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ABSTRACT

THEORY OF TRANSITION ELEMENT
SUPERCONDUCTORS

by Paul B. Williams

A theoretical expression for electron-phonon coupling
is derived and then used in an attempt to explain differ-
ences in superconducting transition temperatures for groups
VB and VIB transition metals.

The bare ionic potential, based upon the Herman-
Skillman atomic structure calculations, is used to determine
unscreened coupling. Screening is then calculated using the
Bardeen self-consistent field method modified for exchange.
The net result is an expression for the screened electron-
phonon coupling, éK K" exhibiting a positive dependence
upon the electronic density of states at the Fermi level.
Such a dependence is due entirely to exchange and is thought
to stem from the preference of conduction electrons to group
between nearest neighbors in some resonant structure remnant
of atomic "d"-electrons.

A suitable computer program is developed to determine
the product of coupling times phonon density of states as a
function of phonon frequency, az(mJF(m). The method first

uses interatomic force constants to determine the phonon
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density of states, F(w), via the Born-von Karman method.
The expression for screened electron-phonon coupling is
then incorporated to include umklapp as well as normal
scattering processes. Finally, within the currently
accepted theory of superconductivity, aa(m)F(m) is used to
détermine an expression for the superconducting transition

temperature of tantalum and tungsten,
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CHAPTER 1
INTRODUCTION

The first successful microscopic theory of ‘supercon-
ductivity was presented by Bardeen, Cooper, and Schrieffer

(B.C.S8.) in 19571 and then later refined into a more ele-

2 and BogoliubovB. In

simplest terms, the theory assumes attractive Cooper4 elec-

gant and accepted form by Valatin

trons forming pairs of opposite momentum and spin which re-
side in a condensed ground state |Zbg :> . A
reduced hamiltonian (Hred ) which considers only the elec-

tron pairs 1s used in conjunction with a parameterized
trial ground state wavefunction subject to the constraint
that the expectation value of the total number of particles
1s some fixed number N_ . Let CET and Ck&

be creation and annihilation operators for electrons 4in

state k(spin 1/2) and state -k(spin -1/2) respectively.



Then l__L“| Z € C C C
+Z K-k 1Cly C—kl Cir

CkT lelekT\w> N,

with

= g

The parameter >\‘< in the ground state wavefunction

1s then determined by normal variational methods for a
minimum ground state free energy (see L%c;hz':lerfer5 ). The
key results are that the pairing phenomenonis effective
within a small range of energies of approximately 2"ﬁ wD
( CA)D = Debye frequency) about the Fermi energy and that
quasiparticle excitations from the ground state always have
an energy greater than or equal to an energy gap A. The

B.C.S. result for A i1s, in the weak coupling limit (small

, -1/N(0)
v) A~ 2k, @ /N(o)\V/

2AZ3. 5T



where N(o) i1s the density of electronic states at the Fermi
energy and V 1s an effective pairing potential acting only
within the range of energies about the Fermi level where
pairing is approximately assumed to exist. Although the
B.C.S. theory was highly successful in predicting qualita-
tive features of superconductors, 1t soon became apparent
that a more powerful theory was due. One had to consider
the retarded nature of the electron-phonon interaction and
the screened coulomb repulsion between electrons before
serious attempts could be made to calculate quantitative
properties of superconductors from first principles.

A particularly useful feature of the B.C.S. theory is
the isotope effect. If one considers the isotopes of any
particular element, each arranged in 1ts own lattice, the
normal frequencies of vibration will be (JL)ZOC k/ ™
in the harmonic approximation where M is the mass of the
isotope in the lattice in question and k is an effective
spring constant common to all the isotopes of that partic-

ular element. Since the transition temperature Tc satis-

fies Eq. 4, then the ratio of the transition temperatures

between any two isotopes of a given element is

—& — \/————2
C, Ml '




This important result is known as the isotope effect. Al-
though 1t does not include the effects of mutual coulomb
repulsion between pairs, i1t is supported quite well by the
simple metals including such strong coupled superconductors
(V large) as lead and mercury. However, transition metal
superconductors are a different story altogether. They
seem to exhibit little or no isotope effect and agreement
exists in too few cases to produce any firm conclusions.
The results of measurements of the superconducting tran-
sition temperatures of various 1sotopes is shown in table 1
where —I_OC l\/]_ﬁ 6. 1t would seem that for the
transitigg‘metals, the B.C.S. theory falls because either
the electron pairing potential is not phonon mediated but
possibly due to some overscreening by nonsuperconducting
electrons in different bands as suggested by several auth-

7 or that some electronic mechanism, intermediate to

ors
the superconducting electrons and the ions, serves to
alter the bare electron-phonon coupling constant in ways
more complex than previously described.

