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ABSTRACT-

NEIGHTED EMPIRICAL-TYPE ESTIMATION

OF THE REGRESSION PARAMETER

By

Mark Allen Williamson

We consider three estimators for the slope parameter 3

in the simple linear regression model, each of which is based on

the minimization of a statistic for testing H0: 8 = 0 versus

the alternatives H]: s f 0. The statistics include a Cramér-

von Mises statistic and its rank analogue, and the Kolmogorov-

Smirnov statistic.

Invariance and symmetry properties of the estimators are

studied for finite samples, and their asymptotic distributions are

derived. The Cramér-von Mises-type estimators are shown to be

asymptotically normal, while the asymptotic distribution of the

Kolmogorov-Smirnov-type estimator is expressed in terms of func-

tionals of a Brownian bridge. _

The Cramér-von Mises-type estimators are compared with some

common estimators of B by an examination of asymptotic variances

at various underlying distributions. Comparisons for the Kolmogorov-

Smirnov-type estimator are made via a Monte Carlo study and by

comparing asymptotic upper bounds for the lengths of associated con-

fidence intervals.
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INTRODUCTION AND SUMMARY

1. The Model. Consider the simple linear regression model

Xm. = 80 + 8cm. 4- Eni’ l 5 i in, where cn1 gcnz 5..._<_ cnn are

known constants, not all equal, 80 and B are unknown parameters,

and the eni are iid F for F an absolutely continuous distribu-

tion. We regard 80 as a nuisance parameter and consider three

methods for estimating 8.

Throughout this paper we will, for the sake of convenience,

suppress the dependence of 'Ixni}. {eni}’ and '{cnii on! n. The

vectors (c1,c2,...,cn)' and (X1,X2,...,Xn)' will be denoted by

g and 5, respectively, d1, 1 5_i 5_n, will denote the centered

ci's, and we will take CE = fg=1 dg. Furthermore, many of the

statements made are true w.p. l, even though it may not be stated

explicitly.

2. Cramér-von Mises Type Estimation of B; the Rank Analogue,

As given by Hajek and Sidak (l967, p. 103), the rank analogue of

the Cramér-von Mises test for H0: 8 = A, where A is a given

constant, is based on the statistic

_ T " 2
MM) - f0 [1;] diI(RniA int)] dt

where Rni is the rank of X1 - Ac.1 among {Xj - ch, l §_j §_n}.
A

Since H0 is rejected only for large values of M](A), it seems

I

I



reasonable to attempt to define an estimator B] for 8 based on

the minimization of M1 in A.

In section l.l we propose a unique definition for such an

estimator and give a numerical example to illustrate its computation.

When so defined 61 is translation invariant and has a distribution

which is symmetric about the true parameter provided the underlying

distribution is symetric or the centered regression constants are

skew-symmetric (section 1.2). Section 1.3 contains intermediate

results which are used to derive the asymptotic distribution of the

normalized estimator in section 1.4. Finally, in section l.5, we

consider the asymptotic efficiency of 3]. With asymptotic variance

as the basis for comparison, 6] performs remarkably well against

some common estimators for B, particularly when the underlying dis-

tribution has heavy tails. Comparisons are made with the Wilcoxon,

median, normal scores, and least squares estimates at the normal,

double exponential, and logistic distributions. At the double

exponential, B1 out-performs all of the above but the optimal

median-type estimator. Similarly, at the logistic,.only the optimal

Wilcoxon-type estimator is more efficient. At the normal, B1 beats

only the median-type estimator, but shows only a slight loss of

efficiency against the other estimators.

3. Cramér-von Mises Type Estimation of B. We base our second

estimator on a statistic which is similar to M1 of the previous

section, but which uses the observations themselves rather than

their ranks. Here we consider the process
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n

M2(A) = 1me 2 diI(X1. - Ac. __<x)32dx, A e R,

‘ i=l ‘

and seek to define an estimator §2 for 8 based on the minimiza-

tion of M2 in A.

In section 2.l we propose a unique definition for such an

estimator and give a numerical example to illustrate its computation.

50 defined, 32 possesses invariance and symmetry properties

analogous to those of B] (section 2.2).

When specialized to the two sample location problem (i.e.,

=c =l;l§m<nLc1= c2 =...= c"I = O;cm+1= cw2 =... n

n

CIc2 f-wETTI—m .2 I(Xi—ix + A) '15
T=m+l i

I(Xi _<__x)]2 dx.

"
M
a

M (A)

2 1

Thus oEM2(A) represents the squared LZ-distance between the

empirical distribution of one sample and a shifted empirical distribu-

tion for the other sample. Fine (l966) showed that in this situa-

tion the Wilcoxon-type estimator éw for 8 satisfies M2(§w) =

-w:2:w M2(A). This raises the question as to whether §2 = fiw in

general. In section 2.1 we give an example which shows that this

is not the case. It is true, however, that the two estimators are

asymptotically equivalent, as shown in section 2.4.

It should also be noted that 32 is related to the weighted

median estimators for 8 considered by Scholz (1978). In section

2.1 we show that

M(A)=- dd.X.-X.-A(d.-d.).

2 l<iz<i<ni3|3 ‘ J ‘I

The (a.e.) derivative of M2 is



T] + 1-23- didjfl - 21(Xj - X1. - A(dj - d1.)].

where n is a constant which is independent of A. This statistic

(is analogous to that upon which the Scholz estimates are based. We

remark that the weights 'didj(dj - d1), 1 5_i < j g_n, satisfy the

Scholz optimality condition and that oc(B2 - B) achieves the

minimal asymptotic variance for his class of estimators. Our re-

sults do not follow from Scholz's work, however, since the weights

here need not be nonnegative.

4. Kolmogorov-Smirnov Type Estimation of B. Since the Kolmogorov-

Smirnov test for H0: 8 = A, A fixed, is based on the statistic

n‘ ’

D (A) = 'sup | Z dlI(X. §_x + Ac.)|,
c MN” i=1 1 1 l

with small values of Dc(A) favoring H0, we seek to define an

estimator B3 for B which satisfies

o(§)= inf D(A).
c 3 qw<A<m c

We note that when specialized to the two sample location

problem

n m

min-m)ln1m 1 Z I(X,i §_x + A) -.%. Z I(Xi 5_x)|,DC(A) = sup

=m+l i=1.m<x(m

which is a constant multiple of the sup-norm distance between the

empirical distribution of one sample and a shifted empirical dis-

tribution for the other sample.



In section 3.l we propose a unique definition for B3 and

illustrate its computation with a numerical example. So defined,

BB agrees, in the case of the two sample location problem, with the

estimator of location proposed by Rao et al. (l975).

Section 3.2 establishes that the invariance and symmetry

properties enjoyed by B] and B2 are valid for B3 as well.

The asymptotic properties of B3 are discussed in section

3.3 where it is shown that the asymptotic distribution of the

normalized estimator can be expressed in terms of functionals of a

Brownian bridge.

In section 3.4 we consider l00(l-o)% confidence sets for

B of the form

{A; DC(A) :Yc,a}

where Yc a is the critical value for which one rejects H0: B = A

whenever DC(A) > y We derive asymptotic upper bounds for the
c,o'

lengths of such intervals, both in probability and w.p. 1.

Finally, in sections 3.5 and 3.6, we consider the efficiency

of B3 and the associated confidence intervals. Comparisons are

made for B3 versus B] and BW via a Monte Carlo study, while

the confidence intervals are compared to normal scores and Wilcoxon-

type intervals using the upper bounds of section 3.4.



CHAPTER 1

CRAMER-YON MISES TYPE ESTIMATION

OF B; THE RANK ANALOGUE

1. Notation and Preliminaries. To the assumptions of the model

introduced in section l of the introduction we add the following:

(l.l) F has a continuous bounded density f satisfying

f(x) > 0 a.e. on '{x; O < F(x) < l}.

(1.2) lim 0" max |d.| = 0.

hr» lffign 1

In what follows let the vectors 5 and x be given ahd

define the quantities B = If“ f2(x)dx and K = fjm f3(x)dx. For

each real A and for each t 6 [0,1] define

n

S(t,A) := X diI(R . 5_nt)

i=l

where

n

RniA := .2
I(X. - Ac. 5 X. - Ac.) .

J l 3

We also define, for each real A,

W1(A) := I; S(t,A)dt

and note that
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-1 n

”1(0) “-n iEI diRnio 0

Next consider the process

{MI(A)’ '°° < A < m}

where

,_ l 2
M](A) o- [0 S (t,A)dt o

If we let (0 ) denote the vector of anti-
nlA’DnZA""’DnnA

ranks for (x - Ag)’, it is interesting tO note that;

n-

-l -2
I

o 2
c .‘i[ d J

li=l DniO

-2 _

0c ”1(0) - n

This is the Cramér-von Mises statistic (Hajek-Sidak, l967) for test-

ing the regression slope parameter B 8 0 against the alternatives

8 f O.

For a fixed sample, M1(A) is a step function (in A) whose

points of discontinuity are contained in the set

I] = {(Xj - X1.)/(cj - c1); i < j and c1 < cj}.

Set A0 = miniA; A 6 P1} and A1 = maX{A; A 6 r1}. Then for

c1 < cj, A < A0 implies A < (Xj - Xi)/(cj - Ci) and hence

R Thus the residuals '{Xi - Aci, l 5_i‘5 n} are
niA < anA'

naturally ordered and therefore (w.p.l)



 

( ' . .

g d. for t e [13 1:1), l < j < n-l

S(t,A) =<

o for t e [0,‘10 u {l}.
g n

Hence,

_ n-l j

M1(A) = I; 52(t.A)dt = n ' Z T 2 di]2
i=1 i=l

and thus

M ( ') '1 nil i d 2A =n [ .]

1 ° i=1 i=l ‘

Similarly, for A > A], the residuals are in a reversed natural

. n _ . J 2 _
ordering. U51ng' Zi-l di - O one obtains M](A)=n'12j;][fi=1 d J

+

As A crosses A0 only one pair of adjacent residuals cross.

Let ck < ck+l denote their respective regression constants. Then

n-l '
-l g 2

n X E d 3

i=1 ‘i=1
"1(A5) ' Ml(AO)

1% k“] 2

n'{3&1 [ H: d 32 + Idk+l + jz d1] }

jfk

k-l
n-l 2 2
n{[1: d. J -Tdk+I + ig} di] }.

