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ABSTRACT.

WEIGHTED EMPIRICAL-TYPE ESTIMATION
OF THE REGRESSION PARAMETER

By
Mark Allen Williamson

We consider three estimators for the slope parameter 8
in the simple linear regression model, each of which is based on
the minimization of a statistic for testing HO: B =0 versus
the alternatives Hy: E# 0. The statistics include a Cramér-
von Mises statistic and its rank analogue, and the Kolmogorov-
Smirnov statistic.

Invariance and symmetry properties of the estimators are
studied for finite samples, and their asymptotic distributions are
derived. The Cramér-von Mises-type estimators are shown to be
asymptotically normal, while the asymptotic distribution of the
Kolmogorov-Smirnov-type estimator is expressed in terms of func-
tionals of a Brownian bridge. _

The Cramér-von Mises-type estimators are compared with some
common estimators of B by an examination of asymptotic variances
at various underlying distributions. Comparisons for the Kolmogorov-
Smirnov-type estimator are made via a Monte Carlo study and by
comparing asymptotic upper bounds for the lengths of associated con-

fidence intervals.
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INTRODUCTION AND SUMMARY

1. The Model. Consider the simple linear regression model
Xai = Bp ¥ BChi * €y 1 < i <n, where Ch1 < Cp2 S22 Cpp Are
known constants, not all equal, BO and B are unknown parameters,

and the ¢ are iid F for F an absolutely continuous distribu-

ni
tion. We regard 60 as a nuisance parameter and consider three
methods for estimating B.

Throughout this paper we will, for the sake of convenience,
suppress the dependence of 'ﬁxni}, {Eni}’ and '{cnil on n. The
vectors (c],cz,...,cn)' and (x1,x2,...,xn)' will be denoted by
¢ and X, respectively, d;, 1 < i <n, will denote the centered

2 _on 2
; ¢ = Lj=7 4j- Furthermore, many of the

c;'s, and we will take o
statements made are true w.p. 1, even though it may not be stated

explicitly.

2. Cramér-von Mises Type Estimation of B; the Rank Analogue.

As given by Hijek and Sidék (1967, p. 103), the rank analogue of
the Cramér-von Mises test for Ho: B = A, where A 1is a given

constant, is based on the statistic

_a.n 2
where R ., is the rank of X, - Ac; among {Xj - B¢y, 1<Jj<n}

Since H0 is rejected only for large values of M](A), it seems

1
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reasonable to attempt to define an estimator 3] for B based on
the minimization of M] in A.

In section 1.1 we propose a unique definition for such an
estimator and give a numerical example to illustrate its computation.
When so defined E] is translation invariant and has a distribution
which is symmetric about the true parameter provided the underlying
distribution is symmetric or the centered regression constants are
skew-symmetric (section 1.2). Section 1.3 contains intermediate
results which are used to derive the asymptotic distribution of the
normalized estimator in section 1.4. Finally, in section 1.5, we
consider the asymptotic efficiency of §]. With asymptotic variance
as the basis for comparison, §] performs remarkably well against
some common estiﬁators for B, particularly when the underlying dis-
tribution has heavy tails. Comparisons are made with the Wilcoxon,
median, normal scores, and least squares estimates at the normal,
double exponential, and logistic distributions. At the double
exponential, §] out-performs all of the above but the optimal
median-type estimator. Similarly, at the logistic, only the optimal
Wilcoxon-type estimator is more efficient. At the normal, ﬁ] beats
only the median-type estimator, but shows only a slight loss of

efficiency against the other estimators.

3. Cramer-von Mises Type Estimation of B. We base our second

estimator on a statistic which is similar to M] of the previous
section, but which uses the observations themselves rather than

their ranks. Here we consider the process
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n
MZ(A) = fmw[ ) dil(xi - Ac._gx)]zdx, A € R,
4= !

and seek to define an estimator 52 for B based on the minimiza-
tion of M2 in A.

In section 2.1 we propose a unique definition for such an
estimator and give a numerical example to illustrate its computation.
So defined, §2 possesses invariance and symmetry properties
analogous to those of §] (section 2.2).

When specialized to the two sample location problem (i.e.,

=...=c.=1;1<m<n),

Cq =Cp =...=Cp = 0; Cnl = Cme2 n

My(8) = o /7=l ) I(X < x +8) - % 7 1(X; < x)12 dx.
=] i1

Thus oEMZ(A) represents the squared Lz-distance between the
empirical distribution of one sample and a shifted empirical distribu-
tion for the other sample. Fine (1966) showed that in this situa-
tion the Wilcoxon-type estimator éw for B satisfies Mz(ﬁw) =
_wlz:w M,(8). This raises the question as to whether ﬁz = §w in
general. In section 2.1 we give an example which shows that this
is not the case. It is true, however, that the two estimators are
asymptotically equivalent, as shown in section 2.4.

It should also be noted that §2 is related to the weighted
median estimators for B considered by Scholz (1978). In section
2.1 we show that

- d)].
1< <in 3

The (a.e.) derivative of M, is



where n is a constant which is independent of A. This statistic
is analogous to that upon which the Scholz estimates are based. We
remark that the weights -d,idj(d:j - di)’ 1 <1< j<n, satisfy the
Scholz optimality condition and that oc(§2 - B) achieves the
minimal asymptotic variance for his class of estimators. Our re-
sults do not follow from Scholz's work, however, since the weights

here need not be nonnegative.

4. Kolmogorov-Smirnov Type Estimation of B. Since the Kolmogorov-

Smirnov test for HO: B=A, A fixed, is based on the statistic

n
D (A) = ‘sup d.I(X; < x + Ac;)]|,
c -m<x<w|1§1 it - i |

with small values of DC(A) favoring Hg» we seek to define an
estimator §3 for B which satisfies

D (B,) = inf D_(a) .

c'\"3 —ocjw

We note that when specialized to the two sample location

problem
- 'I n -l m
D.(a) = sup WML L ¥ p(x.<x+4)-= T I(X; <x)|,

which is a constant multiple of the sup-norm distance between the
empirical distribution of one sample and a shifted empirical dis-

tribution for the other sample.



In section 3.1 we propose a unique definition for §3 and
illustrate its computation with a numerical example. So defined,
53 agrees, in the case of the two sample location problem, with the
estimator of location proposed by Rao et al. (1975).

Section 3.2 establishes that the invariance and symmetry
properties enjoyed by §] and §2 are valid for §3 as well.

The asymptotic properties of §3 are discussed in section
3.3 where it is shown that the asymptotic distribution of the
normalized estimator can be expressed in terms of functionals of a
Brownian bridge.

In section 3.4 we consider 100(1-a)% confidence sets for

B of the form
{85 D (8) <y, al

where Ye.o is the critical value for which one rejects HO: B=A

whenever DC(A) >y We derive asymptotic upper bounds for the

c,a’
lengths of such intervals, both in probability and w.p. 1.

Finally, in sections 3.5 and 3.6, we consider the efficiency
of §3 and the associated confidence intervals. Comparisons are
made for §3 versus 31 and ﬁw via a Monte Carlo study, while
the confidence intervals are compared to normal scores and Wilcoxon-

type intervals using the upper bounds of section 3.4.



CHAPTER 1

CRAMER-VON MISES TYPE ESTIMATION
OF B; THE RANK ANALOGUE

1. Notation and Preliminaries. To the assumptions of the model

introduced in section 1 of the introduction we add the following:

(1.1) F has a continuous bounded density f satisfying
f(x) >0 a.e. on {x; 0 < F(x) < 1}.

1
max |d;| = 0.
mwo  © 1<izn !

(1.2) lim o

In what follows let the vectors ¢ and X be given and
define the quantities B = /°_ 2(x)dx and K = 7 £3(x)dx. For

each real A and for each t € [0,1] define

S(t,a) := .E] dil(R < nt)
i=

niA
where

n
Rnia = jZ]

We also define, for each real A,

W (8) := fg S(t,A)dt

and note that
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-1 N
w](O) =.n

d;R
i 1

1 ni0 °

Next consider the process
{M](A)s - < A < =}

where
My (8) := fé s2(t,8)dt .

If we let (D ) denote the vector of anti-

nlA’DnZA""’DnnA
ranks for (X - Ac)', it is interesting to note that

-1 j
-2 -1-2" 2
oM (0) =n"'0f TL) d, 1°.
¢ € j=1 =1 Pnio
This is the Cramér-von Mises statistic (Hajek-Sidak, 1967) for test-
ing the regression slope parameter B = 0 against the alternatives
B # 0.
For a fixed sample, M1(A) is a step function (in A) whose

points of discontinuity are contained in the set
I ='{(Xj - Xi)/(cj - ci); i<j and ¢4 < cj}.

Set AO = min{A; A € r]} and 6 = max{A; A € r]}. Then for
Ci < C4s A < implies A < (xj - Xi)/(cj - ci) and hence

R Thus the residuals {X; - Ac;, 1 <1 <n} are

nia < anA‘
naturally ordered and therefore (w.p.1)



.E d, for te[%,%}h 1<J<n-l

i=1 !
S(t,n)
0 for t e [0, %J u {1}.
Hence,
..] J
12 S L 2
Mia) = 7o S%(t,a)dt =n"" § [ ) d;]
j=1 i=1
and thus
M, (An) = [ Z d; ]
1'% JZ i1

Similarly, for A > Bys the residuals are in a reversed natural
. n _
ordering. Us1ng_ Iiq 45 = 9 one obtains M,(a) = ZJ=] Z -1 9 12
+
As A crosses g only one pair of adjacent residuals cross.

Let Sk < Skl denote their respective regression constants. Then

-] 1
L f 2
[} d.3
jZI j=1 1

My (ag) - My (8g)

n- { [ d.1° + [d + d.J1"}
=1 1 k+1 §=1

i
J#k

A, K2 ksl 2
n {[121 d;1° - [dy g + .21 d;1%}.
= 1=

and Ck < Crel imply

E . k§1
d. <d ..+ d. < 0.
=7 1 kt1 7 42y 1 =

Thus M, (ag) > M](AS). Similarly it follows that M1(A;) > My (87).



