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ABSTRACT

SENSITIVITY OF FLOW RATE

CALCULATIONS TO THE RHEOLOGICAL PROPERTIES

OF HERSCHEL-BULKLEY FLUIDS

BY

Ibrahim Omer Mohamed

The purpose of this study is to show the problems that

might be encountered when unreliable rheological data are

used to estimate flow rate. The root sum square formula is

used to show the sensitivity of flow rate calculations to

the magnitude and precision of the rheological parameters

describing Herschel-Bulkley fluids. The analysis was

performed for laminar flow using the mixing length method to

establish laminar-transional flow.

The result of the analysis shows that the error in flow

rate increased with decreases in the magnitdue of the flow

behavior index. Error in the flow behavior index of i

0.0001, t .001 and t .01 has no significant effect on the

error in flow rate. Flow rate error is not influenced by

the magnitude of the consistency coefficient for the range

investigated; however, the error does increase with

increasing error in the consistency coefficient. The

magnitude of the yield stress has a strong effect on the

error in flow rate when the shear stress at the wall

approaches the yield stress. The error in yield stress was

found to be the most important factor in causing error in

flow rate.
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1 . I NTRODUCT I0N

1.1 General Remarks

Rheological properties of fluid foods have many

applications, including quality control (Rao et al., 1975)

and design of fluid handling systems (Odigboh and Mohsenin,

1974; Roger and Tiu, 1975). In addition they are also

essential for estimating heating rates (Sarvacos and Mayer,

1967), estimating overall heat transfer coefficients for

evaporators (Harper, 1960) and correlation with sensory data

(Dickie and Kokini, 1983).

Estimation of the rheological parameters is usually

based on fitting viscometric data to rheological models.

The accuracy achieved depends on how well the design of the

viscometer satisfies the assumptions associated with the

theoretical development. Poor understanding of the

rheological techniques for non-Newtonian fluids can result

in large errors. Rao et a1. (1975) showed that errors of 20-

50% on shear rate calculations can occur if Newtonian

approximations are employed. This error will propagate and

affect the estimation of the rheological parameters.

The idea for this investigation came from observations

of the discrepancies among the published rheological data

for the same products (Steffe et a1. 1983). The work to be

presented here will lead to a better understanding of tube

flow phenomenon. It may lead to flow rate control based on

pressure drop and be useful in the development of on-line

viscometers for non—Newtonian fluids.



1.2 Objectives

The specific objectives of this investigation are:

1. To derive, then verify, published equations giving

flow rate as a function of rheological parameters and pipe

size for Herschel-Bulkley fluids.

2. To determine, from existing literature, the best

technique for establishing laminar flow criterion in tube

flow.

3. To develop the equations describing the sensitivity

of flow rate to the flow behavior index, the consistency

coefficient and the yield stress. ‘

4. To investigate the influence of the following in

generating error in the calculated flow rate:

- precision and magnitude of the flow behavior index;

- precision and magnitude of the consistency

coefficient;

- precision and magnitude of the yield stress;

- magnitude of pipe length, pipe diameter and pressure

drop.



2. LITERATURE REVIEW

This section is devoted to a brief overview of the most

common rheological models, and some of the viscometers used

for measuring rheological properties.

2.1 Rheological Models

2.1.1 Newtonian Fluids

Newtonian fluids are those fluids having a linear

relationship between shear stress and shear rate given by

T = uy (l)

where

r = shear stress, Pa

0 - viscosity, Pa-s

t a shear rate, 5-

This type of behavior may be observed with some juices,

milk, oils and some other products. For Newtonian fluids, a

single measurement can give satisfactory results in

determining the viscosity.

2.1.2 Non-Newtonian Fluids

Non-Newtonian fluids are those for which the relation

between shear stress and shear rate is not linear. These

types of fluids can be divided into three broad groups:

a. Time-independent fluids. These are fluids for

which the shear stress does not change with time at a given

shear rate.

b. Time-dependent fluids. These are fluids for which

the shear stress, at a constant shear rate, changes with

time.



c. Viscoelastic fluids. These are fluids showing

elastic recovery on removal of a deforming shear stress.

Such materials posses properties of both a viscous fluid and

an elastic solid. Viscoelastic fluids have a tendency to

expand at the discharge end of the tube. This phenomenon

known as die swell, is important for extruded foods.

Viscoelastic fluids are characterized, in addition to the

shear stress and shear rate deformation, by the normal

stresses which involve complex mathematical models.

2.1.2.1 Time Independent Non-Newtonian Fluids

The flow behavior of fluids in this category has

commonly been described by empirical models. In this

review, the emphasis is on the most common models that are

used to describe flow behavior of fluid foods. The power

law model was found to describe a large spectrum of food

material, according to a recent review by Steffe et a1

(1983). It is described as

'n (2)

where

K a consistency index, Pa-sn

n a flow behavior index

When the value of n < l, the fluid is known as

pseudoplastic, which is the case with the majority of fluid

foods. When the value of n > 1 the fluid is known as

dilatant, a condition which is very rare with food products.
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Figure (1) shows the shear stress versus shear rate for both

fluid types.

