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ABSTRACT

PREDICTIVE MODELS FOR ROBOTICS AND BIOMEDICAL APPLICATIONS

By

Huan N Do

Data science has been transforming an enormous number of research areas. It has opened

the door to new measures to analyze and extract useful information from raw data. However,

while it has been applied extensively in computer science community, there has been a

modest number of such applications in the field of robotics and biomedical engineering. In

this dissertation, we consider the applications of data analysis and machine learning tools in

two research topics: mobile robot localization and cardiovascular predictive models.

In the first part of the dissertation, we tackle a problem of feature selection for

appearance-based localization. Raw image is a high-dimensional source of data, and as

the resolution of visual sensor has been improved rapidly, we are equipped with even higher

dimensional and richer visual information. To deal with the high dimensionality problem,

a common and straightforward strategy is to select the most effective visual features for

the localization task, i.e., feature selection. In this dissertation, we propose two methods of

feature selection. First of all, we model each dimension of the feature vector as a Gaussian

process random field with the independent variables as the coordinates of the robot. Thus,

the locations of the robot can be inferred by applying a maximum likelihood estimator. The

optimal set of features are chosen by backward elimination scheme. Secondly, to minimize

the localization error in spatial space and to select the optimal subset of features, we formu-

late a multivariate version of the Least Absolute Selection and Shrinkage Operator (LASSO)

regression model. Under this formulation, we develop a combined localization scheme that

consists of the regression and a filtering estimator.

In the later part of this dissertation, we explore the use of predictive models to predict

the growth of an abdominal artery under the progression of a disease, Abdominal Aortic

Aneurysm (AAA). As a patient who is diagnosed with AAA, his/her artery may locally



be enlarged in pathological conditions and finally ruptures, we develop two prediction ap-

proaches using two common types of AAA geometrical data: 3D shapes from computer

tomography (CT) scans and 2D profile of maximal diameters over centerline. First of all, we

develop our Dynamical Gaussian Process Implicit Surface (DGPIS) for 3D shape prediction.

In this method, we consider a 3D surface as a manifold embedded in a scalar field over the

3D dimensional space, the changes of which propagate the changes in the surface. Thus,

by utilizing a dynamic model to represent the evolution of the field over time, we can make

an inference about the AAA surface in a future time. Secondly, maximal AAA diameter is

a crucial criterion for making a surgery intervention decision in clinical practice. Thus, we

investigate a Deep Belief Network (DBN) model that is trained on artificial data created

from Probabilistic Collocation Method (PCM) and real patients based reconstructed data.

Since the merit of DBN and deep structure in general depends on a massive size of training

data, which is commonly rare in this application, we overcome the shortage by pre-training

the DBN on simulated data generated from PCM, then fine-tuning the neural net on recon-

structed data from the real patients. The experimental results illustrate the effectiveness of

our proposed methods.
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Chapter 1

Introduction

1.1 Part 1: appearance-based localization

In recent years, building a complete self-driving car has been a brutal race among a wide

range of competitors1, from information-technology companies such as Google to prolong

automobile makers such as General Motors, or start-up-based companies like Tesla. Self-

driving is a futuristic technology that with no doubt will be a game changer in terms of not

only profitability but also humanity as more human lives can be saved from traffic accidents.

However, the advance of self-driving technology, which critically depends on the localiza-

tion capability, now is hindered by the limitation of GPS acccuracy2 or being interrupted

at GPS-denied regions. Hence, there are strong motivations for developing local navigation

technologies that do not solely depend on GPS. Therefore, we develop a localization scheme

that is built based on visual sensor measurements, i.e., appearance-based localization. By

including the whole dimensions of visual data and providing a complete treatment of associ-

ating the feature selection outcomes and the dynamics of the system, our approaches yield

excellent tracking performance, which are validated in a number of experimental results.

1The list of companies that apply for testing license from California Department of Motor Vehicles:
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing

2The state-of-the-art GPS now has accuracy of 1 ∼ 2 meters, which is obviously inadequate to prevent
high speed collision.
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Thus, they may be combined with localization with GPS as the information is collected by

self-driving vehicles. Furthermore, as GPS is disabled in a certain GPS-denied regions, our

algorithms are able to serve as a back-up unit to main the reliable tracking.

1.1.1 Background

In order to make a fast and precise estimation, most of the existing localization algorithms

extract a small set of important features from the robotic sensor measurements. The features

used in different approaches for robotic localization range from C.1: artificial markers such

as color tags [56] and barcodes (that need to be installed) [97], C.2: geometric features such

as straight wall segments and corners [57], and to C.3: natural features such as light and

color histograms [5]. Most of the landmark-based localization algorithms are classified in C.1

and C.2. It is shown in [94] that autonomous navigation is possible for outdoor environments

with the use of a single camera and natural landmarks. In a similar attempt, [23] addressed

the challenging problem of indoor place recognition from wearable video recording devices.

The localization methods which rely on artificial markers (or static landmarks) have

disadvantages such as lack of flexibility and lack of autonomy. A method is described in

[109] that enables robots to learn landmarks for localization. Artificial neural networks are

used for extracting landmarks. However, the localization methods which rely on dynamic

landmarks [109] have disadvantages such as lack of stability. Furthermore, there are reasons

to avoid the geometric model as well, even when a geometric model does exist. Such cases

may include: 1) the difficulty of reliably extracting sparse, stable features using geometrical

models, 2) the ability to use all sensory data directly rather than a relatively small amount

of abstracted discrete information obtained from feature extraction algorithms, and 3) high

computational and storage costs of dealing with dense geometric features.

In contrast to the localization problem with artificial markers or popular geometrical

models, there is a growing number of practical scenarios in which global statistical informa-

tion is used instead. Some works illustrate localization using various spatially distributed

2



(continuous) signals such as distributed wireless Ethernet signal strength [30], or multi-

dimensional magnetic fields [113]. In [117], a neural network is used to learn the implicit

relationship between the pose displacements of a 6-DOF robot and the observed variations

in global descriptors of the image such as geometric moments and Fourier descriptors. In

similar studies, gradient orientation histograms [67] and low dimensional representation of

the vision data [110] are used to localize mobile robots. In [83], an algorithm is developed for

navigating a mobile robot using a visual potential. The visual potential is computed from

the image appearance sequence captured by a camera mounted on the robot. A method

for recognizing scene categories by comparing the histograms of local features is presented

in [70]. Without explicit object models, by using global cues as indirect evidence about the

presence of an object, they consistently achieve an improvement over an orderless image

representation [70].

1.2 Part 2: predictive models of Abdominal Aortic

Aneurysm

Computer-aided diagnosis (CAD) has been studied and applied3 since the 1960s to help

physicians to make decisions faster and more accurate, especially with time pressure. The

technology, when being mature, will certainly play pivotal role in disease prognosis and

clinical management. CAD offers two main analysis functions that outperform those of

humans. Firstly, it provides synthetic information from various sources of data, e.g., CT, MRI

or PET scans, which is not obvious to see with information from a single source. Secondly,

given measurements for one patient, it can process through an available database to find

similar cases and their pathology. These features aim a physician with more information

that he/she could obtain by viewing at one image or medical record alone, thus yield better

3The market of medical image analysis software is forecasted to reach 4.5 billion USA in 2024:
http://www.grandviewresearch.com/industry-analysis
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informed treatment decisions. One of the aspect of CAD that has been receiving attention

from researchers is its predictive capability of biomedical variables that evolve in time. In

this study, we particularly consider a disease named Abdominal Aortic Aneurysms (AAAs),

which is a local enlargement of the aorta coming from the heart to carry blood to the

abdominal body. An undetected aneurysm will keep growing until the point of rupture.

Because risks from open surgery or endovascular repair outweigh the risk of AAA rupture,

surgical treatments are not recommended with AAAs less than 5.5cm in diameter [85].

Since monitoring the growth of AAA to decide when a surgery is necessary is critical for

the treatment of the disease, a predictive model to predict the growth has been heavily

investigated.

1.2.1 Background

To predict the temporal growth of the 3D shape of an AAA, there have been research

efforts to adopt statistical regression techniques in predicting AAA shape growth. Ijaz et

al. [54] has applied a similar approach of spatio-temporal Gaussian process regression to

infer the geometrical growth of a parameterized AAA’s surface. Additionally, there is a

growth and remodeling (G&R) model that uses a Finite Element Method (FEM)-based

stress-mediated disease progression [27]. Finally, surface parameterization based methods

have been commonly deployed in applications dealing with AAAs [54, 88]. The surface

parameterization with cross-sectional contours and a longitudinal line are naturally favored

due to the tubular form of an aorta [88].

On the other hand, beside the 3D shape, there are also various biomechanical analyses

using other geometrical factors (e.g., different diameter measurements [34,65], tortuosity [84],

morphological parameters [91], presence of thrombus [6, 76, 125], influence of the spine [27])

have been proposed to reliably predict the risk of rupture. Among those geometrical factors,

maximum diameter is a critical criterion for screening, surveillance and intervention decision

making [73]. In particular, a group of authors [34] proposes a method to model AAA’s
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geometrical shape, given by a series of maximal spheres along the centerline within the lesion.

The geometrical model is plotted as a 2D profile curve (diameters versus axial direction) and

is used to assess the risk of local rupture of an aorta. Sweeting et al. [107] utilize a multilevel

models to make predictions about the future size of aneurysm of individual with longitudinal

AAA scanning data. The hierarchical linear growth model utilizes a zero-mean Gaussian

distributed random-effects term to simulate the growing effects of aneurysms. Additionally,

the linear and quadratic hierarchical growth models have been also heavily used to make

predictions about the future size of aneurysms [11,26].

1.3 Contribution

In this section, we discuss an overview of the distribution of this dissertation in the order of

chapters.

In chapter 2, we propose a position estimation method using an omnidirectional camera.

We present an approach to build a map from optimally selected visual features using GP re-

gression. First, we describe how we extract some robust properties from vision data captured

by an omnidirectional camera. In particular, we describe how different transformations are

applied to the panoramic image to calculate a set of image properties. We then transform

the high dimensional vision data to a set of uncorrelated feature candidates. A multivariate

GP regression with unknown hyperparameters is formulated to connect the set of selected

features to their corresponding sampling positions. An empirical Bayes method using a point

estimate is used to predict the feature map. Next, a feature reduction approach is devel-

oped using the backward sequential elimination method such that an optimal subset of the

features is selected to minimize the Root Mean Square Error (RMSE) and compress the fea-

ture size. The effectiveness of the proposed algorithms is illustrated by experimental results

under indoor and outdoor conditions. Additionally, we compare our results with another

appearance-based localization method utilizing the bag of words (BOW) algorithm [9].
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In chapter 3, we focus on building a direct mapping from features space to the coordinates

instead of solving for locations from the feature map via MLE. Therefore, the test phase is

executed in a short period of time since our method does not require any image matching

or optimization steps. Secondly, our method is robust to visual noise and does not need

high resolution images, which allows it to be applicable in low cost embedded systems.

For instance, we use relatively low quality and noise-prone images captured from a regular

webcam (Logitech C270, Logitech, Newark, CA, U.S.A.), yet the system yields remarkably

accurate results. Furthermore, in contrast to approach in [99], our proposed method does not

require depth measurements of the SURF points. Finally, as the dimensionality decreases in

the data, the required storage in its database also reduces. Unlike the work in [8] when the

quantity of data (i.e., number of images to be stored) is reduced based on removing images

that have similar visual features, our method eliminates redundancy in the quality of data.

In addition, its application is not limited to localization, but is versatile to other computer

vision problems such as object recognition, movement tracking, etc.

In chapter 4, we propose a method to model a dynamically changing 3D shape of an

AAA given its longitudinal surface data for its prediction in future time. We briefly discuss

our Dynamical Gaussian Process Implicit Surface (DGPIS) model to tackle our problem as

follows. Our approach builds on the concept of implicit surfaces [24]. An implicit surface

describes the shape of an AAA by a function that maps coordinates of each point in the space

to a scalar value (z), which may indicate the point’s relative position with respect to the

surface of the AAA, i.e., inside (z < 0), outside (z > 0), or on the surface (z = 0). Note that

the AAA can have an arbitrarily complex shape. When we consider dynamically changing

shape (e.g., AAA), the outcome of the implicit surface function is a time-varying random

field over the 3D spatial space. The surface is visible while the field is hidden except the

noisy measurements at z = 0. In other words, the surface is embedded in the random field.

Thus, the changes in the surface are driven by the corresponding changes in the hidden field.

We first estimate the hidden field from the point cloud data by utilizing the spatio-temporal
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Gaussian process regression as an observation process from the point clouds data. We then

further refine the spatio-temporal field by assuming that each point in the field follows linear

dynamics in time, key model parameters of which will be estimated via the Expectation-

Maximization (E-M) algorithm [101]. Finally, the refined spatio-temporal field allows us

to estimate the embedded surface. The refined spatio-temporal random field using linear

dynamics provides a way to predict a future shape of the AAA and its growing uncertainty

as the prediction time horizon increases otherwise not possible with the Gaussian process

regression technique. The model in this study can be viewed as a step towards a Bayesian

approach that will be capable of incorporating various uncertainties, patient-specific data,

and computational models for aneurysm growth.

In chapter 5, we introduce a deep learning network to the solve the problem of maximum

diameter curve prediction of an AAA based on a limited data size collected from real patients.

In particular, we provide a complete framework to connect the computational model with

a deep belief network. Computational models have been serving as an investigation tool to

simulate effects of external structure to the progression of the AAA [28]. Moreover, due to

the simplified geometry, the computational models have not been used as (or a part of) a

predictive tool. Up to date the computational model and deep structure are developed in

two separated and independent paradigms. In this study, the computational model provides

deterministic growing trend while while the deep structure can learn the variation in the

data.

1.4 Publication

In this section, I would like to present the list of published (as well as will be published)

journals articles and conference proceedings that are highly related to this dissertation.
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Chapter 2

Feature selection in feature space

Minimizing levels of location uncertainties in sensor networks or robotic sensors is important

for regression problems, e.g., prediction of environmental fields [14, 55]. Localization of a

robot relative to its environment using vision information (i.e., appearance-based localiza-

tion) has received extensive attention over past few decades from the robotic and computer

vision communities [7, 19]. Vision-based robot positioning may involve two steps. The first

step involves learning some properties of vision data (features) with respect to the spatial

position where observation is made, so-called mapping. The second step is to find the best

match for the new spatial position corresponding to the newly observed features, so-called

matching. The mapping from these visual features to the domain of the associated spatial

position is highly nonlinear and sensitive to the type of selected features. In most cases, it

is very difficult to derive the map analytically. The features shall vary as much as possi-

ble over the spatial domain while varying as small as possible for a given position over the

disturbance. For example, they should be insensitive to changes in illumination and partial

obstruction.

Motivated by the aforementioned situations, we consider the problem of selecting features

from the original feature set in order to improve the localization performance of a robot.

The central assumption when using a feature selection technique is that the original feature
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set contains many redundant or irrelevant features. To facilitate further discussion, let us

consider a configuration where the input vector X is the robot position and the output

feature vector Y is the collection of extracted features from the vision data. We first build

a feature map F at a robot location X such that F (X) = Y . In order to reduce position

estimation error, the ideal subset is defined as follows.

Yopt = arg min
Ŷ
‖X − F−1(Ŷ )‖2,

where Ŷ is a vector that consists of the selected entries of the original vector Y . However with

a high cardinality of the original feature set, the optimal solution relies on the combinatorial

optimization which is not feasible.

One example of the function F (X) can be the mutual information criterion, in which F

and F−1 could be chosen as follows:

F (X) = arg max
Y

I(X, Y ), F−1(Y ) = arg max
X

I(X, Y ),

where I(X, Y ) =
∫ ∫

P(X, Y ) log
(

P(X,Y )
P(X)P(Y )

)
is the mutual information of X and Y . Note

that, in the case where P(X) and P(Y ) are constant then F (X) obtained by maximizing

the log-likelihood function. Guo et al. [39] show by using mutual information, one can

achieve a recognition rate higher than 90% while just using 0.61% of feature space for a

classification problem. However, the approach based on mutual information could suffer

from its computational complexity [86].

The recent research efforts that are closely related to our problem are summarized as

follows. The location for a set of image features from new observations is inferred by com-

paring new features with the calculated map [12, 78, 79]. In [116], a neural network is used

to learn the mapping between image features and robot movements. Similarly, there exists

effort on automatically finding the transformation that maximizes the mutual information

between two random variables [115]. Using Gaussian process (GP) regression, the authors
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Figure 2.1 (a) and (b) show the wrapped omnidirectional image and the unwrapped
panoramic image, respectively. (c) and (d) show the reduced size gray scale image and
the two-dimensional FFT magnitude plot, respectively.

of [12,96] present effective approaches to build a map from a sparse set of noisy observations

taken from known locations using an omnidirectional camera. While the selection of visual

features for such applications determines the ultimate performance of the algorithms, such

a topic has not been investigated to date. Therefore, building on Brook’s approach [12] our

work expands it more on the feature extraction and selection in order to improve the quality

of localization. A Bayesian point of view is taken to make the map using a GP framework.

2.1 Image features

Conventional video cameras with projective lens have restricted fields of view. With different

mirrors, 360◦ panoramic views can be achieved in a single image [29]. In this study, to make

localization insensitive to the heading angle, an omni-directional camera is used to capture

a 360◦ view from the environment of a robot.

Before an omnidirectional image is processed, it is first unwrapped. When it comes from

the camera, the image is a nonlinear mapping of a 360◦ panoramic view onto a donut shape.
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Recovering the panoramic view from the wrapped view requires the reverse mapping of pixels

from the wrapped view onto a panoramic view [17, 78]. Figs. 2.1-(a) and 2.1-(b) show the

wrapped omnidirectional image and the unwrapped panoramic image, respectively.

We will use the notation y[i] generally for all types of image properties that will be

extracted from image i. In particular, we will use the FFT coefficients, the histogram, and

the Steerable Pyramid (SP) decomposition [103] as image properties [70]. These feature

types and their properties (indicated by y[i]) are briefly explained as follows.

FFT (128): The fast Fourier transform (FFT) is applied to the panoramic image to calcu-

late a set of image properties y. For a square image of size N×N , the two-dimensional

FFT is given by

F [i](ρ, l) =
N−1∑
a=0

N−1∑
b=0

f [i] (a, b)e−j2π(ρ a
N

+l b
N

),

where f [i] is the i-th two-dimensional realized image, and j is the imaginary unit. To

use FFT, we convert panoramic color images to gray scale 128 × 128 pixel images,

i.e., [f(a, b)]. Fig. 2.1-(c) and (d) show the reduced size gray scale image and its two-

dimensional FFT magnitude plot, respectively. Often in image processing, only the

magnitude of the Fourier transformed image is utilized, as it contains most of the in-

formation of the geometric structure of the spatial domain image [81]. Additionally, the

magnitude of the Fourier transformed panoramic image is not affected by the rotation

in yaw angle. In [78], it was shown that the first 15 components of FFT carry enough

information to correctly match a pair of images. We specify the first 64 FFT compo-

nents of each axis, e.g., y[i] = {F [i](1, 0), · · · , F [i](64, 0), F [i](0, 1), · · · , F [i](0, 64)} to be

our 128-dimensional image properties of the FFT features.

