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ABSTRACT

PERFORMANCE CHARACTERISTICS OF A SYSTEM
AS A FUNCTION OF ITS STRUCTURE

by Henry F. Williams

A system is a collection of component equations and
constraint (or graph) equations describing component inter-
connections. These two classes of equations together make
up what is called the system structure., A solution to the
system is a function that satisfies the system equations.
This thesis examines the solution characteristics of exis-
tence, uniqueness, and stability, as they relate to the sys-
tem structure.

Grassman Algebra and Matroid Theory provide the
principal mathematical tools by which the results are ob-
tained.

The principal results are:

1. A theorem providing necessary and sufficient
conditions for a linear monotonic system of n-
port components to have a unique solution;

2. A generalization of system theory to Hilbert

spaces with two existence theorems;



Henry F. Williams

The most general existence and uniqueness theorem
yet published for non-linear n-port compbnent
systems;

Explicit relations between system structure and
stability of its solutions for a wide variety of
systems;

The determination of algorithms for the system
determinants of linear time-invariant systems.
These algorithms show explicitly in one equation
the relation between the system determinant and
structure;

The algorithms in (5) also show the usefulness
of Grassman Algebra in a new, simplified, and

generalized topological analysis technique.
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CHAPTER I

INTRODUCTION

Modern system theory can be described as the disci-
pline which seeks to determine the performance characteris-
tics of interconnected components from a knowledge of their
patterns of interconnection and component characteristics.
In lumped parameter system theory where a finite number of
components are interconnected, the circuit and cutset equa-
tions obtained from a linear graph, adequately describe the
interconnections of components. The components themselves
are described by a set of equations relating the thru and
across variables [FR-1]. These component equations may be
algebraic, integral, differential, or of the functional

analysis type.

Some performance characteristics that are frequently

examined are existence and uniqueness of a solution, stabil-

ity, optimization with respect to some criteria, or for

linear systems, location of characteristic frequencies.

This thesis examines the performance characteristics

of existence, uniqueness and stability of a solution as a
direct function of the system structure - namely the compo-

nent equations and their pattern of interconnection.



Various authors have examined system existence and
uniqueness, but in a much more restrictive sense than that
used in this thesis. (See [DU-1], [DU-2], [DU-3], [DU-4],
[BI-1], [MI-1], [WI-1], [DE-1].) For instance, no one, to
the author's knowledge, has given a theorem similar to
Theorem 3-1-3 which essentially reduces the problem of exis-
tence and uniqueness to that of a subset of the component
equations.

Previous stability studies have been mostly restricted
to the use of energy functions or analysis of state models
which give little specific information regarding system
structure. However this thesis emphasizes this aspect of the
system's problem as it relates to both the system analysis
and synthesis.

In linear systems, the algorithms of Chapters III and
V provide very useful equations relating system structure to
network functions and determinants. These results provide a
usefui basis for realizing a best fit to a desired system
response in terms of either the parameters in the component
equations or alteration of the component interconnections,

The techniques are also novel in as much as they, for
the first time, make extensive use of Grassman algebra and
matroid theory in examining performance characteristics.

In Chapter II, various preliminary concepts regarding

matroid theory, Grassman algebra, component equations and



graph theory are explained and some original theoretical
results for use in the remainder are derived.

Chapter III examines how the property of existence
and uniqueness of a solution affects the interconnections of
a given set of components. First the linear time-stationary
systems are examined. Methods are devised which give the
class of all interconnections that yield a unique solution.
Several necessary and sufficient c§nditions are given for
restricted classes of components to have a unique solution,
The same problem is then formulated for the non-linear sys-
tems, including mappings in Hilbert space. Some sufficient
conditions on the topology for a unique solution are given.

Chapter IV contains results on stability. Here
various types of stability of systems of components are
examined from the standpoint of the central problem: namely,
given a collection of components, determine the class of
interconnections that yield a stable solution. Again both
linear and non-linear equations are examined, and the results
given in the theorems shed light on the stability problem.

Chapter V applies the results of Chapters III and IV,
to several examples and shows the usefulness and generality
of the Grassman algebra technique over classical topological

analysis techniques.



CHAPTER 1II

MATHEMATICAL PRELIMINARIES

The purpose of Chapter II is to define the pertinent
notation for linear graphs and components,and to provide a
characterization of the cutset and circuit space of a graph.
The unstarred theorems and lemmas herein proved are the

author's original results. However, Theorem 2-2-12 and the

techniques of Grassman algebra are not to determine whether

a given vector subspace is graphic. The construction method
described in [TU-5] is much simpler and straightforward for
this purpose. These are derived and used for the purpose of
describing graphic vector subspaces. They are also used in
Chapter III.

Theorem 2-1-6 is a new result in the theory of

Grassman algebra and useful in the algorithm of Chapter III.
Grassman algebra has a direct practical application in topo-
logical analysis as described in Chapter V.

The rather extensive discussion on matroid theory is
given to provide mathematical foundation for the application
of Tuttes matroid results to real vector spaces. To the
author's knowledge this foundation is missing from the liter-
ature and is accomplished here for the first time. Tuttes
concepts of chains of integers have been extended to chains

4



of real numbers and the concept of a chain group to a chain
vector space. However, many of Tuttes results carried over
intact in this extension,

In passing, it should be mentioned that theorems on
graphic (mod 2) vector spaces which follow directly from
Tuttes results, are given without proof in [SE-l] and [KI-1].
A more precise and practical statement of the conditions on

Kuratowski matroid minors is given in this thesis.

Part I. Grassman Algebra

Definition 2-1-1: A linear algebra over a field F is a

set which is a finite dimensional vector space over F and
which admits an associative and bi-linear multiplication.

Definition 2-1-2: A linear algebra G over a field F which

contains the finite dimensional vector space V over F is

a Grassman Algebra over V if

1. G contains a multiplicative identity element, e,
2. G is generated by e, and V

3. If x isin V, x2=0

4. The dimension of G (as a vector space) is 27,

(n = dimension V).

The associative multiplication of the algebra will

be called progressive multiplication.

Lemma 2-1-1: If g, x€V, then xg-=-gx.



Proof: (x + g)e€vVv, (x + g)2 = x% + gx * xg #+ 82 =0

But x2 = g2 = 0, therefore gx = -xg.

*Lemma 2-1-2: Any two Grassman algebras G and Gl over

the same vector space V are isomorphic.

Proof: See [MAC-1].

Let G be any Grassman algebra over V. G con-
tains a unique identity element e, and all its scalar
multiples ae_ . Identify each scalar a€ F with the corre-

sponding multiples ae, therefore e, ~ 1.

(Throughout the rest of this thesis, assume F is the real
numbers.)

Select any ordered basis € 5. for V. Then
G contains all products of the various e,'s. If P =

(il,...ip) is a set of indices (a subset of (1,...,n),

arranged in increasing order), write

ep = [eil €iy oo eip] (2-1-1)

Since e; €V, e;” =0, e €5 = -€;

these rules any product of e's can be arranged so that

eo

j. Using

it either has the form (2-1-1) with increasing subscripts
or is zero. Since any vector of V is a linear combina-
tion of the basis elements, it follows by the distrib-

utive law that any product of vectors of V is a linear



combination of the elements ep- Since G 1is generated by
e, and V, it follows by distributivity that G is spanned
by the elements ep, for P a subset of (1,...,n). But

this has 2" subsets and G has exactly the dimension 2"

so these elements are linearly independent and are a basis

for G.

*Theorem 2-1-1: The vectors wuj,...,uy in V are linearly

independent if and only if their product [u; ... ut] in

the Grassman algebra G over V 1is not zero.

Proof: After [MAC-1]. If the vectors are independent, they

may be used as part of a basis
€1, -0 Up T €4, €4, ,...,€ of V.

The product Eﬁ-'.° ut] = [?1 ... et] is then one of the
vectors in the basis ep of G, hence is not zero.

Conversely, if Uj,...,u are dependent, then some

t

u: 1is a linear combination of the others so the product con-

1

sists of t-1 terms each with a repeated factor, hence is zero.

Definition 2-1-3: A form of degree 0 is a scalar multiple of

the identity. A form of degree p (expressed d(g)=p) is an
element g€G which can be expressed as a sum of products
[Pl .o ug] with factors wu; in V. A form of degree p

that is a product of p of the chosen basis vectors of V,

is called a basic form of degree p. A basic form of degree




1 is called a basic unity. It was shown above that the basic

forms of degree p are independent. A linear combination of

a set of basic forms is called a canonical form, if each

basic form is ordered as in equation (2-1-1).

Example: Let e,, e,, and e, bea basis for R3

(the real Euclidean space of dimension 3). Then 1, e, e,
ey, €,€3, ejeq, €,€,, € e e,, are a basis for G, e ey is

a basic form of degree 2, and e is a basic unity,

1

te.e, te.e is a canonical form, e e *e e is a

€1%27€1%3 7 ©1%2°3
canonical form of degree 2.

By the distributive law, it follows that any form of
degree p can be written as a linear combination of basic

forms of degree p. Notice that O is a form of degree p

for any p.

Definition 2-1-4: A simple form is a form that can be

expressed as a product of vectors in V. A simple form is

sometimes called an outer product.

Definition 2-1-5:" Two forms A and B of degree p are

equivalent if, and only if, there exists a scalar ¢ f 0

such that A = cB.



*Theorem 2-1-2: Two sets of p independent vectors

S1se--1Sp and t,,...,t span the same subspace of V, if

P
and only if there exists a scalar c # O such that for
T = [tl...tp], s = [sl...sp], T = ¢S, i.e. they are

equivalent.

Proof: If the factors of T and of S span the same sub-

space then

P .
- i
t; =% aj” s; for 1 <i=<p
J=1
Therefore,
= 1 2 P -
T=]CZa; s (3 aj sj)...(Eaj sj)—cS

since every nonvanishing term in the product will be a permu-

tation of S. By Theorem 2-1-1,
c #0 since T #O.

Conversely suppose T =cS, c #O. If some t; is

not dependent on s; ... s,, then O = [? ti] =cSt; #0
by Theorem 2-1-1. Therefore all t; are linear combinations
of the s;.

By Theorem 2-1-2, any subspace of V 1is defined by
an equivalent simple form in G. By the distributive law,

any simple form in G can be written as the sum of a set of
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basic forms. Let

0 #1T = [ql qu = iZdi ep

i

where the e are each of the basic forms of degree

Pj

m in G. By definition 3 d; ep, is a canonical form.
: i
i

The relation between the q; and the € in V can be
written in matrix notation as Q = KE, where Q is the
column vector with components q;» E 1is the column vector
with components e; (the distinguished basis for V), and K,
mxn, is a change of basis matrix (see [BI-1], P. 244). Let
k(1) pe the square matrix consisting of the (i;,...,i )

columns of K in order. 1If ePi = Eil cen eiﬁ]’ then

d; = det k'), (2-1-2)

This follows directly from the definition of determinant and
outer product [FO-1], [MAC-1].

- From the above, the co-ordinates d,; of a simple
canonical form 77 are the determinants of maximum rank sub-
matrices of the matrix K taking the chosen canonical basis
E into a basis Q for the subspace represented by the form.
Therefore, the determinants of the maximum rank submatrices
of the matrix }K uniquely determine the subspace spanned

by Q, since they determine an equivalent simple form.
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Definition 2-1-6: A subspace in V is just if it has a

canonical product whose co-ordinates d; are restricted to

the values

di = 4d, -d, O all i. (d = real number).

The rule for going from an outer product (in G) of
an arbitrary subspace to the outer product of its orthogonal
complement is extremely simple and is stated below.

Here assume that the chosen canonical basis for V

is an orthogonal set.

Theorem 2-1-3: If a subspace V; of V has a canonical

outer product 77'=2 di [eil ... € ], then ari outer product
i

i
m
of V,;' (the orthogonal complement of V;) is

m
1.

=1 J
. (-1)J . e.. €
iE dl - [elm"'l eln:l

with e. ce. €3 arranged in ascending order.
[ m+1 1n] g g

Proof: Consider the matrix:

U A

AT (1)
which is the echelon matrix of a subspace and its orthogonal
complement. The first set of rows represents a basis for
the subspace. Premulfiplying (1) by

Uu o

(2)
AT y
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obtain
U A
0 uU+Ala )
Therefore, the determinant of (1) is the determinant of
(u+aT A). But:
(-aT v) (_f}) = (u+AT A) (4

Expanding (4) by the Cauchy-Binet Theorem [HO-1] shows that
the determinant of (1) is equal to the sum of the squared

maximum rank minors M(k) ) of

(-aT )

N (5)

T =
det. (U+A* A) ZM(k) )

where (k) represents a sequence of rows, (/) a sequence of
columns of (5). Expanding (1) by the Laplace expansion

[HO-1] about the first partitioned set of rows shows that

det. (U+AT A) =S (-1) Z(D +(§) (6)

() Mo

where M(i)(j) is a minor of (U A) and M(k)([) is the

complementary minor of (-AT u).

Similarly,

2

= Ty = T
ZM(i)(j) det. (U+A A') = det. (U+A"* A) (7)

and
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det. (uta ATY = S (-1) 2Dy (8)

W MaoHon
and

o1y ZC*+D 2.(i)*(3) (9)

= (-1)
Let x be the p-tuple of the Mg y( )
Let y be the p-tuple of the complementary M.y,

Let (x,y) be their Euclidean inner product

PESLICAI

Let z be the p-tuple of the (-1) (kK)( L)

Obviously, (z,z) = (y,y).
From (5), (6), (7), and (8)

- - 2(K)+(L) =
(x,x) = (y,y) 2(-1) M(k)(l) M(i)(j)

(10)
= (z,x) = (z,z).

Therefore, (x-z, x-z) = (x,x) *+ (z,z) - 2(x,z) =0 (11
Therefore, x = z

and

S (1)+(3)
Mgy = D My (12

Since we do not wish to choose particular bases for V1 and

Vi, we have for arbitrary bases
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2(1) _ PAGD
(-1) ¢ Maoyp = D HENEH (13

but c(-1) 2(1) is a constant independent of the columns
of ﬁ] ].
Choose the representative matrix of the orthogonal

complement of Vl to have the minors

Mgy = (1) HO) M (14

(1)(3)
Since the coefficients of an outer product of Vi
are M(k)(l) and those of Vl are M(i)(j) we have for

an outer product of Vit

2 i
Zdi (-1) J=1 [eim+1 ein] (15)
1

Example: Consider the example given after definition

(2-1-3). The subspace represented by the change of basis

matrix 1 1 0
K =
1 0 1|,
€1
with E = |e,| has e;+tep, ejtez as a basis. Hence, its
€3

canonical outer product is e, e3 - e) e; *t e es. The co-

efficient 1, of e €, is the determinant of the second and
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third columns. The coefficients of other columns are their
respective determinants. The outer product of the orthogonal
complement of the subspace is —el'+e3'+e2, where E is

taken to be an orthogonal basis.

Definition 2-1-7: If En =e; ... € is a basic form of

degree n on the n-dimensional vector space V, then [ ]()
is a mapping from the basic forms of degree n into the

real numbers, such that

1. [En]o =1

2. 1If Enl = P(En) is a basic form that is a permu-
tation of the factors of E,, then E , is an
outer product and [En1] = (sgn P) [EnJ where

Jo o

(sgn P) is the sign of the permutation P. (See

[MAC-1], [BI-1] ).

1f E, is a basic form of degree m then {Em} is

used to denote the set of basic unities in the outer product

K.
If A is any simple form of degree n then the
mapping [ }‘3 is defined as follows:

1. if A =0,
[a] 4 =0

2. if A#0, A=cE, where c #O0 and c is
real, since En is the only linearly indepen-

dent form of degree n (See [MAC-lj ) and
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[A]O=c.

Definition 2-1-8: If E is any basic form, the supplement

of E (denoted by/E) is:
JE = [E E'] E',
o

where the factors of E' are all of the basis vectors,

€1,...,€, Wwhich do not appear in E, (arranged in any order),

n
each taken just once.
Definition 2-1-9: If A = k, E; + ...+k  E. where E;,...,E

are basic forms of degree m and k; is a real number, for

r

each 1, then

/A =k JE; ... ¢4 k. /E..

From Theorem 2-1-3 , above, and the definition of
supplement it can be shown that if A is the outer product
of a subspace, then /A is an outer product of the orthogonal
complement of A. In fact, by the distributive law for sup-
plements and Theorem 2-1-3 , it suffices to show this for
the basic forms. If E is a basic form /E = [E Ei] 5 E!
where E' is the complement of E. It suffices to take
both E and E' in increasing order since all other orders

differ from this by the sign of permutation. By Theorem
2-1-3 |, if E = [éil cen eimJ, E' = [eim+l .o ein]

arranged in ascending order the orthogonal complement of E is
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3 i, i

= ,
(-1) J e. ce. €. | = (-1)3 B,
Im+1 1n
The assertion is established when it is shown that [E‘Eq

m .
27
= c (-1) J” (where ¢ is an arbitrary constant). Now

(¢]

the number of transpositions required to put e; into its
m

proper position in E' is iy - m. The number of transposi-

tions to put e; into its proper position, is 1 1 - m+l.
m-1 m-
. . : (ipg-m)+(ip_1-m+1l) ...
' = - m m
By induction [? E']o (-1) [él cen en]o
m 5 m
z ij - m + m(m-l) 2 ij

so [EE] = (-1 37! = ¢ -1yt 7.
(o]

(where (c = +1 or -1) and is a function only of m.)
Therefore, /E is an outer product of an orthogonal comple-
ment of E. By the distributive law for supplements and
Theorem 2-1-3, /A is the orthogonal complement of A.

Now in addition to the 3 operations of algebra given
in definition 2-1-2, we add a fourth operation, called a
regressive multiplication (as opposed to the ''progressive!"
multiplication). From now on, let E ©be the unique basic
form of degree n, with the basis elements of V arranged
in increasing order. Progressive multiplication is denoted
by simple brackets with no subscript, (i.e.: [ ]), and
regressive multiplication is denoted by simple brackets with

the subscript 1, (i.e.: f Jl).
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Definition 2-1-10: The regressive outer product, [' ]1, of

two basic forms E; and Ej of degree m and k respec-

tively, where m + k > n, is:

(1) 1f {?1} ) {ﬁé} = {E} ,
|:El Eo]]_ (sgn P) [(EIXEBEZ)] 1

= (sgn P) [E, E,] Ey

where d(El) + d(Ez) = d(E) and {E;} U {Ez} =<?},and
(sgn P) is the sign of the permutation P, taking E_  into

(E; E,).

(2) 1If {El} v {EO} # {E} , [El Eo]lao

the regressive outer product is defined for arbitrary forms

Y

by the distributive law.

Example: Consider the example given after definition
(2-1-3). The supplement of e e, is, by definition (2-1-8),
[el e ei] e3 = e3. The supplement of 5 e, e, * e, eq is,

o
by definition (2-1-9), 5 [%1 e, ea]o 63*'[?1 e, eé]o e, =
5 e3 - l}l ) e3] o e, = 5 e3 - e;. The regressive outer
product of [el e3| and [ez el] is, by definition (2-1-10),

[[el e3] [e2 ] , oY [{}1 3] [ex ezﬂ .

= (-1 [el e ez]o e, = (*1) [el e, e:{lo e, = e
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Forder [FO-1] defines a regressive outer product
(denoted [ ] 2) as follows:

If d(E,) + d(E)) > n, [El Eo]2 is such that

/ [El E.o]z = [/51 /Eo] . ‘ (3)

It is now shown that this definition is quivalent to (2-1-10)

o —

so that results given by Forder can be used in this thesis.

The right hand side of (eq. 3) is the usual progres-
sive outer product. Therefore, the regressive outer product
is well defined by (eq. 3). By (eq. 3) and the distributive
law for progressive products and supplements, regressive

products are distributive. By definition (2-1-10) if
[El 1-:2]l # 0, then [El EO] = (sgn P) [El 52] B

where

1

E, = (sgn P) [E3 Ey]

It follows therefore that
/ [El Eo]l = (sgn P) /[[El }32]0 53]
= (sgn P) [El E2]o [E3 133']0 Ej'

and

[/El /Eo] = [[[El EZ]O E2] [/(sgn P) [E3 Ez]] =
[[El Ez]o E, (sgn P) [Ej E, (E, Ez)']o (E, }32)::' =

(sgn P) [El Ez]o [53 E, (E4 132)]O [Ez (E3 Ez)']
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o iy o] = {m) s snee [{) v {0 m0)
(2} N Ly mp = )

Since the sets are the same and the order of the complement

is arbitrary, let [Ez (E3 E2)'] = E3'. It follows that
B, - [

If [El Eo]l=o, then {El} U {Eo} # {E} . so

/ [El Eo] =0

1

and
[E'o EO'JO [El' Eo'] =0.
This last result follows from the fact that

d 0 {nd ) v b 7 ]

where ¢ is the null set.

[/El /Eo] - I:El E1J

!
o

Il
=

Since E;' and E,' have a common factor, [El' EO'] =0

and
/ EEl Eq]l = [/El /Eo]

Thus it is established that the definition (2-1-10) of a
regressive outer product is equivalent to the definition of
Forder [FO-1] . However definition (2-1-10) is computation-

ally easier.



21

By convention, whenever referring to the product of
two basic forms (the sum of whose degrees is greater than n)

regressive multiplication is implied.

*Theorem 2-1-4: Rule of a repeated factor. If A, B, C

are any simple forms, the sum of whose degrees is n, then
“A B] - [A CJ] =[ABC] A
1 o

Proof: Page 231 of [FO-1].

