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ABSTRACT
A STUDY OF THE PRODUCTION AND DECAY OF
RESONANT STATES IN PERIPHERAL HIGH ENERGY COLLISIONS
By

Glenn T. Williamson

The current theoretical situation in phenomenological
analysis of high energy scattering is reviewed. Various
attempts are made to improve upon. several models. 1In
particular, the effect of form factors and Regge treatment
of propagators on Born amplitudes 1s examined. Higher
order exchange contributions are considered as possible
solutions to the problem of energy dependence of higher
spin exchange amplitudes. It 1s found that a combination
of the absorptive peripheral model and the Regge pole
model is the most successful approach, in that energy
dependence difficulties are eliminated as 1s the need for

conspiring trajectories.
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INTRODUCTION

In a large class of inelastic elementary particle
reactions the experimental data reveal the following promo-
nent general features:

1. One can usually group. the final particles into
two quasi-states, the center-of-mass of each one nearly
maintaining the direction of one of the incident particles,

%%—— is strongly peaked -either in the forward or backward

CM
direction or both.
The reaction ab-+1+2+3+...appears as if there were

only two particles in the final state.  Examples of such

reactions are

Tp>niN
>N
KN-+K1N

+Kn N

We refer to these "particles" as c and d and consider
quasi two-body interactions ab-cd in which ¢ or 4 may be
multiparticle states. They are, 1in fact, the decay products
of resonant states and are no different from the resonances
themselves kinematically.

The higﬁer the incident particle energy and the
simpler the composition of ¢ and d, the more evident the

forward or backward peaking becomes.



2. ‘In almost -every-case, -at -certain energies the
final states do not appear -to be -directly -proeduced. - The
reactions proceed via the -production of strongly inter-
acting - (and very short -lived) -resonant--states--which under-
go ‘strong decay ‘into the final--state. : For example

TN->pN->TTN
KN+K*N*+>KnTN

3. The total cross-section ¢ (s+=) behaves like

tot
s " for small positive n. While the density of experimental
data available over a wide range of reactions and energies
is light, it is possible to note a rapid decrease (in
most cases) in the total resonance production cross-section
with energy. As we shall see later it is this fact that
proves to be the most difficult to handle theoretically.

These are peripheral collisions, and for lack of a
better definition we shall call theoretical models for
these processes peripheral models. The idea is that a and
b do not collide head on; they undergo a glancing collision
in which the two particles barely touch each other. We
do not expect the trajectories of either of the final
particles to deviate from the directions of the incident
particles.

One expects these peripheral processes to be
dominated by long range forces. Because of the energies
involved the treatment must be relativistic and there is
no reason to suppose that we can ignore the intrinsic

spin of the particles. From the point of view of field



theory these reactions proceed via the exchange of the
virtual quanta that will induce the longest range force,
the quanta of lightest mass. The problem has been

reduced to consideration of a sum of one particle exchange

graphs as indicated in Figure 1.

a o

Figure 1. The reaction ab-n particles in the
region where the final state is dominated by production
of two resonances is approximated by a sum over all allowed
one-particle exchanges.

In its simplest form, this "Born Term Model" leads

to a matrix element of the form
<cd|B[ab> = Baec(t’mc);?gf Bbed(t,md)
e

for the production of the intermediate resonant states
where t=—(b-d)2 is the invariant 4-momentum transfer,
p/(t—mi) is the propagator of the exchanged particle and
B (t,M_ ) is the vertex function. At t=M2, B (M2, M2)
fLen n e fen' e n
is the matrix element for the physical process f%+e»n. If

one regards n as a particle, B is equal to the (%en)-

coupling constant multiplied by a known kinematical factor.



These vertex functions are obtained in the usual
way from interaction Lagrangians or by writing down the
most general function consistent with Lorentz invariance
and then using hermiticity, CPT and other strong interaction
invariances to limit the form further.

Since small physical values of t correspond to
small center-of-mass scattering angles it is clear that
if the vertex functions are not pathological in their
behavior this Born approximation ought to be a good start
to explaining peripheral collisions. And because of the
"factored" structure of <cd|B| ab> we have a basic test

do

of the model: I should be independent of the angle

between the planes defined by ac and bd.

The Exchanged Particle

Consider any specific reaction and the usual
invariance principles determine which exchanges are
allowed.

Example: KN->KN*

1. Conservation of baryon number tells us that e
cannot be a baryon.

2. None of K,N,N* are eigenstates of the G-parity
operator so we obtain no specific information from G-
parity conservation: Ge is arbitrary.

3. Since strangeness is conserved at both

vertices the exchanged particle must not be strange: Se=0'



4, Isotopic spin conservation at the NeN* vertex
requires 1/2+I=3/2, which gives Ie=1,2. Consistency with
the KeK vertex requires that the exchanged quanta be a
member of an I-spin triplet:..Ie=l.

5. Consider angular -momentum and parity conserva-
tion at the KeK vertex in the outgoing K-meson rest frame.
The K has JP=0" so the addition theorem requires

)2+l

- L - -
0 +2( ) +Jze=0 . This reduces immediately to L( +Jze=0 .

Je

Clearly we must have 2=Je and pe=(-)l=(—) which means

that Jze=0+ or.17,2%,... Examination of the NeN* vertex
provides no information which further restricts Jze.

In summary, for KN-+KN* the exchanged quanta must be
a non-strange member of an isospin triplet of mesons with
JP=J(-)J. We choose from among the known low lying meson
states and conclude that p exchange is likely to dominate.

One proceeds in just this way, applying the conser-
vation laws at each vertex in turn for each reaction to be

considered. This procedure rarely limits the exchanged

quanta to a single state.
Decay of the Resonant ‘State

Recall that particles c, d or both in the reaction
ab+cd are in most cases pseudo-particles, resonant inter-
actions of several elementary particles. So far we have
discussed in general terms the amplitude <cd|M|ab> for the
production of the resonant state, particle d. (For the
moment ¢ will be just another elementary particle, eg.

TN+7N*). We will consider decay into two particles: d-fg.



If we had particle d, with spin sq at rest in the labor-
atory, its decay would be governed solely by the transition
matrix for the process d-+fg:

do

(35

~E |<fg|M|d>|2.
decay

fgd
Given an ensemble of states d at rest with spin

polulation A, we have no reason to expect that the popula-

d
tions of each projection state are different. It is clear
that this is not the case in our situation. We do not
start with particle d; we actually observe the process
ab+cfg which proceeds via the intermediate state d:
ab+cd+cfg. In contrast to the above, we do not expect the
resonance d to be produced with an isotropic spin distri-
bution. It must be assumed that the production matrix
elements are spin dependent until we know otherwise. One
can still obtain the decay angular distribution from the
formula given above, but the initial state for the decay

matrix element must be weighted by the probability for

production of the spin state

<fgc|M|ab>=r <fg|M
Spin

|d><cd|M | ab>
Yy p

deca rod.

and therefore

do

(I ~Z<fg|Md|d>*<fg|Md|d'>ga

p<cd|M |ab>*<cd’ [M_|ab>
p P

d-fg



Considering only the angular part H of the decay
matrix element and normalizing, we arrive at a formula
for the expected angular distribution of the decay pro-
ducts f, g of the resonance d produced in ab+cd. For
convenience everything is done in the d rest frame.
W(a,8) = N LH(fgd)*H(fgd")p44:

where pj4, = N22<cd|Mp|ab>*<cd'|Mp|ab>
1 determines N

2

Various symmetries can be used to obtain relations

Trp

among the production density matrix elements Pram" * To

find these it is necessary to examine W(a,B) in more detail.

Coordinate system

Since it is convenient to do calculations in the
center-of-mass frame, we start there. In all of our cal-
culations we have defined the production plane to be the
XZ plane with the momentum vectors aligned as shown in

Figure 2.

A
d e
b ~A’_a L_)?y:
ck////;ﬂ

Figure 2. The two-body scattering ab—+cd in the
center-of-mass and the orientation of the x and z axes.

Because it 1s easiest to look at the decay of 4
from its rest system, we perform a Lorentz transformation

into this system as indicated in Figure 3.



Figure 3. The two body scattering ab-+cd in the
rest frame of particle d.

The j direction, the normal to the production plane, is
axc

defined by j = T§§ET'

The decay angqular distribution

Now add the decay products f and g to the diagram,
and delete a and c to get them out of the way as indicated

in Figure 4.

(¥ )
A
>

,.
s
7/
4
/
|
|
|
|
!
x>

Figure 4. The decay products g and h of the resonance
d in its rest frame.

Two angles are needed to locate the decay products. Momen-
tum conservation requires f and g to move in opposite
directions. We use a polar angle o, which measures devia-
tion of the line of motion from the k direction, and an
azimuthal angle B measuring deviation from the production
plane. These definitions correspond to the usual definifid
angles for the spherical harmonics ng(a,s). As long as we
choose the k axis to be the spin quantization axis for the
resonant state d of spin jd' the angular part of the decay

matrix element will be |&m> coupled to jf+jg to form jd.



An Example:

This is a 1 0 +0 transition. In the p rest frame
the intrinsic spin of the p meson becomes the relative
orbital angular momentum of the two pions. The angular
part of the decay matrix element is proportional to ng(a,e).

We write
w(a’8)~1§\m'ylm(a'8)yim' (a,B)Dmmn
where we normalize fanpW(a,6)=l.

Symmetries of Pram

It is useful to take advantage of available symmet-
ries to simplify the density matrix as much as possible.
We require that p be hermitian, p+=p. Application of
parity conservation to ab+cd leads to additional relations
among the production amplitudes. Substitution of these

relations into the formula for p immediately shows that

o _,=(-)" T
mm' -m-m'

These two relations plus the trace condition enable

us to write

Py,-1 “P1p 1/2(1-900)J
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Using this matrix we obtain an expression for Wp+2“(a,5):

i 040_3 _ i 2 o )
W(a,B)‘E?[3/2(1 Poo) t1/2 (304, l)cos“a py,-18in acos2B

V2R

ep1051n2acosB]

One also obtains an expression for the polarization of
particle d by using P=Terd. Px and Pz are found to vanish,
so the polarization vector of d is perpendicular to the
production plane.

The decay of a spin jd into spins jf and jg can be
analyzed in a similar way but it is necessary to use the
angular momentum addition theorem to write the proper
angular functions. Once one has an expression for W in
terms of dénsity matrix elements, he again examines the
effect of invariances at the vertices on the density matrix
elements to obtain model dependent predictions for the
angular distributions, assuming a jge for the exchanged
quantum. To show the method and complete the p-production
example, we look at the p=»7mm decay.

Assume the dominant contribution to mN+pN is the
pion exchange force and ask what this means for the decay
distribution of the produced mesons. Consider the
vertex in the p-meson rest frame.

A unit of orbital angular momentum is picked up in
p-formation as intrisic spin and jz for the 21 system is
zero. Note that parity is conserved. Conservation of J,
implies Jz=0 and the jz=l spin projections of the p are not

produced at all. The only non-vanishing density matrix
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element is Poo which, because of the normalization condi-

tion, must be unity. Substitution into W(a,B) gives

W(a,B) = 3/4ncosza W(a) JagwW(a,B) = 3/2 cos?a

1/27

W(Bg)

We look for this behavior in the experimental data as
evidence for m-exchange. This result is quite general;
any reaction of the form PB+VB proceeding via pseudo-
scalar exchange will lead to the above angular distri-
butions for the decay of the produced V-meson.

Similar analyses may be performed for the other
allowed spin-parity assignments of the exchanged quanta
and for arbitrary spin of the produced resonance. Table A
summarizes the results of analyses for other relevant
cases.

When doing calculations helicity eigenstates are used
rather than spinors quantized relative to the z-axis.1 These
are states in which each spin is quantized relative to
its own direction of motion. Such states have very simple
Lorentz transformation properties making them very easy
to use. We calculate amplitudes and cross-sections in
the production center-of-mass system and decay angular
distributions in the decay center-of-mass system. Before
we can use the density matrix - it is necessary to perform
‘a rotation so that spin quantization is relative to the
z-axis, a more transparent situation for comparison with

experiment.
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In the production CM, the angle of rotation for

c,d is clearly ecm. In the c(d) rest system we have

=‘g_~ . . = s
51nwc ag g;necm (slnwd %aSLnecm)
. _.2,.2, 2
where , with A(x,y,z) = x“+y“+z2°-2xy-2xz-2yz
q=—l—Al/2(s,m§,m§) = incident -channel CM momentum
2vs
production process
ac—E%—Al/z(t,mz,mz) = momentum of a in ¢ rest system
c

momentum of b in d rest system

o
o
r
>
o
)
Qv
"

This transformation formula for the angle is very easy to
derive. The component of--a 4-vector perpendicular to the
direction of a Lorentz transformation is unaffected by
that transformation.