Some food products possess a yield stress which must be

overcome before flow can commence. A pOpular and

generalized model which incorporates a yield stress was

proposed by Herschel and Bulkley (1929) as

K9“ + r (3)a

II

where

ry = yield stress, Pa

Another model with yield stress and a direct relation

between shear stress and shear rate, is known as the Bingham

plastic model. This model was found to describe the flow

behavior of food products such as casava starch (Odigboh,

1975) and is expressed by

I = I + CY (4)

where

r a plastic viscosity, Pa°s

The Casson model, developed for paint, was also found

to have many applications with food products (Charm, 1962;

Rao, 1981). It was adopted by the chocolate industry as the

official model for describing the flow behavior of chocolate

(Rao, 1977) and is given as

T = K + K I (5)
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Figure 1.

Shear Rate (l)

Relationship between shear stress and

shear rate for different fluids not

displaying time dependent behavior.



where

K0 and K1 are constants.

Mizrahi and Berk (1972) modified the Casson model to:

= KO + KY (6)

where

m = constant.

This model was used successfully to fit orange juice

data (Mizrahi and Berk, 1972).

2.1.2.2 Time-Dependent Non-Newtonian Fluids

These materials are usually divided into two major

groups, thixotropic and rheopectic, depending on whether

their shear stress decreases or increases with time, at a

constant shear rate.

2.1.2.2.1 Thixotropic Fluids

Thixotropic fluids exhibit reversible decreases in

shear stress, with time at constant temperature and shear

rate. This phenomenon is explained by structural breakdown

due to shearing (Green, 1949). If the shear stress is

increased at steady rate and then decreased at steady rate,

a hysteresis loop will be obtained (Figure 2). Irreversible

breakdown due to mechanical degradation is known as

rheomalaxis.

2.1.2.2.2 Rheopectic Fluids
 

These fluids are rare in occurrence and exhibit a
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Figure 2. Flow curves for thixotropic and

rheOpectic fluids. ‘



reversible increase in shear stress with time, at constant

shear rate and temperature. These fluids also have a

tendency to produce a loop if the shear stress is increased

and then decreased at steady rate (Figure 2).

Green (1949) discussed a semi-quantitative approach to

determine time-dependent changes in a co-axial cylinder

viscometer. Measurement of the hysteresis loop between 'up'

and 'down' curves is obtained, first by increasing the shear

rate from a minimum to a maximum value using a predetermined

incremental time step, then by decreasing it by the same

step down to a minimum shear rate. The resulting loop will

be indication of the thixotropy or rheopexy of the material.

A larger hysteresis area implies that the fluid is more

time-dependent and vice versa. Van Wazer et al. (1963)

suggested a method of determining shear stress decay or

built up as a function of time at one or more constant shear

rates.

2.2 Viscometers

viscometers are instruments used for the measurement of

rheological parameters. A great number and diversity are

available on the market, ranging from very simple and cheap,

to sophisticated and expensive. The designs of these

viscometers are based on various theoretical approaches

which have different assumptions associated with them. The

commonly used viscometers fall into two broad groups:

a. rotational viscometers

b. tube type viscometers
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2.2.1 Rotational Viscometer

The main assumptions associated with this group are:

a. flow is laminar,

b. steady state,

c. no end effect,

d. isothermal flow,

e. no slip at the wall,

f. the fluid is homogeneous and incompressible.

2.2.1.1. Co-axial Cylinder Viscometer

Figure 3 shows the arrangement of this viscometer which

consists of a bob of radius Rb that rotates on a cup of

radius RC. The annulus of the cup should be kept to the

minimum possible gap to satisfy some of the assumptions,

mainly laminar flow. End effects can be minimized by

maintaining a hollow cavity at the bottom of the bob, with

the edge recessed, so as to trap air in this cavity and

provide air-solid interface which has less drag compared to

the liquid solid interface. The shear stress at the bob is

given by

= ——;—M (7)
Th 2nR h

where

shear stress at the bob, Pa

3

ll torque, N-m

2
1
‘

I height of the fluid, m

radius of the bob, m

a
?
“



ll

  

 

   

  
Figure 3. Schematic diagram of a co-axial cylinder vis-

cometer.



