THEORY OF TRANSITION ELEMENT SUPERCONDUCTORS

Thests for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY Paul B. Williams 1970

This is to certify that the

thesis entitled

Theory of Transition Element

Superconductors

presented by

Paul B. Williams

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Physics

Thuhae . Harrison Menor professor Date august 13, 1970

O-169

ABSTRACT

THEORY OF TRANSITION ELEMENT SUPERCONDUCTORS

by Paul B. Williams

A theoretical expression for electron-phonon coupling is derived and then used in an attempt to explain differences in superconducting transition temperatures for groups VB and VIB transition metals.

The bare ionic potential, based upon the Herman-Skillman atomic structure calculations, is used to determine unscreened coupling. Screening is then calculated using the Bardeen self-consistent field method modified for exchange. The net result is an expression for the screened electronphonon coupling, $g_{K \ K}$ ', exhibiting a positive dependence upon the electronic density of states at the Fermi level. Such a dependence is due entirely to exchange and is thought to stem from the preference of conduction electrons to group between nearest neighbors in some resonant structure remnant of atomic "d"-electrons.

A suitable computer program is developed to determine the product of coupling times phonon density of states as a function of phonon frequency, $\alpha^2(\omega)F(\omega)$. The method first uses interatomic force constants to determine the phonon density of states, $F(\omega)$, via the Born-von Karman method. The expression for screened electron-phonon coupling is then incorporated to include umklapp as well as normal scattering processes. Finally, within the currently accepted theory of superconductivity, $\alpha^2(\omega)F(\omega)$ is used to determine an expression for the superconducting transition temperature of tantalum and tungsten.

THEORY OF TRANSITION ELEMENT

SUPERCONDUCTORS

By Paul B

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

G \$5147 1-15.71

ACKNOWLEDGMENTS

I wish to thank Dr. Michael Harrison for his excellent guidance and encouragement throughout the course of this research. Special thanks to Dr. William Hartmann for providing a copy of the Gilat and Raubenheimer program, G(NU), and for some very helpful advice in the area of accoustical properties of solids.

Also, I wish to thank Jean Strachan for a truly outstanding job of typing.

TABLE OF CONTENTS

																				1	Page
ACKNO	WLI	EDGMEN	rs .	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	٠	11
LIST	of	TABLE	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	IV
LIST	of	FIGUR	es .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	V
Chapt	;er																				
I		INT	RODU	CTI	ON	ſ	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	1
II		THE	THE	ORY		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
III		THE	GAP	Eq	UA	TI	[ON	IS	•	•	•	•	•	•	•	•	٠	•	•	•	29
VI		The	ELE	CTR	ON	- I	PHC)NC	DN	cc)UF	LI	NG	łC	ON	IS]	PAN	T	•	•	46
v		EVA	LUAT	ION	0	F	MA	TF	IX	E	LF	ME	NI	S	•	•	•	•	•	٠	66
VI		THE SUP	oret Erco	ICA NDU	L ICT	IN IN	ive IG	esi Ta	'IG N'I	rai 'Ai	UN)N I A	OF NI	, P I	'UN	GS	STE	EN	•	•	74
VII		CON	CLUS	ION	ſ	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	91
Apper	ndio	ces																			
A		EVA	LUAT	ION	I C	F	I	1 1 1	n	•	•	•	•	•	•	•	•	•	•	٠	9 6
В		EVA	LUAT	ION	I C	F	IN	T	EGI	IA	S	•	•	•	•	•	٠	•	٠	•	100
C		ÇOM	PUTE	RI	PRC	GI	RAN	ſ.	٠	•	•	•	•	•	•	•	•	•	•	٠	105
list	of	REFER	ENCE	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	139

LIST OF TABLES

Table		Pa	age
1.	Isotope effect (experimental for some simple and transition metals	•	5
2.	Summary of physical parameters influencing superconductivity	•	10
3.	Character table of the cubic group 0	•	2 0
4.	List of potential coefficients and force constants for tantalum	•	84
5.	List of potential coefficients and force constants for tungsten	•	85
6.	λ vs K for tantalum and tungsten	•	92

LIST OF FIGURES

Figure		Page
1.	Qualitative behavior of superconducting transition temperatures through the periodic system	12
2.	Areas of maximum electron density within the B.C.C. primitive cell for electrons having group symmetry	23
3.	Important diagrams contributing to self energy	35
4.	Contours in complex plane showing some poles at odd 7 / B	38
5.	Theoretical density of states for tungsten from band structure data	45
6.	Density of phonon states for tantalum	87
7.	Density of phonon states for tungsten	88
8.	Coupling times density of states for tantalum	89
9.	Coupling times density of states for tungsten	90
10.	λ vs K _f for tantalum	94
11.	λ vs K _f for tungsten	94

CHAPTER I

INTRODUCTION

The first successful microscopic theory of superconductivity was presented by Bardeen, Cooper, and Schrieffer (B.C.S.) in 1957¹ and then later refined into a more elegant and accepted form by Valatin² and Bogoliubov³. In simplest terms, the theory assumes attractive Cooper⁴ electrons forming pairs of opposite momentum and spin which reside in a condensed ground state $| \mathcal{V}_o >$ A reduced hamiltonian (H_{red.}) which considers only the electron pairs is used in conjunction with a parameterized trial ground state wavefunction subject to the constraint that the expectation value of the total number of particles is some fixed number N_o. Let C_{k1}^{\dagger} and Ckl be creation and annihilation operators for electrons in state k(spin 1/2) and state -k(spin -1/2) respectively.

with

$$\left|\mathcal{V}_{o}\right\rangle = \prod_{k} \frac{1 + \lambda_{k} C_{k}^{\dagger}}{\sqrt{1 + \lambda_{k}^{2}}} \left|\mathcal{V}_{vac}\right\rangle.$$

The parameter λ_k in the ground state wavefunction is then determined by normal variational methods for a minimum ground state free energy (see Schrieffer⁵). The key results are that the pairing phenomenonis effective within a small range of energies of approximately $2 \hbar \omega_D$ (ω_D = Debye frequency) about the Fermi energy and that quasiparticle excitations from the ground state always have an energy greater than or equal to an energy gap Δ . The B.C.S. result for Δ is, in the weak coupling limit (small ν), $\Delta \cong 2 \hbar \omega_D e^{-1/N(0)V}$

$$2 \bigtriangleup \cong 3.5 \text{ k}_{\text{B}} \text{T}_{\text{C}}$$

where N(o) is the density of electronic states at the Fermi energy and V is an effective pairing potential acting only within the range of energies about the Fermi level where pairing is approximately assumed to exist. Although the B.C.S. theory was highly successful in predicting qualitative features of superconductors, it soon became apparent that a more powerful theory was due. One had to consider the retarded nature of the electron-phonon interaction and the screened coulomb repulsion between electrons before serious attempts could be made to calculate quantitative properties of superconductors from first principles.

A particularly useful feature of the B.C.S. theory is the isotope effect. If one considers the isotopes of any particular element, each arranged in its own lattice, the normal frequencies of vibration will be $\omega^2 \propto k/M$ in the harmonic approximation where M is the mass of the isotope in the lattice in question and k is an effective spring constant common to all the isotopes of that particular element. Since the transition temperature T_c satisfies Eq. 4, then the ratio of the transition temperatures between any two isotopes of a given element is

6

This important result is known as the isotope effect. Although it does not include the effects of mutual coulomb repulsion between pairs, it is supported quite well by the simple metals including such strong coupled superconductors (V large) as lead and mercury. However, transition metal superconductors are a different story altogether. They seem to exhibit little or no isotope effect and agreement exists in too few cases to produce any firm conclusions. The results of measurements of the superconducting transition temperatures of various isotopes is shown in table 1 $\infty \sim 6$. It would seem that for the where transition metals, the B.C.S. theory fails because either the electron pairing potential is not phonon mediated but possibly due to some overscreening by nonsuperconducting electrons in different bands as suggested by several authors' or that some electronic mechanism, intermediate to the superconducting electrons and the ions, serves to alter the bare electron-phonon coupling constant in ways more complex than previously described.

Not long after the advent of the B.C.S. theory, theoreticians attempted to apply Green function methods to the superconducting many body problem. Their goal was to develop a theory that would predict the superconducting properties of metallic superconductors from the most basic properties of the metals themselves. Ordinary Green

Simple Metal	B	Transition Metal	ß
РЪ	0.48	Os	0.21
Hg	0.50	Ru	0
Sn	0.51	Мо	0.33
Tl	0.49		
Zn	0.50		
Cd	0.40		

ł

Table 1. Isotope effect (experimental) for some simple and transition metals.*

* The quantity 8 is defined with $T_c \sim M^{-8}$.

functions soon met with failure due to infinities resulting from summing over certain Feynman diagrams of a given order. The culprits are those diagrams where two electrons of opposite momenta and spin repeatedly scatter against each other. These difficulties were soon surmounted, however, with the introduction of "anomalous propagators" (see Gorkov⁸) which destroy and create Cooper⁴ pairs in the ground state. The entire Green function problem was reformulated into a matrix form (Nambu⁹) and was successfully applied by Eliashberg¹⁰ to the problem of strong coupled superconductors.

Strong coupling was particularly troublesome because a large electron-phonon coupling constant would tend to produce such energetic quasiparticle excitations that the resulting lifetimes would be considerably shortened (because of increased available phase space for their decay) to the point where the width (due to uncertainty considerations) of the quasiparticle levels is comparable to the energy of the excitations themselves. The problem was acute until an important result by Migdal¹¹ was applied by Eliashberg¹⁰ yielding a set of coupled integral equations which form the basis of the theory as it stands today. Important coulomb effects were soon incorporated¹² giving a set of equations (known as the Eliashberg gap equations) which should enable one to calculate the super-

conducting properties of metals and semiconductors to a relatively high degree of accuracy. These equations form a vital part of this research and, therefore, will be developed in detail later.

Use of the Eliashberg equations to find the superconducting transition temperature T_c was successfully applied to aluminum, sodium, and potassium by Carbotte and Dynes¹³. Essentially, they began by using the Heine-Abarenkov form of the electron-ion pseudopotential¹⁴ from which they could obtain the electron-phonon coupling constant. The necessary phonon characteristics were represented through the use of a Born-von Karman force constant fit to phonon dispersion data in the high crystalline symmetry directions where the number of nearest neighbors considered depended upon the complexity of the phonon dispersion curves for the superconductor in question. The Eliashberg equations were then solved self consistently on a computer yielding results that were quite successful. The transition temperature for both nonsuperconducting sodium and potassium was determined to be less than $\sqrt{6}^{5}$ K. For aluminum, the predicted transition temperature differed by less than 10% from the experimental value. In addition, the first strong coupled superconductor to be investigated using the Eliashberg equations was lead which has the pecularities

as described earlier. Experimental results for lead strongly support the Eliashberg form as opposed to previous models. Finally, little or no progress has been made in determining the superconducting properties of transition metals from first principles. Their electronic band structure is of such complexity that it is difficult, if not impossible, to make use of pseudopotential methods to determine values of electron-phonon coupling.

If the Eliashberg equations are considered a truly accurate set of solutions to the problem of superconductivity and if superconducting properties can be accurately measured, then it would be logical to ask if these equations could be applied in reverse to determine some of the more elusive properties of solids from their superconducting properties. Such a problem was undertaken by McMillan¹⁵ who applied it to a variety of materials including transition metal superconductors and their alloys. The primary objectives were an empirical electron-phonon coupling con- λ and a coulomb coupling constant μ^{\star} stant 8.5 defined by Morel and Anderson¹⁶. From these empirical constants the quantity $\langle G_{T}^{2} \rangle$ (the average squared electronic transition matrix element¹⁷ was found for several transition metal superconductors. All of this was accomplished as follows. The average electron-phonon coupling $\swarrow'(\omega)$ as a function of frequency and the phonon

density of states $F(\omega)$ are determined as the product $\alpha^2(\omega)F(\omega)$ directly through the insertion of experimentally determined superconducting properties into the Eliashberg equations. Then the quantity $\langle G_{\tau}^2 \rangle = \frac{\lambda M}{N(0)} \langle \omega^2 \rangle$ 18: 7 where $\lambda = 2 \int d\omega \, \alpha \, c^2(\omega) F(\omega)$ 8

 $\langle \omega^{2} \rangle = \frac{\int d\omega \, \alpha^{2}(\omega) F(\omega) \omega}{\int d\omega \, \alpha^{2}(\omega) F(\omega)}$

9

and

The results are summarized in table 2. In this scheme McMillan has demonstrated that, for group V and VI B.C.C. transition metals (except magnetic chromium), the factor

 $\left| \left(0 \right) \left\langle C_{T}^{2} \right\rangle \right|$ remains essentially constant and that T_{c} depends upon $\left| \left\langle \omega^{2} \right\rangle \right|$ (the stiffness of the lattice). These results are uncommon and, as he pointed out, no satisfactory theoretical explanation has been given for such phenomena.

The present theory of superconductivity seems to be satisfactory with the possible exception of the transition

Metal	^T (⁸ k)	^я В, (Зк)	γ (mJ/mole ⁰ K ²)	N(O) (states/el	[w ²]1/2 /atom)	۲ ⁶²] (eV ² /8 ²)	N(0)[G ²] (eV/Å ²) ⁻
Λ	5.30	3 99	6.9	1.31	290	3.5	4.6
Nb	9.22	277	7.8	16.0	230	7.9	7.2
Та	4.48	258	0 •9	0.77	170	7.9	6.1

Table 2. Summary of physical parameters influencing superconductivity¹⁵.

	ц С Ц	Ч С	7	N(0)	[m ²] ^{1/2}	[G ²]	N(0)[G ²]
	(^{~K})	(³ K)	(mJ/mole ⁰ K ²	²)(states/eV	ratom)	(eV ² /Å ²)	(eV/Å ²) ⁻
>	5.30	3 99	6.9	1.31	290	3.5	4.6
Ŋ	9.22	277	7.8	16.0	230	7.9	7.2
Та	4.48	258	6.0	0.77	170	7.9	6.1
Mo	0.92	460	1.83	0.275	310	24 . 6	6.8
м	0.012	390	06.0	0.148	250	42.5	6.3
Al	1.16	428	1.35	0.206	330	9.7	2.0
In	3.40	112	1.69	0.21	011	4.8	1.76

10

2.34

7.8

75

0.30

00•€

105

7.19

പ്പ

Ì.

metals. These metals can be among the best superconductors and, when properly alloyed, the transition temperature and critical field can be greatly increased (i.e. Nb₃ Sn and $V_{3}Si$) which seems to indicate that physical features which give rise to superconductivity are very sensitive to the electronic structure in the case of Nb and V. If one plots the transition temperature T, versus the number of valence electrons per atom for transition metals and compares it with a similar plot for simple metals, as was done by Matthias¹⁸, (Figure 1), there appears to be little agreement as to how T_c varies with the number of valence electrons per atom. This certainly suggests that, as in many other phenomena, transition metal superconductors must require a modified or perhaps totally different treatment than was used for the case of simple metals. In fact, if one compares the transition temperatures of the group V transition metals with those of group VI transition metals, it becomes apparent that, with the addition of one more noncore electron per atom, the excellent superconducting properties of group V are lost in group VI. Assuming that the theory of superconductivity is correct, it is then logical to try to find a means to determine the degree of electronphonon coupling and the best value for the density of states (including only those electrons that can take part in pair-

ļ

ing) for these two groups. It certainly would not be unreasonable to suppose that not all of the remnants of the s and d atomic states are itinerant. Perhaps a sizable fraction are not available for pairing but do act as an intermediate device to enhance coupling between the paired electrons and the ions. This would most likely reduce the density of available states but, at the same time, could substantially increase the effective electron-phonon interaction. Such a concept is worthy of consideration and, therefore, will be explored in as much detail as present knowledge of the group V and VI transition metals will allow.

CHAPTER II

THE THEORY

This problem is primarily concerned with the electronic structure of the group V and group VI transition metals. As completely free atoms, transition elements are characterized by two partially filled atomic subshells (3d4s, 4d5s, or 5d6s) as opposed to the usual <u>one</u> (or completely filled shells as in the case of the inert gases). The number of electrons residing in both the s and d subshells determines the chemical and metallurgical characteristics of the element in question. For groups V and VI, the atomic configurations are:

The objective is to determine how these electrons in partially filled subshells (valence electrons) interact with valence electrons of adjacent atoms in a metallic solid. It is often stated that the unfilled s and d subshells transform into overlapping s and d bands in the solid state. Moreover, a frequent assumption is that the relative propor-

tion of electrons in each of these bands is the same as it was for the partially filled atomic subshells. A more realistic viewpoint, however, is one proposed by several authorities^{19,20} in this area which is that the valence electrons collect into two fairly distinct groups. One such group is quite localized and may possibly be represented by some linear combination of the former d orbital wavefunctions. The second group would be an itinerant conduction-like band which could probably be represented by plane waves properly orthogonalized to both core states and the localized states of the first group. It seems plausible that these two bands overlap with the localized band being the narrower of the two. Moreover, the number of electrons per atom residing in each of these bands would, in all likelihood, not be in the same proportion as the relative numbers of electrons in the s and d atomic subshells respectively. Such are the foundations to be later utilized in setting up an electronic model of the group V and VI transition metals.

If one is to base a model on the concept of two overlapping bands where one is localized and the other it¹ nerant and conduction-like, then it is fruitful at first to investigate how such a configuration might affect the pairing interaction in superconductors. The conditions for pairing are most favorable with a strong electron-phonon

coupling constant and a high available electronic density of states at the Fermi surface. The question then arises as to whether all of the valence electrons are available for pairing. Perhaps either the more localized electrons or the conduction electrons do not take part in the pairing process at all and hence one must use a density of states that accurately reflects this reduction of available electronic states. Certainly, then, if a given proportion of the valence electrons do not contribute to the pairing process, transition metal superconductivity may be enhanced through a mechanism other than a high electronic density of states. Another possibility would be to examine how these non-superconducting valence electrons might tend to modify ion (phonon) coupling to the superconducting electrons. If this modified coupling were quite sensitive to the number of electrons in localized bands, then the difference of a valence electron per atom between transition groups V and VI could account for the gross contrast between their ability to superconduct provided the extra electron in group VI were in the localized d band.

The model to be used will be one in which n_d valence electrons per atom reside in localized d-like band states and n_c valence electrons per atom form an itinerant conduction band. The question naturally arises as to which band

contains the superconducting electron pairs. In the past, it has been quite customary to consider the itinerant electrons as those available for pairing ^{21,22}. The localized states are then usually treated as either intermediate states for electron pair scattering by the lattice ions or as states acting directly between the pairs by providing an additional attractive coupling mechanism. McMillan¹⁵ seems to avoid this question altogether when he uses a density of states based upon the electronic specific heat $\check{\mathbf{0}}$. Although the argument for d-like electrons over-screening the conduction electrons would enhance superconductivity, it makes little sense to consider electrons with a supposedly high effective mass as capable of screening the effectively lighter conduction electrons. However, it would not suffice to say that electrons with high effective mass cannot be screening agents in the case of the ions due to the fact that they are also strongly coupled (source of high effective mass). Whether or not screening of one band by a second could enhance the electron-ion interaction of the first should be analyzed. These arguments give rise to two possibilities:

(1) The conduction band electrons form superconducting pairs. The d-band electrons screen the motion of the ions in such a way so as to enhance electron-phonon coupling in group V and diminish it in group VI. The difference in

superconducting properties between groups V and VI is attributed to the difference of one electron per atom in the d-band.

(2) The d-band electrons form superconducting pairs. The conduction band electrons serve as a screening mechanism to alter electron-phonon coupling and reduce the effective coulomb repulsion between d band electrons. The high density of states of the group V d band at the Fermi level greatly assists superconductivity whereas a small density of states in group VI all but destroys it. Again, there is a difference of one electron per atom in the d bands of group V and group VI.

One of the most crucial portions of the model will be the structure of the localized electrons. One must know their density of states distribution, energies, and, if possible, their wavefunctions. Unlike core electrons, the localized electrons cannot be associated solely with a particular ion within the crystal. The characteristic that distinguishes them from conduction electrons is that their distribution varies grossly within the structure of the unit cell. Localized electrons will tend to bunch up mainly between nearest neighbors and next nearest neighbors respectively. Such electrons should be sensitive to the motion of the ions even though they cannot be associated solely with any one particular lattice site. Since both group V and

. . 18 group VI transition metals have BCC crystal structure, it is best to examine splitting of d-orbital wavefunctions in a cubic field before attempting to use them in constructing localized band states. Basis functions from which the localized states can be formed are as follows: $X = \sqrt{2T/15} \left\{ \frac{1}{2} (\Theta, \phi) - \frac{1}{2} (\Theta, \phi) \right\}$ $\sqrt{Z} = \sqrt{\frac{2T}{15}} \left\{ \frac{1}{2} (\Theta, \phi) + \frac{1}{2} (\Theta, \phi) \right\}$

 $= \sqrt{27_{15}} \left\{ \frac{1}{2} \left(\Theta, \phi \right) - \frac{1}{2} \left(\Theta, \phi \right) \right\}$ $= \sqrt{2} \left\{ \sqrt{2} \left(\Theta, \phi \right) + \sqrt{2} \left(\Theta, \phi \right) \right\}$ $= \sqrt{2} \left\{ \sqrt{2} \left(\Theta, \phi \right) + \sqrt{2} \left(\Theta, \phi \right) \right\}$

 $3 Z^2 - R^2 = \sqrt{16 T_{15}} \left\{ \begin{array}{c} y'(\phi, \phi) \\ \phi \\ y'(\phi, \phi) \end{array} \right\}$ where $y'_2(\phi, \phi)$ are the orthonormal spherical harmonics forming a basis for the angular part of atomic d wavefunctions. These new basis functions are all mutually orthogonal and therefore must span the same space as y'_2 . The purpose of the particular basis becomes quite clear when one examines the full cubic group Oh, (Table 3). The functions $\chi^2 - \gamma^2$ and $3 Z^2 - R^2$ form a basis for the two diminsional representation E_g and χ' , $\chi' Z'_j$ and Z' form a basis for the three diminsional represen-

0
group
cubic
the
of
table
Character
й.
Table

*

t

	Class	E	8c ₃	3C2	6c21	6c4
Basis R	epresentation					
R ²	Al	1	г	ы	I	J
x ² -y ² ,3z ² -R ²	ы	Q	۲.	N	0	0
	A2	г	Ч	ы	Ļ	Ч '
Χ,Υ,Ζ	r_1	r	0	1-	Ļ	Ч
XZ, ZY, YX	си Е	Ŕ	0	Ļ	Ч	Ļ
*The full cubic g	roup O _n = OBI whe	ere I 1s t	the invers	tion group ²	5	

ł

20

tation 2g. This means that under spatial operations which preserve the symmetry of the full cubic group, these basis functions do not mix but transform only into linear combinations of the members belonging to their own particular basis. For small cubic crystal fields, the five-fold degenerate atomic d-levels would be split into a doubly degenerate \mathbf{E}_{g} level and triply degenerate \mathbf{T}_{2g} level respectively. Stronger cubic fields (as in a crystal) will further split these levels in every atom of the crystal thus forming two distinct bands. These bands are in accord with Fig. 2 showing electronic structures within the BCC primitive cell²⁴.

These structures as shown in Fig. 2 can be inferred from examination of the angular dependence of XY, YZ, and ZX for the T_{2g} case or X^2-Y^2 and $3Z^2-R^2$ for the E_g case provided that the wavefunctions are formed from proper linear combinations of the basis functions so as to preserve cubic symmetry. Such wavefunctions will be referred to as hybridized T_{2g} or hybridized E_g respectively²⁴. Since, in both groups V and VI, there are insufficient valence electrons to fill both T_{2g} and E_g states, it is natural to determine which of these bands would lie at the lowest energy and hence begin filling first. Because it is generally true that nearest neighbor correlations are stronger than next

Areas of maximum electron density within the B.C.C. primitive cell for electrons having T_{2g} (E) group symmetry. Figure 2.

i

•

nearest neighbors and so forth for more distant ions, then the states representing correlations between nearest neighbors might be expected to receive electrons at a lower energy than the next nearest neighbor correlated E_g states. Although band structure data is seriously deficient for groups V and VI transition metals, one can investigate the band structure of one particular metal (tungsten) in hope of getting a handle on the essential features of band structures of chemically similar materials. Mattheiss²⁵ proposes that the band structures of the BCC transition metals (group V and VI) should be quite similar to one another with the Fermi energy being determined from the total number of valence electrons. Upon examination of the theoretical density of states curve as plotted by Mattheiss for tungsten (Fig. 5), there appears to be four fairly distinct peaks with the lower three appearing quite similar. Furthermore, it seems that for up to six valence electrons per atom, the lower portion would provide a sufficient number of states to accomodate all of the valence electrons. Although this problem will be reconsidered later in the discussion of the filling of the bands, it will suffice to say now that the $T_{\rho \sigma}$ states will be used to represent the localized electrons and the E_g states can be disregarded for the use of six or less valence electrons per atom.

ì

Proper tight binding wavefunctions representing T_{2g} states

$$\int_{\underline{K},s}^{\delta} \frac{(\mathbf{r})}{4\pi N} = \sqrt{\frac{15}{4\pi N}} \sum_{j} e^{i\underline{K}\cdot\underline{r}_{j}} \phi_{\delta}(\mathbf{r}-\mathbf{r}_{j}) \chi_{s}(\mathbf{r})$$

1

where the sum over j is over the entire lattice and

$$\phi_1 = f(r) X Y_3 \phi_2 = f(r) Y Z$$
 and $\phi_3 = f(r) Z X$. 2

The convergence factor f(t) satisfies the normalization $\int f(r) + f(r) = 1$ condition that and is best guessed at from the atomic d-electron radial wavefunctions²⁶ or the band structure itself. If f(r) is normalized as it is here, then these wavefunctions represent a continuum of states in k-space and, hence, must be used with an electronic density of states. Later it may become necessary to modify the spin density of $\bigwedge_{K,S}^{\delta}(\mathbf{r})$ to reflect the occurance of antiferromagnetic structure in this band. Such a modification can be included in the $\chi(\mathbf{L})$ which may be set to vary spaspinor factor tially from spin up to spin down with a period one half of that of the lattice.

Representation of the conduction states should be much simpler. For one thing, the density of these electrons should not vary grossly within the unit cell since they are
free electron like and hence are most easily represented by some variety of plane wave. Ordinary plane waves would suffice but should require that a large number of them be used in order to cope with strongly varying potentials throughout the crystal. On the other hand, augmented plane waves (AFW) are particularly advantageous in the sense that they are most frequently used in band structure calculations making it easier to apply the results of such calculations to this particular investigation. Orthogonal plane waves (OFW) offer a third alternative which should be most compatible with using tight binding functions to represent the localized states.

$$\mathcal{W}_{\underline{k},s}(\underline{\mathbf{r}}) = \begin{cases} \frac{e^{i\underline{\mathbf{k}}\cdot\underline{\mathbf{r}}}}{\sqrt{N}} - \\ \frac{1}{\sqrt{N}} \sum_{\underline{s}} \langle \Lambda_{\underline{k}}^{\underline{s}}(\underline{\mathbf{r}}) | e^{i\underline{\underline{k}}\cdot\underline{\mathbf{r}}} \rangle \Lambda_{\underline{s}}^{\underline{s}}(\underline{\mathbf{r}}) \end{cases} X_{\underline{s}}^{\underline{s}}(\underline{\mathbf{r}})$$

3

For $\delta = 1, 2, \text{ or } 3, \bigwedge$ represents a localized d state whereas other values of δ imply core states. Again, it may become necessary to include a spatially dependent spinor factor $\chi'(\mathbf{r})$ if antiferromagnetic effects appear to become important.

Up until now, the important parameters n_c and n_d (the numbers of conduction electrons and localized electrons per atom respectively) have remained unspecified. Since the

€ C

localized T_{2g} electrons are nearest neighbor correlated, they should contribute substantially to lattice bonding. The reason is that there exists a critical atomic separation R as noted by Goodenough²⁴ such that when nearest neighbor separations are less than R_c, correlated electrons T_{2g} should exhibit a net bonding. Although it is usually difficult to predict just how many the localized d-band would accept for optimum bonding, some relevant information can be gained through examination of the magnetic properties of the system. Slater²⁷ has proposed the possibility of spin correlations between nearest neighbors. Such correlations would be antiferromagnetic if the band were half or less filled and ferromagnetic if it were more than half filled. Moreover, any spin correlations would tend to split the T_{2g} band into a bonding and an antibonding part with each capable of accepting three electrons. The bonding states would naturally be lower and hence transition metals with nearly half-filled Tpg bands would be among the strongest structurally, i.e. groups V and VI. It is interesting to note that the only ordered magnetic material in groups V and VI is chromium having a net antiferromagnetic moment of 0.4 Bohr magnetron per atom. As pointed out by Jensen and Suhl²⁸, even weak magnetic ordering can seriously dis-

rupt superconductivity and, although the coexistance of ferromagnetism and the superconducting state has been predicted²⁹, it has yet to be observed. All of this means that it may not be strictly valid to say that chromium is a poor superconductor for the same reason as molybdenum and tungsten. More than likely the processes which tend to discourage superconductivity in molybdenum and tungsten are present in chromium so that it will still be instructive to consider it along with the others. Slater²⁷ seems to justify such unique behavior of chromium by supposing that the Fermi level of the itinerant electrons does not lie within the gap of the split T_{2g} band. Hence, no net reduction in energy could be realized in the first place by splitting of the T_{2g} states since an equal number of electrons would both raise and lower their energy upon appearance of the gap producing no net energy change required for stabilization. Additional light is shed on this problem by the density of states calculation for tungsten (Fig. 5). In this case it is quite apparent that the T_{2g} states are probably no more than half-filled providing that there are approximately the same number of it iner ant electrons as localized ones. In fact, it is important to observe at this point, if group V had two T_{2g} electrons per atom and group VI had three, then changing from a partially filled bonding half band to a

;.. . 4 ŗ. 90 20 :0 H in. Va 80 d. 2 th N: 1 đ tł

;

full one may be just the mechanism that effects electronphonon coupling and the electronic density of states in such a way as to diminish superconductivity in group VI.