This theorem shows that a regressive outer product
either is a constant times the factor that is common to the
two multiplicands or is zero. The second case occurs when

the factors of A, B, and C are not independent.

Definition 2-1-11: A set of echelon forms for a canonical

form A of degree m is any set of m basic forms (E)D
(i=1,...,m) of degree (n - m + 1) where each has just one

factor of a distinguished non-zero term of A.

Theorem 2-1-5: An echelon basis for a subspace of dimension

m can be obtained from a set of echelon forms by the regres-

Sive multiplication

[AEi]l i=1,...,m.
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where A is the outer product of the subspace of dimension

m and (Ei) are a set of echelon forms for A.

Proof: By Theorem 2-1-4 , [A Ei]l yields a vector in the
intersection of the subspace represented by A _and that
represented by E;. Therefore the set EA Ei]l is a set of
m vectors in A.

By the definition of a set of echelon forms and of
the regressive product, the distinguished term in A, when
multiplied by Ei, gives the one common factor which appears
in no other term of the product. Since the E; differ only
in this factor, when the distinguished term in A is multi-
plied by Ei the result is a common factor other than
[A Ej]l, j #i. From the definition of regressive product

it follows that this common factor appears in no other term

of any of the [} Ei] . This is precisely an echelon basis.
' 1

Example: Consider the example given after definition
(2-1-3). The form e; e, * 5 e, e3 is simple and has the set
{%l e, €, eé} as a set of echelon forms for the distin-

guished term [%l e%. Applying Theorem 2-1-5

| [[el ey * 5 & e3] [el 63]]: [el €2 e3]

= el -5 e3; [[el e2 + 5 e2 e3] [ez e3J:ll= [el e2 e3]0 e2+0 = e2.

e, - 5 [} e, e ] e
o 1 2 "3 71 o 3
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Therefore the vectors, e; - 5 €3, and e,, are an echelon
basis for the subspace represented by the simple form

e, e, + 5 e, e3.

Theorem 2-1-6: Let A ©be a canonical form of degree m.

Then A is simple if, and only if, U} Eé] A] =0 for
1
i=l ... m-1, where (E;), i=1 ... m-1, is some (m-1) of

the forms in any one set of echelon forms.

Example: To illustrate Theorem 2-1-6 , consider the

space R4 (the four dimensional real Euclidean space) and
le
[
th

The products indicated in Theorem 2-1-6 are

e and e be a basis for it. Is the form

toeys ey o3 4
1 €2 * e3 é4] = A simple? The set of echelon forms for

e distinguished term e; e, is {él e3 €4, €y €3 e%» .

[[el ez + e3 e4] [el e3 84]} 1 = [el e2 e3 64]0 el = el.

and
[A [e) e e4]]l Al = [el ey €5 * e e4]]* =1 e3 7o

Therefore [el e, * e; e4] is not simple.

b

Proof of Theorem 2-1-6: Suppose [@‘Eé] A] =0
1
i=1,...,m-1, for a set of echelon forms, (E;).
Since the regressive product [A Ei] is of degree

1
1 it is simple. By definition of a regressive product each
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[A Ei] # 0. By an argument identical to the proof of
1

Theorem 2-1-5 , LAEJ is in echelon form, so the set of
1 . .
vectors [AEl] are independent. Let [AEl] (i=1,...,m-1),
1 1

be made part of a basis for a vector space and expand A in

the basic forms corresponding to this basis; i.e.,

[ :' :
A = c. ||AE B.| + 2 d. D.
=1 i [ 1]1 i i=p+1 171

1=

Mo

where [[Aﬁl] Bi:l and D; are the independent basic forms
1

of degree m and Dj do not contain [ABl] . Since
1

[[Aﬁﬂ L A:] =0,
by i [[AEJl Di] = 0.

But since the [[AEl] Di:l (i=b+l,...,[) are independent
1

basic forms of degree m+l. It follows that

d; =0, (i=b*1,....8)
and b
A = Z C [[AE ] B.]
i=1 i 1 1 i
Setting
b
Py = X c¢j B
i=1
gives
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e [CA R

then P, is a form of degree (m-k) which does not con-

tain any of the factors EAEﬂ , i=1,...,k.
) 1

Let

J
2  d; H
i=f+1

J
1]
H
Y

NIEEEAE

where

[E&Ek+1]l Fi] and Hi are the independent basic

forms of degree (m-k) and H. do not contain EAE ] .
i k+1 1

[[AEM_J . A:| =0

it follows that

i=%+1 di [[AEK"lJl [AEljl [AEk]l Hi] = 0

But since the forms
[ae,.] [ae] ... (g ] H-] (i=f+1, ..., )
[ k+1dy L1y kdy 2 T
are independent of degree m, it follows that
di =0 (i=f+l,...,j)

and

L e s . 4
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Setting

£
Py = 2 d; Fy

gives

weffam), o, B, )

By dinduction, it follows that
A = ||AE ... |AE P
[[ l:l 1 [ m-l] 1 m-l}

where Pm is a form of degree 1.

-1

Therefore A is simple.

Conversely, if A is simple, then [ABI] is a factor of A
1

by Theorem 2-1-4, so [[AEl] A]=O for all Ei’
1

Theorem 2-1-6 provides a method of determining
whether a canonical form, A, is simple. If A is given,

@ set of echelon forms can be chosen and the products

[[A E; . AJ

formedq for i = 1,... m - 1, This procedure gives one condi-
tion on the coefficients of A for each term in the above

Products., The total number of such terms is

m
@ | ) [5]= en ) -(:;:ff)
i=1

T
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. LY
wh r 1. = +‘_
ere (J) (i-3)' 3

An examination of the determinants of an echelon
basis for a subspace of dimension m in an n-dimensional

vector space, shows that there are
n

[m -l—m(n—m):]

conditions on the coefficients of its outer product.

S ince it can be shown that for n > m

o) - )|

there is much redundancy if Theorem 2-1-6 is used to deter-

n
m

n-m
m+1l

-1 - m (n-m)} for m > 1,

mine whether a canonical form is simple. The next two
Corollaries and the remark following them give a simplified

criterion which eliminates all the above redundancy.

Definition 2-1-12: A set of echelon unities for the canon-

ical form A of degree m is a set of m-basic unities of
A distinguished non-zero term of A;. Therefore, each
€cChelon unity corresponds in a (1-1) fashion to the echelon

form that contains it.

\CorOllarz 2-1-1: Let A be a canonical form of degree m,

and (E;) (i=1,...m) a set of echelon forms of A, for a
distinguished non-zero term, P, of A. Let each E; cor-

TeSpond to the echelon unity e; of P. (i=l,...m). Let
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Ao = A, and A; be the subsum of A;_; that multiplies
the echelon unity e, of P. (i=1l,...m). (A subsum is the
sum of all forms that multiply a common basic unity in A.

See definition 2-2-5.) Then A is simple if, and only if,

[EA. E;:] A, ]= 0 (for i = 1,...m-1) (2-1-3)
1 i-1

where (Ei) (i=1,...m-1) are some m-1 of the set of eche-

l1on forms.
Proof: By Theorem 2-1-1, A is simple if, and only if,
Exni] Al =0  (for i=1,...m-1)
1
Thus the Corollary is proven when it is shown that

H:A Ei] L A?l = 0 if, and only if, [IERE-I] ) Ai-l:, =0 (2-1-4)
for i=1

yeoo.m=1,
For i=1, statement (2-1-4) is an identity.

Suppose statement (2-1-4) is true for i < k.
We have

A;_{ T Aj e; * B; (i=1,...k) (2-1-5)
Where no term of B, contains e;. Let
Ci = [el 62...ei] , CO = .1 '
Then
k
A =[Ak Cx * z B; Cj_-]_J (2-1-6)
1=1

— e
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First suppose

[[A E.+1]1A:|= 0 (i=1,...k)

1
By (2-1-6),
k
[[A Erar] A ck} + 3 |[a Eys1] . Bj Ci-1] =0
1 i=1 1

But

A Ekﬂ]l B, cl_l} has no ey,  (i=1,...k).
Therefore_

A Eiﬂ]l A; ciJ =0 (i=1,...k).

Since no factor of C. is contained in [A E. ] A.
i+l 1 1 ’

[A Ei,,l]l A; | = o.

-
Conversely suppose
[a Eiﬂ]l Ay | =o. (i=1,...k).

By (2-1-6),

k
EA Ek+1]1 A} = {[A Ek+1]l (;El B, Ci_l)}' (2-1-7)

But

pu] a] =0
:[A B, A Ck} i [[A B, (%l Bj Ci_l)} 0. (2-1-8)

1=

Also every term of

[[A E,] A ckJ +d [ek (1%1 B; ci_l)J (2-1-9)

COntaing e as a factor (where d 1is the coefficient of

k
ek: in [A Ek]l)’ and no term of
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[([A Ele - d ek) (}:1 Bj Ci-l)J (2-1-10)

i
contains an ey .- Therefore (2-1-9) and (2-1-10) are linearly
independent and are both zero.
From (2-1-9)
k
[A B e |2 Bycin)| = AR [AEG] A Gl=o
) 1 i=1 1 1

Since e, is not a factor in any term of

p—

K
AE+] 2 B; C;_ ,
L[ ker) |2 Bi Ciaa

~ k
A E J 2Z B.C. .|| =0 (2-1-11)
[ k+1 1 i=1 i ~Yi1-1

Therefore, by (2-1-7), and (2-1-11)

[[A Ei,rlJlA:l =0 (i=1,...%).

It follows that statement (2-1-4) is true for
i=k+1, Consequently, by induction, statement (2-1-4) is

true for i=1,...m-1, and the Corollary follows.

The following Corollary gives in (2-1-12), an

€quivalent and shortened form of (2-1-3).
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Corollary 2-1-2: Let all notation be the same as in Corol-

lary (2-1-1), and let

[A‘Ei:ll = [di e; *+ Di] ) where D; does not contain

e; and d; £ 0.

Then
[[A Ei]l Ai-l} =0 if, and only if,
[di e, A;_; +D; A, eiJ = 0. (i=1,...m-1). (2-1-12)

Proof: By (2-1-5)

where no term of B, contains e

Suppose
l:E\ Ei:]l Ai_lJ_ =0
Then
[Eil e; +D1:] [Al e; +Bi]:| = [dl e; B; + D; Aj e; + Dy BiJ= 0
Hence

Eii e, B, +D, A, ei:l =0 and [D; Bi] = 0.

Therefore

q. 1 = . e. B: . . e.| =
[1 e, Ai—l + Di Ai ei] [dl e, Bl + D1 Al el] 0
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Conversely suppose

[‘fi ej Aj.1 T D3 Ay ei—_] =0
Then

[di eiBi+DiAiei] =0
and

[Di d; e Bi] =0

Since Di Bi:l does not contain e;

and
[[A Ei]l Ai-l:] = [di ej By * Dj Aj e; * Dy Bi:l =0
Remark: 1In Corollary 2-1-1 , A; G can be written as

A G 7 :[ [A Ei+1]1(/Ei+1)J * Dy

Wwhere D, does not contain any term of

[ [A Ei_,_l] 1(/5“1)}

Therefore

(bed, - [ ]
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Thus the computation of

[[A B4 L Aij|

produces some redundant terms that are always zero. These

terms can be removed if

[[A Bival | (/Ei+1)}

is removed from [Ai Ci]. prior to performing the multipli-

cation. If
AR [[A Eiﬂ]l (/Eiﬂ)] , then

[[A Ei+l}l Ai] = [[A Ei+1]l AJ

Let A. be the subsum of A'i_

that multiplies the

i 1

echelon unity e;.
Then (2-1-12) and (2-1-3) can be replaced by the
equivalent condition;

A is simple if, and only if,

1"
Ldi e A’i_l + Dy Ai ei] =0 (i=1,...,m-1) (2-1-13)
Exactily
m-1
D mr-:iii -(m-1) (n-m) = N1 1 - m(n-m)
i=1

different terms must be zero for (2-1-13) to be satisfied.
Thus there is not redundancy of computation in this instance,

Since each independent conditdon is checked only once,.
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Example: To illustrate Corollaries 2-1-1, 2-1-2, and the

above remark, consider the space RS‘ Is A simple?

A = AO = e1e2e3+3ele2e4 - €1€385 - €j€e3e,.

Choose ee,e; as the distinguished term of A. 1In the

notation of the two corollaries and remark, we obtain

Ay = e,e3 * 3eje, - ejes By = -ejege,, E; = ej)e,e;q

A2 = e3 + 3e4 BZ = —8385, E2 = 628465

A, =1 B3 = 3e4, E3 eze,es

[A El]l = (el - 84), dl =1, Dl = -ey

P& 32]1

D& EJ T (egt3eg), d3 =1, Dy =43y

(82 + 65), d2 = l, D2 = +es

818263 - 646263, Aé = 3816284 - 816365

[E& Ey], (/El)]

AY' = 3e2e4- eses

[E“ Eyl | (/Ez)J = epejey *oegejez, A = 3eyey

AY = -3e,
[D\ E3}l (/531} = ezeje, * 3ezeje,, AL = 0.
Then
[dl e A5 * Dy A7 el]= e ezese ? 0
[dz e, A] + D, AY e2]= -3ese e,.

ijErefbre A is not simple.
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Part II

Linear Graphs and Matroids

Preliminary Definitions:

A finite graph G is a finite set E(G) of edges,
a finite set V(G) of vertices, and a ternary relation of
i ncidence which associates with each edge an ordered pair of
Ve xtices, called its ends.

A sequence P = (a_, Ay, a;,...,A,, a, ), having at

1 e ast one term, is a path from a, to a, if the following

C oOonditions are satisfied:

1. The terms of P are alternately vertices a;

and edges Aj of G
2. If 1< j<n then a, and 'aj are the two

j-1
ends in G of Aj‘

If x, y€V(G), we say x and y are connected in
= if there is a path in G from x to vy. The relation
<= £ connection is an equivalence relation partitioning V(G)
L nto disjoint equivalence classes (V,...,V}) [TU-4]

[ OR-1] [SE-1]. The subgraph whose vertices are members of

v:i_ and whose edges have both ends in V; will be called a

i
<~ “Smponent of G. This is a graphic component, to be distin-
& %3 5 shed from physical component equations. The context

= L ways will clarify what definition of component is used.




oE-

it
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All the definitions given in [FR-1] will be used
except the following:
1. Cutset is a minimal non-null set of edges whose
removal separates a component into two disjoint
components.
2. A circuit is a set of edges that form a simple '

closed curve.

A forest is a collection of trees, each taken from a

L T i B e

distinct component. It can be shown that a forest is a
maximum set of edges that contains no circuits. A co-forest
is a complement of a forest. It can be shown that a co-forest
is a maximum set of edges that contains no cutsets. Theorem
(3.2.2) of [FR-1] 1is true when tree is replaced by forest,
and when co-tree is replaced by co-forest.

A matroid on a finite set M;, is a class M of
lon-null subsets of M; which satisfies the following axioms:
-ﬁﬁ&égﬂ_i: No member of M contains another as a proper subset.

Axiom 2: If X, YEM, a€XNY, and be(X - Y), then there

exists Z€M such that
b€Z C (XUY) - {ab.

“he elements of M are called the points of M.
Let C(G) be the set of circuits of a finite graph
G. Then C(G) 1is a matroid. 1In fact the edges of the graph

are the set M;. Since a circuit is a simple closed curve
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formed from a subset of E(G), [FR-1], it has no crossover
vertices, therefore, contains no other closed curves, so
satisfies axiom 1. If X and Y are two circuits with a
common edge a and some edge bE(X - Y), let X and /8
denote the two vertices of a, then the curve 2Z' from B
along X to X, then along Y to B is closed and does
not contain a. Now 2Z' contains b but may not be
simple, however, since beg(X - Y) there exists a simple
closed curve Z contained in Z' such that b€ 2Z. Z is
the required circuit that satisfies axiom 2. Henceforth
C(G) 1is called the circuit matroid of the finite graph G.
Let B(G) be the set of cutsets of a finite graph
G. Then B(G) is a matroid. To see this, let the edges of
the graph be the set M;. A cutset is defined as a minimal
Nnon-null set of edges whose removal separates a component
i nto two dis joint components. Since cutset is defined as
Mminimal it satisfies axiom 1. If X and Y are two cut-
Sets, a ¢(XNY), and be(X - Y) then let 2Z' be the set
©X edges (XUY) - {a}. Let the disjoint sets of vertices
K the components formed by the removal of X be denoted by

c:._ and  C,, and those for Y ©be D; and D,, the two

~ : i

<Srtices of a byc<and X . Let the set of vertices of
-he component be C. Therefore c,ucC, =Dy U Dy =C.
Since Without loss of generality,

0< €C;N Dy, X €Cy N Dy,
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is non-empty, since other-

Then Z' sepa-
C; N D, and

CI(W D, or CZ(W Dl

then either
is non-empty.

Assume C; N D,
into the disjoint sets
separates the component whose
be(X -Y)

wise X =Y.

rates the vertices C

Therefore, Z!

into at least two parts. Since

c1 N Dl.

vertices are C

Z be the minimal subset of Z' containing b

cZ', let
which separates the component into exactly two disjoint com-
ponents. Therefore B(G) satisfies axiom 2. B(G) will be

called the cutset matroid of the finite graph G.
A matroid is graphic if it is the cutset matroid of a

finite graph, and co-graphic if it is the circuit matroid of
The points of a matroid M on M1 are the

a finite graph.

€lements of M.
To describe any finite dimensional vector space by a

If M, dis any

matroid let R denote the real numbers.
£ dnite set define a chain on M; over R as a mapping f
f(a) is the coefficient

If a €M; then

of M; into R.
a €My, such that f(a) # O is

©f a in f. The set of all
€ e domain |f| of f. If f(a) =0 for all a then f
A S the zero chain on M; over R.

over

of two chains f and g on Ml

The sum f +g
R defined by the following rule

b = 3 : .
1S a chain on M1 over

(f +g) (a) = f(a) + g(a) ag M,
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M

With this definition of addition, the chains on 1

over R are the elements of an additive Abelian group where
the zero chain is the zero element, and the negative of a

(-f) where the coefficients of f

chain f is the chain

are multiplied by (-1).
Scalar multiplication is defined by the following rule:

1f

réeR, f is a chain aEMl, then rf(a) = r x f(a).

With this definition of addition and scalar multipli-
NO iso-

cation the set of all chains form a vector space ,

morphic to the vector space spanned by a corresponding set of

n-tuples.
1f Ml is a finite set of n elements we thus have
@ 1-1 correspondence between the elements of M1 and a
E, for the

distinguished set of orthonormal basis vectors

T-dimensional chain vector space.

Throughout the remainder of this thesis a canonical

uter product refers to the expansion of the outer product

taken as the basic unities. A

A n terms of this set E
T¥ratrix for this set of basis vectors is defined as follows:

Let M, = {;1,...,a€}
Then [f(al),...,f(ani

1S a row vector which is called the representative vector of
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the chain f with respect to the chosen enumeration of M.
Let A be a matrix of r rows and n columns whose elements
are elements of R and r rows are linearly independent over
R. Then the set of chains on M; whose representative vectors
are linear combinations of rows of A with coefficients from
R are elements of a chain subspace N, of N, on M. A

is called the representative matrix of N. For the above
basis, E, A 1is also the change of basis matrix defining

the subspace, N. (See (2-1-1).)

Now any n dimensional vector space is isomorphic
to the chain vector space NO on n elements since the set
of n-tuples is isomorphic to any n-dimensional vector space
[BI-1].

By the following theorem and the above paragraph we

have a matroid associated with every finite dimensional vec-
t or subspace. A chain f of N is elementary if it is

Tlon-zero and there is no non-zero g €N such that |g| is

A proper subset of |fl.

-
~——:!EEQ£2£L_§:§;L: The Class M(N) of domains of elementary

< Mains of N is a matroid on Ml'

X xoof: see [TU-3].

The following lemma gives an important property of

€very chain vector subspace.
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*Lemma 2-2-1: The domain of every non-zero chain of N is

a union of points of M(N).

proof: [TU-31.

A subspace N is called graphic (cographic) if its
matroid M(N) is graphic (cographic).

A primitive chain of N is an elementary chain f
of N in which the coefficients f(a) are restricted to
the values O, 1, -1.

The subspace, N, is regular if to each elementary
chain there corresponds a primitive chain with the same
domain. A matroid is called regular if it is the matroid of
a regular chain vector subspace. By the above definition
€very regular matroid has a representative matrix.

A condition equivalent to the regularity of a chain
vector subspace is given in the following theorem. 1In its

Proof the following definition is used.

Definition 2-2-1: A dendroid is a minimal non-null subset

of Ml such that it meets the domain of every non-zero

<=hain of N.

:!:EEOTEm 2-2-2: Let A be a representative matrix of a

vector space, N, of order r x n. Then a necessary and
sufficient condition that A be the representative matrix
of a regular chain vector space on Ml is that the determi-

n . .
ants of jts square submatrices of order r are O, d, and
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-d, where d is a real number # O.

Proof: Suppose A is the representative matrix of a regular

vector space. Let P be a set of r columns of A that

has a non-vanishing determinant. Without loss of generality

assume P is in the first r columns of A and write
Pt a=p1[pB]=[UA.

Since [U A ] is another representative matrix of a regular

chain vector space and the chains of [U AO] are elementary,

there exists a set of primitive chains in the vector space,

with the same domain as those of [U Ao]. Therefore, another
representative matrix for the regular chain vector space is
the matrix [U Al] in which every row vector of the matrix
(u A;] is a primitive chain.

