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ABSTRACT

(
I

THE SOFT SPHERE MODEL FOR NUCLEAR QUADRUPOLE RESONANCE

IN RARE EARTH TRICHLORIDES UNDER HYDROSTATIC PRESSURE

by

David Harlan Current

we have measured the nuclear quadrupole resonance of 35C1

3, 3, 3 and GdCl3 at 77K as a function

of hydrostatic pressure. Pressure was generated with a helium

in CeCl PrClB, NdCl SmCl

gas piston system and measured with a Bourdon gauge. Quadrupole

resonance frequencies were measured with a simple pulsed spectro-

meter having a resolution of better than one kHz. In each

compound the quadrupole resonance frequency in a linear function

3 2
of pressure up to at least a pressure of 4.5 x 10 kg/cm . In

-1
all cases the coefficient v0 (3v/8P)T is negative; the frequencies

decrease with pressure. The coefficient decreases in magnitude

6
from -5.59:o.02 x 10' cmz/kg for CeCl to -3.86:0.02 x 10‘6 cmZ/kg

3

for GdCl . This contradicts the point charge model of electric
3

field gradients applied to these compounds. We introduce the

soft sphere model of electric field gradients. This model

includes the effects of molecular overlap on the electric field

gradient by subtracting from the point charge contribution of

near neighbor ions a term of the form q0 = F exp[(Rij-R)/pij].

This form for the overlap contribution is deduced from Hartree-

Fock, Self-Consistent-Field (HF-SCF) calculations by Matcha1

on the KCl molecule. The soft sphere parameters are assumed to

obey Gilbert's2 additivity rules R.. = R. + R. and p.. = p. + p.;

1] l J 1] l J



a Hartree-Fock-Slater calculation of ionic wavefunctions is

3 The Sternheimer antishieldingutilized to obtain their values.

factor, (1 - ya), and the overlap strength, F, are taken as

adjustable parameters to fit the zero pressure frequency and

asymmetry parameters of GdCl3. For the choices RC1 = 2.740 bohr

and pC1 = 0.429 bohr the values of the overlap strength and

antishielding parameter necessary to fit the observed quadrupole

frequency and asymmetry parameter in GdCl3 are F = 0.5695 bohr-3

and l - 7m = 30.95. The model then predicts the quadrupole

frequency in LaCl3 to within 2.5% of the measured value and the

frequency and asymmetry parameter in PrCl3 to within 0.2% and

0.5% of the measured values. Because the compressibility of

these compounds is unknown it is difficult to compare the

predictions of the soft sphere model with the observed pressure

dependence of the quadrupole frequencies. For volume decreasing

faster along the a—axis than along the c-axis the model is in

qualitative agreement with experiment.

lRobert L. Matcha, J. Chem. Phys. ii, 485 (1970).

2T. L. Gilbert, J. Chem. Phys. 49, 2640 (1968).

3F. Herman and S. Skillman, Atomic Structure Calculations,

Prentice Hall, Englewood Cliffs, New Jersey, 1963.
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I. INTRODUCTION

An atomic nucleus with spin greater than l/2 can have

a nonspherical distribution of nuclear charge and hence a

nuclear quadrupole moment Q. This quadrupole moment will

couple to an electric field gradient to produce a splitting

of the energy levels labeled by the z-component of the nuclear

spin. The electric field gradient is a traceless second

rank tensor characterized by a magnitude q, an asymmetry

parameter, n, which is a measure of the tensors departure

from cylindrical symmetry, and the three Euler angles which

specify the orientation of its principal axes. The nuclear

quadrupole coupling constant, qu/h, where e is the electronic

charge, h is Planck's constant and q is the magnitude of

the electric field gradient, can be measured experimentally

by inducing transitions from one energy level to another.

This technique is known as nuclear quadrupole resonance.

The theory of quadrupole resonance is reviewed in Chapter II.

If the nuclear quadrupole moment is known from other measure-

ments, then from the quadrupole coupling constant one can

determine the field gradient at the nuclear position.

The electric field gradient components can be expressed

in spherical tensor notation as

qm = fr'3p(?)r§ (e.¢)d? ,

where Y? (6,¢) is a spherical harmonic, and p(;) is the electronic

charge density. This form emphasizes that the electric field

gradient gives a description of the electronic charge distribu-

l



tion in the neighborhood of the nucleus. Since only that

part of p(;) with the symmetry of Y? makes a contribution

to the field gradient, there is no contribution from the

spherically symmetric part of p(¥). Most of the contribu-

tion to the electric field gradient at the nucleus of a

given ion comes from the outer, nonspherical part of the

ion as well as from other nearby ions. Thus nuclear quadrupole

resonance provides an excellent experimental tool for investi-

gating the electronic charge density at nuclear sites in solids.

The compounds studied in this work, the trichlorides

of lanthanum through gadolinium, all have the same hexagonal

structure. An excellent x-ray study of these compounds has

recently been reported (Morosin, 1968). The geometry (ion-ion

distances and angles) varies slowly from one compound to

another. In addition whatever prOperties of the rare earth

ions that are important in determining the electric field

gradient are also expected to be a slowly varying function

35
of cation species. The C1 resonances in these compounds

have all been reported previously: in PrCl3 by Hughes,

Montgomery, Moulton and Carlson (1964); in GdCl by Carlson

3

(1966); in CeCl , NdCl and SmCl by Mangum and Utton (1967);
3 3 3

and in LaCl by Carlson and Adams (1969). No quadrupole
3

resonances in PmCl or EuCl have been measured. Although

3 3

a large amount of experimental data on quadrupole resonances

in ionic salts is available, very few of these compounds

have well determined structures. The hexagonal rare earth

trichlorides are an important exception and provide an

excellent opportunity to test theories of the electric field

gradient in ionic salts.



The earliest attempt to calculate the electric field

gradient in an ionic solid was the point charge model of

Bersohn (1958). This model assumes that the effect of each

ion in the crystal can be represented by a point charge

located at the position of each ion. The electric field

gradient at any ion is obtained by summing the contributions

of all other ions in the crystal. Bersohn calculated the

electric field gradient at Na+ in NaN03, NaClO and NaBrO

2+

3 3

as well as the electric field gradient at Cu in CuO

3+

2

in A1203. Carlson and Adams (1969) have applied

the point charge model to the rare earth trichlorides.

and at Al

Throughout its history the point charge model has enjoyed

rather limited success. It seems to do a better job of

predicting the field gradient at positive ions than at

negative ions. Burns (1959) and others (Brun and Hofer, 1962;

Raymond, 1971) have attempted to expand the point charge 1

model by including higher multipole contributions from

polarized ions. Their attempts have not always been very

successful.

In an effort to obtain additional information on the

electric field gradient in the rare earth trichlorides we

have measured the quadrupole resonance frequency as a function

of hydrostatic pressure. The application of hydrostatic

pressure changes the geometry of the unit cell, and these

geometrical changes are reflected in a change in the electric

field gradient. The details of the experiments are discussed

in Chapter III.



It is well known that molecular overlap produces a

significant contribution to the electric field gradient

(Das and Karplus, 1964). In Chapter IV we introduce the

soft sphere model of electric field gradients. This model

includes a systematic parameterization of the overlap

contribution to electric field gradients. We then use the

model to calculate the zero pressure quadrupole coupling

constants for the rare earth trichlorides. We find substantial

agreement with the experimental results. In applying the

model to the pressure dependence of the quadrupole frequencies

in these compounds, we are hampered by the lack of experimental

data on the compressibilities. However the model is in

qualitative agreement with the high pressure experiments.



II. QUADRUPOLE RESONANCE IN THE HEXAGONAL

RARE EARTH TRICHLORIDES

A. Quadrupole Hamiltonian

The Hamiltonian for the interaction of the electric

quadrupole moment of a nucleus with an electric field

gradient due to charges external to the nucleuscan be

written as (Das and Hahn, 1958)

4-.