As for the itinerant electrons, strong arguments for three such electrons per atom are presented by Goodenough²⁵. These range from observation of the forbidden soft x-ray transitions (indicating a strong admixture of p-states in this band) to experiments in solid solubility. In any event, when it is assumed that there are three itenerent electrons per atom in groups V and VI, the localized T_{2g} states cannot be more than half filled. Moreover, three electrons per atom would still result in a more than adequate density of available itinerant conduction states to form a strongly superconducting band in the case of group V.

ŧ

~

~

51

pı

t

01

1

Þ

t

CHAPTER III

THE GAP EQUATIONS

The key to successful quantitative investigation of superconducting phenomena is to realize that the energy difference associated with the superconducting phase change is miniscule (about 10^{-8} eV per conduction electron). With the methods presently available it would be impossible to predict superconductivity from a first principles calculation. Thus it is necessary to devise a model which treats only the subtle interactions leading to this phenomenon. To accomplish this one must already have at hand the correct gualitative picture which assumes the existence of electron pairs whose momenta are correlated as the result of a net attractive electron-phonon interaction³⁶. Hence, when writing down an interaction Hamiltonian, one must include only the mechanisms specifically leading to superconductivity whilst all other interaction terms can only be included in the unperturbed Hamiltonian. An additional consideration must be included. This is that the electron pairs are "condensed" into the ground state (excited pairs are ruled out in metals as having energies very much higher than observed for excitations in superconductors). Thus. in the unpaired remainder of the system being treated by

many-body techniques, provision must be made for the effect of pairs entering and leaving the condensed state. Moreover, in the unpaired system the total number of particles will not be a quantum number but the average number for such a system at equilibrium will, of course, be the expectation value of the number operator. This allows terms in the Hamiltonian which do not conserve the total number of particles, i.e. those operators that create or destroy one electron pair.

Before applying the Green function technique, the Nambu³⁰ formalism will be specified. This technique involves essentially a matrix Green function whose off diagonal elements represent Gorkov¹¹ anomalous propagators which transfer electron pairs in and out of the condensate and has become the more or less standard form of notation in the theory as it stands today. In order to find the exact solution from Dyson's equation one uses the full Hamiltonian which is:

H= Σ (Bloch energies of electrons) + Σ (energies of phonons) + Σ (interactions between electrons) + Σ (interactions between electrons and phonons) + (other terms, i.e. phononphonon interactions, etc.)

or, in the notation of second quantitization

$$H = \sum_{k,s} \in C_{k,s}^{\dagger} C_{k,s} + \sum_{q_{j}, q} h \omega_{q_{j}, q} a_{q_{j}, q}^{\dagger} a_{q_{j}, q}^{\dagger}$$

$$+ \sum_{\substack{k,k',s,q}} \tilde{\mathcal{G}}_{k,k',q} \left(a_{-q_{j}, q}^{\dagger} + a_{q_{j}, q} \right) C_{\underline{k},s}^{\dagger} C_{\underline{k},s}$$

$$+ \frac{1}{2} \sum_{\substack{k,k',l,s,s'}} \langle k - l | \langle k' + l | \sqrt{|k'|} \rangle C_{k-l,s}^{\dagger} C_{\underline{k}',s'}^{\dagger} C_{\underline{k}',s'} C_{\underline{k}',s'}^{\dagger} + \cdots$$
¹

where \in_k are the Bloch energies relative to the Fermi level and V is the screened coulomb interaction as a function of the distance between two electrons. Using Nambu's notation, define new field operators in terms of column and row matricies.

$$\Psi_{\underline{k}} = \begin{pmatrix} C_{\underline{k}\uparrow} \\ C_{\underline{k}\downarrow} \end{pmatrix} , \quad \Psi_{\underline{k}}^{\dagger} = \begin{pmatrix} C_{\underline{k}\uparrow} \\ C_{\underline{k}\downarrow} \end{pmatrix}$$

2

where the arrows \uparrow and \downarrow denote spin up and down respectively. Next using $\sigma_{\Xi} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, express the Hamiltonian in terms of these field operators noting that the spin is handled automatically.

.

Thus,
$$\sum_{\underline{k},s} \in C^{\dagger}_{\underline{k},s} \subset_{\underline{k},s} = \sum_{\underline{k}} \in (C^{\dagger}_{\underline{k},\dagger} C_{\underline{k},\dagger} + C^{\dagger}_{\underline{k},\downarrow} C_{\underline{k},\downarrow})$$

$$= \sum_{\underline{k}} \in (C^{\dagger}_{\underline{k},\dagger} C_{\underline{k},\dagger} + C_{-\underline{k}\downarrow} C^{\dagger}_{-\underline{k}\downarrow} + 1) = \sum_{\underline{k}} \in \mathcal{U}_{\underline{k}} \quad \sigma_{\underline{s}} \quad \mathcal{U}_{\underline{k}} + \sum_{\underline{k}} \in \mathcal{L}_{\underline{k}} \quad ,$$

$$\begin{split} &\sum_{\substack{k,k,s,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) C_{\underline{k},s}^{\dagger} C_{\underline{k},s} \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(C_{\underline{k}\uparrow}^{\dagger} C_{\underline{k}\uparrow} + C_{\underline{k}\downarrow}^{\dagger} C_{\underline{k}\downarrow}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\uparrow}^{\dagger} - C_{\underline{k}\uparrow}^{\dagger} + C_{\underline{k}\downarrow}^{\dagger} C_{\underline{k}\downarrow}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\uparrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger} + C_{\underline{k}\downarrow}^{\dagger}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\uparrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\downarrow}^{\dagger} - C_{\underline{k}\downarrow}^{\dagger}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{k}\downarrow}^{\dagger} - C_{\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{1}\underline{1}} + C_{\underline{1}\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{1}\underline{1}} + U_{\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{1}\underline{1}} + U_{\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{1}\underline{1}} + U_{\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{1}\underline{1}} + U_{\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{1}\underline{1}} + U_{\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k,s} \left(a^{\dagger}_{-\underline{9}^{k}} + a_{\underline{9}^{k}}\right) \left(U_{\underline{1}\underline{1}} + U_{\underline{1}\underline{1}}\right) \\ &= \sum_{\substack{k,k,s}} \vec{e}_{k,k} \left(a^{\dagger}_{-\underline{9}^{k}} + U_{\underline{1}\underline{1}}\right) \left(U_{\underline{1}\underline{1}} + U_$$

$$\frac{1}{2}\sum_{\underline{k},\underline{k},ss} \langle \underline{k}-\underline{l} | \langle \underline{k}+\underline{l} | M \underline{k} \rangle \underline{k} \rangle C_{\underline{k}+\underline{l},s}^{\dagger} C_{\underline{k}+\underline{l},s}^{\dagger} C_{\underline{k},s}^{\dagger} C_{\underline{k},s} C_{\underline{k},s}$$

ļ

 $=\frac{1}{2}\sum_{k=1}^{t} \langle \underline{k} - \underline{k} | V | \underline{k} \rangle \langle \underline{k} \rangle \langle \underline{k} - \underline{k} + \underline{k} \rangle \langle \underline{k} - \underline{k} \rangle \langle \underline{k} - \underline{k} \rangle \langle \underline{k}$

 $=\frac{1}{2}\sum_{k}\langle \underline{k}-\underline{l}\langle \underline{k}+\underline{l}| \vee \underline{k}\rangle \underline{k} \vee \underline{\mu}^{\dagger} = \underline{\Psi}_{\underline{k}} \vee \underline{\Psi}_{\underline{k}+\underline{k}} = \underline{\Psi}_{\underline{k}} \rangle$

or, neglecting the term
$$\sum_{\underline{k}} \in \mathbb{K}$$
 (unneeded in Dyson self
energy),
 $H = \sum_{\underline{k}} \in \mathbb{I}_{\underline{k}}^{\dagger} \circ_{\overline{z}} \circ_{\underline{k}} + \sum_{\underline{k},\underline{k}',\underline{z}} \stackrel{a}{=} a_{\underline{q},\underline{z}} + a_{\underline{q},\underline{z}} \circ_{\underline{k}} \stackrel{\dagger}{=} \stackrel{f}{=} \stackrel{f$

33

The following development of the gap equations is largely taken from the finite temperature approach given by Schrieffer, Scalapino, and Wilkins¹²(SSW). The finite temperature phonon propagator is

$$\bigcup_{\alpha} (\underline{\theta}, \Upsilon) = - \left\langle \top \left\{ \phi_{\underline{\eta}^{\alpha}}(\Upsilon) \phi_{\underline{\eta}^{\alpha}}^{\dagger}(o) \right\} \right\rangle = \frac{1}{\beta}$$

where the brackets $\langle \cdots \rangle$ denote the grand canonical average, T is the Wick time ordering operator³⁶ $\varphi_{p^{\infty}}(\gamma) = e^{iH\gamma} \varphi_{q^{\infty}}(0)e^{-iH\gamma} = e^{iH\gamma}(a_{p^{\infty}} + a_{-p^{\infty}}^{+}),$ and $\mathcal{V}_{h} = 2\pi h/\beta$. In the Nambu scheme the finite temperature electron propagator becomes $G_{T}(k,\gamma) = -i \left(\langle TC_{k}(\gamma)C_{k}(0) \rangle \langle TC_{k}(\gamma)C_{-k}(0) \rangle \right) \langle TC_{k}(\gamma)C_{-k}(0) \rangle \right)$ $= \left(G_{e}(k,\gamma) F(k,\gamma) F(k,\gamma) F(k,\gamma) \right) = \frac{1}{\beta} \sum_{h=-\infty}^{\infty} e^{-i\omega_{h}\gamma} G_{r}(k,i\omega_{h})$ where $\omega_{h} = (2n+1)T/\beta$ $and C_{k}(\gamma) = e^{iH\gamma} C_{k}(0)e^{-iH\gamma}$

ſ

It can be seen that $G(\underline{k}, \gamma)$ accounts for the condensate with anomalous propagators¹¹ F⁺ and F which create and destroy electron pairs respectively. Dyson's equation is

$$G(\underline{k}, i \,\omega_{\mathbf{h}}) = \left[G_{o}^{-1}(\underline{k}, i \,\omega_{\mathbf{h}}) - \sum(\underline{k}, i \,\omega_{\mathbf{h}})\right]^{-1}$$

where

W

$$G_{0}^{-1}(\underline{k},i\omega_{n})=i\omega_{n}\perp-\epsilon_{\underline{k}}\sigma_{\underline{z}}$$
 6

The problem, then, is to determine the self energy

 $\sum (k, i \omega_n)$. Illustrated with Feynman diagrams, the self energy is shown in Fig. 3. Using the diagram rules given in Mattuck³⁵, the expression (containing terms up to and including Hartree-Fock) for the self energy is

$$\sum_{k} (\underline{k}, i\omega_{n}) = -\frac{1}{\beta} \sum_{k, n'} \sigma_{\overline{z}} G(\underline{k}, i\omega_{n'}) \sigma_{\overline{z}} \times \sum_{k, n'} (\underline{k}, \underline{k}, \underline{k}) = -\frac{1}{\beta} \sum_{k, n'} (\underline{k}, \underline{k}, \underline{k}) \sigma_{\overline{z}} \times \sum_{k, n'} (\underline{k}, \underline{k}, \underline{k}) = -\frac{1}{\beta} \sum_{k, n'} (\underline{k}, \underline{$$

7

$$D_{\mathbf{x}}(\mathbf{g},\mathbf{\mathcal{T}}_{\mathbf{n}}) = \frac{1}{2} \int_{\mathbf{p}} e^{\mathbf{\mathcal{T}}_{\mathbf{n}} \mathbf{\mathcal{T}}} D_{\mathbf{x}}(\mathbf{g},\mathbf{\mathcal{T}}) d\mathbf{\mathcal{T}}$$

 $=\mp\frac{i}{2}\int_{C}^{e} e^{i\tau_{h}T} \left\{ \varphi_{g^{*}}(\tau) \varphi_{g^{*}}^{\dagger}(0) \right\} d\tau$

Important diagrams contributing to self energy. Dotted and wavy lines indicate coulomb and phonon processes respectively. Figure 3.

$$=\frac{i}{2}\int_{e}^{e^{i\pi\pi}} \langle \{e^{-iHr}\varphi_{\mathbf{y}}(o)e^{iHr}\varphi_{\mathbf{y}}^{\dagger}(o)\} d\tau, \tau > o$$

$$=\frac{i}{2}\int_{e}^{e^{i\pi\pi}} \langle \{e^{iHr}\varphi_{\mathbf{y}}(o)e^{iHr}\varphi_{\mathbf{y}}^{\dagger}(o)\} d\tau, \tau \leq o$$

$$=\frac{i}{2}\int_{e^{e^{i\pi\pi}}}^{e^{i\pi\pi}} \sum_{i} \langle i|e^{-\rho H}e^{-iHr}\varphi_{\mathbf{y}}(o)e^{iHr}\varphi_{\mathbf{y}}^{\dagger}(o)\} d\tau, \tau \leq o$$

$$=\frac{i}{2}\int_{e^{e^{i\pi\pi}}}^{e^{i\pi\pi}} \sum_{i} \langle i|e^{-\rho H}e^{-iHr}\varphi_{\mathbf{y}}(o)e^{iHr}\varphi_{\mathbf{y}}^{\dagger}(o)|i\rangle d\tau$$

$$=\frac{i}{2}\int_{e^{e^{i\pi\pi}}}^{e^{i\pi\pi}} \sum_{i} \langle i|e^{-\rho H}e^{iHr}\varphi_{\mathbf{y}}(o)e^{iHr}\varphi_{\mathbf{y}}^{\dagger}(o)|i\rangle d\tau$$

$$=\frac{i}{2}\int_{e^{e^{i\pi\pi}}}^{e^{i\pi\pi}} \sum_{i} \langle i|e^{-\rho H}e^{iHr}\varphi_{\mathbf{y}}(o)e^{iHr}\varphi_{\mathbf{y}}^{\dagger}(o)|i\rangle d\tau$$

$$=\frac{i}{2}\int_{e^{e^{i\pi\pi}}}^{e^{i\pi\pi}} \sum_{i} \langle i|e^{-\rho H}e^{iHr}\varphi_{\mathbf{y}}(o)|i\rangle \langle i|e^{iHr}\varphi_{\mathbf{y}}(o)|i\rangle d\tau$$

$$=\frac{i}{2}\int_{e^{e^{i\pi\pi}}}^{e^{i\pi\pi}} \sum_{i} \langle i|e^{-\rho H}e^{iHr}\varphi_{\mathbf{y}}(o)|i\rangle \langle i|e^{i\pi\pi}\varphi_{\mathbf{y}}(o)|i\rangle d\tau$$

D Π No 10 re je t? pc ħ tł R No

Define the spectral density $A_{c}(\underline{k}-\underline{k}, \nu) = \left(\frac{1-e^{\beta \nu}}{2}\right) \frac{\sum_{ij} |\langle j| \phi_{q_{j}}(0)| i \rangle|^{2} \delta(\nu + E_{i} + E_{i})}{\sum_{i} e^{-\beta E_{i}}}$ where $g = \underline{k} - \underline{k}.$

Then

$$D(k-\vec{k},i\nu_{h})=\int_{0}^{\infty}\tilde{A}_{\alpha}(\underline{k}-\underline{k},\nu)\left[\frac{1}{i\nu_{h}-\nu}-\frac{1}{i\nu_{h}+\nu}\right]d\nu \qquad 10$$

Now substitute Eq. 10 into Eq. 7 and transform the sum over h' into an integral representation using the residues of poles within an infinite contour C to project out terms of the infinite sum, i.e. integrating over the contour will give infinite series of residues of the poles contained within the contour C (see Fig. 4). Functions $\tanh \frac{\beta Z}{Z}$ and $(1 + e^{\pm \beta Z})^{-1}$, one has the residues for values of $\beta Z = o \, dd \, i \, T$

$$\operatorname{Res}(1+e^{\pm\beta z}) = \lim_{z \to \Box} \frac{z - i \tau \sqrt{\beta}}{\beta(1+e^{\pm\beta z})} = \frac{\pm e^{\pm c \pi}}{\beta} = \pm \frac{1}{\beta}$$

$$\operatorname{Restahh}_{Z} \stackrel{\beta Z}{=} = \lim_{Z \to Y} \frac{e^{\beta Z/2}}{(Z - \zeta \Pi)} \frac{(Z - i \Pi)}{\beta 2} \frac{(Z - i \Pi)}{\beta 2} = \frac{2}{\beta}$$
Now, making use of these residues, let $iW_{h'} \rightarrow Z$ to get
$$\sum (k, iW_{h}) = -\frac{1}{2\pi i} \sum_{K} \sigma_{Z} \int_{C} G(k, Z) \sigma_{Z} \sum_{K} |\tilde{\mathcal{B}}_{kkal}|^{2} \int_{O} \tilde{\mathcal{A}}_{\infty}(k-k, V) \times \left\{ \frac{1}{(iW_{h} - Z - V)(1 + e^{-\beta Z})} + \frac{1}{(iW_{h} - Z + V)(1 + e^{-\beta Z})} \right\} dV + \frac{V(k, k)}{2} \tan \frac{\beta Z}{2} dZ = 11$$

When the contour is deformed to C', two additional poles must be included whose residues are

$$\begin{aligned} & \left| \operatorname{\mathsf{Res}}_{(i\omega_{n}-\overline{x}\pm\overline{y})(1+e^{i\beta\overline{x}})} = \frac{\operatorname{\mathsf{Gr}}_{(k_{1}i\omega_{n}\pm\overline{y})}}{(1+e^{i\beta(i\omega_{n}\pm\overline{y})})} \right| \\ &= \frac{\operatorname{\mathsf{Gr}}_{(k_{1}i\omega_{n}\pm\overline{y})}}{1+e^{\beta\overline{y}\pm i\beta\omega_{n}}} = \frac{\operatorname{\mathsf{Gr}}_{(k_{1}i\omega_{n}\pm\overline{y})}}{1-e^{\beta\overline{y}}} \end{aligned}$$
Thus, using $\operatorname{\mathsf{Gr}}_{(k_{1}\omega_{n}+\overline{y})} = \operatorname{\mathsf{Gr}}_{(k_{1}i\omega_{n}\pm\overline{y})}$
and the fact that the contribution on the circle at infinity vanishes, the self energy becomes
$$\sum_{k_{1}i(\omega_{n})} \sum_{k_{2}} \int_{-\frac{\pi}{2}}^{\infty} \operatorname{\mathsf{Im}}_{k_{2}} \int_{-\frac{\pi}{2}}^{\infty} \operatorname{\mathsf{A}}_{k_{1}k_{2}} \left[\int_{0}^{\infty} \operatorname{\mathsf{A}}_{k_{1}} \left(k-k_{1}, \overline{y} \right) \right] d^{\omega_{1}} \\ \left[\left(\frac{1}{(\omega_{n}-\omega'-\gamma)} + \frac{1}{(\omega_{n}-\omega'+\gamma)} + \operatorname{\mathsf{Gr}}_{k_{1}i(\omega_{n}-\gamma)} + \frac{1}{(\omega_{n}-\omega'+\gamma)} \right] d^{\omega_{1}} \right] d^{\omega_{2}} \\ \sum_{k_{1}i(\omega_{n}-\omega'-\gamma)} \frac{\operatorname{\mathsf{Gr}}_{k_{1}i(\omega_{n}+\gamma)} + \operatorname{\mathsf{Gr}}_{k_{1}i(\omega_{n}-\gamma)} + \operatorname{\mathsf{Gr}}_{k_{1}i(\omega_{n}-\gamma)} \right] d^{\omega_{1}} \\ \sum_{k_{1}i(\omega_{1}i\omega_{1}+\gamma)} \frac{1}{(e^{i\beta}\sqrt{\omega})} + \operatorname{\mathsf{Gr}}_{k_{1}i(\omega_{1}-\gamma)} + \operatorname{\mathsf{Gr}}_{k_{1}i(\omega_{1}-\gamma)} + \operatorname{\mathsf{Gr}}_{k_{2}i(\omega_{1}-\gamma)} \right] d^{\omega_{1}} \\ \sum_{k_{1}i(\omega_{1}-\omega_{1}+\gamma)} + \operatorname{\mathsf{Gr}}_{k_{1}i(\omega_{1}-\gamma)} + \operatorname{\mathsf{Gr}}_{k_{2}i(\omega_{1}-k_{1}+\gamma)} \\ 1 - e^{\beta\overline{y}} \\ \text{Letting} \quad i \omega_{n} \longrightarrow \omega + i \delta \quad \text{, the self energy can} \\ \text{be expressed in terms of the real analytic variable } \omega \\ \text{(see Schrieffer}^{5}, p. 197). Its most general form is \\ \sum_{k_{1}i(w_{1})} \left[\left(-\overline{z}(k_{1}\omega_{1}) \right] \right] + \left(-\overline{\xi}(k_{1}\omega_{1}) \right] = 0 \quad \text{. Utintions about} \quad \overline{\omega_{2}} \quad \text{in } \underline{\Sigma} \quad \text{space } (\overline{\omega_{2}} \quad \text{and} \\ \overline{\gamma} \quad \text{are not contained in H}, \text{ then it is possible} \\ \text{to choose phases such that } \phi^{\dagger}(k_{1}, \omega) = 0 \quad \text{. Utintian} \\ \frac{\varphi^{\dagger}(k_{1}, \omega) = 0}{1 \quad \text{. Utintian}} \\ \frac{\varphi^{\dagger}(k_{1}, \omega) = 0}{1 \quad \text{. Utintian}} \\ \frac{\varphi^{\dagger}(k_{1}, \omega) = 0}{1 \quad \text{. Utintian}} \\ \frac{\varphi^{\dagger}(k_{1}, \omega) = 0}{1 \quad \text{. Utindian}} \\ \frac{\varphi^{\dagger}(k_{1}, \omega) = 0}{1 \quad \text{. Utin}} \\ \frac{\varphi^{\dagger}(k_{1}, \omega) = 0}{1 \quad \text{. Utin}} \\ \frac{\varphi^{\dagger}(k_{1}, \omega) =$$

expression for the Green function is

$$G(\underline{k}, \omega) = \frac{\omega Z(\underline{k}, \omega) I + \{\underline{e}_{\underline{k}} + \underline{X}(\underline{k}, \omega)\} \sigma_{\underline{z}} + \varphi(\underline{k}, \omega) \sigma_{\overline{x}}}{Z^{2}(\underline{k}, \omega) - \{\underline{e}_{\underline{k}} + \underline{X}(\underline{k}, \omega)\}^{2} + \varphi^{2}(\underline{k}, \omega)}$$
14

This expression must then be substituted into the free energy yielding a set of four coupled integral equations.

Several steps can be taken to simplify these equations. First, set the quantity $\epsilon'(\underline{k}, \omega) = \epsilon_{\underline{k}} + \chi(\underline{k}, \omega)$ and let $\Delta(\underline{k}, \omega) \equiv \phi(\underline{k}, \omega) / Z(\underline{k}, \omega)$. Then the following criteria can be used to reduce the algebra considerably:

(1) $\chi(\underline{k}, \omega)$, being due to normal coulomb processes, is slowly varying for changes in ω of the Debye frequency and, hence, independent of ω .

(2) $Z(\underline{k}, \omega)$ and $\phi(\underline{k}, \omega)$ are important mainly at the Fermi level. Since they vary quite slowly with \underline{k} , one can set $|\underline{k}| = \underline{k}_{k}$.

(3) Since transition metal superconductors are usually impure, it will suffice to determine the spherically averaged self energy because impurity scattering reduces the effects of isotropy.

(4) The chief contribution to the sum over \underline{k} is when $\in_{\underline{k}}' \cong \underline{k} \otimes_{D}$. Following essentially the technique of (SSW) the sum over \underline{k} can be replaced by continuous integration with the following definitions

۰,۰.

.

·

$$\sum_{\underline{k}} \rightarrow \int_{(2\pi)^3} \frac{d^3 \underline{k}}{(2\pi)^3} \cong \frac{m \, \underline{k}_{\underline{k}}}{(2\pi)^3} \int d\epsilon_{\underline{k}} d\Omega_{\underline{k}}$$
 15
where $m \, d\epsilon_{\underline{k}}' = \underline{k} \, d\underline{k}$. Since the chief contri-
bution to the sum over \underline{k}' is near $\epsilon_{\underline{k}}' = \underline{h} \, \omega_{\underline{b}}$,
the limits on the integral over $\epsilon_{\underline{k}}'$ can be approx-
imated at $\pm \infty$ respectively and, hence, by residues

$$\int de'_{k} \sigma_{\overline{z}} G(k, \omega) \sigma_{\overline{z}} = \frac{-i\pi [\omega' \overline{Z}(\omega')] - \phi(\omega') \sigma_{\overline{x}}]}{\sqrt{\omega'^{2} \overline{Z}'(\omega)} - \phi^{2}(\omega')}$$
¹⁶

with the one pole being above the real axis. By averaging Eq. 12 over the spherical part of \underline{k} (and remembering that $i \mathcal{W}_h \longrightarrow \mathcal{W} + i \delta$), Eq. 15 and Eq. 16 can be applied to yield for the phonon part of the self energy at $\underline{k} = \underline{k}_F$

$$\sum_{PH} (k_{F_{1}}, \omega) = \frac{m}{d^{2}k(2\pi)^{3}} \int d\omega' \operatorname{Re} \left\{ \frac{\omega' Z(\omega')I - \phi(\omega')\sigma_{\overline{X}}}{\sqrt{\omega'^{2} Z^{2}(\omega') - \phi^{2}(\omega')}} \int d^{2}k d\alpha_{\overline{X}}^{X} \right\}$$

$$\int d^{\infty} \left[A_{x} (\underline{k} - \underline{k}, \nu) \right] \overline{\mathcal{S}}_{\underline{k}\underline{k}^{\prime}} \left[\frac{2}{(\omega - \omega' \nu + \nu + i\delta)\underline{h} + e^{-\rho(\omega')}} + \frac{1}{(\omega - \omega' + \nu + i\delta)\underline{h} + e^{-\rho(\omega')}} \right]$$

$$+ \frac{im\pi}{(2\pi)^{3}} \frac{k_{F}}{d^{2}k} \sum_{s=0}^{1} \frac{(\omega_{s} Z(\omega_{s}) - \phi^{2}(\omega_{s}))}{\sqrt{\omega_{s}^{2} Z^{2}(\omega_{s}) - \phi^{2}(\omega_{s})}} \int d^{2}k d\alpha_{\underline{k}} \int d^{2}k d\alpha_{\underline{k}}$$

where
$$(\mathcal{W}_{s} = \mathcal{W} + (-1)^{s} \mathcal{V} + i \delta$$
. Equation 17 can
be simplified with the transformation of the negative
part of the integral over to the positive portion. Then
$$\sum_{\mathbf{W}_{s}} (\mathbf{W}_{s}) = \int_{0}^{\infty} \mathbb{R}e^{\left(\frac{(\mathcal{W}_{s}')}{\mathcal{W}_{s}'^{2}} - \frac{(\mathcal{W}_{s}')}{\mathcal{W}_{s}'^{2}}\right)} \left(\left(\mathbf{W}_{s} + (\mathcal{W}_{s}) + \mathcal{W}_{s} + (\mathcal{W}_{s} - \mathcal{W}_{s})\right) + (\mathcal{W}_{s})^{2}} \right)$$

$$-\frac{i}{(2\pi)^{3}}\int \frac{1}{\sqrt{2}} \sum_{s=0}^{3} \frac{[\omega_{s}Z(\omega_{s})]}{[\omega_{s}^{2}Z'(\omega_{s})-\phi^{2}(\omega_{s})]} \int \int \frac{1}{\sqrt{2}} k \int \frac{d^{2}k}{\sqrt{2}} \int \frac{d^{$$

where the upper signs belong to factors multiplying the $O_{\overline{X}}$ component only, lower signs belong to factors multiplying the \underline{I} component only, and $\begin{pmatrix} 1\\ (\omega,\omega) = \int_{\overline{d}^2 k} \int_{\overline{\sqrt{f}}}^{2} \int_{0}^{\omega} \sqrt{\sum_{x \in k}} \int_{k \in \mathbb{Z}}^{2} \int_{0}^{\infty} \int_{$

These are

$$\varphi_{c}(\underline{k}) \cong \varphi_{c}(\underline{k}_{J}) = -N(0) \int_{0}^{10} d\omega' \operatorname{Re} \left\{ \frac{\varphi(\omega) U_{c}}{\sqrt{Z^{2}(\omega') \omega'^{2} - \varphi^{2}(\omega')}} \operatorname{tan} \frac{\beta \omega'}{2} \right\}^{21}$$

where the "potential" \bigcup_{c} is approximately

$$U_{c} = \frac{\sqrt{c}}{1 + N(o)} \sqrt{\frac{\ln(\varepsilon_{f} + 10\omega_{p})}{1 + N(o)}}$$

and V is the average of the coulomb interaction over the Fermi surface. This finally completes the development of the finite temperature gap equations. It is apparent that, even in reduced form, they are intractable and, thus, some further approximation is needed to bring forth a reasonably accurate set of solutions.