A(JL)

Let oy E. be the helicity state density matrix for
¢ c

production of the resonant state c of spin jc' The density
matrix for quantization along the Z-axis in the c rest
system is then given by

()

P '
>\C>‘ (o]

I, NERE

(v,) ' ¢ -
rarp Vel Pagxt I Y

which is a function of s and t for the production process.

=‘d

It is this Prm” that goes into the angular distribution

formulas.
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A look at the 'experimental data provides clues to
the production mechanism. We invent a model, calculate
production angular distributions, total cross-sections,
production density matrix elements, and compare with the
experimental data. Proceeding in this manner, it has been
possible to explain a large -number - -of high energy reactions,
though in most cases not without modifications, to the

basic Born Terms.
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TABLE I

Predictions of the BTM for Density Matrix Elements

1. Vector Meson Production (J°=17) [decay:1”+0 +0" ]

significant density matrix elements: P00iP1.-17P10
’

(p10 is complex).

a) Pseudoscalar exchange (JF=07)

prediction: p00=l, others zero.

-\J
b) Natrual parity exchange (JP=J( ) )

prediction: arbitrary, others zero.

Py -
1,-1 (_)J+l)

c) Unnatural parity exchange.(Jp=J
no prediction.

2. N*, production (3P=3/2+) [decay: 3/27,1/2%+07)

significant density matrix elements: P33sP3_11P3)
compl
(03'_1,031 mplex)
a) Pseudoscalar exchange (JP=07)
Prediction: all above elements are zero.

b) Vector meson exchange (JP=17)

prediction: Rep31=0, p33=3/8, Rep3 —l=3/8'
’



THE GLAUBER FORMALISM FOR HIGH ENERGY

SCATTERING AND THE BORN APPROXIMATION

We start with a potential V(r) of finite range
;nd use the Schroedinger equation to solve for the wave
function, assuming high energy for the incident particle.
By high energy we mean the incident particle energy e
is much greater than the absolute magnitude of the potential
VO’ and that the wave length is much shorter than the

range r, of the potential:

0

V0<<e kr0<<l.

Since, relative to € the potential is weak, we do not
expect the wave function to deviate significantly from
a plane wave. We write

¥ (r)=e*& Iu(r) .

M is assumed to vary slowly with r.
Substituting in the integral form of the Schroedinger

equation
ik|r-x'

b(r)=e ——AIW—F V(r')y(r')dr'

we easily obtain

ik |r-r'|-1k* (x-r'") PAM (! '
M(r)= 1-1% v(r')M(r')dr
|r-r'|
i(kry-ker,)
Tk ,
= I-AJ§I V(z-r))M(z-x'))dr,

15
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_.2
where dgl—rldrld(cose)dp.

Assuming V.M changes appreciably over distance d

0

but varies slowly over a wave length, we obtain by partial

integration
2 eikrl(l—cose) cosf=1 1
M(x)=1+x[dr r]d6 [z V(r-r,)M(r-r,)] +6 (33
1 cosf=-1

Atu=-l(rl antiparellel to k) the exponential
oscillates rapidly and this term is also of order 1l/kd.

The leading contribution is
|k

|
r, Ak

M(r)=1-ig[dr,V(z-r,)M(z-x,) Iy

Choosing k to be in z direction we obtain

M(b,2)=1-i\/k[dz'V (b+kz) M (b+kz")

- zl An
g% =—%de'*M(g,z)=e 1A/k{mdz V(b+kz"')

where we have used as boundary condition M(b,z=-«)=1,
which comes from the requirement that we start with an
incident plane wave.

The final form for the wave function is

X (b 2)=eik® (b+kz)-i)/k[%dz'V(p+kaz) ,

which is valid in the region of the potential.

The limits of applicability of this approximation
have been given by R. J. Glauber.2 It is sufficient to
know that this formalism will provide a good description

of the scattering in the forward and backward cones. We
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use the wave function x(b,z) in the formula for the
scattering émplitude in place of a plane wave. The idea
is that if the potential is well-behaved and the incident
energy is high enough, the incident wave will be only
slightly distorted in the region of the potential. We
have calculated the first order correction to the wave
function due to this distortion. This is called the
Distorted Wave Born Approximation and was used by

J. D. Jackson and collaborators3'4 as the starting point

in developing the absorptive model.



ABSORPTIVE CORRECTIONS

We are studying inelastic processes of the form
ab?cd, which we assume to be due to the interaction V in
lowest order. Now we allow a and b to interact elastically
before they interact via V to produce c¢ and d, which also

interact elastically, as shown in Figure 5.

a (&

b d

Figure 5. The absorptive model diagram for the
scattering ab-cd.

The incident and outgoing channel elastic interactions Vi
and Vf are treated exactly. The result is a modification
to the Born term for the inelastic process. At the inter-
action V, a and b are no longer plane waves; they are
gradually distorted by the elastic interaction as they
approach the inelastic interaction region. We require

that Vi and Vf and the incident energy satisfy the restric-
tions implied 1in the Glauber wave function. The incident
and final wave functions Xy and Xg are

X*¢(b,z)=e -ig'.r_-1A/q f dz'Vv (b+kz)

igrr-ir/q © dz'V, (b+kz')

- 00

x; (b,2)=e

18
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We use these wave functions to ‘calculate first order
contribution to the inelastic scattering:

<cdlM|ab>:fd2bdzeig'§<cdlvlab>e

-iX/qudz'vi-ix/q'j“dz'vf
- 00 2z

“2n[baby (sb)el/?xi PIpp)et/ 2y )

where B(b)=fdeV(§f£Z) and §=g-q'

The range of V is assumed much smaller than Vi or Vf and
the phase shift of wave traveling through V at impact

parameter b is given by

X, (b)= -%hfz dz'V(b+kz)  (n=i,f)

Compare this expression for the amplitude with the partial

wave expansion.
<|M|> = L(2+1/2)M, Pl(cose)zfxdxM(x)Jo(wx) (w=2sin6/2)
)

Note that the expansion in impact parameter is
approximately equivalent to the partial wave expansion.

To obtain a relativistic version of this formula
and include spin, we assume that the partial Born amplitude

<Ackd|M3|AaAb>, where Ai is the helicity of the lth particle,

S e
is replaced by el/szMjel/zx;.

We start with the relativistic partial wave expansion
A=Ag=Ap

- : 3 3
<Acxd|M|AaAb>— §(3+1/2)<Acxd|M |xaxb>d *“(e)'u=x _
c

. d
invert it to obtain M7

<A A

o dIMJ|AaAb>=fd(cose)<Ackd|M|Aakb>dj (8).

Al
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Including the distorted wave correction DWj and resumming
the series we ‘obtain

RPN P J J
A g M X A > j(j+1/2){Dijd(cose)<Acxd|M|kakb>dAu(6)}dAU(GO.

In actual practice this procedure is avoided when-
ever possible by making use of a few mathematical tricks.
For single-quantum exchanges, retaining only the two lowest

terms in n=|u-i|, the amplitudes can be put in the form
a:

1 n,= n+2
M"=6 XL Wiy w ).
n t_mi an an
It is possible to write

1 1 1

t—mi qq’ 52+w

2

where 82 is composed of angle independent kinematical
qguantities. Then using
n
W

€2+w2

= Dr®
=€ foxden(wx)kn(ex)

we are able to write each amplitude as a partial wave

sum and all that need be done is to insert the distorted

wave factor DW(X) under the integral.

It should be mentioned that for all of these high
energy reactions, large numbers of partial waves contribute.
Since we are limited to small eCM we can make use of the

approximation

diu(e):Jn«J+l/2)w) n=|p-1

Substituting in the Jacob-Wick Expansion and approximating
the sum by an integral we obtain

(o]
AAgIMIA A > = / xdx<xcxd|M(x)|Aaxb>an(wx).

Jo
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Comparing this formula with the one obtained by using
the approximate amplitudes Mi and using the integral formula

above, we write

n

a _ 8 _.2z w ng
Mn = Eq—'r[ (X an € xan)m + W xan]
— e - 2- © n-
= EET[(X an"€ xan)foxden(wx)Kn(ex)+w X, n) -

Adding DW(X) under the integral in M is essentially
the correct procedure for adding the distorted wave correc-
tions.

It is possible to write the absorptive amplitude
for a process in a way that explicitly separates the
correction term from the Born exchange contribution. We

begin with the Sopkovich formula for absorptive correc-

tions:
. F R
A _ ié6s B 143
<Acxd|Tj|AaAb> = e 3<Acxd|Tj|AaAb>e j
= JgF-‘ ___________ \/S_]-:.
j i

Writing Sj=l+2iNTj where N=normalization and energy

momentum conservation, we readily obtain

A _ B
A AT A A > -<Acxd|T A 2p>

.Fz 3

+iN j}\112(2 +1)d5 L (8) <A Ale | 252 2><% A2|T A 2>
) 3 B I

+iN JAlAZ(2j+1)dA (8) <A Ad|T |x Ay><h A2|T |x b>

- J F
NiN Z(2j+l)dku(6)<kcxd|Tj|A A2|T |x Ag><A A4|T | A Ap>t
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where the Jacob-Wick expansion has been used to obtain the
full amplitude. If we approximate the initial and final
state elastic scattering amplitudes by spin-independent
functions we recover our simpler, less general, formula

T(2.+1) [l+iT1?NF+iT:.[NI—T1TT:FNFNI+. |
573 ] j 373

A
<Acxd|T lxaxb>

B 3
<xcxd|Tj|Aaxb>dAu(e)

B 3
§‘2j+1)DWj<*cAd|Tjl*a*b>dxu(e)'

The general formula is useful as a starting point for
more sophisticated calculations, eg. spin-flip in the
elastic scattering which would allow one to take into
account the non-zero polarization found in many elastic
collisions, and to see more clearly the effects of absorp-
tive corrections on the exchange amplitude. In practice,
calculations using this form require large quantities of

computer time.



FORM FACTORS

One of the first ideas for improvement of the Born
Term Model was to replace the simple point vertex functions
and the propagator by functions which incorporate higher
order effects. The existence of such effects was used to
justify replacement -of the Born amplitude B by BF, where
F is some -phenomenological function depending on t and
the masses and as few arbitrary constants as possible.
If one chooses such a function and obtains a best fit to
the data -at -some incident energy and -then uses this function
to calculate at -other energies, he hopes to succeed in
comparing with experiment. If success does come, one has
a very simple method of calculating.

J. D. Jackson and H. Pilkuhn5 used an exponential
-form factor eAt-to«improve the angular distribution in fits
to KN+K*N and K*N* over -that obtained from simple vector
meson exchange.  Later we will see that such-a form
factor works well for 7N inelastic collisions dominated
by vector meson exchange, but that another form factor

F(s) is necessary to fit the energy dependence.

