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ABSTRACT

U-TREE AUTOMATA:

MACHINES THAT CAN CLASSIFY PATTERNS

By

Kenneth Leroy Williams

A syntactic method for pattern recognition using an extension

of standard tree automata theory to a theory for unordered trees

is developed. A formalization is given for regular unordered tree

grammars and automata. It is shown that regular unordered tree

automata can serve as pattern classification devices. Many concepts

inherent to syntactic pattern recognition methods are defined. The

important differences between circular and noncircular primitive

systems are noted. An exploration is made concerning what types of

pattern classes used with what types of primitive systems are amenable

to this method of classification. It is shown that deterministic

pushdown automata can be used to simulate regular tree automata

which in turn can be used to simulate regular unordered tree automata.

The interesting class of languages generated as the frontier by

regular unordered tree grammars is investigated. A characterization

for various types of tree generating grammars based on the substitu-

tions made in root-to-frontier paths is proposed.
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CHAPTER 1

INTRODUCTION

1.1 MDTIVATIONS
  

Most pattern recognition schemes fall into one of two classes. The

more common type involves feature extraction followed by statistical

classification. Within the last several years, however, more and more

attention has been devoted towards applying techniques of formal lang-

uage theory to recognizing patterns. Such approaches are usually called

syntactic or linguistic pattern recognition. A good introduction to

the syntactic approach is given in Fu and Swain(18). Syntactic methods

are appealing since they provide a vehicle for formalizing both the rep-

resentation of patterns and the corresponding classification methods.

A major disadvantage of the syntactic approach is that language theory

has customarily dealt with one-dimensional strings of symbols and sets

of such strings as its primary objects of study. Meanwhile most pattern

recognition has been concerned with patterns as represented by two-

dimensional pictures or other high-dimensional representations. Strings

that are amenable to syntactic techniques are usually inadequate repre-

sentations for high-dimensional patterns.

Interest in a wide variety of types of machines that may be called

multidimensional automata also has developed within the last ten years.

The multidimensional automata that have been best characterized and



developed are those known as tree automata. Tree automata theory in-

cludes the study of tree grammars, tree transformation systems, tree

languages and tree acceptors or pseudoautomata. It seems natural to

try to apply some of the results of tree automata theory towards pat-

tern recognition. The first attempt in this direction was that given

by Fu and Bhargava(20). Fu and Bhargava extablished a method for re-

presenting the primitives of a pattern as nodes of a tree.

This paper includes an extension of (20) in several ways. Real

patterns can indeed be more adequately represented by trees than by

strings but there is still something missing. Branches of a tree can

never intersect, i.e. paths down two distinct branches can never reach

the same point, but, as we trace over various parts of a pattern, the

same point can often be reached by several different routes from a

given start point. To overcome this handicap (and others) we will

not restrict ourselves just to trees but rather to tree-like struct-

ures called d-trees, where distinct branches can lead to the same node

or nodes. In an actual pattern recognition scheme it is desirable to

have the ability to construct the representative tree, or d-tree, using

no outside information, once the set of primitives is known. The tree,

or d-tree, can then be presented directly to a pseudoautomaton for

acceptance or rejection, or possibly for classification among several

different pattern classes. The method presented here has this ability.

The study of tree grammars, tree acceptors and their extensions

as presented in this thesis also leads to some interesting results in

the theory of formal languages. Some of these results are developed

here in Chapters 3, 5 and 6, although Chapters 3 and 5 are more con-

cerned with the practical problems associated with pattern recognition.



The work in this thesis also offers a contribution as it provides

a step towards formalizing properties of graph transformations. The

tree-like structures developed here are based on graphical properties

rather than the functional definitions used in most other work (see

Chapter 2). Although graphs in general are not treated here, d-trees

(Definition 3.4) are a more general form of graphs than those previ-

ously studied by tree automata theorists. This work, which is another

application of the study of multidimensional automata, constitutes a

partial bridge from tree automata theory to a theory of graph automata.

1.2 APPLICATION AREAS 9: MULTIDIMENSIONAL AUTOMATA
  

We will use the term multidimensional automata to denote mathe-

matical models of machines which can accept, reject or classify inputs

from spaces with dimensionality order greater than one. (One dimensional

encodements of higher dimensional structures are also possible inputs.)

A brief survey of several applications of multidimensional automata

theory follows.

1.2.1 ‘ALLOGIC APPLICATION
  

Thatcher(40) presents a discussion and history of the question of

decideability of the weak monadic second-order theory of multiple suc-

cessors. The question was answered affirmatively for the one successor

case using concepts from the area which has (later) become known as tree

automata theory independently by Buchi(9) and Elgot(13). The problem

was posed for the case of multiple successors by Buchi(9). Doner(12)

was later able to generalize the tree theory methods of Buchi and Elgot

and prove this result also.



1.2.2 INSIGHTS £2 LANGUAGE THEORY
  

W.C. Rounds(36) shows how the newly developed theory of tree auto-

mata can be used to provide clearer insights into, and better proofs of,

some of the classical theory of formal languages. One example is a

simple proof showing that the class of context-free languages is closed

under intersection with regular sets. New areas of investigation are

opened also. For example, the theorem given in Peters and Ritchie(32),

that the language analyzable1 by a finite set of context-sensitive

productions is context—free, is also shown in (36). (The proof origi-

nally given by Peters and Ritchie was obscure if not incorrect.)

Theorem 6.2 of this thesis provides another example of an applica-

tion of tree automata theory for proving results in the area of formal

language theory.

1.2.3 NATURAL LANGUAGE APPLICATIONS
  

N. Chomsky in (11) and in other works has shown that phrase struct-

ure grammars can not suffice to represent equivalence of meaning between

such sentences as "Sincerity may frighten the boy.‘ and "The boy may be

frightened by sincerity.". Rather, he has proposed a more general type

of generative system called a "transformational grammar". A transform?

ational grammar combines string generating phrase structure rules with

rules that provide transformations between trees representing the deep

structure of such systems.

It has been observed by Aho and Ullman(2), by Martin and Vere(26)

and by Rounds(35), that formalized tree transduction systems can provide

 

1"Analyzable by" essentially means "can be parsed using". For a

more complete definition see (36).



a system for carrying out these transformations. Tree transducers are

also considered as possible machines to aid in translations from one

language to another. No practical work along these lines has yet been

attempted but these research papers lay some of the theoretical found-

ations for it.

1.2.4 RECOGNIZING PATTERNS WITH MULTIDIMENSIONAL AUTOMATA
 

Automata which can accept or reject two-dimensional patterns are

described by Blum and Hewitt(4) and by Savitch(37). One might think of

this form of automaton as being a "bug" which is given a maze with

filled and unfilled cells to wander around in. The bug then accepts

or rejects the maze depending on whether the maze meets some pre-estab-

lished criterion.

Some of the capabilities of the bug model given in (4) are that

given a square maze it can decide if;

(1) The maze contains precisely k filled cells.

(2) The maze contains a single rectangle of filled cells.

(3) The maze contains a single square of filled cells with edges

parallel to the maze boundaries.

Blum and Hewitt also show that bugs that can leave markers on cells,

so that on future visits the cells can be recognized as previously visit-

ed, are more powerful than those that cannot leave markers.

The mazes considered in (37) are those with exactly two "doorways"

from each cell leading to two other cells. Here a maze is accepted if

there is a path of unfilled cells from a designated maze start cell to

a designated maze goal cell. It is shown that constructing a bug to

make such considerations is equivalent to constructing a Turing machine



to accept or reject some coding of the maze.

Similar automata are used to provide an unusual characterization

for the context-sensitive languages in Fischer(l6).

Generally, pattern recognizing automata go hand—in-hand with pattern

generating grammars. In an important paper by Pfaltz and Rosenfeld(33)

generative schemes called web grammars are introduced. No accepting

automata are defined; acceptance of a pattern generated by a web grammar

can only be accomplished by parsing with the grammar.

Example 1.1 A simple web grammar from Pfaltz and Rosenfeld(33).

0- (INNTJA)

 

VN-{A} : Nonterminal symbols

VT-{a,b,c} : Terminal symbols

S-{A°} : Start web

} : Productions

 

b

P’ i v ~€> <:::: a “ —-€> '

A a A a

c

A derivation might be:

@373“

o 2} <> 1? \t J

A a c A a 'E/ a c A

b b b

289%

Any pattern, with only terminals labeling the joining of line seg-

ments, which can be generated by a web grammar is said to be in the

pattern language. Pfaltz and Rosenfeld defined web grammars in such

general terms, and allowed so many types of productions through the use



of "embedding rules" (which describe exactly how each production is to

be applied) that their system effectively subsumes any tree or graph

production system that one might define. Unfortunately, however, it

does not shed much light on the nature of such systems.

There is an essential difference in interpretation between the

webs produced by the Pfaltz and Rosenfeld grammars and the multidi-

mensional structures used by others (including this author). Web

grammars produce structures which are themselves regarded as being

patterns. On the other hand the strings, trees etc. used by others

are regarded as partial representations for the pattern. Structures

which represent patterns, rather than constitute patterns, provide an

important step towards an abstraction of pattern recognition concepts.

The scheme developed by Fu and Bhargava (to be discussed in some

detail in Chapter 3) offers the first application of multidimensional

automata used for pattern recognition involving both a generative sys-

tem and a machine to do the acceptance/rejection/classification. In

previous cases this has been accomplished only through parsing. The

material presented in Chapters 3, 4 and 5 of this dissertation provides

a significant extension to this work; an extension that may lead to a

practical recognition scheme for a number of pattern recognizing

applications.



CHAPTER 2

TREE AUTOMATA FORMALIZATION

It is difficult or impossible to discuss various aspects of tree

automata theory such as subtrees, tree replacement, and tree grammars

without an adequate formalism for the language of discussion. This

chapter is an attempt to provide that framework and to introduce the

principal results upon which the remainder of the dissertation will be

based.

2.1 BASIC DEFINITIONS
 

Many definitions and previous results in tree automata theory will

be used for our pattern recognizing automata. We begin with definitions

leading towards the idea of a tree acceptor or pseudoautomaton. Most

of the definitions come from Thatcher(39) and Brainerd(7) although ap—

ropriate notational changes have been made. A similar develOpment can

be found in Brainerd(7).

Definition 2.1 Let N+ be the set of positive integers. Let U, the

universal tree domain, be the free semi-group with identity, 0, generated

by N+ and a binary operation, -. So, for all acU we have a-OBO-a=a. U

can be partially represented by the following figure:



 

1°l'l

Definition 2.2 The depth of atU is denoted d(a) and is defined as fol-
 

lows: d(0)=O, d(a°i)=d(a)+l for i<N+.

Definition 2.3 afib if 3'er 3 a-x=b. azb if bja. Similarly a<b if

afb and aib, and a>b if azb and a#b. We say a and b are incomparable
 

if afib and his.

Definition 2.4 D is a tree domain if:
  

(a) D is a finite subset of U,

(b) beD and a<b :paeD and

(c) for i,jeN+, a°j(D and i<j => a-ieD.

 

Definition 2.5 A ranked alphabet is a pair Q50) where A is a finite

set of symbols and o is a finite relation in AXN.1 (N=non—negative

integers.) Let Ants-1(n) so for all n, A.n will be a subset of A.

Definition 2.6 A tree (actually an ordered tree) over A (i.e. over
 

4A“) ) is a function a:D+A where D is a tree domain and for aeD,

max{ 1
 
a-ieD}eo(a(a)). We denote the domain of a tree by D(a) or Da.

We will denote the set of all trees over 2 by T2.

Example 2.1 Let Da={0,l,2,lol,l-2,l~l-l,l-l-2}, E={ S,A,Z}, XO={Z}.

£2={A.S}- The tree {(0.8).(1.A).(2.2).(1-1.A).(1-2.Z).(1-1-1,Z).

 

lln most previous work 0 was assumed to be functional so each sym-

bol had fixed rank. It was pointed out by Thatcher(43) that this is an

unnecessary restriction and the theory holds for all finite o.



(1.1-2,Z)} may be written as:

The following definitions allow us to deal with parts (subtrees) of

trees.

Definition 2.7 Let a,b,b' be members of U (the universal tree domain)
 

such that a-b'=b. Then blgfb' if afb.

b£§_is undefined otherwise.

We now have b/O-b, a/asO and (if b/a is defined) a’(b/a)=(a°b)/a=b.

Definition 2.8 Let a be a tree and "a" be a member of D . gig?

{(b,x)l(a°b,x0€a}. a/a is called a subtree of a at a. Note that

aGT and aGD $a/a e T
A A.

2.2 STRING REPRESENTATIONS
 

Different authors use different methods to represent trees in

string form. In this paper we will use what is commonly called pseudo-

term notation2 so the tree of Example 2.1 is represented by S(A(A(ZZ)Z)Z).

Although pseudoterm notation is somewhat more awkward to write than

other forms (for example postfix form) it has the advantage of always

providing a unique representation for a tree regardless of the ranking

relation defined whereas other methods only define a unique tree when

used with the ranking relation. The notation used does have an effect

 

2This is also called bracketed notation, list notation or functional

notation. (See Brainerd(6).)



11

on the definition of tree automata, but an equivalent formalization can

be given for each notation.

Definition 2.9 The set 12 of pseudoterms, usually just called terms,
 

 

*

on X, is the smallest subset of (ZL){),(}) satisfying:3

(a) Sgt):

(b) If n>0 and f9: and t1,t2,---,tnct then f(t1t2---tn)(12.

X

We now define a recursive algorithm for writing the pseudoterm

corresponding to a tree:

Algorithm 2.1
 

0. (We refer to the tree being operated upon as tree T.)

1. Write "a" where (O,a)€T.

2. If (l,a1)(T then done: exit.

3. Write "(".

4. Write the pseudoterms (by calling Algorithm 2.1), in order,

for subtrees T/l, T/2,--',T/i where i=max{jl(j,aj)£T}.

5. Write ")".

6. Done: exit.

After recursive applications of Algorithm 2.1 until an exit from

the initial call occurs we will have the pseudoterm corresponding to the

original tree.

2.3 TREE ACCEPTORS
 

We are now ready to define tree accepting machines. The definition

used will essentially be Brainerd's(7) formalization of Thatcher's(39)

definition.

 

3We assume that parentheses are not symbols of 2.
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Definition 2.10 Let <A,c> be a ranked alphabet where A={X1,X2,o-oX.k}.

A tree automaton, or pseudoautomaton, is a system M= <§,t1,~--,tk,€>
  

where:

(a) Q is a finite set of states.

(b) For each i, ljiik, t is a relation in szQ for (Xi,z)(o.
i

(c) FSQ is a set of final or accepting states.

 

If each ti is a function ti:Qz+Q for all (Xi,z)£o then M is deterministic,

otherwise M is nondeterministic in which case we write ti(Xl,--°,Xn)~x04

5

 

iff ((X1,--°,Xn),XO)(ti. If (Xi,0)£o we write tfvx iff (A,X)£ti.

Notation: If X=Xi£ A, then tx means ti.

We now show how each automaton accepts or rejects a member of TA

and thus defines a set of accepted trees.

Definition 2.11 The response, p, of‘a pseudoautomaton M to an input is
 

defined as follows:

(a) If xtA (xyvx iff tgvx.0: D

(b) If xGAn, n>0, o(x(ol°°°an))~x iff 3X1,°-°,Xn€ Q,

tx(X1°'°Xn)~X and 0(aiyvxi, liign.

If M is deterministic p is a function with p:-%fQ characterized

by the following:

(a) If xGAo, p(x)=tx(A).

(b) If chn. n>0. p(x(a1°"an))=tx(o(a1)°°°o(un))-

Definition 2.12 The behavior of a tree automaton M: <O,tl,-°-,tn,€>

is {tIp(t)(F}. This is also called the language of M, L(M).

 

We may read symbol "av" as "goes to" or "contains".

51 I the string of length 0.
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Example 2.2 A={0,1,X,S,B}, AO={0,1,X}, A1={B}, A3={S}. Consider the

deterministic pseudoautomaton M= <Q={1,0,S,B,X}, t0,t1,tx,tB,tS,F={S}> .