Since A and [U Al] both have maximum rank and
TYepresent the same vector space, there exists a non-singular

xeal matrix M such that
MA=1[UA]
Let P, be any r columns of [U A;] that have a

Xon-vanishing determinant and without loss of generality
Write

(U A;] = [Ay Py A5
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and

-1 -

1 5]

Since [A4 U A5] is another representative matrix of a

regular chain vector space and the chains of [A4 U A5] are

elementary, there exists a set of primitive chains in the

vector space with the same domain as, the row chains of

[A4 U As].\ Therefore, another representative matrix for the
regular chain vector space is the matrix [A6 U A7] in
which every row vector is a primitive chain with the same

domain as its correspondent in [A, U A5] and there exists

some matrix P2 such that

P, (U Al] = P, [A2 P, A3] = [A6 U A7]

But by definition of a primitive chain the entries of

IA6 U] are either #1, or O, consequently the columns of
[A6 U] corresponding to the unit matrix in [U Ayl are a
dinear combination (with +1,or O) of the rows of the unit
™matrix of [U A;]. It follows that all entries of P, are

*1, or 0. But since
P,P; = U

and both P, and P; are matrices of integers, it follows

that (det. P,) (det. P;) =1 and (det. P,) = *+1.
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It has been established that the determinant of any
nonsingular submatrix of [U A;] equals +1. Therefore
the determinant of any nonsingular submatrix of A is
(det. M1y (+1)=+a.

Conversely, suppose the determinants of the square
submatrices of the representative matrix A are O, d, and
-d. Let N be the vector space spanned by the rows of A.
Let f ©be any elementary chain of N. Let {?} be any
member of |f| and C any dendroid of N - (M - ‘f|);
(i.e., if Sc M;, N - S is the class of restrictions to
S of the chains of N.) Take f such that f(a) = 1.

Then if a chain h of N has a domain not meeting C U{é}
its domain must be a subset of |[f]| - {g}. Since f is

elementary, this is possible only if h is zero. Therefore
some subset D, of C U {9} is a dendroid of N. Since D

must meet |f|, Df]lfl = {g}. The following lemma is needed.

*I_emma 2-2-2: Let A be an r-rowed representative matrix of

N _  Then a subset S of M; is a dendroid of N if, and
Omnly if, it has just r elements and is such that det. A (S)

= o. A(S) is the matrix whose columns correspond to elements

ot o S.

P oof: [TU-1].

Returning to the proof of Theorem 2-2-2 , since A

h a s a11 determinants equal to +d or O, det. A(D) = +d.
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Let A' = (A(D))'l A. The matrix A' is a representative
matrix for N. The matrix A'(D) is a unit matrix. There-
fore there exists a chain g of N such that g(a) =1

and |g|/]D = {a} . Then f-f(a) g is a zero chain since
its domain does not meet D. Accordingly f =f(a) g, and
f(a) =1, so f=g. Also since (A(D))"! has a determinant
equal to :é and every (rxr) submatrix of A has deter-
minant #* d, every (rxr) submatrix of A' has determinant
+ 1,

Now consider the (rxr) submatrix A'(D') formed
from the columns corresponding to D' = (D - {a}) U{b} where
b€ lfl such that b # a. Then det. A'(D') equals * f(b)
since the columns corresponding to D - {a} are distinct
columns of the unit (rxr) matrix. But det A'(D')=#1
from above, so f(b) =+ 1. The same is true for every

element belf]. Therefore f is primitive.

Lemma 2-2-3: N is a regular vector subspace if, and only

if, its outer product is just.

P xoof: Follows immediately from definition 2-1-6 and Theorem

=2 —-2-2.

Let R; be the field of integers (mod 2). By the
< ame way a matroid was defined on a vector space, No’ over
T he field R of reals, a matroid can be defined on a vector

= Pace N/ over the field R; of integers (mod 2).
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Né is called a binary chain vector space. N, and
N. define the trivial matroids where each element of M 1is
an element of Ml‘ In the same way that the subspaces N of
N define the non-trivial matroids, the subspaces N' of
NS define the non-trivial matroids. N' is called a binary
chain vector subspace.

A matroid will be called binary if it is the matroid

of a binary chain vector subspace.

*Theorem 2-2-4: Every regular matroid is binary.

Proof: [TU-3].

Theorem 2-2-5: Every regular matroid corresponds to a unique

binary vector subspace of N

Proof: Let M be a regular matroid. By Theorem 2-2-4 M

is binary so is the matroid of a binary vector subspace N',
Suppose M is also the matroid of another binary chain vec-
tor subspace N';. By Theorem 2-2-1, the elementary chains
of N' and N'l have the same domain and since their coef-
ficients are both (mod. 2), the chains are equal.

Take any echelon representative matrix A' of N!'
for the distinguished set of orthonormal basis vectors of
rqé,. Then each row of A' corresponds to an elementary chain
Of N'., Therefore A' is also a representative matrix for
N+ 1. Since N' and N'; have the same representative

Matrix, N' = N';.
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The unique binary vector subspace associated with a
regular matroid M can be determined from any real vector
subspace N which has M as its matroid. First obtain an
echelon representative matrix A for N. Since every row
of A corresponds to an elementary chain of N, the rows of
A can be replaced by a set of rows having *1 or O only
as coefficients since N is regular. The new matrix B
thus obtained is in echelon form. Consequently, its rows
are linearly independenf and have all elements +*+1 or O.
Replace all non-zero elements of B by the corresponding
residue class (mod. 2), to obtain B'. All rows of B' are
linearly independent (mod. 2). Also, the rows of B' are
elementary chains of N' and their domains are the same as

the elementary chains of N.

The determinant of every maximum rank submatrix of
the matrix B above is equal to *1 or O by Theorem
2-2-2 , since B 1is in echelon form and B is a represen-
tative matrix of a regular vector subspace. By the way in
Which the matrix B' is obtained, it follows that the deter-
Minants of maximum rank submatrices of B' are equal to the
determinants of B (mod 2). Let the basis vectors of N,
ang N', Dbe put in 1-1 correspondence with Ml‘ Now by
€Quation (2-1-1) the corresponding terms of the canoﬁical

Outer products of N and N' have for their coefficients

Yhe determinants of their corresponding columns in B and B'.
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Therefore:

Lemma 2-2-4: If M(N) = M(N') where N 1is regular and N'
is binary, then a coefficient of a term of the outer product
of N' is non-zero if,and only if, the coefficient of the

corresponding term of the canonical outer product of N is
non-zero. Here the distinguished basis vectors of N, and

N'o are in a 1-1 correspondence.

Given a chain vector subspace N, on the elements
of the finite set M;, and S C Mj, let N - S be defined
as the class of restrictions to S of the chains of N, and
N X S as the class of restrictions to S of those chains f
of N for which |f| C S.

Let

N, ={f : fen, |f| gSng}.

Nl is a subspace of N, since if fé€ N, Ia fl = |f| C S.
If f€Nl, gENl’ then

l£ + gl c lel U |g|_§ S.

Therefore, by Theorem 1, p. 164, of [BI-1], N, is a sub-

SPace of N.
There is a 1-1 correspondence between the basis
Ve€ctors E of N, and the elements of M;. Let E; be

the subset of E corresponding to the elements of S. It
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follows that N; is the subspace of vectors of N that are
linear combinations of the chains of E;.

If S has m elements, E, has m elements. Con-
sider the m-dimensional space, N5, spanned by the restric-

tions to S of the chains of E The chain f', formed

1-
from chain f€N by restricting f to S, 4is an element
of N2' The class N X S is the subspace of N2 formed
from the chains g €N; by restricting g to S. Thus,
NXS and N - S are subspaces of N,.

Note that N, is an m-dimensional space and each of
its vectors have m coefficients, one corresponding to each
element of its basis,whereas N and N; are subspaces of
No which is n-dimensional and therefore, each vector has n
coefficients. Now consider the subspace (N X S) - T. If
Ezg_ E are the basis elements of N, corresponding to the
set (SNT), and SNT has t elements, E, has t ele-
ments. Let N3 be the t-dimensional vector space spanned

by the restrictions to S, of the chains of Ez. Therefore
(N X S) T is a subspace of N;.

Let M be a matroid on the set Ml’ and the matroid
MOCN) on the subspace N defined by Theorem 2-2-1 .

Let (M X S) be the class of all sets of M which

Are subsets of S. Then (M X S) satisfies axioms I and II

aAnd jis therefore a matroid on S.
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Let M, be the class of intersections with S of
members of M, and let (M - S) be the class of all minimal
non-null members of M.. In [TU-3], it is shown that
(M - S) is a matroid on S.

From: [TU-3]

M (NXS)=M(N)XS

M (N . S) M (N) . S

The matroids of the form (M X S) - T (where T,
S C M;) are called minors of M.
If M is the matroid of a chain vector space N,

then

(M(N)XS) -T = M(NXS) - T =MNXS) - T) (2-2-1)

Matroid Minors and Outer Products

In the notation above, (N X S) - T can be inter-
Dreted as the class of restrictions to (TNS) of the chains
of
Nl' Let E3
Chains of E,. If a representative matrix A of N is

be the restrictions to (SNT) of the

Chosen such that a maximum set B, of linearly independent
Ve ctors of N, are represented by rows of A, then (N X S)
T is spanned by those linear combinations of elements of E;
Yepresented by the vectors of B;. Let A, be the submatrix

of 4 composed of themrows corresponding to Bland n columns
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corresponding to their coefficients in E;. Therefore a sub-
matrix Al of Ao whose rows represent vectors that span
(NXS) - T is the subset of columns of A, corresponding
to EZ’ and the rows of A,. A representative matrix for
(NX S) - T could be obtained from A; by choosing a max-
imal linearly independent set D of rows of A;. Thus D
is some submatrix of A. Also since the rows of A corre-
sponding to the vectors of B, are linearly independent and
all coefficients of vectors of Bj corresponding to (E - E;p)
are zero, it follows that the rows of the submatrix Ao are
linearly independent. By performing linear combinations on
the rows of A, it can be assumed that the complementary
set of rows to matrix D in A is 0. Let A, denote the
matrix composed of the rows of A, that were deleted to form
D and the columns of A, corresponding to the coefficients
of (E; - E3). Then the rows of A, are linearly indepen-
dent since if they were not, A, would not have linearly
independent rows. Let A3 be a submatrix of A2 with
linearly independent columns. By elementary row operations
the entries of the submatrix of Ay corresponding to the

ows of D and the columns of A can be made O.

3
The remaining rows of A can be split into two sub-

Matrices. Let A, Dbe those columns corresponding to E;

and 1let Ag Dbe those columns corresponding to (E - Ep).

It js claimed that the rows of A are linearly independent.



.

s

]
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If they were not, there would be some row combination of the
matrix [A, As] with coefficients not all zero such that
the columns corresponding to Ag; are zero. But the same
combination of the rows of A, would be non-zero since A

is a set of linearly independent rows. By definition the
resulting row is a vector of N,. But it was already assumed
Ay contains all such rows. Therefore, the rows of A are
not all linearly independent, contrary to assumption on A.

This contradiction establishes that the rows of A5 are

linearly independent. Thus the following has been established:

Lemma 2-2-5: A representative matrix D of any subspace of

the form (N X S) - T can be made a submatrix of a represen-
tative matrix A for N in which the submatrix D; of A
composed of the set of rows complementary to D and the set
of columns complementary to D has linearly independent rows,
and the submatrix D, of A composed of the set of rows of

D and a set of columns of maximum rank in D1 is zero.

Lemma 2-2-5 and equation (2-2-1) give:

EEIlsgprem 2-2-6: A matroid M(N) .on Ml contains a given

Minor K if,and only if ,
1. There exists a representative matrix A, of N
that possesses a submatrix D that is a represen-

tative matrix of the minor K,
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2. The submatrix D, of A composed of the set of
rows complementary to D and the set of columns
complementary to D has linearly independent
rows, and

3. The submatrix D, of A composed of a set of

columns of maximum rank in D and the set of

1

rows of D has zero for each entry.

Using Theorem 2-2-6 , one can determine from the
canonical outer product F of N, whether M(N) contains

a given minor K. Suppose M(N) possesses a given minor K,
and dimension of N is n,. From A the outer product of

N can be expanded in terms of the elements of E since A

is a change of basis matrix. By equation (2-1-1), the coeffi-
cient of term Ep . of F 1is the determinant of the n; x n;
submatrix of A ;aken from the n; columns corresponding to
the factors of EPi' Let D3 be a square submatrix of D,
which is nonsingular. Since D has linearly independent rows
and since the sum of all rows of D; and D is n; and D,
is zero, the determinant of every square submatrix of D
multiplied by (det. D3) is a coefficient of a term of F.

The terms corresponding to these coefficients are the terms

of E corresponding to the columns of D3 and the columns

of D. Thus:
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Theorem 2-2-7: A matroid M(N) on Ml contains a given

minor K if and only if the canonical Grassman outer product

F of N, contains the outer product Fl (of the vector

space corresponding to K) multiplied by a basic form E3.

The above basic form Eg 'is the subset of E corre-
sponding to the columns of any nonsingular D3.

Since any regular matroid M(N) is the matroid of a
unique binary vector space N' by Theorem 2-2-5 , and since
any minor of a regular matroid is regular [TU-1 (3.5)], for
regular matroids, we may substitute N' for N in the above
theorem and the outer product F' of N' for F and the
outer product F'; of the binary vector space corresponding
to the minor K, for F,.

Using Lemma 2-2-4 , the problem of determining the
existence of a given minor of a regular matroid is reduced

to the determination of the existence of a collection of sets

(called residue sets).

Definition 2-2-2: A residue set of an echelon representative

matrix A of N is the unordered subset of E (the basis
vectors of the spéce N,) which have non-zero coefficients
in some chosen row of A.

If an echelon representative matrix A has n, rows,

it has n, residue sets, one for each row of A.



55

Definition 2-2-3: A reduced residue set of an echelon rep-

resentative matrix A of N 1is a residue set where the basis

element corresponding to the diagonal coefficient has been

removed.

Definition 2-2-4: The residue sets (reduced residue sets)

of a non-vanishing term of an outer product are the residue
sets (reduced residue sets) of the echelon representative
matrix associated with the set of echelon forms of the non-

vanishing term (by Theorem 2-1-5).

The reduced residue sets or the residue sets are a
way of describing an echelon basis within a column permuta-
tion in a mod. 2 space. If M is regular Theorem 2-2-6
can be applied to its unique binary vector space of Theorem

2-2-5, and determine the minors present in some echelon
representative matrix. Therefore, to determine the minor's
presence the reduced residue sets need only be examined for
their size and intersections.

The above discussion is summarized in this lemma:

Lemma 2-2-6: Let N' be a unique binary m-dimensional vector

subspace derived from a regular matroid M on a finite set
Ml’ Let the set M; have n elements which correspond 1-1
to a basis set E of a binary vector space N'o. Of course
N' € N',. Then M contains a given minor K if and only
if there exist reduced residue sets of an echelon represen-

tative matrix of N' which when intersected with a subset
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of E, form the reduced residue sets of the unique binary

vector space N'l which represents K.

If all possible echelon representative matrices of
N'1 were known, every set of k columns need be examined

only once. This is the technique used in Theorem 2-2-12 .

Graphic Matroids and Outer Products

Theorem 2-2-8: A matroid, M, is graphic (cographic) if

and only if it is regular and has no minor which is the

circuit-matroid (cutset-matroid) of a Kuratowski graph.

Proof: [TU-4] (Main Theorem)

The two Kuratowski graphs are the Thompson and the

complete - 5. They are shown below:

VAN
NN/

Thompson Graph Complete - 5 Graph

Theorem 2-2-9: A real vector subspace, N C Ny, is graphic

if and only if it has a just canonical outer product F

re

which does not contain the outer product Fq (of a circuit
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vector space corresponding to a Kuratowski graph) multiplied
by a basic form E,.

Proof: The proof is an immediate application of the defini-
tion of regular matroid, Lemma 2-2-3 , Theorem 2-2-7 , and

Theorem 2-2-8 .

Theorem 2-2-10: A real vector subspace, N C N,, is graphic

if,and only if, it is:

1. regular,

2. has no representative matrix, A, that possesses
a submatrix D that is a representative matrix of
a Kuratowski circuit minor,

3. the submatrix D; of A composed of the set of
rows complementary to D and the set of columns
complementary to D has linearly independent
rows, and

4. the submatrix D, of A composed of a set of
columns of maximum rank in D, and the set of

rows of D has zero in each position.

Proof: Follows immediately from the definition of regular

matroid, Lemma 2-2-3 , Theorem 2-2-6 , and Theorem 2-2-8 .

Theorem 2-2-11: A real vector subspace N is graphic if, and

only if, it has a just canonical outer product F that has no

non-vanishing term with reduced residue sets such that their
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intersection with some subset of E forms the reduced residue

sets of a Kuratowski circuit subspace.

Proof: By the definition of regular and Lemma 2-2-2, we see
that N is regular if and only if N has a just outer prod-
uct. By Lemma 2-2-6, M(N) contains a Kuratowski circuit
minor if and only if there exist reduced residue sets of

some echelon representative matrix of N' (where N' is

the unique binary vector space such that M(N) =M(N')) whose
intersection with some subset of E forms the reduced resi-
due sets of a Kuratowski circuit subspace. But by the con-
struction process described after Theorem 2-2-5, the reduced

residue sets of echelon forms of N and N' are identical.

This theorem provides the simplest interpretation of
a graphic vector space since it means that once we know a
vector space is just, we perform the search for non-graphic
subspaces in set algebra, or in its equivalent, (mod. 2)
algebra.

The following analysis of the circuit subspaces of
Kuratowski graphs provides the final theorem which is use-
ful in the algorithm of Chapter 3. An m-form is a form
generated by m of the distinguished basis elements.

Analysis of the Thompson graph shows that there are

only 2 distinct structures of co-trees,
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1. those that form a path and,
2. those where three edges form a path and the fourth

edge is not connected to the other three.

Within a suitable permutation of the columns the two
echelon representative matrices for these structures are
unique because of the symmetry of the graph; and can be put
into the forms below:

For structure 1:

(111001000
101010100
010110010
001110001
For structure 2:
(111111000
111000100
110100010
100110001

where, of course, the order of the columns between structures
1 and 2 has been permuted. The orientation of the elements
is neglected since by Lemma 2-2-6 , it is unimportant.

Let A ©be an arbitrary simple just nine form of
degree 4. Denoting the first five elements of both struc-
ture 1 and structure 2, by a, b, ¢, d, e, it is obvious that
a non-vanishing term of A corresponds to the unit matrix
in structure 1, if and only if the residue sets of the term

are:

{_;, b, c} , {a, c, e},{b, d, e}, {c-:, d, ;} (T1)
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for some suitable permutation of the first five columns.
Likewise, a non-vanishing term of A corresponds to the
unit matrix in structure 2 if,and only if, the residue sets

of the term are:

{a, b, ¢, d, e}, {a, b, c}, {ja, b, d},{a, d, e‘} (T2)

for some suitable permutation of the first five columns.
Residue sets (T1) and (T2), are called the Thompson

r§sidue sets. Thus the following has been shown:

Lemma 2-2-7: Let A be a simple just nine-form of degree 4.

A corresponds to a circuit space of Thompson graph if and
only if any non-vanishing term has a Thompson residue set.
(Only one term need be examined since A is simple, and the
echelon set uniquely determines an echelon basis by Theorem
2-1-5 ).
An analysis, similar to the above for a complete-5
graph shows that there are 3 distinct structures of co-trees:
1. those corresponding to a union of two circuits
with one edge in common,
2. those corresponding to a union of two 3-edge
circuits with one edge having a free vertex, and

3. those corresponding to a complete-4 graph.

AN

Structure (1) Structure (2) Structure (3)
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Again, as in the Thompson graph, because of the sym-
metry of the graph, the two echelon representative matrices
for these structures are unique except for a suitable permu-
tation of the columns. Allowing for this, the echelon
matrices are as follows:

For structure 1:

— —
1111100000
1110010000
0111001000
1100000100
0110000010
_9 01100000 {_
For structure 2:
1110100000
1101010000
1100001000
0110000100
0101000010
0011000001
For structure 3:

1100100000
1010010000
1001001000
0110000100
0101000010

LO 011000001

Let B be an arbitrary simple just ten-form of
degree 6. Let the first four columns in the matrices above
be denoted by a, b, c, d.

Similarly to the above analysis for the Thompson
8raph, a non-vanishing term of B corresponds to the unit

Matrix in structure 1 if and only if the residue sets of the

term are:
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{a,b,c,d }, {a,b,c} , {b,c,d} , {a,b} , {D,C-} , {c,d} (K1)

for some permutation of the first four columns,
Similarly a non-vanishing term of B corresponds to
the unit matrix of structures 2 or 3, if and only if, residue

sets of the term are:
{a, b, c}, {a, b, a}, {a, b},{b, c}, {b, d_}, {c, d}(K2)
or

{_a, b_}, {_a, c}, {a, d}, {b, c}, {b, d}, {c, d} (K3)

respectively, for some permutation of the first four columns.
Residue sets (K1), (K2), and (K3), are called the

complete-5 residue sets. It has been established that:

Lemma 2-2-8: Let B ©be a simple just ten-form of degree 6.

B corresponds to a circuit space of a complete-5 graph if
and only if any non-vanishing term has a complete-5 residue
set. (As fqr the Thompson graph, one non-vanishing term
need be examined since B is simple ahd the echelon set

uniquely determines a basis.)