As a result, the following quantities are finite:

s: min{s € I3 M (s*) = inf M (A))
Aerf

B:* = max{s € Iys M1(s') = inf M](A)} .

c
€T

We now define our estimator E] for B by

A

_ * sk
B'l ‘;E(B'l"'B] ) .

Numerical example

By the preceding remarks we may determine the value of §]
by identifying the set of slopes Ty and computing M](A') for
each A € Iy Computation of Ml(A) is facilitated by using the
formula

=_-‘I -
(1.2) M, (8) = -n ]<i§j<n did5|Rosp - Rosal -

We consider here a two-sample problem; that is, we take

C; =¢C = 0 and C3 =Cp =Cg=Cc= 1 for the data

160, -26, 17, -150, -30, 12.

TABLE 1
Values of M](A') for A€T,
A€ET -310 -190 -148 -143 -124 -4 38 43
M](A-) .6296 .3519 .1852 .1296 .1852 .1296 .1852 .3519
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From the above table it is clear that
* _ *% _
B-l - -]48’ B-l = "4
so that 31 = -76.

2. Finite Sample Properties

(a) Invariance
A useful property of the estimator §] is its translation

invariance; that is, for all real v,

(2.1) Bi(X + ve) = By(X) + .

To verify (2.1) we note that

My (8 - Y)(%)

1, 0 n | )
f°{1§1 d"IEjZ1I(XJ' - (8- v)e5 < X5 = (8 - ¥)ey) < ntl}7dt

1,70 n )

My (8) (% + v2).

Thus for all real vy

s*(5 +yc) = min{s € T + v; M(s*)(X + yc) = inf c Ma)(X + ve)}
AE(T+y)

min{s € T+ v M((s - )")(X) = dnf M2 - Y)(X)}
2€(T+y)

min{s + y; s €T, M(s+)(5) = inf, M(a)(X)}
A€T

8 (X) + v.
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%%

Similarly, B**(l +yc) =B (X) +y for all real v, and (2.1)
follows.

From (2.1) we conclude that

A

(2.2) Pa(8 -8 <2)=Py(B<2),

for all real 1z, where P8 and PO indicate that the true parameter
is assumed to be B and 0, respectively. Because of (2.2) we may
assume throughout the rest of the paper that B = 0 without Tloss

of generality.

(b) Symmetry

Theorem 2.1. é is symmetric about B8 if one of the following con-
ditions hold:
(i) F 1is symmetric

(1) dy = -dp 4y

1<1i<n.

Proof. Assume, without loss of generality, that g = O.

Proof of (i). Since for any real number a, M](A)(g) = M](A)(z + al),
we may assume that F is symmetric about 0 without loss of generality.
Now X ~ -X so that @1(5) ~ é1('5) and hence it suffices to show

that B,(-X) ~ -B,(X). Let @ = {a; X,

j- Xi = A(cj - ci), some

1 <i<j<n}. Then for A€ oS,
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]
nes-13

J=1

"
ne-13
-

; I(Xj + ch > X5+ Aci)

n
nes-13

{1 - I(xj + Acy < X5+ Acy)}

J=1

+

Nt~

I(Xj + ch = X5+ Aci)

j=1

=n+] - Rni(-A)('x') .

Using (1.2), (2.3) and the fact that @ = Iy w.p.1, we have (w.p.1)

M (-8) (%) = =0T T dgdgIRyg () (R) = Ros () (B)

i<

-1
-n 1§j djdj|Rn1A(‘Z) - anA(‘l)l

My (8)(-X)

for A€ r?. But this implies that él('l) = -31(5), completing the
proof of (i). O
Proof of (i1). Let X denote (X ,X 1,...,%)'. Since =0

we have X ~ 5f and hence El(x) ~ 31(E*)- We show that
A * A
B'l (x ) ~ "B] (K) . Now

n
)

*
R . (X))
nia j=1

* *

n
Z] IXpo541 * Bn_gu1 < Xnojur * 800 44)

J

Rn,n-i+1,-A(5)’
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ThUSa

* n
S(6,8)(X7) = T IR, 1 say a(¥) < nt)

i=1

i dn-'i+'II(Rn,n--i+]’_A(l) < nt)

nes-1

1

=S(t,-a)(X).

It is now clear that M](A)(x*) = M](-A)(l) so that §1(l*) = -é](g).
Since 5* ~ X we have E](g*) ~ -§](5) and the proof of (ii) is

completed. O

3. Asymptotic Behavior of M](A). Throughout this section we re-

tain the notation of section 1 and assume that (1.1) holds. The

following theorem is proved as in Koul (1977).

Theorem 3.1. Let 0 < a < «. Then

P
(3.1) sup_ o7 [S(t,07") - 5(t,0) - a0 F(F(t))| %0 .
o<t<l © ¢ ¢
|a]<a

A consequence of the above theorem is

Lemma 3.1. Let 0 <a <= and T](A) = fé[S(t,O) + Aocf(F'1(t))]2dt.
Then

(3.2) sup o 2|M,(ac"') - T,(a)] Sy
|A|§§ C 1 (o 1 ?
| p
(3.3)  sup o ?Wi(a]") - (sIS(,0) + a0 F(FT(t))1dt)?] 0 0 .
Alf.a Cc C (o
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Proof. To establish (3.2) we note that

(3.4)  sup oZ'[S(t,0) + Ao F(FT'(t))] <o

|2]<a
O<t<l

sup |S(t,0)| + allfll .
O<t<1

But o-]

c .Sup |S(t,0)| is the Kolmogorov-Smirnov statistic which
<t<] .
has a 1imiting distribution (H&jek and Siddk, 1967). Thus the LHS

of (3.4) is bounded in probability so that in view of (3.1)

P
sup o77|S%(tuao])) = [5(t,0) + a0 F(F7' (1)) »0 0
|a<a © ¢
O<t<1
and (3.2) follows.
To establish (3.3) we note that
-1 R -1 Po
(3.5) sup o, Iw](Aoc ) - IO[S(t,O) + Aocf(F (t))idt] -~ 0

|a]<a

follows from (3.1). We also have (recall B = f:”fz(x)dx)

(3.6)  sup o |/orS(t,0) + Ao F(FT1(t))1dt| < o- ' |W,(0)] + aB.
|A|<a Cc 0 Cc C 1

But -o;‘w1(o) is the Wilcoxon statistic and hence has a limiting
distribution (Hdjek and Siddk, 1967). Thus the LHS of (3.6) is
bounded in probability so that (3.3) follows from (3.5). O
For fixed 0 <a <o and 0 < d < », define the event
_ =22 . “2,2,, =1
En](a,d) = {0, N](O) < d, IAT:a O w](Acc ) >d} .
Lemma 3.2. For every e > 0 there exist positive real numbers

N,a and d such that whenever n > N,
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Po(Eqq(@:d)) 2 1 - €.

Proof. Since o;]N](O) has a limiting distribution, there exists

& positive real number b such that
Polos! W (0)| $bI2T-e¥n.

If we also take d > 2b2 and choose a so that

a> b+ (3d/2)2B! we have

o-2W2(0) < b2 < d/2
c 1 -
and

inf ocz(IAES(t,O) + to F(F71(t))1dt)?

|4]=a

= min{(c} ', (0) - aB)?, (o] ',(0) + aB)?}

> (aB - oZ' [ (0) )% > (aB - b)? > 3d/2

on {c;1|w1(0)| < b}. Choosing N according to (3.3) completes
the proof. O
Lemma 3.3. For every € > 0 and d' > 0 there exist positive real
numbers a and N such that n > N implies

PO(IZTgp oA (ael) > d) 21 - €
Proof. 1In the proof of lemma 3.2, take d > max{d',2b2}. The proof
is completed by using the fact that N] is nonincreasing in A

(Hajek, 1969, p. 35). O
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4. Asymptotic Distribution of océ]. Throughout this section we

retain the notation of sections 1-3 and assume that (1.1) and (1.2)
hold. In addition we assume, without loss of generality, that
B = 0.

Lemma 4.1. For 0<t<1 and n > 1 define

ap(i,t) =0 i< tn
=1i-tn th<ic<tn+1
=1 th +1 <1
Then the process
-1 "
{z,(t) := o, izl dian(Ri’t)’ 0<t<1}

converges in distribution in (B, C[0,1]) to the Brownian Bridge
{B(t), 0 <t <1}

Proof. Héjek and Siddk (1967), Theorem V.3.5. O

Remark. {Zn(t), 0<t<1} is a process with continuous sample
paths which is related to {S(t,0), 0 <t < 1} 1in the following

manner:

sup_ [Z,(t) + 0'S(t,0)] <o max |d,].

|
0<t<1 ¢ 1<iz<n !

For y a bounded integrable function on C[0,1] define

h(y) = Krg y(t)F(F™T(£))at

where K = f° £3(x)dx.
Note that since h 1is a continuous functional on C[0,1]

we have
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Lemma 4.2. Lo(h(Zn)) =>N(0,o$) where

of = K'z[fé Gz(t)dt - (fg, G(t)dt)2]

and
t -1
G(t) = o f(F '(s))ds, 0<t<1.
We now define
o B, := -h(o_s(-,0))
c’1 ° c ’ *
For 0<b<a and p > 0 define

G q(asb) := {[o §1| <b, dinf o M(a) > dnf _; My(8)}

|a]|>a0 |a|<ao
c Agr ©

-2 2
H .(a,p) := { sup _y 0 "|M (a) - T,(a0_)| > Ko®/2}
nl |A|§_aoc] (o 1 1 Cc I

.= 2.1 . c = i
8.q(a) := sup{o [By - By| : By € Ty, My(Bg) = |2\.T£ao'1 M ()} .
ner; ©

Lemma 4.3. lLlet ¢ >0 and 0 <b < a. Then
Po({An](a) > e}l N Gn'l (a,b)) + 0.