HQ - Q : 6E = 2 o? (va)gm . (2.1)

m

Q? are the irreducible components of the nuclear quadrupole

charge distribution operator and (VB); are the irreducible

components of the electric field gradient Operator evaluated

at the nuclear position. In terms of the nuclear quadru-

pole moment, Q, the components of gare given by Das and

Hahn (1958) as

0 _ 2eQ 2 _ 2

02 ’ 4I 21-1) [312 I 1' (2'2)

:1 _ /6eQ

QZ _ 41 21-1) [Iin + IiIzl' (2'3)

and

:2 _ /€éQ 2

The coordinates of the nuclear spin operators are taken

in some arbitrary Cartesian frame.

In the same frame the field gradient has components

2
_ a v . . _

ij ‘ axbeT (1'3 ‘ X'Y'z" (2'5)
1 3

where V is the electrostatic potential at the nucleus.

Vij is symmetric and, if V is produced by charges exterior

5



to the nucleus, traceless. If the Cartesian frame is

chosen so as to diagonalize Vij’ then the components of

the field gradient operator are given by

0 _ 1 :1 _

and

i2 1
VB = — - . .

( )2 2/5 (vXX vyy) (2 7)

< v Lilv and define the fieldIf we assume that IV | |
xx —’ yy 22"

gradient, q, and asymmetry parameter, n, by

eq = sz and n = (Vxx-Vyy)/sz’ (2.8)

then

(vz)g = % eq and (VE):2 = -l—-neq. (2.9)

2/5

By carrying out the sum in the Hamiltonian one

arrives at

_ 2 _ 2 1
HQ - A[3Iz I + 2 n(I+I+ + I_I_)], (2.10)

where

= __E_SQ__

A complete derivation of this result is given by

Slichter (1963).

The matrix elements of this Hamiltonian taken

between nuclear angular momentum states are

— 2—<Im,|HQ|1m> — A[3m I(I+l)] 6m.,m

 

+ %nA/EI(1+17-m(m+l)1[1(1+1)‘(m+1)(m+2)] 6m'.m+2

 

+ %nA/[I(I+l)-m(m-l)][I(I+l)-(m“l)(m-2)] m. m_2

(2.12)



For I = 3/2 the non-zero elements are

3 3 3 3
(EIiEIHQI-f,i§> = 3A ' (2.13)

3 l 3 1
<§,i§IHQ|§,i§-> = '3A (2.14)

and

3 3 3 l
<§,i§|HQ|'2-,i-2-> = finA , (2.15)

with

A = e2q0/12 . (2.16)

The Hamiltonian is easily diagonalized and yields

two doubly degenerate energy levels with eigenvalues

E: = 3A 1 + 3 n . . (2.17)

Thus there is a single quadrupole resonance transition

with frequency given by

th = E+ - E_ (2.18)

equ l 2

B. Crystal Structure
 

The trichlorides of lanthanum through gadolinium were

shown to be isostructural by Bommer and Hohmann (1941).

Zachariasen (1948) showed that they were isomorphic to

UCl3 with space group P63/m, and measured the lattice

constants A and C. In this structure there are two

molecules per unit cell with metal ions at i(l/3, 2/3, 1/4)

and chloride ions at t(u, v, 1/4), i(-v, u-v, 1/4) and

1(v-u, -u, 1/4). Zachariasen measured the chloride

positional parameters, u and v, only for UC13.



Templeton and Dauben (1954) measured the lattice

constants for the entire series (with the exception of

LaC13). Morosin (1968) measured lattice constants and

chloride positional parameters for LaCl3, NdClB, EuCl3

and GdC13. Lattice constants and positional parameters

for CeCl3, PrCl3 and SmCl3 have been estimated from

Morosin's data. The procedure is described in Appendix A.

The volume of the unit cell varies smoothly across

the series with a minimum at GdCl3. The volume per

chloride ion (cell volume divided by six) ranges from

35.20 i3 for Lac13 to 32.16 R3 for GdCl3. The crystal

structure data is summarized in Table 2.1.

In these crystals all ions lie on mirror planes

perpendicular to the c-axis. Figure 2.1 shows two layers

of GdCl3. The large spheres are Cl- (radius 1.8 A) and

the small spheres are Gd3+ (radius 1.2 A). The radii are

taken from Pauling (1940). For the chloride labeled 0 the

three nearest metal ions are labeled a and b, and the eight

nearest chloride ions are labeled c, d and e. We have

chosen a coordinate system centered at ion 0 with the z-axis

parallel to the crystal c-axis and the y-axis bisecting

the 120° angle of the unit cell. In Figure 2.1 the z-axis

is out of the plane of the paper and the x-axis and y-axis

are horizontal and vertical respectively. The positions

of the eleven nearest ions are summarized in Table 2.2.

The existence of the mirror plane perpendicular to

the c-axis requires that one of the principal axes of
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Figure 2.1. GdC13 Structure



Table 2.2. Locations of Near Ions in GdCl3

11

 

 

Species Labela 8(2) X(X) Y(X) 2(2)

Gd3+ a 2.9177 -2.6863 1.1388 0.0000

Gd3+ b 2.8223 1.5666 1.1388 12.0529

01' c 3.3546 3.3361 0.3514 0.0000

01‘ c 3.3546 1.3637 3.0649 0.0000

01' d 3.3169 -2.4834 -0.7873 12.0529

01' d 3.3169 1.9236 -1.7570 32.0529

01' e 3.2643 -1.1197 2.2775 32.0529

 

aLabeled in Figure 2.1.



12

the electric field gradient at each chloride ion be along

the c-axis. Experimentally this has been shown to be Vxx

(Hughes, et al., 1964). All three chloride ions in the

molecule are chemically equivalent. That is, the diagonal

elements of the electric field gradient tensor are the

same at each ion, and there is a single pure quadrupole

frequency, but the orientation of the tensors differs by

120°. In addition, since the crystals lack a two fold

axis in the mirror plane, it is not easily possible to

determine one end of the c—axis from the other (Carlson and

Adams, 1969). Thus the orientation of the electric field

gradient principal axes can only be experimentally

measured to within a multiple of 60°. For these reasons

we have not attempted to calculate the orientation of the

principal axes, except to be sure that Vxx was always along

the c-axis.

C. Experimental Results at One Atmosphere Pressure

35

 

Cl nuclear quadrupole resonance frequencies have

been reported for all of the hexagonal rare earth

trichlorides with the exception of PmCl3 and EuCl3.

Asymmetry parameters have been accurately measured only

for PrCl and GdCl . The experimental data is summarized
3 3

in Table 2.3.



Table 2030 Experimental NQR Frequencies and Asymmetry Parameters

 

 

Compound 41 7J(MHz)4K '1)(MHz) 77K V(Wiz)3OOK

LaCl3 --- 4.167 --- ---

CeCI3 --- 4.387 4.377 4.341

PrC13 .4937 4.567 4.562 ---

NdC13 --- 4.729 4.722 4.676

SmC13 --- 5.033 5.027 4.976

GdC13 .4265 5.315 5.308 5.248

 

Uncertainties are 1 in the last figure.

are taken from Hessler (1971).

and Adams (1969).

'S are measured at T<4K and

Frequencies at 4K are taken from Carlson



III. EXPERIMENTAL TECHNIQUES AND RESULTS

A. Sample Preparation
 

Anhydrous rare earth trichloride powder purchased

from Lindsay was used in the preparation of single crystal

samples. Our laboratory method is similar to that

described by Garton, et al. (1964). The powder was

melted and distilled under vacuum into a Vycor growing

tube, which was then slowly lowered through a gradient

furnace. The only exception was SmCl the powder was3.

not distilled but merely melted in the presence of HCl gas

and allowed to flow into the growing tube. As the

crystals are hydroscopic, they are stored under mineral

oil when removed from the growing tube.

Small samples were prepared for resonance measurements

by cutting single crystals perpendicular to the c-axis on

a diamond saw to a length of about 1/2 inch. The resulting

pieces are then cleaved parallel to the c-axis to yield

hexagonal samples about 1/8 inch in diameter. The samples

were coated with a thin layer of GE7031 cement for

protection against moisture.