12

A general expression for the shear rate at the bob was

suggested by Kriger (1968) as

2/S
R R (8)

= 25.2. C 2 If (_2_ 1n _9_)

T1:, 5 [2/s_2/s:ll:1+SS 5
RC Rb Rb

 

 

where

l = d(an)

S d(lnrb)

S. = 0(1/5)
d(lnrb)

t -
fit) = t(e (t i) + t2+ 2)

2(e - 1)

0 = angular velocity, rad/s

2.2.1.2. Single Cylinder Viscometer

Charm (1963) derived a relation between the rheological

parameters of fluid with yield stress and the physical

parameters of the viscometer system given by

2

K _ _ M dR

2"N(‘?_) l—S (1' 2nhR Ty) R (9)

M = torque, N°m

R1 a radius of the cylindrical spindle, m
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R2 a distance from the center of the spindle to where

the shear stress just equals the yield stress, m

h a height of the fluid, m

N a revolution per second

Using Equation (7), R2 can be expressed as

R = M (10) 

The solution to Equation (9) is difficult to perform

analytically. Charm has suggested a graphical solution,

after determination of the yield stress.

For the power law fluid the relation is

l/n ( )_ M 1 11
2TTN " 2( (ZflhK) ) ( RZ/n)

b

[
:
3

 

 

where

Rb - radius of the spindle, m

Using Equation (11), the rheological parameters can

easily be determined; by plotting N versus M/n on double

logarithmic paper, the slope will be 1/n. Then, K can be

found by substitution using Equation (11).

2.2.1.3, Cone and Plate Viscometer

The cone and plate is a rotational viscometer used for

direct measurement of shear stress and shear rate. It is

also used with some modification to measure the normal

stresses for Viscoelastic fluids. The viscometer consists

of an obtuse angle cone and a flat plate. The apex of the

cone just touches the plate and the fluid fills the narrow
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gap formed by the cone and the plate. The angle between the

cone and the plate is usually made very small to ensure a

uniform rate of shear (Figure 4). The expression for the

shear rate and the shear stress is given by

 

o - Q

_ 3M

T - at? ”3’

M a torque, N-m

0 a angular velocity, rad/s

w . angle between cone and plate, rad

R a radius of the cone, m

2.2.1.4 Mixer viscometer
  

Some of the specific assumptions of this viscometer

are:

a. the rotational Reynolds number must be in the

laminar flow region (less than 10).

b. the power law parameters for the standard fluid

must be valid over the range of shear rates that would be

exerted by the mixer.

c. the standard and the unknown fluid must not be

Viscoelastic.

The power input to a mixing vessel, derived from
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[YAL\\\\\X\X \ \\\\\\\W

Figure 4. Schematic diagram of a cone and plate

viscometer.
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dimensional analysis, is a function of the power number and

mixing Reynolds number given as

P0 = P/(d5N3o) (14)

Re' = dZNp/u (15)

where

P a power, N-m/s

P a power number

d a diameter of the impler, m

N = revolution per second

0

ll density of the fluid, kg/m3

u a viscosity of the fluid, Pa-s

Re' a rotational Reynolds number

For laminar conditions the power curve is given by

P = ——— (16)

where

B - constant dependent on the impeller geometry.

Mentzer and Otto (1957) suggested a relation for the

average shear rate, to be used for calculating the apparent

viscosity which is then to be used to calculate the Reynold

number, as
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Y = kN (17)

where

= average shear rate, 5-1

constant depending on the impeller geometry

2
3
7
4
'

II

a rotational speed revolution per second

The shear stress at the impeller is given by:

T = CM (18)

where

C a constant

M a torque, N-m

To determine the flow behavior index (nx) for the power

law fluid (x), a logarithmic plot of M and N should be made

for which the slope will be the flow behavior index. For

determining the consistency coefficient Kx, a standard fluid

(Y) of approximately the same flow behavior index (ny) is

used.

Using Equations (17) and (18) in Equation (2) we get,

n n

MX TX KXN Xk X

r=T=—TT (19’
y y KNyky

If nx = ny equation (19) can be reduced to

KX MX

K— = fi— (20)
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From Equation (20), K can be found from the knowledge
X

of K and the induced torque for both fluids at a specific

Y

speed. Mixer viscometer can be used to obtain the

rheological parameters when particle sizes in the fluids are

relatively large (too large for co-axial cylinder

viscometers) or when the fluid particles have a tendency to

settle causing the material to become in homogeneous.

Bongenaar et a1. (1973) and Rao (1975) used mixer viscometry

successfully to find the rheological parameters of the power

law fluids.

2.2.2 Tube Viscometer

The assumptions associated with this type of viscometer

 

are

a. flow is laminar,

b. flow is steady,

c. no slip at the wall,

d. isothermal flow,

e. no end effects,

f. the fluid is homogeneous and incompressible.

