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ABSTRACT.

A STUDY OF THE PRODUCTION AND DECAY OF

RESONANT STATES IN PERIPHERAL-HIGH ENERGY COLLISIONS

By

Glenn T. Williamson

The current theoretical situation in phenomenological

analysis of high energy scattering is reviewed. Various

attempts are made to improve upon several models. In

particular, the effect of form factors and Regge treatment

of propagators on Born amplitudes is examined. Higher

order exchange contributions are considered as possible

solutions to the problem of energy dependence of higher

spin exchange amplitudes, It is found that a combination

of the absorptive peripheral model and the Regge pole

model is the most successful approach,-in that energy

dependence difficulties are eliminated as is the need for

conspiring trajectories.
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INTRODUCTION

In a large class of inelastic elementary particle

reactions the experimental data reveal the following promo-

nent general features:

1. One can usually group.the final particles into

two quasi-states, the center—of—mass of each one nearly

maintaining the direction of one of the incident particles,

RRCM is strongly peaked either in the forward or backward

direction or both.

The reaction ab+1+2+3+...appears-as if there were

only two particles-in the final state.~ Examples of such

reactions are

Np+nnN

+HUHN

KN+KHN

+KHNN

We refer to these-”particles" as c and d and consider

quasi two-body interactions ab+cd-in which c or d may be

multiparticle states.- They are,.in fact, the decay products

of resonant states and are no different from the resonances

themselves kinematically.

The higher the inCIdent particle energy and the

simpler the compOSItion of c and d, the more evident the

forward or backward peaking becomes.



2. -In almost every case,-at-certain energies the

final states do not appear to be directly produced.- The

reactions proceed via the production of strongly inter-

acting-(and very short-lived)~resonant~states which under-

go strong decay-into the final state.- For example

HN+ON+HHN

KN+K*N**KHNN

3. The total cross-section O (s+w) behaves like
tot

s-n for small positive n.- While.the density of experimental

data available over a wide range of reactions and energies

is light, it is possible to note a rapid decrease (in

most cases) in the total resonance production cross-section

with energy. As we shall see later it is this fact that

proves to be the most difficult to handle theoretically.

These are peripheral collisions, and for lack of a

better definition we shall call theoretical models for

these processes peripheral models. The idea is that a and

b do not collide head on; they undergo a glancing collision

in which the two particles barely touch each other. We

do not expect the trajectories of either of the final

particles to deviate from the directions of the incident

particles.

One expects these peripheral processes to be

dominated by long range forces. Because of the energies

involved the treatment must be relativistic and there is

no reason to suppose that we can ignore the intrinsic

Spin of the particles. From the point of View of field



theory these reactions proceed via the exchange of the

virtual quanta that will induce the longest range force,

the quanta of lightest mass. The problem has been

reduced to consideration of a sum of one particle exchange

graphs as indicated in Figure 1.

Q m

Figure l. The reaction ab+n particles in the

region where the final state is dominated by production

of two resonances is approximated by a sum over all allowed

one-particle exchanges.

In its simplest form, this "Born Term Model" leads

to a matrix element of the form

<cd|Blab> = Baec(t’mc);:Lm—Z Bbed(t,md)

e

for the production of the intermediate resonant states

where t=-(b-d)2 is the invariant 4-momentum transfer,

p/(t-mi) is the prOpagator of the exchanged particle and

Bi (t,M ) is the vertex function. At t=M2, B (M2, M2)
en n e zen e n

is the matrix element for the physical process 2+e+n. If

one regards n as a particle, B is equal to the (Zen)-

coupling constant multiplied by a known kinematical factor.



These vertex functions.are obtained in the usual

way from interaction Lagrangians or by writing down the

most general function consistent with Lorentz invariance

and then using hermiticity, CPT.and other strong interaction

invariances to limit the form.further.

Since small physical values of t correspond to

small center-of-mass scattering angles it is clear that

if the vertex functions are not pathological in their

behavior this Born approximation ought to beta good start

to explaining peripheral collisions. And because of the

"factored" structure of <chB|ab> we have a basic test

229.
d9

between the planes defined by ac and bd.

of the model: should be independent of the angle

The Exchanged Particle

Consider any specific reaction and the usual

invariance principles determine which exchanges are

allowed.

Example: KN+KN*

1. Conservation of baryon number tells us that e

cannot be a baryon.

2. None of K,N,N* are eigenstates of the G—parity

Operator so we obtain no Specific information from G-

parity conservation: Ge is arbitrary.

3. Since strangeness is conserved at both

vertices the exchanged particle must not be strange: Se=0'



4. Isotopic Spin conservation at the NeN* vertex

requires l/2+I=3/2, which gives Ie=1,2. Consistency with

the KeK vertex requires that the exchanged quanta be a

member of an I-Spin triplet: .Ie=l.

5. Consider angular-momentum and parity conserva-

tion at the KeK vertex in the outgoing K-meson rest frame.

The K has Jp=0- so the addition theorem requires

(_)£+l_ 1 _ _

0 +2( ) +J§e=0 . This reduces immediately to £ +Jge=0 .

Je
Clearly we must have £=Je and pe=(-)£=(-) which means

that Jge=0+ or l-,2+,... Examination of the NeN* vertex

provides no information which further restricts Jge.

In summary, for KN+KN* the exchanged quanta must be

a non-strange member of an isospin triplet of mesons with

Jp=J(-)J. We choose from among the known low lying meson

states and conclude that 0 exchange is likely to dominate.

One proceeds in just this way, applying the conser—

vation laws at each vertex in.turn for each reaction to be

considered. This procedure rarely limits the exchanged

quanta to a Single state.

Decay of the Resonant State

Recall that particles c, d or both in the reaction

ab+cd are in most cases pseudo-particles, resonant inter-

actions of several elementary particles. So far we have

discussed in general terms the amplitude <cd|M|ab> for the

production of the resonant state, particle d. (For the

moment c will be just another elementary particle, eg.

HN+NN*). We will consider decay into two particles: d+fg.



If we had particle d, with Spin Sd at rest in the labor-

atory, its decay would be governed solely by the transition

matrix for the process d+fg:

<§§> ~£ <fg|M|d>|2.

decay fgdl

Given an ensemble of states d at rest with Spin

polulation A we have no reason to expect that the popula-
d

tions of each projection state are different. It is clear

that this is not the case in our Situation. We do not

start with particle d; we actually observe the process

ab+cfg which proceeds via the intermediate state d:

ab+cd+cfg. In contrast to the above, we do not expect the

resonance d to be produced with an isotropic spin distri-

bution. It must be assumed that the production matrix

elements are spin dependent until we know otherwise. One

can still obtain the decay angular distribution from the

formula given above, but the initial state for the decay

matrix element must be weighted by the probability for

production of the Spin state

<fgc|MIab>=X <fg|M Iab>

S
- deca |d><Cd|M

pin Y P
rod.

and therefore

(10' ~ I

(d—SI)d->fg Z<fg|Md|d>*<fg|Mdld >ggab<cd|M |ab>*<cd'|M |ab>

p p



Considering only the angular part H of the decay

matrix element and normalizing, we arrive at a formula

for the expected angular distribution of the decay pro—

ducts f, g of the resonance d produced in ab+cd. For

convenience everything is done in the d rest frame.

W(a.8) = N ZH(fgd)*H(fgd')odd.

where pdd' = N Z<cd|Mp|ab>*<cd'|Mp|ab>
2

1 determines N2

Various symmetries can be used to obtain relations

Trp

among the production density matrix elements pmm" To

find these it is necessary to examine W(a,B) in more detail.

Coordinate system
 

Since it is convenient to do calculations in the

center-of-mass frame, we start there.. In all of our cal—

culations we have defined the production plane to be the

X2 plane with the momentum vectors aligned as Shown in

Figure 2.

[
—
I

|
>
>

D
r
)

d

TB

:74“
Figure 2. The two-body scattering ab+cd in the

center-of—mass and the orientation of the x and z axes.

Because it is easiest to look at the decay of d

from its rest system, we perform a Lorentz transformation

into this system as indicated in Figure 3.



Figure 3. The two body scattering ab+cd in the

rest frame of particle d.

The 1 direction, the normal to the production plane, is

axc

defined by j_ = TERI"

The decay angular distribution

Now add the decay products f and g to the diagram,

and delete a and c to get them out of the way as indicated

in Figure 4.

L
I

I

a

r

I

/
x

I I l l l l l
r
:

I
X
)

Figure 4. The decay products g and h of the resonance

d in its rest frame.

Two angles are needed to locate the decay products. Momen-

tum conservation requires f and g to move in opposite

directions. We use a polar angle a, which measures devia—

tion of the line of motion from the]; direction, and an

azimuthal angle 8 measuring deviation from the production

plane. These definitions correspond to the usual definihg

angles for the spherical harmonics Y£m(a,3). AS long as we

choose the x axis to be the spin quantization axis for the

resonant state d of Spin jd' the angular part of the decay

matrix element will be |2m> coupled to jf+jg to form jd.



An Example:

This is a l-+0—+0_ transition. In the p rest frame

the intrinsic spin of the p meson becomes the relative

orbital angular momentum of the two pions. The angular

part of the decay matrix element is proportional to Y£m(a,B).

We write

W(a:8)”1§mqum(arB)Yimu(01:8)Dmm.

where we normalize fanpW(a,B)=l.

Symmetries of pmm'

It is useful to take advantage of available symmet-

ries to simplify the density matrix as much as possible.

We require that p be hermitian, p+=p. Application of

parity conservation to ab+cd leads to additional relations

among the production amplitudes. Substitution of these

relations into the formula fortnimmediately Shows that

=(-)’“"“'D 0
mm' -m-m'

These two relations plus the trace condition enable

us to write

a TD

i’1/2(1"’oo) 010 p1,-1
J=1 _ * _ *

pmml _ p 10 poo p 10

01,-]. -p10 l/2(1-p00)-J
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Using this matrix we obtain an expression for Wp+2"(a,8):

i 0+O_3 _ _ 2 _ . 2 _
W(Q,B)-EEI3/2(l p00)+1/2(3p00 l)cos a pl’_131n acosZB

V2Rep1051n2acoss]

One also obtains an expression for the polarization of

particle d by using P=Ter Px and P2 are found to vanish,d'

so the polarization vector of d is perpendicular to the

production plane.

The decay of a spin jd into spins jf and jg can be

analyzed in a similar way but it is necessary to use the

angular momentum addition theorem to write the prOper

angular functions. Once one has an expression for W in

terms of density matrix elements, he again examines the

effect of invariances at the vertices on the density matrix

elements to obtain model dependent predictions for the

angular distributions, assuming a jge for the exchanged

quantum. To Show the method and complete the p-production

example, we look at the p+wn decay.

Assume the dominant contribution to nN+pN is the

pion exchange force and ask what this means for the decay

distribution of the produced mesons. Consider the

vertex in the p-meson rest frame.

A unit of orbital angular momentum is picked up in

p-formation as intrisic spin and jz for the 2H system is

zero. Note that parity is conserved. Conservation of Jz

implies Jz=0 and the jz=l Spin projections of the p are not

produced at all.‘ The only non-vanishing density matrix



ll

element is p00 which, because of the normalization condi-

tion, must be unity. Substitution into W(a,B) gives

deW(o,B) = 3/2 coszaW(a,B) = 3/4ncosza W(a)

W(B) l/Zv

We look for this behavior in the experimental data as

evidence for n-exchange. This result is quite general;

any reaction of the form PB+VB proceeding via pseudo-

scalar exchange will lead to the above angular distri-

butions for the decay of the produced V-meson.

Similar analyses may be performed for the other

allowed spin-parity assignments of the exchanged quanta

and for arbitrary Spin of the produced resonance. Table A

summarizes the results of analyses for other relevant

cases.

When doing calculations helicity eigenstates are used

rather than spinors quantized relative to the z-axis.]'These

are states in which each spin is quantized relative to

its own direction of motion. Such states have very simple

Lorentz transformation-prOpertieS-making-them very easy

to use. We calculate amplitudes and cross-sections in

the production center—of—mass system and decay angular

distributions in the decay-center-of—mass system. ‘Before

we can use the-density matrix it is necessary to perform

‘a rotation so that spin-quantization is relative to the

z—axis, a more transparent-situation for comparison with

experiment.
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In the production CM, the angle of rotation for

c,d is clearly 6cm' In the C(d) rest.system we have

"I =g_- ' ' I. = .Sinwc ac Sinecm (sinwd %a81n6cm)

. _ 2 2 2
where, With A(x,y,z) - x +y +z -2xy-2xz-2yz

q=-l-%l/2(s,m:,m§) An incident channel CM-momentum

2fs'.‘

production process

1 A'l/2(t m:,m2 )

ac=2mc
momentum of a in c rest system

_1 1/2 2 2 . g p. _
bd-Efi—A (t,mb,md) momentum of b in d rest system

d

This transformation formula for the angle is very easy to

derive. The component of a 4-vector perpendicular to the

direction of a Lorentz transformation is unaffected by

that transformation.