Histogram (156): The image histogram [40] is a type of a histogram that acts as a graph-

ical representation of the tonal distribution in a digital image. The number of pixels

in each tonal bin of the histogram for the image is used as a image property from the
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histogram. Thus, the number of different tonal bins, (which is 156) corresponds to the

number of image properties from the histogram of the image.

SP (72): The Steerable Pyramid (SP) [103] is a multi-scale wavelet decomposition in which

the image is linearly decomposed into scale and orientation subbands, and then the

band-pass filters are applied to each subband individually. Using the method from [12],

an image is decomposed by 4 scale and 6 orientations, which yields 24 subbands.

Each subband is represented by three values, viz., the average filters responses from

top, middle, and bottom of the image such that we have 72 image properties for

the SP decomposition. The multi-scale wavelet decomposition is also used widely by

appearance-based place recognition methods [12,110].

SURF (64): The Speeded-Up Robust Features (SURF) [45] is a powerful scale- and

rotation-invariant that utilizes Haar wavelet responses to produce a 64 dimensional

descriptor vector for points of interest in an image. Furthermore, the SURF feature of

each point of interest is calculated locally based on the neighborhood region around it.

In general, specific image processing to generate original features will affect the overall

performance of the localization. These features are robust to changes in the yaw angle of the

vehicle, which results in horizontal shifts of the pixels of the panoramic images. Additionally,

images are converted into gray-scale for all types of features since the gray-scale images are

less likely to be affected by illumination [59]. The presence of moving objects and occlusions

are treated by modeling image features as Gaussian processes via vertical variability and

measurement noise, respectively.

2.2 Gaussian process (GP) model

We propose a multivariate GP as a model for the collection of image features. A GP defines

a distribution over a space of functions and it is completely specified by its mean function

14



and covariance function. We denote that y[i]
ρ := yρ

(
s[i]
)
∈ R is the i-th realization of the

ρ-th image property and s[i] ∈ S is the associated position where the realization occurs.

Here S denotes the surveillance region, which is a compact set. Then, the accumulative

image properties y is a random vector defined by y =
(
yT1 , · · · , yTm

)T ∈ Rnm, and yρ =(
y

[1]
ρ , · · · , y[n]

ρ

)
∈ Rn contains n realizations of the ρ-th image property.

We assume that the accumulative image properties can be modeled by a multivariate

GP, i.e. y ∼ GP(Γ,Λ), where Γ : Sn → Rmn and Λ : Sn → Rmn×mn are the mean function

and the covariance function, respectively. However, the size and multivariate nature of the

data lead to computational challenges in implementing the framework.

For models with multivariate output, a common practice is to specify a separable covari-

ance structure for the GP for efficient computation. For example, Higdon [46] calibrated

a GP simulator with the high dimensional multivariate output, using principal components

to reduce the dimensionality. Following such model reduction techniques, we transform the

vector y to a vector z such that its elements {zρ|ρ ∈ Ωm}, where Ωm = {1, · · · ,m} are i.i.d.

The statistics of y can be computed from the learning data set.

µy =
1

n

n∑
i=1

y[i], Σy =
1

n− 1

n∑
i=1

||y[i] − µy||2.

The singular value decomposition (SVD) of Σy is a factorization of the form Σy = USUT ,

where U is a real unitary matrix and S is a rectangular diagonal matrix with nonnegative

real numbers on the diagonal. In summary, the transformation will be performed by the

following formula.

z[i] = S−1/2UT (y[i] − µy). (2.1)

From now on, we assume that we applied the transformation given by (2.1) to the visual

data. Hence, we have the zero-mean multivariate GP: z(s) ∼ GP(0,K(s, s′)), which consists

of multiple scalar GPs that are independent of each other.
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2.2.1 The ρ-th random field

In this subsection, we only consider the ρ-th random field (visual feature). Other scalar

random fields can be treated in the same way. A random vector x, which has a mul-

tivariate normal distribution of mean vector µ and covariance matrix Σ, is denoted by

x ∼ N (µ,Σ). The collection of n realized values of the ρ-th random field is denoted by

zρ := (z
[1]
ρ , · · · , z[n]

ρ )T ∈ Rn, where z[i]
ρ := zρ(s

[i]) is the i-th realization of the ρ-th random

field and s[i] = (s
[i]
1 , s

[i]
2 ) ∈ S ⊂ R2 is the associated position where the realization occurs.

We then have zρ(s) ∼ N (0,Σρ), where Σρ ∈ Rn×n is the covariance matrix. The i, j-th

element of Σρ is defined as Σ
[ij]
ρ = Cov(z

[i]
ρ , z

[j]
ρ ). In this dissertation, we consider the squared

exponential covariance function [90] defined as

Σ[ij]
ρ = σ2

f,ρ exp

(
−1

2

2∑
`=1

(s
[i]
` − s

[j]
` )2

σ2
`,ρ

)
. (2.2)

In general, the mean and the covariance functions of a GP can be estimated a priori by

maximizing the likelihood function [123].

The prior distribution of zρ is given by N (0,Σρ). A noise corrupted measurement z̃[i]
ρ at

its corresponding location s[i] is defined as follows.

z̃[i]
ρ = z[i]

ρ + ε[i]ρ , (2.3)

where the measurement errors {ε[i]ρ } are assumed to be an independent and identically dis-

tributed (i.i.d.) Gaussian white noise, i.e., ε[i]ρ
i.i.d.∼ N (0, σ2

ε,ρ). Thus, we have that

z̃ρ ∼ N (0, Rρ),

where Rρ =
(
Σρ + σ2

ε,ρI
)
. The log-likelihood function is defined by

Lθ,ρ = −1

2
z̃Tρ R

−1
ρ z̃ρ −

1

2
log detRρ −

n

2
log 2π, (2.4)
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where n is the size of z̃ρ.

The hyperparameter vector of the ρ-th random field is defined as θρ =

(σf,ρ, σε,ρ, σ1,ρ, σ2,ρ) ∈ R4
>0. Using the likelihood function in (2.4) the hyperparameter vector

can be computed by the ML estimator

θ̄ρ = arg max
θ
Lθ,ρ, (2.5)

which will be plugged in prediction as in an empirical Bayes way.

All parameters are learned simultaneously. If no prior information is given, then the

maximum a posteriori probability (MAP) estimator is equal to the ML estimator [123].

In a GP, every finite collection of random variables has a multivariate normal distribution.

Consider a realized value of the ρ-th random field z?ρ being taken from the associated location

s?. The probability distribution P(z?ρ|s?, s, z̃ρ) is a normal distribution with the following

mean and variance.

µρ(s
?) = CT

ρ R
−1
ρ z̃ρ, σ2

ρ(s
?) = σ2

f,ρ − CT
ρ R
−1
ρ Cρ, (2.6)

where the covariance Cρ := Cov(z?ρ, zρ) ∈ R1×n is defined similar to (2.2).

In order to estimate location s?, using the MAP estimator, we need to compute

P(s?|z̃?ρ, s, z̃ρ), where the noisy observation z̃?ρ is the summation of the realized values of

the random field z?ρ and a noise process.

P(s?|z̃?ρ, s, z̃ρ) =
P(z̃?ρ|s?, s, z̃ρ)P(s?|s, z̃ρ)

P(z̃?ρ|s, z̃ρ)
. (2.7)

A MAP estimator given the collection of observations z̃ρ is a mode of the posterior

distribution.

s̄?ρ = arg max
s?∈S

P(s?|z̃?ρ, s, z̃ρ). (2.8)

If P(s?|s, z̃ρ) and P(z̃?ρ|s, z̃ρ) are uniform probabilities, then the MAP estimator is equal
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to the ML estimator, given by

s̄?ρ = arg max
s?∈S

Lρ(s
?), (2.9)

where the ρ-th log-likelihood function, i.e., Lρ(s?), is defined as follows.

Lρ(s
?) =

−1

2

( |z̃?ρ − µρ(s?)|2
σ2
ε,ρ + σ2

ρ(s
?)

+ log
(
σ2
ε,ρ + σ2

ρ(s
?)
)

+ log 2π

)
. (2.10)

2.3 Localization and feature selection

Let Ω be the collection of indices that are associated to the multiple scalar random fields

(of the multivariate GP). Provided that all scalar random fields (of the multivariate GP) are

independent of each other, we then obtain a computationally efficient ML estimate of the

location given the observations of all scalar random fields {z̃ρ|ρ ∈ Ω} as follows.

s̄?Ω = arg max
s?∈S

∑
ρ∈Ω

Lρ(s
?), (2.11)

where Lρ(s?) is the ρ-th log-likelihood function as given in (2.10).

In this dissertation, a backward sequential elimination technique [61] is used for the

model selection. It is mainly used in settings where the goal is prediction, and one wants to

estimate how accurately a predictive model will perform in practice. To this end, we divide

the data set into two segments: one used to learn or train the GP model and the other used

to validate the model.

The RMSE is used to measure the performance of GP models. It is defined by the

following equation.

RMSE(Ω) =

√√√√ 1

nc

nc∑
i=1

∥∥∥s[i]
c − s̄?Ω

∥∥∥2

, (2.12)
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where ‖ ·‖ is the Euclidean norm of a vector. In the case that Ω = ∅, we define the following.

RMSE(∅) =

√√√√ 1

nc

nc∑
i=1

∥∥∥s[i]
c −median(sc)

∥∥∥2

,

where median(·) is the median of a random vector. Assume that Ωm = {1, · · · ,m} is the set of

all features. Dupuis et al. [25] reported that the backward sequential elimination outperforms

the forward sequential selection. Thus, we use a backward sequential elimination algorithm

as follows.

Ω`−1 = Ω` − arg min
ρ∈Ω`

RMSE(Ω` − ρ),∀` ∈ Ωm, (2.13)

where Ω` − ρ = {p|p ∈ Ω`, p 6= ρ}.

Finally a subset of features is selected as follows.

Ωopt = arg min
Ω=Ω1,··· ,Ωm

RMSE(Ω). (2.14)

The optimum subset Ωopt has the minimum RMSE among {Ω1, · · · ,Ωm}. The mapping and

matching steps of the proposed approaches in this disesrtation are summarized in Algorithm 1

and Algorithm 2, respectively.

2.4 Indoor and outdoor experiments

In this section, we demonstrate the effectiveness of the proposed localization algorithms with

experiments using different image features we discussed. We report results on two different

data sets collected indoors (Case 1) and outdoors (Case 2).
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Algorithm 1 learning maps from a sparse set of panoramic images observed in known
locations

Input: #1. training data set includes a set of panoramic images captured from
known spatial sites,

Output: #1. a linear transformation from image properties to uncorrelated visual
features,
#2. the estimated hyperparameter, the estimated mean and the estimated
variance function of each independent visual feature,

1: extract image properties y[i] in the available learning data set.
2: use SVD to make a set of uncorrelated visual features z[i] using (2.1)
3: for each independent visual feature estimate hyperparameters using (2.5)
4: compute the mean function and variance function for each of independent features using

(2.6)
5: choose optimal subset of visual features using (2.14) to eliminate some of the visual features

that are worthless for the localization goal.

Algorithm 2 localization predictive inference using learned map of visual features.
Input: #1. a linear transformation from image properties to uncorrelated visual

features,
#2. the estimated hyperparameter and the estimated mean and variance
function of selected visual features,

Output: #1. position of newly captured images.
1: capture new images and obtain image properties y?.
2: compute the selected visual features z? using (2.1)
3: compute the likelihood function of selected features ρ ∈ Ωopt over possible sampling posi-

tions using (2.10)
4: determine the estimated position s̄?Ωopt

using (2.11)

2.4.1 Experimental setups

In Case 1, the Kogeto panorama lens was used to capture 360◦ images. In total, 207 pairs

of exact sampling positions were recorded manually and corresponding captured panoramic

images on a regular lattice (7× 2.7 m2) were collected.

In Case 2, we use a vision and GPS data acquisition circuit which consists of an Arduino

microcontroller (Arduino MEGA board, Open Source Hardware platform, Italy), a Xsens

GPS unit (MTi-G-700, Xsens Technologies B.V., Netherlands), a Raspberry Pi microcon-

troller (Raspberry Pi model B+, Raspberry Pi Foundation, United Kingdom) and a webcam

(Logitech HD webcam C310, Logitech, Newark, CA, U.S.A.) glued to a 360◦ lens (Kogeto

Panoramic Dot Optic Lens, Kogeto, U.S.A.). The data acquisition circuit was secured inside
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Figure 2.2 Outdoor trajectory collected from a GPS unit.

the vehicle while the omni-directional camera was fixed on the roof of the vehicle. The vehicle

was driven through the surveillance area (Fig. 2.2). The surrounding scenes were recorded

by the Raspberry Pi unit while the truth locations measured by the Xsens GPS unit were

stored on the Arduino microcontroller. We collected 378 data points, on a 61×86 meter

area on the campus of Michigan State University, East Lansing, MI, U.S.A (see Fig. 2.2).

Figs. 2.3 and Fig. 2.4 shows the setups for Case 1 and Case 2, respectively.

The data sets are divided into 50% learning, 25% backward sequential elimination (or

validation) and 25% testing data subsets. The learning data set is used to estimate the mean

functions and the hyperparameters for the covariance functions to build GP models. The

validation data set is used to select the best features in order to minimize the localization
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Figure 2.3 Dot iPhone Panorama lens (left) and the indoor environment (right) for Case 1.

estimation RMSE and compress the feature. After the training and feature selection, we

evaluate the performance of the selected model using the testing data set, which was not

used for training or feature selection.

To analyze our results in a statistically meaningful way, we calculate the Bayesian Infor-

mation Criteria (BIC) index for the model with all features and the one with only selected

features in addition to the RMSE. The BIC is a criterion for model selection based on the log

likelihood with a penalty on the number of parameters to penalize over-fitting. The model

with a smaller BIC index is less likely to be over-fitted [64].

2.4.2 Learning of GP models in an empirical Bayes approach

As illustrative examples for the case of utilizing FFT features of length 128, we apply the

proposed algorithm to both data sets. The variance of the random field σ2
f , the spatial

bandwidth σ2
`,ρ, and the noise variance σ2

ε are estimated for each feature independently.

Thus, for the FFT case, 128 × 4 = 512 hyperparameters need to be estimated in total for

each experimental setup. The hyperparameters for Case 2 are estimated in the same manner.
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Figure 2.4 (a) Data acquisition circuit, (b) panoramic camera and (c) vehicle used in Case 2.
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The 3D plots of the means and variances of the first three GP models for the case of 128

FFT features are shown in Fig. 2.5.

To study the effect of the turning angle of the vehicle (or the yaw angle) on the features,

we run the algorithm with another data set in which the collected panoramic images are

pre-processed so that the heading of the panoramic image is kept constant using the yaw

angles from the GPS unit, denoted as (fixed angle) in Table 2.1.

All inferential algorithms are implemented using Matlab R2013a (The MathWorks Inc.,

Natick, MA, U.S.A.) on a PC (3.2 GHz Intel i7 Processor).

2.4.3 Localization utilizing the Bag of Words (BOW)

We also compare the GP-based approach with a localization scheme based on the BOW. To

have a fair comparison, we feed an identical data set to both of the methods. We utilize

the SURF as the image descriptor for our BOW. We define the notation y[i] as a set of

SURF points extracted from image i. Notice that the number of SURF points varies for

different images. The region around each SURF point is represented by a descriptor vector

of 64 length. The SURF points from the whole data set are accumulated and put into

the k-means clustering [41]. Each centroid is defined as a codeword and the collection of

centroids is defined as the codebook. Each SURF point is mapped into the index of the

nearest centroid in the codebook. Therefore, we obtain a histogram of codewords for each

image that indicates the appearance frequency of all codewords in the image. Lastly, the

test set is classified by applying the k-nearest-neighbor classifier [60] based on the histogram

of codewords.

We subsample 25% of the data to be the test set (the same test subset used in Table 2.1),

which is associated with a newly defined label set, i.e., IT := {1, · · · , nT}. The label of each

test data point s∗ is assigned to the non-test data points within a 5 meter radius with respect

to s∗ (see Fig. 2.6). Such relabeled non-test data points are used for training the BOW. Since

the BOW is mostly used for classification such as identical scenes recognition [9], we define
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Figure 2.5 GP models for each of first three FFT features from the outdoor data set. The
first row shows the means and the second row shows the variances of the GP models.
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Figure 2.6 Training data set assignment for the BOW. The test points, the training points
(with new labels), and the 5m radii are plotted in blue dots, red diamonds, and blue circles,
respectively. The training points that do not belong to any test groups are eliminated.

the localization error to compute the RMSE as follows.

Let st(i) ∈ S be the location of the test point i for all i ∈ IT . Let h?(i) be the predicted

label for the test data point i. Then we define the error at test point i as follows.

errori =

 ‖st(i)− st(h
?(i))‖ if i 6= h?(i),

0 if i = h?(i),
(2.15)

for all i ∈ IT .
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2.4.4 Experimental results

Our method over different features: The indoor and outdoor performances under different

image features are summarized in Table 2.1 and Table 2.2, respectively. We consider three

different types of appearance-based features such as the FFT [117], the histogram [40], and

the SP decomposition [103]. We calculate the RMSE of our localization estimation from the

model on the same validation set and on a separated test set, denoted by “V" and “T" in

the tables, respectively. To compare the reduction in the number of features, we use the

compression ratio [95]. The compression ratio is defined as:

Compression ratio :=
number of original features
number of selected features

.

Table 2.1 and Table 2.2 show the appearance-based feature type (column 1), the total

number of features (column 2), the optimum number of features along with the compression

ratio on the validation set (column 3), the localization RMSE obtained using the total

number of features (column 4), and the localization RMSE from the optimum number of

features selected by the backward sequential elimination (denoted as “BE") implemented

on the test set (column 5), and the localization RMSE from validation set (column 6), the

maximum localization error, i.e., emax taken over the test set (column 7), the BIC indexes

of the model using the total number of features (column 8), and the BIC indexes from the

optimum number of features (column 9). For Case 2, the FFT and SP features are tested

with the data in two situations when the yaw angles are varying and when they are fixed

(denoted as (fixed) in Table 2.2) to gauge the effect of yaw angles.

