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ABSTRACT
SENSITIVITY OF FLOW RATE

CALCULATIONS TO THE RHEOLOGICAL PROPERTIES
OF HERSCHEL-BULKLEY FLUIDS

By
Ibrahim Omer Mohamed

The purpose of this study is to show the problems that
might be encountered when unreliable rheological data are
used to estimate flow rate. The root sum square formula is
used to show the sensitivity of flow rate calculations to
the magnitude and precision of the rheological parameters
describing Herschel-Bulkley fluids. The analysis was
performed for laminar flow using the mixing length method to
establish laminar-transional flow.

The result of the analysis shows that the error in flow
rate increased with decreases in the magnitdue of the flow
behavior index. Error in the flow behavior index of *
0.0001, + .001 and + .01l has no significant effect on the
error in flow rate. Flow rate error is not influenced by
the magnitude of the consistency coefficient for the range
investigated; however, the error does increase with
increasing error in the consistency coefficient. The
magnitude of the yield stress has a strong effect on the
error in flow rate when the shear stress at the wall
approaches the yield stress. The error in yield stress was
found to be the most important factor in causing error in

flow rate,
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1. INTRODUCTION

1.1 General Remarks

Rheological properties of fluid foods have many
applications, including quality control (Rao et al., 1975)
and design of fluid handling systems (Odigboh and Mohsenin,
1974; Boger and Tiu, 1975). In addition they are also
essential for estimating heating rates (Sarvacos and Moyer,
1967), estimating overall heat transfer coefficients for
evaporators (Harper, 1960) and correlation with sensory data
(Dickie and Kokini, 1983).

Estimation of the rheological parameters is usually
based on fitting viscometric data to rheological models.
The accuracy achieved depends on how well the design of the
viscometer satisfies the assumptions associated with the
theoretical development. Poor understanding of the
rheological techniques for non-Newtonian fluids can result
in large errors. Rao et al. (1975) showed that errors of 20-
50% on shear rate calculations can occur if Newtonian
approximations are employed. This error will propogate and
affect the estimation of the rheological parameters.

The idea for this investigation came from observations
of the discrepancies among the published rheological data
for the same products (Steffe et al. 1983). The work to be
presented here will lead to a better understanding of tube
flow phenomenon. It may lead to flow rate control based on
pressure drop and be useful in the development of on-line

viscometers for non-Newtonian fluids.



1.2 Objectives

The specific objectives of this investigation are:

1. To derive, then verify, published equations giving
flow rate as a function of rheological parameters and pipe
size for Herschel-Bulkley fluids.

2. To determine, from existing literature, the best
technique for establishing laminar flow criterion in tube
flow.

3. To develop the equations describing the sensitivity
of flow rate to the flow behavior index, the consistancy
coefficient and the yield stress. ‘

4. To investigate the influence of the following in

generating error in the calculated flow rate:

precision and magnitude of the flow behavior index;
- precision and magnitude of the consistency

coefficient;

precision and magnitude of the yield stress;

magnitude of pipe length, pipe diameter and pressure

drop.



2. LITERATURE REVIEW
This section is devoted to a brief overview of the most
common rheological models, and some of the viscometers used
for measuring rheological properties.

2.1 Rheological Models

2.1.1 Newtonian Fluids

Newtonian fluids are those fluids having a linear

relationship between shear stress and shear rate given by
T = uy (1)

where

t = shear stress, Pa

y = viscosity, Pa-s

y = shear rate, s

This type of behavior may be observed with some juices,
milk, oils and some other products. For Newtonian fluids, a
single measurement can give satisfactory results in

determining the viscosity.

2.1.2 Non-Newtonian Fluids

Non-Newtonian fluids are those for which the relation
between shear stress and shear rate is not linear. These
types of fluids can be divided into three broad groups:

a. Time-independent fluids. These are fluids for
which the shear stress does not change with time at a given
shear rate.

b. Time-dependent fluids. These are fluids for which
the shear stress, at a constant shear rate, changes with

time.



Cc. Viscoelastic fluids. These are fluids showing
elastic recovery on removal of a deforming shear stress.
Such materials posses properties of both a viscous fluid and
an elastic solid. Viscoelastic fluids have a tendency to
expand at the discharge end of the tube. This phenomenon
known as die swell, is important for extruded foods.
Viscoelastic fluids are characterized, in addition to the
shear stress and shear rate deformation, by the normal
stresses which involve complex mathematical models.

2.1.2.1 Time Independent Non-Newtonian Fluids

The flow behavior of fluids in this category has
commonly been described by empirical models. In this
review, the emphasis is on the most common models that are
used to describe flow behavior of fluid foods. The power
law model was found to describe a large spectrum of food
material, according to a recent review by Steffe et al
(1983). It is described as

T = Ky (2)

where

K = consistency index, Pa.s"

n = flow behavior index
When the value of n < 1, the fluid is known as
pseudoplastic, which is the case with the majority of fluid
foods. When the value of n > 1 the fluid is known as

dilatant, a condition which is very rare with food products.
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Figure (1) shows the shear stress versus shear rate for both
fluid types.