5(J)
Let %EL be the helicity state density matrix for

production of the resonant state c of Spin jc. The density

matrix for quantization along the Z-axis in the c rest

system is then given by

(J) J

C d? (-w)
A lAl c

which is a function of s and t for the production process.

(J)
c J

p .=dC (11))01

AcA c ' AcAl c All 1

It is this pmm' that goes into the angular distribution

formulas.
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A look at the experimental data provides clues to

the production mechanism. We invent a model, calculate

production angular distributions, total cross—sections,

production density matrix elements, and compare with the

experimental-data. Proceeding in this manner, it has been

possible to explain a-large-number of high energy-reactions,

though in most cases not-without modifications, to the

basic Born Terms.
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TABLE I

Predictions of the BTM for Density Matrix Elements

1. Vector Meson Production (Jp=l-) [decay:1'+O-+0-]

significant density matrix elements: ”900:01 -l'plO

I

(p10 is complex).

a) Pseudoscalar exchange (Jp=0-)

prediction: p00=l, others zero.

_J

b) Natrual parity exchange (JP=J< ) )

'arbitrary,.others zero.

(_)J+l)

redictio :
P n - p1,-1

c) Unnatural parity exchange.(Jp=J

noeprediction.

2. N*3 production (Jp=3/2+) [decayz 3/2++1/2++o']

Significant density matrix elements: 033’03—1'031

com 1 x(03,-1'031 P e )

a) Pseudoscalar exchange (Jp=0_)

Prediction: all above elements are zero.

b) Vector meson exchange (Jp=l-)

prediction: Rep3l=0, p33=3/8, Rep3 _l=3/8.

I



THE GLAUBER FORMALISM FOR HIGH ENERGY

SCATTERING AND THE BORN APPROXIMATION

We start with a potential V(£) of finite range

dnd use the Schroedinger equation to solve for the wave

function, assuming high energy for the incident particle.

By high energy we mean the incident particle energy e

is much greater than the absolute magnitude of the potential

V0, and that the wave length is much shorter than the

range r of the potential:

0

V0<<e kr0<<l.

Since, relative to e the potential is weak, we do not

expect the wave function to deviate significantly from

a plane wave. We write

M is assumed to vary slowly with £'

Substituting in the integral form of the Schroedinger

equation

eiklr— r'

WU?) =8i—‘AITi—{r'f- V(£ )KHI‘ )dr r

we easily obtain

iklr-r'l—ik (r—r ')VV(r

my: l-Ae ._'>M<_r_'>d£'

|£-1"|

€10“? ”li'l—Zi) ,

- l-Al-r: V<£-_r_l>M<£-_r_ lldil

15



l6

2

l ldrld(cose)dp.

Assuming V

where d5 =r

OM changes appreciably over distance d

but varies slowly over a wave length, we obtain by partial

integration

2 eikrl(l-cos6) cose=l 1

M(£)=1+Afdrlrld6[IEE——- v<57£l)M(£g£1)1 +6<an

l cose=—l

Atu=-l(rl antiparellel to k) the exponential

oscillates rapidly and this term is also of order l/kd.

The leading contribution is

IklI

A1:

r

M(£)=1—iéfder(£-£l)M(£‘£2)Igz

Choosing k to be in z direction we obtain

M(g,z)=1-iA/kfdz'V(§+gz)M(g+gz')

-‘ Z I A u

52% =—%de'+M(-k3,z)=e lA/klwdz V(I_)_+_]EZ )

where we have used as boundary condition M(b,z=-w)=l,

which comes from the requirement that we start with an

incident plane wave.

The final form for the wave function is

x(b z)=eih'(Pfizl‘iA/kfde
'V(2+£z).

which is valid in the region of the potential.

The limits of applicability of this approximation

have been given by R. J. Glauber.2 It is sufficient to

know that this formalism will provide a good description

of the scattering in the forward and backward cones. We
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use the wave function x(b,z) in the formula for the

scattering amplitude in place of a plane wave. The idea

is that if the potential is-well-behaved and the incident

energy is high enough, the incident wave will be only

slightly distorted in the region of the potential. We

have calculated the first order correction to the wave

function due to this distortion. This is called the

Distorted Wave Born Approximation and was used by

J. D. Jackson and collaboratorsB'4 as the starting point

in developing the absorptive model.



ABSORPTIVE CORRECTIONS

We are studying inelastic processes of the form

ab+cd, which we assume to be due to the interaction V in

lowest order. Now we allow a and b to interact elastically

before they interact via V to produce c and d, which also

interact elastically, as shown in Figure 5.

 

Q, C.

 b A 

Figure 5. The absorptive model diagram for the

scattering ab+cd.

The incident and outgoing channel elastic interactions Vi

and Vf are treated exactly. The result is a modification

to the Born term for the inelastic process. At the inter-

action V, a and b are no longer plane waves; they are

gradually distorted by the elastic interaction as they

approach the inelastic interaction region. We require

that Vi and Vf and the incident energy satisfy the restric-

tions implied in the Glauber wave function. The incident

and final wave functions xi and xf are

)<"‘f(13r2)=e—lgL .Ee-u/q [zdz VfUPfEE)

. , z ' A '

(11>.2)=e19~'£e'”/q dz Vi(]2+iz_ )
i—— —00

18
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We use these wave functions to calculate first order

contribution to the inelastic scattering:

iO-b
<cd|M|ab>Zfd2bdze — -<CdIV|ab>e

—iA/qudz'Vi-iA/q'fmdz'Vf

~00 z

ZZHfjbde (6b)ei/2xi(b)B(b)ei/2Xf(b)

where B(b)=fmsz(b+£z) and gag—3'

—a>

The range of V is assumed much smaller than Vi or Vf and

the phase shift of wave traveling through V at impact

parameter b is given by

xn<b)= —§h{: dz'V<BTEz) (n=i.f)

Compare this expression for the amplitude with the partial

wave expansion.

<|M|> = Z(£+l/2)M£ P2(cose)=fxdxM(x)JO(wx) (w=25in8/2)

, 2

Note that the expansion in impact parameter is

approximately equivalent to the partial wave expansion.

To obtain a relativistic version of this formula

and include spin, we assume that the partial Born amplitude

<ACAd|MjIAaAb>, where Ai is the helicity of the 1th particle,

.J..'

is replaced by el/ZXIMJel/ng.

We start with the relativistic partial wave expansion

A=Aa-Ab_ , j j<AcAd|M|AaAb>— §<3+1/2><ACAdIM 'Aaxb>d Au(e)'u=x _(
C. d

invert it to obtain Mj

<A AC dIMJIAaAb>=fd(cose)<ACAd|M|AaA >dj (e).
b Au
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Including the distorted wave correction DWj and resumming

the‘serieS'we'obtain

| . ‘ =2. ' V. '
<AcAd|M IAaAb> j(j+l/2){Dijd(cose)<ACAd|M|AaA

j j .
b>dAu(e)}dAu(e)'

In actuai practice this procedure is avoided when-

ever possible by making use of a few mathematical tricks.

For Single—quantum exchanges, retaining only the two lowest

terms in n=|u-AI, the amplitudes can be put in the form

a'
_" l .

Mnfe 2‘(xanw +x w ). 

It is possible to write

l='l' 1

t-m: qq' €2+w2

  

where 82 is composed of angle independent kinematical

quantities. Then using

n
w

€2+w2

 — e foxden(wx)kn(ex)

we are able to write each amplitude as a partial wave

sum and all that need be done is to insert the distorted

wave factor DW(X) under the integral.

It should be mentioned that for all of these high

energy reactions, large numbers of partial waves contribute.

Since we are limited to small 6C we can make use of the
M

approximation

 

j ~ 2 _
dAu(8)~Jn«J+l/2)w) n In A

Substituting in the Jacob-Wick Expansion and approximating

the sum by an integral we obtain

<ACAd|MIAaAb>n = f xdx<AcAd|M(x)IAaAb>an(wx).

Jo
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Comparing this formula with the one obtained by using

the approximate amplitudes M: and using the integral formula

above,we write

wn

a _ 6 n-

Mn I qu[(xan€ 232an):2:;7 + w xan]

9
= §§T[(x -62§an)foxden(wx)Kn(ex)+wn§an].

Adding DW(X) under the integral in M is essentially

the correct procedure for adding the distorted wave correc—

tions.

It is possible to write the absorptive amplitude

for a process in a way that explicitly separates the

correction term from the Born exchange contribution. We

begin with the Sopkovich formula for absorptive correc-

tions:

A _ ° .
<ACAd|Tj|AaAb> _ e j<ACAd|T.

Writing Sj=l+2iNTj where N=norma1ization and energy

momentum conservation, we readily obtain

A _ B
<ACAd|T IAaAb>n -<ACAd|T IAaAb>

+iNF. E (2. +1)dj (e)<ACA”IT |A1A2><r1 A IT? |AaAb >
jAlA2 2

+iNI z (2. +I)dju (e)<AC A IT? |A1A2 ><A1A |T§ |A A >
jAlA2 j d 2 a b

_ j
NiNF2(2j+1)dM1 (6)<AcAleg lkllleg |A3 A4 ><A 3A4|T3' IAaAb>+. ..



 

I
|
l
{
1
J
I

\
‘
I
‘



22

where the Jacob-Wick expansion has been used to obtain the

full amplitude. If we approximate the initial and final

state elastic scattering amplitudes by spin-independent

functions we recover our simpler, less general, formula

2(2.+1)[1+iTFNF+iT¥NI-TFT¥NFNI+...]
j J 3 J 3 3

A
<AcAd|T |AaAb>

, B j

<Acxd|Tj|AaAb>dAu(6)

g(2j+l)DWj<AcAd|T?|Aalb>dgu(6).

The general formula is useful as a starting point for

more sophisticated calculations, eg. spin-flip in the

elastic scattering which would allow one to take into

account the non-zero polarization found in many elastic

collisions, and to see more clearly the effects of absorp-

tive corrections on the exchange amplitude. In practice,

calculations using this form require large quantities of

computer time.



FORM FACTORS

One of the first ideas for improvement of the Born

Term Model was to replace the simple point vertex functions

and the propagator by functions which incorporate higher

order effects. The existence of such effects was used to

justify replacement of the Born amplitude B by BF, where

F is some-phenomenological function depending on t and

the masses and as few arbitrary.constants as possible.

If one chooses such-a function and obtains a best fit to

the data at some incident energy and then-uses-this function

to calculate at other energies, he hOpes—to succeed in

comparing with experiment. -If-success-does come, one has

a-very simple method of calculating.

J. D. Jackson and H. Pilkuhnfsused an exponential

-form factor eAt-to improve the angular distribution in fits

to KN+K*N and K*N* over that obtained from simple vector

meson exchange.— Later we will see-that such a form

factor works well for flN~inelastic-collisions~dominated

by vector meson exchange, but that another form-factor

F(s) is necessary to fit the energy dependence.

23
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Form factors are also able to improve on the Born

modelfor reactions dominated by the exchange of pseudo-

scalar particles. Amaldi and Selleri,‘5 two of the early

investigators of peripheral collisions, were successful

in fitting the data on np+pp with.the function

F(t)- 0572 2 + ‘0528 2 2

l+(Mfi-t)/4.73M1T l+[(Mfl-t)/32Mfl]



A REGGE MODEL

Another approach based on an idea-first suggested

by Gell-mann, Frautschi, and Zacharisen,7 draws on the

Regge Model of high-energy~scattering. One starts with

the t-channel process, writing down a partial wave expan-

sion for the amplitude.- Assuming a~resonance in a partial

wave one performs an analytic continuation via the

Sommerfield-Watson transform to the 5 channel. This

amplitude, the contribution-to the s channel amplitude due

to the virtual exchange of the t—channel resonance, is

used to calculate cross-sections.~ One obtains a one-meson

exchange model in a different way; the exchanged particle

has a spin a(t). One can show-that the characteristic

 prOpagator form 1 2 is contained in the amplitude.

t-M * '
e

Many authors have done calculations based on this

model.8 The-idea is to replace the faCtor —E—§-in the one-

. “ t-M

e

meson exchange amplitude, the one obtained field theoreti-

cally and not the one crossed-from t channel by a phenom-

enological function of Regge form:

  

-ifla(t) , , d(t) , d(t)

F(t)' K(2d§t)fl)(l+Te»A )[s—u I .[qtqt

t-M: 2 sideTr 4qtqé Ma/MbMd

25
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The trajectory d(t) is determined experimentally. This is

done for each exchanged particle. The extra factors have

been introduced to make the formula dimensionally simple.

