
ABSTRACT

CONTINUOUS MEDIUM ANALYSIS OF ELASTIC, PLASTIC

AND VISCOELASTIC BEHAVIOR OF A

MODEL SALT CAVITY

by Abdallah G. Dahir

The main objective of this investigation was to study creep

motion and the distribution of stress and strain in the medium around

a cylindrical cavity.

Rock behaves as a brittle material when differentially stressed

under a low confining pressure. It was observed in nature that under-

ground rocks show a tendency to flow under a triaxial state of stress.

Accordingly, the possibility of using the information derivable from

laboratory triaxial tests to predict the behavior of natural underground

formations was investigated.

Theoretical analysis was made of stress, strain and boundary

motion of a cylindrical salt model containing a coaxial cylindrical

cavity. This analysis was based on the mathematical theories of

elasticity, plasticity and viscoelasticity of a continuous medium. The

constitutive equations assumed to describe the behavior of the rock

salt were derived from a mechanical model consisting of elastic,

viscoelastic and viscoplastic elements.

The elastic, viscoelastic and viscoplastic coefficients of rock

salt were determined from experimental results of a triaxial
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transition test simulating underground stress field in situ. The be-

havior of a model cylindrical salt cavity was studied in the laboratory

by using a high pressure vessel, employing a liquid confining medium.

The material constants obtained from the triaxial tests were

used to calculate the theoretical cavity closure of the model salt

cavity. The experimental results were in close agreement with the

theoretical predictions, indicating the validity of both the mechanical

model and the theories of stress, strain and creep motion. The

agreement between the theory and experimental creep results suggests

that this study may be extended to underground rock formations.
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CHAPTER I

INTRODUCTION

1. 1 General Remarks

Rock is a heterogeneous mixture of grains of polycrystalline.

materials which are randomly oriented and held together by bonding

forces. It generally exhibits isotropic and homogeneous qualities

under different kinds of loading. Geophysical explorations have

demonstrated that rocks change their character and property and flow

in varying degrees depending on the environmental conditions. Under

uniaxial stress, they behave like brittle material. However, under a

triaxial stress condition, which is normally the stress in an under-I

ground formation, it exhibits many of the characteristics of plastic

material. Adams,l Bridgman,9 GriggsZ—I and others have employed

pressures that varied from 3000 to 75, 000 psi and produced plastic

flow in marble, rocks and limestone. This phenomenon can be ex-

plained by solid state mechanics since molecular (or ionic) displace-

ment in solids takes place whenever the shearing stress exceeds a

definite limit of the intermolecular attraction.

Rock salt has been chosen as a model in the present study. It is

encountered in large quantities as rock salt formations in many parts

of the world. It flows more readily than other rocks as demonstrated

by many natural salt domes. It is sufficiently homogeneous and



isotropic for theoretical studies and easy to machine any desired form

of testing specimens. Recently, a great attention has been given to

the triaxial behavior of rock salts because underground cavities can

be used for radioactive waste disposal in quantity when the nuclear

energy becomes necessity in the near future.

To date, the study of failure of rock salt has been restricted to

conventional uniaxial compression tests or limited triaxial tests

which cannot be used to distinguish the deformation mechanism of an

underground rock salt. Because of these limitations, a transition test

technique and a hollow cylinder technique were used to create testing

conditions similar to that of underground formation.

Numerous observations have been made on stress and strain

and creep motion in underground formations. However no basic

principles describing this behavior or the mechanical properties have

been formulated and verified. Some of the basic reasons are listed

by Serata70 as follows:

1. An underground formation is always subjected to triaxial

stress, under which the behavior of the materials is quite dif-

ferent from the uniaxial compression.

2. The laboratory study of triaxial compression exceeds a

certain value which is specific to the individual materials of the

formation.

3. The laboratory study of triaxial compression requires



1.2

extreme high pressure testing instruments which make the

study rather difficult.

4. In addition to the static overburden pressure, the ground

formulations may be subjected to tectonic pressures .

5. Usually, an underground medium consists of a variety of

formations, whose structural properties are different from each

other.

6. Strain confinement in the underground formation, different

from the conventional triaxial test.

Objective 5
 

The main objectives of this investigation were to:

1. Establish basic mathematical relations describing the

distribution of stress, strain and creep motion in the medium

of a thick walled cylinder.

2. Verify that the mechanical model, consisting of elastic,

viscoelastic and viscoplastic elements, describes the overall

behavior of rock salt as a function of stress and time.

3. Determine the mechanical constants of the material such

as, Young's modulus, Poisson's ratio, octahedral shear strength,

retarded shear modulus and viscosity coefficients.

4. Verify from laboratory data the basic mathematical equa-

tions of stress, strain and strain rate distribution around a

cylindrical cavity and the mechanical model of rock salt.



1. 3 Experimental Techniques
 

By the very nature of the restraint offered by the massiveness

of rock salt, underground openings are normally in a triaxial stress

state. A thorough understanding of the distribution of stress, strain

and creep motion in the medium around such openings requires a

study of their behavior under multiaxial stress conditions. Elastic,

viscoelastic, elastic ~plastic, completely plastic and other stress con—

ditions might prevail in underground formations.

Laboratory study of these stress states necessitated the devel-

opment of two basically different testing techniques. First, a triaxial

transition test was used to verify the applicability of the proposed

mechanical model and to determine the elastic, viscoelastic and

viscoplastic constants. These constants were used to calculate the

theoretical cavity closure of the model salt cavity. Second, a high

pressure, automatically controlled, vessel was developed to simulate

underground cavity. Three different stress states of elastic, elastic-

plastic and completely plastic states were obtained from this testing

technique. The data obtained was used to verify the various maths.-

matical equations describing the distribution of stress, strain and

creep motion of the medium around a cylindrical salt cavity.



PART ONE: THEORETICAL ANALYSIS

CHAPTER II

PRINCIPLES OF STRESS AND STRAIN FIELDS

AROUND A CYLINDRICAL CAVITY

2. 1 Summary of Previous Work Done on Rock Salt

Rock salt tested in different laboratories indicates isotropic

and homogeneous qualities under static and dynamic loading: while at

the same time, it exhibits elastic, plastic, elasto -plastic and brittle

properties within a practical range of testing pressures. Most rocks

are exceedingly brittle when deformed under ordinary atmospheric

pressure conditions. However, they in general exhibit a plastic nature

in varying degrees with the increase of triaxial compression. This

increase in ductility depends on environmental conditions such as high

confining pressure, high temperature, differential stress and exposure

to liquid. The confining pressure plays an important role in bringing

about the transition from brittle to ductile flow as demonstrated by

1’ 9’ 27’ 3° Accordingly, it is desirable to review themany investigators.

properties of rock salt under uniaxial, biaxial and triaxial stress

states .

2. la Uniaxial stress tests

The uniaxial test is a common method extensively used to deter-

mine structural behavior of rocks under stress. The behavior of a



rock, with a consistent structural property, varies depending upon

the testing method employed. The structural properties are usually

defined by certain coefficients such as Young's modulus, Poisson's

ratio and yielding stress. The value of the coefficients showed a wide

variation depending on the investigator and method employed. The

maximum strength of salt varies between 2300 psi and 5000 psi, while

Young's modulus varies between 0.1x 106 psi to 1.0 x 106 psi.

Serata70 attributed this wide variation to several factors, some of

which are as follows:

1. Friction developed upon the loading surface.

2. Strain measuring devices, dial gages or strain gages.

3. Dimension of test specimen.

The friction developed on the loading surfaces of the salt increases

the ultimate strength and modulus of elasticity by the formation of a

triaxial stress zone in the central region of the specimen.

The strain measured by a dial gage is quite different from the

same strain measured simultaneously by SR—4 strain gages.

The size of specimen has an important influence upon the stress-

strain curves, which can be eliminated by use of the friction reducer

and proper proportion of height-to-width ratio.

After these effects had been eliminated Serata 70 found the fol-

lowing mechanical properties:

1. The maximum strength of salt is 2300 psi with a standard



deviation of 200 psi.

The yield strength of salt is found to be in the range of 1800 psi

to 2200 psi.

Mean value of Young's modulus was 0. 14 x 106 psi with a

standard deviation of 0.03 x 106 psi.

Poisson's ratio of value 1 has been found in granular aggregate,

which is much higher than the theoretical limit of 0. 5. The

Poisson's ratio taken on a single crystal grain in the same ag-

gregate reveals a value which is not greater than 0. 5.

Chowdiah,ll following the same procedure developed by Serata,

reached the following conclusions:

1. The stress strain curve of rock salt does not exhibit linearity

at any stage.

The approximate value of chord modulus of elasticity E is:

Stress range Average E (SR-4 gages) Average E (dial gages)
 

0 to 100 1.408 x 106 psi 0.4559 x 106 psi

1000 to 1000 0.1913 x 106 psi 0.1757 x 106 psi

The value of the Poisson's ratio obtained from SR-—4 gages was

greater than 0. 5, whereas with dial gages the value increased

linearly from O to 0. 5 in the stress range 0 to 1500 psi. and was

larger than 0. 5 beyond the stress 1500 psi.

The average failure strength of the material is 3, 800 psi.



2. 1b Biaxial stress tests

The failure of the material in a biaxial state of stress is differ-

ent from that of uniaxial state. The load is applied in two directions

and the material flows from the unconfined side. Chowdiah,ll using

dial gages, strain gages and photo-stress techniques, reached the

following conclusions:

1. The material has the tendency to flow by yielding at equal hori-

zontal and vertical loads of 4000 psi (corresponding to an octa-

hedral shear stress value of 1885 psi).

2. Under equal biaxial compressive stresses of 4000 psi the

circular opening tended to flow without collapsing, while an

oval opening collapsed by undergoing large deformation under

the same biaxial loads. 2

3. Photo-stress results justified the assumption of statistical

homogeneity and isotropy of rock salt material.

2.1c Triaxial stress tests

Some of the earlier triaxial tests on rock salt were done by

1'4 on the increase in ductility and ul-Adams‘2 and his collaborators

timate strength of rock salt under confining pressure.

Von Karman78 performed triaxial tests under hydrostatic pres—

sure. Samples of white marble and red sandstone were subjected to

compressive external liquid pressures. The results show that the



stress-strain curves were similar to those of ductile metals which

Show work hardening and permanent deformations .

Griggs27 continued the work started by Adams to study the

relation of the triaxial characteristics of ultimate strength to the

confining pressure and time under load. A liquid kerosene medium

with a confining pressure of 13, 000 atmospheres was applied to small

solid cylinders of limestone, marble and quartz. Some of the main

results obtained are:

l. A gradual change between brittle and ductile state is attained

as confining pressure increases, and no sharp transition was

noticed.

2. Continuous flow was not obtained in any of the materials used.

3. The ultimate strength of rocks decreases asymptotically to a

certain value of strength at infinite time under load.

4. The rate of plastic deformation varied in proportion to the

applied force.

5. The rate of plastic deformation at constant high loads decreases

rapidly with time .

Bridgman9 made some extension tests under hydrostatic

pressures on rock salt crystals at an extension pressure of 420, 000

psi. He obtained a reduction of 20% in sample area in rock salt,

while on solenhofen limestone under hydrostatic pressure of 400, 000

psi, he obtained an area reduction of 53%.



10

Handin30 studied the triaxial behavior of cylindrical salt speci-

mens (1" x 1/2") under a confining pressure of 5200 atmospheres. He

indicated that salt has a remarkable ductility in comparison. At 1200

atmospheres a specimen was shortened 75 per cent before fracture.

He also indicated that the increase of strength and ductility with con-

fining pressure, so striking with many rocks, is much less pronounced

in salt, and much of the effect is observed in the first few hundred

atmospheres.

30 work on the triaxial strength of salt was utilized byHandin's

Serata70 to construct Mohr's envelopes. The envelopes at low con-

fining pressures gave smaller ultimate shear strengths than the

envelopes at higher confining pressures. The minimum required mean

principal stress for the creation of a plastic state was found to be

5500 psi. Beyond this value, the Mohr's envelope became horizontal.

Serata70 created a large mean stress by subjecting cylindrical

salt specimen (6" O.D. , 2" I.D. , 2" h), confined in a steel jacket,

to an axial load of 16, 000 psi. The important conclusion of his study

is that the yield condition based on octahedral shear theory is appli-

cable to rock salt whenever the mean stresses exceed 5500 psi.

Serata70 and his collaborators55’ 65 developed a laboratory

method by which the octahedral shear strength was determined and

the transition region from elastic to plastic in continuous medium was

illustrated. In their laboratory experiments, a cylindrical salt



ll

specimen was closely fitted in a thick steel cylinder. The lateral

pressure is developed on the specimen through restraint by the sur»

rounding steel as the specimen is compressed axially. The lateral

stress was calculated from the strain on the outer surface of the

steel cylinder, measured by SR-4 strain gages.

The stress condition of the test specimen may be illustrated in

the diagram of axial stress vs. lateral stress as in Fig. 2.1. The

elastic state of stress is given as a straight line from the origin at

the angle a defined by tan a 2 Tit—u , where u is Poisson's ratio,

. “L p , . .
Since U—- : I—t-i by Hooke 3 law under the condition of zero lateral

z -

strain. This elastic region extends between the two elastic lines OE

and FG. The plastic state of stress is represented by another straight

line, EF or HG, with the angle of tangent, B = 450 and expressed by

The elastic and plastic lines can be interpreted as follows: the stress

condition of the specimen remains elastic until the overburden pres-

sure, 02, reaches the yield point. When this point of transition is

exceeded, the stress condition becomes plastic, and remains plastic

regardless of the initial overburden load. (The elastic line FG and

the plastic line HG represents the unloading stress state.)

Young's modulus and Poisson's ratio of the triaxially stressed

medium can be obtained from measurement of the stress and strain
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relationship in the elastic state OE by using the following equations:
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”’ZA-NAH) “‘" “*'

Where:

0

A=tana =—L

0

z

6

F=tany =—z-

6L

n = Poisson's ratio

and the modulus of elasticity, E, is

 

 

.12. ._61:_
20 - (0’ +0)

L

E = 6 L6 z (2.1-2)

z L

20L (0L+0'z)

Experimental analysis of different rock salt samples showed a

general agreement between theory and experimental results. How-

ever, Raman's65 results on limestone and granite, Figs. 2.2 and 2. 3

respectively, showed an unexpected behavior that is explained in the

analysis to follow.

2.2 Elastic Analfiis of Stress and Strain Distribution

Around a Cylindrical Opening

An exact solution to the stress strain relation around a cavity

opening using Hooke's law requires a simple geometrical form of the



l6

cavity such as a circle, sphere or an ellipse. In an ideal form of

cavity a theoretical solution to the problem can be obtained, which may

provide a close approximation to a real cavity. Most of the under-

ground openings do not have ideal geometrical forms and their exact

solution is difficult to obtain. However, for practical purposes, the

results of the analysis of idealized forms approximates that for the

real forms. Thus the theory of elasticity can be applied to the stress

and strain analysis provided the maximum shear stress around these

geometrical openings never exceeds its critical value.

According to the mathematical theory of elasticity, when

radially symmetrical stress is applied around a cylindrical cavity in

plane strain the maximum shear stress always occurs on the boundary.

By increasing the applied stress, the maximum shear stress at the

boundary reaches a certain critical value. The magnitude of these

critical stresses depends upon the forms of the cavity and the initial

stress conditions. When these critical stresses exceed the maximum

shear strength of the material, it causes failure at the boundary. The

high stress concentration is then relieved by the development of the

plastic zone in the highly concentrated stress area. In this area, the

salt undergoes plastic flow, which causes a gradual reduction in the

stress until an equlibrium condition is reached.

This theoretical analysis considers only a cavity in an ideally

elastic and plastic medium. The cavity is assumed as a thick walled
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tube loaded with a uniform external pressure P0 and a small internal

pressure Pi subjected to plane strain conditions and axial symmetry.

From this imposed condition the cylindrical coordinate directions,

r, 0, and z are the principal axis and the stresses crr, 0 and 0 are

0 z

the principal stresses.

2.2a Stress and strain analysis in completely

elastic cylinder in plane strain

The general stress solution can be obtained from equilibrium

equations and is generally represented for the case of radially sym-

metric plane strain with a superposed uniform axial strain €z as

follows:77

r r

0’ —-‘£+ZC (2-2-1)

9 1.2

dz = E €z,+ 4pc

where A and C are constants.

When a0 and b0 are the inner and outer radii of the cylindrical

cavity and Pi and Po the uniform internal and external pressures

respectively, the two constants are determined by the given boundary

conditions, and the equations become



l8

  

  

 

 

 

bOZ 8'02

2 (P - po 2) 2

1 a0 0 0

0- : (Po’p.) _ Z '1' 2

r 1 r2 1— 3L2 1- €22

b0 b0

2 2

aoz (9—130 '27) 39..