B. The Spectrometer
 

The spectrometer used in this work was a simple pulsed

instrument developed by Parks (1967), and referred to as

"the minipulser". A pulse of radio frequency power derived

from an external oscillator is applied to a coil wrapped

directly on the sample. The pulse amplitude is about

200 volts, the pulse length about 25 microseconds, and the

14
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repetition rate a few milliseconds. In this work the

coil axis was parallel to the c-axis of the sample. The

same coil acts as a receiver to pick up the induced

signal from the sample. This signal is amplified,

multiplied by the signal from the external oscillator,

and displayed on an oscilloscope. The quadrupole

resonance frequency is determined by adjusting the

oscillator frequency until a zero beat condition is

observed. The oscillator frequency is monitored continuous-

ly with an electronic counter.

The minipulser has several advantages for this work.

Signals are strong enough so that direct oscillosc0pe

display is possible without the need for signal averaging

techniques. Frequency measurements can be made rapidly

and with high precision (frequency differences of 100Hz

can be resolved). In addition, if one is willing to

sacrifice some loss of signal strength, a relatively

large input capacitance (of the order of 500 p.f.) can be

tolerated.

C. High Pressure Apparatus

A schematic diagram of the experimental apparatus is

shown in Figure 3.1. Figure 3.2 shows details of the BeCu

pressure cell. The high pressure gas seal between the two

halves of the cell is made with a series of stainless

steel rings which are coated with a thin layer of indium

(Goree, et al., 1965). These rings provided an excellent

seal and could be reused at least six times without



Figure 3.1. Schematic Diagram of Experimental Apparatus
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recoating. The upper half of the cell is connected to

5/16 o.d. by 1/16 i.d. stainless steel, high pressure

tubing by a standard cone seal.

The high pressure tubing is electrically grounded

and serves as a shield for the Spectrometer lead. The

lead is extracted from the high pressure region through

a U-shaped tube, approximately 20 inches deep, filled

with Dow Corning 704 silicone diffusion pump oil. When

frozen in liquid nitrogen, the oil expands and provides

a seal which easily withstands pressures up to 90,000

pounds per square inch. However, some care must be taken

to be sure that there are no trapped bubbles of air in

the oil before it is frozen.

Hydrostatic pressure is generated in helium gas by

an oil driven piston and a 10:1 intensifier. The gas is

slowly admitted to the system through a liquid nitrogen

cooled trap to remove impurities. Pressure was measured

with a Bourdon gauge. The manufacturer claims 2% accuracy

for this gauge. Although no absolute calibration was

attempted, the gauge has been checked against manganin

resistance data to verify the manufacturer's claim.

Our experimental procedure was to wrap the sample

with a suitable coil (generally about 20 turns of #36

Cu wire) and mount it in the pressure cell. The cell and

oil seal were then attached to the rest of the pressure

apparatus and the oil seal slowly frozen. With the cell

at room temperature the Spectrometer was adjusted and the

pressure was raised to approximately 80,000 p.s.i. When
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a signal could be seen, room temperature data was taken.

The pressure was then reduced to about 15,000 p.s.i. and

the cell immersed in liquid nitrogen. We allowed at

least 30 minutes for thermal equilibrium to be established

before taking data at 77K. In all cases, except YbCl3

(see Appendix C) the pressure was cycled at least once

to check for hysteresis. None was ever observed.

D. Experimental Results

Raw data for the 35Cl resonance in the hexagonal

 

trichlorides as a function of pressure is presented in

Appendix B. The data was analyzed by least squares methods

(Barford, 1967) according to the equation

v(P) = v0 + mP (3.1)

where m is (av/8P)T. In all cases m is negative and

independent of pressure over the range of pressures used.

The results at 77K are summarized in Table 3.1. v0 is

the pure quadrupole frequency measured at one atmosphere.

The uncertainty in 00 is the standard deviation of at

least five separate measurements. v and (3v/3P)T are
0

obtained from the least squares fit to the raw data.

The uncertainties here are statistical best estimates

of error. The normalized pressure coefficient

031 (av/8P)T is calculated from v and (av/3P)T. It

0

is plotted with respect to compound in Figure 3.3.
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IV . THEORY

A. Introduction
 

The calculation of electric field gradients in ionic

solids is a complicated quantum mechanical problem. Since

the necessary many-ion wave functions are not known, the

usual procedure is to assume an appropriate two-ion model

for the field gradient and then sum the contribution from

each ion in the crystal. Once the two-ion model has been

chosen, the calculation of the electric field gradient

becomes a geometrical problem.

we define the normalized pressure coefficient of the

quadrupole frequency as

-1 _-

v0 (av/aPlT - B[8(v/vo)/3(V/Vo)lT (4.1)

where v0 and V0 are the frequency and unit cell volume at

zero pressure. The bulk compressibility, 8, is given by

._'l _
8 - VO (8V/8P)T — a + a + a (4.2)

l 2 3 '

The three linear compressibilities along the crystallographic

axes are al, a2 and d3. For hexagonal crystals, symmetry

requires that a1 = a2. In order to properly calculate the

dependence of the quadrupole frequency on cell volume it is

necessary to know the compressibility ratio r = 013/011 as a

funcwion of pressure. We consider this point in Section B

alcnng with the bulk compressibility. In addition it is

GSSential to have information concerning the variation of

tbs? <2hloride positional parameters with pressure. However

22
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no experimental data is available and we assume that they

are independent of pressure.

In Section C we briefly discuss previous attempts to

calculate electric field gradients in solids in the two-ion

approximation. In Section D we introduce the soft sphere

model used in this work, and present the results of calcula-

tions of quadrupole frequencies and asymmetry parameters for

all of the hexagonal rare earth trichlorides. Finally in

Section E we combine the results of Sections B and D to

calculate normalized pressure coefficients from the soft

sphere model and compare these calculations with the

experimental results.

B. Compressibility of LaCl
 

3

The best and most complete information on the compressibility

in these compounds would be a full X-ray measurement of the

lattice constants and positional parameters as a function of

pressure and temperature. Such experiments are difficult and

have not been performed. Indeed even the bulk compressibility

has not been measured. The only piece of evidence on the

elastic behavior in these compounds appears to be a recent

paper by Stedman and Newman (1971) in which the elastic

constants, Cij' of LaCl3 are calculated from optical data.

Stedman and Newman give three sets of elastic constants

and label them A, B and C. They are reproduced here as part

of Table 4.1. The different sets result from different

assumptions concerning the nature of the bonds in LaCl3, but

all are derived by assuming Hooke's Law forces between ions.
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This model seems questionable to us for two reasons. First

it requires attractive forces between chloride ions, and

second it attempts to derive information about the long

wavelength acoustic phonons from the behavior of the optical

phonons.

These objections not withstanding, the lack of experimental

data on the elastic behavior of these compounds forces us to

examine the results of Stedman and Newman in some detail. It

is possible to calculate the compressibility of a crystal

from a knowledge of the elastic constants. For a general

review of this tOpic see Hearmon (1946). The linear compress-

ibilities are usually written in terms of the elastic compliance

constants, $1.,

3

a. = E s.. , 1 = 1, 3 . (4.3)

The compliance constants are related to the elastic constants

by (Cady, 1964)

6 6

Z s. c . = Z

k=l 3k k3' k=l

C . . (4.4). S . = 6..

3k kJ' 33

For hexagonal systems it is a straightforward matter to solve

Eq. (4.4) for Sij in terms of Cij and substitute the result

into Eq. (4.3). In terms of the elastic constants the linear

compressibilities are given by

a = dz = (C33 - C13l/D (4.5)

and

(C + C12 - 2C13)/D (4.6)
3 = 11
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where

) - 2c 2 (4.7)
D = 13

+ C
C33(C11 12

The compressibilities calculated in this way from the data

of Stedman and Newman are presented as part of Table 4.1.

They seemed to us to be rather small.

In order to examine the validity of these elastic constants

we have calculated the Debye temperature that results from them

(Carlson, Current and Foiles, 1971). In LaCl the Debye

3

temperature, 0 has been calculated from low temperatureD'

specific heat data to be l49.5:l.5 K (Varsanyi and Maita,

1965). Betts, Bhatia and Horton (1956) derive three approximate

formulae for calculating GD as a function of elastic constants

for hexagonal systems. Wolcott (1959) gives a set of numerical

tables. Using these four methods, we have calculated OD from

each of the sets of Cij of Stedman and Newman. The results

for the second method of Betts, Bhatia and Horton appear in

Table 4.1 along with some data on other compounds for comparison.

