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ABSTRACT

HOMOTOPY CONTINUATION METHOD

FOR NONLINEAR EQUATIONS

BY

Mahmoud Mohseni Moghadam

The essence of the homotopy continuation method

is path following. Chapter one of this dissertation is

devoted to a detailed discussion concerning certain

important aspects of the path following technique. It

is shown that the determination of the orientation of

the path is a by-product of this computation.

In chapter two we used the homotopy continuation

method to determine all roots of a symmetric polynomial

system.

Chapter three and four are contributing to the

applications of the polynomial systems. In chapter three

an algorithm is derived to approximate all real roots

of an analytic function in a bounded domain. In chapter

four we developed an algorithm to approximate all

eigenvalues of a matrix.

Finally in chapter five a special homotopy is

constructed to show that there are exactly n distinct



smooth curves connecting n trivial solutions to n

eigenpairs of an n.xn given matrix. This homotopy

may be used to approximate the eigenpairs of a matrix.
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CHAPTER ZERO

INTRODUCTION

In the past decade,considerab1e advances have been

made in the problem of obtaining numerical solutions of

systems of nonlinear equations. Two closely related

methods have become available. (See [24,38] for general

references.) The simplicial methods developed by

C.E. Lemke and J.T. Howson [30], H. Scarf [41], B.C. Eaves

[14.15.16], R. Saigal [40], and others was employed

initially for finding the Brouwer fixed point. Their

method is based on using a simplicial approximation of the

maps as is used in the Sperner's Lemma Proof of the

Brouwer fixed point Theorem. R.B. Kellogg, T.Y. Li

and J.A. Yorke developed an alternative approach [26,27]

for the numerical solution of the Brouwer fixed point

Theorem. By a twist of a nonconstructive proof of

M. Hirsch [23], they obtained a constructive proof.

Given a smooth map F of a ball in 391 into itself

they choose a point p on the boundary of the ball. For

«in

almost any choice of p there is a smooth curve ‘p

which leads to a fixed point. The curve can be followed

efficiently by computer.
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The Brouwer fixed point theorem itself is not used

extensively in applications, though similar degree

theoretic results are. S.N. Chow, J. Mallet-Paret and

J.A. Yorke [4] showed that by using elementary homotopy

arguments, numerical methods become available for many

problems. (While B.C. Eaves introduced the homotopy idea

to the simplicial approach, O.H. Merrill [34] and

independently H. Kuhn and J.G. Mackinnon [27] pioneered

the sandwiCh approach.) Their idea is to take any

existance proof based on degree theory and to convert

it using elementary homotopy into a constructive, computer

implementable method for finding solutions. It is shown

[4] that the method can be expected to converge with

probability one and even is some situations where elementary

degree theory is not applicable. This method is more

wildly known as "Homotopy continuation method". The

essence of the homotOpy continuation method is path

following. One starts a certain path with a solution

which is easily solved, and follows the path until the

desired solution is reached. The path is given by the

integral of some differential equation under certain

regularity assumption, the path is well behaved and can

be followed successfully. In fact, simplicial methods and

continuation methods are not unrelated as they may

initially seem. Both are techniques for following a

certain path and are both related to Newton's method.



In chapter one of this thesis, we shall present a

detailed discussion concerning certain important aspects

of the path following technique. It is shown that the QR

decomposition can be applied to the computation of the

vector field of the differential equation such that numerical

stability can be achieved. It is also shown that the

determination of the "orientation" of the path is a by

product of this compuation.

The homotopy continuation method is applicable to a

considerably large number classes of problems. Among others,

its application to locating all the isolated roots of

polynomial systems has been most effective and profound.

Recently, considerable attention has been given to the

problem of finding all solutions of systems of n poly-

nomials in n unknowns by homotopy methods. This problem

is important in application and no methods other than

homotopy methods are available for finding all the isolated

solutions of such systems.

Let

p1(zl,...,zn) = O

(l)

Pn(al,...,zn] = 0

be n polynomials in n unknowns and write 2 = (21,. ,zn),

and



p(z) = (p1(z).....pn(z))- (2)

F.J3 Drexler[12,13] and C.B. Garcia & W.I. Zangwill [20,21]

showed independently and almost simultaneously that it is

possible to find all isolated solutions of p(z) = 0.

More precisely, it is possible to find a homotopy

n

H: [0.1] xcn -v C (3)

which starts from a trivial set of polynomials

01(21) = O

Qn(zn) = 0

That is 0(2) = 0, where Q(z) = (01(2),...,Qn(z)),

H(O,z) = 0(2), H(1,z) = p(z) ,

and has the property that for each isolated zero ‘3 of

p there is a smooth curve I of zeros of H in

[0,1] an leading from some zero of 'Q at t = O to

a zero of H(1[§).

In [5] S.N. Chow, J. Mallet-paret and J.A. Yorke

basically proved Drexler's results but replaced his

algebraic geometry arguments with the results involving

the generalized Sard's Theorem on which their general

homotopy method is based. Garcia and T.Y. Li [19] used

those developments to prove a classical theorem of



Noether and Van der Waerden [43] concerning the exact

count of the number of solutions of a polynomial system

and to give a generalization of the fundamental theorm of

algebra. The proof is again free from the algebraic

geometry argument used in [37] and is done in such a way

that all the isolated solutions can be explicitly

calculated. The homotopy used by S.N. Chow, J. Mallet-

Paret and J.A. Yorke [5] has been simplified by T.Y. Li

[32].

In chapter two of this dissertation, we study a

special system of polynomials with strong symmetric

properties. The polynomial system is defined by

p(z) = (p1(z)....,pn(z)) (4)

where z = (21,...,zn) and

pi(z) = zi-tz:-+-..-+z; ; i = l,2,...,n. (5)

We shall present a special homotopy to exploit the

symmetries of this system in such a way that the compu-

tations of the curve following can be made much simpler.

~We also discuss certain techniques to overcome the

difficulties when multiple roots are presented in (5).

Chapter three and four are contributing to the

applications of the polynomial system (5). In chapter

three an algorithm is derived to approximate all the

real roots of an analytic function F(z) in a bounded
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domain. Numerical results up to seven roots are presented

to show the effectiveness of this algorithm. In chapter

four, we develop an algorithm to approximate all the

eigenvalues of an n.xn matrix. In fact, the polynomial

system (5) represents the trace formulas for the ith

power of a matrix A when zj's, j = 1,2,...,n, are

the eigenvalues of A.

In chapter five, we consider the problem of

determining all the eigenpairs of a symmetric matrix A.

A special homotopy is constructed to show that there are

exactly n distinct smooth curves connecting trivial

solutions to the desired eigenpairs. Incorporated with

sparse matrix techniques, this method may be used to

solve eigenvalue prdblem for large Sparse matrices.



CHAPTER ONE

HOMOTOPY CONTINUATION METHOD

§(1.1) Introduction

Let F be a smooth function from l‘Rn to IRn .

In this chapter we shall consider the problem of finding

the solution of F(x) = O, by homotopy continuation

method. The term "continuation method" is derived from

a class of numerical methods dating at least back to

E. Lahaye [28,29], and also known as "embedding method".

Detailed discussion of these methods can be found in

articles by H. Wacker [44], and E. Allgower & K. Georg [2].

One starts with a trivial equation, one to which the

solution is obvious and immediately known. Then the

system is deformed continuously to F(x) = O. In general,

the solution of the trivial system will prescribe, under

this deformation, a smooth curve which is connected to

the solution of F(x) = O. This curve can be characterized

by a solution to an initial value problem ofaniordinary

differential equation. Our discussion here is limited

to following the curve. As a main result, we show that

the determination of the orientation of the curve is a
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'byproduct of the computation of the vector field of

the ordinary differential equation.

§(1.2) Homotopy

In early 1960's, Davidenko [8], [9] introduced a

method of solving F(x) = 0 where F is a smooth function

from JRn to En . Let H :anx [0,1] 41Rn be defined

as

H(x,t) = (1 -t) (x -a) +tF(x) (1.2.1)

with a E HUI given. It is clear that H(x,O) = x-a

and H(x,l) = F(x). Suppose

(A): the partial derivative of H with respect

to x is always nonsingular

Then by repeat application of the Implicit Function Theorem,

there exists a curve x(t), as a function of t, such

that

H(x(t) ,t) = O . (1.2.2)

We differentiate (1.2.2) with respect to t, to

get the differential equation

1:2- -1

dt x t

(1.2.3)

x(O) ll D
J
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Thus, finding a zero of F(x) is equivalent to solving

the initial value problem (1.2.3), and finding its value

at t = 1. The assumption (A) is rather strong, and

hence the power of Davidenko's method is restricted.

Let us consider the homotopy

H : 1Rn len x (0,1) .. an (1.2.4)

defined by

H(x,a,t) = (1 -t) (x -a) +tF(x)

with x 5 1R“ , a e 1Rn and t 6 (0,1). For a fixed

a E 1Rn , define

n

Ha :13“ x (0.1) .. 1R (1.2.5)

by Ha(x,t) = H(x,a,t).

Given this homotopy system, we define

-1 _ . _

Ha (O) — [(x.t) -Ha(x,t) — 0}

§(l.3) Existance of a path

We shall use the generalized Sard's Theorem to assure

_1(

a 0) contains a smooththat for almost every a 6 H31, H

curve Ta which will lead from a trivial solution to

the desired solution.
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Definition (1.3.1)

Let U be an. open set in Ian, and f :U 4 mm be

a Cl map, then y 6 Hg“ is called regular value of

f provided

m -1

range Df(x) = Hi for all x e f (y) .

where Df(x) denotes the n.xm. matrix of partial

derivative of f.

The following theorem may be found in [1].

Theorem (1.3.2) (Generalized Sard's Theorem)
 

Let v g IRn, w 5 112‘“ be open and let

G:VxW alRp

be smooth. If 0 6 NJ) is a regular value for G.

then for almost every a E V (in the sense of either

Baire category or Lebesgue measure), 0 is a regular

value for Ga(-) 5 G(a,-).

For our homotopy defined in (1.2.4) we have the

following.

Lemma (1.3.3)
 

n .
For almost every a 6 n1 , zero is a regular value

of

Ha : an x (0,1) -D IRn

where Ha is given in (1.2.5).
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Proof:

Consider the homotopy H : an len x (0,1) 4 JRn ,

with

H(x,a,t) = (1 -t)(x-a)-ttF(x)

Let (£3.33) 6 H-1(O), i.e. H(§,§,'t') = o. It is clear

that

Dal-I = -(1 -t)I

where DaH is the partial derivative of H with respect

to a, and I is the n.xn identity matrix. Since

Range DH (33.3,?) 3 Range DaH(§,a—,t‘) = IRn ,

we conclude that DH(§}§,E) has rank n. Hence 0 is

a regular value for H. Thus, by applying the generalized

Sard's Theorem we have for almost every a E nf‘, O is

a regular value of Ha' This completes the proof.