Now c1 §_c2 5,..§_c and ck < ck+1 imply

k-l

+ Z d. 5.0 .

k .

Z d. < d

= “i=1
1 l k+l

' . . . ~l- ..

Thus M1(Ao) > M](A3). Similarly it follows that M1(A]) > M](A]).



As a result, the following quantities are finite:

*

B1
min{s e r]; M1(S+) = inf M](A)}

C

AEI‘.l

** -

B] = max{s e I]; M1(S ) = inf M1(A)} .

c
AEI‘1

We now define our estimator B] for B by

A - L * **

B] ‘ 2(81 + B] ) °

Numerical example

By the preceding remarks we may determine the value of B1

by identifying the set of slopes P1 and computing M](A') for

each ‘A 6 F1. Computation of M1(A) is facilitated by using the

formula

-1
(1.2) M](A) n 1<i§j<n didleniA ' anAl 0

We consider here a two-sample problem; that is, we take

c1 = c2 = O and c3 = c4 = c5 = c6 = l for the data

160, -26, T7, -l50, -30, 12.

TABLE I

Values of M](A-) for A 6 r1

A e r -310 -190 5l48 -143 -124 -4 3B 43

M1(A-) .6296 .3519 ‘ .1852 .l296 .1852 .1296 .l852 .3519
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From the above table it is clear that

* _ *1: _

B] - -148, B] - -4

so that B] = -76.

2. Finite Sample Properties

(a) Invariance

A useful property of the estimator B] is its translation

invariance; that is, for all real 7,

(2.1) 81(5 + is) = §1(A) + Y-

TO verify (2.l) we note that

mu-Yxp

1 n n
. 2

IO{1§1 diltj§11(xj ‘ (A " “Q; 5. X1- - (A - Y)°i) 5 mm dt

- 1 n 'n
2

M] (A) ()5, + YE)

Thus for all real 7

§Q+Y9=mmB€P+Y3M¥H£+m)= MfCMMH1+mH

A£(P+Y)

mmeer+y;me-yfnp= in CmA-nmn
A€(I‘+Y)

min{s + y; s e r, M(s*)(x) = infc M(A)(x)1

AEI'

*

B (25,) +Y-



ll

**

Similarly, B**(1 + yg) = B (5) + y for all real 7, and (2.l)

follows.

From (2.l) we conclude that

(an Pgé-egn=Pyégn.

for all real 2, where PB and PO indicate that the true parameter

is assumed to be B and 0, respectively. Because of (2.2) we may

assume throughout the rest of the paper that B = 0 without loss

of generality.

(b) Symmetry

Theorem 2.l. B is symmetric about B if one Of the following con-
 

ditions hold:

(i) F is symmetric

(ii) d. = -d
l n-i+l’ ‘ 5-1 5-"°

Proof. Assume, without loss of generality, that B = 0.

Proof of (i). Since for any real number a, M](A)(1) = M](A)(g + al),

we may assume that F is symmetric about 0 without loss of generality.

Now A ~ -5 so that B](§) ~ B1(-§) and hence it suffices to Show

that B1(-g) ~ -B1(g). Let 8 = {A; x. , someJ )' Xi = A(Cj - Ci

1 5_i < j 5_n}. Then for A e @C.
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I

I
'
M
:

jl

u

e
r
1
:

—
l

J I(Xj + ch g_Xi + Aci)

ifj l {1 - I(Xj + Ac. §_Xi + Aci)}
J

+

j

"
M
:

. + . = . + .1 I(XJ AcJ X1 ch)

= n + I ‘ Rni('A)(z) .

Using (1.2), (2.3) and the fact that B = I] w.p.l, we have (w.p.l)

M,<-A)(A) ”“13, d,d,IR,,(_A,(A) - an(_A)(z)|

-1

-n is d,d,IR,,,,<-A) - anA(-A)|

M](A)('l)

for A 5 Pg. But this implies that B1(-£) = -§](£). Completing the

proof Of (i). D

*

Proof of (ii). Let 5 denote (xn,xn_,,...,x1)'. Since B = O

we have A ~ 1* and hence 61(3) ~ §1(l*)- We show that

A * A

81(l ) ~ ~81(x). Now

* n * *

RniA(A ) = j§1 I(Xj - ch _<__X.i - Aci)

n

= 321 I“(n-3+1 + Acn-j+1 f-xn-i+1 * Acn-i+1)

=R
n,n-i+1,-A(A)°
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Thus,

s<t.A><A*)

I
I

I
I
M
:

diI(Rn,n-i+1,-A(A) 5-"t)
i l

"
M
:

dn-i+TI(Rn,n-i+1,-A(A) 5- m)
i l

-S(t.-A)(A).

It is now clear that M](A)(x*) = M](-A)(g) so that §1(l*) = -§](x).

Since 5* ~ 5 we have §](x*) ~ -§](x) and the proof of (ii) is

completed. B

3. Asymptotic Behavior of M](A). Throughout this section we re-

tain the notation of section 1 and assume that (1.1) holds. The

following theorem is proved as in Koul (1977).

Theorem 3.1. Let 0 < a < w. Then
 

p

(3.1) sup o"|S(t,Ao") - S(t,O) - Ao f(F"(t))l +0 o .
O<t<l C C C

IKIEa

A consequence of the above theorem is

Lemma 3.1. Let D < a < w and T](A) = fg[S(t,O) + Aocf(F'1(t))]2dt.

Then

p

-2 -1 0
(3.2) IzTBa oc |M1(Aoc ) - T1(A)| +~ 0 ,

. P

(3.3) sup o'2|w$(Ao") - (f[S(t,O) + Ao f(P"(t))Jdt)2| +0 o .
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Proof. To establish (3.2) we note that

(3.4) sup o;1|S(t,0) + Aocf(P"(t))| 30;]

IAISP
Ogtg]

sup |S(t,0)| + allfll=0 .

Ogtgj

-1

But oc sup |S(t,0)| is the Kolmogorov-Smirnov statistic which

< <1 v

has a limififig distribution (Hajek and Sidak, 1967). Thus the LHS

of (3.4) is bounded in probability so that in view of (3.1)

p

sup o'2|52(t.Ao;‘) — [S(t,O) + Aocf(F-1(t))]2|‘+0 O

IAISA c
Ogtg]

and (3.2) follows.

To establish (3.3) we note that

-1 -1 ' 1 -1 P0
(3.5) sup oc [W1(Aoc ) - fo[S(t,O) + Aocf(F (t))]dt| +1 O

IAISP

follows from (3.1). We also have (recall B = f:;f2(x)dx)

(3.6) sup o"|;‘[5(t,0) + Ao f(P“(t))3dt| §_o-]|W (O)| + a8.
|A|<a C 0 C C I

But -o;1W](O) is the Wilcoxon statistic and hence has a limiting

distribution (Hajek and Sidak, 1967). Thus the LHS Of (3.6) is

bounded in probability so that (3.3) follows from (3.5). D

For fixed 0 < a < m and O < d < m, define the event

-2 2

N1
En1(a,d) = {oc (0) < d, inf 022W§(Ao;1) 3_d} .

|A|=a

Lemma 3.2. For every e,> 0 there exist positive real numbers

N,a and d such that whenever n 3_N,
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P0(En1(a,d)) 3,1 - e.

1
Proof. Since a; W1(D) has a limiting distribution, there exists

a positive real number b such that

”DIGHIW (0)I_< b] > 1 - e V n .

2
If we also take d > 2b and choose a so that

a > b + (so/2)15 8" we have

2N1(O) §_b2 < d/2

and

inf o22(f0[5(t, O) + Aof(P"(t))1dt)2

IAI=5

nin{(ojW1(O) - aB)2, (o"w1(0) + a3)2 1

I
V (aB - og‘lw1(0)|)2 3_(a8 - b)2 3_3d/2

on {o;|W1(O)I_< b}. Choosing N according to (3.3) completes

the proof. U

Lemma 3.3. For every 2 > O and d' > 0 there exist positive real

numbers a and N such that n 3.N implies

-2 2 '1 g

IATEa oC W1(Aoc ) 3_d ) 3_1 - e .Po(

Proof. In the proof of lemma 3.2, take d > max{d',2b2}. The proof

is completed by using the fact that W1 is nonincreasing in A

(Hajek, 1969, p. 35). D
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4. Asymptotic Distribution of OCB1. Throughout this section we

retain the notation of sections 1-3 and assume that (1.1) and (1.2)

hold. In addition we assume, without loss of generality, that

B = 0.

Lemma 4.1. For 0 5_t §_l and n 3_l define

an(i,t) O i 5_tn

i - tn tn §_i 5_tn + 1

= 1 tn + 1 5.i

Then the process

{Zn(t) := 0;] 1:] dian(R1,t), 0 §_t 5.1}

converges in distribution in (B, C[0,l]) to the Brownian Bridge

{3(13). 0 _<_ t :1}.

Erggf. Héjek and Sidak (1967), Theorem V.3.5. D

Remark, {Zn(t), O §_t §_1} is a process with continuous sample

paths which is related to {S(t,0), O 5.t 5_l} in the following

manner:

sup |2n(t) + oE‘S(t,O)| 5_o-] max Id. |.

city ° 1_<_i_<_n ‘ .

For y a bounded integrable function on C[0,1J define

-1

W) = K I}, y(t>f(r“<t))dt

where K = ffgf3(x)dx.

Note that since h is a continuous functional on C[0,1]

we have
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Lemma 4.2. L0(h(Zn)) =>N(O,o§) where

o? = K'thg 62(t)dt - (I; G(t)dt)2]

and

_ t -1
G(t) - f0 f(F (s))ds, 0 5_t 5_1 .

We now define

2 ._ -1 .

ocB1 .- —h(oc S( ,0)) .

For 0 < b < a and p > 0 define

6 (a,b) := {lo 3 1 §_b, inf _ M (A) > inf _ M (A)}
n1 C 1 IAIZaoc] I |A|<aoc1 1

Al?

-2 2

H (a,p) := { sup 0 M (A) - T (A0 ) > Kp /2}
n1 IAls-aog" C A I 1 C I —

.= _ 3 . c = -
An1(a) . supiacls1 81I . 81 e r1. M1(B1) (ATan" M1(A)} .

Aer1' C

Lemma 4.3. Let s > O and 0 < b < a. Then

P0({An1(a) > e} n Gn1(a,b)) + O.