(P P) i- + 1 a0‘ bOZ (2 2 2)
00 7 O i r3 a02 1 a02 '

130‘2 1302

bo‘2 ao?‘

(P-P — —
0 02 b02

= E

“z 6s + 2 H 1 — (aOZ/boz)

Thus:

a02

A = P —P

' ° 1' 1 - (ax/boa)

and

b02 3'02

P -P 2.2-< i o :0.) £72 ( 3)

2c =

1 " (302/1302)

Substituting or, 06 and 02 of Eq. 2. 2-2 in the following Hooke's law

6 :31in - u(0'e+0'z)]
r r

€e=%[06-u(0r+az)] (2.2-4)

_l
62 — E [O'Z - FL (O'r+0'e)]

the relations between strain and applied pressure are obtained, such

that (for plane strain)
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1 [3° 2 a0“
6 = z 2 (l+u)(PO-P,)+(l-u-2u)(P,—2—‘P0)]

r E(1-3_°_) r 1 1b.
be?-

(2.2

1 a 2 2

- -01 P-P 1——22P°-P)160" a‘2[ (+p)(o i)H P P)(- o

E(1-_.°_. r b,2

is,2

b 2 210‘2

(p -po 42—) b 2

1 O 0 O

6z - E Hz.H 1- a: '—

be?-

The principal strains are related to the displacement by

du

6 = r

r du

ur
: _ 2.2-«6

69 r
i )

du

6 = z = 0 in lane strain

z dz p '

whereu =f(r); u =u =0

r 9 z

The radial displacement is then expressed as

1 a02 5'02

ur= -"——;—z'[-;(1+u)(Po-Pi) -r(1—+L-2+L“)(Pi g"; - 130)]

E(1-._°_) °

2

b0 (2.2-7)

For P, = 0:

1

(1+ p.) Po a02

= _ _— -3 2.2-
ur a z [r '1' (1 H) r] ( 8)

E(1-.._°_)

b,z



20

which is a linear relation between the external load and the radial

displacement.

From Eq. 2.2-8, the modulus of elasticity may be expressed as,

 

(H11) .
E=— 2 2s0(1—p) (2.2-9)

£311 (1_ 5:12.)

APO 2

b0

where P0 = [1(a0) .

By assuming a value of the Poisson's ratio and small strains where

a E a0 the modulus of elasticity may be determined from laboratory

measurement of Auo/AP0 by using specimens of thick walled cylinder.

If plane strain is assumed and internal pressure is set equal to zero,

the stress distribution of Eq. 2.2-2 reduces to

3'0

a = -———— (— +1) (2.2-10)

0' = - -———2—

(1-31)

b07-

It is important to notice that in case of plane strain and external

pressure only, the axial stress is not always the intermediate prin-

cipal stress. The necessary conditions for 0'z not to be intermediate
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area 2 0' or 0 S0 . From Eq. 2.2»10 this leads to

z r z 0

2
< 30

-2|-'~--(—'2‘ 1)

r

, 2

21139-9?- +1

2
a
_0_ _ ZH'I

This proves that 0 is always the intermediate principal stress so

z

long as r :30 and 11 #1/2.

2.3 Elastic-Plastic Analysis of a Hollow Cylinder in Plane Strain

2. 3a Theoretical consideration of yield criteria

Strength theories of a solid are usually described in terms of

state of stress, strain and energy of distortion. Some of the theories

that describe the yielding behavior of the material and relevant to

this study are briefly summarized here.

1. Mohr's theory of rupture

The state of stress at any point may be represented graphically

by a plot known as the Mohr diagram. The Mohr theory of rupture

may be expressed by the statement that for a material there exists a

boundary called Mohr envelope such that a Mohr circle within the

envelope represents a stable condition, whereas a circle tangent to

the envelope represents failure on the plane denoted by the point of
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tangency. The hypothesis formulated by Mohr may be presented as

follows:

1. The line of rupture is independent of the means by which

it is obtained.

2. The line of rupture is independent of the intermediate

principal stress.

3. The angle of rupture in the material is equal to the angle

of the line connecting the points of the minimum stress

and the tangent in the Mohr's circle.

In this theory the failure occurs when the maximum shear at a point

' ' -
0 - 0

reaches a critical value. The maXimum shear stress, T = ——13::

max 2

. . 01 + 0'3 ,

where k is a function of ———Z , the abSCissa of the center of Mohr

circle. Triaxial study of rock salt70 showed that the Mohr's envelope

theory is applicable only when the temperature surpasses 5000F or

the mean principal stress exceeds 5, 500 psi. At this temperature and

pressure the material becomes extremely ductile.

2. Coulomb's yield criteria

In principal stress space, the yield surface is a right hexagonal

pyramid equally inclined to the deviatoric stress axes (01', 02', 0'3'),

with its apex on the line 01' = 02' = 03' . The hexagonal pyramid is

irregular since the yield stress in tension differs from that in com-

72
pression. The stress equation on any failure plane is given by:
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- :: T

0rmax N4) crmin ZCV I\ct)

N = tanz (450+cp/2)

C = is the cohesion

I
I

(b is the angle of internal friction.

It can be seen from this equation that when d) = 0, N4) = l and Coulomb's

criterion becomes equivalent to the maximum shear theory, which is

then a special case of Coulomb's criterion.

3. Maximum shear theory (Tresca yield condition)

This criterion is usually stated as "yielding occurs when the

greatest absolute value of any one of the three principal shear stresses

"37 If crl and 03 are the maxi-in the material reaches a certain value.

mum and minimum principal stresses, and k is a constant for the

material, then

where k is the yield stress in pure shear.

. . . . Y
In case of un1ax1al condition 01 = Y, 02 c 03 = 0 then 2 = k; hence the

yield criterion can be stated as

This theory may be considered as a special version of Mohr's theory.

Both theories are independent of the intermediate principal stress and
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consider only the maximum and minimum principal stresses to in~

fluence failure. In Mohr's theory the critical value, k, is a function

“9.1.151 , the abscissa of the center of Mohr's circle, while in the

maximum shear theory, k is a constant radius to any Mohr's circle

representing yield conditions .

4. Energy of distortion theory (Mises yield condition)

This takes into account the intermediate principal stress, while

the maximum shear stress theory and Mohr's theory assume yield

independent of the intermediate principal stress. According to this

33 "yielding begins when the (recoverable) €18.5th energy Oftheory,

distortion reaches a critical value. Thus a hydrostatic pressure does

not cause yielding since it produces only elastic energy of compres—

sion in an isotropic solid. " This criterion can be written in alterna—

tive form as

2 J2' = Clio-1": 0'1'z+ 02‘2 + 03'2 = 2 k‘2

J

(UX-UY)Z + (0y+ crz)‘Z + (02 - 0X)?‘ + 6(Tyzz + szz + TXYZ) = 6 k2

where k is a parameter depending on the amount of prestrain. The

yield locus of this criterion is a circle of radius J? k as indicated

from the above equation.

The significant difference between Mises and Tresca's yield

criteria is that "Mises criterion predicts that the maximum shear
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stress in pure torsion is greater by a factor of 1.155 than in pure

tension. Tresca's criterion, on the other hand, predicts that they

are equal. However, both imply the same yield stress in uniaxial

tension and compression, and both are independent of mean stress,

0m: l/3(01+02+0'3).

2.3b Stress analysis in elastic-plastic domain

Plasticity is an important factor for structural stability of salt

cavities. The creation of a cavity results in large concentration of

stresses that will be reduced to certain tolerable values by the

plastic deformation of salt around the cavity. This deformation

starts when the differential pressure acting around a cavity reaches

a certain critical value. If this value is exceeded, the cavity deforms

plastically and never fracture in brittle fashion under increasing

pressure but merely widens the plastic zone surrounding the cavity.

When the external pressure is gradually increased from zero,

the yield limit will be first reached at the inner surface. On further

increase of the outside pressure the plastic domain extends outward

into the elastic domain. If the cavity is considered as a thick walled

tube, then the plastic domain may extend until the entire tube becomes

plastic. The radius at the boundary between elastic and plastic

domains is denoted by a "plastic radius, " p.

For a symmetrical thick-walled cylinder where the external

load is always larger than internal load, the main axis may be
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considered as principal axis and 0 2 0 2 09. The general stress in

r z

the elastic region is governed by Eq. 2.2-l. From maximum shear

theory

0 -cr=Y>O (2.3-1)

0 r

The stresses from Eq. 2.2-l become

U _U =___
(2.3-2)

From Eq. 2.2-2, it is seen that Eq. 2. 3-1 can be satisfied only when

Pi is larger than PO. This contradicts the earlier assumption that PC

is always greater than Pi' and hence the maximum yield theory may

be written as

0 - 0 = constant = (2.3-3)

3

—-——K

r 0 21)”; o

where K0 is the octahedral shearing strength of rock salt determined

from the octahedral shear stress theory of failure.

 

 

2 0'1 "73

To 2 KO = 3(01 - 03) for the condition 02 = 03 . Since Tmax = 2 ,

therefore 'r = i-Ko'

max 2V2

From Eqs. 2.2-l and 2.2-3

_ 34
or 09 — r2

at first yield, r = a0

3 z
A = a0 K0 (2.3-4)

2 2

Substituting this value into Eq. 2.2-2 gives the value of the pressure

at first yield
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2

 

a

. 3 .2.
(PO-P.) at first yield: K0(l— 2) (2.3-5)

1 be
2 2

At the elastic -plastic boundary (r = p) the internal. radial pit."c;:.%.*.>;1;(*. is

defined by Pp and A = -§—- pz K0

25

The pressure necessary to cause yielding at r = p is then defined as

2

Po-P =—§—K0(1-f3) (2.3—6)

p 2"2 0

From this equation the unknown value of the radial pressure, Pp, at

r = p is given by

 

 

P =P0 - 3 K0 (I’LFZ) (2.3-7)

p 25 O

and from Eq. 2.2-3 atr=p

z 2

(P 430394-97
P 7- bp 0

2C :
(2.3-8)

[1' (pa/1302)]

Substituting the value of P into above equation yields,

2

Zc=-Po - 3 K0 'P— (2'3”9)

2 2 b0?-

 

The general stress distribution in the elastic region under the condi—

tion or 2 0'2 2 (re, is then defined as a function of plastic radius 9 by

substituting the value of A and 2 c into Eq. 2. 2-1 such that



r 2 Z 2 2 ho2

l 2 Z

O. :___LKO(L+L) _p0 (2.3—10)
e 2 r2. b0?—

2 2

2

Uz=-H(—3-T_Kop—+ 2P0)

2\/2 b0?-

this stress distribution equation holds in the elastic region prescribed

by p S r S be .

The stress distribution equations in the plastic region prescribed

by a S r S p can be determined by using the equilibrium equation written

in total derivative form since there is no variation with respect to z or 9.

do (T-O'

r+_____:0
(2.3-1].)

 

The rest of the equilibrium equations vanish because of axial symmetry.

Assuming ideal plasticity with no strain hardening, the yield condition

is satisfied throughout the plastic region with the same constant K0 .

From maximum shear theory of yield

3

0' -0' =——Ko

rah/7

 

 

therefore

do-r_ 3 E3

dr ZI—Z r

or

3

(Ir = - K0 1n r + cl (2.3-12.)

N—z
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The constant of integration is determined from the continuity condition

at the elastic plastic boundary.

At r = p

0'] = 0' ]

r . r .

elastic plastic

Equating Eq. 2. 3-10 and Eq. 2. 3-12, the constant of integration is

2

C1 21- KO(1--p—2-)+

2;?K0 b02 Zfio

Substitute the value of cl back into Eq. 2. 3-12 and use the maximum

 KO lnp -PO (2.3-13)

shear theory to obtain the following stress distribution.

2

“r = —:-5-K01n(f7) +Zl—1—KO (1- if)- p0

2V2 21/2 bo

2

3 P

0' 1n(P—) --——-—K (1+—) - Po (2.3-14)

e 2V2 2 2V? 0 ho

For plane strain, E = O and a = p(0' + 0‘ ), therefore:

z z r 9

:2

0' =2p.[--—KO 1n(E-) -—K —ZO—P]

7‘ 2‘\/_° r 2% °

These equations describe the stress distribution in plastic region

(a s r s p). The radius to the front of the plastic zone can be ob-

tained as a function of the loading conditions of the cavity. By sub-

stituting the condition at the inner boundary (r = a), P, = - crr, into

1

Eq. 2.3-14 it may be expressed as:
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l l

p=aexp.[—3-——(PO-Pi)-:Z- (1--‘E-2) (2.3-15)

-—K o

If the ratio, p/bo is sufficiently smaller than unity, Eq. 2. 3-15 be-

comes with good approximation

p:aexp. [—3—]:— (Po-P) -l] (2.3-16)

K 1 2

2x5 0

which exhibits a linear relation between p and Po - Pi on semi—log

diagram. These two equations (2.3-15 and 2.3-lo) determine the

advance of the plastic radius into the elastic region, if it is assumed

that the change in internal radius is so small with respect to the mean

radius that “a0" instead of "a" can be used in the calculations. How-

ever, if the change in "a" is significant compared with the "ac" value,

this cannot be neglected and an expression for "a" in terms of p is to

be solved simultaneously. It is interesting to note that the plastic

radius is independent of the axial strain, 62, so long as O'r > oz > 09.

2. 3c Stress strain relation in combined elastic plastic domain.

When a specimen reaches the yield point at the inner boundary,

a permanent plastic deformation will occur. Then the total deforma—

tion becomes a sum of a recoverable elastic deformation and a

permanent plastic deformation. As the load increases the plastic

region spreads outward until the whole cylinder becomes completely

plastic, reaching an equilibrium with the outside loads. Whenever a
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plastic condition is present, the general strain increment equation

can be written as

d6..=d€.. + de.. (2.3-l7)

Where the superscripts e and P denote the elastic and plastic com-

ponents respectively. The elastic strain increments are given by

Hooke' 5 law as:

deezr [dar- ud(cre+0‘z)]

m
l
w

e 1

dee - E- [doe-ud(crr+crz)]

(166 = -1-[d0' -pd(0' +0')]

2 E z r 6

by knowing the changes in stresses, the elastic strain rate can be

determined. If the plastic potential theory is used, the plastic strain

increment may be determined as follows:

The strain increment vector has to be normal to the yield

surface in stress space such that

 (2.3-19)

If the Mises yield condition is assumed, then

f=l-['(0'-0‘)2+(0'—0')Z+(U—U)Z]+£[Tz +T2 +T2 +T2 +72 ]
6 x y y z z x 2 xy yx zy zx xz

(2.3-20)
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and

iii _ .

{3on 13

P

Eq. 2.3-l9 may then be expressed as deij = dx o"ij (2.3-21)

or

P
P

d€i. %- dyi

,3 = J = d).
0'. . T. .

1.] 1J

This may be expressed as

P P P

derp - deep deep - dez dez - der

: 2 = dX (2.3-22)

- 0' 0" - 0’ 0' - a

r 9 9 z z r

If Eq. 2. 3-21 is expanded the total stress-strain relation which is

33
known as the Reuss equation may be written as:

l 1

dEr—E[dUr-ud(de+crz)]+§d)\(20'r-cre-0'z)

d6 =-]3-[d0'-ud(0'+0")]+ldk(20 -0" ~U) (Z 3-23)

9 E 9 r z 3 9 r z '

l l

dEZ —E[d0'z-ud(oe+0"r)]+-3-d>\(20'z-0'r—(Ie)

The strain increment equations may be determined by relating dk with

the octahedral shear stress To and the increment of plastic octahedral

, P

shear strain dyO as follows:

The octahedral shear stress and strain are defined as

1/2

-1; Z Z Z 2 2 Z

To-3[(<Tr-Ue) HUG-02) +(UZ-Ur) +6(Tre +Trz +1.er (2.3-24)
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and the octahedral plastic shear strain increment as

P_2 P PZ P P2 1 P . 13,2
dyo - 3 [(der - dEG ) + ((166 - d€z ) +(C1Fz - cit-r ,1

3 P2 P2 P; 1/2 .
2 (dyre + dyez + der )] (2.3-25)

Substituting the value of Eq. 2. 3-22 into the above equation, one

obtains

P_E z 2 7- 2 2 2 ”2dYO "3d>‘[((rr 06) +(UG-Uz) +(UzuO-r) +6(Tre +792 +TzI' )]

(2 . 3 -26)

Comparing this with the equation of the octahedral shear stress gives

1 P

dX-fi dYO (2.3-Z7)

This shows the significance of the scalar function dk as a function of

the octahedral shear stress and the increment of the octahedral shear

strain.