The overall idea is to start from a trivial solution

of Ha(-,O) at t = O, and follow the path generated

in Ha(-,t) as t goes from zero to one. We hope the

trivial solution deforms into the solution of the original

system, and hence we would be able to follow the connected

path from the trivial system to the solution of F(x) = 0.

Of course this is quite an idealized process ,

and there are a number of difficulties. First of all,

in general a path need not exist. Second if one exists,

it might be very illebehaved. In other words the set
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((x.t) :x e m“. t e (0.1). Ha(X.t) = 0)

may consist of different solutions, such as isolated points,

self-convergings, bifurcations, endless spirals, closed

orbit, and smooth paths. But we are interested only in

smooth paths (Figure (1.1))

«we

 

 

  
 

Figure (1.1)

Let a be choosen so that O is a regular value for

(because of Lemma (1.3.3) this can be done with

probability one).

Ha(x.t)

Then repeated use of the Implicit Function

Theorem implies that H;l(0) consists of one dimensional

manifolds. Detailed discussion for the existance of paths
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are given by Garcia and Zangwill [22], [20], [21], and

Chow, Mallet-Paret and Yorke [4]. Let Fa be the

1(O) with a as one endpoint. Also letcomponent of H;

us assume this component is parameterized by

s. For notational convenience we refer to Ha(x,t) by

H(x,t). Therefore,

' H(x(s),t(s)) = 0

(1.3.6)

x(0) = a

Differentiation of H with respect to parameter 5

yields

HX(X(S),t(S)) GE +Ht(x(5).t(S)) -é = 0

(1.3.7)

x(0) = a

Here Hx and Ht are respectively the partial derivative

of H with respect to x and t. The ordinary

differential equations(1.3.7) can be written in the

following matrix form

:2

[H H ] , = O

x t t

(1.3.8)

x(O) a

t(O) o

The integral solution of this differential equation, namely

(x(s),t(s)) is a simple curve starting from (a,O). In

the next section we carefully examine the movement along

this curve.
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§(1.4) Movement along the path

1
We have seen that H; (0) consists of only arcs

and closed curves. These curves are the solutions of

the ordinary differential equations

i

[H H] . =o
x t t

(1.4.1)

x(O) O

t(O) 0

where Hx is an n.xn matrix, Ht is an n.xl matrix

and - = ii for some parameter s. For the remainder

of this chapter, we will let s be the arc length. Since

0 is a regular value of H, [Hx Ht] is of full rank.

Hence kernel of [Hx Ht]. is one-dimensional, by above

the vector [x,t]t lies in this kernel.

0

X

Let A = [H H 1 and g = . . Then (1.4.1)
X t t

simplifies to

Ag, = o

a (1.4.2)

y(0) =

O

with Hi H2 = 1. The equation Ay = 0 means that y is

perpendicular to the row space of A. In order to see how y

can be determined by A, we first give the following

definition.
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Definition (1.4.1)

A Housholder transformation in HUI is a matrix

of the form

U = I-2vvt

where v 6 n9“, vtv = 1, and I is the identity matrix

in LRn len .

It is easily verified that Housholder transformations

satisfy the following properties:

1. Ut = U (symmetric)

2. U2 = I (involutary)

3. UtU = I (orthogonal)

Finally the matrix U has the important property that

given any two vectors of equal length, x and y, we can

find a matrix U such that Ux = y. To this end we take

=x- 0 .oV.U;T-§T|—2- (143)

By using these properties, a sequence of Housholder

transformations, P1,P2,...,Pn in EJHJ' can be constructed

such that

t...p =
Pn 1A R

where R = (rij) is an (nntl) xn upper triangular

matrix, that is, rij = O for i > j. AlSC> Pi's can
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be choosen in such a way that rii > O for i = 1,2,...,n.

For details see [40,41] . Set

) . (1.4.4)

Then Q is an orthogonal matrix and

At = QR . (1.4.5)

Suppose at a certain point y (s) and s are known,

hence A is known. The following lemma enables us to

find y (s-tAs) for the next point and trace the path

by an ordinary differential equation solver.

Lemma (1 .4.2)
 

Let q be the last column of the orthogonal
n+1

matrix Q, then

y = i qn+l O (1.4.5.1)

Proof:

Since A = OR, and Ay = 0, we have

Rtoty = 0

Since matrix R has rank n, we get

rii ¢ 0 1 = 142,...,I1 . (1.4.6)

I

Suppose Qty = (81,62,...,Bn+1)t, then we have
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r11 51 =

12 51"r22 52 =

r1n Bl +r2n BZ'+°'°'+rnn Bn = 0

Because of (1.4.6) this system implies

Bl = 82 - = Bn = 0

Hence

t° _ t

Q y - (0:0: oan+1)

So

1 _ t
Y "' Q(OIOIo--IBn+1)

Therefore y is a scalar multiple of the last column

of Q. Since Hy ”2 = l, we get

y - i qn+1

In order to determine the orientation of y , we

give the following theorem which can be found in [18].

Theorem.(1.4.3)

Let H:]Rn+l aRn be a C1 map, and let

2(5) = (21(5),...,zn(s)) be a C1 curve in an+1

satisfying



Then either
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Ii(z(s)) 0

sgn 2],:(5) = sgn det Hi(z(s)) (1.4.7)

or

sgn z{(s) = -sgn det Hi(z(s)) (1.4.7.1)

dz. .

for all s, where z£(s) = 7§%' and H1 is the Jacobian

of H with 13h column deleted.

Applying this theorem to our homotopy, we get either

 

That is

sgn t (s) = sgn det Hx(x(s) ,t(s)) (1.4.8)

or

sgn t (s) = -sgn det Hx(x(s),t(s)) (1.4.8.1)

for all 5. However, at s = 0, we have sgn det HX = 1.

We may assume t (0) > 0, therefore (1.4.8)

holds for all s > o, If we know sgn t (s) the sign

in (1.4.5.1) is determined, to determine sgn t (s)

for any sh> 0 we prove the following proposition:

Proposition (1.4.4)

Let Q = (qij) be as in (1.4.4), then

' _ n
sgn t (s) - (Al) sgn(qn+l'n+1) (1.4.9)

Proof:

n+1 .

Let en+1 6 Hz be the (nntl)£h unit vector.
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_ t
en+1 — (O'O'oootl)

then

t t _ t

t

= [R Q en+1]

By property of the Housholder transformations

° det P = (-1)n
t _

det Q — det Pn det Pn 1
_1 ..

Hence

t _ t , t
det[R Q en+l] — det Q det[A en+1]

t

H O

= (-1)n det X = (-1)n det H:

Ht 1
t

On the other hand, since R is an upper triangular matrix

w1th rii > 0, we have

sgn det[R Qte ). (1.4.10)
n+1] = sgn(qn+1,n+l

Therefore

sgn t = sgn det H: = (-l)n sgn(qn+1 n+1). (1.4.11)

From the above discussion we see that in order to

follow the curve I computation of the vector fieldal

x(s)

t(s)

at s .can be summerized as follows:
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We first compute Hx(x(s),t(s)) and

Ht(x(s),t(s)). Then write

t
H

At = x

t

Ht

as a product of an (n-tl) x(nntl) orthogonal matrix

Q = (qij) and an (ni-l) xn upper triangular matrix R.

x(s)

Then , is given by the last column of Q with a

t(s)

possible sign change, and the sign of this vector is

given by (1.4.9).



CHAPTER TWO

FINDING THE ZEROS OF AN ANALYTIC FUNCTION

§(2.1) Introduction and notations

Let f be an entire function and R be a bounded

domain in the complex plane with a closed boundary C.

Let us assume that C does not pass through a zero of

f(z). It is well known from the theory of complex

variables that

 

1 kf'(z) n k
-—?' z = Z) 2. (2.1.1)
ZUI EC f(z) i=1 1

where zi(i = 1,2,...,n) are all the zeros of f(z) which

lie in R, (a multiple zero is counted according to its

multiplicity in its formula).

By using the algorithm explained in chapter three

of this dissertation or any other proper algorithm we may

find an approximation for

n k
s = 23 z., k=0,1,2,.... (2.1.2)

=1

Therefore in order to determine the zeros of f we may

solve the following system of polynomials.

21



22

f =zl+zz+~~+zn sl

2 2 _
z1+zz+ +2 —32

n n n _
KZl--]-22-i----+zn-Sn 

Delves and Lyness [11,33] developed an algorithm for

finding all zeros of f(z) inside R as follows:

i. Let f(z) be an analytic function on and

within a given contour C.

11. Let 21 2..

of f(z) which have so far been obtained.

,2 ..,zk be a list of the known zeros

iii. Let m, k, and e be given constants.

iv. Search routine.

The main routine attempts to calculate the number of

zeros of f(z) within C using trapezoidal role

approximation to contour integral

I

S = -£- ( é—LEL dz

0 2ni C f(z)

Since the exact result of S0 is known to be an integer,

the accuracy required is low. We only need to determine

unambiguously which integer is involved. There are three

possible outcomes. These are:
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a. It finds that f(z) becomes unduly small on

the contour and takes this to imply there area zero of

f(z) close to the contour. In this case the integration

method, if continued, would converge slowly. The routine

does not continue the integration, but returns control to

the search routine, which in turn chooses a different

contour.

b. It finds a value so. On checking the list of

known zeros it finds that q of these lie within the

region R, and hence there are ‘-q unknown zeros within
So

R. If SO-q > M it returns control to the search routine.

c. It proceeds as in (b) but finds SO-q g_M. It

then evaluates the SO-q unknown zeros as follows. It

evaluates approximations to the sums of power of zeros

So
_ N -

SN - 1:31 zi , (N — o,1,....sO-q) (2.1.4)

using trapezoidal approximation to the integral

-__1_ Nfla).
S — Zvi I 2 dz
N C f(z)

Since the locations of the known zeros zl,z2,...,zn are

available the sums Sfi of the power of unknown zeros are

'3' 82(3) N 32 N 1= z.=S - z. , N=0, ,...,s -q.

N i=q+1 1 hi i=1 1 0

Having these numbers, a polynomial of degree SO-q may be

constructed as follows:
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Define

01 = -(zl+-22+- i-zso_q)

02 = (2122+- 4-zs -q-l 28 -q)

0 0

(2.1.5)

SO-q

o = (-1) z z z .
SO-q l 2 SO-q

Then by the Newton's identities

Sl-t-o1 = 0

Sz-tslol-+202 = 0

(2.1.6)

S +S o+---+(s —q)o =0
SO-q SO-q—l 1 0 SO-q

One may construct the polynomial

S -q S -q-1
_ 0 0 ... (2.1.7)

P(z) — 2 4-01 2 + i-os -q

0

which has 2i (i = 1,2,...,SO-q) as roots. This polynomial

is solved by using the polynomial root finding subroutine.

In the above algorithm M is generally choosen to

be 5. Although this is a big restriction, it is

necessary due to the highly sensitive dependence of high

degree polynomial on its coefficients (cf: Wilkinson's

example [45]) . In other words M cannot be choosen too large
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in order to avoid the ill-conditioning of the polynomial

(2.1.7).