Proof. Suppose there exist y and p positive such that
Po({An1(a) > 20} N Gn1(a,b)) >y for infinitely many n. By (3.2)

there exists an N > 0 such that n > N implies
PolHyp(2:0)) < v/2

and hence
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Pol{Bny(a) > 20} N G 1(a,b) N HE (a,0)1 > v/2 .

Since the above event is contained in {An1(a) > 20} N Gn](a,b),

we can find for any given X € {An](a) > 20} N Gn](a,b) n Hﬁl(a,p),

1

* c - -1 AP 2 *
a A €eryn (-ac ', ao,, ) satisfying IB] - A]I >p and

c
*
(4.1) My(a7) = dnf M (a) .
|A|<aoc

Because we also have X € Hﬁ](a,p) it follows that
-2 * * 2
(4.2) 0. IM](A ) - T](UCA )| < KoS/2 .

Noting that T](ocA) is quadratic in A with leading coefficient

Koﬁ and minimum occurring at A = §1, we conclude that
-2 * 2 2
(4.3) O [T](ocA ) - T](ocB1)] > Ko

1

¢ A * . c - -1
rom IIS.l - A | >p. Since for any A € ryn (-aoc » a0, ),

o2 My (8) - T,(Bi0.)| < o2 (M (8) - T, (80,
-2 2 2 2
+ 02T (00,) - Ty(Byo )| < ko? + [Ty(80,) - T;(Bro ) |,

by the continuity of Tl in A there is a A** € r?

1

- -1
n (-aoc » a0, ) for which

(4.4) o2 M (™) - Ty(Bro )| < KoPr2 .

But combining (4.2) - (4.4) we see that M](A*) > T](ocA*) -
Kp2/2 > T](ocg]) + Kp2/2 > M1(A**), contradicting (4.1). 0

2
Lemma 4.4. L0(0c61) ='N(0,o]).
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Proof.

lo By = h(Z,)] = [n(o7's(+,0)) + h(Z,)]

< KUIFILsglo7S(8,0) + Z,(t)]dt < (Ko )T IFll, max |d,] ~ O.

<'|<n
A 2
Thus LO(GCB]) =-N(0,o]). a

Lemma 4.5. Given € > 0 there exist positive real numbers a,b

and N with a>b such that n > N implies

Proof. Since océ] and ogle(O) have limiting distributions there

exists a positive real number b such that
3 -2
PologlByl < b, 0 "M (0) < b1 > 1 - €/2

for all n. Taking d > b and noting that M](A) Z_N%(A) by the
Cauchy-Schwarz inequality, it follows from lemma 3.3 that there
exist a>b and 0 < N < » such that

inf -1 o MI(A) >dl >1-¢€/2

Pal
0 [Al>ac

for n > N. But then

-2 -2

o-2M,(0) > inf _y o=2M. (a)

c 1 |A|<BGC] c 1
AEP]

implies
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A -2
PolGn(2sb)] > Polo |B| < b, o “M;(0) < b,

IZTf O (8) 2 dI 21 -k 0
>ao
- C

Theorem 4.1. Lo(ocﬁ]) + N(O,c?).

A a P
Proof. We prove that oclB.l - 611 -0 0. The theorem them follows

from lemma 4.4. Let € >0 and 6 >0 be given. By lemma 4.5
there exist positive real numbers a,b and N1 with a > b such

that

PolGyp(asb)1 > 1 - 6/2 ¥ n >N,

Now use lemma 4.3 to choose N > N] such that

Pol{8,1(2) > €} NG (ah)) <8/2 ¥V n>N .

Then for n > N we have

e > suplo |8y - B,| : M (By) = inf _ M (a))
A R N
AGI‘]c

~ A ~ * a
= suP{UCIB] - B]I : M] (B]) = 12; M](A)} Zlioc[ls] = B]I
*% [ A a
"'IB] 'B]IJZUCIB]'B]I

on the event {A ,(a) <€} n G (a,b). Since PO(EA"1éa) < e}
nG.,(ab)) >1- 8, we have established °c|61 - §1| 0. 1

5. Asymptotic Efficiehcy of 81. We define the asymptotic

efficiency of 31 relative to any other estimator B of B as

A

the ratio o%/o2 of the asymptotic variances of ocB and océ.
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The following tables indicate that B] does quite well relative to
some common estimators for B when the underlying distribution has

heavy tails.

TABLE II

Asymptotic Variances of Various Estimators for B

2 2 2 2 2
W 9 M °°-1 OLs
D. Exp.  1.333 1.2 1 /2 = 1.5707 2
Logistic 3 3.0357 4 T =3.1416 N%/3 = 3.2899
Normal /3 = 1.0472 1.0946 1/2 = 1.5707 1 1
TABLE III
o%/o2 for the Variances in Table II
2 2 2 2
%W M % -1 °Ls
D. Exp. .90 1.20 .7639 .6
Logistic  1.0119 .7589 .966 .9227
Normal 1.0453 .6969 1.0946 1.0946

Computation of o%, o? can be computed from either of the formulas

(5.1) of - K'ztf}, 62(t)dt - (f(]J 6(t)dt)%3

where G(t) = fg f(F'1(s))ds, 0<t<1 or

(5.2) c% = K'sz[F(x) A F(y) - F(x)F(Y)]fZ(x)fz(y)dxdy .
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For F double exponential or logistic, (5.1) was used
since f(F'](s)) is easily obtained.
For F = ¢, (5.2) implies that

o3 = (4m) TKZELa(X A Y) - 0(X)o(Y)]
For X and Y independent N(0,.5). One then uses the fact that
E®(X A ¥) = P(Z, <0, Z, < 0)

where (Z],Zz) has a bivariate normal distribution with
E(Z;) = E(Z,) = 0, 0%(Zy) = 6°(Z,) = 3, and o(Z;,2,) = 2.



CHAPTER 2.
© CRAMER-VON MISES TYPE ESTIMATION OF B8

1. Notation and Preliminaries. To the assumptions of the model

introduced in section 1 of the introduction we add the following:

(1.1) F has a finite mean and a continuous density f satisfying
J fz(x)dx < o,

(1.2) H(w) :

J F(w + x)F(dx) has a positive derivative H'(0)

at w=20.
(1.3) limo]' mx |d;] = o.
N 1<i<n

(1.9) o I ldidjl(dj-di)2=0(1) as n -

i<
n n

(1.5) no;6 121 jzl dyd;(dy - di)]z =0(1) as n -+ o.

We retain the notational conventions of breceding sections

and define the additional quantities

dij = -d,idj(dj - di)’ 1 i 1, j in .

d}. = max{0, d..} 1<i,j<n
1j maX 9 .iJ' 9 __1’ J -—
d1.j = max{0, 'dij}’ 1<i,j<n

23
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+ -4 +
K =0 Z d -(d- - dO)
n c i< i3t i

Fa
n

- -4 -
o' ¥ d;.(d, - d
n c i<j 1 J

) .

i

Remark. Note that (1.4) implies that K: + K; remains bounded.

Furthermore, both (1.4) and (1.5) follow from the more common

assumption

(1.6) /Aol max |di| =0(1) as n+e

1<i<n
since

-4 2, -4 2

o |d.d,|(d, - d.)° < 40" max d° |d.d,
-2 2 2 2
<48 ° max df /] d7 ] d
=% qcian W i<y Vg I
5_4nc:'2 max d? = 0(1)

1<i<n

and

-6

n n
-6 2.2 2

no.> } )} didi(d; - d;)° < 2no
c i°3Y3 i c 1<i<n

i=1 j=1 i<

< 8ino % max d21% = 0(1) .

In what follows let the vectors ¢ and X be given.

each real A and each real x define
n
U(x,A) = izl d;I(X; < x + Acy)
and consider the process

{Mz(A)s - < A< °°}

2
max dj ] |dgdyl(dy -

2
d;)

For
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where
My(8) = 5% UP(x,A)dx .

Recall that in the case of the two sample location problem,
MZ(A) is a constant multiple of the squared L2-distance between two
empirical distribution functions. Thus we are led to estimate B8
in the general regression problem by attempting to minimize the
quantity MZ(A) in A. To this end we investigate the properties
of M2 as a function of A.

Taking Xi(A) = X; = Acy and using the identity

2 max(a,b) =a+ b+ |a-b|] we see that

() m )
X (a)
= n
] 121 JZ] dd 73 fmax(xi(A),xj(A)) 1 dx

-121 Jz d max(xi(A), xj(A))

- d.d.|X: - X, - A(d: - d.)].
1§1<j§n13|j § 7 80d5 - dy)]

It is immediate from (1.7) that, for fixed X and ¢, MZ(A) is
piecewise linear in A and that any changes in slope occur at

points contained in the set
= {(X; - X))/ - )i T<i<j<n and ¢ < csh.

Now consider the set
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A = {A; MZ(A) = i:f Mz(s)}.
If we establish that
(1.8) Tim MZ(A) = 4o
|8 [+
it will follow from the piecewise linear nature of M2 that A s
a nonempty subset of TI,. It can be seen from (1.7) that the slope
of M,(a) is ) d;d.(d; - d;) for A <minT, and
2 1<i<j<n 153V i 2

- ) didj(dj - di) for A > max I',. Computations similar to
1<i<j<n

those of (1.7) yield
00 2
- d.d.(d; - d;) =/ [Zd.I(x>c;)]° dx .

Since ¢y < ¢y <...<c, and the c,'s are not all equal, dy # 0

n
and there is a K < n such that dK # dy. Let K* denote the

first such K. For x between S and ¢ , we have
K

[ diI(x 2 ¢;)3% = (K" - 1)2df > 0.