Definition 2-2-5: A sub-sum of an outer product is the sum

of all forms that multiply a common basic form. Example:

Let {lxl, X5, x3:} be the basic unities. Then

+ b x, X

1 %2 1 ¥3 T ex

a X X

2 73

has (b x; + ¢ x,) as the sub-sum multiplying the common

basic form, X3.
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Theorem 2-2-12: Let E be the set of basic unities of No’

Let N, be a real vector space of dimension n. A real vec-
tér sub-space, N, of N_, is graphic if and only if the
just canonic outer product F of N has no sub-sum which
has either Thompson or complete-5 reduced residue sets for a

non-vanishing term.

Proof: The process of forming an intersection with the resi-
due sets is equivalent to forming a sub-sum and then taking
the residue sets of the sub-sum. The rest follows from

Theorem 2-2-11 , and Lemma's 2-2-7 , and 2-2-8 .

Note here that there is no need to form the complete
sub-sum but only to look for the presence of certain terms in

the sub-sum.

The following two important graphic operations used

in the next chapter are taken from [TU-1].

Definition 2-2-6: Let G be a finite graph, and S a sub-

set of edges in G (i.e., S E(G)). Let G - S be the
subgraph of G whose edges are members of S and whose
vertices are the ends of members of S. G : S is the sub-
graph of G whose edges are members of S and whose ver-

tices , are all the vertices of G,
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Definition 2-2-7: Let G be a finite graph, S a subset

of E(G). G ctr. S 1is the subgraph of G whose vertices
are the components of G: (E(G) - S) and whose edges are
the members of S; the ends in G ctr. S of an edge A
are those components of G: (E(G) - S) which contain as
vertices the ends of A in G. We may regard G ctr. S
as obtained from G by contracting each component of G:
(E(G) - S) to a single point. G X S is the graph obtained
from G ctr. S by suppressing its‘isolated vertices. These
vertices are clearly those components of G whose edges all
belong to E(G) - S.

If C(G) 1is the circuit matroid of the graph G,

and B(G) is the cutset matroid of G,

B(G - S) = B(G) - S
B(G X S) = B(G) X S
C(G - 8) =C(G) X S
C(G X S) =C(G) - S

For proof, see [TU-4].

By the definitions of B(G) - S and the others before (2-2-1)

we have
B(G - S) = M(Nl - S)
B(G X S) = M(Nl X S)
(2-2-2)
C(G - S) =M(N X S)
C(GX S) = M(N - S
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where N, is the graphic vector space of G, N is the
cographic vector space of G, and M is the unique matroid
corresponding to each vector space by Theorem (2-2-1).

Likewise

B[(G X S) - T] =M [(N; X S) - T]

BI(G - S) X T) =M [(N; - S) X T]

(2-2-3)

C[(G - S) X T] M[(N X S) * T]

M[(N - S) X T]

Cl[(G X S) - T]
More complex minors are computed similarly to these.
Part III

Components and Systems

Let CE be a set of equations called component
equations, perhaps parametrized by an independent variable
t, relating the coefficients of a distinguished set K, of
orthonormal basis elements of a finite dimensional vector
space V of dimension 2e. Let all the basis elements of V
be put into exactly e ordered pairs, and let P be the
vector space generated by the first elements of the ordered
pairs. Let P' ©be the vector space generated by the second
elements of the ordered pairs. The distinguished basis
elements of P are called across variables, and the dis-
tinguished basis elements of P' are called through

variables.
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Let G be a finite graph of e edges and let F
be a 1-1 correspondence between the set of edges of G and
the ordered pairs of V. Let N be the co-graphic vector
subspace of P and N; the graphic vector subspace of P!
corresponding to the graph G by F.

A system is defined as the ordered triple {;E, G, %}.
A system can be described by a set of equations, CE togeth-
er with the equations formed by equating all vectors of N
and Nl to 0. (These latter equations are the generalized
Kirchoff's laws of [FR-1].)

A graph, G;, is a subgraph of a graph, G, if
E(G;) € E(G) and V(G)) CV(G). Let N' be the co-graphic

vector subspace of P corresponding to the subgraph G by

1
F and N'l the graphic vector subspace of P' correspond-
ing to the graph G; by F. Then a subsystem of {;E, G, E}
is the ordered triple {FEI, Gl’ ﬁ} . The equations describ-
ing the subsystem are:

1. the equations CE; relating the coefficients of
the distinguished basis ordered pairs of V that
correspond to the edges of Gy (it is assumed
that G1 is chosen so that all other coeffi-
cients are in the remaining equations of CE)

2. the equations formed by equating all vectors of

N' and N'1 to O.
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It is assumed that all component equations are
written with respect to the distinguished basis of V. The
representative matrix of N or of its orthogonal complement
is assumed to be defined with respect to the distinguished
basis of V.

Throughout this thesis systems are examined whose
component equations are: ordinary differential, integral,
algebraic, or combinations of the above three; i.e., a single
valued mapping or operator between abstract spaces or func-
tion spaces, as described in works on functional analysis,
and system theory, [ZAH-1],[ZAM-1],[WIE-1],[ZAH-2],[BOS-1],
[BAR-1],[MC-1]. (An algebraic equation means a relation
between coefficients of basis elements that does not relate
differentials, integrals, or limits of the variables.)

The component equations considered are identified as
the following types:

Type (1): Differential and algebraic equations of

form:
d -
T YT Yo 2 B
Zo, = OV 23 0 ©)
where Z

and Zok are each vectors of a finite dimen-

sional space V of order Ny -1 and each contains exactly
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one coefficient X, or yj corresponding to each edge
j=(1,2,...Nk-1) of the corresponding graph (defined in
[FR-1]). The vector ]Vk is called the state vector of the
multi-terminal component and t is an independent real
parameter, usually time. Z°k’ Zik’ 2Vk are vectors in EP
which vary with the parameter t.

Type (2): 1Integral and algebraic equations of the

general form:
t

1
Y (t) = f F(Z; (8), s, ©) ds
o

2o = Gk Vs Ziyr

Type (3): If the component is described by an oper-
ator between abstract Hilbert spaces, equations of the

following form:

where the quantities are as defined above, except that the
vectors are elements of the Hilbert space L2mk, [See Part 1II,
Chapter III] or the real Euclidean space of dimension m,_ .
The vector subspace N generates, for a 2e dimen-
sional vector space V, e linear algebraic constraint
equations. As shown in [FR-1] and [KO-1], these con-

straint equations represent a generalization of Kirchoff's
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laws and they can be written without loss of generality in

the forms
AY =0

and (2-3-1)
BX =0

where A 1is a representative matrix of the orthogonal com-
plement of N, B is a representative matrix of N, Y is
a vector of thru variables, one coefficient corresponding to
each edge of the graph and therefore to each basis element
of the space, and X is the corresponding vector of across
variables. This notation is all defined in [FR-1].

If a system has m components, the equations describ-
ing the system behavior can be written as the direct sum of
m component equations of Type (1), (2), or (3), (which is

CE), and the set of e algebraic constraint equations

(2-3-1).




CHAPTER I1II
UNIQUENESS AND EXISTENCE OF A SOLUTION

A system, {ﬁ” G, ﬁ}, is said to have a unique
solution if all system variables are determined uniquely
from the component and graph equations.

In the first part of this chapter, uniqueness and
existence results are given for linear, constant coefficient
systems of algebraic, integral, and differential equations.
Since the linear operators of differentiation, integration
and algebra are commutative, the determinant of these such
linear operators has meaning and is useful in uniqueness
studies. Perhaps the most novel theorem is 3-1-3 where
uniqueness problems involving positive semi-definite compo-
nents are reduced to the linear independence of a subset of
the component and graph equations.

In the second section the conditions for existence
and uniqueness of non-linear systems are examined, and some
new results derived which are a generalization of those

previously known. [WI-1],
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Part 1. Linear Systems

Introduction

Consider first the linear time-stationary components
of type (1); i.e., components governed by differential and

algebraic equations of the form:

d -
% Ve TP Y *tP zik + Fok(t),
(3-1-1)

where F  (t) and F; (t) are almost everywhere continuous
k k

real-valued functions of t on some interval I.

Now 1let (s==a?), and write (3-1-1) in the form

(s Dy #D, ) Yy +D3 2; + D, 2, = Fa (t) (3-1-2)
1k Zk k 3k i, 4k Oy 3k
P P 0
where D, = , D, = °l, D, = v D, =
k o kK |p, k [Py k U
F
Fy, =| %k
k |F
1y

and U is the unit matrix.

Solving the first set in (3-1-1) for Y, gives:

W =(sU-PY TPz +(sU- R Fo, (1) (3-1-3)
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Substitute (3-1-3) into the second expression of

(3-1-1) to obtain:

— -1 -1
zok = Py(sU-P) Py 2; *P32Z; *Pr(sU- Py
F (t) + F, (t) (3-1-4)
Ok 1y
Setting

[det. (s U-P)] U= cok(s)

and
-1 _
Cok(S) P2 (s U - PO) Fok(t) + Flk(t) = F3k(t)
(3-1-4) becomes
Cok(s) Zok + Clk(s) Zik = F3k(t) (3-1-5)
where [?ok(s) Clk(si] is a square matrix of polynomials

in s and each row is assumed to be a vector polynomial of
minimum degree.

Consider an arbitrary system S of components of
type (3-1-5). Let the direct sum of the component equations

be written as

Co(s) Zg + Cy(s) 2Z; = F(t) (3-1-6)
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Repartitioning the Z, and 2Z; into the thru
variables Y and across variables X, (3-1-6) takes on

the form
El(s) X + Ez(s) Y = Fl(t) (3-1-7)

where El(s) and Ez(s) are square matrices of polynomials
in s, and the entries of X and Y are ordered so that
complementary variables corresponding to the same edge are
in corresponding positions.

Combining (3-1-7) with the circuit and cutset equa-
tions (2-3-1), a general form of the system equations for a

linear system is given as follows:

El(s) Ez(s) X Pl(t)'
B (0] Y = 0 (3-1-8)
0 A | 0

The following analysis is valid for any equations in
form (3-1-8). Some Type 2 components can also be put in this
form as well as any equations with derivatives on the input
variables.

A necessary and sufficient condition for a unique
solution to (3-1-8), on some interval on t, with incompat-
ible boundary values [IN-1], is that the determinant of the
matrix on the left of (3-1-8) is not identically zero.

[IN-1] [CR-1] [GA-1].
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An alternate form of (3-1-8) for equations of Type 1
is obtained if the direct sum of the components of a system

Sl of form (3-1-2) is written as

(s D, #D,) ¥+Dy 2z, +D, 2 =Fy(t) (3-1-9)

The alternate for equation (3-1-8) is:

S D1+D2 E, E v F3(t
(o) B o X| = (0] (3-1-10)
0] o A Y o

where El and Ez are the properly partitioned columns of
D3 and Dy.

It is well known that for systems having driver type
components (i.e., X, = Fa(t), Y, = Pb(t)) a unique solution
exists only if all edges corresponding to variables X, can
be put in a forest T of the system graph G, and all edges
corresponding to variables Yl can be put in the co-forest
of T in the system graph G. [KO-1].

Within the context of the notation used here a driver

type component is defined as:

Definition 3-1-1: A driver-type component is a component of

form (3-1-1) where P; and P3 are zero matrices.
The following theorem and its corollary shows how
the driver type components can be removed from further con-

sideration in existence and uniqueness studies.
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Theorem 3-1-1: Let the direct sum of a set of component

equations, CE, of system {FE, G, F} be of the form:

(s D; #+ D) ¥+ E;; Xy + E5; Y, = Fy(t) - (3-1-11(a))
X, = F (1)
(3-1-11(b))
Y, = B, (1)

where the set of edges corresponding to X, and Y, contain
all the driver-type components. Let sXi pe the edges cor-
responding to the variables X i=0,1, 2. Let G' be
the subgraph ﬁG X (E(G) - sXo)] . le] .

(a) If the set of edges corresponding to X, can be
made part of a forest T of the graph G and the edges cor-
responding to Y, can be made part of the co-forest of T,
then the system CE, G, é} has a unique solution if, and
only if, the subsystem {?El, G', é} has a unique solution,

(b) If the conditional part of (a) is not satisfied,

the system .{FE, G, {} has no unique solution on I,

Proof: Assume the hypothesis of (a). Using the notation
of [FR-1], take the circuit and cutset matrices in echelon

form. Under the partitioning given in (3-1-11) (a) and (b),

(3-1-10) for system {?E, G, é} , can be written as
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—_ —_ e — — =
(s Dy#D,) O Ey;;  E;45, 0 O Eyyy Eyy, O (W | [By(H)
' 0 u o 0] O 0 O o 0] Xo F (t)
0 O 0 o0 o0 00 0 U ||X1p F, (1)
0 Bl B2 U O 0 O (0] 0 ch = (0]
o B3 B, O Uu o O 0 o X5 o
0 o o o o uo -BT-B3T|y, 0
T T
L__ 0 o O (0] O O U -B," -By Yip o
ch
Y2 (3-1-12)
L
(where le and X;. is a suitable partitioning of X; and
X; and Y; are complementary pairs corresponding to the same

edges).
System {FE, G, é} has a unique solution if, and only
if, the matrix of (3-1-12) is nonsingular. By elementary row

operations transform (3-1-12) into

(s D1#D) O Ejyy Ejjp 0 O Eppy Eyyp O] ﬁf IRENG A
0 UOoO O 00O 0 o0fjxg Fo(t)
0 0O 0O O ©0 0 0 ‘0 Ul|Xyy| {F®
0 O B, U ©O O O O O]iX;.|5|-BFo(t)
0 O B, O UO O O OffXy | |-B3Fy(t)
0 oo o o uo -BT of|y,||B3TRy(t)
o ©o0o o oo u -B' of|y,l|BTryt)
Yic
Y SRR
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By (2-2-3), (3-1-10) for system {bﬁl, Gl’ P}' can be

written as

(s D1#Dy) E;;y Ejjp Epyy Eppp v F (1)
0 B, U 0 0 X;p| = | O
0 0 0 U By X1e 0
Yip
Y. (3-1-14)
L

Comparing (3-1-13) and (3-1-14), it follows that
(3-1-13) has a unique solution if,and only if, (3-1-14) has a
unique solution, and the conclusion (a) follows.

If the condition in (a) is not satisfied then by
Theorem 3.3.1 in [FR-1] and an analogous theorem in [KO-1],
the system {FE, G, %} has no unique solution, and Theorem

3-1-1 is proved.

Definition 3-1-2: The operation of breaking a vertex into

two vertices and then connecting an edge between them is

defined as a vertex splitting operation.

Corollary 3-1-1: Let CE be the component equations of

(3-1-11, (a) and (b)). Let the system {éEl, G', é} have
a unique solution. Let G be the graph formed when each
across driver in (3-1-11(b)), is added by a succession of
vertex splitting operations, and each thru driver in

(3-1-11(b)) is added between any two connected vertices in

G'. Then the system {?E, G, %} has a unique solution on I,
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Proof: Since each vertex splitting operation is performed
on a single vertex by a succession of splitting operations
the graph G; thus formed contains no circuits of across
drivers. Therefore, by Theorem 2-12 of [SE-1] and its
immediate extension to disconnected graphs, the edges of the
across drivers are part of some forest T of the graph Gl'
Adding the edges E; corresponding to thru drivers
in succession between two existing connected vertices of Gy,

generates the graph G having the same vertices as G The

l.
forest T is also a forest of the graph G and therefore

contains no thru driver edge, and the corollary follows.

Remark: In reducing graph G to G' by the operations in

Theorem 3-1-1, l-edge circuits (called loops) and l-edge cut-
sets may be formed. This is equivalent to short circuiting
or open circuiting component terminals,

In view of Theorem 3-1-1 and Corollary 3-1-1, through-
out the remainder of Part I, it is assumed that no driver

type components are present in the Systems examined.
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Existence and Uniqueness Theorems

The following theorem gives a sufficient condition
for a unique solution for an important class of passive

components,

Theorem 3-1-2: Consider component equations of the form

(3-1-7). 1f for some real constant s the quadratic form
xT E,(s) EZT(S) X #0 for all real vectors X # O, then any
system having the component equations (3-1-7) has a unique

solution.

Proof: It will be shown that the matrix on the left of
(3-1-8) is non-singular when the conditions of this theorem

are satisfied.

Lemma 3-1-1: Let E and Ko be the following square matrices:

Ko = R E, E,
o) B 0
o) O A

where B and A are given in (2-3-1)., Then if A has t

rows and e columns,
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det. E = (-1)¢(¢ P get. K, -

Proof: Suppose the columns of K, are permuted so that
there is a nonsingular matrix in the first (e-t) columns

of B. Let the columns containing A be permuted similarly.

Then if P is the permutation matrix, by Theorem 3.2.1 of

[FR-1]:
R E3 E4 ES Eb
KOP = (0] C1 ClB1 o] (0]
O 0 0  -C,B] G,
or
KOP = Co Kl
where
R E3 E4 E5 E6
Kl = 0] U Bl 0] (0] and Co = Cl
T
(0] 0 (0] —Bl U , C2

[E5 E;] and [E5 Eg] are matrices formed by suitable
permutations of the columns of E; and E,, C; and C,
are the nonsingular matrices obtained by the permutation.
Since P does the same permutation on both the
columns of Bl and the columns of E5,, P is an even

permutation so



det. P = 1.

If det. [U

o) 1l
Premultiply K1 by
U -E3 -E6
0 U 0
0 0 U
to obtain
R 0 E4-E3B1
K2= o U B1
(0] 0 0

and det. K. = det. K

Now

c det. K, = c(-l)e(e_t)det.[ R E,-E3B; ES+E6B{]

(3-1-15)
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= (-1 Pt [R 'Eq E4 Es E6]U_ o 0]
| O -B; O
o u ol [0
o 0 U c3
o o B] c]
- -
= (-1)%(¢ Dget [R E, Ez] U o 0]
o aT o
o o BT

From (3-1-15)

det. K, = (-l)e(e't)det. E, and the Lemma follows.

Returning to the proof of Theorem 3-1-2, suppose the
matrix of (3-1-8) is singular. By Lemma 3-1-1, there is a
non-zero row vector Z{(s) with polynomial entries in

powers of s such that the vector
z1(s) [B1(s) Ex(9)] (3-1-16)

A O
is orthogonal to the row space of ; i.e., for
O B
T T . .
some row vectors Z5(s) and 23(s) with polynomial

elements.
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ZlT(s) E,(s) = ZzT(s) B
and ; (3-1-17)
z,T(s) B,T(s) = z,7(s) A

Therefore, by Theorem 3.2.1 of [FR-1],

2, (S)E (S)E, (8)Z,(s) = 2,7(s) B AT 2,(s) = 0 (3-1-18)

Equation (3-1-18) is true for every s, and at least one
co-ordinate of Zl(s) is a non-zero polynomial.

1f Zl(s) were zero for some real s (say s = a),
then every coefficient of Z;(s) would have a factor
(s - a) and could be written as Zl(s) = (s -a) Zl'(s),
where Z,'(s) satisfies (3-1-16), (3-1-17), and (3-1-18),
for some Z,'(s) and 23'(5). Proceeding in this fashion
obtain a vector Zl"(s) of minimum degree that vanishes
for no real s and satisfie§ (3-1-16), (3-1-17), and
(3-1-18), for some Zz"(s) and some Z3"(s). It suffices,
therefore, to suppose that Zl(s) is a vector of minimum
degree, not equal to zero for any s.

If follows, that (3-1-18) is a contradiction to the
hypothesis of Theorem 3-1-2 , so, the system has a unique

solution for all interconnections.

Corollary 3-1-2: Let the component equations be given in

U A

the form (3-1-9). Let (s Dl
0 C

+D,) =s + , D=adj. (s U+A),
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and d = det. (s U+A). 1If for s equal to some real con-

stant the quadratic form

xT [—CD dU] E; E,T  [-(op)T
X #0

du

for all real X # O, then any system having these compo-

nent equations has a unique solution.

Proof: It will be shown that the hypothesis implies that
the matrix (3-1-10) is nonsingular.
If the matrix in (3-1-10) is singular, then there is

a non-zero vector ZlT(s) such that
zTs) |(sp.+D) E. E (3-1-19)
1 1 2 1 72

is orthogonal to

u O 0)
o A O (3-1-20)
o) o) B

T -
Therefore, Z, (s) (s D1‘+D2) =0

and

z,7(s) =y Ty [-op ay

since the rows of [-CD dU] span the orthogonal complement

of the columns of (s D1'+D2).
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From relations analogous to (3-1-17) it follows that

B(CD)

T
y T(s) [-co aul . BT |70y ] yo(s) =2,T(s) BAT z5(s) =0

172

(3-1-21)
If Zl(s) is chosen so that yo(s) is a minimal degree
polynomial vector in s, then vy (s) is non-zero for all
s, which contradicts the hypothesis. Therefore, the system

has a unique solution for any graph.

I1f, in particular, [El(s) EZT(sﬂ is negative
definite for some real s, by Theorem 3-1-2 the system has

a unique solution. When a system contains some semi-definite

components, (those where E; EZT is a semi-definite matrix),
Theorem 3-1-2 can be extended to yield a new sufficient con-

dition for a unique solution.

Corollary 3-1-3: Let the component equations be given in

form (3-1-7), and let the components be subdivided into two
classes (for s=c (a real constant)),

1. Those where
XxT E;' () E,'T (¢) X < 0, for real X # 0, and

2. Those where

T T

X7 By (e) By (e) X; <0, for real X;, and
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-

[El"(c) E5"(c) Jhas maximum row rank. If there exists no
circuit or cutset in G composed entirely of edges corre-
sponding to the components of El"(s), the system {E, G, E}

has a unique solution.