Not long after the advent of the B.C.S. theory, theo-
reticlans attempted to apply Green function methods to the
superconducting many body problem. Their goal was to de;
velop a theory that would predict the superconducting pro-

perties of metallic superconductors from the most basic

properties of the metals themselves. Ordinary Green



Table 1. Isotoﬁe effect (experimental) for some
simple and transition metals.*

Simple Transition
Metal 8 Metal 8
Pb 0.48 Os 0.21
Hg 0.50 Ru 0
Sn 0.51 Mo 0.33
T1 0.49
Zn 0.50
cd 0.40

* The quantity 8 is defined with T ~M"°,




functions soon met with failure due to infinities resulting
from suming over certain Feynman diagrams of a given
order. The culprits are those diagrams where two elec-
trons of opposite momenta and spin repeatedly scatter
against each other. These difficulties were soon sur-
mounted, however, with the introduction of "anomalous prop-
agators" (see Gorkovs) which destroy and create Cooper4
pairs in the ground state. The entire Green function prob-
lem was reformulated into a matrix form (Nambug) and was
successfully applied by Eliashberg'® to the problem of
strong coupled superconductors.

Strong coupling was particularly troublesome because
a large electron-phonon coupling constant would tend to
produce such energetic quasiparticle excitations that the
resulting lifetimes would be considerably shortened (be;
cause of increased avallable phase space for their decay)
to the point where the width (due to uncertainty consider-
ations) of the quasiparticle levels is comparable to the
energy of the excitations themselves. The problem was

acute until an important result by Migdalll

10

was applied
by Eliashberg yielding a set of coupled integral equa-
tions which form the baslis of the theory as it stands
today. Important coulomb effects were soon 1ncorporated12
giving a set of equations (known as the Elilashberg gap

equations) which should enable one to calculate the super-



conducting properties of metals and semiconductors to a
relatively high degree of accuracy. These equations form
a vital part of this research and, therefore, will be de-
veloped in detail later.

Use of the Eliashberg equations to find the supercon-
ducting transition temperature Tc was successfully applied

to aluminum, sodium, and potassium by Carbotte and DynealB.
Essentially, they began by using the Heine-Abarenkov form

of the electron-ion pseudopotentiallu

from which they
could obtain the electron-phonon coupling constant. The
necessary phonon characteristics were represented through
the use of a Born-von Karman force constant fit to phonon
dispersion data in the high crystalline symmetry directions
where the number of nearest neighbors considered depended
upon the complexity of the phonon dispersion curves for the
superconductor in question. The Eliashberg equations were
then solved self consistently on a computer yielding re-
sults that were quite successful. The transition temper-
ature for both nonsuperconducting sodium and potassium was
determined to be less thanAESOK. For aluminum, the pre-
dicted transition temperature differed by less than 10%
from the eiperimental value. In addition, the first strong
coupled superconductor to be investigated using the

Eliashberg equations was lead which has the pecularities
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as described earlier. Experimental results for lead strong-
ly support the Eliashberg form as opposed to previous mod-
els. Finally, little or no progress has been made in deter-
mining the superconducting properties of transition metals
from first principles. Their electronic band structure 1is
of such complexity that it is difficult, if not impossible,
to make use of pseudopotential methods to determine values
of electron-phonon coupling.

If the Eliashberg equations are considered a truly
accurate set of sblutions to the problem or superconduc-
tivity and if superconducting properties can be accurately
measured, then it would be logical to ask if these equa-
tions could be applied in reverse to detérmine some of the
more elusive properties of solids from their superconducting
properties. Such a problem was undertaken by MbMillanls
who applied 1t to a variety of materials including transi-
tion metal superconductors and their alloys. The primary
objectives were ah empirical electron-phonon coupling con;
stant )\ and a coulomb coupling constant /4* as
defined by Morel and Andersonls. From these empirical con-
stants the quantity <G.2> (the average squared elec-

17 was found for several

tronic transition matrix element
transition metal superconductors. All of this was accom-
plished as follows. The average electron-phonon coupling

2
-4 (w) as a function of frequency and the phonon
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density of states F((A)) are determined as the product
o« w) [.__-(w) directly through the insertion

of experimentally determined éﬁperconducting properties into

the Eliashberg equations. Then the quantity <Gz> is:

CH= R @

where )\ =2 f J)(Uﬁocwz(’ﬂ) F( w)

ws (0P Sdow oc?w) :—_«u)cu
/onccoz(w)—(w)

The results are summarized in table 2. In this scheme
McMillan has demonstrated that, for group V and VI B.C.C.

transition metals (except magnetic chromium), the factor

| N<O) <G Z> remains essentially constant

2
and that T, depends upon l\/] <w > (the stiff-

ness of the lattice). These results are uncommon and, as
he pointed out, no satisfactory theoretical explanation has
been given for such phenomena.

The present theory of superconductivity seems to be

satisfactory with the possible exception of the transition
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metals. These metals can be among the best supereonductors
and, when properly alloyed, the transition temperature and

ecritical field can be greatly increased (i.e. ij Sn and
V381) which seems to indicate that physical features which

give rise to superconductivity are very sensitive to the
electronic structure in the case of Nb and V. If one plots

the transition temperature Tc versus the number of valence

electrons per atom for transition metals and compares it
with a similar plot for simple metals, as was done by
Hatthiasla, (Figure 1), there appears to be little agree-

ment as to how Tc varies with the number of valence elec-

trons per atom. This certainly suggests that, as in many
other phenomena, transition metal superéonductora must re-
quire a modified or perhaps totally different treatment