Hence

- d.d;(d; - d;) >0
'lggjin I i

This establishes (1.8).

We now define

By = ave(A).

Remark. In the two sample location problem
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B, = med{X; - X;3 1<, §<n, ¢ =0, c5=1

A regression example

That 32 need not agree with the Wilcoxon estimate éw in
the general regression problem is illustrated by the following

example. Here we consider the sample
-1, -2, 10, -3, 15, -28

with the weights ¢, =i, 1<1i<6. As' was indicated earlier in
this section, we can determine §2 once we have computed n']Mz(A)
for each A € rz. To compute ﬁw. it suffices to calculate nN](A')
for each A € Iy (Adichie, 1967).

TABLE 1
Values of n']MZ(A) and nw](A') for A€T,
pET, My (a) Wy (a)
-43 454.3333 17.5
-13 93.0833 16.5
-12.6667 89.0972 15.5
-12.5 87.3125 12.5
- 6.5 18.0625 10.5
- 5.4 10.8667 6.5
- 1.0 27.9167 1.5
- .6667 28.7917 .5
- .5 29.4375 -2.5
2.5 42.5625 -4.5
4.0 49.8750 -6.5
5.5 64.6875 -10.5
5.6667 66.1944 -12.5
12 137.7083 -15.5
18 203.9583 -16.5
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Here we see that

By = -5.4; Bw = -.6667 .

Although §2 and éw may differ for any given finite sample, as
the above example illustrates, we prove in section 2.4 that

converges in probability to 0.

2. Finite Sample Properties

(a) Invariance. A useful property of the estimator §2 is its

translation invariance; that is,
(2.1) ﬁz(l +Yg) = 32(5) +y for all real y.
To verify (2.1) we note that

MZ(A - v)(X) = -izj didjlxj = xi - (4 - Y)(dj = d1)|

-izj didjl(xj + YCj) - (xi + Yci) - A(dj - di)l

My(8) (X + vg).

Thus A(X + vc) = {a + v; a € A(X)} from which (2.1) follows. As

a result of (2.1) we have
(2.2) PB(§2 -B<z)= P0(§2 < z) for all real z.

(b) Symmetry. We assume, without loss of generality, that B = O.

Theorem 2.1. §2 is symmetric about B if one of the following

conditions hold:
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(i) F 1is symmetric
(1) di = -d__

Proof of (i). §2(5) ~ §2(-§) follows from a proof similar to that
of theorem 1.2.1. Using (1.7) one obtains M2(-A)(5) = MZ(A)(-g)
and hence A(-X) = -A(X). Thus B,(X) ~ B,(-X) = -52(5), completing
the proof of (1).
A A *
Proof of (ii). As in the proof of theorem 1.2.1, 82(5) ~ 82(5 )
* *
where X = (Xn,Xn_],...,X])'. From (1.7), MZ(A)(g ) = MZ(-A)(X)
* A * A
and hence A(X ) = -A(X). Thus 62(5 ) = -82(5) and hence

32(5) ~ 32(5*) = -§2(5), completing the proof of (if).

3. Asymptotic Behavior of MZ(A)‘ Throughout this section we re-

tain the notation of section 1 and assume that (1.1) through (1.4)
hold. Assume, without loss of generality, that B = 0. For con-
venience we introduce the following additional notation; for

-o < A <o define

+ - + - .
To(a) = -iZj dig1(X5 = X; < 84)

() = ]

d..-I(X - X f_A. )
Ly Gatly - Xy < 84

T,(8) = Ty(a) - T,(a)
+ _ -
Vi(a) = 1§j (didj) I(xJ - X, 5A1j)(xj - X3)

- +
vVi(a) = 1Zj (didj) I(X:i - X,i S-Aij)(xj - Xi)

v(a) = v¥(a) - v (a)
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where

) .

A.- = A(dj - d1

1J

Remark 3.1. In terms of the notation introduced above, we show

that for A € rg
M,(a) = My(0) - 20V(a) - V(0)] + 2aLT,(4) - T,(0)]
+ 28[T,(0) - E4LT,(0)1] .

Proof.

i<j J

- T dyds(x5 - x;) + 2

d.d.I(X: = X: < Az )(X: = X;)
i%3 Z. B B i="13'; i

i<

J(Xs - Xy <Ag:) + ) dd
i< I I B B i

A e
i<j 371

)

+2 ] didi1(0 < X5 = X; < 845) (X5 - X

i<j

+ ZAiéj dg5100 < X5 - Xy < 4y44)
= My(0) - 2[V(a) - V(0)1 + 2[T,(a) - To(0)]

+ 20[T,(0) - E(T,(0))1. 0
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In Temmas 3.1-3.3 we investigate the asymptotic behavior of
T2 and V.

Lenma 3.1. Let 0 < b < », Then under the assumptions of section 1,
-3 Po
lspr lo."[T,5(8/0,) - T,(0)1 - aH'(0)] =+~ O .
Al<

Proof. The lemma is proved by combining ana]bgous results for T;

and T,. We consider only T;; the proof for T, is similar.
Fix A € R. Using (1.4) one proves as in Scholz (1978)
that

(3.1)  Eylol[Ty(a/o,) - T3(0)3 - AKIH'(0)} » O .

We next show that
-3 .+ +
(3.2) Varo{o “[T,(8/0,) - To(0)1} + 0 .
Set
Z;5 = I(0 < X5 = X 5_A1j/oc) ’ 1<i,J<n,

st=03 7 dt. 2

n Cc .i<j 1j ij ’

n
a+ _ =3 +
S0 L Elsin -

One shows as in Scholz (1978) that

(3.3) VarO(S:) - Varo(§:)

-6 + 2
20, 1§j (dij) [EOVaro(ZijIXi) + EOVaro(Zijlxj)].
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Thus

1 -6 + (2

LHS (3.3) <50 Y (d.s)
2 ¢ i<j iJ
-6 2

Oc max dk

IA

2

d.d.|(d; - d;)
1<k<n izj 43951065 - ¢,
-2 2 + -
o max d. [K + K]
c 1<k<n k ='n n

o(1) as n + o,
For each 1 < k < n we have

+ -3 +
FolSnl¥) = oc™ 2, 41 EolZi5l%¢)

-3 + +
=g L) di En(Zo|X,)) + T dy. Eq(Z,:]X,)3
C i<k ik "0 ik!' "k’ K<i ki "0*“ki!'"k

So3 oy gt
=0 igk d_ik [F(Xk) - F(Xk + Aki/oc)]

-3 +
+ o, kgi dki[F(xk + Aikloc) - F(X)1.

Using ff; f2(x)dx < » and the Cauchy-Schwarz inequality it follows
that F 1is uniformly continuous and hence that

+ + 2
VarOEEO(Snlxk)J §_E0[E0(Snlxk)]

n
§'°c6[121 lds s;_:px |F(x + Aijloc) - F(x)l]2

-8 | F( ) - F(x)|? E Z
<o, sup |F(x + A;:/0.) - F(x)|"n d;
C 4,5, i j=1 1K

. -6 ¢ 2 .
no, iZ] iy o(1) as n .
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Applying (1.5) we obtain

o+ " noo
Varo(Sn) < [no, kgl 121 dikm(” =0(1) as n =+ =,

Combining this result with (3.3) yields (3.2). From (3.1) and (3.2)

we conclude

P
(3.4) |0t (ak0,) - THO)1 - oK H'(0)] -0 0 .

We next verify that

p
-3 .+ + + 0
(3.5) sup |o [T (A/o.) - T (0)] - AH'(0)] 0.
IAlib l C C Kﬂ l

Let €,6 > 0 be given and let
-b = A] < A2 <...< Ak(e) =b
be a partition of [-b,b]l] such that

+ -1

max (A4 = A;) < E[sup H'(0)] " .
1<i<k(e)-1 i+ 1 2"y n

By the above we have

P
-3+ + + ., 0
|°c [T (Aj/oc) -T(0)] - KnAjH (0)] =7 0

for each 1 < j < k(e). Thus we may choose 0 < N < = such that

-3 .+ + + .,
1-8 < P[1'§nja;_k(e)|oc [T (Aj/oc) - T(0)] - KnAjH (0)] < €]

whenever n > N.

Now suppose that A € (Aj, A for some 1< j < k(e) - 1.

)
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Then since 023[T+(A/oc) - T+(0)] and K: AH'(0) are nondecreasing

in A we have
03T (8g/o,) - TH(0)1 - K AgH'(0)
< 02T (8540/00) - TH(0) - K A;H'(0)
< 02T (8441/50) = TH(0)1 = KiyqH' (0)

+ '
+ KH'(0)[A 4y - A4]

and
-3 .+ + +, .,
9. [T (Aolcc) - T(0)] - KnAoH (0)
-3+ o1 - 1kt w o

> -€

Hence
-3+ + +,
Icc [T (AO/oc) -T(0)] - KnAOH (0)] <€

and it follows that

Pol sup 162307 (a70,) - TH(0)1 - K aH'(0)] < €1 > 1 - 6,
lal<b © c

completing the proof of (3.5).