The basis for this replacement is that had we started with

the t-channel amplitude Tt(s,t)=k§(2£+l)T£(st)P£(coset),

assumed dominance of a resonance of spin R, performed the

Sommerfield-Watson transform and continued tO the 5 channel

we would not get a factor —%—-. Instead we would have

M -t

obtained-something like

 

t)
-6(t)- 5°“ A _ _ 2

Slnfla(t)(§6) where J—Red(Meh

where (t) will have the-behavior 2,prOVided it is not

t-M

e

destroyed by other factors in 6. This does happen occaSion-

ally. Starting with the Regge Form

7 _ I .

P ( xt)+Pa(xt))-(qtqt . )aét)

2 sinna M JM'M
a d

 ~(2n+1)(

where q ,q' are initial, final cm momenta for t-channel;
t t

 

 

 

using

s-u s—l/2(M:+M:+M:+M§)

Xtzcoset=4qtq£ 6>>t 2qtq£

and

d . .
T +

_
Pa(xt)~ (a l/2)2 X:(t) _ Cx:(t) P (-Xt)=te lNaPa( t)

VFT(d+l)

we write

_ -iwa(t) .QAQ' d(t)

B(2d(t)+l)%:;:fla(t) x: —E727——] where have put

Ma/MbMd

cB=§ and T is the signature of the exchanged trajectory.
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E is determined by-requiring this expression to coincide

with the field theory propagator at the-pole t=M:

-l+tefifla(t) d(t)[]a(t)_

2 sinna(t) Xt ’

 

2. -
6354: [B (2a (t) +1)

t-M
e

Near the pole (at to)

a(t):a(to)+a'(to)(t-t0)

sinna(t) : sinnd(t0)+nd (t0)cosnd(to)(t—t0)

z sinnj+wa'(t0)cosnj(t-t0)2na'(t0)(t-t 'cosnj0)

~ Nd (t0)(t t0)( )

 

. j . ,

t t0 2(-)3na'(t0)(t—t0) t t"to

from which we readily obtain

  

"_ l -j‘ _j‘

B - Zfla (t0)xt /[(r+( ) )(23+l)]

2na'(t0) , s-l/2(M:+M:+M:+M§)} -j

= , 1

_ J
(2j+1)[T+( ) ] 2Mav/MbMd

Example:

For J=l exchange the propagator is replaced by

 

_ i-e’l"a(t’ s-l/2(M:+M:+M:+M§) “(t’

R(t)=B(2d(t)+l) A _ { m“ }
251nna(t) ZMa/MbMd

where E is given by

 

s-l/2(M:++M2+M2+M2) d(t)
-_ TT l Mb C (21

2MaVMbMd
A
1
—

.
_
.
.
.
.
.
.
.
.
_
:
_
.
.
r
-
—

J
‘
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The procedure is to calculate the cross-section and density

matrix elements with this form.for the-propagotor using

the experimentally determined Regge trajectory apprOpriate

to the exchanged state.‘ Since.the~Regge model is known

to give the correct asymptotic energy dependence for cross-

sections one hopes that this phenomenological ansatz

based on the Regge idea-will show similar soc1ally acceptable

behavior when it comes to energy dependence. The problem

of correct energy dependence is one of the chief diffi-

culties of the other methods-of-calculating peripheral

reactions. As a derivation of one-particle—exchange Via

the Regge approach makes clear, the energy dependence is

intimately connected with the.spin of the exchanged quanta.

In the Regge approach, exchange of a spin j does not lead

to amplitudes which go as s3 but as de(t) where dj(t) is'

the trajectory of the exchanged quanta.

We might wonder why the field-theoretic t-channel

amplitude is not used and explicitly continued to the

s-channel rather than making this prOpagator replacement.

Such calculations are being-done and they are more compli-

cated than the replacement procedure. Starting With the

t-channel exchange amplitude,.the kinematical Singularities

introduced by spin are explicitly removed and the amplitude

is continued analytically to the physical s-channel region.
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Again, the residues are determined by requiring equality

with the Born term at the pole. »As an example of such

calculations, the reader is referred to the recent work

of Griffiths and JabburS on N*3.production, in KN

collisions. Recent calculations on np charge exchange

combining the absorption model with a-conSistent treat-

ment of spin in the Regge model will be outlined later in

this paper.

 



ONE-MESON-EXCHANGE CALCULATIONS

AND COMPARISON WITH EXPERIMENTS

Most of the basic approaches to theoretical analysis

of peripheral collisions have been discussed. To familiar-

ize the reader with the general picture before describing

present attempts to find improvements to OME models,

!
.

consider two reactions. «One, nN+pN, is dominated by

pseudoscalar meson exchange, the other, fin+wp, by veCtor

meson exchange. We discuss them in terms of the models

just outlined. This discuSSion will be qualitative. The

figures show general 5 and t-behavior only. Notation

and conventions are detailed in Appendix I.

The first of these reactions has been studied by

many high energy theorists 3 and summarizes the successes

of the models. This is both good and bad. It is good

that everyone can invent a model, but bad because there is

no resultant discrimination among ideas. The second

reaction has been chosen because none of the models already

discussed can explain all of the data. Some models give

correct angular distributions and others handle the energy-

dependence.

30
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. do

Figure 6 shows dfi

a linear scale of arbitrary normalization.

;
%
'

$
fi
?

fl
—
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o ' 't if 'on (a) , 25- ‘ b) 4'.

Figure 6. Qualitative sketches of the t-angular

distributions for (a) wp+pp at 4.0 GeV/c and (b) nn+wp

at 3.25 GeV/c.

Notice the peaking, particularly strong for flp+pp, in

the forward direction. This peaking is characteristic

of peripheral processes. The angular distribution for

n+n+wp, dominated by-p exchange, is less peripheral

than the n-exchange reaction, as is to be expected since

mp is much larger than m”. In each case the total cross—

section drops quickly with increasing energy as

indicated in Figure 7.

015)

 4

¥

S 3

Figure 7. Sketch of s—dependence of the total

cross-section in a quasi two body high energy scattering

involving quantum number exchange.

4
F

vs t for each of the reactions on
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Data on the production density matrix are meager.

Because of invariance principles, there are only three

elements of interest and they are the same ones for each

reaction: The element 010 is complex but
poolplolpl'_l°

we need only the real part for the decay distributions

W(cosa) and W(B). For wp+pp at 4.0 GeV/c the available

data are (000) = 0.53:0.12, (pl,-l> = 0.16:0.10,

> = -0.06i0.05. Similarly, for fl+n(p)wp at 3.25 GeV/c

‘
fi
'

_

<p10

Jackson gives <p00> = 0.5 and at 1.7 GeV/c he gives

J
“

'
V
a
;

P
i
n
.
_
‘
:
’
3
1

“

> = 0.6:0.12, > = 0.0i0.712, > = -0.06i0.08.
<poo (91,-1 (910

In both cases the average is over cosG from 1.0 to about

I

0.80. This data is not very limiting to a model, but we

shall See that it does tell us something.

The Born Term Model (BTM)

:2
dt

experimental data as indicated in Figure 8 we see immed-

If we superimpose theoretical curves for on the

iately that the BTM is just not good enough. The cross—

sections are too large and not nearly peripheral enough.

It should be noted that the vector-meson-baryon coupling

involves an arbitrary factor. There are two coupling

constants, the vector coupling GV and the tensor GT'

Even if one uses some symmetry scheme to fix Gv' he must

. Jackson gives GT/GV = 3.7
T/Gv

inferred from T=l electromagnetic form factors.

look elsewhere to get G
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Jw :

m (a) ,/" ' ' ' ‘

\\\\“su'

EXP 1‘.

 

-t

Figure 8. Comparison sketches of the BTM and

experimental (EXP) for (a) np+pp and (b) nn+wp.

Comparison of theoretical and experimental total

cross-sections and density matrix elements is as unfavor-

able as for the angular distribution. The energy depend—

ence is particularly bad for the vector meson exchange

reaction. But it is of practical value to carry through

an analysis to determine the BTM predictions for pmm"

It is not necessary to do any calculating to get answers.

For w-p(n)p-p, Figure 9 shows the nnp vertex in thegbrest

frame.

1‘ "H‘- “ ‘3. 951‘

Figure 9. The wnp-vertex in the p-meson rest frame.

This case was considered in the discussion of

density matrix elements. The analysis was done in the

rest frame of the p—meson and we concluded that the only

non-vanishing element is 000 and using the normalization

condition Trp :1 we obtained 000:1. The data tell us

that the BTM prediction is incorrect.

We ask if the fault is with the BTM or with the

quantum we have assumed to be exchanged. To answer this

we look at the decay angular distributions of the resonant



state, W(cosa) and W(p) and note that even though 91 —l

I

and p10 are doubtless non-zero, they are extremely small,

which is consistent with pseudoscalar exchange. The

experimental W's, shown in Figurelfl support this conclusion.

  

 

(a) Mn)

N. ,r

“‘ 't" ........

-1 o 1 4t o W

(.031 fi

Figure 10. Sketches showing the experimental decay

distributions for the decay p+nn in the reaction np+ppennp

assuming 0 exchange (a) W(cosa) (b) W(B).

Additional support comes from the BTM distributions

assuming vector meson exchange which is also allowed in

this reaction. Figure 11 shows these distributions. (We

will see how to obtain these distributions shortly). It

is apparent that these distributions are not at all close

to the experimental data. The conclusion is that the basic

idea of pseudoscalar exchange dominance is a good one

but that it is too simple; the BTM neglects too much.
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Figure 11. Sketches showing the experimental decay_

distributions for the decay p+wn in the reaction np+pp+nnp

assuming 1 exchange (a) W(cosa) (b) W(B).
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For N+n+wp the analySis procedes in the same manner

as for 0- exchange. In the rest frame of the w, we have,

from the angular momentum addition theorem that

0-+Jge+L(—)L=l-; Je=l implies L=0, l, or 2 and, since we

are in the w reSt frame, L220. The conservation of parity

in strong interactions tells us that (-)Pe(-)L=(-) or L

must be odd, Since Pe=-l. Therefore L=l. Conservation

of the z-component of J tells us that Jez=0,tl. So we

must have Ilm; coupled to |10>L to produce Ilm>w. Again

by the rules for adding momenta we see that the state

llmgilO>L contains only ilzl>w ie. the mw=0 state is not

produced. Therefore we can conclude that Dmo = pom = 0.

Substituting in the decay angular distribution formulas

we obtain

W(cosa,B) = 3/4 (l/2-p Cos2B)s1n2d
n l,-l

or

W(cosa) = 3/4sin2d W(B) = 1/4 :(l+20l _ c0528}.

I
1)'491,—1

(These formulas are valid for w decay even though it is

a 3n resonance if the angles are redefined such that d is

the angle between the incident n+ and the normal to the

n—w° decay pion plane; 8 is then the corresponding aZimuthal

angle).
v
.
2
m
.
n
i
n
—
—
—
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We see immediately that for vector meson production

in PB collisions the decay angular distributions are

distinctly different for pseudoscalar and vector exchange

dominance. (Actually the above analysis is valid for an

exchanged state Wlth Pe=(-)Je, Je>l; these are called

natural parity states. For unnatural parity, Pe=(—)Je+l

we get no restrictions).

Figure 12 shows the experimental W's for n+n+wp.

V
a
n
-
n
m
o
a
t
-
5
q

It is clear that the evidence is strong for the exchange

of a natural parity state. The simplest possible

exchange candidate is the p-meson, a member of the 1-

 
 

octet.
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Figure 12. Sketches of the experimental decay distri—

butions of w in the reaction nn+wp (a) W(cosa) (b) W(B).

Multiplicative Form Factors and Reggeized Propagators

Both of these approaches involve replacing the

EXF(s,t), where F(s,t) is aexchange amplitude MEX by M

suitable function with as few aribtrary parameters as

possible. Figure 13a shows the effect of the Amaldi—

Selleri form factor on the n-exchange BTM cross-section

for flp+p-p. The effect is to damp the amplitude at
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larger values of t. This model compares favorably with

experiment for incident pion momenta from 3.0 to 8.0 or 9.0

GeV/c in the lab. The same information is given in Figure 13b

for the Regge propagator model.

 

 

 

  

‘0) \ a)

Figure 13. Comparison sketches of (a) BTMF and (b)

BTMR with experiment of the reaction np+pp. The dashed

curves are the experimental results.

%%(t=0) is matched to the theoretical calculation at t=0.

One can see that the results are favorable. Again,

the effect of this modification is to damp the Born

amplitude at larger values of t, which is the desired

effect. There is some arbitrariness in the pion tra-

jectory; since it is difficult to isolate experimentally

one determines the form from general principles.
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For vector exchange reactions, Jackson and Pilkuhn

improved the BTM angular distributions with an exponential

form E(0)e->‘t (usually normalize form factors to l at the

2

exchange pole: F(t=m:)=l; E(0)=le Ame).