Some food products possess a yield stress which must be
overcome before flow can commence. A popular and
generalized model which incorporates a yield stress was

proposed by Herschel and Bulkley (1929) as

Tt =Ky + 1 (3)

where

v yield stress, Pa

Another model with yield stress and a direct relation
between shear stress and shear rate, is known as the Bingham
plastic model. This model was found to describe the flow
behavior of food products such as casava starch (Odigboh,

1975) and is expressed by
T =T, + Ty (4)

where

t = plastic viscosity, Pa“°s

The Casson model, developed for paint, was also found
to have many applications with food products (Charm, 1962;
Rao, 1981). It was adopted by the chocolate industry as the
official model for describing the flow behavior of chocolate
(Rao, 1977) and is given as

+1/2

1/2 _
T = K+ K1 Y (5)



Shear Stress (rt)

Shear Rate (})

Figure 1. Relationship between shear stress and
shear rate for different fluids not
displaying time dependent behavior.



where
Ko and Kl are constants.
Mizrahi and Berk (1972) modified the Casson model to:

/2 =k + k" (6)

where

m = constant.

This model was used successfully to fit orange juice
data (Mizrahi and Berk, 1972).

2.1.2.2 Time-Dependent Non-Newtonian Fluids

These materials are usually divided into two major
groups, thixotropic and rheopectic, depending on whether
their shear stress decreases or increases with time, at a
constant shear rate.

2.1.2.2.1 Thixotropic Fluids

Thixotropic fluids exhibit reversible decreases in
shear stress, with time at constant temperature and shear
rate. This phenomenon is explained by structural breakdown
due to shearing (Green, 1949). If the shear stress is
increased at steady rate and then decreased at steady rate,
a hysteresis loop will be obtained (Figure 2). Irreversible
breakdown due to mechanical degradation is known as
rheomalaxis.

2.1.2.2.2 Rheopectic Fluids

These fluids are rare in occurrence and exhibit a



Shear Stress (1)

Shear Rate (;)

Figure 2. Flow curves for thixotropic and
rheopectic fluids. :



reversible increase in shear stress with time, at constant
shear rate and temperature. These fluids also have a
tendency to produce a loop if the shear stress is increased
and then decreased at steady rate (Figure 2).

Green (1949) discussed a semi-quantitative approach to
determine time-dependent changes in a co-axial cylinder
viscometer. Measurement of the hysteresis loop between 'up'
and 'down' curves is obtained, first by increasing the shear
rate from a minimum to a maximum value using a predetermined
incremental time step, then by decreasing it by the same
step down to a minimum shear rate. The resulting loop will
be indication of the thixotropy or rheopexy of the material.
A larger hysteresis area implies that the fluid is more
time-dependent and vice versa. Van Wazer et al. (1963)
suggested a method of determining shear stress decay or
built up as a function of time at one or more constant shear
rates.

2.2 Viscometers

Viscometers are instruments used for the measurement of
rheological parameters. A great number and diversity are
available on the market, ranging from very simple and cheap,
to sophisticated and expensive. The designs of these
viscometers are based on various theoretical approaches
which have different assumptions associated with them. The
commonly used viscometers fall into two broad groups:

a. rotational viscometers

b. tube type viscometers
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2.2.1 Rotational Viscometer

The main assumptions associated with this group are:
a. flow is laminar,

b. steady state,

c. no end effect,

d. isothermal flow,

e. no slip at the wall,

f. the fluid is homogeneous and incompressible.

2.2.1,1, Co-axial Cylinder Viscometer

Figure 3 shows the arrangement of this viscometer which
consists of a bob of radius R, that rotates on a cup of
radius R.. The annulus of the cup should be kept to the
minimum possible gap to satisfy some of the assumptions,
mainly laminar flow. End effects can be minimized by
maintaining a hollow cavity at the bottom of the bob, with
the edge recessed, so as to trap air in this cavity and
provide air-solid interface which has less drag compared to
the liquid solid interface. The shear stress at the bob is

given by
= __!7_ (7)
b 27Rh

where

shear stress at the bob, Pa

X
]

torque, N°m

=3
"

height of the fluid, m
radius of the bob, m

o



Figure 3.
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A general expression for the shear rate at the bob was

suggested by Kriger (1968) as

2/S

R R (8)
= <3 1 + 84s'f (5 1ln =)

Tb S [ R2/S _ R%/S] [ S Rb ]

C

where

d(1ngQ)

1_
S d(lnrb)