Performance among features: For Case 1, the SP shows the lowest localization RMSE with

4.8 compression ratio. For Case 2, the histogram shows the lowest localization RMSE with

2.7 compression ratio. The predicted trajectory that utilizes the histogram for Case 2 is

shown in Fig. 2.7. For all experiments, BIC indexes before and after the feature selection
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# of features RMSE (meters) emax BIC index
feature total opt All BE (meters) All opt
type V T T V T ×103 ×103

FFT 128 77 ( 1.7) 1.48 1.68 0.94 7.2 16.2 9.5
FFT
(noisy) 128 20 (6.4) 1.78 1.89 0.61 7.1 16.7 2.2

Hist 156 9 (17.3) 1.69 1.71 0.55 7.1 18.5 2.2
Hist
(noisy) 156 50 (3.1) 1.58 1.64 1.14 6.0 20.5 6.4

SP 72 15 (4.8) 0.67 0.85 0.27 3.4 22.2 4.1
SP
(noisy) 72 62 (1.2) 1.63 1.45 0.59 5.8 9.1 7.9

Table 2.1 The localization performance for Case 1

# of features RMSE (meters) emax BIC index
feature total opt All BE (meters) All opt
type V T T V T ×103 ×103

FFT 128 41 (3.1) 14.5 10.9 4.3 58.5 28.4 8.1
FFT
(fixed) 128 25 (5.12) 13.7 13.6 4.8 56.7 28.4 4.7

Hist 156 58 (2.7) 7.5 6.9 3.7 42.4 33.8 11.4
SP 72 35 (2.1) 21.08 18.72 7.86 63.4 15.6 7.1
SP
(fixed) 72 28 (2.6) 14.52 14.74 13.19 51.9 15.6 5.5

Table 2.2 The localization performance for Case 2

Feature type Number of features RMSE (meters)
total Optimum GP BOW

unfixed fixed unfixed fixed unfixed fixed
FFT 128 41 25 10.97 13.68 - -

Histogram 156 58 - 6.91 - - -
SP 72 35 28 18.72 14.74 - -

SURF - - - - - 23.15 22.07

Table 2.3 The localization performance comparison between the proposed approach and the
BOW in Case 2. The RMSE is from the test set.
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show the significant improvement that makes the selected model less likely susceptible to

over-fitting. From the RMSE on the test data set, all feature types seem to be robust to the

varying yaw angles.

Effect of localization noise: To investigate the effect of noisy sampling positions on the

method, we added fictitious localization noise generated by a Gaussian white noise process

with standard deviation of 0.3048 meters (i.e., 1 foot) to the sampled locations of Case 1,

which is denoted by (noisy) in Table. 2.1. As expected, the results show degradation when

noisy sampling positions are used due to the sampling uncertainty in the GP learning and

prediction processes.

Comparison of Cases 1 and 2: Note that sampling positions of Case 1 (non-noisy data)

were recorded exactly while those of Case 2 were noisy due to the uncertainty in the GPS

unit. On the other hand, it is clear that Case 2 has the larger RMSE due to the larger scale

of the surveillance site compared to Case 1. Together, the results of Case 1 are shown to

outperform those of Case 2.

Comparison with the BOW: We compare the performance between our proposed GP-based

approach and the BOW in Table 2.3. Table 2.3 shows the feature types (column 1), the

total number of features (column 2), the optimum selected number of features from the

angle-varying data set (column 3) and the fixed angle data set (column 4), the localization

RMSE of the GP-based method from the angle-varying data set (column 5) and the fixed

angle data set (column 6), the localization RMSE of the BOW from the angle-varying

(column 7) and the fixed angle (column 8) data sets. Since the performance of the BOW

highly depends on the clustering results, we run the BOW with different sizes of clusters,

and the one that yields the highest classification percentage (80-90%) is chosen to calculate

the RMSE using the error defined in (2.15). As discussed, the change in yaw angle does not

29



show significant effect on the SURF. Table 2.3 shows that our approach outperforms the

BOW.

In summary, we achieve significant reduction in the number of features while improving

the RMSE when applied to the validation set. Furthermore, we maintain approximately the

same RMSE levels when applied to a new test data set.
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Figure 2.7 Prediction result for Case 2 with the histogram. The test path and the prediction
are plotted over the Google Map image in red diamonds and green dots, respectively.
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Chapter 3

Feature selection in spatial space

Recall that in chapter 2, we have used the error e between the location X and the inverse

mapping of the reconstructed visual feature vector Ŷ , i.e., e = ‖X − F−1(Ŷ )‖2. Then, the

localization is done by finding the location X that minimizes the error e. In this chapter,

we approach the problem in the opposite respective: the error function now is changed to

e = ‖X −F (Y )‖2. Using a direct mapping from visual feature to location has been emerged

recently under the terminology “appearance-based localization”. Recent study has shown

that appearance-based localization techniques are more robust to noise, view obstruction,

and image quality inconsistency in comparison with geometrical markers [102]. Localization

of a robot relative to its environment using vision information has received extensive attention

over past few decades from the robotic and computer vision communities [7, 19]. Since it

provides more accurate estimation of positions, its applications are not limited in localization.

For instance, minimizing levels of location uncertainties in sensor networks or robotic sensors

is important for regression based prediction of environmental fields [14,55].

The appearance-based method is based on a supervised learning framework that uti-

lizes collections of location coordinates and visual observations. Fundamentally, models are

learned from a large number of images at the training step, then newly collected images

are recognized [43]. Visual features have been heavily used recently in robotic applications.
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In [117], a neural network is used to learn the implicit relationship between the pose dis-

placements of a 6-DOF robot and the observed variations in global descriptors of the image

such as geometric moments and Fourier descriptors. In similar studies, gradient orientation

histograms [67] and low dimensional representation of the vision data [110] are used to lo-

calize mobile robots. In [83], an algorithm is developed for navigating a mobile robot using

a visual potential. The visual potential is computed from the image appearance sequence

captured by a camera mounted on the robot. A method for recognizing scene categories

by comparing the histograms of local features is presented in [70]. Without explicit object

models, by using global cues as indirect evidence about the presence of an object, they

consistently achieve an improvement over an orderless image representation. Additionally,

the SURF feature has been often used for classification type problems such as topological

localization (image matching) [112] and place recognition [111]. Se et al. [99] investigated a

closely related problem by using the ego-motion technique to determine the pose of camera

based on the SIFT features [75]. In [18], the authors developed an x-ray vision system to

build a map of a totally unseen territory by utilizing the wifi signal. While the selection of

visual features for such applications determines the ultimate performance of the algorithms,

this topic has not been fully investigated to date.

In most of the cases, utilizing the full set of features is unlikely to yield optimal outcomes

due to the present of redundant features. Additionally, an exhaustive search by executing

tasks with all possible combinations of features is computationally unfeasible. Therefore,

selecting the most effective features is critical in two categories: (1) to maximize the per-

formance of the tasks and (2) to eliminate redundant features. For example, in localization

tasks, the selected features must be robust to local noise and sensitive to different locations

over the spatial field. One example of widely used feature selection technique is the Principal

component analysis (PCA) [58], which is utilized to find the mapping from image features

to the robot locations [98]. There are a number of methods to determine the significant vari-

ables in PCA. According to [87], the merit of those methods highly depends on the extent
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of correlation of variables. Another example is reported in [8], the author utilized a iterative

graph theory algorithm to obtain a Connected Dominating Graph to reduce the number

of images needed to be stored in training data set, as well as retain salient SIFT features.

However, since those methods are unsupervised learning, the selection process might not be

optimized for the localization performance. Thus, we focus our investigation to develop a

feature selection method based on a supervised learning framework.

The recent research efforts that are closely related to our problem are summarized as

follows. The location for a set of image features from new observations is inferred by com-

paring new features with the calculated map [12, 78, 79]. In [116], a neural network is used

to learn the mapping between image features and robot movements. Similarly, there exists

effort on automatically finding the transformation that maximizes the mutual information

between two random variables [115].

We first unwrap the omni-directional images into panoramic ones and extract three types

of visual features, which are Fast Fourier Transform, color histogram, and SUFT. We con-

catenate all different types of features together and normalize the feature vectors to eliminate

dominancy in value among different features. Then, we treat the robot’s coordinates as mul-

tivariate targets and train the group LASSO [82] regression model on the training data set.

Once the model is trained, we feed the newly captured image into the model to obtain an

estimated position. Next, we treat the estimated position as a noisy observation and deploy

a filtering estimator, e.g., EKF or PF, to remove the “jumping around” noise in the group

LASSO regression outcomes. Preliminary results for indoor and outdoor experiments were

reported in [20] and [21], respectively.

The overall structure of this chapter is as follows. We will introduce the visual features

that are used in this study in Section 3.1. We will then discuss the LASSO regression in

Section 3.2 and the group LASSO regression in Section 3.3. In Section 3.4, we will show how

to integrate the EKF into the LASSO based localization performance. Experiment results

are discussed in Section 3.5. For notations, we use A[i,j] for the entry of row i, column j,

34



A[i,:] for the i-th row of the matrix A, and N (0, σ2) as the normal distribution with zero

mean and variance σ2.

3.1 Image features

Inspired by a biological observation that insects and arthropods develop their nervous system

based on a wide view sense of sight, recently omni-directional cameras have been heavily

studied for navigation [119]. In contrast to conventional cameras with restricted fields of

view, panoramic cameras can provide complete views of the surrounding environment in a

single image. In order to extract useful features from an omni-directional image, we first

unwrap it as follows. The raw image captured by the omni-directional camera is a nonlinear

mapping of a 360◦ panoramic view onto a doughnut shape. We recover the panoramic

view by applying a reverse mapping of the pixels from the wrapped view onto a panoramic

view [17, 78]. From the panoramic images, we extract three types of visual features. In this

chapter, we will use the notation xi generally for the collection of all types of the image

features that are extracted from image i. In particular, we use the Fast Fourier Transform

(FFT) coefficients, the histogram, and SURF as the image features [70]. These feature types

and their properties are discussed in Section 2.1.

For the indoor environment, we utilize the FFT and Histogram, since they are more

robust to the dynamic change of the surrounding compared to the SURF. For the outdoor

experiment, since a large portion of the image is covered by uniform tonal pixels of the sky,

the FFT and Histogram features are not sensitive to the change in surrounding scenes. The

SURF features capture the local properties of points of interest in an image other than the

global properties like the other two. Therefore, we use the SURF for the outdoor experiment.

Features from different types are concatenated and normalized.
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3.2 The LASSO

Suppose that one image is captured for every sampling time i. Thus, we have the data

(xi, yi), i ∈ {1, · · · , N} where xi = [x
[1]
i , · · · , x

[p]
i ]T and yi are the input variable vector and

the target, respectively. Define X ∈ RN×p and y ∈ RN×1 as the collections of N observations.

We assume that the input vector and the target are standardized. Let b̂ = [b̂1, · · · , b̂p]T be

the linear fitting estimate vector that provides the estimated target vector ŷ, i.e.,

ŷ = Xb̂. (3.1)

The vector b̂ can be computed by the least squares minimization as:

b̂ = argmin
b

N∑
i=1

‖y −Xb‖2
2, (3.2)

where ‖.‖2 is the `2 norm. The LASSO regression introduces a penalty term into (3.2) as

follows.

b̂ = argmin
b

(
1

2N
‖y −Xb‖2

2 + λ

p∑
i=1

|bi|

)
, (3.3)

where λ > 0 is a penalty parameter. The level of shrinkage applied to the estimated b,

i.e., the number of zero entries of b, is determined by λ. For instance, Figure 3.1-(a) shows

the evolution of entries of the vector b̂ with λ from 0 (all entries are non-zero) to a final

value (all entries are zeros). Notice that as λ increases from 0, we remunerate the least

squares estimation accuracy for the sparseness of vector b. The collection of vector b̂ that

is corresponding to different values of λ is obtained from the training data set. Then, it is

applied to the validation data set to form the error curve. An example of an error curve is

shown in Figure 3.1-(b). Finally, the optimal λ is chosen at the minimum of the error curve.

In this study, we use the Root Mean Squared Error (RMSE) to compare two trajectories so

the optimal λ is chosen at the minimum of the RMSE curve.
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Figure 3.1 (a) Shrinkage of estimate vector entries with respect to different values of λ. (b)
error curve of different estimate vectors b applied on validation data set.

3.3 The group LASSO

In Section 3.2, the estimated target yi is a scalar quantity. However, since the two coordinates

of the robot’s location need to be estimated simultaneously, we show how we extend the

LASSO regression to estimate a multivariate target, i.e., the group LASSO regression [82].

Let Y ∈ RN×k as the collection of N target vectors of k dimensions yi. Define B̂ ∈ Rp×k

as the estimate matrix of p estimate vector of k dimensions that estimates the target Ŷ:

Ŷ = XB̂. (3.4)

Note that k = 2 in this study, which is corresponding to two spatial coordinates. We define

the `1/`2 norm as:

‖B‖`1/`2 =

p∑
i=1

(
k∑
j=1

B2
ij

) 1
2

=

p∑
i=1

‖B[i,:]‖2, (3.5)

where B[i,:] is the i-th row of the matrix B. The estimate matrix B̂ can be calculated as

follows.

B̂ = argmin
B

(
1

2N
‖Y −XB‖2

F + λ‖B‖`1/`2
)
, (3.6)
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where ‖.‖F denotes the Frobenius norm1. According to Obozinski et al. [82], (3.6) is equiv-

alent to the second-order cone program (SOCP):

B̂ = argmin
B,β∈Rp×1

(
1

2N
‖Y −XB‖2

F + λ
p∑
i=1

βi

)
,

subject to ‖B[i,:]‖2 ≤ βi.

(3.7)

Define vec(.) operator as:

vec(B) =



B[:,1]

B[:,2]

...

B[:,k]


.

Applying the vec(.) operator to both sides of (3.7) yields:

vec(B̂) =

argmin
vec(B),β

(
1

2N
‖vec(Y)− (I⊗X)vec(B)‖2

2 + λ

p∑
i=1

βi

)
,

subject to ‖Wivec(B)‖2 ≤ βi,

(3.8)

where ⊗ is the Kronecker product [36] and Wi ∈ Rk×kp is the weight matrix2, i.e., W1 =

[Ik · · ·Okp−k], W2 = [Ok Ik · · ·Okp−2k], · · · .

Note that the `1/`2 regularization penalizes the norm of the rows of estimate matrix B in

(3.6), which are corresponding to the two coordinates. Thus features that are not significant

for the localization of both coordinates are more likely to be eliminated.

1The Frobenius norm of a matrix A is: ‖A‖F :=
√∑

i,j A
2
i,j

2Ik and Ok are the identity and zero matrices of size k × k
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3.4 The extended Kalman filter

In this section, we show how to integrate the EKF into the group LASSO-based localization

as a post-processing step. For the sake of simplicity, we describe in this section the bicycle

kinematics model [16] of a front wheel driven vehicle for the outdoor experiment. For the

indoor experiment, we utilize the unicycle kinematics model that effects the equation (3.9),

and the rest of the EKF shall stay unchanged.

We utilize the bicycle kinematics for a front wheel driven vehicle. Let ηi, ui and L

be the front wheel angle, the rear wheel linear speed at time iteration i and the wheelbase

(distance between the two wheel axes) of the vehicle, respectively. Define xi ∈ R3 as the state

vector that includes the position and the heading angle of the robot, e.g., xi = [q
[1]
i q

[2]
i ψi]

T .

Therefore, the state transition equation of the vehicle can be described as follows.

xi+1 = xi + ∆i


ui cosψi

ui sinψi

tan(ηi)
L

ui

+ ωi

= f(xi, ui, ηi) + ωi,

(3.9)

where ωi ∼ N (0,Σωi
) is the white noise on the location and orientation. Let x̂−i+1, P

−
i+1

be the estimated state and the covariance matrix of the robot before taking the position

measurement, respectively. Assume that localization errors for x, y axes and the orientation

ψ are independent, thus:

Pi =


σ2

1,i 0 0

0 σ2
2,i 0

0 0 σ2
ψi

 . (3.10)
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We have the prediction as follows.

x̂−i+1 = f(xi, ui, ηi)

P−i+1 = ∇fPi∇fT + Σωi
,

(3.11)

where ∇f is the Jacobian matrix of the function f with respect to the state vector xi, e.g.,

∇fxi =


1 0 −∆iui sinψi

0 1 ∆iui cosψi

0 0 1

 , (3.12)

where ∆i is the sampling period. Since we do not take the measurement of the vehicle’s

heading angle, the observation has the form:

q̃i = Mxi + ei, (3.13)

where

M =

 1 0 0

0 1 0

 ,
and ei ∼ N (0, σ2

eI). Note that q̃i = ŷi in (3.4) since we take the estimation of group LASSO-

based localization as the noisy measurement for the EKF, and the observation noise level

σe is set to be the RMSE of the group LASSO-based localization. The measurement update

can be computed as follows.

x̂i+1 = x̂−i+1 +Ki+1(q̃i+1 −M x̂−i+1)

Pi+1 = (I −Ki+1M)P−i+1,

(3.14)

where the Kalman gain Ki+1 is:

Ki+1 = P−i+1M
T (MP−i+1M

T + σ2
eI)−1. (3.15)
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The prediction and update measurement computations, i.e., equations (3.11) and (3.14), are

recursively executed in the localization process.

Note that for the two wheels mobile robot, (3.9) becomes:

xi+1 = xi + ∆i


ui cosψi

ui sinψi

ηi

+ ωi,

= f(xi, ui, ηi) + ωi,

where ηi is the robot’s orientation.

3.5 Experimental study

3.5.1 Indoor Experiment

In this section, we show how we implement our proposed method in an indoor experimental

set-up. The mobile robot and the testing environment is shown in Figure 3.2-(a).

We control the robot remotely via wireless communication units while the panoramic

vision of the surrounding scene is recorded. In order to track the true positions of the robot,

we utilize an overhead camera (Logitech HD webcam C910, Logitech, Newark, CA, U.S.A.)

that is mounted on the ceiling. Note that the positions obtained from the ceiling camera are

only used for evaluating the method’s performance. In summary, we collect the following

three data sets all sampled at 0.5 Hz.

• The command inputs, turn rates and collapsed time between samplings {ui, ηi,∆i}.

• The surrounding scene recorded in the panoramic vision.

• The positions of the mobile robot (ground truth).

We compare the localization results performed by the three following techniques:
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• Open-loop based localization: We naively apply the recorded command inputs to

the robot’s kinematics, which is described in (3.9) to obtain the robot’s position.

• Group LASSO-based localization: We randomly sample without replacement the

whole data set and categorize them into three labels: training, validation and testing

by corresponding percentages: 50%, 25% and 25%. Then, we apply the group LASSO

regression to the labeled data and compare the performance on the test data with other

techniques.

• Group LASSO-based and EKF localization: We apply the EKF as a post-

processing to the test result of the group LASSO-based localization as described in

Section 3.4.

• Group LASSO-based and PF localization: We apply the Particle Filter (PF) [35]

as a post-processing to the test result of the group LASSO-based localization.