- than was used for the case of simple metals. In fact, if
-one compares the transition temperatures of the group V
transition metals with those of group VI transition metals,
it becomes apparent that, with the addition of one more non-
core electron per atom, the exeellent supercondueting prop-
erties of group V are lost in group VI. Assuming that the
theory of superconductivity i1s correct, it is then logical
to try to find a means to determine the degree of electron-
phonon coupling and the best value for the density of states
(1ncluding only those electrons that can take part in pair-
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ing) for these two groups. It certainly would not be unrea-
sonable to suppose that not all of the remnants of the s and
d atomic states are itinerant. Perhaps a sizable fraction
are not available for pairing but do act as an intermediate
device to enhance coupling between the paired electrons anmd
the lons. This would most likely reduce the density of
available states but, at the same time, could substantially
increase the effective electron-phonon interaction. Such
a concept is worthy of consideration and, therefore, will

be explored in as much detall as present knowledge of the
group V and VI transition metals will allow.



CHAPTER 11
THE THEORY

Tﬁis problem is primarily concerned with the elec-
tronic structure of the group V and group VI transition
metals. As completely free atoms, transition elements
are characterized by two partially filled atomic subshells
(3a4s, 445s, or 5d6s) as opposed to the usual one (or com-
pletely filled shells as in the case of the inert gases).
The number of electrons residing in both the s and 4 sub-
shells determines the chemical and metallurgical charact-
eristics of the element in question. For groups V and VI,

the atomic configurations are:

V-3 52 Cr=3d°Ys¢
NbL-H4d*5s Mo- L-HSSS
Ta-54° 652 W-5476 52

group V group VI

The obJj2ctive is to determine how these electrons in par-
tially filled subshells (valence electrons) interact with
valence electrons of adjacent atoms in a metallic solid.

It is often stated that the unfilled s and 4 subshells
transform into overlapping s and d bands in the solid state.

Moreover, a frequent assumption is that the relative‘propor-

14
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tion of electrons in each of these bands is the same as it
was for the partially filled atomic subshells. A more rea-
listic viewpoint, however, is one proposed by several au-
thorities19220 1n this area which 1s that the valence
electrons collect into two fairly distinet groups. One
such group is quite localized and may possibly be repre-
sented by some linear combination of the former d orbital
wavefunctions. The second group would be an itinerant con-
duction=l1like band which could probably be represented by
plane waves properly orthogonalized to both core states and
the localized states of the first group. It seems plausible
that these two bands overlap with the localized band being
the narrower of the two. Moreover, the number of electrons
per atom residing in each of these bands would, in all like;
lihood, not be in the same proportion as the relative num-
bers of electrons in the s and 4 atomic subshells respec-
tively. Such are the foundations to be later utilized in
setting up an electronic model of the group V and VI tran-
sitlion metals.

If one is to base a model on the concept of two over-
lapping bands where one is localized and the other itlnerant
and conduction-like, then it is fruitful at first to inves-
tigate how such a configuration might affect the pairing
interaction in superconductors. The conditions for pair-

ing are most favorable with a strong electron-phonon
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coupling constant and a high available electronic density
of states at the Ferml surface. The question then arises
as to whether all of the valence electrons are avallable
for pairing. Perhaps either the more localized electrons
or the conduction electrons do not take part in the paifing
process at all and hence one must use a density of states
that accurately reflects this reduction of avallable elec-
tronic states. Certalnly, then, if a given proportion of
the valence electrons do not contribute to the pairing pro-
cess, transition metal superconductivity may be enhanced
through a mechanism other than a high electronic density of
states. Another possibllity would be to examine how these
non -superconducting valence electrons might tend to modify
ion (phonon) coupling to the superconducting electrons. If
this modified coupling were quite sensitive to the number
of electrons in localized bands, then the difference of a
valence electron per atom between transition groups V and
VI could account for the gross contrast between their
ablility to superconduct provided the extra electron in group
VI were in the localized 4 band.

The model to be used will be one in which ng valence

electrons per atom reside in localized d-like band states

and n, valence electrons per atom form an itinerant conduc-

tion band. The question naturally arises as to which band
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contains the superconducting electron pairs. In the past,
i1t has been quite customary to consider the itinerant elec-
trons as those avallable for pairing 21’22. The localized
states are then usually treated as either intermediate
states for electron palr scattering by the lattice ions or
as states acting directly between the pairs by providing an
additional attractive coupling mechanism. M‘cMillan15 seems
to avoid this question altogether when he uses a density of
states based upon the electronic specific heat 8 « Al-
though the argument for d-like electrons over-screening
the conduction electrons would enhance superconductivity,
it makes little sense to consider electrons with a suppos-
edly high effective mass as capable of screening the effec-
tively lighter conduction electrons. However, it would not
suffice to say that electrons with high effective mass can-
not be screening agents in the case of the ions due to the
fact that they are also strongly coupled (source of high
effective mass). Whether or not screening of one band by
a second could enhance the electron-ion interaction of the
first should be analyzed. These arguments give rise to
two possibilities:

(1) The conduction band electrons form superconduct-
ing palrs. The d-band electrons screen the motion of the
ions in such a way so as to enhance electron-phonon coupling

in group V and diminish it in group VI. The difference in
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superconducting properties between groups V and VI 1is
attributed to the difference of one electron per atom in
the d-band.