In a similar fashion one can show that
-3 .- - - Po
(3.6) sup |o.°CT (8/0.) - T (0)] - Kn AH'(0)| -7 0 .
lal<b € ¢

Combining (3.5) and (3.6) completes the proof of the lemma. ]
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Lemtma 3.2. Suppose X ~ H. Then

Vim 2, (XCI(X < t) - I(X < 0)1} = H'(0)/2.
£+0

Proof. We consider only the right 1imit; the proof for the left
1imit is similar. Let € > 0 be given. Since H'(0) exists there
isa t;>0 such that |H(y) - H(0) - yH'(0)| < 2ye whenever
0<y<ty Thus 0<t <ty implies that

|2 S5TH(Y) = H(0) - yH'(0)1dy]
< t2 fg 2y edy <e
and hence

lim ™2 IE TH(y) - H(0) - yH'(0)1dy = O .

t+0
Defining Xt = XI(0 < X < t) we see that
Vim t2EIXCI(X < t) - 1(X < 0)1)
t+0
. =2 .t
= lim t™° s7 P (X, > y)dy
£40 0 "H™t
-2 .t
= lim t IOEH(t) - H(y)ldy
t+0
-2,,.t t '
= lim t °{s; H(t)dy - S [H(O) + yH'(0)1dy
£40 0 0

- JGEH(Y) - H(0) - yH'(0)1dy}

= Tim {t"VCH(t) - H(0)1 - H'(0)/2)
t+0

H'(0)/2 . ]
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Lemma 3.3. Let 0 < b <« Then under the assumptions of section 1

P
sup oZ20V(8/5,) - V(0)1 - % a%H'(0)] 0 0 .
lalb €

Proof. Fix 0 < A <b. The proof for -b <A <0 is similar. Then

Eo{o;2[V+(A/oc) v

- o2 -
= Eylo iZj (dgdg) 7100 < X5 = X; < Agy/0 ) (X5 =X;))
22674 T 4, (d: - d)E{(B, /0 )72I(0 < X, - X, < A, /0 )(X: - X.)
¢ 4ey 135 T 0NN i T M =%3% Y T
d; >0
- H'(0)/2}
1,2 -4 ) :
+ 5 8% 1§j dij(de di)H (o) .
d1j>0
Now
1,2 -4 oy = L a2t
7 A0 1§j dij(dj - d;)H'(0) = K H'(0)
dij>0

and by lemma 3.2 and (1.3),

|A 227" ) dij(d - d; )EO{(Aij/o )-21(0 < X; = X; < byy/0 )(x - X;)

% i< ii""e
dij>0
- H'(0)/2}]
2 -2 '

2K o(1) = 0o(1) as n =+ =,

Thus



37
(3.7) E0{0;2[V+(A/oc) -vY(0)s - %-K:AZH'(O)} -0 .

To establish the lemma for V+ we show that

(3.8) Varg(oZ2tv* (a/o,) - VF(0)1) » 0 .
Set

Zyg = HO < X5 - Xy < 845000y = Xy)

+ -2 -

st =0 (d;d.)7Z, .

n c izj %37 %43
and

& 202 § E(stIx)

n % 0*n'7k’ °

It foltows as in theorem 1 of Scholz (1978) that
+ +
Varg(s,) - Varo(gn)

-4 -
20, 1Zj [(dgd;) ITEQVarg(Zy51%;) + EqVarg(Z41X;)1 .

Hence, by (1.2) and (1.5),

(3.9)  Vary(s}) - vary(S})
-2c 52
1£j [(d4dy) I7EgZy;

2 -6 + 2
< 20 Oc iZJ’ (dij) [H(Aijloc) - H(O)]

2 -6 + 2
< 2A o izj (dij) ng [H(Aij/oc) - H(0)1.

-4

<
__Zoc

For each 1 < k < n we have
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+ -2 -
EolSnlXi) = o™ 1 (dide) EqlZylX,)
022 )) (didk)-EO(zkilxk)
k<1
where

Eg(ZsiIX ) = F1(0 < X, =y < 84, /0. ) (X, - y)F(dy)

X
s ( F(d
ooty o, (= VIF(@)

In

(Aik/oc)[F(xk) - F(xk - Aik/oc)]’ i<k,
and
EO(Zkilxk)-i (Aikloc)[F(xk + Aik/°c) - F(xk)], i> k.
Therefore
ad n +
Varo(Sn) = g VaroEo(Snlxk)

<o sup [F(x + /0] - F(x)|12 RCENICE )17
X, 1<

< 242 C -6 f dik o(1) = o(1) as n » =,

Combining this result with (3.9) yields (3.8). Using (3.7), (3.8)
and the fact that 022[V+(A/oc) - V+(0)] and %-K+A2H'(0) are both
nondecreasing (nonincreasing) on 0 <A <b (-b<A<0) it follows
that

(3.10) sup [oZ2tv* (/o) - VF(0)1 - % K*a2H'(0)) 0,
|a]<b

In a similar fashion one shows that
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p
(3.11)  sup Io [V (A/o ) - V7 (0)] - f'K A°H'(0) ] 0 0.
|al<b

Combining (3.10) and (3.11) completes the proof of the lemma. O

Theorem 3.1. Let 0 < b < . Then

2 3.+ Po
sup |o [M (A/o ) - M,(0)1 - A"H'(0) + 240 _"T,(0)] - O
|Al< 2 2 c 2

where T,(0) = -[T,(0) - Ey(T,(0))1.

Proof. The theorem is a consequence of remark (3.1) and lemmas
(3.1) and (3.3). O

We conclude the section by.proving three lemmas which will
be useful in showing that the sequence {ocﬁz} is bounded in
probability.
Lemma 3.4. The sequence {cEZMZ(O)} is bounded in probability.

-2 -2
Proof. Eglo."M,(0)] = Egl-0." ] didjlxj - X413

i<j

2
En[Xy - X d.d.
0I 1 Zligj i-J

1

Since o M2(0) is nonnegative for each n, application of the
Markov inequality completes the proof. O
Lemma 3.5. Let
o () X(n)(8)
2 = Z dy Sy (A) /T(x) dx, o < A<,

where X%(A) = Xi - Adi. Then
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(i) w2 is a nondecreasing function of A.

P
(1) |oZ2TH,(8/0,) - W,(0)1 - & Eg FTET| »% 0 vaeR.
(111) W5(8) < My(a) ¥ a€R.

Proof of (i). Let A < A' and set A= max(in)(A), Xin)(A')).

Then

\ g A A
WZ(A ) - NZ(A) 1;1 di[fx%(A') V'tx, dx - in(A) /F(x) dx]

n o, X%(A) n 1(A )
121 di fx%(A') YF(x) dx + 121 di fx () /F(x) dx

>0.

Proof of (ii). We consider the case when A > 0; the proof for

A <0 1is similar.

UEIWZ(A/OC) - W,(0)]

)

1(A/°C
f /F(x) dx]

1.0
Gc [121 di fx (A/O ) VI‘ ) dx + z d

o) Z diC(ad}/o,)"] fx (/o) TR &x - /FTXT1ad /o,

¢ =
a0 -1 1(A/c ) _
*+ o, .2] d;r(adi/e,)” 1 JF(x] dx - /F(X;718d, /0,
18
-2 0 2
+ Ao, 121 di JT!XiS .

Therefore, by assumption (1.1) and the above,
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-1 2 U 2
o, 'W,(8/0,) - W,(0)1 - Ao, Z d; ﬁ(xiﬂ

< A max I(Ad /o )" -1 fx (A/o ) /T(x) dx - JT!X J| = 0(1) as n > e,

1<i<n

We complete the proof of (ii) by showing that

n P
a2 T &b /TR - 8 £ /FTET] 400 .
C =1 i 1

But this follows from the WLLN since

Varg(VFTK;T) < f F2(x)dx < .

Proof of (f1ii). By the Cauchy-Schwarz inequality

n
Mo(8) = fiprp (T 3 410X - 8y < x)12/£(x) 1 (x)dx

n
Tl L 10 - o4y < )FTR dx)?

v

X¢ y(8)
( xtn;(A) I d [0y - 8dy < X)/FTRT dx)?

( Z di x (A) Vf(Xj dX)

i=1

wg(A). O

Before stating our final lemma we define, for each
0O<a<w, 0<d<e and n>1, the event
_ ;.=2 .
Enz(a,d) = {cc MZ(O) <d, IATfa o NZ(A/O ) > d}.
Lemma 3.6. For every € > 0 there exist positive real numbers

N,a and d such that n > N implies
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Proof. Since 0 g_wg(O) < My(0) for all n, the sequence
{o;1H2(0)} is bounded in probability by lemma 3.4. Hence for fixed
|a] < =,

2,2 -1 2, Po
(3.12) |°c NZ(A/GC) - [o, W5(0) + & Eq /F'(ﬁ)] | +° 0
by lemma 3.5. Now let b be such that
PolozZMy(0) < b1 > 1 - ¥V n>1.

If we take d > 2b and choose a so that

a > (/B + /372) (Ey /FTK))!
we have

oz 2W5(0) < oT2MH(0) < b < d/2
and hence

Isza[o;]Nz(O) + 8 B ATKT12 2 [a By /ATRT - o' [Wy(0)] 17 > 3d/2

on {GEZMZ(O) < b}. The proof is completed by applying (3.12). O

4., Asymptotic Distribution of °c§2’ Throughout this section we
retain the notation of sections 1-3 and assume that (1.1) - (1.4)
hold. In addition we assume, without loss 6f generality, that

g = 0.

Lenma 4.1. {0 B,} 1s bounded in probability.
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Proof. Let € > 0 be given. By lemma 3.6 there exist positive

real numbers a,d and N such that
By parts (i) and (iii) of lemma 3.5

-2 -2,,2
inf o “M,(a/c.) > inf o “W,(A/c.) > d
lAlZa c 2 C —lAIZa c 2 cl -
and

0-2 2

“2u2(0) < o7 M,(0) < d

on Enz(a,b) whenever n > N. Thus

- -2
{locszl <a}a o, M2(0) < d, IZTza My(8/c.) > d} 2 Enz(a,d) YV n>N

implies

PLloBy| < a1 > PIE,(2,d)1>1-€¢ ¥V n>N. O

The result of theorem 3.1 suggests that an approximating
statistic for °c§2 is c;3T;(0)/H'(O); The next lemma gives the
asymptotic distribution of that statistic.

Lemma 4.2. Under assumptions (1.1) and (1.3) LO(JTZ OEBTZ(O) = N(0,1).