Professor Li [32] recently solved this problem by

homotopy continuation method directly without forming the

polynomial (2.1.7). Hence he removed the search routine

as well as the step (b) from the procedure.

Here we shall present a special homotopy to exploit

the symmetries of this system in such a way that the

computation of the curve can be made much simpler. That is

we will utilize the strong symmetry structure of (2.1.3) to

write the corresponding differential equations explicitly

in such a way that it will be ready to be solved by any

ordinary differential equations solver. We also generalize

the problem in the sense that the assumption "f(z) must

have single roots" is relaxed. Namely, in section (2.5)

we discuss certain techniques to overcome the difficulties

when multiple roots are presented in (2.1.3).

§(2.2) Method and Homotopy

Let Q :Cn 4 Cn be a polynomial system, and

Q = (Ql""'Qn)' By a polynomial system, we mean each

term of Qi is of the form

C O O n

azl 22 2 (2.2.1)

where a is a complex number, zi a complex variable, and
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ri a nonnegative integer. For each term (of the form

(2.2.1)) 1n 01' con31der the sum rli-r24-o-o4-rn

Let qi be the maximum such sum in Qi' We assume

qi > 0, for all i. We call qi the degree of Qi'

With these notations we state the following theorem.

Theorem (2.2.1)

n

Let Q :Cn 4 C be a polynomial system with degree

_ ._ o _ o o
Qi - qi (1 - lozo-ooon) 0 Let Q (2) - (01(2) 002(z)loool

02(2)) where 02(2) consists of the terms in 01(2)

with degree q.. If 00(2) has only the trivial
1

solution 2 = 0, then 0(2) = O has

n

n q. (2.2.1.1)

solutions (counting the multiplicity).

2222::

See Garcia and Li (on the number of solution to

polynomial system of equation, Theorem 3.1, p. 543, [19]).

Their proof based on homotopy approaches. Noether and

Van der Waerden [37], and Friedland [17] gave a proof

using classical Bavout's Theorem [43].

As a result of this theorem we prove the following

Lemma.

Lemma (2.2.2)

1. The system (2.1.3) has n1 solutions.
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11. If 2 = (21,22,...,zn) IS a solution of

P(z) = S. Then for any permutation u of (1,2,...,n),

2 = (ZH(1)'ZH(2)"'°'ZH(n)) is also a solution.

arise:

i. A straightforward consequence of the Newton's

identities implies that 0 is the only solution of

P(z) = 0. Therefore by Theorem (2.2.1), P(z) = S has

n1 solutions.

ii. It is a trivial consequence of symmetry of

P(z) = 3.

Let us consider the homotopy H ; (0,1) xU an ... Cn

defined by

H(t,a,z) = (l-t)P(a) -P(z) +ts (2.2.2)

where

U = ((21,22,...,zn) 6 CD :zi # 2j for i # j]

is an open subset of cm.

Lemma (2.2.3)

For almost every a E U (in the sense of Bair

category or Lebesgue measure) 0 is a regular value of

Ha(t,z). where

Ha : (0,1) an 4 cn

is defined by

HEJt,z) = H(t,a,z)
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Proof:

Let H(t,a,2) = o for some (t,a,2) e (0.1) xecn.

Then

DaH(t,a,z) = (1—t)p’(a)- (2.2.3)

Therefore

det DaH(t,a,2) = (l-t) det p’(a)

l 1 l

2a1 2a2 - - - 2an

= (l -t) det

na?-1 nag"1 na '1

l 1 1

al a2 an

n10.-t) det

  

This involves the determinant of the Vandermond matrix,

which is well-known, and we obtain

det DaH(t,a,z) = (l.-t)n1 H (aj-a.) # 0

1:10ng 1
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Thus for t # 1, DaH(t,a,z) is nonsingular. Hence for

t ¥ 1

Range DH(t,a,2) 3 Range DaH(t,a,z) = C“. (2.2.4)

Therefore DH has rank n. This means 0 is a regular

value of H(t,a,2). Thus by the generalized Sard's theorem

(1.3.2) for almost every a 6 U, 0 is a regular value

for Ha(t,2) = H(t,a,2).

As we mentioned in section three of chapter one,

each component of

H;1(O) = ((t,2) :Ha(t,z) = o]

is a smooth curve which is diffeomorphic to either a circle

or an open interval. Let a be choosen so that 0 is

a regular value of Ha(t,z). Let

Ta = [(t(>.).z(>.)) :0 g l < 11. (t(O).z(O)) = (0,a)]

1
be a component of H; (O) which contains (0,a) and it is

parameterized by a parameter A. Differentiating

Ha(t(1),2(1)) = 0 with respect to the parameter 1 implies

Dz Ha. z +Dt Ha' t = 0 (2.2.5)

82 62 az

' _ ._l_ __ __r1t ‘ -511;
where 2 — ( 51' 51’ ..., 81 and t — d1 .

Theorem (2.2.4)

Let 0 be a regular value for H then with the
a!

above notation t(k) is a monotonic function of l.
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Moreover t # 0 for any (t,2) 6 Pa.

Proof:

. n n
Let us rewrite Ha :C x[0,1] 4 C and

= ‘ +'2 (XI-tiyl, xn 1yn)

111 terms (xf their real and imaginary components obtaining

G:rflx[ou]-+mm

and W = (x1.y1.....xn.yn) where m.= 2n. By

Theorem (1.4.3) we have either

(
*
0

sgn = sgn det G; for all 1 (2.2.6)

or

sgn t -sgn det Gé for all x (2.2.6.1)

where G; is the mjxm Jacobian of G with respect to

x and y. It is shown in [21] (also in [5]) that

det a; 2,0. Hence by (2.2.6) and (2.2.6.1), t 2_o or

t g.0 for all x. This proves the monotonicity of t.

If t = 0 for some (t,z) 6 Ta, then (2.2.5) implies

that Dz Ha = -P’(z) is singular. So 2 is a multiple

root of Ha(t,z) which contradicts the result of Lemma

(2.2.2). This completes the proof of the theorem.

Without loss of generality we may assume t > 0.

If we start at t = 0 and increase the parameter, then

t(l) increases. This means t cannot turn around and

return back to t = 0. In other words, the monotonicity

of t implies that Fa cannot be diffeomorphic to a
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circle, and each component of Ta with t = 0 at one

end will either go to infinity or to a solution of

P(z) = 3.

At this stage it is important to know whether the

component of Ta will diverge to infinity or not. For

this we prove the following:

Lemma (2 .2.5)

1
The connected component Ta of H; (0) which contains

a is a bounded curve.

Proof:

Suppose this is not the case. Then there is a X'< 1,

such that (t(l).z(A)) diverges to infinity as 1 goes

to ‘T. Since for any k, Pk(z) is a homogeneous poly—

k
nomial of degree k (i.e. Pk(12) = A Pk(z)),

P (“F—MW) = ——1-——P (2(1)) = -—-1——[ts +(1-t)P (a)1
k (2(A) ')Z(A)Hk k “2(1)”k k k

So Pk( :(§)]) goes to zero as 1 goes to I. for all k.

Hence, if E'is a cluster point of :(i) we have, P(2)==0

with HE“ = 1. However, this cannot be true because 0 is the

only solution of P(z) = 0.

§(2.3) Following the curve

Integrating the initial value problem

P’(2) ~2'

2(0)

S«-P(a)

a

(2.3.1)
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is what we mean by following the curve. Since P'(2) is

nonsingular (2.3.1) can be written as

r

d2_ I -l

( a- (P (2)) (S-P(a))

(2.3.2)

2(0) = a 

Nowadays, there are efficient initial value problem

solvers which can be used to solve this problem. In

general we form the Jacobian matrix p’(z) and solve

for 2 which satisfies in (2.3.2). However this

procedure uses 0(n3) operations each time. Also

0(n2) function evaluation are needed for computation of

p'(2). Reducing the cost of computation is the purpose

of this section. We shall utilize the symmetrical structure

of p(z) in such a way that (p'(z))-1 may be obtained

by 0(n2) operations. To do this we introduce the

following:

Suppose we have a function g which is known at a

set of disjoint points (x1.x2....,xn]. Let us define

n (x -xi)

q.(x) = II ——-_—, (2.3.3)

i7‘j

j = 1,2,...,n

Clearly qj(xi) = aij (the so called Kronecker delta).

The interpolating polynomial defined by
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n

y(x) = Z q.(x)g(x.) (2.3.4)

3:1 3 . J

is called the Lagrangian interpolating polynomial. It

is well—known that the polynomials ql.q2,...,qn defined

by (2.3.3) are linearly independent and form a basis of

vector space V of dimension n.

Now let us define the following notation which will

be needed in the next proposition. For each i = 1,2,... n

define oi,...,o;_l as in (2.1.5) with zi deleted.

For example

1 _
ol--(22+23+ +2)

01 = (z z -+ -+2 2 )

2 2 3 n—l n

(2.3.4.1)

1 n-l

On-l ‘- (‘1) 22 23 Zn

Also we define

oj = 1 l = 1 2 n .
O I I I

Proposition (2.3.1)

The differential equations(2.3.2) can be written

explicitly in the following form:

 

f .

dz. n+1 n o1 .

‘57:": ff” - 2: 411(3 -p (a))
.=1 3

II (zk-zl) 3

(

Lzi 0) = a1 i = 1.2, ,n. 
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Proof:

We make use of the Lagrangian interpolation formula

11

gj(z) = Z gj(zi)qi(z) (2.3.6)

i=1

for functions gj(2) defined by

gj(z) = 23 , j = 0,1,...,n -l . (2.3.7)

and qi(2) defined by

n (2 -2.)

qi(z) = n -—j——J—-r i = 1,2,...,n . (2.3.7.1)

l

. n .

23 = Z) 2; q.(2), j = 0,1,...,n -1 . (2.3.8)

:1 1'

1 1 1 --- 1 q1(2)

2 21 22 "° zn q2(2)

n- n-1 n-1 ... n-

2 21 22 Zn qn(z)

Multiply both sides of this equation by
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we thus get the following equation,

*

2 = W0 (2.3.9)

where

1 1 1

221 222 22

W =

n-1 n-1 n-1

n21 112.2 nz

0(2) = (q (2) q (2) q (2))t
1 ' 2 n

and

2* = (1,22,3Z2,...,n2n-l)

Let

a11 aln

w"1 —

anl 0.0. o o ann

we can rewrite (2.3.9) as
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q1(z a11 ' ' ° a1n l \\

q2(2) . 22 ‘

= : . ' - (2.3.10)

Also the polynomials (2.3.7.1) can be written as the

 

following

+1 . .

- (-1)n 1 1 ... i n-1
qi(z) — n [On-1 + on_224- 4—00 2 ], (2.3.11)

II ( -z.)

i

1 = 1,2, ,n .

Comparing the coefficients on both sides of (2.3.10).

 

we get

+1 .

_ (-l)n ,‘l 1
ij - n j Gn-j . (2.3.12)

H( -z.)
k=1 2k 1

k¥i

The differential.equations(2.3.2) thus become as in

(2.3.5).