(2) The d-band electrons form superconducting pairs.
The conduction band electrons serve as a screening mechanism
to alter electron-phonon coupling and reduce the effective
coulomb repulsion between 4@ band electrons. The high den-
s8ity of states of the group V d band at the Fermi level
greatly assists superconductivity whereas a small density
of states in group VI all but destroys it. Again, there is
a difference of one electron per atom in the d bands of
group V and group VI.

One of the most crucial portions of the model will be
the structure of the localized electrons. One must know
their density of states distribution, energies, and, if
possible, thelir wavefunctions. Unlike core electrons, the
localized electrons cannot be associated solely with a par-
ticular ion within the crystal. The characteristic that
distinguishes them from conduction electrons is that their
distribution varies grossly within the structure of the
unit cell. Localized electrons will tend to bunch up mainly
betﬁeen nearest neighbors and next nearest neighbors respec-
tively. Such electrons should besensitive to the motion of
the ions even though they cannot be assoclated solely with
any one particular lattice site. Since both group V and
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group VI transition metals have BCC crystal structure, it
is best to examine splitting of d-orbital wavefunctions in
a cubic field before attempting to use them in constructing

localized band states. Basis functions from wh;lch the

locallized states can be formed are as follows:

Xy=\FFs §)/(e,9)-) e
VZ=Vs | e+ ! (e,cb)}
LX=VTs Y oY)
X-Y=VEE [Y (et iy Te.6)]
3Z-R =\EF5 Yo

where ( s) ¢) are the orthonormal spherical har-
monics fonzning a basis for the angular part of atomic d
wavefunctions. These new basis functions are all mutually
orthogonal and therefore must span the same space as >£ .
The purpose of the particular basis becomes quite clear

when one examines the full cubie group O’) ,(T}ble 3) .

3 2 2
The functions X —>/ and 3 Z —R?‘ form a basis
for the two diminsional representation E g anc9< y’ y Z
J

andz X form a basis for the three diminsional represen-
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tation —|_2 g « This means that under spatial opera-
tions which preserve the symmetry of the full cubic group,
these basis funetions do not mix but transform only into
linear combinations of the members belonging to their own
particular basis. For spall cubic crystal fields, the
five-folad deéenerate atomic d-levels would be split into a

doubly degenerate E_ level and triply degenerate T level

g 2g
respectively. Stronger cubic fields (as in a crystal) will
further split these levels in every atom of the crystal thus
forming two distinct bands. These bands aré in accord with
Fig. 2 showing electronic structures within the BCC prim1§
tive ce1124.

These structures as shown in Fig. 2 can be ‘inferred
from examination of the angular dependence of XY, YZ, and

ZX for the Tag case or xa-Y2 and BZzgnz for the EB case pro-

vided that the wavefunctions are formed from proper linear
combinations of the basis functions sc as to preserve cubic
symmetry. Such wavefunctions will be referred to as hy-

or hybridized E reapectivelyau. Since, in

2g g

both groups V and VI, there are insufficient valence elec-

bridized T

trons to fill both Teg and EE states, it is natural to de-

termine which of these bands would lie at the lowest energy
and hence begin filling first. Because it 1s generally true

that nearest neighbor correlations are stronger than next
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nearest neighbors and so forth for more distant ions, then
the states representing correlations between nearest neigh-
bors might be expected to receive electrons at a lower en-

ergy than the next nearest neighbor correlated E8 states.

Although band structure data is seriously deficient for
groups V and VI transition metals, one ¢an investigate the
band structure of one particular metal (tungsten) in hope
of getting a handle on the essential features of band
structures of chemically similar materials. Mattheissas
proposes that the band structures of the BCC transition
metals (group V and VI) should be quite similar to one
another with the Fermi energy being determined from the
total number of valence electrons. Upon examination of the
theoretical density of states curve as plotted by Mattheiss
for tungsten (Fig. 5), there appears to be four fairly dis-
tinct peaks with the lower three appearing quite similar.
Furthermore, it seems that for up to 8ix valence electrons
per atom, the lower portion would provide a sufficient num-
ber of states to accomodate all 6f the valence electrons.
Although this problem will be reconsidered later in the
discussion of the filling of the bands, it will suffice to

say now that the T2 states will be used to represent the

4
localized electrons and the Es states can be disregarded

for the use of six or less valence electrons per atom.
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Proper tight binding wavefunctions representing T28 states

are:

AS __: 15 K
N= 0N Ze g (r-r) X

where the sum over | 1s over the entire lattice and

b=50) XY h=fOYZ s d=fFmZX |

The convergence factor f(F) satisfies the normalization
condition that [ ”,F?(") réde = 14 and 1s
best guessed at from the atomic d-electfon radial wave-
functions?® or the band structure itself. If F(r) 18
normalized as it 1s here, then these wavefunctions represent
a continuum of states ;n.k-Space and, hence, must be used
with an electronic density of states. Later it may become
necessary toAmod;fy the spin density of-//wiﬁr)
to reflect the occurance of antiferromagnetic giructure in
this band. Such a modification can be included in the
spinor factor :><§I) which may be set to vary spa-
tially from spin up to spin down with a period one half of
that of the lattice.