Note that for the indoor experiment, the test data is the locations that are randomly

chosen from the original trajectory. Therefore, when we run the EKF and the PF to estimate

the trajectory of the robot, we assume that the robot do not take measurement at the non-

test locations, i.e., estimation with missing observations [104]. If an observation is made,

the EKF executes the update step by (3.14). Otherwise, it predicts the state vector by open-

loop kinematics and propagates the covariance matrix by (3.11). Similarly, for the PF, the

weights of the filter density are updated once an observation is made. Otherwise, a uniform

probability is assigned for all particles [35].

To illustrate the estimation with missing observation by the EKF, Figure 3.3 shows the

evolutions of the first and second entries of the diagonal of matrix Pi (P[1,1] and P[2,2]) that

represent the uncertainties in x and y axes. Notice that the variance of position coordinates

drops whenever an observation, which is indicated by a vertical dashed line in Figure 3.3,

is made. This simulates a practical situation where the localization observations are mostly

missing and very sparse due to line-of-sight or GPS-denied environments.
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(a) (b)

Figure 3.2 (a) Indoor experiment environment and the zoomed-in picture of the mobile robot
shown in the upper left corner. (b) Outdoor experiment in the campus of Michigan State
University on Google map.

In Table 3.1 we compare the localization results performed by open-loop localization,

group LASSO-based localization, group LASSO-based with EKF localization and group

LASSO-based with PF localization which are denoted as “Open-loop”, “Group LASSO”,

“Group LASSO+EKF” and “Group LASSO+PF”, respectively.

Figure 3.4 shows the evolution of the elements of group LASSO estimate matrix B.

Each row of B consists of two elements that correspond a feature to the location with two

coordinates. Each pair of elements is plotted in the same color in Figure 3.4. Notice that

elements from a pair (same colors) are both either eliminated or preserved.

Table 3.1 shows the RMSEs of the four methods. The open-loop prediction yields the

worst performance, since there is no feedback in the prediction, the error is accumulated.

The group LASSO-based localization reduces 50%3 number of features and yields 29% lower

RMSE compared to the open-loop method. By applying the EKF, the group LASSO-based

3The elements of the estimate matrix B̂ that are smaller than 1× 10−3 are considered to be 0.
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Figure 3.3 Plot of P[1,1] (dashed line) and P[2,2] (solid line) for iterations from 20 to 80 for
the group LASSO-based with EKF localization.
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Method RMSE Number of features Run time (sec)
(meters) Train Test

In
do

or

Open-loop 0.7039 - - 0.033
Group LASSO 0.4993 27/60 2061.7 0.005
Group LASSO+EKF 0.3158 27/60 2061.7 1.271
Group LASSO+PF (MC) (0.39, 0.01) 27/60 2061.7 0.532

O
ut
do

or

Open-loop 7.32 - - 0.686
Group LASSO 22.13 49/200 1861.8 29.376
Group LASSO+EKF 5.08 49/200 1861.8 29.388
Group LASSO+PF (MC) (11.87, 2.93) 49/200 1861.8 29.543

Table 3.1 Localization performance comparison

and EKF localization results in the lowest RMSE with 55% reduction compared to the

open-loop case. Figure 3.5 shows the true trajectory (solid line), group LASSO-based lo-

calization (square dots), group LASSO and EKF localization (red dotted dashed line), and

group LASSO and PF localization (black dotted line). Table 3.1 has indicated the excellent

performance of our proposed method.

3.5.2 Outdoor Experiment

In this section, we demonstrate the effectiveness of our proposed method using an outdoor

experimental study.

Figure 3.6 shows the data acquisition circuit and the surveillance vehicle. We drive the

vehicle (Acura RSX 2003) in Michigan State University campus and record the panoramic

scene via an omni-directional camera installed on the top of the vehicle. We collect three

data sets, which are sampled at 1 Hz: (1) The estimated control inputs and sampling times

{ηi, ui,∆i}, (2) the scene recorded by the omnidirectional camera that is stored in the Rasp-

berry Pi (Raspberry Pi model B+, Raspberry Pi Foundation, United Kingdom), (3) the

positions of the vehicle that are tracked by the Xsens GPS (MTi-G-700, Xsens Technologies

B.V., Netherlands).

We compare the localization performances based on the following three techniques:

• Open-loop based localization: We naively apply the open-loop prediction by using
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Figure 3.4 Indoor experiment: The evolution of the entries of estimate matrix B versus the
penalty λ. Each pair of features that associate with same coordinate is plotted in same color.
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Figure 3.5 Indoor experiment: The true trajectory (black solid line), group LASSO (green
squares), group LASSO + PF (dotted black line) and group LASSO + EKF (red dotted
dashed line) predictions.
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Figure 3.6 (a) Data acquisition circuit, (b) panoramic camera and (c) vehicle equipped with
the camera on top.
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Figure 3.7 The training (dashed) and testing paths (solid lines) are plotted in meters.
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the kinematics described in (3.9) and the command inputs.

• Group LASSO-based localization: We record two separated trajectories for train-

ing and testing, as shown in Figure 3.7. The original data is divided 50-50 for training

and validation. The group LASSO regression uses the training data to train the esti-

mate matrix B, the validation data to compute the optimal matrix B̂ and then applies

B̂ to estimate the test data Ŷ.

• Group LASSO and EKF localization: We apply the EKF as a post-processing to

the test result of the group LASSO-based localization as described in Section 3.4.

• Group LASSO and PF localization: We apply the PF as a post-processing to the

test result of the group LASSO-based localization.

For this outdoor experiment, we also use the RMSE to evaluate the performance of the three

techniques described above.

Table 3.1 shows the RMSEs of the three methods (column 2) and the number of used

features over the initial total (column 3). The group LASSO-based localization reduces

75.5%4 of the whole features. By applying the EKF, the group LASSO-based localization

with the EKF results in the best RMSE with 30.6% reduction compared to the open-loop

method. Figure 3.8 shows the true trajectory (black solid line), group LASSO-based local-

ization (green square dots), group LASSO and EKF localization (red dotted dashed line),

and group LASSO and PF localization (black dotted line).

Fundamentally the estimation step of the group LASSO-based localization shown in (3.4)

is a linear regression. Thus, its estimation error has a smaller bias compared to the open-

loop prediction, which gradually deviates from the true trajectory, but exhibits high variance.

Therefore, we utilize the EKF (as well as PF) as a low-pass filter to smooth of the estimated

trajectory by projecting the noisy outputs of the group LASSO-based localization onto the

4The entries of the estimate matrix B̂ that are smaller than 1× 10−3 are considered to be 0.
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vehicle kinematics. Figure 3.9-(a) shows the evolution of the group LASSO regression esti-

mate matrix B. Each pair of features that is corresponding to one location (two coordinates)

is plotted in the same color. The optimal B is plotted in Figure 3.9-(b). Note that the matrix

is sparse with a large number of entries having values of zero.

For comparison, we also implement the particle filter (PF) [1] that takes the group LASSO

output as measurements. Since the PF involves randomly generation of the particles, adapt-

ing the evaluation criteria from [1], we evaluate the performance of the PF by the Monte

Carlo (MC) simulation [80] with 100 runs. The statistics of the MC are reported in Ta-

ble. 3.1 with the mean and standard variation denoted by “(µ, σ)". The estimated path

by the group LASSO and PF localization with lowest RMSE among the MC simulations is

plotted in black dotted line in Figure 3.8. A snapshot of the PF at sampling time t = 50 is

shown in Figure 3.10. The weight densities of 800 particles are plotted in gray-scale colored

dots. Note that the sum of weight densities over all particles equals to 1. The PF estimated

location is computed by averaging the locations of all particles with the corresponding weight

densities.

The computational time is reported in Table. 3.1 in seconds. Since the EKF and PF are

applied as the post-processing after the group LASSO, their test phase computation times

are reported as the sum of the group LASSO and the additional running time to perform

the EKF or PF. Generally the train phase requires 30 minutes for both indoor and outdoor

data, while the test phase is significantly shorter. The prediction process of the group

LASSO includes one matrix multiplication in (3.4) and the visual features extraction. Since

the SURF feature involves clustering, it requires more time to extract compared to the FFT

and histogram. Therefore, the test phase computational time in the outdoor experiment is

longer than in the indoor case.
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Figure 3.8 Outdoor experiment: The true trajectory (black solid line), group LASSO (green
squares), group LASSO + PF (black dotted line), and group LASSO + EKF (red dotted
dashed line) predictions are plotted in meters.
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Figure 3.9 Outdoor experiment: (a) The evolution of entries of the estimate matrix B versus
the penalty λ. (b) Overall 200 entries of the optimal matrix B are plotted in blue bars.
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are plotted in meters. Each particle is plotted with the color in gray scale corresponding to
its probability weight. The sum of the weights of all particles is 1.
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Chapter 4

Abdominal Aortic Aneurysm’s shape

prediction

The aorta is a major artery in which blood circulates through the heart. An aortic aneurysm

is identified as an enlargement of the aorta greater than 50% of the normal diameter. The

vast majority of aortic aneurysms are in the abdominal region, among these, over 90%

occur within the infrarenal aorta [89] [126]. The infraneral aorta lies between the renal

branches and the iliac bifurcation. In this region, a diameter greater than 3 cm is considered

as an AAA. In most of the cases, AAAs have no symptoms and are found incidentally,

but if one ruptures the patient mortality rate can be more than 90% [62] [63]. Because

risks from open surgery or endovascular repair outweigh the risk of AAA rupture, surgical

treatments are not recommended with AAAs less than 5.5cm in diameter [85]. However, the

maximum transverse diameter of an AAA is not a reliable indicator of rupture potential on

its own. Therefore, various biomechanical analyses using geometrical factors (e.g., different

diameter measurements [34, 65], tortuosity [84], morphological parameters [91], presence of

thrombus [6, 76, 125], influence of the spine [27]) have been proposed to reliably predict the

risk of rupture. Although recent advances in biomechanics have provided state-of-the-art

spatial estimates of stress distributions of AAAs, but these studies do not address the problem
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of predicting the shape at a future time and are limited in assessing the time evolution and

uncertainty qualification. For clinical treatments and recommendations, a patient-specific

predictive tool is required to incorporate the advances in computational modeling. The

development of such tool requires a major paradigm-shift since clinical measurements are

associated with limited information, uncertainty and incompleteness of the model.

In short, this chapter tackles the following problems:

• Data-driven dynamic growth model development: We develop a dynamic model to

simulate the AAA’s growth that is trained on patient’s specific data.

• Prediction of AAA geometrical changes and their validation: Comparisons of predic-

tions and the true (not included in the learning phase) scan images are provided to

evaluate the accuracy of the proposed scheme.

• Prediction uncertainty quantification: The point-wise confidence interval is provided

for the predicted AAA surface along with the estimation error.

• Possible utility of the methodology: Possible utility of the proposed method is discussed

from helping decision making to feature extraction applications.

To the best of our knowledge, this is the first study that predicts the 3D shape of the

AAA growth using available (patient-specific) point clouds data in a statistical perspective,

which allows uncertainty quantification in the prediction.

Standard notations will be used throughout this paper. Let R,R≥0,R>0, and Z be defined

as the sets of real, non-negative real, positive real, and integer numbers, respectively. In

denotes the identity matrix of size n. For column vectors va ∈ Ra,vb ∈ Rb, and vc ∈ Rc,

col(va, vb, vc) := [va vb vc] ∈ Ra+b+c stacks all vectors to create one column vector, and ‖va‖

denotes the Euclidean norm (or vector 2-norm) of va. Let E(z) and Var(z) denote the

expectation and the variance of random variable z, respectively. A random vector z ∈

Rq, which is distributed by a multivariate Gaussian distribution of a mean µ ∈ Rq and a

covariance Σ ∈ Rq×q, is denoted by z ∼ N (µ,Σ).
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The chapter is organized as follows. In Section 4.1, we discuss the data acquisition

that is followed by the prediction model in Section 4.2. Section 4.3 describes our post-

process procedures for the estimated point cloud. Geometrical prediction results from our

methodology are illustrated in Section 4.4. Finally, we discuss the results in Section 4.5.

4.1 Data Adaptation

In this work, we adapt the point clouds data that is reconstructed by the work reported

in [34]. In particular, from the longitudinal patient-specific data comprises 37 computer-

tomography scan images of the AAAs obtained from 7 different patients, Gharahi et al. [34]

described the segmentation process of the outer surface and image registration. Then, they

extract point clouds by randomly sampling from the segmented surfaces. In this work, we

utilize the point clouds as the inputs to our method.

Patient ID Number Gender Age Time of Scans (Years)
of Scans

P1 7 Male 68 [0, 1.07, 5.76, 6.70, 7.68, 8.64, 9.10]
P2 6 Male 66 [0, 1.02, 2.04, 2.94, 3.94, 5.85]
P3 5 Male 54 [0, 1.06, 2.07, 3.07, 3.54]
P4 5 Male 62 [0, 0.63, 1.85, 2.87, 3.84]
P5 4 Male 73 [0, 0.27, 0.74, 1.57]
P6 6 Male 70 [0, 2.12, 2.58, 3.28, 3.99, 4.31]
P7 4 Male 54 [0, 1.11, 2.15, 3.20]

Table 4.1 Demographic Data of Patients from [34]

The collection of data sets, which are in the form of point clouds, obtained from 7

patients is denoted as {Di,`|i ∈ I, ` ∈ T }, where I := {P1, P2, P3, P4, P5, P6, P7} and

T := {1, · · · , 7}. I represents the collection of patient IDs and T contains the available

scans of a particular patient. For example, the second scan data of patient F is denoted by

DF,2. A demographic data of patients that is reported in [34] is shown again in Table 4.1.

As shown in the table, not all of the patients have seven data points and the remaining,

non-existing scans are taken as empty data sets in the representation above.
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4.2 Model and method

A Hidden Markov model (HMM) is a special case of a state space model, which has been

studied extensively in control community [31] and computer science [93]. It is extraordinarily

efficient to represent sequential data such as speech recognition, natural language modeling,

and analysis of biological sequences [4]. A state space model is a structure that consists of

a Markov chain of latent (hidden) variables and observations (visible units). Each observed

unit has a conditional distribution conditioned on the corresponding latent variable. When

the latent variables are discrete, we have a Hidden Markov model [4]. Inspired by the HMM,

we utilize a similar graphic structure. In our model, we consider a perspective that at each

data point, we observe the point cloud, which have distribution conditioned on the potential

field. Also, the statistics of the potential field (which is hidden from us) can be inferred from

its distribution in the past. Therefore, our general scheme is that based on the observed

point cloud, we reconstruct the hidden potential field. Then, we infer the statistics of the

field at the future time. Finally, we obtain the predicted point cloud from the predicted

field. The detailed structure of our proposed method is shown in Fig. 4.1.

4.2.1 Gaussian process regression

In this section, we briefly review Gaussian process regression. A Gaussian process is formally

defined as follows [90].

Definition 1: A Gaussian process is a collection of random variables, any finite number

of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its mean and covariance functions. Let ξ ∈

Q := R × T ⊂ Rd denote the index vector, where ξ :=
[
xT t

]T contains the sampling

location x ∈ R ⊂ Rd−1 and the sampling time t ∈ T ⊂ R≥0.

For an illustrative purpose, we consider a Gaussian process

z(x) ∼ GP (µ(ξ),K(ξ, ξ′)) .
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Figure 4.1 Summary of our proposed method: point cloud data is inserted into the spatio-
temporal Gaussian process as zero-value observations to generate the field. Then, the tem-
poral evolution of the field is inferred through the dynamic model in (4.8). Finally, the final
prediction is computed by utilizing the Kalman Filter in the E-M algorithm.

In general, the mean µ(.) and the covariance functions K(·, ·) of a Gaussian process can be

estimated a priori by maximizing the likelihood function [124].

Suppose, we have p noise corrupted observations with De =
{

(ξ(i), z̄(i))|i = 1, · · · , p
}
.

Assume that

z̃(i) = z(i) + ε(i), (4.1)

where ε(i) is independent and identically distributed (i.i.d.) white Gaussian noise with vari-

ance σ2
ε . ξ is defined as ξ = col(ξ(1), ξ(2), . . . , ξ(p)). The collections of the realizations

z =
[
z(1), . . . , z(p)

]T ∈ Rp and the observations z̃ =
[
z̃(1), . . . , z̃(p)

]T ∈ Rp have the Gaussian

distributions

z ∼ N (µ(ξ), K(ξ)) , z̃ ∼ N
(
µ(ξ), K(ξ) + σ2

ε Ip
)
,

where K(ξ) ∈ Rp×p is the covariance matrix of z and is obtained by Kij(ξ) = K(ξ(i), ξ(j))

and Ip ∈ Rp×p is the identity matrix. We can predict the value z∗ of the Gaussian process
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at a point ξ∗ [90] as

z∗|De ∼ N
(
µ∗(ξ), σ2

∗(ξ)
)
, (4.2)

where the predictive mean E(z|De) is

µ∗(ξ) = µ(ξ) + kT (ξ)
(
K(ξ) + σ2

ε Ip
)−1

(z̃− µ(ξ)) (4.3)

and the predictive variance is given by

σ2
∗(ξ) = Var(z∗|De) = σ2 − kT (ξ)

(
K(ξ) + σ2

ε Ip
)−1

k(ξ). (4.4)

Here k(ξ) ∈ Rp is the covariance matrix between z and z∗ obtained by kj(ξ) = K(ξ(j), ξ∗)

and σ2 = K(ξ∗, ξ∗) ∈ R is the variance at ξ∗.

4.2.2 Discretized Gaussian process space

We investigate the field on a grid that is defined by the discretization of the space. Let

Sc := [x
[1]
min, x

[1]
max]× [x

[2]
min, x

[2]
max]× [x

[3]
min, x

[3]
max]

be the continuous spatial domain in R3, where the spatial limitations xmax and xmin are

determined by coordinates of point clouds in the training data set. We discretized the 3-D

continuous space into n spatial sites S := {s[1], · · · , s[n]} ∈ Rn×3, where n = h(x
[1]
max−x[1]

min)×

h(x
[2]
max − x

[2]
min) × h(x

[3]
max − x

[3]
min). h is chosen such that n ∈ Z>0. The collection of the

realized value of the implicit surface on the lattice is denoted as z := (z[1], · · · , z[n])T , where

z[i] := z(s[i]).

The prior distribution of z is chosen such that z ∼ N (1,Σ0), where 1 is a column vector

of 1 and Σ0 is the prior covariance matrix, i.e., Σ
[i,j]
0 := K(z[i], z[j]). Recall that we take p noisy

measurement with the model as described in (4.1). Using the GP regression, the posterior
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distribution of z on the discrete lattice S is a Gaussian distribution, i.e., z ∼ N (µ∗,Σ∗)

where the posterior mean vector and the covariance matrix are defined as:

µ∗ = KTC−1z̃, Σ∗ = Σ0 −KTC−1K, (4.5)

where K := K(z̃, z) ∈ Rp×n and C := K(z̃, z̃) ∈ Rp×p.