Proof. Since

%*

the projection of T;(O) into the family of linear rank statistics

is
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: d;R .
2 C 427 1ni0

(H&jek and Siddk (1967), p. 61). Since

P
/T2 63|T,(0) - Wyl +0 0

(Sievers, 1976), the proof is completed by noting that

Ly(VTZ o;3 w;) = N(0,1)

under assumptions (1.1) and (1.3) (H&jek and Siddk (1967), p. 163). O

For 0 <a<b< o define

- -3 . ' . .
Gyp(a,b) = {|o " T,(0)/H'(0)] < b, Ilrlfa M,(8/0 ) > I}ST;_a M, (8/0 )}

and

8p(a) = sup{[a” - 623 TH(0)/H' (0)]5 [A"] < a, My(a"/o,)

= inf M,(a/c.)}.
lal<a 27°C

Lemma 4.3. Let ¢ >0 and 0 < b < a be given. Then
Po({AnZ(a) >el N an(a,b)) -0

as N = oo,

Proof. Suppose there exist e, and & positive such that
Po({8,0(2a) > €} n G ,(a,b)) > 6

for infinitely many n. For each such n there exists a

[ag] < a such that
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(a.1) |8g - 05> To(0)/H'(0)] 2 €

and

(4.2) M,(ay/c.) = inf M,(A/o )
270" ¢ || <a 2 c

on an(a,b). Since
Y -3 .* 2.,
Q(a) := O¢ MZ(O) - 20, T2(0) + AH'(0)

is quadratic in A and achieves its minimum at A = o;3T;(0)/H'(O),

(4.1) implies that

Qa,) - Qlo73 TH(0)/H'(0)) > H'(0)e] .
By (4.2) we also have
My(o2? T;(o)/n'.(on > My(8y/0,) -

c

But

-2
|ZTE§ lo. My(8/0.) - Q(a)]

> max{ |0 2My(80/0,) - Q)]s |0 Mylos T, (0)/H" (0))
- Q623 TH0)/H (0)) |3

> H'(0)ed/2

on an(a,b) since
o721y (8g/5.) = Qbg)| < W (0)e}/2

implies
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oz2My (o7t TH(0)/H (0)) - Q(a7> T,(0)/H! (0))

-3

23 1,(0)/H'(0))

3.022 My(8q/0.) - Qo

> Q(8y) - H'(0)€5/2 - Q&3> T,(0)/H'(0))

> K (0)eE/2
Thus

Timsup sup |oZMy(8/0.) - Q(8)] > H'(0)e2/2 ,
e |A|<a

contradicting theorem 3.1. O |

We are now ready to give the asymptotic distribution of
o} 62. _
Theorem 4.1. L,(o_B,) + N(0, (12H'(0)2)7).

P PO
Proof. We prove that Ioc82 - 0, T2(0)/H'(0)| +Y 0. The theorem

then follows from lemma 4.2. Let € >0 and 6 > 0 be given. By
lemma 4.2 and the proof of lemma 4.1 we may choose 0 <b<ac<w

and N] > 0 such that
Now use lemma 4.3 to choose N > N] such that
Po({Anz(a) >el N an(a,b)) < 15

whenever n > N. Then for n > N we have
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sup{[8” - 031,(0)/H'(0)| : My(a"/0) = inf M ,(8/5)}

€ <A ,(a)
n2 |A|<a

sup{[a" - 67 °T,(0)/H' (0)| : My(a'/c,) = inf My(a/o;))

lo By - 02T, (0)/H" (0)]

|v

on {Anz(a) 5_5}‘0 an(a,b). Since
P({a0(2) <€} NG o(asb)) >1 -8
for n large,
A Po
The asymptotic relationship between éz and the Wilcoxon-

type estimator éw is established in the following

P
Corollary 4.1. Under assumptions (1.1) - (1.5) oclé2 - §w| 0 0

Proof. An immediate consequence of the asymptotic uniform linearity

(in A) of W is

~ P
VT2 623 Wy - o B, | +°

Bw 0.

Since lemma 4.2 and theorem 4.1 yield

P
/T2 073|T,5(0) - Wy +0 0
and
2 -3 1 * ' PO
|°c32 - O, TZ(O)/H (0)] - o,
we have
A A PO
|8 - Bl » 0 0



CHAPTER 3
KOLMOGOROV-SMIRNOV TYPE ESTIMATION OF B8

1. Notation and Preliminaries. In chapter 3 we retain the nota-

tion of previous sections. To the assumptions of the model intro-

duced in section 1 of the introduction we add the following:

(1.1) F has a continuous bounded density f satisfying
f(x) >0 a.e. on {x: 0 < F(x) < 1}.

(1.2) Tlim o7 max ld;] = 0.
neo 1<i<n '

In what follows let the vectors ¢ and X be given. For

A real define

(1.3) DC(A) = sup |U(x,a)].

~00< X <o

Remark. We now verify that

(1.4) D.(a) = sup |S(t,a)] Y AER,
O<t<] '

a result which will be useful in establishing the asymptotic distribu-

tion of our estimator.

and
48
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S(t,a) = f dy > J/n <t < (§+1)/n.
i=1  “ni

Since we also have

U(XsA) =0, x ¢ [X(])(A), x(n)(A))
and

S(t,4) = 0, x € (0, 1) ,
(1.3) is established.

To aid in investigating the properties of Dc as a function

of A we define, for A € R,

D:(A) = sup [U(x,4)]

00K X <™
and
D;(A) = - inf [U(x,A)].
~00< X <0
Lemma 1.1. DZ (D;) is a left-continuous non-decreasing (right-

continuous non-increasing) step function in A whose points of

discontinuity are a subset of

Proof. We consider only D:; the proof for D; is similar. That

DZ is a step function follows from the fact that D:(A) is a

function of the ranks of {Xi(A), 1 <1< n}. To establish its

non-decreasing nature we make use of (1.3). Let Ay 28y 2.2 B0

denote the ordered members of {(Xj - xi)/(dj - di); 1<ic<jc<n,

d; # dj} and set Ay = -=, A +o, For 1< J <m choose any

m
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A'y, A" such that

A,

' n
J°]<A <Aj<A < A.

Jj+1 -
Now Aj = (Xl - Xk)/(d2 - dk) for some k < & such that dk < dk.
Hence

X (8") < X, (")

Xl(Au) < Xk(A")

Xl(Aj) = xk(Aj) .

For A real let XO(A) = (Xk(A) + Xl(A))/Z. Then

(1.5) Di(a') = max{ sup U(x,a'), U(xg(a'),A'), sup  U(x,a")}

x<Xk(A'). x>X£(A')

and

(1.6) DZ(A") = max{ sup U(x,A"),U(xO(A"),A"), sup U(x,A")} .
x<X, (a") x>X, (")

Note that as A € (Aj_]. Aj+]) crosses Aj, only the residuals
Xk(A) and Xl(A) cross. The other residuals remain distinct and
in their same relative order with probability one. Hence the

following are valid:

(1.7) sup U(x,A') = sup U(x,a") = sup U(x,A;)
x<X, (a") x<X, (a") x<Xy (85)=X, (85)

(1.8) sup U(x,A') = sup , U(x,A") = sup U(x,Aj)
¥>X£(A ) x>Xk(A ) x>Xk(Aj)=X£(Aj)

(1.9) U(xo(A'):A') = U(xo(Aj)’Aj) - dl
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(1.10) U(xo(A"),A") = U(xo(Aj),Aj) - dk .

We complete the proof by considering three cases:

Case I. If d < dl < 0 then by (1.9) and (1.10)

sup  U(x,A") > U(X,(a')7,a")
x<Xk(A') ,
= U(xo(Aj),Aj) - dk - d,
3_max{u(xo(Aj),Aj) -d U(xo(Aj),Aj) - d}
= max{U(xo(A'),A'), U(xo(A"),A")}.
Thus

D:(A') = max{ sup U(x,A'), sup U(x,A')} =.D:(A")
x<Xk(A') _ x>X2(A')

follows from (1.5) - (1.8).
Case II. If 0'5_dk < d, then

[] |} + 1 -
x>§:?A')U(x’A ) > U(X,(a')",8") = U(xo(Aj)’Aj)

|v

max{U(xO(Aj),Aj) - dys U(xO(AJ),Aj) - dz}

max{U(xo(A'),A'), U(xo(A"),A“)}
by (1.9) and (1.10). Thus

+l= ' |=+n
DC(A ) max{x<§:?A')U(x,A ), x>§:?A') U(x,A')} DC(A )

follows from (1.5) - (1.8).
Case III. If dk <0 g.dz, dk < dz’ then by (1.9)
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1 ] + ) -
x);:?A')U(X,A )Z U(XR(A ) A ) = U(XO(AJ)’AJ)
3_U(x0(Aj),Aj) -d
= U(xo(A'),A‘).
Thus
D:(A') = max{ sup U(x,A'), sup U(x,a')
x<Xk(A') x>X2(A')
< max{ sup U(x,a'), sup U(x,a'), U(xg(a"),a")}
x<Xk(A') x>Xl(A')
= Dg(a")

follows from (1.5) - (1.8).
To establish left continuity, first note that

ot (A ) = max{ sup U(x,Aj), U(xO(Aj),Aj), sup U(x,Aj)}.

x<X (AJ) x>Xk(Aj)

Applying (1.7), (1.8) and
+
U(x,A U(X, (85)7,A.) = U(xa(B5),8:),
ot (x,85) 2 UK (8)%18,) = Uxg(a;).8,)
we have

o c(8;) = max{_sup  U(x.,8'), sup  U(x,8')} = Dl ().
x<X, (8') x>X, (8') ¢

Finally, since DC(A') = D:(A") in cases I and II, the
points of discontinuity of D: are seen to be a subset of r3. O
Before defining §3 we need one additional

Lenma 1.2. D(a7) = 0= D_(A7) and D_(a]) = 7., di = D_(a).
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Proof. Note that for A < Ays 1<i<j<n and d.i < dj imply
Xi(A) < Xj(A), so that the {Xk(A), 1 < k < n} are naturally ordered
with respect to d.l §_d2 <...2d. Using the monotonicity of the

-dy's and Z?=1 d; = 0 we have, for 1<k <n-1,

k
U(X9A) = z] d'l < 0, x € [xk(A)a xk"'](A)).
1.-.
Since
U(st) = 0 s X ﬁ [x('l)(A)s X(n)(A))
we have
sup [U(x,A)1 =0
«00< X <00
and
n _ no,
-inf [U(x,A)] = § d; = ] d;.
—eo< X <00 i=1 i=1

Because D: and D; are constant for A < A] it follows that

DZ(A;) = D:(A) =0

and

+
di .

nes-13

D.(87) = D.(8) = L

n
The proof that D:(A;) = igl d; and D;(A;) = 0 is similar and uses
the fact that the residuals {X (A), 1 < k < n} are in a reversed
natural ordering with respect to the di's when A > Am' O
Lemmas 1.1 and 1.2 guarantee that the following exist and

are finite:
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. .t -
inf{a € R; DC(A) 3_DC(A)}.