23
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Form factors are also able to improve on the Born
model for reactions dominated by the exchange of pseudo-
scalar particles. Amaldi and Selleri ,6 two of the early
investigators of peripheral collisions, were successful
in fitting the data on 7mp+pp with. the function

F(t)= 0.72 + 0.28

2 2
1+ (M"-t) /4. 73M1r

141 (n/1121r-'c)/321v1ﬁ1{]2

N —n —



A REGGE MODEL

Another approach based on an idea first suggested
by Gell-mann, ‘Frautschi, and Zacharisen,7 draws on the
Regge Model of high -energy -scattering. One starts with
the t-channel process, writing down-a partial wave expan-
sion fPr the amplitude.  ‘Assuming a-resonance in a partial
wave one performs an analytic continuation via the
Sommerfield-Watson transform to the s channel. This
amplitude, the contribution to the s channel amplitude due
to the virtual exchange of the t-channel resonance, is
used to calculate cross-sections.  One obtains a one-meson
exchange model in a different way; the exchanged particle

has a spin o(t). One can show that the -characteristic

propagator form 1 5 is contained in the amplitude.
t-M
e

Many authors have done calculations based on this

model.® The idea is to replace the factor —2—7 in the one-
' t-M
e

meson exchange amplitude, the one -obtained field theoreti-

cally and not the one crossed from t channel by a phenom-

enological function of Regge form:

Py (20(0)+D) (Lete THE)y gy @8 g g l®)
z K = [ : —_= ]
t-Me 2 sinmo, 4qtqt Ma/ Md

25
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The trajectory a(t) is determined experimentally. This is
done for each exchanged particle. The extra factors have
been introduced to make the formula dimensionally simple,
The basis for this replacement is that had we started with
the t-channel amplitude Tt(s,t)=k§(22+l)TQ(st)Pl(coset),
assumed dominance of a resonance of 'spin &, performed the
Sommerfield-Watson transform and continued to the s channel

we would not get -a factor —%—-. Instead we would have
M -t

obtained something like

(t)
s(t) s ¥ . )
sinna(t)(§g) where J=Rea (M_),
where (t) will have the behavior zrprovided 1t 1s not
t-M
e

destroyed by other factors in 8. This does happen occasion-

ally. Starting with the Regge Form

P (—xt)+Pa(xt))(qtqt )aét)
2 sinma M vyM M
a d

(2m+1) (

where qt,qé are initial, final cm momenta for t-channel;

using
s-u s—l/2(M§+M§+Mi+M§)
xt=coset=4qtqé §>>t thqé
and
o
T (a+ -
Pa(xt)~ _(g_}ﬁlz_. Xz(t) = sz(t) Pa(—xt)=te lTTCX.P (xt)
YT (a+1)
we write
_ -ima(t) q,.4q) o(t)
B(2a(t)+l)%;giﬂa(t) xz[ t E_ ] where have put
Ma/MbMd

cB=B and T is the signature of the exchanged trajectory.
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B is determined by requiring this expression to coincide

with the field theory propagator at the pole t=MZ

1+tefi“a(t) a(t)[]a(t)=

2im 2 [B (20 (t)+1) 7 sinna(t) Xt

t*M

t—Me

Near the pole (at to)
a(t)~a(t0)+a'(to)(t-t0)
. - : ' . -
sinma(t) = 51nna(t0)+na (to)cosna(to)(t ty)
¥ sinnj+wa'(to)coswj(t-to):na'(to)(t—to)cosnj

~ ' _ _ j
2 ma (to)(t to)( )

B
_md

N T(-y] '
Lim B (23+1) 2 L) 2t = 2
0 2(-)Ima’ (£,) (t-tg) 0
from which we readily obtain
5 = =3 3y
B = 2ma' (t ) x, "/ [ (t+(=) )(23+1)]
' 2,.,2,.,2. .
_ 2Ta (to) . s- 1/2(M +Mb+Mc+Md)} j
-\ J
(2j+1)[T+( )] 2M /MgMd
Example:

For J=1 exchange the propagator is replaced by

) j-e-ima(t) s-l/2(M§+Mi+M§+M§) a(t)
R(t)=B(2a(t)+1) —{ — }
2sinma(t) 2M_ vM M4

where B is given by
2,.2,..2

b+Mc+Md)}a(t)

2M /__Md

_ . s- l/2(M +M
- - []
B= 3& J=l(t0){
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The procedure 1s to calculate the cross-section and density
matrix elements with this form for the propagotor using

the experimentally determined Regge trajectory appropriate
to the exchanged state. Since. the Regge model is known

to give the correct asymptotic energy dependence for cross-
sections one hopes that this phenomenological ansatz

based on the Regge idea will show similar socially acceptable
behavior when it comes to energy. dependence. The problem
of correct energy dependence is one ‘of the chief diffi-
culties of the other methods of calculating peripheral
reactions. As a derivation of one-particle-exchange via
the Regge approach makes clear, the energy dependence 1s
intimately connected with the. spin of the exchanged quanta.
In the Regge approach, exchange of a spin j does not lead

to amplitudes which go as sJ but as SaJ(t)

where aj(t) is
the trajectory of the -exchanged gquanta.

We might wonder why the field theoretic t-channel
amplitude is not used and explicitly continued to the
s-channel rather than making this propagator replacement.
Such calculations are being done and they are more compli-
cated than the replacement procedure. Starting with the
t-channel exchange amplitude,. the. kinematical singularities

introduced by spin are explicitly removed and the amplitude

is continued analytically to the physical s-channel region.
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Again, the residues are determined by ‘requiring equality
with the Born term at the pole. As -an -example of such
calculations, the reader is referred to the recent work
of Griffiths and JabburS on N*3 production, in KN
collisions. Recent calculations on np charge exchange
combining the absorption model with ‘a consistent treat-
ment of spin in the Regge model will ‘be outlined later in

this paper.

R

i



ONE-MESON-EXCHANGE CALCULATIONS

AND COMPARISON WITH EXPERIMENTS

Most of the basic approaches to theoretical analysis
of peripheral collisions have been discussed. To familiar-
ize the reader with the general picture before describing
present attempts to find improvements to OME models,
consider two reactions. One, 7TN-+pN, is dominated by
pseudoscalar meson exchange, the other, wn+wp, by vector
meson exchange. We discuss them 1n terms of the models
just outlined. This discussion will be qualitative. The
figures show general s and t behavior only. Notation

and conventions are detailed in Appendix 1.

The first of these reactions has been studied by
many high energy'theorlsts3t and summarizes the successes
of the models. This 1s both good and bad. It 1s good
that everyone can invent a model, but bad because there 1is
no resultant discrimination among ideas. The second
reaction has been chosen because none of the models already
discussed can explain all of the data. Some models give
correct angular distributions and others handle the energy-

dependence.

30
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Figure 6 show5v§% vs t for each of the reactions on

a linear scale of arbitrary normalization.

[- %%
>
mF_
19

07 (@) -k 25 v -k

Figure 6. Qualitative sketches of the t-angular
distributions for (a) mp»pp at 4.0 GeV/c and (b) mn->wp
at 3.25 GeV/c.

Notice the peaking, particularly strong for mp-+pp, 1n

the forward direction. This peaking is characteristic

of peripheral processes. The angular distribution for
n+n+wp, dominated by p exchange, ‘is less peripheral

than the -w-exchange reaction, as is to be expected since
mp is much larger than m_ . In each case the total cross-
section drops gquickly with increasing energy as

indicated in Figure 7.

g ()

[ T s

Figure 7. Sketch of s-dependence of the total
cross-section in a quasi two body high energy scattering
involving quantum number exchange.
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Data on the production density matrix are meager.
Because of invariance principles, there are only three
elements of interest and they are the same ones for each

reaction: The element Pio is complex but

poolplolpl,_l°
we need only the real part for the decay distributions

W(cosa) and W(R). For Tmp-pp at 4.0 GeV/c the available

data are <poo> = 0.530.12, <p1'_l> = 0.16+0.10,

<plo> = -0.06%0.05. Similarly, for ﬂ+n(p)wp at 3.25 GevV/c f

Jackson gives <pgo> = 0.5 and at 1.7 GeV/c he gives ¥
1

>=0.6%0.12, = 0.0£0.712, <olo> = -0.06%0.08.

<Poo Py,-17

In both cases the average is over cos6 from 1.0 to about

0.80. This data is not very limiting to a model, but we

shall see that it does tell us something.
The Born Term Model (BTM)

If we superimpose theoretical curves for g% on the
experimental data as indicated in Figure 8 we see immed-
iately that the BTM is just not good enough. The cross-
sections are too large and not nearly peripheral enough.
It should be noted that the vector-meson-baryon coupling
involves an arbitrary factor. There are two coupling
constants, the vector coupling GV and the tensor Grp»

Even if one uses some symmetry scheme to fix Gv’ he must

look elsewhere to get GT/ . Jackson gives GT/GV = 3.7

G
v
inferred from T=1 electromagnetic form factors.
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Figure 8. Comparison sketches of the BTM and

experimental (EXP) for (a) mp+pp and (b) mn-wp.

Comparison of theoretical and experimental total
cross-sections and density matrix elements is as unfavor-
able as for the angular distribution. The energy depend-
ence is particularly bad for the vector meson exchange
reaction. But it is of practical value to carry through
an analysis to determine the BTM predictions for pmm"
It is not necessary to do any calculating to get answers.
For n_p(w)p-p, Figure 9 shows the wnp vertex in the p rest

frame.

< Tk

Figure 9. The nmp-vertex in the p-meson rest frame.

This case was considered in the discussion of
density matrix elements. The analysis was done 1n the
rest frame of the p-meson and we concluded that the only
non-vanishing element is Poo and using the normalization
condition Trp =1 we obtained p00=l. The data tell us
that the BTM‘prediction 1s incorrect.

We ask if the fault 1s with the BTM or with the
gquantum we have assumed to be exchanged. To answer this

we look at the decay angular distributions of the resonant



state, W(cos®) and W(p) and note that even though pl -1

14
and Pyg are doubtless non-zero, they are extremely small,
which is consistent with pseudoscalar exchange. The

experimental W's, shown in Figure 10 support this conclusion.

W)

‘n o w
com ot p

Figure 10. Sketches showing the experimental decay
distributions for the decay p-mm in the reaction mp+pp+7nnp
assuming 0 exchange (a) W(cosa) (b) W(R).

Additional support comes from the BTM distributions
assuming vector meson exchange which is also allowed in
this reaction. Figure 11 shows these distributions. (We
will see how to obtain these distributions shortly). It
is apparent that these distributions are not at all close
to the experimental data. The conclusion is that the basic
idea of pseudoscalar exchange dominance is a good one

but that it is too simple; the BTM neglects too much.

Figure 11. Sketches showing the experimental decay
distributions for the decay p»nm in the reaction mp>pp>nnp
assuming 1 exchange (a) W(cosa) (b) W(B).

——— T N T R—
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For ﬂ+n»wp the analysis procedes 1in the same manner
as for 0 exchange. In the rest frame of the w, we have,
from the angular momentum addition theorem that
0_+Jge+L(‘)L=l—; Je=l implies L=0, 1, or 2 and, since we
are in the w rest frame, LZ:O. The conservation of paraity
in strong interactions tells us that (—)Pe(—)L=(—) or L
must be odd, since Pe=-l° Therefore L=1. Conservation
of the z-component of J tells us that Jez=0,tl. So we
must have |lmé coupled to |10>L to produce |lm> . Again
by the rules for adding momenta we see that the state
llm;|10>L contains only ll:l’w 1e., the mw=0 state 1s not
produced. Therefore we can conclude that o = Pom = 0.

Substituting in the decay angular distribution formulas

we obtain

W(cosa, B = 3/4_(1l7/2-p C0523)51n2a
T l,-1

or
o2 . ) 2
W(cosa) = 3/4sin”« Wik = 1/4 *_(l+20l _l)—4pl _cos B}.

(These formulas are valid for « decay even though it is

a 3m resonance 1f the angles are redefined such that o 1s

the angle between the i1ncident it and the normal to the

m m° decay pion plane; B 1s then the corresponding azimuthal

angle) .

Lo U e
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We see 1mmediately that for vector meson production
in PB collisions the decay angular distributions are
distinctly different for pseudoscalar and vector exchange
dominance. (Actually the above analysis is valid for an
exchanged state with Pe=(-)Je, Je>l; these are called
natural parity states. For unnatural parity, Pe=(-)Je+l
we get no restrictions).

Figure 12 shows the experimental W's for n+n+wp.
It is clear that the evidence is strong for the exchange
of a natural parity state. The simplest possible

exchange candidate 1s the p-meson, a member of the 1

octet.

COT o ?
Figure 1z. Sketches of the experimental decay distri-

butions of w in the reaction mn+wp (a) W(cosa) (b) W(B).