Proof: Write the component equations in a direct sum as
follows
E,'(s) 0 2'(5) o

X +

Y = F;(t)  (3-1-22)
0 E;"(s) 0 E,"(s)

The matrix of equation (3-1-8) must be shown to be

non-singular. If it is singular, then by Theorem 3-1-2,

Z
1
for s = c, there exists a non-zero real vector Z =
Z;
such that
r [E ') BT 0
YA Z =0 (3-1-23)

T
1 1
0 El (c) EZ (c)

Expanding (3-1-23):

2T B (o) B, T zp#2,T Byee) ByTe) 2, =0 -

If Z is non-zero, equation (3-1-23) is less than

1
zero. Therefore Z; is zero and 22 is non-zero. By the

proof for Theorem 3-1-2, and 3-1-17, Z can be chosen such

that
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E;'(c) 0
1
zT = z3T B
0 E_"(c)
1
and
E,'(c) 0
2T |2 =2," A
1
0 Ez'(c)
for some real 23 and 24.
Since Z1 = 0 it follows that
z,T [o El“(c)] =z, B
and (3-1-24)

T T
22 [0 E2”(c)] Z,” A
But since Z2 1S non-zero and the component equa-
tions have linearly independent rows, both ZZT E;"(c) and
T

T
Z," Ey"(c) cannot vanish simultaneously. If Z2 [0 E;"(e)]

= Z5 is not zero, then in the terminology (of Chapter II) it
is a non-zero chain in the co-graphic chain vector space N,
spanned by the rows of the representative matrix B. Hence
there exists an elementary chain in N whose domain is con-
tained in F5|. But by Theorem 2-2-1 and the fact that N
is a co-graphic vector space, the domain of each elementary
chain of N is a circuit of the graph. Therefore, there
exists a circuit of the graph whose edges correspond to semi-

definite components only, contrary to hypothesis. This con-

tradiction establishes the Corollary.

»
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Remark: The non-existence of a circuit or cutset of nega-
tive semi-definite components is equivalent to the existence
of a forest and a co-forest of negative definite components
by Lemma 2-2-2 and definition 2-2-1,

A necessary and sufficient condition for a unique
solution for systems containing negative definite and semi-

definite components only, is given next.

Theorem 3-1-3: Let the direct sum of component equations,

CE, be written in form (3-1-22), where for all real s on
some interval 1I;, (I; 4is not a point interval)
1. XT E;"(s) E;'T(s) X <0 for all real X #0

2. X7 E;"(s) E3T(s) X; <0 for all real X,.

Let S denote the set of edges corresponding to the compo-
nents of El"(s) and Ez"(s). For a given graph G, let

N be the co-graphic subspace with representative matrix

B, and N; be the graphic subspace with representative
matrix A. Let B, be a representative matrix of the sub-
space N X S, (as defined in Chapter II) (i.e., the subspace
spanned by the circuits composed of edges of components
corresponding to El"(s) and Ez"(s)). Let A; be a
representative matrix of the subspace Nl XS (i.e., the
subspace spanned by the cutsets composed of edges of com-
ponents corresponding to El"(s) and Ez"(S)). Then the
system <{9E, G, F:} has a unique solution if, and only if,

the matrix
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Eln(s) Ezn(s)
Bl 0 (3-1-25)

o Ay
has linearly independent rows.

Proof: Tutte, [TU-4], has shown that the orthogonal comple-
ment of (N X S) is (Nl - S). By its definition, (N1 X S)

is contained in the subspace (N S). Therefore, the last

1
two rows of (3-1-25) are of maximum rank and have linearly
independent rows. Also B; can be obtained directly from
A by considering the submatrix of A made up of the col-
umns of S and taking its orthogonal complément. Similarly
A, can be obtained directly from B.

When E, is the direct sum of E,' and E;" and

E, the direct sum of E2' and E2" the system -{QE, G, ﬁ}

has a unique solution if,and only if, the coefficient matrix

of (3-1-8) has a determinant that does not vanish identically.
Suppose the system has no unique solution. Then,

following the proof of Corollary 3-1-3, for every s on I,
there exists some row vector ZZT(S) such that
T T -
22 (s) El"(s) E2” (s) Zz(s) =0,
Zz(s) is non-zero for all but a finite number of points on

I,, and
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z T(s) [o E “(s)] =2.T(s) B
2 1 3
. (3-1-26)
Z,T(s) [o Ez”(s% =2, (s) A

By (3-1-26), the non-zero entries of ZjT(s) B correspond
to edges of the components El"(s). Therefore, Z3T(s) B
is a chain of N X S, and there exists some row vector

st(s) such that
fwoezie boa)
23 (s) B 25 (s) 0 B,
and
T - T
22 (s) El"(s) = Z5 (s) Bl'
Similarly, there exists a ZbT(s) such that
Z4T(s) A = 2,T(s) Aq
and
Z T(s) E, '"(s) = 2 T(s) A for some Z,(s), and Z.(s)
2 2 6 1 6 ’ 2

does not vanish identically on I.

It follows that the rows of (3-1-25) are linearly
dependent for s on Il' Since the determinants of all
maximum order matrices of (3-1-25) are polynomials, which
vanish for an infinite number of points of 1I,, they are

zZero.
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Conversely, suppose the rows of (3-1-25) are linearly

dependent. Then there exists a non-zero row vector

{Z7T(s) ZST(s) ng(s)] such that

2,7(s) E;"(s) = -2g7(s) B,
and (3-1-27)

T
-Z9 (s) A1

0]

T 131
Z7 (s) E, (s)

Since [?1"(5) Ez"(52] » By, and A;, each have linearly
independent rows, ZST(S) B; or ZgT(s) A, or both, is non-
zero, and Z7T(s) is non-zero. Without loss of generality,
suppose ZsT(s) B, is non-zero.

Now every vector of B, is a vector of NX S, so
ZST(S) l§ éﬂ = ZlOT(s) B for some non-zero row vector
ZloT(S).

Therefore

z,T(s) [o El”(s)] =2,,(s) B
Similarly

z2,7(s) [o Ez”(”] =2,,T(s) A

where leT(s) is some row vector, possibly zero.
Rewriting (3-1-8) for this system, and premultiply-

ing by [O Z7T(s) -ZlOT(s) —leT(s)] gives
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E)z7T(s) ~Z107(s) -zllT(s)] ME;"(s) O E,'(s) O

O  E;"(s) 0  E,"(s)
B 0

L © A _

(3-1-27)

from which it follows that (3-1-8) is singular and the system

{éE, G, F}> has no unique solution.

Remark: By (2-2-2) the graphs of N X S and Ny X S are
G -S and G X S respectively.

Notice in the second part of the proof of Theorem
3-1-3, no use is made of conditions (1) and (2) of the
hypothesis. The second part of this theorem is, therefore,
valid for all systems and is worth rephrasing as a separate

corollary.

Corollary 3-1-4: Let the direct sum of the component equa-

tions be written as in form (3-1-22). Let S, N, Ny, B, By,
A, and A; be as defined in Theorem 3-1-3. If the matrix
(3-1-25) has linearly dependent rows, the system has no

unique solution.

Corollary 3-1-4 is important to the synthesis problem, and
indicates that if a given subassembly has no unique solution,
the circuits and cutsets involved in the dependent set

(3-1-25) must be altered.
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Corollary 3-1-5: Let the direct sum of the component equa-

tions be written in form (3-1-23), where E;" and E," are
constant matrices. Suppose for some real number c
1. xT E, ' (c) E,"T(c) X<0 for all real X #0,

2. xTE"E,T X <0 for all real X.

Let S denote the set of edges corresponding to the compo-

nents of E;" and E,". Let N, N B, B A, and A, be

1 1’
defined as in Theorem 3-1-3., Then the system has a unique

solution if, and only if 6 the matrix

El" E2H
B, 0 (3-1-28)
0 A

has linearly independent rows.

Proof: Identical to Theorem 3-1-3 where the constant ¢ is

substituted for the interval Il'

Corollary 3-1-6: Suppose, just for this corollary, driver

type elements only are allowed to compose E,;"(s) and
Ez“(s). Let the direct sum of the component equations be
given in form (3-1-22), where for some real number c,

XT E;t(c) E5'T(c) X #0 for all X # 0. Then any system
containing component equations (3-1-22) has a unique solu-
tion if, and only if, there exists no circuit of across

drivers nor cutset of thru drivers.
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Proof: The conditions of Corollary 3-1-5 are met. There-
fore, the system has a unique solution if, and only if,
(3-1-28) has linearly independent rows. For these component

equations rewrite (3-1-28) as follows:

(3-1-29)

Let P be the edges corresponding to the across
drivers. Obviously, the rows of (3-1-29) are linearly inde-
pendent if, and only if, there exists no non-zero vector in
(NX S)XP or (N; XS) X (S-P). There exists a non-zero
vector in (N X S) X P or in (N; X S§) X (S-P) if, and
only if, there exists an elementary vector in (N X S) X P
or in (Nl X S) X (S-P). There exists an elementary vector
in (NX S) X P or in (Nl X S) X (S-P) 1if, and only if,
there exists a circuit of elements of P (or a cutset of

elements of (S-P)).

Suppose the system is comﬁosed of linear components
(3-1-1) but which are entirely algebraic and time-varying.
After suitable manipulation the system can be described by
(3-1-8) and, of course, the necessary and sufficient condi-
‘tion for a unique solution for t = ¢ is that the deter-

minant not vanish for t = c¢c. These systems were studied




95

in [WI-1]. The following corollary is a useful addition to

the results of [WI-1].

Corollary 3-1-7: Suppose the component equations, CE, are

algebraic and time-varying linear, and El(t) and Ez(t)
are composed of the direct sum of El'(t) and El"(t) and
E,'(t) and E,"(t) respectively. Let G, S, N, Ny, B, By,
A, and Al be as in Theorem 3-1-3., Then, for each t such
that:

1. xTE (1) E,'T(t) X <0 for all real X # O,

2. X;TE;"(t) EpnT(t) X; <0 for all real X,

the system -{QE, G, F:} has a unique solution if, and only
if, the matrix
Elﬂ(t) Ezﬂ(t)
By
o | Ay

has linearly independent rows.

Proof: Similar to Theorem 3-1-3 with obvious changes of

notation.

By the following Lemma and remark, the matrix of
(3-1-25) has linearly independent rows if, and only if, a

matrix with fewer rows has linearly independent TOWS.
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Lemma 3-1-2: Let

El(s) Ez(s) A T o
2
E = B, 0 and Ko = [%l(s) EZ(S)J T
0 B2
._O Al

where A; and B; have linearly independent columns and A2
spans the orthogonal complement of the rows of B;, B, spans
the orthogonal complement of the rows of A;. Then E has
linearly independent rows if, and only if, K  has linearly

independent rows.

Proof: If E has linearly dependent rows, there exists a

Z
non-zero column vector, , with polynomial entries
Z3
such that
B o
z.T |E;(s) BEo(s)| = 2,7 1 (3-1-30)
1 1 2 2
0 Aq
The vector Zl is non-zero since the matrix on the right of
‘ Z
(3-1-30) has linearly independent rows and is non-zero.
Also
“ T
T B, O A, 0 _
22 T = O
o Al o B,

by hypothesis. Therefore,
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and K, has linearly dependent rows.
Conversely, if K, has linearly dependent rows,

there exists some non-zero column vector Zl such that

Z1 Ko =0
B o)
or 2,7 [E,(s) E(s)] =2,T |*
1 1 2 2
o) Al
for some row vector ZZT. Therefore,

T T| o o
[Zl -Zzi] E=0
and E has linearly dependent rows.

Remark: Let the component equations be given in the form
(3-1-22) and let G, S, N, Ny, By, and A; be defined as in
Theorem 3-1-3., Let A2 be the representative matrix of

(Nl - S) and B be the representative matrix of (N - S).

2
By [TU-4], (N; - S) is the orthogonal complement of
(NX S), and (N - S) is the orthogonal complement of
(N, X S). Then by Lemma 3-1-2 it follows that (3-1-25) has
linearly independent rows if, and only if,[El"(s)AzT,Bz"(s)Biﬂ

has linearly independent rows.

Definition 3-1-3: A set of component equations in the form

El(S) 0 X Fl(t)
0 E,(s) Y CFy(8) ],
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where Ez(s) is the orthogonal complement to E,(s) for

every s, 1is called a perfect coupler component.

If the components represented by E;"(s) and E,"(s)
in Theorem 3-1-3 are perfect coupler components, then by a
procedure analogous to that used in Lemma 3-1-2 it can be
shown that the system has a unique solution if, and only if,

the matrix

By Ez"(s)] T 0]
o a o]

has linearly independent rows. Since this matrix usually

(3-1-31)

has very few rows, the independence of the rows is easily

checked.

Corollary 3-1-8: Let CE, G, S, N, N;, B, By, A, and A; be

as in Theorem 3-1-3. Let E be a non-singular submatrix
(i.e., a matrix with a non-zero determinant) of

EBl"(s) Ez"(s)] . Let S, be the edges of G corresponding
to the columns of E," in E. Let S, be the edges of G
corresponding to the columns of E," in E. If no edge of
S1 is in a circuit of G - S and no edge of S, is in a
cutset of G X S, the system {bE, G, Ft}, has a unique

solution.
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Proof: By Theorem 3-1-3, -{?E, G, P}' has a complete and
unique solution if, and only if, (3-1-25) has linearly inde-
pendent rows. Under the hypothesis and by (2-2-2), upon

permutation of its columns, (3-1-25) becomes

(3-1-32)

0
0 0 0 4

where Dl and D2 correspond to the edges of S1 and S2
respectively and B, and A, are suitable submatrices of
B, and A, respectively.

D D2

The matrix | 1 has linearly independent rows
D D
-3
B, O
by hypothesis. The matrix . has linearly inde-
A,

pendent rows by definition. Therefore (3-1-32) has linearly

independent rows and {?E, G, #} has a unique solution.

Theorem 2.4 of [WI-1] is a special case of Corol-

lary 3-1-8.

Corollary 3-1-9: Let the component equations, CE be given

in the form (3-1-22), where E;'(s), E,'(s), El"(s), E,"(s)
are as in Theorem 3-1-3. Let the semi-definite component
equations*of CE be called C, and the edges corresponding

to the C, variables be called S. If either the subsystem

*See page 85.
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{?2, G XS, é} or {bz, G - S, F} has a unique solution,

the system {b, G, E} has a unique solution.

Proof: By (2-2-2), the subsystem {Cz» G X S, F} corre-
sponds to the vector spaces (N ° S) and (Nl X S), and
the subsystem {bz, G - S, %} corresponds to the vector
spaces (N X S) and (N; . S). (Here the notation of the
paragraph preceding definition 3-1-3 is used.)

By Theorem 3-1-3, the system has a unique solution
if, and only if, (3-1-25), has linearly independent rows.
But (N X S) is contained in (N - §) and (N; X S) is
contained in (Nl -+ S). The theorem follows immediately by
noting that if the rows of the representative matrix of
{?2, GXS, P}- or {?2, G - S, ﬁ} are linearly independent,
the rows of (3-1-25) are linearly independent, since these

are a subset of the rows of the above.

Remark: 1Indefinite components (i.e., those where E, E T

1 =2
is an indefinite matrix) can be included in each of the

above theorems and corollaries if it is assumed that
a. each edge corresponding to an indefinite compo-
nent is either
1) in a circuit of across drivers, (call all
these edges Sl) or,
2) in a cutset of thru drivers, and (call these

edges Sz),
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b. the indefinite component equations are such that
they can be written explicit in the thru variables
corresponding to the edges of S1 and the across
variables corresponding to the edges of 52’

In this case, the circuit and cutset equations to-
gether with the driver components uniquely determine the
across variables corresponding to the edges of Sl and the
thru variables corresponding to the edges of S,. From the
component equations the remaining variables are given explic-
itly. Therefore the thru and across variables for these
edges can be treated as known, and the edges removed from

discussion,.

Algorithms

The following definitions and theorems, besides be-
ing useful for analysis, are the foundations of an algorithm
for determining the class of all graphs that yield a unique
soiution for a given set of component equations.

In the following, again assume there are no driver
type components, (3-1-1), since all graphs yielding a unique
solution can be obtained from the graphs of the system with-
out drivers by the techniques of Theorem 3-1-1 and Corollary
3-1-1,

Let A be a representative matrix for the graphic

vector Sspace Nl'
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Definition 3-1-4: Let T be the set of all forests of a

finite graph G. Let every t;€T be assigned a distinct
positive integer. Let S = {}'1, -l}u
The function sgn T [i, jl: (TXT)—>S, is defined
as follows:
sgn T [i, j] = +1 if forest t; and forest t;
have the same sign determinant

in the incidence matrix.

sgn T [i, j] -1 otherwise.

Therefore, sgn T [i, j] defines a partition of T

into two disjoint classes.

Definition 3-1-5: Let the columns of A be numbered in the

natural order. The function sgn [i]: T-——>S, is defined as

follows:
sgn [i] = +1 if the sum of the column num-
bers of A corresponding to
the edges of tree t; is even.
sgn [i] = -1 otherwise,

By Theorem 2-1-3, definition 3-1-5 corresponds to determining
the relative determinantal sign between a forest and its

co-forest.

Definition 3-1-6: The signed summation of all tree prod-

ucts is defined when the admittance matrix, Y exists

adm.’?
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(i.e., when in (3-1-7), E,=U, and Yodm. = Bl), and is

adm. dm.

S (sen T L4, 3D [(det. DDy L et Y;j)(i)ﬂ

i>]

adm.

+ 25 (det. Y(i)(j))
i

NENIE)

where
adm.

is the submatrix of Yadm composed of the

rows corresponding to the edges of the forest i and of
the columns corresponding to the edges of forest j, both

taken in their natural order.

Definition 3-1-7: The signed summation of all co-tree prod-

ucts is defined when the impedence matrix Zimp , exists
(i.e., when in (3-1-7), E; = U, and Zimp. = Ez), and is
> (sgn T [i, §1) (sgn [i]) (sgn [5D) [(det. 2{1)(9,
i>]
+ (det. zglﬁ;fl))] + Z (det. z(i;;fl))
i

where Zgi)(j) is the submatrix of Z composed of the

imp. imp. p

rows corresponding to the edges of the co-forest of forest 1,
and of the columns corresponding to the edges of the co-forest

of forest j, both taken in their natural order.
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Definition 3-1-8: The signed summation of all [tree -

co-tree] products is defined when the component equations

are written in the form:
R(s) Y + Ej(s) X *+ E5(s) ¥ = Fu(t) (3-1-32)

(This form includes both (3-1-9) and (3-1-7)), and is

z. sgn T [i, j) sgn [j] (det.[k g, (D) Ez(j)])
i,]

5, ()
(3

where are columns of E; corresponding to tree (i),

and E2 are the columns of E, corresponding to co-tree

(j), both taken in their natural order.

Theorem 3-1-4: Let

R E; E,
K,= [0 B O
O 0 A

where B and A are given in (2-3-1). Then det. K, is
equal to (#1) times the signed summation of all [tree -

co-tree] products of the graph corresponding to B and A.

Proof: By Lemma 3-1-1,
det. K = (# 1) det. E

where

0o (3-1-33)
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But by the Cauchy-Binet determinant expansion,

det. E = z (det. A1)y (det. BYI?) (det. R E;(DE,(I))
1,)

(3-1-34)

where A(i) and El(i) are a set of columns of A and E;
(resp.) corresponding to the sequence (i), and B(j) and
Ez(j) are a set of columns of B and E, (resp.) corre-
sponding to the sequence (j). All columns are taken in
their natural order. The sequences (i) and (j) are both
strictly monotonic. Now A and B are regular so they can
be chosen so that every square submatrix of maximum order
must have a determinant +1 or O. By Theorem 3.2.2 of
[FR-1] (see also [SE-1]), every determinant of maximum rank
minor of A <corresponds to a forest, and every determinant

a maximum rank minor of B <corresponds to a co-forest. It

follows from Definitions 3-1-4 and 3-1-5 that
(det. A1)y (det. By = (sgn.T[i,jl)(sgn.[j]) (3-1-35)

Substituting (3-1-35) into (3-1-34) and using defini-

tion 3-1-8, the theorem follows.

Corollary 3-1-10: If the component equations are given in

form (3-1-32), then there exists a unique solution for all
system variables if, and only if, the signed summation of all
[tree - co-tree] products of the graph is not identically

zero,



106

Theorem 3-1-5: If the component equations are given in form

(3-1-7), where El(s) = U (unit matrix), and the entries of
E, are rational functions of s, then there exists a unique
solution for all system variables if, and only if, the signed
summation of all co-tree products of the graph is not identi-

cally zero.

Proof: By Lemma 3-1-1, the system has a unique solution if,
and only if, the matrix
U Ex(s) BT
(3-1-36)
B (o]
is non-singular. But (3-1-36) is non-singular if, and only

if,
F =B E,(s) BT
is non-singular . By the Cauchy-Binet expansion,

det. F= Z (det. B(i)) (det. Ez(i)(j)) (det. B(j)) #0, (3-1-37)
i,j
(i)

where is a set of columns of B corresponding to

sequence (i), E(i)(j) is the submatrix of E with rows

corresponding to sequence (i) and columns corresponding to
sequence (j). All columns are taken in their natural order.
(i) and (j) are both strictly monotonic sequences of posi-
tive integers. Choose B so that every square submatrix of

maximum order must have a determinant +1 or O. (Theorem
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2-2-2.) By [FR-1], [SE-1], every determinant of a maximum
rank minor of B corresponds to a co-forest. Therefore

from Definitions 3-1-3 and 3-1-4,
(det.B(i))(det.B(j))= (sgn. T [i,j]) (sgn. (i)) (sgn. (j))
(3-1-38)

Substituting (3-1-38) into 3-1-37), making use of the
fact that (sgn. T [i,i]) = 1, and applying Definition

3-1-7, the theorem follows.