(o)
w
n

sup{a € R; DZ(a) > D.(a)}.

™
w
]

Note that by the monotonic nature of DZ(A) and D;(A), B;* 3.63
w.p. 1.

We are now ready to define the estimator
A -] * ¥k
83'7(63"'83)'

Lemma 1.3. Dc is nondecreasing for A 3_§3 and nonincreasing for
A < Bg.

Proof. Note that
- + -
(1.11) DC(A) = max(Dc(A), DC(A)) V A€ER.

By the definition of s;, A > 3; implies DZ(A)_g D;(A) and hence
+ %k *k

DC(A) = DC(A). By the definition of By » & < By implies

D;(A) g_D:(A) and hence DC(A) = D;(A). Thus, since

* ** A -
By < B3 < By DC(A) = D:(A) for A > B3 and DC(A) = DC(A) for

A < §3 and it remains to show that
(1.12) D.(B3) < min(D (B3), D (B3)) .

But by lemma 1.1,

+ ,A +, N + , 4

and
D-(85) = D(B3) < DZ(83)
c\B3) = DelB3) < D (B3) -

Therefore,
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(].13) DC(§3) = max(D:(§3), 02(63))
< max(D_(83), DZ(£3))
= D_(83)

and

(1.14) D (By) = max(D;(B;), D (8;))

A

< max(D}(83), D_(£3))

at+
0, (83) -

Combining (1.13) and (1.14) establishes (1.12), completing the
proof of the lemma. O

Remark. Lemma 1.3 shows that

D (By)= inf D_(a) .

=< A <o

Numerical Example

According to its definition, 63 can be determined by
identifying the set T, and computing D:(A') and D;(A') for
each A € Ty. As an illustration we take ¢y = i, 1<1<4 and
consider the sample

1, 5, 3, 6 .

Simple computations yield:
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TABLE I
Values of DC(A°) and D:(A') for 4 €T,

b€, D-(a7) De(a7)
-2 2 0
.5 1.5 0
1 1.5 .5
5/3 1 .5

* *% A
Here B =5/3 =8 so that 83 = 5/3.

2. Finite Sample Properties

(a) Invariance. A useful property of §3 is its translation in-

variance; that is,
(2.1) By(X + ve) = v + B5(X) Y YER.

Te verify (2.1) we note that

sup [£5(t,A)(X + v¢)]

D.(8) (X + vg)
O<t<]

sup [S(t.A-v)(X)]
O<t<1

Do(a-)(X) -

Thus,

B3(X + vg) = inf{d; DL(a-y)(X) > D(a-y)(X)}

v + inf{a; D_(a)(X) > D(A)(X)}

*
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Similarly,

%% *k
By (X +vg) =y + B3 (X) YV yeR
so that

33(5 +yg) = v+ 33(5) YV YER.

(b) Symmetry. We assume, without loss of generality, that 8 = 0.
Theorem 2.1. ﬁ3 is symmetric about B if one of fhe following
conditions holds:

(i) F 1s symmetric.

(i1) d; = -d 1<ic<n.

n-i+1°?

Proof of (i). §3(5) ~ §3(-5) follows from a proof similar to that

of theorem 1.2.1. Using the'definitions of D: and D; one obtains

De(-8)(X) = D_(8)(-X)
and

- +
D_(-8) (%) = D(a)(-X) .
* *%
Thus the definitions of 83 and 83 yield
* *
33(-5) = -83(5)
and
*%k *k
63 (-Z,) = '83 (5) .
Therefore
B3(X) ~ B3(-Y) = -B3(X),

completing the proof of (i).
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Proof of (ii). As in the proof of theorem 1.2.1, ﬁZ(L) ~ EZ(L*)

* +
where X = (xn,xn_1,...,x]). Using the definitions of DC and

D; and the proof of (i) one obtains

Dz(4)(X) = D_(-a)(X) = D_(a)(-})

and

DZ(8)(X") = DL(-a)(X) = DL(A)(-X) .
Thus

By(X) ~ By(X") = By(-X) ~ -B3(0)
as in the proof of (i). - 0

3. Asymptotic Distribution of cc§3. In this section we assume,

without loss of generality, that B = 0.
To aid in the proof of theorem 3.1 we first define a class
of functionals {Tz, Z € R} on the set ¥ of bounded functions on

0,11 by

T,(h) = sup {Ch(t) + zf(F™ (t))1v0}
O<t<1

+ inf {Ch(t) + 2f(F1(t))1A 0} V hevy, z€R.
O<t<1

For h,g€e Y and z € R we have
|Ch(t) + zf(F71{t))1 v 0 - [g(t) + 2f(F71(t))1 v O

< Inh(t) - g(t)] < lh-gl, V tero0,1]

and
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Ith(t) + zf(FT1(£))1 A 0 - [g(t) + zf(F 1(t))1 a O]
< |h(t) - g(t)] < lh-gll, V tero,m.

Thus

IT,(h) - T,(g)] < 2[h - gll,,

establishing that Tz is a continuous functional on C[O0,11.
Remark. Let {B(t), 0 <t < 1} denote a Brownian bridge. Then
since B(0+) = S(0+,0) = f(F'](0+)) =0 w.p. 1, we have (w.p.1)

T,(B) = sup {B(t) + zf(F"'(t)))
O<t<l]

+ inf {B(t) + zf(F"(t))}
O<t<1
and

T,(67'5(+,0)) = sup_ {o]'S(t,0) + 2f(F7' (1))}
O<t<1

+ inf {o;‘S(t,O) + 26(FF1(8)) .
O<t<1

We are now ready to state

Theorem 3.1. Under conditions (1.1) and (1.2),
PoloBy < 21 > PyIT,(B) 201 Vv z€R.

Proof. We assume that z > 0; the proof for z < 0 is similar.

* ok
From the definitions of 83 and 63 s

* -
8y < z/o, ®D(2/0.) > D (2/a)

and
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+ - %*
Dc(z/oc) > Dc(z/oc) >By < z/cc .
* A *k 1i
Thus By < By < B3  implies that
+ - A + -

PolDc(2/0.) > D .(2/0.)] < PolBy < 2z/0.] < PylD.(2/0.) > D (2/0.)1.
Applying theorem 1.3.1 and using the inequalities

-1+

9. Dc(z/cc) >0,

sup_ {o'S(t,0) + zf(F"1(t))} > 0,
0<t<1
we obtain
l6-10*(2/0.) - sup {o71s(t,0) + zf(F 1 (t))}|
cC C C (o

0<t<1

. P
< sup [o7'IS(t,2/0,) - S(t,0)1 - 2f(F71(£))] % 0 .
0<t<1

Similarly,
-1 - . -1 -1 Po
|oc Dc(z/oc) + inf {cc S(t,0) + zf(F '(t))}] - 0.
0<t<1

Hence

P
(3.1)  bi(z/o,) - D (z/0,) - Tz(o;‘s(t,O))l 209 .

We now show that
(3.2) Lo(T,(a2's(+,0))) = Ly(T,(B)) .

Recall from lemma 1.4.1 the process {Zn(t), 0<t< 1} with con-
tinuous sample paths which converges in distribution in (B, C[0,1])

to {B(t), 0 <t<1}. Since
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-1
z () + o, 'S(+,0)ll, <o, max |d.],
" ¢ ¢ 1<icn !
the continuity of Tz yields
p

0

-1
17,007 150+,0)) = T,(-2,(+))| -0 .

Since
Lo(T(-Z,(+))) > Ly(T(-B)) ~ L,(T(B)),
(3.2) is proved. Combining (3.1) and (3.2) gives

PolDL(2/0,) > DL(2/0.)1 + PyLT,(B) > 0]
and
+ -
PoLDE(2/0.) > D(2/0,)1 » PyLT,(B) > 01.
But Po TZ(B) =0 =0 by lemma 1 of Rao et al. (1975) and the

proof is completed. O

4. Interval Estimation of 8. Throughout this section we assume,

without loss of generality, that B8 = 0 and that (1.1) and (1.2)
hold.

Let Ye,a denote the critical value for which one rejects
’ Hp: 8 =0 at level o whenever DC(O) > Yoo Then a 100(1-a)%

confidence set for B is given by

Io,o = 85 D.(a) 2Ye,d) -

Lemma 1.1 and (1.1) imply that Ic o when nonempty, must be

an interval. Note that
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Iea=9 =D.(0) > Ye,ob

hence empty intervals are obtained only on an event where one rejects
the true null hypothesis.
It has been shown (H&jek and Siddk, 1967, p. 189) that

Lo(0 'De(0)) = Lo( sup [B(£)]).