Based on the recursion formula

Jj = oj-t-zi Oj-l (2.3.13)

for 1 g,i g,n, l g_j g n-l, The computation of Oh-j

involves only 0(n2) operations. The values oj's may be

obtained by (2.1.6), using forward substition which needs
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21%ZLL operations, while the total operations needed for

the second term in (2.3.13) is (n-1)2.

((2.4) Generalization

In this section we will discuss the case that two

zeros of f(z) are equal (multiple roots), or nearly

equal. Without loss of generality we may assume that 21

and 22 are such zeros. In this case equationsdé2.3.3)

are not suitable to us, because evaluation of 757' and

d2

d1

 

is too expensive. Because

 

1

n ( -2.)
viz-k 1

tends to infinity as 1 tends to 1 for i = 1,2. To

avoid this difficulty, we write a new differential

equations whose solutions are easily led to the solutions

 
 

of f(z). We define

01 0’2

A. = “'3' + rn‘j (2 4 1)
J H (zk-zl) H (ZR-22) ° °

k¥l k¥2

j = 1,2,...,n

Proposition (2.4.1)

For 1gjgn, Aj(z) is a rational function of z

and contains no factor of the form (221-21)

Proof:

Let us write Aj(2) as follows
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1 B.(2)

A.(2) = x (2.4.2)

3 n ( )( ) (22-21)H 2 -2 2 -2

1511.2 k 1 k 2

where

1 n 2 n

B.(2) = o . II ( -2 ) -0’ . IT ( -2 ).(2.4.3)

3 “‘3 k¥l,2 zk 2 “‘3 195,2 21‘ 1

For i # j let us define

i i . . _
Sj(ok) 1,3,k - 1,2,...,n

to be the same as o; with zj changed to 2i. With

these notations we have

1 l _ 2

2 2 _ l

81(on_j) - Un-j . (2.4.4.1)

Let us view Bj(2) as a function of 21, and evaluate this

function at 22. Then because of equations (2.4.4) and

(2.4.4.1) we have Bj(22) = 0. That is

Bj(z) = (22-21)qj(2) , (2.4.5)

For some polynomial qj(z). Thus

B. (22)-Bj(21)

 

. a
11m 3 = —— B. (2.4.6)
22421 22--21 821 j

n

- a 2 _
‘ ‘az 0 E (2k 21)
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A repeat use of recursion formula (2.3.13) combined with

equation (2.4.6) imply

n-j n

qjm = "5?; “30 GMT '22 ei.2(z*<'zl)

. (2.4.7)
n-j n

= - 213—5- (0 II (zk-z1))

 

Hence

n

1 .

A.(Z) =q.(Z) n ’ 3 = 1,2,...,n O

J 3 k¥1,2 (zk-zl)(Zk-22)

Propositiong(2.4.2)

* *

For lgjgnr let Aj(2) and gj(z) be

 

 

defined by

l 2
2 o . z o .

213(2) = 3231— + n 1 “‘3 (2.4.8)

B ( -Z ) H ( -z )
katl zk 1 k¥2 2k 2

*() a 2 F ( ) (2 4 e 1)q. 2 = -—2 0' . 1 -Z . . . .
j le l n.) k#1,2 z~k 1

Then

*

* (qj(z)

.Aj(2) = r1 - (2.4.9)

II z)( --22)

The proof of this proposition is similar to the proof of

proposition (2.4.2) and hence is left out.
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Let us define

v = (211(2) ,A2(2),...,An(2))t , (2.4.10)

))t
* * *

(181(2) .A2(z) .....An(z (2.4.10.1)< ll

Then the initial value problem (2.3.1) can be written

 

as

d2.

1 _ n+1 t . =
d1 - (-1) vi (s-P(a)) 1 1,2

(2.4.11)

d2 n+1 n .

j ___ (-l) I J _

d1 n L21 2 On-E (Si PL(a))

E (zk-z.)

kn 3

j = 3, ,n

. . . . _ t
w1th the initial value 2(0) - (al-taz, a1a2,a3,.. ,an) .

§(2.5) Numerical results

In this section a series of numerical examples are

given. We have used the ordinary differential equations

solver subroutine "DE" (see "Computer solution of

ordinary differential equations: The initial value

problem” by L.F. Shampine and M.K. Gordon). Subroutine

"DE" is probably the most sophisticated and advanced

subroutine of this kind.
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Briefly subroutine "DE" integrates a system of up to

20 first order ordinary differential equations of

the form

dy.
1 _ . _

dt —-F(t,y1,y2,...,yn), 1 - l,...,n . (2.5.1)

The complete description of this subroutine can be found

in [40] (the computer program of "DE" is given on pp. 186-

209). The following procedure employing the subroutine

"DE" was used.

1) The computer's random function routine generates

the starting vectors 21.22,...,2n. We choose two small

positive numbers 61. 62 to list the absolute and

relative errors respectively.

ii) Designate the exist time, called tout, and call

the subroutine "DB" in order to follow the path.

iii) We write down the output of (ii) and compare

them.

a) If all solutions are isolated in the sense

that they are far from each other by at least 6 > 0, we

use equation (2.3.5) to initialize the differential

equation and go to (iv).

b) Otherwise we use equations (2.4.11) to

initialize the differential equations and go to (iv).

iv) If tout = 1 we read the solutions and stop.

v) Otherwise go to (ii).
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In the following tables we have shown some numerical

results for four systems of equations with known solutions

in order to evaluate the accuracy of our algorithm.

 

 

    

n Starting Vectors

l (.580113649E-POO, .950512735E-t00)

2 (.786371425E-t00, .297620264E-t00)

3 (.453699900E4-00, .626194160E-02)

4 (.275736426E4-00, .305650944E-t00)

5 (.689100711E-t00, .382662239E-t00)

6 (.132902705E-POO, .831857903E-+00)

7 (.582979796E4-00. .98625338BE-01)

8 (.276548455E-t00, .620446028E-t00)

9 (.835029668E-01, .990377121E-t00)

10 (.979346943E-t00, .693884438E-t00)

ll (.934477014E-+00, .212092955E-t00)

12 (.130652748E + 00, .862596980E + 00)

13 (.818909294E-+00, .862596980E-t00)

l4 (.18799409lE-01, .314116017E-t00)

15 (.765182100E4-00, .941526108E-t00)

Table (2.1)

The starting vectors for various problems came from

Table (2.1). Its first 5 vectors have been used as the

starting vector for examples 1 and 4. Also its first

10 vectors are the starting vectors for example 2. Finally

all these vectors are used as the starting vectors for

example 3.

Example 1. We solve system (2.1.3) for n = 5. 51,...,s5

are chosen so that the exact solutions are 5,9,7,4,2.

The computed results are as follows:
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n input vector constant vector

1 .270002+01 (.2421502+02, -.1942712+01)

2 .17500E4—03 (.l47520E-PO3. -.227252E-t01)

3 .1269OE + 04 (.127004E + 04 - .116076E + 01)

4 .98590E«t04 (.985999E-+04, -.411588E4-00)

5 .8003 7E + 05 (.800367E + 05 , .100286E + 01)

Table (2.2)

Homotopy solutions at time t = 1

2(1) = (.499999999E4—01, -.644220655E-—08)

2(2) = (.9000OOOOOE:P01, -.194643929E‘-O9)

z(3) = (.699999999E+01, .119773958E -09)

2(4) = (.4000000002 +01. .627337758E -08)

2(5) = (.ZOOOOOOOOE4-Ol, -.837647611E-—O9)

  
 

Table (2.2.1)

The relative and absolute errors in this problem are

respectively 61 = 10.15,e2 = 10-12.

Example 2. This problem solves system (2.1.3) for n = 10.

sl""'le are chosen so that the exact solutions are

l,2,3,...,lO, (in same order). Here 61 = 10-12, 82 = 10-10.

The computed results are as follows:
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n input vector constant vector

1 .5500000E + 02 (.501597E + 02 , - .517790E + 01)

2 .3850000E4-03 (.385669E-t03, -.447630E4-01)

3 .30250002 + 04 (.3027152 + 04 , -.1344092 + 01)

4 .2533300E4-05 (.253342E-t05, -.l30606E-+00)

5 .2208250E + 06 (.220826E + 06 . - .309642E + 00)

6 .1978405E4-07 (.19784lE-+07, .695913E-t00)

7 .l808043E-t08 (.180804E-t08, .242440E4-01)

8 .1677313E-t09 (.l67731E4-09, .283408E-+01)

9 .1574305E4-10 (.157440E-th, .233227E4—01)

10 .1491434E-tll (.149143E-tll, .214617E4-01)

Table (2.3)

Homotopy solutions at time t = 1

2(1) = (.5000000042+01. -.157844480E -06)

2(2) = (.900000000E-+01, -.115510367E-07)

2(3) = (.599999998E-+01, .146901334E-06)

2(4) = (.399999996E-tOl, .119657234E-—06)

2(5) = (.999999999E-t01, .116296633E -08)

2(6) = (.300000003E-FOl, -.544245438E -O7)

2(7) = (.799999997E-+01, .708308777E-07)

2(8) = (.199999999E4-01, .136081468E-07)

2(9) = (.100000000E4-01, -.l25990729E-08)

z(lO) = (.700000003E + 01, -.128213396E -06)

Table (2.3.1)

Example 3. Here we solve system (2.1.3) for n = 15.

31.32,...,s15 are chosen so that the exact solutions are

1,2,...,15, (in some order). We choose 61 = 62 = 10-8.

The computed results are as follows:
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:
5

input vector constant vector

 

 

\
O
m
fl
m
m
b
w
w
r
‘

 

.1200000E + 03

.1240000E‘. + 04

.1440000E + 05

.1783120E + 06

.2299200E + 07

. .3048292E + 08

.4124208E + 09

.6666482E + 10

.7880094E + 11

.1166533E + 13

.1866217E + 14

.8231603E + 15

.3197504E + 16

.4663402E + 17

.6664785E + 18  A
A
A
/
‘
A
A
A
A
A
A
A
A
A
A
A

.112498E + 03 :

.124059E + 04,

.14403 SE + 05 ,

.178315E + 06.

.229920E + 07.

.304829E + 08:

.412421E + 09.

.566648E + 10.

. 788009E + 11 ,

.119653E + 13 .

.156622E + 14 ,

.2231603 + 15 o

.319750E + 16,

.46034OE + 17,

.665479E + 18:

.80489534-01)

.74363834-01)

.301077E + 01)

.259791E + 00)

.923576E4-00)

.251047E-t01)

.283309E + 01)

.132393E-t00)

.326317E4—01)

.162573E4-01)

.262221E-t01)

.365233E4-01)

.3907OSE + 01)

.134212E-F02)

.172283E4—02)

 

Table (2. 4)

 

Homotopy solutions at time t 1

 

 

2(1)

2(2)

2(3)

2(4)

2(5)

2(6)

2(7)

2(8)

2(9)

2(10)

2(11)

2(12)

2(13)

2(14)

2(15)

 

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

. 90003 903 9E + 01 ,

.119999114E + 02 ,

. 799988123E + 01 .