S' = d(1/s)
- d(lnrb)

tef(t-2) + t + 2)
2(et - 12

f(t)

Q@ = angular velocity, rad/s

2.2.1.2, Single Cylinder Viscometer

Charm (1963) derived a relation between the rheological
parameters of fluid with yield stress and the physical

parameters of the viscometer system given by

l/n 2
K _ _ M drR
ZTYN(T—-) —5 (1 z—ﬂ—m) R (9)

M = torque, N'm

R, = radius of the cylindrical spindle, m
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R, = distance from the center of the spindle to where
the shear stress just equals the yield stress, m

h = height of the fluid, m
N = revolution per second

Using Equation (7), R, can be expressed as

= M
R2 = 2nhry (10)

The solution to Equation (9) is difficult to perform
analytically. Charm has suggested a graphical solution,
after determination of the yield stress.

For the power law fluid the relation is

" (11)
=0 [M_ 1 11
27N = 2( (ZNhK) ) ( R2/n)

b
where
Rb = radius of the spindle, m
Using Equation (11), the rheological parameters can
easily be determined; by plotting N versus M/n on double
logarithmic paper, the slope will be 1/n. Then, K can be
found by substitution using Equation (11).

2.2.1.3 Cone and Plate Viscometer

The cone and plate is a rotational viscometer used for
direct measurement of shear stress and shear rate. It is
also used with some modification to measure the normal
stresses for viscoelastic fluids. The viscometer consists
of an obtuse angle cone and a flat plate. The apex of the

cone just touches the plate and the fluid fills the narrow
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gap formed by the cone and the plate. The angle between the
cone and the plate is usually made very small to ensure a
uniform rate of shear (Figure 4). The expression for the

shear rate and the shear stress is given by

. _ Q

Y = Tan v (12)
_3M

TS ZaRT (13)

where
M = torque, N-m
Q@ = angular velocity, rad/s
y = angle between cone and plate, rad
R = radius of the cone, m

2.2.1.4 Mixer Viscometer

Some of the specific assumptions of this viscometer
are:

a. the rotational Reynolds number must be in the
laminar flow region (less than 10).

b. the power law parameters for the standard fluid
must be valid over the range of shear rates that would be
exerted by the mixer.

c. the standard and the unknown fluid must not be
viscoelastic.

The power input to a mixing vessel, derived from
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Figure 4. Schematic diagram of a cone and plate
viscometer.
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dimensional analysis, is a function of the power number and

mixing Reynolds number given as

P, = P/ (d5N3p) (14)

Re' = d2Npo/u (15)

wvhere
P = power, N-m/s
P = power number
d = diameter of the impler, m
N = revolution per second
p = density of the fluid, kg/m’

u = viscosity of the fluid, Pa-s
Re' = rotational Reynolds number

For laminar conditions the power curve is given by

P = — (16)

where
B = constant dependent on the impeller geometry.
Mentzer and Otto (1957) suggested a relation for the
average shear rate, to be used for calculating the apparent
viscosity which is then to be used to calculate the Reynold

number, as
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Y, = kN (17)
where
y = average shear rate, s1
k = constant depending on the impeller geometry
N = rotational speed revolution per second

The shear stress at the impeller is given by:

CM (18)

A
]

where

C = constant

M = torque, N-m

To determine the flow behavior index (nx) for the power
law fluid (x), a logarithmic plot of M and N should be made
for which the slope will be the flow behavior index. For
determining the consistency coefficient Kx, a standard fluid
(Y) of approximately the same flow behavior index (ny) is
used.

Using Equations (17) and (18) in Equation (2) we get,

=== (19)
4

|
|

(20)

=
=
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From Equation (20), K, can be found from the knowledge

X
of K, and the induced torque for both fluids at a specific

y
speed. Mixer viscometer can be used to obtain the
rheological parameters when particle sizes in the fluids are
relatively large (too large for co-axial cylinder
viscometers) or when the fluid particles have a tendency to
settle causing the material to become in homogeneous.
Bongenaar et al. (1973) and Rao (1975) used mixer viscometry
successfully to find the rheological parameters of the power

law fluids.

2.2.2 Tube Viscometer

The assumptions associated with this type of viscometer

are

a. flow is laminar,

b. flow is steady,

c. no slip at the wall,

d. isothermal flow,

e. no end effects,

f. the fluid is homogeneous and incompressible.