Representation of the conduction states should be much

simpler. For one thing, the density of these electrons
should not vary grossly within the unit cell since they are
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free electron like and hence are most easily represented by
some variety of plane wave. Ordinary plane waves would
suffice but should require that a large number of thembe used
in order to cope with strongly varying potentials throughout
the crystal. On the other hand, augmented plane waves (APW)
are particularly advantageous in the sense that they are
most frequently used in band structure calculatid;s making
it easier to apply the results of such calculations to this
particular investigation. Orthogonal plane waves (OPW) of-
fer a third alternative which should be most compatible with
using tight binding functions to represent the localized

states.

ikx

K= S '

ADXAG SWINCI S
§

For §=1,2,°r 3, _/\_ represents a localized d

state whereas other values of § imply core states. Again,

1t may become necessary to include a spatially dependent
spinor factor X QIJ if antiferromagnetic effects
appear to become important.

Up until now, the important parameters n, and n, (the

numbers of conduction electrons and localized electrons per

atom respectively) have remained unspecified. Since the
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localized '1‘28 electrons are nearest neighbor correlated,

they should contribute substantially to lattice bonding.
The reason is that there exists a critical atomic separa-

tion Re as noted by Goodenoug such that when nearest

neighbor separations are less than Rc’ correlated electrons

T should exhibit a net bonding. Although it is usually

2g
difficult to predict Just how many the localized d-band
would accept for optimum bonding, some relevant informa-
tion can be gained through examination of the magnetic prop-
erties of the system. Slater27 has proposed the possibility
of spin correlations between nearest neighbors. Such cor-
relations would be antiferromagnetic if the band were half
or less filled and ferromagnetic if it were more than half
filled. Moreover, any spin correlations would tend to split

the T band into a bonding and an anﬁibonding part with

2g
each capable of accepting three electrons. The bonding
states would naturally be lower and hence transition metals

with nearly half-filled T, bands would be among the strong-

g
est structurally, 1i.e. groups V and VI. It 1is interesting
to note that the only ordered magnetic material in groups
V and VI is chromium having a net antiferromagnetic moment
of 0.4 Bohr magnetron per atom. As pointed out by Jensen

and Suh128, even weak magnetic ordering can seriously dis-
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rupt superconductivity and, although the coexistance of
ferromagnetism and the superconducting state has been pre-
dicted??, 1t has yet to be observed. All of this means that
it may not be strictly valid to say that chromium is a poor
superconductor for the same reason as molybdenum and tung-
sten. More than likely the processes which tend to dis-
courage superconductivity in molybdenum and tungsten are
present in chromium so that it will still be instructive to
consider it along with the others. Slater27 seems to Just-
ify such unique behavior of chromium by supposing that the
Fermi level of the itineragnt electrons does not lie within

the gap of the split T band. Hence, no net reduction in

2g
energy could be realized in the first place by splitting of

the '1‘28 states since an equal number of electrons would

both raise and lower their energy upon appearance of the gap
produeing no net energy change required for stabilization.
Additional light is shed on this problem by the density of
states calculation for tungsten (Fig. 5). In this case it
is quite apparent that the ng states are probably no more

than half-filled providing that there are approximately the
same number of it iner ant electrons as localized ones. In
fact, it is important to observe at this point, if group V

had two T, _ electrons per atom and group VI had three, then

2g
changing from a partially filled bonding half band to a
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full one may be just the mechanism that effects electron-
phonon coupling and the electronic density of states in
such a way as to diminish superconductivity in group VI.

As for the it inerant electrons, strong arguments
for three such electrons per atom are presented by
Goodenoughzs. These range from observation of the for-
bidden soft x-ray transitions (indicating a strong admix-
ture of p-states in this band) to experimepts in solid
solubility. In any event, when it is assumed that there
are three itenerent electrons per atom in groups V and VI,

the localized T28 states cannot be more than half filled.

Moreover, three electrons per atom would still result in
a more than adequate density of availablgvitinerant con-
duction states to form a strongly superconducting band in

the case of group V.
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CHAPTER III
THE GAP EQUATIONS

The key to successful quantitative investigation of
superconducting phenomena is to realize that the energy
difference associated with the superconducting phase change

is miniscule (about 10"8

eV per conduction electron). With
the methods presently available it would be impossible to
predict superconductivity from a first principles calcula-
tion. Thus it 1s necessary to devise a model which treats
only the subtle interactions leading’to this phenomenon.

To accomplish this one must already have at hand the cor-
rect qualitative picture which assumes the existence of
electron puirau whose momenta are correlated as ‘the result
of a net attractive electron-phonon 1nteraction36. Hence,
ihen writing down an interaction Hamiltonian, one must in-
clude only the mechanisms specifically leading to supercon-
ductivity whilst all other interaction terms can only be
included in the unperturbed Hamiltonian. An additional
consideration must be included. This 1s that the electron
pairs are "condensed" into the ground state (excited pairs
are ruled out in metals as having energies very much higher
than observed for excitations in superconductors). Thus,

in the unpaired remainder of the system being treated by

29
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many-body techniques, provision must be made for the effect
of pairs entering and leaving the condensed state. More-
over, in the unpaired system the total number of particles
will not be a quantum number but the average number for such
a system at equilibrium will, of course, be the expectation
value of the number operator. This allows terms in the
Hamiltonian which do not conserve the total number of par-
ticles, 1.e. those operators that create or destroy one
electron pair.