In this study, we consider a discretized grid points S ⊂ R3 on the 3-D space of the size

40 × 40 × 40. The range of each dimension will be chosen such that the grid completely

covers the point cloud data from all available scans of a patient.

4.2.3 Spatio-temporal Gaussian process

For patient i, we use the covariance function in the form of an exponential kernel function

as follows.

K(x,x′, t, t′) = σ2
f,i exp

(
−|t− t

′|2

2σ2
t,i

)
× exp

(
−1

2

3∑
ρ=1

|x[ρ] − x′[ρ]|2

σ2
ρ,i

)
,

(4.6)

where x = [x[1] x[2] x[3]]T is the coordinates vector in the 3-D space. The hyper-parameter

vector Φi := [σf,i σt,i σ1,i σ2,i σ3,i]
T consists of the function bandwidth, time bandwidth

and three spatial bandwidths, respectively. The hyper-parameters can be determined by

maximizing the likelihood function. Notice that since the time bandwidth is obtained in a

data-driven manner, the value of σt,i could provide an insight of the evolution of the AAA

with respect to time. For instance, smaller σt,i implies that the aneurysm changes more

rapidly and vice versa. The spatio-temporal Gaussian process regression provides a way to

collect implicit surface field observations as shown in Fig. 4.1.
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4.2.4 Implicit surfaces

In this section, we describe the definition of an implicit surface [24]. An implicit surface

describes an object in a space by mapping coordinates of a location in the space onto a

scalar value. The value will indicate if the location belongs to the surface of the object.

In particular, let x ∈ R3 be a coordinates vector in a 3-D space. Then, define a function

f : R3 → R as the implicit surface (IS):

f(x)


= 0, if x on the surface,

> 0, if x outside the object,

< 0, if x inside the object.

(4.7)

Figure 4.2 Example of an estimated field: cross section views of the 3D field at the same
height in z-axis are shown at different times t. The on-surface points (where the field is
zero) are labeled in white solid lines. The growth of the AAA in the radial direction can be
visualized from top to bottom figures.

For example, Fig. 4.2 shows an estimated 3D field from patient P1 at three different times

using the spatio-temporal Gaussian process regression. From top to bottom, the figures show

cross section views of the field at the same height in z-axis at three sampling points: at the

first scan, after 5.76 years, and after 8.68 years. Those points on the field that are outside

of the surface have positive values (brightest yellow) and those that are completely inside

the surface have values less than 0 (darkest blue). As shown in the figure, the radial growth

of the AAA is reflexed by the spreading of the blue region as the time elapses. Note that a

point cloud provides only the points that belong to the surface, i.e., have values of zero in the
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IS field. Therefore, it implies zero-value observations [24] for the spatio-temporal Gaussian

process regression discussed in Section 4.2.3. To implement the spatio-temporal Gaussian

process, we utilize a number of built-in functions in the GPML package [90].

4.2.5 Dynamic implicit surface model

Let f(x, t) be the IS field that represents the aorta surface at the sampling time t with the

data (CT scans) available for t = {1, · · · , t}. Then, we can define the temporal growth model

of the IS field as follows.

f(x, t) = f(x, t− 1) + ∆t(A(x) +W (x)) (4.8)

where A(x) is the growth rate of the IS field and W (x) is the zero-mean process noise:

W (x)
i.i.d∼ N (0,Σw). We assume the growth rate is time-invariant for the last several ob-

servations. ∆t is the gap between two successive scan times, i.e., ∆t := τt − τt−1. Note

that the uncertainty in the process increases linearly with the gap between observations, i.e.,

∆tW (x) ∼ N (0,∆2
tΣw). We assume that the initial field f(x, 0) has a normal distribution

with mean µ0 and covariance Σ0, i.e., f(x, 0) ∼ N (µ0,Σ0).

The observations of the IS field is modeled as the evolution of a spatio-temporal GP. The

posterior distribution of the field can be treated in an observation model as follows.

y(x, t) = f(x, t) + V (x, t), (4.9)

where V (x, t) is the observation noise: V (x, t)
i.i.d∼ N (0,Σv(t)). The noise covariance matrix

Σv(t) can be estimated as the posterior covariance of the GP. We utilize the Expectation-

Maximization (E-M) algorithm to estimate Σw(x) and A(x). A detailed derivation for the

Kalman Filter E-M algorithm is provided in Appendix 6.

In a nutshell, we define a likelihood function for the model conditioned on the data. We

then derive the expectation of the likelihood function with respect to A(x) and Σw, which
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is denoted as Ψ(A,Σw) (see Appendix 6). Hence, for each iteration r of the E-M algorithm

the optimized values for A(x) and Σw are the ones that maximize Ψ(A,Σw), which can be

found from the first derivative of Ψ(A,Σw) (see Appendix 6). Since Ψ(A,Σw) is a continuous

function of A and Σw, by Theorem 2 in [120], Ψ(A,Σw) will converge to a stationary value.

Furthermore, since the first derivative of Ψ(A,Σw) is continuous, (A,Σw) converges to a

stationary point [120]. To illustrate this point, Fig. 4.3-(a) shows the evolution of the

distance between A(r) and its equilibrium value A∞ in terms of the Frobenius norm, i.e.,

‖A(r)−A∞‖F , converges to 0 after 10 iterations. A Similar evolution of Σw is shown in Fig.

4.3-(b).

The embedded surface distribution of the IS field is straightforward from the prediction

step of the Kalman Filter as follows.

E[f(x, L)|D1:L−1] = E[f(x, L− 1)|D1:L−1] + ∆tA(x),

Cov(f(x, L)|D1:L−1) = Cov(f(x, L− 1)|D1:L−1) + Σw∆2
t .

(4.10)

Note that one can alternatively avoid a dynamic model in (4.8) and directly apply a

spatio-temporal Gaussian process with a kernel function described in (4.6) to obtain an

inference of the field in future time [54]. However, there are two critical rationals that inte-

grating observation regression and dynamic models outperforms the aforementioned method.

First of all, since the posterior covariance of a Gaussian process is bounded by prior covari-

ance Σ0 in (4.5), the uncertainty quantification will eventually reach a limit as we increase

the inference time ∆t further. In contrast, our dynamic model does not impose any limit

on the posterior covariance as the term ∆2
t is not bounded in (4.10), indicating the fact

that as we try to infer at a future time, the uncertainty in the prediction will escalate ac-

cordingly. Secondly, naively applying the Gaussian process regression (as well as any other

regression model) would overlook the growing trend of AAAs. This problem is resolved by

incorporating the term A(x) in the dynamic model (4.8).
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Figure 4.3 Convergence of the distance of (a) A and (b) Σw to their equilibrium values (A∞
and Σw∞), started with respect to different initial values of A and Σw.

There are two main computational challenges in our method. First of all, a drawback

of the Gaussian process regression is computational complexity with respect to the number

of measurements. It can be seen from (4.3) and (4.4) that the calculation of both the

predictive mean and predictive variance requires the inversion of covariance matrices whose

sizes depend on the number of observations p, i.e., complexity is O(p3). Depending on the

density and the number of point clouds, the size of points that are observed in our study

can be exceptionally large. The second major source of computational consumption is the

inversion of covariance matrix in the Kalman Filter algorithm. The Kalman Filter covariance

matrix has a dimension of n × n with n is the number of spatial sites that is discussed in

Section 4.2.2. Therefore, the inversion has complexity of O(n3). In this study, we use

n = 64, 000 and for those patients with large training data set (more than 4 data points),

the E-M algorithm is computationally prohibitive. To resolve these problems, we divide the

dense spatial grid S into sparser sub-grids and apply our method in a distributed manner.

The final outcome on S is merged from predictive results on individual sub-grids. The detail

of the efficient Kalman Filter algorithm is reported in Appendix A.
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4.3 Surface extraction and post-processing

In the previous section, we have obtained the statistics of predicted IS field that is provided

in (4.10). In this section, we briefly show how to extract the predicted surface from the

predicted IS field.

Note that the predicted surface is an embedded manifold of the predicted IS field that

satisfies (4.7). However, due to the error in computation and uncertainty in the Gaussian

process regression, achieving exact zero values of the IS field for on-surface points tuned out

to be not practical from our preliminary study. Therefore, we relax the restricted equality

condition in (4.7) by setting a near-zero threshold of the field under which the corresponding

point is considered to be on-surface. The threshold of the training phase is determined by

minimizing the Euclidian distance between the estimated and the true point clouds (see

Appendix B). To find the threshold of the test phase, we utilize a fact that each particular

value of the threshold classifies the whole 3D lattice S into a particular spatial binary pattern

of two categories: on-surface and off-surface. Therefore, we assign the test phase threshold

to the value that yields the most similar spatial pattern to the train phase threshold (see

Appendix B).

4.4 Experimental results

In this section, we arrange an experimental study to illustrate the effectiveness of our ap-

proach in realistic scenarios using the reconstructed point clouds D(id,scans) that are adapted

from [34]. To validate our approach, the last available data point for each patient D(id,L) is

used as the ground truth whereas the previous data points {D(id,j) : j = {1, · · · , L − 1}}

of that patient are used to train the model. Then, we compare the prediction results with

the existing true data set D(id,L) for each of the 7 patients using the Hausdorff distance [53].

Thus, we have 7 different patient specific cases with different longitudinal lengths and mor-

phological properties along with inter-scan time interval. For example, we use the last 6
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data points of patient H, {DH,1, · · · ,DH,6}, for training, and predict the most current state

of the aneurysm, D̂H,7.

The Hausdorff distance is a quantitative measure between two point clouds. However,

it does not provides the insight of the spatial shape. In order to obtain a visual estimation

of the prediction, we utilize the the Poisson Reconstruction function in MeshLab (National

Research Council, Rome, Italy) to render the 3-D structure of the surfaces. The results

are shown in Fig. 4.5. Each pair of estimated and true scans are labeled as Di,j and D̂i,j,

respectively.

Patient Number Hyperparameters σt Hausdorff Distance
ID of Scans Φi := [σt,i σ1,i σ2,i σ3,i] (days) (Full) (Last-3)
P1 7 [722.96, 13.69, 12.82, 29.75] 722.96 17.86 16.16
P2 6 [1085.38, 7.02, 5.89, 12.47] 1085.38 11.28 11.53
P3 5 [683.49, 3.07, 3.15, 7.41] 683.49 8.32 6.26
P4 5 [835.32, 5.52, 5.04, 11.85] 835.32 9.8 12.86
P5 4 [475.18, 6.09, 5.63, 13.28] 475.18 9.85 -
P6 6 [597.75, 2.05, 2.06, 4.91] 597.75 6.68 6.40
P7 4 [553.98, 2.40, 2.43, 5.39] 553.98 8.32 -

Table 4.2 Hyperparameters and Hausdorff Distance with details of each Case

Table 4.2 shows the case IDs (column 1), patient IDs (column 2), number of available

scans (column 3), estimated hyper-parameter vectors (column 4), estimated time bandwidth

σt (column 5), and the Hausdorff distances (column 6 and 7).

For each case, the Hausdorff distance between the predicted and estimated point clouds

is calculated. The mean and standard deviation of the overall Hausdorff distances are 10.30

(mm) and 3.64 (mm). The small standard deviation implies high precision of our approach.

4.4.1 Constant growth rate assumption

In what follows, we investigate the effect of the assumption on the constant growth rate A(x)

in (4.8).

We observe that increasing number of scans in the training data results in decreasing

prediction errors, but only up to a certain point. Then, the error starts to increase. This

66



1 2 3 4 5 6 7

Scan

0

500

1000

1500

2000

2500

3000

3500

S
c
a

n
 T

im
e

 (
d

a
y
s
)

P1

P2

P3

P4

P5

P6

P7

Figure 4.4 The relative times of the scans compared to the first scan are plotted for each
patient in days.
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is contrary to the common expectation that larger amount of training data yields lower

errors. A similar investigation is reported in [107]: the number of measurements does not

apparently effect the precision of the predicted results. This observation may be explained

by an abrupt increase in the enlargement rate of the aneurysm caused by over-stretched

damage of elastin [118]. To test this hypothesis, we conduct a separate study in which we

limit the training data set to the three most recent data points. In Table 4.2, the results of

this study are referred to as “Last-3” whereas, the label “Full” is used when all the available

data pionts are used for training. The predicted surfaces and confidence regions are shown

in Fig. 4.7 and Fig. 4.8, respectively. The Hausdorff distances in the “Last-3” case provide

similar results for those patients with small aneurysms. In contrast, the “Full” case yields

decreasing distances for those patients who have larger aneurysms.

4.4.2 Uncertainty qualification

Our approach provides quantification of uncertainty in the prediction, i.e., confidence regions.

In order to compute the confidence regions, we sample the IS fields by realizing the posteriori

Gaussian distribution with the updated mean vector and covariance matrix computed by

(4.10) in a Monte Carlo simulation with 100 runs. We then apply the same procedure as

described in Section 4.3 to estimate the AAA surfaces from the sampled IS fields. With

a sufficient number of realizations, the set of surfaces forms the confidence region of the

prediction. In Fig. 4.6, we visualize the confidence region as follows. First, we set the

transparency of 2% for each realized AAA surface in the surface rendering process. We then

overlap them in space. Therefore, spatial regions that appear brighter are more likely to be

occupied by the AAA surface. The true point clouds are plotted in red dots.
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4.5 Discussion

In this section, we discuss the results, the possible utilities and limitations of our approach

along with future research directions.

Patient P6 has a high number of scans with regular scanning times and shows to have

the lowest Hausdorff distance, i.e., the highest accuracy. Patient P3 yields the second lowest

Hausdorff distance. Despite having the same number of scans as patient P6, patient P2 shows

a remarkably higher error in prediction. This could be due to an unprecedented longer time

(687 days) between the latest adjacent data points for patient P2, as compared to the latest

adjacent data points of P6 (116 days) as shown in Fig. 4.4.

We compare our results with those in Powells et al. [11,26] whom use linear and quadratic

hierarchical growth models predicting the future size of aneurysms. The hierarchical linear

growth model utilizes a zero-mean Gaussian distributed random-effects term to simulate the

growing effects of aneurysms. This approach, however, overlooks increasing growth, and it

was reported in some cases that the models predict AAA diameter to decrease in a future

time [107] which is not realistic. In contrast, the growing effect in our model is obtained by

patient-specific fitting based on longitudinal data. Secondly, the hierarchical model focuses

only on AAA maximal diameters and does not provide the geometrical shape analysis. On

the other hand, our approach addresses a complete treatment of AAA geometrical shape

prediction.

The implicit surface is similar to the well-known level set [130] (also known as implicit

contour) method in the sense that both methods utilize the evolution of an implicit scalar

function to simulate the changes of the interface where the scalar function is zero. However,

the level set method relies on the prior (observer’s) knowledge in an image such as image

intensity, or anatomical model, as a driving force to evolve the function and propagate the

interface. Thus, it has not been used so far as a predictive model as proposed.

Compared to the outcomes of other previous works, our results yield following innovative

merits. First of all, there has been research effort to predict aneurysm growth and its
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uncertainty merely based on a data-driven statistical framework such as non-linear regression

[54]. However, naively applying such regression models overlooks a critical fact about AAAs

that is their unrelenting increases in diameters [68] by neglecting the deterministic growth

dynamics. In this study, we propose a linear dynamic model that simulates an AAA’s

growth, which will be calibrated by a specific patient’s data. Secondly, our method provides

a complete prediction of AAA’s geometrical structure, unlike recent methods that reduce

the data dimensions such as centerline parameterization based approaches [34]. Moreover,

each type of parameterizations is associated with a particular topology, which significantly

restricts its versatility [88]. To overcome this disadvantage, we develop our model to be free

of geometrical parameterization.

4.5.1 Decision making via prediction and confidence regions

The major possible utility of our algorithms is in helping clinicians in conducting medical

treatment of an AAA, e.g., monitoring, open surgery or endovascular repair, by providing

access to a predicted AAA at a future time. Moreover, the clinicians will also have access

to the confidence region of the prediction. This will help them in making a more informed

decision for the treatment based on the prediction.

We can observe from Fig. 4.6 that the confidence region covers the true AAA surface

better for the case with lower Hausdorff distance. Thus, clinicians can gauge the reliability

of the predicted AAA. Note that standard G&R computational models do not provide the

uncertainty in their prediction [38, 100, 128]. Therefore, our model shows an significant

improvement over them.
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4.5.2 Estimated hyper-parameters and model parameters as infor-

mative features

Note that besides the final prediction, the hyper-parameters estimated by the spatio-

temporal Gaussian process, as shown in Table 4.2, also may provide insightful information.

The spatial bandwidths {σ1,i, σ2,i, σ3,i} in (4.6) provide information of spatial variation of an

AAA’s 3D structure. For example, a high value for σ1,i implies that the AAA surface varies

smoothly whereas a lower value indicates that the surface has high variance in the direction

of the first axis. The estimated spatial bandwidths by maximizing the likelihood function

are shown in column 4 in Table 4.2. Notice that the estimated spatial bandwidths for the

direction of z-axis, i.e., σ3,i are normally larger than those for the directions of x and y

axes. Since the AAA has a tubular structure, there are less spatial variation along the z-axis

compared to the other two coordinates. Additionally, the time bandwidth σt represents the

temporal changes. Smaller σt implies that the AAA shape is likely to change more rapidly

with respect to time.

The estimated hyper-parameters and linear model parameters may be viewed as features

that may encode the information about the evolution of an AAA. The hyper-parameters

estimated for the regression provide a unique patient-specific feature vector which may cap-

ture both the temporal and spatial variation patterns of the AAA surface. Collective feature

vectors obtained from more patients could be useful in building a classification module ca-

pable of detecting patients with imminent danger of rupture [91]. In addition, the estimated

linear growth rate A(x) provides information of the migration of the surface in a 3D space.

In this work, we utilize the value of A(x) merely for updating the IS field. However, if we

view A(x) as a scalar field as shown in Fig .4.9, its partial derivatives with respect to spatial

and time may provide an insightful information about the moving surface. This analysis can

be obtained by applying a technique that is similar to Lucas-Kanade (LK) optical flow [10]

as follows. Assume that we would like to compute the velocity of the movement of the on-

surface points x(t) over time t, i.e., dx
dt
. Since on-surface points have zero values of IS field,
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we have f(x(t), t) = 0, hence ∂f(x(t),t)
∂t

= 0. Applying the chain rule:

∂f(x, t)

∂x

(
dx

dt

)
+
∂f(x, t)

∂t
= 0 (4.11)

Note that ∂f(x,t)
∂x

is the spatial derivative of the IS field at time t and can be estimated by
∂E(f(x,t)|D1:t)

∂x
with E(f(x, t)|D1:t) given in (4.10). Furthermore, ∂f(x,t)

∂t
is the derivative of the

field with respect to time and can be approximated as A(x). Thus, from (4.11), we will be

able to compute the velocity of the movement of the on-surface points as:

dx

dt
= − A(x)

∂f(x,t)
∂x

.