The shear stress at the wall for tube viscometer is

given by

Tw = Aiin (21)

where

AP 8 pressure drop, Pa

D I tube diameter, m
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L = tube length, m

Rabinowitsch (1929) developed an expression for the rate of

shear for time-independent fluids which is entirely

independent of the fluid properties. The complete

development of this equation was also presented in a paper by

Mooney (1931). Their final expression is

- _ 30 d(0/nR3)

Y _ FR? + Tw d(rw) (22)

where

Q a flow rate, m3/s

From equation (22) the relation for the true shear rate

for the power law fluid can be obtained as

 

- _ 320 3n+1

Y ~(TTD )( 4n ) (23)

Similar expressions for Newtonian and Bingham plastic fluids

are also available.
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3. THEORETICAL CONSIDERATIONS FOR HERSCHEL-BULKLEY FLUIDS

In this section efforts have been made to derive a

generalized flow rate equation for fluids obeying the

Herschel-Bulkley (H-B) model, to be used later in the

analysis. One of the main assumptions associated with the

use of the flow rate equation, is that the flow is laminar.

A criterion for laminar flow as developed by Hanks (1974)

will also be presented.

3.1. Flow Rate Equation For Tube Flow

In the derivation of the flow rate equation for a H-B

fluid, the assumptions stated for the tube viscomer will

also apply. Consider a tube of length L and radius R, with

the pressure drop between two points (1 and 2) as AP, and

the radius of the plug flow region being rO (Figure 5).

When pressure is applied to the core of the fluid, the fluid

moves with two distinct velocity profiles. For the region

from the center to where the shear stress equals the yield

stress, the fluid moves with constant velocity. For the

region where the yield stress is exceeded, the fluid has a

velocity profile which is a function of the radial distance

from the center line. The shear stress at the wall is given

by Equation (21).

Applying balanced force on the core of the fluid

between points 1 and 2 shown on Figure 1 yields

APnr2 = anLr (24)
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Figure 5. Velocity profile for Herschel-Bulkley fluid.
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Substituting for r from the H-B equation (Equation (3)), we

 

get

n

APiTr2 = [-K (gig) + Ty] 2an (253)

Equation (25) can be rearranged as

1/n.
<iu == 1 AP-I: _

.. a; Kl/n [——2L Ty] (25b)

For no slip conditions, equation (25b) can be integrated

over the tube giving

0

__ 1 w' APr __
-J du - Kl/n J [—ZL Ty] dr (25C)

u

After integration and substitution of the limits, the

 

velocity becomes

APR (l/n)+l) ((l/n)+l)

2L (7F1"‘ - AEI- r ’
u-__.i7a.[ L 2L ] (26)

APR ((1/n)+l)

The plug radius, rO is given by

2TL

r = -—Z— (27)
0 AP

The velocity of the plug region unax can be found by

substituting rO from Equation (27) into Equation (26)

yielding
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2L APR: ((1/n)+1) 1

umax'APxn((2L-Ty) )(((1n+)) (28)

For the unplug region, the volumetric flow rate can be

expressed by

R.

we

Q1 =‘J u2nrdr (29)

r
0

Substituting u from Equation (26) into Equation (29)

and integrating, Q1 is

 

 

 

2' 2L ' t
0 - 4y 32 - -

1 ((1/n)+1)(§§)x1’“ ( 2 ( w Ti)

(30a)
)((l/n)+2)

 

(APR

(A§§ - ry ((l/n)+2) + ((1/n)+3) r 2‘

Y zw 2 1 1

’ ‘*2(a+3)

Substituting the value of rO and introducing 1w, Equation

(30a) can be reduced to

 

 

((l/n)+1)

nR3(rw - r)

0 - Y
I xl/n T3

w
(30b)

((1/n)+1)((1/n)+2) 1% + 2 ((l/n)+1) rwry - ((l/n)+1)((l/n)+4)

((1/h)+l)((1/n)+2)((1/n)+3)
1]

For the plug region the flow rate is given by

t

02 - I O um“ 2WrdY

0

Substituting u.max and integrating yields

"R3 (rw’T)((1/n)+1)

°2-( Haze.) 

The total volumetric flow rate Q is
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Q = Q1 + Q2 (32)

By substituting Equations (30b) and (31) into (32),

with some algebraic manipulation, the result is

 

1v mow-Tl) ((l/n)+l) ((1/n)+1)((1/n)+2)r5+2((1/n)+1) ‘w 8:2 T;

Q a I/n (33)

13 ((l/n)+1) ((1/n)+2) ((1/n)+3>K

Equation (33) is the same as that given by Nakayama et a1.

(1984).

3.2 Laminar-Transional flow Criterion

Numerous attempts have been made to develop an

analytical criterion for the laminar-transional region for

non-Newtonian fluids (Metzner and Reed, 1955; Ryan and

Johnson, 1959; Hanks and Christiansen, 1962; Hanks, 1969;

Hanks and Ricks, 1974). For all the methods developed,

Hanks and Ricks (1974) seems to have succeeded in developing

a most generalized approach which will be outlined in this

section.