We define the t functions as: to(1)=0

t1(1)=1

tx(A)=X

tB(X)-B

ts(lBl)=s

tS(OSO)=s

We will find the response of M on tree:

./\

A
X  V

'

This tree has pseudoterm representation: S(“S(OS(1B(X)1)0)0)-

Now p(S(OS(OS(lB(X)l)0)0))-

ts(o(0)o(S(OS(lB(X)1)0))p(0))=

ts(to(x)ts(p(0)0(S(lB(X)1))p(0))tO(A))=

tS(0tS(to(A)tS(o(1)0(B(X))o(l))to(A))0)=

ts(0ts(0ts(t1(x)t8(o(X))t1(A))0)0)=

tS(OtS(OtS(1tB(tx(1))1)0)0)-

ts(0ts(0ts(ltB(X)l)0)0)=

tS(OtS(0tS(lBl)O)0)-

tS(OtS(OSO)0)-

tS(OSO)=

S
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Since SeF the tree is accepted, i.e. this tree is an element of L(M).

Actually we can show that M as constructed here will accept a tree, T,

iff T is a parse tree from the context-free phrase structure grammar

G- <VN'{S,B},VT={0,1,X},S,P={S+OSO,S+1B1,B+X}> . Note that L(G)=

{0“1x1onlngp}.

Although the procedure of recognizing a tree with a tree automaton

seems to be a tedious task we will see later that it can be greatly

simplified. We will be using tree automata as pattern recognition

devices where a tree will represent a pattern to be accepted, rejected

or perhaps classified by what final state the automaton ends in.

Definition 2.13 Given tree a, the frontier of a (abbreviated fr(a))
 

is the string defined recursively as:

(a) If u-(0,x) (i.e. a is a single node tree) fr(a)=x.

(b) Otherwise, fr(a)=fr(a/l)fr(a/2)-o-fr(a/n) for n-max{i|i€N+, iéDa}.

For example, the frontier of the tree in Example 2.1 is ZZZZ. The

frontier of the tree in Example 2.2 is OOleOO.

Theorem 2.1 (Thatcher(39)) A set of trees, T, is the behavior of a tree
 

automaton iff T is a projection6 of the set of derivation trees generated

by some context-free grammar.

Corollary 2.1 The frontier of the behavior of a tree automaton is a
 

context-free language.

2.4 TREE GRAMMARS
 

 

Definition 2.14 Let acDa, a,B£TA. aga+B)-{(b,x)(aIbZa}L/{(a°b.x)I(b,x)€B}.

 

6A projection is a function from the (finite) alphabet of the con-

text-free grammar onto a finite alphabet. It is known that the

class of context-free languages is closed under projections(see (22))-
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This is the result of replacing the subtree o/a at "a" by the tree 8.

Definition 2.15 (Brainerd(7)) A regular tree grammar7 over A (i.e. over

ranked alphabet <§.o ) is a system G= <§,o',P,fi> satisfying:

(a) <8,o'> is a finite ranked alphabet such that AEB and o'|A=o

(i.e. relation 0' over elements of A is exactly equivalent to

o). The elements of A and B-A are called terminal and nggf

terminal symbols respectively.8

(b) P is a finite set of production rules of the form ¢+W where

¢,weTB.

 

(c) FSQTB is a finite set of axioms (the start trees).

The following definition indicated how a regular tree grammar

generates trees.

Definition 2.16 (Brainerd(7)) gngE is in G iff J a rule 0+? in P such

that Ola-9 and B-a(a+‘i‘). gig is in G iff lama with a 3 8. fl is in

G iff 300,"',0m, mio such that G=00=§ 01:? "'=§am-B is in G. The se-

quence 00,"',0m is called a derivation or deduction of B from a, and m
 

is the length of the derivation. We will think of a regular tree

grammar over <2,c> as generating trees in T2.

Definition 2.17 If G is a regular tree grammar over A, then L(G)=

{ceTAlayfl‘ such that y 30. is in G} is the set of trees generated by G.

Regular tree grammars G and G' are equivalent if L(G)-L(G').
 

 

7This was originally called a regular system.
 

8The terms terminal and nonterminal are used in a somewhat differ-

ent sense than one may be accustomed to. Trees in the language of

a tree grammar will have all their nodes labeled with terminal sym-

bols but it is permissible to have tree productions whose left

hand sides use terminals and whose right hand sides use nonterminals.
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Example 2.3 (Brainerd(7)) Let S8 <A,O,P,E> . A0={p.q}, A1=fi“}, A2={V}.
 

~~

1‘41 }.

3P

\/ a;

P={ p9 .——>~ q 9 I .9N D

P

. P

P

\I

N

4v q

-—> V }
N

Po ‘1

p.

This grammar has no nonterminal symbols. One derivation is:

“‘ \l

.. v k
_r: -4>\: n,g q

P I 'w—%:>na q “'77”

p N

P

”A A
v!

\l

p J////\\\\\'q ///\\\\\ q

d! / q

,1
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Theorem 2.2 (Single Axiom Theorem, Brainerd(7)) For every regular tree
 

grammar G-‘<B,o,P,R> one can effectively construct an equivalent

regular tree grammar G'-‘<B',o',P',Pi> such that F' consists of a single

nonterminal symbol, i.e. a tree of the form {(0,2)}, 2630-

Definition 2.18 A tree grammar Gz <E,o,P,Z)’over A is expansive9
 

if each rule in P is of the form X0+x(X1---Xn) where chn and X0,X1,---,

XSEB-A, or of the form Xo+x where xer.

Theorem 2.3 (Brainerd(7)) For each regular tree grammar Gs <3,r,P,S>

over 2 one can effectively construct an equivalent expansive grammar

with a single axiom.

Theorem 2.4 (Thatcher(40)) A set of trees, T, is accepted by a non-
 

deterministic tree automaton iff T is accepted by a deterministic

automaton. Furthermore, given a nondeterministic tree automaton one

can effectively construct an equivalent deterministic tree automaton.

Theorem 2.4 is shown through a subset construction similar to

that used to construct deterministic finite state machines.

The following result is basic to our later pattern recognition as

it allows us to build an acceptor for trees (and later, tree-like

structures) that represent patterns from a given set.

Theorem 2.5 (Brainerd(7)) For every regular tree grammar, G, one can
 

effectively construct a deterministic tree automaton, M, such that

L(M)-L(G).

 

9Intuitively an expansive grammar is one where at each application

of a production the generated tree grows or expands, it can never

contract.
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For regular tree grammar G= (B,r',P,S> over <£={x1,x2,---,xk},r>

the construction procedure may be summarized as follows:

Step(l) Obtain an equivalent expansive regular tree grammar

<B',r',P',S'> with single node trees as axioms.

Step(2) The equivalent nondeterministic tree automaton is

M= <(B'-£)US",t1,t2,~--,tk,S" where tx(X1---Xn)~XO

iff X0+x(X1---Xn) is a rule in P', and S" is the set

containing precisely the labels of start trees in S'.

Step(3) Now construct a deterministic tree automaton equivalent

to M.

Brainerd has also shown the converse of Theorem 2.5:

Theorem 2.6 For every tree automaton, M, one can effectively construct

a regular tree grammar, G, such that L(M)-L(G).

Taking Theorems 2.5 and 2.6 together we have:

Theorem 2.7 The sets of trees generated by regular tree grammars are
 

exactly those accepted by finite tree automata.



CHAPTER 3

UNORDERED TREES

3.1 MDTIVATIONS
 

A general theory of graph grammars, graph transducers and graph

automata might be viewed as one goal of research of this type. The results

presented in this chapter provide a partial bridge between tree automata

theory and this goal. Grammars and acceptors for certain classes of

digraphs are shown with a number of interesting results. The digraphs

are, however, still restricted in important ways.

On a more immediate level, the work done by Fu and Bhargava(ZO)

who first used tree automata theory in pattern recognition was the ori-

ginal stimulus. The following example of theirs will serve both to il-

lustrate the methodology and to point the way towards necessary exten-

sions. In this paper, we will view patterns as connected figures which

are built up of more basic figures called primitives (see Chapter 4.)

The object of this research is not to aid in finding the primitives;

rather we assume we have the primitives (or at least have the portions

of patterns which may be regarded as primitives) and want to work from

them while attempting to identify the patterns.

Example 3.1 (Fu and Bhargava(20)) We want to recognize "squares on top

of and to the right of squares". A better pattern class definition

might be to say that we want to recognize all patterns which can be

19



20

generated by the following procedure:

(a) Draw a square with vertical and horizontal sides.

(b) Halt or draw a square immediately to the right of or above

an existing square.

(c) Return to step(b).

Let regular tree grammar G8 <B,r,P,S>'where B={S,a,b,A,B} over Z=

{S,a,b}. Bo-{a,b}, Bl-{a,b}, Bz-{a,b,S}. a = + , b - + , length(a)=

length(b).

a

LetP-{ s. éA/\’B,Ao éA//\B '

b \\\\\ a] b I

a A / 9 AC " > ,30 a }B ./ A ‘B b . a

 

A

 

Given figure: the following tree (which

\

 
 

/’

can be derived using G) represents it:
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This tree's pseudoterm representation is S(a(a(b)b(a(b)b(a)))b(a(b)b(a))).

The tree automaton which accepts trees generated by G is M8 <{A,B},

ta,t {8}) where the t functions are defined by:

b’tS’

tS(AB)=S

ta(AB)=A

tb(AB)=B

ta(b)=A

tb(a)-B

tb(k)=b

ta(X)-a

Notice that the nonterminals of the regular tree grammar have become

the states of the accepting tree automaton. It will be worthwile for

the interested reader to follow the steps through as M accepts some

short derivation from G, i.e. find the response, 9, to string, t, which

represents (in pseudoterm form) a tree generated by G.

Given a pattern and its primitives we would like to be able to

generate (and later accept) trees (or tree-like structures) in a manner

similar to that of Fu and Bhargava but with extensions meeting the

following criteria:

(1) When constructing a structure to represent a pattern we do

not want to have to use any prior information concerning which of the

descendants of a node must come first - note that in the example if

S S

we had generated \\\\ rather than we

- ab, A a b

would not have been able to accept the tree with our automaton. We do

not want to continually have to check on this kind of order information.
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(2) We want to be able to construct our structure without the

necessity of referring back to the productions in the grammar to find

out which new primitives must be adjoined to which current ones. In

the example when constructing the representative tree, how did we know

that we could not start at S and construct the following tree (which.

does represent the figure but will not be accepted by M)?

b,//' a

The only way we know not to make the tree in this way is by referring

back to the production rules and observing that this is not an accept-

able tree. In fact, if we can exhaust our supply of primitives for a

pattern by constructing a tree where we have consulted a production

rule at each stage to see if we are making a prOper expansion we do

not need to present the tree to an acceptor at all - it must be accept-

able because of the way it was constructed.

3.2 GRAPH THEORY BASES

The considerations of the previous section lead us to the following

development with graph theoretical definitions. Graph definitions are

from Harary(21).

.nginition 3.1 A digraph, D, consists of a finite, nonempty set of

Points or nodes, U, and a set of ordered pairs of distinct points in U,
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V. We may write D= <1,» . Any pair (ul,u2) in V is called an are

or directed edge. Arc (ul,u2) may be shown as an arrow from point ul
 

to point uz.

Definition 3-2 A walk in a digraph is an alternating sequence of points
 

and arcs u -°,x ,u in which each arc x is (u. ,u.). The

n n 1 1-1 1o’xl’“1’x2"

123355 of a walk is the number of occurences of arcs in it. A path is

a walk in which all points are distinct. A closed walk is a walk with
 

the same first and last points and a cycle is a nontrivial closed walk

with all points distinct (except the first and last). A digraph is

acyclic if it contains no cycles.

Definition 3.31 A digraph, D, is rooted if it contains a special point,
 

called the root, r, such that D contains a walk from r to each other

point in D. A digraph is labeled when each node is assigned a unique

name as a label.

Definition 3.4 A d-tree is a rooted, acyclic, labeled digraph. The
 

labels used for d-trees will be ordered pairs, a:x. We call a the

first label coordinate, "x" the second. In practice it will be the "x"

which serves to uniquely identify different nodes.

When writing d-tree D we will assume that node a:xa physically

shown higher than node b:xb and line segment a:xa-bzxb shown means

that there is an arc (a:xa,b:xb) in D. We are taking advantage of the

 

1Chapter 2 and the first part of this chapter have consisted

primarily of results and definitions due to other researchers.

From this point on, the definitions and results are original

with this author unless otherwise specified. The work, however,

does build on the work of others, most particularly Thatcher

(39,42) and Brainerd(7).
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fact that a d-tree has an implied partial ordering on its nodes with

a least element, the root.

Example 3.2

D-tree T =

can be written as T -

 
We define unordered tree differently than other authors (see Knuth

(23) and Harary(21)).

Definition 3.5 A u-tree or unordered tree is a rooted digraph with each
 

node assigned a (not necessarily unique) label and with exactly one path

from the root to each node. We denote the set of all u-trees with labels

from alphabet, B, as uTB. The same convention will be used to represent

arcs of u-trees without arrows as that used for d-trees.

The concept of order is the essential difference between trees

and u-trees. Given trees A.= (/:>P\\\\ and B - d////\\\\b we

a - -b b a
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would in no way want to call them the same but if we regard A and B as

representations of u-trees they are just different representations for

the same u-tree.

Definition 3.6 If a d-tree or u-tree contains arc (a,b), node "a" will
 

be called a predecessor of "b" and node "b" will be a successor of a .
 

The set frontier of a d-tree or u-tree is the set of all nodes with no

successors.

Notation: Where there is no chance for confusion we may denote a node

with label x as node x.

Definition 3.7 A root-to-frontier path in a d-tree or u-tree is a path
 

whose first point is the root and whose last point is an element of the

set frontier. The dgp£h_of a u-tree, t, is the max {nIn-length of a

root-to-frontier path in r}.

Definition 3.8 We define the natural correspondence of u-trees to d-

trees through the following algorithm, Algorithm 3.1. If u-tree U is

the result of applying Algorithm 3.1 to detree D then we say U is the

naturally corresponding_u-tree to D. Informally we construct U by

"unfolding" the non-unique root-to-frontier paths in D to give unique

paths in U.

In this algorithm we use two pushdown stacks, P and S. P and S

will point to distinct nodes of d-tree D and u-tree U respectively.

Our notation will be: P-x means that the top of stack P points to node

8 and P+x means to push down P by placing x on it. We also have a me-

thod of marking nodes of D and later erasing our marks. The algorithm

attempts to simulate the steps a person might follow as he proceeds

through D and U; P and S give him the ability to "back up" a root-to-

frontier path and the marking allows him to see what has already been



26

expanded.

Algorithm 3.1 (Algorithm to define and construct the naturally
 

corresponding u-tree U, to d-tree D.)

Initial conditions: All nodes of D are unmarked. P=r for r the

root of D. 8-0.

0. Denote current node as node P of D with label a:x.

1. Construct new node P' of U with label "a". If S=0 make node

P' the root of U. If S¥0 make node P' a successor of node S.

2. Mark node P. S+P'.

3. If node P has no unmarked successors then erase the mark from

each marked successor (if any), pop 8, pop P and go to step 4.

Else go to step 5.

4. If 8-0 then done: exit. Else go to step 3.

5. Pick an unmarked successor of P, say node M. P+M. Go to step 0.

Example 3.3 A representation of the naturally corresponding u-tree to
 

d-tree T of Example 3.2 is:

T' I

 

 

Definition 3.9 U-tree A1-<U1,V1> is a sub-u—tree of u-tree A2- <U2,V2>

if: (a) U1§;U2 such that for all p1(U1 if (p1,p2)eV2a;p2(U1, furthermore

for pGU label(p)=x in A iff labe1(p)-x in A

1’ 1 2°

(b) V consists of exactly those pairs in V2 whose components are

1

both in U1.
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Definition 3.10 U-tree A1 is identical to u-tree A2 if each is a sub-u-

tree of the other, and we may say A

 

l-AZ.

3.3 STRING REPRESENTATIONS AND THE IMPLIED RELATIONSHIPS
 

We want to be able to represent d-trees and u-trees in linear form,

as pseudoterms (see Definition 2.9). The correspondence between u-trees

and their pseudoterms is given by:

(a) For the single node t, the corresponding term is t.

(b) For arcs (to,t1),(to,t2),°--,(t0,tn) being the only arcs with

ffirst coordinate to, with f -°°,fn respectively being the
2’

---,tn, the set of corresponding

1’

terms corresponding to t1,t2,

terms is {to(Y)|Y is a permutation of {f1,f2,---,fn}}.

The correspondence between d-trees and their pseudoterms is given

(a) For the single node t:x the corresponding term is t.