If the derivative with respect to time is taken from the Reuss

equation is divided by dt, then the total strain rate equation may be

expressed as follows:

   

d€r__l_[d_or_ £(U+U)]+ 1 dyo(20'r-0’e-0"z)

dt-Edt “at e z Zfodt 3
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e 1 r 1 0 r e z
—__= — -—-——- —

Z. '2

dt E[dt ”dt("r+“z)]+2To dt ( 3 ) ( 3 7)

2 _ _dEZ ‘- _1__ [doz £( + H + I dye ( oz or (re)

dt " E dt *1 dt 03: “a an, dt 3

The total incremental strain rate equations are then related to the

incremental change of the plastic octahedral shear strain. With this

function the strain rate for a hollow thick-walled cylinder may be

evaluated. Evaluation of creep equations as applied to laboratory

experiments is considered later in Chapter VI.

Hill's33 equation for work hardening has been used to check the

possibility of the existence of work hardening in rock salt. From the

plastic potential theory

d€.,P = 0',,' dk

1J 1J

The scalar function d). may be defined as

 

-P

d)‘ = -3- 1: (2.3-28)
Z 0'

d6

-P . . .
The quantity (1 6 is known as the generalized plastic strain-increment

and defined by

_ 2 l P

d6 =—(d€.. d€,.) =——d

3 13 13 ”3 Y0

and 0' is known as the generalized stress or effective stress and

de fine d by



 

If there is work hardening the plastic strain increment may be de-

fined as Hill's” Eq. 30.

cr' -

("I

P

d6.. =

1.]

N
|
w

(2.3-Z9

T
I
“
:

where "H' is the slope of the equivalent stress/plastic strain curve. ”

3 d

From Eq. 2.3-29, dx — -2- PF? and hence

3 d'
l ‘ — — -

If the values of 1; and dx are known, then the slope of the stress-

plastic strain curve may be determined. (See table 6.4, Chapter VI.)

2. 3d Small strain plastic boundary motion in plane strain with

maximum shear stress yield condition and plastic

potential theory.

The displacement solution in the elastic domain may be obtained

from Hooke's law as

£6:

a
n
:

=-El3-[0'e -u (crr+oz)]

Substitute the value of (re, or and 0'z from the Eq. 2. 3—10 and replace

E = 2G (1+u) to obtain the radial displacement u as a function of

geometry conditions and external stress, such that

3 Ko

1 2\/_2
2

uez-Z—é —2-—-[(2u-l)r—er—]-(l-2u)Por (2.3-31)
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This holds for the region described p S r S b.

The small strain boundary motion solution in the region de -.

scribed by a S r S p may be obtained by assuming elastic compres-

sibility such that

 

_ l-Zp ._
€r+€e—( E )(0'r+cre+crz); EZ — 0 (2.3-32)

or

du u_ l-Zu

dr+r—( E )[(1+H)(crr+tre)]

Substitute the value of the plastic stresses, Eq. 2.3-l4, into the

above equation to obtain

9.3 ‘1 (1'2P)[ 3 Kolnfl-.2V—Z P -Po] (2.3-33)+

dr r G 2V? r 2 boz

This may be reduced to the differential form such that

 
 

 

 

_3_K0

__ 2

-d—(ur)=(1G2u)[ 3J-—K0rlnE--Z 2 P r-Por]

2V2 2 b0?-

(2.3-34)

integrate

0 POr

p=(l-Zp)[Z)/; (rlnE+—)-2\/—Kob: r--—-]+— (2.3-35)

0‘2

This defines the radial displacement in the plastic domain (small

strain). To determine the unknown constant of integration C, con-

tinuity at the elastic plastic boundary is assumed such that



ue=up at r=p (2.3-36)

Substitute r = p and solve for C to get

2

c = 41-10 ~—

Therefore the radial displacement in the plastic region prescribed

by a S r S p is defined by

 
 

3 3
———K ——K

:(1-211)[2\f2- ( 1nR‘L_)_2\/2 ° p2 r_p _1_r_

p G 2 r 2 4 b0?- 02

3
K
0

2V2 ’-
41-“) 7— f:— (2.337)

For the determination of displacement at the inside boundary, evaluate

u atr=a

P

_3__K
' Z

‘/ 0 pa Pa

-(l-ZJL) 3 K (51.11.12. 3) _2 2 0]
  

u _ - [ + 2 -

r-a G 2V: 0 2 pa 4 4 b0 2

3

—-—-K

0 2

41-“) 5f;— 9— (2.3-38)

ZG a

The variation of u vs. PC) is plotted as shown in Fig. 2.4. With the

exception of the "plastic radius" p, and Po, all other parameters are

known. The "plastic radius" p, could be expressed as a function of

external pressure Po’ but under small strain condition this could be

approximated by the original radius a0 where a = a0 + u (a0, p)
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(where u is a negative quantity). A mathematical concept of a model

salt cavity is presented in Fig. 2. 5.

2. 3e Determination of the inner radius of a hollow thick-

walled cylinder for large --strain solution and plane strain.

If the compressibility equation is used and the movement of the

plastic boundary radius, p, is taken as scale of "time" (see Hill33,

p. 100), the relation of inner radius to plastic radius is calculated as

51

follows:

_ l-2u d

dr+de+dz-( E )dp (O’r + 06+0'z) (2.3-39)

d . . . . . .
where —- is a material derivative applied to a function of p and r such

do

that

d 8 6

5-5 - 8 + V( 8r)

V = radial velocity = 37:1,

where r is the coordinate of a moving particle.

dV

dr-a;

d =35
6 r

It is known that 0"z = p ( or + 09) , in plane strain with maximum shear

yield condition and plastic potential theory, where

2

__ P___E_. _
Ko(21nr b2) 2PO0'+0‘-

r 0 2V2- o
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Displacement
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.1 _ (l - 2") L23 K ( 1' In D + 1‘) Por Z‘rzKo p r]

u - ———-— -—:- 0 - - — - - --——-—-—

G [I 3 2 r 4 2 4 b 2

—--- K 2 0

Fig. 2.5 Mathematical concept of model salt cavity
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From above expression and using Eq. 2. 3-39 for plane strain with

d = 0, gives

——+—+0=(1—'—-—2HL>—[2 —-3-——K (1+0)1nP—~2<1+01P
r d 2 2 o o

2

- (1+ H) -—3- K E-] (2.3-40)

2\/—2- O boa

Now let 2G =—_?—

1 P

_. 3. a l ”Pi... 2\/_2_Ko[ln a + 2 (1 be,” (2.3—41)

dP

_9. __L)

=2\/- KO (p boa

Substitute the value of P0 back into Eq. 2.3-40 to eliminate PO, then

Taking the derivative with respect to "time, " p, and collecting terms,

itbecomes

1 d
LEE 3 K (_-_?_&H_1._a_1_ is] (23.42)

da . . . . .
where -— is the rate of change in internal radius With respect to

dp
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"time, " p, which is the velocity expressed as V(a), and 3% = V.

Hence

V dV 3 l-2 V V

F+T‘—Ko( GP” (am-:1 ‘2'3’43’
zs/"é

1-

Let M = —3—KO( G2“)

2 2

so that Eq. 2.3-43 reduces to

fl+(1+M)X=MY—<—?—) (2.3-44)
dr r a

Assuming M to be very small compared to unity, this is closely

approximate d by

 

 

d_V + X = M V(_a)

dr r a

or

dV _ d _ V(a)
rdr+V-dr(Vr)—M a r

whence

2

Vr = M V(aa) £2- + c(p) (2.3-45)

Since V is a function of both r and p, c(p) is the constant of integra-

tion, to be determined from the continuity conditions at the elastic-

plastic boundary. Recalling that r = p at the elastic —plastic boundary

Vezvpatr=p

Assume 6 is zero in plane strain and replaces PC by its value as a

z



4.3

function of p. Then the elastic region radial displacement of Eq.

2.3-31 reduces, after collecting terms, to

3

—--—K

_ 3._____¢2°[g:
2G 2

ue - r +(l-'2p1) rung-+3?” (2.5»46)

Let

du=Vdp

-92....EE 21.1

dp 8p 0r

or

33.x,” 3.5.,

hence,

vzaL/gE (2.3.47)

1'5:

From Eqs. 2.3-46 and 2.3-47, the value V at the elastic-plastic

aue aue

boundary may be determined by taking derivatives E and -<-i—p_ and

substituting into Eq. 2. 3-47 to get for r = p

v ] = (2.348) 

since

3

—K

2J2 o E 1

2c; (l'zi‘)(1na1+2)<<1
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we may approximate Ve]

 

r=p

3 3
__ 1_ __

2 5K0 ( 2P) 2 2 K
v =--———— (1-3mm
r=P 2G 2G a

or 3

-—-—-—--K
O

V :_2\/-..E__M(1_Bv(a))
(2.3-49)

r=p 2G 2 a

Now apply the condition that Ve = V at the elastic-plastic boundary

P

which implies that Eq. 2.3-45 is equal to Eq. 2. 3-49 at r = p.

Therefore

do) =- p

3

2 1/2 0 M

2G 2

if this value is substituted back into Eq. 2. 3-45, the solution for

plastic velocity is then

__3_._K

_MV(a)r_(2\/2 ° M)p_

2G r

_ _ ,.0V 2a +2 (235)

which describes the velocity at any point in the plastic region.

. . , a

From the preceding results, an expressmn for the ratio (a—) of the

0

current inside radius to the original inside radius can be obtained in

terms of the elastic plastic boundary radius.

Evaluating Eq. 2. 3-50 at r = a and substituting

da

V(a) = 21-;-

yields
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 3 - K

da Z/EO p_ ivl ;:

—(1-—2‘)=-——'—— “7'11”“
G a 2.. (‘1.

or

a —-—-—— K p

1 2V2. O M
add. : ——'—"" ..._.........._....___.-- .. .2-) priD

M 26 5..

(1- 7)( ,

where the limit on a is from initial yield internal radius al to cur—

rent internal radius a and the integral on p is from same point a1 to

current position p.

Integrating, and neglecting M in comparison to unity, yields

3
——-——K

2V2°

(612 -a1"') = -K—-—ZG + %)(92 “12%

or 3

—-—- -—-——K

zV—z—O M Z_(2__V:G__°
2- -—- — = 2 2.3-l(1+ 2G + )a1 +-2-)p ( 5)

Now

0 0

where uo is the boundary displacement at first yield.

alzza2+2au +uz,

o oo 0

Since uO << a , a good approximation is

0

a12 - ao‘2 = 2a u (3.3-52)

and u as a function of a0 may be obtained from the elastic solution

0
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radial displacement at p = a0 when

3
——K 2

2V2 0 21o

P =———— (l--—-—?

the boundary conditions for the elastic solution being imposed as

usual in the undeformed configuration with a = a . Substituting the

0

value of P and collecting terms reduces the displacement given

0

by Eq. 2.3-46 to

3
——K

a. O

u = - —°- (5—“2 + M) (2.3-53)
0 2 2c;

Substitute this back into Eq. 2.3-52 to obtain

Hence an expression for current radius a in terms of initial radius

a0 may be obtained by substituting the value of "a1" into Eq. 2.3-51

to get 3 K 3 K

az : az[1- (LE—O— + M.)2] __ (ii-L: + M) pz

0 2G 2 2G

Since

3

--——K

2V2 0 M2

—— — <<

( 20 I ) 12

The above equation is closely approximated by

3

K

az=az_(_fl_9.+_1;£)p2
2

o ZG
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01'

__§_K

Z O 2

[a2 =1-E—Q—(1-H)p-],3?1
(24-54.)

a G a‘2 a

0 o o

This equation describes the behavior of inside radius as a function

of plastic radius and structural properties of the material. It is clear

that as the plastic radius p, which is a function of loading, increases,

the ratio of ;a_ decreases. For p = a0 at the initial yield, the ratio of

O

50- is equal to the ratio of elastic radius a to initial radius a0. This

relation between the inside radius and plastic radius defines too, the

stability of the cavity. As p increases, the outside pressure increases

accordingly and hence the inside radius, a, decreases and thus the

cavity remains stable. It should be remarked here that the second

term on the right is small in comparison to unity until p becomes large

in comparison to a0.

2.4 Analysis of Comletely Plastic Cylinder

with Plane Strain

 

 

2.4a Stress distribution in completely plastic cylinder.

From equilibrium equation, we obtain, as in Eq. 2. 3—12

0' =—-KO lnr+B (Z.4--1)

erF—0

The constant of integration B is determined from the internal

boundary condition that at r = a, or = - Pi' Hence

B=-—-KOlna-Pi

2F°
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and

0' -' 3 K(lr -) P

r 2f; 0

3 a

(fez—Kofln; -1) -Pi (2.4-2)

2 2

l

UZ=2u(-—3——Koln-r--E-Pi)

Z 2

Eq. 2.4-2 describes the plastic stress distribution in the domain

where a S r 5 b. The outside pressure necessary to create a com-

plete plastic state is determined by considering the boundary condi-

tionatr=b, (r =-P. Hence

r o

-PO=—3——Ko(ln g) -P

2 2 1

or

3 a

P =—--K ln(-) +P, (2.4-3)

0 2 2 o b 1

The behavior of the inner radius in the plastic region may be

expressed as

.. _..__._ (p0 - Pi) (2.4-4)

It is very convenient to obtain the octahedral shearing strength from

the slope of this curve. The theoretical expression for the ratio

a/b when plotted against the outside pressure on a semi-log paper

gives a linear relation whose slope is - 3/2V 2 K0, a function of the
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octahedral shearing strength. The above equation will be used later

to determine the shear strength of the material.

If incompressibility is assumed, the plastic strains and dis-

placements may be calculated as follows:

r 9 z

or

du u

——+—+€ :0
dr r 2

On integration this equation yields

u— 2+1
—2 r

 

, EZ - constant (Z.4~5)

The constant of integration c1 is determined as a function of radial

displacement at r = a where,

 

63- C

2 l

u=u =- +—

a r=a 2 a

or

eaz

C Z + a= u

l 2 a

Substituting this into Eq. 2.4-5) yields

5 2

u-l(i—-r)+u

-2 r a

The displacement at the elastic plastic boundary is obtained by

substituting r = p into above equation to give
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‘57“

m

N

-p) +u (2.4-7)

P a

N

'
0
'
”

Neglecting the first term on the right, which is zero in plane strain,

the displacement at the innerface of the cavity may be expressed as

_ Eu .. ( ) u (2.4-8)

e

Because of the continuity at the elastic plastic boundary, up =ur_P

Hence by Eq. 2.3-31

_§_K

1 2 2 ° 3
uazg' E —J——Z—_[(ZH-1)ELZ ‘P]+(2P"1)ppo (2'4-9)

This result was derived under the assumption of compressibility in

the elastic region and incompressibility in the plastic region.

Finally, the tangential and radial strains in the plastic region are

also obtained from Eq. 2.4-6, such that

6Z a2 a

: — : — — .. 1 + _

69 r 2 (r7- ) 11a 1.2

(2.4ulO)

€

du z a2 a

: -— : — — — 1 — —

61' dr 2 (r2 + ) ua. r2

where ua is given by Eq. 2.4-9.



CHAPTER III

DETERMINATION OF THE MATE RLAL

PROPERTIES

3.1 Linear Viscoelastic Behavior of a Solid Cylinder

with a Laterally Constrained Motion

 

 

3.1a General remarks

Elastic and plastic analysis of rock salt has been treated solely

in the previous chapters with no reference to the viscous behavior of

the material. The triaxial study of rock salt in the laboratory showed

that rock salt exhibits certain plastic and viscoelastic properties.

These properties are needed to describe the time dependent behavior

of the hollow cylinder with mathematical. formulas.

Solid materials that possess the characteristics to flow are

called viscoelastic or viscoplastic materials. Such materials possess

rigidity and at the same time flow and dissipate energy by internal

friction. Under different external conditions, these materials may

exhibit both solid and fluid characteristics simultaneously. This

study is mainly concerned with those materials which possess charm-

acteristics of both the elastic (Hookean) solid and the viscous New"—

tonian fluid. The ideal linear elastic element is represented by a

"spring" and a linear viscous element by a ”dashpot. ” Since it is

desired to look at the material behavior in between the spring and

dashpot, different mechanical models were arranged to fit. different

51
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materials. There are several different possibilities for combining

elasticity and viscosity, but two approaches have received special

attention. Simplified forms of these are the elements in parallel

(Voigt, Kelvin body) and the elements in series (Maxwell). The

constitutive equations of the above two models are indicated respec-

tively as

or = (E + 71D) 6 (Kelvin)

and

' D l

6: (—+ —)o (Maxwell)

E n

. . . . . d
where 77 IS the VISCOSIty coeff1c1ent and D = -dt . Both of the above

equations contain the material time derivative of small strain and

the Maxwell contains the material time derivative of stress. Both

52 and hence cannot be applied forof these equations are not objective

unrestricted motions. However for symmetrical loading, where

there is no rotation, the principle of objectivity is not involved.