There is good agreement among the four methods. However the

calculated Debye temperatures are from three and one-half to

four times larger than the measured value. We are therefore

forced to conclude that the elastic constants of Stedman and

Newman are in error.

The following argument is used to estimate the size of

this error. The Debye temperature is proportional to the

mean sound velocity, which for hexagonal systems is given by

(wo1cott, equation 6)

f/C447p (4.8)V

m
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where p is the density and f is a numerical function of

ratios of the other elastic constants. By examining Wolcott's

tables, we conclude the f is slowly varying. If we assume

that the relative sizes of the Cij's of Stedman and Newman

are approximately correct, then we are forced to conclude

that their magnitudes are too large by a factor of from 12 to

16. Based on this argument we estimate that B for LaCl3 is

6 cmz/kg. If the simplesomewhere between 6 and 8 x 10-

scaling argument is not valid, this estimate could be off by

as much as a factor of two or three. Based on the values of

8 for other chloride salts, our personal feeling is that the

estimate is probably too large rather than too small. As far

as the ratio of linear compressibilities is concerned, we have

assumed a value somewhere between 0.4 and 0.7, but stress the

fact that this choice is almost completely arbitrary. Certainly

a good experimental determination of these numbers is needed.

C. The Point Charge Model
 

In the point charge model of electric field gradients

one assumes that each ion in the crystal can be represented

by a spherical charge distribution having negligible overlap

with other ions. One then replaces this spherical distribution

by an appropriate point charge located at the nuclear position.

The contribution to the field gradient from each ion is summed

over the entire crystal:

_ 3

qsum " g zza/Ra I (4.9)

where Rd is the distance to the ion a and za is its charge.
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In performing this sum the contribution of each ion must be

rotated into a common coordinate system. Details are

presented in Appendix D.

A closed shell ion such as Cl- has a spherical electronic

charge distribution which produces no field gradient at the

nucleus. However if such an ion is placed in an external

field gradient the electronic charge distribution is distorted.

This distortion produces an additional contribution to the

field gradient at the nucleus which is proportional to the

externally applied gradient. The ratio between the gradient

produced by distortion and the external gradient is called

the Sternheimer antishielding factor (ym). It has been

calculated by Sternheimer (1956) and others (Lucken, 1969,

p. 90). Sternheimer's result is Ym = ~56.6. The net field

gradient at the nucleus is then

Burns and Wikner (1961) have calculated ym = -27 for C1_ using

contracted wavefunctions which they claim are representative

of C1- in solids. Attempts to fit the point charge model to

the observed quadrupole frequencies in various solids usually

result in antishielding factors of from -10 to -40.

Point charge calculations for some of the hexagonal rare

earth trichlorides have been reported by Carlson and Adams

(1969). They found (1 - Ym) = 15.4 necessary to fit the

observed frequency in LaCl With this same value of the3.

antishielding parameter the calculated frequency in GdCl3 is

too low. In addition the asymmetry parameters are poorly

predicted.
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We have carried out point charge calculations for all

of the hexagonal rare earth trichlorides using the structure

data discussed previously. We have chosen (1 - 7m) = 17.59

so as to fit the observed frequency in GdCl The results3.

for all compounds are given in Appendix D in Table D.1.

The frequencies and asymmetry parameters are plotted with

respect to compound in Figures 4.2 and 4.3 in the next section.

D. The Soft Sphere Model of Electric Field Gradients
 

Consider two closed shell ions, e.g. K+ and Cl-, separated

by a large internuclear distance. It is assumed that the

field gradient at the chloride nucleus is correctly described

by the point charge model together with the theoretical

antishielding parameter. As the ions are moved together

it is clear that the point charge model must eventually fail.

The ions no longer see each other as point charges, but as

distributions of charge which become nonspherical as the

outer parts of ions come into contact and distort each other.

Several authors have stressed the need for including an

overlap contribution to the gradient. Das and Karplus (1959)

suggested that a contribution to the gradient proportional to

the overlap integral between ions in the KCl molecule was

necessary to fit the experimental data. In a later paper

(Das and Karplus, 1965) they performed such a calculation

and showed that the overlap effect was important. Several

papers (Taylor, 1968; Sawatsky and Hupkes, 1970; Sharma, 1970;

Sharma, 1971) have dealt with the same effects in Al O

2 3'

Cr203 and Fe203.
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In the paragraphs that follow we will discuss a systematic

method of introducing such overlap effects into field gradient

calculations. We first discuss a Hartree-Fock, self-consistent

field (HF-SCF) calculation by Matcha for the KCl molecule.

From this calculation we deduce a functional form for the

overlap contribution to the chloride field gradient. We then

discuss a paper by Gilbert on the Born-Meyer repulsive potential

between closed shell ions and use the results of a Hartree-Fock-

Slater (HFS) calculation of ionic wavefunctions to extend

Gilbert's work to other ions. Finally we introduce the soft

sphere model of electric field gradients and discuss its

application to the hexagonal rare earth trichlorides. This

section concludes with some comments on the limitations of

the model and its application to other crystal structures.

Matcha has recently calculated various molecular properties

of alkali halide molecules using HF-SCF wavefunctions. In one

paper (Matcha, 1970) he considers KCl and presents results

for the gradient at the chloride nucleus for several inter-

nuclear separations. His results are summarized in Table 4.2.

Table 4.2. KCl Molecule after Matcha
 

 

R(b0hr) 4.300 4.700 5.039 5.300 5.650

(bohr-3) -0.76931 -0.37517 -0.10043 0.06069 0.18729
qC1

 

At the equilibrium separation of the molecule (R = 5.039 bohr)

3
the measured field gradient is 10.003 bohr- (Ramsey, 1956).

The point charge model alone (with Ym = -56.6) gives q = 0.89 bohr-
3
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Das and Karplus (1965) obtain values for q between 0.33 and

0.13 bohr-3 when they include some effects of molecular

overlap. Matcha's result of q = -0.10 bohr-3 represents

substantial improvement over the above. In addition Matcha's

calculations allow us to examine the dependence of g on

internuclear separation.

We decompose Matcha's results into two parts, one due

to the point charge contribution and the other due to the

wavefunction distortion caused by orbital overlap. The overlap

contribution is then

qo = q - 2(1 - le/RB = q - q (4.11)p I

where q is Matcha's calculated value and Ym is -56.6. For

the three largest separations calculated by Matcha we find

go = B expl-R/pl. (4.12)

with B = -752.0 hohr"3 and p = 0.7594 bohr. In Figure 4.1,

q, q and q0 are plotted with respect to internuclear

P

separation. The exponential dependence of the overlap

contribution to the electric field gradient seems reasonable

to us. Since the ion distortion is a function of the

molecular overlap integral, it should fall off rapidly with

increasing separation. We would expect that the parameter p

is in some way characteristic of the "softness" on an ion

Pair.

In attempting to parameterize these ideas we were lead

to 51 paper by Gilbert (1968) which proposed an extension of

the: liorn-Meyer repulsive interaction between closed shell
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ions. Gilbert writes the interaction energy between ions

i and j as

Uij = f pij epoRij - R)/pij], (4.13)

where Rij and pij are characteristic radii and softness*

parameters for the ion pair, and f is a standard force.

From spectroscopic data for alkali halide monomers Gilbert

deduces the additivity rules Rij = R1 + Rj and pij = pi + pj,

where Ri and pi are parameters for individual ions. From

the same spectroscopic data he has assigned values to individual

ion parameters. These are listed as part of Table 4.3.

In trying to extend to other ions the meaning of Gilbert's

parameters we have carried out a series of calculations of

ionic wavefunctions using the HFS method. We used a computer

program originally written by Herman and Skillman (1963).

A working copy of the program was kindly provided by Dr. D.Y.