Hanks and Ricks (1974) developed a generalized relation

for the Reynolds number that accounts for the yield stress

given by the following series of equations:

_(2-n) n

Re = 80Rwu [1+3 :1 (34)”
I
O
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where

 

n

2

o = My” [UL-s.) + 2 a. we.) (i132) + 5: (i—Iirfl (35)

T

g = J (36)

1-W

 

 

_ Arw

u = K ) Rw (37)

n
n (38)

A = O ( l+3n )

Rw a pipe radius, m

K, n, Ty are parameters of the H-B fluid model.

From the use of the stability theory developed by Hanks

(1969), Hanks and Ricks (1974) developed a relation for the

critical Reynolds number given as

21%) 2
1+ n

Re -[_24_6_4_][ ‘2”) ”c ] (39)
C (1+3n) 2 (1_E:OC) (1+(27n))

where 60c given by
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((2/n)-1) 21g

4

=(—-n(——1r“(1_goc) ((2/n)+1) 3232 2+n

 

and Hp, the generalized Hedstrom number, is defined as

Z/n

920 (T /K) (41)
Ty y

 

He =

do is given by Equation (35) with 50 = 5°C.

Based on the previous analysis Hanks generated a series

of curves showing the influence of the Hedstrom number and

the flow behavior index on the critical Reynolds number. It

is interesting to note that Hanks and Ricks (1974) found an

explanation (from previous experimental data for fluid with

yield stress) for the trend of the critical Reynolds number

at low values of flow behavior index (Hanks, 1962). Hanks

and Ricks (1974) stated in this regards that, "The Metzner

and Reed (1955) method of fitting a variable parameter power

law to a non-Newtonian system having a low n value is risky

since it ignores any yield values." Errors of several hun-

dred percent were shown to occur when the Metzner and Reed

(1955) method was used.



4. SENSITIVITY ANALYSIS

4.1. Root Sum Square Error Model
 

Consider a problem of computing Q, where Q is known

function of n independent variables ql, q2, q3 . . . qn or

=f , , ---- 42Q (q1 qzq qn) ()

3

If the q values are measureable quantities, and they

are in error by : Aq 1' i qu, . . . : Aqn respectively, these

errors result in error Q according to the following

relation

QtAQ = f (q1 r Aql, q2 r Aq - - - - q

The right hand side of Equation (43) can be expanded in

Taylor's Series as

 

f(ql:Aql.q2:Aq2 - - - qntAqn) = f(q1.q2 - - - - qn)

” 2

at at 3f 1 2 at + (A )

rm; ('3'} NZ (3‘)’ ’ ‘ ‘ ibqn(3q )3 -2-[(Aq1) (a—qj' - qz

1 <11 2 qz n 1 (44)

32f ) + (A 2 (32f) + _ _ _ _

-——5 - - - - - q ) -—7' -
(aqn n aqn

If the values of Aq are small quantities, then the higher

order terms can be neglected giving

 

_ _ _ _ _ 3f + 3f _ 3f
0:130 f(qlo 92o qn) :Aq1(aq )- qu (j) - - - :Aqn(—-) (45)

27
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Hence, from Equation (45)

8f 3f 3f \
A = —— i A —— i - "' " - A _—

Q qgl (aql) q2 (sqz) qn aqn/ (45)

The expression for AQ holds for any kind of error

(Scarborough, 1966). If we assume that the error made in

measuring ql, qz, . . . qn to be independent and completely

random, then the maximum allowable error in Q can be given

by the root sum square formula written by Scarborough (1966)

as

2 2 2

3f 3f 3f

-f( e- ) 4qu e) was)

Equation (47) is an indirect measurement of the maximum

 

probable error of Q when the errors in the independent

variable are known.

4.2. Derivatives g; the Flow Model
 

The flow rate for a Herschel-Bulkley fluid is a

function of the rheological parameters as well as pressure

drop and tube geometry. In this analysis, the intent is to

investigate the effect of the rheological parameters on flow

rate calculations which can be achieved by considering the

pressure drop and tube geometry to be constant; therefore,

we can write flow rate as

Q = f(KInITy) (48)
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If we assume that the error made in measuring K, n and Ty

to be independent and completely random, then the maximum

allowable error can be given by the root sum square formula

g

2 2 2

_ 12 12 2.9A0 - (an An) 4» (3K AK) +(3T my) (49)

Y

Equation (49) was used to investigate the effect of error in

flow rate which results from measurement errors in the

rheological parametsr. First, the partial derivatives in

Equation (49) were evaluated and found to be

 

.33 (r - r )“1/“’*1’
3Q w y 1 1n K + 1

an ‘ Kl/n 167 1w —((1/n_—")+3) “(T1/n")"'+'_2‘3>

2 5 (Tw-T )

(r -r ) 2: -a + -2 1 (50)
1n w 1n K n n _ n y

' ((l7n)+3))+ ?;§ ((1+5n+6n5) + l 5 (1+Sn+6n ))_ - 2

(n2 + n + 6)