3.lb General visco-plastic behavior of rock salt.

The physical behavior of a rock salt specimen subjected to

homogeneous stresses of the type oz i ox = (Ty is investigated. This

investigation intends to describe the stress and strain behavior of

rock salt by a mechanical model. Based on the triaxial behavior of

a laterally confined specimen the following observations have been

made:
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Rapid plastic deformation occurs during loading and shortly

afterwards and reaches its maximum value in :3 few hours

period.

The amount of deformation in Part 1 is a relatively large part

of the total deformation.

A slow deformation process continues to take place for a. long

period of time extending in some experiments up to a. period

of 40 days .

From the above observations, it was concluded that.

A rapid plastic deformation takes place almost instantaneously

during loading, and rapid deformation continues for a short.

period after load is kept constant, indicating a relatively small

viscosity coefficient.

A slow viscoelastic deformation, whose effect is negliglble in

Part 1, continues to take place for a. long period of time ind1=-

cating a relatively larger viscosity coefficient than the previous

 

 
 

      

part.

Such behavior suggested the following modelzf’g

E2
771 *

—-—-/\/\/WN——,
fl

J—J

E1

W“
>- 0'

4:} .

”2' . K '

0

Fig. 3.1 Plastic. viscoelastic: model of rock. salt {one dimensional)
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where

(I - stress, psi

K' = maximum yielding strength

El - Young‘s modulus, psi

F
1 II retarded Young‘s modulus, psi

11'1 = linear plastic viscosity coefficient,poises in one dimension

77'; = viscoelastic viscosity coefficient, poises in one dimension

3. lc Plastic. stress relaxation equation and the

determination of the plastic constant: 171

The elastic and plastic model, which describes the rapid change

during a short period. after loading is represented as follows

 

  

 

”1

T1
'_.l—_

G]

T ———J ~—-——>- TO A—mwlx O

K

o
where

_ E , . _.
G1 - --.-<'---- elastic: shear modulus

2 (l+ p.)

T = octahedral shear stress

0

K = octahedral. shearing strength

0

n, = viscosity coefficient in viscoplastic region

The nonhomogeneous constitutive equation of the above model may

then be presented as follows:

s =_9..+ 3.--_.9. (3.191)
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where Yo = octahedral shear strain.

The Levy-Mises equation presented before may be written in tensor

notation s 0 that

where

with the understanding that if the deformation is small, the natural

strain increment dei, may be represented by small strain increments

dsij, where del, deg and d€3 are the components of small strain

increment. The meaning of the scalar function dk was explained in

the previous chapter as a function of octahedral shear stress and the

increment of the plastic octahedral shear strain is presented as

follows:

Substituting this value into the Levy-Mises equation and dividing by

dt yields the strain rate equations

(16! dy

1j_ l O '
_

dt " 27 dt ”ij (3'1 2’

   

whe re



The rate of the plastic OCIahedral shear strain is obtained from the

plastic model such that

P

dyo T h KO

dt ‘ n,

 

Substituting this value into the deviatoric strain rate equations gives

deij 1 K0
.._...- : __.._g'1-.—— ' 3.1-3

dt 2m ‘ To) “‘11 ( )

This describes the three dimensional flow where incompressibility

is assumed in the plastic state. The deviatoric stresses may be

obtained as a function of the deviatoric strain rate, such that

 

1 de'ij

. : ______. .1-4
Uij K 2 n. (it (3 )

ll - '53)
T

where the coefficients of the strain rates contain the viscosity term

2771 and plasticity term KO/TO

Including the effect of the elastic strain rate in the deviatoric

strainmrate equation, the result is as follows

(3.1~5)
l

_ —— (1

2771

where the last term on the right is contributed by the elastic strain

rate. From this constitutive equation, it; is desired to obtain the



stress relaxation equation in the viscoplastic region.

Assuming incompressibility, defl. = deifreduces Eq. 3.1-5 to

  

delJ 1 KO 1 do'lJ

-.- —— 1 - —— . .— ' ,1-

dt 2n, ( To) “ij 26, dt (5 6)

The axial elastic plastic stress-strain relation is written from the

above e quation a s

 

d6z 1 Ko 1 dcr'z

= —— l- —- ' + —— —— .l-» ’

dt 2771 ( To )Uz 2G1 dt (3 6)

From boundary condition of solid cylinder, the following substitution

can be made:

E.

 

1.0: _3_(UL-Uz)

2
l=_ _

02 3(6 UL)

I

(102‘ E—dUL' crrcnt t

dti-3dt' z‘08am

Experimental results for the tests described in sec. 6.3b indicate

dsz

dt

 

that is approximately zero. Hence, substituting the above

quantities into Eq. 3.1-6' we obtain,

0’ e =(0' .;——3 K )enl +C (3'1”?)
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From initial boundary conditions, at t = 0 after the initial

purely elastic deformation, since EL = 0,

then

_.__L*_

UL lop OPz

Thus, the integration constant, C, in Eq. 3.1-7 becomes

_ 41..-. -~__§_
C-O'z(1- l)+ K

H ([2— 0

Hence, the lateral stress relaxation equation in the viscoplastic

region is described as follows:

K)+[(—*—*—- -1)a;-———K]e ”1 (3.1~8)
o z o

For the loading cycle equation 3.l~-8 takes the form of

~G,
_t

3 "1
.L’L. __ __ ..
“H l) crz+ ZK0]e (3.19)(r =(cr-—3—-K)+[(

Lzfio "
l

As time approaches infinity

 

+ 3
0- :cr -—-—-K

(3'1"10)
L z \/ 2 0

Therefore, the tangent of the ”plastic line“ is

do

L: tanB =1 (3.1-4.11)

dcrZ

From Eq. 3.1—8, it is observed that the last term is a function of

time and the plastic viscosity coefficient n1. Hence, the one to one
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relationship between lateral stress and axial stress demonstrated in

Eq. 3.1—ll may be obtained by either letting t approach infinity or by

assuming that 171 is a very small number.

The change of lateral stress as a function of axial stress and

at constant interval of time may be demonstrated from Eq. 3.1-9 as

follows:

1. define t0 as the time measured after each increment of loading,

i.e., to = 0 at points A, B, andC of Fig. 3.2.

2 0’ > (r
z z

2 1

3. t = constant

Then from Eq. 3.1-9

u 3

Acr =0 -a =[(—-1)cr +— 1D (3-1-12)
L1 th1 tho l-H Z1 (2 o

and

AUL=ULt-0'Lt=[(——1P-l)cr +—-3 K]D

2 22 20 -H 22 2 O

-E.lt

whereD—e m , t-tl-t =tZ-t
O 0

Therefore, from the above equation

AU > A0

L L

2 1

Since

0" > 0'

z z

2 1

This indicates that AUL is a linear function of crz and may be repre-

sented graphically by Fig. 3. 2.
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In the laboratory, an experimental stress relaxation equation

equivalent to that of Eq. 3.1-.9 was determined as

   

 
   

 

 

 

 
 

  

   

A0 3
‘ Hydrosta . t = 111

L
Line

C /

/ ‘.

Measu

| |
AOLZ

t =~‘t

. a l/ 0

/ B

AoLl I
,/ '

A

Theoretical

l / ri”
/

/ . / t = O

/

/ l

o o’ 0' F'—
21 22 23

Fig. 3. 2 Theoretical prediction of the change of lateral

stress in viscoplasticregion



 

_ 3 3 ”alt
UL—O’z-an-J—ZZ—(T,-Tf)e (3.1-l3)

where,

Tf - octahedral shear stress at t = 00

Ti - octahedral shear stress at t = 0

al - material constant

Comparison between Eq. 3.1-9 and Eq. 3.1-l3 gives

’71 = Sf
(3.1-l4)

where (11 is determined experimentally from the slope of plastic

deformation.

3.1d Viscoelastic stress relaxation equation and

the determination of viscosity constant, n2

For a Kelvin body and spring in series, Fig. 3.1, the one

dimensional constitutive equation, is presented as follows:

dcr E1+ E2 d6 E, E2

An equivalent three-dimensional constitutive equation may be written

as,

d‘r dy

0 61+ G2 0 GI G2
— + ._________ :: —— + _ .l-l

dt ( n2 )To GI dt nz' Yo (3 6)

where

G1 = shear modulus

retarded shear modulus.
9 I

viscosity coefficient in viscoelastic region:
5

N

II
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Eq. 3.1:.16 may be solved either for creep or stress relaxation

response depending on the condition prescribed. For a laterally

confined solid cylinder with homogeneous stress distribution, it is

as sumed that

= (-
YO viuxt’)

u(t) = unit. step function

t l,t=O

Mt): 6(t) where[ 6(t)dt={

o 0,t>0

Hence,

d‘r

O GI+GZ GI G2
__.._ + __ T =_______ ,

dt ( n2 ) 0 n2 vi U(t)TG1y.16(t)

integrating

G +G G +G

(—‘—n——?:)t (3le (Jr-in

T e Z = (--——) y. e 2 u(t)+Gly.u(t)+C

0 GI +GZ 1 1

From initial conditions

att = 0, To = Gly'l, then

(3le

“*m’n

Substitute this back into the above equation and arrange terms to get To:

-(Elfitgi)t -(E}._I_T.7.+_ciz.)t GIGZ (t) (3117)

: 2 - Z -————-— v.11 O -

To GIYI e u(t) + [1 e ]G1+GZ 1

As time approaches infinity
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1- : 1- : 212’; y, = constant (3.148)

G1+G2

where 'rf is the minimum value of To below which yielding never

occurs 0

The lateral stress relaxation is obtained from the relation

 

_ (Mn -(G1+Gz)t G G

+ 3 ’72 1 2 1 2

O'L—O‘z _V—_—: [Glyi e u(t) +[ -e ]G1+Gz yiuU‘.)

(3.1-l9)

which indicates that on the lateral vs. axial stress diagram, stress

. . . . . 0 .

relaxation in Viscoelastic region starts from 45 line to reach a con-

stant value at t = 00, indicated by

(TL: Uzti-(fi) Yo u(t) (3.1-20)

V 2 G1 + G;

Eq. 3.1-20 will be used to obtain the retarded shear modulus G2 and

to verify the constant stress relaxation region as indicated in Fig. 6.13.

In the laboratory, a stress relaxation equation equivalent to Eq.

3.1-l7 was determined such that

-azt

T=T+(-r,--r)e

o 1 ff
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where a2 is a material constant defined by the slope of the stress

relaxation curve in the viscoelastic region.

A comparison of Eq. 3.1-17 and Eq. 3.1-21 gives

+

n; =E—’——93 (3.1-22)

a2

Eq. 3.1-14 and Eq. 3.1-22. define the viscosity in the plastic and

viscoelastic region re spectively.



CHAPTER IV

THEORETICAL BEHAVIOR OF A CYLINDRICAL CAVITY

UNDER CONSTANT TRIAXIAL STRESS

The creep formulas, for the same thick walled cylinder treated

in Chapter II, are derived for the purpose of measuring the strain

rate of a model salt cavity in the laboratory. The derivation is based

on the following assumptions:

1. Deformation is uniform and sufficiently small to produce no

appreciable change in geometry of the cavity.

2. At a constant external stress, the deformation occurs in such

a way that the stress distribution across the cylindrical sur-

face remains constant with time and'that the octahedral shear

stress may be expressed as T = To u(t) .

3. The material has a different creep rate depending on the state

of stress and the temperature employed. The temperature is

kept constant across the thickness of the cylinder.

4. The mechanical model presented in Chapter III describes the

viscous behavior of rock salt.

4.1 Strain Rate Equations in a Hollow Thick Walled Cylinder.
 

Several theories have been proposed for predicting creep strains

in terms of stresses for the combined states of stress. Most of these

theories are based on an assumed tensile creep stressn-strain relation.
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A generalized stress-strain relation based on Hooke's law and

the basic laws of plastic flow is described in Eq. 2. 3—27 where the

elastic stresses and the octahedral shear strain are functions of time.

The characteristic feature for large deformation in a thick walled

cylinder is that for every increment of time there is not only a set of

increments of plastic strains but also a set of increments of stresses.

By assuming small deformation with stress increment E 0, the octa-

hedral creep strain function, y0(t), for rock salts may be determined

from the mechanical model as follows:

The three dimensional constitutive equation for the viscoelastic

part of the model is given by

 

 

dT

d

0 + (913“ = 0,115+ G‘G" v12 (4.1-1)

dt T): 0 dt 772

where

le = Y1 + Y2

y, = octahedral shear strain in elastic element

y; = octahedral shear strain in viscoelastic element

Taking 'r = To u(t), then

lez G2 To 6(t) GI+GZ

——+— =————+—————Tut
dt 17; Y” G, G2 272 o ()

solving this equation to get,

G2 GZ

—t T G,+G2 1?; -—t
O __

vlze"2=-—u(t)+ '-e"2 ut +C

G. Gm. G. H
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Att=0

T .

0

“2:5:

Then

Gl+Gz

Thus, the viscoelastic creep response function is derived as,

GZ
G2

- —t - --t

To ”2 G1+GZ G1+Gz n2

z __ ._______ __ r.le G, e u(t)+ GIGZ To u(t) G102 e Tou.t)

Collecting terms, it reduces to

C32

- —t
G1+G2 1 n2

: __ _ _
4.1-

YIZ [ GIGZ 62 6 ]TO 11(t) ( 2)

Similarly, the octahedral shear strain from the viscoplastic part, Y3:

can be derived as follows:

 

 

To -Ko

y3 = ( ”1 )dt for To > K0

0

1Do -Ko

v3 = ( )t (4.1-3)

771

Hence, the total creep response for the model in plastic and

viscoelastic regions is derived as,

62

- —-t

v 2 [._—————..-l- e ]1"u(t) + (-£L——i1)t (4.1-4)
0 GIGZ G2 0 n1
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By taking time derivative, this function yields

 

G2 C‘z»

-—t -——t
dYO G1+ G2 1 n2 n2 TO- K

—— : —— - ——- T + —- T ' + 4.1-

dt GIGZ G2 6 ] 06H) 772 e on”) 771 ( 5)

Fort> 0

G2

--—-—t

dYo To-Ko l T12

——+- = ———-- + -— e T u t 4.1-6.1. < m ) n2 0 < ) ( >

where the first term on the right is constant with time and contributed

from plastic flow just after load is applied.

When stresses are constant with time, the general stress—

strain relation is

de dy

 

 

r l o 1

dt ‘ 270 dt 3 (ZUr'Ue'O'z)

d6 y

1 o l___ . _ _ _ ,1-

dt 270 dt 3 (2% or 02.) (4 7)

d

d€z-_L_YE._(ZO. U 0.)

dt ‘z-ro dt z

 

. 0 . . . .

Substitute the value of dt into the above equation to obtain

  



d6

 

dt
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G2

-—t
T -K 772

l o o 1 2 1

z +-—— — --ZTO[ ’71 ’72 e 'r u(t)] 3 [a 2(0'r+ oz)]

G2

-—t

l 1 Ko l 772

=‘l_(1'_")+—e ]cr'

2 771 T 712 r

o

4.1-8G2 ( )

-—t
K 172

_l 1 o l ,

-2[nl (l-T)+Ze
]Ue

deviatoric stresses are:

2 l
l___ __

0' — 3 [or 2 (09+ 02)]

2 l

.3—[09- -2- (Ur+qz)]

For the case where To = K0' the first term on the right of Eq. 4.1-8

vanishe s and

d6

dt

 

dee

dt.

02

-—-t

3 U. . _Le "2
r Zn;

Ga (4.1-9)

-—t

__ I o 1 n2

— (re ane

As time approaches infinity, the strain rates approach zero. This
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is true only in the viscoelastic region. The strain rate equation for

any cylindrical cavity may then be defined by substituting the values

of the deviatoric stresses for any particular cavity. These stresses

are usually defined as a function of the boundary conditions, octa-

hedral shear strength and applied external loads .