Before applying the Green function technique, the
NambuBo formalism will be specified. This technique in-
volves essentlally a matrix Green functlon whose off di-
agonal elements represent»Gorkovl;anomalqus propazators
whichAtranﬁfer electron pairs in apd out of the condensate
and has become the more or ;esg qtanda?d‘rprm‘of notation
in the theory as it stands today. In order to find the
exact solution from Dyson's equation one uses the full
Hamiltonian which is:

H= X (Bloch energies of electrons) + I (energies of phonons)
+ I (interactions between electrons) + = (interactions be-
tween electrons and phonons) + (othér terms, i.e. phonon-

phonon interactions, etc.)
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Or,in the notation of second quanti tization

H Ze Ck,s ks +Z’K a..k,.e

=

51‘1‘-‘ ( "}f‘+ a‘b“) Cg" Cls»*

ks (:£§ vor 1
_k,lf, l)s,s

where ék are the Bloch energies relative to the Fermi
level and V is the screened coulomb interaction as a func-
tion of the distance between two electrons. Using Nambu's
notation, define new field operators in terms of column and

row matricies.

'C
= C_ﬂ S[/k Cy :

where the arrows T and l denote spin up and down re-
spectively. Next using | °-z=( é _i » express the
Hamiltonian in terms of these field operators noting that
the spin is handled sutomatically.
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or, neglecting the term Zék (unneeded in Dyson self

energy),

H %6 %059{;2% (Eqetay) ﬁy o= U
-fE% Lﬂ%@ 3

The following development of the gap equations 1is

largely taken from the finite temperature approach given
by Schrieffer, Scalapino, and Wilkins'2(SSW). The finite

temperature phonon propagator 1is

D6,7=~{T{¢qulm Pt =L

where the brackets <--: > denote the grand canonical aver-

age, T is the Wick fime ordering opera,t:or36

= Mpye M7= ¢ HT(ayraly),

and 4= 2]11)//8 . In the Nambu scheme the

finite temperature electron propazator becomes

it [ <TCACE g o)
(e )

Ge(km) Flk o iy
<FT(_|§,’T) C,}.(k;r)) :l,.;e G (k,iwn)

Wh=(2n+1) TR “‘““Ck(~r>=e‘HTCk(o)e"‘Hf

where






It can be seen that C(k;r) accounts for the conden-

11

sate with anomalous propazators Ft and F which create

and destroy electron pairs respectively. Dyson's equa-

tion 1is

()= [C )= (e ]

where
Gl iw)=iwn 1 —€y o

The problem, then, is to determine the self energy

E (k)iwn) « Illustrated with Feynman diagrams, the
self energy is shown in Fig. 3. Using the diagram rules

given in Mattuck35 » the expression (containing terms up
to and including Hartree-Fock) for the self energy is

Z( ‘wn EZ,G_G ‘wh
K, iw,— Lwh)+\/kk}

where \/(kk) is the screened coulomb potential

assumed to be independent of (A)h « The spectral repre-

sentation of the phonon propagator is

D(4i7s)=5/ e DT
::-&- [’Ae L %Z—F{CPT: (T) 4’;* (o?bcl T
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Define the spectral density

Ak-K 'V)=i e ZKJ|¢;°2%LE8('V'E¢+E) 9

where

9= =k-K
(k-k,i'%):[Acx(k‘E»V) 1-,/}. =T n+ ]A‘V 10

Now substitute Eq. 10 into Eq. 7 and transform the sum
over h' into an integral representat'ion using the

. residues of poles within >anA infinite contour C to pro-
Ject out terms of the infinite sum, 1.e. integrating over
the contour will give infinite series of residues of the
‘poles contained within the contour C (see Fig. 4).

Functions tanh _ﬂz?_ and (1 +€_t(921 , one has

the residues for values of FZ =o0dd (T

FLlmT
Lt =T/ — 1
Res(t+€*" 'l’-""‘('lJre"F =]~ PC =

pzn F2 e
P — (Z2— T
Reanh 52 =% oy Wwi%ziz

Now, making use of these residues, let uw.,:-, = to get

)2 };c;_f Gleaa]) Bl Al )

{.;“”rz ‘-VIl-I-ﬂ +(t Wy Z+ H.C }(J'}/-\-\(&) '(.4, h h i‘] Clz 11
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’ /
‘When the contour is deformed to C y ‘two additional

poles must be included whose residues are

Res Glkz) Glt.iw*tv)

T T T

Gl Wwety) Cr(kx‘w'\—'v)
_k?“’“ﬂe VIR, = ] p P
Thus, usingG(k ,w+i<f)-—G(|5 P ) =2ilm G(E.w')

and the fact that the contribution on the circle at in-

finity vanishea, the self energy beeomes

> (kb 2 [SEInGU IS 18, P Palkoki

| 1 ; .
{(Tw..— w'— W+@wn-w'+ ViL e m}dﬂy—%k )tanh%!’jauf

“cz(Glhion)s Gl opl B Al kV)dv ™
- e v

(4]
Letting (W,— W+ti§ , the self energy can
be expressed in terms of the real analytic variable (70
(see Schrieffer” s Po 197). 1Its most general form 1is

> (kw2 bk osdk g + $lhgwley . 13

Since the Hamiltonian is invariant with respect to rota-
tions about O in O space ( Ox and
W are not contained in H), then it is possible
to choose phases such that CFTIS, uu)= 0] . Util-
izing Eq. 6, Eq. 7, and Eq. 8 ‘'one finds the most géneral



4o
expression for the Green function 1is
Zlwl+HE X (kalog + Plk,w) oz
clersFil Sl e

This expression must then be substituted into the free

4

energy yielding a set of four coupled integral equations.