Figure 14a shows the effect of such a factor with

)\=2.5(GeV/c)'-2 on the n+n+wp reaction. We see an improve-

ment in the angular distribution. There is, of course, E“

not any improvement in the energy dependence. We could Z

always add a factor S_n and adjust n for a best fit. The

Regge propagator result is shown in 14b. The trajectory

used in the calculation is dp(t)=.57+l.08t; the parameters

are from eXperiment. The energy dependence also consider-

ably improved.

 

  
 
 

(m (b)

Figure 14. Comparison sketches of (a) BTMF and (b)

BTMR with experiment for the reaction fin+wp. The dashed

curves are the experimental results. ‘

%%(t=0) is matched to the theoretical calculation at t=0.

Theory and experiment are on the same scale.
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Neither of these modifications to the BTM affect

the density matrix predictions; no spineindependent

modifications can do so. To see this we look closely at

the definition of pmm" assuming a resonant state d:

*

= N2<A mIMll A ><A m'IMIA l > Trp=l
c a b c . ap bmm'

where <IMI> are the production helicity amplitudes. Eh

If M denotes the BTM amplitude and F a function, independent
 

of spin, then the form factor modified or reggeized pro-

pagator amplitude is MF. Since F factors we have

p = N|F|22<IM1><|MI>* = NiFIZA'l

and we see immediately that Trp =1 gives N=AIF|—2 and

p , is unaffected.
mm

Absorptive Corrections

By the same kind of argument, it is apparent that

the absorptive corrections will_modify the denSity matrix

elements because the effective function F is different

for each spin amplitude. However, since absorption

usually damps down contributions to the lower partial waves

much more than the high ones for each amplitude one expects

the modifications to 03$? to be small for most of the

elements--exactly the experimental situation.
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For the w—exchange reaction it is difficult to

distinguish between the absorptive and Regge calculations.

The results are not identical but they are close for

scale and angular distribution. The density matrix predic—

tion of the absorption model is good, while the BTMR

calculation gives the same prediction as the BTM. The

situation is somewhat different for the p-exchange reaction,

n+n+wp. Again the absorptive model does well with angular

 

distribution and density matrix elements but the absolute

 magnitude of the total cross-section prediction is too

high. In this regard, the Regge propagator form does

much better. Because the meager data we cannot say just

how much better; it is pOSSible that the prediction is

low. As in the p-case, this Regge model gives no improve-7

ment in the production density matrix prediction over

that of the BTM.

The absorptive corrections for these calculations

were obtained from phenomenological fits to experiment

according to the prescription of Jackson and Gottfried4

(1964). This approach is quite successful and is used

by most everyone dOing absorptive calculations. The idea

is too obtain from the latest experimental data a best

fit to the elastic scattering amplitude and invert it to

obtain the elastic phase shift which is then used to

correct the inelastic amplitude.
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Recall the DWBA formula for the elastic scattering

amplitude:

_i 'or

fEL = -Afd£ e 9 —V(£)x(£)

Substituting the high energy approximate expression

for x(u) we obtain

2

_' U. ' . _'A U |

fEL = -Ajd£ e lg £V(£)ela E lqif: V(b,z )

_',Z\_ l | - . _ -'

-iqudbd6dz%§ e 1 [:2 V(b,z )elé g A—q q

(for 6<<1 A a = 251 so 9'5: 9'2)

-iA/qf dz'v(b,z')_l=
—CD

The integral over 2 gives e

elx<b)-l. After the integration over 0 we obtain the

Glauber formula.

_ _. r ix(b)_
fEL - qubde0( b)[e 1]

using fbdbjn(Ab)Jn(A'b) = %6(A—A')

we obtain

ix(b) _ g
e — 1+qudAJO(Ab)fEL(A)

The standard parameterization of the experimental

data on elastic scattering is a Gaussian distribution in A:

 

. 2
f = ing e-CA 0

EL 4n _ T _ l

C- “T
1C 2 Y"C C

= 2Y9 e-A /4Y

Substitution in the Glauber formula readily gives

: _ 2 2
e1x(b) = 1_Ce YJ /q
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The parameters C,Y are directly related to experi—

mental quantities. Usually they are assumed independent

of energy. One fits them to the available data at one

incident energy and calculates the inelastic cross-

sections over a range of energies and compares with

experiment.' The results are quite good for many reactions,

but the very best fits to the data require energy dependent

C and y.

A very similar record of successes and failure

appears in other NN channel reactions and in KN and NN

reactions. The success or failure of a model depends

more on the tensor character of the exchanged quanta

than on the nature of the final state (eg. one resonance,

two resonances, etc.--). To summarize:

l. The Born Term Model (BTM) while exhibiting some

nice features is inadequate. Looking at the experimental

data we intuitively conclude that we should try to modify

it in some way rather than abandon it alltogether. One

makes this decision because one-particle exchange is

relatively simple to calculate. Also, the density matrix

data show quite well the effects expected from one-particle

exchange.
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2. Simple phenomenological form factors F(t) can

provide agreement with the production angular distribution

data over a respectable range of energies-~particularly

for p-exchange. Sometimes (p—exchange) one also gets good

oT(s) vs. s; for some reactions an additional factor F(s)

is necessary. No improvement in density matrix elements

is obtained.

3. The Regge form of the propagator works well

for production angular distributions and does much better

on energy dependence than the BTM, but fails on density

matrix elements. More sophisticated Regge calculations

can give pmm' predictions. Basically this approach is

quite like using a form factor.

4. The absorptive model performs extremely well

whenever reactions go via pseudoscalar exchange. It gives

good OT(S) vs. 5, good gE-vs. t and usually good absolute
dt

magnitude. Also, predictions on pmm. are good. Whenever

V-exchange dominates, the angular shape is good and density

matrix predictions are acceptable, but absolute magnitude

of cross-sections is too large and the energy dependence

prediction incorrect.



ANOTHER APPROACH TO ABSORPTIVE CORRECTIONS

One can try to be more ambitious in applying

absorptive corrections to inelastichTM amplitudes.

Instead of purely phenomenological fits to the elastic

scattering data, one can construct models for the

elastic amplitude based on physical ideas, hopefully

containing as few parameters as possible and use them

to generate absorptive corrections. If the model is

good we expect a fine fit to the elastic scattering and

to the inelastic processes with the same values for the

parameters. We consider one such model.

Recently S. Frautschi and B. Margolisu)proposed

a model of high energy elastic scattering based on the

identification of the Born term with Regge exchange.

The t-channel Regge exchange is assumed to generate the

s—channel potential rather than the amplitude. They

start with the Born approximation to Glauber's formula:

B _ _iq 2 . ib°q
fEL(A,q)- 2n fa b216(b)e

The physics enters here.. fgL is equated to the

leading Regge trajectory pole contribution

44



45

A =ce“a(t)
pole

p=ln.§—- -ifl/2, signature is neglected, d(t) is the

0

Pomeranchuk trajectory a(t):a(to)+a'(t~t0)

Ap=ceua(t)= -%%-fd2b2i6(b)eib q

Frautschi and Margolis then solve for 5(b) and sum the

Born Series to obtain an expression for the elastic amplitude,

an amplitude consisting of the pole term plus a series of

multiple scattering terms which can be likened to Regge

cuts. The one free parameter (the slope of the Pomeranchuk

is obtained elsewhere) is fit to experiment at some incident

energy and calculations are compared with experiment over

‘a range of energies with much success.

This model can be used to generate absorptive

-corrections, which can be applied to inelastic processes

in the spirit of the Jackson-Gottfried approach. Inverting

'the above equation we have

21500) = — fi-e'bZ/4a'“,

where we have assumed

a (t)=1+d't.
p .

Using this expression we obtain the corresponding absorp-

tive correction function

2
. . _ -b /4d'u

e1x(b)=6216(b)=e E/Ue

Notice that

iX(b)|+l
Ie as s+w.
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This absorption function has several features

noticably different from the Jackson-Gottfried approach.

1. The correction is a complex function. We can

expect the density matrix elements to be slightly different.

2. The correction is energy dependent and leads to

a decrease in the amount of absorption as the energy

increases. The effect is to soften the s-dependence of the

BTM exchange.

We have compared this method of generating absorp-

tive corrections with the curve fit approach for the

reaction pp+nA3/2++. This reaction was chosen since

Frautschi and Margolis have fit the parameter (5) in their

hadron scattering model for p elastic scattering. As is

usual, approximate equality of the absorptive correction

function in the incident and final channel has been

assumed in the absence of definitive NN* elastic scatter-

ing data.

Recall that the procedure is to replace the appropriate

BTM partial wave amplitude Mj with

th~j ‘ = . . . .
<ACAdIM Ilalb>DW. Ai helic1ty of 1 particle

J

The Jackson-Gottfried correction function has been

parameterized as

-2/q2 2 2/q3]
2 -Y2 J + ‘Y 3

(DWj) =[l-c+e + ][l-c_e -

i refer to incident and final channels, respectively.
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The parameters Ci,yi are derived from elastic pp scatter—

ing data to be:

Ci=1 Y+=-24 GeV/c

y_=.10~GeV/c

In the model based-approach, the absorptive function

used is

2V _ 2 , 2 , _ _ 2 .

(DW.)2= exp(-£: e J /4a uq+)exp(-§-—Ie J /4a uq_)

J U n

We used the same value for the slope of the

Pomeranchuk trajectory as Frautschi and Margolis:

'=o,82(GeV/c)-2. Also, their fits to the elastic pp data

2
at 20 GeV/c with this value of the slope and s =lGeV

0

yield E=7. Starting with €£=7 this parameter was varied

over a wide range to get a good fit to the pp+nA;;2.

Also, some calculations were done to determine the effect

of different 0' on the result.

The initial appeal of Frautschi‘s elastic scatter-

ing model for absorptive corrections is the logarithmic

'energy dependence which shows up in the expression for the

phase shift. Absorptive model calculations a' la'

Jackson-Gottfried at several energies show that the amount

of absorption necessary to get a good phenomonological

fit to the data decreases slowly with energy. It was hOped

that the Frautschi parameterization of elastic scattering

might allow for this decrease.
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92
dt'

particular energy there is trivial difference between the

It is possible to get a good fit to but at a

different approaches as shown in Figure 15. Differences in

the predicted density matrix elements are easier to see--

as a function of energy; the Frautschi model corrections

give pmm' which change more rapidly. Unfortunately there

will not be enough good data until the summer, at which

time comparison from 6-30 GeV/c should be possible.

There are other objections to this approach. From

a phenomenological point of View it would be better to use

the energy dependent corrections. But values of the

absorptive parameters necessary to fit the inelastic data

do not provide a satisfactory fit to the elastic scatter-

ing. Figure 16 compares a theoretical curve of the Frautschi

model, using the parameters that provide a best fit to

pp+nA with the elastic scattering. It is not clear that

the model is internally consistent.- Sums of t-channel

exchange diagrams can show a Regge behavior; the Frautschi

model probably "double counts" contributions to the amplitude.

Also, one can show that resonance behavior at low energy

can be deduced from a Regge amplitude at high energy.
 

Resonance is a prOperty of amplitudes not potentials. The

Frautschi model says that Regge exchange in one channel

generates potentials in the crossed channel rather than

amplitudes. This seems inconsistent with the other result.
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We must conclude that the Frautschi model is

probably not correct. It-is-possible~to-generate absorp-

tive corrections containing a small energy dependence

(anyRegge-model of-elastic scattering can work) and improve,

if only slightly, the fit to experiment. We are being

drawn to simultaneous use of the Regge model and absorp-

tive corrections. The only obstacle is the question of

double counting--a question that can_be answered in favor

of combination of the models.
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OTHER MECHANISMS

With the successes and failures of'one-meson-exchange

in mind, we focus now on vector meson exchange and investigate

improvements to OMB models. As an example-of a vector

exchange dominated process we continue examination of nn+wp.

Vertex Correction Mechanisms

The use of phenomenological form factors to improve

simple OME was based on the assumption-that-other.more

complex diagrams contribute to the scattering amplitude,

and that such factors (functions of t) improve the angular

distribution over the BTM prediction for both pseudoscalar

and vector meson exchange dominated reactions. We ask.if

it is possible to get a better clue as to the functional

form of such factors by looking at other diagrams.which

can contribute. Figure-l7 shows the diagrams for.the BTM

and lowest order corrections for n+n+wp.

1r\\\ u ‘\][,I‘

I / \

n I’ “my

 

Figure 17. Diagrams showing (a) the BTM and (b)+(d)

some vertex corrections to the NpN vertex for nn+wp.
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In addition there can be graphs where the virtual

nucleons are replaced by nucleon resonances.