In practice, the gap equations can be solved by computer for the zero temperature case. Finite temperature properties can often then be accurately found from the zero temperature solutions by rules obtained with experimental evidence. From Eq. 18 and Eq. 20, the zero temperature gap equations become

$$\Delta(\omega) = \frac{1}{Z(\omega)} \int_{0}^{\infty} d\omega' \operatorname{Re}\left\{ \frac{\Delta(\omega')}{\sqrt{\omega'^{2} - \Delta^{2}(\omega')}} \right\} \left(\left(\omega, \omega \right) \right)$$

$$-\frac{N(0)}{Z(w)}\int_{0}^{10W} U_{c}\operatorname{Re}\left\{\frac{\Delta(w')}{\sqrt{w'^{2}-\Delta^{2}(w')}}\right\}dw' \qquad 23$$

and

•

$$\left[1-\frac{1}{2}(\omega)\right]\omega = \int_{0}^{\infty} d\omega' \operatorname{Re}\left\{\frac{\omega'}{\sqrt{\omega'^{2}-\Delta^{2}(\omega')}}\right\} K_{-}(\omega',\omega) \qquad 24$$

where $\Delta(\omega) = \frac{\phi(\omega)}{Z}(\omega)$ and N(0) is the electronic density of states at the Fermi level.

CHAPTER IV

THE ELECTRON-PHONON COUPLING CONSTANT

Derivation of the finite temperature Eliashberg equations begins with the irreducible self energy

$$\sum_{k,k} \left(\frac{1}{k}, \frac{1}{k} \right) = \sum_{k,k} \sum_{$$

Consider the displacement operator of an ion at point due to a lattice wave of wave vector $\underline{\gamma}$ and polarization index \sim .

$$\delta \underline{R}_{m} = \frac{\underline{\epsilon}_{\underline{g}} \alpha}{2 \sqrt{N}} \left(Q_{\underline{g}} \alpha e^{i \underline{g} \cdot \underline{R}_{m}} + Q_{\underline{g}} \alpha e^{-i \underline{g} \cdot \underline{R}_{m}} \right)$$

1

vector 9 and polarization index $\propto =1,2,3$. The normal coordinates are given as

$$Q_{q^{\alpha}} = \sqrt{\frac{\hbar}{2M\omega_{q^{\alpha}}}} \left(a_{q^{\alpha}} + a_{-q^{\alpha}}^{+} \right)$$

2

where and and and are the creation andannihilation operators for phonons of wave vector <math>g and polarization index ∞ . Thus the lattice displacement operator at lattice point becomes

$$\delta \underline{R}_{m} = \frac{1}{2} \sqrt{\frac{h}{2NMw_{gr}}} \leq \underline{\eta}^{\infty} e^{i\underline{q}\cdot\underline{R}_{m}} (a_{\underline{q}^{\infty}} + a_{-\underline{q}^{\infty}}^{\dagger}) + hc \qquad 3$$

Now assuming that $\sqrt{(\mathbf{r})}$ is the external potential at distance \mathbf{r} from the center of a single ion, the potential at point \mathbf{R} due to displacement of the ion by the amount $\delta \mathbf{R}$ will be approximated as $\sqrt{(\mathbf{r} - \delta \mathbf{R})}$. Then the change in lattice potential at point \mathbf{r} for a wave of wave vector γ and polarization index $\boldsymbol{\prec}$ is

$$V_{\underline{q}} = \sum_{\underline{m}} \left[\delta \underline{R}_{\underline{m}} \cdot \left\{ -\nabla \sqrt{(\underline{r} - R_{\underline{m}})} \right\} \right]$$

where M is summed over the entire lattice. Substituting Eq. 3 into Eq. 4 gives

-,

$$V_{q} = -\frac{1}{2} \sum_{m} \sqrt{\frac{h}{2NM}} \frac{e^{i q \cdot \underline{R}_{m}}}{(a_{q} x + a^{t} - q^{e})} \leq q^{e} \sqrt{V(x - \underline{R}_{m})} = + hC.$$

This is the so-called rigid ion model of Nordheim³³. Let 11.1r-D \

$$\bigvee (\mathbf{r} - \underline{\mathbf{R}}_{\mathbf{m}}) = \sum_{\mathbf{L}} \bigvee_{\mathbf{L}} \mathcal{C}^{\mathbf{L}} - \underline{\mathbf{L}}_{\mathbf{m}}^{\mathbf{m}}.$$

Then,

$$V_{\underline{q}} = -\frac{1}{2} \sqrt{\frac{h}{2NM}} \left(a_{\underline{q}} + a_{\underline{q}} \right) \sum_{\underline{l}, \underline{m}} \sqrt{\frac{i}{2} \cdot \frac{i}{2}} \left(\frac{i}{2} \cdot \frac{i}{2} \cdot \frac{g}{2} \right) \left(\frac{i}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \right) \left(\frac{i}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \right) \left(\frac{i}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \right) \left(\frac{i}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \right) \left(\frac{i}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \right) \left(\frac{i}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \cdot \frac{g}{2} \right) \left(\frac{i}{2} \cdot \frac{g}{2} \cdot \frac{g}$$

Since

where
$$G_{m}$$
 is the nth reciprocal lattice vector. Then
 $V_{ac} = -\frac{i}{2} \sqrt{\frac{N+K}{2M}} \left(a_{ac} + a_{ac}^{+} \right) \sum_{n} V_{a+G_{n}} \left(9 + G_{n} \right) \sum_{n} C_{n} + hC.$

8

9

The total electron-phonon interaction Hamiltonian for scattering of an electron from state \underline{k}, S to state k, S is just the matrix element of $\sqrt{q} \infty$ between states k, S and k, S multiplied by $C_{\vec{k},S}^{\dagger}C_{\vec{k},S}^{\dagger}$ which destroys an electron in state \vec{k}, S and recreates it in \vec{k}, S . So one can then write

. . -

$$H_{e-Ph} = \sum_{\underline{k},\underline{k},\underline{s},\underline{\kappa}} \mathcal{S}_{\underline{k},\underline{k},\underline{s},\underline{\kappa}} C^{\dagger}_{\underline{k},\underline{s},\underline{\kappa}} C^{\dagger}_{\underline{k},\underline{s},\underline{\kappa}} C^{\dagger}_{\underline{k},\underline{s},\underline{\kappa}} C^{\dagger}_{\underline{k},\underline{s},\underline{\kappa}} (a_{\underline{q},\underline{\kappa}} + a_{-\underline{q},\underline{\kappa}}^{\dagger})$$
¹⁰

letting

and where

$$\mathcal{B}_{\underline{k}\underline{k}} = -\frac{i}{2} \sqrt{\frac{N \hbar}{2M\omega_{\underline{k}\underline{k}}}} (\underline{k} - \underline{k}) \in \underline{k} (\underline{k} - \underline{k}) \in \underline{k} (\underline{k} - \underline{k}) \cdot \underline{r} |\underline{k} + hc^{11}$$

Subscripts $\underline{\gamma}$ may be replaced by $\underline{k} \ \underline{k}$ since \underline{q} is unique for a given $\underline{k} \ \underline{k}$ and the sum over reciprocal lattice vectors is inferred in the sum over $\underline{k} \ \underline{k}$ because G_{h} is also unique for a given $\underline{k} \ \underline{k}$ in umklapp processes³⁴. The best way to determine $\mathcal{S}_{\underline{k}} \ \underline{k} \ \underline{k}$ is to find

$$M(\underline{k},\underline{k})_{c} = \langle n_{q^{\alpha}} | \langle 0_{\underline{k}s} | H_{e-PH} | 1_{\underline{k}s} \rangle | n_{q^{\alpha}} - 1 \rangle$$

which gives

$$M(\underline{k},\underline{k})_{\alpha} = \overline{\sigma}_{\underline{k},\underline{k}} \sqrt{n_{q^{\alpha}}}.$$

To begin the Bardeen calculation it is necessary to return to

$$V_{\mathbf{y}} = \frac{1}{2} \sqrt{\frac{\hbar}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{\hbar}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2NM}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{y}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{y}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{y} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger} \right) \sum_{\mathbf{m}} e^{i \mathbf{x} \cdot \mathbf{R}_{\mathbf{m}}} = \frac{1}{2} \sqrt{\frac{1}{2N}} \left(a_{\mathbf{x}} + a_{\mathbf{x}}^{\dagger}$$

$$V_{q} = \frac{1}{2} \sqrt{\frac{h}{2NM\omega_{q}}} = \frac{1}{m} e^{\frac{h}{2} \frac{R}{M}} = \frac{1}{2} e^{\frac{h}{2} \frac{R}{M}}$$

whose phonon number eigenvalue has been determined in phonon occupation number space. Let $\sqrt{q_{cc}}$ operate upon a conduction electron state $|\underline{k}\rangle$ as $\sqrt{q_{cc}}|\underline{k}\rangle = \sum_{n} \left\{ \sqrt{\binom{(nc)}{q_{cc}}} |\underline{k}+q+\underline{C}_{n}\rangle + \sqrt{\binom{(nc)}{q_{cc}}} |\underline{k}-q-\underline{C}_{n}\rangle \right\}$ 15

where

$$V_{+q_{x}}^{(nc)} = \left\langle \underline{k} + q_{1} + \underline{G}_{n} | V_{q_{x}} | \underline{k} \right\rangle$$
^{16a}

and

$$\bigvee_{\mathbf{q}^{\alpha}}^{(nC)} = \langle \underline{k} - \underline{q} - \underline{G}_n | \bigvee_{\underline{q}^{\alpha}} | \underline{k} \rangle.$$
^{16b}

Doing the same to a d-electron state $|\sum\rangle$

$$V_{\mathbf{g}} \leq \sum_{\mathbf{n}} \left\{ V_{\mathbf{g}} \leq \frac{(\mathbf{n} d)}{\mathbf{n}} | [\mathbf{k} + \mathbf{g} + \mathbf{G}_{\mathbf{n}}] + V_{\mathbf{g}} \leq \frac{(\mathbf{n} d)}{\mathbf{k}} - \mathbf{g} - \mathbf{G}_{\mathbf{n}} \right\}$$
¹⁷

where

$$V_{\pm q_{\alpha}}^{(nd)} = \left\langle \underline{K} + \underline{q} + \underline{G}_{n} \middle| V_{\underline{q}_{\alpha}} \middle| \underline{K} \right\rangle$$
^{18a}

$$V_{\pm q_{\alpha}}^{(nd)} = \left\langle \underline{K} + \underline{q} + \underline{G}_{n} \middle| V_{\underline{q}_{\alpha}} \middle| \underline{K} \right\rangle$$
^{18a}

$$\bigvee_{\underline{g}} = \left\langle \underline{k} - \underline{g} - \underline{G} \right\rangle \left\langle \underline{k} \right\rangle$$
^{18b}

This represents the action upon a core electron by a lattice wave of wave vector \int_{1}^{1} and polarization \propto . To be self-consistent, one must also determine how the electron states are perturbed by such a lattice wave.

For the screening effect, expand the perturbed
electronic states
$$|k\rangle$$
 and $|k\rangle$ in terms of
 $|k\rangle = |k\rangle + \sum_{n} \left\{ a_{q} \alpha(|kn)|k+q+c_{rn} + b_{q} \alpha(|kn)|k-q-c_{rn} \right\}$ 19a
and

$$|\mathbb{K}\rangle = |\mathbb{K}\rangle + \sum_{n} \{A_{que}(\mathbb{K}_{n}) | \mathbb{K}^{+}q + G_{n}\rangle + B_{que}(\mathbb{K}_{n}) | \mathbb{K}^{-}q - G_{n}\rangle\}$$
^{19b}

to first order where a, b, A and B are small perturbation coefficients. These latter two equations, when summed over all of the states of the band in question, are the net response of that particular band to first order due to the motion of the ions plus the screening effect of the other band. Next, call the Hartree-Fock potential energy of the d plus conduction-electrons $\sqrt{2}^{\circ}$. Operating with $\sqrt{2}^{\circ}$ upon a perturbed state using

$$+ e^{2} \sum_{(K')} \left\{ \langle k' | \frac{1}{R} | k \rangle - \langle k' | \frac{1}{R} | k \rangle | k \rangle \right\}$$

B.

$$+e^{2}\sum(K)\{\langle K|^{4}A|K\rangle K\rangle-\langle K|^{4}A|K\rangle K\rangle +e^{2}\sum(K)\{\langle K|^{4}A|K\rangle K\rangle-\langle K|^{4}A|K\rangle K\rangle\}$$

20b

with the specification that the eigenvectors span spin space as well as Hilbert space and that the sums include spin. Call the Hartree-Fock potential energy in the per-turbed lattice $\bigvee_{\rho}^{\mathsf{T}}$. Then $V_{\mu}^{T} = e^{2} \sum (k) \langle k | \frac{1}{2} \langle k \rangle | k \rangle \rangle \langle k | \frac{1}{2} \langle k | \frac{1}{2} \langle k \rangle \rangle \langle k \rangle \rangle \langle k \rangle \rangle$

21**a**

21b

 $+e^{2}\Sigma(k)\{\langle k | \frac{1}{2} | k \rangle | k \rangle - \langle \langle k | \frac{1}{2} | k \rangle | k \rangle\}$
is the effect upon a particular bandstate perturbed by the bare ion and screened by the other non-core electrons. Now substitute Eq. 19 into Eq. 21 and subtract Eq. 20 to get

$$\begin{split} & \bigvee_{p} |\underline{k}\rangle = (\bigvee_{p}^{T} - \bigvee_{p}^{o})|\underline{k}\rangle \\ = e^{2} \sum_{p} (\underline{k}') [\underline{a}_{p}^{*} (\underline{k}'n) \langle \underline{k}' + \underline{g}_{p} + \underline{G}_{n} | R^{-1} | \underline{k}\rangle + \underline{a}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p} - \underline{G}_{n} | R^{-1} | \underline{k}\rangle + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}\rangle \\ & - [\underline{a}_{p}^{*} (\underline{k}'n) \langle \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle) + \underline{a}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle) + \underline{a}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle) + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle) + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & - [A_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle) + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & - [A_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle) + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & - [A_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle) + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & - [A_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & - [A_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & - [A_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n} | R^{-1} | \underline{k}\rangle | \underline{k}\rangle + \underline{b}_{p}^{*} (\underline{k}'n) \langle \underline{k}' | R^{-1} | \underline{k}\rangle | \underline{k}' + \underline{g}_{p}^{+} \underline{G}_{n}\rangle \\ & - [A_{p}^{*} (\underline{k}'n) \langle \underline{k}' - \underline{g}_{p}^{-} \underline{G}_{n}$$

22

and an identical expression with K and k, a and A, and b and B interchanged.

Equation 22 represents the change in potential energy of an electron within a given band interacting with a bare lattice wave of wavevector γ and polarization ∞ when properly screened by all of the other electrons in both bands.

It is now necessary to solve the Schrodinger equation for the perturbation expansion coefficients. For the unperturbed lattice, Schrodinger's equation is

$$H_{o}|\underline{k} + \sqrt{b}|\underline{k} = E_{o}(\underline{k})|\underline{k}$$
 23a

for the conduction electrons and

$$H_{o}|_{\underline{k}} + (\sqrt{2} + \sqrt{2})|_{\underline{k}} = E(\underline{k})|_{\underline{k}}$$
²⁴

for the conduction electrons and

$$H^{\circ}|\mathbb{R} + (\sqrt{2} + \sqrt{2})|\mathbb{R} = E(\mathbb{R})|\mathbb{R}$$

for d-band electrons. Substitution of the perturbation expansions Eq. 22 into equations Eq. 24 and then subtracting Eq. 23 and including the assumption that $E(k) = E_{0}(k)$ and $E(K) = E_{0}(K)$ gives [agrikuHolk+9+Gin)+ bga(kultolk-g-Gin)} + $V_o \sum \{a_{qa}(kn)|k+g+G_n\} + b_{qa}(kn)|k-g-G_n\}$ $+\sum_{\substack{(nc)\\ +q_{\alpha}}} |\underline{k}+\underline{q}+\underline{G}_{n} + \sqrt{-\underline{q}_{\alpha}} |\underline{k}-\underline{q}-\underline{G}_{n} \rangle \}$ + [age kn) (- (nc) k+29+2Gn) + (- (nc) k) $+b_{qec}^{(nc)}(kn)(\sqrt{-nc})(k-2q-2G))$ $+e^{2}\sum(k)[a_{qm}(kn)\langle k+g+G_{m}|R^{-1}|k\rangle+b_{qm}(kn)\langle k-g-G_{m}|R^{-1}|k\rangle$ +age(kn) (k | R-1 | k+9+Gr)+bge(kn) (k | R-1 | k-9-Gr) k) $-e^{2}\sum_{k}k\left[a_{q}^{*}(kn\langle k+g+G_{m}|R^{-1}|k\rangle+b_{q}^{*}(kn\langle k-g-G_{m}|R^{-1}|k\rangle)k\rangle\right]$ +{age(Kn)<k|R-1|k)|k+g+Gn)+bge(Kn)<k1R-1|k)k-g-Gn)} +e2[K/Am K/K+g+Gr, R=4K/+Bm K/K-g-Gn R=4K/ +Agre(Kn) < K | R-1 | K+2+Gn) + Bge(Kn) < K | R-1 | K-2-Gn) k> $-e^{2}\sum(K)[A_{qe}^{*}(K_{h}K_{k+9}+G_{n}R^{-1}]_{k}+B_{qe}^{*}(K_{h})K_{k-9}-G_{n}]R^{-1}]_{k})K$ +Aque (Kn) (k|R-1|K) K+g+Gn)+Bqre (Kn) (k |R-1|K) K-g-Gn) = $E(\underline{k}) \sum \left[a_{gr}(\underline{k}n) | \underline{k} + \underline{q} + \underline{G}_{m} \right] + b_{gr}(\underline{k}n) | \underline{k} - \underline{q} - \underline{G}_{m}$

55

for conduction electrons and an identical expression with K and k, A and a, and B and b interchanged for the d-band electrons. Now operate with bravectors

 $\langle k+q+G_h |$ and $\langle k-q-G_n |$ upon Eq. 25a and with bravectors $\langle k+q+G_n |$ and $\langle k-q-G_h |$ upon Eq. 25b to get four equations containing the expansion coefficients where the remaining terms containing H_o and V_o in Eq. 25 are removed by subtracting the Schrodinger equation containing them. These equations are

 $o = \bigvee_{\mathbf{h} \mathbf{q}}^{(\mathbf{n}c)} + \left\{ E(\underline{k} + \underline{q} + \underline{G}_{\mathbf{h}}) - E(\underline{k}) \right\} A_{\mathbf{q}} (\underline{k} \mathbf{h})$ $+e^{2}\sum(k)\left[a_{q}^{*}(km)\langle k+q+G_{m}\langle k+q+G_{m}|R^{-1}|k\rangle|k\rangle\right]$ + $b_{qc}(\underline{k}m)(\underline{k}+\underline{9}+\underline{G}m)(\underline{k}-\underline{9}-\underline{G}m)R^{-1}|\underline{k})|\underline{k}\rangle$ + age(Km)(k+9+Gn)(K|R-1|K+9+Gm)K) + bge(km)<k+g+Gn(kk1R-1k-g-Gm)k) $-e^{2}\sum[k]a_{g}^{*}(km)\langle k_{1}q+G_{n}|\langle k+q+G_{m}|R^{-1}|k\rangle|k\rangle$ + $b_{qc}^{*}(\underline{k}m)\langle \underline{k}+q+\underline{C}m|\langle \underline{k}-q-\underline{C}m|R^{1}|\underline{k}\rangle|\underline{k}\rangle$ + aga(Km) < k+9+Gn < K | R=4 k) K+9+Gm>

+bge(Km)<k+2+Gn<K1P-1/k)K-9-Gm $+e^{2}\sum_{m}(\mathbf{K})\left[A_{q^{\infty}}^{*}(\mathbf{K}_{m})\mathbf{K}_{k}+g+\mathbf{G}_{n}\mathbf{K}_{k}^{*}+g+\mathbf{G}_{m}\mathbf{R}^{-1}\mathbf{K}_{k}^{*}\mathbf{K}_{k}^{*}\right]$ $+B_{q^{\infty}}^{*}(\underline{K}_{m})(\underline{k}_{+q}+\underline{G}_{m}(\underline{K}_{-q}-\underline{G}_{m}|\underline{R}^{-1}|\underline{K})|\underline{k})$ +Agac(Km)<k+g+Gn<K117-11K-g-Gm>1k> $+ B_{qx}(\underline{K}_m)\langle\underline{k}+\underline{q}+\underline{G}_m|\langle\underline{K}|\underline{P}^{-1}|\underline{K}-\underline{q}-\underline{G}_m\rangle|\underline{k}\rangle$ $+ e \sum_{k} \frac{k}{A_{qa}} \frac{k}{k} \frac{k}{q} + \frac{1}{G_{m}} \frac{k}{k} + \frac{1}{q} + \frac{1}{G_{m}} \frac{1}{q} \frac{1}{q}$ +B*(Km)<k+q+GnKK+q+Gm|P-1|k)K) $+A_{qa}(\underline{k}_{m}) < k+q+G_{n} < k | R^{-1} | \underline{k} > | \underline{k}+q+G_{m} > 0$ +Bqc(Km)Kk+9+GnKk1P-4K)K-9-Gm) 27

N E and, again, a similar expression for conduction electrons. The expressions for by and By are identical with Eq. 26 and Eq. 27 respectively except that $+ 9 + G_{n}$ becomes $-9 - G_{n}$ and $\sqrt{+9} = 0$ becomes $\sqrt{-9} = 0$. Moreover, they contain no additional information. Equations 26 and 27 may be rearranged to give an explicit expression for the coefficient multiplying the energy difference in these equations. The perturbation coefficients are

$$a_{gx}(k_n) = M(k_k+q+G_n) / {E(k)-E(k+q+G_n)} ^{28}$$

$$b_{q} = M(k, k-q-G_n) = M(k, k-q-G_n) = 29$$

$$B_{q} = (K_n) = M(K_k - q - G_n) = /{E(K) - E(K - q - G_n)}$$
 31

Now substitute these expressions for the coefficients into Eq. 26 and Eq. 27 and solve. The result is

$$\begin{split} \mathsf{M}(\underline{K},\underline{K}+\underline{9}+\underline{G}_{n})_{\alpha} &= \bigvee_{\underline{9}^{\alpha}} + e^{2} \sum_{m} (\underline{K}) \\ &= \underbrace{[\mathsf{M}^{\ast}(\underline{K},\underline{K}+\underline{9}+\underline{G}_{m})_{\alpha}}_{[\mathsf{F}(\underline{K})-\mathsf{E}(\underline{K}+\underline{9}+\underline{G}_{m})_{\alpha}} (\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{K}^{-1}|\underline{K}\rangle|\underline{K}\rangle) \\ &- \langle \underline{K}+\underline{9}+\underline{G}_{n}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}\rangle) \\ &+ \underbrace{\mathsf{M}^{\ast}(\underline{K},\underline{K}-\underline{9}-\underline{G}_{m})_{\alpha}}_{-\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}-\underline{9}-\underline{G}_{m}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}\rangle) \\ &+ \underbrace{\mathsf{M}(\underline{K},\underline{K}+\underline{9}-\underline{G}_{m})_{\alpha}}_{-\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{K}+\underline{9}+\underline{G}_{m}\rangle|\underline{K}\rangle) \\ &+ \underbrace{\mathsf{M}(\underline{K},\underline{K}+\underline{9}+\underline{G}_{m})_{\alpha}}_{-\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}+\underline{9}+\underline{G}_{m}\rangle|\underline{K}\rangle \\ &+ \underbrace{\mathsf{M}(\underline{K},\underline{K}-\underline{9}-\underline{G}_{m})_{\alpha}}_{-\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}-\underline{9}-\underline{G}_{m}\rangle|\underline{K}\rangle \\ &+ \underbrace{\mathsf{M}(\underline{K},\underline{K}+\underline{9}+\underline{G}_{m})_{\alpha}}_{-\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}\rangle \\ &+ e^{2}\sum_{m} (\underline{k}) \\ &= \underbrace{\mathsf{M}(\underline{K},\underline{K}+\underline{9}+\underline{G}_{m})_{\alpha}}_{-\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}\rangle \\ &= -\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}\rangle \\ &= -\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}\rangle \\ &= -\langle \underline{K}+\underline{9}+\underline{G}_{m}|\langle \underline{K}+\underline{9}+\underline{G}_{m}|\underline{R}^{-1}|\underline{K}\rangle|\underline{K}\rangle \end{aligned}$$

$$+\frac{M^{*}(k',k'-9-G_{m})}{E(k'-9-G_{m})} \left\{ \langle \underline{k}+9+\underline{G}n|\langle \underline{k}'-9\underline{G}m|R^{-1}|\underline{k}\rangle |\underline{k}\rangle - \langle \underline{k}+9+\underline{G}n|\langle \underline{k}'-9\underline{G}m|R^{-1}|\underline{k}\rangle |\underline{k}\rangle + \frac{M(k',k'-9+\underline{G}m)}{E(k')E(k'+9+\underline{G}m)} \left\{ \langle \underline{k}+9+\underline{G}n|\langle \underline{k}'|R^{-1}|\underline{k}\rangle |\underline{k}'+9+\underline{G}m\rangle + \frac{M(k',k'-9-\underline{G}m)}{E(k')E(k'-9-\underline{G}m)} \left\{ \langle \underline{k}+9+\underline{G}n|\langle \underline{k}'|R^{-1}|\underline{k}\rangle |\underline{k}'+9+\underline{G}m\rangle + \frac{M(k',k'-9-\underline{G}m)}{E(k'-9-\underline{G}m)} \left\{ \langle \underline{k}+9+\underline{G}n|\langle \underline{k}'|R^{-1}|\underline{k}\rangle |\underline{k}'-9-\underline{G}m\rangle + \frac{M(k',k'-9-\underline{G}m)}{E(k'-E(k'-9-\underline{G}m))} \right\} \right\}$$

for d electrons coupled with an identical expression for conduction electrons with k and K, a and A and b and B interchanged. Before writing down an expression for the electron-phonon coupling constant, the equations

$$V_{\mu q \alpha}^{(nc)} = -\frac{1}{2} \sqrt{\frac{\hbar n_{q \alpha}}{2 NM \omega_{q \alpha}}} \mathcal{E}^{i \underline{q} \cdot \underline{R}_{m}} \mathcal{E}^{i \underline{q$$

$$V_{qe}^{(nc)} = \frac{1}{2} \sqrt{\frac{h}{2} \frac{h_{qe}}{2}} \sum_{m} e^{i \frac{q}{2} \frac{R}{2} \frac{R}{2}} \frac{1}{2} e^{i \frac{q}{2} \frac{R}{2} \frac{R}{2}} e^{i \frac{q}{2} \frac{R}{2} \frac{R}{2}} \frac{1}{2} e^{i \frac{q}{2} \frac{R}{2}} \frac{1}{2} e^{i \frac{R}{2}} \frac{1}{2} e^$$

$$V_{\text{+}qec}^{-(nd)} \frac{1}{2} \sqrt{\frac{h}{2} \frac{h}{2} \frac{qec}{m}} \sum_{m} e^{i \frac{q}{2} \frac{R_{n}}{E}} \frac{k_{+}q_{+}G_{n}}{k_{+}q_{+}G_{n}} \nabla V(c-R_{m}) k_{+} h_{C}$$
18a

can be simplified. First, Bloch's theorem states that

$$\begin{aligned}
& \mathcal{Y}_{k}(\mathbf{r}+\mathbf{R}_{m}) = e^{i\mathbf{k}\cdot\mathbf{R}_{m}} \quad \mathcal{Y}_{k}(\mathbf{r}). \\
& \text{Thus} \\
& \langle \mathbf{k} | \nabla V(\mathbf{r}-\mathbf{R}_{m}) | \mathbf{k} \rangle = \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}-\mathbf{R}_{m}) \mathcal{Y}_{k}(\mathbf{r}) d\mathbf{r} \\
& = \int \mathcal{Y}_{k}^{*}(\mathbf{r}-\mathbf{R}_{m}) e^{-i\mathbf{k}\cdot\mathbf{R}_{m}} \quad \nabla V(\mathbf{r}-\mathbf{R}_{m}) \mathcal{Y}_{k}(\mathbf{r}-\mathbf{R}_{m}) e^{i\frac{\mathbf{k}\cdot\mathbf{R}_{m}}{d(\mathbf{r}-\mathbf{R}_{m})}} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k})\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}-\mathbf{R}_{m}) \nabla V(\mathbf{r}-\mathbf{R}_{m}) \mathcal{Y}_{k}(\mathbf{r}-\mathbf{R}_{m}) d(\mathbf{r}-\mathbf{R}_{m})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k})\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}-\mathbf{R}_{m}) \mathcal{Y}_{k}(\mathbf{r}-\mathbf{R}_{m}) d(\mathbf{r}-\mathbf{R}_{m})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k})\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k})\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k})\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k})\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla V(\mathbf{r}\cdot\mathbf{R}_{m}) \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \nabla \mathcal{Y}_{k}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}} \int \mathcal{Y}_{k}^{*}(\mathbf{r}) \partial \mathcal{Y}_{k}^{*}(\mathbf{r}) \partial \mathcal{Y}_{k}^{*}(\mathbf{r}) d(\mathbf{r})} \\
& = e^{i(\mathbf{k}\cdot\mathbf{k}\cdot\mathbf{R}_{m}$$

$$= e^{i(k-k/!m} \langle k | \nabla V(r) | k \rangle$$
³³

.