The shear stress at the wall for tube viscometer is
given by

Ty é%ég (21)

where

AP = pressure drop, Pa

D = tube diameter, m
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L = tube length, m
Rabinowitsch (1929) developed an expression for the rate of
shear for time-independent fluids which is entirely
independent of the fluid properties. The complete
development of this equation was also presented in a paper by

Mooney (1931). Their final expression is

s - 3Q d(9/nR3)
Y= R3S Y Tw d(r,) (22)
where
Q = flow rate, m’/s
From equation (22) the relation for the true shear rate

for the power law fluid can be obtained as

« _[32Q 3n+l
Y _(nDj)( 4n ) (23)

Similar expressions for Newtonian and Bingham plastic fluids

are also available.
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3. THEORETICAL CONSIDERATIONS FOR HERSCHEL-BULKLEY FLUIDS
In this section efforts have been made to derive a
generalized flow rate equation for fluids obeying the
Herschel-Bulkley (H-B) model, to be used later in the
analysis. One of the main assumptions associated with the
use of the flow rate equation, is that the flow is laminar.
A criterion for laminar flow as developed by Hanks (1974)

will also be presented.

3.1. Flow Rate Equation For Tube Flow

In the derivation of the flow rate equation for a H-B
fluid, the assumptions stated for the tube viscomer will
also apply. Consider a tube of length L and radius R, with
the pressure drop between two points (1 and 2) as AP, and
the radius of the plug flow region being r, (Figure 5).
When pressure is applied to the core of the fluid, the fluid
moves with two distinct velocity profiles., For the region
from the center to where the shear stress equals the yield
stress, the fluid moves with constant velocity. For the
region where the yield stress is exceeded, the fluid has a
velocity profile which is a function of the radial distance
from the center line. The shear stress at the wall is given
by Equation (21).

Applying balanced force on the core of the fluid

between points 1 and 2 shown on Figure 1 yields

APnr?2 = 2nrLt (24)
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o - .

Figure 5. Velocity profile for Herschel-Bulkley fluid.
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Substituting for t from the H-B equation (Equation (3)), we

get
n
APY?2 = [—K (%‘E) + Ty] 2nrL (25a)
Equation (25) can be rearranged as
1/n
du _ 1 AP.r _
i Kl/n [ 5T Ty:l (25b)

For no slip conditions, equation (25b) can be integrated

over the tube giving

o
_ 1 w APr _
..J du = 1/n j [—5f Ty] dr (25¢)
u

After integration and substitution of the limits, the

velocity becomes

APR (1/n) +1) ((1/n)+1)
2L (e - Ty -\ )
- y
5T l/m ((A7n)+1) ] (26)
The plug radius, r is given by
21 L
r = -K%_ (27)

The velocity of the plug region y, .  can be found by
substituting r from Equation (27) into Equation (26)

yielding
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AR ((1/n)+1)
o 2L 2 _ 1
Unax APKL/P ( 2L Ty) ) ( ((I/n)+ )) (28)

For the unplug region, the volumetric flow rate can be

expressed by

R

w
Q1 = J u2nrrdr (29)
r

(o}
Substituting u from Equation (26) into Equation (29)

and integrating, Q1 is
aPR, ((1/n) +1)

2% 2L °
Q, = el Y 2 o -
Yota/men [4E]xE/R ( Z Ry = 13

(30a)

APR

(APR )( (1/n)+2)
- ) ((1/n)+2) + ((1/n)+3) = ) -

TRy

Substituting the value of r_ and introducing T+ Equation

(30a) can be reduced to

((1/n)+1)
ﬂR!(tw - 1)
Q, = Y
! Kl/n 3
v (30b)

[((J./n)+1) (1/m)+2) 1§ + 2 ((U/m+D) 1o v, - ((1/n)+1)((1/n)+4)]

w
((1/n)+1) ((1/n)+2) ((1/n) +3)

For the plug region the flow rate is given by

r
Q = f ° Unax 27rdy
o

Substituting u and integrating yields

max

RY (r —p ) ((1/R)41)
Q, '( v ) ( TTT?%TiIT ) (31)

K rw

The total volumetric flow rate Q is
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Q=20 +0Q (32)

By substituting Equations (30b) and (31) into (32),

with some algebraic manipulation, the result is

v RI(r -7, ) ((1/R)*1) [ ((1/n)+1)((1/n) +2) 1242 ((1/n) +1) 7, <, 42 r;:]
Q= (33)

x1/n x3 ((1/n)+1) ((1/n)+2) ((1/n)+3)

Equation (33) is the same as that given by Nakayama et al.
(1984).

3.2 Laminar-Transional flow Criterion

Numerous attempts have been made to develop an
analytical criterion for the laminar-transional region for
non-Newtonian fluids (Metzner and Reed, 1955; Ryan and
Johnson, 1959; Hanks and Christiansen, 1962; Hanks, 1969;
Hanks and Ricks, 1974). For all the methods developed,
Hanks and Ricks (1974) seems to have succeeded in developing
a most generalized approach which will be outlined in this
section.