Several steps can be taken to simplify these equa-
tions. PFirst, set the qua.ntityé/(_lg,w) =Ek+X(k)w)
and letA(k'w)E ¢(k'w)/z (k'w) . Then
the following criteria can be used to reduce the algebra
considerably:

(1) X(_k, LU), being due to normal coulomb pro-
~cesses , is slowly varying for changes in (U of the Debye
frequeney and, hence » independent of () .

(2) Z(k' U,)) and ¢( k‘ w) are important

mainly at the Fermi level. Since they vary quite slowly
with JS s one can set |k|:‘<l_ .

(3) Since transition metal superconductors are us-
ually impure, it will suffice to determine the spheri-
cally averaged self energy because impurlity scattering
reduces the effects of 1sotropy.

(4) The chief contribution to the sum overE is
when Ell( o 'K wD . Following essentially the
techniqﬁe of (SSW) the sum over E can be replaced by
continuous 1ntegrétion with the following definitions

1%
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Z:_> ésﬁ; 2{;‘# fdé_kc‘ Qy 15

where n dek kdk . Since the chief contri-

4 l
bution to the sum over L( is near E = ’F\ Wp s
the limits on the integral over ék can be approx-

imated at + ©0O respectively and, hence, by residues

f det oz Gl w _-LTrE_v'Z(w)I-¢(w’)O‘ ] g
k= Z“Vw ZAw)— 6(

with the one pole being above the real axis. By avera-

ging Eq. 12 over the spherical part of k (and remem-
bering that (W) — W +L 5) s Eq. 15 and Eq. 16 can
be applied to yield for the phonon part of the self

energy at k —k}

‘@VIZA\‘ k-k‘V)lgkk“I ‘é;)-w‘w J)(1+e-fj* -w%w:)a_..em}

:
k> oo (1, (M)
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where  (Us= w+(—1)‘“y+ ( + Equation 17 can
be simplified with the transformation of the negative
part of the integral over to the positive portion. Then

Zﬁ,‘fh W= ﬁe%%—%{ Ka (W)}IWHQW?@

where the upper signs belong to factors multiplying the
Ox component only, lower signs belong to factors

multiplying the I component only, and

N N b o)

where the Fermi-Dirac distribution functionflw)

The coulomb self energy 1is

> (0 [T ox Gl tanhsw. o

An approximation 1s developed for the Oy  component
of E c in (SSW) and, hence, only the necessary re-
sults will be stated here.
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These are

A= bl N L Re (e Tanhee

where the "potential" L,L; is approximately
U = VS
A OVANCZN

and 1s the average of the coulomb interaction over

the Ferml surface. This finally completes the develop-
ment of the finite temperature gap equations. It 1is
apparent .that, even in reduced form, they are intractable
and, thus, some further approximation is needed to bring
forth a reasonably accurate set of solutipns.

In practice, the gap equations can be solved by com-
puter for the zero temperature éase. Finite temperature
properties can often then be accurately found from the
zero témperature,solutions by rules obtained with exper-
imental evidence. From Eq. 18 and Eq. 20, the zero tem-

perature gap equations become

/\w)= _Z(w Jo/ Re{vwé_(%_)_ }KJ((w',M

-0 iRef ot

21

22



by

and

ER R TEREE T
where /\(w)= d’“}/,z?_(w) ana  IN() 1s

the electronic density of states at the Ferml level.
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CHAPTER IV
THE ELECTRON-PHONON COUPLING CONSTANT

Derivation of the finite temperature Eliashberg equa-
tions begins with the irreducible self energy

Sl 3 Gléoa{ L 6y Dl tilorad e

>0 Green

where G and D are the electron and phonon Nambu
functions respectively, V is the screened coulomb repul-
sion; and Ek JS""' is the screened electron-phonon coupling
constant. The most important and also most elusive quan-
tity to determine theoretically is 5'%& . This con='
stant will be derived as rigorously as possible utilizing
Bardeen's self consistent calculation including excl'xange;"2
and other necessary modifications needed to tackle the
previously discussed model of groups V and VI transition
elements.