2599:. Suppose there exist y and p positive such that

P0({An1(a) > 2p} 0 Gn1(a,b)) > y for infinitely many n. By (3.2)

there exists an N > 0 such that n 3.N implies

P0(Hn1(asp)) < Y/2

and hence
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P0[{An1(a) > 2o} n Gn1(a,b) n H:1(a,p)] > 1/2 .

Since the above event is contained in {An1(a) > 2p} n Gn1(a,b),

we can find for any given 5 e {An1(a) > 2p} n Gn1(a,b) n H:1(a,p),

1* c - -1 . . B *
a A 6 P1 n (-aoc , aoc ) satisfying 1B1 - A1| > p and

*

(4.1) M1(A1) = inf _1 M1(A) .

|A|<aoc

Because we also have x 6 H:1(a.p) it follows that

-2 * * 2

(4.2) 0c |M1(A ) - T1(ocA )1 < Kp /2 .

Noting that T1(ocA) is quadratic in A with leading coefficient

2
Koc and minimum occurring at A = B1, we conclude that

.. * 2

(4.3) oczri1(ocA ) - T1(oce1)1 > K02

1
A * .

C ' ’1
from 13] - A | > p. Since for any AIE F1 n (-30C 3 3°C )2

-2 2 -2

-2 A 2 A

+ oc |T1(Aoc) - T1(B1oc)l < 15K6 + IT1(Aoc) - T1(B1oc)|.

**

by the continuity Of T1 in A there is a A 6 P1

1, aoE‘) for whichn (-aoc

-2 ** 2 2

(4.4) cc |M1(A ) - T1(B1oc)| < Kp l2 .

But combining (4.2) - (4.4) we see that M1(A*) > T1(ocA*) -

2 2 2 ** . .

KO /2 > T1(OCB1) + KO /2 > M1(A ), contradicting (4.1). D

2

Lemma 4.4. L0(ocB1) =»N(O,o1).
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Proof.

loc§1 - h(Zn)l = |h(o;‘S(-.O)) + h(zn)l

_<_ K-nmugioysnm + Zn(t)ldt s (16,)Till, max Id I + o
°°1<i<n

* 2

Thus L0(ocB1) =>N(O,o1). 0

Lemma 4.5. Given a > 0 there exist positive real numbers a,b

and N with a > b such that n 3.N implies

POIGn1(a,b)J 3_l - e .

Prpgf. Since OCB1 and oc2M1(O) have limiting distributions there

exists a positive real number b such that

2 -2
POEOCIB1I §_b, oc M1(O) 5-b1 3_1 - 6/2

for all n. Taking d > b and noting that M1(A) 3_W§(A) by the

Cauchy-Schwarz inequality, it follows from lemma 3.3 that there

exist a > b and O < N < m such that

inf _1 o“M1(A)> d] > 1 - 5/2P I

O |A|>ao;

for n 3_N. But then

022M1(0) _>_ inf _1 022M1 (A)

|A|<aoc

A£F1

implies
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a -2
POEGn1(a.b)J 3_P0[oc|81| 5_b, °c M1(0) §_b,

lin _1 o;2M1(A) 3_d] 3_1 - e. D

A>aU

- C

Theorem 4.1. L0(OCB1) +-N(O,o§).
 

x P

Proof. We prove that oclB1 - 811 +0 O. The theorem them follows

from lemma 4.4. Let c > O and 6 > D be given. By lemma 4.5

there exist positive real numbers a,b and N1 with a > b such

that

POIGn1(a,b)] 3_1 - 6/2 V n.3 N1

Now use lemma 4.3 to choose N > N1 such that

P0({An1(a) > e} n Gn1(a,b)) < 6/2 V n 3_N .

Then for n 3_N we have

s 3_sup{o 1B - g | : M (B ) = inf _ M (A)}
c l 1 1 1 |A|<ao 1 l

A¢r1°

~

~ 2
* 2

= sup{ocIB1- e11 :M1(B1)=22;M1(A)}Z*20c[131‘ B1|

** 2 A

+181 “811]:Oc181'811

on the event {An1(a) §_e} n Gn1(a,b). Since P0(£An1éa) §_e}

n Gn1(a,b)) 3.1 - 6, we have established oc|B1 - B1| +0 O . D

5. Asymptotic Efficiency of B1. We define the asymptotic

efficiency of B1 relative to any other estimator B Of B as

A

the ratio 01/02 of the asymptotic variances of ocB and OCB.
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The following tables indicate that 81 does quite well relative to

some common estimators for B when the underlying distribution has

heavy tails.

TABLE II

Asymptotic Variances of Various Estimators for B

2 2 2 2 2

1

 

 

OW ° °M 01-1 °Ls

O. Exp. 1 333 1.2 1 n/2 = 1.5707 2

Logistic 3 3.0357 4 n = 3.1416 Ila/3 = 3.2899

Normal H/3 = 1.0472 1.0946 n12 = 1.6707 1 1

TABLE III

61/02 for the Variances hiTable II

2 2 2 2

“w “M “1 -1 °LS

0. Exp. .90 1.20 .7639 .6

Logistic 1.0119 .7689 .966 .9227

Normal 1.0453 .6969 1.0946 1.0946

Computation of oi, 01 can be computed from either of the formulas
 

2
(5.1) 01 = K‘chg Gz(t)dt - (I; G(t)dt)2]

where G(t) = 73 f(F'1(s))ds, o §_t §_l or

= K‘277[P(x) x F(y) — F(x)F(Y)Jf2(x)f2(y)dxdy .
2

(5.2) 01



22

For E double exponential or logistic, (5.1) was used

since f(F'1(s)) is easily Obtained.

For F = 9, (5.2) implies that

a? = (4r)'lK'2ETo(x x Y) - o(X)o(Y)i

For X and Y independent N(O,.5). One then uses the fact that

Eo(x x Y) = P(Z1 5_0, 22 5.0)

where (21,22) has a bivariate normal distribution with

E(z1) = E(Zz) = 0, 02(21) = 02(Z2) = 3, and o(Z1,Z2) = 2.



CHAPTER 2-

- CRAMER-VON MISES TYPE ESTIMATION OF B

1. Notation and Preliminaries. To the assumptions of the model

introduced in section 1 of the introduction we add the following:

(1.1) F has a finite mean and a continuous density f satisfying

f f2(x)dx < w.

(1.2) H(w) : f F(w + x)F(dx) has a positive derivative H'(0)

0.m d t

N

(1.3) lim 0'] max |d1| = O.

0*” ljjgn

-4 2 _ + m
(1.4) cc 1;. |d1dj|(dj - o1) - 0(1) as n .

.1

-5 11 T1 2

We retain the notational conventions of preceding sections

and define the additional quantities

dij = -didj(dj - d1), 1 :1, j < n

d+ = {o d } l < i ' < nij max g .ij 9 _ 9 J _

dij = maX{09 -d1j}, 1 :19 J i n

23
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+ -4 +
K -0 Z d 0(d0 " d.)

n c i<j i3 J l

.) .

- -4 -

K - o 2 dij(dj - d1
n c i<j

Remark. Note that (1.4) implies that K; + K; remains bounded.

Furthermore, both (1.4) and (1.5) follow from the more common

assumption

(1.6) 25'021 max 1d11 = 0(1) as n +-m

lfjjm

since

o'4 I |d1dj|(dj - d1)2 _<__4o;4c max d? 2 Ididjl

i<j lgjgp 1 i<j

 

2 max d? I d2
5- 4"; i d?

lgjgn i<j i<j

-2 2=
_<__4noc max d1 0(1)

lgjgn

and

no;6 E E dgdg(d. - d1)2 §_2no;6 max d? if ldid.|(d. - d1.)2

i=1 i=1 3 J lgign i<j J J

§_8[no;2 max d?)2 = 0(1) -

In what follows let the vectors g and x be given. For

each real A and each real x define

n

U(x,A) = Z1 1 d1I(X1 5_x + AC1)

and consider the process

{M2(A)s “0° < A < 0°}
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where

M (A) - I” uz(2 - _m x,A)dx .

Recall that in the case of the two sample location problem,

M2(A) is a constant multiple of the squared Lz-distance between two

empirical distribution functions. Thus we are led to estimate 8

in the general regression problem by attempting to minimize the

quantity M2(A) in A. TO this end we investigate the properties

of M2 as a function of A.

Taking X1(A) = X1 - Ac1 and using the identity

2 max(a,b) = a + b + Ia - bl we see that

(A) m 2

(1.7) M2(A) #:1231111 [1.21 d1I(X1(A) _<_x)] dx

X (A)
_ n

- 121 j211dd1j fmax(X1(A),Xj(A)) 1 dX

n n

-121 121 d1 dJmax(X1(A). X3 (A1)

- a.e. x - x. - A(d. - 11.).

1§i<j§n ”'3 ‘ J ‘I

It is immediate from (1.7) that, for fixed 5 and g, M2(A) is

piecewise linear in A and that any changes in slope occur at

points contained in the set

={(X11- - X1)/(c11- - c1);1gi<j_<_n and c1< C11}.

Now consider the set
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A = {A3 M2(A) = igf M2(s)}.

If we establish that

(1.8) lim M2(A) = +on

IA|+°°

it will follow from the piecewise linear nature of M2 that A is

a nonempty subset of r2. It can be seen from (1.7) that the slope

of M2(A) is X didj(dj - di) for A < min P2 and

l§j<j§n

- Z didj(dj - di) for A > max P2. Computations similar to

l5j<j§n

those of (l.7) yield

w' 2
- d d.(d. - d.) = f [2 d.I(x > c )3 dx .

Since c1 5_c2 5,..5 c and the ci's are not all equal, d1 f 0
n

and there is a K.S." such that dK # d1. Let K* denote the

first such K. For x between c.l and c * we have

K

n: diI(x _>_ c1)]2 = (K* - l)2d$ > 0.

Hence

- d d (d. - d.) > 0

lgigjin 1‘1 J 1

This establishes (1.8).

We now define

82 = ave(A).

Remark. In the two sample location problem
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82=mEd{xj ' xi311isjins C1- =0, Cj = 1}.

A regression example

That 82 need not agree with the Wilcoxon estimate 3w in

the general regression problem is illustrated by the following

example. Here we consider the sample

-l, -2, l0, -3, 15, -28

with the weights Ci = i, l §_i §_6. As‘was indicated earlier in

this section, we can determine §2 once we have computed n'1M2(A)

for each A 6 r2. To compute 3”, it suffices to calculate nw1(A')

for each A 6 P2 (Adichie, l967).