Hanks and Ricks (1974) developed a generalized relation
for the Reynolds number that accounts for the yield stress

given by the following series of equations:

_(2-n) n
Re = 8o0R u [1+3 :’ (34)

xR|a



25

where

n
2
o = (1-g 1" [‘1‘50’ 28 (1-¢) ({:gg) + g2 (%%%%{] (35)

T
g =X (36)
TW

ATt
- w
u =(( K ) Ry (37)

n
n (38)
A =9 (l+3n)

R, = pipe radius, m

K, n, ry are parameters of the H-B fluid model.

From the use of the stability theory developed by Hanks
(1969), Hanks and Ricks (1974) developed a relation for the

critical Reynolds number given as
(2_+§) 2
1+ n
Re =[ 6464][ (2+n) % :I (39)
¢ Llasm2]l - ) /A0

where £ _ given by
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((2/n)-1) 2+n

EOC =( an)( 1 )I+_r1- (40)
(l-goc) ((2/n) +1) 3232 2+n

and Hp, the generalized Hedstrom number, is defined as

2/n

He = D20 (t_/K) (41)
TY Y

o is given by Equation (35) with £y = oot
Based on the previous analysis Hanks generated a series
of curves showing the influence of the Hedstrom number and
the flow behavior index on the critical Reynolds number. It
is interesting to note that Hanks and Ricks (1974) found an
explanation (from previous experimental data for fluid with
yield stress) for the trend of the critical Reynolds number
at low values of flow behavior index (Hanks, 1962). Hanks
and Ricks (1974) stated in this regards that, "The Metzner
and Reed (1955) method of fitting a variable parameter power
law to a non-Newtonian system having a low n value is risky
since it ignores any yield values." Errors of several hun-

dred percent were shown to occur when the Metzner and Reed

(1955) method was used.



4. SENSITIVITY ANALYSIS

4.1, Root Sum Square Error Model

Consider a problem of computing Q, where Q is known

function of n independent variables d;s 95r 93 - - . Q, OF
Q (q1 q,r 9, a,) (

If the q values are measureable quantities, and they
are in error by::Aqlft Ay« o ot MQ respectively, these
errors result in error Q according to the following
relation

+AQ = £ + Aq , + A - - - - + A (43)
Q+4Q (q, 9.9 q, q,* 4qp)

The right hand side of Equation (43) can be expanded in

Taylor's Series as

f(q *4q ,q *8q = - - a,teq,) = flq .q == - - qp)
< 2
af 2f of ), 1 (s (sq))
tAq (-a-—)k Ag (3—)' - = - .‘:Aqn(aq )t 3 [ (Aql) ('a—q‘{ * q2
o9, 2\, n 1 (44)
32f _ 2 [22f - - - -
(—ﬁ-{) --- + (Aqn) (W) +

If the values of Aq are small quantities, then the higher

order terms can be neglected giving

= - - - - 3f + 3_f_ - - > = 4 3f
Q+aQ f(qlr QZ. qn) :Aql(aq)- qu ( ) -Aqn(—) (45)

27
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Hence, from Equation (45)

of o f af
= — — - .- - - A —_—
oA, (aql) o (“qz) ' "na,)  (a6)

The expression for AQ holds for any kind of error
(Scarborough, 1966). If we assume that the error made in
measuring dys dyr « « - Q) to be independent and completely
random, then the maximum allowable error in Q can be given
by the root sum square formula written by Scarborough (1966)

as

2

2 2
of of of
*Q =\[(Aq1 E:) * (qu 3—"—2) Yoo -(Aqn 'a'?;';) (47)

Equation (47) is an indirect measurement of the maximum
probable error of Q when the errors in the independent
variable are known.

4.2, Derivatives of the Flow Model

The flow rate for a Herschel-Bulkley fluid is a
function of the rheological parameters as well as pressure
drop and tube geometry. In this analysis, the intent is to
investigate the effect of the rheological parameters on flow
rate calculations which can be achieved by considering the
pressure drop and tube geometry to be constant; therefore,

we can write flow rate as

Q = f(KIany) (48)
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If we assume that the error made in measuring K, n and ry
to be independent and completely random, then the maximum

allowable error can be given by the root sum square formula

[~ 2 2 2
AQ = \/(%—% An) + (% AK) +(—§—$— Ary) (49)
Yy

Equation (49) was used to investigate the effect of error in

flow rate which results from measurement errors in the
rheological parametsr. First, the partial derivatives in

Equation (49) were evaluated and found to be

((1/n)+1)
3Q TR (1, - T, J 1 ln K__ 1
an x1/n 1 nZ t | TI/n)+3) ~ ((1/m)+3)?
1In Ty 27, ln K + %3 + 75{2 A ) (50)
- wwaen |t T |TTeseeenny L, +5+6° TTesnven?)
n n
3 12 11
"y 1n K nt * a3t ne
* ?‘g 1 2 ¥ 1 + ﬁ + g. + 6)2
w \ (= + 1lln+6n?+6) (§3 * p2 n