Corollary 3-1-11: If the component equations are given in

form (3-1-7) where E,(s) = U and the entries in El(s)

are rational functions in s, then there exists a unique
solution for all system variables if, and only if, the signed
summation of all tree products of the graph is not identically

zZero.

Proof: Identical to Theorem 3-1-5, with obvious changes of

notation.

Remark: By Lemma 3-1-1, det. F in (3-1-37), is equal to
+
(# 1) det. Ko.
Theorem 3-1-4 has an immediate practical application
in the analysis of general linear systems. In topological
analysis, (see [SE-1]), formulas for network determinants

are confined to the components where the impedance or
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admittance matrix exist. Theorem 3-1-4 on the other hand,
applies to network determinants with no restriction on the
types of components.

Theorem 3-1-5, and Corollaries 3-1-10 and 3-1-11,
provide the basis for two algorithms that generate the graphs
of all systems that have a unique solution.

Corollary 3-1-10 immediately suggests the following

algorithm,

Algorithm-1

Let the component equations be given in form (3-1-32).

Consider the matrix of order (»e+ n)x(,(+ 2n)
[R(s) E;(s) E,(s)] (3-1-39)

obtained from the matrices of (3-1-32). Suppose E; and E,
each have n-columns and K is the set of columns from El.

Let the columns of E and E be each numbered from 1 to

1 2
n in their natural order. Determine the values of all

%?) 6=££25L%) determinants of the set L of maximum
(n?!)

order square submatrices of (3-1-39), where each submatrix
in L contains all columns of R.

Let those submatrices of L having i columns from

K be designated Li‘ Each Li has r-’)2 elements and

1

n
U L. =L. For each matrix, B, of L.

i=o ? 1’ }et (o
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represent the sequence of columns of B from E and (j)

1’

the sequence of columns of E not in B.

2

Now proceed as follows for each 1i:

1.

For a square matrix Ji made up of the determi-
nants of each element of L., where the rows of
J; correspond to the sequences (k), and the

columns of J; correspond to the sequences (3),
and if (k) = (j), the corresponding entry is on
the diagonal of Ji' Therefore, the (k,j) entry
of J; corresponds to the sequences (k) and

to the sequence (j).

For each column of J;, evaluate the sum

1
Z(j)=z jp Wwhere (j)=(jl,...ji). If the
h=1

sum is odd, change the sign of all entries in this
column of J,. (By definition 3-1-5, this corre-
sponds to evaluating the function sgn. [j].)

Find all solutions to the equation
x J;,xT =0 (3-1-40)

where X 1is a row vector, with all entries +1,
-1, or O of dimension (2) .

The riR entry of X corresponds to the sequence
representing the r-1i£ row of Jj- Each such
sequence corresponds to a unique canonical basic

form where the columns of K are the basic
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unities. Therefore, every vector X corresponds

to a unique homogeneous multilinear form, AX’
of degree i. Thus for each solution, X, to
(3-1-40), form Ay.

5. By the techniques of Corollaries 2-1-1, and
2-1-2, examine each Ax obtained above to see

whether it is simple.

6. Examine each simple AX to determine whether it
contains a sub-sum with a complete-5 or Thompson
reduced residue set. If Ay does not contain a

sub-sum with either of these, Ax is graphic,
by Theorem 2-2-12,
Conversely if a simple Ay does contain
suéh a sub-sum, then Ax is not graphic.
~ 7. The set of all graphic simple Ax represents the

set of all graphs that yield no unique solution

to the linear system.

Remark 1: Since (3-1-40) is a quadratic form, the solutions
of (3-1-40) may sometimes be more easily found by making J;
upper triangular. This can be accomplished by simply adding
the (k,j) entry to the (j,k) entry, k>j yand then substi-
tuting zero for each entry below the diagonal of J;. Also
since the component equations are a direct sum, most of the

entries of J; are zero.
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Remark 2: An analysis of the negative definite, semi-
definite, and indefinite portions of J; in (3-1-40) pro-
vides a fundamental insight into the uniqueness problem for
linear systems. Possible system behavior characteristics
are also found in the matrix J; as (3-1-40) represents the

system determinant by Theorem 3-1-4; i.e.,

X J. XT = (#) det. K

i (3-1-41)

o°
The matrix J; is a function of the component equations
only. The vector X is a function of the graph only.
Consequently, it is believed that (3-1-40), when thought of

as a system determinant, is a fundamental structural tool in

the synthesis of linear systems.

Remark 3: The solution of equations such as (3-1-40) with

integer constraints has been studied by many authors in var-
ious facets of quadratic and nonlinear programming (see
[GR-11).

Step 3 can be changed into a programming problem
since (3-1-40) can be squared and the resulting function

minimized, subject to the constraints on X.

Remark 4: Equation 3-1-41 has deeper significance than the

algorithm mentions. Suppose that a given system performance
is desired (as reflected in the system determinant, for

instance, certain eigenvalues may be wanted). Then given a
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set of components with parameter and unrestrained intercon-

nections, J can be determined as a function of the param-

i
eters from the component outer products for each 1i.
By solving (3-1-41) with the desired determinant

either an exact solution or a ''best fit' in the squared

sense of Remark 3 can be obtained.

Remark 5: Step 5 can be altered if a given entry of X is

assumed to be non-zero. Then the conditions given in Corol-
laries 2-1-1 and 2-1-2 can be stated in terms of
[]2)-1-i(n—iﬂ quadratic equations. The resulting equa-
tions can be solved simultaneously with (3-1-40). However,
because of the large number of equations and the assumption
of a non-zero entry of X it seems that the method given in

step 5 is preferable.

Remark 6: The entire algorithm can be fitted to machine

computation since Grassman algebra (used in steps 5 and 6)

can easily be performed by a computer.

Remark 7: The work of evaluating the (%?) determinants

can be performed by Grassman algebra, since by (2-1-2), the
(%?) determinants are simply part of the Grassman outer
product of the subspace spanned by the rows of (3-1-39),

with the columns as the basic unities.
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Remark 8: Equation 3-1-41 has profound applications to
topological analysis since in this case the graph is given
so X <can be found as the outer product of the graphic
vector space Nl’ and J. can be determined immediately

from the outer product of the component equations.

Remark 9: In step 3 of the algorithm, if all primitive
vectors, X, are found that satisfy (3-1-40), then all
unions of disjoint primitive vectors are also solutions.

In cases where an impedance or admittance matrix
exists, R(s) in (3-1-39) has no columns, and the determi-
nants involved can be evaluated with smaller submatrices.
The following algorithm is the adaption of Algorithm 1 to

these cases.

Algorithm-2

Let the component equations be given in form
(3-1-7), and assume the impedance (admittance) matrix exists.
(See definitions 3-1-6 and 3-1-7.) Suppose E; and E,
each have n-columns and number them in both E; and E,
from 1 to n in their natural order. Evaluate the (%?)
determinants of all square submatrices, L, of the imped-
ance matrix E, (or of the admittance matrix E;, if the
admittance matrix exists).

For the admittance matrix let those submatrices of

L of order i ©be designated L;. For the impedance matrix,
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let those submatrices of L of order (n-i) be designated

n
L.. Each Li has (2)2 elements and L/ Li:=L. For the
i=0

admittance matrix, for each matrix, B, of L let (k)

i
represent the sequence of rows of B, and (j) the sequence
of columns of B. For the impedance matrix, and for each
matrix, B, of L., 1let (k) represent the sequence of
rows not in B, and (j) the sequence of columns not in B,
Now proceed as follows for each i:
1. Form a square matrix J; made up of the determi-

nants of each element of L;, where the rows of

J-

i correspond to the sequences (k), and the

columns of J; correspond to the sequences (j),
and if (k) = (j), the corresponding entry is
on the diagonal of J;.

2. If this algorithm is being carried out on the
admittance matrix, skip this step. If this algo-
rithm is being carried out on the impedance matrix,
for each column of J;, evaluate the sum PINED)
as in (2) of Algorithm-1. If the sum is odd,
change the sign of all entries in this column
and in its corresponding row of J.. (This corre-
sponds to the evaluation of sgn. [j] in Defini-

tions 3-1-5 and. 3-1-7.)
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3. Find all solutions to equation (3-1-40) where X
is a row vector with all entries +1, -1, or O,

4, Same as (4) of Algorithm-1.

5. Same as (5) of Algorithm-1.

6. Same as (6) of Algorithm-1.

7. Same as (7) of Algorithm-1.

Remark 1: By the remark after Theorem 3-1-5, and Corollary
3-1-11, (3-1-41) is the system determinant when the impedance

or admittance matrix exist.

Remark 2: The solution of (3-1-40) and the work of step 5
are simplified when all components are two terminal. Then
J; dis diagonal for all i, so signs of the entries of X
have no effect on (3-1-40) and step 5 can be performed in
fod. 2)arithmetic.

Suppose the component equations are given in form
(3-1-7). Each of the above algorithms for a graph of n-
edges requires the evaluation of (%?) determinants of
order less than or equal to n. An alternate method examines
the determinant of a matrix of form (3-1-8), or of the form
of K, in Theorem 3-1-4, for every graphic subspace Nl'
(Each of these latter matrices has order 2n) and the num-

ber of different graphic subspaces for n>4 1is far greater

than (%?) as the following table shows.



116

TABLE (3-1-1)

no. of different graphic

subspaces for non- 2n
n = no. of edges separable graphs n
2 2 6
3 8 20
4 64 70
5 832 252
6 10,336 924
7 139,904 3,432

Even this table is not a complete comparison since
the number of non-separable graphs on n-edges are only a
portion (about one-third in the above examples) of the total

number of all graphs on n-edges.

Example: Of Algorithm-2:

Suppose the direct sum of the impedance matrices is:
-6
[

-5s8“+1

T —

Since this matrix is non-singular, if each edge of

the graph is a self-loop the system has a unique solution,
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Also, if all edges of the graph form a forest, the system
has a unique solution. The matrices J;, Jy, J3, Jg4, and

J defined by the algorithm are:

5’
(23456) (13456) (12456) (12356) (12346) (12345)
J:
3 -6 , -5s2+1, -1, -1, -2, 1,
S
(12456) (12356)
-9
(3456) (2456) (2356) (2346) (2345)  (1456)
Ja4 = 2 2
—6(-552+1), 6, 6, 12, -6, -(-5s52+1),
S S S S S
(1356) (1346) (1345)  (1256) (1246)
—(-55%+1), -2(-552+1), +(-582+1),  -19, 2,

(1245) (1236) (1235) (1234) (2456)(2356)

-1, 2, -1, -2, +54
S

)

(1456) (1356) (1246)(1236) (1245)(1235)
-9(-55%+1) +18, -9
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(456) (356) (346) (345)
J =
3 {}6(-552+1), 6(-552+1), 12(-5s2+1), -6(-5s2+1),
S S S S
(256) (246) (245) (236) (235) (234) (156)
114, -12, 6, 12, 6, 12, -19(-55°+D),
S S S S S S
(146) (145) (136) (135)
2(-552+41), -1(-5s2+1), 2(-5s2+1), -1(-5s2+1),
(134) (124) (126) (125) (123) (456)(356)
_2(-5s2+1), 2, 38, -19, 2,  +54 (-5s2+1),
. ]
(246)(236) (245)(235)  (146)(136)  (145)(135)
-108, +54 , +18(-5s2+1), -9(-5s2+1),
S S
(124)(123)
18
(56) (46) (45) (36)
J =
2 4114(-5s5%+1), -12(-5s2+1), 6(-5s2+1), -12(-5s2+1),
S ) S S
(35) (34) (26)  (25) (24) (23)

6(-5s2+1), 12(-5s2+1), -228, 114, -12, -12,
S S 5 S S S

(16) (15) (14) (13)
38(-552+1), -10(-5s2+1), 2(-5s52+1), 2(-5s2+1),
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(12)  (46)(36) (45)(35)  (24)(23) . (14)(13)

38, -108(-5s2+1), +54(-5s2+#1),  -108, +18(-552+1)
S S S
(6) (5) (4) (3)
J. =
1 4_228(-5s2+1), 114(-5s2+1), -12(-5s2+1), -12(-5s2+1),

S S S S
(2) (1) (4)(3)

-228, 38(-5s2+1), -108(-5s2+1)
S S

where each of the above Ji's has had its sign changed as
in step 2, and made upper triangular. For shortness of nota-
tion, J; is not written in matrix form and only the non-
zero elements of J; have been given together with their
corresponding sequences. The diagonal elements of J;
refer to only one sequence.

The work to obtain Ji can be shortened by using
the results of J. ;.
Substituting Js into (3-1-40), solving for X,

and forming Ay gives the four multilinear forms:

+1 +1

Z12456 1 2123450 *1

212356 ~1 212345

where zij =2 Zj. This means that edge 6 and edge 3 or 4
cannot form both a cutset and a circuit. Proceeding analo-
gously, by steps 3 and 4, the remaining solutions to (3-1-40)

yield:
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from J4:

(+z ,(“'Z ,("'Z

24562223457 (*25356%22345) 1 (*Z1456%21 3450 (*2135¢

2290345 3C* 2154632153401 C4 215363215340 (F 25456422345

( ), (

2214562213457 (%2456%%223457%13567%13457 ' 22456222345

2252467212347 C2045064%23452%1236%%12347 (22456322345

), (

4z +z +Z +z z +Z +z +Z
= 1456— 1345~ 1246~ 1234 2456— 2345— 1456— 1345

), ( ),

+ + + + + +
2212362212347 ' 224562%2345-21356-21345~21246~21234

(Z5456%22345%213562213457212367%12347 0 (Z23506722345
*21456%2134571(22356%223452213562213457 (22356522345
2212467212347 1 (223562%23452%1236%%12347 ' (Z235067%2345

221456%213452%12467%212347 1 (22356222345221456721345

), (

2212362212347 1 (223563223457%13567%1345°%212467%212347

(25356%22345%213506%21345%212363212347 (21456221345

2212462212347 1(21456%21345%212363212347 1 (21356721345

2212462212347 C21356%21345%21236221234

From J (+z ,(*+z

3° 4563234571 (P 2350224,5, (%2, 225 5,), (42, 3,%2,3,),

(*2146%21347(*21 36221341 (2456323452224632234) >
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( ), (

+ + + +
2456223452%236272347 (%4 506273452% 146521347 ' (P4562%345
221362213471 (2456%23457%2462%2342%1462% 1347 1 (2450627345

2254622234%2136%2134),(2456%23452223622234%2146%2134)
(2456%2345%2236722347%136721347 1 (2356¥2345%%2467%234

22146221347 (2356723452254632234%2136721347 1 (Z356%2345
125365723427 1462%1347 1 (Z356223452%236222342%1362%134
(2356%234522246%22347 1 (235672345%2236%22347 (235672345

22146221347 (2356%234532136321347(2246%2234%2146%2134) >

(

(224622234%%13621347 2 (%23622234%%146%%1347 (%236%%234

2213672134

from J.: (+z4 ( )

6123470 (12361234

from J,: There are none.

Application of step 5 of the Algorithm, shows that

the following of the above forms are simple:

from J_: (

5 2124567212345 (%1235067%12345”
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Ja: (224562223450 (223562223457 (214567213457 (21356
1213457 (212462712347 (%12362%12347 ' (Z2456%%23452%1456
*(sfn) 21345)5(204562%23452%1246 - (SEP) 215347
(25356%22345221356 * (S£N) 27345),(22356%22345%21236

- (sfn) 21534),(21456%21345221246 ~ (SE) 21534),

(21356%21345%2124¢ - (SfN) 2753,)

I3: (24567234571 (2356273450 (22462233472 (Z23622234 >

- (sfn) z

(2146721347 (2136321340 1025632345724 2347

(2456*2345%214¢6 - (Sfn) z134),(2456%2345%2246 - (sfn)
233432146 - (8fn) 2734),(2354%2345%253, - (sfn) 2,4,

22136 - (sfn) 25,0 ,(2350%25,5%2530-253,4),(235¢%2345

tz - (sfn) =z + (sfn) z ),

136 1347 (224632234221 45 134

(zp36%2534%213¢ *+ (8fn) zy34),

Iyt (2442234),(230%23,)

where (sfn.) is either equal to (+1), or (-1) and is

evaluated as follows:
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Consider the (sfn) coefficient of the basic form
Zit 5kl (or zijk)‘ Take all the residue sets of this basic
form, ignoring the elements of the residue sets which have
an (sfn) as a coefficient. Multiply the coefficients of the
two remaining elements of the residue sets to obtain (sfn).

Since there are only six edges in the graph, the
multilinear forms contain no forbidden residue set, and are
therefore, graphic. They represent the set of graphs in
which there is no unique solution. All other graphs have a

unique solution.

Part II. Non-Linear Systems

The first two theorems, (3-2-1), and (3-2-2), of this
section apply to system components of Type 3 (see Chapter II,
Part 3). As will be shown in Chapter V, these results apply
also to many components of Type 2. These theorems are an
extension of the results of [MI-1] and [DU-2], to general
positive semi-definite components.

Theorem 3-2-3 and Theorem 3-2-4 are restricted to
components of Type 1. Theorem 3-2-3 and Theorem 3-2-4 are
a generalization of most known results on monotonic mappings
as found in [DU-2], [DU-3], [DU-4], [wWI-1], [DE-1].
Many of the results published there are special cases of
these two theorems.

Most of the mathematical details upon which the

results of Part II are based, are contained in Appendix B.
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The conditions called for in the theorems are given in the
appendix.

Before giving these theorems, some pertinent defini-
tions for systems with Type 3 components are introduced.
The reader is assumed to be familiar with the definitions of
a vector space, norm, and Lebesgue integral.

Formally, a real Hilbert space, H, 1is a complete
normed real vector space with an inner product defined on
it. A complete space is one in which every Cauchy sequence
converges to an element of the space. An inner product
(denoted <\,> ) on a real vector space, H, is a symmetric
bilinear mapping from H X H into the real numbers such
that <%,%> > 0, and Hx”2 = 4<x,%> , (ll denotes the
norm that is defined on the space). A Banach space is defined
as a complete normed vector space. Therefore a Hilbert space
is simply a Banach space with an inner producf defined on it.

A few examples of real Hilbert spaces are:

1. the space [2’ of sequences {yi} of real numbers,

such that % yi2 <ee  with inner product

@b b+ T

2. a real finite dimensional Euclidean space in
which the inner product is the sum of the products of the

coordinates for an orthonormal basis set.
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3. the space L, (a,b); i.e., the set of real
valued functions y(s) of the real variable s such that
b
the Lebesgue integral f" y2(s) ds o=, with inner
a

product

b
<?(s), x(sl; = af’ y(s) x(s) ds.

4. the space used in describing components of Type 3
is the space L2 m(a,b); i.e., the set of real m-tuple
?
valued functions Y(s) of the real variable s, such that

fp % yi2 (s) ds < eo
a i=

where the integral is again Lebesgue and yi(s) are the real
coordinates of the m-tuple Y(s), with inner product
(s), x(sP = fp 3 yi(s) x;(s) ds.
a 1=1

It can be shown that ¢, and L, are isomorphic
and, in fact, that every separable infinite dimensional real
Hilbert space is isomorphic to these. Also, every finite
dimensional real Hilbert space is isomorphic to the real
Euclidean space of the same dimension.

Lemma's B-11 and B-12 use the concept of a direct
product of Hilbert spaces. As shown on (p. 303), of [RI-1],
the direct product space, H X H, of any Hilbert space, H,
is also a Hilbert space defined as the set of all ordered
pairs (x,y) where x€H and y€H. The inner product on,

H X H, is defined as
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S R D R

Scalar multiplication is defined as c(x,y)=(cx,cy). Addi-

tion is defined as

(X3, v1) * (X3, y3) = (X3 * X5, y3 * y5).

Higher order product spaces are defined similar to the above.

Components of Type 3 are either mappings from the
real Euclidean space of dimension m into itself or mappings
from the space Lz’m(a,b) into itself, where m may vary
from one component to another and where a and b are
finite.

Algebraic component equations of Types 1 and 2 are
examples of a mapping from E; into itself. (E; is the
Euclidean space of dimension m.) An example of mapping
from L2,m into itself, is a mixed algebraic and integral
operator of Type 2; i.e.,

b
z (t) = f’ F(Z;(s), s, t) ds + G(Z;(t), t).
a

Definition 3-2-1: A mapping F of a Hilbert space H into

itself is called monotonic if <x1 - X5, F(x7) -F(x2)>3 0o

for all X and X5 in H. If

<x1-x2, F(xl) —F(x2)>3 c Hxl~x2“2

for some constant c¢>0, and for X;, X,€H, F is called

strongly monotonic,
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Definition 3-2-2: A mapping F from the Hilbert space H

into itself is said to satisfy a Lipschitz condition on D,

if
“F(xl) - F(xz)(|§ cl'xl - lel (c = constant)

for all x; and x, in D. If D=H, F is said simply
to satisfy a Lipschitz condition.

Lemmas B-7 and B-8 provide a basis for examining
operators on a Hilbert space for monotonicity. Lemma B-9
provides a practical method for examining algebraic equations,
and Lemmas B-10 and B-11, together with the remark after
Lemma B-8 provide a basis for checking integral equations for
monotonicity. 1In general,Lemmas B-9, B-10, and B-11, can be
used to examine all points xOE H that satisfy these lemmas
in a neighborhood of X - The remaining points must be
checked by some other means.