.60001 748 7E + 01 ,

. 700006205E + 01 ,

.999997814E + 00 .

.999971337E + 01 ,

. 200001713E + 01 .

.499975294E + 01 ,

.130000293E + 02 .

.139999773E + 02 ,

.299992826E + 01 ,

.150000010E + 02 ,

.400017191E + 01 ,

.110001766E + 00.

.177185166E - 02)

.182960120E -03)

.218749510E -02)

.144389314E -02)

. 205918686E - 02)

.1656887023 -O6)

.110689513E ~02)

.417415352E - 05)

. 735860613E - 03)

.47507804'7E - 04)

.391695467E - 05)

.531830915E - 04)

' .363097092E - 06)

.256633723E - 03)

. 522092661E - 03)

 

Table (2.4. 1)
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Remark. The above examples along with a lot of other

numerical experiments suggest that as long as n, the

number of the equations, increases, we would have less

accurate results. This is due to the subroutine "DE"

and presumably because this subroutine is coded for at

most 21 equations. It should be mentioned that in each

problem we have converted n complex variables into 2n

real variables and with the parameter time t totally we

worked with 2n4-l real variables. Other subroutines

such as "DeVerk", "D Gear" from IMSL are also used to

solve these problems. But overall our numerical experiments

show that among all available differential equations solvers

"DE" is the best one, even though it is not very accurate

for problems with relatively large dimension.

Example 4. This problem solves system (2.1.3) for

n = 5, and its exact solutions are 2, 5, 5, 7, 8. Here

we follow the curves until two of them get close to each

other, that is,the distance between them be less than

10-5. Then we follow the curves by integrating of€

differential equations (2.4.11). The relative and absolute

errors in this problem are respectively 6 = 10-15,

1

-12
62 = 10
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n input vector constant vector

1 .27000E-t02 (.242150E4-02, -.l9427lE4—01)

2 .167OOE-+03 (.166520E-+03, -.227252E4-01)

3 .11130E-+04 (.111404E-t04, -.ll6076E+—01)

4 .7763OE-t04 (.776399E-FO4, .411588E-+00)

5 .55857E-+05 (.558567E-t05, .100286E-t01)

Table (2.5)

Homotopy solution at the time

n t = .899 where the distance between

two curves is less than c.

1 (.500000358E4-01, .226529962E-04)

2 (.799999999E4-01, .459513577E -lO)

3 (.700000000E4-01, -.l34110233E -09)

4 (.499999642E-t01, -.226529034E -04)

5 (.l99999999E-t01, -.834203779E -11)

Table (2.5.1)

Homotopy solutions at t = 1

2(1) = (.999999999E-+01, .220664352E-09)

2(2) = (.799999999E-+01, .728877445E1-10)

2(3) = (.7000000002+01. -.198322803E-09)

2(4) = (.ZSOOOOOOOE-tOZ, .101079963E-—08)

2(5) = (.199999999E4-01, -.96786l485E -lO)

  
 

Table (2.5.2)

 



CHAPTER THREE

REAL ZEROS OF A FUNCTION

§(3.l) Introduction

In this chapter, we shall be finding the real

roots of

f(z) = 0 (3.1.1)

in the interval [-R,R], (R > 0), where f(z) is an

analytic function on an open set U containing the

interval [-R,R]. We shall use Cauchy's formula

_ 1 f'(z)
sO — 27d (as f(z) dz (3.1.2)

Where S is a rectangle with vertices tR:tie and entirely

contained in U and BS is the boundary of S, (e is

a small positive number). S0 is the number of zeros

of f(z) inside the contour as, and hence is an

integer number. Thus we need only a crude estimate of

S When we find an approximation for SO, say so,0'

then the dimension of our problem will be the integer

nearest to so. Having the dimension (number of zeros)

we will employ the generalized Cauchy's formula

48
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_ 1 i f'(z) . _
Si - ———2m._ (as 2 f(z) dz 1 - 1,2,...,n (3.1.3)

to approximate the numbers 51' $2,...,Sn, where

n 1
Si = Z) 2. , 1 = 1,2, ,n

i=1 3

These numbers along with the homotopy continuation method

presented in chapter two will determine an approximation

for the real zeros of f(z). In order to obtain a more

accurate result, the approximated zeros 21,22,...,zn

could be a good starting point for using the Newton's

iteration method. That is to refine the approximations

obtained by the homotopy continuation method, one or two-

step method can be used as the final stage in calculation

of the real zeros of f(z).

§(3.2) Integration around the boundary of a strip

Suppose g 6 C[0,l] and define

m

le'“(g) = fi . ’g(j/m)
J=0

(3.2.1)

= {13% 9(0) 4.9%) + ~-+g(1m"—1-) +% 9(1)).

The prime on the summation indicates that the first and

the last terms are assigned a weighting factors -%.

Using Romberg's method of integration, RIm'1](g) is

evaluated for mesh m = 1,2.4.8,...
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Let us define

k

T3 = R[2 '1] k = 0.1.2.3.... . (3.2.2)

0 l 2 . .

Then we evaluate TO, To. TO' ..., and With the aid of

the following recursion formula

Tk = —JL— (4m Tk+l - Tk ) (m > 0) (3.2.3)

“‘ 4m—1
m-l m-l

we form the following T-table:

0

To

1 0

T0 T1

T3 Ti TS

(3.2.4)

3 2 1 0

T0 T1 T2 T3

4 3 2 1 0
T0 T1 T2 T3 T4

Equation (3.2.3) implies that Tk is a linear combination
m

k k+l k+2 k+m .
of T0, T0 . TO . .... TO . That 18

k m m-i k+i

Tm = 12% cm TO . (3.2.5)

Since 9 is Riemann integrable on [0,1], as k goes

to infinity the first column of the T-table, namely the

1

sequence (TE? converges to ( g(t)dt.

O
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The leading term in the error of TE} is of the order

1 2k+2

OTEFI , (we will see this in the next section) while

2 k 1 2 k
that of T0 is (ERII) Thus Tm converges much

more rapidly than Tk After all the convergence of the0'

first column of the T-table implies the convergence of

all further columns and all diagonal sequences (T:. with

k constant) to the same limit. We observe that dividing

h successively by 2 is a sound one, since each application

of the composite rule (namely, equation (3.2.1)) utilizes

all of the function values previously used for smaller

values of k and m.= 0. A division of h by some

other number would require introducing a complete set of

new function values. Hence the above form of the

Romberg's method of integration based on trapezoidal rule

requires fewer function values than might at first appear.

Moreover the recursion formula (3.2.4) is a simple

manipulation and requires minimal computer time. The most

time consuming part of the algorithm is the calculation

of TE. k = 1,2,... , the original composite trapezoidal

rule.

§(3.3) Error analysis

Here we consider the error estimate of numerical

approximation to

i f’(2) .
1555— d2, 1

1

S. =-—. 1,2,...,n (3.3.1)

1 2W1 yes
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where S denotes a narrow strip with vertices :tR:tic.

(e is a small positive number).

a

 

 

 
 

 

b = -R+—ie a = Ri-ic

7| 1.

c = -R-ie d = R‘-ie

Figure (3.1)

f’ 2)
Let us assume M.= sup f(z) , and choose a small

2688

enough (with S < R). Then

-1— ~ 2'1 _’(_ _ zi f’_(_z) 26M

|21ri ($2 dzz+27ri i—z f—_(2) dz ) 1“”. mi

(3.3.2)

1 = 0,1,2,...

Having a small enough, the amount of integration on the

two vertical sides of the strip S is contributing a

small amount in the whole process of integration. Let us

denote this amount by the initial error EI‘ Next we

consider the integration along the other two sides. By

using a simple change of variable we may consider the
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integration on the interval [0,1]. In order to analyze

the corresponding error we define the following.

Definition (3.3.1)

A function o is of class E (even) if

i) m(X) is of definite sign for 0 < x < 1,

ii) o'(x) is of definite sign for O < x < 1/2,

iii) cp(0) = ep(l). cp(x) = p(l-x) and cp(x) = cp(1+x).

Definition (3.3.2)

A function u is of class 0 (odd) if

i) ((x) is of definite sign for 0 < x < 1,

ii) t(O) ((1/2) = ((1).

iii) $(x) -w(1-x), and ((x) = u(l-tx).

For example p(x) = [sin wx| and t(x) = sin 2vx are

respectively of class E and 0.

The following lemma is a straightforward result of

the definitions.

Lemma (3.3.3)

a) If p(x) is of class B, then

x

N1(X) = ( (0(2X)-o(x))dx ,

O

and

x l

42(x) = ( m(x)dx-x ( o(x)dx

O O

are of class 0.
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b) If ((x) is of class 0, then

x

p(x) = I0 t(x)dx

is of class E.

Let us define the following functions inductively:

-% x(l-—x) if 0 g.x g,1

K2(x) = (3.3.3)

K2(x-n) if ngxgn+lo

Suppose K2m is defined, then we define

 

x

K2m+1(x) = (O K2m(x)dx (3.3.3.1)

where

‘— ._ 1

K2m(x) — 4m-1 (K2m(2x)-K2m(x)) .(3.3.3.2)

Also we define

x

K2m+2(x) = (O K2m+1(x)dx . (3.3.3.3)

It is not hard to show that the functions K2m(x) are all

positive in the interval [0,1]: more exactly monotically

increasing from x = 0 to x = 1/2 and from there

again decreasing to zero [33].

Theorem (3 .3 .4)

Let g eczm+2[o,1]. Then
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1

‘(11H'1)k .i‘ K (Zm-I'Z)
Tfi-Ig = 4 (2kx)g (x)dx . (3.3.4)

2m+2

1

where Ig = ( g(x)dx.

0

Proof:

The remainder term for trapezoidal rule is given

by ([3])

TO I - [15(1 t) ”(t)dt
0" g I a 2 ‘ g '

0

and likewise

k -k 1 k ,,
TO-Ig= 4 F K2(2 t)g (t)dt

“0

We prove the theorem by induction with respect to m.

Assume

1
k _ -km k (2m)
Tm_l -Ig - 4 (‘ K2m(2 t)g (t)dt , (3.3.5)

where sz is a function of class B. This assumption is

certainly true for m = l. with K2(x). Substitution of'

(3.2.3) into (3.3.5) gives

Tk

m

= ———(l m-t)-4'”‘"+1)‘“1<2m(2k"14‘2kmxmk(2t)
“L1 0

.19

g(zm)(t)dt .

Hence
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4km 1
k+1 k (

4m_1 (O [K2m(2 t) -x2m(2 t)]gT:-Ig = 4 2m)(x)dx. (3.3.6)
 

By the way that kernel functions are defined and lemma

 

(3.3.3) Rém(x) is of class B. Also

1 __ 1 l

x2m+1(1) = j K2m(x)dx = Ty (K2m(2x) —K2m(x))dx

0 4 -1 0

1 l (2 (1

= [—, K (x)dx- K (x)dx] = 0 .. (3.3.7)
4m_1 2 "0 2m 0 2m

Similarly

(1 1/2

K2m+2(1) = JO K2m+1(x)dx = (11/2 K2m+l(x)dx = o . (3.3.8)

Clearly Rém(x) is also even and has period one. According

to this and equations (3.3.7) and (3.3.8) a twofold

integration by parts yields

1 1

- k (2m) _ _k k (2m-l-2)
(O_K2m(2 t)g (t)dt — 4 (0 K2 I2(2 t)g (t)dt

Therefore

1

k _ -(m+1)k k (2m)-2)
Tm-Ig—4 (‘0 K2 I2(2 t)g (t)dt

This completes the proof of the theorem.