<t<]

Defining K_ to be the 1-a percentile of L,( sup |B(t)|) we
@ 0% o<t<1

then have

. -]
limo_" v =K .
c 'c,a a

Lemma 4.1. Given 0 < B <o and € > 0 there exist b and N

positive such that n > N ihplies
. -1
P.L inf 0. D (z/c.) >B]>1-c¢.
0 2lsp € € c

Proof. Using lemma 1.3, the proof is similar to that of lemma
1.3.3. 0
Define K; = sup y

on R. We are now ready to prove

and let u denote Lebesgue measure

Theorem 4.1. Suppose that (1.1) and (1.2) hold. Then for each

n > 0, 1im sup O u(IC o‘) is bounded in probability by
n 9

-1
ZKa"fun +n.
Proof. Let e >0, lIfl > & > 0. By lemma 4.1 there exist b and
N positive such that n > N implies

*
P.L inf D(z/c.) >K1>1-¢€/2.
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Choose to € (0,1) such that
F(F7 N (tg)) 2 lIFl, - 6

and N, > N such that

-1 -
Pol sup o7'[S(ty,8/0,) = S(ty,0) - Ao f(F ‘(to))| <681>1-¢/2 Yn>N

[A|>b

Then n > N, implies

ole o © {85 [S(tg.0/0,)] gyc’a} n {a; |a| > b}

c {83 [S(tgs0) = a0 F(F (t))| <7y, + 083 N85 [8] < b}
c {A; |S(t0,0) - Aocf(F'](to))I Yoot ccé}

= {85 -y, o *+ 08 + S(tg:0))/o F(F (ty)) <

C,a

< (Yo g+ 9c8 = S(tge0))/o F(F™ (tg)))

with probability greater than 1 - €. Hence

Po[lim sup °c“(Ic,a) 5_2(o;]y +8)/(lFl, - 8)1>1 - €.

n C,a

Since § and € were arbitrary and 1im o)

= K , the proof
nao C a P

c,a
is completed. .0

It is possible, under more restrictive conditions, to show
that the bounds of theorem 4.1 hold w.p.1. Such a result is given
in the following
Theorem 4.2. Assume, in addition to (1.1), that f'(x) exists and

is bounded for a.a. x. Regarding ¢, assume that

1°
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(4.1) n%o;1 max |d;] = 0(1) as n -,
1<iz<n
(4.2) lim inf n" 162 > 0 .
n c
Then

. -1
11mnsup oan(le ) < 2K IFICT w.p. 1.

Proof. Let ¢ >0 and 0 < b < ». Define, for t ¢ (0,1) and
X,A € R,

e = T agreog) < PN + aag),
i=

n
U'(t,a) = § dil(xi < x + Ad,).
.=-I ' 1

1

From theorem 3.1 of Ghosh and Sen (1972),

sup_ |U"(t,0/0,) - UT(t,0) - a0 F(FTI(t))| 0 w.p. 1 (P
O<t<1
|a]<b

o) -

The theorem is proved by modifying the proofs of lemma 4.1 and
theorem 4.1 once we show that for |A| < b and n sufficiently
large,

(4.3)  sup_ |UT(t,0/0)| = sup |U'(x,0/0,)| = D(a/c,) .
O<t<1 xER

Let S(F) denote the support of F. By (1.1) S(F) is a real

interval. 1In case S(F) =R, FFl s a bijection and hence
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* -
sup [UT(t,8/0)] = sup |U'(F7T(t),a/0,)]
0<t<] O<t<l]

sup |U'(x,8/0.)]
_X€R

D(A/oc), |a] < b,
establishing (4.3). In case S(F) # R,

*
sup |U (t,A/oc)l = sup |U'(x,A/cc)|
O<t<1 0<F(x)<1 _
and we must prove that

(4.4) sup |U*(x,8/0.)| = sup [U'(x,8/0.)]
0<F(x)<1 * x€R ¢

for n sufficiently large and |a] < b. To this end choose 0 < N1 < o

such that

bol! max [d| <u(S(F)) v n>N .

1<i<n

Then for n > N, and x < x5 = inf S(F),

LU +
0 §_U'(x,A/cc) 5_121 d; = U-(xo,A/oc) , A>0,
U'(x,8/0,) = 0 = u'(x;,A/oc) , A=0,
and
n . +
IU-(x,A/oc)l 5_121 di = |U-(x0,A/oc)| , A<O
imply
(4.5) U (x,8/0,)] < |U'(xg,8/0,)].

Similarly, for n >N, and x > x; = sup S(F),
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(4.6) U (x,8/0 )| < [U'(x{58/0,)] .

Combining (4.5) and (4.6) yields (4.4) and hence (4.3). ]

5. Asymptotic Efficiency of the Ic,a' Using the bounds of section
4 one can compare the Ic,a to other common confidence intervals for
which asymptotic lower bounds can be computed (Rao et al., 1975).
Koul (1971) has computed the asymptotic lengths of the normalized
confidence intervals based on a wide class of linear rank statistics.
Although his bounds were in probability bounds, they can be
strengthened to w.p.1 bounds by applying the results of Ghosh and
Sen (1972). As an example of the type of results which can be
obtained and to demonstrate the efficiency of the Kolmogorov-
Smirnov type intervals, we compute bounds for the asymptotic
efficiency of the Ic,a with respect to confidence intervals based
on the Normal scores and Wilcoxon type rank statistics.

In what follows let ¢ denote the standard normal c.d.f.,

let z, be defined by ¢(za) =1 - o and define
o(t.f) = £ (F N (t))/F(F (L)), 0<t<1.

Assume, without loss of generality, that B = 0.

(a) Comparison with Wilcoxon-type intervals. Let

n

—{re In=]
a"{A’ L) diRniAI i-Gc,a}

K
¢ i=1

where Gc a is such that one rejects HO: B =0 at level «

) -1 n
whenever |n"" Ji_, diR .| > 6. o

Under the assumptions of theorem 4.2

and accepts H0 otherwise.
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2
limow(K. ) =2z ,,/V3 J f(x)dx w.p.1.

Thus,

. u(IC (!) - m 2
(5.1) 11ﬁ*iup ETRZ*;T-S_WG(F) = Ka I f (x)dx/zalzllfl[°° w.p.1.

To obtain an upper -bound on

1im sup Wu(F)
a0

for fixed F, we investigate the behavior of
]iz+zup Kza/za.
From Hijek and Siddk (1967, p. 182) we obtain

1-a=Plsup [B(t)] <K3J>1- 2 exp(-2k%)
O<t<] a a

and hence
2
-1n(a/2) 3_Ka .
Thus
1im sup K, /z_ < Tim sup ~[26™'(a)372In(1 - a)
o0 o a o0

= 1im sup -2x"21n(1 - (x)).

) S o

Using

(x7! - X’3)¢(X) <1 =0(x) < X°]w(><).

where ¢ denotes the standard normal density, one obtains
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Tim sup -2x"21In(1 - #(x)) = .25 .

X

Therefore,

(5.2) tin sup ¥,(F) < /3 / 2 {x)dx/2[If[L_ -

The following table gives the upper bound wu(F) for
various choices of F and . Here WO(F) := RHS (5.2).

TABLE 1

Values of Wa(F) for Comparison to
Wilcoxon Intervals

a\F Std. Normal Logistic Dbl. Exp. Cauchy

.5 3.005 2.834 2.125 2.125
N 1.823 1.718 1.289 1.289
.05 1.697 1.600 1.200 1.200
.025 1.618 1.525 1.144 1.144
.01 1.548 1.459 1.094 1.094
.005 1.510 1.424 1.068 1.068
0 .612 .577 .433 .433

(b) Comparison with Normal Scores-type Confidence Intervals. Let

JC,C!

n
= [A- -1
= {a; |iz] 4y (Rygp/m I <8, )

where éc a

9

is such that one rejects HO: B =0 at level
whenever |Z?=1 di°-1(RniA/")| > 6, , and accepts H, otherwise.
Under the assumptions of theorem 4.2,

. _ 1 .-1
llz ocu(dc,a) = Zza/Z/f0 ¢ "(u)e(u,f)du w.p. 1.
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Thus,

U(I ) 1 .1
1im sup £,a <Y (F)=K Jn ¢ "(u)p(u,f)du/z_,,|if w.n.1.
. u(JC’a) o a0 a/2 ”w

The following table gives the upper bound WG(F) for various choices

of F and a. For a=0,Y (F) := fg, ¢>'1(U)q«(U.f)dUI4llfll¢,-

TABLE II

Values of Wa(F) for Comparison to
Normal Scores Intervals

a\F Std. Normal Logistic Dbl. Exp. Cauchy

.5 3.076 2.769 1.958 1.8
.10 1.865 1.679 1.187 1.1

.05 1.737 1.564 1.106 1.0

.025 1.655 1.490 1.054 .96
.01 1.584 1.426 1.008 .92
005 1.546 1.392 .984 .90
0 .627 564 .399 .36

6. Monte Carlo Study. In order to compare §3 with other point

estimators of B, 5000 samples of size 40 were generated from

each of the standard normal, double exponential, logistic, and
Cauchy (median 0) distributions. Taking ¢y = i, 1 <i< 40, we
then computed §], 33, and the Wilcoxon estimate, ﬁw, for each
sample. The following table gives sz(océ.) for each set of 5000

samples.



70

TABLE III
Values of sz(océ )

2 F

s Std. Normal Logistic Dbl. Exp. Cauchy
s?(c B,)  1.0668 2.9883 1.4541 .3153
s?(c 8,)  1.1755 3.1985 1.4532 .3666
s?(c 8;)  1.1181 3.1138 1.5497 .3386

Each set of observations was based on a corresponding sample
of uniform (0,1) variates generated by the Fortran subroutine RANF
on the Michigan State University CDC 6500. The logistic and double
exponential variates were generated by computing F'](U) for each
uniform variate U, the Cauchy variates were generated by computing
tan[(U - .5)/7], and each normal variate was generated by computing
(-2 1In U]);5 cos(2m U2) for independent uniform (0,1) variates
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