- (wR3 (r,-,) ((1/m)+1) ) ( T3 ((I/m)+1) ((1/n)+2)+27 v, ((1/n)+1) +2<2
.ﬁ.
nrt

3 x {/n+D) ((1/n)+1) ((1/n) +2) ((1/n)+3) (51)
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and

1/n _ _
30 _ (nR3(rw-ry) ) ) ((1", Ty)l (i;/?)(:;)):%)) .
3Ty T, gi/n 1, ((1/n) +2) n
(52)
27, (r,mry) = ((A/m) #1) o2 . [La/ny+1)
2 1, ((1/n)+1) ((1/n)+2) ((1/n)+3)) ((1/n)+3)

Equations (50), (51) and (52) will be incorporated into
Equation (49). These equations are not available in
published literature.

4.3 Verification of the Derivatives

The partial derivatives of the independent variables
presented in Section 4.2 are analytical expressions. Due to
the complexity of the equations, it was necessary to check
their accuracy, especially the derivatives with respect to
yield stress and flow behavior index. This check was
accomplished by comparing results to independent analytical
solutions and numerical solutions.

The flow rate equation for the power law fluid is

_ nR3 1/n __n___
Q= Kl/n Tw (3n+1) (53)

When Equation (53) is differentiated with respect to n, it

yields

3Q _ 7R3 1n K . 1 __ N (54)
sn ~ I/n | n2((1/n)+3) n2((1/n)+3)2  n2((1/n)+3)
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When a value of zero yield stress is substituted into
Equation (50), it reduces to Equation (54), indicating that
Equation (50) is correct for the special case of the power
law.
For checking the derivative with respect to the yield
stress, consider the flow rate equation for Bingham plastic

fluid, known as Buckingham equation given as

1rR3'rw 4 1
Q = an (1 - 3 (Ty/rw) t 3 (ry/rw)“] (55)

The derivative with respect to the yield stress for Equation

(55) is

3Q
T

Yy

7R3 -
T [(ry/rw)3 1]

Q

(56)

With the substitution of n = 1 into Equation (52), the
result is identical to Equation (56), showing Equation (52)
to be correct for the special case of the Bingham plastic
fluid. Similar results are found when considering a
Newtonian fluid.

In addition to the method just outlined, a numerical
technique employing Euler forward difference method is used
for further checking. The values of pressure drop and tube
dimension used are the same for both cases, with values
typical to those used later for the analysis. The results
are shown in Tables (1) and (2). It is clear that the

analytical results are very close to the numerical results.
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Table 1. Comparison between the analytical and numerical
differentiation of flow rate with respect to the
yield stress.

TY 2 10

n .2 .5 .2 .5
analytical 5.793x10°° 43.80x10” '  7.3162x10 ' 4.3198x10 '
numerical  5.780x10”° 43.59x10”/  7.3137x10’ 4.3181x10”’
% difference 0.224% 0.479% 0.031% 0.039%

Table 2. Comparison between the analytical and numerical
differentiation of flow rate with respect to
flow behavior index.

n .2 <5 .7
analytical 11.593x10"° 0.558x10" > 0.199x10™ >
numerical 11.592x10 > 0.546x10 > 0.188x10"°

% difference 0.0086% 2.150% 5.527%
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This is further evidence supporting the reliability of the
analytical solution. The small difference observed can be
attributed to the limitations associated with the numerical
solution technique. For the derivative with respect to the
consistency coefficient, the exact value was obtained

4.4 Sensitivity Analysis Calculations

A Fortran computer program was written to perform all
calculations. Two subroutines, from the main MSU computer
system (subroutine C, Plot A and subroutine C, Plot B), were
attached to the program to perform contour plotting of the
flow rate error as a function of the independent variables
under consideration. The subroutines have the capability of
establishing the scale and the interval of the contour plot.

To perform the calculations, the values of the
parameters, tube geometry, and pressure drop are inputed to
the program. To investigate the influence of the effect of
pressure drop (AP), tube length (L), and tube diameter (D),

the following three values of each were used:

I
0

8.0kPa, 10.0kPa, 12.0kPa

L: 4.0m, 6.0m, 8.0m

D: 0.0254m, 0.0381m, 0.0762m
A pressure drop of 8.0kPa, a length of 6(m) and diameter of
0.0381 (m) were used as fixed parameters to investigate the
sensitivity of Q to the rheological parameters. These
values were chosen because they are typical of what might be
found in an actual fluid handling system.