Consider the displacement operator of an ion at
point due to a lattice wave of wave vector Cl and po-

aa':-:lzation :ndex = 1. . -L%’Bn
Sﬁm"'?éavﬁ‘(de e + Q:l;“ ¢

where _6_}8 is the polarization unit vector for wave-
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vector % and polarization index oc=1,2> 3

The normal coordinates are given as

@Tc \/ZP’?‘UT a"b‘ tal 2

where Q_T.( and GLT; are the creation and

annihilation operators for phonons of wave vector m and
polarization index oC . Thus the lattice displacement

operator at lattice point becomes

o1Rn
SR " Z er‘ eﬁ (a.?c +£_T¢)+hc

Now assuming that \/(r) is the external potential at

distance Y from the center of a single ion, the poten-
tial at point B due to displacement of the ion by the
amount &_B will be approximated as V(I "{_B) .
Then the change in lattice potential at point X for a

wave of wave vector i and polarization index =€ 1is
¥[8 £V ViR
m

where W\ is summed over the entire lattice. Substitut-

ing Eq. 3 into Eq. 4 gives
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VS %\AN_I\)W% e (QTHL )éTVV(r- Ro)
+ hC.

This 1s the so-called rigid ion model of Nordheim’>, Let

\/-(I-Bm): Z \/L. e iL'(E‘Bm).

\4 ’1\/2“% a,r +a-(b< f‘i\[ iL-€ 1

Since Z e..(Tj‘) Bm ZN c& an

where G' is the hth reciprocal lattice vector. Then

m‘G-)r
Wz Zwa“*) ”T)Z\é (3G}

The total electron-phonon interaction Hamiltonian for

(.Lr '-(3_1_) Bm

scattering of an electron from state _k S to state
kS 18 Just the matrix element of \/j“ be-
tween states k RY and k S multiplied by
Ck.s Ck Ky which destroys an electron in state
,$  and recreates it in k S . So one can then

write
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He_p hz]séik* Ckscks(a +0 g

k-K=9+Gn

letting

A\ (e Bheg () "

Subscripts i may be replaced by _kk since q

is unique for a given k and the sum over reciprocal
lattice vectors 1s inferred in the sum over k_ k be-

cause Gh is also unique for a given k k in

34

~umklapp processes” . The best way to determine 5kk' ”

nye

is to find

MK =<ng=l<0

which gives

M(‘S)k’)&: %.E*V nT‘ 3 .

To begin the Bardeen calculation it is necessary to

return to

=
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\{*’W%("“%"‘%“)Ze%é g VVERuHC 5

or - |
\4"‘:#2_?\/2%0_5.: .;e §}J7 VIE-Rohe

- whose phonon number eigenvalue has been determined in
phonon occupation number space. Let

upon & conduction electron state |k)

\@D i Z:{-'\[;q'l—( * TQW\/;"IK—T )

where

v(:f:): (kJrO_p't in\é‘“@

and

\Zmd: <_|§-C}Q_gn,\[1)¢“_<> .

TOC

Doing the same to a

o34

d-electron s;ate I _K>

(hd) (hd)

. Ko/ k-9

T-g operate
as

)

4

(=

16a

16b

7

.
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where

Ve =K Gl VKD
\Z: :hd): <|_<‘TC‘" \[1) ¢|K> _ 18b

This represents the action upon a core electron by a

lattice wave of wave vector ‘h -and polarization o .
To be self-consistent, one must also determine how the
electron states are perturbed by such a lattice wave.

For the screening effect, expand the perturbed

electronic states ,k» and |K>> in terms of
| k%: B +7 feqdinllegiGytber il 9.G)

=2

Oa

[

HO) p ke Gy e e >
e BT Q R (Kn Q2

to first order where a, b, A and B are small pertur-

bation coefficients. These latter two equations, when
summed over all of the states of the band in question,

are the net response of that particular band to first

order due to the motion of the ions plus the screening
effect of the other band. Next, call the Hartree-Fock o

potential energy of the d plus conduction-electrons \4{.
0
Operating with \%é upon a perturbed state using
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Vo =€ ST 1) <K% Yk
+ €Y (KKK A -K BRI =

W€ TORKPARIO-PARINK)
+€) K I~ I}

20b

with the specification that the eigenvectors span spin
space as well as Hilbert space and that the sums include
spin. Call the Hartree-Fock potential energy in the per-
turbed lattice \/PT « Then

=" SRKIRIRNRN K PRIRME)
1 TRIK IR -CK PRI

VIO TR IO THRIOKD
TR - (IO

21b
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is the effect upon a particular bandstate perturbed by
the bare ion and screened by the other non-core electrons.

Now substitute Eq. 19 into Eq. 21 and subtract Eq. 20 to

VAP SRS
= PR Lnkrap IR g bR g G
+E‘Y(k'n\ (E-Q-Qxl R-I\E>+LQDJE'\\(§ | R'i‘E-ib-Q%\k))

oty By GUR DA 2 kG R Dl G
BhglErK -G RN by LR Bl SO
TR R R B A AR a6y
BT GIR R R EMKIR -Gl
AR 2GR IR KR ey G

B OEAGRDKIE (R GY| =
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and an identical expreséion with K and k, a and A, and b
and B interchanged.

Equation 22 represents the change in potential energy
of an electron within a given band interacting with a bare
lattice wave of wavevector ?n and polarization o&¢
when properly screened by all of the other electrons in
both bands.

It 1s now necessary to solve the Schrodinger equation
for the perturbation expansion coefficients. For the un-
perturbed lattice, Schrodinger's equatlon is

H, I+, k) =E. (k) o

for the conduction electrons and

Halk )+ IK=E (KK 2
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