Next, multiply by $\rho' \mathfrak{P}^{R_m}$ and sum over all lattice sites $\sum_{k} e^{i \mathbf{g} \cdot \mathbf{R}_{m}} e^{i(\mathbf{k}-\mathbf{k}) \cdot \mathbf{R}_{m}} \langle \mathbf{k} | \nabla V(\mathbf{r}) | \mathbf{k} \rangle = \langle \mathbf{k} | \nabla V(\mathbf{r}) | \mathbf{k} + \mathbf{g} + \mathbf{G}_{m} \rangle N^{34}$

Equation 34 can now be used in Eq. 16 and Eq. 18 and these equations in turn are substituted into Eq. 32 and Eq. 33. Using Eq. 13, the expression for the electron-phonon coupling constant is

 $\mathcal{B}_{k,k+q+G_{in,k}} = -\sqrt{\frac{k}{2}} \mathcal{B}_{2M} \in \mathbb{P}^{c} \left(\frac{k}{2} \sqrt{k} \right) \left[\frac{k+q+G}{2} \right]$ $e^2 \sum_{i \in \mathcal{K}} (k) \times$ $\left[\left\{ \frac{\mathcal{B}_{k,k+9+Gm}^{*}}{|F(k)-F(k+9+Gm)} \right\} \left| \left\{ k+9+Gm | \left\{ k+9+Gm | R^{-1} \right\} \right\} \right| \right\}$ $-\sqrt{k+g+G_{m}}/(k^{+}g+G_{m})R^{-1}/(k^{-1})$ + $\left\{ \frac{(\sigma_{k',k'+2+G_{m',k'}})}{(F_{k'})-E(k+2+G_{m'})} \right\} \left(k+2+G_{m'} k' R^{-1} k' + 2+G_{m'} k' + 2+G_{m'} k' R^{-1} k' + 2+G_{m'} k' + 2+$ $-\langle k+g+G_{n}|\langle k|R^{4}|k\rangle|k+g+G_{n}\rangle$

62

. . .

 $-\langle k+g+Gn|\langle k+g+Gm|R^{-1}|k\rangle|k\rangle\rangle$ + $\left\{\frac{\partial \underline{K}_{i}\underline{K}^{i+9+\underline{G}_{m,i}e}}{F(\underline{K})-F(\underline{K}^{i+9+\underline{G}_{m,i}e})\langle \underline{K}^{i+9+\underline{G}_{m}}|\langle \underline{K}^{i+9+\underline{G}_{m}}|\langle \underline{K}^{i+9+\underline{G}_{m,i}e}\rangle \right\}$ $-\langle k+9+G_{m}|\langle k|R^{4}|k\rangle|k+9+G_{m}\rangle$

 $\underbrace{ \left| \underbrace{\mathcal{B}_{K,K'+2} + \mathcal{G}_{m,k'}}_{E|K'-E|K'+2} \right| \left\langle k+2 + \mathcal{G}_{m} \right| \left\langle k+2 + \mathcal{G}_{m} \right| R^{-1} | K \rangle k$

 $-\langle \underline{k} + \underline{9} + \underline{G} \times | \underline{k} | R^{-1} | \underline{k} \rangle | \underline{k} - \underline{9} - \underline{G} \times | \underline{k} \rangle \\ + e^2 \sum_{m} (\underline{k}) \times | \underline{k} - \underline{9} - \underline{G} \times | \underline{k} \rangle$

+ $\left\{\frac{\overline{\mathcal{B}_{k',k'-9-Gm,\alpha}}}{E(k')-E(k'-9-Gm)}\right\}$ (k+9+Gn) (k') (R^{-2}) (k-9-Gn)

+ $\left\{ \left| \frac{\partial k_{k} \cdot k_{2} - G_{m, \alpha}}{E(k) + G_{m} \cdot g} \right| \left| \left| \left| \frac{\partial k_{k} \cdot k_{2} - G_{m, \alpha}}{E(k) + G_{m} \cdot g} \right| \left| \left| \frac{\partial k_{k} \cdot k_{2} - G_{m} \cdot g}{E(k) + G_{m} \cdot g} \right| \left| \frac{\partial k_{k} \cdot k_{2} - G_{m} \cdot g}{E(k) + G_{m} \cdot g} \right| \left| \frac{\partial k_{k} \cdot k_{2} - G_{m} \cdot g}{E(k) + G_{m} \cdot g} \right| \left| \frac{\partial k_{k} \cdot k_{2} - G_{m} \cdot g}{E(k) + G_{m} \cdot g} \right|$

+ $\left\{ \frac{\delta_{K,K-9-G_{m,k}}}{F(K)-F(K-9-G_{m})} \right\} \left\{ k+9+G_{m} K K-9-G_{m} R^{-1} K \right\}$ $-\langle k+9+G_{n}|\langle k-9-G_{m}|R^{-1}|k\rangle|k\rangle \}$

+ $\left\{\frac{G_{K,K-9-G_{m,0}}}{E(K)-E(K-9-G_{m})}\right\}$ $-\langle k+1+G_n|\langle k|R^{-1}|k\rangle|k-1-G_n\rangle$ 35

for the d-band electrons. Only the first term in Eq. 35 represents the unscreened electron-phonon coupling constant whereas the remaining terms under the sum are entirely due to screening.

The problem now is to determine the bare ion potential $\sqrt{(\Gamma)}$. This potential may be broken down into two parts, one of which is the nuclear coulomb potential and the other being due to the screening effect (including exchange) of the core electrons. Since the core electrons all lie within closed shells, their potential is spherically symmetric about the nucleus and hence the vector notation (Γ) may be dropped. Since five or six atomic electrons enter band states in the transition metals in question, then the remaining core will be quite small and should resemble their atomic counterparts quite closely. In fact the use of atomic potentials to represent core potentials may very well be a better approximation for transition metals than for normal metals. The calculation of these potentials is largely unnecessary due to the efforts of Herman and Skillman²⁶. Essentially, they have determined a set of self-consistent Hartree-Fock potentials for neutral atomic elements. It is from these numerical potentials and radial densities that the necessary core potentials must be determined.

Up until now the possibility of phonon induced interband transitions has not been considered. The reason so is that such transition probabilities would be proportional to matrix elements of the type $\langle \underline{K} | \nabla V(r) | \underline{K} + \underline{Q} + \underline{G}_{n} \rangle$ and $\langle \underline{k} | \nabla V(r) | \underline{K} + \underline{Q} + \underline{G}_{n} \rangle$. Since the potential V(r)and hence its gradient is spherically symmetric, these matrix elements can be non zero only if the bra and ket contain at least one identical spherical harmonic. However, in specifying the wavefunctions, such a possibility was eliminated. Thus, for this particular model, interband transitions are ruled out.

CHAPTER V

EVALUATION OF MATRIX ELEMENTS

The purpose of this section is to develop specific expressions for matrix elements of the type $\langle P_1(\mathbf{E}')|\langle P_2(\mathbf{E})| \stackrel{f}{\longrightarrow} \mathbf{E} - \mathbf{E}'||P_3(\mathbf{E})\rangle|P_4(\mathbf{E}')\rangle$ and $\langle P_1(\mathbf{E})| \stackrel{f}{\longrightarrow} \bigvee(\mathbf{E})|P_2(\mathbf{E})\rangle$ where $\bigvee(\mathbf{E})$ is the gradient of the bare ion potential. The form of the wavefunctions will be linear combinations of atomic orbitals and plane waves from which any orthogonalized plane wave can be formed.

Part A - Fourier Coefficients of Wavefunctions

Consider a linear combination of atomic orbitals

$$\int_{k}^{n lm} \frac{1}{\sqrt{N}} \sum_{j} e^{i \frac{k}{k} \cdot \mathbf{y}} \phi_{n lm}(\mathbf{r} - \mathbf{r}_{j})$$

where N is the total number of lattice points, r_j is the jth lattice point, and ϕ is a given atomic wavefunction having quantum numbers n, 1, and m respectively. The Fourier transform is

$$C_{k}^{nlm}(P) = \frac{1}{(2\pi)^{3}} \int e^{i P \cdot r} \int_{-\infty}^{nlm} (r) dr \qquad 2$$

Performing the integration, this coefficient then becomes

$$C_{\underline{k}}^{nlm} = \frac{1}{(2\pi)^3 N^{\frac{1}{2}}} \sum_{j} e^{i(\underline{k}+\underline{p})\cdot\underline{r}_{j}} I_{(\underline{p},\Theta_{\underline{p}})}^{nlm} 3$$

or

$$C_{k}^{nlm}(P) = \frac{N^{\frac{1}{2}} \delta_{P_{1}-k}}{(2\pi)^{3}} \underline{T}^{nlm}(P,\Theta_{P})$$

where

$$\underline{T}_{(P,\Theta_{P})}^{nlm} = \int e^{iP \cdot \mathbf{r}} \phi_{n(m(r))dr}$$

Orthogonalized plane waves may now be treated using

$$C_{k}^{\circ}(\underline{P}) = \frac{1}{(2\pi)^{3}} \int C^{i\underline{P}\cdot\underline{r}} \psi_{k}(\underline{r}) d\underline{r} \qquad 6$$

$$\sum_{k=1}^{or} \frac{\sqrt{-\frac{1}{2}}}{(2\pi)^3} \int e^{i \mathbf{F} \cdot \mathbf{r}} \left\{ e^{i \mathbf{k} \cdot \mathbf{r}} - \sum \left(\int e^{i \mathbf{k} \cdot (\mathbf{r} - \mathbf{r}_j)} \phi_{n(m)}(\mathbf{r} - \mathbf{r}_j) d\mathbf{r} \right) e^{i \mathbf{k} \cdot \mathbf{r}_j} \right\} d\mathbf{r}_{j} d\mathbf$$

:

8

The integrations are then performed to give

$$C_{k}^{OPW} = \frac{\sqrt{\frac{1}{2}}}{(2\pi)^{3}} - \frac{N^{\frac{3}{2}}}{\sqrt{\frac{1}{2}}} \sum_{h=1}^{n_{max}} \sum_{(=0)}^{h-1} \sum_{m=-l}^{l} \frac{1}{\Gamma(k_{l}-\Theta_{k})} C_{k}^{hlm}.$$

· · .

Likewise, proper linear combinations of d-states having

128

symmetry possess the coefficients

$$C_{k}^{xy}(P) = \frac{C_{k}^{h22} - C_{k}^{h2-2}}{\sqrt{2}}$$
, 9a

$$C_{k}^{YZ} = \frac{C_{k}^{h21} + C_{k}^{h2-1}}{\sqrt{2}}$$
, 9b

and

$$C_{k}^{ZX} = \frac{-C_{k}^{h21} + C_{k}^{h2-1}}{\sqrt{2}}.$$
 90

10

To evaluate T^{nlm} , let

 $\Phi_{hlm}(\mathbf{r}) = R_{hl}(\mathbf{r}) \sum_{i}^{m} (\Theta, \phi)$

- -

and

$$e^{iP\cdot r} = \sqrt{4\pi} \sum_{(1=0)}^{\infty} (2(1+1)^{1/2} j_{(1}(Pr))) (\Theta'). \qquad 11$$

Transform from the primed to unprimed coordinate system letting Θ_p be the angle between Z' and Z. Then (see Edmonds³⁸),

$$\sum_{m'=-1}^{l} \sum_{m'=-1}^{l} \sum_{m'=-1}^{m'} \gamma_{l}^{m'}(\Theta, \phi) = \sum_{m'=-1}^{l} \sum_{m'=-1}^{m'} \sum_{$$

العد الم

Thus

$$\frac{\prod_{k=0}^{n(m)} \sum_{i=0}^{\infty} (2(i+1)^{1/2} \sum_{m'=-i}^{i} \sqrt{(i-m')!} P_{i}^{m'}(\cos \theta_{i}) = 13}{\prod_{k=-i}^{\infty} \sum_{i=0}^{2\pi} \prod_{j=0}^{\pi} (r) j_{i}^{j}(P_{i}) \sqrt{(\theta_{j}, \phi)} \gamma_{i}^{m}(\theta_{j}, \phi) r^{2} \sin \theta d\theta d\phi dr$$

Performing the integrations over angles, the final result is

$$\frac{1}{(P,\Theta_{p})} = \sqrt{\frac{4\pi(2(+1)(-m)!)}{(1+m)!}} P_{1}^{(m)} \cos \Theta_{p} \int_{0}^{\infty} P_{h}(r) j(Pr) r^{2} dr \qquad 14$$

If the radial wavefunctions are assumed to have hydrogen atom-like form, then

$$R(r) = C \qquad \sum_{i=0}^{-r\sqrt{\frac{-2\mu}{h^2}}} \sum_{i=0}^{\infty} D_{hl}^{i} r^{(+i)} \qquad 15$$

where \mathcal{M} is the effective mass of the electron, E_{nl} is the state energy, and the coefficients, D_{nl}^{i} are set to give the best fit to the currently accepted radial wave-

functions for the atomic state in question. Equation 15 can then be substituted into Eq. 14 to yield the required $\prod_{n \in \mathbb{N}} n(m)$ (see appendix A for the first few coefficients).

Part B - Evaluation of Screening Matrix Elements

A typical screening matrix element is of the form $M.E.^{S} = \left\langle P_{1}(\mathbf{r}') | \left\langle P_{2}(\mathbf{r}) | \frac{1}{|\mathbf{r}-\mathbf{r}'|} | P_{3}(\mathbf{r}) \right\rangle | P_{4}(\mathbf{r}') \right\rangle$ Taking the Fourier transform gives

Letting $\underline{R} = \underline{E} - \underline{r}'$ yields $M \underline{E}^{s} = \int d\underline{P}_{s} d\underline{P}_{s} d\underline{P}_{s} d\underline{P}_{s} d\underline{P}_{s} d\underline{P}_{s} C_{s}^{*}(\underline{P}) C_{s}^{*}(\underline{P}) C_{s}(\underline{P}) C_{4}(\underline{P}_{s})^{*}$ $\int \int d\underline{r} d\underline{R} e^{i(\underline{P}_{s} - \underline{P}_{s}) \cdot \underline{R}} e^{i(\underline{P}_{s} - \underline{P}_{s} - \underline{P}_{s}) \cdot \underline{r}}$

Performing the integrations over \mathbf{k} and \mathbf{R} gives

$$ME^{S} = 4\pi(2\pi)^{3}\int dE dE dE C^{*}(E)C_{2}(E)C_{3}(E+E)C_{1}(E) P^{2}$$

$$P^{2}$$

$$P^{2}$$

$$P^{2}$$

$$P = |\underline{R} - \underline{R}|$$

Transforming the integrals to sums, the final result yields

Part C - Evaluation of the Ionic Matrix Elements

The ionic matrix element is of the type $M \in \mathbb{I} = \langle P_1(\mathbf{r}) | \nabla \bigvee (\mathbf{r}) | P_2(\mathbf{r}) \rangle$

Taking the Fourier transform gives

$$M.E^{I} = \int d\underline{R} d\underline{R} C(\underline{R}) C^{*}(\underline{R}) \int C^{*} \nabla V(\mathbf{r}) C^{*} d\mathbf{r}^{20}$$

Let V(r) be spherically symmetric and of the following form

$$V(r) = \frac{q^{2}}{r} \left\{ Z_{c} e^{-Er} \left(1 + \sum_{h=1}^{\infty} a_{h} r^{h} \right) + \left(Z - Z_{c} \right) \right\}$$
²¹

where Z_c is the number of electrons in the ion core and, thus $Z - Z_c$ is the positive charge of the ions in the metal. The coefficients a_n and E are set to best represent the experimental ionic potential. Substituting the gradient of Eq. 21 into Eq. 20 and transforming integrals to sums yields

$$\int e^{i(\underline{B}-\underline{B})\mathbf{r}} \left\{ Z_{c} e^{-\underline{E}\sqrt{1+\sum_{n=1}^{\infty}a_{n}r^{n}} + (Z-Z_{c})} \right\} d\mathbf{r}$$

Letting
$$(\underline{P}_1 - \underline{P}_2) \cdot \underline{r} = |\underline{P}_1 - \underline{P}_2| \cdot Cos \Theta$$

and performing the integration over r gives

$$\frac{i}{2|\mathbf{R}-\mathbf{F}|} \sum_{j=1}^{\infty} \frac{(j-1)!}{|\mathbf{E}^2-\mathbf{F}|^2} \frac{i}{|\mathbf{E}^2-\mathbf{F}|^2} \frac{i}{|$$

In practice, an infinite number of coefficients need not be used in R_{h} and V(H)However, a sufficient number should be determined to insure the desired accuracy.

CHAPTER VI

THEORETICAL INVESTIGATION OF SUPERCONDUCTING TANTALUM AND TUNGSTEN

In an earlier discussion of group V and group VI B.C.C. transition metals it was noted that these two similar periodic groups had very contrasting properties as superconductors. Thus, it would be appropriate to investigate both groups with the theoretical apparatus developed earlier in hope of finding some reasonable explanation. Tantalum and tungsten are chosen since experimental data is more readily available for these two metals. The calculations should emphasize differences between tantalum and tungsten consistent with being kept as simple as possible.

The first step is to reduce the expression for the electron-phonon coupling constant to a more soluble form. For a single band, the real part of the electron-phonon coupling constant is

 $\mathcal{S}_{\underline{k},\underline{k}+q}+\underline{G}_{\underline{n},\underline{n}}=-\sqrt{\underline{k}}\underbrace{N}_{2M\omega_{q}\underline{n}}\in\underline{g}_{\underline{n}}\cdot\langle\underline{k}|\nabla V(\underline{r})\underline{k}+q+\underline{G}_{\underline{n}}\rangle$ + $HTC^{2}\sum_{k} (\underline{k}) \frac{\partial \underline{k} \cdot \underline{k} + \underline{9} + \underline{G}_{m'} \cdot \underline{x}}{\Omega^{2}} \vee$

 $\left[\frac{1}{E(k)-F(k+q+G_m)}\right]\times$ $\{\langle k+q+G_n|\langle k+q+G_m|R^{-1}|k\rangle|k\rangle$ $-\langle \underline{k}+9+\underline{G},\underline{k}\underline{k}+9+\underline{G},\underline{R}-1|\underline{k}\rangle|\underline{k}\rangle$ $+\langle k+q+G_n\langle k|R^{-1}|k+q+G_n\rangle k\rangle$ $-\langle \underline{k}+ \underline{q}+\underline{G}_{n}|\langle \underline{k}|R^{-1}|\underline{k}\rangle|\underline{k}+ \underline{q}+\underline{G}_{m}\rangle$ $+ \{ \frac{1}{E(k) - E(k' - \eta - G_{m})} \}$ $\left\{\left(\underline{k}+g+\underline{G}_{n}\right)\left(\underline{k}-g-\underline{G}_{m}\right)R^{-1}\right\}$ -{k+9+Gu/{k-9-G_1R-1|k>1k> $+\langle k+\eta+Gn|\langle \underline{k}|R^{-1}|\underline{k}-\eta-G_{m}\rangle|\underline{k}\rangle$ -(k+g+G+KKIR-1/k)K-g-G~)

Where Ω is the volume of the unit cell and the sums are over all occupied states. Substituting in the correct expressions for the matrix elements from chapter V and using

$$C_{\underline{k}}(\underline{P}) = \frac{N^{1/2} \delta_{\underline{P},-\underline{k}}}{(2 \ TT)^3} \prod (\underline{P}, \Theta_{\underline{P}})$$

2

gives

i.

$$\begin{split} \vec{\delta}_{\underline{k},\underline{k}+\underline{q}+\underline{G}_{\underline{n}},\underline{\alpha}}^{\underline{e}} &= -\sqrt{\underline{k}} \frac{N}{2|M\omega_{\underline{q},\underline{\alpha}}} \in \underline{q}_{\underline{a}}^{\underline{e}} \langle \underline{k} | \nabla V(r) | \underline{k} + \underline{q} + \underline{G}_{\underline{n}} \rangle \\ &+ 4\pi e^{2} \sum_{m} (\underline{k}') \frac{\vec{\delta}_{\underline{k}',\underline{k}'+\underline{q}+\underline{G}_{\underline{n}}\underline{\alpha}}}{\Omega^{2}} \times \\ & \left[\langle \frac{1}{E(\underline{k}')-E(\underline{k}'+\underline{q}+\underline{G}_{\underline{n}})} \right] \times \\ \left\{ 2I(\underline{k}+\underline{q}+\underline{G}_{\underline{n}})I(\underline{k}')I(\underline{k}'+\underline{q}+\underline{G}_{\underline{n}})I(\underline{k}) \delta_{\underline{G}_{\underline{m}},\underline{G}_{\underline{m}}} \frac{1}{|\underline{q}+\underline{G}_{\underline{n}}|^{2}} \\ &- I(\underline{k}+\underline{q}+\underline{G}_{\underline{n}})I(\underline{k}')I(\underline{k})I(\underline{k}'+\underline{q}+\underline{G}_{\underline{m}}) \delta_{\underline{G}_{\underline{n}},\underline{G}_{\underline{m}}} \frac{1}{|\underline{q}+\underline{G}_{\underline{n}}|^{2}} \\ &+ \left\{ \frac{1}{E(\underline{k}')-E(\underline{k}'-\underline{q}-\underline{G}_{\underline{n}})} \right\} \times \end{split}$$

. •

$$\left\{ 2I(k+q+G_n)I(k'-q-G_m)I(k)I(k)\xi_{g_n,G_n}\frac{1}{|q+G_n|^2} - I(k+q+G_n)I(k-q-G_m)I(k)I(k')\xi_{g_m,G_n}\frac{1}{|k-k-G_n-q|^2} \right\}$$

Equation 3 represents a Fredholm integral equation of the second kind. For the purpose of simplicity, the screened coupling, \bar{g} , will be assumed to depend only upon the initial and final momentum at the Fermi energy. Since the screening term is either less than or about the same magnitude as the unscreened term, the relatively small error that has been introduced should not have a devastating effect upon the accuracy of the calculation. The form of the actual wavefunctions, represented by the quantities $I(\dots)$, will be approximated as in the free electron case. In this simplification the quantities $I(\dots)$ are set equal to $\Omega^{1/2}$ due to the fact that they are normalized to the unit cell volume Ω . Thus taking the average over polarization,

the electron-phonon coupling constant is reduced to

$$\sum_{k} \left(\frac{1}{k} \right) = \frac{1}{E(\frac{1}{k} + \frac{1}{q} + \frac{1}{G_{n}}) - E(\frac{1}{k})} \left\{ \frac{1}{q^{2}} - \frac{1}{|\frac{1}{k} - \frac{1}{k}|^{2}} - \frac{1}{|\frac{1}{k} + \frac{1}{q} + \frac{1}{G_{n}} - \frac{1}{|\frac{1}{k}|}} \right\}$$

4

where

$$\int_{2}^{4} \frac{4\pi e^{2}i}{2NM} \frac{4\pi e^{2}i}{-2} \left[\frac{\pi (Z-68)}{29} + \frac{68 \cot^{-1}(E9)}{9} + \frac{68 \cot^{-1}(E9)}{9} + \frac{68 i}{29} \sum_{j=0}^{6} \frac{j!}{(E^{2}+9^{2})^{j+1}} \left[(E-iq)^{j+2} - (E+iq)^{j+1} \right] \right]$$

The factor 68 represents the number of core electrons in taintalum and tungsten and seven coefficients are sufficient to represent the ionic potential. Solving for the electronphonon coupling constant explicitly and converting from summation to integration over the Fermi sphere, gives

Where a factor of two is inserted before the integral to include electrons of both spins. Using $E(\underline{k}) \cong \hbar^2 \underline{k^2} \mathbb{A}^2$, the integrals are performed (Appendix B) for the three terms in the integrand. Briefly, for the first term one finds

$$\frac{4}{19^{+G_{H}}} \int \frac{d^{3} \vec{k}}{E(\vec{k}+9^{+}G_{H})-E(\vec{k})} =$$

$$\frac{8 \mathrm{TTm} k_{F}}{h^{2} |_{2}^{2} + \frac{(4 k_{F} - |_{2}^{2} + G_{n}|^{2})}{(n/2 k_{F} + |_{2}^{2} + G_{n}|)}$$

7

which is the classical Bardeen³¹ result. The other two terms are due to exchange and each yield identical results which are equal to

$$\int \frac{d^{3}k'}{E(k'+1)+G_{n})-E(k')} \left(\frac{1}{|k-k'|^{2}}\right) = \frac{(2\pi)^{3}P(E_{f})}{4|1+G_{n}|_{k_{f}}\sqrt{1-\cos 2(scn^{-1}\kappa_{c}/2k_{f})}} 8$$

Where $P(E_{f})$ is the density of states at the Fermi energy and K_{c} represents the correlation momentum. Such momentum represents a minimum scattering momentum associated with a correlation hole about each electron. Electrons at relatively large distances from each other are effectively screened so small momentum transfers do not take place between them. Substituting these integrals into Eq. 6 yields

$$\frac{\delta_{k_{f}}|_{2}+G_{n}|^{2}=COS\Theta_{2}\times\delta_{2}}{\left[1+\frac{\delta e^{2}mk_{F}}{h^{2}\pi|_{2}+G_{n}|^{2}}\left\{\frac{1}{2}+\frac{4k_{F}^{2}-19+G_{n}|^{2}}{h^{2}\pi|_{2}+G_{n}|^{2}}\left\{\frac{1}{2}+\frac{4k_{F}^{2}-19+G_{n}|^{2}}{8k_{F}|_{2}+G_{n}|}\right\}-\frac{8\pi e^{2}}{8\pi e^{2}}\left(\frac{\rho(F_{F})}{V}\right)\left(n\left(\frac{2k_{F}}{k_{e}}\right)^{-1}\right)^{-1}}{9}$$

for the electron-phonon coupling.

An expression for the superconducting transition temperature is derived using a technique similar to that used by Carbotte and Dynes¹³. The desired quantity is the coupling times density of states function which is

$$\alpha^{2}(\omega)F(\omega) = \frac{P(E_{1})}{8\pi k_{y}^{2}} \sum_{n} \int_{d}^{d} \frac{3}{9} \left| \frac{3}{6} k_{y,1} \frac{3}{9} - \frac{3}{9} \right|^{2} \frac{\delta(7/2 - \omega)}{9}$$
 10

where the sum over modes of vibration is implied. A computer program developed by Gilat and Raubenheimer³⁹ provides

$$F(\omega) = \frac{1}{N} \int_{1BZ} \frac{d^3 \varphi}{(2\pi)^3} \delta(\gamma_2 - \omega)$$
¹¹

in histogram form for the phonon density of states $F(\varpi)\Delta \omega$. Comparing Eq. 11 with Eq. 10, one finds that, for each value of the phonon wavevector q, the proper value of $\alpha^2(\varpi)$ must be computed for all possible umklapp processes and then multiplied by the number of states placed in each histogram channel for that particular q. Thus, the histogram will then reflect $\alpha^2(\varpi)$ $F(\varpi)$ $\Delta \varpi$ for channel width $\Delta \varpi$. The coupling factor for phonon wavevector q and the nth umklapp process is then

$$EPH = \frac{\pi^2 N P(E_F)}{\left| \mathfrak{P} + G_m \right| k_F^2 V} \left| \overline{\mathfrak{S}}_{k_F} \right| \left| \mathfrak{g}_{+} G_m \right|^2 \qquad 12$$

A computer subroutine, EPH, which calculates Eq. 12 is added to the Gilat and Raubenheimer program (see Appendix C). Another subroutine, SWEEP, which constructs the phonon density of states histogram, is modified to find the coupling factor for all umklapp processes involving phonon wavevector q. In the same subroutine, the number of states placed into each histogram channel, $F(\varpi) \ \Delta \varpi$, is then multiplied by EPH for all umklapp processes to construct a new histogram containing $\alpha^2(\varpi) F(\varpi) \ \Delta(\varpi)$ in each channel. The main program then calculates

$$\lambda = 2 \int_{\omega}^{\omega} \frac{\alpha^2(\omega) F(\omega) d\omega}{\omega}$$

for comparison with McMillan¹⁵ together with the transition

temperature using

$$T_{c} = \frac{\Theta_{P}}{1.45} e^{-\left[\frac{1.04}{\lambda - \mu^{*}(1 + .62\lambda)}\right]}^{-14}$$

for strong coupled superconductors. The value of μ^* represents effects of electron-electron repulsion whose values are taken from McMillan. Plots of both $F(\omega)$ $\Delta \omega$ and $\alpha^2(\omega) F(\omega) \Delta(\omega)$ are constructed and shown in Tables 6 through 9.