Smith of Argonne National Laboratory. We have observed a

correlation for alkali ions between the radii quoted by

Gilbert and the natural logarithm of electronic charge density

calculated by HFS. In addition the variation of the charge

density is nearly exponential near Gilbert's value of radius.

we define an HFS softness parameter by

p(HFS) = - AR/A(£nps) , (4.14)

where pS is the electronic charge density from HFS and the

slope is evaluated at Gilbert's value of R. For the alkali

 

*Earlier workers have called p a hardness parameter. We

prefer Gilbert's characterization since a larger value of

0 implies a softer repulsive force.
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ions lnpS seems to be consistently near -4.3. The results

are more obscure for the halide ions. Gilbert's parameters

along with those deduced from the HFS calculation are

presented in Table 4.3.

we define radii and softness parameters for metal ions

from the HFS calculation. The parameters are evaluated where

the natural logarithm of the electronic charge density is

-4.3000. The values of Ri and pi for various ions of interest

in this work are presented in Table 4.4. The residual charge

(outside a sphere of radius Ri is of the order of one electron.

Note that the halide radii are considerably smaller than

those of Gilbert.

We define the electric field gradient at ion i in the

soft sphere model as

q- = Z (qj - qj) . (4.15)

1 jri p 0

‘Mhere the sum runs over all ions in the crystal. The point

Cfliarge contribution is given by

q; = 2 zj(1 - yi)/R3 , (4.16)

“fliere R is the distance from ion i to ion j with charge zj.

Tums antishielding factor for ion i is treated as a free

Parameter. For Cl- we expect its value to be somewhat less

t1"Ian the theoretical free ion value, since a chloride ion

cOnstrained in a potential well will certainly polarize

1£385 in response to an external gradient than a free ion.

Tale overlap contribution is given by

q2 = F epoRij - Rl/oijl . (4.17)
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Table 4.3. Ionic Parameters after Gilbert

 

 

 

Ion R(Gilbert)a [0(Gilbert)a laps (R = RC) ,omrs)b

Li 1.31 0.131 -4.34 0.205

Na+ 1.80 0.150 -4.33 0.163

x+ 2.35 0.200 -4.28 0.338

Rb+ 2.59 0.217 -4.35 0.369

05+ 2.87 0.245 -4.28 0.417

F' 2.59 0.338 -5.10 0.470

01' 3.59 0.449 -5.89 0.585

Br‘ 3.90 0.488 -6.08 0.619

I“ 4.37 0.546 -6.31 0.660

8Values in bohrs taken from Gilbert (1968).

bValues in bohrs from HFS calculations.
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Table 4.4. Ionic Parameters from HFS

Ion R(bohr) P(bohr) Residual Chargea

Li+ 1.306 0.2047 0.08

Na+ 1.801 0.2481 0.17

K+ 2.361 0.3304 0.36

86+ 2.590 0.3690 0.52

as+ 2.880 0.4176 0.73

F' 2.230 0.4172 0.64

01' 2.740 0.4947 1.01

Br' 2.896 0.5277 1.20

1‘ 3.140 0.5803 1.50

La3+ 2.636 0.3267 0.42

Ce3+ 2.608 0.3204 0.42

Pr3+ 2.581 0.3148 0.40

N83+ 2.556 0.3096 0.37

Pm3+ 2.531 0.3048 0.38

Sm3+ 2.507 0.3004 0.36

Eu3+ 2.484 0.2962 0.34

Gd3+ 2.462 0.2923 0.32

¥

aCharge in units of e outside characteristic radius.
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The additivity rules for the soft sphere parameters are

assumed to hold. We treat F as a free parameter and restrict

the overlap contribution to near neighbors (R i 4.0 A).

The soft sphere parameters for metal ions are taken from

HFS calculations. We discuss three possible choices of

parameters for C1- below.

In what we call data set A we Choose the chloride

parameters directly from the HFS calculation. This gives

RC1 = 2.740 bohr and pc1 = 0.4947 bohr. Since F and RCl

are not independent parameters (the quantity F exp(RC1/pij)

enters for all ions) we fix Rclat this value. For data set

B we return to the Matcha calculation which indicates a

combined softness for K+ plus C1. of 0.7594 bohr. By sub-

tracting the HFS value for K+ we obtain a softness for C1-

of 0.4290 bohr. For data set C we arbitrarily choose

pCl = 0.4000 bohr. For each set we then adjust the free

parameters F and (l - 7”) so as to fit the observed quadrupole

frequency and asymmetry parameter in GdCl3. The parameters

for the three data sets are listed in Table 4.5. With these

parameters we then calculate the electric field gradient for

each of the other hexagonal rare earth trichlorides.

Table 4.5. Parameters for GdCl3: Soft Sphere Model
 

 

 

-3

Set Rcl(bohr) pC1(bohr) F(bohr ) (l Ym)

A 2.740 0.4947 0.4346 28.25

B 2.740 0.4290 0.5695 30.95

C 2.740 0.4000 0.6710 32.99
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The detailed results are tabulated in Appendix D, and the

values of quadrupole frequency and asymmetry parameter are

plotted with respect to compound in Figures 4.2 and 4.3.

The agreement with the experimental values is quite

good. For set B the computed values of v are within 2.5%

of the experimental values for all compounds, while n for

PrCl is calculated to within 0.5% of the measured value.

3

The substantial improvement over the point charge model

should be noted. There is still room for improvement however,

since the variation of frequency with compound is not quite

right from LaCl3 to NdCl3. None of the three sets gives a

fast enough increase in frequency as ones goes from LaCl3 to

NdC13.

Two other attempts to fit the experimental data within

the context of this model were made. While not resulting

in a good fit they serve to illustrate some useful points.

First, if the Gilbert radius for C1. is used the gradient

is completely dominated by the near neighbor chlorides. The

amount of overlap required to reduce the frequency and

asymmetry parameter to their experimental values in GdCl3

is sufficient to cause the gradient tensor to be in the wrong

direction. That is, in its principal axis system, the

smallest element (Vxx) is not along the c-axis as it should

be. The second point involves the use of the full anti-

shielding parameter for the free Cl- ion. We assumed the

HFS values for the Gd3+ soft sphere parameters and set F = 1.0

and (l - yw) = 57.6. We then varied the chloride parameters
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to fit the experimental data for GdCl Using these chloride3.

parameters and the same F and antishielding factor, we

3+

varied the Pr soft Sphere parameters to obtain a fit to

the experimental data for PrCl The resulting soft sphere3.

parameters were both significantly less than those assumed

for Gd3+. This is contrary to both the HFS calculations and

our intuition.

There are a number of effects we have neglected in this

model. Some of them we expect to be partially included in

the parameterization of our model and the others we expect

to be small. Those partially included are the effects of

polarization of the chloride ion at whose nucleus the calcu-

lation is carried out, and the contributions due to three-body

forces. In addition to an external field gradient at a

chloride nucleus there is also an electric field. This field

makes some contribution to the polarization of the chloride

electronic wavefunction which in turn produces a contribution

to the gradient at the nucleus. The dipole polarizability

of Cl- is not well known, but we expect that at least part of

this effect is included in the antishielding parameter. Many-

body effects are certainly important, but we feel that they

are at least partially included in our parameterization of

the overlap contribution. In other chlorides with different

geometries they may manifest themselves through changes in

the overlap strength F or the antishielding parameter. We

have completely neglected any dipole or higher moment contri-

bution to the lattice sums. The largest of these effects
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would be from the more easily polarizable Cl“ ions. But

since they are symmetrically placed, their effect would

largely cancel. In addition most of the gradient appears

to originate from the three nearest metal ions which have

very small polarizability.

A variation of this model has been applied by Carlson

(1971) to CstCl In this compound the overlap contribution3.

to the electric field gradient at the chloride nuclei appears

to originate entirely from two nearby Pb2+ ions. The crystal

exists in two phases, one cubic with a single frequency and

the other tetragonal with two frequencies. Carlson has

used the Pb-Cl separation of 2.802 A in the cubic phase as

the sum of the characteristic radii and deduces F = 0.8098

bohr-3 and pPb + 0C1 = 0.546 bohr from the two frequencies

in the tetragonal phase. His relatively large value for F

and small value for p partially result from his use of the

free ion value for the Cl- antishielding parameter.