 

TABLE I

Values of n'1M2(A) and nw1(A') for A’E r2

A 5 r2 n'1M2(A) nw1(A‘)

-43 454.3333 17.5

-13 93.0833 16.5

-12.6667 89.0972 15.5

-12.5 87.3125 12.5

- 6.5 18.0625 10.5

- 5.4 10.8667 6.5

- 1.0 27.9167 1.5

- .6667 28.7917 .5

- .5 29.4375 -2.5

2.5 42.5625 -4.5

4.0 49.8750 -6.5

5.5 64.6875 -10.5

5.6667 66.1944 -12.5

12 137.7083 -15.5

18 203.9583 -16.5
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Here we see that

82 = -5.4; SW = -.6667 .

Although §2 and éw may differ for any given finite sample, as

the above example illustrates, we prove in section 2.4 that

A A

oclBZ - Bw' converges in probability to 0.

2. Finite Sample Properties
 

(a) Invariance. A useful property of the estimator §2 is its

translation invariance; that is,

(2.1) §2(£ + Y9) = §2(g) + v for all real 7.

To verify (2.l) we note that

M2(A - Y)(X) — Z didjlxj - X, - (A - v)(dJ - d1)!
i<j

-i§j djdjl(xj + ch) ' (xi + Ycl) ' A(dj ' di)l

M2(A)(£ + Y9)-

Y; a e A(£)} from which (2.l) follows. As4
.

Thus A(5 + 79) = {a

a result of (2.l) we have

(2.2) PB(§2 - B §_z) = Po(§2 §_z) for all real 2.

(b) Symmetry. We assume, without loss of generality, that B = 0.

Theorem 2.l. 32 is symmetric about 8 if one of the following

conditions hold:
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(i) F is symmetric

(ii) di = -d l §_i 5_n.
n-i+l’

Proof of (i). 82(5) ~ §2(-x) follows from a proof similar to that

of theorem l.2.l. Using (1.?) one obtains M2(-A)(g) = M2(A)(-£)

and hence A(-L) = -A(g). Thus §2(5) ~ §2(-l) = -§2(£), completing

the proof of (i).

x x *

Proof of (ii). As in the proof of theorem l.2.l, 82(5) ~ 82(5 )

'k *

where )5, = (xn,xn_],...,x1)'. From (1.7), M2(A)(x ) = M2(-A)(x)

* A * A

and hence A(g ) = -A(g). Thus 82(5 ) = -82(5) and hence

 

82(5) ~ 32(5*) = -§2(5), completing the proof of (ii).

3. Asymptotic Behavior of M2(A). Throughout this section we re-

tain the notation of section l and assume that (l.l) through (1.4)

hold. Assume, without loss of generality, that B = 0. For con-

venience we introduce the following additional notation; for

-co < A < co define

1*2'(A) = Z d:j1(xj- x1. 5%.)

i<J

-)T§(A) = Z d'..I(Xj - Xi E-Aia

i<j 13

12(A) = 1;(A) - 15(A)

V+(A) = z (didj)'I(Xj - Xi §_A1j)(Xj - x1)

i<j

- +

V(A) = V+(A) - v'(A)
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where

Remark 3.l. In terms of the notation introduced above, we show

that for A 6 Pg

M2(A) = M2(0) - 2[V(A) - V(0)] + 2A[T2(A) - 12(0)]

+ 2AET2(0) - EOET2(0)]] .

Proof.

- 2 d1 d.”Ix - x1M (a)
2 i<j

Aijl

-i§j d.1d1[1 - 21(x. -x1 5_A11)1(x1 - x1 - A11)

-i§j1d. d. (x. - x1) + 21§j1d1d11(x1 - x1 5_A11)(x1 - x1)

- 2 f d.d A .I(x. - x. 5_A..) + 2 d1 (111.A
i<j 1 j 13 J 1 13 i<j ij

- 2 d1 d. [1 - 21(x. - x1< 0)](x. x1)

l<j

+ 2 Z d1dj I(O < X

1<j

- X1< A1H)(X X)

J

+ 2A 2 d1jI(0 < Xj -X. 5_A..)

i<j 1 13

+ 2A 2 d1H[I(X - X1< 0) -

l<<3

= M2(0) - 2[V(A) - V(0)] + 2[T2(A) - 12(0)]

+ 2A[T2(0) - E(T2(0))J- D
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In lemmas 3.l-3.3 we investigate the asymptotic behavior of

T and V.
2

Lemma 3.l. Let 0 < b < w. Then under the assumptions of section 1,

-3 Po
Ispr lac [T2(A/oc) - T2(0)J - AH'(0)| + 0 -
A <

+

Proof. The lemma is proved by combining analogous results for T2

and T5. We consider only TE; the proof for T5 is similar.

Fix A e R. Using (1.4) one proves as in Scholz (l978)

that

(3.1) E0{o;3[T;(A/oc) - 1;(0)1 - AK;H'(0)} + o .

We next show that

-3 + +

(3.2) Var0{oc [T2(A/oc) - T2(0)]} + 0 .

Set

Z11 = I(O < X1 - X1 5_A11/oc) , l 5_i, j 51n,

5+ = 0'3 Z d+ . z.. ,

n c 1<1 i3 13

n
.+ = -3 +
Sn oc k2] Eo(Sn|Xk) .

One shows as in Scholz (1978) that

+ a+

(3.3) Var0(Sn) - Varo(Sn)

-6 + 2
§_oc igj (d11) [EoVaro(Z11|X1) + EOVar0(Z11|X1)].
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Thus

LHS (3.3) §_%-o;6 Z ((111)2

i<j

-6 2 2
< 0 max d d.d. (d. - d.)

" ° l§k§p k 1§j I ‘ 3| 3 1

-2 2 + -
= 0 max d [K + K J

c 1SKSP k n n

o(l) as n +00.

For each 1 §_k §_n we have

+ _ -3 +

E0(Snlxk) ‘ Uc 1E1 dij E0(Zijlxk)

-3 + +

o E Z d. E (2 IX ) + Z d . E (2 |x )1
c 1<k 1k 0 ik -k . k<1 k1 o ki k

-3 +

-3 +

+ 0c kgi dk1[F(Xk + A1k/oc) - F(Xk)].

Using f2” f2(x)dx < w and the Cauchy-Schwarz inequality it follows

that F is uniformly continuous and hence that

+ + 2
VarOEE0(Sn|Xk)J1§_E0[Eo(snlxk)l

I
A

-6"
2

0 E 2 Id l sup |F(x + A. lo ) - F(X)IJ
C i=l 1“ i,j,x ‘3 C

026 sup |F(x + Aij/Oc) - F(x)|2n E dgk

i,j,x i=1

I
A

- -6 n 2 +00- noc 1;] d1k o(l) as n .
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Applying (1.5) we obtain

A1 -6 n n 2 -

VarO(Sn) §_[noc kg] 121 d1kJo(l) = 0(1) as n +~w.

Combining this result with (3.3) yields (3.2). From (3.1) and (3.2)

we conclude

P

(3.4) lo;3[T+(A/oc) - T+(0)] - AK; H'(0)| +0 o .

We next verify that

P
-3 + + + 0

(3.5) sup 0 [T (A/o ) - T (0)] - A H'(0) + 0 .
IAISP I C C Kn I

Let e,6 > 0 be given and let

‘b = A1 < A2 <...< Ak(€) = b

be a partition of [-b,b] such that

+ -l
max (A. - A.) < E{sup H'(0)] .

l§j5k(e)-l 1+] 1 2 n K"

By the above we have

P
-3 + + + 1 +0

Ioc [T (Aj/oc) - T (0)] - KnAjH (0)] 0

for each l 5.j 5_k(e). Thus we may choose 0 < N < a» such that

-3 + + +
1-6 < PE max 0 [T (A./o ) - T (0)] - A-H'(0) < e]

19:k(e)l C J C K" J I

whenever n 3_N.

Now suppose that A0 6 (A1, A ) for some 1 5_j 5_k(e) - l.
j+l
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Then since o;3[T+(A/oc) - T+(0)] and K: AH'(0) are nondecreasing

in A we have

-3 + + + 1

Cc [T (AD/ac) - T (0)] - Kn AOH (0)

-3 + + + 1

-<-°c [T (Aj+l/°c) - T (0)] - K11 AjH (0)

+-3 + + .
10c [T (AjH/Oc) - T (0)] - KnA1+1H (0)

+ I

and

;3[T+(Ao/oc) - T+(0)] - K;A0H'(0)0

-3+ + ‘+, +,
3_oc [T (A1/oc) - T (0)] - KnA1H (0) + KnH (0)[A1 - A111]

3_-e

Hence

-3+ + +1

|oc [1 (AD/0c) - 1 (0)] - KnAoH (0)] < e

and it follows that

POE sup Io‘3[1+(A/oc) - T+(O)] - K; AH'(0)| < e] 3_1 - a,

IAlsb °

completing the proof of (3.5).

In a similar fashion one can show that

-3 - - - P0
(3.6) sup lo [T (A/o ) - T (0)] - Kn AH'(0)| + O .

lAisb c c

Combining (3.5) and (3.6) completes the proof of the lemma. U
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Lenma 3.2. Suppose X ~ H. Then

lim t'zEH{X[I(X §_t) - I(X §_0)]} = H'(0)/2.

t+0

[£599f. We consider only the right limit; the proof for the left

limit is similar. Let s > 0 be given. Since H'(0) exists there

is a to > 0 such that [H(y) - H(O) - yH'(0)| < Zye whenever

0 §_y §_t0. Thus 0 §_t §_t0 implies that

It“2 131H(y) - H(O) - yH'(O)deI

5_t'2 [3 2y 2 dy §_e

and hence

lim t'2 It [H(y) - H(O) - yH'(0)]dy = o .

t+o 0

Defining X = XI(0 < X §_t) we see that
t

lim t'zEH{X[I(X §_t) - I(X §_0)]}

t+0

. -2 t

= 11m t f P (X > y)dy

t+o 0 H t

-2 t
= lim t f0[H(t) - H(y)]dy

t+0

-2 t t u
= lim t {f H(t)dy - f [H(O) + yH (0)]dy

t+o ° 0

- f3[H(y) - H(O) - yH'(0)de}

lim {t“[H(t) - H(O)] - H'(0)/2}

t+0

H'(0)/2 . D
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Lemma 3.3. Let 0 < b < m. Then under the assumptions of section 1

p

sup lo;2[V(A/oc) - V(0)] - %-A2H'(0)| +0 o .