Let us define

l

__ k
Em;k — Tm-(O g(t)dt

Then equation (3.3.4) implies
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1
- m+l k k 2m+2

{IEm'kl g4 ( ) [(0 K2m+2(2 t)g( )(t)dt|

l

= 4‘(m+1)k|g(2m+2)(§)| If K2m+2(2kt)dt| (3.3.9)

0

for some 4 6 [0,1], (the last equation is true because

the kernel function K2 has a fixed sign in [0,1]).
m+2

In order to arrive at an exact error estimate, we need to

derive a compact form for

1

K = (O K2m+2(t)dt .

x2m+2

= (2m+2)'. ' the“
Let us apply equation (3.3.4) for g(x)

0 1 1

Tm-(O g(t)dt = (O K2m+2(t)dt = K

Because of the recursion formula (3.2.3), every entry of

the T—table is a linear combination of values of the first

column,that is

m-i Tk-I-l

Cm 0
(3 .3 .10)*

3

B
:
#

II

II 0
M
B

1

where C3 are independent of k. In fact with the

 

assumption Cm-1 = C-1 = 0 we have
m m

1 l. m i i-l
c = (4 c -C )
m 4m_1 m-l m-l

X2m+2

If the Euler-MacLaurin sum for g(x) = 755:577 is

written in terms of Bernolli coefficients
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(see [3 J. p. 207), we can see that

-m(m&l)

 

B 4
_ m 2m+2

K" (‘1) (2m+2)T tm (4 i '

where

( 4 1)( 4 l) (l 1)
1 -— 1 ___ o g g -—

ufil)__ 4 42 4m

1 l 1
(1 --) (1 -—) ... (l -—)

4 42 4m

and B2m+2 is the 2m4-2pg_Bernoulli number. Therefore

B2m+2

Thus because of (3.3.9) we have

 

4-(nH-l)k .32 (2 2)

m+2 m+

-(m+l)k
_ 4 (2m+2)

' "('2m+'2): 5 “3(5) l '

BZm-I-Z
where ‘5==;me:I) and goes superlinearly to zero [33]. Let

p be the shortest distance of any singularity of g(z)

from the interval [0.1]. Then for any 50 > 0 there

exists a constant such that

(2m+2) (2m+2) '.K(6O)

[9 (5) i (p-é )2m+2

O

 

Let us consider the special case where,_g(2) has the form
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_ i f’ z)

9(21-2 T‘s—((2‘)—

That is g(z) may have only simple singularities. Thus

a constant K exists such that

(9)352) I g -(———)-—2'§+mi2"K (3.3.13)

P

In order to consider the error of integration on 33

we use transformation 2 = a-+(b-a)t. Thus d = 2pR

.is the shortest distance of any singularity of g from

line segment dbl

4'41““)k 6 , (2m+2) '.K 2R

 

lEch —<- (2m+2): p2m+2

_ 2m+2

_ (14k)(m+1) . K 2m+4
— 62 2m+2 R

d

l 2 .
Let Em,k and Em,k be the errors corresponding to the

horizontal sides 53' and 33 respectively. Then

(14k)(m+1)

l3; kl g 59.21“” fem”) K -2 = 1.2

(3.3.14)

Let = E19 -+E2 then

EF m,k m,k '

IEFI g 25R2m+4 d-(2m+2) K .2(1-k)(m+1)

g 25R2m+4 ,K 2(1-k) (m+1) ,e-(2m+2) (3.3.15)
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Now let us consider the corresponding error for SO and

use the fact that S is an integer number. In this case
0

equation (3 .3 .2) is of the form

2

(Ell $7.3M

Note that the integration along the vertical sides of

the strip 8 are ignored. In order to determine SO it

is enough to assume the following

.1.l
lEIl g7, “31?“ g 3 (3.3.16)

2 2

Hence

26R2m-I-4K 2(1-k)(m+l) €-(2m+2) £13 (3.3.17)

2

and

2_€ 1
.T Mia-3;. (3.3.17.1)

This leads to the following inequalities

14k

(_2_' n
02, gag—4:, (3.3.18)

2 M

__l_
2

where C = R(166R2K)2

Based on the above argument we present the following

flow chart. This flow chart gives a general framework

for the algorithm.



 

Input

61

 

 

F,t

  
 

 

 

Compute Ti

 

 

   

 

 

  

     

 

Check

inequalities

(3.3.18)
   

NO

   

 

Compute

T1

i   

Check

Inequalities

(3.3.18)

 

  
4!” ‘j - j + 1

 

 

Y
E
S

 
 

 
 

 

Write the diff.

eqs. (2.4.11)

Y
E
S

Is there

any two

solutions

close to

each other?

 

N0

   

 

  
  

 

Determine

dimension

n  

k I k + l

 

 
Y
  

Write the diff.

eqs. (2.6.11)

   

Compute and

rec rd S

k

 
  

L

 
Y
 

Subroutine "DE"

  
 

Flow chart (3.1)

 

Increase time

and continue

444-8 integration until

t - l

   

 

Y
E
S
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§(3.4) Numerical results

A series of computer experiments were conducted

to show the accuracy of the algorithm. As the Flow

chart shows, we limit our discussion here to the homotopy

type algorithm of chapter two of this thesis. The computed

results for the well known Bessel function are shown in

Table (3.1).

Example:

Here we consider the real roots of Jl(z) in the

interval [-4w,4n], where Jp(z) is the Bessel function

of the first kind of order P defined by

to (_1)m(z/2)P+2m

me = “EC miI‘(m+P+l)

and is the solution of the following differentiable equation

w”+ z‘lw’ + (1 -P2z'2)w = 0

First of all by a crude estimate of S we observe
0

that J1(z) has seven zeros in [-4w,4v]. In fact 2 = 0

is a zero of J1(z) (trivial solution). Then we compute

S ,S .,S Having these we employ the homotopy1 2).. 6o

continuation method to determine nontrivial zeros of J1(z).

First we choose an arbitrary vector A = (A1,A2,...,A6),

then we follow the solution curve of the homotopy equation

(2.2.2) until t = 1.
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n Input Vector

l (.100893900E + 00, -.158603000E -01)

2 (.334024966E + 03 . -.2304932313 + 00)

3 (.447584441E + 01 . .458962664E + 01)

4 (.266768698E + 05 , —.138646669E + 03)

5 (.113324558E + 03 . .900923 546E + 03)

6 (.245160906E + 07 . -.232377074E + 05)   
 

Table (3.1)

This table shows the input Cauchy vector

se= ($1,...,s6), where si is the sum of the ipthower

6
of zeros of J1(2). Table (3.2) is an arbitrary vector in C .

Finally, the computed zeros of Jl(2) is given in

 

 

Table (3.3).

Arbitrary Chosen Vector A

l (.580113649E +00 , .950512735E + 00)

2 (.786371143E +00 . .297620264E + 00)

3 (.453366999E +00 , .626194161E - 02)

4 (.275736426E +00 . .305650943E + 00)

5 (.689100711E +00 , .382662239E + 00)

6 (.132902705E +00 , .83185‘7903E + 00)

   
 

Table (3 .2)
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Computed Zeros of J1(z)

 

 

2(0)

2(1)

2(2)

2(3)

2(4)

2(5)

2(6)

.367073133E + 01 . .144951670E - 01)

.101561514E + 02 , —.1o43299oos -o1)

(-.707456470E + 01 . .536099550E - 02)

(-.101568583E + 02 . .257022866E - 01)

( .707868536E + 01 , .450648139E - 02)

(-.366324131E + 01. -.5549224o42 —01)

0. (trivial solution)

(

(

 

Table (3.3)

 



CHAPTER FOUR

EIGENVALUE PROBLEM

§(4.l) Introduction

In this chapter we shall describe an algorithm for

finding the eigenvalues of a given n.xn matrix.

The homotopy continuation method of chapter two is

implemented to approximate the eigenvalues of a matrix.

We shall present an efficient recursive formula to find

trace (Ck), (k = 1,2,...,n), where C is an n‘xn

companion matrix.

It has long been known that the eigenvalue of a

matrix can be found by solving its characteristic equation.

Namely the eigenvalue problem reduces to solving a

polynomial, P(A) of degree n with

1
— n n- 0.0P(X) — ). +P 7. + +Pn_11+Pn (4.1.1)

1

A large number of methods are available for the determination

of the zeros of P(X). The most well known and simple

classes of methods are iterative methods. For example

the Newton's iteration method

P (in)
A -r§TT:;7 (4.1.2)

xn+1 = n

65
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is one of the most popular methods. Such methods have a

number of difficulties, among them i) the starting point

must be fairly close to desired solution, ii) even if

we choose a "good" starting point, the rate of convergence

may not be as fast as we wish, iii) some polynomials of

high degree are highly sensitive to their coefficients.

§(4.2) Method and Theorems

Let us start this section with the following theorem

which will be needed later.

Theorem (4.2.1)

Let A = (aij) be an n xn. matrix With akk-l # 0,

for some 1 < k gin. Then A is similar to a matrix

B = (bij) With hkk-l = 1 and bkj = O for j #'k-l.

Proof:

Let us define a matrix U = (Uij) as follows:

r

-1-— if i = k-l. j = k-l.

akj

U.. = (ii if i = k-l. jello-1. (4.2.1)

13 a'kk-l

L aij 1f 1 # k-l, j = 1,2,...,n 
Then if j¥k-lo

u 8Define C = AU, with C
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n

ij = 1E: akiUij = akk-lUk-lji'aijjj

..ak' -

akk-l (__lakk-l) + akj — 0 , (4.2.2)

and if j = k-l

n

ij = Ckk-l = iii akiUij = akk-lUkk-l = 1° (4°2'3)

-The construction of U implies U is invertible, and

-1 _ .

U - (Vij) With

akj if i = k‘J-p j = 102: Inl

V. . =

13

éij if 1 ¥ k-l, j = 1,2, .,n

It is clear that the kph_row of AU is the same as the

kph_row of U-lAU. Hence if we define B = U‘lAU, then

A and B are similar and B satisfies the stated condition.

This completes the proof.

