (Q ∧ R)-state and all other states are

(¬Q)-states, i.e. (s0 ⊫ Q ∧R) ∧ (∀i > 0 ● si ⊫ ¬Q). The LTL formula on the LHS is False,

however, the original formula LTL de�ned in [1], ◻(Q ∧ ¬R → ¬(¬P )UR), is True. ∎

◻(Q→ ¬(¬P )WR) /≈ Existence of P, After Q until R

Proof. We reuse the example form the previous proof. ∎

C.2 Strong Existence

◇R ∧ ¬(¬P )UR /≈ Existence of P , Before R

Proof. Suppose our model is described by ∀i ≥ 0 ● si ⊫ (¬R ∧¬P ). The LTL formula on the

LHS is False, however, the original LTL formula de�ned in [1], (¬R)W(P ∧¬R), is True on

this model. ∎
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◇(Q ∧◇P ) /≈ Existence of P , After Q

◇(Q ∧ ¬R ∧◇R) ∧ ◻(Q ∧ ¬R → ¬(¬P )UR) /≈ Existence of P , Between Q and R

◇(Q ∧◇R) ∧ ◻(Q→ ¬(¬P )UR) /≈ Existence of P , Between Q and R

◇(Q ∧ ¬R) ∧ ◻(Q ∧ ¬R → ¬(¬P )WR) /≈ Existence of P , After Q until R

◇(Q ∧ (¬R ∨◇R)) ∧ ◻(Q→ ¬(¬P )WR) /≈ Existence of P , After Q until R

Proof. For all �ve formulas we use the example, no Q-state in the model, ∀i ≥ 0 ● si ⊫ ¬Q.

The LTL formulas on the LHSs are False, however, the original LTL formulas de�ned in [1]

are True on this model. ∎
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