From Eqs. 4.1.5 and 4.1-8, it. is observed that the plastic

deformation at t = 0 consists of an instantaneous elastic part and a

plastic part described by

der 1 G, + G2 1 K
1 o

_ _ _ + __ 1.. __ ' - 4.1-10
dt 21-0 l GIGZ G, Th ( 1- )0r T0u(t)] ( ) 

0

At t > O, the elastic deformation vanishes and the above equation

reduces to the triaxial plastic flow where the plastic strain rates are

linearly proportional to the deviatoric stresses, such that

der 1 o
= _ m — l

.1”

dt 2271 (1 To) “r (4 11)
 

4. 2 Comparison of Theoretical and Empirical Equations

Describing the Creep Behavior of the Model Cavity

 

 

From the viscoelastic state, the tangential strain rate equation

is defined as
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The total amount of tangential strain in the opening can be

calculated by integrating the above equation such that

Gz

t -—-t
2 n2

 

By integrating between t, = t and t2 = 00, gives

02

, - —t
o—e nZ

(4.2-1)
 

Eet’eeooz'zoze

where

6 —20-I_L_

900‘4 ezn2

The radial displacement, u, at r = a0 is obtained from the above

equation such that,

 e (4.2-2)

where u is defined as a - a0, the above equation reduces to

  

62

a a o" - T1:

’ f e 7-
: _

4.2-

a 26,6 ( 3)
o

where,

af = reduced radius a at t = 00.

By comparing Eq. 4. 2—3 with the following empirical relation obtained

in the laboratory,
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=Ce (4.2—4)

The following relationship is found:

0. I

 

6

C ‘ ' 202

and

G2

P = —-

’72

Since the values of the above relationships are constant for a given

material and geometry, the empirical and the theoretical equations

are essentially the same. This has been proven by a different method

as discussed in the following chapters.

The plastic deformation is assumed to occur at the early stage

of the creep since the viscosity coefficient of the plastic flow, 77,, is

very much smaller than that of the viscoelastic flow. Just after

loading, the plastic flow dominates the creep and the strain rate may

be described by

5:9- _i. (1 {(2) . 0.:

dt - 2n, 'r 9

o

The total strain is then

1 t Ko
—- _ _ _ I

69—277, (1 T)0”9 dt

0

o

where To and (79' are not constant with time. Assuming t is very

small, then the change in To and 09' is insignificant, hence
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K

e zgzl ,.(,__9_,,
9 r 2,716 T0

at r = a0, this reduces to

a-a 1 KO

:— .— l

2771(1 o)tUG

 

a

O

(4.2-5)

(4.2-6)

Eq. 4. 2-6 holds true only in a short period after the load is applied.



PART TWO

EXPERIMENTAL INVESTIGATION

CHAPTER V

APPARATUS AND EXPERIMENTAL PROCEDURE

5.1 General Remarks
 

5. la Te sting techniques and their objectives

Two basically different testing techniques were utilized for

testing the theories of rock salt behavior. The first one used a

hollow thick-walled cylindrical specimen triaxially compressed in a

high pressure vessel developed by Serata. The confining pressure of

the vessel may reach up to 10, 000 psi. The vessel was used for a

long term triaxial creep test with confining pressure of up to 8, 000

psi. This high pressure vessel was used to study the distribution of

stress and strain in a hollow thick—walled cylinder; the general setup

is shown in Fig. 5.1.

The second technique is the confining cylinder of the "transition

test technique" developed by Serata. The axial load was applied by a

Forney's press tester whose capacity is 250, 000 pounds. This tech-

nique was developed to study the triaxial behavior of rocks for the

purpose of simulating underground stress field in relation to time,

material property and loading conditions; a general setup of this

apparatus is shown in Fig. 5. Z.
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Figure 5. 1. High pressure testing system providing

versatile triaxial loads up to 200, 000

pounds with automatic loading control.

 
Figure 5. l. a. Top view of high pressure vessel showing

ring and cap—plate.



 
Figure 5. 2. General set up of transition test showing 250, 000 pounds

press tester, shock absorber, pressure gage, strain

indicator and automatic loading control.

-'-.'-‘.,. .

 
Figure 5. 3. Thick walled cylinder cell with enclosed specimen.

plunge rs and dial gages used for triaxial transition

tests.
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5. lb Sources of salt

The rock salt used was obtained from three different locations:

Saskatchewan, Louisiana and Michigan. The specimens designated by

SS came from the Yorkton Saskatchewan mine of the International

Minerals and Chemical Company. The salt was obtained from a depth

of 3020 feet. These samples were pink in color and contained small

inclusions of foreign materials. The salt crystals ranged in mean

diameter from 0. 15 to O. 75 inches with an average of about 0.45

inches.

The specimens designated by LS were mined from the Inter-

national Salt Company mine in Avery Island, Louisiana. The samples

were obtained from a drill core at a depth of 600 feet. This salt was

white in color and contained much less impurities than the SS salt.

The maximum crystal diameter of LS salt was about 0. 50 inches with

an average diameter of 0.31 inches.

The MS salt was obtained from the Detroit Salt Mines. The

samples were obtained from a depth of 1000 feet. The salt was white

in color with varying degrees of impurities. It was more homogene-

ous and clearer than the SS salt. The average crystal diameter was

about 0. 50 inches. Michigan and Louisiana salt were used for most

of these tests.

The first number following the lettering SS, MS or LS indicates

the sample block from which the specimen was cut and the second num--

ber indicates the test number.
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5. 2 Transition Test
 

5. 2a Testing devices

1, Thick -walled cylinder

The cylinder is a stainless steel tubing with a length of 3.250

inches, inside diameter of 3. 250 inches and outside diameter of 4.00

inches. The cylinder assembly is shown in Fig. 5.3. The two Ames

dial gages were used to obtain average values of the axial deformations.

Z. Creep measuring devices

The strains of the cylinder were measured by SR-4 strain gages

with the Baldwin SR-4 type M indicator. An A. C. voltage regulator

was also used to eliminate fluctuation of the supply voltage to the

strain indicator. The use of a regulated power supply reduced the

instrumental drift in the extended creep measurement to an insignifi-

cant value. The usual indication of instability is a shift of the null

balance point, which is known as instrumental drift or zero drift.

This kind of drift was eliminated by studying its possible sources

60 as follows:which are suggested by Perry and Lissner

l. Incomplete temperature compensation of the active strain gage.

Z. Instability of the wheatstone bridge, power supply and amplifier.

3. Improperly bonded strain gages.

4. Creep of one or more strain gages.

5. Insufficient protection from humidity, or reduction in the

impedance between the gage wires and ground.
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6. Variation in the impedance of the lead wires.

It is necessary in the long-term creep tests to obtain continuous

records based on an initial zero reference point.

Three rosette SR-4 strain gages, type FABX--50-12, were

attached symmetrically (i.e. , 1200 apart) to the external surface of

the cylinder. The rosette gages were oriented with their two direc-

tions of the wire resistance parallel and perpendicular to the axis of

the cylinder. To prevent creep in the gage cement, the following cur-

ing cycle was adopted (Boldwin-Lima-Hamilton) .

"The absolute minimum curing cycle is 1 hour at 1750 F

followed by 2 hours of 2500 F with temperature brought up

slowly to each baking point over a 1 hour period. Performance

is improved considerably by an additional 2 hours at 300 to

3500 F either before or after removing the pressure clamp."

The instrumental drift for long-term creep tests was detected by a

switch, which alternates the positions of the active and dummy gages

to reverse the apparent sign of strain. An average of the two abso-

lute values was taken as the true creep strain (Fig. 6. 9) .

The lateral stress in the specimen was determined from the

tangential strain (€ts) measurement on the external surface of the

cylinder. The distribution of a tangential stress in a hollow cylinder

subjected to uniform pressure on the internal and external surfaces is

given by



8O

aZbZ(P -P,) 13.3.2-sz

OO O l 10 OO

 
 

cres = +

r?‘(b2-az) bZ-a2

o o o o

where,

a0 = internal radius of cylinder = 1. 625 inches

b0 = external radius of cylinder = 2. 00 inches

Pi = radial internal pressure = (TL

P0 = radial external pressure = 0

(TBS = tangential stress on the surface of thick-walled cylinder

Substituting P0 = 0 and P.1 = - O'L at r = bO into the above equation,

gives

b 2 - a 2

o o

0' = - ( ) 0'

L 0

2a 2 S

o

b t =1E e 4- +

u 00 ts H (a s 025)

where,

us = Poisson's ratio of steel

Urs' 625 = radial and axial stresses on the outer surface of steel

0’ = cr : 0

rs 25

b2 -a2

o o

ULz- _Es Ets

2a2

0

Substitute the values of be, a0 and ES to get

2 - 7.722

oFL ets
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This is used to determine lateral stress from strain gage readings

as will be shown in s'everal diagrams later.

5. 2b Specimen preparation

The specimens used for the transition tests were solid cylinders

with a diameter of 3.240 inches. The ends of all specimens were

made perpendicular to the axis of the cylinder to insure uniform

loading. All imperfections existing in the surface after machining were

filled with plaster of paris to insure an ideal model shape. The im-

perfections were usually caused by small crystals chipping out of the

surface in the machining operation.

Thin films of the friction reducer (grease-graphite mixture)

were sandwiched between two layers of thin plastic film and one layer

of tin-foil. Each set of these layers was placed on the top and bottom

ends of the cylindrical specimen to reduce lateral friction. A thin

film of friction reducer was placed on both sides of a thin plastic

sheet. The plastic was then wrapped around the cylindrical surface

with great caution to eliminate any air bubbles or wrinkles and any

excess grease between the plastic sheets and the cylinder.

5.2c Testing procedure

The general objective of this series of tests was to define,

then determine the necessary material constants to describe time-

and stress-dependent behavior of the material. The test involved

the following four procedures:
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1. Lateral stress-axial stress relationship

Axial pressure to the solid cylinder specimen placed in a con-

fined cell was gradually increased at 600 psi intervals up to 13, 400

psi and lowered gradually to zero. Strain-gage measurements, 6 s'

and dial-gage measurements, ez, were recorded at each stress level.

The process was repeated for several cycles in each test.

The purposes of these tests were to study the instantaneous

transition behavior between the elastic and plastic states of stress

and determine the mechanical properties of rock salt.

2. Stress relaxation tests

The axial load was gradually increased from zero in 600 psi

intervals up to 10, 400 psi. The axial load was maintained at that

level for about 20 days by an automatic pressure control system.

After that period, the load was increased gradually from 10, 400 psi

up to 13, 400 psi and kept at that level for another 20-day period.

The purposes of these tests were to: (a) study the lateral

stress relaxation behavior as a function of time, (b) determine the

slopes of the visco—plastic and visco -elastic stress relaxation curves

and (c) verify that the state of stress after 20 days is elastic, so

that further loadings always start from an elastic region.
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3. Constant stress region

The axial load was gradually increased at 600 psi intervals up

to 13, 400 psi with immediate strain-gage readings taken at each stress

level. The load was then decreased at 1200 psi intervals down to

6000 psi and maintained at each of these stress levels for a period of

90 minutes.

The purpose was to study the lateral stress relaxation around

the hydrostatic line and to verify the existence of a constant lateral

stress region defined by Eq. 3.1—20.

4. Visco-plastic stress relaxation tests

The axial load was increased gradually at 600 psi intervals up

to 12, 000 psi and lowered back to zero. At each stress level, the

load was maintained constant for a period of 10 minutes. Strain gage

readings were taken as soon as the stress level was reached at the

end of this waiting period.

The purpose of this test was to verify the theoretical Eq. 3.1-8

which indicates that the slope of the line of lateral —-axial stress rela-

tion is not 450 if instantaneous readings were recorded. However,

because 11, is very small, this one to one relationship will be attained

in a short period of time.
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5. 3 Hollow Cylinder Test
 

5. 3a Testing devices

1. High pressure vessel and assembly

The components of the high pressure vessel are shown in de-

tail in Fig. 5.4 and Table 5.1. The vessel is pressure sealed to

withstand an internal operational pressure up to 10, 000 psi. The

cylinder is made of stainless steel, which was quenched at an air

temperature of 18000 F and drawn at 11000 F to develop a Brinell

310-Rockwell C-34 hardness with a yield strength of 1.2 x 105 psi.

Provisions for hydraulic pressure input and deformation measure-

ments are illustrated in the previous figure. A cylindrical rock

specimen is held in the vessel (Fig. 5.4) by means of a tightly fitted

plastic jacket. The peripheral ends of the plastic jacket are held

tightly between the circumference of the cylinder top and the cap

plate. The O-rings and the teflon rings, shown in the figure, serve

as an oil seal. As pressure increases, they flatten out and more

sealing effect is produced. The specimen is subjected to a lateral

confining pressure of up to 10, 000 psi. The load is applied by an

automatic pump through the pressure control system which is

illustrated in Fig. 5.1.
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dial gage for measuring cavity closure gage

axial strain
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Fig. 5. 4 Cross-sectional view of high pressure vessel, showing

various components and arrangement of specimen
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2. Pressure control system

A schematic diagram of the triaxial testing assembly, Fig. 5. 5,

shows the pressure control system and the testing vessel. The auto-

matic pump "Vanguard" operates in a range of 100 to 10, 000 psi. A

hand pump is connected to the pressure system to provide a slow

loading and a fine control.

The shock absorber system is devised in order to reduce the

surging wave produced by the automatic pump during a constant load-

ing in the creep tests. The system consists of a shock absorber unit

and several damping chambers with needle size orifices shown in

Fig. 5.6. This arrangement reduced the shock wave amplitude from

approximately 700 psi to 150 psi. This system is particularly impor-

tant for creep experiments.

5. 3b Specimen preparation

The same process of specimen preparation discussed in sec. 5.2b

was followed here. The only difference was that the friction reducers

were placed at top and bottom edges of the cylindrical specimens.

The specimens used for the cavity closure tests were hollow

cylinders with a diameter of 4. 625 inches and a length of 4. 625 inches.

The bore of the cylinders ranged from 0. 75 inches to l. 50 inches for

different tests. A few specimens of diameter 3.25 inches, length of

3.25 inches and a bore of 0. 65 inches were used.
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Fig. 5. 6. Schematic diagram of pulse reduction and cut-:aways view of

shock absorber.
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5. 3c Jacketing of a hollow cylindrical specimen

Considerable time and energy were spent in order to develop a

jacket that will transmit the liquid pressure to the specimen and yet

will not permit the liquid to enter its pores. Such a jacket should be

impermeable, ductile, strong enough to resist shear and not be

affected by liquid medium.

The following materials were tried unsuccessfully:

1. Several layers of thin wrapping plastic were found not strong

enough to prevent the hydraulic oil from having access to the

specimen.

2. A thick, 1/4 inch, rubber jacket was made to fit tightly on the

specimen, but it was soluble in mineral oil if kept in the oil for

long-term creep tests, It was also permeable at high pressures.

3. Thin copper tubings were made to fit 4 9/16 x 4 9/16 inches

specimens. These were found unsuccessful, because of the

difficulty of obtaining a. strong weld at the top and bottom ends

of the jackets. Besides, a large amount of air, which is unde-

sirable for accurate measurements, was found to be trapped

between the specimen and the jacket.

Finally, a successful jacket was made of 7~mil thick plastic

material, known by the trade name of Plexiglass. This material

proved to be impermeable, strong enough to resist shear, and flexim

ble at low confining pressure. The jacket is also very easy to make.
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Fig. 5. 7 shows the plastic jackets and the cylindrical form used to

make them. The form was of the same dimensions as the specimens.

The plastic was cut and wrapped around the circumference and bot-

tom of this frame. All seams were cemented with plastic cement.

Steel rings were then tightened around all seams. Final sealing was

accomplished by heating the rings to the melting point of the plastic.

A tight fit was secured by moderately heating the plastic jacket

and placing it around the specimen. Thus, most of the air usually

trapped between specimen and jacket is eliminated before specimen

is immersed in the confining liquid.

Several tests were performed with these jackets at an axial load

of up to 200, 000 pounds and lateral liquid pressure of 10, 000 psi.

These jackets are reusable, if handled properly during installation

and removal of the specimen.

5.3d Closure measuring system

The closure of the salt cavity under triaxial compression was

measured by mercury displacements into graduated tubes. The tubes

are of 4 mm. inside diameter and calibrated to read to one -tenth of a

millimeter. A zero reading was recorded at a zero liquid pressure.

As liquid pressure increases, deformation at the inner face of the

cavity occurs and the corresponding mercury displacement was

measured.
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Figure 5. 7. Plastic jackets with form.

 

Figure 5. 7. a. Various wall thickness of hollow cylinders.

 

Figure 5. 7. b. Specimen cutting auger.
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Mercury was chosen as the measuring medium because of its

inert chemical characteristics and its heavy density that might occupy

any present pores or crevices in the bores of the salt cylinders. Thin

rubber tubes were efficiently used to line the surfaces of the cavity

and prevent mercury leakage between the specimen and the jacket.

Any air trapped inside the cavity, when mercury was poured in, was

eliminated by an air relief mechanism indicated by components 8 and

9 in Fig. 5. 4.

The reduced radius of the cavity, a, was measured from the

displacement of mercury, AV, by the following relation.