Two crucial quantities are K_f and K_c . Upon examination of calculations for K_c for sodium⁴⁰, one can reason that, for the greatly increased density of electrons in a transition metal, $K_c = K_f$ should be a fairly good approximation. On the other hand K_f is freely varied about its free electron value to see what results can occur. Since, for the case of a real metal, K_f changes from point to point on the Fermi surface. Other parameters utilized by the program are the Debye temperature θ_D , the interatomic force constants, and the coefficients for the functions representing the ionic potential. Such data is

Ionic Potential Coefficients and Density of States	Force Constants (dynes/cm)	
E 1.725×10^9 a ₁ -9.774×10^{-2} a ₂ 3.894×10^{10} a ₃ -4.770×10^{20} a ₄ 3.008×10^{30} a ₅ -1.069×10^{40} a ₆ 2.227×10^{49} a ₇ -2.698×10^{58} $n(e_f)$ 1.52×10^{34}	16983 81 11201 2 1182 82 1483 82 1483 82 1483 83 -5427 73 1943 73 1943 74 3577 84 -718 74 -1728 $e4$ 983 $e5$ 812 $e6$ -3705 85 812 76 -3705 86 134 77 558 87 -237 77 106 $e7$ -683	

Table 4. List of potential coefficients and force constants for tantalum.

Table 5. List of potential coefficients and force constants for tungsten.

Ionic Potential Coefficients and Density of States		Force Constants (dynes/cm)		
E	1.780x10 ⁹	~1	23000	
al	1.061x10 ⁻¹	⁸ 1	19200	
^a 2	3.926x10 ¹⁰	~ 2	47300	
^a 3	-4.795 x1 0 ²⁰	⁸ 2	800	
a ₄	3.023x1 0 ³⁰	a.3	3200	
^a 5	-1.076x10 ⁴⁰	⁸ 3	1400	
a ₆	2.248x10 ⁴⁹	^Y 3	4900	
a ₇	-2.734x10 ⁵⁸			
∩(E)	2.56 x10 ³³			

summarized in tables 4 and 5.

The final results include Figs. 8 and 9 of which Fig. 9 agrees quite well with an experimental investigation by L. Y. L. Shen⁴¹. The dimensionless coupling parameter, λ , and the superconducting transition temperature stemming from it show reasonable values which upon freely varying K_f , can be made to agree with experimental values.

. - 110 - 51

Figure 8, Coupling times density of states for tantalum,

CHAPTER VII

CONCLUSION

The objective of this research was to examine, theoretically, transition elements in order to determine whether or not their superconductivity is due to a phonon mediated interaction between electrons. The task was to find an expression for electron-phonon coupling from an appropriate model and, then, with the theoretical apparatus used by Carbotte and Dynes¹³ for simple metals, find the superconducting properties of the transition metal in question. It may be recalled that all of the conduction electrons were assumed to lie in a single band similar to the free electron case. Although such simplifications cannot be expected to yield exact expressions, the results can, nevertheless, tell a great deal about the system at hand.

First to be considered are the coupling times phonon density of states curves for tantalum and tungsten (Figures 8 and 9). Comparing these two figures to the corresponding phonon densities of states shows about twice the effective coupling at lower (transverse) frequencies compared to that at the highest (longitudinal) frequencies for both metals. in the case of tantalum, the curves compare favorably with

Tantalu	n	Tu	ngsten
Ķ _f (x10 ⁸)	λ	к _f (х10 ⁸) λ
1.601	32.8	0.75	0.405
2.0	124.34	0.8	0.342
2.1	5.414	0.9	0.266
3.3	2.358	1.0	0.213
3.5	2:207	1.4	0.183
4.0	1.933	1.779	0.164
5.0	1.041	2.0	0.154
6.0	0.671		
Tc=4.48 ⁰ K	0.69	T _c =0.012	ок 0.29

Table 6. λ vs K for tantalum and tungsten.

experimental results obtained by L. Y. L. Shen⁴¹. Thus, it appears that the qualitative features of the theoretical screening are basically correct for tantalum. Moreover, treating all conduction electrons as members of a single band with no distinction for s-like or d-like states has not produced any serious difficulties.

The curves (Figures 10 and 11) giving the dimensionless coupling parameter, λ , versus the Fermi momentum K_{f} , require deeper interpretation. For tantalum it is apparent from the results that in the theory one must use a value of K, about twice as large as would be expected for an electron gas of similar density (1.6 x 10^8 qm-cm/sec) to achieve the correct values of λ (0.69) and, hence, Tc (4.48°K). The situation with tungsten is somewhat reversed. Here the theory requires a value of K_{p} of about one half that expected in an electron gas of similar density (1.8 x 10⁸ qm-cm/sec) to get the correct λ (0.29) and Tc (0.012°K). Thus, if the theory is essentially correct for group V transition metals like tantalum, then what properties of group VI transition metals such as tungsten prove to be incongruent with these calculations? It must be remembered that all electrons were assumed to be capable of pairing and no distinction was made between s-like and d-like carriers. One such interpretation is that the conduction electrons in tungsten do separate into both an

.

ļ

s-like and a d-like group. If only the more weakly coupled s-like electrons could form Cooper pairs then both the abnormally low value of K_f required in the theory and the low superconducting transition temperature can be justified. The assumption that the theory is correct for tantalum is supported, in addition to agreement with the Shen results, by reasoning that all of the conduction electrons can form Cooper pairs and that strong coupling results from the tendency of these electrons to form into a group of d-like electrons strongly correlated to the positions of the ions together with an itinerent s-like group.

In conclusion, a theoretical investigation of the superconducting properties of transition metals using the same phonon-mediated theory successful for simple metals has yielded credible results.

APPENDICES

APPENDIX A

Ę.

EVALUATION OF 1 nlm

(1) 1 = 0 case

$$I(P,\Theta_{p})=2\sqrt{TT}\int_{0}^{\infty}R_{no}(r)j_{0}(Pr)r^{2}dr$$
$$=2\sqrt{TT}\int_{0}^{\infty}\left(e^{-r\sqrt{\frac{-2/4}{h^{2}}}}\sum_{i=0}^{\infty}D_{no}^{i}r^{i}*\frac{i}{h^{2}}}\left(\frac{sinPr}{Pr}\right)r^{2}dr$$

$$=\frac{2\sqrt{\pi}}{P}\sum_{i=0}^{\infty}D_{ho}^{i}\left\{\frac{(i+1)!}{(P^{2}-\frac{2\mathcal{M}}{K}E_{ho})^{\frac{i+2}{2}}}\times sin\left((i+2)\tan^{-\frac{1}{K}}\frac{P}{\sqrt{-2\mathcal{M}E_{ho}}}\right)\right\}$$

$$T_{(P,\Theta_{p})}^{noo} = 2\sqrt{\pi} \sum_{i=0}^{\infty} \sum_{j=0}^{i+2} \left\{ \frac{D_{no}(i+1)!(i+2)!}{(i-j+2)!j!} \right\} \times \left\{ \frac{-2\mu E_{no}}{2} \left\{ \frac{P^{j-1}}{(P^{2} - \frac{2\mu E_{no}}{K^{2}})} \right\} + \frac{1}{(P^{2} - \frac{2\mu E_{no}}{K^{2}})} \right\}$$

$$\frac{\int_{0}^{h1m} (P_{i} \Theta_{p}) = 2\sqrt{3\pi} \sqrt{\frac{(1-m)!}{(1+m)!}} P_{1}^{imi}(\cos \Theta_{p}) \times \int_{0}^{\infty} R_{n1}^{i}(r) j_{1}^{i}(Pr) r^{2} dr$$

(2) 1 = 1 case

$$= 2\sqrt{3\pi}\sqrt{\frac{1-m}{(1+m)!}} \int_{1}^{1/m} (\cos \theta_{r}) \sum_{i=0}^{\infty} D_{h1}^{i} \times \left[\frac{1}{p_{0}}\int_{r}^{\infty} e^{-r\sqrt{\frac{-2}{h}E_{h1}}} \int_{r}^{\infty} e^{-r\sqrt{\frac{-2}{h}E_{h1}}} \int_{r}^{\infty} e^{-r\sqrt{\frac{-2}{h}E_{h1}}} \cos prdr\right]$$

(3)
$$1 = 2 \text{ case}$$

$$\prod_{\substack{n \ge m \\ (P_{j} \Theta_{p})}^{n} = 2 \sqrt{\frac{5\pi(2-m)!}{(2+m)!}} P_{2}^{mi} (\cos \Theta_{p}) \times \int_{0}^{\infty} \frac{(r) j_{2}(Pr) r^{2} dr}{(2+m)!} P_{2}^{mi} (\cos \Theta_{p}) \sum_{\substack{i=0 \\ j=0}}^{\infty} D_{n2}^{i} \times \frac{2\sqrt{\frac{5\pi(2-m)!}{(2+m)!}}}{(2+m)!} P_{2}^{mi} (\cos \Theta_{p}) \sum_{\substack{i=0 \\ j=0}}^{\infty} D_{n2}^{i} \times \frac{2\sqrt{\frac{5\pi(2-m)!}{(2+m)!}}}{p_{3}} \int_{0}^{\infty} r^{i+2} e^{-r \sqrt{\frac{-2MEn2}{\pi^{2}}}} \sin pr dr dr - \frac{1}{p_{0}} \int_{0}^{\infty} r^{i+2} e^{-r \sqrt{\frac{-2MEn2}{\pi^{2}}}} \sin pr dr + \frac{3}{p_{2}} \int_{0}^{\infty} r^{i+2} e^{-r \sqrt{\frac{-2MEn2}{\pi^{2}}}} \cos pr dr$$

••

$$I_{(P,\Theta_{P})}^{h2m} = 2\sqrt{\frac{5\pi(2-m)!}{(2+m)!}} P_{2}^{lml} (\cos \Theta_{P}) \sum_{l=0}^{\infty} D_{h2}^{l} \times \frac{1}{(1-j+2)!} \sum_{j=0}^{j-1} \frac{3(i+1)!(i+2)!}{(i-j+2)!} \sum_{j=0}^{j-1} \frac{2\pi(2-m)!}{(1-j+2)!} \sum_{j=0}^{j-2} \frac{2\pi(2-m)$$

•

APPENDIX B

:

EVALUATION OF INTEGRALS

Part- I Exchange Screening

$$\frac{f'(E_{k'})}{V} = \frac{4\pi k'^2}{\frac{dE_{k'}}{dk}} \quad \text{with } E_{k'} \text{ as a function of scalar k'only}$$
Thus, using
$$E(\frac{k'}{4k}+q) - E(k') \cong \frac{dE_{k'}}{dk'} \quad \text{sin} \Theta_{\mathbf{k}} \in \mathcal{G} \quad \mathcal{G}$$
and
$$\sin \Theta_{\nabla_{\mathbf{k}}} \in \mathcal{G} = \frac{4k'}{k'}$$
Where due to the fact
$$|\underline{k} - \underline{k'}| \quad \text{is small only}$$
near the Fermi surface,
$$4k' \quad \text{is the effective}$$
range of k' for non zero integrand. Then,
$$\int \frac{d^3k'}{E(\frac{k'}{k}+q) - E(\frac{k'}{k})} \frac{1}{|\underline{k} - \underline{k'}|^2} \quad \text{becomes}$$

$$\frac{d^{3}k'}{E(k+q)-E(k')}\frac{1}{|k-k'|^{2}} = \int \frac{(k'dk'sin\Theta d\Theta d\phi)}{(4\pi 9)/k'sin\Theta d\Theta d\phi} \frac{1}{(k+k'-2kk'cos\Theta)}$$

$$= \frac{(2\pi)^{3} k P(E_{k'})}{4\pi 9 V \Delta k'} \int \int \int_{0}^{\pi} \frac{dk' do d\phi \sin \theta}{k^{2} + k'^{2} - 2kk' \cos \theta}$$

over the range of integration k' = k,

$$=\frac{(2\pi)^{3}P(E_{k})}{49Vk}\int_{0}^{\pi}\frac{\sin\Theta\,d\Theta}{(1-\cos\Theta)}$$

$$=\frac{(2\pi)^{3}P(E_{k})}{4gk}\left(n\left(1-\cos\Theta\right)\right)_{\Theta_{0}}^{\pi}$$

$$=\frac{(2\pi)^{3}P(E_{k})}{49k}\left(\ln\left(\frac{2}{1-\cos\Theta_{k}}\right)\right)$$

ALL STREET

.

Finally,

$$\int \frac{d^{3}k'}{E(k'+g)-E(k')} \frac{1}{|k-k'|} = \frac{(2\pi)^{3}P(E_{r})}{2gVk_{r}} \ln\left(\frac{2}{1-\cos 2(\sin k_{c}/2k_{r})}\right)$$

Where the correlation hole, $\mathbf{K}_{\mathbf{C}}$ is given by

$$\Theta_{0} \cong \operatorname{sin}^{-1}(K_{c} \setminus 2 K_{f})$$

]

$$\int \frac{d^{3}k'}{E(k'+\underline{\eta})-E(k)} \frac{4}{\underline{\eta}^{2}} = \frac{8\pi m}{k^{2}} \left\{ \frac{4k_{F}^{2}-\underline{\eta}^{2}}{8\underline{\eta}^{2}} \left\{ \frac{4k_{F}^{2}-\underline{\eta}^{2}}{8\underline{\eta}^{2}} \left\{ \ln\left(\frac{2k_{F}+\underline{\eta}}{2k_{F}-\underline{\eta}}\right) + \frac{4\underline{\eta}k_{F}}{4\underline{\eta}^{2}} + \frac{(-2\underline{\eta}k_{F}+\underline{\eta}^{2})^{2}}{16\underline{\eta}^{3}} \right\} \right]$$

$$= \frac{8\pi m}{k^{2}} \left\{ \frac{4k_{F}^{2}-\underline{\eta}^{2}}{8\underline{\eta}^{2}} \left\{ \ln\left(\frac{2k_{F}+\underline{\eta}}{2k_{F}-\underline{\eta}}\right) + k_{F} - \frac{k_{F}}{2} \right\} \right\}$$

$$= \frac{8\pi m k_{F}}{k^{2}} \left\{ \frac{1}{2} + \left(\frac{4k_{F}^{2}-\underline{\eta}^{2}}{8\underline{\eta}k_{F}}\right) \ln\left(\frac{2k_{F}+\underline{\eta}}{2k_{F}-\underline{\eta}}\right) \right\}$$

C	
Ă	
ENI	
A PP	

C REVISED VERSION OF GILAT AND RAUBENHEIMER PROGRAM G(NU) TO INCLUDE C A FACTOR GIVING ELECTRON-ION COUPLING, UMKLAPP PROCESSES ARE INCLUDED.

ሆረ	κл 1 8	9 01 51 51 51	CTA(7000). 13 CTA(7000). 14 SURR. FREQ 15	V =•6F9.5) 19	12	52	53
DIMENSION AL(3).0(3).0(12).6D1(12).6D2(12).6D3(12). DIMENSION AMAS(12) DIMENSION EV(12.12)	DIMENSION POTEN(7).CTI(1500) Common/x2/ann Common/x3/P1.CP1.PX.U.SC.NSFB.AMAS.DO	COMMON/X4/FV.V COMMON/X5/LΔ.CTΔ.DVΔ.AHALF.VOLUMF.ASO.NPRTNT.XM COMMON/X5/KM.KK.T.I.K COMMON/X7/MNN COMMON/X7/MNN	THE ONLY (DIMENSTONED) ARRAYS IN COMMON STATEMENTS ARE FV(12.12) AND V(12) . V IN GAU IS FUUTVALENT TO PH JA	/10/ FORMAT(]4*.//HFPFD. (HANMFL W(D)H = .F9.6) 10] Format(]4-) 105 Format(]x.14.313.2%.3HU =.F4.[.5%.3H0 =.3F9.5%.3F	106 FORMAT(14-%-10x, 224APRAY OF G(NU)/(NU)**2 ///) 107 FORMAT(1X.15.313.F5.1.4X.6F9.5/AF9.5)]2 FORMAT (]0X。 [5) 2]07 FORMAT(4F20_6) 2]77 FORMAT(4F20_6)	$ 0 \in FORMAT(H0 \cdot 0 \times BHATOMIC MASS(FS) = .4F]0.4$

2]09 FORMAT(]6HOFORCE CONSTANTS) 1111 FORMAT(33H _ (NSEH, NAM, KK, IMIN, IMAX) = .1014)	54
1112 FORWAT (4440) CYCLE NO. KK. NO. CURES. TMIN. IMAX = .1015) 24	26
]]9 ΕΛΡΜΑΤ(RE]Λ _ε ς)]]20 ΕΛΡΜΑΤ(2015)	ď
2]20 FOUMAT([H0. [DF]].4)	6
123 FORMAT(16A5)	
A123 FORMAT(18H FRED(10**12 CPS)20X. 24HG(NU) HISTOGRAM CHANNELS //) 31	31
9123 FORMAT(]H].]A.16A57];+-)	
124 FORMAT (215, 7F10,0)	
126 FOPMAT (2F10_5. 215)	
125 FORWAT(10F8_0) 33	33
9125 FORMAT(5F16.8) 34	34
9]24 FORMAT (]H]/2]H DEGREES OF ERFENOM = .F]0.4)	4 A
9]27 FORMAT (]H]ZQ9H AMRDA = •F]0.4) 34F	Ľ,
9]28 FORMAT (]4]/254 TRANSITTON TEMPERATURE = •F]0.4) 340	Ú t
1002 FORMAT(1H1) 35	35
JOO3 FORMAT(]H]/35H *MFGATTVE* FRFOUENCY CHANNELS /]H-)	
2000 FORMAT (10%. 15H FIGENVECTORS)	
200] FORWAT (10%. GHV(1) = (. 3F15.6. 1H))	
$2002 \text{ FORWAT} (10X \cdot 9HV(2) = (\cdot 3F15 \cdot (\cdot 1H))$	
$2003 \text{ FORMAT} (]0X \cdot 94V(3) = (\cdot 3F]5 \cdot (\cdot 1H))$	
9944 FARMAT (F20.64.3F20.6)	
C ALL *LOGICAL JE* STATEMENTS HAVE REEN PEPLACED BY ARTTHMETIC 1F*S 3P	3 А
C SOME LOGICAL IES HAVE REED LEFT IN AS COMMENTS. INDICATED BY C* 39	39
J4 J	C .+
C ACTIVATE PLOTTING POUTURES FIRST	,
ن ۲	~ +
C NDIMA AND NDIME ARE THE DIMENSIONS OF CIA AND CIC	† †
Nrtwa=]500	
NDING = WDIWA	τ τ
L7 L7	7.7
C PEAD TOFNITEICATION NUMBER (5 DIGITS)	
READ 120. TOFNI	
PRINT 1121. TOFNI	

C	READ IST DATA CARD READ 123. IIIIE	4 A
	PRINT 123. TITLE	
C		С С
C	READ ZUN NATA CARD	ן ני
	READ 120. NSFR. NMM. NFC	
	POTNT 1120. NSFR. NNN. NFC	
C	NSER =] FOR STMPLE CURE. =2 FOR FCC AND =3 FOR RCC.	53
C	WAN = DIMENSION (=3 TIMES 40. OF ATOMS/UNIT CFLL)	ብ ተ
C	MEC = NO. OF FORCE CONSTANTS TO HE PEAD IN FURTHER ON .	С С
C		υ Υ
C	READ ARD DATA CARD	57
	RFAN 119. NVA. XM. NO	
	PRINT]]9. DVA. XM. DU	
C	DVA = CHANNEL WIDTH OF HISTOGRAM (IN 10**12 C/S)	59
C	XM = MVX FPF() (UNITS OF 10**12 C/S)	60
C	DO = DELTA O FOR COMPUTING GRAD(NU). USUALLY DO = 0.0001	61 6
C		<i>4</i> 2
C	READ 4TH DATA CAPD	63
	PFAN 119. AMAS(1). AMAS(4). AMAS(7). AMAS(10)	
	PPINT 119. AMAS(1). AMAS(4). AMAS(7). AMAS(10)	
C		С Ф
C	READ STH DATA CARD(S) - FURCE CONSTANTS	66
	READ 2]07. (PX (1). I=1. WEC)	
	PRINT 2107. (PX (I). [=]. NFC)	
C		ሌ R
	L = MFC + 1	69
	DO 527 J=[.40	
	527 PX(1) = 0.0	71
C		72
C	REAN KIH NAIA CARN	73
	READ []20. MCTA.NCTC.NTAPE.NPLOT.KK.KG.IMIN.IMAX,NPCH.NPRINT PDINT]]20.NCTA.NCTC.HTAPE.NPLOT.KK.KG.IMIN.IMAX,NPCH.NPDINT	
C		<i>د</i> 8
;	REAN 119.DOTEN(1).POTEN(2).POTEN(3).POTEN(4).POTEN(5).POTEN(6).	754

		×	×	×	×						1	08	I															
76A 77A		* * * * * *	* * * * *	XXXXXXX	XXXXXX	8 8 0		16	26	63		94	<u>9</u>	96	96 A	47	Ъ	66	001	101	201	103	104	105	106	107	108	109
ΙΡΟΤΕΝ(7).ΕΡ Ρεδη 119.ΔΜΔSS.ΟΜΕGΑ.Ζ.RHO.ALΡ.ΕLΕ.ΤΗΕΤΔ	<pre>PFAD [19.FKF 7]0 PPINT 9123. TITLF PRINT 108. AMAS(1). AMAS(4). AMAS(7). AMAS(10) WPITF (61. 2109) PPINT 2107. (PX(1). T=1. NFC)</pre>	PRINT 2177.(POTFN(T).1=1.4)	PRINT 2177. (POTEN(1).[=5.7).FP	PRINT 2177.AMASS.OMFGA.7.PHO		310 LA H XM/NVA + 51.0 C MF STADT STOUTOS STUDIES STUDIES STOUDD	. WE STATISTICATING GENERATION FOR STATISTICATING CASE OF *NEG* FREGS NS = 0	C NS IS IN BE THE WESH DUINT SEQUENCE NUMBER	C FIND SOME CONVENIENT CONSTANTS EIC. WITH SURROUTINE CONST .	C	AMASS=AMASS*].66043F-24	CALL CONST	Ċ	$DO 10 I = I \cdot NDI MA$	CTT(T) = 0.0	$I \cap CT \land (T) = \cap \bullet \cap$	$DO 405 W = 1 \cdot NDIWC$	406 CTC(M) = 0.0		311 GO TO (312.313.314).NSFR	312 (ITMAX = KK	PD = 0.5	GO TO 320	313 JT4AX = 4*XX	$0^{-1} = ad$	GO TO 320	314 (1140X = D*XX	0 = 1 • U

320 X JTMAX:		
CURF = Pf	P/X,JTMAX	,
IF (IMA)	0254.0251.0251 (X	
1320 IMAX =	JIMAX	112
2320 IF (IMI)	N) 321 • 321 • 401	113
= NIWI I2E	ſ	114
401 PRINT	1111. NSFR. WNN. KK. TMIN. TWAX	
PRINT	1 U I	
Ċ		117
C RRILLOUIN	ZONE NOW REOKEN UP INTO THREE PARTS (KM = 1.3)	1 1 A
L		611
100 69 1	K≧#]•Ω	
I AHALF :	= CURF/2,0	וכו
VOL UMF	= X•0*AHALF**3	122
,L J NHV **J	S HALF THE LEVICTH OF A LITTLE CURE FAGE .	123
	QHALF * * 2	124
Ċ		125
NO 350	XVWI-WIWI = 1	126
F T = T		
F X II X X II X X		
CU LU	(864+865+866)•NSFR	
864 JMAX =		128
60 TO 5	R67	129
845 FT=I		
, F = X A ML	● ★ F K X + O ● N O O] ● A H S (O ● * F K X + O ● N ● F I)	
	(**** +)	131
3 UL US	R6.7	132
REG JMAX=FI	XX + 0 • COO] - AGS (FXX + 0 • C-F I)	
867 NN 359	.J=[. XAMU. + [=[.	134
868 NN 350		135
60 IO	(345.870.345).NSFR	
870 JF([+].	+X = X F C C) 34 C • 34 C • 37 C	137
345 FJ=J		
ドス 1 ス		
(1) = (1)	FT = 0 = 5) ★CUBE	

	141 142 143	147 144	146	147	148 149	150	151	152				154	155	156		158	159	160	C 7 1		160	165	166	167	168	140
Q(V)=(F.J-C.R)*CJRF O(3)=(FK+C.R)*CJRF	C THF *LOGICAL IF* FORM OF THF STATFMENT(S) WHICH FOLLOW(S)• IS C* IF(JMAX.NF.J.AND.J.NF.K) 349.346 IF((JMAX-J)*(J-K))349.346.349	346 IF(K-JMAX)348,347,347 347 11=1.0	GO TO 19	34 R U = 3.0	(50 0 4) = 6.0	1 + SN = SN 6		31 TF (KG-1) 34 • 34 • 29	34 PRINT]05. NS+I+()+K+U+(0(4)+M=]+3)+(V(4)+M=]+NNN)		DINI 2002, (EV(M+C), M II - VAN) DINI 2002, (EV(M+2), M I - 2 VAN)	C THE *LOGICAL TE* FORM OF THE STATEMENT(S) WHICH FOLLOW(S). IS	C* 29 IF(KG.FU.O.OR.KG.FU.2) 35.370	79 IF (KG* (KG+V)) 270 • 36 • 270	35 CONTINUE	Ċ	370 CALL SWFFP(0.6N].6N2.6N3)	350 CONTINUE		SA = 0.0	C THE &LOGICAL TE& FORM OF THE STATEMENT(S) WHICH FOLLOW(S). IS	C* TF(NCTA_GT_0_OR_NTAPF_GT_0_OR_TMIN_F0_1) 47+68	[F(NCTA)447.447.47	447 [F(NTAPF)547+547+47	547 [F([M]N-])48.47.68	2 DO E4 1-1 1 A

-

5	SA = SA+CTA(I) PA = 1.0F+09/SA	170
	DO 57 J=1.LA	172
	CTT(J)=CTT(J)*PA	172A
57	СТФ(Л)=СТФ(Л)*RA	173
A A	PRINT INI	
U H U	E *LOGICAL TE* FORM OF THE STATEMENT(S) WHICH FOLLOW(S) • IS	175
* ت	JF(NCTA.GT.0.AND.JMIN.GT.1) 63.46	176
	JF (NCTA) 66.66.163	177
163	JF ([M [N -]) 66.66.63	178
63	CALL WRT (CTA+NNTMA+NVA+51+LA+1)	
	IUI INIAA	
66	JF (NTAPF)]67.]67.67	lal
67	CONTINIE	
167	CONTINUE	183
	[F(TM[N-])646.746.646	184
Ξ Η L	F *LOGICAL JF* FORM OF THE STATEMENT(S) WHICH FOLLOW(S). IS	J 85
C*646	<pre>IF(NCTA.GT.0.0R.NTAPF.GT.0) 46.746</pre>	1 R 6
646	JF (NCTA) 246.246.46	1 R 7
246	IF (NTAPF) 746.746.46	I RR
4 C	00 146 J=1•LA	
146	CT4())=CT4())/PA	190
746	PRINT 1112. KM. KK. NS. IMIN. IMAX	
	Int Three Parts of the Parts of	
	XX = 0*XX	193
	$CIIRF = CUIRF/3_0$	194
	$I \wedge \Delta X = (I - N I \wedge I) + 3$	195
	GO TO (71.69.69.70.69).KM	
02	I = NIMI	197
	GO TO 69	198
71	TMTN = 4	199
69	COMTTNUF	500
с С		201
へっぺ	РРТИТ]003 РРТИТ 2120. (СТА(1). =1. 50)	

201	D0 298 I=51.LA	04
	CTT(1-50)=CTI(T) 20	0 I A
298	CTA(1-50)=3.0*CTA(1)	
	NA = LA - 50	о Л
	NAA = NA + 1	17
	DO 4000 J = NAA. LA	с Я
	CTT(J)=0.0	0 R A
4000	CTA(J) = 0.0	0
	TF (NCTA) 6298+3298-3298	10
3298	PRINT 1002	
	PRINT 9123. TITLF	
	PRINT 7102. DVA	
	PRINT R123	
	CALL WRT (CTA+NDTWA+DVA+1+NA+1)	
		٨٦١
		1 2 B
	FR0=FR0+DVA	120
2020	CTI(T)=3.0F-0A*CTI(T)/FR0	าวท
	12 JUDZ	12E
	CALL WRT(CTT.NDTMA.DVA.1.NA.2)	
6298	CONTINUE	
	TF (NPCH) 4299, 4301, 4299	
4299	PUNCH 123. TITLE	
	PUNCH 126. DVA. XM. NA. TIJENT	
	NCRD= NA/7 +]	
	DO 4300 [=]. NGRD	
	<u></u>	
	PUNCH 124. T. TDFNT. (CTA(M). M= K.J)	
4300		
429R	PRINT 1002	
	DA 4999 T=1.NA	
4999	CTC(T)=CTA(T)	