(b) For arcs (t0:xo,t1:x1),(to:xo,t2:x2),--f,(tozxo,tn:xn) being

0:x0 with f1,f2,--',fn

respectively being the terms corresponding to t

the only arcs with first coordinate t

1 232" "

tn:xn the set of corresponding terms is {to(Y)|Y is a perm-

:x1,t

utation of {f1,---,fn}}.

A corresponding pseudoterm for the d-tree in Example 3.2 and the

u-tree in Example 3.3 is S(a(b)b(c(b))a(c(b)a)). Note that if B is the

corresponding u-tree to d-tree A, both E and A will have the same

pseudoterm representations. Again we stress the fact that neither the

representation in Example 3.2 nor that in Example 3.3 is unique: there

are several more ways of writing each of these structures. A tree can

serve as a representation for a u—tree; we can regard T' of Example 3.3
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as being a tree which is one representation for the u-tree.

In order to firmly establish the relationships that exist between

d-trees, u-trees, trees and pseudoterms we will define the following

mappings. (Here we distinguish between "mapping" and "function" by

allowing a mapping from set A to set B to be any relation on AXB such

that each element of A will be related to one or more elements of B

whereas a function will be a relation on AXE such that each element of

A will be related to exactly one element of B.)

Define c : d-trees+u-trees by the natural correspondence.

1

Define c2: u-trees+trees by t£c2(u) iff t is a tree which can

serve as one representation of u-tree u.

Define c3: trees+pseudoterms by Algorithm 2.1.

Define c4: d-trees+pseudoterms by the above correspondence.

Define c5: u-trees+pseudoterms by the above correspondence.

The following digraph illustrates these mappings:

/" A '\ 7 \-

' T c1 c2 pseudo-

d-trees u-trees trees terms

C4

All d-trees, u-trees and trees are over some ranked alphabet Z.

Pseudoterms are over £1Jf),(}.
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We may make the following observations concerning these mappings:

c1 is a function since each d-tree has a unique naturally corres-

ponding u-tree.

c 1 c 'f 1 F 7\ a a8 no . = .2 a unct on or example c2(b c) { b./\c’ c\/\b }

c is a function. (See Algorithm 2.1.)

is not a function. Note that c4(d)-c3(c2(c1(d))) which (because

of the inclusion of c2) is not a function.

c5 is not a function. Note that c5(u)-c3(c2(u)) which is not a

function.

-1 2

c1 is not a function since c1(a:x)-c1(a:y)=a.

cgl is a function since given a tree it can serve as a representa-

tion of exactly one u-tree.

c;1 is a function. (See Section 2.2.)

-l

c4 is not a function. We note that c;1(p)-c11(c;1(c;1(p)))

l

-1 -l -1
is a function. We note that c5 (p)-c2 (c3 (p)).

which (because of the inclusion of c 1) is not a function.

c-l

5

We now define some equivalence relations based on the above funct-

ions. Let (D,E) be the equivalence relation on d-trees with dlid2 iff

c1(d1)-c1(d2). Let (T,E') be the equivalence relation defined on trees

by tli't2 iff c;1(t1)-c;1(t2). Let (P,E") be the equivalence relation

:n -1 :1 7'1 ' .00
defined on pseudoterms by p1- p2 iff c3 (p1)- c3 (p2). Define c , ,c5

!

in a similar manner to c ':-,c except they are now defined on equi-

l’ 5

valence classes where appropriate, giving the following digraph:

 

2Notation: Regard (a:x) as the single node d-tree with label a:x.

Similarly for (a:y) and a.
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u-trees

 
It is clear that cl',---,c5' are functions (as are c1'-1,°°°,c5'-1)

' must be one-one. Each equivalence class in (D’s)
I

l ’ 5

will be infinite but each equivalence class in (T,s') and in (P,5")

so each of c "',c

will be finite.

These mappings and equivalence classes will be used as we develop

the theory of unordered tree automata. Two things are perhaps most

important to observe:

(1) Given either a u-tree, a tree or a pseudoterm we can immedi-

ately and uniquely determine the appropriate corresponding

pair among u-trees, classes in (T,E') and classes in (P,E"

(2) Given a d-tree, it immediately defines a class of pseudoterms

which correspond to a unique u-tree.

3.4 U—TREE GRAMMARS AND AUTOMATA
 

Definition 3.11 A regular u-tree grammar, abbreviated RUTG, over ranked
 

alphabet <A,o is a system M- <B,o',P,H> satisfying:

(a) (3,6) is a finite ranked alphabet such that A93 and o' |A=o.

(b) P is a finite set of production rules of the form 6+? where

¢,Y£uTB.
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(c) PguTB is a finite set of axioms.

(d) For tGP or for t which is either the LHS or RHS3 of a prod-

uction in P, if t has exactly n arcs with first coordinate

c, then ceAn.

We will think of a RUTG over «5% as generating u-trees with

labels in A. The following indicates how a RUTG generates u-trees:

Let a,8,¢,w be u-trees over B such that ¢+w and a- <Ua,Va>»,

-Uv -Uv -U‘v.w ggif b--tB<B,B>,¢<¢,¢>,w<w,w> esaya 3asuuree

of a, say 8- <US,VS>., such that {paths in S}={paths in ¢} and if UB=

(Ha-US)L}U¢ and VB-(Vu-(VSLJ{(u1,urs)})Lij[){(u1,urw)} where (ui’urS)

is the arc that connected a node of Ua’ node ui, to the root, urS’ of S

i

e

a 3g if He sequence of u-trees ao,a1,---,an such that canoe---=>an=a.

and (ui,urw) is a new arc connecting u to the root, “IW’ of w. We say

Given regular u-tree gramar G- (B,o' ,P,I‘> over <A,o> , the language

*

of G, L(G), is the set, T, of u-trees over A such that tcT iff y :3 t for

some yer.

Definition 3.12 RUTG S is equivalent to RUTG S' if L(S)-L(S').
 

Definition 3.13 Given set A, we define a set of equivalence classes,

(AP,E), on the set of strings of length n over A by letting xsy iff

x is a permutation of the symbols in y.for x,y(Ap. We denote an

individual class in (AP,E) by overscoring any individual permutation

in the class. Example: '35 means the class of permutations on string

"ab". This is {ab,ba}.

 

3LHS - left hand side, RHS - right hand side.
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Definition 3.14 Let <A,o be a ranked alphabet where AF{X1,X2,"°,XR}.
 

 

A u-tree automaton, abbreviated UTA, is a system B- <Q,t1,---,tk,F> where:

(a) Q is a finite set of states.

(b) For each i, liijk, t is a relation in (Qz,s)xQ for (Xi,z)eo.

i

(c) FQQ is a set of final (or accepting states.

Definition 3.15 If each ti is a function t1:Qz+Q for all (X1,z)60
 

then M is deterministic, otherwise M is nondeterministic in which case
  

we write ti(Xl---Xn)vxo iff ((X1---Xn),xo)cti. If (X1,O)£o we write

tfvx iff (A,X)£ti.

Notation: If x-X.€A, we will often write t1 meaning t

X 1'

Definition 3.16 We now show how each automaton accepts or rejects a

member of T and thus defines a set of accepted trees: The response,

A

p, of UTA M to an input is defined as follows:

(a) If xEAO

(b) If the input is as <U,V> which has pseudoterm representation

, D(x)~x iff tivx.

x(olo2--°un), chn for n>0, where {oillfijn} contains the

pseudoterm representations for sub-u-trees of a 3 (x,a1)£V

for ljign then p(a)~x iff 3 X1,-°°,anQ such that tx(X1-°-Xn)‘~

X and p(oi)~xi, ljign.

If M is deterministic, p is a function such that p:tA+Q character—

ized by the following:

(a) If xGAO, p(x)'tx(l).

(b) If the input is as in (b) for nondeterministic u-tree automata

 

then 0(a)-tx(o(al)-°-p(an)).

Definition 3.17 Given UTA M= <Q,t1,°",tn,F> the behavior of M is

{t|p(t)£F}. This is also called the language of M, L(M).
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We now proceed to establish that RUTGs have the same prOperties in

relation to generated u-trees that regular tree grammars (henceforth

abbreviated RTGs) do for trees. Furthermore RUTGs bear the same rela—

tionship to UTAs that RTGs do to tree automata (henceforth abbreviated

TAs). The development presented herein for unordered trees is similar

to Brainerd's development for ordered trees.

Definition 3.18 RUTG G- (B,o,P,I‘> is reduced if 1‘ consists of exactly
 

one single-node start tree.

Definition 3.19 RUTG G-T<B,o,P,E> over A is expansive if each rule in

P is of the form Xo+x(R;777R;) where xeA.n and Ro,Xl,---,Xd£B-A or of

the form Xo+x where xGAO.

Lima; 31:}. For each RUTG G-~<B,o,P,S> over 2 one can effectively con-

struct an equivalent reduced expansive grammar.

Proof WOLOG assume P-{¢1+¢1Ilfii§r} and S-{ajllfijjk}.4 Referring to

function c2' of Section 3.3 we see that for all u£{u-trees over 2}

c2'(u)#¢. Therefore for all ¢1.W1,0 we can pick t:,t; and ti respect-

1

ively such that t:6c2'(¢1), t$£c2'(w1) and tj-c21(aa ). we now construct

J

RTG c'- (s',o',1>',s'>9 B'-B,_o'-o, P‘dti—rtiligiir} and S'-{tgll§j_<_k}.

Now for all t€L(G') we know that t£c2'(u) for some u£L(G) and further-

more for all u€L(G)]t(L(G') such that t€c2'(u). (G' is a "microcosm"

of G; it functions similarly but at each application of a production it

produces one representation of the u-tree that G produces.) we know

by Theorem 2.3 that we can construct RTG G"-<B",o",P",S"/ 3G" is re-

duced and expansive and L(G")=L(G'), therefore we can make the same

 

4By writing symbol a3 we mean the single node u-tree with label aj.
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observations about G" as about 6', namely that given t£L(G")=}tcc2'(u)

for some ucL(G) and furthermore given u¢L(G)=}3 t€L(G") such that t£

c2'(u). (6" may, however, produce these terminal trees by a completely

different procedure than G or G'.) We now define RUTG Gf- <Bf,of.Pf,Sf>

such that B =8", 0
f

Xo+x(x1° - ~xn)€ P"}.

=0 , s -s and Pf={XO+xIX0+xéP }U{xo+x(x1---xn)|
f f

f

MG). (2.13.1).

So RUTG G is clearly reduced and expansive and furthermore L(Gf)=

LEE _3___2_ For each reduced expansive RUTG S- <3,0,P,Z> over A, one

can effectively construct a nondeterministic UTA M, such that L(M)=L(S).

‘Ppggf_ Let M? (O-(B-A)L){Z},tl,-°-,tk,{ZP> where the move functions

are tx(W)~xO iff X0+x(—X—F:}-(;) is a rule of P (in pseudoterm

form). We first prove that X :3 a in S iff p(o)~X in M, by induction

on the depth of a.

(a) Depth(a)-0#a-XGAO, thus x-m in 5 iff X=Dx in 5, since 5 is

expansive, iff X+x is a rule in P iff tivx, by definition of M,

iff p(o)§p(x)~X, by definition of p.

(b) Assume a- <U,V> has pseudoterm representation x(a1a2°°-an), xéAn,

where {ailljifn} is the set of all sub-u—trees of a)(x,x1)(V and xicai

for lfign. Our induction hypothesis is that if depth(a')<depth(a) then

X a?) a' in 8 iff p(a')~x in M. Note that we have depth(ai)<depth(a) for

1:19 by our definition of on. So, X go-x(m) in S iff

3X1,--°,Xn€B-A such that Xéxéfl-TZTXD ;x(m) in S, since S

is expansive, iff X+x(m;) is a rule of P and X1 $ (:1 in S for

ljign iff tx(X1---Xh)~x by the definition of M and p(u1)~X1, by the

induction hypothesis, iff p(a)~x, by the definition of p.
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Now for aEuTA, ocL(M) iff p(o)~z in M iff 2 so in 5 iff o£L(S).

Therefore L(M)-L(S). , Q.E.D.

Iggpmg'3pl For every nondeterministic u-tree automaton one can effect-

ively construct an equivalent deterministic u-tree automaton.

M Given nondeterministic UTA M- <Q,t1,--,tk,F>for Q-X1,-°-,Xj we

construct deterministic M'-<2Q,t1',---,tk',F'> . We have 2Q:

Xl',---XZJ' where each Xi', 13i§2j, denotes a separate subset of Q.

We define ti' by ti'(XITTT:X;T)-Lj{xr|ti(E;:TTX;)VXr for xlex ',-o-,

Xh(Xn'}. We let F'-{X1'IX1'f\F*¢}- Clearly M' is deterministic since

each ti' is a function.

To complete the proof (i.e. to show that L(M)=L(M')) we first show,

by induction on the depth of a, that pM(a)~g5 iff ng(a)=G with geG.

(a) Assume depth(a)-O=}o-x£AO.

gec, by our definition of tx', iff pM,(a)-G with 366.

Now pM(o)vg iff ting iff tx'-G with

(b) Assume depth(a)>0 and a- <U,T> with pseudoterm representation

x(alo2°-°an), fon, where {a liign} is the set of all sub-u-trees of
1|

a3(x,xi)€V and xien1 for lfiin. Our induction hypothesis is that if

depth(a')<depth(a) then pM(a)Vg iff pM.(a)-G with gGG. Note that we have

depth(ai)<depth(0) for lfiifin by our definition of a, Now OM(G)vg iff

3 x1,---,xn‘Qacx(Y1—777i;)~g and oM(a1)"x1’ 1_<_1_<_n, by definition of 0,

iff DM,(01)~X'3X1€X1' for 111531, our hypothesis, iff tx(m:)=G

with geG, by definition of t ', iff DM,(G)=G with geG.

we now observe that a£L(M) iff pM(a)~f£F iff pM.(a)-X' such that

fGX' and X'é 1", since x'n Fv‘q), iff «L(M'). Therefore L(M)-L(M').

Q.E.D.

 

5we denote p(a) in machine M by pM(a).
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Theorem 3.1 For every regular u-tree grammar, G, one can effectively
 

find a deterministic u-tree automaton, M, such that L(G)=L(M).

Proof This is a direct consequence of Lemmas 3.1, 3.2 and 3.3.

Theorem 3.2 Let M- (Q,t1,---,tk,F> be a u-tree automaton over <A,o> .
 

One can effectively construct a regular u-tree grammar 8-<BS,oS,PS,FS>

over <A,m> such that L(M)-L(S).

£593; Define tree automaton M'- <Q',t1',°-°,tk',F'> by: Q'=Q, F'BF and

we include one rule of form t1'(X1°°'Xn)~X in M' iff t1(XITTTR;)~X in M

(so we include one specific permutation from each permutation class).

It is clear that for each u-tree a£L(M) one specific permutation of a

will be accepted by M' and for each tree o' accepted by M' the u-tree

c;1(a') will be accepted by M. By Theorem 2.6 we know we can construct

regular tree grammar G such that L(G)-L(M'). By Theorem 2.3 we know

we can then construct a reduced, expansive regular tree grammar G' such

that L(G')-L(G)-L(M'). Assume G'-<B',o',P',I"> over <A,o> . G' will

produce exactly one representation of each u-tree accepted by M. We

can now define reduced, expansive RUTG S=<BS,OS,PS,I‘S> over (Am) such

that S will produce the u-trees in c;1(L(G')). We define BS-B', oS-o',

and PS-F' so PS contains a single<n1e node axiom also. Since all prod-

uctions in P' will be of the form either Xo+x or Xoex(Xi---Xn) for ch

and XO,X1,"',Xn(B'-A we let P={Xo-PxIXO->x P'} U{x0+x(§1_77i;)|xo+x(xlmxn)

EP'}. 80 we have L(S)-L(M). Q.E.D.

Theorem 3.3 The sets of u-trees generated by regular u-tree grammars

are exactly the sets accepted by u-tree automata.

Iggggf Follows immediately from Theorems 3.1 and 3.2.