For mappings in L2,m’ the following notation is
used in this thesis. Since a component equation is, by
definition, a set of relations between a distinguished basis
set on a finite dimensional vector space, the set of m-tuples
that are the range of y(s)E€ L2,m are considered to be the
finite dimensional vector space. The distinguished basis set
for this space is chosen as the orthonormal set fi=(1,0,...,0),
P2=(0,1,0,..., 0), etc. The constraint (graph) equations

are defined in terms of this distinguished basis set.
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The component equations of Type 3 for component

are:
ZO (syt) = P(Zl (S,t)) t) (3-2-1)
Jj J
where
"Xy, (s,t) 7 Yi.(s,t)
ZO (s,t) = J , Zi. (s,t) = J
j Y, (s,t) j X3, (s,t)
J

and corresponding entries of the Z, and 2Zj, mj—tuples
J J

are the paired distinguished basis elements which correspond

to to the mj edges of a graph Gj and Z,.(s,t) and
J

Z. (s,t) are assumed to be elements of L, . (a,b). The
1. 9 J

J

variable t is a parameter of the mapping (not necessarily
time).
The constraint equations for mappings in the Hilbert

space, L, = are of the form given in (2-3-1), since they

?

only relate values in the range of Z2Z,(s,t) and Z;(s,t),

where Z and Z; are the respective direct sums of Z,

o
J

and Z; ..

J

In this section and in Chapter IV it is more conve-
nient to rewrite (2-3-1), in the form of the primary and

secondary variables of Frame and Koenig, (see [FR-1]).
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Existence Theorems for Systems
of Type 3 Components
Suppose all components in the system are of form
(3-2-1). Let the topology (or interconnection pattern) of
the system graph be such that there exists a forest T for
which:
1. The direct sum of the terminal equations for all

m components in the system can be written in the form:

Zsp TFp (25 255, B)
2p2 = F2 (Zpl’ Z52’ t)
Zs3 = F3 (Zp3, Zgyy 1)
(3-2-2)
zp4 = F4 (Zp3’ 254’ t)
Zps = F5 (Zgs5, t)
Zp6 = Fé (t)

where the mapping

Fy (Zp1y Zg2, ©)

Fp (Zpl’ 2527 t)

satisfies condition (Cl) of Appendix-B for all t on set I,

and the mapping

F3 (Zp3’ L4 t)

Fp (23, Zg4, )
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is continuous in all variables except t, and monotonic for
all t on 1I.
2. The constraint equations of the system graph, G,

for correspondence F, are of the form

- - —_— = =
Zs1 Qi Q2 QU3 Qa4 O RQie | |Z2p1
Z, Q, O 0 0 0 Q| |Zpm
Zs3| _ -Qf; o Q33 Q34 O Q36 Zp3 (3-2-3)
Zs4 Q[ O QY Qg O Quy p4
Z . 0O 0o 0 0 0 Q| |z
256] |6 "6 s ~Qe ~Qss o | |“po ]

where Q,; is skew for 1i=1, 3, 4, 6.

Let Spi denote the subset of edges of E(G) corre-

sponding to the variables Zpi for (i=1, 2, 3, 4, 5, 6).
Let S:i and S;i denote the subset of edges of E(G) cor-

respectively for

responding to the variables Xpi and Ypi

(i=1, 2, 3, 4, 5, 6).
Then (3-2-3) restricts G in the following four ways:

1. C(G - S;b) = ¢ (the empty set);

2. B(GX s{) d;

6)
. (sY X Y.y = ¢
3. BUG - (Y U sTH] xs¥) = ¢

X y . =
4. C([GX(SPSUSpé)] s Y)Y =¢
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This statement follows from (2-2-2) and (2-2-3), and the

fact that the remaining zeros can be obtained by suitable

choice of forest (see [WI-1]).

Note: Throughout this thesis, C(G;) and B(G;) represent
the circuit and cutset matroids respectively on the

graph Gl‘

Lemma 3-2-1: Let the component and constraint equations

for {?E, G, F}- be given in (3-2-2) and (3-2-3) respec-
tively.

Then there exists a forest T2 with constraint
equations (3-2-3) in which Sp3 =0 and Q44 is a zero
matrix if, and only if, the following two conditions are

satisfied:
1. B(IG X (S%1 U Spa USp3 U Spa USPed)] - (S§3 UsBa)) =4,
2. CUG - (S5 U sty U sz USpy USpe)] X (573 Usp) = 4.

Proof: Conditions (1) and (2) are satisfied if, and only if,

the following two conditions are satisfied:

3. BUG X (5[ Us 35U s,y Ushedl - (s53 UsYyd) =4,
a. cie - (s5Us 3Us , UsSdlx (s33Usy)y =g

To show that (1) is true if, and only if, (3) is

true, let
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G, = 16X (sY,UsX,Us 3Us 4UsY O] - (sp3Us)yd
Gyo = [6 X (Y Us sUs ,Us¥ )1 - (s3UsY ),
Gyo = 6 X (¥ Us Us ,Us?) and

Gyo = G X (s} Us¥,Us sUs 4 Usy o)

Then B(G, )CB(G ), so if B(G,,) = g, B(G, ) =d.
If B(G;) £ d, let e, #¢, and e;€ B,€ B(G;,). Then by
(2-2-2), (ByUB,)€ B(G,() for some set B,CE(G). If

€ szf](BllJBZ), then by definition of s* there is

€2 p2’

another B3€ B(G,,) such that B3c:(SglL/S¥6lJBlL/BZ)-{éz}

x
and e, €B 1f e3E Sp2/7B3, for the same reason as above

30
there exists another B4E B(G4O) such that elé B, and
4C(S L/S L/B ) - {é3}. Proceeding in this fashion if

e; € (Bif)ng), there exists another B, ,;€ B(G,4,) such

that elF Bis1» Biyg

C(s¥ USsY UB)) - {} Since 5:2 is
finite, there exists some B € B(G,4,) such that e;€ B, and
BpC (551 USYoUSp3USps). Therefore e € B_€ B(Gyy) and

e;€ B N (Sp3USY ) e B(Gy) # 4.
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It follows that (1) is true, if, and only if, (3) is
true.

The proof that (2) is true if, and only if, (4) is
true, and is identical to the above with obvious changes of
notation.

Now assume that (3) and (4) are true. By the defini-

tion of a forest and co-forest in Chapter II,

(S;lL/S§3(/S§4l/S;6) can be contained in a forest, T,,
Y (s sV /JsY ined i _
and (SplL/Sp3L/Sp4L/Sp6) can be contained in the co-forest

of T,, since the two sets are disjoint. (See Theorem 6-10

of [SE-1].) For forest T2,Sp3 = ¢, and T, has constraint

equations (3-2-3).

By (2-2-3) and (3) and (4) above, the matrix = 0.

Q44

Qqq =0 and Sp3 =¢g in (3-2-3)

5- Then by (2-2-3), (3) and (4) are true.

Conversely suppose

for forest T

Theorem 3-2-1: Let the component and constraint equations

for {?E, G, B} be given in (3-2-2) and (3-2-3) respectively.
Suppose the following two conditions are satisfied:
y X y . X y =
1. B(IG x (sY,Us¥, Us ;Us_,Us? )] (sp3Usp4)) @
. X y x y X =
2. c(le (Sp1U5p2U5p3USp4USp6)] X (sp305p4)) d.

Then {CE, G, F} has a unique solution for all t on 1I.
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Proof: By Lemma 3-2-1, there exists a forest T, with con-
straint equations (3-2-3) in which Sp3 = ¢ and Qqq 1is a
zero matrix.

Substituting (3-2-3) into (3-2-2) and reducing,

T
By (21 ~Qup 251 * Qe Fe(t), £) - Qqy 2, - Qy Fp(Z,,,

Qi Zp1 * Qo Felt), t) -Qy Fu(-Q]4 Zp1 * Qe Felt), t)

=Q,, F (1). (3-2-4)

16

By Lemma B6 the left hand side of (3-2-4) satisfies
condition (Cl1) for all t on 1I. Therefore by Theorem Bl,

there exists a unique solution for 2 for all t. A1l

pl
other variables can be obtained uniquely from these.

The following Corollary is an important special case

of Theorem 3-2-1.

Corollary 3-2-1: Let the component and constraint equations

for {?E, G, é} be given in (3-2-2) and (3-2-3) respectively.
If (Sp3L/Sp4) = ¢, the system {?E, G, ﬁ} has a unique

solution for all t on 1I.

Lemma 3-2-2: Let the component and constraint equations for
{?;, G, F}-be given in (3-2-2) and (3-2-3) reépectively.
Then there exists a forest T, with constraint equations
(3-2-3) in which Sp4 = ¢ and Q{3 is maximum row rank if,

and only if, the following four conditions are satisfied:
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X y X X y X -
(G - (55 UsT,Us 3 US  US ) - €G- (5,1 USh, USpe)) = ¢
X X X y -
B(GX (SY,UsT,UsY Us ,USY D) - B(GX (SY US,Us])) = ¢
X -
C(G - (S 3US 4US;)) = ¢

B(G X (sp3Usp4Us;6)) =d.

Proof: Conditions (1) and (2) are satisfied if, and only if,

the following two conditions are satisfied:

6.

C(G - (s UsEiUsY, Usped)) = s

B(G X (5§1U5§3U5}§4 Usgb)) =d.

To show this let

- . X y X Yy X
Gl G (Spl Usp2 Usp3 Usp4USp6)

G

. X x y X
o =G (sp1Usp3Usp4Usp6) and

- s® UsY. UsE
G, = G - (s, Us ,Us o).

If C,€C(G,), then C; & C(G,) since (S’sIUS;G’)

contains no circuits by its definition. Therefore,

C, € C(G;) - C(Gy).

e i y
Conversely if C € C(G;) - C(G,) and e;¢ le]sz,

by definition of SY there exists another circuit

p2

X X
Co€ C(Gy) - C(Gy) such that C,C(Sp;Us; UC)) - {el}
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If e2€ CZI]S; for the same reason as above there

21
exists another circuit C3CZ(S;IL}8;6L)02) - {%é}. Proéeed—
ing in this fashion, if e € Ci()sgz, there exists another
circuit Ci+lci(S;1L}S§6L)Ci) - {Eé}. Since S;z is finite,
there exists some circuit Cnc:(Sgl(JS§3usg4()S§6). There-
fore C(G.) # ¢. This shows that (5) is true, if, and only
if, (1) is true.

The proof that (6) is true, if, and only if, (2) is
frue is identical to the above with obvious changes of nota-
tions.

Assume (3), (4), (5), and (6), are true. Since (5)
and (6) are true, by the proof for Lemma 3-2-1, there exists
a forest T, with constraint equations (3-2-3), such that
Spa = &

Since there is no circuit in (Sp3L/Sp4LJS§6), by
(2-2-2) and definition (2-2-1), 5;1 must contain a dendroid
of C(G + (S5 US 3Us ,USHe).

Also since there is no cutset contained in
(Sp3USpa USLe), by (2-2-2) and definition (2-2-1), s%)
must contain a dendroid of B(G X (S;1L)5p3L}Sp4L)S%6)).
Together these two conditions imply, by Lemma 2-2-2, that
the matrix Q{3 has maximum row rank.

Conversely suppose there exists a forest T2 with

constraint equations (3-2-3) in which Sp4 =@ and QI3 has

maximum row rank. By Lemma 3-2-1, (5) and (6) are true.
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By Lemma 2-2-2, S;l and S?l contain a dendroid of
y y . X X
B(G X (splu sp3U S,aUsl¢)) and C(G (splusp3usp4usp6))
. y -
respectively, so B(G X (Sp3L/Sp4L/Sp6)) =g and

C(G + (S 3US 4USFe) = ¢.

Theorem 3-2-2: Let the component equations, CE, of Type 3,
be given in form (3-2-2) and the constraint eduations in

form (3-2-3). Suppose:

|

the mapping Fy (Zpl, Zsp, t) satisfies

F2 (Zpl’ Z52’ )

condition (L1) for all t on 1I;
X y x y x X y x — oA
2. C(G - (S, UsppUs 3 USpa USpe)) - C(G - (S USpUs o)) =g
Y Us*,usY.usX, uUsY Y. UsX,uUsY. ) =d:
3. B(GX(SpUSLoUSp3USpaUSLg)) - B(G X (SLyUSrUSpe)) =¢;

X - -
4. C(G- (S 3US ,US ) =d;

9]

Y 3y =
B(GX (S,3US 4 US ) =&,

Then the system ~{?E, G, ﬁ} has a unique solution for all t

on 1I.

Proof: By Lemma 3-2-2, there exists a forest T2 with con-
straint equations (3-2-3) in which Spa = ¢ and Q{3 has

maximum row rank.
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Substituting (3-2-3) into (3-2-2) yields
T T

F(Z10-Qip 251 * Qg Fe(1),8)-Q) 12 1 -Qu5F (2 1, -Qpp 2 *+ Qpe Fg(),1)
= Qg 2,5 *+ Qg Fe(t) (3-2-5)

and

T _
P3(Zp3, t) +Q 3 2 - Qg 2 3 = Qg F (). (3-2-6)

pl
The left hand side of (3-2-5) satisfies condition (L1). By

Theorem Bl and Lemma BO6,

2, = Fo(Quz 25 * Qg Fe(t), ) (3-2-7)

where Fg(t) is specified and F7 satisfies condition (Cl1)

and is continuous in all variables except t.

Substituting (3-2-7) into (3-2-6) gives
T = 2=
F3(Z 3, £) % Qp3F (Q 32,3 +Fg(1)) = Qg3Z 1 = QggF (). (3-2-8)

By Lemmas B5 and B6, the left hand side of (3-2-8) satisfies

condition (Cl) so by Theorem Bl, 2 is uniquely deter-

p3

mined. From Zp3, all other variables can be uniquely

determined.

Corollary 3-2-2: Let the component and constraint equations

for {?E, G, ﬁ} be given in (3-2-2) and (3-2-3) respectively.

Suppose:
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1. the mapping F, (Z 252, t) is strongly

pl’

By (Zp15 Zgp, 1)
monotonic and satisfies a Lipschitz condition for all t
on I;

2. C(G + (S,3US ,USS)) = ¢
y =
3. B(G X (S,3Us ,Us > =4.

Then the system {éE, G, é} has a unique solution for all t

on I.
Proof: By (2) and (3) (s UsY ()s*.) can be contained
—_— ’ p3~ "p4d pb

. y X y . .
in a forest T and (Sp3l)Sp4(jSp6) can be contained in

2

the co-forest of T,. By Lemma B4, the mapping

By (21, Zgy, t)

252’ t)

can be solved explicitly for the primary

variables of T and the resulting mapping is again

27
(STRMLC) for all t on 1I. Consequently, sz = ¢ and con-
ditions (1) and (2) of Theorem 3-2-2 are satisfied. The

assertions of the Corollary follow by application of Theorem

3-2-2.




Initial
initial

initial
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Existence Theorems for Systems

of Type 1 Components

Suppose all components in the system are of Type 1.

value problems of such systems will be examined. The

value problems will be called consistent when the

values of all variables which are differentiated in

the equations are given and such values satisfy the system

algebraic and constraint equations.

Let the topology of the system graph be such that

there exists a forest T for which:

1. the direct sum of the terminal equations for all

ponents in the system can be written in the form:

Y

N.

p3

s4

s5

pb

By (Y, 2,

€171 210 ®)

Fa¥y, gz, ©

6,4, )

B3 Vs 230 Zgas Zg3s Zpgs )
FoWss 2530 Zgas 253, Zpg, ©)
Fy3(Wy, Zo3r Zgar 2530 Zpgr B)
F5 (ZpS’ Zsb’ t)

Fo (Zpsy 260 1)

m com-

(3-2-9)
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Zg7 = By (27, Zgg, 1)
Zpg = Fg (Zp7, Zggr )
Z,o = Fg (£

where the mapping P32(¢/, Zp3, Zggs Zg3, Zp4, t)

FysWs, Z 50 2oy Zg30 2540 )

is strongly monotonic in the variables Zg3, 2 for

p4’
every ¢/, Z ., and 2 and every t on an open set
p3 s4

I of reals, the mapping Fg (Zps, Zggo t)

Fo (Zpsy Zggy t)
is strongly monotonic for all t on I, the mapping
Fo (Zp7, Zgg, t
F8 (Zp7’ Zsg» t)

is monotonic for all t on I,

Fy, Fp, F3y, F3y, F33, F5, Fg, Fg, Fg, Gy and G,

satisfy a Lipschitz condition in all variables except t,

and all mappings of (3-2-9) are continuous in t on 1I.

The constraint equations for system graph, G, for corre-

spondence F, are of the form
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|z
13 Q9 pl

T T
Zi3l |3 3 W3 Qyy s Qe Wy g ol [Zps3
z o o -, o o o0 o o Q z
s4 34 49| |%pa

Zes| 1 © Qs Rss O Qs Qsg Q7 Rsg Qs !l |Z2ps | (3-2-10)

T T T
Zsol | O e We O Qg O O 0 Qegl |Zpe

T
z 0 4%7- 0 o7

T T T
Zsgl |0 Vg g O Qg O Qg Qg o | [%ps

T T T T T T T T
Zsol ["Rug "9 Q39 g Rsg "Qeg Q79 Qg9 Qg
e B

Z
p9
-

where Qii is skew for i=2, 3, 5, 7, 8, 9.

Let Spi denote the subset of edges of E(G) corre-

sponding by F to the variables Zpi’ for i=1,..., 9.

Let S;i and S;i denote the subset of edges of E(G) cor-
responding to the variables Xpi and Ypi respectively for
i=1, ..., 9.

Then (3-2-10) restricts G in the following six ways:

1. GG - Sgg) = ¢ (the empty set);
y = .
2. B(GX ST =d;

. X X X y = of -
3. BUG - (ST USEUS3USLUS )] X S5 = &
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X X — .
4. oG X (s5UsY UsY UsX UsYyy] - s¥)) = ¢;
5. B([G X <sIY,1uS1YDZUSy 5aUsYodl - (shiusi) = d;
6. C(LG - (ShUsp,UspaUs? Usiod] x (spUspo)) = ¢,

This statement follows from (2-2-2) and (2-2-3), and the
fact that the remaining zeros of (3-2-10) can be obtained

by suitable choice of forest.

Theorem 3-2-3: Let the component and constraint equations

for the system {EE, G, F be given in (3-2-9) and (3-2-10)
respectively. Suppose the following conditions are satisfied:

1. B(G X (5P, UsY3USE, USYs USheUSy7 USpg USYg) ]
Sp7 Uste)) = ¢;

2. CUG - (SFpUST3USyaUSEsUSYaUS,7US g USTg)]
X (s§7Us’;8)) =d.

Then the system {?E, G, F}- has a unique solution for a con-
sistent initial value problem in a neighborhood of any t on

I.

Proof: By a technique identical to the proof of Lemma 3-2-1,
conditions (1) and (2) above are true if, and only if, the

following two conditions are true:

3. BUGX(SY,USY3USYsUS,y US,g Us)gd] + (Sh7 UsEg)) = ¢

4. BUG - (SpUspaUspsUsyrUspgUspd] « (7 s3e)) = 4.
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Again following the proof of Lemma 3-2-1, there
exists a forest T, with constraint equations (3-2-10) such
that S, = @ and Qgg = O- .

Substituting the appropriate rows of (3-2-10) into

the equations for 2 z and Zp

s5° s6 in (3-2-9) gives:

8
T T T

Fs (Z,5: -Qg Zpa ~Rzp 2p3 "Usg Zps * Qeg Zpgr t) = Qss Zps

Qep Fp (Zoe, - 25 -QF, Z 2 -QE, Z_c + Qug Zpg, t)

s6 Fo (Zps» ~Qag 2p2 “Q36 Zp3 ~Qse Zps * Qo Zpo:

T T T _

-Qsg Fg (-Qzg Z,5 -Qzg Zp3 “Qsg Zps * Rgg Zpgr ) =

Tz Tz -+ z (3-2-11)

Q5 2po -Q35 Zp3 * Qsg Zpg -2-

By Lemma B6, the left hand side of (3-2-11) is strongly

monotonic in Z It also satisfies a Lipschitz condition

p5°
in all variables except t since it is a composite mapping
of functions satisfying Lipschitz conditions.

By Lemma B4, the inverse exists and
Zp5 = Fyip (sz, Zp3, t) (3-3-12)

By Lemma B4 and the Corollary to Lemma B3, FlO
satisfies a Lipschitz condition in all variables except t
and by these Lemmas is continuous in t.

Substituting the appropriate rows of (3-2-10) into

the equations for Zp3 and 254 in (3-2-9) gives:
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T T T T
Q34 F32 W, Zp3, Q34 Zp3 * Qa9 Zpg, -Qi13 Zp1 -Q23 Zp2

VA

* Q33 253 * Qaa2pa* s Zps * Qg Zps T g Zpgt Wo Zpgr Zpar B

T T T
E U, Z - z o+ zZ - Z - Z 4+ Z
33 ( 3’ "p3’ Q34 p3 Q49 p9’ Q13 pl Q23 p2 Q33 p3:

*Qyq Zps * Qs Zps * Rz Zpe * Qg Zpg * Qg Zpgr Zpgr P)

E_ (t) (3-2-13)

By Lemma B6, the left hand side of (3-2-13) is strongly
monotonic in Zp4. It also satisfies a Lipschitz condition in
all variables except t, and it is continuous in t.

By Lemma B4, the inverse exists and

Z Z Z Z z

= Fq,(2 Z,g, t) (3-2-14)

p4 pl’ “p2’ “p3’ “p5’ “p6?