The magnitude and precision level considered for the
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rheological parameters are typical of fluid food products

and summarized as follows:

1. 3.0 <K < 10.0 Pa-s" at AK, + 0.5%, + 1.0% and + 3%
2., 0.2 <n<1.0 at An, + 0.0001, + 0.001 and £+ 0.01
3. 3.0 i

v < 10.0 Pa at bty * 0.5% + 1.0% and + 3.0%

4.5 Laminar Flow Calculations

The condition of laminar flow is the one generally
found with non-Newtonian fluid food products and the
analysis of the current work is based on flow of this type.
A computer program based on Hanks and Ricks (1974) method,
was written to calculate the flow and the critical Reynolds
numbers. The computer program utilized the equations
presented in Section 3.2. An iterative procedures was used
to calculate the parameter £ o Figure (6) shows the flow
chart for calculating the critical Reynolds number. Some of
the curves generated from the computer program are shown in
Figure (7). These curves are the same as those presented in
Hanks and Ricks (1974) paper.

The calculation of the flow Reynolds number, starts by
calculating £, from Equation (36) which is used in Equation
(35) to calculate o. Equations (35) and (38) were then
evaluated respectively, to solve for u (Equation 37) which
is to be used with the rheological parameters, pipe radius,
and fluid density to evaluate the Reynolds number from

Equation (34).
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He

Re
C

input

calculate He by Equation (41)

calculate goc throdgh
iteration by Equation (40)

calculate o, by Equation (35)

with o = Oc

calculate Re by Equation
(39) ¢

Figure 6. Flow chart showing the calculation scheme to
evaluate the critical Reynolds number.



36

*X9pUT IOTARYSQ MOTJ 9Y3 pue

Iaqunu wWOI3ISP3AH dY3 JO uOTIdUNJ P Se Idqunu SpTouday TedoT3TI) L aanbiy
X3pu| J01ARYIG MO 4
0oL 6 : r 9 S | A L 00
 § L) L] 1 | L | 0

-1 oO¢Y
-4 008
< oozt
- 0002

7.."\\\\\

008¢

JequInN spiouAsy (8213110



5. RESULTS AND DISCUSSION

The intent in this study is to show the influence of
the precision and magnitude of the rheological parameters
on the flow rate calculations. The effect of the magnitude
of the parameters will also be discussed. This goal was
achieved by assuming hypothetical values for precision and
magnitude, then calculating the resulting errors in flow
rate. The influence of the pressure drop tube length and
diameter were also investigated.

5.1 Pressure Drop and Tube Geometry

To investigate the effect of preésure drop, tube length
and tube diameter, all the variables were kept constant
wvhile the parameter under consideration was varied. From
the computer output, the error of flow rate versus the
rheological parameter was obtained. Figure (8) shows
contour plot for an error level of 4.1% in flow rate for
three values of pressure drop. This plot was selected from
other plots for comparison purposes. For pressure drop of
8.0 kPa the error in flow rate is very dependent on the
magnitude of the yield stress. As the magnitude of the
pressure drop increased, the error tends to be less
dependent on the magnitude of the yield stress. This trend
occurs because of the direct relationship betwen the shear
stress at the wall and the pressure drop. As the shear
stress at the wall increases, relative to the yield stress,
the contribution to total flow from the unsheared plug flow

(which is a function of the yield stress) tends to decrease.

37
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-
12.0kPa
$————pPp-— AP = 10.0kPa
—— AP = 8.0kPa
0.205 0.353 0.501 0.649 0.798 0.946

Figure 8.

Flow Behavior Index

Contour plot of an error of + 4.1%
in flow rate which results from
different values of pressure drop
for K = 5.3 Pa-s, An = + 0.0001,
AK = + 1% and Ary =+ 0.5%.
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Under this condition, the flow rate will be less dependent
on the magnitude of the yield stress.

In considering the tube diameter, which is directly
related to the shear stress at the wall, similar results are
observed (Figure 9). When investigating tube length, which
is inversely proportional to the shear stress, the error in
flow rate is more dependent on the magnitude of the yield
stress as the tube length increases (Figure (10)). The
effect of the magnitude of the yield stress and the flow
behavior index in generating error in the flow rate
calculation may be examined with reference to Figures (9)
and (10). Additional discussion will following in the next
section.

5.2 Effect of the Yield Stress

The influence of the different precision levels in the
yield stress was investigated by varying these levels while
all other variables were kept constant. Figures (11) (12)
and (13) show the results obtained from the computer output.
Results show the dependence of the error on the magnitude of
the yield stress. Specially, as the yield stres approaches
the shear stress at the wall, the error in flow rate
increases because the contribution to the total flow from
the plug flow region increases with an increase in the
magnitude of the yield stress. Increasing the error in the
yield stress from * 0.5% to * 3.0%, increases the error in

flow rate from * 9,2% (for v, = 9.2 Pa, K = 5.3 Pa sn and n

b4

= ,25) to * 50% (for t,, K and n equal to the same values) as

Y'
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0.205 0.353 0.501 0.649 0.798 0.946

Figure 9.