We concentrate on diagrams 17b as the next simple

cases after the BTM. Using the Feynman rules for forming

the S-matrix, we obtain the transition amplitude assuming

this diagram to be the dominant contribution (detailed.

calculations can be found in Appendix III. We obtain

f

 

_ 2 vvp 1

(AcAdIMIAb>n— 2cgNngpV Mc m2_t€uvpca ep€o(c’xc)

U(d.Ad)Y5AuY5U(b.Ab)

where

__ (3) - (3) _ (3)
ysAuys— 213anu (Mp)+21YA[LAu (Mp) LAu (Mn)]

4 1 £

(n) d l A u
L (M)=[dsf —-—~ A =M -M

A“ (211)Z 122-22pz+Az]n “9 n P

All of the terms inllare finite, if one allows a

liberal interpretation of the rules for manipulating

infinite quantities. It is interesting to note that if

we neglect the neutron-proton mass difference for internal

lines the amplitude vanishes.

After very involved algebra, one obtains a compact

expression for the helicity amplitudes

 <ACAdIM|Ab>n = iK M2 K[yz]

-t

p

Here Ac’Ad'Ab refer to the helicity quantum number

of the w,p,n respectively. {Ad'kb} is shorthand for the

spinor product 6(p,x )u(n,l ), K contains coupling constants
d b

lo

and miscellaneous factors, and B comes from the rpm

vertex. ConSider first the energy dependence. Refering
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to the BTM calculation one easily finds that the calculated

gg~sz. We saw earlier that this result conflicts with

the experimental evidence. Turning now to the vertex

correction contribution, B and {Ad’xb} go as s3/2 and s

respectively (k~so). The energy dependence of K[YZ] is

the only unknown. Should this factor, which comes from

the closed loop in the diagram be independent of energy,

we will obtain the same-energy dependence of %% as the

BTM.' This will turn out to be the case. To see this we

look more closely at the algebra. K[yz] can be expressed

as a sum of three terms:

1 2M 2 2 2
K[yz],=>K [yz] + —9-VK'[y z ] + 2K"[yz ]

1 Anp l 1

Where the first term comes out of L(3)(Mn) and the others

from 2iY1[L(3)(Mn)--L(3)(M )]. Rewriting in terms of the

fourth order Feynman parameter functions Fi(x,z) defined

in Appendix III we have

2 l-

 

 

K [yz] = dz F (l,z)M
l (2“) I 3 n

2 2 2 l

Ki[y z ] = 73—;1-£ dz z[F5(l,z)Mn-F5(l,z)M ]

n
l

KinzZ] = 4 f dz 2 [F3(1,z)Mn-F3(l,z)M ]

(2N) °

This extra algebra proves very convenient; these

functions Fi(x,z) characteristic of fourth order diagrams

in the nN channel.

Again refering to Appendix V , examination of the

functioneri(X,Z) shows clearly that all s-dependence

vanishes at x=1: Fi(1,z) are independent of s.
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Figure 18 shows ReK[yz] for several values of

incident pion momentum over the physical range of t.

(ImK 10"3ReK) Notice the similarity in the curves for

different energy and the forward peak. Since the scattering

amplitude is prOportional to wnK[yz] we can understand I

the peaking of %% at non-forward t. Assuming that these

vertex correction type graphs are the dominant production

'mechanism for wn+wp the cross section was calculated,

and is shown in-Figure 19. The angular distribution is

not bad and the-absolute magnitude is more in_line with

experiment.~ Keep in mind that no absorptive corrections

have been added. Addition of such corrections would shift

the peak more toward the forward direction, but also would

'damp the absolute magnitude far to much. For comparison

'Figure'l9 also shows the result of an absorptive BTM

calculation at the same energy.. Also, these graphs cannot

improve the fit to the w production density matrix elements;

indeed the prediction is the-same as the BTM.

'- Another approach would be to interpret these fourth

order corrections in a strictly field theoretic sense as

next order corrections to the BTM and assume

\

\(

<AcAd|M|Ab>n = BTM + ’\ + -

/—\ '
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Here we can have interference and reference to the

calculational details for the separate terms shows that

the corrections to the BTM helicity amplitudes are such

that we could obtain a prediction for the denity matrix

elements. However, absorptive BTM gives us this already

and there is still the problem of energy dependence.

There are, of course, still the other fourth order

contributions of this type, diagrams 176: for example, as

well as others. These other graphs are plagued by severe

divergence problems and the non-divergent terms show no

improvement in the energy dependence. The conclusion is

that vertex corrections are not the answer to the energy

dependence problem, so one must try other things.

There is currently much interest in the relation-

ship between absorptive corrections and Regge poles; most

of it devoted to justifying simultaneous use of the two

models. The idea is to write a Regge form for the inelastic-

interactions and apply absorptive corrections.

We will see that such calculations can be successful.

There is,however, one other alternative to be considered.

Two-Pion Exchange

We abandon the BTM and guess, perhaps, that only

pions can be exchanged in the interaction. Thetnresonance

is assumed to be produced by sequential pickup of two

virtual pions. The simplest relevant Feynman graphs are

shown in Figure 20. Note that this time we have 6

contributing graphs.



 
 

 

Figure 20. Simple two pion exchange diagrams

for the reaction fln+wp.

As before, using the usual rules, one obtains expressions

for the-matrix elements:

<A11'|MI [11>n=2/2'G2M:€elvpoaAq a; (c, A)u(d,u‘ )YSA:y5u(b,u) q=b-d

 

(All. IMIfilJ>n=________________
_________________ Ag]:

* _

<Au'IMIII|u>n=-----------axrvso(d,l)u(c,u')Y5AiIIY5u(b,u)r=b-c

with

4
I ‘ d e e

o no I _ .

(2") [e2+M2+M][(a+e)2:I[(q-e)2+Mi][(b-e)§+M
2]

+ other terms and obtain II by the replacement a+-c in AI

and III by the replacement q+r in AI

It is necessary to be very careful when making

approximations to be sure the dominant contributions are

'retained. We assume, however, that the contribution from

III can be neglected relative tO'I and II.

Reference to Appendix IV shows that we.can write

(using the same notation as for the vertex-correction

‘calculation)

- AI -11 14> .- <4) _ (4)
Y5 st- nPLuv (Mp)+1YX[LW(Mn) LW (Mp)]

p o p___

L(n) (M)=fds"9§ 4 p u ‘

(2“) [e2-Zepz+pz]n
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A seemingly endless number of algebraic manipula-

tions leads to a compact form for the scattering amplitudes.

We obtain

. I A I < Wu'u A
<Au'IT Iu>n=iKB {u',u}I[yz]-1KB E———I3-KMu,uJ/Anp I=Il-I2

np

Similar expressions can be written for the TII and

TIII terms. Here K contains coupling constants, and

miscellaneous factors of- and has the same definition as

in the vertex correction amplitude.

The other factors are

"A i . .-
B =—qq' Slne 6 w . =1U(d,u')#U(b,u)

/2 cm A,il u u

_ A — , A
{min} = U(d,u')U(b,u) Mu'u=U(d'“ )N U(b,u)

N=€Avpo aAqv€§(C'A)

Rewriting in terms of the fourth order parameter

functions Fi(x,z) for convenience in investigating the

energy dependence, we have.

I - "2
1.(2")4

 

[dzdx22(l-z)Fi(x,Z)Mp

M

4 fdzdx23(l-z){[Fl(x,z)+Z—E F2(X,Z)]n '

(2N) M np

[F1<x.z>+Z—B- F2(x,z)1Mp}

nP

_ n
I2— 

2

2 2
13=73373 Idzdxz (l-z) (1‘X)[Fl(xrz)Mn—F1(X’Z)Mp]

2
w

J +7;;TI f dzdx(1-z)z[F4(x,z)Mn-F4(x,z)Mp]

The energy dependence of the F's is discussed in

the Appendix, as is that of the other factors. We find that

F s“2 and F ~s’1 so I, I I ~s’2 and J~S-l.
Fl' 2 4 2' 3
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Similarly, examination of the expressions for Wu.

and M3,“ gives S1 and 83/2

dependence. (Mu.u~S0 ). Therefore we can-write

,-respectively, for the energy

I
T = al+a2%§'

=Squaring, etc. leads to an expression for %%~-~

I

_ ' b C 0 ' 0 1

ENT'- a+——' E const. (one can obtain Similar resuits

fl?

for-I and III).

This result is obviously much more pleasing that

the BTM and its-simple vertex corrections;w there is at

least some~reason to be optimistic about-ZW-exchange.

The t-behavior can be seen easily in Figure 21, which

shows ReIl(I) and ImIl‘I) as a function of CM scattering

angle for incident pion momenta of 3.25GeV/c. Note the

predominant forward peak and absence of any backward

‘peak. It should be noted that-the peak in the cross section

will be shifted away from the forward direction because

of the influence of angular factors in the kinematics.

Figure 22 shows the same information with the T(II)

contribution added, eg. Re(Il-Tl) and Im(Il-f1)' The T(II)

contribution is about 1/30 of T‘I) in magnitude. It is

clear that T(II) could have been neglected.

The term proportional to J (J looks like I but is

of Opposite-sign) provides a small correction which

additively effects the helicity amplitudes and can there-

fore give a non-BTM density matrix-prediction, but at-

these energies this correction is not noticable. Figure_23



  
0
.
2

O
.
|

‘
~
~
_
-
—

.

 

 

l
l

l
1

-
*

T
l

I
l

F
I
G
.
2
|

—

1
r
"
’
n
(
2
1
r
)
w
p

I
A
T

3
.
2
5
6
e
V
/
c

 
 

c
o
s
e
c
m

-
.
2

-
.
4

-
.
6

-
.
8

-
I
.
O

F
i
g
u
r
e

2
1
.

R
e

I
f
l
)

a
n
d

I
m

I
f
I
)
o
v
e
r

t
h
e

p
h
y
s
i
c
a
l

r
a
n
g
e

o
f

t
f
o
r

t
h
e

r
e
a
c
t
i
o
n

n
n
+
w
p

a
t

3
.
2
5

G
e
V
/
c
.



0
.
3

 

l
.
l

I

F
I
G
.
2
2

1
r
+
n
(
2
1
r
)
w
p

I
-
I
A
T

3
.
2
5
6
e
V
/
c

0
.
2  

(
X
I

61

/

/

6'3
/

0
.
0
—
“

‘

 
~
—
—
—
_
_
_
_
'
_
_
:
—
_
—
_
'
—
_
"
_
“
_
‘
_
—
_
—
_
—
_
'
_
—
_
—
_
.
—
_
-
;
—
_
—
2
:
2
:

I
I

I
I

I

L
O

0
.
8

0
.
6

0
.
4

O
.
2

 

 
c
n
n

F
i
g
u
r
e

2
2
.

R
e
(
I
l
-
f
l
)

a
n
d

I
m
(
I
l
-
I
l
)

o
v
e
r

t
h
e

p
h
y
s
i
c
a
l

r
a
n
g
e

o
f

t
f
o
r

t
h
e

r
e
a
c
t
i
o
n

n
n
+
w
p

a
t

3
.
2
5

G
e
V
/
c
.



 

'
-
4

I
I

I
I

I
l

I
I

I
I

F
I
G
.
2
3

1
r
‘
n
-
>
w
p

3
.
2
5
G
e
V
/
c

|
.
O
'
-

d
o

d
n

0
.
8

m
b
/
s
r

 

  

 
c
0
5
9
c
m

d
o

d
t

2
fl
~
e
x
c
h
a
n
g
e

a
s

t
h
e

d
o
m
i
n
a
n
t

m
e
c
h
a
n
i
s
m
.

F
i
g
u
r
e

2
3
.

v
s
.

t
f
o
r

t
h
e

r
e
a
c
t
i
o
n

n
n
+
w
p

a
s
s
u
m
i
n
g

62

 



63

shows the angular distribution assuming 2” exchange

for the production mechanism. Absorptive corrections have

been included, the result is acceptable. The conclusion

isthat~2Tr exchange can work and give an acceptable energy

dependence.v Cursory examination of final states containing

higher spin resonant states shows that 2N exchange will

break down, ie. predict an incorrect energy dependence,

but that nTr exchange for some apprOpriate n will restore

the prediction to an acceptable value. It is interesting

that sums of exchange graphs can give Regge energy behaVior.‘

Also absorption is clearly a different physical effect

from multiparticle exchange. The argument that the physical

effects behind-Regge exchange and absorption are distinct

has-recently been-given in detail by Marc Ross, Frank Henyey,

and-GordonKane.ll



ABSORPTIVE REGGE MODEL

We accept the qualitative arguments against double

counting and apply absorptive corrections to the Regge

exchange amplitudes for the reaction np+pn assuming.

dominance of the II,p,A2 trajectories. This reaction is

interesting because of the availability of experimental

data for the cross section and an experiment now in

progress to measure the final neutron asymmetry, ie. a

polarization. If the cross section for this reaction

(and related reactions) can be fit in a consistent manner

then one obtains a prediction for the polarizations.