By Lemma B4 and the Corollary to Lemma B3, Fll satis-
fies a Lipschitz condition in all variables except t and by
these Lemmas is continuous in t.

By (3-2-9), (3-2-10), (3-2-12), and (3-2-14), all
terminal variables are known explicitly as a function of
1€}¢5ﬂb , Zp3, and t which satisfies a Lipschitz condition
and is continuous in t. Substituting these into the differ-
ential equations gives a normal form model of the system

which satisfies a Lipschitz condition in all variables except

t, and is continuous for t on I.
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By Theorem 2.1 of [LE-1), the normal form model has
a unique solution locally from which all other variables can

be determined uniquely.

A different hypothesis on the algebraic equations

yields the following.

Theorem 3-2-4: Let the component and constraint equations

for the system ‘{QE, G, ﬁ} be given in (3-2-9) and (3-2-10)
respectively. Suppose the following two conditions are
satisfied:

1. C(G - (SppUspzUs?yUsyr USpg USEo))

X y X - .
-C(G X (sp3Usp4usp9)) =d;

2. B(G X (SY,UsY3USE, US; USpgUsYo))
-B(G X (SY3U ST USTo)) = 4.

Then the system '{?E, G, E} has a unique solution for a
consistent initial value problem in a neighborhood of any t

on 1.

Proof: By the proof for Lemma (3-2-2), (1) and (2) are true
if, and only if, the following two conditions are true:

3. C(G - (SppaUshzUsp;Uspg Uspg)) = &

4. B(G X (5),Ust3Us ;Us gl/she)) = .
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By (3), (4), and (3-2-10), (8§, UsX,Us¥;Usy, Usy, U

sY (}Sx ) can be contained in a forest T and
p8 p9 2

(SglL}ngL}Sg3(jS§4L/SE7L/S§8(}SEQ) can be contained in the

yA t)

co-forest of T,. By Lemma B4, the mapping Fg (ZpS’ S6°

2

Fo (Zps» Zger T

can be solved explicitly for the primary variables of T2
and the resulting mapping is again (STRMLC) for all t on 1I.
Consequently, the constraint equations for T2 are in form
(3-2-10) with (sp6Usp8) =d.

Following the proof for Lemma (3-2-2), Q§7 is
maximum row rank,

Substituting the appropriate rows of (3-2-10) into

the equations for 2 and Zs

S5 in (3-2-9) ylelds

7
F(Z o, t) -QueZ o = -QL, 2 cQZ o+ QerZom +Qeg Zon
P p 57°p2 35 7p3 57 “p7 59 “p9
(3-2-15)
The left hand side of (3-2-15) is (STRMLC) for all t
on I, so by Lemma B4, it has an inverse

- T T
Zp5 = F13(-Q35 sz -Q35 Zp3 * Q57 Zp7 * Q59 Fg (1), t).

Also by Lemma B4 and the Corollary to Lemma B3, FlO
is (STRMLC) for all t on I and is continuous in t.
Substituting (3-2-16) and the appropriate row of

(3-2-10) into (3-2-9) gives:
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B, (2, ©) -Q, 2

T T T
p7 ¥ U7 Fio (-5 25, Qa5 253

T T
* Qs7 Zp7 * Qsg Fg (1), t) = -Q37 25 -Qz7 Z3 * Qyg Fg (1),
(3-2-17)

By Lemmas B5 and B6, the left side of (3-2-17) is
strongly monotonic in Zp7 and also satisfies a Lipschitz
condition in all variables for all t on I. By Lemma B4,
the left hand side of (3-2-17) has an inverse with respect

to 2 Thus

p7*

Z Z t). (3-2-18)

p7 = Fiq (Zp2’ p3’

By Lemma B4 and the Corollary to Lemma B3, Fia
satisfies a Lipschitz condition in all variables except t
for all t on I, and also is continuous in t on 1I.

Substituting suitable rows of (3-2-10) into (3-2-9)
yields an equation similar to (3-2-13) and by the same rea-

sons given in Theorem 3-2-3 ,

Z (3-2-19)

pd = FlS (Zpl’ sz, Zp3’ ZpS’ Zp7, t),

and for all t on I, FlS satisfies a Lipschitz condition
in all variables except t and is continuous in t.

By (3-2-9), (3-2-10), (3-2-18), and (3-2-19), all
terminal variables are known explicitly as a function of

¢/,lﬁé,1p3, Zp3 and t, which satisfies a Lipschitz con-

dition for all variables and is continuous in t on 1I.
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Substituting these into the differential equations gives a
normal form model of the system which satisfies a Lipschitz
condition in all variables except t, and is continuous in
t on 1I.

By Theorem 2.1 of [LE-1], the normal form model
has a unique solution locally from which all other variables

can be determined uniquely.

Conclusion

Theorem 3-1-3 and its corollaries provide the com-
plete background for the examination of linear semi-definite
component systems. By these theorems, the problem of unique-
ness is reduced to the examination of the interconnections
of only semi-definite components. These theorems provide a
fundamental tool in the examination of such systems.

The algorithms of Part I provide the second basic
contribution of the thesis. The material here culminates in
(3-1-41) which is an expression for the determinant of an
arbitrary linear time invariant system in terms of its compo-
nent equations (reflected in Ji) and its graph (reflected
in X). This is the simplest equation yet given in the
literature which shows the relation between the system struc-
ture and the graph for any general linear time invariant

system,
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Theorems 3-2-1 and 3-2-2 are the first theorems
known to the author on systems in a Hilbert space. These
theorems are a generalization to Hilbert space of the mono-
tonic properties of mappings as utilized in Theorems 3-2-3
and 3-2-4.

Theorems 3-2-3 and 3-2-4 are the most extensive
existence theorems for algebraic and differential equations
yet seen by the author. Practically every other theorem on
uniqueness of systems published is a special case of these
or a slight modification of a special case. For example,
the theorems of [DU-1)], [DU-2], [DU-3], [DU-4], [SE-1],

[BI-2], |[DE-1], and [WI-1], all fall into this category.



CHAPTER 1V
STABILITY STUDIES OF SYSTEM SOLUTIONS

Most contemporary stability studies are based on the
so-called Second Method of Lyapunov as applied to a set of
first-order differential equations characterizing the system.
Almost nothing has been said about stability as it relates
to the two fundamental structural features of the system;
namely, the characteristics of the system components and
their topology; i.e., their pattern of interconnection. A
given set of system components, for example, may be stable
when connected in one manner but unstable when the connec-
tions are altered. |

This chapter examines several classes of systems,
containing both linear and nonlinear components, and estab-
lishes sufficient conditions on the topology of the system
for stability of a solution. A set of necessary and suffi-
cient conditions for system stability are also given on
the component characteristics of a system having a given
topology.

In this study components of Type (1) only, are exam-
ined for stability of a solution subject to a perturbation

in initial conditions.

151
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Stability, as it relates to the structure of the
system is concerned, then, with a study of the stability
characteristics of the system of e equations of Type (1)
when the vector, (ZO, Zi) of order 2e is subjected to the e
linear constraint equations in (2-3-1). The stability char-
acteristics discussed in this chapter are limited to the
class of systems for which the equations chafacterizing each

of the m components in the system are of the form

= = Bz, t)
YA = \JJ (4-1-1)

or

z

o = 6z

The most general linear forms considered are

£ Y= () z; + B(b)
zo = Y (4-1-2)

and

Zy = C(1) Z; + G(t)

The definition of stability considered is that given

originally by Lyapunov,
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Definition 4-0-1: A solution 46(t) of the system of equations

Y = F(Y, t)
is stable for the initial point t = to if, and only if, for
every €> 0, there exists a 8> 0, such that HLIJO(t) -lJJ(t)'l <€
for all t > t, if ,hpo(to) - d!(to)“ < 6, where‘¢b(t) is an
n-tupie of time functions,\P(t) is an arbitrary solution and
the indicated norm is the euclidean norm.

The development is based on the so-called direct
method of Lyapunov [HA-1], using a positive definite, real
valued, continuous function v on the n+l dimensional Euclidean
space (1p, t). The system is stable if the total time deriva-
tive of v along the trajectories df(t) is not positive in

Hh’toz ”‘wb"POH <h, t > t,. Following Hahn [HA-1], if R is

the set of real numbers, then a function g: R—>R belongs to
class K, means that @ is a continuous real function defined
on the closed interval O < r < h and g(r) vanishes at r = 0
and increases strictly monotonically with r.

A positive definite function v of radius h at Ipb is
a real valued function from the (lﬁ, t) space which vanishes
at one point IPO for .t >ty and in the half-cylindrical

neighborhood

Hh,ty H\P“ kpo” =h, t2z2t,

and
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vay, © = 8 Y-y )b

A matrix A, whose entries are continuous functions
of (Y, t) is said to be positive definite if for any ve'ctorlpif 0,

IPT A\p >0 for all t >t and all Y, and positive semi-

0’
definite if 4ﬂk Q/ >0 for all Y, t > ty- It can be shown
that the quadratic form associated with a positive definite
matrix is a positive definite function of some radius h at
IPO = 0. Whereas most applications in the literature of
positive definite and semidefinite matrices are restricted

to symmetric matrices, the applications in this chapter

require no such restriction.

Part I. Linear Systems

Let the mathematical models of each of the m multi-
terminal components of a system having a graph G be given in
one of the three following forms:

1. Dynamic Components

ZO = P(t) Zi + F(t)

2. Algebraic Components

Z_ =C(t) 2. + G(t)
0 i

3. Excitation Components

Zy = E(t)
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where E(t), G(t) and F(t) are known continuous vector
functions of t, the entries of the matrices P(t) and C(t)
are continuous functions of t, and Z, and Z; are com-
plementary terminal vectors, i.e., the direct sum (ZO, Zi)
contains exactly one component xj and one component yj
corresponding to each edge in the terminal graph of the
component .

Let the topology of the system be such that there
exists a forest T, in G for which:

1. the direct sum of the terminal equations for all

m components in the system can be written in the form

. -1 p— = — - — -1
= +
(4-1-3)
- - — -1 - T — -
Z52 Ci11(t) Cpp(t) |24 G (1)
= +
Zs3 Co1(8) Copp(t) 1125 G3(t)
Z,5 = E(t)
where ij = (ij, ij) (j=1, 2, 3, 4, 5) 1is a vector of
primary variables, i.e., all components of X_,: correspond

PJ

to edges in forest T, (branches) and all components of Y

pJ



156

correspond to edges in the complement of T, (chords). The

vector Z_. = (Y

S j X.:) (j=1, 2, 3, 4, 5) represents the

sj’ ©sj

complement of ij, i.e., all components of Ysj correspond

to edges in T, and all components of ij correspond to

edges in the complement of T,.

2. the constraint equations of the system graph are

of the form:

S 1T T, ]
Zs1 Qui Q2 QU3 Qs Qs | Zp
_oT
Zs2 Qiz Q2 Q3 O Us| | 2p2
_ | aT T L

Zs3 13 B3 B3 O° Qs| | %p3 (4-1-4)
z F, o 0 0 Q z

s4 14 45 pa

T T T T

Zss Qs Q5 s Qs Qss| | Zps

The zeros in (4-1-4) are obtained by selecting the
forest T, such that the vector 2, is of lowest possible
order. Since (4-1-4) represents the constraint equations for
one forest T,, the matrices Qj;, Qp, Qz3, and Q55 are
skew. The only restraint that (4-1-4) has placed on the graph
G 1is that there be no cut-sets of thru drivers or circuits of

across drivers which is a necessary condition on the system

for the existence of a unique solution. [KO-1].
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Let Spi denote the subset of edges of E(G) corre-

sponding to the variables Zpi for (i=1, 2, 3, 4, 5). Let

s;i and S%i denote the subset of edges of E(G) corre-

sponding to the variables X_: and Y respectively for

pi pi
(i=1, 2, 3, 4, 5).
X X
Let G; be the graph EG X (E(G) - (Spl V) Sg4 V) spS)]
(Sp2 LISP3{]. Let CE represent the component equations
(4-1-3), and let F be the correspondence between the compo-
nent equations and G as described in Chapter II. Then the
subsystem {bE, G, é} has a unique solution for any t if,

and only if,

U 0 Ci1(t) Cio(t)| [Qy Q23
det. - #0 (4-1-5)

_-Q'£3 Qs3] Ca1(t) Cap(td| |0 U

In this case the component equations are:

p2 Cu() Cp| |z, Go(t)

JZ

-

Co1 (1) Cop(t)| |25 G5(t)

- — - A o

s%

By (2-2-3), the graph equations for G, are given by
the submatrix in the second and third rows and second and
third columns- of (4-1-4). Substituting the graph equations

from (4-1-4) into the component equations gives



T
-Q3

e

Q33

—

Cll(t)

Cy1 (D

Cio(t)
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which yields (4-1-5) immediately.

Suppose (4-1-5) is satisfied.

matrix

P(t) =

pll(t)

p21(t)

-

Py, ()

p22(t{

p2

p3

G4(t)

G5(t)

If, in addition the

in (4-1-3) is positive definite and symmetric, then it is a

simple algebraic exercise to show that when the linear con-

straint equations in (4-1-4) are substituted into (4-1-3),

the system model can be reduced to the form

Zpl =

where F(t)

J(t)lel-iélz Q13]

K(t) J(t) Zp

i
612(&4 * Q14£21 * Ql, gzzQ{4J

T
-3 Q33

+ F(t)

C11 C

—

12

Co1 Co2

QW2 Q3

@)
c

(4-1-6)

is a continuous vector function of time and

-1 -
Ci1 ©

Cy1-U

-1
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_ i
511(” 128D

= pty !

ngl(t) 622<t>J

Since P(t) is symmetric, P(t)_l is symmetric and by

Lemma A2, is also positive definite. Since the matrix

512 * Q145.22T
= (4-1-7)

qu?'cit: ul ] f21 +~£22(2}“4 g22

b - b -

le é;;T
_?él fé%-

is symmetric and positive definite, it follows that K is
positive definite and symmetric.

In one of the stability theorems following, P(t) is
not necessarily positive definite, only nonsingular and sym-
metric. If 2Z

s4 is of zero order and condition (4-1-5) is

satisfied, then the system model in (4-1-6) reduces to
Zpl = P(t) J(t) Zpl + F'(t) : (4-1-8)

where F'(t) is a continuous vector function of time.

By definition 4-0-1, stability of any solution depends
only on a perturbation of the initial conditions. The pertur-
bation equations for investigating the stability of an arbi-

trary solution of the linear system

d/: A(t) ¢/+ E(t) (4-1-9)
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are determined as follows:

Let lﬁo(t) represent a solution for which stability
is to be investigated and let #;'(t) be the perturbed solu-
tion derived from a perturbation of the initial conditions.

Let

Z(t) = Jrt) - Pued
then (4-1-9) becomes

Z(t) = A(t) Z(t)

and it follows that the stability of any solution to the
system under consideration is determined by the stability of
the homogeneous parts of (4-1-6) and (4-1-8).

In the remainder of Part I, let

Cll(t) C12(t)

C(t) =

() sz(tz

21

where

pre. p—

Ci () C (1)

21

—

C,,(t) sz(t{J

is the matrix of (4-1-3).
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The following definition and lemmas are needed for

Theorem 4-1-1,

Definition 4-1-1: Let G be a graph and S and T be

complimentary non-null subsets of E(G). Then G is said
to be separable into the two parts, G * S and G - T if
G has no cutsets or circuits with edges in both G - S and

G - T.

Lemma 4-1-1: There exists a forest T, of the system graph,
G, that has constraint equations (4-1-4) with Qy;, Qu3, Q3,

and Q33 zero if and only if the subgraph
X =
[[c x (B(e) - s§)1 « (B - s5,9)] =6,

is separable into two parts such that S§l7 SE4, ng and 5%3

are in one part and sY S

pl’ s¥ and Sx3 are in the other

X
p4’ “p2’ p

part.

Proof: By (2-2-3), the first 4 rows and columns of (4-1-4)
is a representative matrix for the graphic and cographic
vector spaces corresponding to Gl‘

Suppose Gl is separable as above. Let

= (sX y y y
s = (s5,UsY, UsY, UsY).

The representative matrices, A, and B, of B(G) and of
C(G) respectively can, after rearrangement of rows and columns,
1 0) B 0]

be partitioned as A = , B = , where the
0 A,y (o] B,
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columns of A; and B; correspond to the edges of S. The
zero entries of A and B contain Q;;, Quy, Qz3 and Qp3.

Conversely suppose Qll’ Q2 Q33, and Q23 are
zero. Then the two representative matrices A, and B, of
G can be partitioned as above, so G 1is separable into

1
G -S and G - (E(G) - S).

Lemma 4-1-2: The submatrix [?12 Qlﬂ of (4-1-4) has max-
imum column rank if, and only if, the following two condi-
tions are satisfied:
. . . . . X
1. There is no circuit contained in (sztj Sp3|JISp5),
and

2. There is no cutset contained in (Sp; L/Sp3 L}Sgs).
Proof: Assume 1 and 2. Since there is no circuit contained
in (szlj Sp3lj S;S), by (2-2-2) and definition 2-2-1 ,

SX

pl must contain a dendroid of C(G - (S;l(/ Sp2[j Sp3 L’S;S)'

Also since there is no cutset contained in (Sp2 LISp3|J S%SL
by (2-2-2) and definition 2-2-1 , Sgl must contain a den-

. y Yy
droid of B(G X (SpllJ sz L/Sp3|J Sps)). Together these
T

Q
two conditions imply by Lemma 2-2-2, that the matrix 12

Q3
has maximum row rank, so its transpose has maximum column rank.
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Conversely, assume EQlZ Ql;} i1s maximum column
rank. Then by Lemma 2-2-2, S;l and S;l contain a den-
droid of B(G X (), U S 5 U S,3U s)s) and
C(G - (S;l U szlj Sp3 U S;S)) respectively, so there is no

. . y . . _
cutset contained in (sz(J Sp3(J SpS) and no circuits con

. . X
tained in (Sp2 U Sp3 U SpS)'

Theorem 4-1-1: Consider a system for which the model is

given in the form of component equations (4-1-3) and con-
straint equations (4-1-4), where P(t) and C(t) are
constant matrices and P is symmetric and positive definite.
If the graph of the system is such that:

X . - =
1. The subgraph EG X (E(G) - SpS)] (E(G) SpSﬂ G,

is separable into two parts, Gl - S and G; * T, such that
Sgl and Sg4 are in Gy - S and Sgl and 524 are in the
Gy - T.

2. There is no circuit of G contained in

(Spa U Sp3 U S5

3. There is no cutset of G contained in

(Spo U s 3L s¥y).

4. The output variables of each of the algebraic

components can be partitioned into those corresponding to
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edges in G, - S or G, - T. Thus let xi and Y; be the

output variables of component i corresponding to the edges

i i
3 and Y4 be

the output variables of component i corresponding to the

of component i in G, - T. Similarly let X

edges of component i in G; - S.
Suppose each of the algebraic components of (4-1-3)
are as follows:

for component 1i:

E R A
Bl €15 € C33 24 x; + Gh(e) (4-1-10)
X i3 55 S Sl |
il e a) e

where Ct | Ci , Ci and Ci are symmetric, and the
11 22 33 44

. . 7]
i i
C22 C23
matrix is nonsingular,.
iT i
f23 c33

Then any solution to the system is stable if, and

only if, C(t) is positive semidefinite.
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Proof: Since there is no circuit contained in
(Sp2 U Sp3lJ S;s), and no cutset contained in (Sp2[)Sp3[)S;5),
(szlJ Sp3) contains no cutset nor circuit of Gl' The edges

of S - (Sglljsz4) are a subset of (sz(j S_2) so they con-

p3

tain no cutsets. Therefore, (S;ltj 5;4) contains a dendroid,

D of B(G; - S). (See definition (2-2-1).) By (2-2-2) and

1’

the definition of G s* =p

17 pl Also, the edges of

10

T-(Sgllj 524) are a subset of (szlj Sp3) so they contain

no circuits. Therefore (Sgl U 524) contains a dendroid, D,,
of C(G - T). Also by (2-2-2) and the definition of

sY

G pl

=D

1’ 2°

Since B (G; - T) B (G; - S) =B (Gy), D; U Dy

is a dendroid of B (G;) so are the edges of a forest, T,

of Gl' Let (4-1-4) be written for forest To. Then ng

and SY

p3 are in S and S;Z and s are in T.

p3
By Lemma 4-1-1, Qll’ Q22, Q23, and Q33 of
(4-1-4) are zero. By Lemma 4-1-2, the matrix l?lz Ql% of

(4-1-4) has maximum column rank.

Let Xj, Yj represent the direct sum of all compo-

nent X%, Yﬁ respectively for j=1, 2, 3, 4. 1t is clear

that for forest T,
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1 2
sz = , Zp3 =
Y Y3
and the matrix
Ci1 Ci2 Ci1 Cip
C: =
T
Cr1  Cap -C12 €y
where C

11 and 022 are symmetric, since C 1is the direct

sum of the component equations (4-1-10).

Also C22 is nonsingular since it is the direct sum

of nonsingular matrices.

Then J of (4-1-6) becomes

-1 T
U -Gy Ci1 O [Q12
J = - Flz Qli
T T

0 -Cyp -Cio -U| [Q13
-, Q (v c,,] [c;; o JJu o] [QF
12 U3 12 11 12

0 U o c.. M|, v Qt

b J L 22 - - 12 - —13_

so J 1is symmetric.
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Since P is positive definite, K is positive

definite and can be written as the product

- T
where K, is nonsingular [BE-2]. Setting Zpl =K, R in

the homogeneous part of (4-1-6) gives

Y |
R =K JK R
Since the eigenval<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>