W
O

a= ——-
1711

where

a = reduced cavity radius

V = original volume of the cavity

AV = change in volume

h 2: height of cylindrical cavity

Also, the radial displacement, ur, was calculated from the relation

1133-3

1‘ O

whe re

p u reduced cavity radius

0
: u initial radius of cavity
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The axial deformation measurements were performed by a dial

gage that fits on the top of a perpendicular steel rod connected to the

bottom of specimen, Fig. 5.4.

5. 3e Testing procedure

The procedure followed in studying the behavior of a model

cavity under triaxial compression was divided into three main

categories:

Elastic -plastic deformation tests: The objectives of these

tests were to determine: (a) the structural properties of rock

salt such as Young's modulus E, and octahedral shear strength

KO, (b) the development of the plastic zone as a function of

cavity depth and strength of salt, and (c) to verify the mathe-

matical equations describing the variation of cavity closure

based on theories of elasticity and plasticity.

The pressure was raised uniformly in steps of 500 to

1000 psi. Immediate mercury displacements were recorded

over a pressure range of 500 to 9000 psi.

Cyclic tests: In this part, the interest was to study the effect

of triaxial compression tests on the properties of rock salt.

The pressure was raised uniformly in steps of 200 psi up

to 2000 psi and unloaded uniformly to zero. The process was

repeated for about: 15 cycles; in a few of these the load was
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maintained at that level for 5 minutes till the plastic flow effect

was decreased and then unloaded to zero.

The cyclic effect on Young's modulus and octahedral

shear strength were observed and compared with the first cycle.

Immediate mercury displacements were recorded for the

loading and unloading cycles. Results were plotted in several

diagrams and the cyclic effect on Young's modulus and octa-

hedral shear strength were observed and compared with the

values of Young's modulus from the first cycle.

Creep test: The objectives in this series of tests were to study

(a) the creep behavior of a hollow cylinder under multiaxial

compression, (b) creep rate equations and material constants,

and (c) the effect of geometry, external pressure and time on

these behaviors. The outside dimensions of the specimen were

all the same, but the inside diameters varied between 0. 50

inches and 1.50 inches for different tests.

The pressure was raised at a uniform rate from zero up

to 3000, 5000 or 7000 psi. It was maintained at these stress

levels by the automatic control system. Creep measurements

were calculated from mercury displacement over a period of 10

to 40 days .



PART THREE: EVALUATION

CHAPTER VI

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Fundamental Structural Properties of the Material
 

The structural properties of most materials are usually defined

by fundamental coefficients, such as Young's modulus, E, Poisson's

ratio, [1, octahedral shear strength, KO, viscosity coefficient, 11, and

retarded shear modulus. These coefficients vary from one material

to the other. They also vary within the same material if subjected to

various factors such as strain hardening, physio-chemical interaction,

radiation, heat . . . etc. However, under normal laboratory condi—

tions these coefficients are constant and essential to describe the

physical behavior of most engineering materials. The reaction of

different materials to different stress conditions depends entirely on

their mechanical properties. These properties are divided into two

groups: first, time wdepencence constants such as viscosity coeffic-

cients and retarded shear modulus that are discussed in sec. 6.3 and

second, time -independent property constants such as Young's modulus,

Poisson's ratio and octahedral shear strength. The two main con-

stants that have been investigated in this section under triaxial com-

pression are Young's modulus and octahedral shear strength, also

the strain hardening was investigated.

96
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6.1a Young's modulus

For a material that obeys Hooke's law, Young‘s modulus is

defined as the proportionality constant between the stress and strain

in uniaxial loading, or it may be defined as the slope of a straight line

which includes most of the linear part of the stress-strain curve below

its yield limit. The values of Young's modulus varied depending upon

the testing procedures used. Values of Young's modulus determined

by different test procedures are listed by Serata.70

Young’s modulus under triaxial compression was determined

in the laboratory by using equation of a thick walled hollow cylinder,

Eq.2.2-8,

Au 1 (I'll) a0

——=— —+(l-2)rAPO E a0, [ H l

(1-—)

b2

0

 

u . .

where is the slopw of the curve of displacement versus external

p0

pressure. This equation describes the radial displacement in the

elastic region as a function of cavity geometry and external stress,

p0. If the geometry and Poisson's ratio are known, Young's modulus

may be obtained by determining the slope of the displacement «stress

curve at r = a. The displacement—stress curves for different speci-

mens of hollow thickowalled cylinder subjected to triaxial compression

and plane strain are shown in Fig. 6.1. This figure is characterized

by the following features:
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1. There is a definite elastic straight line.

2. p0 = 1600 to 2000 psi when yield first occurred.

3. Rapid changes in slope occur approximately after these limits,

which may indicate the beginning of the plastic deformation.

Values for Young‘s modulus obtained from this and similar curves

by using the above mentioned equation are tabulated as follows:

Table 6.1 Values of Young's modulus as obtained

from hollow cylinder (first cycle)

A.

V‘—

Test Young's modulus . .
Size of speCimen

 

No. Ex 106 psi

MS-l-15 0.987 Di = 1.0"; D0 = 4 9/16"; ho = 4 9/16"

MS-l-16 0.749 Di = 1.0”; Do = 4 9/16"; ho = 4 9/16"

MS-l-l8 0.40 Di =1 15/16”; D0 = 4 9/16"; ho = 4 9/16"

MS-l-Zl 0. 964 Di = 1.0"; Do = 4 8/16"; ho = 4 9/16"

MS-l-24 1.137 DI :1 16/64"; Do = 4 9/16"; ho=4 8/16"

 

These results are based on data obtained from the first cycle. The

above values compare closely with the results reported by Serata.70

Higher values of Young's modulus were observed in the subsequent

cycles as indicated in Fig. 6.2.

Another testing method, the transition test technique, was used

to determine Young's modulus. In this method, a triaxially stressed

solid cylinder was used to determine the lateral stress axial stress
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relation. Using these results and the equation of Young's modulus

(Eq. 2.1—2), indicated on page 13, values of Young's modulus were

calculated as shown in Table 6.2.

Table 6. 2 Values of Young's modulus obtained

from transition tests

 

Young's modulus (106 psi)

 

 

Test Cycle Cycle Cycle Cycle Aver-

No. I II III IV age

MS-l-26 ---- 2.0 2.68 2.45 2.378

LS-l-l ---- 2.71 2.83 ---- 2.77

LS-1-3 ---- 2.23 2.83 ---- 2.53

LS-l-4 0.4x 106 3.0 an an ----

 

These values are higher than those obtained from the first cycle of

the hollow cylinder tests, Table 6.1, but they are smaller than the

values obtained from second and subsequent cycles (Fig. 6.2) . This

discrepancy can be explained by the difference in the boundary con-

ditions and in the strain measuring technique of the transition test

compared to that of hollow cylinder test. In the latter, slip on the

crystal interfaces is relatively free to occur as the material adjusts

to the differential stress. On the other hand, the lateral restraint of

strain in the transition test prevents most of this behavior and creates

a more compact crystal arrangement. Therefore, this wide variation

of results is mainly attributed to the difference between the two
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testing procedures. Similar observation has been reported by various

investigators as reported by Serata.7o

A certain amount of variation is expected to occur in a material

like rock salt due to the following reasons:

1. Different stress history of the specimen

2. Deviation from isotropy and homogeneity of the specimen tested

3. Various grain size of the specimen

4. Degree of impurity concentration

6.1b Strength of salt

The strength theories of solids may be described in terms of

state of stress, state of strain and energy of distortion. Some of the

theories which are relevant to this work were used to define the

strength of rock salt. The octahedral shear strength was chosen to

describe the strength of salt under triaxial compression. However,

in the uniaxial test the maximum strength is usually used. Two dif-

ferent procedures were used to determine the octahedral shear strength.

These are described as follows:

1. Hollow cylinder test

In thick-walled cylinder the maximum shear theory was used to

evaluate the octahedral shear strength, KO. The ratio of the inner

radius of the cylinder "a" to that of the external radius "b” is related

to the external pressure Po and the octahedral shear strength K0 as

follows:
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- (P-P.)
3 K o i

a 2V2 °

E‘e

01'

a 1

1n e (g) — - 3 (PO— Pi) (2.4-4)

-——— K

2V? 0

This indicates that the logarithm of the plastic front ratio, a/b, is

directly proportional to the stress difference between the external

and internal pressures. If this relation is plotted on a semi-log paper,

the slope would yield the octahedral shear strength of rock salt for

completely plastic state.

Experimental data obtained from three identical specimens are

shown in Fig. 6. 3. The results indicate that the elastic limit is about

2000 psi for MS-l-15 and MS-l-l6 and about 2500 psi for MS-l-Zl.

An elastic -plastic state extends from these two limits up to approxi-

mately 7500 psi. A large deformation region is expected to exist

beyond this value.

The octahedral shear strength is calculated from the slopes of

the curves of the plastic region which extend beyond 7500 psi. For

MS~1~15 and MS--l-l6, the octahedral shear strength K0 is approxi-

mately 2300 psi. This value is based on the asymptote to the last few

points of the curve. More accurate data could have been obtained if

the capacity of the high pressure vessel is larger than 9000 psi, so
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Fig. 6. 3 Experimental analysis of large deformation in hollow

cylinder
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that more readings could have been obtained in the plastic region.

Moreover, instantaneous readings at such high stresses should be-

considered to eliminate any time effect of plastic flow.

2. Transition test

In a continuous medium such as a homogeneous rock material

imbedded in the earth crust, the conditions of triaxial pressure and

re straint are similar to those of the transition test. The mechanical

property of octahedral shear strength was obtained from this testing

procedure.

In Fig. 2.1 of the transition test, it may be readily seen that

the vertical distances between the lines of plastic states and the

 

hydrostatic line are KO. Table 6. 3 gives the values of Ko obtained

3

V7

for each cycle of loading on each specimen. It is seen that the octa-

hedral shear strength of specimen MS are larger than that of LS.

Both kinds of rocks approach approximately to the same octahedral

shear strength value after several cycles of loading. The values of

the second cycle are 2000 psi and 1625 psi for rock MS and LS

respectively. In general, the values from the second cycle agree

very closely with the value obtained from hollow cylinder tests. It is

observed that the values obtained from first and second cycles for

LS-l-l, LS-l-2, LS-1-3, and LS-1-4 were almost exactly the same.

This reflects the consistency and homogeneity of the specimen used.
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Table 6.3 Octahedral shear strength

obtained from transition tests

 

 

Test No. Ko No. of cycles

MS-1-26 1650 1

" 2000 2

" 2100 4

LS-l-l 1375 l

" 1625 2

" 1955 3

LS—l-Z 1365 1

LS-l-3 1400 l

” 1650 2

LS-1-4 1300 l

" 1695 2

 

6.1c Cyclic stress tests and the effect of strain hardening.

It was observed from repeated loading procedure on both the

hollow and solid cylinders that the values of the mechanical proper-

ties such as Ko and E increase after the first cycle. This behavior

may be explained as an effect of work hardening of the material.

In metal testing, the raising of the elastic limit by increasing

deformation of the piece in the plastic range is defined as strain-

hardening or work hardening. This phenomenon may be explained

that, if a slip is stOpped from being propagated at a grain boundary

because it is impeded by another dislocation or an impurity, then

regions of high strain will. be created within each crystal. Hence,

an increase in stress will be required to facilitate more progress of

dislocations. The stress needed to move a dislocation will depend on
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grain boundaries, impurities and closeness of other dislocations.

By increasing the temperature and activation of the dislocation to

overcome these obstacles and causing slip to spread out at less

stress, the effect of strain hardening will diminish. The effect of

cycling and strain hardening was studied in both the hollow cylinder

test and the transition test.

3. Hollow cylinder test

In testing a thick—walled salt cavity, as shown in Fig. 6.4,

a similar increase in the elastic limit to that of metal is found by

cyclic loading. The unloading lines are mainly straight lines

parallel to those obtained in the first loading region. This may be

explained by the fact that the interatomic forces that pull the atoms

together when load is removed are the same forces that have to be

overcome in the first elastic elongation. Hence, the slopes of the

loading and unloading lines are the same and the lines are parallel.

During the first stages of unloading, it was observed that the

lateral strain remains constant. No elastic recovery was observed

as stress is reduced. This behavior in polycrystalline material like

rock salt, is due to permanent slip and dislocations that cuase plastic

flow to occur at higher loads and prevent atoms from returning to

their equilibrium position upon unloading. In the laboratory, the

load was raised to 2000 psi and maintained at that level for five
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minutes and then unloaded. The results are shown in Fig. 6.4,

where elastic recovery responded immediately since the rapid plastic

flow had clearly diminished and only the elastic recovery was being

measured.

The deformation of the compressed cylinder beyond the

proportionality limits is partially elastic or recoverable and par-

tially plastic or permanent. This is shown in Fig. 6.4, where the

region AC represents the total. deformation, 6 = 68 + 6P. Region AB

. P . e
18 the unrecoverable part, 6 , and BC is the recoverable part, 6

4. Transition test

The effects of cyclic loading and strain hardening are shown in

Tables 6. 2 and 6.3. From these tables, it is clearly seen that the

values of K0 and E increased with the number of loading cycles. Most

of the increase occurs between the first and second cycles and

approaches a small value after a certain. number of cycles. The in—

crease in Ko for MS--1-26 between the first and second cycles was

about 17 percent, while only 5 percent between the second and the

fourth cycles. Similarly, a large increase in E value was observed

between the first and second cycles and was almost the same for the

subsequent cycles (Fig. 6. 2).

Theoretically, the strain hardening of rock salt in a triaxially

compressed state may be described as illustrated in Eq. 2. 3~30 by
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using the Levy-Mises relation and the work hardening hypothesis

suggested by Hill.33 From these relations, an expression for the

slope of work hardening material is expressed as follows:

. _ 2 _di.
‘ 2 an

where

H‘ = slope of the effective stress ~effective strain curve

c} = effective stress

1 1/2

= —-[0' -0')2+(0' -cr)2+(0' -0")2]

x y y z z x

2

dc? = incremental change in the effective stress

-P

. . . 3
dX = proportionality function = 2 T

.. V 1/2

dep= -—2Kde -de )Z+(de -d€ )2+(de -de )2]

3 x y y z z x

BY using the experimental results from test MS-l-26, the strain

hardening characteristics of rock salt were obtained as presented in

Table 6.4. As the effective stress increases beyond the proportionality

limit, the material hardens with increasing effective strains. The

Slope of the strain hardening portion H' decreases rapidly until it

approaches zero. This behavior is demonstrated in Fig. 6.8, Chap-

ter VI. The slope H‘ decreases rapidly to zero as the axial stress

inGreases approximately between 8000 to 11, 000 psi. Fig. 6,8 shows

that this is the transition region between the elastic and plastic states.
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Table 6.4 Experimental. analysis of strain hardening

characteristics of rock salt

 

 

 

 

 

Cycle II

O'z psi 6: psi At; psi dx 10"6 1.5 -&—.G H'

7839 5828 742 2652 0.190 72

9045 6470 642 2908 0.149 51

10251 6988 518 3280 0.111 33

11457 7359 0 0

Cycle III

8442 6315 757 1570 0.175 114

9648 6980 665 1720 0.142 83

10251 7274 712 2276 0.138 61

11457 7691 0 O

 

Beyond this value the "plastic line" reaches 450 which describes the

perfectly plastic state with A; = H' = 0.

6.2 General Behavior of a Cylindrical Cavity with Loading
 

6. 2a Experimental verification of theoretical cavity behavior.

The strength of an elastic ~p1astic deformation of a cavity

created in a salt medium has been studied in the laboratory by a

model cylindrical cavity. Closure of a cavity with respect to loading

is illustrated in Fig. 6. 5. The pressure was increased uniformly at
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equal intervals of stress from zero up to 9000 psi and the corre-

sponding cavity closure was recorded. A maximum closure of

approximately 30 percent was registered at an external pressure of

9000 psi, and less than 5 percent at a stress of 3000 psi. This

closure is an important factor in the design of salt cavities when

these are created at a depth of more than 3000 ft.

Theoretical stress distribution around a cylindrical cavity has

been developed in the elastic, elasticuplastic and completely plastic

states as indicated by Eqs. 2.3-10, 2.3-14 and 2.4-2, respectively.

Based on these equations, the theoretical radial displacement at

r = a is calculated and compared with experimental results. The

conditions imposed on the displacement equations are either elastic

compressibility in plastic regions or compressibility in elastic

region and incompressibility in plastic region as indicated by the

following equations.