Theorem 3.4 Given regular u-tree grammar G- (B,o,P,I'> , one can effect-

ively construct regular tree grammar G'-<B',o' ,P' ,1") such that
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L(G')=c2(L(G)), i.e. t£L(G') iff t is a representation of a u-tree

in L(G).

ngg£_ Define B'=B, o'=o. A given u-tree will have only a finite

number of representations, therefore since F is finite we can construct

F'-{representations of u-trees in F}. WOLOG let the productions in P

be p1,p2,---,pn where pi=¢i+wi for lfiin. For each production ¢i+wi

both ¢1 and $1 will have a finite set of representations; say ¢: and w:

respectively. Now let Pa LIE/(TErx Then the order of P, denoted lPl,

1W

will be IPI- Zl¢rl' lw’l which is finite. By our definition we know that

i
i-l

G' will generate all representations of u-trees in G. Given t€L(G') we

know that t is a representation of a u-tree in L(G) because no axioms

or productions were included that were not legitimate representations.

Q.E.D.

Example 3.4 Let G= (A’O’P’{Sa/\a }> be a regular u-tree granmar

S
wi‘thP-f OS -———> Sx/>a\c, a/\c A/o }

'-Then regular tree grammar G <A,o,P'{, {sda/\.a 'a /\ S})willgenerate

all representations of u-trees in L(G) with
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Corollary 3.1 Given regular u—tree grammar, G, one can effectively

construct a deterministic tree automaton, T, such that t€L(T) iff t

is a representation of a u—tree in L(G).

Proof Follows from Theorems 2.5 and 3.4.



CHAPTER 4

PATTERN RECOGNITION CONCEPTS

4.1 MOTIVATIONS
  

In Chapter 3 structures were developed whereby criterion

(1) of an acceptable extension (see Section 3.1) to the theory of

pattern recognition by tree automata is met. The purpose of this

chapter is to develop the rest of the method so that it will become

evident that criterion (2) is also met. Informally, our procedure

when given a pattern will be to first represent its primitives as

nodes of a d-tree (order will not matter), second find a string

representation using bracketed notation and third present this string

to a u-tree automaton for acceptance or rejection.

A secondary purpose of this chapter is to define some of the con-

cepts and terms necessary for syntactic pattern recognition in general.

There is, however, a major problem connected with such definitions. One

must be careful not to "overdefine"; we want to keep the terminology

broad enough so it can serve a wide variety of applications. With this

difficulty in mind, the route adopted in this paper will be to only non-

rigorously define some of the basic terms, these, essentially undefined

terms, will be used to define the others. The definitions will be pri-

marily non-mathematical. Section 4.2 is a discussion of the non-rigor-

ously defined terms.

39
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4.2 UNDEFINED TERMINOLOGY
 

The universe 25 discussion will indicate that physical area where
 

a pattern of interest may occur. Typical universes might include: the

'subset from zero to infinity of a one-dimensional number line, a two-

dimensional "frame" which can contain pictures, a finite two-dimensional

grid of zeros and ones, quadrant l of an X/Y coordinate system, three-

dimensional space etc.

The term pattern will be used to designate some specific connected

subset of the universe under discussion. The phrase pattern recognition

will refer to classifying patterns as to whether or not they are included

in a given pattern class (i.e. a given set of patterns).

Primitive types, themselves small patterns, will serve as the simple

building blocks of which patterns may be composed. These might be points,

directed line segments, three-dimensional cubes etc. we will say we can

represent a pattern by a set of primitive types, P, if we can construct

the pattern by repeated juxtaposition of members of P. The construction

used to represent a pattern proceeds serially from a given start point;
 

there may be restrictions as to what primitive types may precede and suc-

ceed others. A pgip£.p£_gppgy_is the portion of a primitive type that

must be placed adjacent to a serially preceding primitive type in a

representation. A ppippflpf_g§ip is that part that must be adjacent to a

succeeding primitive type, if there is any. Points of exit or entry do

not have to be single geometric points. Every primitive type except the

start point must have a point of entry or it can never be applied but a

point of exit is optional. Primitive types without a point of exit can

have no successors.

A primitive is a single application of a primitive type while
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representing a figure. A primitive will be denoted by (x,y), where x

indicates an application of primitive type x, and y serves as a unique

identifier indicating which particular application.

Primitive type r will be said to be a structural part of primitive
 

type 8 if r and s have the same points of entry and rgs.

Example 4.1

a- 9 b- ————> length(a)=-x

length(b)-x+y, y>0

 

.. .b- N

a. _>b._:r
In each of these cases "a" is a structural part of "b".

4.3 BUILDING U-TREES FROM PATTERNS
 

 

 

Definition 4.1 A primitive feature system is a triple P8==<§,P,D>

where:

(a) P is a finite set of primitive types.

(b) D is a finite set of informal descriptions of elements of P.

(c) SGP, S is designated the start point.

(d) No primitive type (except 8) is allowed to be a structural

part of any other primitive type.

We normally refer to a primitive feature system simply as a pggmif

tive system.

Example 4.2 Given a pattern in quadrant l of an X/Y coordinate system.
 

Let P30. <S,P,D> , P-{S=-,a- —),b-T}, D-{ (S is the closest point of
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the pattern to the origin),(length(a)=length(b)=w, but w may vary and

will assume an appropriate size for a given figure),(a is horizontal),

(b is vertical),(the point of entry for a and for b is the end away

from the arrow point, the point of exit is the arrow point)}. In

future examples where there should be no chance of misinterpretation

we will usually only give a description for S. The rest of the

descriptions will be clear from the geometric form of the primitive

 

   

 

   

types. Using the previously defined PSo let pattern F1 be given:

(1.2) (2.2)

F1 -

(1.1) (2.1)

Then the primitives will be:

(a.[(1.2), 92)])

A A

(b.[(1.l).(l.2)]) (b.[(2.1).(2.2)])

(S.(1.1))

(a.[(1.1). 2.1)])

Definition 4.2 Given a primitive system PSB <S,P,D:>, a corresponding
 

d—tree, T to pattern, F, is a d-tree constructed using a representation

of F by P8 with the following procedure:

(a) Root of T is S:identifier of S.

(b) Node a :b is a successor of node a1:b1 in T iff the point

2 2

of entry of primitive (a2,b2) coincides with the point of exit
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of primitive (a1,b1) in the representation.

Clearly, the corresponding d-trees when constructed in this manner

will satisfy criterion (2) of our pattern recognition system. No refer-

ence needs to be made to anything, we just construct the d-tree taking

all primitives as they occur in the representation. It is important to

note that a given primitive, (a,x), may have its point of entrance co-

incide with more than one point of exit; in this case node a:x of a

corresponding d-tree would occur on more than one root-to—frontier path.

and F as defined earlier, the corresponding d-Example 4.3 Using P80 1
 

tree will be:

S:(l,l)

a:[(l,l),(2,l)] . b=[(1.1).(1.2)]

b=[(2.1).(2.2)] a=[(1.2).(2.2)]

Where there is no possibility of misinterpretation we can leave off the

unique identifiers and get:
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 If we let F2 =
 

   

 

 
 

   

a

Ex
then the primitives (using P30)

will be: b b

a at
a

b b

S a 1'

and the corresponding d—tree will be:

S

a b

b ,a

a >b

b .,a 

It should be clear exactly what primitive is represented by each node

of this d-tree without the identifiers.
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Definition 4.3 A circular primitive system PS= <S,P,D is one in which
 

for some pattern in the universe of discussion there is a corresponding

d-tree containing a closed walk.

Example 4.4 Ps4: <S,{S-‘,A- -—>,B= T ,C= i ,D=<—-},{(S is the closest
 

point to the origin in quadrant 1)}> . If F has primitive representation:

 

   
s a /

then S,(S,a),a,(a,b),b,(b,d),d,(d,c),c,(c,S),S is a closed walk in the

corresponding d-tree so P34 is circular.

Definition 4.4 A noncircular primitive system is one which is not cir—
 

cular. (i.e. No patterns can exist in the appropriate universe that can

produce a corresponding d-tree containing a closed walk.)

Example 4.5 The universe is the subset [0,w) of one-dimensional space.
 

Psl- <8,{S-',a-—>},{(S is the point of the figure closest to 0) }> .

Then P81 is noncircular.

Example 4.6 Universe - 3-dimensional space (in the area where x,y,z:9).
 

   

 

(x,y,z) (staz) (X:Y:z)

P52- <S,P,D> . P-{ S - or or .

(x,y.z+W) (XJ'Wfl) (x-WJJ)

(X,YW,Z) (x,y+w,z+w)

  
 

(x9Ysz) (x:Y:z+w)



(x+w,y,z)

b =

(x,y.2)

(x+W.y.2)

c a:

(x,y.2T
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_. (m:}’:z+w)
 

  
 

(x.y.z+W)

 

 

e1

 
 

’xw.y+w.z)

X.y+W.2)

D={(S is the closest permissible line segment of the pattern to (0.0.0).

i.e. the sum of the distances from the endpoints is the least)»(a:ba°»s

all share the same appropriate w),(the points of exit for a,b,c are the

sides where the arrows point, points of entry are any other side)}. P

then, is noncircular.

32’

Example 4.7 Ps3- <S,P,D§ . S = a or b or c from Example 4.6.

 

P = { S, d =
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D={(S is the closest, square, closed plane to the origin),(use the same

appropriate w for S,d,e,f),(shaded sides of d,e,f are points of exit,

any other sides are points of entry)}. Then Ps3 is noncircular.

Definition 4;; A primitive system is complete if it can represent all

connected patterns in its domain. P81 from Example 4.5 is complete.

Theorem Eel There is no noncircular complete primitive system in two-

dimensional Euclidean space.

Ppgpf Assume we have a complete primitive system, Ps' Then, in part-

icular, Ps can represent pattern A, where A is placed with an appropri-

ate orientation so S, as shown, will be the start symbol. (S must be

a single point or Ps would not be able to represent a pattern which,

itself, was a single point.)
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Each symbol, a ljijl9, represents an intersection of the line segments
1’

in A. Line segments 8 - a19, a16 - 815’ a5 - a6 and a9 - a10 are of

length 2c, all others are of length c. All angles are 90°. Since PS

is complete we know that it can represent not only A, but each line

segment in A also. We will designate the list of primitive types that

can represent the line segment a - a by aiaj.

i J

to consider in the corresponding d-tree for A.

There are two cases

Case 1_ 3 primitive path 8+8. Then P8 is circular.

Case 2 ‘2 primitive path 8+5. This implies that there are at least
 

two distinct primitive paths S+ak for some l§k§l9. Since the figure is

symmetrical we can assume WOLOG that kilo. What we need now, is to

show that for any kilo there must be a list of primitives S+ak+S. This

will be a contradiction of assumed noncircularity. We will discuss the

case for k-l is some detail and then outline a similar argument for other

values of k.

For k-l there must be a primitive path leading directly from S to

a1 and another primitive path from S through a19, then through a etc.
18

leading to a If we applied a to a however, we would have a

17816 1*

and back to S 69 so for k-l we get a contradict-

1.

path directly from S to a1

ion. we now show that a contradiction arises similarly for all ak with

kilo and thus (by symmetry) for all ak in the pattern.

If k-2 we could apply 3:77.11; then I122; therefore S+a2+S (>9

" 6 " " " ‘EIZEI; twice " ‘EES " " a6 " "



 

49

If k=7 we could apply Sa1 then a6 therefore S+a7+S(S)

n n n n u — n n n n

8 a3a4 a7S a8

:1 n n n —— n — n n u u

9 814313 863 a9

n u n n _—— n __ n n n u

1° a14““13 1“93 a10

Therefore there cannot be a noncircular Ps' Q.E.D.

Definition 4.6 Given pattern, f, with corresponding d-tree, t; we say

that u-tree, u, is a correspondipg u-tree to f if u is the naturally
 

corresponding u-tree to t. In Example 4.3 a corresponding u-tree for

will be:pattern F2

 

b u a J b a

Practically speaking we may observe that the corresponding u-tree

is a theoretical construction only; it allows us to construct an accept-

ing u-tree automaton, M, which will accept corresponding u-trees (thus

accepting patterns) iff they are in L(M). we will never need to actually

construct a u-tree when attempting to recognize a pattern: we can find

the pseudoterm representation directly from the d-tree.

Definition 4.7 A set of patterns, T, is definable if there is a regular

u-tree grammar, G, and a primitive system, P8, such that given pattern

t with y the corresponding u-tree for t, then tET iff y(L(G).

Definition 4.7 does not mean that L(G) cannot contain u-trees which

do not correspond to a figure in definable set T, in fact L(G) will often
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contain such u—trees. These u—trees, however, cannot correspond to any

physically possible pattern. See Example 4.10 for a case where this occurs.

Note that every finite set of patterns {F1,F2,---,Fn} will be

definable since we could first define the u-tree productions, figure by

figure, as So+1:i, one level trees, then define the primitive system

to have the figures themselves, and S, as primitive types. (Fi cor-

responds to P1.) This misses the spirit of what we mean by primitive

type but it does not violate our definitions.

4.4 THE PATTERN RECOGNITION PROCEDURE
 

Theorem 4.2 Given definable set, T, there is a deterministic u-tree
 

automaton, M, such that for pattern t with y the corresponding u-tree

for t, then ttT iff y€L(M).

£222: Follows immediately from Theorem 3.1.

At this point we can describe our procedure for determining if a

given pattern is in a given definable pattern set using an apprOpriate

primitive system and u—tree grammar.

Pattern Recognition Procedure
 

Step(l) Given a pattern find the primitives which taken together

constitute it.

Step(2) Build a d-tree with labels taken from the set of primitives.

Step(3) Present the pseudoterm corresponding to the d-tree to a

previously constructed UTA for acceptance or rejection.

It seems appropriate to ask what parts of this procedure are

completely defined and thus algorithms. Given a definable set of

patterns, step (2) under most conditions (see Theorem 4.4 and related

text) will be an algorithm. With a given UTA, M, step (3) is an



51

algorithm defined by M. Step (1), however, in many cases is not com—

pletely defined. It is not the purpose of this thesis to describe meth—

ods of imposing primitive types, so we will just comment that probably

a mathematical template matching involving "closest fit" could be used,

but certainly a variety of methods might prove best for different

applications. Of course, once a computer program has been written to

find the primitives, the program itself will define a procedure.

Definition 4.8 Primitive type c has unique size means that any primi-
 

tive (c,x) in a representation of a pattern must use the identical c

with no variation in any of its measurements.

Lemma 4.1 Given u-trees T1-<U1,V1> , T28 <U2,V2> with root (T1)=

root(T2)-r then T not a sub—u—tree of T2 eBnode(a)16 Uan2 such that
1

{(a,x)l(a.X)£V1}¥{(a.X)l(a.X)£V2}-

Proof Given the conditions of the lemma assume to the contrary that for

all aGU1r\U2,{(a,x)I(a,x)fVi}-{(a,x)|(a,x)éVZ}. In a u-tree every node

can be reached on a path from the root. We first establish the claim

that (given the assumption) yeU iff yeU This is shown by induction
1 2'

on the length of path r,---,y.

(a) We know rGUanz, and by the assumption {(r,x)l(r,x)( V1}=

{(r,x)|(r,x)6V2} for all eri such that x can be reached from r by a path

of length 1 thus x6 also.
U3-1

(b) Assume claim true for all paths of length less than n. Now for

ny1 reached on a path of length n we will have path r,(r,x1),x1,°°-,xn_1,

(xn_1,xn),xn-y. Path r,(r,x1),x1,-'-,xn_2,(xn_2,xn_1),xn_l then is a

 

1We refer to a node by naming its label.
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path of length n-l in T , therefore, by our induction hypothesis,

1

xn-lGUB-i also. Since (xn_1,y) is in V1=) , by our assumption, that

(xn_1,y) is in V3_1$y603_i.

So the claim is established and we have U1=U2 therefore U1 2.

and (p1,p2)£V2 we must have (p1,p2)£Vi. Therefore

gu

Furthermore for pltU1

pztU1 and criterion (a) for definition of sub-u-tree (see definitions

3.9 and 3.10) is satisfied. Ul=U2=)for all aCUl, atUln Uzéfor a£U1

and erl (a,x)( Vl iff (a,x)(Vz, by our assumption,=) criterion (b) for

definition of sub—u—tree is satisfied=)T1 is a sub-u-tree of T2® , so

the assumption is false and the lemma is proved. Q.E.D.

Theorem 4.3 Given primitive system Ps-*<S,P,N> with noncircular P
 

and with the restriction that each peP has unique size, then the cor—

responding d-tree to a given pattern, f, will be unique (to the extent

that any two d—trees representing f will have identical naturally cor-

responding u—trees).