E. Volume Dependence of the Electric Field Gradient
 

The calculation of the volume dependence of the electric

field gradient is a straightforward procedure. The lattice

constants of the unit cell are reduced in a systematic way and

the field gradient is calculated for each set of lattice

constants. Since the linear compressibility ratio r = 013/011

is so poorly known we reduced the values of the lattice

constants A and C in such a manner as to correspond to a

wide range of values for r. We made calculations in GdCl3

for the extreme values r = 0.0 and r = w as well as for

several intermediate values. The choice r = 0.0 corresponds
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to holding the value of C fixed and allowing all of the

volume reduction to occur by shrinkage of the crystal along

the a-axis. The other extreme, r = w, corresponds to

holding the value of A constant and allowing all of the

volume reduction to occur by shrinkage along the c-axis.

The choice r = 1.0 corresponds to an isotropic compression

in which A and C both decrease at the same rate (constant

C/A ratio).

The volume dependence of the quadrupole frequency in

GdCl3 for the point charge model is illustrated in Figure 4.4.

The frequency and volume have both been normalized to their

zero pressure values. For all positive values of r the

frequency increases as the volume decreases. This is exactly

the opposite of the observed behavior. For this reason we

will restrict ourselves to a discussion of the volume

dependence in the soft sphere model only.

In the soft sphere model the exponential dependence of

the overlap contribution to the field gradient can result in

a smaller gradient as ions are moved closer together. The

volume dependence of the quadrupole frequency in GdCl3 for

the three data sets of the soft Sphere model is illustrated

in Figures 4.5, 4.6 and 4.7. Again we have performed the

calculations for a wide range of values of r. The scale on

each of these figures is the same so that comparisons among

them can be made easily. Several comments are in order.

First, the volume dependence for each of the data sets

of the soft sphere model changes drastically as a function of

r. Compression along the c-axis alone (r = 99) yields
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frequencies which increase as the volume is decreased, while

compression along the a-axis alone yields decreasing

frequencies. Second, for a fixed value of r, av/BV decreases

as one goes from data set A to data set C. This is easily

understood, since data set C contains a larger overlap

contribution to the field gradient than data set A. In a

qualitative way one can consider the point charge component

of the field gradient to contribute positive 3v/3V and the

overlap component to contribute negative av/BV. Finally,

all of the curves are slightly non-linear; for 3v/3V

negative they curve upward and for av/BV positive they

curve downward. For r = 0.5 in data set B we tried to

estimate whether or not this effect was observable. If

6 cmz/kg, then at a pressure ofwe assume 8 = 7 x 10-

S x 103 kg/cm2 (about 75,000 p.s.i.) the effect would

produce a deviation from linearity in the frequency versus

pressure curve (Figure 8.5) of a few kHz. Since the

uncertainty in frequency measurements is of the order of

one kHz, we would not expect this possible non-linearity

to be observable at the pressures achieved in this work.

It is interesting to note that a distinct non-linearity

was observed in YbCl3 (Figure C.2). Unfortunately, as is

pointed out in Appendix C, analysis of the field gradient in

this compound must await better structural information.

we have calculated the volume dependence of the electric

field gradient in the soft sphere model for all of the hexa-

gonal rare earth trichlorides. We have arbitrarily limited
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these calculations to values of r between 0.7 and 0.4.

The elastic constants of Stedman and Newman (1971) seem

to indicate a choice within this range, but our decision

was based more on convenience than on belief in their

numbers. The volume derivatives of the quadrupole frequency

and asymmetry parameter of each compound for the three data

sets of the soft sphere model are given in Table 4.6.

All derivatives are evaluated at the zero pressure limit.

The normalized volume dependence of the quadrupole

frequency in the soft sphere model is plotted with respect

to compound in Figure 4.8. The three shaded areas in the

figure correspond to the three different data sets of the

soft Sphere model. Each shaded area corresponds to choices

of r between 0.7 and 0.4. For values of r outside this

range the curves are similar. In order to compare these

calculations with the experimentally measured normalized

pressure coefficients, it is necessary to assume a value of

the bulk compressibility for each compound. We have assumed

6 cmZ/kg for each compound and calculated an8 = 7 i l x 10-

"experimental" value of 3(v/vo)/3(V/Vo). These values are

also plotted in Figure 4.8. The error bars attached to

these values are a result of the assumed uncertainty in B

and are somewhat arbitrary as discussed in Section B. A

smaller value of B will result in an increase in the

"experimental" value of 3(v/vo)/3(V/Vo). In addition any

variation of B from one compound to another will also

shift these values.



50

Table 4.6. Results of Lattice Compression in the Soft Sphere Model

 

r = 0(34K1 = 0.7 Data Set A Data Set B Data Set C
 

Compound 9 g 71/742 J ’1- 991/1192 9 ’L J (21/ Va) A 7L

A (v/vo) )(v/vo) 3(v/vo) ,9 (v/vo) a (v/vo) J (v/vo)

 

LaCl3 0.063 0.42 0.566 0.70 0.949 0.93

CeCl3 0.047 0.45 0.533 0.71 0.902 0.93

PrC13 0.028 0.46 0.499 0.72 0.854 0.92

NdClB 0.015 0.48 0.473 0.73 0.817 0.93

SmC13 -0.043 0.51 0.366 0.76 0.672 0.92

EuC13 -0.070 0.54 0.320 0.78 0.610 0.95

GdCl3 -0.095 0.56 0.278 0.80 0.553 0.96

1’ = ’(3/‘(1 = 0.4

LaCl3 0.201 0.50 0.731 0.90 1.135 1.23

CeC13 0.196 0.52 0.710 0.89 1.099 1.20

PrCl3 0.188 0.53 0.687 0.89 1.063 1.17

NdCl3 0.185 0.56 0.670 0.90 1.035 1.17

SmCl3 0.148 0.60 0.581 0.92 0.904 1.14

EuC13 0.128 0.64 0.539 0.95 0.844 1.17

GdCl3 0.107 0.66 0.500 0.98 0.790 1.18
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There are several important comments that can be made

about Figure 4.8. All of the calculated volume derivatives

for each of the soft sphere data sets decrease as one goes

from LaCl3 to GdCl3. This behavior is consistent with

experiment. We might point out that in the point charge

model the volume derivatives, in addition to being negative

for all compounds and all positive values of r, increase

slightly as one goes from LaCl3 to GdC13. The "experimental"

values fall on a smooth curve, but the calculated derivatives

seem to have a kink at NdC13. We are unsure of the origin

of this anomaly. We made a series of calculations in which

we attempted to discover the effects of the experimental

uncertainties in the lattice constants of NdCl3 on the

derivative of frequency with respect to volume. The effects

of such structural uncertainties are totally invisible on

the scale of Figure 4.8.

Because of our lack of information about 8 and r we

are unwilling at this point to make a choice between data

sets B and C. Data set A probably can be rejected as having

too small an overlap contribution to the field gradient.

we stress again that accurate values of bulk compressibilities

and linear compressibility ratios in these compounds are

essential to interpret the experimentally measured pressure

dependence of the quadrupole frequency.



V. CONCLUSIONS

In introducing the soft sphere model of electric field

gradients we have attempted to include in a systematic

fashion the effects of wavefunction overlap. we have deduced

a simple exponential dependence for the overlap contribution

to the field gradient from HF-SCF calculations for the KCl

molecule. we acknowledge the fact that in extending this

idea from a diatomic molecule to a closely packed ionic solid,

we are undoubtedly omitting important many-ion effects. We

feel confident that future theoretical work will indicate a

more comprehensive scheme for representing the overlap

contribution.

We feel that representation of ions by a characteristic

radius and softness parameter, which is an integral part of

the soft sphere model, is an extremely useful idea. Using

HFS calculations of ionic wavefunctions, we have made a

connection between Gilbert's empirical parameters for alkali

and halide ions, and parameters for other ions.

For the hexagonal rare earth trichlorides we have

demonstrated that the soft sphere model of electric field

gradients gives far better agreement with experiment than

the earlier point charge model. The soft sphere model seems

to indicate that the value for the Sternheimer antishielding

parameter for C1- in these solids is about -30 as opposed to

the theoretical free ion value of -56.6.