For elastic compressibility in elastic region, the radial displacement

is:

 

0 2

2V—Z—_B_ (2.3-38)

For compressibility in elastic region and incompressibility in plastic
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region, the radial displacement is:

_3___K

a.12____V2°[
a 2

3

20 (211-1) P—-91+(2H-1)PPO (2.4-9)
b 2

o

The theoretical behavior of the radial displacement as a function of

applied stresses and plastic radius is worked out for values of p that

varied between 0. 50 inches to 2.20 inches. The steps involved for

computation of the radial displacement are as follows:

1. The material properties are obtained from the previous labo-

ratory data where, E =1.2 x106 psi and p = 0.16.

2. For assumed values of p, values of "a" are calculated from

Eq. 2. 3-54.

3. By using the values of p and “a" obtained from step 2, values

of external stresses necessary to create the given plastic

radius, p, are calculated from Eq. 2.3-15.

4. By substituting the values of p, a, and Po into Eq. 2.3-37 and

Eq. 2.4-9, the theoretical radial displacements at each stress

point are calculated. A sample of the calculation is presented

in Table 6. 5. Three different values of K0 of 1500 psi, 1750 psi

and 2000 psi were used in Eq. 2. 3-38. The stress—displacement

curves thus obtained were presented in Fig. 2.4.

In the laboratory, radial displacements were measured for

different specimens at equal intervals of pressure between 0 and
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9000 psi. At each interval, the load was maintained at that level for

a period of one minute before the data were recorded. A sample of

the experimental results was compared with the theory of Eqs. 2. 3-38

and 2.4-9 (for Ko = 1750 psi) as shown in Fig. 6.6. A general close

agreement has been observed between the experimental results and

the curve of complete incompressibility in the plastic region up to

approximately 5500 psi. Above this stress level, the theoretical

curve flattens out quickly and the degree of variation between the two

curves increases. If sufficient time is allowed for salt to flow, the

experimental results might have approached the theoretical curve. On

the other hand, a good agreement was observed between the theory of

Eq. 2. 3-38 and experimental results up to approximately 4000 psi.

Above this stress level, the degree of variation between the experi-

mental and theoretical curves increases due to rapid plastic deforma-

tion. Whenever the plastic stress state is reached, the discrepancy

between theoretical and experimental results was found especially

when the experimental results were taken one minute after the load

was reached.

Similarly, the relationship between the reduced cavity radius,

a, and the external pressure was calculated simultaneously from Eq.

2.3-54 and Eq. 2. 3-15. A comparison between the theoretical reduced

radius, a, and its value obtained from experimental results is

illustrated in Fig. 6. 7. Close agreement between experimental and
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\elastic -

x I!

' '7 p

I/
theoretical

= 2000 psi

0.50

0.49

--+- MS-1-15, a0 = 0.51141" K

0.48 -— ---°"""' MS-l-l6, a = 0.51014" \

o

\o

—-—-‘a——— Theoretical results

0.47 —
MS-l-lS

MS-1-16

I. 1 l l l J
0.4

6 z‘lF3 4 5 6 7 8

external stresses, 1000 psi

Fig. 6. 7 Variation of the modified inner radius, a, of a

cylindrical cavity compared to experimental results
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theoretical values was observed up to a pressure of approximately

4000 psi, where the variation of the inside reduced radius is very

small. At higher pressures the experimental values seemed to be

lower than the theoretical ones. This might be explained by the fact

that the experimental values were recorded one minute after the

pressure was reached. It is reasonable to assume then that the ex-

perimental values would have been closer to the theoretical values had

the readings been taken instantaneously.

6. 2b Stability conditions

These analyses have demonstrated the important fact that a

salt cavity will eventually reach a state of equilibrium between the

advancing plastic zone and the elastic part. The advancement of the

plastic zone is defined by Eq. 2.3-15 where

1 1 p2

p = aexp. “:37"? [(130 -Pi) ~211~ 371%

2V3— °

If an infinite medium is considered where bo>>p, then

1

If”? (Poupi) '2'3

—— K

2‘\/ 2 0

It should be noted that the natural log of (p/a) is directly propor-

tional to the stress difference and inversely proportional to octahedral

shear strength. Hence, the development of the plastic zone is
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controlled by: (1) increasing the external load or (2) decreasing

the internal pressure. With the increase of external pressure, the

plastic radius increases and accordingly the internal radius decreases

as shown in Eq. 2.3-54, where

a2 2V2 ° PZ
—‘1'—E_“1"”’_
a2 a2

o o

and thus a state of stable equilibrium exists.

In the case of completely plastic state and for 0r 2 oz 2 06, the

relation between external pressure and the reduced cavity radius is

P=——K0(ln—)

O ZVZ—O

where for incompressibility conditions,

+bz _az 1/2

0 ZV—o a2

From which it is clearly observed that as the inner cavity radius "a"

decreases, the cavity gain ability to withstand a greater external

pressure and thus the system is stable.

6. 3 Transition Test
 

6.3a Axial stress-lateral stress relationship

In the laboratory, the lateral stress-axial stress relationship

has been determined by Fig. 6.8. The stress conditions produced by
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a loading cycle can be illustrated as follows: during the initial load-

ing up to point A on the stress diagram, the material behaves elasti-

cally. As the axial stress increases, the material changes rather

abruptly to a plastic state of stress represented by line AB. The

stress condition which the material experiences as the axial load is

gradually reduced is illustrated by the elastic stress line, BC, and

the plastic stress line, CD. The line DO represents the residual

stress caused by creep and plastic deformation during the cycles of

loading and unloading. The change in the residual stress becomes

very small after the first cycle as indicated in the figure. However,

the distance between the "hydrostatic line" and the ”plastic line, "

which is related to the octahedral shear strength of the material, in--

creases with the number of cycles.

It was observed from laboratory results that the transition

from the elastic state CA to the plastic state AB is rather abrupt.

Experimental results obtained by Raman‘63 from limestone and granite

as indicated in Figs. 2. 2 and 2. 3 show the gradual transition between

the elastic and plastic states. This difference in the transition state

between salt and the previously mentioned materials may be attributed

to the viscosity constant of the materials. In case of rock salt, the

transition was abrupt as indicated by line AB and this reflects a low

viscosity constant. On the other hand, dolomite and lime stone show

a gradual change between the elastic and plastic states and this indi-

cates a large viscosity value.
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The discrepancy observed at the beginning of the unloading line

BC may be due to viscous plastic deformation. As the axial stress

is gradually reduced, for the first few readings, no strain recovery

was observed. This was explained by the hypothesis that at high axial

stress levels, plastic deformation is still taking place and thus can-

celling the strain recovery produced by unloading.

6. 3b Stress relaxation equations

The triaxial stress relaxation test involves the application of a

constant load to the test specimens and the measurement of the de-

formation over a long period of time. Instrument creep was elimi-

nated by taking the mean indicator reading illustrated in Fig. 6. 9.

Fig. 6.10 illustrates the general stress relaxation behavior for

a triaxially compressed and laterally confined rock salt specimen. It

is observed that the octahedral shear stress decreases rapidly at the

beginning of the creep period and relaxes asymptotically to a constant

value as time increases.

The experimental equation describing this behavior is presented

as follows:

~ at
1- :T +(T_ --T)e

(3‘1"-13)

o f i f

Rearranging this equation, it reads
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which indicates a linear relationship between octahedral shear stress

and time on semi-log paper.

Laboratory results from stress relaxation tests were plotted as

shown in Fig. 6.11. This showed that there are two independent stress

relaxation equations represented in the same stress relaxation figure.

A straight line was drawn asymptotically to the curve at large values

of time. This represents the linear relationship of the viscoelastic

stress relaxation. The difference between the values of the total

stress relaxation curve and the line of the viscoelastic relaxation

measured from the abscissa. represents the stress relaxation curve

of the viscoplastic state. This difference was found to be another

straight line. The tangents of the angles of inclinations of these two

lines, denoted by 01 and 02, are related to the viscosity coefficients

of the material.

Theoretically, the stress relaxation behavior in the viscoplastic

and viscoelastic regions is described by Eqs. 3.1-8 and 3.1-l9

re spectively, s 0 that
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Fig. 6. 11 Stress relaxation behavior in transition test illustrating
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where

61

a =—

1 712

and

GZ+G1

a2 = T-

These constants are used in sec. 6. 3d to determine the time-dependent

constants .

6.3c Plastic and viscoelastic states

1. Plastic state

It has been shown from theoretical analysis (Eq. 3.1-12) that

the incremental change in the lateral stress is a linear function of the

axial stress. Besides, the slope of the "plastic line'l in a lateral

Stress-axial stress diagram is given by:

  

C:11

———t

AUL-HI 1‘ l)e m
A02- l-u

From these relations, it was concluded that:

 

A0"

L . . . .

1’ At 15 a linear function of 0 when all other variables are

2

constant.

2.
The "plastic line” approaches the 450 line as t approaches

infinity or when 771 is a very small number, such that

3 AUL

: + _—

0 (r _ 0 and A

L 2 \f2— 02
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3. The instantaneous slope of the "plastic line" deviates from 450

by a factor described by

In the laboratory, tests were performed to verify these theo-

retical results. Experimental data shown in Fig. 6.12 indicate that

the instantaneous readings represented by line AB and DE deviate

from 450 by about 5 percent. However, readings taken at the same

axial load but at 10 minutes later formed 450 lines represented by AC

and DF. The exponential term in the lateral stress expression had

nearly vanished in the first 10 minute period, and the lateral stress

A0

= 1. This leads to the con-
 

was reduced to 0 = (r + —— K or

L z V—Z' o Aaz

clu‘sion that 771 is a very small number.

2. Viscoelastic state

A0

 

In this region, the slope of the "plastic line, " , is always

AO’Z

o

45 and moves parallel to the initial straight line as time increases.

As time approaches infinity, the lateral stress approaches a constant

value indicated by:

(3102
 

0'
3

= +

L orz ’ V—E (G1+G2)Yo u(t)

In the laboratory, stress relaxation tests were performed to verify

this behavior. Fig. 6.13 shows the lateral stress - axial stress
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relation for the third cycle. The axial load was raised to 15, 000 psi

and maintained at that level till the lateral stress reaches a constant

value.

Through this point, a line was drawn parallel to GH intersecting

1G and EH at B and C respectively. This line, BC, represents the

constant stress 0L, such that,

Gle
+ 3 (

L 21/? (n+0,Z

 1.2.1.)yo I)

A similar line AD was drawn parallel to BC and at equal distance

from the hydrostatic line representing the change in lateral stress

during unloading cycle. Accordingly, if lines BC and AD represent

the constant lateral stress as time approaches infinity, then region

ABCD is a constant stress region and no change in lateral stress with

respect to time is expected along AB and DC.

To prove this constant stress region, the load was raised

uniformly from 15, 000 psi up to approximately 18, 000 psi as indicated

in Fig. 6.13. At that stress level, the axial stress was maintained

constant for a period of 90 minutes. Then it was reduced to zero.

At each stress level, during this unloading cycle, the load was main--

tained constant for a period of 90 minutes to allow for any stress

relaxation.

The results showed that stress relaxation occurs only at 18,000

psi with a lateral. stress change of 500 psi. As unloading proceeds
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through the region indicated by line CD, no appreciable variation

occurred. At point D, stress relaxation in an opposite direction to

that of the loading cycle starts to increase as the axial stress ap-

proaches zero.

6. 3d Determination of time -dependence constants

from stress relaxation equations

Assuming rock salt has standard structural properties, the

time-dependence constants are evaluated as indicated in the following

example:

Test No. LS-l-l

Young's modulus, E = 2.83 x106 psi (3rd cycle)

Poisson's ratio, 11 = 0.16

E

Shear modulus, G1 = 2(m) = 1.219, 827 psi

As time approaches infinity, the stress relaxation is described

by Eq. 3.1-20, where

3 GIGZ

+

0 =0" _ ( ) u(t)
L z VE- o,+c.2 Yo

 

The retarded shear modulus Gz is the only unknown quantity, since

0'L’ oz, (31 and Y0 may be calculated.

From Fig. 6.13, as time approaches infinity

q 1
1 15,000 psi

q 1
1 12,500 psi
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for laterally confined strain, e = e = e . Therefore,

x y L

=lg-g-V—2—(6
L- 6-z)

t 8439 x 10‘6in/in1
1

Yo

on loading cycle Yo is a negative quantity if both UL and oz are

positive. The retarded shear modulus may be expressed as

 

 

G1(0L—Uz)

G2 = 3

-—-—- Gly - (0 - 0')

2W 0 L z

G l, 219, 827 (psi) (-2500 psi)
2 _

— —-3— (1,219, 827)(psi)(8439 x1076) + 2500 (psi)

2

G2 = 148, 000 psi
 

 

The plasticity constant 711 was described by Eq. 3.1-14, such that

G’1

1"113-—

“I

where (11 = 995 x lows/min.

Therefore,

06 min "' lbs

n12122.6xl Z

in

Using conversion factors from min —lbs/in2 to dynes-sec/cm2 to

   

 

get:

. — 6 1

01‘ 122 6 min lbs x 60 sec 0 10 dynes x 2

inz mm 2.248 lbs cm

6. 45 . Z

in

771 = 5.0 x 1014 poises
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Similarly, the Viscoelasticity coefficient was described by Eq. 3.1-22,

such as

G1+G2

772 ‘12

where a2 = 5.577 x low/min

Therefore 772 23.2 x108 min—lbs/in2

or 772 96 x1014 poises
 

This indicates that 172 18 almost 20 times larger than 111.

G2
— ,

n2

equation of a cylindrical cavity, is presented as follows:

The ratio, that will be used in sec. 6. 4 to verify the creep

Table 6. 6 Values of the ratio 57323 , as obtained

from transition tests

 

 

T st 772 x 104 G2 er mi

1: Ex106psi Glx106psi G2x106psi min-lbs 32’? n

°' inz 10’4

LS-l-l 2. 83 1,220,000 148,000 232,000 0.63

MS-L-Zb 2.45 1, 060,000 166, 900 224,000 0.74

LS-l-3 2. 83 1,220,000 128,000 239,000 0.54

 

Accuracy of the time --dependence constants determined by the above

procedure are affected by the accuracy of the time -independent

property constant G,- . This does not minimize the applicability of

this method to determine the viscosity constants 771 and n2, particu-

larly if the structural properties are well defined.
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6. 4 Creep of Model Cavity
 

When a constant stress is applied to a material the atomic or

molecular structures of the material readjust themselves with sus—

tained loading. This readjustment of the internal structure of the

material produces deformation as time passes on. The deformation

produced is called creep. In other words, creep is the property of

solids to change their shape with time under constant loads. ASTM

defines creep as “the time -dependent part of the strain resulting from

stress. " The phenomenon of creep is the most complex of all mechan-

ical behavior of materials. Freudenthal‘Z4 refers to the complexity of

creep as being in direct relation with the complexity of the internal

structure of matter itself. This phenomenon is observed in metals,

ionic and covalent crystals and in amorphous materials such as glasses

and high polymers .

6. 4a Factors affecting creep

Temperature plays an important role for creep responses of

metal, rocks and amorphous material. Those having low melting

points tend to creep extensively at elevated temperatures. Heat is

the most critical factor affecting the structural property of rock salt.

High temperatures in salt cause thermal stresses, increased creep

rate and reduced strength. Seratam reported that at a temperature

of 5000 F, rock salt exhibits a uniaxial yielding strength around 1000
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1500 psi instead of 2300 psi. He. further reported that, under triaxial

compression, the differential stress reduced from 1700 to 1000 psi,

and remained nearly constant for temperatures varying from 5000 F

up to 14750 F (melting point of rock salt).

The extent of creep is also affected by the grain size, micro-

structure, previous strain history and boundary characteristics. The

latter are usually influenced by impurities and, with a large concen-

tration of them, the cohesive force of the aggregate material might

increase.

6. 4b Mechanism of creep

l. Uniaxial

On the basis of the mechanism of creep, the total creep of any

instant is divided into three groups by Richard. 67 First, is the

elastic plus plastic creep that occurs immediately after applying the

load. Second, is the transient or cold creep. Finally a combination

of transient and steady state creep, usually referred to as a viscous

creep or hot creep. The components are illustrated for comparison

in Fig. 6.14a, b. The last two components of creep are of prime

importance and represent basically two different phenomena. They

are treated separately as follows.

2. Transient creep

Decreasing rate is the principal characteristic of transient
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creep. The deformation rapidly increases but the flow rate gradu-

ally slows down and finally the creep deformation approaches its

maximum value. In non-crystalline material, as in amorphous

materials, elastic after-effects often constitute a major part of the

total creep. In crystalline material, however, elastic after-effect

is small and insignificant compared with the other creep deformation

mechanisms, especially at high stress levels. In this range, the

transient creep consists largely of yielding produced by plastic

stresses and thermal activation. The plastic deformation is accom-

panied by initial plastic strain which decreases as the stresses are

balanced by strain~hardening.