Proof Assume d—trees d1 and d2 representing f have corresponding u—trees

T1 and T2 respectively with TlfiTz. This implies that (WOLOG say) T1

is not a sub-u-tree of T2. Assume Tl- (U1,V1> and T2- (U2V2> . T1 and

T2 must have the same root, S, this implies f]node(a)€Ulf\U2 such that

{(a,x)I(a,x)(V1}#{(a,x)[(a,x)cvz}, by Lemma 4.1, but we can see that

since size(a) is unique it must have the same point of exit (in relation

to f) in both the representation for T1 and that for T2. Furthermore

because of noncircularity this point can never have been reached

previously during d-tree construction. Therefore every (a,x) in V1

(meaning that point of entry for x coincides with point of exit for a)

must also be in V3“:l so that {(a,x) I (a,x)(V1}={ (a,x) I (a,x)cvz} ®
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contradicting the lemma. So the assumption is false and TIBTZ. Q.E.D.

There are other possible restrictions one might want to impose,

rather than the unique size restriction of the theorem, in order that a
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contradicting the lemma. So the assumption is false and T1=T2. Q.E.D.

There are other possible restrictions one might want to impose,

rather than the unique size restriction of the theorem, in order that a

given noncircular primitive system would give unique d—trees. In gener—

al if a noncircular primitive system will suffice to represent patterns

of interest for a given application, then an appropriate restriction can

be found to insure uniqueness. This, however, is not true for circular

primitive systems and unfortunately there is a large class of sets of

patterns that cannot be represented by noncircular systems. The ob-

vious method, that of applying primitive types and constructing d—trees

on a breadth first basis, will not always give unique d-trees. This is

illustrated by the following example.

Example 4.8 In quadrant l of an X/Y coordinate system let Ps6. <S,P,D> .

P={s=.,x- m,zl- -—9,zz=<—'}

D={(S is the point closest to the origin),(cord length of x - c),

 

(length(zl)-length(22)-l/2 c)}.

Imposing primitives gives either

x

(.Q Q
b

52121 ’()Szlzz ,(c) Szzzl’(d) z

Constructing the d-trees on a breadth first basis will give either
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21 from (a) or x 21. from (b) so there is no

1 22

unique d-tree. We can however, in this case, define a regular u-tree

grammar G- <B,o,P,F> which will generate exactly those u-trees (with

d-trees generated on a breadth—first basis) corresponding to the pat-

terns in the set:

The grammar will have B-{S,x,zl,22},T-{S-} and

S S

P 8 { i .__€E>,x ' z1 , i""€;;>xI///f\\\\bzl ,

z z
1 2

0
9
4

x N

g
.
» (
’
5
4

K N

I
'
-
‘

U

.21 22

21 21

9;>--j35>x 21 z‘——i35>x z1 }

1 1

21 22

This grammar will generate many u-trees which are not corresponding

u—trees for patterns in F, for example:
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C
)

but every u-tree of this type will represent a physically impossible

figure so there will be no harm done by our tree acceptor accepting

d-trees we can't get anyway. If we try to draw a pattern corresponding

x

to tree t we get: t::::::::€::;:::>~

S

Reversing ourselves and generating a corresponding d-tree (breadth-

first) for this pattern, however, we get

3

21 x

21 4

21 4 x

z A? 
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and since this is 225 the same u—tree as t we can see that t was not

the corresponding u-tree for any real pattern. t must violate our

definition of how the corresponding d-tree should be formed with every

possible primitive branch.

Under certain conditions we can get unique d-trees from circular

primitive systems if we are willing to do some exterior checking while

building them. In the following theorem we assume one condition

which is considered to be understood.

Unique Application Condition
 

we assume that there is a procedure for applying a primitive type

so that if a given location of the pattern serves as the point of entry

for the resulting primitive then the same primitive type will always

be applied in the same way at the same location, so that exactly the

same part of the pattern will be represented by it and the same location

(in relation to the pattern) will be the point of exit. This seems a

reasonable assumption since presumably we would implement this sort of

scheme on a digital computer where the same machine instructions

would always be executed in the same manner.

Theorem 4.4 Given a primitive system (possibly circular), under the
 

Unique Application Condition, one can always construct a unique d-tree

for a given pattern if a total ordering (<,=,>) can be defined on the

unique primitive identifiers with ash iff a-b.

2522; Given primitive system Ps-T<S,P,N> we will prove the theorem

by developing an algorithm which builds the d-tree as it imposes

primitive types to give primitives. At each step there will be

precisely one primitive which may be expanded (i.e. its successors
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found) thus the algorithm works by first taking an enumeration of the

elements of P, say p1,p2,-°-,pn. (P must be finite, by definition.) In

general p1 will be expanded before pJ if i<j. The problem is for i=j.

Since each application of a primitive type has a unique identifier and

since we have a total ordering on the identifiers we can make the

decision to expand primitive (p1,x1) before (p1,x2) iff x1<x2 for

x1,x2({unique identifiers}. The identifiers are to be assigned in such

a manner that x <x iff x was applied not later than x Thus the
l 2 l 2'

algorithm is partially breadth first since it tends to expand older

nodes first.

Fbr convenience the algorithm uses four sets, G, H, F and E (although

only one is really necessary) as it builds representative d-tree, D.

G will always contain the set of unexpanded primitives (or equivalently

we may think of them as nodes). H, F and E will be used only for

temporary storage.

Algprithm 4.1 Algorithm to generate unique d-tree, D- <U,V> , (given

above conditions) on a partially breadth first basis.

(1) Apply primitive type 8-p1, giving primitive (p1,x1). Root of

D+pi:x1. G+{p1:x1}. U+{p1:x1}.

(2) H+{pi:x x:€G with i-min{klpk:xr£G}}. (H must be nonempty.)

(3) F+{p1:xk|p1:XjCH=§xk§xj}. (F must contain exactly one element,

say f, because of the total ordering.) G+G—F.

(4) E+{pk:xj|pk:x is a result of expanding at f and each x >x1 for

J J

all previously used x1}. U+ULJE. V4VLJ{(f,w)|w E}. G+G£JE.

If G-¢ then exit. Else go to step (2).

The algorithm clearly must generate a unique d-tree. Q.E.D.
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Definition 4.9 we say p is a projection from u-tree ulcuTA1 to u-tree
 

uzfuTA2 if digraph u2 is formed by relabeling the nodes of digraph ul

with some relabeling function p':A1+A2. For sets of u-trees, U1 and

is a projection of U if U contains exactly the set ofU2, we say U 1 2

2

projections of u-trees in U1.

Theorem 4.5 Pattern set F definable implies that EJPB,H and G with H

a projection of the set of derivation trees generated by context-free

grammar G, (we denote the set of projected derivation trees as Hd(G)),

and P8 is a primitive system such that given pattern f, with y the

corresponding u—tree for f, then fGT iff yéfld(G).

25933: F definable$3 regular u-tree gramar G' such that L(G')

satisfies the conditions for Hd(G) in the theorem statement, by the

definition of definable, :) Edeterministic tree automaton M with L(M)=

L(G) so L(M) satisfies the requirements of Hd(G) in the theorem state—

ment, by Corollary 3.1,=§ 3context-free grammar G with Hd(G)=L(M) so

“d(G) satisfies the conditions of the theorem, by Theorem 2.1. Q.E.D.

4.5 SOME EXAMPLES

Many infinite sets of patterns where each pattern is of finite

size will be definable. In these cases we usually find that the pat-

terns can each be broken down into connected subpatterns where the sub-

patterns are each definable and where any number of such connections

may be made, giving larger and larger, but still finite patterns in the

set. Recall Example 4.8. Such cases illustrate the advantages of the

recursive manner in which regular u-tree grammars can generate u-trees.
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Example 4.92 It is desired to be able to recognize the set of houses,

 

  
 

T ' { a : etc. }

           

 

We can see that each house may be represented using only the primitive

types: a-(—- , bf- T , c- /, d- ‘\ , S(the start point)--, with the

convention that S will represent the point in the lower right hand

corner of a pattern. A specific house in the set may be represented as;

a,17 a,16

d,l3 d,15

a,1l a,12 A

 

 

  

   

c,8

a,9

b,7 b,6 b,5 13.14

E k 3,1
8,4 8.3 8.2

   
  

The numbers associated with each primitive serve to uniquely identify

each specific application of a primitive type. we now construct the

representative d-tree for the pattern:

 

 
 

This problem was 8180 used as an example in Fu and Bhargava(20).

A similar but more limited problem was first given by Shaw(38)

and also appeared in Fu and Swain(18).
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The d-tree is made by using each primitive label as the label for a node

of the d-tree. We place arc (a:xi,b:x ) in the d-tree if primitive b:x

.1

can be directly reached from primitive a:xj, always traveling with the

flow of the arrows. Now that the d-tree is constructed we just present

.1

the corresponding term S(a(a(a(b(c))b(a(c)d))b(a(a(c)d)d(a)))b(a(a(a(c)-

d)d(a))d(a(a)))) to our previously constructed UTA for acceptance. To

see that a UTA can be constructed that will accept terms only for d-trees

corresponding to elements of the pattern set we observe that the follow—

ing grammar will generate the corresponding u-trees. we can then use

the procedure as indicated by Theorem 3.1 to construct the UTA.

Let G- <{a,b, c, d, S ’81’82’83 },o,P,{S }> over (fa,b ,,c,d S},o'>>with

«AA
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Another example using very different primitive types will be

instructive.

Example 4.10 Let the pattern set, T, be all isocoles right triangles

with vertical and horizontal sides, constructed of grid blocks.

 

  

 

 

        
 

T - { I ,’ ’ [ etc. }

It

The primitive types are: S= , T= . S is the closest

block to the lower left hand corner of a pattern. Points of exit for

 

  

S and for T are the sides where arrows point, points of entrance are

the other sides. Define the u-tree grammar to be G-‘<{S,T},0,P,F>

E S S T

where P { o -_€EE::d///f\\\\I , z E: d////\\\\bT }

 

 

 

10

The d-tree representing 8 9

5 6 7

 

      

will be
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G can generate many u-trees that do not represent patterns in T, but

these will not be the corresponding u-trees for physically possible

patterns anyway, so no harm is done. Consider the derivation:

which produces a u-tree that does not correspond to an element of T.

This u-tree, however, does not correspond to any possible pattern. Any

attempt to construct such a pattern, while realizing that all possible

connections must be shown in the u-tree illustrates this fact.

As mentioned earlier, one of the best features of this automatic

method for pattern recognition is in the way it can recursively accept

pseudoterms corresponding to recursively defined pattern sets.3 As a

last example we outline a possible use involving nonrecursive patterns.

This example also illustrates the capability of the method for pattern

classification as well as recognition. This method is probably not the

most practical for printed characters; a vast amount of research has

been done on this problem.

Example 4.11 we want to recognize printed English capital letters.

In order to keep the example small we will only work with three

letters, C, G and O, and we will assume that these are written in an

idea form for analysis. we will use primitive types: s--, a! R.\\ ,

b-/, c-\ , d= /, e-=—-), f-T, g-é—,h-l with start

point 8 taken as the closest point to the origin in quadrant 1 of an

 

31n fact this recursive capability is one of the main advantages

of any syntactic system.



X/Y coordinate system. Since we

system we will use the procedure

unique d-trees. The enumeration

above, so "a" is expanded before

etc. Given ideal character C we

primitive system as:

f which has d-tree

m
m

Representing G:

 

Representing 0:
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have a clearly circular primitive

outlined in Theorem 4.4 to ensure

of primitive types will be as given

"b" which is expanded before "c"

would then represent it with this

 

 e {

 c;
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We define our u-tree grammar over'(T-{s,a,b,c,d,e,f,g,h},o> as

G- <B,o',P,{C,G,O}> with B-{C,B,O}UZ and

8

31 C a

G

P={E——>f ’ °‘>£
’ e

b. b b

4

at)

.J cl

 
   

s

a c

°—>O

f e }

b b

e f

In order to define an accepting u-tree automaton we first need to find an

equivalent expansive u-tree grammar over <%,o> . To get this we work

through each production in P, introducing new nonterminals where necessary,

to make expansive productions, giving G- <Bl,o',P1,{C',G',O'}> with

Bl-{a1,b b b }LJB and
1! 2! 39b4’c19c29c3’c4fieloez’e3tel.985’f19fafig3

Pl"g‘>.l7\c;““‘>:l ' 59:11 ’

:1__>b1,:1_>c:1, c.1—> §,c.2—>e:1,

E’1



0
m

N

m

O
—
—
—
O

0
0
"

N

0
0
‘

U

°
0

H

>

u

U

34—21 - 34—21, ‘34->"1 H a}

The deterministic u-tree automaton we construct will end in state

C if the input pattern is C, state C if G and state 0 if 0, so it will

classify the input. It will not end in any one of these final states

for any other input. Using the construction process outlined following

Theorem 2.5 (modified for u-trees) we define M= (Bl-z’ts’ta’tb’tc’td’

te,tf,tg,th,{C,G,O}>». The t functions will be defined by:

t8 (ac C
1°)2'

t$1(ac3)=G

ts(a1cM4)

ta(f1)-a1

tb(e1)-b1

tb‘AH’z

tb(§;3;3=b3

tb(f4)=b4

tC(Akcl
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te(e2)‘cz

tC(83)‘°3

tc(e4)=°4

te(°1)"e1

te(b2)-e2

te(b3)-e3

te(b3)’e4

te(x)=eS

t£(b1)'f1

tf(A)-=f4

tg(A)-g3

To see how M functions we will use Definition 3.16 to trace through

an acceptance of pseudoterm s(a(f(b(e(c))))c(e(b(ge)))) which represents

the corresponding d-tree to an ideal input pattern, a.

0(8(a(f(b(e(c))))c(e(b(8e)))))'

t3(p(a(f(b(e(c)))))p(c(e(b(ge)))))-

t8(ta(p(f(b<e(c)))))tc(o(e(b(ge)))))-

ts<tz(tf<p(b<e(c)))>>cc(te(p<b(ge>))))=

t8(ta(tf(tb(p(e(c)))))tc(te(tb(p(s)p(e)))))=

ts(ta(tf(tb(te(p(c)))))tc(te(tb(t8(x)te(x)))))-

t8(ta(tf(tb(te(tc(x)))))tc(te(tb(g3e5))))=

t8(ta(tf(tb(te(c1))))tc(te(b3)))-

ts(ta(tf(tb(e1)))tc(e3))-

t8(ta(tf(b1))c3)-

ts<tn(f1)°3)'

t8(a1c3)'

G
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So M does end in final state C and the input is recognized as G.



CHAPTER 5

PROPERTIES OF U-TREE GRAMMARS AND LANGUAGES

In this chapter it is shown that a simplification of the automatic

machines used to accept u-trees is possible. It is also shown that the

string languages consisting of the frontiers of all representations of

the u—trees in a u-tree language form an interesting class of languages.

5.1 SIMPLIFICATION 9§_ACCEPTING MACHINES
  

Although u-tree automata have appealing theoretical prOperties

when used as indicated in Chapters 3 and 4, they have several obvious

drawbacks as practical machines. Difficulties occur whether the machine

is to be actually constructed of hardware or simply simulated on a di-

gital computer. The machines are complex. It would be at best diffi-

cult to build hardware or software with state/move instructions which

could map equivalence classes of strings of states into individual states.

The direct method of simulating this procedure is to scan a given string

of states comparing each state with the various equivalence classes to

determine which class the string belongs to. (One might, of course,

find ways of encoding states which would lead to more efficient methods.)

There is another implementation consideration of these machines

that is not immediately evident from their definition. Some mechanism

must be provided to monitor the levels of recursion as a machine accepts

68
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strings. At each step a record must be maintained containing all pre-

ceding information that could relate to future state conversions.

Certainly a pushdown stack or simulation of a pushdown stack would be

the appropriate device for this. When we consider the complexity of

the u-tree automata definition as well as the above implementation con~

siderations it is clear that they are very unwieldy machines to work

with.

Since the languages accepted by u-tree automata are really langu—

ages of strings (the pseudoterms that represent u-trees) it seems worth-

while to investigate other types of machines to accept the same langu-

ages, machines whose definition may not arise so naturally from the

definition of regular u-tree grammars, but which will be easier to

implement.

We begin the search for accepting machines with an examination of

nondeterministic pushdown automata (abbreviated PDA) and finish by

considering deterministic PDA.