Let A = (aij) and ann-l # 0, then A 13 Similar

to a matrix B1 with the npp row of the form (0,0,...,l,0),

that is, there exists an invertible matrix U1 such that

1 l l

b11 b12 °°' b1n

-1
B1 — U1 AU1 — t

1 l l

bn-11 bn-12 °°' bn-1n

0 0 ... 1 0

(4.2.4)



68

Lets assume bh-ln-Z # 0, then there exists an

invertible matrix U such that

2

_ -1 _ - -1 _ -1
132 — U2 131112.. 1121111 AUle — (Ule) A(U1U2)

2 2 2

b11 b12 bln

= 2 2 2

bn-21 bn—22 bn-2n

o 0 1 o o

O O C) 1 0

Suppose the above procedure can be done successfully

n-l times (the case which this procedure fails will be

discussed later). Then there exists a sequence of matrices

Ul'U2’°"'Un-l such that

B = (U U U )‘1A(U U U ) = U'lAU
n—l l 2 n-l l 2 "' n

n-1 n-1 n-1

b11 b12 ' ° ' bln

l 0 0

= O 1 0 (4.2.5)

0 C). l 0

with U = U U ...U
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Remark 1.

Suppose after n-k steps of the above procedure

we end up with a matrix B = (bij) where bkk-l = 0,

but still there exists some j(1 g,j < k-—l) with

bkj ¥ 0. In this case we postmultiply and premultiply

this matrix by the matrix E (elementary row operation),

where

.. 3m row

E = (4.2.6)

' 4 k-lpp row

The effect of this multiplication will not change the

similarity, but it will interchange the jpp_and k-lph

columns, and simultaneously changes the rows with the

same numbers. So we can proceed with the above algorithm.

Remark 2.

If after n-k steps of the above procedure we

end up with a matrix of the form B with
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11 12 ' ' ' 1n

B = , 4 kph row

Then B can be viewed as the following

A1 A2
B =

0 A3

with

“11 ' ' ' “1k-1 akk ° ' ' C1kn

A =
' A = I

1 3

“k-11 ' ' ' ak-lk-l 0

Clearly l is an eigenvalue of A if and only if A is

an eigenvalue of A1 or A3. A3 is already in companion

form, and we continue to find the corresponding companion

matrix for A1.

Overall a certain matrix A can be transformed

to a companion matrix C with the same set of eigen-

values. In order to find the eigenvalues of C we first

state the following lemma [38].
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Lemma (4 .2 .2)

Let A be an n.xn matrix with eigenvalues

11.12.....1n. then

R n

trace(A ) = 23 i. k= 1,2....

=1

In the following we will present a recurrence

formula to compute the entries of matrix Ck from matrix

Ck.l for a companion matrix C (here C1 is the ipp

power of C).

Proposition (4.2.3)

Let

c1 C2 Cn-l Cn

0

C = I

O

. . k k
be a companion matrix. Suppose C = (Cij) (the kph_

power of C) has been calculated. then the entries of

Ck+1 = (CEEI) are given by

k+l _ k k - _

k+1 _ k
Cln — Cncll , (4.2.7.1)

k+1 _ k - =
Cij - ci-lj , 1 2,3,...,n (4.2.7.2)
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Proof:

Since Ck+l = C ~Ck = C .(Cij)' it is clear that

Ckfl = C3 1 = 2,3, ,n

1] 1-1]

3 = 1,2, ,n

Also since Ck+l = Ck ~C, for j = 1,2,...,n—l we get

k+l ’1 k k 1c

Cij g LE1 ciLCLj — C3 ll'Fclj+l ’

and similarly

k+l _ k

C1n ' CnC11

Remark 1.

This proposition enables us to find the entries of

Ck+l from Ck. Namely we only need to compute the first

row of Ck+1. Because the second up to npp rows of

Ck+1 are respectively the first up to n-lpp,rows of Ck

by (4.2.11.2). Hence Ck+1 is obtained from Ck at

the cost of n multiplication. Therefore n(n-l)

multiplication is necessary to find all entries of

C2,C3,...,Cn.

Having found the entries of C1‘ (k = 1,2,...,n),

we compute

Sk = trace(Ck) : k = 1,2,...,n .

In order to determine the eigenvalues 11,12....,xn of

matrix C (and hence the eigenvalues of A) we may
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solve the following system of equations:

 

r

A1 + X2 + "' + An ’ S1

2 2 2__

"1+’\2+ "‘+"n‘52

) (4.2.8)

n n n _

(*1 + 12 + ... + xn - Sn

From here on we employ the homotopy continuation method

which is described in chapter two of this dissertation.

§(4.3) Numerical results

In this section we shall consider two examples.

 

Example 1.

Let

1 2 3

A = -l -2 l

1 0 —1

Since 332 = 0, we make use of the elementary matrix B

where

and transfer A to a similar matrix B, with



B = EAE

Let

T

L1

then

-1

U1

Hence

-1

U1 BUl

Define

U2

(
3

O
fi
fl
H
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I

h
fl
w

H

Then the corresponding matrices

as follows.

I
l

)
4

O
h
fl
m

V

C, C and C are
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_ -1
c .. (EUIUZ) A(EU1U2) — 1

o

6 4 ~16

02 = —2 2 8 . and c3

Hence we have the following system

11 + 12 + 13 =

2 2 2
A1 + 12 + 13

1.3.43:3

11

At this stage we use the algorithm

2 8

0 O ,

1 O

of chapter two to find

11, 12, and 13. The computed results are shown in

table (4.1).
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. t 5(1) (-O.ZE+01, 0.02+o.o)

mp: 5(2) (+0.8E+Ol, o.or.+o.0)

““3 °r3 5(3) (+0.4E+Ol 0.01~:+o.0)

arbitrary 6(1) (.580113649E-+00. .950512735E-t00)

choosen 6(2) (.786371425E4-00, .297620264E-t00)

eigenvalues 6(3) (.453699900E-t00, .62619416lE-t00)

constant Pa (1) (- .382018497E + 01 . -.125439494E + 01)

vector Pa (2) (0 . 783133603E + 01 - .157657305E + 01)

Pa Pa (3) (0.500647786E + 01 . -.630500849E + 00)

eigenvalues x(l) (-.l87555035E4-01, .102511753E-t01)

of the given 1(2) (0 .17511007OE + 01 . .238749298E - 11)

matrix A 1(3) (-.l87555035E+01, -.102511753E+ 01)

output 5 ’ (1) (-.2000000002 + 01 . -.2295053042 - 11)

vector 5 ’ (2) (o . 7999999992 + 01 . o .873 967565E - 11)

s ' s ’ (3) (o .399999999E + 01 . 0 .840714165E - 10)    
Table (4.1)

Here 81’ 82. and S are respectively, trace(A),

3

trace(Az), and trace(AB). Likewise Pa(1), Pa(2),

Pa(3) are trace(M), trace(Mz), and trace (M3) for an

arbitrary choosen matrix M with known eigenvalues 6(1),

6(2), and 6(3). Finally 1(1), 1(2) and 1(3) are the

computed eigenvalues of the given matrix A.

Example 2.

In order toillustrate the accuracy of our algorithm.

we will find the eigenvalues of a diagonal matrix D,
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1

d2 0

D = .

0 .

d10

where di (for i = 1,2,...,10) are given in Table (4.2).

The corresponding companion matrix C is computed as

 

 

 

c1 c2 ... C10

0

C= I

0

where ci (for i = 1,2, .,10) are also given in

Table(4.2).

1 l 2 3 4 5 6 7 8 9 10

d1104O-10-3O 5.00020 —40 20 3.0

C 5.0 30.0 -150. -273. 1365. 820. -4100. -576. 2880. 0.0

            
 

Table (4.2)
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Since C10 = 0, the last column of C is identically

zero. This implies that zero is an eigenvalue of C.

Hence we may delete the last column and last row of C and

denote the remaining part by C1. To compute trace(Ci)

(for i = 1,2,...,9) we observe the recursion formulas

(4.2.7), (4.2.7.1), and (4.2.7.2) and compute all elements

below or on the main diagonal of C3. These are shown in

Table (4.3). In fact the first 9 rows from the top of

this table are the elements of C3, and from the second

row up to the tenth rows are the elements of CE, and

so on. Overall we form a system of nine equations with

unknowns 11,12, . . . ,kg . Then we use the homotopy

continuation method of chapter two to solve this

system. The computed results are shown in Tables (4.3)

to (4.5).
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0
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1
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8
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O
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H

I

O
m

:11
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OOOOHOO

OOOr-(OOO

O C) 0 r4 0 C><D O

OOHOOOOO
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Let us choose a matrix M with eigenvalues 6(1)

(1 = 1,2,...,n) where 6(1) is the 1;}; row of Table (2.1) .

In the following table we show the traces of matrices

i

 

 

 

A and M1 (i=1,2,...,n).

. i i
1 trace(A ) trace(M )

l . SOOOOOOOE + 01 (. 159697E + 00, -. 517790E + 01)

2 .85000000E-t02 (.856692E-t02, -.447630E-t01)

3 .12500000E-+03 (.127149E-+03, -.134409E-t01)

4 .13330000E+04 (.133421E +04, -.l306068+00)

5 .31250000E-t04 (.312621E-t04, -.309642E-+00)

6 .25405000E-+05 (.254070E-FOS, .695913E-t00)

7 .78125000E-t05 (.781262E-+05, .242440E-t01)

8 .53533300E-t06 (.535332E-+06, .283408E-t01)

9 .19531250E-t07 (.195312E-t07, .233227E-t01)

10 .ll982925E-t08 (.ll9829E-+08, .214617E-+01)     
Table (4.4)

The computer results for eigenvalues of matrix A

and the corresponding errors are shown in Table (4.5).

 

 

 

. . . corresponding
1 Eigenvalues of matrix A error

1 ( .999999E-t00, -.152670E-10) l.l44069E-—09

2 ( .400000E-t01, -.l77490E-—09) 2.392691E-10

3 (-.100000E-t01, -.202179E-09) 9.909970E-10

4 (-.3000OOE-t01, -.2790603-O9) 8.066281E-10

5 ( .499999E-t01, .139802E-10) l.433335E-—ll

6 ( .116469E-t08, .510748E-10) l.l65636E-—09

7 ( .200000E-+Ol, -.184396E-O9) 2.051873E-10

8 (—.399999E-+01, .l44042E-10) l.407780E-ll

9 (-.l99999E-t01, .334406E-—09) 6.86727OE-10

10 ( .299999E-t01, .320791E-09) 5.940594E-10    
 

Table (4.5)



CHAPTER FIVE

EIGENPAIR PROBLEM

§(5.l) Introduction

The eigenpair (eigenvector, eigenvalue) problem for

a square matrix A 6 IRn len is that of determining a

scalar k and a vector x such that

Ax = XX, X # O . (5.1.1)

The problem is clearly nonlinear since both A and x

are unknown . Since the eigenvalues are the n

roots of the characteristic equation

det(A-AI) E P(X) = O . (5.1.2)

They can be found without reference to any of the

eigenvectors. For a given eigenvalue 1. the corresponding

eigenvector is a nontrivial solution of the linear

system. Ax = Xx.

This chapter is concerned with homotopy continuation

method for calculating the complete set of eigenpairs of

a symmetric matrix, and we will avoid of finding explicitly

the coefficients of P(A) in order to determine the

eigenvalues. Instead a special homotopy is introduced

81
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and we shall prove that there are exactly n distinct

smooth curves which connect trivial solutions to the desired

eigenpairs. In fact these curves are solutions of a

certain ordinary differential equations with different

initial values, and hence they can be followed numerically

by any ordinary differential equations solver.