Multiplicative Form Factors and Reggeized Propagators

Both of these approaches 1involve replacing the
exchange amplitude mEX by MEXF(s,t), where F(s,t) 1s a
suitable function with as few aribtrary parameters as
possible. Figure 13a shows the effect of the Amaldi-
Selleri form factor on the r-exchange BTM cross-section

for mp>p p. The effect 1s to damp the amplitude at

g e ns em————
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larger values of t. This model compares favorably with
experiment for incident pion momenta from 3.0 to 8.0 or 9.0
GeV/c in the lab. The same information is given 1in Figure 1B b

for the Regge propagator model.

~

- i

@ )

Figure 13. Comparison sketches of (a) BTMF and (b)
BTMR with experiment of the reaction mp»pp. The dashed
curves are the experimental results.

%%(t=0) is matched to the theoretical calculation at t=0.

One can see that the results are favorable. Again,

the effect of this modification is to damp the Born
amplitude at larger values of t, which is the desired
effect. There is some arbitrariness in the pion tra-
jectory; since it 1s difficult to isolate experimentally

one determines the form from general principles.
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For vector exchange reactions, Jackson and Pilkuhn

improved the BTM angular distributions with an exponential

form E(0)e 't (usually normalize form factors to 1 at the
2
exchange pole: F(t=m§)=1; E(0)=1e—Ame).

Figure l4a shows the effect of such a factor with
>\=2.5(GeV/c)-2 on the n+n+wp reaction. We see an improve-
ment in the angular distribution. There is, of course, gﬂ
not any improvement in the energy dependence. We could :
always add a factor s™™ and adjust n for a best fit., The
Regge propagator result is shown in 14b. The trajectory
used in the calculation is ap(§)=.57+1.08t; the parameters

are from experiment. The energy dependence also consider-

ably improved.

16) )

Figure 14. Comparison sketches of (a) BTMF and (b)
BTMR with experiment for the reaction mn->wp. The dashed
curves are the experimental results. h

%%(t=0) is matched to the theoretical calculation at t=0.

Theory and experiment are on the same scale,
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Neither of these modifications to the BTM affect
the density matrix predictions; no spin-independent
modifications can do so. To see this we look closely at

the definition of Pram" ! assuming a resonant state d:

*
p = NI<A _m[M[X A ><x m'[M|[A A > Trp=1

mm' b

where <|M|> are the production helicity amplitudes.

F,-.-n._-',m?:-'

If M denotes the BTM amplitude and F a function, independent

of spin, then the form factor modified or reggeized pro-
pagator amplitude is MF., Since F factors we have

* -
o = N|F|%z<|M|><|M[>" = n|F|%a"T

and we see immediately that Trp =1 gives N=AIF|-2 and

o} is unaffected.

mm'

Absorptive Corrections

By the same kind of argument, it is apparent that
the absorptive corrections will modify the density matrix
elements because the effective function F 1s different
for each spin amplitude. However, since absorption
usually damps down contributions to the lower partial waves
much more than the high ones for each amplitude one expects

the modifications to p££¥ to be small for most of the

elements--exactly the experimental situation.
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For the m-exchange reacﬁion it is difficult to
distinguish between the absorptive and Regge calculations.
The results are not identical but they are close for
scale and angular distribution. The density matrix predic-
tion of the absorption model 1s good, while the BTMR
calculation gives the same prediction as the BTM. The
situation is somewhat different for the p-exchange reaction,
ﬂ+n*wp. Again the absorptive model does well with angular
distribution and density matrix elements but the absolute
magnitude of the total cross-section prediction is too
high. 1In this regard, the Regge propagator form does
much better. Because the meager data we cannot say just
how much better; it is possible that the prediction 1is
low. As in the p-case, this Regge model gives no 1mprove-
ment in the production density matrix prediction over

that of the BTM.

The absorptive corrections for these calculations
were obtained from phenomenological fits to experlmént
according to the prescription of Jackson and Gottfried4
(1964). This approach 1s guite successful and 1s used
by most everyone doing absorptive calculations. The idea
is too obtain from the latest experimental data a best
fit to the elastic scattering amplitude and invert 1t to
obtain the elastic phase shift which is then used to

correct the inelastic amplitude.




41

Recall the DWBA formula for the elastic scattering

amplitude:

= - -ig'-r
for, = A{dg e 1 "Iy (r)x (r)

Substituting the high energy approximate expression

for x(u) we obtain

z
il C e _,.); , ,
fEL -)\jdE e 19 £V(£)elg r 1qfc3°z° V(b,z")

-'l ' ' 1 . -— - )
—1qudbdedz§E e 15 {22 V(b,2') ji*b  A=g-g

(for 8<<l &g =2q so 4'x acb)

-1 ] [}
The integral over z gives e 1A/q£wdz Vib,z")_;_

elX(b)-l. After the integration over 6 we obtain the
Glauber formula.
o il ix(b) _
fop = —igybdbd( b) [e 1]
. . . I P
using fbdbjn(Ab)Jn(Alb) = F6(5-2")
we obtain

elx(®) _ 1+%fAdAJO(Ab)fEL(A)

The standard parameterization of the experimental

data on elastic scattering is a Gaussian distribution 1in A:

£ _ iomg e—cA2 o
EL am _°T _ 1
C = — Y= 4—
ic 2 yme c
= Y9 ~A7/4y

Substitution in the Glauber formula readily gives

QiX(B) _ | com¥I2/q?
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The parameters C,y are directly related to experi-
mental quantities. Usually they are assumed independent
of energy. One fits them to the available data at one
incident energy and calculates the inelastic cross-
sections over a range of energies and compares with
experiment. The results are quite good for many reactions,
but the very best fits to the data require energy dependent
C and Y.

A very similar record of successes and failure
appears in other TN channel reactions and in KN and NN
reactions. The success or failure of a model depends
more on the tensor character of the exchanged quanta
than on the natﬁre of the final state (eg. one resonance,
two resonances, etc.--). To summarize:

1. The Born Term Model (BTM) while exhibiting some
nice features is inadequate. Looking at the experimental
data we intuitively conclude that we should try to modify
it in some way rather than abandon it alltogether. One
makes this decision because one—pérticle exchange is
relatively simple to calculate. Also, the density matrix
data show quite well the effects expected from one-particle

exchange.
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2. Simple phenomenological form factors F(t) can
provide agreement with the production angular distribution
data over a respectable range of energies--particularly
for p-exchange. Sometimes (p-exchange) one also gets good
oT(s) vs. s; for some reactions an additional factor F(s)
is necessary. No improvement in density matrix elements
is obtained.

3. The Regge form of the propagator works well
for production angular distributions and does much better
on energy dependence than the BTM, but fails on density
matrix elements. More sophisticated Regge calculations
can give Pram * predictions. Basically this approach is
quite like using a form factor.

4. The absorptive model performs extremely well
whenever reactions go via pseudoscalar exchange. It gives

good OT(S) vs. s, good do vs. t and usually good absolute

dt
magnitude. Also, predictions on Pom' Y€ good. Whenever
V-exchange dominates, the angular shape is good and density
matrix predictions are acceptable, but absolute magnitude

of cross-sections is too large and the energy dependence

prediction incorrect.



ANOTHER APPROACH TO ABSORPTIVE CORRECTIONS

One can try to be more ambitious in applying
absorptive corrections to inelastic BTM amplitudes.
Instead of purely phenomenological fits to the elastic
scattering data, one can construct models for the
elastic amplitude based on physical ideas, hopefully
containing as few parameters as possible and use them
to generate absorptive corrections. If the model is
good we expect a fine fit to the elastic scattering and
to the inelastic processes with the same values for the
parameters. We consider one such model.

Recently S. Frautschi and B. Margolis]'0 proposed
a model of high energy elastic scattering based on the
identification of the Born term with Regge exchange.
The t-channel Regge exchange is assumed to generate the
s-channel potential rathef than the amplitude. They

start with the Born approximation to Glauber's formula:

B i 2, .. ibe
for (8,Q)= —5% [d“b2i8 (b) et 4

The physics enters here. fgL is equated to the

leading Regge trajectory pole. contribution
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A_ . =cet®(®)
pole

u=1ln z—- -im/2, signature is neglected, a(t) is the
0

Pomeranchuk trajectory a(t)Za(to)+a'(t-t0)

Ap=ceua(t)= 34 fa%b2is (b)etP"d
Frautschi and Margolis then solve for §(b) and sum the
Born Series to obtain an expression for the elastic amplitude,
an amplitude consisting of the pole term plus a series of
multiple scattering terms which can be likened to Regge
cuts. The one free parameter (the slope of the Pomeranchuk
is obtained elsewhere) is fit to experiment at some incident
energy and calculations are compared with experiment over
-a range of energies with much success.

This model can be used to generate absorptive
corrections, which can be applied -to inelastic processes
in the spirit of the Jackson-Gottfried approach. Inverting
the above equation we have

—_h2 '
2i8(b) = - % eP7/4aty

where we have assumed

o (t)=1+ta't.
P )~

Using this expression we obtain the corresponding absorp-

tive correction function
2

. . _ -b“/4a'u

eix(b)__ 2i6(b)__-&/ue

Notice that

|e as s+,
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This absorption function has several features
noticably different from the Jackson-Gottfried approach.

l. The correction is a complex function. We can
expect the density matrix elements to be slightly different.

2. The correction is energy dependent and leads to
a decrease in the amount of absorption as the energy
increases. The effect is to soften the s-dependence of the
BTM exchange.

We have compared this method of generating absorp-
tive corrections with the curve fit approach for the
reaction pp+nA3/2++. This reaction was chosen since
Frautschi and Margolis have fit the parameter (&) in their
hadron scattering model for p elastic scattering. As is
usual, approximate equality of the absorptive correction
function in the incident and final channel has been
assumed in the absence of definitive NN* elastic scatter-
ing data.

Recall that the procedure is to replace the appropriate
BTM partial wave amplitude Mj with

3 . . _th .
<Ackd|M IAaAb>ij A;=helicity of i~ particle

The Jackson-Gottfried correction function has been

parameterized as

-2/q2 2-2/q3

2
(DWj)2=[l-c+e Y43 Ty 1-c 7Y

+ refer to incident and final channels, respectively.
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The parameters C:,y+ are derived from elastic pp scatter-
ing data to be:
Ci=1 y+=.24-GeV/c
Y_=.10 GeV/c

In the model based approach, the absorptive function

used is
2

_ _ 12 o2 _ _-2 '
(ij)2= exp(-é—t eI /4o uq+)exp(_§_ e~J /4a'uqr,
We used the same value for the slope of the
Pomeranchuk trajectory as Frautschi and Margolis:

a'=0.82(GeV/c)-2. Also, their fits to the elastic pp data

2

at 20 GeV/c with this value of the slope and s,=1GeV

0
yield &=7. Starting with €£=7 this parameter was varied
over a wide range to get a good fit to the pp+nA;;2.

Also, some calculations were done to determine the effect
of different a' on the result.

The initial appeal of Frautschi's elastic scatter-
ing model for absorptive corrections is the logarithmic
-energy dependence which shows up in the expression for the
phase shift. Absorptive model calculations a' la'
Jackson-Gottfried at several -energies show that the amount
of absorption necessary to get a good phenomonological
fit to the data decreases slowly with energy. It was hoped

that the Frautschi parameterization of elastic scattering

might allow for this decrease.
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do
dat’
particular energy there is trivial difference between the

It is possible to get a good fit to but at a
different approaches as shown in Figure 15. Differences in
the predicted density matrix elements are easier to see--
as a function of energy; the Frautschi model corrections
give Prom which change more rapidly. Unfortunately there
will not be enough good data until the summer, at which
time comparison from 6-30 GeV/c should be possible.