Theorem 5.1 For any regular tree grammar, G, one can construct a non-

deterministic pushdown automaton that will accept exactly those pseudo-

terms representing elements of L(G).1

2522:. Given C over <A,€> one can construct reduced, expansive regular

tree grammar G'- <3,o',P,{Z'}> over <A,o> with L(G')-L(G), by Theorem

2.3. One can then construct phrase structure grammar G"- <wN-B-A,

VT=ALJ{),(},P',{Z£> such that P' will have Xo+x(X1--°Xn) for each

 

1An equivalent result was proved in Brainerd(7).
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«9 9 in P. L(G") will then be exactly

X1 X2 Xn

the set of pseudoterms representing elements of L(G')=L(G). Each of

the productions in P' will have a single nonterminal in B-A as its LHS

(since G' is expansive) thus G" is a context-free grammar, therefore

one can construct a nondeterministic PDA which will accept exactly L(G")

which is exactly those pseudoterms representing elements of L(G).

Q.E.D.

Corollary 5.1 Given any regular u-tree grammar, M, one can construct

a nondeterministic PDA that will accept exactly those pseudoterms re-

presenting elements of L(M).

Eggg§_ Given M, consider regular tree grammar G that simulates M, from

Theorem 3.4. Then apply Theorem 5.1 to G. Q.E.D.

Corollary 5.2 Given any regular u-tree automaton, M, one can construct
 

a nondeterministic PDA that will accept exactly L(M).

figgggf Follows from Theorem 3.2 and Corollary 5.1.

So we can always construct a nondeterministic PDA to take the place

of a u-tree automaton. Nondeterministic PDAs, however, are themselves

difficult to implement; there might be cases where it would be easier

to make a deterministic u-tree automaton than a nondeterministic PDA.

We would like to be able to use a deterministic PDA. This would involve

an easy implementation or simulation.

Theorem 5.2 Given a context-free phrase structure grammar, G, there is
 

a deterministic PDA which will accept a string, t, iff t is a pseudoterm

representation of a parse tree generated by G.
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Proof Let Ca V v P,yd> , with P={(pl): A. +wl: a
N T jl

(92): Aji+w2

(pn): Aj +wn}

n

2
with IVNI-m, Z VNUVT’ A315 VN for l:i_<_n.

Let G'- VN"VT"P"GQ> where VN'={oiI1:i:m, ai£2} so the nonterm—

inals VN' will be a set of new symbols.

Let VT'=£U{),(}.3 Each production pi' in P' will be obtained

from the corresponding production pi in P by the following procedure:

(1) Replace each occurrence of any nonterminal y (pi by the

1

corresponding new nonterminal a giving new production x

3' 1°

i:aj+w , let p1 be oj+yj(w ).

Now grammar G' will generate exactly the set of pseudoterm repre-

(2) For each production x

sentations of parse trees generated by G. P' will have no equal RHSs

since every RHS is composed of both the LHS and the RHS (transformed by

step 1) of a production in P and the same production will not occur

twice in P. Furthermore when parsing a string in G' it is always clear

exactly when a substitution should be made; it will be immediately after

reaching symbol ")" as input is scanned from left to right. The sequence

to be substituted for will be exactly yk(w') for yk§Vh, w'((VTLJVN')*.

So G' is LR(O) hence a deterministic PDA can be constructed to accept

exactly L(G')4 and L(G') is exactly the pseudoterms representing parse

trees generated by G. Q.E.D.

  

2IVNI indicates the number of elements in VN.

3We assume ),(££.

4See Hopcroft and Ullman(22).
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Example 5.1 Given context—free grammar G-1<Vfi={S,B},VT={0,l,x},P,€> with

P - {3+oso

S+lBl

B+x}

'g '. '3 II H H H V I

Let G <PN {aS,uB},VT {S,B,0,1,x, ) , ( },P ,as> . To generate P

we will have after step (1):

aS+OaSO

a +lo31

S

aB+x

After step (2) we get:

' ‘P {oS+S(OaSO)

oS+S(laBl)

uB+B(x)}

and G' will generate the pseudoterms representing derivation trees

produced by G.

Theorem 5.3 Given regular tree grammar, G, in expansive form with no
 

equal right hand sides in its tree productions, there is a deterministic

PDA which will accept exactly the set of pseudoterms representing

elements of L(G).

mg Given G- <B,o',P,{Z°}> over <A,o> we can construct context-

free phrase structure grammar G'- <B-A,A'U{).(},P',{Z}> such that

for each X2 >

1 2 n

X0+x(X1'--Xn). We can then make the same observations about parsing

  
in P, P' will contain

9' as those made for the G' in Theorem 5.2. Q.E.D.
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Corollary 5.3 Given regular u-tree grammar, G, in expansive form with
 

no equal right hand sides in its u-tree productions, there is a deter-

ministic PDA which will accept exactly the set of pseudoterms represent-

ing elements of G.

£322: Given G consider regular tree grammar G' that simulates C (see

Theorem 3.4). G' will still be reduced, expansive and contain no equal

RHSs. Then apply Theorem 5.3 to G'. Q.E.D.

We now state the strongest result of this section.

Theorem 5.4 Given any regular tree grammar, G, one can construct a

deterministic PDA that will accept exactly those pseudoterms represent-

ing elements of L(G).

2523: We will outline the construction for the deterministic PDA, M',

so that it will be clear that M' will accept set L, the correct set of

pseudoterms.5 we assume G is defined over ranked alphabet <hwq> . Let

M8 <3,t1,t2,°-°,tm,s> be a deterministic tree automaton which accepts

L by final state. The existence of machine M is established by Theorem

2.5. We define M'- <K,£-AU{),(},I‘-2UB,6,ko,#,F> with Fck and F con-

taining a matching element ks for each 863 so F-{kSIsGS}. M' will end

in state k8 and accept an input iff M would end in state a and accept

the same input (there is a single exception where M"will end in a

failure state, k if M would have failed anyway). It is, of course,

fail’

understood that if M' has no applicible move function defined for a

(state,input,stack) triple then it halts and the present state is the

final state. Note that the pushdown stack will show symbol # for empty

 

5Here we use the Hapcroft and Ullman(22) (continued on next page - )
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5(continued) formalization for deterministic pushdown automata,

namely a deterministic PDA M is a system <K,£,F,6,qo,#,F> where

(1)

(2)

(3)

(4)

(5)

(6)

(7)

K is a finite set of states.

X is the finite input alphabet.

F is the finite pushdown alphabet.

qocK is the initial state.

#GF is the start symbol which initially appears on the

pushdown store.

FQK is the set of final states.

6 is a mapping from KX(ZL){X})XF (X is null input) to finite

subsets of KXF* such that

(a) 6(q,a,z) contains at most one element.

(b) 6(q,l,z) contains at most one element.

(c) If 6(q,l,z) is not empty, then 6(q,a,z) is empty for

all an.

If 6(q,a,z)=(p,y) we adopt the convention that the rightmost

symbol of Y will be placed highest on the store and the leftmost

symbol lowest on the store.

We say M accepts by final state if an input is accepted iff M

halts in a final state.
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In order to define 6 we first divide the various t function/input

pairs defined by M into distinct sets.

T0={tJml:j (mm

Tl={tj (w)|tj(w)£M, |w|=l}

Tr={tj(w)|tj(w)£M, |w|=r, r is the maximum length of any w such

that tj (w)6 M}

Note that each of T0,T1,---,Tr will be finite.

(In the following move function definitions any input or stack

string containing ")" or "(" will be indicated with quotation marks

around it. Input on stack strings not containing these symbols will

not be enclosed in quotation marks.)

§££P.l. M' will begin reading an input (left to right) from its input

tape and will immediately push the input onto the stack, so we define

6(k0,x,#)=(ko,#x) for all xGA.

Whenever it reads an "(" it pushes it down and enters state k so we

(

define

6(k0,"(",x)=(k(,"x(") for all xeA.

We then define

6(k(,y,"(")=(kl,"(y") for each yeA.6

Note that neither "(" or ")" is a valid input symbol to follow "(" for

an element of L. We also define

6(k1,y,x)=(ki+l,xy) for each yéA, for each xeBLJA, for liiir-l,

 

6M' as defined here will not adequately handle the special case

where there are acceptable single-node trees. It is easy to

change Step 1 slightly if these also are to be accepted.



76

5(k1,"(",x)=(k ,"x(") for each xEBL/A, for l:i:r-l,¢

(

6(ki,")",x)=(k) i,x) for each xeB\JA, for lfiijr.

9

The total effect of 6 as defined on states k),k0,k1,°--,kr,k),l,

---,k will be to read the initial input, left to right, untilk .
).2

the first ")" is read. The input is pushed directly onto the stack and

).r

M' will end in state k) j for "(w)" being the last j+2 input symbols

9

with lwl=j and ),(¢w.

we will use the pairs in T to determine the next

).3 0

states as M' pops the stack down to the last "(". M' will now simulate

Step 2_ In state k

M as M would apply tx(l) for x on the frontier of a tree. M' keeps a

record of what is replaced by what state it ends in. We define

“km ).j.X1’

with xl=tx(x) if [tx(A)]eTO

,l,x)=(k l) for all j such that Tj#¢, for each xfBL/A

Xl=x otherwise.

6( A,x)=(k ,A) for all j such that jig and Tj¥¢.k .
).j.X1 ),j,x1,x2

for each chLJA with X2=tx(l) if [tx(l)](T0

X2=x otherwise.

5(k ,X,x)=(k ,A) for all j such that

)’j’xl’...’xj-l )9jaxla.°°9xj

Tj#¢, for all X163 with ljijj-l, for each chLIA with

Xj=tx(l) if [tx()\)](TO

Xj=x otherwise.

The 6 functions taken where [tx(A)]£T0 will simulate M as it

makes no substitution in a string of states for a state which is

itself a substitution.

Note that we are only defining a finite number of 6 functions

and states k since BLJA is finite and we are only considering
),j’ooo



state encodements for input strings of length less than or equal to j for

ljjfir.

After M' applies these 6 functions defined above, it will be in

state k , and the stack (bottom to top) must contain (for a

)SJSXI’...’Xj

valid input string): "#wl(w2°°-wn(".

Step 2_ We define

a(
’A’n(n)=(k( X ,A) for all je{i|i;l, Ti#¢},k .

)9j9X19'°°:X 939X19°' 3 j

J

for all strings Xloo-Xj from B of length j,

in order to pop the top "(". We define

6( ,A,x)=(kY,Y,A) for [tx(XJXj_l---X1)](T with

k(9j9x1)'°°:x j

tx(Xij_l---X1)1Y in M, for all j€{i|i:l, Ti#¢}.

These are the functions (and they will be functions since M was de—

terministic) that actually determine what substitutions to make to

simulate the functions in M, except those in To (which are already

made). So M' will end in state kY,Y whenever a substitution from M,

resulting in Y, could be made.

§£gpmi It is now necessary to determine if the stack is empty. We

define

6(kY’Y,A,#)=(kY,#) for each kY,Y defined in step 3 and

6(kY’Y,A,x)=(kY,,xY) for each xéf, for each kY,Y defined in step 3.

§p§p_§_ M' ends in state kY or kY, whenever a substitution (except

those indicated by To) has been made, followed by a move function

from step 4. If there is no more input on the input tape and state

kY is reached (indicating the stack was empty) then kY is the final

state reached and if kYéF the input is accepted. M' must check for

more input in state kY: if there is any, M' can move directly to a

fail state. We define
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6(kY,x,#)=(kfail,#) for all er.

If state kY, is reached M' has made a substitution and must continue.

If there is more input it is necessary to determine exactly how many

symbols have been placed on the stack since the last "(", in order to

kknow in what state k --,kr M' should now be in. We define the

1’ 2”

next group of states and move functions to accomplish this. M' also

must know what the next input is.

At this point the top of the stack must contain an element of B,

in fact the element Y when in state ky,. Define

(a) 6(kY,,x,Y)-(kx’Y,A) for each xéA, for each kY as defined

in Step 4

(b) 6(kY,,"(",Y)=(k(,"Y(") for each kY' as defined in Step 4.

(Note that k( and its associated move functions were defined

in Step 1.)

(c) 6(kY,,")",Y)=(kP’Y,A) for each kY, as defined in Step 4.

Step Q_ We first define 6 for case(c) from Step 5. Define

6(k1,,xl,A,x2)'-(kp’X x ,A) for each leB, for each x2¢B\JA,

l 2

6(kP’x1’x2,A,x3)=(kp’x1.x2,x3,x) for each X163, for x2,x3€B£JA,

6 k = A( P’x1’°°°’xj_1’x’xj) (kP,X1,°°°,xj’ ) for each Xl(B, for all

x1£B\JA with Ziijj for ljjjr,

n n g n ,,, n
6(kP,X1,'°',x ,l, ( ) (k),j’ (x x2X1 ) for each XIGB, for all

J

xiéBUA with Ziifj for all j such that T #6.

1

These 6 functions will leave M' in state k) j with everything

’

necessary replaced on the stack.

Step Z_ For case(a) in Step 5 we define
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6(k ,A,x )=(k ,A) for each x ,x ,x (BL/A,

x1,x2 3 . xl,x2,x3 l 2 3

6(kx]-’.H’X."1,A,xj =(kxl.'”.x ,A) for all xicBUA with 1:1:j

J

for ljjjr,

6 k ,A," " = k. " x °°-x " for all ' 3 ch that T.# ,(x1»""xj ()(J,(j 1) 311 Jo

and for all xithJA with ljijj.

Move functions for state kj were defined in Step 1 so in all

three cases generated by Step 5 M' wil enter states whose move functions

are'previously defined. We have defined deterministic PDA M' so that

it will clearly simulate deterministic tree automaton M and thus accept

exactly those pseudoterms representing elements of L(G). Q.E.D.

Corollaries 5.4 and 5.5 follow Theorem 5.4 in exactly the same

manner that Corollaries 5.1 and 5.2 follow Theorem 5.1.

Corollapy 5.4 Given any regular u-tree grammar, G, one can construct
 

a deterministic PDA that will accept exactly those pseudoterms re-

presenting elements of L(G).

Corollary 5.5 Given any regular u-tree automaton, M, one can con-
 

struct a deterministic PDA that will accept exactly L(M).

An example will illustrate the development of a deterministic

PDA to accept L(G) for a regular tree grammar.

Example 5.2 G- <{S,T,x,y},o',P,{S-}> over <A={x,y},o> .

P={°S—>s/\T’ §_>’g’ £—>y°}

G is a reduced, expansive, regular tree grammar. An accepting tree

automaton constructed as in the proof of Theorem 5.4 will be:

M8 <B-{S,T},tx,ty,{8}> with: tx(ST)=S, tx(A)=S, and ty(A)=T.
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.Dur accepting deterministic PDA will be:

M'=~ <K,)I={x,y,")","("}.I‘=)‘. us,o,k0,#,{ks}> -

The T1 sets used to determine some of the functions in M' will

be: TO={tx(A).ty(A)}

T2={tx(ST)}

The value of r will be 2.

We now define K and 6.

Generated by Step 1:

1. 6(k0,x,#)=(k0,#x) *

2. 6(k0,y,#)=(ko,#y)

3. 6(k0,"(",x)=(k(,"x(")
*

4. 6(k09"(",Y)=(k(:"},(n)

5. 6(k(,x,"(")-(kl,"x(")
it

6. 6<k(.y."<">-(k1."y<")

7. 6(k1,x,x)=(k2,xx)

8. 6(k1,x,y)=(k2,yx)

9. 6(kl,x,S)=(k2,Sx)

10. 6(kl,x,T)=(k2,Tx)

11. 6(k1,y,x)=(k2,xy) *

12. 6(k1.y.y)=(k2.yy)

13. 6(k1,y,S)=(k2,Sy)

14. 6(k1,y,T)=(k2,Ty)

15. 6(k1,"(",x)'(k(,"X(") *

16. 6(k1."(".y)=(k(."y(")

17. 6(k1,"(",S)-(k(,"S(")

18. 6(k1."<".r)=(k(."r<")



19.

20.

21.

22.

23.

24.

25.

26.