Algb

Proof. Fix 0 < A 5_b. The proof for -b 5_A < 0 is similar. Then

E0{o;2[V+(A/oc) - V+(0)]}

E0{o;2 Z (d1d1)'1(o < x1 - x1 5.A11/oc)(x1 -x1)}

i<j

Azo'4 Z d (d - d.)E {(A ./o )‘21(o < x - x < A /o )(x. - x )
c 1<1 ij j 1 0 i3 c j i - ij c J i

d11>o

- H'(0)/2}

ll 2 -4 g

+ 2 A oc 121 d11(d11 d1)H (0) .

d11>0

Now

1 2 -4
E-A 0c 1;. d11(d1- d1 )H (0): fixH (0)

J .

and by lemma 3.2 and (1.3),

IAA20C4 igj dij(dj “d-H)Eo{(A1j/C )-21(0 < X1 -X1< Aij/OC)(xj- xi)

d11>0

- H'(0)/2}I

2+
< A Kn max E { A / )21 0 < x. -x1< A / (x. x.) - H'(0)/2}

i<jl ° ( 15 CC ( 1i °c) 1 l

< AZK+ o(l) = 0(1) as n + m.

Thus
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(3.7) Eo{o;2[v+(A/oc) - v+(0)3 - %-K;A2H'(O)} + o .

To establish the lemma for V+ we show that

(3.8) Varo(o;2[v+(A/oc) - v+(0)3) + o .

Set

Zij = 1(0 < Xi ' xi S-AiJ/°c)(xj ' Xi)

+=-2 -
sn oc igj (d1d1) 211

and

§+ = ‘2 E E (s+|x )
n 0c 0 n k '

It follows as in theorem l of Scholz (l978) that

+ +

Varo(Sn) - Varo(§n)

-4 - 2
§_oc 1E: [(d1d1) J [EOVaro(z11|x1) + EOVar0(z11|x1)J .

Hence, by (1.2) and (1.5),

(3.9) Varo(5:) - Var0(§;)

- 2 2
Z [(d1dj) J 50211

i<j

-4
§_Zoc

-4 - 2 2

5'20C 1§j [(didj) J (Aij/OC) [H(Aij/OC) ' H(O)]

2 -6 + 2

2A 0c igj (dij) [H(Aij/UC) ' H(O)]

2 -6 + 2
2A a Z (d. ) max [H(A lo ) - H(O)].

I
A

I
A

For each 1 §_k §_n we have
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O’cz .-

Ho(5 lxk) .5 (didk) E0(Ziklxk)
1<k

+ °;2 2 (didk)-E0(Zkilxk)
k<i

where

E0(Ziklxk) = IMO E xk ’ .y f. Alk/OCka ’ .Y)F(d}')

x

fx
" (x - )F(d )

k‘Ai k/Oc y y

I
A

(Aik/OC)[F(XK) ' F(xk ' Aik/OC)J’ i < ks

and

E0(zkilxk) _<__(A1k/oc)L'F(Xk + A1k/oc) - F(Xk)], i > k.

Therefore

a+ n +
Varo(Sn) =k21VaroEo(Sn|Xk)

< o;4[ sup |F(x + A1k/oc ) - F(xm2 {If Id1dk|(A1k/oc )32

x,i<k

(#2206121. d1ko(l)= 0(1) as 11+».

Combining this result with (3.9) yields (3.8). Using (3.7), (3.8)

l

1 2

nondecreasing (nonincreasing) on 0 §_A §_b (-b 5_A §_0) it follows

and the fact that a;2[v*(A/oc) - v*(0)1 and KTAZH'(0) are both

that

P

(3.10) sup lo‘2[v+(A/o ) - v*(0)1 - %-KTA2H'(0)| +0 o .

IAl1b ° °

In a similar fashion one shows that
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-2 - - 1 - Po
(3.11) sup Io (v (A/o ) - v (0)] - E-K A H'(0)| + o .

(Alsb c c

Combining (3.l0) and (3.ll) completes the proof of the lemma. U

Theorem 3.l. Let 0 < b < m. Then

PO

sup [022[M2 (A/oc ) - M2(0)] - A2H (0) + 2A0312(0)| +-° o

|A|<b c

where 12(0) = -(12(0) - E0(T2(0))J-

3399:, The theorem is a consequence of remark (3.1) and lemmas

(3.1) and (3.3). D

We conclude the section by proving three lemmas which will

be useful in showing that the sequence {ocfiz} is bounded in

probability.

Lemma 3.4. The sequence {022M2(0)} is bounded in probability.

-2 -2
2522:, Eotoc M2(o)] EOE-ac 1) d1djlxj - x1|1

i<j

-oCZEOIX] - le1{j d1dj

= 1

Since 022M2(0) is nonnegative for each n, application of the

Markov inequality completes the proof. 0

Lemma 3.5. Let

H2(A) =1) d1 fx:(g§A ) VfTYT dx. ~w < A < we

where X1(A) = X1 - Ad1. Then



40

(i) 1112 is a nondecreasing function of A.

P
O. -2 0

(11) [0c [N2(A/oc) - w2(0)1- A E0 Jfli’lll -> o v A e R.

(1'1‘1') N§(A):M2(A) v aeR.

Proof of (i). Let A < A' and set A = max(xzn)(A), xzn)(A')).

Then

. " A A
new ) - 112(1)) 1%] diUx;(A') mx dx - In“) #136 dx]

n + X%(A) n X'(A' )

3_0 .

Proof of (ii). We consider the case when A 3_0; the proof for

A < 0 is similar.

o;1[wz(A/oc) - "2(0)]

n X' (A/o )
xi 1 c

oc[12 d: Ix..(A/Oc ) Jflx 5 dx + Z d; IxX1 Jflx 5 dx]

'1 E d+ (Ad+/ )"ix1 mu - M‘X'TJAdV
o i=l i[ 1 CC X§(A/Oc) x x i i 0cC

n

+ 0'1 Z d”E(AdIoc)1

° i=l

2 " 2

2 ”1' “mi”
i=l

fii(A/O'c) _

Jflx) dx — JTIXiJJAdiloc

Therefore, by assumption (l.l) and the above,
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Io-][w (A/o ) - w (0)] - Ao'2 E d2 Jflx 5|
c 2 c 2 c i=1 i i

X.

§,A max I(Adi/oc) 1 IX}(A/o ) JTIx) dx - JTIXiJ| = 0(1) as n + an

1 cljjfm

We complete the proof of (ii) by showing that _

" 27‘7 mpo
leEz

l 1

But this follows from the NLLN since

VarOUfTX-T]) g ; f2(x)dx < co.

Proof of (iii). By the Cauchy-Schwarz inequality

11

142(1)) = [{f>o}{ci§1 dim. - Adi g x)32/f(x)}f(x)dx

I
v

a n

(Id, 12 diI(Xi - Ad]. 5 x)/"(‘Tfx dx)2

=1

X' (A) n 2

(IXE:;(A) fig] d11(xi - Adi §_x)/f(x5 dx)

I

A M

O
.

_
l
. H

x

A
:

D
v

V

v

'
0
.

X D
.

X

v

N

Before stating our final lemma we define, for each

0 < a < m; 0 < d < m and n 3_l, the event

En2(a,d) = {0;2M2(0) < a, 11?; ogzwgwoc) 3 d}.

Lemma 3.6. For every 6 > 0 there exist positive real numbers

N,a and d such that n 3.N implies
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P0(En2(a,d)) 3_l - 8.

Proof. Since 0 §_W2(0) §_M2 (0) for all n, the sequence

{a21H2(0)} is bounded in probability by lemma 3. 4. Hence for fixed

M! < “’9

(3.12) (c‘zw2NZC(A/o)- [02112(0) +AE“MYTHIP+0 o

by lemma 3.5. Now let b be such that

9010;2M2(0) §_bJ 3_1 - e v n 3_1 .

If we take d > 2b and choose a so that

a >125+ ammo #1171)"

we have

022w§(0) §_o;2M2(0) §_b < d/2

and hence

liT:ato;w2(0) + A 50 Jflx‘712> [a £0 J?TX‘7 og‘lwzwm2 3_3d/2

A

on {022M2(0) §_b}. The proof is completed by applying (3.l2). D

4. Asymptotic Distribution of océz. Throughout this section we

retain the notation of sections l-3 and assume that (l.l) - (l.4)

hold. In addition we assume, without loss of generality, that

8 = 0.

Lemma 4.1. {ocgz} is bounded in probability.
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Proof. Let a > 0 be given. By lemma 3.6 there exist positive

real numbers a,d and N such that

POEEn2(a,d)] 3_l - e V n > N.

By parts (i) and (iii) of lemma 3.5

-2 -2 2
inf o M A o > inf w A > d

1A1.>.a ° 2(/‘)‘IA1:a°‘ 2W9“

and

-2 2 -2
oc ”2(0) f-Oc M2(0) < d

on En2(a,b) whenever n 3_N. Thus

,. -2
{locezl §_a} : {oc M2(0) < d, I2T:a M2(A/oc) 3_d} 2 Enz(a,d) V n 3_N

implies

Ptlocézl 1a]: PEEn2(a.d)1:1 - e v n :N . o

The result of theorem 3.] suggests that an approximating

statistic for chz is 023T;(0)/H'(0). The next lemma gives the

asymptotic distribution of that statistic.

Lemma 4.2. Under assumptions (l.l) and (l.3) L0(JT2'o;3T;(O) =>N(0,l).

Proof. Since

*

*

the projection of T2(0) into the family of linear rank statistics

is
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*,- -12 "
wz .- n 0c .2 diRniO

1-l

(Hajek and Sidak (1967), p. 61). Since

P
-3 * 'k 0

(Sievers, l976), the proof is completed by noting that

L JT? ’3 w* N o 10( 0c 2) => ( . )

under assumptions (l.l) and (l.3) (Hajek and Sidak (l967), p. 163). D

For 0 < a < b < w define

-3 * . .