TERX	, TEDY	C			1:	13			
PL01			2340	234E	234F	2341	234L 234L	235 232 233 240 253 253 253 253 253 253 253 253 253 253	241
CALL PLOT (000.100.100.) CALL PLOT (80.03) CALL FLT (CTC.NDTMC.NA) CALL PLOT (002.100.100.) CALL PLOT (002.100.100.) CALL PLOT (10)	5011 CTC(T)=CTT(T)*1.0F08 CALL FPLT(CTC+NDTMC+NA) CALL PLOT (001)	2298 PRINT 1002 FRU=-DVA/2.0 FLAM=0.0		DO 204 T=1•NA DFGF=DFGF+CTA(T)	FR3=FR0+DVA FLAM=FLAM+?.0*CTT(T)/FR0 20. 20.11.11.11	EUA COMPINUE PRINT 9126.DEGF PRINT 9127.FLAM	TC=1.04*(1.0+FLAW)/(FLAM-FLF*(1.0+0.62*FLAW)) TC=(THFTA/1.45)*FXP(-TC) PRINT 9128.TC FND	SUBROUTINE CONST C THIS SUBROUTINE SETS UP CONSTANTS, MULTIPLIES FORCE CONSTANIS C BY CONVENTENT FACTOPS, FIC,, SO AS TO AVOID REPETITION IN C SUBROUTINE FLEM . C	DŢMENSTON PX(ROĴ, AMAS(]2) Common/x2/Ann Common/x3/PT,CPT,PX,U,SC,NSFR,AMAS,DQ Common/x7/N

с С	5 4 0 4 4 1 H H H	245 245
	PT=3.[4]59265	247
	SC=39.4784]76*HH	24 R
	307 ANN = 0.5/(D0*SC)	549
\mathbf{C}	ANN AND SC ARE CHANGED FURTHER DOWN FOR FCC AND RCC .	250
C		251
ر	GO TO (51.52.53).VSFR	20.7
ر د	SIMPLE CURIC (CESTUM CHLORIDE SIBUCIUDE)	2 2 2 2 2
ز	51 CPT=A_0*(PX(1)+PX(13)+2_0*PX(14))	255
	306 AMAS(1)=1.0/SOPT(AMAS(1))	
	AMAS(2)=1.0/SQRT(AMAS(1))	
	AMAS(3)=1.0/50PT(AMAS(1))	
	AMAS(4)=1.0/SORT(AMAS(4))	
	AMAS(5)=1.0/SQRT(AMAS(4))	
	AMAS(6)=1.0/SGRT(AMAS(4))	
C	IN THE CS-CL CASE. APPAY AMAS CONTAINS 1/(SOPTS, OF MASSES) -	258
C	THESE ARE TAKEN INTO ACCOUNT RY SUMRQUITIME ELEM .	259
	RETURN	260
Ċ		261
ပ	FCC (MONATOMIC)	とらら
	Ϛ2 CpT=2。0*(pX(4)+2。0*pX(5)+bX(25)+2。0*pX(26))	263
	AMN = AMN/AMAS(1)	264
	SC = SC*AMAS(1)	265
	0.0 1 T = 1.3	266
	<pre>1 PX(T)=4.0*PX(T)</pre>	267
	PX (4) =2.●C+0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×	268
	PX(5)=2.0*PX(5)	269
		270
	2 PX(1)=A.0*Y(7)	771
	00 3 T=10.16	272
	3 PX(T)=4.0*PX(T)	273
	00 4 T=T7+24 4 PX(T)=8,0*PX(T)	275

275	27R	622	7 R O	7 R J	くせん	283	284	ጉዳር	286
<pre>% ************************************</pre>	~		0~1C) 2	0*(bx(3)+2°0*(bX(4)+bX(4)+5°0*(bX(1))	2 (A) +PX (I) +PX	PX(12)+2,0*(PX(14)+PX(20)+PX(21)+PX(22)	X(17)))	ANN/AMAS(1)	C*AMAS(]) 2
$\begin{array}{c} P X (Z,Z) \\ P X (Z) \\ P X ($	RETURN	ر	C HCC (WUNVI)	53 CPT=2.	1+pX(5)	♪ + ♪ • ∪ * (i	3+2°0*D	VIN = VIN	2C = 2(

د. د	CO	РЕТИРМ Емп Subroutine Eren(0.6n).6n2.6n3)	287 288 289 289 290
		DIMENSION FV(12).FIL2).AA(12.12).DA(12.12).V(12).W(12).PX(80).QL(3) DIMENSION FV(12.12).AA(12.12).GD3(12).VL(12) DIMENSION AMAS (12) DIMENSION AMAS (12) COMMON/X3/PI.CPT.PX.U.SC.NSFR.AMAS.DD COMMON/X3/PI.CPT.PX.U.SC.NSFR.AMAS.DD COMMON/X3/PI.CPT.PX.U.SC.NSFR.AMAS.DD COMMON/X7/M TF(0(1).NF.0(2)) GO TO 90 TF(0(1).NF.0(2)) GO TO 90 CALL FLFM(0.A) CALL FLFM(0.A)	2 6 2
	731	V(?)=SOBT((A(1)))-A(1,2))/SC) V(3)=V(?) A(1)=O(1)+D(A(1)=O(1) A(1)=O(1) A(1)=O(1) A(1)=SOPT((AA(1))+2,0*AA(1,2))/SC) A(1)=SOPT((AA(1))+2,0*AA(1,2))/SC) V((1)=SOPT((AA(1)))+2,0*AA(1,2))/SC) V((1)=SOPT((AA(1)))-AA(1,2))/SC) V((1)=SOPT((AA(1)))-AA(1,2))/SC) V((1)=SOPT((AA(1)))-AA(1,2))/SC) V((1)=SOPT((AA(1)))-AA(1,2))/SC) V((1)=SOPT((AA(1)))-AA(1,2))/SC) A(1)=SOPT((AA(1)))/DO/3. SOPT((1)=SOPT((1)) SOPT((1)=SOPT((1)))/SC) SOPT((1)=SOPT((1)))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1)))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((1))/SC) SOPT((1)=SOPT((1))/SC) SOPT((
υĒ	90 004	FAC=0.0 FAC=0.0 TF(U-1.0)10.1004.10 D10=1.0F-4	299 301 302

and the second se

D 2 0 = - 1 • 0 F - 4 D 3 0 = 1 • 0 F - 4	303 304C
0(1) = 0(1)	305
0(2)=0(2)+020	306
のとい+(と)の=(と)の	307
FAC=].0	308
10 CALLFLFM(D.A)	309
DO 12 T=1.N	310
No 12 J=1•M	311
12 FV(T.J)=A(T.J)	
15 CALL FIGEN (FV+F+3+1+12+R0G)	
DO 16 T=1.N	314
16 V(T)=SORT(F(T)/SC)	
17 0L(1)=0(1)+n0	316
$0\Gamma(5) = 0(5)$	317
$0\Gamma(3) = O(3)$	318
CALL FLFM (QL + AA)	319
No 19 1=1 •N	320
1•1=f 61 UU	321
(1, .) = AA(1, .) - A(1, .)	
[19 DA(J,T) = AA(T,J) - A(T,J)	
22 CALL GPAN(nA+GD1)	323
1F(9(1)-0(2))24+23+24	324
24 0[.(1) = 0(1)	325
0(5) = 0(2) + 00	326
0^{-1} (3) = 0(3)	327
CALL FIFM (OL AA)	328
N0 29 1=1.4	329
nn 29 J=1.T	330
$(1 \cdot 1) = VX(1 \cdot 1)$	
(1·f) VU=(f.1·J) VU b2	
32 CALL GRAD(DA+GD2)	332
JE(0(5)-0(3))26+25+26	333
23 DO 33 J=1.M	334
33 GD2(J)=GD1(J)	335

j

ł

	26 01 (1) = 0(1)	336
	$0^{-1}(5) = 0(5)$	337
	O[(3) = O(3) + O(3)	338
	CALL ELFM(G) • AA)	339
	$0(1) = 0(1) - F \Delta C + D] Q$	34 U
	O(D) = O(D) - U O(C)	341
	0(3)=0(3)-EνC*D30	342
	DO 34 [=]•M	343
	DO 34 J=1•1	344
	PA(1, T) = AA(T, U) - A(T, 1)	
	34 DA(T+J)=DA(J+T)	
	37 CALL GRAD(DA.GD3)	346
	N0 370 J=1.N	347
	370 V(J)=V(J)-FAC*(GP](J)*P10+GD2(J)*D20+GP3(J)*D30)	3480
	PFTURN	349
	25 DO 40 J=1•N	350
	40 Gn3(J)=Gn2(J)	351
	38 RETURN	352
	Fun	353
	SHARDHITTMF FLEW(D.A)	354
C		355
	DTMFNSTOM A(12.12).0(3).C(12.3).S(12.3).PX(A0)	356
	DIMENSION AMAS(12)	357
	DIMENSION FV(12.12). V(12)	358
	ϹΩⅆⅆℌℕℤ℁ℤℙ℥ℯℂℙ℥ℯℙℷ℁ℯℿℯℇℂℯℍՏℙℍℯՃⅆÅℇℯⅅℌ	
	N/LX/NUMAÜÜ	
C		362
	GO TO (1.2.3).NSFR	363
C		364
C	SIMPLE CURIC (CESTUM CHLORIDE SIMUCIUDE)	365
C		366
	1 DO 510 1 = 1•3 c/1.1/-cin/diso/1//	367
	S(2+1)=2,0*S(]+1)*C(1+1)	370

Í
い(3・1)=2(5・1)☆C(1・1)+2(1・1)☆C(5・1)	37
• I) = C (5 • I) * C (1 • I) - S (1 • I) * S (5 • I)	37
526 T =]•3	376
1-3)512+511+512	379
	37(
TO 513	37
[+]	371
1-1)515.514.515	370
	3 8 6
TO 516	З Р С
[.]	38
1 • 1) =CPT+2 • 0* (PX (3) * (] • 0 – C (2 • 1)) + PX (E) * (2 • 0 – C (2 • 7) – C (2 • K))	З. В
ͻ゚リጵ(bX(Δ)ጵ(Σ゚uーレ(S・L)ጵ(じ(S・T)+レ(S・K)))+bX(ð_) ጵ(]°U−C(S・])	ЗР
<pre>\$\$ (((, + K))))</pre>	385
+3+1+3)=CPT+2*0*(bx((+)*(]*0+C((5+1))+PX((+)*((5*0+C((5+1))+C((5+K)))	386
2*0*(bX(x)*(2*0+C(S+1)*(C(S+1)+C(S+K)))+bX(I0)*(I*0+C(S+1)	3.8
*C(2•K))))	385
V([+3+])=−8°0*(C(]+1)*C(]+K)*(DX(])*C([-1)+DX(]3)*	386
r(3.1)))	39(
$[I \bullet I + 3] = \Delta (I + 3 \bullet T)$	
A (1•1) = 4 • 0 * D X (]) * S (2•1) * S (2•.)	66
∧ (_)+3・T+3) =4 •0*PX (12) *S(2•T) *S(2•U)	6
	(
	6
PX(2)+DX(12)☆C(3•K))+PX(14)☆C(1•K)☆(S(3•1)☆S(1•J)+S(1•1)*	90 E
	6
$\Lambda(J \bullet T + 3) = \Lambda(J + 3 \bullet T)$	
Λ (I + 3 • (I) = Λ (I + 7 • 1)	
T • J+ 3) = A (T+3 • J)	
TTAUJE	995
$527 I = 1 \cdot N$.6E
527 J=1•N	395
	č

<pre>FC 7 00 155 T = 1.3 7 (11) =F74(004) 7 (11) =F74(004) 7 (11) =7.95(11) *F7(1.1) 7 (11) =7.95(11) *F7(1.1) *F7(2.1) 7 (11) =2 (2.1) *F7(1.1) *F7(2.1) 7 (12) =2 (2.1) *F7(1.1) *F7(2.1) 7 (12) =2 (2.1) *F7(2.1) *F7(2.1) 7 (12) =1 (12) (12) (12) (12) (12) (12) (12) (12</pre>	518 RETURN	400
<pre>> Dn 25 T = 1.3 Cn) = FN(Cnal) S(1) = FN(Cnal) S(1) = FN(Cnal) C(1) = CnS(Cnu) S(2) = 2 0 sS(1) + 1 + S(1) + 1 + S(2) + 1 C(2) = 2 0 sS(1) + 1 + S(1) + 1 + S(2) + 1 C(2) = 2 0 sS(1) + 1 + S(1) + 1 + S(2) + 1 C(2) = 2 0 sS(2) + 1 + S(1) + 1 + S(2) + 1 S(2) = 2 0 sS(2) + 1 + S(1) + 1 + S(2) + 1 S(2) = 2 0 sS(2) + 1 + S(1) + 1 + S(2) + 1 S(2) = 2 0 sS(2) + 1 + S(1) + 1 + S(2) + 1 S(2) = 2 0 sS(2) + 1 + S(1) + 1 + S(2) + 1 S(2) = 2 0 sS(2) + 1 + S(1) + 1 + S(2) + 1 S(2) = 2 0 sS(2) + 1 + S(2) + 1 + S(2) + 1 S(3) = 2 0 sS(2) + 1 + S(2) + S(2) + 1 + S(2) + S(2) + 1 + S(2) + 1 + S(2) + S(2)</pre>		
<pre>> nn 155 T = 1.3</pre>		204
<pre>2 00 125 T = 1.3 7 (1) =570 (004) 5 (1) = 570 (004) 5 (1) = 570 (504) 5 (1) = 10 - 0.05 (1) 1) *C (1 - 1) 5 (1) = 10 - 0.05 (1) 1) *C (2 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (1 - 1) *C (2 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (1 - 1) + 5 (1 - 1) + 5 (1 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (1 - 1) + 5 (1 - 1) + 5 (1 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (2 - 1) + 5 (2 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (2 - 1) + 5 (2 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (2 - 1) + 5 (2 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (2 - 1) + 5 (2 - 1) 5 (2 - 1) = 2 (0 + 1) + 5 (2 - 1) + 5 (2 - 1) 5 (5 - 1) = 2 (0 + 1) + 1 (1 - 1) 7 (5 - 1) = 2 (0 + 1) + 1 (1 - 1) 7 (5 - 1) = 2 (0 + 1) + 1 (1 - 1) 7 (1 - 1) = 1 + 1 (1 - 1) 7 (1 - 1) = 1 + 1 (1 - 1) + 1 (1 - 1</pre>		403
<pre> CnN1=DT*0(T) CnN1=DT*0(T) C(1:1)=C7S_(C0N1) C(1:1)=C7S_(C0N1) C(1:1)=C7S_(C0N1) C(2:1)=1,0=2,0*S(1:1)*S(2:1) C(2:1)=C(2:1)*C(2:1)+S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*S(2:1)*S(2:1) C(3:1)=C(2:1)*S(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*S(2:1)*S(2:1) C(3:1)=C(2:1)*S(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*S(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*S(2:1) C(3:1)=C(2:1)*C(2:1)*C(2:1)*C(1:.)) C(3:1)=C(2:1)*C(2:1)*C(1:.))+C(1:.)) C(3:1)=C(2:1)*C(2:1)*C(1:.))+C(1:.)) C(3:1)=C(2:1)*C(2:1)*C(1:.))+C(1:.)) C(3:1)=C(2:1)*C(2:1)*C(1:.)) C(3:1)=C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:2))+C(2:2))*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(2:1)*C(1:.)) C(2:1)=C(2:1)*C(2:1)*C(1:.)) C(2:2))+C(2:2))*C(2:1)*C(2:1)*C(1:.)) C(2:2))+C(2:2))*C(2:2)) C(2:1)+C(2:2))*C(2:2)) C(2:1)+C(2:2))*C(2:2)) C(2:1)+C(2:2))*C(2:2)) C(2:1)+C(2:2))*C(2:2)) C(2:1)+C(2:2))*C(2:2)) C(2:2))+C(2:2))*C(2:2)) C(2:2))+C(2:2))*C(2:2)) C(2:2))+C(2:2))*C(2:2)) C(2:2))+C(2:2))+C(2:2))*C(2:2)) C(2:2))+C(2:2))+C(2:2))+C(2:2)) C(2:2))+C(2:2))+C(2:2)) C(2:2))+C(2:2))+C(2:2))+C(2:2)) C(2:2))+C(2:2))+C(2:2))+C(2:2)) C(2:2))+C(2:2))+C(2:2))+C(2:2)) C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2))+C(2:2)) C(2:2))+C(</pre>	2 DO 125 T = 1.3	404
<pre>\$(iii)=\$Twifrow] \$(201)=\$Twifrow] \$(201)=\$(2000) \$(2010)=\$(2000) \$(2010)=\$(2000) \$(2010)=\$(2000) \$(2010)=\$(2000) \$(2010)=\$(2000) \$(2000) \$(2010)=\$(2000) \$(2000</pre>	(1) (*1d=[NU)	507
C(1,1)=CnS(C0M) S(2,1)=2(0,1)*C(1,1)*(1) C(2,1)=2(0,2)(1)*(1)*(1) C(3,1)=C(2,1)*C(1,1)+S(2,1) C(3,1)=C(2,1)*C(1,1)+S(2,1) C(4,1)=2(0,2)*S(2,1)*S(2,1) C(4,1)=2(0,2)*S(2,1)*S(2,1) C(4,1)=2(0,2)*S(2,1)*S(2,1) C(5,1)=C(3,1)*C(2,1)+S(2,1) C(5,1)=C(3,1)*C(2,1)+S(2,1) C(5,1)=C(3,1)*C(2,1)+S(2,1) C(5,1)=C(3,1)*C(3,1)*S(2,1) C(5,1)=C(3,1)*C(3,1)+S(2,1) C(5,1)=C(3,1)*C(3,1)+S(2,1) C(5,1)=C(3,1)*C(3,1)+S(2,1) C(5,1)=C(3,1)+C(1,1)+S(2,1)+S(2,1) C(5,1)=C(1,1)+C(1,1)+C(1,1)+C(1,1)+C(1,1)+C(1,1)+C(1,1)) C(5,1)=C(1,1)*C(1,1)*C(1,1)+C(1,1)+C(1,1)+C(1,1)) C(1,1)=C(2,1)*C(2,1)*C(2,1)+C(2,1)+C(1,1)+S(2,1)+C(1,1)) C(2,1))+C(2,2))*C(1,2)+C(2,1)+C(2,1)+C(1,2))+C(2,2)) C(2,1))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,1))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,1))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(2,2))+C(2,2)) C(2,2))+C(2,2))*C(2,2))+C(S(1.1) = SIN(COM])	
S(2+1)=2,0*S(1+1)*C(1+1) C(2+1)=1,0+2,0*S(1+1)*S(2+1) S(3+1)=S(2+1)*C(1+1)+S(1+1)+S(2+1) C(3+1)=S(2+1)*C(2+1)+C(1+1)+S(2+1) S(4+1)=2,0*S(2+1)*C(2+1)+C(1+1)*S(2+1) C(4+1)=1,0+2,0*S(2+1)*S(2+1) C(5+1)=C(3+1)*C(2+1)+C(3+1)*S(2+1) C(5+1)=2,0*S(3+1)*S(2+1)+C(3+1)*S(2+1) C(5+1)=2,0*S(3+1)*S(2+1)+C(3+1)*S(2+1) C(5+1)=2,0*S(3+1)*S(2+1)+S(2+1)+C(1+1)+S(2+1)+C(1+1)+S(2+1)	C(1•1)=COS(COM1)	
$ \begin{array}{c} C(2\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot 8 \cdot (1 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ S(3\cdot 1) = S(2\cdot 1) \cdot 8 \cdot (1 \cdot 1) + S(1 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ S(4\cdot 1) = 2 \cdot 0 \cdot 8 \cdot (2 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ S(4\cdot 1) = 2 \cdot 0 \cdot 8 \cdot (2 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ S(5\cdot 1) = 2 \cdot 0 \cdot 8 \cdot (2 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(4\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot 8 \cdot (2 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(5\cdot 1) = C(3\cdot 1) \cdot 8 \cdot (2 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(5\cdot 1) = C(3\cdot 1) \cdot 8 \cdot (2 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(5\cdot 1) = C(3\cdot 1) \cdot 8 \cdot (2 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(5\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot 8 \cdot (3 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(5\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot 8 \cdot (3 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(5\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot 8 \cdot (3 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(5\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot 8 \cdot (3 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(6\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot (3 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(6\cdot 1) = 1 \cdot 0 - 2 \cdot 0 \cdot (3 \cdot 1) \cdot 8 \cdot (2 \cdot 1) \\ C(6\cdot 1) = 1 \cdot 0 - 2 \cdot 0 - C \cdot (1 \cdot 1) \cdot (2 \cdot 2 \cdot 1) \cdot (2 \cdot 1) \cdot (2 \cdot 1) \cdot (2 \cdot 1) \cdot (2 \cdot 1) \\ C(7 \cdot 1) = 1 \cdot 0 - 2 \cdot 0 - C \cdot (1 \cdot 1) \cdot (2 \cdot 2 \cdot 1) \cdot (2 \cdot 2$	と(>・1)=>・0*S(1・1)*((1・1)	4 N R
S(3,1) = S(2,1) * C(1,1) + S(1,1) * C(2,1) C(3,1) = 1,0-2,0 * S(2,1) + S(2,1) C(4,1) = 1,0-2,0 * S(2,1) + S(2,1) C(4,1) = 1,0-2,0 * S(2,1) + C(3,1) * S(2,1) C(5,1) = C(3,1) * C(2,1) + C(3,1) * S(2,1) C(5,1) = 1,0-2,0 * S(3,1) * S(2,1) C(1,1) = 1,0-2,0 + S(2,1) * C(1,0,1) + C(1,0,1) C(1,1,1) = 0,0 + C(1,1) * C(1,0,1) + C(1,0,1) C(2,1) + D X(1) * C(2,1) + C(2,1) + C(1,0,1) + C(1,0,1) C(2,1) + D X(1) * C(2,1) + C(2,1) + C(1,0,1) + C(2,1) + C(2,2) + C(2,1) + C(2,2)	C(5•1)=]•0-2•0*S([•1) **2	404
$ \begin{array}{c} C(3,1) = C(2,1) * C(1,1) - S(1,1) * S(2,1) \\ S(4,1) = 1,0-2,0 * S(2,1) * C(2,1) \\ C(4,1) = 1,0-2,0 * S(2,1) * S(2,1) \\ S(5,1) = S(3,1) * C(2,1) - F(3,1) * S(2,1) \\ S(5,1) = C(3,1) * C(2,1) - F(3,1) * S(2,1) \\ C(5,1) = C(3,1) * C(2,1) - F(3,1) * S(2,1) \\ S(6,1) = 1,0-2,0 * S(3,1) * * 2 \\ D(0) 25 (1-3) 112 - 111 - 11 \\ D(125 (1-3) 113 \\ D(112 (1-1) - 111 + 112 \\ D(112 (1-1) - 112 \\ D(112 (1-1) - 111 + 112 \\ D(112 (1-1) - 112 \\ D(112 (1-1) -$	S (3+1)=S (5+1)*C(1+1)+S(1+1)*C(2+1)	410
S(4.1)=2.0*S(2.1)*C(2.1) C(4.1)=1.0-2.0*S(2.1)*S(2.1) S(5.1)=C(3.1)*C(2.1) - S(3.1)*S(2.1) C(5.1)=C(3.1)*C(3.1) S(6.1)=2.0*S(3.1)*S(3.1)*S(2.1) S(6.1)=2.0*S(3.1)*S(3.1)*S(2.1) S(6.1)=2.0*S(3.1)**2 10 125 T = 1.M 10 125 T = 1.M 11 J = 1 12 J = 1 13 TF(T-1)115.114.115 13 TF(T-1)115.114.115 14 F 15 K = T - 1 16 A(T-1)=CPT PX(1)*(2.0-C(1.1)*(C(1))+C(1)) 17 PX(2)*(1) - C(2.1)*C(1))+C(1)) 18 PX(2)*(1) - C(2.1)*C(1))+C(1)) 19 PX(1)*(2.0-C(2.1))*(C(2))+C(1))*(2.2.0) 10 PX(1)*(2.0-C(2.1))*(C(2))+C(1))*(2.2.0) 11 + PX(1)*(2.0-C(2.1))*(C(2))+C(1))*(2.2.0) 12 + PX(1)*(2.0-C(2.1))*(C(2))+C(1))*(2.2.0) 13 + PX(1)*(2.0-C(2.1))*(C(2))+C(1.0.))*(2.2.0) 14 + 22 15 + PX(1)(1) + (2.0-C(2.1))*(C(2))+C(1.0.))*(2.2.0) 15 + PX(1)(1) + (2.0-C(2.1))*(C(2))+C(1.0.))*(2.2.0) 16 + PX(1)(2.0-C(2.1))*(C(2))+C(1.0.))*(2.2.0) 17 + PX(1)(2.0-C(2))*C(2.0.))+C(1.0.))*(2.2.0) 18 + 22 19 + 22 10 + 22 10 + 22 11 + 22 11 + 22 11 + 22 12 + 22 12 + 22 13 + 22 14 + 22 14 + 22 15 + 22 15 + 22 16 + 22 17 + 22 17 + 22 18 + 22 19 + 22 19 + 22 10 + 22 10 + 22 10 + 22 10 + 22 11 + 22 11 + 22 12 + 22 12 + 22 13 + 22 14 + 22 14 + 22 15 + 22 15 + 22 16 + 22 17 + 22 17 + 22 18 + 22 19 + 22 19 + 22 19 + 22 10 + 22 10 + 22 10 + 22 10 + 22 11 + 22 11 + 22 12 + 22 12 + 22 12 + 22 12 + 22 13 + 22 14 + 24 14 + 2	$C(3 \cdot 1) = C(5 \cdot 1) * C(1 \cdot 1) - S(1 \cdot 1) * S(5 \cdot 1)$	411
$ \begin{array}{c} \Gamma(4,1) = 1, 0-2, 0+S(2,1) + S(2,1) + S(2,1) \\ S(5,1) = S(3,1) + S(2,1) + C(3,1) + S(2,1) \\ C(5,1) = \Gamma(3,1) + C(2,1) + C(3,1) + S(2,1) \\ S(6,1) = 1, 0-2, 0+S(3,1) + S(3,1) + S(2,1) \\ S(6,1) = 1, 0-2, 0+S(3,1) + S(3,1) + S(2,1) \\ T = 1, 0-2, 0+S(3,1) + S(3,1) + S(2,1) \\ G(1,2) = 1 + 1 \\ G$	$S(4 \cdot 1) = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 1) = (2 \cdot 1) = (2 \cdot 1)$	412
$ S(5 \cdot 1) = S(3 \cdot 1) * C(2 \cdot 1) + C(3 \cdot 1) * S(2 \cdot 1) \\ C(5 \cdot 1) = C(3 \cdot 1) * C(2 \cdot 1) - S(3 \cdot 1) * S(2 \cdot 1) \\ S(6 \cdot 1) = 2 \cdot S(3 \cdot 1) * C(3 \cdot 1) * S(2 \cdot 1) \\ S(6 \cdot 1) = 1 \cdot 0 - 2 \cdot 0 * S(3 \cdot 1) * * 2 \\ D(0 - 126 - 1 = 1) \cdot 0 \\ D(0 - 126 - 1 = 1) \cdot 0 \\ D(0 - 126 - 1 = 1) \cdot 0 \\ D(0 - 126 - 1 = 1) \cdot 0 \\ D(0 - 126 - 1 = 1) \\ S(6 - 10) - 13 \\ G(0 - 10) - 13 \\ S(6 - 10) - 13 \\ G(0 - 10) - 10 \\ G(0 - 10) + 10 \\ G(0 - 10) + 10 \\ G(0 - 10) - 10 \\ G(0 - 10) + 10 \\ G(0 - 10) \\ G(0 - 10) + 10 \\ G(0 - 10) + 10 \\ G(0 - 10$	し(4・1)=]。ローン。ひゃら(シ・1)ゃゃン	8 8 1
$ C(5 \cdot 1) = C(3 \cdot 1) * C(2 \cdot 1) - S(3 \cdot 1) * S(2 \cdot 1) $ $ S(6 \cdot 1) = 2 * S(3 \cdot 1) * C(3 \cdot 1) $ $ S(6 \cdot 1) = 1 \cdot 0 - 2 \cdot 0 * S(3 \cdot 1) * * 2 $ $ D(1 26 1 - 1) - 2 \cdot 0 + S(3 \cdot 1) * * 2 $ $ D(1 26 1 - 1) - 2 \cdot 1) = 1 \cdot 0 + 2 \cdot 0 + S(3 \cdot 1) + 2 \cdot 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	$S(5 \cdot 1) = S(3 \cdot 1) + C(2 \cdot 1) + C(3 \cdot 1) + S(2 \cdot 1)$	
$ \begin{array}{l} S(6,T) = 2 \cdot S(3,T) \times C(3,T) \\ S(6,T) = 1 \cdot 0 - 2 \cdot 0 \times S(3,T) \times S(3,T) \\ D(-1) + 1 \cdot 0 - 2 \cdot 0 \times S(3,T) \times S(3,T) \\ D(-1) + 1 \cdot 0 - 2 \cdot 0 \times S(3,T) \times S(3,T) \\ T + (T-3) 112 \cdot 111 \cdot 11 \\ S(T-1) - 1 \cdot 1 \\ S(T-1) - 1 \cdot 1 \\ S(T-1) - 1 + 1 \\ $	$U(2 \cdot 1) = U(3 \cdot 1) * U(2 \cdot 1) - U(3 \cdot 1) * U(2 \cdot 1) = U(2 \cdot 1)$	
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} $	と(ヒ・I)=2。キS(3・I)キC(3・I)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	oc C((+•1)= °Ū−2°0∻C(3•1)**2	
7 $\Gamma(\Gamma-3)[12,1]1,1]$ 7 $\Gamma(\Gamma-3)[12,1]1,1]$ 6 $\Gamma(0-1]3$ 7 $J = 1$ 6 $\Gamma(0-1]3$ 7 $\Gamma(\Gamma-1)[15,1][4,1]5$ 4 $\Gamma(1-1)[15,1][4,1]5$ 7 $\Gamma(1-1)[2,1][4,1]5$ 7 $\Gamma(1-1)[2,1][4,1]5$ 7 $\Gamma(1-1)[4,1]5$ 7 Γ	$1001261 = 1 \cdot M$	414
$ \begin{array}{c} 1 \ J = 1 \\ for \ To \ J13 \\ for \ To \ J14 \\ for \ J = 1+1 \\ for \$	7 [F(I-3)]]2.]]1.].	415
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 - 1 - 1	416
$ \begin{array}{l} \lambda = 1 \\ \lambda = 3 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	GO TO 113	417
$\begin{array}{llllllllllllllllllllllllllllllllllll$	۲ ۲ = 1 + 1 = ۲ ک	4 J A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3 IF(T-1)115.114.115	419
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 K#3	420
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GO TO 116	421
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ר ו ו	422
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>YU 0 (1 • I) = UbI + bx (1) * (5 • 0 + U(1 • I) * (C(1 • 1) + U(1 • K)))</pre>	423
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 + PX(2) * (] • 0 − C(1 • J) * C(1 • K)) − PX(4) * C(2 • T)	424
3C(1・K))+ P×(7)*(2・0・0−C(1・1)*(C(2・1)*(C(1・K)+C(1・J)* 42C 4C(2・K)))+ P×(10)*(2・0−C(2・1)*(C(2・1)+C(2・K))) 5.+ P×(11)*(1・0−C(2・J)*C(2・K)) 6.+ P×(13)*(2・0−C(2・1)*(C(1・1)+C(1・K))) 7.+ P×(13)*(2・0−C(2・1)*(C(1・1)+C(1・K)))	2- bx(2)*(C(2+1)+C(2+x))+ bx(4)*(1-0-C(2+1)*C(1+1)*	425
407 407 47 5. PX(11)*(1.0-C(2.J)*C(2.K)) 6. PX(13)*(2.0-F(3.L)*(C(1.J)+C(1.K)) 7. PX(13)*(2.0-F(3.L)*(C(3.L)+C(1.K))) 409 7. DX(14)*(2.0-F(1.L)*(F(3.L)+F(3.K)))	3C(]・K))+	424
<pre>5+ PX(11)*(1.0+C(2.0)*C(2.K)) 7+ PX(13)*(2.0+C(3.1)*(C(1.0))+C(1.K))) 429 7+ PX(14)*(2.0+C(3.1)*(C(3.0)+C(3.0)*C(3.0)) 429 7+ PX(14)*(2.0+C(1.1)*(C(3.0))*(C(3.0))) 7+ PX(14)*(2.0+C(1.1)*(C(3.0))) 7+ PX(14)*(2.0+C(1.0))<7+C(3.0))<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+C(3.0)<7+</pre>	☆C(ろ・K)))+	427
(+ DX(J3)*(ハ・ビービ(3・T)*(C(J・C))+(C(J・X))) 7+ DX(J4)*(ハ・ビービ(コ・T)*(C、3・T)+(C、3・T)+(C、3・T)・(C・2・C、3・T)	E+ DX([]) ⇒ (]•0+C(S•∩) ⇒C(S•K))	428
7+ DX(14)*(D ⁻ 0+U(1)*1)*(U(3)*1)+U(3)*(1)*(0)*(2)*(2)*(2)*(2)*(2)*(2)*(2)*(2)*(2)*(2	<pre>6+ PX(]3)*(2•0+C(3•1)*(C(1•1)+C(1•K)))</pre>	429
	2+ bx(]t)*(2•0+C(]•])*(C(3•])+C(3•K)))	430