The pressure dependence of the quadrupole frequency in

3, SmCl3 and GdCl3 has been measured. It

53

CeCl PrC13, NdCl
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is found that the frequency decreases linearly with increasing

pressure in all compounds. For any physically reasonable

value of the linear compressibility ratio, the point charge

model when applied to these compounds predicts that the

frequency should increase with pressure. This constitutes

further evidence of the unsuitability of the point charge

model. On the other hand the soft sphere model predicts

that the frequency should decrease almost linearly with pressure,

provided that the linear compression along the c-axis is

slower than that along the a-axis. Future work should include

a measurement of the geometrical changes in these compounds

under pressure. The best method would be an x-ray measurement

of the lattice constants and chloride positional parameters

as a function of pressure. A direct measurement of the elastic

constants would also be useful.

As soon as good crystal structure data is available for

TmClorthorhombic TbCl3 and monoclinic DyCl HoCl3, ErCl

3' 3’ 3’

YbCl3, and LuC13, the model should be applied to these com-

pounds. The monoclinic salts represent a severe change in

geometry from the hexagonal salts, and a different value of

the overlap strength may be necessary. However, we would

expect the antishielding parameter to be roughly the same.

In TbCl3 one of the two chloride sites has an environment

quite similar to that in the hexagonal salts. we expect

that the soft sphere model will predict the frequency and

asymmetry parameter well, using the same overlap strength

and antishielding factor as in GdC13.



55

In conclusion we feel that the soft sphere model of

electric field gradients in solids, by including the effects

of molecular overlap, provides an important step forward

in the theory of nuclear quadrupole resonance.
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APPENDICES



APPENDIX A

LATTICE CONSTANTS AND POSITIONAL PARAMETERS

Morosin (1968) measured the lattice constants of

LaCl3, NdCl3, EuCl3 and GdCl3 with an uncertainty of less

than 0.001 A. He also measured the chloride positional

parameters to within 0.1%. He suggests the following

procedure, based on the earlier work of Templeton and

Dauben (1954), for estimating the lattice constants and

3, PrCl3 and SmCl3. When

plotted against atomic number, the value for C obeys a

positional parameters of CeCl

smooth relationship while the value for A obeys two

linear relationships, one for LaCl3 through NdCl and
3’

a second for SmCl through GdC13. These graphs are shown
3

in Figure A.1.

Values of u for CeCl3 and PrCl3 were obtained by

linear interpolation of Morosin's data between LaCl3 and

NdC13, while the value for SmCl3 was obtained by

extrapolating the values for EuCl3 and GdCl3. Morosin's

values for v obey a smooth curve from LaCl3 through

EuC13. Values of v for CeC13, PrCl3 and SmCl3 were

interpolated from this curve. The curves for u and v

are shown in Figure A.2. The interpolated values

together with Morosin's data are listed in Table 2.1.

59



A
(
A
n
g
e
l
r
o
m
e
)

C
(
A
n
o
e
l
r
o
m
e
)

60

 

I41!

'DQG

14MB

'h42

14!)

'L38

‘136

d

 

4400

4u35

4830

‘4J25

4020

40J5

4nl0

l l l l l I L
  
Figure A.1.

SMCI 3 EUC's GdCl 3

Lattice Constants versus Compound

 



61

 

 

 

 
 

T I l T T l r T

P

0.389 -

F q

0.388 P -

P I!

00387 - -

o.3ozo l- .r

l- .1

“F

>

OJKMGI- -q

<5

" 'l

1.

0.3012 b q

1 1 I l 1 l J l

LuCl3 CeCI3 PrCl3 NdCI3 SmCl3 EuCl3 (MCI3

Figure A.2. Chloride Positional Parameters versus Compound

 



APPENDIX B

HEXAGONAL RARE EARTH TRICHLORIDE DATA

Raw data for the 35C1 quadrupole resonance as a

function of hydrostatic pressure at 77K and 300K is

listed in Tables B.1 through B.5. Missing data at 300K

indicates that signals were too weak to measure. In

each table data is listed in the order in which it was

recorded. A11 frequency values are the average of five

readings with standard deviation of less than 1 kHz.

The uncertainty in pressure values is judged to be

0.5 x 103 p.s.i. Data at 77K are plotted in Figures B.1

through B.5. On all graphs the size of the circle

representing a datum is greater than the error associated

with it. The room temperature data is similar to that

at 77K. It is not plotted, but the results of a least

squares analysis are presented in Table B.6.
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Table 8.1. Quadrupole Frequency versus Pressure Data: CeCl3

 

 

 

T = 77K

Date P(103 p.s.i.) ‘U(kHz)

10/21/70 13.0 4356.

10/21/70 19.6 4346.

10/21/70 25.0 4335.

10/21/70 30.0 4327.

10/21/70 35.0 4317.

10/21/70 39.9 4309.

10/21/70 45.9 4299.

10/21/70 50.2 4291.

10/21/70 55.3 4282.

10/21/70 61.2 4273.

10/21/70 65.4 4266.

10/21/70 70.3 4257.

10/21/70 75.4 4248.

10/21/70 81.2 4239.

10/21/70 38.3 4312.

10/21/70 52.7 4288.

10/21/70 22.9 4339.

10/21/70 8.1 4364.

10/21/70 0.015 4377.

 



64

 

    

I T r I

4.38— --1

(sec:3 T = 77 K

4.36 l-

403‘ -

4.32 l-

“J
I

I

" 4.30 -

a

0

c

O

:I

6'
b 4.28 '-

h.

4.26 '-

4.24 '-

1 l l l

20 4O 80 80

Pressure ( IO: psi)

Figure 8.1. Quadrupole Frequency versus Pressure at 77K: CeCl3



65

Table 8.2. Quadrupole Frequency versus Pressure Data: PrC13

 

 

 

T = 77K

Date 9(103 p.s.i.) 1)(kHz)

10/1/70 17.7 4533.3

10/1/70 40.7 4495.2

10/1/70 60.2 4462.3

10/8/70 23.1 4524.7

10/8/70 30.0 4513.5

10/8/70 39.9 4497.2

10/8/70 50.2 4479.0

10/8/70 60.0 4464.4

10/8/70 65.0 4455.9

10/8/70 70.7 4445.5

10/8/70 80.3 4430.4

10/8/70 75.7 4437.5

10/8/70 58.9 4464.9

10/8/70 0.015 4561.9
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Table 8.3. Quadrupole Frequency versus Pressure Data: NdC13

T = 77K

Date P(103 p.s.i.) 'V(kHz)

9/10/70 17.1 4696.1

9/10/70 40.9 4657.2

9/10/70 65.3 4620.0

9/10/70 53.0 4638.4

9/10/70 29.5 4675.8

9/10/70 17.1 4695.9

9/10/70 9.0 4708.6

9/10/70 5.0 4715.9

9/10/70 13.5 4702.0

9/10/70 19.9 4691.6

9/10/70 32.2 4671.3

9/10/70 43.8 4653.0

9/10/70 57.8 4631.1

9/10/70 62.0 4624.2

9/10/70 48.5 4646.0

9/10/70 37.2 4663.6

9/10/70 34.9 4667.7

9/10/70 24.9 4683.0

9/10/70 0.015 4722.3
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Table 8.3. (cont'd.)