G a,b = { T 0 /H' 0 < b, 1nf M A/ > 1nf M A/ }"21 > lac 21) ()|__ |A|>a 21 Cc) Mia 21 0c)

and

An2(a) = supue“ - of T;(O)/H'(0)l; W1 5 a. M2(A*/oc)

= inf M (A/o )}.

lAls.a 2 °

Lemma 4.3. Let c > 0 and 0 < b < a be given. Then

»P0({An2(a) > e} n Gn2(a,b)) + 0

as "+00.

Proof. Suppose there exist 81 and 6 positive such that

Po({An2(a) > e} n Gn2(a,b)) 3_6

for infinitely many n. For each such n there exists a

lel g_a such that
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(4.1) 1A0 - og3 T;(0)/H'(O)I z.e(

and

(4.2) M (A /o ) = inf M (A/o )
2 0 c IALSP .2 c

on Gn2(a,b). Since

._ '2 '3 * 2 l

Q(A) .- oc M2(0) - 2Aoc 12(0) + A H (0)

is quadratic in A and achieves its minimum at A = 023T;(0)/H'(0),

(4.l) implies that

(MAO) - (no? 12(01/11'1011 _>_ Hume? .

By (4.2) we also have

M2(o;4 12(01/11'1011 _>_ "2<Ao/°c> .

But

-2

su o M (A/ ) - 0(4)
IAIE§.| c 2 0c I

_>_ maxnogznzmoxoc) - omen. (a;2M2(o;41;(o)/H-(o))

- 0(og3 T;(0)/H'(0))I}

3_H'(0)c§/2

on ‘Gn2(a,b) since

(022M2(A0/oc) - Q(A0)| < H'(0)e§/2

implies
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-2 -4 * . -3 * .
0c M2(°c 12(0)/H (0)) - 010C 12(01/H (0))

3,022 M21A0/oc) - 0(o;3 1:101/H'10))

> 0(A0) - H'(0)e§/2 - 0(o;3 T;(O)/H'(0))

.3 H'(0)e§/2 .

Thus

lim sup sup [022M2(A/oc) - Q(A)| 3_H'(0)e¥/2 ,

n+on IALga

contradicting theorem 3.1. D .

We are now ready to give the asymptotic distribution of

o 82. '

Theorem 4.1. L0(oc§2) +'N(0, (12H'(0)2)").

p .

Proof. We prove that IOCBZ - 023 T;(0)/H'(0)l +0 0. The theorem

then follows from lemma 4.2. Let c > 0 and 6 > 0 be given. By

lemma 4.2 and the proof of lemma 4.l we may choose 0 < b < a < w

and N1 > 0 such that

P0[6n2(a,b)3 3_l - 86 for n 3_N1 .

Now use lemma 4.3 to choose N > NI such that

Po({An2(a) > e} n Gn2(a,b)) < 56

whenever n 3_N. Then for n 3_N we have
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sup{|A - oC3T2(0)/H (0)): M2(A*/oc) = inf M2(A/oc )}c §.A (a)
n2 [Alia

sup{|A* - 023T;(0)/H'(0)| : M2(A*/oc) = igf M2(A/oc)}

|
v Iocéz- og312(o)/H (O)!

on {An2(a) 5-5} n Gn2(a,b). Since

P({An2(a) 5_e} n Gn2(a.b)) 3_l - a

for n large,

P

Iocé2 — 0312101/H (0)I +0 o o

The asymptotic relationship between éz and the Wilcoxon-

type estimator fiw is established in the following

p

Corollary 4.1. Under assumptions (l.l) - (l.5) ocléz "gwl +0 0
 

Proof, An immediate consequence of the asymptotic uniform linearity

(in A) of w* is

. P

(212'623 w; - o e |.+°
CW 0'

Since lemma 4.2 and theorem 4.l yield

p
-3 'k v: 0

and

A ‘3 * 1 P0

lacs2 - 0c 12(01/H (0)) +- 0.

we have

A A P0

0c'82 ' BwI + 0 U



CHAPTER 3

KOLMOGOROV-SMIRNOV TYPE ESTIMATION OF B

l. Notation and Preliminaries. In chapter 3 we retain the nota-

tion of previous sections. To the assumptions of the model intro-

duced in section 1 of the introduction we add the following:

(l.l) F has a continuous bounded density f satisfying

f(x) > 0 a.e. on {x: 0 < F(x) < l}.

(1.2) lim 0'1 max Idil = 0 .

new c lgjgn '

In what follows let the vectors 3 and x be given. For

A real define

(l.3) DC(A) = sup |U(x,A)|.

-a<x<m

Remark. We now verify that

(1.4) DC(A) = sup |S(t,A)| V A.€ R,

0<t<l '

a result which will be useful in establishing the asymptotic distribu-

tion of our estimator.

and

4B -
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SM) = i an . j/n:t< (1+11/n.
i=l ni

Since we also have

U(x,A) = o , x 1! [Xm(A), X(n)(A))

and

S(t,A) = 0 9 X6 (09 '3'") a

(l.3) is established.

To aid in investigating the properties of Dc as a function

of A we define, for A e R,

D:(A) = sup [U(x,A)]

and

D;(A) = - inf [U(x,A)].

Lemma l.l. 0: (DE) is a left-continuous non-decreasing (right-

continuous non-increasing) step function in A whose points of

discontinuity are a subset of.

P3 := {(xJ. - X1)/(dj - d1); dJ- _>_o. d1. < o, 1 :1 < .1“ in}.

Proof. We consider only 0:; the proof for D; is similar. That

D: is a step function follows from the fact that D:(A) is a

function of the ranks of {Xi(A), l §_i §_n}. To establish its

non-decreasing nature we make use of (1.3). Let A1 5.A2 5,..5_Am

denote the ordered members of {(X3 - X1)/(dj - di); 1 5_i < j §_n,

di f dj} and set A0 = -w, A +w. For 1 §_j 5.m choose any
m+l=
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A', A" such that

A.J-]<A (Aj<A <A.

1+1 ‘

Now Aj = (Xi - Xk)/(d£ - dk) for some k < t such that dk < dt'

Hence

xk1A') < x,(A')

x£(Au) < xk(An)

X£(Aj) = Xk(Aj) .

For A real let X0(A) = (Xk(A) + X£(A))/2. Then

(1 5) D:(A') “ max{ sup U(x,A'), U(x0(A'),A'). sup U(x,A")}

. x<Xk(A'). x>X£(A")

and

(1.6) D:(A") = max{ sup U(x,A"),U(x0(A"),A"), sup U(x,A")} .

x<X£(A") , X>Xk(A")

Note that as A E (Aj_], Aj+]) crosses A., only the residuals

J

Xk(A) and X£(A) cross. The other residuals remain distinct and

in their same relative order with probability one. Hence the

following are valid:

(l.7) sup U(x,A') = sup U(x,A") = sup U(x,A.)

x<Xk(A') x<x£(A") x<x£1Aj1=xk1A31 J

(l.8) sup ' U(x,A') = sup " U(x,A") = sup U(x,Aj)

x>X£(A ) x>Xk(A ) x>Xk(Aj)=X£(Aj)

(1.9) u1x01A').A') = u1x01Aj).Aj) - a,
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(1.10) U(x0(A"),A") = U(xo(Aj),Aj) - dk .

Ne complete the proof by considering three cases:

Case I. If dk < d£ 5_0 then by (1.9) and (l.lO)

sup U(x,A') 3_U(Xk(A')',A')

x<Xk(A') .

= U(xo(Aj),Aj) - dk - d2

3.max{U(xo(Aj),Aj) - d2 , U(x0(Aj),Aj) - dk}

= max{U(xo(A'),A'), U(xO(A"),A")}.

Thus

D:(A') = max{ sup U(x,A'), sup U(x,A')} = 02(4")

x<xk(A') x>X£(A')

follows from (1.5) - (l.8).

Case II. If O'idk < d2 then

sup U(x,A')

x>X2(A')

|
V U(x,<A')*.A') = U(x01Aj).Aj)

|
v max{U(xo(Aj),Aj) - dk’ U(x0(Aj),Aj) - dz}

max{U(x0(A'),A'), U(xo(A"),A")}

by (l.9) and (l.lO). Thus

+ 1 = I 1 3+ 11

DC(A ) max{x<§:pA')U(x.A ). x>§:?A') U(x.A )} DC(A )

follows from (1.5) - (l.8).

Case III. If d §_0 §_d£, d < d£, then by (1.9)
k k
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sup U(x,A') _>_ U(X£(A')+,A') = U(xo(Aj),AJ.)
x>X£(A')

.3 U(x0(Aj),Aj) - d2

= U(x0(A'),A').

Thus

D:(A') = max{ sup U(x,A'), sup U(x,A')

x<Xk(A') x>X£(A')

§_max{ sup U(x,A'), sup U(x,A'), U(x0(A"),A")}

x<xk(A') X>X£(A')

= D:(A")

follows from (l.5) - (1.8).

To establish left continuity, first note that

+ -
,

Dc(Aj) - max{ sup U(x,Aj), U(x0(Aj),Aj), sup U(x,Aj)}.

x<X2(Aj) x>Xk(Aj)

Applying (l.7), (l.8) and

x>§:?Aj)u1x.Aj)_>_ U(kajifiAj) = U(xoujmj).

we have

+ _ , , = +
Dc(Aj) - max{x<§:?A')U(x,A ). x>§:?A')U(x.A )} Dc(A)'

Finally, since D:(A') = D:(A") in cases I and 11, the

points of discontinuity of D: are seen to be a subset of r3. D

Before defining 33 we need one additional

+ - - + - - n +
Lemma 1.2. DC(A1) = 0 = Dc(Am) and Dc(A]) = Z d =

+ +

i=l i Dc(Am)°
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Proof. Note that for A < A]. l §_i < j §_n and di < dj imply

Xi(A) < Xj(A), so that the {Xk(A), l §.k §_n} are naturally ordered

with respect to d1 §_d2 53"5-dn' Using the monotonicity of the

.d 1's and {'13:} d1. = 0 we have, for 1: k gn-l,

k

U(x,A) 8 2.] di 3 09 X G [xk(A)9 Xk+1(A))°

1:

Since

U(x,A) '-' 0 . X e H(O)“), x(n)(A))

we have

sup [U(x,A)] = 0

-ao<x<oo

and

n _ n +

-inf [U(x,A)] = Z di = X di'

-co<x<oo i=l i=l

Because 0: and D; are constant for A < A1 it follows that

+ — = + =

DC(A1) DC(A) 0

and

.. .. - n +

Dc(A]) = DC(A) = .2] d, .
'l

n

The proof that D:(A;) = 1;] d: and D;(A;) = 0 is similar and uses

the fact that the residuals {Xk(A), l §_k §_n} are in a reversed

natural ordering with respect to the di's when A > Am. B

Lemmas l.l and 1.2 guarantee that the following exist and

are finite:
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. ,+ -
1nf{A E R, Dc(A) Z-Dc(A)}’m

(
.
0

II

sup{A e R; D;(A) 3_D:(A)}.I
D

(
A
)

l
l

Note that by the monotonic nature of D:(A) and D;(A), B;* 3_B;

w.p. l.