×+ bX(12)*(5°0−C(3•∩)*C(1•K)−C(3•K)*C(1•∩))	43	31
d+ bX(]])*(]°Û-C(2+])*C(2+))*C(2+K))	43	5
0 V0 = bX(10)*(5*0+C(3*1)*(C(5*1)*C(1*K)+C(1*1))*	64	33
1C(2•K)))+	43	34
Solution (20) * (2.0 −C (2.1) * (C(1.0)) *C (3.0) +C (3.0) *C (1.0))	()) 43	35
3+ bX(51)*(5*0+C(1*1)*(C(3*∩)*C(5*K)+C(5*∩)*	6.4	36
4C(3•K)))- bX(5e)*(C(4•7)+C(4•K))- bX(52)*	43	37
5C(4•T)	43	3,8
Ann=PX(27)*(2.0+C(3.1)*(C(3.U)+C(3.K)))		
1 + PX(28)*(]•0−C(3•∩)*C(3•K))		
> +PX(30) * (1°0+C(4+1) *C(1+1) *C(1+K))		
3 + hX(31)* (5*0+C(1+1)* (C(1*1)*C(4*K) + C(4*A)*C(1*K)	C(1+K)))	
<pre>4 +bX(34) * (2°0+ C(4•1) * (C(2•1) + C(2•K)))</pre>		
$C + PX(3C) \approx (2,0 - C(2,1) \approx (C(4,K) + C(4,J)))$		
$2 + PX(38) + (2^{0} - C(3^{1}) + (C(3^{0})) + C(2^{0}) + C(2^{0}) + C(2^{0})$	J) *C(3•K]))	
× + bX(3d) * (]*0 - じ(5・I) *じ(3・´) *し(3・K))		
$\Delta(\mathbf{I} \cdot \mathbf{I}) = \Delta(\mathbf{I} \cdot \mathbf{I}) + A \Omega + A \Omega \Omega$		
Vuude Bx(45)*(1*0 - U(4*1)*U(5*1)*U(6*2))		
$1 + Px(43) * (2 \cdot 0 - C(2 \cdot 1) * (C(2 \cdot 2) * C(4 \cdot K) + C(4 \cdot 2) * C(2 \cdot K)))$	2•K))	
S + DX (44) * (S*0+C(4+1) * (C(3+3) *C(1+K) + C(1+3) *C(3+K)))		
3 + DX(42) ≠ (2.0-C(3.1) ≠ (C(4.1) ≠C(1.2) + C(1.0) ×C(4.4)))		
4 + bX(48)*(2*0+C(]+1)*(C(4*1)*C(3•K) + C(3•J)*C(4•K)))		
5 + bX(52)*(2.0+C(2.1)*(C(1.0)+C(1.4)))		
<pre>K + PX(53)*(2.0-C(1.1)*(C(5.1) + C(5.K)))</pre>		
7 + PX(54) ★ (𝔅, 𝔅−𝔅(𝔅, 𝔅) ★𝔅(¹, 𝔅) +𝔅(¹, 𝔅) ★𝔅(𝔅, 𝔅))		
R + PX(54)*(2.0-C(5.1)*(C(2.1)*C(1.1)*C(1.1)) + C(1.1)*C(2.4)))		
<pre>a + PX(57)*(2.0-C(2.1)*(C(5.1)*C(].K) + C(1.J)*C(5.K)))</pre>	K)))	
] + PX(58) * (ν•0−C(1•1) * (ς(5•J) *C(γ•K) + C(2•J) *C(Γ•K)))		
VUU3= bx(42)*(0°0-C(4•1)*(C(4•1) + C(4•K)))		
] + PX(63)*(].0-C(4.))*C(4.∀))		
C + DX(CE) * (」・U=C(d・L) *C(3・二) *C(3・K))		
3 + PX(66) ≠ (0.0−0(3.1) ≠ (0(3.3) ≠ 0(4.K) + 0(3.K) ≠ 0(4.0))		
4 + DX(69)*(V.0-C(5.1)*(C(3.)) + C(3.K)))		
5 + bX(70)*(2.0-C(3.1)*(C(5.3)) + C(5.4)))		

PX(71)*(2~0-C(3・J)*C(5・K) - ((3・K)*C(5・J)) PX(73)*(2~0-C(4・T)*(C(4・J)*C(2・K) + C(4・K)*C(2・J))) PX(74)*(1_0-C(2・T)*C(4・J)*C(4・K))	PX(77)*(]。A-C(6.1)) + PX(73)*(?。A-C(6.J)-C(6.K)) •1)=A(1.1) + AAA2 + AAA3	A (() + 1) = − − × (3) × S (1 + 1) × S (1 + 1) + − − − × (0) 1 + K) × (S (2 + 1) × S (1 + 1) + S (1 + 1) × S (2 + 1)) +	рХ (ж) *S (] • 1) *S (] • () *C (?•К) +	• - 1) +	PX (24) +C (1 • X) + (2 (3 • 1) + 2 (5 • 1) + 2 (5 • 1) +	•.)))+ PX(23)*C(2•K)*(5(1•T)*S(3•.))+S(3•T)*	• ´`)) +	=pX(29) *S(3•I) * S(3•J)	PX(32) * C(4*K) *S(1*1) * S(1*1)	PX(33) * C(1•K) * (S(1•1)*S(4•J) + S(4•I)*S(1•J))	PX(37) * (S(4.1)*S(2.1) + S(2.1)*S(4.J))	PX(40) & C(3*K) & (S(2*T)*S(3*J) + S(3*T)*S(2*J))	アネ(ユー) ※ ((/・×) ※ ふ(3・ () ※ ふ(3・ () ・1 1 ー 4 1 - 1 1 1 ~ ~ へつつ	DX (72) \$C(5•K) \$ (2(5•1) \$2(7•1) + 2(7•1) \$2(5•1)	bX((↑6) *C(+•K) *(S(3•1) *S(1•1) + S(1•1) *S(3•1))	PX(20)*C(3•K)*(S(4•T)*S(1•J) + S(4•J)*S(1•T))	px(2])*C(]•K)*(S(4•[)*S(3•J) + S(3•T)*S(4•J))	PX(55)*(5(5.1)*5(1.)) + 5(1.1)*5(5.))	DX (20) *C (2•K) * (2 (2•T) *S (]•J) + S (]•T) *S (2•J))	PX(60)*C(2•K)*(S(5•T)*S(1•J) + S(1•T)*S(5•J))	PX (6]) »C (] •K) » (S(5 •]) *S(2 • J) → S(2 • I) *S(5 • J))	3= PX(64)*S(4.1)*S(4.J)	DX (67) *C (4 • K) *S (3 • T) *S (3 • J)	DX (AB) ¢C (3•K) ¢ (S (4•T) ¢S (3•J) + S (3•T) ¢S (4•J))	<pre>DX(72)*(S(5,1)*S(3,.)) + S(3,1)*S(5,.))</pre>	PX(72)☆C(4 + X)☆(2(4 + I)☆2(7 + 1) + 2(2 + 1)☆2(4 + 1))
7) X d + 7 7) X d + 7 7) X d + 8 7) X d + 8	9 + PX(7)= A(1•1)=	0 1 * C (] • K)) Xd Z	3S(2•J)+ 1 X d D X (יר אר אר	65(3.))	((() • () > Z) X d + [2 + PX(7) X d + E	+ bX(ר אד א אדא אידאיי	7) X d + [7) X d + 2	3) X d + E) Xd + 7	ה) אם + ת	ч + рх (п	1 + DX(F	4) X a + 8	A003= F) Xa + l	2 + DX (F	1) X a + E	7 + PX (7

	<pre>5 + PX(76)*C(2+K)*S(4+1)*S(4+J) A(J+1)=A(J+1) + A002 + A003 A(1+J)=A(J+1)</pre>	
	26 CONTINUE 18 RETURN	644 440
، ر		
ں ر	RCC	4 1 - 4 1 2
	3 DO 10 T = 1.3	4.0.3
	S(1.1)=SIM(PI*D(1))	
	C(1•1)=CUS(b1*0(1))	
	S(2+1)=2*0*S(1+1)*C(1+1)	456
	℃(>・1)=1。∩->。0*S(1・1)**♡	457
	S(3+1)=S(5+1)*C(1+1)+S(1+1)*C(5+1)	4 G R
	C(3+1)=C(5+1)*C(1+1)-C(1+1)*S(2+1)	459
	S (4 • 1) = 2 • 0 * S (2 • 1) * C (2 • 1)	460
]o C((+•1)=]•0->•0*S()>+1)**>	46]
	00 26 T=1.3	なんで
	17 TF(T-3)12.11.12	463
	11 J=1	444
	GO TO 13	465
	2 J=1+]	466
	13 [F([+])]5.[4.]5	467
	14 K=3	468
	GO TO LA	469
	15 K=1-1	470
]60 A([+])=CPT-8_0*((PX(])*C([+])+PX(A)*C(3+]))*	471
	1C((1・)) *C((1・K) + b K((12) *C(2・1) *C(2・j) *C(2・j) *C(2・K) +	472
	2PX(9)*C(1•1)*(C(3•1)*C(1•K)+C(1•1))*C(3•K)))	473
	3=4 °0* (PX (5) *C(2+1)* (C(2+1)+C(2+X))+PX (4)*C(2+1)*	474
	4C(5+K))-5*U*(bX(3)*C(5+1)+bX(4)*(C(5+1)+C(5+K)))	475
	5-8°0*(PX(16)*C(1•1)*C(3•J)*C(3•K)+	476
	6PX([17)*C(3+1)*(C(1+J)*C(3+K)+C(3+J)*C(1+K)))	477
	7-2.0*(PX(14)*C(4+T)+(PX(15)+2.0*PX(21)*C(2+T))*	47R
	B (C(4・∩)+C(4・K))+S•0*(bX(50)*C(4・1)*(C(5・∩)+C(5・K))	479
	d+bX(22)*(C(4+.))*C(2+X)+C(2+.))*C(4+X))))	480

	0 V()+1)=4 0 * (bX(7)+2 0 * bX(13) * C(2 * K))	481
] *<(2•1) *<(2•1) +<(2 0 × DX (53) * (5 (+ • 1) *5 (5 • 1) +	482
	22(5•1) *5(4•J))+8°0*(2(1•1) *5(1•J) *(DX(2) *	483
	3C(•K)+bX(0)*C(3•K))+(bX()*C(•K)+bX(8)	484C
	¢*C(3•K))*(2(3•1)*S(1•1)+S(1•1)*S(3•1))+PX(19)	4 A 5 C
	5 * C (3 • T) * C (3 • J) * C (1 • K))	486
	∆ (T • J) = △ (J • T)	
26	S CONTTWILF	487
α	RETIJPN	4 R R
	END	489
	SURROUTTMF GRAD(A.G)	556
		557
	DTWENSION FV(12+12)+A(12+12)+G(12)+P(12+12)+V(12)	558
	COMMON/X2/VMN	
	COMMON/X4/FV+V	
	M0[1]=].M	562
	Y=0,0	563
		544
	X=0 • 0	575
	DO[2K=]•N	566
21	2 X=X+FV(K•T)☆A(K•J)	567
	$P(T \bullet .) = X$	56A
	N0]3K=]•N	569
13	<pre>3 Y=Y+P(T+K)*FV(K+T)</pre>	570
с Г	(1) = X + 2 M N / N (1)	571
	RETURN	572
	FND	573
	SUBRROUTIVE SWEEP(0.601.602.603)	574
		575
	Ϲ⋂ϺϺՈΝ/ΧՅΖΡΤ•ሮΡΤ•ΡΧ•Ü•SC•NSFR•ΔΜΔS•DQ	
	<u> <u></u> <u> </u> <u> </u></u>	
	C04400/X4/K4+K0+12+12+K2	
	COMMON/X7/MMNN	

C

C

υc	СОММОМХХАХАЦР+FKF+DHO+FP+Z+DOTFN+CTT+AMASS+OMFGA)IMENSION CTA(1500)+A (3)+V(12)+GD](12)+GD2(12)+GD3(12)	580Д 581
	THENE TON DY FOOT OF STATES AND A TON DY FOOT OF STATES AND DY FOO	603
	JIMENSION AMAS(12)	5 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
с с	TMENSION FU(12.12)	5R4
C	11WENSION CTI(1200) +11W(3) +DUTEN(2)	584A
1000 F	-OPMAT(5X, 7F]].6. 2F15.5. [6]	ጊጸሴ
1002 F	-ORMAT(26H V(I_).6T.MAX FRFQ V(I_) = .FI5.6/]HK)	587
LL.	$PC=0 \bullet 0$	Бяяд
C	u]4 [=]•٩	
C	00 13 J=1.R	
C	JO 12 K=1•R	
تــ	.CFN= I + .J+K	
-	FF (LCFN.FQ. 4) GO TO 12	
• •••	[F (LCFN.FQ. 6) GO TO 12	
-	IF (LCFN.FO. 8) GO TO 12	
-	[F (LCFN.Fn.]0) 60 TO 12	
L	F (LCFN_FQ_12) GO TO 12	
Ţ	F (LCFN.FQ.14) GO TO 12	
-	F (LCFN,FO,16) GO TO 12	
-	JM([)=([.0F-29+T-1.0)/2.0	
=	JM(2)=(1。AF-29+J-1。A)/2。A	
	JM (3) = (1.0F-29+K-1.0)/2.0	
=	Z××(([)) +0 (])) ×××+ ((Z)) +0 (Z)) +0 (Z)) ×××((]) +0 (Z)) +0 (Z)) ××Z	ГААН
Ξ	IMK=SORT (1)MK)	5AAI
-	FFST=2.0*FKF-(6.283]853/4LP)*UMK	5ARJ
L	FF(TFST) 12+10+10	L A A A A
10 C	SONTTAUJE	58RL
1	JMK=6.2831853741.P*UMK	
C	SALL FPH (UMK.AMASS.OMFGA.Z.RHO.FKF.POTEN.FP.ALPHA)	БААМ
LL.	ГРС=FРС+ALPHA	SARN
12 C	CONTINUE	5яяр
13 C		5ARQ
C 4		5AAR
2		5 X C

		JF(V(L)-XM)21.19.19	590C
	0	PRINT IOD2. V(L)	
		60 TO 20	592
	۲	CPN=SOPT(GD](L)**2+GD2(L)**2+GD3(L)**2)	
		DFLW=DVA/GPD	504
		AL (1) = ARS (GD1 (1)) / GRD	
		AL (2) = ARS (GD2 (L))/GRD	
		AL (3) = ARS (GD3 (1)) / GRD	
		AL MN=1.0/(AL(1)*AL(2)*AL(3))	59.R
		IF(AL(1) - AL(2)) 521,522,522	2005
	521	AD=AL(])	600
		٩١- (1) = ٩١- (2)	601
		AL_(2) = AP	602
	522	IF (AL (2)-AL (3)) 523,527,527	603C
	523	<pre>[F(AL(3)-AL(1)) 524+525+525</pre>	604C
C			50V
	524	AD=AL (?)	606
		AL (2) = AL (3)	607
		dl_ (3) = AP	60R
		GN TN 527	609
	525	AP=AL (3)	610
		AI_ (3) = AI_ (2)	611
		AL(2) = AL(1)	612
		AL (1) = AP	613
	527	CONTINUE	614
		W]=(-AL.(])+AL_(2)+AL_(3))*AHALF	615
		W2=(V[(])-AL(2)+AL(3))*AHALF	616
		W3=(V[(1)+V[(2)-V](3))*AHALF	617
		W4=(AL(1)+AL(2)+AL(3))*AHALF	618
Ċ			619
C	ົ້ວ	NSTANTS NFFDFD	620
		$ \mathbf{H}_{\rm M} = \mathbf{J}_{\rm M}_{\rm M} $	521
		$CON = 0.5 \times UI_MN$	622
		MSQ = W] **?	623
		AI 23 = 4.0%AL(2)%AL(3)%ASO	もいる

`

		с 2
	A3 = B3*44	626 626
	$C3 = ULMN/6_0$	627
	$R42 = (1 _MN*AHA _F*A _(3)$	62R
	442 = 2.0*R42*AHALF*(AL(1)+AL(2))	629
	$A5 = CON*(2_0*AL23 - WS0)$	630
	RS = CON*W	631
	CS = -C3	632
	44 = NEMN*(AE23 - WSA)	633
	<pre>44]=4 • 0 *1 > 4 < 0 / 4 </pre>	634
	SIJM = 0.0	635
Ċ		636
	1000000 = 1.7	637
	GO TO (751+752+753+754+755+756+757)+J.J.	
751	$\Delta = \Lambda 3$	639
	R = R3	640
	C = C3	641
	MM = -W4	642
	WX = -WS	643
	$FMAX = V(L) + WM^*GPD$	544
	NNP = FMAX/DVA + 1.0	て 4 い
	$\Delta n/2 = n/n/2 - 1$	44C
	0 + 2NN = 2N	647
	CIU = NIMN	64 R
	RW = (FMAX - AN2*nua)/GRD	649
	GO TO 770	650
ပ		651
752	$A = \Delta 42$	652
	R = R42	653
	C = 0.0	<u> </u>
	C = X	655
	GO TO 770	656
с [,]		657
753	$\Delta = \Delta 5$	ፋ5ዳ
	R = R5	619

C = CJ		660
MX=-ARS (W	1)	661
GO TO 770		662
υ		663
754 JF(W]) 47 ⁶	54.900.67754	664
4754 A = A41		665
$\mathbf{R} = 0 \cdot 0$		666
$C = 0 \bullet 0$		667
$[M - X_M]$		668
GO TO 770		649
с U		670
$6754 \Delta = \Delta 6$		671
с•0 = ч		672
C = -ULMN	/3.0	673
I w = X W		674
GO TO 770		675
Ĵ		676
755 A = A5		677
ת ו מ		678
C = C5		679
CM = XM		680
GO TO 770		6A1
C		682
756 A = A42		683
24H- = A42		684
$C = 0 \cdot 0$		Ϋ́Ϋ́Υ
W = W3		686
GO TO 770		687
		688
757 A = A3		689
B = -R3		690
C = C3		691
MX = 44		269
C		693
770 FMIN = FM/	۸X	64

	FMAX = V(I) + WX*GPD	695
	$c_N = I_N$	696
	NN2 = FMAX/DV4 +].0	697
	ANZ = NNZ - I	69R
	NZ = NN2+20	669
	AW = DFLW - RV	700
	$R_{W} = (FMAX - AN2*NVA)/GRN$	101
	<pre>If(M2-N]) A5().A5().7A0</pre>	202
7 A U	NFRST = N] +]	703
	$VI_{A} A = V = V$	704
	W = WN + AW	705
с С		706
	$DEL_{N} = \DeltaU * \left(A + B * (M^{U} + U) + C * (U N * * C + W * W + W * * C)\right)$	707
	CTA(NI) = DFLN + CTA(NI)	70R
	CTT(N1)=FPC*DFIN+CTT(V1)	7080
	SIM = SIM+DFLN	209
	TF (MLAST, I,T, NFRST) GO TO R25	710
C		711
	DO ROD KN = NFRST. NLAST	212
	WW = w + nF[W]	713
	DELN = DFLW*(A + R*(****) + C*(W**2+W*WW+WW**2))	714
	CTT (KN) = FPC*DFL N+CTT (KN)	7144
	CT4(KM) = DFLN + CT4(KN)	715
	SIJM = SIIM + DELM	716
800	$M = W + DFL_{M}$	717
C		718
В 2. Г	MM = M + BM	219
	DELN = MM*(V + B*(M+MA) + C*(A**2+M*MM**2))	022
	CTT (N2) =FPC*DFLN+CTT (N2)	720A
	$CTA(MP) = DFL_M + CTA(MP)$	157
	S(I)M = S(I)M + I)F[N]	222
	W = VV	723
	GA TO 900	724
C		725
ר ה ה ה	CW = WX - WW	726

j

	<pre>DFLN = CM☆(A + A☆(WN+WX) + C☆(wN☆☆2+WN☆WX+WX☆2))</pre>	727
	CTA(NI) = DFLN + CTA(NI)	728
	S(J)M = S(J)M + (J)F(J)	729
006	X i = N M	130
Ċ		731
		132
50	SIJM = SIIM/IJ	733
		734
7654	DIFF = VOLIME - SUM	735
	PPINT]000. V(1). GPD.AL(]).AL(2).AL(3).OFLW.WI.VOLUMF.DIFF.NDFL	
T L L	E VOLUME DUINTED HERE IS THE CORRECT VALUE . DIFF=CORRECT-SUMMED	737
		738
ر د د		739
. A		
		74.0
		[4]
	SURVOUTINE WHI (AMMAY NUT 4 DE LE NA NH NH MI)	
C		743
	DTWENSTON APPAY (NDIM)	744
lul	F0RMAT(1X.F10,5.7X.10F1].0)	745
2 U D	· FORMAT(]X+F10-5+7X+10F10-3)	746
L		747
	NI [MES = (MR-NA+9)/]A	748
	I - VI = CI	749
	FTNCR=10.**DF1F	750
	FRI = -FIMCR	751
	DO 5 J=1.NI TNFS	752
		753
	6 + [<i>N</i> =2 <i>N</i>	754
	FP0=FR0+FTNCR	755
	GO TO (1.2).NFMT	
	PPINT]0]. FRO. (ARPAY(K). K=N]. N2)	
	GO TO S	758
r.	' PRIMI 102. FRO. (APPAY(K). K=N]. N2)	

ı j

																13	51																
760 761	762	TFT00001	IE100002	1FJ00004	1F100005	JF100003	IE100006	1E100007	TETOOOR	TET00009	IFI00010	TFT00011	161000151	IE1000131	1 E I 0 0 0 1 4	1E1000151	TET00016	TFT00017	TFT00018	TFT00019	1 E I 0 0 0 2 0	151000731	1FI00022	TFT00023	1F100024	TET00025	TET00026	1F100027	1F100028	1F100029	TF100030	IF100031	JF100032
S CONTINUE Return	FNIC	SURPOUTINE FIGEN (A.VALU.N.M.4.TA.R)	F4 UCSD FIGEN			FIGENVALUES AND FIGENVECTORS OF A REAL SYMMETRIC MATRIX	DIMENSION A([A.]).R(TA.]).VALU(20).DIAG(20).SUPERD(19).	X 0(19) • VALL (20) • 5(19) • C(19) • D(20) • 14D(20) • 14(20)		CALCULATE NOPM OF MATRIX		3 ANDRAPED.	4 DD 4 T=1•N		C = ANDRMS=ANDRMS+A(1 · 1) **S	7 ANDPMESOBTE (ANDAME)		GENERATE JDENTITY MATRIX		9 TF (M)]0. 45.]0		12 DO 40 J=1.W	20 IF(I-J) 35. 25. 35	25 R(I.())=].Ω	30 GO TO 40	35 R(T.J)=0.0	40 CONTINUE		ΡΕΩΕΛΡΑ ΡΟΙΛΤΙΟΝS ΤΟ ΡΕΝΝΟΕ ΜΑΙΡΙΧ ΤΟ JACORI ΕΟRM		45 JFXIT=1		52 TF (NN) R40. 170. 55
			C	C	C	ر			C	Ċ	c						C	C	C									C	C	C			

	ባ በ	N0 140 1=1 00	IF100033
	с У	2+1=11	JF100034
	с Г	DO 160 J=11.W	IF100035
	70	T]=^([.t.t.])	JF100036
	75	T2=A(T•J)	1F100037
	ď	GO TO 900	TFT00038
	C Ó	DO 105 K=1.4N	1E100039
	о Л	T2=CCS☆A(K・T+])+STN☆A(K・J)	1F100040
	l o o	A (K • J) = COS * A (K • J) = STM * A (K • I + I)	1F100041
	ן ה 1	A (K•T+1)=T2	1F100042
	110	DO 125 K=1•W	1F100043
	ן <u>ו</u> ר	T2=COS*A(T+)•K)+STM*A(J•K)	1E100044
	l>n	A () • K) □ C C S * A () • K) □ S 1 N * A (1 + 1 • K)	1F100045
	ן אר	∆ (T +] • K) = T ⊃	1FI00046
	a < I	TF (M) 130. 160. 130	1F100047
	٥۶ I	DO 150 K=1.N	1F100048
	1 3 G	FU=CCC*3 (X • I +]) +CF≤*3 (X • .])	1E100049
	14 U	R (K ·]) = COS * R (K ·]) + S I N * H (K ·] +])	1F100050
	ן ק ח	R(K•T+])=T2	1F100051
	lrJ	CONTINUE	1FI00052
C			TFT00053
L		MOVE JACORT FORM FLEMENTS AND TAITTALIZE FIGENVALUE ROUNDS	TFT00054
C			IF100055
	1 7 O		1F100056
	١٩٥	$DT AG(T) = A(T \cdot T)$	1F100057
	lαŋ	Warring = (1) II (1) II VA	1F10005R
	002	VAI [. (T) = -AAIC)AIA	1F100059
	210	NO 230 T=2.M	TFT00060
	220	S(1) = 0 (1-1) = 0 (1-1 · 1)	IF100061
	530	0(1-1)=(ZijdFRD(1-1))**2	1F100062
رر		DETERMINE STORE OF DETAILMINDS	1F100063 TE100064
			1E100065
	240 240	TAU=0.0 J=1	TF100066 TF100067