There are other objections to this approach. From
a phenomenological point of view it would be better to use
the energy dependent corrections. But values of the
absorptive parameters necessary to fit the inelastic data
do not provide a satisfactory fit to the elastic scatter-
ing. Figure 16 compares a theoretical curve of the Frautschi
model, using the parameters that provide a best fit to
pp*nA with the elastic scattering. It is not clear that
the model is internally consistent. Sums of t-channel
exchange diagrams can show a Regge behavior; the Frautschi
model probably "double counts" contributions to the amplitude.
Also, one can show that resonance behavior at low energy
can be deduced from a Regge amplitude at high energy.
Resonance is a property of amplitudes not potentials. The
Frautschi model says that Regge exchange in one channel
generates potentials in the crossed channel rather than

amplitudes. This seems inconsistent with the other result.
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We must conclude that the Frautschi model is
probably not correct. It is possible to generate absorp-
tive corrections containing ‘a -small -energy dependence
(any Regge model of elastic ‘scattering can work) and improve,
if only slightly, the fit -to experiment. We are being
drawn to simultaneous use of the Regge model and absorp-
tive corrections. The only obstacle is the question of
double counting--a question that can be answered in favor

of combination of the models.
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Figure 15. Comparison of theory and experiment for
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OTHER MECHANISMS
With the successes and failures of -one-meson-exchange
in mind, we focus now on vector meson exchange and investigate
improvements to OME models. As an example of a vector

exchange dominated process we continue -examination of wn-+uwp.
Vertex Correction Mechanisms

The use of phenomenological form factors to improve
simple OME was based on the assumption that other more
complex diagrams contribute to the scattering amplitude,
and that such factors (functions of t) improve the angular
distribution over the BTM prediction for both pseudoscalar
and vector meson exchange dominated reactions. We ask. if
it is possible to get a better clue as to the functional
form of such factors by looking at other diagrams which
can contribute. Figure 17 shows the diagrams for the BTM

and lowest order corrections for m+n-uwp.

Figure 17. Diagrams showing (a) the BTM and (b)->(d)
some vertex corrections to the NpN vertex for mn-wp.
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In addition there can be graphs where the virtual
nucleons are replaced by nucleon resonances.

We concentrate on diagrams 17b as the next simple
cases after the BTM. Using the Feynman rules for forming
the S-matrix, we obtain the transition amplitude assuming
this diagram to be the dominant contribution (detailed.

calculations can be found in Appendix III. We obtain
£

_ 2 vvp _1
<)‘c)‘dm')‘b)n_ 2GNngpV Mc mz_teuvpoa epeo(c'kc)
U(d,Ad)YSAuYSU(b,Ab)
where
— (3) . (3) _¢ (3)
YsAst" 2Aanu (Mp)+2ly>\[LMl (Mp) LM] (Mn)]
4 2,2
(n) ag ATu
L, (M)=[dasf A__=M_-M
M (2m T (22-20p +2_1" npn P

All of the terms in A are finite, if one allows a
liberal interpretation of the rules for manipulating
infinite quantities. It is interesting to note that if
we neglect the neutron-proton mass difference for internal
lines the amplitude vanishes.

After very involved algebra, one obtains a compact
expression for the helicity amplitudes

B0 )
<AcAd|M|Ab>n = iK > Klyz]

M -t
p

Here Ac,xd,xb refer to the helicity quantum number

of the w,p,n respectively. {Ad,kb} is shorthand for the

spinor product ﬁ(p,kd)u(n,k ), K contains coupling constants

AC

and miscellaneous factors, and B comes from the mpw

vertex. Consider first the energy dependence. Refering
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to the BTM calculation one easily finds that the calculated

%% ~sz. We saw earlier that this result conflicts with

the experimental evidence. Turning now to the vertex

3/2

correction contribution, B and {Ad,xb} go as s and s
respectively (k~so). The energy dependence of K[YZ] is
the only unknown. Should this factor, which comes from
the closed loop in the diagram be independent of energy,
we will obtain the same energy dependence of %% as the
BTM. This will turn out to be the case. To see this we
look more closely at the algebra. Klyz] can be expressed

as a sum of three terms:

. 2M 2 2 2
Klyz] = K, [yz] + — K![y“z“] + 2K"[yz“]
1l Anp 1 1
Where the first term comes out of L(3)(Mn) and the others
. rp (3) . (3) L .
from 21YA[Luv (Mn) Luv (M )]. Rewriting in terms of the

fourth order Feynman parameter functions Fi(x,z) defined

in Appendix III we have
2 1

K, [yz] = dz F,(1,z)M
1l (2ﬂ)4£ 3 n
2 2 2 1
Ki[y z¢] = TZ_gZ { dz z[Fs(l,z)Mn-FS(l,z)M )|
]
1l
Ki[yzzl = 7 [ dz =z [F3(1,2)M -F;(1,z)M ]
(2m) ~ ©

This extra algebra proves very convenient; these
functions Fi(x,z) characteristic of fourth order diagrams
in the 7N channel.

Again refering to Appendix V , examination of the
functions Fi(x,z) shows clearly that all s-dependence

vanishes at X=1: Fi(l,Z) are independent of s.
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Figure 18 shows ReK[yz] for several values of
incident pion momentum over the physical range of t.

(ImK 1073

ReK) Notice the similarity in the curves for
different energy and the forward peak. Since the scattering
amplitude is proportional to wnK[yz] we can understand |
the peaking of %% at non-forward t. Assuming that these
vertex correction type graphs are the dominant production
mechanism for mn+wp the cross section was calculated,
and is shown in Figure 19. The angular distribution is
not bad and the absolute magnitude is more in line with
experiment. Keep in mind that no absorptive corrections
have been added. Addition of such corrections would shift
the peak more toward the forward direction, but also would
damp the absolute magnitude far to much. For comparison
Figure 19 also shows the result of an absorptive BTM
calculation at the same energy. Also, these graphs cannot
improve the fit to the w production density matrix elements;
indeed the prediction is the same as the BTM.

"Another approach would be to interpret these fourth

order corrections in a strictly field theoretic sense as

next order corrections to the BTM and assume

\

\(
<)\c>\d|n/1|)\b>n = BTM + A v

/N
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Here we can have interference and reference to the
calculational details for the separate terms shows that
the corrections to the BTM helicity amplitudes are such
that we could obtain a prediction for the denity matrix
elements. However, absorptive BTM gives us this already
and there is still the problem of energy dependence.
There are, of course, still the other fourth order
contributions of this type, diagrams l7%c, for example, as
well as others. These other graphs are plagued by severe
divergence problems and the non-divergent terms show no
improvement in the energy dependence. The conclusion is
that vertex corrections are not the answer to the energy
dependence problem, so one must try other things.

There is currently much interest in the relation-
ship between absorptive corrections and Regge poles; most
of it devoted to justifying simultaneous use of the two
models. The idea is to write a Regge form for the inelastic
interactions and apply abhsorptive corrections.

We will see that such calculations can be successful.

There is, however, one other alternative to be considered.
Two-Pion Exchange

We abandon the BTM and guess, perhaps, that only
pions can be exchanged in the interaction. The W resonance
is assumed to be produced by sequential pickup of two
virtual pions. The simplest relevant Feynman graphs are
shown in Figure 20, Note that this time we have 6

contributing graphs.
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Figure 20. Simple two pion exchange diagrams
for the reaction mn-wp.

As before, using the usual rules, one obtains expressions
for the matrix elements:

' I = 2__f_ * b ' t =
<t |M |u>n-2/7"G Mcsxvpcaxq esle,A)u(d,u )YSApysu(b,u) g=b-4d

<Au'|MIﬁu>n= --------------------------------- AzI
* -

<Au'|MIIIlu>n= ----------- akrveo(d,k)u(c,u')ysAzllysu(b,u)r=b-c

with
4

I d'e e
AN=p [— P

P 1P% (2m) 2. .2 2

[e2+M1zT] [(a+e) “+M_] [ (q-e) §+M1§T] [ (b-e) 2+M°]

+ other terms and obtain II by the replacement a+-c in AI
and III by the replacement g=*r in AI.

It is necessary to be very careful when making
approximations to be sure the dominant contributions are
"retained. We assume, however, that the contribution from
IIT can be neglected relative to I and II.

Reference to Appendix IV shows that we can write

(using the same notation as for the vertex correction

“calculation)
Ay 2a (4) . (4) _y (4)
Y5 DYS anuv (Mg)+1YA[Luvp(Mn) Luv (Mp)]
P P
(n) _ , fda pTU ———
Lo (M)=Jds' [SF —

2 2.n
(2™) [e -2epz+pz]
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A seemingly endless number of algebraic manipula-
tions leads to a compact form for the scattering amplitudes.

We obtain

I A : Wiy A
<u'|T |u>n=iKB {ur,ulr(yz)-ikB +— I,-KMy, 3/ bnp I=1,-1,
np

I

Similar expressions can be written for the 7l and

TIII terms. Here K contains coupling constants, and
miscellaneous factors of- and has the same definition as
in the vertex correction amplitude.

The other factors are

“B)‘=l'/—qq' sinecm5)"tl WU'Ugiﬁ(d'u')#U(b'u)
2
{u;u} = U(d,u')U(b,H) Mﬁ,u=ﬁ(d,u')NAU(b,u)

N=€, 00 a,q,€g(c,A)

Rewriting in terms of the fourth order parameter
functions Fi(xpz) for convenience in investigating the

energy dependence, we have.

>

- 2,
11‘7;;;1 [dzdxz“ (1 z)Fi(x,z)Mp
"2 3 M
I,=——, [dzdxz" (1-2) {[F; (x,2)+5= F,(x,2)] -
(2m) M PP
[Fl(x,z)+z—n§ Fp(x,2) ]y}

2
2 2
I3=7;ﬂ;z [dzdxz® (1-z) (l—x)[Fl(x,z)Mn-Fl(x,z)Mp]

2
ﬂ
J +?;;;I / dzdx(l—z)z[F4(x,z)Mn—F4(x,z)Mp]

The energy dependence of the F's is discussed in
the Appendix, as is that of the other factors. We find that

2~s’2 and F4~S-l so I, I, I 52 ana g.571.

F 3

1’ F
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Similarly, examination of the aexpressions for Wu,

and Mﬁ,u gives s! ana s3/2

dependence. (Mu'u

, respectively, for the energy

~S0 ). Therefore we can write

I
T = al+a2V§-

Squaring, etc. leads to an expression for g% :
drI b c . ..
I = a+— + = const. (one can obtain similar resulits
Vs 8

for I and III).

This result is obviously much more pleasing that
the BTM and its simple vertax corrections; there is at
least some reason to be optimistic about 2TmT-exchange.
The t-behavior can be seen easily in Figure 21, which
shows ReIl(I) and ImIl(I) as a function of CM scattering
angle for incident pion momenta of 3.25GeV/c. Note the
predominant forward peak and absence of any backward
peak. It should be noted that the peak in the cross section
will be shifted away from the forward direction because
of the influence of angular factors in the kinematics.

Figure 22 shows the same information with the p (11

contribution added, egq. Re(Il-fl) and Im(Il-fl). The T(II)
contribution is:-about 1/30 of T(I) in magnitude. It is

clear that T(II)

could have been neglected.

The term proportional to J (J looks like I but is
of opposite sign) provides a small correction which
additively effects the helicity amplitudes and can there-

fore give - a non-BTM density matrix prediction, but at

these energies this correction is not noticable. Figure 23
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shows the angular distribution assuming 27 exchange

for the production mechanism. Absorptive corrections have
been included, the result is acceptable. The conclusion

is that 27T exchange can work and give an acceptable energy
dependence. - Cursory examination of final states containing
higher spin resonant states shows that 27T exchange will
break down, ie. predict an incorrect energy dependence,

but that nT exchange for some appropriate n will restore

the prediction to an acceptable value. It is interesting
that - sums of exchange graphs can give Regge energy behavior.
Also absorption is clearly a different physical effect

from multiparticle exchange. The argument that the physical
effects behind Regge exchange and absorption are distinct
has recently been given in detail by Marc Ross, Frank Henyey,

andvGordon-Kane.11



ABSORPTIVE REGGE MODEL

We accept the qualitative arguments against double
counting and apply absorptive corrections to the Regge
exchange amplitudes for the reaction np*pn assuming
dominance of the ﬂ,p,A2 trajectories. This reaction is
interesting because of the availability of experimental
data for the cross section and an experiment now in
progress to measure the final neutron asymmetry, ie. a
polarization. If the cross section for this reaction
(and related reactions) can be fit in a consistent manner
then one obtains a prediction for the polarizations.

Regge poles have definite spin and paritylzand the
Regge model tells us that the trajectories with the largest
a(t) will dominate the amplitude at high energy. The
conservation laws tell us that the exchange quanta must
be members of non-strange isotopic spin triplets of
mesons; ﬂ,p,A2 are acceptable candidates. We must determine
how these trajectories contribute to various t-channel
helicity amplitudes.