3. Viscous creep

Ideal viscous flow is characterized by steady increase of

deformation at constant stress. In nonstrain-hardening materials

like thermoplastic or amorphous polymers, viscous flow is the

natural form of inelastic deformation. It is produced by permanent

change in the molecular structure of the material. The changed

molecules slip past each other, constantly breaking and regrouping

with no strengthening results. In strain hardening material, like

most crystalline materials, viscous flow takes place when the strain

hardening effect is just balanced by the softening effect of heat.

This softening is produced by atoms of the crystals which migrate
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or diffuse to positions of lower energy. Thus, dislocations are made

more mobile and can detour around obstacles or take them along,

given a little time. Also, in polycrystalline materials, viscous creep

is produced by what is called grain-boundary shearing which is due to

flow of grains themselves as a semi-rigid body.

4. Triaxial

In triaxial stress state such as creep of a thick walled cylinder

subjected to uniform external pressure, the transient state is defined

"as that portion of the deformation history of the tube when the stresses

1112 This transient state maythroughout the cylinder vary with time.

start when loads are just applied and is considered completed when the

complex creep-relaxation process in the thick walled cylinder adjusts

itself such that all the stress distribution is constant with time.

Eventually, a steady state of stress will be reached and from then on

the stress distribution will remain constant with time.

The creep rate characteristics of a region such as a thick

walled cylinder with external pressure are that the transient creep

rate decreases from large to a small value in a short period of time.

However, after stress reaches a constant value, the creep rate con-

tinues to decrease slowly until it reaches an asymptotic value at

t=oo.
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6. 4c Creep analysis of a cylindrical model and

verification of theoretical creep equations

The development of the mathematical theory of creep has been

rather slow. This is due to the difficulty of obtaining experimental

data for the entire life of the material concerned. Most of the re-

search so far has been in the direction of developing empirical rela-

tions that fit the available data. A sound mathematical theory based

on logical assumptions and guided by practical experience to describe '

the complex physical phenomena of creep is yet to be developed.

1. General creep behavior of a salt cavity

In the laboratory, as discussed earlier, a creep testing device

has been setup to determine the creep characteristics of salt. This

triaxial creep test involves the application of constant load to the test

specimen and the measurement of deformation at a long period of

time.

A sample of creep behavior of salt is presented in Fig. 6.15.

The creep in these samples was divided mainly into two stages. The

first stage is the one during which most of the transient creep takes

place. This type of creep is usually called transient creep. When

the transient creep has reached a substantially constant value, the

strain continues to increase at a more or less decreasing creep rate,

under the action of the viscoelastic component. This type of creep

Continues at a decreasing rate until eventually it reaches its minimum
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creep rate at a large value of time. Because of the nature of the

loading, the third stage of creep discussed in uniaxial creep is

difficult to observe in this study.

2. Transient and plastic deformation

In the laboratory, the deformation rate at the early stages of

creep decreases rapidly from some large value to a small value (Fig.

6.15) . To analyze this type of deformation, the change in cavity

radius, a, was plotted as a function of time as indicated in Fig. 6.16.

This figure shows that the cavity radius decreases rapidly to a small

value within a short period of time. At this state of creep, where

the deformation rates are large, the stresses in the salt are not con-

stant even though the external pressure was maintained at the same

level. For each increment of time, there is not only an increment of

plastic strains but also an increment of stress which eventually

reaches zero with time. The relation of cavity radius as a function

of time and stresses in plastic region is demonstrated theoretically

by Eq. 4.2-6, where

 

aO-a 1 K0

:— 1..— '

O O

The relation between a and t is difficult to obtain without determining

the variation in the deviatoric stresses. However, for small values

of t, the changes in (76' and T0 are small and a linear relation may be
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Fig. 6. 16 Reduction of a model cavity reduces as afunction of

viscoplastic deformation
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approximated only by drawing a tangent to the curve at time ap-

proximately equal to zero. The slope of this linear relation is

described by

l 0

tan Zr” (1 To) 0'e

if these variables are known the viscoplasticity constant r7l may be

approximated from the tangent of these curves.
 

3. Viscoelastic deformation

It has been observed from several test results that the creep

curves of salt have some common features. Thus, they may be ex-

pressed by a common creep curve. Although no mathematical

expression as yet describes the exact process of creep, many em-

pirical relations have been suggested and used to fit the creep data

obtained.

An empirical creep function that fits very closely the creep

data for a cylindrical. cavity was proposed. The proposed function

may be written as:

- Pt

a - a = a e

f o

where

a = reduced cavity radius at time t

a = reduced cavity radius as time approaches infinity

P = material constant
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a more general formulation of this equation is

n

«Pt

where n is equal to unity in a linear material. The advantage of this

empirical equation is that the coefficients can be determined from

simple graphical methods as illustrated in Fig. 6.17.

This figure indicates that the empirical equation fits very closely

the viscoelastic. creep data of the salt cavity. The discrepancy ob-

served at the early stages of creep may be attributed mostly to the

plastic deformation. At the end of the plastic deformation period,

salt exhibits a linear behavior as demonstrated in the above figure.

The material constant P, which is related to the viscosity of the mate-

rial, was determined from the slopes of the curves.

It has been noted that the proposed creep function developed as

a result of laboratory creep measurements is essentially the same

equation obtained from the mathematical analysis of a cylindrical

cavity in a linear viscoelastic material. In particular, a conclusion

G2 .
was reached such that P = 77— . To prove that these equations are the

2

same, the value of P, as determined from creep analysis of a cylin-

. . G2 .
drical salt caVity, should be equal to the value of .1“)— as determined

2

from stress relaxation equations of the transition tests.

. . Gz
From Fig. 6.17 and Table 6.6, the values of P and —are

'72

calculated and presented in Table 6. 7.
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Table 6.7 Comparison of the values of P and %i as obtained

2

from two different testing techniques

 

 

P from cavity creep tests :3 from transition tests

2

0.34 x10.4 per min (MS-l-lZ) 0.63 x10"4 per min (LS-l—l)

0.67 x 10'4 per min (MS-l—l4) 0.74 x10”4 per min (MS-1-26)

0.72 x10.4 per min (MS-l-19) 0.54 x10"4 per min (LS-l-3)

 

The above comparison of the two different experimental results

G2 . .

shows a close agreement between the values of P and 1.7—, verifying

2

that Eqs. 4,2~3 and 4.2-4 are essentially the same. This further

supports the validity of the general assumptions made in developing

the theory of creep behavior of a salt cavity. Therefore, by using

these coefficients the creep rate of underground cylindrical cavity can

be described, provided the conditions of the cavity agree with the

basic assumptions of the study.
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Fig. 6.17 Experimental analysis of triaxial creep in hollow cylin-

ders illustrating determination of viscoelastic coefficients



CHAPTER VII

SUMMARY

Theories of stress, strain and boundary motion were developed

to study the stress distribution in. a cylindrical model cavity. Distri—

bution of stress and strain and creep motion of the medium around the

cylindrical cavity were described based on the mathematical theories

of elasticity, plasticity and viscoelasticity of a continuous medium.

2' >
U -- (I were assumed.The conditions of plane strain with Ur z 0

In this analysis six mechanical constants of the material were

included, which have to be determined for the experimental verifica-

tion of the theories.

A proposed mechanical model was verified by the triaxial

transition test technique, which was used to determine the mechanical

constants of the material. These constants are: Young’s modulus,

Poisson's ratio, octahedral shear strength, viscosity coefficients,

and retarded shear modulus. The mechanical model consists of

elastic, viscoelastic and viscoplastic elements that describe the over-

all behavior of rock salt with respect to time and stress conditions.

Behavior of the model cavity was described by substituting

some of these constants into the theories of stress and strain and

boundary motion equations. The validity of the theoretical calcula-

tions was confirmed in the laboratory by using the technique of liquid

148
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confining medium for a model cavity. A summary of this theoretical

and experimental investigation is as follows:

From experimental model cavity analysis and theoretical

 

 

Eq. 2.2-9

(1 ) 2+ll o

E=- a2 [—+(1-2u)r]

Au (1 o)

APO b2

o

Young's modulus was determined to be in the range of 0. 7 x 106 psi

to 1x 106 psi for first cycle. Higher experimental values (4 x106

psi) were found for second cycle and thereafter. Transition test

results show that Young's modulus for second cycle and beyond range

between 2. 4 x106 psi and 3 x106 psi.

Plasticity solution for large boundary motion such as Eq. 2.2-4

1

where --—--—- (P - P.)

o 1
_ .3 K

o

a - 2V2

b — e

were utilized to determine the octahedral shear strength of rock salt

which is around 2300 psi. Experimental data from the transition test

were found to agree generally with these values.

Cavity reduction as a function of elastic-plastic deformation is

described by Eqs. 2. 3-37, 2. 3-54 and 2. 4~9, such that
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Ko 2 Pa

u (l-‘2u)[ 3 K (ilnp— a) 2V2- f_ o ]

r=a— G o 2 4 4 b2 2
2 2 0

——?—K 2

(1 M2 2 0 E-

2G
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based on total incompressibility in plastic region.

The radial displacement and the reduced cavity radius were

expressed as functions of geometry and external pressure. Close

agreement is observed between theory and experimental results,

indicating rock salt may be considered as ductile, isotropic and

homogeneous under triaxial compression.

From the transition test, the stress relaxation equation in the

plastic and viscoelastic regions are defined respectively as:
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from which the viscosity coefficients n1 and 172 are determined such

that

GI

n1: — = 5 x1014 poises

“i

and

(31+ G2

77, = —— z 96 x1014 poises
“2

where a1 and (12 are experimental values determined from the stress

relaxation figures.

The creep behavior of a model salt cavity is determined by

considering the viscous behavior of rock salt beside its elastic and

plastic deformations. The creep rate equations are as follows:

 

G2

-—t

d6r l 1 Ko l 772

=-[—(l-—)+—-e ](I'

dt 2 n1 To n2 r

G2

d K ”fit

l:l[_1_(1__°_)+_1_e 77210.

dt 2 1 To Z 8

a-a -Pt

 

that fits very closely the experimental data in the viscoelastic region,

is compared with the theoretical equation developed from the above

creep equations such that
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Both equations have exactly the same creep form. To verify the

. . . . G2
validity of this comparison the value of P and 7.1-;- were calculated

from experimental results of model salt cavities and those of transi-

tion tests respectively. Close agreement between these values were

observed which led to the verification of the mathematical equation

and the conclusions that

and

N
I
.
.
.

N O

N



CHAPTER VIII

CONCLUSIONS

Based upon the theoretical and experimental analysis discussed

in the previous chapters, the following conclusions have been drawn.

Me chanical Prope rtie s
 

The following fundamental properties of rock salt were deter-

mined by two different triaxial testing procedures.

1. Young's modulus from the first cycle of the hollow cylinder

tests varied between 0.7 x 106 psi and 1.2 x106 psi with an

average of about 0. 85 x 106 psi. While, from second and sub-

sequent cycles, it was about 4 x 106 psi.

Value of Young's modulus from first cycles of the transition

test was about 0. 4 x 106 psi. From the second and subsequent

cycles, it varied between 2 x 106 psi and 3 x 106 psi with an

average of 2.6 x106 psi.

Variations of Young's modulus within the same test technique

were relatively small compared to the variation between the

two different testing procedures.

The mean octahedral shear strength obtained from the large

deformation theory of thick-walled cylinder was around 2,300

psi.

The octahedral shear strength of the LS-specimens ranges

153
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from 1300 psi to 2000 psi for the first and third cycles of load-

ing respectively as shown in Table 6. 3. In comparison, the

octahedral shear strength for the relatively less pure MS-

specimens ranges from 1700 psi to 2100 psi for the first and

fourth cycles of loading respectively.

Rock salt exhibits strain-hardening characteristics. The slope

of work hardening part, H', decreases rapidly and approaches

zero within a short range of stress.

Repeated cycles of loading result in. a general increase in the

strength of the material. The increase in strength is partially

evident in the increase of octahedral shear strength value.

Structural Behavior
 

l. The elastic theory can be applied for analysis of the stress~

strain distribution around a salt cavity so long as the octahedral

shear stress is less than its maximum elastic value.

The elasticity theory has been used effectively to determine

Young's modulus of the material as a continuous medium under

triaxial compression.

The maximum shear theory and the energy of distortion theory

are directly applicable for analyzing the strength of rock salt

under multiaxial compression only if the material tested is

assumed to be ductile, isotropic and homogeneous.
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Theoretical analysis has been completed on the stress, strain

and boundary motion of a cylindrical cavity. Theoretical re-

sults compared reasonably well with the experimental results.

Fig. 6. 6 shows the theoretical stress-displacement relation in

comparison with the experimental results. The experimental

behavior of the reduced cavity radius '‘a" as a function of applied

stresses compares reasonably well with the theoretical results.

The volume reduction of a salt cavity is a function of the applied

loads. The higher the loads, the larger the volume reduction.

An instantaneous stress equilibrium always exists between the

advancing plastic zone and the surrounding elastic part. As the

applied stresses increase the plastic radius increases and the

modified inner radius decreases, resulting in a stable cavity.

The salt cavity is unstable and can be fractured if the internal

pressure exceeds the external pressure.

Plastic deformation increases with the increase in applied loads.

However, contrary to uniaxial tests on salts, plastic deforma-

tion rate of the cavity under constant external loads decreases

rapidly with time .

A mechanical model describing the structural behavior of rock

salt was proposed and verified in the laboratory. The model

consists of elastic, viscoelastic and viscoplastic elements whose

coefficients were successfully determined from laboratory tests.
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ticity and plasticity constants were determined from

the transition tests. The viscoplasticity coefficient, 27], is

relatively much smaller than the viscoelastic one. A simple

graphical method was developed to determine these coefficients.

They are calculated as follows:

771

and

772

where

’71

772

GI

C'z

 

= viscosity constant in the plastic region

= viscosity constant in the viscoelastic region

= slope of the octahedral stress relaxation curve in

the plastic region

= slope of the octahedral stress relaxation curve in

the viscoelastic region

2 octahedral shear modulus

retarded shear modulus

11. The empirical creep equation of a hollow cylinder

a-a --Pt

 

f

=ce

a

0

established in the laboratory, agrees with the theoretical
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equation derived from mathematical theory of viscoelasticity,

 

 

Gz

a a (r ' - _ t

f _ 1 .6. e "2
a. 2 G2

0

where

af = modified inner radius at t equals infinity

a = modified inner radius at any time t

a0 = initial inner radius

C = constant

The P value of the empirical equation of the cavity was found

C . . .
to agree very closely to the value of ;1—2- obtained from tranSition

2.

tests.



CHAPTER IX

FUTURE RESEARCH

A phenomenological approach to rock mechanics has been

studied based on simple isotropic, homogeneous and linear visco-

elastic characteristics which provided a satisfactory agreement be-

tween theoretical calculations and experimental results. However,

during the course of the present investigation, certain complications

were encountered from which the following recommendations for

future research can be made.

1. The experimental results for the determination of Young's

modulus under triaxial compression, from the hollow cylinder

and transition tests failed to agree. Part of this may be con-

tributed by experimental errors in both techniques. However,

a considerable amount of this error was observed to be due to

the use of dial gages in measuring the axial strains. Hence, a

more precise device to measure this strain would eliminate

this potential error and improve the experimental results.

2. An attempt was made to determine the octahedral shear strength,

' Ko' from the boundary motion of a hollow thick -walled cylinder.

The values obtained were based on a few readings in the com-

pletely plastic state. It is suggested to use a higher capacity

pressure vessel to obtain more readings and improve the value

of K .

O
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The analytical results in the three-dimensional analysis of

model cavity deformation did not show complete agreement with

the experimental results at high external loads. It would be

more correct to consider instantaneous cavity measurements

to eliminate the plastic flow effects at such high stresses.

Theoretical analyses have shown that the plastic strain rate is

time «dependent and a function of the deviatoric stresses.

Therefore, it is inadequate from the present experimental re-

sults to determine the viscosity constant, 171. Hence, a plastic

stress-strain rates diagram might be used to evaluate m.

In the present investigation, an effort was made to determine

the material properties and verify the creep equations. No

effort was made to determine the creep rate equations for any

particular opening such as tunnels, mines or oil wells. Such

analysis might be of practical importance for different mining

or drilling operations. It is suggested then, to apply the ex-

perimental and theoretical analysis of the model salt cavity

developed in laboratory, to actual field measurements.

The theoretical analysis in this study was based on the assump—

tion that rocks behave like a ductile material under multiaxial

compression and accordingly the Maximum Shear Theory and

the Energy of Distortion Theory were used. However, for a
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partially confined state, where the theories for ductile

material cannot be applied, Mohr's theory of rupture might

be more applicable .
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