We emphasize the practical importance of not finding

explicitly the coefficients of P(l) in order to evaluate

the polynomial. All experienced practitioners are aware

of the large error that may result from the use of the

approximate coefficients of P(l) for calculation of the

zeros of the characteristic polynomials.

§(5.2) The Algorithm

We restrict our discussion to symmetric eigenpair

problem

Ax = ).x, x at 0 . (5.2.1)

Although through a standard tridiagonalization, we may

assume, without loss of generality, that the matrix A

is a Jacobian matrix with nonzero off-diagonal elements.

The eigenpair problem can be thought of as solving a

nonlinear algebraic equation

f(x.X) = 0 (5.2.2)

where
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leRn le am“

is defined by

f(er) = AX "XX

There are many well-developed methods which can be

used to find the non-trivial solutions of f(x,l) = O.

For example, suppose that the spectrum 0(A) is simple.

Then the classical Newton's method and its many improved

modification are particularly well suited for solving

(5.2.2). Since its higher Frechét derivatives can easily

be determined, the second derivative is constant and

higher derivatives vanish. For a detailed discussion of

this approach, see [7]. Unfortunately there are some

disadvantages in using the Newton's method. Among them

Newton's method can converge (if it ever converges) to

only one eigenpair at a time. That is in order to compute

all n eigenpairs of A, we have to restart the

iteration by making n suitable guesses. One possible

approach solving this problem by homotopy continuation

method is to view (5.2.2) as a system of n4-l

quadratic polynomials in n-tl unknowns. Then the special

homotopy defined by Chow, Mallet-Paret and York [5]

is applicable for solving (5.2.2). However, there are

at least 2n+1-n curves diverging to infinity which

causes a great inefficiency (particulary for large n).

Another approach presented by M. Chu to solve this

problem [6]. He defined a homotopy:
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H :Hfl‘x E! x E! 4 Egl)(fl{

by

H(x.>..t) = ([D+t(A-D) -11]... é—(xtxq'n. (5.2.3)

where D is an arbitrary diagonal matrix with distinct

elements. Applying this homotopy has the following

disadvantages: a) if we follow the n distinct curves

suggested by M. Chu we may not get all n eigenpairs,

since two of these curves may link into a pair of

~eigenpairs of the form (x,l) and (ex,k). (so

they actually represent one eigenpair). b) to get all

eigenpairs we actually must follow 2n distinct curves

rather than n curves.

In order to remedy this problem and solve (5.2.2)

at a reasonable cost,a special homotopy is constructed as

follows:

Let D be an arbitrary diagonal matrix with distinct

elements on its diagonal. Construct the homotopy equation‘

Hun“ x112 XJR 41R“ xm

defined by

H(X.X.t)

1

n t 2'
= ([(1-t)D+tA-xI]X,e Z xi-t(x x) -1). (5.2.4)

i=1

where e is a small positive number. It is clear that

vectors



x(0) ei/e

= 1 = 1.2. ,n

1(0) di

are the eigenpairs of H(x,x,0), where ei is the

standard ipp unit vector and di is the ipp element of

the diagonal matrix D. We should mention here that the

crucial step in applying the homotopy continuation

method is the construction of an appropriate homotopy, such as

(5.2.4) so that i) the existence of a curve connecting

the trivial solution and desired solution is assured and

ii) the numerical work in following this curve has a

reasonable cost.

In the next section we shall show that the homotopy

equation (5.2.3) guarantees the existance of n distinct

smooth curves. Each of them leads from an obvious starting

point to a desired eigenpair. Furthermore if a certain

curve links to an eigenpair (:91), then there is no

other curve that may link to (-:nk). These curves are

characterized by an explicit ordinary differential equation

with distinct initial values, and hence they can be easily

followed by any ordinary differential equations solver

Coupled with the large scale matrix techniques, this method

can be used to solve eigenvalue problems for sparse matrices

[22].
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§(5.3) Theorems

In this section we present some theorems which serve

as a theoretical basis for our algorithm.

Theorem (5.3.1)

0 E IRn le is a regular value for H. In other

words, for each (E. I, f) 6 IRn le le with H(;.I,t-) = 0.

HThe Jacobian D(-.1. t) has rank n4—l.

Proof:

Let ($55.35) 6 En xIR le and H(x,1-,t_:') = 0.

Observe that

  

”(iraH =

r ._ ._ ._ ._ ;_‘ (5.3.1)

(l-t)p+tA-).I -x (A-D)x

-1 _1 1

_ 2 _ _ 2 _ _ 2

L(e-t(§tx) x1.....e-t(§tx) xn) o-(F‘x)

Since H(;hiuf) = 0, we have

n __ .1.

e: Z". x. -t(xx)21 (5.3.2)
.=l i

and

((1-E)D+'EA-II) ~35: 0 (5.3.3)

We claim that the (nntl) x(ni—l) matrix
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(1 -‘E)D+'€A-§I ..x

(32.33) -

1

(e-thtE) x1....,e-t( 2

N
H
4

_-t— —

x x) xn) O

is of full rank. Since otherwise there exists a vector

(37,“)t with y em“, and tem such that

y (0) ’

H' = o

O . (5.3.5)

Thus

((1-t)D+tA-3:I) °y-ux

This implies

Qt . ((1-E)D+EA-3.'I) 'y = Qt}.

Since A is symmetric, and E’ is orthogonal to the

rowspace of the (1 -t)D+tA -i-I, we have

(THEM; = (SIZE: (it - (1 -E)D+EA -fI\ oyxt

t ... ... — .—

= y '((l-—t)D-+tA-AI) -x = O

This implies u = 0. Therefore

((1-E)D+tA-II) -y = o . (5.3.6)

Since the matrix (l-—t)D-+tA-—ii has a simple spectrum

([10] , Lemma 6 .l) , we conclude that the matrix

B = (l-t)D-+th«-Xl has a set of orthogonal eigenvectors.

say, zl,z2,...,zn, with corresponding eigenvalues
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61.62,...,6 . Let

a -+c z -+----+a z

121 22 nn'

x
l

n

Y = 3121+3222+ "'+ann

Then by (5.3.3). (5.3.6) and orthogonality we get

a. = 8.5 i = 1,2,...,n

1 1

Therefore y = 5;, for some 5. Substituting y = 5x

and u = O in (5.3.4) we get

(1-E)D+tA-KI -x 5x 0

N
H
41

2; .e-t(§t§) E o o o
._ -t—
E. t(XX) 1:... n

Thus by (5.3.2) we have,

1
n _—

o= we 2: xi-t(§tx) 2) = a. (5.3.7)

i=1

Hence D(;'X)H is of rank n-tl. This completes the

proof.

Remark.

We have restricted our discussion with the Jacobi

structure of the matrix A. This is needed only as a

sufficient condition for Theorem (5.3.1). This condition

may be rephrased as "choosing D so that the matrix

(1 -t)D-ttA has a simple spectrum.for any t E [O.lft

Overall, it is only needed that the matrix D( H be

x.k.t)
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of full rank for any (x.)..t) e mnxm xm with

H(x,k.t) = O. Apparently the sparse matrix techniques

can be incorporated in any of these cases.

As is the usual procedure of the homotopy continuation

method we start from a trivial solution of H(-,-,O) at

t = O, and follow the generated path as

t increases from zero to one. We hope the trivial

eigenpairs deform into the eigenpairs of the original

matrix A. Hence we would be able to follow the n

distinct connected paths from the trivial system to the

original problem. In order to assure that this process

works. we prove the following;

Theorem (5.3.2)

Let us define

.T‘= ((x,>.,t) e Zan xIR le :H(x,>..t) = o)

a) F is a one dimensional smooth manifold,

b) as t increases, the curve T will never turn

back.

3232::

Part (a) is in fact a standard result from the

differential topology [35]. That is, a repeat use of the

Implicit Function Theorem implies that P consists of

one dimensional manifold.

In order to prove (b), let T be parameterized with

a parameter, 9. Along each component, we may take the



9O

  

derivative with respect to the parameter a. The set

P is then characterized by

2122

dt de
- —-+ H = . .

D(t)H d6 Dow) O (5 3 8’
:11.
d9

. dt . .
We claim ‘d§'# 0, Since otherW1se

d6

D(x.>.)H = 0

El

Lde

Hence D(x l)H would be singular. This completes the

proof.

Now consider starting a path at t = 0. Since t' # 0.

without loss of generality, we may assume t’ > 0. So

as we increase the parameter

The following lemma shows that as

F remains bounded.

the set

FO ((x.x) e 1Rn le: H(x.1.t)

is bounded.

Lemma (5.3.3)

The set Tb

9. t(e) cannot reverse.

t goes to one the curve

In other words for any 0 < tO < 1,

O for some t E [to.l]]

(5.3.9)

is a bounded set.
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Proof:

By equation (5.3.3)

lMt) IHXH = HUI -t)D+tAIXH g H(1 -t>D+tAEHIXH

3 (ND!) +))A‘.))HXH

Hence

l).(t)l g. HDH + HAM . (5.3.10)

Also for any (x.l) 6 TO, equation (5.3.2) implies

n

Il-te .2) xi)touxn s. (x) .
i=1

n

g.l-+e Z) Ixil == l4—eHle

i=1

S.l'*€JSMXH

Thus for 9 small

I ) 1
(X) g -—7=_ . (5.3.11)

t0 6 n

Therefore To is boundedo (Here by H H we mean ||||2.)

Part (b) of Theorem (5.3.2) implies that P will

never turn‘badk.Thus T can be parametrized by the variable

t. Then (5.3.8) becomes

      

r- "' -1 r- T

3ng (1 -t)D + tA -).I v] (D-A)X

= -l _l .1.

L%% Ls--t(XtX) 2 x1.....e-t(xtx) 2 Xn O -(xtx)2

A ‘ (5.3.12)

X(O) ei/e

= l = 1,2, ,n t

l(0) d
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These differential equations may be solved by any

ordinary differential equations solver. Over all for

each 1 g_i g_n the numerical solution of (5.3.12)

at t = 1 is an approximation for an eigenpair of the

matrix A. The following lemma assures that among the

computed eigenpairs we will not have a pair of eigenpairs

of the form [X.).]t and [-x.l]t.

Lemma (5.3.4)
 

There is no pair of eigenpairs of the form

[x.l]t. [-x.l]t.

Proof:

Since otherwise both vectors satisfy equation (5.3.2)

with t l. Subtracting the two resulting equations

n

gives 2) xi = 0. Substituting this in (5.3.2) yields

i=1

HXHZ = -1. Which is not true.

§(5.4) The Algorithm

We have seen that the set

I‘ = {(x,).,t) :H(x,).,t) = O} , (5.4.1)

consists of exactly n curves, and each of them is the

solution of the differential equations (5.3.12). We

proceed as follows:

I) Choose any diagonal matrix D with distinct

elements on its diagonaL

II) Set i = O.
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