5(k1.")".X)=(k)’1.X)

6<1<1.")".y)=(k),1.y>

6(k1,")",S)-(k)’1,S)

6(k1,")",T)=(k)’1,T)

6(k2,")",x)=(k)’2,x)

6(k2.")".y>=(k),2.y>

6(k2.")",S)-(k)’2.s>

6(k2,")",T)=(k)’2,T)

Generated by Step 2:

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

6(k)’1’A’x)=(k)’l’S, A)

d(k)’1949Y)=(k)’1’T)A)

6( ,A,S)‘(k
k),1 ),1,s’

5(k)’1,A,T)=(k)’1,T,

6(k)’2,x,x)=(k),2,s,

6(k),2.A.y)=(k)’2’T.

5(k)’2,A.S)'(k)’2’S.

6(k),2,A,T)-(k),2’T,

6(k)’2’s,x,x)=(k),2’

6(k)’2’s.x,y)=(k)’2,

6(k)’2’S,A,S)-(k),2’

5( ,A,T)=(k

k),2,s ).2.

6(k)’2’T,A,x)=(k)’2,

6(k)’2,T,A,y)-(k)’2’

6(k),2,T,A,S)=(k),2’

‘5“‘>.2,T’*’T)"“).2.

A)

A)

1)

A)

A)

1)

s,s’*)

S’T,A)

S’S,A)

S,T’A)

T,S’A)

T’T.A)

T’S,A)

T,T’A)

81



82

Generated by Step 3:

43' dk),2,s,s’*’"(n)=(k(.2.s,s”*)

44. 1) *
KR), 2, T’W2’ T, S:

45. A)
“k),2,s, T’M’"(") (k(, 2, s, T’

46' “32,131"’"(N)=(k(,2,T,T’A)

47x dk(’2’T’S,A,x)=(kS,S,A) *

Generated by Step 4:

48. gk8 S’X,#)= (kS ,#) *

49. (KkS’S,A,S)=(kS.,SS)

50. «i S’S,X,T)=(ks,,TS)

51. 60‘s s’A,x)= (k8,,xS)

52. 5°‘s,s’ A.y)=(kS.,yS)

53. 6(kS’S,A,")")=(kS,,")S")

54. 6(k8 S’ A,"(")= (k8,,"(S") . *

Generated by Step 5:

55. 6(ks,x,#)=(kfail,#) :

56. 5(ks,y,#)=(kfa11’#) z

57. 5(ks,"(",#)=(kfa11,#) I

58. 5(kS,")",#)=(kfail,#) :

59. 6(ks,,x,S)=(kx S,A)

60- 5(ksuy,3)‘(kys.1\) *

61. 5(k "(u S)= (k( "(S")

H)", s)== (k

S"

62. 6(k
S', PJS’)

Generated by Step 6:

63. 6 (k A .X)=(kP’s, P,S,X’A)

6 . =
4 6(kp,s’A’Y) (kP,S,y,A)



65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

dckp,s.x,8)=(kp,s 3.x)

6 =
(kP’S’ADT) (kP,S,T,A)

6(kP,T’ AD)<)=(1(1)’119’){3A)

6(kP,T,A,y)=(k A)

P.T.y’

6(k A,S)=(k
P,T’ P,T,S’A)

6(kP,T’*’T>=(kP,T,T’A)

6<kp’s,x.x,"<">=(k),2."<xs")

ackp,s’y,x."<">=<k),2."(ys">

5(kp,s,s’A’"(">=<k),2’"(53">

5(kP,S,T,A."(")=(k),2,"(TS")

GCRP’T’X.A."(")=(k)’2."(xT")

6(kP,T’y.A,"(")=(k)’2."(yT")

6(kP’T,S.A."(")=(k)’2."(ST")

6(kP,T,T’)""(")=(k) ’29"(TT")

Generated by Step 7:

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

6 (kS,X’ 4:" (")=(k2 9" (xsn)

6 (ks,y9 )‘9 "(")=(k29 "(yS")

6<ks’s.x."<">=<k2."<ss">

6(kS,T,A."(">=<k2."<Ts")

6<kT,x.x."<">=(k2."(xT")

5(kT,y, A,"(")=(k2,"(yT")

6(kT,S.A."<")=<k2,"<ST">

6<kT,T.A."(")=<k2."<TT">

6<k .x."(">=<k2."(xx")
x,x

6 (kx’ i’x ’ "(")=(k2’" (yxn)

Y

5 (kx,S’)\,"(")=(k29"(sx")

83
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90. (S(kx T949"(”)=(k2
,"(TX")

xa)‘ 9"(")=(k29"(xy")

92. 6(ky,y.l. ( )=(k2. (yy )

93. 60353,).,"(")=(k2,"(SY")
it

94. 5(ky,T,x."(">=(k2."(Ty")

91. 6(k

y

These 94 move functions were generated by directly following the

rules given in the construction; we will see that many of them are not

necessary.

Using M' as developed we show the recognition procedure for

x(x(xy)y) which is the pseudoterm representation for:

 

Stack contents are shown in order from bottom to top.

 
 

Stack 12212 State

Initially # x(x(xy)y) k0

Apply rule: 1 #x (x(xy)y) k0

3 #x( :(xY)Y) k(

+

5 #x(x (xy)Y) . k1

15 #x(x( iy)y) k(

5 #x(x(x ;)y) 151

ll #x(x(x(xy ;y) k2

24 #x(x(xy ;) k),2

32 #x(x(x ;) k),2,T

39 #x(x( ;) k),2,T,S

44 #x(x ;) k s
+ (929T,



8S

Stack Input State

Apply rule: 47 #x( y) kS S

+ ’

54 #x(S y) k c
+ s

60 I k

m 1 y.8

93 #x(Sy ) k2

+

24 #x(Sy k)’2

32 #x(S k),2,T

41 #x( k),2,T,S

44 #x k(,2,T,S

47 # kS,S

48 # kS

Since there are no applicible rules for (kS,A,#) M' is finished.

kS is a final state so the input is accepted as it should be.

Input x(x(xy)y) is an exhaustive test of necessary move functions

for this example; any move function not used here was not necessary

(with the exceptions noted below). The ones used are indicated with an

*. Only fifteen move functions were used so our deterministic PDA

could be greatly simplified by not including any of the others except

those which immediately take M' from an accepting final state on any

input. These are indicated with an I beside them. They must be main-

tained or the machine could end in an accepting final state with more

input still to come, but with no move function defined. Even with these

included, M' only requires 19 states.
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5.2 LANGUAGE PROPERTIES 9E_THE FRONTIERS 92 U-TREE LANGUAGES
 

 

Definition 5.1 The frontier f §_u-tree rgpresentation is simply the

frontier of the tree used in the representation.

Definition 5.2 The frontier _f‘§ u-tree is the set of frontiers of

representations for the u-tree.

Example 5.3
 

U—tree T =

y z

The frontier of this u-tree representation is xyz.

The frontier of T is {xyz,yzx,xzy,zyx}.

  

Definition 5.3 The string language, denoted LS(G), of a regular u-tree

grammar, G, is the union of all the frontiers of u-trees in L(G).

For every u-tree grammar we have defined a language of strings. We

use the following notation as we investigate this class of languages:

0 = the class of regular sets.

A the class of context-free sets (i.e. the context-free languages).

F the class of string languages generated by regular u-tree

grammars.

Lanai-.1 99’1"-

Ppppf kLet B={01}. Then B is regular (every finite set of strings

is regular). Assume Berg: 3a regular u-tree grammar, G, such that

LS(G)=B, § we can apply a sequence of u-tree productions from G

giving a u-tree representation, A, with string frontier 013 Esome

node, say a, in A with two successors, the left eventually leading to

0 and the right to 1. Since A is only a representation of a u-tree‘?
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filanother representation, A', such that A' can also be generated by

the same sequence of u-tree productions but a in A' will have its

left and right successors reversed=§lO is the string frontier of A'?

lO€LS(G) ® therefore BtI‘. Q.E.D.

Jim-Lea 18$?-

M egr and egnsagr.

REID—32:2 I‘CA.

g£99§_ Let A£F=9j3a.regular tree grammar, G, with frontier(G)=A, by

Theorem 3.4, abja deterministic tree automaton, M, such that L(M)=

L(G), by Theorem 2.5,=?A is a projection of a context-free language,

by Theorem 2.1,£9A£A (shown in (22)) therefore Pg A. Lemma 5.2 shows

that the inclusion must be proper. Q.E.D.

Azalea Fie-

steel

Claim(l) Regular tree grammar Gl= <ES,A,B,a,b},°l',P1,{S'}>’over

{S,A,B,a,b} with P1 '

S S S S

S S S S

{ o -—> , o -€> , o ~€> , ° “" ,

6

a B S a B b A S b A

A A B B

A A B B

0 9A: 0 '—"> 9 0 '6 a O -—> }

b A A a a B B b

will produce frontier F={w|w consists of anuequal number of a's and b's}.

Hopcroft and Ullman(22) present a context-free phrase structure

grammar that produces F. This grammar has start symbol 8 and productions:
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S+aBS

S+aB

S+bAS

S+bA

A+bAA

Aaa

B+aBB

B+b

Grammar G1 has been formed so that it will produce, as its tree

language, exactly the derivation trees generated by the Hopcroft and

Ullman grammar, therefore the set of frontiers produced by C1 must be

exactly F.

Claim(2) Given regular u-tree grammar G2= <(S,A,B,a,b},02',P2,{S°}>

over {S,A,B,a,b} with P =“(the same set of productions as P but we
2 1

now regard them as u-tree productions, not tree productions} then LS(G2)=

F. This is true since G2 can produce every tree (which serves as a

u—tree representation) that G can, so FQ LS(GZ). Furthermore each

1

tree (a u-tree representation).it produces must contain the same symbols

on its frontier as‘a tree in L(G), except the symbols may be in a dif-

ferent order. Any string in F, however, even with a permuted order,

is still an element of F. Therefore L8(G2)=F.

Now that Claim(2) is extablished we consider the language F=LS(G2).

It is easy to see (and well known) that F is not a regular set, but F

is the frontier language of a regular u-tree grammar, G So rgpe.2.

Q.E.D.
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Lemma 5.5 0()F#¢.
 

Proof Let D={0n|n:l}. D69 and clearly D‘T. Q.E.D.

Theorem 5.5 The results of Lemmas 5.1, 5.2, 5.3, 5.4 and 5.5 can be
 

summarized in the following Venn diagram of relationships.

 

   

We now investigate some of the closure properties of class F.

Theorem 5.6 F is closed under union.

a II

Proof Let A,BEP. Let MA <CA’OA ,PA,I‘A> be defined over <£A’°A>

= B "with LS (MA) A. Let “B <CB’OB ,PB,I‘B> be defined over (23.03) with

LS(MB)=B.

We will define a new grammar M such that LS(M)-AL}B, but in order

to avoid interaction between productions in PA and those in PB we must

first relabel some of the symbols.

Let c-CAllcn. For each symbol CiGC pick a unique new symbol

1:
."

ditcAFJCB' Let D {dilc16C}. For all d define 0(d1) 0 (c1). At
1)

each occurrence of c in P and in P replace c

i B B i

H 8 '8 H . . .

sets PB and PB . Let PB PB U{di -€> c1|c1§C(1£B} We now have a

c. v- I- n v I
new machine MB (CB CBUD’OB OB U{O(di)}’PB ,I‘B> defined over

<%B,oB>‘with LS(MB')=LS(MB).

Pick a new symbol stB'UCA. Let M= (CAUCB'U{S},0A"UOB'U{O'(S)‘

with d1, call the new

0},PAUPB' U{s- éwlwéFAUPB'},{s-}> be defined over (ZAU £3,0AUOB> .
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Now, M will begin with start tree so then immediately use a production

producing a start tree in PA or PB'. Either way it will produce a

string in A\JB and all such strings will appear. Q.E.D.

.ngp§_§;§_rf is not closed under intersection.

‘Ppppg Let X={c+w or wc+lw consists of an equal number of a's and b's}.

Claim: XGP. To see this consider regular u-tree grammar G= <IS,A,B,

C,D,a,b,c},o,P,{S-}>>defined over <38,A,B,C,D,A,b,c},o> with

I) UC

C D D

P={ 0 9 05 9 “a 9

D , S c D c4

S S S S

ga/k’aafl'soa/k’sca ’‘b

a B S a b A S

A A B B

A A B B

o-—-) ’0—9 ’0—9 , 0-9 }

D A A a a B b

So, (see the proof of Lema 5.4) L8(G)-X$Xel‘ and our claim is

established.

+ + , ,

Let Y={a wgor wa Iw consists of an equal number of b s and c s}.

In a manner Similar to that above we can show that Yer.

We now proceed to show that xrxytr. For notational purposes we

let: al-{c+w in set X}

aZ-{wc+ in set X}

Bl={a+w in set Y}

82={wa+ in set Y}
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Then 01f\31=¢

a1f\82={cnbnan|nzp}

ozf\81={anbncn|nzp}

azf\82=¢~

NOW X “Y=(01U 02) A (BlU 82)=(a1/\ 81)U(aln 82) U (a2 “81) U012 082) $0

X/\Y={cnbnan|nzp}\J{anbncn|nzp} which is not even context-free (see

Theorem 4.7, Hopcroft and Ullman(22)) therefore is not in P. Q.E.D.

Lemma 5.7 P is not closed under complementation.
 

Proof Assume F is closed under complementation. We also know it is

closed under union, by Theorem 5.5. Now Llf\L2¥EIijL; therefore

closure under union and complementation imply closure under inter-

section @) . Q.E.D.

Theorem 5.7 F is not a Boolean Algebra.
 

Proof Follows from Lemma 5.6 or 5.7.



CHAPTER 6

CHARACTERIZATIONS FOR TREE GRAMMARS

In this chapter a characterization for the classification of tree

grammars along the same lines as that for phrase structure grammars is

proposed. The work is intended to be exploratory; it provides a begin-

ning towards a more general theory of tree grammars.

6.1 BASIS FOR CHARACTERIZATION
 

Theorem 6.1 The strings of labels encountered on the root-to-frontier

paths in the trees of a language generated by an RTG will be a regular

set.

Ppppf There will be a reduced, expansive RTG, G, that will generate

any such tree language. Suppose G' <B,o',P,{S°}> over <A,o> . We de-

fine regular phrase structure G"= <VN-B-A,V =A,P',S> where the product-
T

ions in P' will be defined as follows:

 

For in.P, P' will contain:

Xo+xxl

xonxz

X , °

For 0 x in P, P will contain: .

° 3’ ° X +xX

X +x. 0 n

0

So 6' will generate the strings of labels on root-to—frontier paths

92
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generated by G and G' is regular, therefore these strings form a

regular set. Q.E.D.

The next theorem shows that for any phrase structure grammar,

regardless of the type (3, 2, l or 0) productions, if each production

is only applied to the right hand end of sentential forms, then only

a regular set will be produced.

Theorem 6.2 Given phrase structure grammar, G. If the stipulation
 

is made that for each production, p, in G with r symbols in its LHS,

p can only be applied to the right hand r symbols of a sentential

form generated by G, then L(G) is a regular set.

3523f Given grammar G- VN,VT,P,S> we construct regular tree gram—

mar G'=- <VNUVT,0',P',{S-}> over (V100) . For each production

x1x2°--xn+y1y2---ym in P we let

"1 y1

x2 y2
“—€EE> be in P'. G' is a regular tree grammar and it

generates root-to-frontier paths in the same way that G generates

strings. So {root-to-frontier paths generated by G'}-L(G), there-

fore, by Theorem 6.1, L(G) is regular. Q.E.D.

The following classification of regular (type 3), context-free

(type 2), context-sensitive (type 1) and recursively enumerable

(type 0) tree grammars seems apprOpriate. We will say a tree grammar

is type i, for 05153, if every production in the grammar, when applied

to a tree sentential form, has the effect on the strings formed by

root-to-frontier paths of applying a type i phrase structure grammar



94

production. As illustrated by Theorem 6.1, the formalization of

regular (type 3) tree grammars fits the classification perfectly.

When we write a formalization for type i grammars, with i<3, there

is an added complication. Type 3 tree grammar productions are always

applied at the end of a root-to—frontier path, at a place where there

can be no sub-trees of the nodes involved which are themselves not

involved in the production. When applying, say, a type 2 production

it can, in general, be applied to a node in the interior of a root- 2

to-frontier path, a node which may have several subtrees. The problem

is also present in type 1 and type 0 tree productions, so each of

 
these definitions must account for any subtrees which might be involved.

We want our definition of type i, for i<3, tree grammars to be

a generalization of the type i phrase structure grammar in the sense

that given a phrase structure sentential form, say AbbbCDex we may

regard this as a tree with exactly one corresponding root-to-frontier

path. The sentential form for the tree in this case will be:

A T

b"

 

8?)