4.5.3 Limitations and future research directions

The method is based on an empirical Bayesian method, hyper-parameters are obtained a-

priori by maximizing the likelihood function [90] for the IS field observations. Therefore, the

uncertainties associated with the hyper-parameters are not taken into account. In contrast to

the empirical Bayesian framework, the fully Bayesian approach marginalizes the uncertainties

in the hyper-parameters with increased complexity. Hence, one future research direction is

to develop a fully Bayesian version of our proposed scheme taking into account uncertainties

in hyper-parameters [22].

Therefore, as a future work we investigate the implication of using the constant growth

rate A(x) in Section 5.2, which could be a limitation. The time-varying or switching A(x)

can be explained as a result of mechanical damage of elastin that causes the growth rate to

suddenly escalate. However, our dynamic model assumes that with three most recent scans,

the growth rate A(x) is constant. Thus, a disruptive growth due to elastin damage is not

captured by our dynamic model. In other words, for those cases that experience the abrupt

increment, the model with constant A(x) trained on the whole training data, underestimates

the growth rate after the point of elastin degradation. Therefore, the linear dynamic model in
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(4.8) can be improved by estimating two growth rates, e.g., A1(x) and A2(x) and a switching

time τs to cope with the switched growth rate.

We have shown that our model is able to provide a reliable prediction of AAA evolution,

without including the G&R computational model [121, 127]. However, in order to extend

it beyond surface prediction to predict the rupture potential (mechanical stress, the effect

of thrombus, etc.), we have to combine our approach with the G&R computational model

so that both shape evolution and mechanical stress are combined to estimate the rupture

potential. The combination of our approach and the G&R computational model will be

a computationally and theoretically challenging task given the computational complexity

of the model and its unknown parameters. However, a biomechanics-based computation

model structure will provide a constraint in space and time, which will help in reducing the

size of the confidence region of the predicted AAA at future time. Therefore, our future

research would focus on the incorporation of the computational G&R model in our Bayesian

framework.
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D̂P1,7 D̂P2,6 D̂P3,5 D̂P4,5

DP1,7 DP2,6 DP3,5 DP4,5

D̂P5,4 D̂P6,6 D̂P7,4

DP5,4 DP6,6 DP7,4

Figure 4.5 Fully trained case using all available longitudinal data: 3-D rendering from the
estimated (D̂i,j) and true (Di,j) point clouds: The predicted and true point clouds are used
to render the 3-D surfaces using the Poisson reconstruction in Meshlab.
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(P1) (P2) (P3) (P4)

(P5) (P6) (P7)

Figure 4.6 Uncertainty quantification for 7 patients for fully trained case: The implicit
surfaces are regenerated on the grid by realizing the multi-variate Gaussian distribution
with the mean vector and covariance matrix computed in (4.5). Then, we apply the same
procedure described in Section 4.3 to estimate the AAA surfaces that are corresponding
to the realized implicit surfaces. Each realization of the AAA surface from the posterior
distribution is plotted with 2% occupancy. Therefore, spatial regions that appear brighter
are more likely to be occupied by the AAA surface. The true cloud points are plotted in red
dots.
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D̂P1,4 D̂P2,4 D̂P3,4 D̂P4,4

DP1,4 DP2,4 DP3,4 DP4,4

D̂P6,4

DP6,4

Figure 4.7 Last-3 trained case using the most recent three longitudinal data points: 3-
D rendering from the estimated (D̂i,j) and true (Di,j) point clouds: The predicted and true
point clouds are used to render the 3-D surfaces using the Poisson reconstruction in Meshlab.
Note that we run the Last-3 trained case for patient P1, P2, P3, P4 and P6, since other
cases already have 4 scans in total.
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(P1) (P2) (P3) (P4) (P6)

Figure 4.8 Uncertainty quantification for 5 patients for Last-3 trained case: The implicit
surfaces are regenerated on the grid by realizing the multi-variate Gaussian distribution
with the mean vector and covariance matrix computed in (4.5). Then, we apply the same
procedure described in Section 4.3 to estimate the AAA surfaces that are corresponding
to the realized implicit surfaces. Each realization of the AAA surface from the posterior
distribution is plotted with 2% occupancy. Therefore, spatial regions that appear brighter
are more likely to be occupied by the AAA surface. The true cloud points are plotted in
red dots. Note that we run the Last-3 trained case for patient P1, P2, P3, P4 and P6, since
other cases already have 4 scans in total.
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Figure 4.9 An example of usage of A(x) as an informative feature. Two successively shapes,
namely previous and current shapes, are plotted in black squared and circled point clouds
in standardized unit, respectively. Additionally, the intersections of them with the plane
z = 0 are plotted in solid (previous) and dashed (current) white lines on the z = 0 plane.
Furthermore, the cross-section views of the A(x) field at z = 0 and z = −1 are color plotted
on the two planes. The migration of the surface is shown clearly in the direction indicated
by the red arrow. Then, the velocity of the migration in the indicated direction can be
computed by (4.11).
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Chapter 5

Abdominal Aortic Aneurysm’s maximum

diameters prediction

As discussed in chapter 4, maximum diameter is an imperative criterion to determine for

surgical planing of AAAs. One common way to monitor the maximum diameter is the

maximum diameter curve (MDC), which is the collection of maximum diameters along the

centerline of an AAA. To be considered as an aneurysm, a relative criterion can be used such

that the enlargement of the aorta is greater than 50% of the normal diameter. On the other

hand, an absolute criterion can also be used. For example, in the infraneral aorta, which is

the region lies between the renal branches and the iliac bifurcation, a diameter greater than

3 cm is considered as an AAA.

Due to the severe effects and high mortality rate of the disease, massive databases of

both heathy and positively diagnosed have been collected over the decades. While there

have been large-scale population-based screening studies, such as Multicenter Aneurysm

Screening Study (MASS) in the UK [108], analysis models that is based on longitudinal

data has not been properly investigated. In contrast to population-based models, when

longitudinal patient-specific analysis models are carefully calibrated based on individual cases

those are be able to aid physicians in detecting aneurysms and making decisions. For clinical
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treatments and recommendations, a patient-specific predictive tool is required to incorporate

the advances in computational modeling and computational capacity. The development of

such tool requires a major paradigm-shift since clinical measurements are associated with

limited information, uncertainty and incompleteness of the model. In this study, we adopt

deep learning to tackle the problem.

Deep learning and deep architectures in general have been transforming an enormous

number of research areas, majority in computer vision [77] and natural language process-

ing [15]. Furthermore, deep learning also has been heavily applied in risk prediction based

on electronic health record [13], image labeling [44], traffic flow prediction [52], image seg-

mentation [74], medical image segmentation [69], and many other fields. Deep architecture

has been investigated since 1980 [32] and has been proved to be more effective and requires

less resource compared to a shallow structure of the same size, i.e., same number of nodes.

The merits of deep structure come from its ability to reduce redundant works by distributing

the tasks through its layers [69]. For instance, the low layers can perform low level tasks like

gradients computation or edge detection while the higher layers can perform classification or

regression. However, as the networks are constructed in deeper layers, the training becomes

prohibitively slow due to the problem of “vanishing gradients” [3]. In particular, when the

error is back-propagated from the output layer, it is multiplied by the derivatives of acti-

vation function, which is near zero for those saturation nodes. Consequently, the error as

the driven force for the gradient decent algorithm is dramatically dissipated that results in

extremely slow training rate for those nodes behind the saturated node.

The training problem had remained until 2007 when Hinton proposed a two-stage learning

scheme [49]. Firstly, the network is trained in an unsupervised and layer-wise manner in

the form of a restricted Boltzmann Machine (RBM), i.e., pre-training. Then, the network

is trained again with labeled data, i.e., fine-tuning. However, it is shown that the deep

structure only yields high level of generalization and low test error when it is trained on a

large available training set. For instance, LeCun et al. [71] utilize a MNIST [72] dataset of
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hand-written numbers with 60, 000 samples to train a 3-layer deep network. Unfortunately,

in most of cases such large data set of AAA is not available or time-consuming manual

segmentation is required. The similar situation exists for other types of medical data set.

Thus, up to date, the applications of deep structure in medical data are limited to medical

image segmentation.

In this study, we investigate the use of a Deep Belief Network (DBN) to solve the problem

of prediction of MDC at a future time in a regression framework. One of the main obstacle

to apply deep structure to such a biomedical problem is the shortage of training data set due

to variety of reasons such as high cost of data acquisition or disruption in patients’ visitings.

To cope with the problem of small labeled data set, we propose a method to use a small size

data and generate a large artificial data that requires a short time and less computational

resource. To the best of our knowledge, this is the first effort to adapt a deep structure in

the problem of prediction of AAA.

In Section 5.1, we describe the types of data that our model bases on. In Section 5.3,

we discuss how we use the PCM model to general our artificial data set. In Section 5.4, we

discuss our deep network structure and the overall prediction model. The results are shown

in Section 5.5.

5.1 Data

5.1.1 Real patient based reconstructed data

While there are various ways to measure the maximum diameter of an AAA [66], we utilize

the results from the work of Gharahi et al. [34]. The method starts with a 3D point cloud of

the AAA wall, then a maximally inscribed sphere is defined as the largest sphere within the

outer arterial wall surface. The inscribed sphere is moved from the bottom to the top of an

AAA. Then, the trace of the movement of such sphere’s center point forms the centerline.

Finally, the maximum diameters are plotted versus the centerline as shown in Figure 5.1-(a).
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Patient ID Number Gender Age Time of Scans (Years)
of Scans

P1 7 Male 68 [0, 1.07, 5.76, 6.70, 7.68, 8.64, 9.10]
P2 6 Male 66 [0, 1.02, 2.04, 2.94, 3.94, 5.85]
P3 5 Male 54 [0, 1.06, 2.07, 3.07, 3.54]
P4 4 Male 73 [0, 0.27, 0.74, 1.57]
P5 6 Male 70 [0, 2.12, 2.58, 3.28, 3.99, 4.31]
P6 4 Male 54 [0, 1.11, 2.15, 3.20]

Table 5.1 Demographic Data of Patients adapted from [34]

We adapt the collection of maximum diameter curves from the authors of [34] as use them

as the input to our method.

According to [34], the longitudinal data is collected from 6 patients in total, the demog-

raphy of which is shown again in Table 5.1 in this dissertation.
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Figure 5.1 Example of 2D profile curves of maximal diameters over the centerline obtained
from (a) real patient, (b) the G&R computational model, and (c) the PCM approximation.
Note that the two G&R and PCM curves in this example are not based on the real centerline,
so their units are not in centimeters, but in spatial site unit. The spatial site can be seen as
a 1D mesh in the FEM code.

5.1.2 Artificially generated data

G&R computational model : The G&R computational model [27] is a finite element method

(FEM) based vascular model that simulates the mechanical and geometrical state of an aortic

aneurysm at a given time. The G&R model utilizes individual microstructural properties

of different constituents to compute the stress-stretch state. In the G&R model, the aorta
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is consist of three stress-bearing constituents: elastin, collagen fiber families, and vasoactive

smooth muscle cells. Each constituent has its own properties and contribution to the strength

of the artery’s wall. The G&R model connects the constituents to the stress-stretch state

of the artery and calculates the evolution of those microstructural properties with a stress-

mediated feedback approach.

Elastin contributes resilience and elasticity to the aortic tissue; however, it degenerates

over time and be irreplaceable. The degeneration in elastin causes a localized dilation of the

aorta, leading to the weakening of the wall. Consequently, it results in an increase of the

diameter and the wall stress of the aneurysm. The degeneration of the elastin is specified by

the elastin damage function is defined as a modified Gaussian function:

d(s) = kd exp

[
−(s− µd)α

2σ2
d

]
, (5.1)

where s is the coordinate defined on the centerline. µd and α are estimated for each pa-

tient based on their data as they have specific effects on the shape of the damage function;

therefore, on the stress-stretch and geometrical state of the AAA. Since the maximum aortic

diameter locates at a close proximity of the maximum damage, µd is most likely to be in

the vicinity of the centerline locations where the local enlargement is the most severe. We

assign the values of 2 or 4 to α, which is determined by minimizing the error between the

simulation and the real data. Additionally, kd is a scaling factor, i.e., kd ∈ [0, 1), such that as

kd approaches 1 the degradation of elastin increases leading to the dilatation of the artery.

On the other hand, kd = 0 means no degradation of the elastin, which results in the retain of

the artery. σd is the standard deviation of the Gaussian function; hence, it defines the width

of the 2D profile curve of the aneurysm. These three parameters kd, σd, and µd directly

affect the time evolution of the aneurysm; thus, each unique group of the three parameters

yields an unique outcome of the G&R code. One example is shown in Figure 5.1-(b).

PCM approximation model : One common disadvantage of the G&R model is that it is
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extremely time- and computational resource- consuming. Therefore, to generate a large data

set for the deep network, it is not the optimal option. Alternatively, we use a small number

of G&R model simulations to train the PCM and generate a large artificial data set using

the PCM. The detail of the PCM is discussed in Section 5.3 and an example is shown in

Figure 5.1-(c).

5.2 Prediction of maximum diameter curve

Assume that we have an AAA evolving and for every one year, we are able to obtain an

MDC from that particular AAA. Let ft,i be one MDC of the AAA i at scan time t and a

collection of ft,i for a span of t provides us the timeline evolution of the AAA i. We define

our regression problem as follows. For each data point, we determine the feature vector xi

to be the collection of three most recent MDCs, and the prediction target yi is the MDC for

the next scan in a future time:

xi = [ft−2,i, ft−1,i, ft,i] ,

yi = ft+1,i.

In the G&R code, the centerline is discretized into a grid size of 221, so the dimensions of

our data and label are 663 and 221, respectively.

Given a set of parameter γ = [kd, σd, µd] and a time span, the G&R model (as well as

the PCM approximation code) will produce a time series of MDCs to simulate the growth

of AAA during the time span, i.e., an artificially generated collection of {xi, yi}. Next, we

normalize each data point and save the normalization scale as a separated data set. Then,

the normalization scale data set is used to predict the scale of the future MDC by utilizing

the Gaussian process regression. It has been shown that it is difficult to learn the variance

for each visible unit [47]. Thus, by normalization process, we transform the original data

to be the new one with zero mean and unit variance. Additionally, we normalize the data
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Figure 5.2 Overall diagram of the proposed method.

since the output regression layer utilizes the logistic function, so the outcome is in the form

of probability, i.e., in the range [0, 1]. Then, the normalized data is plugged into a Deep

Belief Network with a neural network (NN) regression as the output layer. After being pre-

trained with the normalized artificial data, the NN is fine-tuned again with the real data set

by back-propagation. Finally, the predicted MDC is then transformed back to the normal

scale to be the final prediction outcome. The overall method is depicted in Figure 5.2. To

compare two MDCs, we use the standard Root Mean Squared Error (RMSE).

Prediction of normalization scale: as aforementioned, we utilize Gaussian process regres-

sion to predict the normalization scale of the future scan. The detail of Gaussian process is

discussed in Section 4.2.1. We briefly describe our model here. For a data point i, let

ui = [max(ft−2,i),max(ft−1,i),max(ft,i)] and vi = max(ft+1,i)

be the predictor vector and label value, respectively. Thus, we have a Gaussian process

v(u) ∼ GP(µ(u),K(u, u′)),
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where µ(.) and K(., .) are the mean and covariance functions, respectively. Thus, the pre-

dicted value of v∗ has a Gaussian distribution v∗ ∼ GP(µ∗(u∗), σ
2
∗(u∗)) with the mean and

variance are computed in (4.3) and (4.4).

5.3 Probabilistic Collocation Method

In this section, we show how we make an approximated outcome of the G&R using the PCM

model.

5.3.1 Deterministic input

Consider the G&R model that takes the group of parameters γ = {kd, σd, µd} as the input

and produces the simulated MDC y as the output:

y = η(γ), (5.2)

where η(.) is the G&R computational code. Due to the high demand of computational

resource and time of the code, we shall approximate η(.) by utilizing a set of N basis functions

{gi(γ)}, with i = 1, · · · , N , such that:

ŷ =
N∑
i=0

βigi(γ), (5.3)

where N and βi are the order of the approximation and regression coefficients. For now, we

assume that the set of functions {gi(γ)} is known. The regression coefficients {βi} can be

solved as follows.

We define the residual between the truth and the approximation as follows.

R({βi}, γ) = ŷ(γ)− y(γ). (5.4)

86



Applying the Ordinary Least Squares estimation to (5.3), we can straightforwardly obtain

that the optimal set of coefficients β̂i as follows:

〈gi(γ), R({βi}, γ)〉 =

∫
γ

gi(γ)R({βi}, γ)dγ = 0, (5.5)

where i = 1, · · · , N and 〈., .〉 represents the dot product between two deterministic func-

tions. (5.5) can be solved by using a similar idea from the Gaussian quadrature [106] by

approximating the integral as:

∫
γ

R({βi}, γ)gi(γ)dγ '
N∑
j=1

vjR({βi}, γ̃j)gi(γ̃j) = 0, (5.6)

where vj and γ̃j are the weights and abscissas, respectively. If the weights and the basis

functions are chosen such that
∏

i,j vjgi(γ̃j) > 0 for all i and j, the summation in (5.6) can

be further approximated as:

R({βj}, γ̃j) = 0, j = 0, · · · , N. (5.7)

Note that the quadrature points γ̃j are also the collocation points. (5.7) can be used to find

the coefficients {βj} by running the model at N + 1 different collocation points and solving

a system of N + 1 equations.

5.3.2 Stochastic input

Suppose that the input γ now is a random vector with a known probability density function

(PDF) π(γ). Thus, (5.5) is transformed into the probability space as follows.

∫
γ

π(γ)R({βi}, γ)gi(γ)dγ = 0.
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Similarly, with the proper choice of vj and gi(γ), (5.7) becomes:

π(γ)R({βj}, γ̃j) = 0,

where j = 0, · · · , N . Since the PDF function π(γ) is always positive, (5.7) can still be used

to find the coefficients in the stochastic case.

5.3.3 Selection of basic functions and collocation points

Up to this point, we have assumed that the basic functions and the collocation points are

given. In this section, we show how to determine them to satisfy the assumptions we have

made in the previous section.