Expanding in t-channel partial waves we have

=7 (25 1 3
<A2x4|T(t,et)|A1A3>nt_§(23+1)<xzx4|T (t)lxlx3>ntdltut(et)
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At=A -2

1773
Hp=Ao=hy

De=A-He

In np charge exchange A =A2=A3=A4=1/2, giving a

1
total of 16 helicity amplitudes. Application of parity
conservation and time reversal invariance reduces this
number to 6. Further, strong interactions are I-spin
invariant so we neglect the n-p mass difference and
kinematically we have identical particle scattering which

gives one more relation and so reduces the number of

independent helicity amplitudes to these five:

65=<1/2 1/2|T|1/2 1/25,
¢5=<1/2 1/2|T|-1/2-1/2>,
¢§=<l/2-l/2|T|1/2-1/2>0
¢§=<l/2—1/2|T|—l/2 1/2>,

¢§=<1/2 1/2|T]1/2-1/2>]

To determine the Regge contribution to each amplitude
we write the amplitudes as linear combinations of parity
conserving amplitudes (Regge poles have definite parity),
expand these into partial waves (definite spin assoc.
with each trajectory) and perform the Sommerfield-Watson
transform to obtain the appropriate Regge forms. After
removing kinematic singularities we obtain (after long

and tediegus algebra)
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t_ i+ i- ai
¢1—1/2§(600+800)Ci(5/so)

t_ i+_,i- ai
t_ T i+, i- oi
¢3-1/Ziai(Bll+Bll)Si(S/so)

t__ 5 i+_,i- oi

t_ . i+ a;-1
¢5—l/251n6t§8108i(s/so)

th

where Ci is the usual signature factor, ai(t) is the i

i +
Regge trajectory, and the Bi; are the residue functions,

natural

+
(the * refer to (unnatura

1) parity).

We see immediately that the p and Az, both natural
parity particles, can contribute to all of the amplitudes.
The 7, unnatural parity, contributes only to Béa and
therefore only to ¢§ and ¢§ such that ¢§ﬂpole=_¢§ﬂpole.
With faith that our ¢§ contain only dynamical singularities
we apply crossing to obtain the s-channel amplitudes}3
1/2

1/2 172

S_ — -
<Acxd|T|Aaxb> =Idih Ty (x ) ayn T, (mex a3, (mexy)
a'a b"b cc
1/2 ) ] ) ) t
A, () AL TIAG >
da’d
where cosxt=ls/(s-4M2)]]‘/th/(t-4M2)]l/2

After much calculating we obtain
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t

2
l+¢t t a_1+cos

¢i=1/251n2xt[¢ 2+¢3+a¢:+4b¢§]

sin® ¥

s_ . 2 t__t, .t t t
¢05=1/2sin“x, (¢ -a¢ +d3=¢,+4b ] b=coty

¢§=1/251n2xt[¢§+¢§-a¢§—¢§+4b¢:]

t t t t

¢i=l/25in2xt[a¢1-¢2—¢3+¢4'4b¢§]

t, t,,t  t 2, .t
l+¢2+¢3-¢4) +2(1-b%) ¢S]

S_ .2
¢5=1/2sin Xg (D (¢
Reference to the expressions for ¢§ shows that :

only ¢§ and ¢2 contains the pole. One readily obtains
sTpole_ sTpole_ =T oq
45 =0, =1/28"S_(s/sy)
Now, ¢Z is an n=2 amplitude, ie. net helicity transfer
from the incident to the final state is 2 units of angular
momentum, and must therefore wvanish like (-t) as t-+0.

Therefore we conclude that
8= (-t)8"

and the m pole cannot possible contribute to the experi-
mentally observed forward peak. In Figure 24a we see the

"pole amplitude as a function of t.
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Figure 24. Sketches of (a)m pole amplitude and (b)
experimental t angular distribution for np pn at 8 GeV/c.
Since the m pole is nearest to the physical region it .is
expected to be the dominant contribution to the cross.. .
section. The conclusion is that the Regge pole model. .
predicts a dip in the forward direction in np charge
exchange. (Figure 24b shows the shape of the experimental
do/dt.)

There is a way around this difficulty.l4 Until now. .
the solution has been to assume the existence of a parity
doublet for the m. We require a second n trajectory,nd,

of positive parity which conspires with the m such that

d
¢2+“ =0, as required by conservation of angular momentum,
without the necessity for ¢g+" =0,

The ﬂd contributes to ¢g and ¢i with opposite sign
so we obtain
sT+ d - m —nd
05" " =1/28"s_(s/so)® +1/28" s_.(s/s0)?"

d i1 d d
sTH+T i o _ =T ot _
¢4 =1/28 s"(s/so) 1/28 sﬂd(s/so) s _s"d
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Now angular momentum conservation gives

d
¢i11+‘n (t=0)=0 (the p and A, contributions
vanish at t=0)

+  B"(t=0)=8"%(t=0)

an(t=0)=and(t=0)

STT+TTd

and we see that ¢2 need not vanish at t=0 and -the

existence of the m pole at t=M§30 insures -a large contri-
bution in the forward direction.

It is true that the p, A2 contributions to ¢f,
and ¢§ do not have to vanish in the forward direction as
indicated in Figure 25. However, the amplitudes are rather
smooth and flat, slowly decreasing, functions of t. When

the m pole is added and the other amplitudes

(o) )
A ?,A
‘f\’ \P\\#o
(n=0)
.og -t .03 -x

Figure 25, Sketches of p and A, contributions to
(a) n=0 and (b) n+0 amplitudes in the %eaction Tp*pn.

arxre considered the combined effect is to produce a dip

in the forward cross section; the presence of the nd

trajectory remedies this defect.
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One problem with the conspiracy solution is

that the nd is not observed so its introduction becomes
a non-physical extension of the model. We will see-:that
application of absorptive corrections introduces -cuts.
associated with each pole, each containing positive :and
negative parity parts, and that the behavior of the .T
cut in the forward direction is effectively that of :the.
conspirator so we explain the-data in a physical way. ..

We look at the absorptive formula derived earlier:

A _ B
<>‘c}\cillT l>‘a>‘b>n—<>‘c)‘dlT X250

IA Ay><A Ale IA

T o 3
+1Nj(23+1)dku(e>{<xcxd|

+<A Ad|T |x Ay><Ag A |T A Ap>} -=---

2
where, as is usual, the absorptive interactionsin the
incident and final channels are assumed equal. Using of the

Jacob-Wick expansion and the elastic scattering parameter-

ization
A .
<A Ale L|Aaxb>=—4q2(i+p)oTp t/zdx X Sy where
c c'a "d'b
0T=total cross section and p=ReTEL/ImTEL are

experimentally determined as is A.

one obtains

0 '
IAaAb>n+KlpAt/2f at'pht /2

o]

A '
A AL T A A > =<A A I (A/tt")

alm

B . __OT,,_.
<xckd|T lkaxb>n with K,= x(l-ip) .
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The Born pole term or Regge pole term TB enters .
in the second term which is a superposition of several.
poles, ie. a cut. Thus to each pole there is -asscciated
a cut generated by the absorptive -correction to the- :.
amplitude. The cut is not a parity eigenstate and:so.
contains both natural and unnatural parity parts. - -This .
means that we can have interesting polarization -effects,.
"self-conspiracy" etc. The important point is that -the
cut term could, and so we shall see does, have the same
effect as the introduction of conspiring trajectories. egq.,

np charge exchange: the ¢2cut

need not vanish at t=0.

We fix the m-residue by equating, in the high energy
limit, the Born term to the Regge contribution at the =
pole. With m pole + m-cut most of the very forward
cross section is reproduced. Figure 26 shows %%
vs t at 8 GeV/c with the experimental data}5 The same
procedure of equating Regge form and Born term at the pole
for the p meson is used. First we look at mN charge
exchange and use factorization of residues to determine
the ratio of non-flip to flip p residues. Extrapolation
to the Born term of np charge exchange then fixes the
magnitudes and signs of the residues in a consistent manner
in terms of the vector and tensor coupling constants of
vector mesons to baryons. (np charge exchange Born term
is enough by itself but 7N charge exchange allows separation

of residues into vertex parts and provides ‘a consistency

check).
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We set the relative sign of the p and A, by :requiring
the (p+A2) contribution to an amplitude by predominantly.

real. (The p and A, are treated as exchange degenerate. .

2
Experimentally %%(np+pn) holds its shape to low energies,
ie. no resonance formation). Since the signs of the:w
and p are fixed by the Born terms, all signs are
determined absolutely.

‘The procedure was to fix m pole + m cut to reproduce

do
at 2

the overall t-distribution by varying the values of .G

the break in and add p and A, to get a best fit to .

v

and GT for the p and Az within physically acceptable: :.

limits. The procedure uniquely fixes the polarizations. .
The experiment now in progress measures the recoil

neutron asymmetry by using a polarized proton target.

A simple calculation determines this polarization in terms

of the ¢i to be

do

|2
dt

_ s-* s .S .S__S -1_ s s2 s|2 s 2
A=2NImd~ o (¢7+05+05-0,) N “=[l1o7|+lo5| + o | +]oc1 1a
A close look at the contributions of the various poles

and cuts to the expression shows
S, .S
lo ¢5"‘/—T:¢5
2. ¢i+¢§+¢§—¢2 does not contain the w pole

We expect the m cut to dominate at small t because.
of the proximity of the m pole to the physical region,
and theréfore attribute the sharp forward peak to this
contribution. We suspect that g%-A//E'will be relatively
flat. Calculations clearly support these conjectures.

Figure 27 shows the results of the calculations.
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There is one last point to be examined.  Analysis of
the reaction, pp*nn shows that it has the same t-channel
as np charge exchange, and therefore must be dominated.
by the same poles. Application of the G-parity operator
to the two reactions shows that we obtain the pp+nn.
amplitudes by changing the sign of the p contribution .to.
the charge exchange. Consistency requires a good fit
to pp*nn with the same parameters. Figure 28 compares
the theoretical fit to the experimental data for -pp»nn
at 7 GeV/c%6 The fit is quite good so we conclude that
this model is a good one.

While other approaches to this -problem of np -charge.
exchange can be successful, we believe -that -absorptive
corrections to Regge pole amplitudes has strong appeal
from a physical point of view. It is certainly a more
satisfying explanation than introduction of spurious
trajectories and arbitrary vanishing of residues to
satisfy experiment. We have faith that attempts to
fit other high -energy ‘inelastic -reactions with this model

will prove successful. Only time will tell.
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APPENDIX I

Notation and Kinematics

l. For the diagram shown in Figure 28, a,b,c,d,e are
the 4-momenta of the particles of mass Ma, Mb, Mc, Md’
Me’ respectively. The metric is such that scalar products

are written ab= -a0b0+3-g = a4b4+2-g.

a c

b d

Figure 28. Feynman diagram of OPE contribution

to ab-+cd scattering.

2. Whenever convenient we use the Mandelstam variables

s,t,u given by

S = -(a+b)? = -(c+d)?
t = -(b-d)% = -e2 = -(c-a)?
u = -(a=d)? = -(c-b)?.

These variables are not independent; energy-momentum

conservation leads to s+t+u = M2+M12)+M2+M2
a c d

3. Figure 29 shows the orientations of the 4-momenta
relative to the coordinate axes in the s-channel center-

of-mass system

78
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n
A
>
"
I1x>
%
|=>

-
o
"3
b

\

Figure 29. The s-channel center-of-mass system for

ab+cd scattering

With this orientation, the 4-vectors for the momenta take

the form

V]
]

0
|

(ao,o,o,-q) (co,-q'sine,o,—q'cose)

b = (bo,o,o,q) d (do,q'sine,o,q'cose)

4, It is convenient to define the complete symmetric

function A (x,y,2z):
AX,y,2) = x2+y2+22—2xy—2xz-2yz.