We are now ready to define the estimator

A - 'I * **

B3 ’ 2(83 + B3 ) °

Lemma 1.3. Dc is nondecreasing for A 3_§3 and nonincreasing for

A:%.

Proof. Note that

(1.11) DC(A) = max(D:(A), o;(A)) v A e R .

By the definition of 5;, A > 8; implies D:(A) 3_D;(A) and hence

+ ** **

DC(A) = Dc(A). By the definition of B3 , A < 33 implies

D;(A) 3_D:(A) and hence DC(A) = D;(A). Thus, since

* A ** + A ..

33 5_B3 5.83 , DC(A) = DC(A) for A > 83 and Dc(A) = DC(A) for

A < B3 and it remains to show that

A . A- A+

(1.12) DC(B3) 5_m1n(Dc(83). DC(B3)) .

But by lemma l.l,

+ A + A- + e+

DC(B3) - Dc(e3) §_DC(B3)

and

D’(“ ) - D'(“*) < D'(“')
c 83 - c 83 - c 83 '

Therefore,
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(1.13) DC(§3) = max<n§1é3). o;(§3))

:,maX(D:(§3). D;(§g))

= oc(§;)

and

(1.14) ”C(33) = max(o:(§3). 02(33))

_ max(o:(§§). n;(§;))A

e+

Dc(e3) .

Combining (l.l3) and (l.l4) establishes (l.l2), completing the

proof of the lemma. D

Remark. Lemma l.3 shows that

nc(§3)= inf o (A) .

-°°<A<oo C

Numerical Example

According to its definition, 33 can be determined by

identifying the set P3 and computing D:(A') and D;(A-) for

each A 6 P3. As an illustration we take Ci = i, l 5_i §_4 and

consider the sample

1, 5, 3, 6 .

Simple computations yield:
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TABLE I

Values of DC(A') and o:(A') for A 6 r3

A 6 r3 D;(A') D:(A')

-2 2 o

.5 1.5 o

1 1.5 .5

5/3 1 .5

* ** A

Here B = 5/3 = B so that 83 = 5/3.

2. Finite Sample Properties

(a) Invariance. A useful property of B3 is its translation in-

variance; that is,

(2.1) 63(5 + Y5) = Y + §3(5) V v e R .

To verify (2.1) we note that

D:(A)()$ + Yg) sup [25(t.A)(2£ + “YEN
0<t<l‘

sup [15(taA-Y)(£)]

0<t<l

Dim-1112.1) .

Thus,

836 + is) 1nf{A: DEM-111.1) : Ugo-11(1)}

= Y + 1nf{A; D:(A)(5) 3_D;(A)(£)}

*

= Y + 83(5) V 1 E R.
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Similarly,

s?q+yg=y+s?q1 v 16R

so that

§3(1+Yg)=1+§3(z) YveR.

(b) Symmetry. We assume, without loss of generality, that B = 0.

Theorem 2.l. B3 is symmetric about 6 if one of the following
 

conditions holds:

(i) F is symmetric.

(ii) d1 = -dn4”,lgign.

 

Proof of (i). 63(5) ~ §3(-x) follows from a proof similar to that

of theorem l.2.l. Using the definitions of D: and 0; one obtains

D:(-A)(A) = o;(a>(-A)

and

- +

Dc(-A)(A) - DC(A)(-A) .

1k *1:

Thus the definitions of B3 and 83 yield

* *

331-5) = -83(A)

and

** **

B3 ('5) = ‘33 (1,) -

Therefore

§3(l) ~ §3(',X,) = '§3(£)s

completing the proof of (i).
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Proof of (ii). As in the proof of theorem l.2.l, 62(5) ~ 62(§*)
 

where 5* = (Xn,Xn_1,...,X1). Using the definitions of D: and

D; and the proof of (i) one obtains

D:(A)(A*) = o;<-A)<A) = D:(A)(-A)

and

o;(a><A*) = o:(-A)(A) = o;<a>(-A) .

Thus

63(5) ~ 6311*) = 63(-A) ~ -§3(A)

as in the proof of (i). ' D

3. Asymptotic Distribution of UCB3. In this section we assume,

without loss of generality, that B = 0.

To aid in the proof of theorem 3.l we first define a class

of functionals {T2, z 6 R} on the set V of bounded functions on

'[0,l] by

12(h) = sup {1h(t) + zf(F'1(t))]1/0}
0<t<l

+ inf {[h(t) + zf(F"(t))J n 0} v h e 11. z_€ R .

0<t<l

For h,g E W and z E R we have

lwn>+nu4un1vo-mu)+fiu4un1vm

5. Wt) - oh)! 5 llh - gum v t e [0.13

and
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l£h(t) + zf(F'](t))] A o - [9(1) + zf(r“(t))1 A 0|

:.|h(t) - g(t)| 5.uh - gum v t e [0,l].

Thus

112111) - 1.1911 5.21111 - 911,.

establishing that T2 is a continuous functional on C[0,lJ.

Remark. Let {B(t), 0 5_t 5.1} denote a Brownian bridge. Then

since 3(o+) = S(0+,0) = f(F“(o+)) = o w.p. 1, we have (w p.1)

12(3) = sup {B(t) + zf(F'1(t))}
0<t<l

+ inf {B(t) + zf(F'](t))}

0<t<l

and

1 (0"S(-.o)) = sup {0"S(t.01 + zf(F"(t))1
2 C 0<t<1 C

+ inf {0215(t90) + zf(F'1(t))} °
0<t<l

We are now ready to state

Theorem 3.l. Under conditions (l.l) and (1.2),

Pofoc83 5.21 + POETZ(B) 3_0] v z e R .

Proof. We assume that z > 0; the proof for z 5_0 is similar.

* **

From the definitions of B3 and B3 9

ink + ..

83 < z/oc c>Dc(Z/cc) > DC(Z/oc)

and
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+ _ *

Dc(z/oc) _>_ Dc(z/°c) $83 _<_ z/oc .

* A ** . .

Thus 83 §_B3 §_B3 implies that

+ - A + -

POEDc(z/oc) > Dc(z/oc)] §_P0[B3 §_z/oc] §_P0[Dc(z/oc) 3_DC(z/oc)].

Applying theorem l.3.l and using the inequalities

-1 +

0c Dc(z/oc) 3_0,

sup {0215(t,0) + zf(F'](t))} 3_0,

0<t<l

we obtain

log‘o:(z/oc) - sup {0215(t,0) + zf(F"(t))}|

0<t<l

. P

_<_ sup Io;1[S(t,z/oc) - S(t,0)] - zf(F'](t))| +0 o .
0<t<l

Similarly,

-1 - . -l -1 P0
|oc Dc(z/oc) + 1nf {oc S(t,0) + zf(F (t))}l + 0 .

0<t<l

Hence

p

(3.1) ID:(z/oc) - D;(z/oc) - Tz(o;]S(t,O))| +0 o .

He now show that

(3.2) 10(12(a;‘s(.,o))) e L0<TZ(B)) .

Recall from lemma 1.4.] the process {Zn(t), O 5_t 5_l} with con-

tinuous sample paths which converges in distribution in (B, C[0,l])

to {B(t), 0 §_t 5_l}. Since
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-1 -1
“2 (~) + o S(-.0)Ha,5,o max Id I.

n C C 131:" 1

the continuity of T2 yields

-1
P0

ITZ(<1c $0.01) - Tz('Zn(°))| + 0.

Since

L0(T(‘Zn(°))) 9L0(T("’B)) ~ L0(T(B)),

(3.2) is proved. Combining (3.1) and (3.2) gives

4» -

PotDc(z/oc) 2,Dc(z/oc)1 + POET2(B) z_01

and

POED:(z/oc) > D;(z/oc)1 + P0[12(B) > 0].

But Po TZ(B) = 0 = 0 by lemma l of Rao et al. (1975) and the

proof is completed. B

4. Interval Estimation of 3., Throughout this section we assume,

without loss of generality, that B = 0 and that (l.l) and (l.2)

hold.

Let Yc,a denote the critical value for which one rejects

’ Ho: 8 = 0 at level 6 whenever Dc(0) > YC,a° Then a l00(l-a)%

confidence set for B is given by

Ic,a := {A; Dc(A) s-Yc,a} .

Lemma l.l and (l.l) imply that IC 6’ when nonempty, must be

an interval. Note that
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Ic,01 = 4’ $DC(D) > Yc,a;

hence empty intervals are obtained only on an event where one rejects

the true null hypothesis.

It has been shown (Hajek and sidak, l967, p. 189) that

10(og‘oc1011 = 10103351 181111).