 

 

 

3 12 11

I T 1 2 + 1 6 11 2
w ‘3 + 11n+6n +6) (33 + 32 + —; + 6)

 

 

39 - («a3 (rw-ry)((1/n)+1) ) r5 ((1/n>+1) ((1/n)+2)+2rwry((1/n)+1>+2r2
3K 1

3 x “ ”3+“ ((l/n)+1) ((1/n)+2) ((l/n)+3) (51)
“TW
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and

l/n _ _
30 = (nR3(Tw’Tx) ) 2 (“w ry)1 (::/I(1)(::)):%)) +

37y Tw K1/n rw(( /n) ) n

(52)

E:y(Tw-Ty)-((l/n)+l)1y2 _ ((1Zn)+1)

2 rw2((1/n>+1>((1/n)+2)((1/n)+3>) ((1/n)+3)

Equations (50), (51) and (52) will be incorporated into

Equation (49). These equations are not available in

published literature.

4.3 Verification 9f the Derivatives
 

The partial derivatives of the independent variables

presented in Section 4.2 are analytical expressions. Due to

the complexity of the equations, it was necessary to check

their accuracy, especially the derivatives with respect to

yield stress and flow behavior index. This check was

accomplished by comparing results to independent analytical

solutions and numerical solutions.

The flow rate equation for the power law fluid is

_ nR3 r 1/n __n___

0 - xl/n w (3n+1) (53)
 

When Equation (53) is differentiated with respect to n, it

yields

guns in + 1 _ 1“ 1w (54)

n2((l/n)+3) n2((1/n)+3)2 n2((l/n)+3)
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When a value of zero yield stress is substituted into

Equation (50), it reduces to Equation (54), indicating that

Equation (50) is correct for the special case of the power

law.

For checking the derivative with respect to the yield

stress, consider the flow rate equation for Bingham plastic

fluid, known as Buckingham equation given as

NR3Tw 4 1

Q = 4n [1 - 3' (Ty/Tw) + j (Ty/tw)l*] (55)

 

The derivative with respect to the yield stress for Equation

(55) is

so:

I

Y

 

 

nR3 _

3n [(ry/rw)3 l 1

Q
)

(56)

With the substitution of n = 1 into Equation (52), the

result is identical to Equation (56), showing Equation (52)

to be correct for the special case of the Bingham plastic

fluid. Similar results are found when considering a

Newtonian fluid.

In addition to the method just outlined, a numerical

technique employing Euler forward difference method is used

for further checking. The values of pressure drop and tube

dimension used are the same for both cases, with values

typical to those used later for the analysis. The results

are shown in Tables (1) and (2). It is clear that the

analytical results are very close to the numerical results.
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Table 1. Comparison between the analytical and numerical

differentiation of flow rate with respect to the

yield stress.

 

 

Ty 2 10

n .2 .5 .2 .5

analytical 5.793xlo'5 43.80x10-7 7.3162x10'7 4.3198x10-7

numerical 5.780x10'5 43.59x10-7 7.3137x10'7 4.3181x10’7

% difference 0.224% 0.479% 0.031% 0.039%

 

Table 2. Comparison between the analytical and numerical

differentiation of flow rate with respect to

flow behavior index.

0

 

 

n .2 .5 .7

analytical 11.593x10'5 0.558x10'S 0.199xlo"5

numerical 11.592x10'S 0.546x10'5 0.18:3x10'5

% difference 0.0086% 2.150% 5.527%
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This is further evidence supporting the reliability of the

analytical solution. The small difference observed can be

attributed to the limitations associated with the numerical

solution technique. For the derivative with respect to the

consistency coefficient, the exact value was obtained

4.4 Sensitivity Analysis Calculations
 

A Fortran computer program was written to perform all

calculations. Two subroutines, from the main MSU computer

system (subroutine C, Plot A and subroutine C, Plot B), were

attached to the program to perform contour plotting of the

flow rate error as a function of the independent variables

under consideration. The subroutines have the capability of

establishing the scale and the interval of the contour plot.

To perform the calculations, the values of the

parameters, tube geometry, and pressure drop are inputed to

the program. To investigate the influence of the effect of

pressure drop (AP), tube length (L), and tube diameter (D),

the following three values of each were used:

AP: 8.0kPa, 10.0kPa, 12.0kPa

L: 4.0m, 6.0m, 8.0m

S
?

0.0254m, 0.0381m, 0.0762m

A pressure drop of 8.0kPa, a length of 6(m) and diameter of

0.0381 (m) were used as fixed parameters to investigate the

sensitivity of Q to the rheological parameters. These

values were chosen because they are typical of what might be

found in an actual fluid handling system.