`			
~ `			IFI00068
~	2		JFT00069
	572	[]=]•0	1F100070
	777 F	N 450 J=1•N	1F100071
	I UNC	LIAG() - TAIJ	JF100072
	000	JF(T2) 300. 330. 300	IF100073
• •	300	TE(T1) 310. 370. 310	TF100074
• /	1018	T=0*T]-0(J-1)*T2	1FI00075
• /	320 (30 TO 410	TEI00076
. ,	330	TE(T1) 335, 350, 350	TFI00077
•	335	T]=-].D	IF100078
•	34.0	T=-D	1F100079
• •	34 G C	30 IO 4]0	1F100080
• •	300	T]=1.0	JEI00081
• •	วา 2	T=P	1F100082
• /	360 (SO TO 410	IFI00083
•••	370	IF(0(J-1)) 380. 350. 380	TFI00084
、 ,	3R0	IE(T2) 400. 390. 390	TF100085
• •	390	[=+]•0	IFI00086
• /	395 C	30 TO 410	1F1000R7
7	001	[=]•U	1F100088
C			1F1000R9
C	J	COUNT AGPEFMENTS IN SIGN	1F100090
c			TET00091
7	- - -	TF(T1) 425。 420。 420	JE100092
7	0	TF(T) 440. 430. 430	JF100093
7	5 2	<pre>IF(T) 430. 440. 440</pre>	JFI00094
7	+30 +	4 A T C H = M A T C H + 1	1F100095
7	104	[2=[]	JFI00096
7	С Ц 1	[]=T	1FI00097
C			1F100098
C	uL.	STARLISH TIGHTER ROUGOS ON FIGENVALUES	1F100099
C			IFJ00100
7	109+	JU 530 K=1•V	TFIOOIOI
7	t L L	TF (K-MATCH) 470. 470. 520	TFI00102

470	TF(TAU)-VALL(K)) אוריאסיין איריאסיין דאטריעראסין דאטריערעידער דאט	1 E I O O I O 3
4 B D	VAL_L (K) = TAU	TF100104
490	GO TO 530	1FI00105
520	TF(TAU)-VALU(K)) 525. 530. 530	TF100106
525	VALUI (K) = TAU	TF100107
530	CONTTNUE	TF100108
540	TF(VALU(T)-VALL(T)-5.0F-8) 570. 570. 550	1F100109
5 ዓ በ	TF(VALU(T)) 560. 580. 560	TFI00110
560	<pre>IF(ARSF(VALI([])/VALU([)-1.0)-5.0F-A) 570. 570. 580</pre>	TFT00111
570	[+[=]	IFT00112
575	IF(I-N) 540. 540. 590	TFT00113
5 A O	1411=(NAI^F(1)+NAI^11(1))/5°U	1FJ00114
585	GO TQ 250	1FI00115
ر		IF100116
ن ن	JACORI FIGENVECTORS BY POTATIONAL TRIANGLU ARIZATION	TF100117
C		TF100118
290	JF (M) 593. R9A. 543	1F100119
593	IFXIT=?	1F100120
595	DU 610 [=].N	TE100121
600	N•1=1 VI VI	1E100122
610	A (T., J) = 0.0	IF100123
<i>с</i>] Л	NO 350 [=] 050 DU	1E100124
620	IF (I-1) 625, 625, 621	TE100125
621	TF (VALU(T-1)-VALU(T)-5.0E-7) 730. 730. 622	1F100126
622	<pre>IF (VALU(I-1)) 623. 625. 623</pre>	1E100127
623	TF (ABSF(VALU(T)/VALU(T-1)-1.0)-5.0F-7) 730. 730. 625	1F100128
62U	CUS=1.0	1F100129
67R	STN=0.0	TF100130
630	DO 700 J=1•M	TF100131
635	<pre>IF(I-1) 6x0. 6R0. 640</pre>	TE100132
640	GA TA 400	1E100133
6 Г С	S(1-1)=STN	1FI00134
ちたつ	C(I-I))=CuS	JFI00135
670	D()-])=1]*CUS+12*S1M	1F100136
6 A D	T1=(n1ag(J)-Vatu(T))*C0S-HFTA*STN	TF100137

	005	T 2= SUPE PA () DET A - SUDE DA () & CAS	TET00138
	710	D (N) = T]	TETOD140
	120	No 725 J=1.4M	IFI00141
	725	0 = (f)	TE100142
	130	SM 1[, D = ANDPM	TFT00143
	735	N•[=[, UH] CU	TEI00144
	14 U	TF (TWD(J)-1) 750. 780. 780	1F100145
	750	<pre>IF (ABSF(SMALLD)-ABSF(D(J)))740. 780. 760</pre>	1EI00146
	760	SMAITD=D(J)	TET00147
	170		TFI00148
	7 8 0	CONTIVUE	1EI00149
	190	[NID (NN) =]	JFT00150
	008	PP/NS=1.0	TET00151
	с с С	IF (NN-1) AID. A5D. AID	JE100152
	u l c	DO 340 K#2•NN	TFI00153
	320	T = N/N +] + K	TFI00154
	930	A(II+]+[)=C(II)*PRONS	IFT00155
	340	(11)S*Su0ad==Su0ad	IEI00156
	35 N	A (1 • T) =PRO01S	TE100157
C			TETOO15A
ப		FORM MATRIX PRODUCT OF ROTATION MATRIX WITH JACORI VECTOR MATRIX	1F100159
ပ			JFT00160
	с С	NO 885 JEI.	1FT00161
	360		IE100162
	እና ዓ	() (X) = 4 (X • .)	IE100163
	110	DA RA5 [=].W	IF100164
	375	A (T.,J) = 9.0	TETO0165
	A R O		IFI00166
	д С С	A (1 • .)) =R (1 • K) *D (K) + A (1 • .)	TETO0167
	390	RFTJRN	TFT00168
C			IF100169
<u>د</u> ر		CALCULATE STRF AND COSTRF OF AMGLE OF ROTATION	TF100170
			TFI00171
		J - (- /) 4 [= 44 = 4] 1 T - CODTF (T) ☆☆O▲T O☆☆O)	5/100141 15100172

026	C0S=T1/T	IFI00174
92G	STN=T2/T	JET00175
930	GO TO (90.650). TEXIT	TFI00176
940	GO TO (160.910). TEXTT	TF100177
950	FND	TFT00178
	SURRAUTTIVE FPLT (C.NNINC.N)	
	DIMENSION C(NUTMC)	PLOTTERX
100	FORMAT (////.]0X.]3HPLOT OF G(NU))	PLOTTERX
ΙΰΙ	FORMAT (14HOVALUE OF IT =• F15.6)	PLOTTERX
102	FORMAT (49HOFREDUENCY PLOTTED ON X AXIS.] MARK = 0.1 V/VMAX)	PLOTTERX
103	FORMAT (48HONORMALIZED DISTRIBUTION. ON Y AXIS 1 MARK = 0.2)	PLOTTERX
	001 101a	PLOTTERX
	TT=0.	PLOTTFRX
	DO 1 1=1•N	PLOTTFPX
-	TT=TT+C(T)	PLOTTERX
	PRINT [n], TT	PLOTTFRX
	PRINT 102	PLOTTERX
	PRINT 103	PLOTTERX
		PLOTTERX
ر ،	TF(C(MD)-1.) 3.4.4	PLOTTERX
٣	N0=N0-1	PLOTTERX
	GO TO 2	PLOTTFRX
4		PLOTTERX
	MO= 1	
4 l		
	U = U W = U W	
	TF (AND-10.0) 43.43.41	
63		
	01-100 Device 1	
	CMAX=0 ° 0	
	DO 52 T=1.40	
	IF (CMAX-C(1)) 51.52	
ر م	CMAX = C(T)	
ς Γ	CONTINUE	

5	CMAX=CMAX/10.0	
	TF (CMAX-10.0) 55.55.53	
ր Մ	$M \Delta X = I N T (CMAX) + 1$	
	HFTGHT=5.0/8.0	
	WTNTH=8.0/5.0	
	SYP=2000.0*HF1GHT	
	SXP=1000.0%WIOTH	
	X S=WTDTH*10 00/FLOAT (ND)	
	YS=HFTGHT*16.0/FLOAT(MAX)	
	CALL PLOT (0602)	PLOTTERX
	CALL PLOT (n)	PLOTTERX
	CALL PLOT (5102)	PLOTTER
	CALL PLOT (n)	PLOTTFRX
	X=0.	PLOTTERX
	DO 6 T=1•ND	
	X = X = X	PLOTTERX J
	CVIT PLOT (0x.1)	PLOTTERX 2
		PLOTTERX
Ś		PLOTTERX
	CALL PLOT (0)	PLOTTERX
	Y=υ.	PLOTTERX
	DO 7 1=1.40X	
	Y=Y+YS	
		PLOTTERX
	CALL PLOT (Y+0.1.1)	PLOTTFRX
2	CALL PLOT (Y.O)	PLOTTFRX
	CALL PLOT (001)	PLOTTFRX
	DD R [=]•MD	
	X=1*D	PLOTTERX
	Y=8.0*C(1)/(]0.0*F10AT(K0)*F10AT(MAX))	
α	CALL PLOT (Y.X.1.SYP.SXP)	PL OTTERX
	RFTIIPN	PLOTTERX
	FND	PLOTTFRX
	SUARDUTINE FPH (0.4MASS.OWEGA.Z.BHO.FKF.POTEN.FP.ALPHA)	
	DIMENSION POTEN(1) .FACT(7)	

```
C FIND BARE COUPLING TIMES SORT OF THE QUANTITY, FRED TIMES LATTICE POINTS
                                FACT(1)=]_0 $ FACT(2)=1_0 $ FACT(3)=2_0 $ FACT(4)=6.0$FACT(5)=24.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G=(4_0*PT*FLCHSQ*(n_0.1_0)/OMFGA)*SQPT(HRAR)/(SQRT(AMASS)*1_4]421
                                                            FACT(6)=120.0 % FACT(7)=720.0 % PI=3.14159265 % SUM=(0.0.0.0)
                                                                                                                                                                                         H&QTRF=((4.0*FKF**?+0**?)/(8.0*FKF*0))*ALOG((2.0*FKF+0)/
                                                                                                                                                                                                                                                                                            HAPTRF=((A.0*FLCHSQ*FMASS*FKF)/(HRAPSO*O*A*2*PT))*HARTRF
                                                                                              FLCHG=4.R0298F-10 % HAAP=1.0545F-27 % FMASS=9.1091E-28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SUM=FACT(J)*POTFN(J)*(COMP**J-CONG**J)/(DFNOM**J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INCLUDE FACTOP OF N(0)/(A*PI*FKF**?*0)*(2*PI)**3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G=P[*(7-68.0)/(2.0*0)+68.0*ATAN2(0.FP)/0+SIJM
                                                                                                                                                                                                                                                                                                                                                       FXCH=0.6493147*PH0*R.0*PT*FLCHS0/(0*FKF)
                                                                                                                             FLCHSO=FLCHG**2 & HRARSO=HRAR**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4 PHA=ALPHA*RHO*PJ**2/ (0*FKF**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  COMP=(].0.0.0)*EP+(0.0.].0)*0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONG=(1.0.0.)*FP-(0.0.1.0)*0
                                                                                                                                                                                                                                                                                                                          CALCULATE EXCHANGE SCREENING
COMPLEX SUM.COMP.CONG.G.GBAR
                                                                                                                                                             CALCULATE HARTREF SCREENING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SUM=34.0*(0.0.1.0)*SUM/0
                                                                                                                                                                                                                                                                                                                                                                                                                               SCPFFN=1.0+HARTRF-FXCH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GRAP=GRAP/1.4142]3562
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GRAP=CONJG (GRAP) *GRAR
                                                                                                                                                                                                                                                                                                                                                                                               FIND TOTAL SCREENING
                                                                                                                                                                                                                                                              HARTRF=HAPTRE+0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DFNOM=FP**2+2**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (GRFAL=HFAL (GRAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GRAR=G/SCRFFN
                                                                                                                                                                                                                              )(V. C*FKF-C))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DO 10 J=1.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AL PHA=GRFAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      13562) *G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         NHILLAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E Z L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     c
                                                                                                                                                               C
                                                                                                                                                                                                                                                                                                                                C
                                                                                                                                                                                                                                                                                                                                                                                                   C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C
```

. ی می بر این بر

LIST OF REFERENCES

.

•

LIST OF REFERENCES

- 1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. <u>106</u>, 162 (1957); <u>108</u>, 1175 (1957).
- 2. J. G. Valatin, Nuevo Cimento 7, 843 (1958).
- 3. N. N. Bogoliubov, Nuevo Cimento 7, 794 (1958).
- 4. L. N. Cooper, Phys. Rev. <u>104</u>, 1189 (1956).
- 5. J. R. Schrieffer, <u>Theory of Superconductivity</u> (W. A. Benjamin, Inc., New York, 1964), P. 49.
- 6. G.Rickayzen, <u>Theory of Superconductivity</u> (Interscience Publishers, Inc., New York, 1965), P. 197.
- 7. J. J. Engelhardt, B. T. Matthias, G. W. Webb, Science <u>155</u>, 191 (1967).
- 8. L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. <u>34</u>, 735 (1958). [English transl: Soviet Phys. - JETP <u>7</u>, 505 (1958)].
- 9. Y. Nambu, Phys. Rev. <u>117</u>, 648 (1960).
- 10. G. M. Eliashberg, Zh. Eksperim i Teor. Fiz. <u>38</u>, 966 (1960). [English transl: Soviet Phys. - JETP <u>11</u>, 696 (1960)].
- 11. A. B. Migdal, Zh. Eksperim i Teor. Fiz. <u>34</u>, 1438 (1958). [English transl.: Soviet Phys. - JETP <u>7</u>, 41 (1958)].
- D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. <u>148</u>, 263 (1966).
- 13. J. P. Carbotte and R. C. Dynes, Phys. Rev. <u>172</u>, 476 (1968).
- 14. J. C. Phillips and L. Kleinman, Phys. Rev. <u>116</u>, 287 (1959).
- 15. W. L. McMillan, Phys. Rev. <u>167</u>, 331 (1968).

- 16. P. Morel and P. W. Anderson, Phys. Rev. <u>125</u>, 1263 (1962).
- 17. J. M. Ziman, <u>Electrons</u> and <u>Phonons</u>, (Oxford University Press, London, 1960), P. 182.
- 18. B. Matthias, Progress in Low Temperature Physics, (North-Holland Publishing Co., Amsterdam, 1957), Vol. 2.
- 19. W. M. Lomer, Proc. Phys. Soc. 80, 489 (1960).
- 20. N. F. Mott and H. Jones, <u>The Theory and Properties of</u> <u>Metals and Alloys</u> (Dover Publications, Inc., New York, 1958), P. 189.
- 21. J. Kondo, Prog. of Theoretical Physics (Japan) 29, 1 (1963).
- 22. B. T. Geilikman, Usp Fiz., Nauk. <u>88</u>, 327 (1966) [English transl: Soviet Phys. USPEKHI <u>9</u>, 142 (1966)].
- 23. M. Tinkham, Group Theory and Quantum Mechanics, (McGraw-Hill Book Co., New York, 1964), P. 329.
- 24. J. B. Goodenough, Phys. Rev. 120, 67 (1960).
- 25. L. F. Mattheiss, Phys. Rev. <u>139A</u>, 1893 (1965).
- 26. F. Herman and S. Skillman, <u>Atomic Structure Calcula-</u> <u>tions</u>, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963).
- 27. J. C. Slater, Phys. Rev. <u>82</u>, 538 (1951).
- 28. M. A. Jensen and H. Suhl, <u>Magnetism</u>, (G. T. Rado and H. Suhl, Academic Press, Inc., New York, 1966), Vol. II B, P. 183.
- 29. L. P. Gorkov and A. I. Rusinov, Zh. Eksperim i Teor. Fiz. 46, 1363 (1964). [English transl.: Soviet Phys. - JETP 19, 922 (1964)].
- 30. Y. Nambu, Phys. Rev. 117, 648 (1960).
- 31. J. Bardeen, Phys. Rev. 52, 688 (1937).
- 32. M. Bailyn, Phys. Rev. <u>117</u>, 974 (1960).

- 33. L. Nordheim, Ann. Phys. <u>9</u>, 607 (1931).
- 34. D. Pines, Elementary Excitations in Solids (W. A. Benjamin, New York, 1964), P. 234.
- 35. R. D. Mattuck, <u>A Guide to Feynman Diagrams in the</u> <u>Many-Body Problem</u> (McGraw-Hill Book Co., London, 1967), P. 227.
- 36. Electrons distort a small region of the lattice about their position. It is this virtual phonon cloud which is felt by another electron that forms the attractive mechanism. Normal coulomb repulsion is, of course, still present.
- 37. The reason that \bar{g}' is indicated instead of g' is that the screened electron-phonon coupling constant \bar{g} will be sought self-consistently instead of the bare ion coupling g.
- 38. A. R. Edmonds, <u>Angular Momentum in Quantum Mechanics</u> (Princeton University Press, Princeton, New Jersey, 1957), P. 54.
- 39. G. Gilat and L. J. Raubenheimer, Phys. Rev. <u>144</u>, 390 (1966).
- 40. D. Pines, Phys. Rev. <u>92</u>, 626, (1953).
- 41. L. Y. L. Shen, Phys. Rev. Letters 24, 1104 (1970).
- 42. A. D. B. Woods, Phys. Rev. <u>136</u>, A781 (1964).
- 43. S. H. Chen and B. N. Brockhouse, Solid State Communications 2, 73 (1964).

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	COS=TI/T SIN=T2/T	IF100174 IE100175
940 940	GO TO (90.650). TEXTI Go To (160.910). TEXTI End	JEI00176 JEI00177 TFI00178
	SURADUTIME FRIT (C+NDIMC+N) DIMENSION C(NDIMC)	PI OTTERX
100	FORMAT (////.lnx.l3HPLDT OF G(NU))	PLOTTERX
101	FORMAT (14HAVALUF OF TT =• F15.6)	PLOTTERX
1 n 2	FORMAT (49HOFREDUEWCY PLOTTED ON X AXIS.] MARK = 0.1 V/VMAX)	PLOTTERX
103	FORMAT (48HONORMALIZED DISTRIBUTION. ON Y AXIS 1 MARK = 0.2)	PLOTTERX
	PRINT 100	PL OTTERX
	TT=0.	PLOTTFRX
	DO 1 1=1•N	PLOTTFPX
~	TT = TT + C(T)	PLOTTERX
	PRINT INI. TT	PLOTTERX
	PRINT 102	PLOTTERX
	PRINT 103	PLOTTERX
	N=0N	PLOTTERX
ر .	TF(C(NO)-1.) 3.4.4	PLOTTERX
۴	NO=NO-1	PLOTTERX
	60 TO 2	PLOTTERX
4	I + UN=UN	PLOTTERX
	MO=1	
	UN=N0	
41	AND=AND/]0°0	
	U=WU*]U	
	[F (AND-]0.0) 43.43.41	
43	NO=ANO+1	
	D=1.0/40	
	C,M,A,X = 0, 0, 1	
	DA 52 I=1.40	
	<pre>IF (CMAX-C(1)) 51.52</pre>	
רי	CMAX = C(T)	
ر م		

	KO=1		
5	CMAX=CMAX/10°0		
	K0=K0*]0		
	JF (CMAX-10.0) 55.55.53		
с С	MAX=TNT(CMAX)+]		
	HFTGHT=5.0/8.0		
	WTNTH=R.0/5.0		
	SYP=2000.0*HE1GHT		
	SXP=1000.0*WT0TH		
	XS=WTDTH*10_0/FL_0AT(NO)		
	YS=HFTGHT*16.0/FL_0AT(MAX)		
	CALL PLOT (0602) PLOT	TERX	
	CALL PLOT (n.,n.,n)	TERX	
	CALL PLOT (5102) PLOT	TER	
	CALL PLOT (n) PLOT	TFRX	
	x=υ• PLOT	TERX	
	DO 6 [=]•NO		
	۲=X+XS PLOT	13 Xaji	7 7
	CALL PLOT (0X.1) PLOT	TERX 7	7
		TERX	
¢	PLOT PLOT (n. x.))	TERX	
	CALL PLOT (0) PLOT	TERX	
	۲۵۳. AL. A.	TERX	
	DO 7 [=[•MAX		
	Y=Y+YS		
		TERX	
	CALL PLOT (Y+0,1+1) PLOT	TFRX	
~	, כעון פוחד (ץ•ח.•ו) PLOT	TERX	
	CALL PLOT (001) PLOT	TFRX	
	DO R [=]•MO		
	X=T*N PLOT	TERX	
	Y=8.0*C(T)/(]0.0*F10AT(K0)*F10AT(MAX))		
α	I CALL PLOT (Y+X+1+SYP+SXP) PLOT	TERX	
	RETURN PLOT	TERX	
	PLOT PLOT	TFRX	
	SURROUTINE FPH (0. AMASS. OMEGA. Z. RHO. FKF. POTEN. FP. ALPHA)		
	DIMENSION POTEN(7).FACT(7)		

```
C FIND BARE COUPLING TIMES SORT OF THE QUANTITY, FREQ TIMES LATTICE POINTS
                              FACT(1)=1_0 $ FACT(2)=1_0 $ FACT(3)=2_0 $ FACT(4)=6_0$FACT(5)=24_0
FACT(6)=120_0 $ FACT(7)=720_0 $ PI=3_14159245 $ SUM=(0_0+0_0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G=(4.0*PT*FLCHSQ*(0.0.1.0)/OMFGA)*SQPT(HRAR)/(SQRT(AMASS)*1.4]42]
                                                                                                                                                                                                        HARTRF=((4.0*FKF**?-0**?)/(9.0*FKF*0))*ALOG((2.0*FKF+0)/
                                                                                                                                                                                                                                                                                                                  HAPTRF=((R.O*GASG4EMASS*FKF)/(HRAPSO*0**2*PT))*HARTRF
                                                                                                 FICHG=4.80298F-10 % HAAP=1.0545F-27 % FMASS=9.1091F-28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SUM=FACT(J)*POTFN(J)*(COMP**J-CONG**J)/(DFNOM**J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        INCLUDE FACTOR OF N(0)/(8*P1*FKF**?*0)*(2*P1)**3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G=P[*(7-68.0)/(2.0*0)+68.0*0TAN2(0.FP)/0+SUM
                                                                                                                                                                                                                                                                                                                                                                                 FXCH=0.643147*PH0*8.0*PT*FLCHS0/(0*FKF)
                                                                                                                                   FLCHS0=FLCHG**2 $ HRARS0=HRAR**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (C**4JXJ*0)/C**1**5/(O*EKE**5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COMP=(].0.0.0)*FP+(0.0.].0)*0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONG=(1.0.0.0)*FP-(0.0.1.0)*0
D0 10 J=1.7
COMPLEX SUM.COMP.CONG.6.6RAR
                                                                                                                                                                                                                                                                                                                                                   CALCULATE EXCHANGE SCREENING
                                                                                                                                                                          SCRFFNING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SUM=34.0*(0.0.1.0)*SUM/0
                                                                                                                                                                                                                                                                                                                                                                                                                                                             SCPFFN=].0+HARTRF-FXCH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GRAP=GRAP/1.414213542
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GRAP=CONUG (GRAP) *GRAR
                                                                                                                                                                                                                                                                                                                                                                                                                          FIND TOTAL SCREENING
                                                                                                                                                                        CALCULATE HARTREE
                                                                                                                                                                                                                                                                                HARTRE=HAPTRE+0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DFNOM=FP**2+0**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GREAL = HEAL (GRAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GRAR=G/SCRFFN
                                                                                                                                                                                                                                           (() + C + C + C + C + C ) )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AI DHA=GRFAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             13562)*6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F Z D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                c
```

C

C

C

C

LIST OF REFERENCES

LIST OF REFERENCES

- 1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. <u>106</u>, 162 (1957); <u>108</u>, 1175 (1957).
- 2. J. G. Valatin, Nuevo Cimento 7, 843 (1958).
- 3. N. N. Bogoliubov, Nuevo Cimento 7, 794 (1958).
- 4. L. N. Cooper, Phys. Rev. <u>104</u>, 1189 (1956).
- 5. J. R. Schrieffer, <u>Theory of Superconductivity</u> (W. A. Benjamin, Inc., New York, 1964), P. 49.
- 6. G.Rickayzen, <u>Theory of Superconductivity</u> (Interscience Publishers, Inc., New York, 1965), P. 197.
- 7. J. J. Engelhardt, B. T. Matthias, G. W. Webb, Science <u>155</u>, 191 (1967).
- 8. L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. <u>34</u>, 735 (1958). [English transl: Soviet Phys. - JETP <u>7</u>, 505 (1958)].
- 9. Y. Nambu, Phys. Rev. <u>117</u>, 648 (1960).
- 10. G. M. Eliashberg, Zh. Eksperim i Teor. Fiz. <u>38</u>, 966 (1960). [English transl: Soviet Phys. - JETP <u>11</u>, 696 (1960)].
- 11. A. B. Migdal, Zh. Eksperim i Teor. Fiz. <u>34</u>, 1438 (1958). [English transl.: Soviet Phys. - JETP <u>7</u>, 41 (1958)].
- 12. D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. <u>148</u>, 263 (1966).
- 13. J. P. Carbotte and R. C. Dynes, Phys. Rev. <u>172</u>, 476 (1968).
- 14. J. C. Phillips and L. Kleinman, Phys. Rev. <u>116</u>, 287 (1959).
- 15. W. L. McMillan, Phys. Rev. <u>167</u>, 331 (1968).

- 16. P. Morel and P. W. Anderson, Phys. Rev. <u>125</u>, 1263 (1962).
- 17. J. M. Ziman, <u>Electrons and Phonons</u>, (Oxford University Press, London, 1960), P. 182.
- 18. B. Matthias, Progress in Low Temperature Physics, (North-Holland Publishing Co., Amsterdam, 1957), Vol. 2.
- 19. W. M. Lomer, Proc. Phys. Soc. 80, 489 (1960).
- 20. N. F. Mott and H. Jones, <u>The Theory and Properties of</u> <u>Metals and Alloys</u> (Dover Publications, Inc., New York, 1958), P. 189.
- 21. J. Kondo, Prog. of Theoretical Physics (Japan) 29, 1 (1963).
- 22. B. T. Geilikman, Usp Fiz., Nauk. <u>88</u>, 327 (1966) [English transl: Soviet Phys. USPEKHI <u>9</u>, 142 (1966)].
- 23. M. Tinkham, Group Theory and Quantum Mechanics, (McGraw-Hill Book Co., New York, 1964), P. 329.
- 24. J. B. Goodenough, Phys. Rev. 120, 67 (1960).
- 25. L. F. Mattheiss, Phys. Rev. 139A, 1893 (1965).
- 26. F. Herman and S. Skillman, <u>Atomic Structure Calcula-</u> <u>tions</u>, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963).
- 27. J. C. Slater, Phys. Rev. <u>82</u>, 538 (1951).
- 28. M. A. Jensen and H. Suhl, <u>Magnetism</u>, (G. T. Rado and H. Suhl, Academic Press, Inc., New York, 1966), Vol. II B, P. 183.
- 29. L. P. Gorkov and A. I. Rusinov, Zh. Eksperim i Teor. Fiz. <u>46</u>, 1363 (1964). [English transl.: Soviet Phys. - JETP <u>19</u>, 922 (1964)].
- 30. Y. Nambu, Phys. Rev. 117, 648 (1960).
- 31. J. Bardeen, Phys. Rev. 52, 688 (1937).
- 32. M. Bailyn, Phys. Rev. 117, 974 (1960).

- 33. L. Nordheim, Ann. Phys. <u>9</u>, 607 (1931).
- 34. D. Pines, Elementary Excitations in Solids (W. A. Benjamin, New York, 1964), P. 234.
- 35. R. D. Mattuck, <u>A Guide to Feynman Diagrams in the</u> <u>Many-Body Problem</u> (McGraw-Hill Book Co., London, 1967), P. 227.
- 36. Electrons distort a small region of the lattice about their position. It is this virtual phonon cloud which is felt by another electron that forms the attractive mechanism. Normal coulomb repulsion is, of course, still present.
- 37. The reason that \bar{g}' is indicated instead of g' is that the screened electron-phonon coupling constant \bar{g} will be sought self-consistently instead of the bare ion coupling g.
- 38. A. R. Edmonds, <u>Angular Momentum in Quantum Mechanics</u> (Princeton University Press, Princeton, New Jersey, 1957), P. 54.
- 39. G. Gilat and L. J. Raubenheimer, Phys. Rev. <u>144</u>, 390 (1966).
- 40. D. Pines, Phys. Rev. <u>92</u>, 626, (1953).
- 41. L. Y. L. Shen, Phys. Rev. Letters 24, 1104 (1970).
- 42. A. D. B. Woods, Phys. Rev. <u>136</u>, A781 (1964).
- 43. S. H. Chen and B. N. Brockhouse, Solid State Communications 2, 73 (1964).