Defining K to be the l-a percentile of L ( sup |B(t)|) we
a 0

Dgtfj

then have

1. -l -
1m oC y - K

"#0

Lemma 4.1. Given 0 < B < m» and e > 0 there exist b and N

positive such that n 3_N implies

. -T
POE 1nf o D (z/oc) > B] > 1 - e.

|2lzb c c

Proof. Using lemma 1.3, the proof is similar to that of lemma

l.3.3. D

Define K; = sup 7

n>l c,a

on R. We are now ready to prove

and let u denote Lebesgue measure

Theorem 4.1. Suppose that (l.l) and (1.2) hold. Then for each

n > 0, lim sup oc u(Ic a) is bounded in probability by

n 9

-l
ZKaufum + n. ‘

£3221, Let €»> 0. Hme > 6 > 0. By lemma 4.1 there exist b and

N positive such that n 3_N implies

*

P [ inf D(z/o ) > K J > T - 8/2 .
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Choose t0 6 (0,l) such that

1114110)) 1 11111.. - a

and N1 3_N such that

-l -l
POE sup oc [S(t0,A/oc) - S(t0,0) - Aocf(F (to))| _<_ 6] >1 - 8/2 V n 1 N

IAlzb 1'

Then n 1N1 implies

OcIc,a : (A; |S(t0,A/oc)| Z-Yc,a} n {A; [AI 3_b}

-l
c {A; |S(t0,0) - Aocf(F (to))l f_Yc,a + oc6} n {A; |A| §_b}

; {m (5(t0,o) - Aocf(F"(to))l 31cm + oc5}

+ 0C6 + s(tO.O))/ocf(F"(to)) < A= {A; '(Yc,a

:_(y + océ - S(t0,0))/0cf(F-](to))}
c,a

with probability greater than l - 5. Hence

“1 + 6)/(Hfflm - a): > 1 - e.POElim sup Ocu(1c,a) §_2(oc c,a

11

Since 6 and s were arbitrary and lim 0'1n+m c = KG, the proof
c,a

is completed. . D

It is possible, under more restrictive conditions, to show

that the bounds of theorem 4.1 hold w.p.l. Such a result is given

in the following

Theorem 4.2. Assume, in addition to (l.l), that f'(x) exists and

is bounded for a.a. x. Regarding g, assume that
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(4-1) nlfio;1 max |d1.| =0(l) as n+m,

lgjfm

(4.2) lim inf n"o2 > o .
n c

Then

. -1

l1mnsup “c““c.o) _<_ 2KallflL° w.p. 1.

Proof. Let c > D and D < b < m. Define, for t e (0.1) and

x,A 6 R,

u*(t.A) = f] dimx.) : 111411) + Adm.
1:

n

U'(t.A) = Z diI(xi 5_x + Adi).

. i=1 .

From theorem 3.l of Ghosh and Sen (l972),

sup |U*(t,A/oc) - U*(t,0) - Aocf(F'1(t))l + 0 w.p. 1 (P0) .

0<t<l

IAl_<.b

The theorem is proved by modifying the proofs of lemma 4.l and

theorem 4.l once we show that for |A| 5_b and n sufficiently

large,

(4.3) SUP lu*(t.A/oc)l = SUP IU'(x,A/oc)l = D(A/OC) -

0<t<l xER

Let S(F) denote the support of F. By (l.l) S(F) is a real

1
interval. In case S(F) = R, F' is a bijection and hence
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'1' -

sup |u (t,A/oc)| sup [U'(F 1(t).A/oc)(
0<t<l 0<t<l

sup lU'(x,A/oc)|

MXER

D(A/oc). IAI 5,b.

establishing (4.3). In case S(F) f R,

*

sup lU (t.A/oc)| = sup IU'(X,A/Uc)l
0<t<l 0<F(x)<l ‘

and we must prove that

(4.4) ~sup lU'(x,A/oc)| = sup |U'(x,A/oc)|

0<F(x)<l ‘ x€R

for n sufficiently large and |A| 5_b. To this end choose 0 < N1 < m

such that

-l
boc max Idil < u(S(F)) V n _>__N1 .

1 <i<n

Then for n 3_N1 and x g-xo = inf S(F),

0 < U'(x A/o ) < E d+ = U'(x+ A/o ) A > 0
_. ’ c _. «i 09 c 9 9

1=l

U'(x,A/oc) = o = U'(x;,A/oc) , A = 0.

and

" - + .

[U'(x,A/oc)| §_1£] di = |UI(xO,A/oc)| , A < 0

imply

(4.5) [U'(x,A/oc)| _<_ |U'(x3.A/oc)l.

Similarly, for n 3_N1 and x 3_x1 = sup S(F).
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(4.6) |U'(x,A/oc)| 5_|u'(x;.A/oc)| .

Combining (4.5) and (4.6) yields (4.4) and hence (4.3). D

5. Asymptotic Efficiency of the Ic,a' Using the bounds of section

4 one can compare the Ic,a to other common confidence intervals for

which asymptotic lower bounds can be computed (Rao et al., 1975).

Koul (1971) has computed the asymptotic lengths of the normalized

confidence intervals based on a wide class of linear rank statistics.

Although his bounds were in probability bounds, they can be

strengthened to w.p.l bounds by applying the results of Ghosh and

Sen (1972). As an example of the type of results which can be

obtained and to demonstrate the efficiency of the Kolmogorov-

Smirnov type intervals, we compute bounds for the asymptotic

efficiency of the Ic,a with respect to confidence intervals based

on the Normal scores and Nilcoxon type rank statistics.

In what follows let 6 denote the standard normal c.d.f.,

let 20‘ be defined by ¢(za) = l - a and define

o(t.f) = f'(r"(t))/f(F"(t)). o < t < 1.

Assume, without loss of generality, that B = D.

(a) Comparison with Hilcoxon-type intervals. Let

-1 n

a=={A; In EK

‘ i=l
diRniAl 5-6c,a}

where 6c is such that one rejects H0: 8 = 0 at level 6

whenever In"1 X?=] diRniAl > 6c,a and accepts HO otherwise.

Under the assumptions of theorem 4.2
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. 2
11m 0 u(K ) = 2 //S f f (x)dx w.p.l.

C Caa a/Z

Thus,

. “(1C a) _ J17 2

(5.1) 112+:UP 3112‘37'5-*6(F) .- KG f f (x)dx/za/zllfuco w.p.l.

To obtain an upper-bound on

lim sup Wa(F)

o+0

for fixed F, we investigate the behaVior of

112+;up KZa/Za'

From Hajek and sidak (1967, p. 182) we obtain

1 - o = P[ sup (3(1)) 5_KaJ 3_1 - 2 exp(-2K§)

0<t<l

and hence

2
-ln(o/2) Z-Ka .

Thus

lim sup K2 /2. 5_lim sup -[2¢-](o)]-21n(l - a)

n+0 a a n+0

= lim sup -2x'zln(l - o(x)).

x-bco

Using

(x'1 - x'3)¢(x) 5_l - ¢(x) 5_x-]w(x),

where o denotes the standard normal density, one obtains



68

lim sup -2x‘21n(1 - ¢(x)) = .25 .
x-KD

Therefore,

(5.2) lim sup 9 (F) 5,73'7 f2(x)dx/2flfflm .
mo 0.

The following table gives the upper bound wa(F) for

various choices of F and a. Here 90(F) := RHS (5.2).

TABLE I

Values of wa(F) for Comparison to

Hilcoxon Intervals

a\F Std. Normal Logistic Dbl. Exp. Cauchy

.5 3.005 2.834 2.125 2.125

.1 1.823 1.718 1.289 1.289

.05 1.697 I 1.600 1.200 1.200

.025 1.618 1.525 1.144 1.144

.01 1.548 1.459 1.094 1.094

.005 1.510 1.424 1.068 1 068

0 .612 .577 .433 .433

(b) Comparison with Normal Scores-type Confidence Intervals. Let

n
- Q -1

Jc o - {A’ '12] di¢ (Rn'lA/MI S-6C.a}

where 6

c o9

is such that one rejects Ho: 8 = D at level

whenever If;1 d19'1(Rn1A/n)| > 6c a and accepts H0 otherwise.

Under the assumptions of theorem 4.2,

. _ l -1
A12 ocu(Jc,a) - Zza/z/fo ¢ (u)o(u,f)du w.p. l .
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Thus,

11(1 )
. c a = 1 -]
limup mgwafi) K01 f0 9 (")‘PW’IMU/Za/znfuaa w.p.l.

The following table gives the upper bound WG(F) for various choices

1
of F and a. For a = 0, ?a(F)-:= f0 o'](u)w(u,f)du/4flfum.

TABLE II

Values of wa(F) for Comparison to

Normal Scores Intervals

a\F Std. Normal Logistic Dbl. Exp. Cauchy

.5 3.076 2.769 1.958 1.8

.10 1.865 1.679 1.187 1.1

.05 1.737 1.564 1.106 1.0

.025 1.655 1.490 1.054 .96

.01 1.584 1.426 1.008 .92

.005 1.546 1.392 .984 .90

0 .627 .564 .399 .36

 

6. Monte Carlo Study. In order to compare 63 with other point

estimators of B, 5000 samples of size 40 were generated from

each of the standard normal, double exponential, logistic, and

Cauchy (median 0) distributions. Taking c1 = i, l §_i g_40, we

then computed 6]. 63, and the Nilcoxon estimate, 6", for each

sample. The following table gives 52(ch.) for each set of 5000

samples.
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TABLE III

Values of 52(oc6 )

2 F

 

5 Std. Normal Logistic Dbl. Exp. Cauchy

s2(oc§w) 1.0668 2.9883 1.4541 .3153

52(oc61) 1.1755 3.1985 1.4532 .3666

s2(oc§3) 1.1181 3.1138 1.5497 .3386

Each set of observations was based on a corresponding sample

of uniform (0,l) variates generated by the Fortran subroutine RANF

on the Michigan State University CDC 6500. The logistic and double

exponential variates were generated by computing F'](U) for each

uniform variate U, the Cauchy variates were generated by computing

tan[(U - .5)/n], and each normal variate was generated by computing

(-2 ln U1)15 cos(2n U2) for independent uniform (0,l) variates

U1 and U2.



BIBLIOGRAPHY



BIBLIOGRAPHY

Adichie, J. (1967). Estimates of regression parameters based on

rank tests. Ann. Math. Statist. 38 894-904.

Fine, T. (1966). On the Hodges and Lehmann shift estimator in the

two sample problem. Ann. Math. Statist. 37 l814-lBlB.

Ghosh, M. and Sen, P. (l972). 0n bounded length confidence interval

for the regression coefficient based on a class of rank

statistics. Sankhya Series A. 34 33-52.

Hajek, J. (l969). Nonparametric Statistics. Holden-Day, San

Francisco, California.

Hajek, J. and sidak, z. (1967). Theory of Rank Tests. Academic

Press, New York.

Koul, H. (1971).. Asymptotic behavior of a class of confidence

regions based on ranks in regression. Ann. Math. Statist.

42 466-476.

Koul, H. (1977). Behavior of robust estimators in the regression

model with dependent errors. Ann. Statist. 5 681-699.

Rao, P., Schuster, E. and Littell, R. (1975). Estimation of shift

and center of symmetry based on Kolmogorov-Smirnov statistics.

Ann. Statist. 3 862-873.

Scholz, F. (1978). Weighted median regression estimates. Ann.

Statist. 6 603-609.

Sievers, G. (l976). Weighted rank statistics for simple linear

regression. Mathematics report #44, Western Michigan

University.

71