The magnitude and precision level considered for the
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rheological parameters are typical of fluid food products

and summarized as follows:

1. 3.0 < x < 10.0 Pa-sn at AK, 22 0.5%, r 1.0% and: 3%

2. 0.2 i n‘: 1.0 at An, r 0.0001, r 0.001 and i 0.01

3. 3.0 5 TY :_10.0 Pa at Ary, r 0.5% r 1.0% and r 3.0%

4.5 Laminar Flow Calculations

The condition of laminar flow is the one generally

found with non-Newtonian fluid food products and the

analysis of the current work is based on flow of this type.

A computer program based on Hanks and Ricks (1974) method,

was written to calculate the flow and the critical Reynolds

numbers. The computer program utilized the equations

presented in Section 3.2. An iterative procedures was used

to calculate the parameter 50c. Figure (6) shows the flow

chart for calculating the critical Reynolds number. Some of

the curves generated from the computer program are shown in

Figure (7). These curves are the same as those presented in

Hanks and Ricks (1974) paper.

The calculation of the flow Reynolds number, starts by

calculating 50 from Equation (36) which is used in Equation

(35) to calculate 0. Equations (35) and (38) were then

evaluated respectively, to solve for 5 (Equation 37) which

is to be used with the rheological parameters, pipe radius,

and fluid density to evaluate the Reynolds number from

Equation (34).



 

   

 

He

  
 

 

  
 

  

 

Re

c

   

35

input

calculate He by Equation (41)

calculate 50c through

iteration by Equation (40)

calculate 0c by Equation (35)

with o = oc

calculate Re by Equation

(39) C '

Figure 6. Flow chart showing the calCulation scheme to

evaluate the critical Reynolds number.
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5. RESULTS AND DISCUSSION

The intent in this study is to show the influence of

the precision and magnitude of the rheological parameters

on the flow rate calculations. The effect of the magnitude

of the parameters will also be discussed. This goal was

achieved by assuming hypothetical values for precision and

magnitude, then calculating the resulting errors in flow

rate. The influence of the pressure drop tube length and

diameter were also investigated.

5.1 Pressure Drop and Tube Geometry

To investigate the effect of pressure drop, tube length

and tube diameter, all the variables were kept constant

while the parameter under consideration was varied. From

the computer output, the error of flow rate versus the

rheological parameter was obtained. Figure (8) shows

contour plot for an error level of 4.1% in flow rate for

three values of pressure drop. This plot was selected from

other plots for comparison purposes. For pressure drop of

8.0 kPa the error in flow rate is very dependent on the

magnitude of the yield stress. As the magnitude of the

pressure drop increased, the error tends to be less

dependent on the magnitude of the yield stress. This trend

occurs because of the direct relationship betwen the shear

stress at the wall and the pressure drop. As the shear

stress at the wall increases, relative to the yield stress,

the contribution to total flow from the unsheared plug flow

(which is a function of the yield stress) tends to decrease.

37
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v

o-;r—-o- AP = 12.0kPa

J. «P—O— AP = 10.0kPa 1,

l ___. AP = 8.0kPa

0 i

0.205 0.353 0.501 0.649 0.798 0.946

Figure 8.

Flow Behavior Index

Contour plot of an error of r 4.1%

in flow rate which results from

different values of pressure drop

for K = 5.3 Pa-sn, An = 1 0.0001,

AK = i- 1% and Ary = i- 0.5%.
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Under this condition, the flow rate will be less dependent

on the magnitude of the yield stress.

In considering the tube diameter, which is directly

related to the shear stress at the wall, similar results are

observed (Figure 9). When investigating tube length, which

is inversely proportional to the shear stress, the error in

flow rate is more dependent on the magnitude of the yield

stress as the tube length increases (Figure (10)). The

effect of the magnitude of the yield stress and the flow

behavior index in generating error in the flow rate

calculation may be examined with reference to Figures (9)

and (10). Additional discussion will following in the next

section.

5.2 Effect 9f the Yield Stress

The influence of the different precision levels in the

yield stress was investigated by varying these levels while

all other variables were kept constant. Figures (11) (12)

and (13) show the results obtained from the computer output.

Results show the dependence of the-error on the magnitude of

the yield stress. Specially, as the yield stres approaches

the shear stress at the wall, the error in flow rate

increases because the contribution to the total flow from

the plug flow region increases with an increase in the

magnitude of the yield stress. Increasing the error in the

yield stress from i 0.5% to i 3.0%, increases the error in

flow rate from i 9.2% (for T = 9.2 Pa, K = 5.3 Pa 5“ and n
Y

= .25) to i 50% (for T K and n equal to the same values) as
Y'
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Figure 9. Contour plot of an error of r 4.1% in flow

rate which results from different values of

An ==

Flow Behavior Index (n)

pipe diameter for K = 5.3 Pa-sn,
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0.205 0.353 0.501 ‘ 0.649 0.798 0.946