Theorem 1. Consider a quadrature formula:

∫
z

W (z)F (z)dz '
N∑
j=1

wjF (zj),

where wj and zj are the weights and abscissas. Then for a weight functionW (z) = zα(1−z)β,

there exists an optimal choice of N quadrature points in the sense that the highest possible

power of z in a power series expansion of F (z) is correctly integrated when these z-values

are used as quadrature points. The optimal quadrature points are the zeros of the polynomial

of degree (N + 1), i.e., P (α,β)
N+1 (x), that satisfies the following orthogonality condition:

∫
z

W (z)zjP
(α,β)
N+1 (z)dz = 0, for j = 0, · · · , N. (5.8)

The detail proof of Theorem 1 is provided in Chap 3 of [114]. In short, the choice of

collocation points as the roots of the next order orthogonal polynomial will make the colloca-
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tion method approximation closet to Galerkin’s method, which yields the best performance

among the Methods of Weighted Residual (MWR) [114].

Corollary 2. Consider the same quadrature formula in Theorem 1, and a set of N + 1

orthogonal polynomial functions {gi(z)}. If the set of functions satisfies the condition:

∫
z

π(z)gi(z)gN+1(z)dz = 0, i = 1, · · · , N, (5.9)

then, it also satisfy condition (5.8) and the zeros of gN+1(z) are the optimal quadrature

points.

The proof of Corollary 2 is straightforward and provided in Appendix C. If we choose

the weight function to be the PDF of γ, i.e., W (γ) = π(γ), (5.9) can be used to generate the

set {gi(γ)} in a recursive manner as follows.

In practice, we define the initial conditions:

g−1 = 0,

g0 = 1,

and the orthogonal polynomials can be obtained recursively by solving the equations:

∫
γ

π(γ)gi(γ)gi+1(γ)dγ = 0, i = 1, · · · , N.

However, for high order polynomials, solving (5.9) manually is time-consuming and error-

prone. Thus, the set of basis functions can be computed alternatively and efficiently by using

Favard theorem as follows.

Theorem 3. (Favard Theorem) If a sequence of polynomials {Pi(z)}, where i = 1, · · · , N ,
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satisfies the recurrence relation:

Pi(z) = (z − αi)Pi−1(z)− γiPi−2(z),

P−1 = 0, P1 = 1,

(5.10)

where αi and βi are real numbers. Then, {Pi(z)} are orthogonal polynomials.

In this study, we adapt the work of Zhou et al. [129] that utilizes1 αi = 〈γgi−1, gi−1〉

and γi =
√
〈gi−1, gi−1〉. The overall PCM algorithm is shown in Algorithm 3. Note that

even here we use the same order for all random variables (N -th order), in general the orders

can be different. Furthermore, even the PCM has been widely used for approximation of

univariate prediction target, i.e., y is scalar, in our approach we extend it to be a multivariate

approximation. The extension is straightforward since β in (5.11) now shall be a matrix

instead of a vector. As a relative comparison, the G&R takes 2 days to run 512 sets of

parameters, while PCM takes 20 seconds to produce the same results.

5.3.4 Maximum diameter curve transformation

It is a common practice in training deep structure that the original training data set is

augmented to increase its variation and generalization. For instance, the multiple sources of

training data sets can be mixed together to form a new one [71] or different view angles are

achieved to general more poses of a 3D object [122].

We observe that some of the real MDCs do not start at 2 (cm) due to some truncation in

the pre-processing step. Therefore, we generalize the training by augmenting the outcomes

of PCM by applying a linear transition to the curve, an example of which is shown in dashed

red line in Figure 5.3. Furthermore, since the G&R has only one damage function as shown

in (5.1), it can not general data with a secondary local enlargement, which is observed in a

1The dot product between two functions A(z) and B(z) with respect to a random variable z with the
probability density function w(z) is defined as 〈A(z), B(z)〉 =

∫
z
w(z)A(z)B(z)dz.

2For the sake of notational simplicity, we denote {kd, σd, µd} as {γ[1], γ[2], γ[3]} in Algorithm 3.
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Figure 5.3 Two transformations of a maximum diameter curve: the original, translated, and
second peak modified curves are shown in solid blue, dashed red, and dotted black lines,
respectively. Note that the first halves of the original and second peak modified curves
overlap each other.

number of our patients. Thus, we create a merged MDC by combining two different MDCs

together. An example of a merged MDC is shown in dotted black line in Figure 5.3.

5.4 Deep Learning

In this section, we show how we use the artificially generated data from PCM to train the

DBN and predict the MDC in a future time. We utilize a standard structure of the DBN [50]

with two layers of Restricted Boltzmann Machine (RBM) [47] as shown in Figure 5.4. First

of all, the two layers of RBM are pre-trained in an unsupervised manner. Then, we unfold

91



the two RBMs into an NN. Finally, we fine-tune the NN with the ground truth from both

the real and artificially generated data by back-propagation.

5.4.1 Restricted Boltzmann Machine

An RBM is a building block of the DBN and we pre-train the RBM layers as follows.

Assume that we have two types of variables: the observed one (x) and the hidden one (h).

The two variables are governed by an energy function E(x,h). Assume that both visible and

hidden units have binomial distributions, a Boltzmann Machine is an energy-based model

that has the energy function as a second-order polynomial [2]:

E(x,h|θ) = −bTx− cTh− hTWx− xTUx− hTV h,

where θ is the collection of the offsets b and c, and the weights W , U , and V . Thus, any

probabilistic density function P (x) (as well as joint and conditional PDFs) can be easily

represented by a normalized form of the energy function. For instance, the PDF of x can be

computed as:

P (x) =
∑
h

e−E(x,h)

Z
, (5.13)

where Z =
∑

x̃

∑
hE(x̃,h|θ) is the normalization factor and x̃ is all possible values of the

visible vector x. The realization of x̃ can be considered as reconstructed visible units.

In order to maximize the likelihood function to fit the model to a training data, we can

use the log-likelihood gradient ∂ logP (x)
∂θ

to learn the parameter θ. However, when this energy-

based PDF is used to compute the gradient of the log-likelihood, it requires sampling of two

conditional probabilities: P (h|x) and P (x,h). This can be done via the Monte Carlo Markov

Chain (MCMC) sampling [51], which is highly computationally expensive. Therefore, a

Restricted Boltzmann Machine learnt by using Contrastive Divergence is normally utilized

as a more efficient alternative solution.

The Restricted Boltzmann Machine is introduced by posting an additional condition:
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U = 0 and V = 0. In other word, there are no connection between units in the same

layer, either visible or hidden. Note that there is no links among units in the same layer

in Figure 5.4. Furthermore, we assume that the visible unit has Gaussian distribution, i.e.,

vi ∼ N (ai, σi), and the hidden unit has binomial distribution, i.e., hj ∈ {0, 1}. Then, we can

define a modified energy function as [47]:

E(x,h|θ) = −
V∑
i=1

(xi − ai)2

2σ2
i

−
H∑
j=1

cjhj −
V∑
i=1

H∑
j=1

wij
xi
σi
hj (5.14)

The conditional PDF of the visible units given the hidden ones can be computed as:

P (x|h, θ) =
e−E(x,h|θ)∑
x e
−E(x,h|θ) .

Note that P (h|x, θ) can be computed in the same manner. Using E(x,h|θ) in (5.14), we

have:

P (hj = 1|x, θ) = sigm

(
V∑
i=1

wijxi + cj

)
,

P (xi = x|h, θ) = N

(
ai + σi

H∑
j=1

hjwij, σ
2
i

)
,

(5.15)

where sigm(x) = 1
1+exp(−x)

is the sigmoid function.

The likelihood gradient can be computed by taking the derivative of P (x) in (5.13) with
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respect to θ, we have:

logP (x)

∂θ

= − 1∑
h e
−E(x,h)

∑
h

e−E(x,h)∂E(x,h)

∂θ

+
1

Z

∑
x̃

∑
h

e−E(x̃,h)∂E(x̃,h)

∂θ

= −
∑
h

P (h|x)
∂E(x,h)

∂θ
+
∑
x̃

∑
h

P (x̃,h)
∂E(x̃,h)

∂θ

= −EP (h|x)

[
∂E(x,h)

∂θ

]
+ EP (x̃,h)

[
∂E(x̃,h)

∂θ

]
.

(5.16)

The expectation EP (h|x)[.] is also referred as positive phase distribution or data distribu-

tion while the other expectation EP (x̃,h)[.] is reffered as negative phase or model distribu-

tion [2].

Optimization of (5.16) involves sampling from P (x̃,h) and it can be done by running

Gibbs sampling until it reaches the equilibrium distribution for each parameter learning

update iteration, which is extremely time consuming. Alternatively, Hinton [48] suggested

the Contrastive Divergence (CD) learning that minimizes the difference between the data

distribution and the one-step (or a finite number of steps) reconstructed distribution instead

of minimizes the difference between the data and model distribution directly.

5.4.2 Contrastive Divergence

In a CD-k learning, the gradient of the parameter θi is approximated by:

∆θi = −ε logP (x)

∂θi

= ε

(
EP (h|x)

[
∂E(x,h)

∂θi

]
− EPk(x̃,h)

[
∂E(x̄,h)

∂θi

])
,

(5.17)

where Pk(x̃,h) is the distribution of the reconstructed visible data x̄ after k steps of Gibbs

sampling and ε is the learn rate. In this study, we utilize CD-1 that involves one full step of
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Figure 5.4 Deep architecture of the DBN. Two layers of RBM are trained in an unsupervised
manner (pre-trained) using CD-1 algorithm. The top layer utilizes a neural network sigmoid
regression for prediction.

Gibbs sampling, i.e., P1(x̃,h). Applying (5.17) to (5.14), we have the learning update rules

for each RBM layer as follows.

wij ← wij + ε

(
EP (h|x)

[
hjxi
σi

]
− EP1(x̃,h)

[
hjxi
σi

])
,

cj ← cj + ε
(
EP (h|x) [hj]− EP1(x̃,h) [hj]

)
,

ai ← ai + ε

(
EP (h|x)

[
−vi − ai

σ2
i

]
− EP1(x̃,h)

[
−vi − ai

σ2
i

])
,

(5.18)
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where

EP (h|x)

[
hjxi
σi

]
=

1

N

N∑
t=1

h̃
[t]
j x

[t]
i

σi
,

EP1(x̃,h)

[
hjxi
σi

]
=

1

N

N∑
t=1

P (h
[t]
j = 1|x̃[t]

i , θ)x̃
[t]
i

σi
,

EP (h|x) [hj] =
1

N

N∑
t=1

h̃
[t]
j ,

EP1(x̃,h) [hj] =
1

N

N∑
t=1

P (h
[t]
j = 1|x̃[t]

i , θ),

EP (h|x)

[
−vi − ai

σ2
i

]
=

1

N

N∑
t=1

(
−x

[t]
i − ai
σ2
i

)
,

EP1(x̃,h)

[
−vi − ai

σ2
i

]
=

1

N

N∑
t=1

(
− x̃

[t]
i − ai
σ2
i

)
,

where N is number of samples and h̃j and x̃i are sampled with the distributions in (5.15).

5.5 Real case study

In this section, we demonstrate the effectiveness of our proposed predictive model with

experiment using the real MDC obtained from [34].

5.5.1 Experimental set-up

For a deep structure, the selection of the number of hidden units, i.e., layers and nodes,

is an important factor that determines the performance of the model. As a general rule,

if the number of parameters is more than the number of training cases, the model will be

overfitted. Therefore, as a rule of thumb for generative model of high-dimensional data,

the number of parameters is constrained by several orders of magnitude greater than the

dimensionality of the data [47]. In this study, our data has the dimensionality of 663. In

order to determine the optimal number of layers, we study the effect of number of hidden
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Number of Weights Training RMSE (cm)
hidden layers time (s)

1 67063 13.46 4.96
2 77263 17.22 5.08
3 87463 20.39 6.28
4 97663 23.65 9.76
5 107863 26.79 9.79

Table 5.2 Effect of number of layers on the prediction.

Number of nodes Weights Training RMSE (cm)
RBM-1 RBM-2 time (s)
900 36 631599 68.78 5.04
400 100 306763 38.83 4.61
100 100 77263 17.22 5.08
100 400 107563 23.11 5.12
36 900 256803 24.48 7.02

Table 5.3 Effect of number of nodes in a 2-layer DBN on the prediction.

layers on the final prediction, which is shown in Table 5.2. In this analysis, we continuously

add one more of layer of 100 hidden nodes to the structure, starting with 1. As shown in

the table, the optimal number of weights is for one or two layers, when it is approximately

two orders of magnitude of the dimensionality of the data.

In order to test the effect of number of nodes within each layer, we construct a number

of 2-layer DBNs with different sets of hidden nodes in each layer. In particular, since there

is a remarkable difference in the dimensions of the data and the label, i.e., 663 versus 221,

we test the DBN with three distributions of nodes: highly concentrated near the input layer,

equally distributed, and highly concentrated near the output layer. As shown in Table 5.3,

as the nodes near the input layer decreases, the model fails to capture the representative

features in the data, leading to higher prediction error.

One of the problem in our data is that we pre-train the DBN with a large artificially

generated data (51200 sample) while the real data (8 samples) for fine-tuning is extremely

limited compared to the artificial one. To tackle this problem, we fix the epoch3 of the

3The number of times that the model is trained through the whole training set.
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pre-training process to be 1 and increase the number of epochs of the fine-tuning process.

By doing this, we improve the portion of generalization capability that is contributed by the

real data set over the one from the artificial data as a counter-measurement for the large gap

in the numbers of data points between two sources of data. The RMSE and training time

for different epochs from 1 to 900 is shown in Figure 5.5. As the epochs is larger than 500,

the error starts to increase again as the model starts to overfit the fine-tuning data and the

generalization capacity is reduced.

Mixed-effect model: We compare the performance of our proposed method to the nonlin-

ear mixed-effects, which has been used extensively as a powerful growth hierarchical model

over the decades [11, 26, 107]. For the mixed-effects model, we utilize a basic form of the

growth function as:

yi,j = α0 + (α1 + b1)ti,j + (α2 + b2)t2i,j + εi,j,

where yi,j and ti.j are the diameter captured at the time j of patient i, b = [b1, b2] is the

random-effects terms and b ∼ N (0,Σb), α = [α0, · · · , α2] is the vector of parameters, and

εi,j is the independent error term, i.e., εi,j ∼ N (0, σ2
w). b and α are fitted to the data via

the fminsearch function in MATLAB.

Neural network with dropouts: dropout is a simple but effective technique to regularize

a neural network to obtain a “trimmed” one that is less likely to be overfitting [105]. When

dropout is applied, we randomly remove a set of units (from both visible and hidden layers)

temporarily from the original network. In this study, we fix each unit with a probability of

p = 0.9. Then, for training phase, a unit will be presented with the probability p. During

the test phase, the weight of a unit will be multiplied by the value p.

5.5.2 Experimental results

The prediction error for 6 cases is shown in Table 5.4 and the plots of predictions are

shown in Figure 5.6. The true, predicted by our proposed method, and predicted by the
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Figure 5.5 Effect of number of epochs to the prediction error. The RMSE and fine-tune
training time are plotted in solid blue and dashed red lines, respectively. The training
increases linearly with the number of epochs, while the RMSE rapidly decreases for the
beginning then starts to increase again for the number of epochs that is larger than 500.
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Patient ID RMSE (cm) Normalized error
DBN DBN+DO Mix-effects DBN DBN+DO Mix-effects

P1 3.36 3.10 8.18 0.54 0.57 1.63
P2 4.19 6.3 7.68 0.37 0.46 0.98
P3 1.02 1.55 5.59 0.41 0.42 1.37
P4 2.95 2.81 4.16 0.55 0.55 1.14
P5 3.71 3.4 9.04 0.33 0.29 1.79
P6 5.85 6.46 5.73 1.2 1.31 1.37

Table 5.4 Comparison among different predictive models in terms of RMSE and normalized
unit.

mixed-effects model MDCs are shown in solid black, dashed blue, and dotted dashed red

lines, respectively. As shown in the table, our proposed method outperforms the mix-effects

method with average 45% reduction in RMSE.

Notice that we have used an additional Gaussian process regression to predict the scale

of the MDC. Thus, the final predictions are subjected to a bias error due to the Gaussian

process regression. For instance, in the case of patient P5, the whole deep learning predicted

curve has a consistent offset with respect to the true curve. Notice that patients P2 and

P5 have a secondary local enlargements and our proposed method successfully produces

accordingly predictions while the mixed-effect method fails to do so.
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Figure 5.6 The true, predicted by our proposed method, and predicted by the mixed-effects
model are shown in solid black (“true”), dashed blue (“DL prediction”), and dotted dashed
red (“ME prediction”) lines, respectively.
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Algorithm 3 The Probabilistic Collocation Method (PCM) model
Part 1: Compute collocation points

1: Initialize g−1(γ) = G−1(γ) = 0 and g0(γ) = G0(γ) = 1.
2: for i = 1, · · · , N do
3: Gi(γ) = γgi−1(γ)− 〈γgi−1(γ), gi−1(γ)〉gi−1(γ)−

√
〈Gi−1(γ), Gi−1(γ)〉gi−2(γ)

4: gi(γ) = Gi(γ)√
〈Gi(γ),Gi(γ)〉

5: end for
6: Find the zeros of gN+1(γ) = 0 as N collocation points.
7: Repeat steps 1-5 for other random variables. We denote three random variables2 and

three sets of basis functions as {γ[1]
i , γ

[2]
i , γ

[3]
i } and {g[1]

j (γ), g
[2]
j (γ), g

[3]
j (γ)}, respectively,

where i = 1, · · · , N and j = 0, · · · , N − 1
8: Create a permutation of three groups of collocation points of 3 random variables, i.e.,

(γ
[1]
i , γ

[2]
j , γ

[3]
k ) where i = 1, · · · , N , j = 1, · · · , N , and k = 1, · · · , N .

Part 2: Run the computational code at the collocation points
1: for i = 1, · · · , N , j = 1, · · · , N , k = 1, · · · , N do
2: Run η(γ

[1]
i , γ

[2]
j , γ

[3]
k ).

3: end for

Part 3: Compute the coefficients β

1: Concatenate the computational outcomes: y =

 η(γ
[1]
1 , γ

[2]
1 , γ

[3]
1 )

...
η(γ

[1]
N , γ

[2]
N , γ

[3]
N )

.
2: Arrange the matrixK =

 g
[1]
N−1(γ

[1]
1 )g

[2]
N−1(γ

[2]
1 )g

[3]
N−1(γ

[3]
1 ) · · · g

[1]
0 (γ

[1]
1 )g

[2]
0 (γ

[2]
1 )g

[3]
0 (γ

[3]
1 )

... . . . ...
g

[1]
N−1(γ

[1]
N )g

[2]
N−1(γ

[2]
N )g

[3]
N−1(γ

[3]
N ) · · · g

[1]
0 (γ

[1]
N )g

[2]
0 (γ

[2]
N )g

[3]
0 (γ

[3]
N )

.
3: Compute the coefficients:

β = K−1y. (5.11)

Part 4: Approximate the computational code
1: For any new set of random variable (γ

[1]
∗ , γ

[2]
∗ , γ

[3]
∗ ), the outcome can be approximated by:

η∗(γ[1]
∗ , γ

[2]
∗ , γ

[3]
∗ ) =

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

βi,j,kg
[1]
i (γ[1]

∗ )g
[2]
j (γ[2]

∗ )g
[3]
k (γ[3]

∗ ). (5.12)
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Chapter 6

Conclusion and future works

In this chapter, we briefly summarize the main factors of each chapters as well the limitations

of the discussed methods. Additionally, we show how the works can be improved in the future

with further investigation.