XA D

When a context-free tree production, say ° 3 is
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applied, it should have the same effect as applying D+Dd in the cor-

responding string which would leave AbbbCDdex. The subtree with root

e . D?

one level below D (i.e. L ) must be maintained one level below I

x 6

giving:

 

e

i.“

x l a

F

In general, subtrees whose roots occur one level below the node 1

being replaced by a tree production must be retained on pg least some

of the root-to-frontier paths generated by applying a tree production.

If they were not retained it would be equivalent to applying a produc—

tion to a string sentential form generated by a context-free phrase

structure grammar and eliminating everything to the right of the

replacing symbols; this is clearly intolerable in any context-free

grammar. With these considerations in mind we are ready to define

context-free tree grammars.

6.2 CONTEXT-FREE TREE GRAMMARS

W.C. Rounds in (34) has proposed a good definition for context-

free tree grammars. In order to discuss his definition we first in-

formally introduce that class of tree transducers that was originally

called generalized sequential machines (GSMs) by Thatcher(42) and

Rounds(35) and has lately been termed top-down tree transducers and

investigated by Baker(3), Englefreit(15), Ogden and Rounds(30) and

Perrault(3l) among others. We may think of a GSM as a device which
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serves as a mapping of trees over ranked alphabet, A, into trees over

ranked alphabet, B, i.e. GSM: TA+T£. A GSM is a finite-state device;

its move function is a function from (old state,input) pairs (where

each input has a certain number, the rank of the input, of arguments)

into (new state,output) pairs with assignments of each of the input

arguments into the output. The inputs will be nodes of trees, the

arguments will be the subtrees of the input nodes, the output will be

trees. A GSM works on a tOp-down basis, starting at the root of a

tree in a given start state. We present an example from Rounds(34)

to illustrate this informal discussion. In the following example and

throughout the rest of this chapter we use the symbol

X

X1 X2 X.n

to indicate node x and the n distinct subtrees with roots one level

below x. X --°,Xn are dummy arguments used to indicate the subtrees.
1’

Example 6.1 Both input and output alphabets are 2. Let 22={p},
 

£1={o,r}, 20-{#,A}.

  
is an element of T2. If a GSM starts in start state q and has a

transition function
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defined, then the result on t will be:

P

 
 

Other transition functions will then be applied on each of the (state,

input pairs (q,p), (q,o) and (q',o).

Rounds uses a modification of the GSM definition as his definition

of context—free tree grammar. Context-free tree grammars will map trees

over a ranked alphabet into trees over the same alphabet. He regards

(state,input) pairs as being nonterminals. He regards the transition

function as actually defining a production. He liberalizes these prod-

uctions so that nonterminal (state,input) pairs do not have to be on
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the frontier of the RHS of a production, rather they may be anywhere

on the RHS but only one (or zero) per branch is permitted. Each sub-

tree must appear below at least one of the new nodes.

This definition seems more restrictive than desired in the sense

that it only allows productions to be applied from the top to the bot-

tom of the tree, i.e. from left to right on the root-to—frontier paths.

This restriction is not important-however, since we know that for every

phrase structure context-free derivation there is an equivalent left

to right context-free derivation.

Other definitions for context-free tree grammars are certainly

possible. They should maintain the idea of applying context-free prod-

uctions on root-to-frontier paths during a derivation. Other non-

equivalent definitions, however, seem to be more restrictive in ways

that restrict the power of productions and yet add nothing.

Example 6.2 Context-free tree productions can produce frontier {anbncnl
 

nil} which is a context-sensitive language. Given productions:

S S

3 3d d ”9AA

9 9

a b X XC

l 2 X1 X2

Y Y

S
S

w—>(>\ /\_>. x
a b c X X

1 2 X1 x2
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Derivations will be of the form:

S

Ei::>d d :A xA d d

a b c

 

It is clear that context-free tree grammars, as just defined, are

more general than regular tree grammars, yet every regular tree grammar

(in expansive form) will be a context-free tree grammar. Furthermore,

as illustrated by the previous example, the addition of context-free

productions makes the grammars more powerful in terms of the frontiers

they can produce.1 It seems natural to ask whether the type 2 tree

 

1It was shown in Chapter 2 that the frontiers of languages generat-

ed by regular tree grammars are exactly the context-free langu-

ages, but the frontier generated in Example 6.2 was context-

sensitive.
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grammars may have exactly the type 1 string languages as their front-

iers. The answer is no, the frontiers will be a prOper subclass of

the context—sensitive languages. To establish this fact we need a bit

of background.

Indexed grammars were defined by A.V. Aho in (1). He showed

that the class of languages generated by indexed grammars prOperly

contains the class of context-free languages and is properly contained

in the class of context-sensitive languages. We now restate a theorem

from Rounds(34).

Theorem 6.3 (Rounds) For every context-free tree grammar, G, one may
 

effectively find an indexed grammar, G', such that the frontier

generated by G‘is exactly L(G').

Thus, although not every language generated by indexed grammars

is the frontier generated by a context-free tree grammar, the converse

is true and the class of these frontier languages must be properly

contained in the context-sensitive languages.

6.3 CONTEXT-SENSITIVE TREE gm

we now consider the question of what is an appropriate definition

for context-sensitive tree grammars. We should include those that can

apply context-sensitive string substitutions on the root-to-frontier

paths in sentential form trees. Since there are several (probably

equivalent) ways of defining these tree grammars we will again only

describe them, rather than formally define them.

Given a string, say x °--xn, we must be able to apply a context-

1x2

sensitive type substitution to it. If this string is thought of as a

root-to-frontier path
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n

we can apply, say xjxj+l...xj+r + xkxk+l...xk+r+i for 129’

Thus productions of the form

x x
j k

x

3+1 $ x1t+1

xj+r L l xk+r+i

must be allowed.

Also, some method of reassigning subtrees must be allowed. It is

important, however, that no subtrees be assigned to nodes at a higher

level than their original level; this would have the effect of short-

ening some root-to-frontier paths, i.e. applying distinctly non-context-

sensitive productions.

So, the following description of possible context—sensitive tree

productions seems appropriate. We use superscripts on dummy auguments

to indicate what node they originally are subtrees of, and subscripts

to indicate which subtree. Productions may be of the form: (see next page)



lOZ

 

  
Each of the subtrees represented by {x;|1315;, lfiJEPr} must be

duplicated at least once as a subtree of some yk. Furthermore, the

subtree represented by X1

j

to prevent shortening any root-to-frontier path. The shortening of

must be duplicated on a yk with kii in order

strings can only occur with recursively enumerable productions, not

context-sensitive.

Note that every contextsfree production will also be allowed as

a context-sensitive production.

Example 6.3 The following context-sensitive tree grammar was con-
 

structed by first considering the context-sensitive phrase structure

grammar with productions: P' = { S+aBSc

S+ch

Ba+aB

Bc+bc

Bb+bb }

n n
These productions will give {anb c Inzl}. We construct tree

grammar G- <kl,2,3,4,a,b,c,S,B},o',P,{S°£> over <Il,2,3,4,a,b,c},o> .
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The productions in P will essentially model those in P', when applied

on root-to-frontier paths.

   

P={(a)¢,s_>1

 

A sample derivation is:

(continued next page)
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a Q

a Q

B

l a d» 4

(C),(

B

./

  

a

a o

a

3 .

b 4

b _ 4

C 4

c 3

c 3

3 
In general the frontier of the trees produced will be {ln2n3n4nlnil}.

Context-sensitive (and recursively-enumerable) tree grammar

concepts may be applicible to more general graph grammars. This is

discussed in Chapter 7.

One might ask what class of languages will be generated as the
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frontiers of context—sensitive tree productions. Although the complete

answer is not known at this time it is easy to see that at least all

the context-sensitive languages can be generated. If we have a

context-sensitive phrase structure grammar which produces sentential

form ABchBbcA we may represent this as the following tree:

A

B

2?

c E

c X

B

E

b ._

c A

If the context-sensitive grammar has production Bb+AAAbc we may

include corresponding tree production:

 
Productions of this type will eventually produce frontier
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alaZ-°°an for a similar string a °°°an generated by the phrase

1°‘2

structure grammar.

6.4 RECURSIVELY ENUMERABLE TREE GRAMMARS
 

The definition of type 0 tree grammars should be the same as that

for type 1 except that here it will be legitimate for subtrees to be

assigned (by a production application) to a node at a lower level

(nearer the root) than where they occurred before the production was

applied.

Example 6.4 We examine an interesting recursively enumerable grammar,
 

one that can completely model a Turing machine.2 We assume the Turing

machine to be modeled is in the following form:

 

Turing machine T

V

   

 

           

ace Axgnx‘lx Ct. AA on:

I
o

In the starting configuration the read head is on the leftmost

input tape cell. The input, or starting tape configuration, is

XO,X1,'°°,Xn. Symbols to the left of XO are null input symbols, as

are those to the right of X“. We assume T starts in state so. The

output/move function for T will be stated as a partial function with

finite domain of the form: 6:SXI + SXOXM with:

 

2The idea for modeling a Turing machine with a tree grammar was

suggested to me in a personal conversation with W.C. Rounds.
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S = states of T

I - read symbols (the input symbols)

0 - output symbols

M = {L,N,R} L means the read head will move

to the left one cell on the tape, R means it will move to the right

one cell and N means no move.

If no move function is defined for a (state,input) pair, T halts.

Since for every nondeterministic Turing machine there is an

equivalent deterministic one, we assume WOLOG that T is deterministic.

The start tree for our grammar, G, will be based on a starting

configuration for T. This will be:

The alphabet for G will be IL/OtJS\»[s_1}. Productions in G

will simulate 6 in the following manner:

may be thought of as T in state 31 with the

 

read head on cell containing y2 with yl in the cell to the left and

y3 in the cell to the right. C (after applying one extra production
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to get started) will simulate T by allowing exactly one production to

be applied at each point where T would have a 6 function applied. If T

halts on input Xo°°-Xn, G will have no further productions possible to

apply-

8

3

X1 x1+1

If we have tree produced by G with no further

X1-1 xi+2

X1 Xh

l A

applicible productions then the final tape configuration for T will be

given by X1X2°°°X1_1X1X1+1°-°Xm with the read head on cell containing

X If T does not halt on input Xo-HXn then G will never cease to
i+1'

have productions to apply, and after applying the (i+l)th production

the tape configuration for T after its (i)th move function can be read

by the procedure described above.

New to define the productions in C. First the set of productions

to "get started". Define:

8-11 8

p x ._€EE> for all x in I.
: x

A l A

x1 x1

Exactly one production from PA will be applied at the beginning

of each derivation in C.

Now we define the productions that simulate 6:



i J

PB: x .__E;>

x1 x1

x2

81 Sj

x ._—;E;>y

x1

x2 x1

81 8

z x -———E;>

x1

x1 X2

It is easy to see that a production from P

For all 6(si,x)=(sj,y,N)

in T.

For all 6(si,x)=(s

in T.

j.y.R)

Fox all z in OtJl,

For all 6(Siax)=(s

in T.

j.y.L)

B can only be applied

if an equivalent move function in T would be applied.

Note that in productions in PB we are taking advantage of the fact

that recursively enumerable tree productions allow the shortening of

root-to-frontier paths.

The frontier languages generated by type 0 tree grammars are ex-

actly the type 0 languages. By altering our Turing machine simulation

to let the terminal symbols hang one level below place holder nodes, as

was discussed for contextbsensitive tree productions, we can generate

any type 0 language generated by a Turing machine.



CHAPTER 7

SUMMARY AND RECOMMENDATIONS

7. 1 SUMMARY
 

The study of multidimensional automata, specifically tree automata

theory, holds a great deal of promise for automatic pattern recognition.

The first use of tree automata for this purpose was shown by Fu and

Bhargava in (20). This thesis uses concepts from graph theory to pro-

vide significant extensions of (20) in several directions. It also

shows a number of theoretical properties of tree grammars and automata.

It provides another step towards developing automatic methods for

manipulating graphs.

Chapter 1 presents a general introduction to the pattern recognition

problem and to the study of multidimensional automata. A brief survey

of applications of multidimensional automata is included.

Chapter 2 summarizes the pertinent work of other researchers in

tree automata theory. The rest of this thesisdraws heavily on the

theoretical bases provided here. Most of this theory was developed by

Brainerd and Thatcher.

In Chapter 3 the graph based structure for u-trees and d-trees is

developed. Regular u-tree grammars and u-tree automata are defined and

their relationships are shown. The various properties of these systems

are investigated.

110
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In Chapter 4 we show how these grammars and automata can be

effectively used to provide an automatic (once the primitives are

found) method for pattern recognition. Many of the terms and concepts

inherent in any syntactic pattern recognition scheme are formalized

here for the first time. Important differences between circular and

noncircular primitive systems are noted. A partial characterization

for sets of patterns recognizable by this system is given. Several

examples and special cases are worked. L

Chapter 5 deals with the question of simplifying the machines to

classify patterns. It is found that a deterministic pushdown automaton

will suffice rather than a u-tree automaton. This makes the pattern  
recognition scheme a more practical method since deterministic pushdown

automata are easy to simulate using digital computers. Also in this

chapter.we explore the properties of the frontier languages generated

by regular u—tree grammars.

In Chapter 6 a basis for providing a characterization for various

types of tree generating grammars is prOposed. Regular, context-free,

context-sensitive and recursively enumerable grammars are described

using this characterization and the frontier languages generated are

investigated.

7.2 SUGGESTIONS FOR FUTURE WORK
  

First we discuss a very general problem. This thesis has develop-

ed a graph generation and classification scheme for certain kinds of

acyclic rooted digraphs. Some of the same methods (particularly the

generative ones) should be applicible to graphs in general. Consider,

in particular, the recursively enumerable tree grammars described in
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Chapter 6. What would be the result of applying generative procedures

of this form to unrooted graphs (with appropriate conventions as to what

paths might replace root-to-frontier paths)? How about applying context—

free productions? The automata defined here depend heavily on the abil—

ity to conveniently represent tree—like structures in linear form and

on their being rooted. What kinds of automata might one define that do

not use these properties? The investigation of questions along these

lines seems worthwile.

Another problem that arises with any application involving formally

defined grammars is the question of grammatical inference: how can an

appropriate grammar be developed from the observation of sentences in

a language? In the present case the problem is twofold: given a pattern

set of interest we need to find an appropriate primitive system to

represent the patterns as well as an appropriate regular u-tree grammar

using the primitive types. What sort of procedures might one carry

out in order to define these?

It is possible that u-tree grammars and u-tree automata may be

good formalizations to represent the growth and manipulation of and/or

decision trees and search trees of the type shown in Nilsson(29). The

idea of unorderdness is inherent in these trees so perhaps something

like this would be fruitful. Some relaxing of the u-tree grammar

definition might be necessary in order to allow for an infinite number

of node labels in such applications.

In the various theorems and results presented in Chapter 4 we have

partially characterized the sets of patterns that can be recognized by

the pattern recognition method outlined. If this method proves practical

for pattern recognition applications perhaps a more complete
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characterization can be developed.

One of the practical considerations that has hindered the appli-

cation of syntactic techniques to real pattern recognition problems is

the noise and imperfect data that arises with real data. Ellis in (14)

has proposed several models for probabilistic tree automata. Perhaps

a useful probabilistic model could be constructed for u-tree grammars

and automata so that small imperfections in data could be dealt with.

Also as a practical consideration the deterministic pushdown autom-

aton construction outlined in Theorem 5.4 produces a very large PDA.

Many of its move function rules are redundant and/or unnecessary. It

may be possible to refine it somewhat, i.e. to simplify the move function.

The context-free, context-sensitive and recursively enumerable tree

grammars described in Chapter 6 immediately give rise to the question of

what types of automata might be appropriate to recognize the tree langu-

ages generated. Just as regular tree grammars and pseudoautomata can

deal with the same sets of trees there are probably distinct automata

models that provide acceptors for each of the classes of tree languages

generated by these grammars.

The frontier languages generated by each of these types of tree

grammars is shown in the following table:

  

.IXEE.2£ Tree Grammar Type Frontier Language Generated

Regular Context-free

Context-free Indexed

Context-sensitive ? (at least context-sensitive)

Recursively enumerable Recursively enumerable

It would be interesting to discover exactly what class of frontier

languages can be generated by the context-sensitive tree grammars.
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