Flow Behavior Index (n)

Figure 10. Contour plot of an error of r 4.1% in flow rate

which results from different values of pipe

length for K = 5.3 Pa-sn, An 1 0.0001, AK = t

1.0% and Ary = i 0.5%.
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Flow Behavior Index¢n)

Figure 11. Percentage error in flow rate as a function

of the yield stress, and flow behavior index

for K = 5.3 Pa-sn, An = r 0.0001, AK = r 1.0%

and Ary = i 0.5%.
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Flow Behavior Index (n)

Percentage error in flow rate as a function

of the yield stress and flow behavior index

for K = 5.3 PaisQ.An = r 0.0001, AK = r 1.0%

and Ary = r 1.0%.
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Flow Behavior Index (n)

Percentage error in flow rate as a function

of the yield stress and flow behavior index

for K = 5.3 Pa-sn,An = r 0.0001, AK = r 1.0%

and Ary = r 3.0%.
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illustrated in (Figures (11) and (13).

5.3 Effect 9f the Consistency Coefficient

The influence of the magnitude of the consistency

coefficient is illustrated by considering plots of the error

in the flow rate viewed against the consistency coefficient

and the flow behavior index. The effect of precision level

is shown in Figures (14), (15) and (16). The error in flow

rate does not change significantly with the magnitude of the

consistency coefficient; however, an increase of the levels

of the error in consistency coefficient produces some

changes in flow rate error.

To compare the error from the consistency coefficient

to that from the yield stress, consider Figures (13) and

(16) which have errors of i 3% in yield stress and

consistency coefficient respectively. If the value of the

yield stress is 7.67 Pa and the value of n is 0.32, then

from Figure (13) the error in flow rate would be i 20% (for

ATY a i 3%) compared to t 11.8% (for AK 2 t 3%) from Figure

(16). Hence, the flow rate is more sensitive to the error

in the yield stress, than error in the consistency

coefficient.

5.4 Effect g; the Flow Behavior Index

The error in flow rate was presented as a function of

the flow behavior index and the yield stress or the

consistency coefficient for all the Figures (8) through

(18). The error in flow rate always increases with

decreases in the flow behavior index. For considering the
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Figure 14. Percentage error in flow rate as a function

of the consistency coefficient and flow .

behavior index for ry = 7.67 Pa, An = r 0.0001,

AK = r 0.5% and Ary = r 1.0%.
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behavior index for r = 7.67 Pa, An = r

0.0001, AK = i 3.0% Xnd Ary = r-l.0%.
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effect of different precision levels, results are presented

in Figures (13), (17) and (18). The results show no

significant influence on flow rate over the precision levels

investigated. This may be due to the fact that small

changes in the n value will not affect the velocity profile

in the area where the yield stress has not been exceeded. A

similar conclusion was reached by Dodge and Metzner (1959)

for the turbulent flow of pseudoplastic fluids for which the

velocity profile is quite flat near the center of the tube.

They stated that."for pseuodoplastic fluids the mean

velocity is relatively insensitive to any variation in the n

value in the low shear stress region near the center of the

tube."
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Figure 17.
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Flow Behavior Index

Percentage error in flow rate as a function

of the yield stress and flow behavior index

for K = 5-3 Pa-s“, An = r 0.01, AK = r 1.0%

and Ary = i 1.0%.
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for K = 5-3 Pa-sn, An = r 0.01, AK = r 1.0%

and Ary = r 1.0%.



6. CONCLUSIONS

This analysis is intended to demonstrate some of the

problems that might be encountered when unreliable

rheological data are used to predict flow rate. Published

date may be inaccurate due to various factors such as the

type of viscometer used, violations of stated or implied

assumptions or limitations in the analytical techniques

employed. The Herschel-Bulkley fluid model and the root sum

square error formula was used in this study to investigate

the effect of error in the rheological parameters on flow

rate calculations. Based on the results obtained from the

analysis, the following specific conclusions may be stated:

1. The Hanks and Ricks (1974) model describing the laminar-

transition and flow provides the best criterion

available in published literature for determining a

critical Reynolds number for non-Newtonian fluids.

2. When the shear stress at the wall is much greater than

the yield stress, the error in flow rate is not strongly

dependent on the yield stress; however, as the shear

stress approaches the yield stress, the error tends to

be strongly dependent on the magnitude of the yield

stress.

3. The error in flow rate increases with increasing

measurement error (decreasing precision) in yield

stress.

4. The error in flow rate is not affected by the magnitude

of the consistency coefficient but increased error in

52
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the level of the consistency coefficient (precision

error) produced increased error in the calculated flow

rate.

_ The error in flow rate tends to increase for all cases

investigated with a decrease in the magnitude of the

flow behavior index; however, increasing the error level

of the flow behavior index did not produce any

significant change in flow rate error.
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