Using this function we obtain

1 1,2 2 2

g= ZVs A (s,Ma, Mb) = incident channel CM momentum
1

q'= 2Vs Al/z(slMi,Mé) = final channel CM momentum
1

a_= 2M Al/z(t,Mi,Mg) = magnitude of 3-momentum of a in

c rest frame
b = 5%—-Al/2 2 .2 _ . £ b j
- a (t,Mb,Md) = magnitude of 3-momentum o in

d rest frame

Other useful kinematic quantities are easily cast into

this compact form.
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5. We write the Dirac equation for spin-1/2 particles
as (iy+x+M)U=0 and normalize the spinors as UU=2M. The
y-matrices are defined such that y+=y and Y5=Y1YoY3Y 4=
iylyzy3yo. The quantity o4 =—i[yu,y ] is also used
frequently. Using these y's and referring to the CM
coordinates we obtain the following positive energy

spinors: (U(x,Ax)=pos. E. spinor of 4-momentum x and

helicity A ) N(x)=(x0°Mx)l/2
1] 1 1 1
U(b,1/2) = N(H)
q 0 FN(b)|_g = N(b)=Z—|X
q | Bgri | | o Dotrp| 1/2
both,
| o
1 0 1
U(b,-1/2) = N(b)_g = N(b)_ ¢ X_1/2
Bori| |1 T
1
u(d,1/2) = N(@)| _q (X1 ,2C088/2 + X_ ,,5in0/2)
a

1
Uu(d,-1/2) = N(d)- q' (x_ cos6/2-x sin6/2)
{ d0+Md 1/2 1/2

1

U(a,1/2) = N(a X
: | 2
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U(a,-1/2) = N(a)- Xl/z

U(c,1/2) = N(c)- (x_l/zcose/z—xl/zslne/Z)

U(cl—l/2) = N(c)Y- g’ (X1/20059/2+X_1/251n9/2)
C0+M

We use these spinors to calculate useful scalar products:

(@) (gsry) = T(d, 1) YgU(B,A)

(1/2,1/2)
(1/271/2)

-(-1/2,-1/2) = -g-cosd/2

(-1/2,1/2) = g+sinb/2 = g+w/2

(b) {Ad,xb} = U(d,24)U(b,A))

{1/2,1/2} ={-1/2,-1/2} =Vy_cosd/2

{1/2,‘1/2} =—{‘l/2,l/2} = u+51ne/2=w+0/2

where

_ 172, g g
z,=[(b,+M ) (d,+M )] (
+ 07 b’ ‘Y07 a bytM,  d My

)

- 1/2 g g
Y,=[(b,+M ) (d,+M ) ] (1+
" oty (dgtMy Bo+i, d T

Similar quantities ¢!,y' can be defined for scalar

products involving spin 1/2 particles a,c
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(c) The following products are also useful:

1) de*b= iU (a,x JAU (b, 2,) W, =W__=(a,¥,-qz,)
W, _=-W_,=(-a,y_+qz_)w/2

2) ch =G(d,).) ACu(b A L th NAC- * (e )
Aot ¥ PAp) Wi b CEaunoa€ gglerrg

The 4-vector €l is a spin 1 polarization vector,
It is discussed in Section 6.

L oo 1 , 1 1
= - ' - = ' v,
M++—M__— 3-C+(qc0+q ao)w /3 C+a0q w7§w+qq W

o __.0 _ 1 2

M++- M~ = 5C+qMcw
1

-1_,1 _ 1 — '
M=M= /%C+q°ow72w+qq w

1 -1 1 2, 1 2 -1
M, _=-M_,=Y2Z7_(qc -q'a,)-—— [_a,q'w +——y_qq'w =-M

=T e TR 0 T e 20 2vz -t

o _,0 __
M+_— — qMoc_w
wl=-ml = ¢ g w2y _qq'u?

2V2 2V2

All of these expressions are small angle approximations;

only the lowest powers of ware retained.

6. Specification of spin-1l states is 1in terms of polar-
ization 4-vectors eu(c,Ac) subject to the subsidiary
condition c+e=0 and defined such that

eu(c,k)eu(c,k')=6AA, eu(c,x)ev(c,X)=6uv+—7——
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Refering to the CM coordinates, if
(a) particle c is spin 1

€ (c,+l)=—l[o,cosﬁ,—i,—sm6]

€(c,0) =

o le N

[q',—c051n6,o,—cosel

e(c,_l)=—l[o,cose,-1,-sin6]
V2

(b) particle 4 is spin 1

e(d,+l)=—l[o,-cose,—1,51ne]
V2

e (d,o0) =M£[q',dosin6,o,docosel

Q,

e(d,-l)=-l[o,cose,-1,-sin6]
2

7. For particles of spin greater than 1, we use the Rarita-
Schwinger formalism and construct high spin wave functions
by the'angular momentum addition theorem subject to
subsidiary conditions:

Example: spin 3/2

Uu(d,xd)=<1x1/2i|3/2xd>eu(d,x)u(d,i)
YuUu=0 duUu=0

Expanding, we obtain

Uu(d'3/2)=€u(d’+l)U(dll/2)

U (d,l/2)=—£€ (d,+l)U(d,-l/2)+/z; (d,o)u(d,1/2)
H /3 H 37y A

The other two spinors can be obtained by changing the signs

of the helicities.
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8. We rewrite the propagator % -to make the dependence

M -t
e

on w=2sinf/2 more transparent:

2

M2 (hed) 2ce (b =d )24 (g ') 2aag ! wlem2
M_-t=M_+(b-d) "=-(b,-d ) "+ (q-q"') "+qq'w +M_

now

S=(a+b)2=(a0+b0)2

SO write
(bo=dy) *=75 [2(by=d,) (a +b,) 12
=i——§[(b0—d0)(a0+b0+c0+d0)]2 using a0+b0=c0+d0
=t5( (b=d) (b+d) +(c-a) (c+a) ]
=tsld-mdy+ uZ-m2) )2

which leads to

2

2 21 2 .2 2 2,42 2 2 2
M_-t=M_+(q-q') "-zs[ (Mg~M) +(M_-M_) ] "+qq'w"=qq'e"+qq'w

which defines 62

and gives us [Mz-t]_l=—l7 1 which we use frequently 1in
e qq 52+w2

absorption calculations of OPE diagrams.

One can procede in the same way for u-channel exchanges

to obtain

2 2, 2
Me U aq €u+wu

with

v 2.2 021 .2 2 2 2 .2
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9. For cross section calculations we use
s 4 -1 .
S=1-i(2m) 6(pf—p.)[n(2E.)] M as our S-matrix
1 i 1

and obtain

do__ 1 g' 1 2

dq 64nzs q

z |<Ackd|M|AaAb>|
(ZSa+1)(ZSb+l) spin

and



APPENDIX II

Calculation Details: OME and Modifications for ﬂ+n+wp

In the center-of-mass we arrange the coordinate system

as shown in Figure 30.

be>

Figure 30. Coordinate system for OME calculation
of 7 n-+wp.

Using this geometry we easily write the energy-
momentum 4-vectors of the particles,
a=(a0,O,O,-q)
b=(b0')1)lq)
c=(c0,-q'81n6,0,-q'cose)

d=(d0,q'sin6,0,q'cose)

Application of the Feynmann rules leads to an expression

for the helicity amplitudes M:
<Acxdlmlxb>n n=|(xc-xd)+xb|

£ A
=_TPw 0 C g
W G,20(d,Ag)A N C U(b,Ay)

86
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where Z=[M§-t]_l, fﬂpw is the PVV coupling constant and

GV is the vector BVB coupling constant.

, . _ -1
AU_lYO[nYU+21AndU] A—(Mb+Md)

* (e 1T 14

Nu—euvpcavppeo (c, C) n'= C; =1+n

GT=tensor BVB coupling

e(c,Ac) is the w-meson polarization 4-vector

Expanding and using the center-of-mass vectors a,b,c,d,

we obtain
* * * *
AuNu——AOa3clez+Al(a3c0—a0c3)52+A2[(a0c3-a3co)el-a0cle3

* *
]+A a.c, €

€0172320C1 %2

+a.,c
371
So one can write

L] 1] ]
HiMpA M uGA+A; Mgt

' L or_aH'uLA
<Au‘|M|u> [-ag "ET+A] 5

' —-—
where A% u=U(d,u')AnU(b,u)

It is necessary to calculate only half of the amplitudes
because <-A-u'|M|-u> =—(—)n<ku’|M|u> which comes from
invariance principles. (Inversion of the y-axis 1in

connection with parity conservation gives this relation)

The factors A are easily evaluated:

Ayt = Ay =il-n'y,+20ny_d,)cos6/2
Ag— =—A6+=i[—n'w_+2Anw+d0151ng

AI+ = A;—=i[4Anq'w_coszg—n'C+]sin%
AI_ =-A1+=i[4Anq'w+sin2%+n'C_]cos%
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++__ -, )
A2 = A2 =n c+51n2
+=-_ =+, 8
A2 = A2 =n ;_cos2
++= = ' -n' g
A3 A3 i[2Ang'y_cosb-n §+]cos2
+-___ -+= ] - [ - g
A3 = A3 i[2Ang w+cose n c_151n2
also: E =5—qq'sine=—§—Ht E0=F0=H0=0 G0=—qM sinb
/z 0 ©

=i— -cy'! t: }_ - '
F /E[qco q aocosel G tJE[qcocose ang ]
It is convenient to rewrite all of the angular
factors in terms of w=Zsin2. Then we form the amplitudes

2
as

< ' = =
Au |M|u>n GZAuNu ezi_ X
=n
where the index a numbers amplitudes of a given helicity

" transfer n and

f
e_ﬁ— GV
w
It is now a simple matter to obtain the scattering
amplitudes in a particular model.
l. The Born Term Model (BTM)
Calculate the cross section using the amplitudes
as they stand.
2. Born Term with Form Factor (BTMF)

1

Let Z=(Mi—t)— F(s,t) and calculate using the BTM

expression for the amplitudes.
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3. Reggeized Propagator Model (BTMR)
Follow the procedure discussed in the Regge

Model section; let

| __—ima(t)

7o 2ma’ (£0) (2a(t)+l)§sinna(t)
(2§+1) [T+(')J]

s-1/2 (2wl amlen?) ()71

}

1/2
2Ma (MbMd)
and use the BTM expression.

4, The Absorptive Model (BTMA)

Let DW(x) be the absorptive function. Then,

neglecting terms in w higher than wn+2,

Xu
a b 2= n
= - [
Bn ,[(Xan € Xan)e i xden(wx)kn(ex)DW(x)
qq Jo

n-
+w XanDW(JO)]

n
where we have used the identity _%__f
€ tw

[o o]
=" [ xdx J_(wx)K_(ex).
3 n n
0
In an actual calculation the upper laimit will have

to finite--one simply chooses xu large enough to get most
of the amplitude. J0 is the lowest allowed partial wave:
J0=Max[|AC—Ad|,|Aa_xb|]. The error in this change is

small, This short cut as mentioned already is only good

for modifications to the plain BTM.



APPENDIX III

BVB Vertex Corrections

We consider only the two simplest graphs as

shown in Figure 31.

LEN
\ w
W
. "'\_\‘/
\
¢ hf
!
v AN
n /—F—_\
n P n ¢

Figure 31. Diagrams giving vertex corrections to
NpN point vertex.

Using the Feynman Rules we obtain an expression for the

helicity amplitudes:
f

=2 vvp 1 *
<>‘c)‘dIMp‘ b>—/§CNNPgPPV MC M2_t€uvpoavep€o(c’xc)
Y

U(d,Ad)YSAuYSU(b,Ab)
where

4 2%
- u (—2 .

YT en® el (e Py 1 3G

90
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the following parameterization facilitates simplification

of the integrand;

1
1 1 1 1 1
= dy
3..,2 ,2 2 2 2j 2 2
L +M L -2el+A2 L -2b2.+A3 L +M_ [2 -2epy+Ay]
1
=/ 201-2)8,8, — 1 .
0 ds [2 -2epZ+AZ]
2,2 2 =
Az—e +M =M -t Py—e+dy
A=A, (1-y)+A,y A =b2+M?
y 2 3 3
PZ=Py(l—Z) =by (1-2)+e(1l-y) (1-2)
A =0 (1-2)+M2
2 7y T
Rearranging and using (ipg+M)u(P)=0
we obtain
— (3) = (3) _+ (3) M -
Au— 2AnpL (Mp)+2lYA[LAu (Mn)_LAu (Mp)] Anp_Mb Md
=M_-M
n p
with
4 L 2
L)Ei) (M)=fdsf d 9,4 > H VvV .
(2m) ° [ -2ePZ+AZ]
Léi) contains one finite and one divergent term.