Regge poles have definite spin and paritylzand the

Regge model tells us that the trajectories with the largest

a(t) will dominate the amplitude at high energy. The

conservation laws tell us that the exchange quanta must

be members of non-strange isotopic Spin triplets of

mesons; II,p,A2 are acceptable candidates. We must determine

how these trajectories contribute to various t-channel

helicity amplitudes.

Expanding in t-channel partial waves we have

<A2 A 4t|T(t,e)IAA nt=2(2j+1)<x2A4|T1(t)|A1A3>ndi (6t)

13> j nt tut
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At=A1'A3

ut=A2-x4

n = —
At utt

In np charge exchange A =A2=A3=A4=l/2, giving a
1

total of 16 helicity amplitudes. Application of parity

conservation and time reversal invariance reduces this

number to 6. Further, strong interactions are I-spin

invariant so we neglect the n-p mass difference and

kinematically we have identical particle scattering which

gives one more relation and so reduces the number of

independent helicity amplitudes to these five:

¢§=<l/2 1/2lTll/2 i/2>O

¢§=<1/2 1/2|T|-1/2-1/2>O

¢§=<l/2-l/2|Tll/2-1/
2>O

¢§=<1/2-1/2|T|-1/2 1/2>2

¢§=<1/2 1/2|T|1/2-1/2>l

To determine the Regge contribution to each amplitude

we write the amplitudes as linear combinations of parity

conserving amplitudes (Regge poles have definite parity),

expand these into partial waves (definite spin assoc.

with each trajectory) and perform the Sommerfield-Watson

transform to obtain the appropriate Regge forms. After

removing kinematic singularities we obtain (after long

and tedious algebra)
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t_ 1+ i- ai
¢1—1/2E(BOO+BOO)Ci(S/SO)

t_ i+_ i- ai

¢2-1/2§(800 BOOISi(s/so)

t_ Z i+ i- ai

¢3-l/2iqi(811+Bll)si(s/SO)

t__ 2 i+_ i- ai

¢4— l/ziai(Bll Bll)si(S/SO)

t- - 1+ ai-l
¢5—1/251net§8108i(S/SO)

th
where Ci is the usual signature factor, ai(t) is the i

'+

Regge trajectory, and the 8%; are the residue functions,

natural

(the i refer to (unnatural) parity).

We see immediately that the p and A2, both natural

parity particles, can contribute to all of the amplitudes.’

The n, unnatural parity, contributes only to 836 and

twpole_
therefore only to ¢§ and ¢§ such that ¢l --¢;flp°1e.

With faith that our ¢§ contain only dynamical singularities

13

we apply crossing to obtain the s-channel amplitudes:

s_ 1/2 1/2 _ 1/2 ,_

(AcxleIAaAb> —XdA' A (Xt)dA' A (" Xt)dA' A I" Xt)
a a b b c c

1/2 I I I | t

dA' A (Xt)<*c*a|TIAd*b>
d d

where cosxt=[s/(s-4M2)]]'/2[t/(t--4M2)]1/2

After much calculating we obtain
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2
s_ . 2 t t t t t _l+cos
¢1—l/25in xt[¢l+¢2+¢3+a¢4+4b¢5] a— .

Sln x

s_ . 2 t_ t t_ t t

¢2‘1/251n Xt[¢l a¢2+¢3 ¢4+4b¢sl b=cotx

t

s

¢§=l/Zsin2xt[¢§+¢§-a¢§-¢:+4b¢ ]

t t t t

¢j=1/2sin2xtIa¢1-¢2-¢3+¢4-4b¢§1

t t' t t 2 t

l+¢2+¢3-¢4)+2(l-b )¢S]

s_ . 2

¢5-l/281n xtl-b(¢

Reference to the expressions for ¢§ shows that;

only ¢§ and ¢2 contains the-n pole. One readily obtains

snpole= supole

¢2 ¢4 =1/26fl8fl(S/So)a"

Now, ¢Z is an n=2 amplitude, ie. net helicity transfer

from the incident to the-final state-is 2 units of angular

momentum, and must therefore vanish like (-t) as t+0.

Therefore we conclude that

B”=<-t)8"

and the n pole cannot possible contribute to the experi-

mentally observed forward peak.' In Figure 24a we see the

”pole amplitude as a function of t.
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190“ do.

I 5;

huh I

  I si _
N no; -t 00‘1 t

Figure 24. Sketches of (a)n pole amplitude and (b)

experimental t angular distribution for np pn at 8 GeV/c.

Since the n pole is nearest to the physical region it.is

expected-to be the dominant contribution to the cross;i-

section. The conclusion is that the Regge pole~model;-

predicts a dip in the forward direction in np charge

exchange. (Figure 24b shows the shape of the experimental

do/dt.) .

rThere is-a way around thisvdifficulty}4 Until-now_rw

the solution has been to assume the existence of a parity

doublet for the n. We require a second n trajectory,wd,

of positive parity which-conspires with the n such that
 

d

¢2+fl =0, as required by conservation of angular-momentum,

without the necessity for ¢g+fl =0.

The Nd contributes to ¢§ and $2 with opposite sign

so we obtain

5 + d _ fl _ d d

¢2" " =1/ZBNSN(S/80)a +1/2eTr swim/so)OUT

d n d d
Sfi+fl _ -N a _ —fi an -

¢4 —1/28 sfi(S/SO) 1/28 Snd(s/so) s —Snd
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Now angular momentum conservation gives

d

¢ifl+fl (t=0)=0 (the p and A2 contributions

vanish at t=0)

+ §"<t=0)=§"d(t=o>

dn(t=0)=dfld(t=0)

and we see that ¢§fl+fld need not vanish-at t=0 and the

existence of the n pole at t=M§ZO insures a large contri-

bution in the forward direction.

It is true that the p, A2 contributions to ¢f,

and ¢§ do not have to vanish in the forward direction as

indicated in Figure 25. However, the amplitudes are rather

smooth and flat, slowly decreasing, functions of t. When

‘the w pole is added and the other amplitudes

    

um (a

0‘1. 9' A7.

‘23 wmro

Ln: 6}

.5; 't .63 ‘t

Figure 25. Sketches of p and A contributions to

(a) n=0 and (b) n+0 amplitudes in the geaction np+pn.

Etre considered the combined effect is to produce a dip

iri the forward cross section; the presence of the Nd

tJrajectory remedies this defect.
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One problem with the conspiracy solution is

that the Nd is not observed so its introduction becomes

a non-physical extension of the model. We will seecthat

application of absorptive corrections introduces-cuts,

associated with each pole, each containing positive:and’

negative parity parts, and that the behavior of the;n,

cut in the forward direction is effectively that of:the-

conspirator so we explain the data in a physical-way.;

We look at the absorptive formula-derived earlier:

A _ B

(ACAdIT |)‘a)‘b>n-<)\c>‘dIT l)‘a>‘b>n

. z ,, j
+iNj(23+l)dAu(6){<AcA L|Al A 2><A 1A2|T1j3 |AA

dlfi a b>

+<ACAd|T§ |A1A2><A1A2|T§L|Aakb>} -----

where, as is usual, the absorptive interactionsin the

incident and final channels are-assumed equal. Using of the

Jacob-Wick expansion and the elastic scattering parameter—

ization

L 2 . At/Z -
<A A IT |A A >=-4q (i+p)0 p a 6 where

c d a b T ACAa Adlb

0T=total cross section and p=ReTEL/ImTEL are

experimentally determined as is A.

one obtains

At/ZIO At'/2

ip _
00

A . .
<AaAb|T |AaAb>n=<AC A |AaA >n+K dt 9 InIA/tt )

d|"B b

 

B . __ OT _.
<ACAd|T |AaAb>n With Kl— 4nA(l ip).
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The Born pole term or Regge pole term TB enters.

in the second term which is a superposition of several.

poles, ie. a cut.- Thus to each pole there is associated

a cut generated by the absorptive correction to the ;.

amplitude. The cut is not a parity eigenstate and so.

contains both natural and unnatural parity parts.. This.

means that we can have interesting~polarization-effects,-

"self-conspiracy" etc. The important point is-that the

cut term could, and so we-shall see does, have the same.

- effect as the introduction of conspiring-trajectories. eg.,

np charge-exchange: the ¢zcut need not vanish at t=0.

We fix the n-residue by equating, in the high energy

limit, the Born term to the Regge contribution at the n

pole. With n pole + n-cut most of the very forward.

cross section is reproduced. Figure 26 shows %%

vs t at 8 GeV/c with the experimental data}5 The same

procedure of equating Regge form and Born term at the pole

for the p meson is used. First we look at nN charge-

exchange and use factorization of residues to determine

the ratio of non-flip to flip p residues. Extrapolation.

to the Born term of np charge exchange then fixes the.

, magnitudes and signs of the residues in a consistent manner

in terms of the vector and tensor coupling constants of

vector mesons to baryons. (np~charge exchange Born term

is enough by itself but nN charge exchange allows separation

'of residues into vertex parts and provides a consistency

check).
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We set the relative sign of the p and A2 by requiring

the (p+A2) contribution to an amplitude by predominantly .,

real. (The p and A are treated as exchange degenerate._
2

Experimentally %%(np+pn) holds its shape to low energies,

ie. no resonance formation). Since the signs of the n

and p are fixed by the Born terms, all signs are

determined absolutely.

[The procedure was to fix n pole + n cut~to reproduce

99.
dt 2

the overall t-distribution by varying the values of G

the break in and add p and A ~to get a best fit.to~

V .

and GT for the p and A within physically acceptable...
2

limits. The procedure uniquely fixes the polarizations. .

The experiment now in progress measures the recoil

neutron asymmetry by using a polarized proton target.

~A simple calculation determines this polarization in terms

of the ¢i to be

do

| 2 —
dt

_ s-* s s s_ s —l_ s s 2 s 2 s 2

A—2NIm¢ 5<¢l+¢2+¢3 $4) N —II¢l +I¢2| +|¢4| +|¢51 1a

A close look at the contributions of the various poles

and cuts to the expression shows

s~ _ s
10 ¢5—/-E¢5

2. ¢i+¢§+¢§—¢i does not contain the n pole

We expect the w cut to dominate at small t because.

of the proximity of the n pole to the physical region,

and therefore attribute the sharp forward peak to this

contribution. We suspect that gE-A/Jtflwill be relatively

flat. Calculations clearly support these conjectures.

Figure 27 shows the results of the calculations.
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There is one last point to be examined.- Analysis of

the reaction, pp+nn shows that it has the same-t-channel

as np charge exchange, and therefore must be dominated-

by the same poles. Application of the G-parity operator

to the two reactions shows that we obtain the pp+nn;

amplitudes by changing the sign-of the p contribution.to_

the charge exchange. Consistency-requires a good fit

to p§+nn with the same parameters. - Figure 28-compares

the theoretical fit to the experimental data for ppenfi

at 7 GeV/c176 The fit is quite good so we conclude that

this model is a good one.

While other approaches to this problem of np-charge-

exchange can be successful,-we believe-that-absorptive

corrections to Regge pole amplitudes-has-strong appeal

from a physical point of view. -It is certainly a more

satisfying explanation than-introduction of spurious

trajectories and arbitrary vanishing of residues to

satisfy experiment. We have faith that attempts to

fit other high energy inelastic-reactions with this model

will prove successful. Only time will tell.
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APPENDIX



APPENDIX I

Notation and Kinematics

1. For the diagram shown in Figure 28,a4b,c,d,e are

the 4-momenta of the particles of mass Ma' Mb’ Mc’ Md’

Me' respectively. The metric is such that scalar products

are written ab= -a b +a-b = a4b +aéb.

 

  

o o —-— 4 — —

a c

e

b d.

Figure 28. Feynman diagram of OPE contribution

to ab+cd scattering.

2. Whenever convenient we use the Mandelstam variables

s,t,u given by

s = -(a+b)2 = -(c+d)2

t = -(b-d)2 = -e2 = -(c-a)2

u = -(a—d)2 = -(c-b)2.

These variables are not independent; energy-momentum

conservation leads to s+t+u = M2+Mg+M2+M2

a c d

3. Figure 29 shows the orientations of the 4-momenta

relative to the coordinate axes in the s-channel center-

of-mass system
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Figure 29. The s-channel center-of-mass system for

ab+cd scattering

With this orientation, the 4-vectors for the momenta take

the form

a = (a0,o,o,-q) c (c0,-q'sin6,o,-q'cose)

b = (b0,o,o,q) d = (d0,q'sin6,o,q'cos8)

4. It is convenient to define the complete symmetric

function A(x,y,z):

A(x,y,z) = x2+y2+z2—2xy-2xz-2yz.