Flow Behavior Index (n)

Contour plot of an error of + 4.1% in flow
rate which results from different values of
pipe diameter for K = 5.3 Pa:sl!, An = +

0.0001, AK = + 1.0% and Aty = 0.5%.
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Flow Behavior Index (n)

Figure 10. Contour plot of an error of + 4.1% in flow rate

which results from different values of pipe
length for K 5.3 Pa-s, An * 0.0001, AK = #
1.0% and Ary + 0.5%.
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Flow Behavior Index (n)

Percentage error in flow rate as a function
of the yield stress, and flow behavior index
for K = 5.3 Pa*s™, An = + 0.0001, AK = * 1.0%
and Ary = + 0.5%.
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and ATY = + 1.0%.
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Percentage error in flow rate as a function
of the yield stress and flow behavior index
for K = 5.3 Pa*s™, an = + 0.0001, AK = + 1.0%
and Aty = + 3.0%.
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illustrated in (Figures (11) and (13).

5.3 Effect of the Consistency Coefficient

The influence of the magnitude of the consistency
coefficient is illustrated by considering plots of the error
in the flow rate viewed against the consistency coefficient
and the flow behavior index. The effect of precision level
is shown in Figures (14), (15) and (16). The error in flow
rate does not change significantly with the magnitude of the
consistency coefficient; however, an increase of the levels
of the error in consistency coefficient produces some
changes in flow rate error.

To compare the error from the consistency coefficient
to that from the yield stress, consider Figures (13) and
(16) which have errors of * 3% in yield stress and
consistency coefficient respectively. If the value of the
yield stress is 7.67 Pa and the value of n is 0.32, then
from Figure (13) the error in flow rate would be + 20% (for
Aty = ¢ 3%) compared to * 11.8% (for AK = + 3%) from Figure
(16). Hence, the flow rate is more sensitive to the error
in the yield stress, than error in the consistency
coefficient.

5.4 Effect of the Flow Behavior Index

The error in flow rate was presented as a function of
the flow behavior index and the yield stress or the
consistency coefficient for all the Figures (8) through
(18). The error in flow rate always increases with

decreases in the flow behavior index. For considering the
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Figure 14.

Flow Behavior Index (n)

Percentage error in flow rate as a function

of the consistency coefficient and flow
behavior index for 1ty = 7.67 Pa, An = + 0.0001,
AK = + 0.5% and Ary = + 1.0%.
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Figure 16. Percentage error in flow rate as a function

of the consistency coefficient and flow
behavior index for t,, = 7.67 Pa, An = ¢
0.0001, 8K = * 3.0% #nd Aty = + 1.0%.
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effect of different precision levels, results are presented
in Figures (13), (17) and (18). The results show no
significant influence on flow rate over the precision levels
investigated. This may be due to the fact that small
changes in the n value will not affect the velocity profile
in the area where the yield stress has not been exceeded. A
similar conclusion was reached by Dodge and Metzner (1959)
for the turbulent flow of pseudoplastic fluids for which the
velocity profile is quite flat near the center of the tube.
They stated that. "for pseuodoplastic fluids the mean
velocity is relatively insensitive to any variation in the n
value in the low shear stress region near the center of the

tube."”
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Yield stress (ly) , Pa

51

10.180

. ‘
t + + —

0.205 0.353 0.501 0.649 0.798 0.946

Flow Behavior Index (n)

Figure 18. Percentage error in flow rate as a function
of the yield stress and flow behavior index
for K = 5:3 Pa:s™, an = £ 0.01, 4K = + 1.0%
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6. CONCLUSIONS

This analysis is intended to demonstrate some of the
problems that might be encountered when unreliable
rheological data are used to predict flow rate. Published
data may be inaccurate due to various factors such as the
type of viscometer used, violations of stated or implied
assumptions or limitations in the analytical techniques
employed. The Herschel-Bulkley fluid model and the root sum
square error formula was used in this study to investigate
the effect of error in the rheological parameters on flow
rate calculations. Based on the results obtained from the
analysis, the following specific conclusions may be stated:

1. The Hanks and Ricks (1974) model describing the laminar-
transition and flow provides the best criterion
available in published literature for determining a
critical Reynolds number for non-Newtonian fluids.

2. When the shear stress at the wall is much greater than
the yield stress, the error in flow rate is not strongly
dependent on the yield stress; however, as the shear
stress approaches the yield stress, the error tends to
be strongly dependent on the magnitude of the yield
stress.

3. The error in flow rate increases with increasing
measurement error (decreasing precision) in yield
stress.

4, The error in flow rate is not affected by the magnitude

of the consistency coefficient but increased error in

52
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the level of the consistency coefficient (precision
error) produced increased error in the calculated flow

rate.

_ The error in flow rate tends to increase for all cases

investigated with a decrease in the magnitude of the
flow behavior index; however, increasing the error level
of the flow behavior index did not produce any

significant change in flow rate error.
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