Write l=2'+PZ and obtain

190 ' '
d42' Euiv +2UPZ +2VPZU+PZUPZV
4

2. 2.3
(2m) [2 +AZ PZ]

LUV(M)=fdsf
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The term odd in &' vanishes and the gquadratic term
is divergent (or, more correct, the integral does not

exist). Allowing a liberal interpretation of the rules

for manipulating infinities we write for the 2nd term in Au
4
. ae’ 1 1
2fas8;P ol (2n)4{[2'2+A M_)-p213  [arZen_ M y-p2y? }
2 p z Z' 'n z
recall
Pz=byz+e(1—y)z (have let 2z+1-2)

SO we can write

ﬁ(d)ipzu(b) —Mbyzﬁ(d)U(b)-(Mb-Md)(l-Y)zG(d)U(b)

= -Mgyz =8,n 20 (4) U (b)

Using this expression we obtailn

M3 2 2 2
=93 [} " -
Au ZlbuAnp{Kllyz]+2K;; Kl[y z ]+2Kl[yz 1} ZlbuAnpK[YZJ
with
11'2 B )
Kl[YZ]=————7deZF3(l’Z)M
(2m) P
K! [y%z°]= b fdz ziF_(1,2), -F.(Ll,2), |
1 4 5 7'M 57" M
(2m) n P
K"[y22]= n? fdz z[F,(1,2), -F_(l1,2), ]
4/ 3" M 3" M
1 (2m) n p

(the y integrations have been performed analytically.

Please refer to the discussion of the parameter functions

F.).
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Substituting, we obtain

\ e=27§CZg§—Anp
<Acxd|T|Ab>n=1eZB {Ad’kb}x[yz] c

2_,.,-1
z=[M"-t
(M -t]

A *
B " b N=euvpobuavcpeo(c,xc)
*
=-qq'Jse2(c,A) in CM system
which gives

<0 1/2|T| 1/2>,=0

2
1l W
<1 1/2|T|-1/2> =——6Yy,V K[yz)
0 5 2 ' 24,2

<o-1/2|'r|1/2>1 =0
1 w
<1 1/2|T| 1/2> ==—8y_V ——K(yz]
1 /2 e +w
<1-1/2|T|-1/2>1=<1 1/2|T| 172>,

<1-1/2|T| 1/2>,=-<1 1/2|T|-1/2>,

These amplitudes can be used to calculate cross sections

in the usual way.



APPENDIX IV

Two Meson Exchange in PB-+VB

The relevant diagrams (the simplest) are shown in Figure 32.

{4
* -y r W e —
' | AN
! i T /\\
' .
e Z
n ¢
"\‘f
T. X

Figure 32, Two pion exchange graphs for n+n+wp.

Using the Feynman rules and proceding in the usual manner

we obtain

£
I_ 2 TPpw * = I . e
T =2v2 GNNngﬂprc exvpc axqveo(C)U(d)YSAuYSU(b) g=b-d
1ila—2/7 62 Eﬂﬂﬁe a.q €. (c)0(d)y Ay U (b)
- Nngnanc Avoo Ao Y5ty Vs
il 2/27G2 “row a,r e (d)0(c)ycA Ty Ub) r=b-c
- NNngnand €Exvoo Aty &0 Yshy Vg
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4 e
=A de u

HOPP am ? reanl) [(ave) 221 [(q-e) Sal] [ (b-e) F4uil)

iy ale SETA (L
A em? [e2+M§][(a+e)2+M§][(q—e)2+M§] b-e)2+Mi
S S
(b-e) 2+M2
p

one obtains Ai by the replacement a-»-c in Aﬁ

and AiII by the replacement g-»r in Aﬁ

We rewrite Au and compress it by the use of parameter
1 - 1

f
3+ 3 F R (o)

integrations
to obtain

- (4) . (4) ; (4)

where

4 e, e 1
(4)—fd 'S d e4 5 i T ds'=——pdxdydz z(1-z)
(2m) [e —2ePZ+PZ] (2m)

iP ,=ig2+idyz-ia(1l-x) (1-2)

performing the loop integration we have (using the Dirac

equation to simplify)

L 1 )=ia fas Y2
H P H C (Mp)

iv, L(4)(M) =id fas Y2 ip_+igi ds=n2ds"

r
iy,9, jds=7zv
C2(M) 27727 C(M)
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One can write

ﬁ(d,kd)iPzU(b,AB=-AanﬁU-MpyzﬁU-w s (1-%) (1-2)

*a b

W =iU(4) AU (b)
*ab

Putting all of the terms together we finally obtain

T(d, )YSAIYSU(b A=

npl/as—2— -[asyz? (1+YAP ) (= A
c? (M ) np C™(M)) c? (M )
W
A arp
~r3-L[dsyz (1-x) (1-2) (i) ]
np C(M)C(M)

——U(d,A )Y, U(b,A )fds(énr7 c(M‘))
which we rewrite as

. d"b 1=
1dpAnp{Il-Iz ‘K;;‘ I3}-§U(d,ld)YuU(b,Ab)J

where the definition of Ii and J 1s clear,

Substituting into the expression for TI we finally obtain

A A A
I .o AC kM™ €
<ACAd|T |Ab>=1KB {1 4, b }1- ixpt—2 - L P Y
np np
where BAC-Jqu /——SlnebdGXc ‘1 (1n the CM)
2 'z
g 1=0(d, A U(b, Ay) MM =T(d, A0 Cu(r, A
a At a
s B Xc_
dekb 0(a,hg) Ub,A)) NI%=€ 0029y e (i)
f
K=2/2G° Iy A

np



The integrel J is small than I

but will eventually dominate as s+« since J.s

I.~

-2
i~ .
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17 Iar 13
1

I, for moderate s

and

Performing the y-integration (parameter integral)

analytically we get
2

m 2
I.= fdzdxz (l1-2)F, (x,z)M
1 (2n)4 1 P
TT2 )r 3 M
I.= dzdxz> (1-2) { [F. (x,z)+—L—F_(x,2z)]M }
2 (2ﬂ)4 2 Anp 2
I.= "2 fdzdxzz(l—z)2(l—x)[F (x,2)M -F_(x,z)M ]
3 4 17 n 17/ p
(2m)
TT2
J=

(2m)

Again, there are 12 amplitudes,

the other six via symmetry considerations;

independent amplitude
pl <01/2|T|1/2>, =
0 0

B2 <l11/2|T|1/2>, =
1 1

Bl <0-1/2|T|1/2>, =-
1 1

4fdzdx(l—z)z[F4(x,z)Mn-F4(x,z)MpJ

6 of them obtainable from

the six
s are
0 0
KMl/Z l/ZJ/Anp -5
K - Wi/2 172
——:qq'fsw_w[l—w—-z———— I3]
/2 - np
—xmi 1/2
KMy /2 17297 %np ~S
la, v, -q )
——qu'/éw_wll—‘ 2 Tt I,] .s1/2
V2 v np
ol 1/2
KMy 2 17297 %0p ~S
KMO ~SO

“1/2 1729/ 80p



APPENDIX V

th

4 Order Parameter Functions for Pb-+VB

th

1. All of the 4 order virtual momentum integrations

can be reduced to the form

fds N(::lk'z)
0 C (M)
where
ds = dzdxdy z(l-z)
n = positive integer

N(x,y,z)= polynomial in kinematical variables and x,y,z

and C (M) = A(x,z)y2+B(x,z)y+C(x,z)

M=mf

The 4th order functions Fi(x,z) are the result of

performing the y-integration analytically:

d 1 _2A+B
Fl(x,z) g éix = = - BF4(x,z)M] = Glz(x,z)

olaTe+c

F. (x,2) —jlu = L(-:B22C 4 2cF, (x,2),] = G, (x,2)
21019 _o 62 T~ Q' A+B+C 4\ °M 22 %

F,(x,2), = zzflxgx = Ei[lo A+B+C _ pp (x,2)..] = 226 (x,2)
3\ %2y 5 & A 9——¢ g Xr2Z)yl = 276Gy
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1 - -
Fylx,2)y = ] §¥ = —2{tan"! 2248 _ 4yt B
0 ¢ /9 ) /Q
Fo(x.2) . = zzflzzdz _ 22, B o AtBec | BPo2ac Lo
5 \Xr2iy T = " 2a'“"A “°97¢C A 4\ X120y
1,0
Q = 4ac-B2 G (Xr2) Y-BQL
0 C (M)
N(x 2z) can always be written in the form 2 A xg'ymzp
L Y Lmp " 2mp *
Therefore we write
1 1 m_p . 2
[las MEL2) o eyl o BXE - g idstaPo ey,
0 C 0 PR oM (M) Po
It is usually necessary to perform the x,z integrations
with help of a computer.
2. The denominators C (M)
There are three topological diagrams to consider
as shown in Figure 33.
W W
G --— ¢ & - > ¢ O——- ¢
| ! N N &1
el ;3 //\\ e’ kh
b - L b S Lov —
T L o

Figure 33. Configurations for two-meson exchange
graphs for ntn-uwp.
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(a) EI(x,z) = AI(x,z)y2+BI(x,z)y+CI(x,z)
AI(x,z) = Mgz2
Bl (x,z) = (Mﬁ—Mé—t)zz+(Mg+Mi-s-t)z(l—z)(l—x)—(Mé-t)z

clix,z) = t22+(M§—Mi+t)z(l—z(l—x)+(M§-t)z

+L2-M2) (1-x) +M2x] (1-2) +M2 (1-x) ® (1-2)
(b) EII(x,z). Detailed examination of diagram II shows
that exchange of a<->-c in I will give II
This leads to ‘
AII(x,z) = M7z

2

II _ 2_2_ 2 2 _ Loy (M2
B 7 (x,2z) = (Mb Md t)z"+ (s Mc M7)z(1l-2z) (1-x) (Mg t)z

(oY N

CII (x,2) t22+ (Mz—Miﬁ-t)z(l—z) (l‘X)+(M§—t)z

+[(M§—Mi)(l—x)+M§x](1-2)+M§(l—x)2(l—z)

(c) EIII(x,z). Similarly we get III from I via t-»u and
keeping labeling defined as in I (remember c,d masses

interchanged here)

This gives (alternatively: wuse I with
6=6bc instead of ebd
AIII(x,z) - M222
d
III _ 2_ 2 2 2,2 _ L (w2
B (x,2) = (Mb Md u) z +(Mb+Mc s-u)z(l-z) (1-x) (Mg u) z
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2
d

II

C I(x,z) = u22+(M§—M +u)z(l—z)(1-x)+(M§-u)

+[(M§—M§)(1-x)+M§x](1-z)+M§(1-x)2(1-z)2

Remember that only two of s,t,u are independent variables
because of the relation

2
1

2,2 .2 2
= Z =
s+t+u 1M Ma+Mb+Mc+Md

we use s and t

3. Energy Dependence

We use s and t as the independent variables.
Examination of the denominator polynomials CI(M), CII(M),
CIII(M) gives us the s-dependence of the functions Fi'II'III

at fixed t.

(a) Graphs I.

AI(x,z)\s0 BI(x,z)~s CI(x,z)~s0 *Q=4AC—BZ~52
So we conclude

I -1

F4(x,z)~s
(b) Graphs II1. Same as Graphs I.
(c) Graphs III. AIII(x,z)~s0 BIII(x,z)~s CIII(x,z)~s
*Q~a52+bs

and therefore

FIII(x,z)~S_1 so FIII(x,z)~s-2 FIII(x,z)~sO

4 1 3

FIII(x,z)~as“2+bsm3 FIII(x,z)~sl

2 5
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(d) Vertex Corrections (BVB) The Diagram for this correction

is shown in Figure 34.

O
¢
\\
)h
e
/’*ﬂ\
b d
Figure 34. Configuration of NeN-vertex correction
graphs for mn-wp.

0 0

Since AI(l,z)~s ’ BI(l,z)~s ’ CI(l,z)~s0,
we conclude that any energy dependence vanishes from the
F's at x=1:

I 0
Fi(l,z)~s ’

and therefore, that the triangle loop cannot change the

energy dependence relative to the simple BTM.,