Using this function we obtain

1

q= 27$ Al/2(s,M:, Mg) = incident channel CM momentum

l

Q'= 278 Al/2(slM:,M§) = final channel CM momentum

1

ac: 2MC Al/2(t,M:,M:) = magnitude of 3-momentum of a in

0 rest frame

—l—- 1/2 2 2 I
ha: ZMd A (t,Mb,Md) = magnitude of 3-momentum of b in

d rest frame

Other useful kinematic quantities are easily cast into

this compact form.



 

 

I
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5. We write the Dirac equation for spin-l/Z particles

as (iy-x+M)U=0 and normalize the spinors as UU=2M.- The

y-matrices are defined such that y+=y and y5=yly2y3y4=

1Y17273Y0‘ The quantity cu =-1[Yu,Y ] is also used

frequently. Using these 7's and referring to the CM-

coordinates we obtain the following positive energy

  

  

   

spinors: (U(X,Ax)=pos. E. spinor of 4-momentum x and

. . = _ 1/2
heliCity Ax) N(x) (x0 Mx)

l 1 1 l
U(b,l/2) = N(d}

0 I=N(b) g =N(b'b£+——xl 2

b + 0 O ’b /
J—Ibt 0 Mb

0 Mb

0

l 0 l

U(b,-l/2) = N(b _q = N(b)_ q x_1/2

b0+Mb l Ib +Mb

l

U(d,l/Z) = N(d) _q (xl/zcose/Z + x_l/zsin6/2)

dO+Md

U(d,-l/2) = N(d - (x_l/2cos6/2-xl/Zsin8/2)

 

l

U(a 1/2) = N(a X





81

1

U(a,-l/2) = N(a)- X

a +M 1/2

0 a

1

U(c,1/2) = N(c — ' (x cosB/Z—x Sine/2)
c +M —1/2 1/2

0 c

l -

U(cl-l/Z) = N(c - ' (xl/Zcose/2+x_l/2sin8/2)

CO+M

We use these spinors to calculate useful scalar products:

(a) (Ad,Ab) = U(d,Ad)y5U(b.AbI

(l/2,1/2) -(-1/2,-l/2) = -c-cosa/2

(1/271/2) (-l/2,l/2) = C+Sln9/2 = Q+w/2

(b) {Ad'kb} = U(drxd)U(br>‘b)

{1/2,1/2} =I-1/2,—1/2} =w_cose/2

{l/2,-1/2} =-{-1/2,1/2} = u+Sin8/2=w+u/2

where

 

1/2( 3 q

bO+Mb d0+Md

§:=[(bO+Mb)(dO+M Id)]

_ 1/2 r q 9'
¢ '-I(b +' .I(d 444 )I (l. )
t 0 Mb 0 d b0+Mb dO+Md

 

Similar quantities c1,¢' can be defined for scalar

products involving spin 1/2 particles a,c



82

(c) The following products are also useful:

1) wxdxb= 1U(d,Ad)¢U(b,Ab) W++=W__=(a0w+-qg+)

W+_=-W_+=(-a0w_+qc_)w/2

AC _ A A *

2) M =U(d A )N CU(b A ) with N C=€ a e e (c A )
Adxb ' d ’ b n Avuo A o ’ c

The 4-vector Eu is a spin 1 polarization vector.

It is discussed in Sect1on 6.

1 l

_. __ I _ : I " l,
M++—M__—/§-C+(qc0+q a0)w 72 C+an w7§w+qq w

0 O 2
M++— M__ -§§+qMcw

1
-1_ 1 _ _l — ,

M++-M-- - /§C+qcow72w+qq w

l -l 1 2 1 2 -1
M =-M =/2C ( c - 'a )--——-C a q'w +———w qq'w =-M

+‘ ‘+ ‘q0q02f2"0 22'2” ‘+

O _ 0 __
M+_-M_+— qMO;_w

MIE=-ME+=-i- c-qcow2+-l—I_qq'w2

2/2‘ 2/2

All of these expressions are small angle approximations;

only the lowest powers of ware retained.

6. Specification of spin—l states is in terms of polar-

ization 4—vectors €U(c,AC) subject to the subsidiary

condition C°€=0 and defined such that

EUICIX)€U(C,X )zéAA' €u(c,A)ev(c,A)=6uV+—§——
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Refering to the CM coordinates, if

(a) particle c is spin 1

e (c,+l)=—];[o,co§,-i,-Sin0]

€(c,o) =

o
z
l
e
h

Iq',-cosin0,o,—cos0]

e(c,-1)=—l[o,cose,—i,-sin8]

f2—

(b) particle d is spin 1

E(d,+l)=—l[O,-COSG,‘l,Sln8]

J2

€(d,o) =fii[q',dosin0,o,d0cose]

£
1
1

e(d,-1)=—l[o,cose,-i,—sin6]

f2—

7. For particles of spin greater than 1, we use the Rarita-

Schwinger formalism and construct high spin wave functions

by the angular momentum addition theorem subject to

subsidiary conditions:

Example: spin 3/2

Up(d,Ad)=<1kl/21I3/21d>€u(d,A)U(d,A)

7 U =0 d U_=0

IJU UH

Expanding, we obtain

Uu(d’3/2)=€u(d'+l)U(dll/2)

Uu(d,1/2)=—_l_e d,+1)U(d,-l/2)+/§eu(d,o)U(d,l/2)

«3 “(

The other two spinors can be obtained by changing the Signs

of the helicities.
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 8. We rewrite the propagator % -to make the dependence

M -t

e

on w=25in0/2 more transparent:

2 _ 2 _ 2__ _ 2 _ . 2 , 2 2
Me t—Me+(b d) — (bO do) +(q q ) +qq w +Me

now

S=(a+b)2=(a0+b0)2

so write

2

(bo-d0)2= [2(b0-d0)(a0+b0)]

E
r
e

b
r
d

2
T
H

so[(b -dO )(aH+b0+c0+d )]2 using a0+b0=co+d0

S-[(b d) (b+d)+(c- a) (c+a)]2

2 2 2 2 2

s[(Md-Mb)+(MC-Ma)].I
'H

which leads to

M2--t=M2e+(q-q ')2 MM§)+(M-M: )] 2+qq' w2=qq' €2+qq''w2

which defines £2

—1_ 1 1
I

qq €2+w2

absorption calculations of OPE diagrams.

 and gives us [Mi-t] which we use frequently in

One can procede in the same way for u-channel exchanges

to obtain

 

 

2_ , 2 2

Me U qq €u+wu

with

, 2_ 2 _ , 2_l 2_ 2 2_ 2 2

qq €u-Me+(q q I 4§[(Md MaI+IMb MCI]
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9. For cross section calculations we use

0 4 - 1 I

S=l-i(2n) 6(pf-p.)[n(2E.)] M as our S-matrix

l. i l

and obtain

do_ 1 g; l 2
 z |<Acxdlmlxaxb>|

(28a+1)(28b+l) spin

and

 



APPENDIX II

Calculation Details: OMB and Modifications for n+n+wp

In the center-of-mass we arrange the coordinate system

as shown in Figure 30.

9
1
"
)

 

Figure 30- Coordinate system for OME calculation

of n n+wp. ‘

Using this geometry we easily write the energy-

momentum 4—vectors of the particles.

a=(a OIOI—q)OI

b=(b0l)l)lq)

c=(cO,-q‘Sin6,O,-q'cos6)

d=(d0,q'sin6,O,q'cose)

Application of the Feynmann rules leads to an expression

for the helicity amplitudes M:

<Acxdlmlxb>n n=|(Ac—Ad)+xb|

- "Ow
_ A

C '.

w GVZU(d,Ad)AuNU Ukb,lb)

86
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where Z=[M§-t]_1, fflpw is the PVV coupling constant and

GV is the vector BVB coupling constant.

_. . _ —1
Au-1Y0[nYu+21Andu] A—(Mb+Md)

N =8 a 5* (c A ) '=l+El =l+fi

u quc V00 0 ' c ” GV ”

GT=tensor BVB coupling

€(c,AC) is the w-meson polarization 4-vector

Expanding and using the center-of—mass vectors a,b,c,d,

we obtain

A * _ * *

N —-A a c e +Al(a a C163

*

u u o 3 1 2 3°o’aoc3)€2+A2[(aoc3'a3co)€1 o

* *

+a3cle ]+A3a0cle2

So one can write

A
' I I I

<Au'|M|u>~ {-Au “EX+AU uFA+AU “GX+A“ “H ]
0 l 2 3

where Au'“-fi(d ')A U(b )
n " I“ n I“

It is necessary to calculate only half of the amplitudes

because <—A-u'|M|-u> =-(-)n<lu'lM|u> which comes from

invariance principles. (Inversion of the y-axis in

connection with parity conservation gives this relation)

The factors A are easily evaluated:

AS+ : A6-=i[-n'¢++2Anw_d0]cose/2

A3- =-A6+=i[-n‘w_+2Anw+dOJSin%

AI+ = A1-=i[4Anq‘w_coszg—n'C+]sin%

A:_ =-A1+=i[4Anq'w+sin2%+n'C_]cos%
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++__ --_ , . 3
A2 - A2 —n ;+Sin2

+-_ —+_ , 3
A2 - A2 —n 2;_cos2

++.. --=° I _ I 3
A3 — A3 i[2Anq w_cose n c+]cos2

+"__ -+= l _ I ° 9
A3 - A3‘ i[2Anq w+cose n z;__]Sin2

also: E =5—qq'sine=-§—Ht E0=FO=HO=0 G0=-quSln9

5 o

_L' _I i=l- _ I
F —/§ch0 q aocose] G i/§[qc0cose aoq ]

It is convenient to rewrite all of the angular

factors in terms of w=25in§. Then we form the amplitudes

2

as

<A ' M > =6 A =u I In n Z uNu BZ§_ x

—n

where the index a numbers amplitudes of a given helicity

'transfer n and

It is now a simple matter to obtain the scattering

amplitudes in a particular model.

1. The Born Term Model (BTM)

Calculate the cross section using the amplitudes

as they stand.

2. Born Term with Form Factor (BTMF)

Let Z=(M§-t)-1F(s,t) and calculate using the BTM

expression for the amplitudes.
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3. Reggeized PrOpagator Model (BTMR)

Follow the procedure discussed in the Regge

  

Model section; let

, _ -ina(t)

Z: 27”). (t0) j (2a(t)+l)]2-Seinna(t)

(2j+l)[T+(-) 1

2 2 2 a(t)-l
S-l/2(M2+M +M +M

a Cb (1)}

1/2
2Ma(MbMd)

 

and use the BTM expression.

4. The Absorptive Model (BTMA)

Let DW(X) be the absorptive function. Then,

neglecting terms in w higher than wn+2,

Xu

Ba=———[(X -€2§ )enf xde (wx)k (ex)DW(x)
n . an . n n

qq . 30

n—

+w XanDW(JO)]

n

where we have used the identity —%——5-

E +w
oo

=€n f xdx J (wx)K (ex).
J n n

O

In an actual calculation the upper limit will have

to finite--one simply chooses xu large enough to get most

of the amplitude. J is the lowest allowed partial wave:

0

J0=Max[|AC-Ad|,lla_lb|]. The error in this change is

small. This short cut as mentioned already is only good

for modifications to the plain BTM.



APPENDIX III

BVB Vertex Corrections

We consider only the two Simplest graphs as

shown in Figure 31.

r\\\ U) *T W
\ \‘s./

l

9 he

'5' \r “I
n ///r_F_\\\\

n P h ?

Figure 31. Diagrams giving vertex corrections to

NpN point vertex.

Using the Feynman Rules we obtain an expreSSion for the

helicity amplitudes:

 

f
_ 2 VVP 1 fl *.

<)‘c>‘cilM|)‘ b>_/§CNNPgPPV MC M2_t°uvpoavep€o(c'xc)

p

U(d,ld)75Auy5U(b,Ab)

where

4 22
A =f d 2 ii, u { l _ l }

 

“ (2n>z<22+M§)<(e-2)2+M§> 1(b-Z)+Mp 1<r+z)+Mn

9O
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the following parameterization facilitates simplification

of the integrand;

  

 

 

 

l

l 1 l = 1 I dy l

23+M2 22-2e2+A 22-2b2+A 2§+M2 [22-2ep +A ]2
fl 2 3 n 0 y y

l

l
=f 2(1- Z)dzdy 2

0 ds [2 -2epZ+AZ ]3

_ 2 2_ 2_ _
AZ—e +Mfl—M1T t Py—e+dy

A =A (1-y)+A y A =b2+M2
y 2 3 3

Pz=Py(l-Z) =by(l-Z)+e(l-y)(l-Z)

A =A (i—Z)+M2
2 y n

Rearranging and using (ip+M)u(P)=O

we obtain

__ (3) (3) (3) _ _
Au 2Aan (Mp)+2iYA[LM (Mn ) =LA (Mp )] Amp—Mb Md

=-M

n P

with

M4 2 2
L(3) u v

(M)=fds Id 4 2 3
(2n) [2 -2ePZ+AZ]

L53) contains one finite and one divergent term.