In chapter 2, we present a novel approach to use vision data for the robot localization.

The predictive statistics of vision data is learned in advance and used in order to estimate

the position of a vehicle, equipped just with an omnidirectional camera in both indoor and

outdoor environments. The multivariate GP model is used to model a collection of selected

visual features. The locations are estimated by maximizing the likelihood function without

fusing combining vehicle dynamics with measured features in order to evaluate the proposed

scheme alone. Hence, we believe that the localization performance will be further improved

when vehicle dynamics are fused together via Kalman filtering or particle filtering.

One of the limitation of the method is that after the initial training phase, learning

is discontinued. If the environment changes, it is desirable that the localization routines

adapt to the changes in the environment. Thus, a future research direction is to develop a

localization scheme that is adaptive to changes in the environment.

In chapter 3, we introduce a novel appearance-based approach based on group LASSO

regression. We have shown the effectiveness of our method in feature selection and localiza-
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tion enhancement by combing the group LASSO regression and the EKF. The experiment

study shows the significant reduction (75.5%) in the features while improving the localization

performance.

Notice that since the direct dynamic model that maps the visual features into the robot’s

positions, i.e., qi = h(x), are not available, we use the LASSO (as well as the group LASSO)

as a linear regression approximation. Thus, the observations for the EKF and PF are noisy

estimated localization results from the LASSO. The linearity assumption could restrict the

localization performance. Therefore, a potential future study is to apply a non-linear regres-

sion technique, such as Gaussian process, to relax the linearity condition.

In chapter 4, we have formulated the modeling and growth of the AAA using patient-

specific point clouds data in a statistical framework. After utilizing the spatio-temporal

Gaussian process observation model to construct the implicit surface field, we develop a

dynamic model to infer the evolution of the field at a future time. Finally, we extract the

surface from the predicted field for visualization of an aneurysm.

The results of the case studies have shown the efficacy of our proposed scheme by com-

paring the predicted AAAs with the ground truth. To the best of our knowledge, this is the

first study that predicts the growth of the 3D AAA shape by using patient-specific data in

a statistical framework and provides uncertainty of the predicted AAA shape. In doing so,

the study yields insightful findings as well as highlights the limitations of using such models

for studying the nature of the growth of an AAA. Possible clinical applications and limita-

tions of our approach are also discussed along with prospective research directions. With

advances in computing technologies and new sampling methods, the use of the Bayesian

approach will have a great potential to revolutionize application of computational modeling

in the treatment of vascular diseases.

In chapter 5, we propose a novel method that utilizes the Deep Belief Network to predict

the growth of an AAA via the maximum diameter curves. The deep structure is pre-trained

on a set of simulated data and fine-tuned by the longitudinal data of the patients. The
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method is implemented on a real case study with 6 patients. The outcomes validate the

effectiveness of our proposed method.

A limitation of the current approach arises from the fact that the use of a additional

regression to predict the normalization factor separately increases the bias error. Thus, a

future research direction is to accommodate uncertainty in Gaussian process to the final

results. For instance, drop-out can be used as an approximated Bayesian technique to

represent represent model uncertainty in deep learning [33].
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Appendix A E-M algorithm

In this section, we show how to use the E-M (Expectation-Maximization) algorithm to fit

the linear dynamic model to the training data set.

First of all, we define a log likelihood function conditioned on the available data up to

the time T as (for notational simplicity, we omit the x argument and put the time t in the

subscript for the function f(.), i.e., A and ft imply A(x) and f(x, t)):

log(L) := −1

2
log |Σ0| −

1

2

(
(f0 − µ0)TΣ−1

0 (f0 − µ0)
)

− 1

2

T∑
t=1

log |∆2
tΣw| −

1

2

T∑
t=1

(
(ft − ft−1 −∆tA)T (∆2

tΣw)−1(ft − ft−1 −∆tA)
)

− 1

2

T∑
t=1

log |Σv(t)| −
1

2

T∑
t=1

(
(yt − ft)TΣv(t)

−1(yt − ft)
)
.

(1)

The E-step

Let Ψ(A,Σw) = Er[log(L)|D1:T , A,Σw] be the expected value of the log likelihood function

at iteration r, apply the expectation to both sides of (1) and utilize the matrix identity

E[xTAx] = Tr(AE[xxT ]) (2)

we can derive Ψ(A,Σw) as follows. Consider each line of (1):

We can see straightforwardly that the first line of (1) becomes the first line of (4) by

simply applying (2).

Apply the identity (2) to the second line of (1), we have:

E

[
−1

2

T∑
t=1

log |∆2
tΣw| −

1

2

T∑
t=1

(
(ft − ft−1 −∆tA)T (∆2

tΣw)−1(ft − ft−1 −∆tA)
)]

= −1

2

T∑
t=1

log |∆2
tΣw| −

1

2

T∑
t=1

E
[
(ft − ft−1 −∆tA)T (∆2

tΣw)−1(ft − ft−1 −∆tA)
]
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Apply (2) to the later sum and expand it, we have:

T∑
t=1

Tr
{

(∆2
tΣw)−1E[(ft − ft−1 −∆tA)(ft − ft−1 −∆tA)T ]

}
=

T∑
t=1

Tr
{

(∆2
tΣw)−1

(
Ct −Bt −BT

t + Et + ∆tHt + ∆2
tAA

T
)}
,

where

Ht = (E[ft−1]− E[ft])A
T + A(E[ft−1]− E[ft])

T ,

Ct = Cov(ft|D1:T ) + E[f(t)|D1:T ]E[f(t)|D1:T ]T ,

Bt = Cov(ft, ft−1|D1:T ) + E[ft|D1:T ]E[ft−1|D1:T ]T ,

Et = Cov(ft−1|D1:T ) + E[ft−1|D1:T ]E[ft−1|D1:T ]T .

(3)

Apply the identity (2) to the third line of (1) we have:

− T

2
log |Σv| −

1

2
Tr

{
Σ−1
v

T∑
t=1

E[(yt − ft)(yt − ft)T ]

}

= −T
2

log |Σv| −
1

2
Tr

{
Σ−1
v

T∑
t=1

(
yty

T
t − ytfTt − yTt ft + E[ftf

T
t ]
)}

= −T
2

log |Σv| −
1

2
Tr

{
Σ−1
v

T∑
t=1

(
(yt − E[ft])(yt − E[ft])

T + Cov(ft, ft)
)}

.

Finally, combing the three lines together, we have:

Ψ(A,Σw) = −1

2
log |Σ0| −

1

2
Tr
{

Σ−1
0

(
Cov(f(0)|D1:T ) + E(f(0)|D1:T )E(f(0)|D1:T )T

)}
− 1

2

T∑
t=1

log |∆2
tΣw| −

1

2

T∑
t=1

Tr
{

(∆2
tΣw)−1

(
Ct −Bt −BT

t + Et + ∆tHt + (∆t)
2AAT

)}
− 1

2

T∑
t=1

log |Σv(t)|

− 1

2
Tr

{
(∆tΣv(t))

−1

T∑
t=1

(
(y(t)− E[f(t)|D1:T ])(y(t)− E[f(t)|D1:T ])T + Cov(f(t)|D1:T )

)}
,

(4)
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where Ht, Ct, Bt, and Et are defined in (3). This is the end of the E-step.

The M-step

In the M-step of iteration r, we find the values of A(r+ 1) and Σw(r+ 1) that maximize

(4). Let M = ∆2
tΣw and take the derivative of (4) with respect to A:

∂Ψ

∂A

=
∂Tr
∂A

{
T∑
t=1

M
(
∆t(E[ft−1]− E[ft])A

T + ∆tA(E[ft−1]T − E[ft]
T ) + ∆2

tAA
T
)}

=
T∑
t=1

{
∂Tr

∂A
(∆tM (E[ft−1]− E[ft])A

T ) +
∂Tr

∂A
(∆tMA(E[ft−1]T − E[ft]

T )) +
∂Tr

∂A
(∆2

tMAAT )

}

=
T∑
t=1

(
∆t(M +MT )(E[ft−1]− E[ft])

)
+

(
T∑
t=1

∆2
t (M +MT )

)
A

= (Σw + ΣT
w)

T∑
t=1

∆3
t (E[ft−1]− E[ft]) + (Σw + ΣT

w)

(
T∑
t=1

∆4
t

)
A = 0.

Thus,

A(r + 1) = A =

(
T∑
t=1

∆4
t

)−1( T∑
t=1

∆3
t (E[ft]− E[ft−1])

)

Then, take the derivative of (4) with respect to Σw yields:

∂Ψ

∂Σw

=
∂

∂Σw

{
T∑
t=1

log |∆2
tΣw|+

T∑
t=1

Tr
(
(∆2

tΣw)−1(Ct −Bt −BT
t + Et + ∆tHt + ∆2

tAA
T )
)}

=
T∑
t=1

(∆2
tΣw)−T∆2

t −
T∑
t=1

(
(∆2

tΣw)−T (Ct −Bt −BT
t + Et + ∆tHt + ∆2

tAA
T )T (∆2

tΣw)−T∆2
t

)
=

(
T∑
t=1

1

)
Σ−Tw − Σ−Tw

(
N∑
t=1

∆−2
t (Ct −Bt −BT

t + Et + ∆tHt + ∆2
tAA

T )T

)
Σ−Tw = 0
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Thus,

Σw(r + 1) = Σw =
1

T

(
N∑
t=1

∆−2
t (Ct −Bt −BT

t + Et + ∆tHt + ∆2
tAA

T )

)
,

with A computed above.

Finally, we have the update for A and Σw as follows.

A(r + 1) =

(
T∑
t=1

∆4
t

)−1( T∑
t=1

∆3
t (E[f(t)|D1:T ]− E[f(t− 1)|D1:T ])

)
, (5a)

Σw(r + 1) =
1

T

(
N∑
t=1

∆−2
t (Ct −Bt −BT

t + Et + ∆tHt + ∆2
tAA

T )

)
. (5b)

Note that we have not discussed how to compute E[ft|D1:T ], Cov(ft|D1:T ), and

Cov(ft, ft−1|D1:T ), which are needed to compute A(r + 1), Bt, and Ct. Those statistical

quantities are conditioned the whole data set D1:T so they need to be computed prior to

the sum in (5). Using the Kalman filter smoothing framework [101], first we propagate the

means (E[ft]) and covariances (Cov(ft)) through the data. For each step of propagation

through the data, the quantities are conditioned on the available data up to that particular

step. Then, once we reach the end of data set, we compute backward to find the mean,

covariance, and correlation conditioned on the whole data set. For the initial condition, we

assume that f0|D0 ∼ N (µ0,Σ0), i.e., E[f0|D0] = µ0 and Cov(f0|D0) = Σ0 where µ0 and Σ0

are known. The overall Kalman Filter algorithm is shown in Algorithm 4. Computed A and

Σw are plugged back into the log likelihood expectation (4) then the E-step and M-step are

repeated. The whole process continues until the log likelihood expectation converges.

Once A(x) and Σw(x) are calibrated to the training data set, the predictive distribution

of the IS field for the test data set, which is shown in (10) of the main manuscript, is

straightforwardly obtained from the forward computation of the Kalman Filter algorithm

(the first two lines of the for loop of the forward computation section of Algorithm. 4).
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Algorithm 4 Kalman Filter updating
Forward computation:

for t = 1, · · · , T do
E[f(t)|D1:t−1] = E[f(t− 1)|D1:t−1] + ∆tA
Cov(f(t)|D1:t−1) = Cov(f(t− 1)|D1:t−1) + Σw∆2

t

Kt = Cov(f(t)|D1:t−1) (Cov(f(t)|D1:t−1) + Σv(t))
−1

E[f(t)|D1:t] = E[f(t)|D1:t−1] +Kt(y(t)− E[f(t)|D1:t−1])
Cov(f(t)|D1:t) = (I −Kt)Cov(f(t)|D1:t−1)

end for
Backward computation:
In order to compute E[f(t)|D1:T ], Cov(f(t)|D1:T ), and Cov(f(t), f(t− 1)|D1:T ), one can use
the backward computations:

for t = T, · · · , 1 do
Jt−1 = Cov(f(t− 1)|D1:t−1)Cov(f(t)|D1:t−1)−1

E[f(t− 1)|D1:T ] = E[f(t− 1)|D1:t−1] + Jt−1 (E[f(t)|D1:T ]− E[f(t− 1)|Dt−1])
Cov(f(t−1)|D1:T ) = Cov(f(t−1)|D1:t−1)+Jt−1(Cov(f(t)|D1:T )−Cov(f(t)|D1:t−1))JTt−1

if t 6= 1 then
Cov(f(t− 1), f(t− 2)|D1:T )
= Cov(f(t− 1)|D1:t−1)JTt−2

+Jt−1 (Cov(f(t), f(t− 1)|D1:T )− Cov(f(t− 1)|D1:t−1)) JTt−2

end if
end for

For t = T : Cov(f(T ), f(T − 1)|D1:T ) = (I −KT )Cov(f(T − 1)|D1:T−1).
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Appendix B Surface extraction

Threshold Determination

Let x◦ be the on-surface points at the time t such that

x◦ = {x ⊂ S : f(x, t) ≤ λ},

where λ is the threshold value. To determine the threshold for the training data, we run an

exhaustive search through the range of possible values of the IS field. For each candidate

threshold, we reconstruct the training point cloud. Finally, we choose the training threshold

to be the one that yields the most similar reconstructed point clouds.

To evaluate the similarity between two point clouds, we use the Hausdorff distance H(., .)

[53] that is defined as follows.

H(P,O) = max (h(P,O), h(O,P )) , (6)

where

h(P,O) = max
x̂∈P

min
x̄∈O
‖x̂− x̄‖.

For the exhaustive search, we gradually raise the threshold λ from 0 to 1, the final

threshold is chosen such that the corresponding point cloud yields the lowest Hausdorff

distance. Fig. A.1 shows one example of patient P5. The values of IS field are plotted with

respect to all points on the grid. The threshold for training and test fields are indicated by

the black and dashed solid lines, respectively.

Binary encoding and matching

Note that each particular value of the threshold classifies the whole 3D lattice into a

unique spatial pattern of two categories: on-surface and off-surface. Therefore, we utilize

that fact to assign the test threshold (the threshold value for the predicted IS field) to the

value that yields the most similar spatial pattern to the training data. In particular, we
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Figure A.1 Threshold determination for patient P5: the field of points on the lattice for the
training and test fields are plotted in blue pluses and red dots, respectively. The thresholds
for training and test data are shown in solid and dashed lines, correspondingly.
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encode two spatial site S’s that are classified by training and test thresholds into two binary

vectors. Then, we select the test threshold that yields the closest binary vector to the training

one. The detail of the process is discussed as follows.

First, we map on-surface points onto a binary vector as follows.

g(x, λ) =

 1 if f(x, L) ≤ λ,

0 if f(x, L) > λ.

Let vt(x1:n, λ) = [g(x1, λ), · · · , g(xn, λ)]T be the binary vector obtained at the scan time t

with threshold λ, where x1:n is the collection of coordinates of the spatial site S.

Then, we use the Jaccard indexes [92] to estimate the similarity between two binary

vectors. The Jaccard index can be computed as follows.

J(A,B) =
|A ∩B|
|A ∪B|

,

where A,B are two sample sets. The threshold that yields lowest Jaccard index is chosen to

be the test threshold, i.e.,

λ̂L = arg min
λL
{J(vL−1(x1:n, λL−1), vL(x1:n, λL))}.

Point cloud post-processing

In this section, we discuss the final step for surface refining. Figs. A.2 show the cross

section of the predicted surface at the heights z = 86.9 (mm), which is at the middle of the

AAA, and z = 76.21 (mm) where the AAA starts to branch out into two segments. The

selected points by the test threshold are plotted in blue circles. Note that inner points that

locate near the surface can be falsely classified to be on-surface. To eliminate those inner

points, we apply two connected component operators in the x-y plane of each cross section:

k-means clustering [42] and convex hull [37].

114



80 90 100 110 120
50

55

60

65

70

75

80

(mm)

(m
m

)

70 80 90 100 110
55

60

65

70

75

80

85

(mm)

(m
m

)

(a) (b)

Figure A.2 Cross view of predicted surface of the AAA at two different vertical heights: (a)
z = 86.9 (mm) and (b) z = 76.21 (mm). The point clouds and two clusters are plotted in
circles and red/blue stars, respectively. The surface points that are selected by the convex
hull are connected with the black dashed line. As shown in (b), without the clustering, two
branches will be falsely merged into one.

First, we cluster the points into two clusters, that are shown in red and blue stars in

Figs. A.2. The number of clusters is set to 2 due to the specific structure of the AAA, which

has a tubular structure with two branches at the end. Note that clustering the points into

two group prevents the convex hull operator from falsely merging two branches into one large

tube.

Then, we apply the convex hull operator to filter out only the points that lie on the

boundary, which are shown connected with dashed lines in Figs. A.2. Those points that do

not lie on the dashed black line are removed. Notice that without clustering in Fig. A.2-(b),

the convex hull operator will falsely merge two sections into one. After this post-processing

step, we finally obtain the predicted point cloud of the AAA’s surface.
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Appendix C Proof of Corollary 2

We illustrate the proof for N = 2, then the proof for an arbitrary N is straightforward. Let

g0 = 1,

g1 = ax+ b,

g2 = cx2 + dx+ e.

So, applying (5.9), we have:

∫
x

π(x)g0(x)g3(x)dx =

∫
x

π(x)g3(x)dx = 0,∫
x

π(x)g1(x)g3(x)dx =

∫
x

π(x)(ax+ b)g3(x)dx = 0,∫
x

π(x)g2(x)g3(x)dx =

∫
x

π(x)(cx2 + dx+ e)g3(x)dx = 0.

Rearrange the terms, we have an equivalent system of equations:

(1 + b+ e)

∫
x

π(x)g3(x)dx = 0→
∫
x

π(x)g3(x)dx = 0,

(a+ d)

∫
x

π(x)xg3(x)dx = 0→
∫
x

π(x)xg3(x)dx = 0,

(c)

∫
x

π(x)x2gx(x)dx = 0→
∫
x

π(x)x2g3(x)dx = 0.

which is the condition (5.8). �
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