 

 

 

T = 300K

Date P(103 p.s.i.) 1J(kuz)

9/10/70 17.8 4649.6

9/10/70 40.9 4612.5

9/10/70 64.7 4574.8

9/10/70 51.5 4595.1

9/10/70 30.2 4628.9

9/10/70 17.8 4649.3

9/10/70 0.015 4676.4
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Table 8.4. Quadrupole Frequency versus Pressure Data: SmC13

 

 

 

 

 

 

T = 77K

Date P(103 p.s.i.) 17(kHz)

9/9/70 19.0 4999.4

9/9/70 40.9 4965.6

9/9/70 61.0 4937.2

9/9/70 67.0 4926.2

9/9/70 50.9 4950.1

9/9/70 30.9 4981.0

9/9/70 17.2 5001.6

919/70 25.0 4989.3

9/9/70 55.7 4943.0

9/9/70 45.2 4957.9

9/9/70 36.1 4972.3

9/9/70 8.6 5014.1

9/9/70 0.015 5026.8

T = 300K

P(lO3 p.s.i.) 10(kHz)

9/9/70 18.2 4950.7

9/9/70 41.0 4914.4

9/9/70 60.3 4887.2

9/9/70 0.015 4975.6
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Table 8.5. Quadrupole Frequency versus Pressure Data: GdCl3

Date P(103 p.s.i.) 1)(kHz)

7/14/70 14.8 5286.9

7/14/70 22.2 5276.7

7/14/70 24.0 5274.4

7/15/70 10.5 5293.1

7/15/70 23.9 5274.0

7/15/70 45.3 5242.3

1/13/71 18.8 5281.9

1/13/71 30.0 5264.9

1/13/71 40.0 5251.5

1/13/71 49.8 5236.9

1/13/71 60.2 5221.4

1/13/71 69.2 5208.9

1/13/71 55.3 5229.6

1/13/71 45.7 5242.7

l/l3/71 35.3 5257.4

1/13/71 25.0 5272.8

1/13/71 14.3 5288.5

1/13/71 7.8 5297.8

1/13/71 0.015 5307.6
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Table 8.5. (cont'd.)

 

 

 

T = 300x

Date 13(103 p.s.i.) 1’(kHz)

7/23/70 5.0 5241.5

7/23/70 10.0 5233.4

7/23/70 21.0 5220.4

7/23/70 30.0 5207.3

7/23/70 40.2 5190.7

7/23/70 50.2 5177.4

7/23/70 34.9 5199.5

7/23/70 25.1 5212.4

7/23/70 0.015 5248.4

1/13/71 59.6 5165.8

1/13/71 75.3 ‘ 5144.1

1/13/71 45.7 5185.6

1/13/71 54.9 5174.0

1/13/71 64.9 5159.8

1/13/71 70.2 5152.0

1/13/71 19.6 5222.6
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APPENDIX C

DATA FOR ErCl3 AND YbCl3

ErCl3 and YbCl3

There are two chemically inequivalent chloride ion sites

are isomorphic to monoclinic A1C13.

in the molecule resulting in two quadrupole frequencies

separated by about 50 kHz. The lower frequency line is

twice as intense as the upper line. The former is

and the latter as v .
2 l

The crystal structure parameters for these compounds

referred to as v

are poorly known. For a summary of the locations of

available data see Morosin (1968), reference 12. For

this reason field gradient calculations in these compounds

have not been carried out. During the course of this work,

however, the pressure dependence of the quadrupole

frequencies in ErCl3 and YbCl3 was measured.

In both compounds the quadrupole frequencies increase

with pressure, each of the two lines in a given compound

35Cl resonanceshaving a different slope. Raw data for the

is given in Tables C.1 and C.2. All data is for T = 77K,

with the exception of the stronger line in ErCl3 where some

data at 300K was also taken. The data at 77K is plotted

in Figures C.1 and C.2.

The resonance lines in ErCl3 at 77K disappeared above

a pressure of about 55 x 103 p.s.i., and did not reappear

when the pressure was lowered. This effect was observed

in two different samples, one of which was kept free of

mineral oil. As the critical pressure was approached the
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resonance signals lost strength. This probably means that

the lines broadened. The effect was not observed at 300K

at pressures up to 65 x 103 p.s.i. We suspect that what

we observed was a crystallographic transition to the

orthorhombic TbCl structure. Monoclinic DyCl3 is known
3

to undergo such a transition when cooled to 77K (Carlson,

1969). No further investigation of the transition in

ErCl3 was attempted.

In YbCl3 the lower frequency line has a distinct

non-linear increase with pressure, while the upper line

appears to be strictly linear. Since the data for ErCl3

is of relatively poor quality such behavior there can

not be ruled out. The results of a least squares analysis

of the data for ErCl3 and YbCl3 are presented in Table C.3.
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Table C.1. Quadrupole Frequency versus Pressure Data: ErC13

 

 

 

 

 

 

T = 300K

Date P(103 p.s.i.) 1)2(kHz) 'Z)1(kHz)

9/8/70 19.7 4429.4 --- a

9/8/70 50.5 4939.3 ---

9/8/70 65.8 4444.8 ---

9/8/70 46.3 4438.0 ---

9/8/70 30.3 4433.2 ---

9/8/70 0.015 4424.5 4476.8

T - 77x

9(103 p.s.i.) 172(kuz) 1J1(knz)

9/8/70 14.1 4454.9 4518.0

9/8/70 30.0 4460.3 4528.0

9/8/70 45.0 4466.5 4537.2

10/20/70 20.2 4456.5 4519.7

10/20/70 26.0 4458.8 4525.0

10/20/70 32.0 4461.2 4529.5

10/20/70 38.0 4464.5 4532.1

10/20/70 44.0 4466.5 4537.0

10/20/70 50.2 4468.2 4539.6

10/20/70 20.1 4455.5 4520.2

10/20/70 54.5 4472.0 too weak

8/9/70 0.015 4449.2 4508.5

 

a

Line not measurable.
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Table C.2. Quadrupole Frequency versus Pressure Data: YbCl3

 

 

 

T = 77K

Date 2(103 p.s.i.) 'Z/2(kHz) 7511(knz)

1/15/71 21.8 4787.1 4847.8

1/15/71 24.9 4787.7 4849.6

1/15/71 30.0 4789.3 4852.6

1/15/71 35.0 4790.9 4854.9

1/15/71 40.1 4792.3 4857.4

1/15/71 45.0 4793.8 4860.6

1/15/71 50.4 4795.7 4863.3

1/15/71 55.0 4796.9 4865.9

1/15/71 60.2 4798.7 4868.9

1/15/71 65.2 4800.3 4871.3

1/15/71 70.0 4801.9 4874.1

1/15/71 75.3 4804.1 4877.3

1/15/71 80.5 4806.2 4879.0

8/9/70 0.015 4781.1 4836.0
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APPENDIX D

LATTICE SUMS

All lattice sums were computed from FORTRAN programs

written for the CDC 6500 computer at Michigan State

University. Sums were done over neutrally charged

clusters of eight ions in a roughly spherical volume

of radius 50 A. Approximately 2500 such clusters were

included in the sums. The components of the electric

field gradient tensor were computed in a Cartesian frame

defined by

x = /3 a(A-B)/2 , (D.1a)

y = a(A+B)/2 and z = cC, (D.1b)

where a and c are the lattice constants, and A, B and C

are distances along the (right-handed) crystallographic

axes. The convergence of these sums was tested by

comparing the results of a 50 A sum with one of 100 A.

The results differed by less than 1 part in 104 for each

component of the tensor.

In these calculations the contribution to the field

gradient from an ion located at (xl,x2,x3) is given by

_ _ _ 2 2 . . _

Vij - (Qp QO)(3xixj R 0ij)/R , (1,3 — 1,2,3).

(D.2)

R is the distance to the ion with charge 2 and Qp and

Q0 are the point charge and overlap contribution given by

2(1 - Ym)/R3 (D.3)
Qp

and
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Q0 = F exp[(RaB - R)/pa81 . (0.4)

R and 008 are the soft-sphere parameters for the C1-
08

ion at the origin and the particular ion at distance R.

O0 is included in the calcuation only for ions with

R‘: 4.0 A. F and (1 - ym) are treated as adjustable

parameters.

In the tables that follow the total electric field

gradient is tabulated for the chloride ion at (u, v, 1/4).

V , V , V and V are the components of the gradient
xx yy 22 xy

in the Cartesian frame defined above. sz and Vyz are

zero from symmetry. V Vy and V2 are the diagonal elements
x!

of the field gradient tensor in its principal axis system.

The relationship between the diagonal elements of the

field gradient in atomic units (bohr-B) and the quadrupole

frequency is

H_ _ 2
v0 — 9.3614 V2 1 + 3 n MHz . (D.5)
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