Write 2=2'+PZ and obtain

4 . 2'2' +2' P +2'P +P P
V(M)=fdsfd 2 4 uAv u Z v Zu3 Zu Zv

(2n) [2' 2+AZ-PZ]3
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The term odd in 2' vanishes and the quadratic term

is divergent (or, more correct, the integral does not

exist). Allowing a liberal interpretation of the rules

d
for manipulating infinities we write for the 2n term in Au

4 f .
. r d 2' 1 _ 1 \

ZlfdsfiszJ ‘ 4{ ,2. . 2 3 .2 2 3 }
(2n) [2 +Az(Mp)-Pz] [2 +Alen)-Pz]

recall

pz=byz+e(l-y)z (have let 2*1'2)

so we can write

fi<d>iyzU(b> -MbyzU(d)U(b)-(Mb—Md)(l-Y)zU(d)U(b)

= -Mdyz -Ansz(d)U(b)

Using this expression we obtain

 

 

M

—. ' _(_i_ I 2 2 - II _ 2 __ -

Au— ZlbUAnP{K1[yZ]+2Anp Klly z ]+2Kl[yz ]}- 2ibuAnpK[yz]

with

1T2 A . .

Kl[yz]=————IJdZF3(l,z)M

(2”) p

2 2 n2
I _ .- _ . ,

Kl[y z ]—_ 4fdz zLF5(l,z)M F5(l,z)M 1

(2n) n p

K"[ 22]— ”2 {dz z[F (l 2‘ —F ‘l 2) ]
Y ‘ 4) 3* ' ’M 3‘ ' 'M

1 (2n) n P

(the y integrations have been performed analytically.

Please refer to the discussion of the parameter functions

Fi).
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Substituting, we obtain

A e=27§CZg§—Anp

<ACAd|T|Ab>n=iBZB {Ad'xb}K[yz] c

2 -l
Z=M-t[ p 1

x b b * AB N=e11va navcp€o(c' c)

*

=-qq'/§s2(c,k) in CM syStem

which gives

<0 l/2|T| 1/2>O=0

l w2
<1 1/2|T|-1/2>O=———ew+/ —§——7 K[yz]

2/2 a +w

<oe1/2|T|1/2>l =0

<1 1/2]T| i/2> =l—ew_/ -§9—§K[yz]

l /2 e +w

<l-l/2lTI-l/2>l=<l 1/2|T| 1/2>l

<1-1/2|T| 1/2>2=-<1 l/2|T|-l/2>0

These amplitudes can be used to calculate cross sections

in the usual way.



APPENDIX IV

Two Meson Exchange in PB+VB

The relevant diagrams (the simplest) are shown in Figure 32.

 

 

 

  

1t “"4, e I w -- V l.

I l \ /

11 Iw ;X\\

n :4, l ' P / 1

“W

1:. I

Figure 32, Two pion exchange graphs for n+n+wp.

Using the Feynman rules and proceding in the usual manner

we obtain

f
I_ 2 new *, - I . _ _

T —2/2 GNNngnanc Elvpo axqveo(c)U(d)ysAuy5U(b) q—b d

TII=-2/2 <32 Sip—“ls a 6*(c)t-J(d) AII U(b)
NngnanC Avpo Aqv 0 Y5 u Y5

TIII=-2/2 <32 f—T‘we a r 6*(d)U(c) AIII U(b) r=b-c
NNngnand Avpo A v 0 Y5 u Y5
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4 e

AI=A d e u

“ “P (2n)2f [e2+M:][(a+e)2+M:][(q-e)2+M:][(b-e)2+M:]

 

 

+iy d4e euex -{ 1

4 (2n)4 [e2+M:][(a+e)2+Mfi][(q—e)2+M:] b-e)2+Mi

_ l }

(b-e)2+M2

P

one obtains Ai by the replacement a»-c in Ai

and AiII by the replacement q*r in Ai

We rewrite Au and compress it by the use of parameter

. . l_r 1integrations Ebbfidfaf+b l-f)

to obtain

(4)(M )-L‘4’(Mp )1
_ (4)

YSAuY5- Aan (Mp>+iYA[Lm n

where

4 ere
l

L(4)_st If d e4 2 H v 2 4 ds'=————zdxdydz 2(1-2)

(2n) [e -2ePZ+PZJ (2w)

 

iPz=iqZ+idyZ—ia(l—x)(l-Z)

performing the loop integration we have (using the Dirac

equation to simplify)

L(4)(Mp )=-idurds ——X———

C2 (Mp )

o (4) 9 z 0 I11. 2 '

iyuL (M) =id Ids ——X—— i? +l—lY g ers— ds=n ds
u C2(M) z 2 A Au C(M)
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One can write

U(d,Ad)iPzU(b,A8=-AanUU-MpyzUU-W A (l-x)(l-z)

4d b

w =ifi<d>¢U<b>

4d4b

Putting all of the terms together we finally obtain

6(d, AiZ):5AIYSU(b, Ab):

  

 
 

[Ids-3x——— -fdsyz2 <1+YAP)(12 — 21 )

“p c (Mp ) np c (Mn ) c2 (Mp )

w
A A

- dbbfdayz<1~ x)<1~z)( 21 — ‘21 )1
np C(an)C(M)

 -—U(d, Adu)yU(b, Ab)fds(CTM;7_C(Mp)

which we rewrite as

dexb
idpAnp{Ifl2"A“‘ I3 }-%U(d, Adu)yU(b, Ab)J

where the definition of Ii and J is clearo

Substituting into the expression for TI we finally obtain

 

W

A A A
I _. Ac _. k d b . kM C

<ACAd|T |Ab>—iKB {Ad'Ab}I lkB I3-Z——AdAbJ

nP

AC_ 1 ' - ' '

where B -—;qq Vs Slnebdéxc,il (in the CM)

{A Ab }——U(d, A d)U(b, A b) MAc =6<a A )NACU(A A )
d’ A A ’ d ’ b

d b

w = U(a A ) U(b A ) N4c=e ;(c, A C)
AdAb ' d ’ b p uvpoa“q

K:2/2Gng—Anp
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The integrel J is small than I1, 12, I3 for moderate s

but will eventually dominate as s+w Since J~s—l and

I ~S-2.

Performing the y-integration (parameter integral)

analytically we get

 

 

 

 

2
fl 2

I = fdzdxz (l-z)F (x,z)M
1 (2n)4 1 p

1T2 I 3 M

I = dzdxz (l-z){[F (x,z)+—E—F (x,z)]M }
2 (2n)4 2 Anp 2 p

I = w fdzdx22(l-z)2(l-x)[F (x z)M -F (x z)M ]

3 4- l ’ ’ n l ' p

(2“)

n2 _ m

J=(2n)4fdzdx(l-z)z[F4(x,z)Mn—F4(x,z)Mp]

Again, there are 12 amplitudes, 6 of them obtainable from

the other six via symmetry considerations; the six

independent amplitudes are

 

1 . __ o 0
B0 <01/2|T|1/2>O — KMl/Z l/ZJ/Anp Vs

2 K ,- W1/2 1/2
B <ll/2ITIl/2> =-—+qq'/sw w[I-———————— I ]
1 1 g~ - w A 3

/2 - np

- 1 1/2

KMl/Z l/ZJ/Anp ~S

(a w -q )

=' K Q'/§¢_w[I-. 2 + + I3] ~sl/2

J? w— np

_ l , 1/2

KMl/Z 1/2J/Anp ”5

1 , __ 0 0
Bl <0 l/2|T|l/2>l— KM_l/2 l/ZJ/Anp ~s



APPENDIX V

th
4 Order Parameter Functions for Pb+VB

h
1. All of the 4t order virtual momentum integrations

can be reduced to the form

1

o Cn(M)

where

ds = dzdxdy z(l-z)

n = positive integer

N(x,y,z)= polynomial in kinematical variables and x,y,z

and E(M) = A(x,z)y2+B(x,z)y+C(x,z)

M=mf

The 4th order functions Fi(x,z) are the result of

performing the y-integration analytically:

 

 

l

= w = .1; 2A+B — . :

F1(X’Z)M g 52 Q[A+B+C BF4(X'Z)M] G12(X'z)

F (x z) —111391 — l[- B+2C + 2CF (x z) 1 - G (x z)
2 ' M ‘0 62 ‘ Q A+B+C 4 ' M ‘ 22 '

F3(x,z)M =

98
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u
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l _ _

F4(x,z) = I 91 = —3{tan 1 2A+B - tan 1 E—
M .— __

o c /6 /Q /5

F (X z) _ 2Ily2dy __ 3:23 10 A+B+C + Bz-ZAC F (X z) ]

5'M'zo-‘2AA9C A 4'M

2 -1 ma
Q = 4AC—B G (x,z) = j X——X—

nm n
O C (M)

N(x y 2) can always be written in the form 2 A xfiymzp
' ’ £mp imp '

Therefore we write

1 .1 Km P ,

f dS N(XQY'Z) 3 I ds'dyfim aimpx n z = Empjélis.X ZPG (x'z)M
0 c o p c (M) 0

It is usually necessary to perform the x,z integrations

with help of a computer.

2. The denominators C(M)

There are three topological diagrams to consider

as shown in Figure 33.

k

a -- I k ' C a.-W-.__c Q——- ' C.

I I

| 3\/C &! ,1

ti 3 j/ “ - K

b a b 4. ‘ wt a ----— A

I ‘E. EL

Figure_33. Configurations for two—meson exchange

graphs for n+n+wp.
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(a) EI(X.z) = AI(x,2)y2+BI(x,z)y+CI(x,2)

AI(x,z) - Mgz2

BI(x,z) = (Mg—Mg-t)zz+(Mg+M:-s-t)z(l-z)(l-x)-(M§-t)z

CI(x,z) = tzz+(M:-M:+t)z(l-z(l-x)+(M§-t)z

+[(Mfi-M:)(l-x)+M:x](l-z)+M:(l-x)2(l-z)

(b) EII(x,z). Detailed examination of diagram II shows

that exchange of a<->-c in I will give II

This leads to

AII(x,z) I 3 N

II _ 2_ 2_ 2 _ 2_ _ _ _ 2_
B (x,z) — (Mb Md t)z +(s Mc M )z(l z)(l x) (Mg t)z

(
L
N

II 2 2 2 2
C (x,z) tz +(MC-Ma+t)z(l-z)(l-x)+(Mg-t)z

+[(M§—M:)(l-x)+M:x](l-z)+M:(l-x)2(l-z)

(c) EIII(x,z). Similarly we get III from I via t+u and

keeping labeling defined as in I (remember c,d masses

interchanged here)

This gives (alternatively: use I with

6=6bc instead of ebd

AIII(X,Z) = M222

d

III 2 2 2 2 2 2

B (x,z) — (Mb Md u)z +(Mb+MC s u)z(l z) (1 x) (Mg u)z
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III 2
C (x,z) = uz +(Mi-M +u)z(l-z) (l—x)+(M§-u)

2

d

+[(M§-M:)(i—x)+M:x1(i-z)+M:(1-x)2(1-z)2

Remember that only two of s,t,u are independent variables

because of the relation

2 2 2 2 2
= Z =s+t+u lMl Ma+Mb+Mc+Md

we use 5 and t

3. Energy Dependence

We use s and t as the independent variables.

Examination of the denominator polynomials CI(M), CII(M),

CIII(M) gives us the s-dependence of the functions FE’II’III

at fixed t.

(a) Graphs I.

AI(x,z)~sO BI(x,z)~s CI(x,z)~sO +Q=4AC—B2~sz

So we conclude

I -l
F4(x,z)~s

(b) Graphs II. Same as Graphs I.

(c) Graphs III. AIII(x,z)~s0 BIII(x,z)~s CIII(x,z)~s

+Q~asz+bs

and therefore

FIII(X,2)~s--l so FIII(x,z)~s—2 FIII(x,z)~s0

4 l 3

F:11(x,z)~as_ +bs-3 FEII(x,z)~s
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(d) Vertex Corrections (BVB) The Diagram for this correction

is shown in Figure 34.

&.\\\ 0

”Gig;

hr \%
w

t5/ \CL

Figure 34. Configuration of NeN-vertex correction

graphs for nn+wp.

0 O 0
Since AI(l,z)~s , BI(l,z)~s , CI(l,z)~s ,

we conclude that any energy dependence vanishes from the

F's at x=l:

I 0

Fi(l,z)~s ,

and therefore, that the triangle 100p cannot change the

energy dependence relative to the simple BTM.
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