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ABSTRACT

TECHNOLOGICAL CHANGE, ECONOMIES OF SCALE, TRADED

INTERMEDIATE PRODUCTS, AND SUBSTITUTION BETWEEN

ENERGY AND NONENERGY INPUTS IN THE U.S.

MANUFACTURING SECTOR

by

Ali Haji Mohamadzadeh

In recent multi-input studies of energy demand in

U.S. manufacturing, the most frequent model specification

has consisted of employing a static profitdmaximization

framework defined over inputs of capital, labor, gross

energy, gross materials, and gross output ("gross" meaning

that these inputs include intra-industry, inter-firm

shipments of traded intermediate products). In such models,

the prices of the "energy? and Umaterials" aggregate inputs

must be treated as endogenous rather than exogenous variables

I

as has been commonly assumed. Thus, in such Ugross' models,

the application of Shepherd's Lemma to obtain Hicksian

industry factor demand functions is inappropriate as shown

by Samuelson (1953).

This study has considered and estimated an alternative

model in which cost and factor demand functions for U.S.

manufacturing and nonenergy manufacturing sectors (for 1947-

71 period) are conditional upon the level of output of these

sectors delivered to final demand (i.e. net" sector output).



This "net" model framework provides a proper context for

energy policy discussion since we are usually concerned

with the energy intensity of a given level of net output.

For purposes of estimation (via duality) a translog

cost function is specified as a second order Taylor series

approximation to the underlying production process. This

study, then, presents estimates of two commonly used

summary measures of price responsiveness for both sectors,

namely, the factor price elasticities and the Allen partial

elasticities of substitution among inputs.

Our "net" model framework shows considerably mmaller

values for factor price elasticities compared to the

estimated values obtained in other studies. Regarding other

issues, our empirical results indicate that homotheticity,

homogeneity, constant returnstxascale, and neutrality of

technological change must all be rejected for the manufac-

turing sector, while for the nonenergy sector the homogeneous-

Hicks-neutral specification is justifiable. The estimation

of Hicks biases for the manufacturing sector reveals that

over the 1947-71 period technological change has been labor-

saving; capital, energy, and material using. This study has

also examined returns to scale, and we conclude that in both

sectors the source of growth.has been primarily due to

utilization of economies of scale. Finally, our data rejects

value-added specification for both sectors.
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INTRODUCTION

The oil embargo of 1973 and subsequent enormous and

continuous increases in the price of energy since then have

accelerated extensive research on energy demand and possi-

bilities for substitution among energy and non-energy inputs.

Nowadays, the common belief that scarcity of energy will

affect output,or at least retard its growth,1ooks so obvious

as to require no argument. However, energy consumption in

various sectors of the economy is affected differently by

energy shortages. Differences in energy consumption are

caused both by differences in total output and by differences

in the energy intensiveness of production.

The manufacturing sector accounts for approximately one-

fourth of the aggregate energy consumed for power and heat in

the U.S. This sector, therefore, has been broadly classified

as an important sector to examine if a wise energy policy is

to be pursued. Pursuing such a policy, however, requires

empirical estimates of energy demand functionsand elasticities

of substitution between energy and non—energy inputs,as the

producing units' response to rising energy prices involves

substitution.

Recently, a large number of econometric studies have

focused on possibilities of factor substitution in U.S.

manufacturing. Examples of such studies are: Berndt and

Jorgenson (1973), Hudson and Jorgenson (1974), Berndt and

Wood (1975, and 1979), Griffin and Gregory (1976), Berndt,



Fuss and Waverman (1977), Pindyck (1978), Berndt and Khaled

(1979), etc. The most frequent model specification in these

studies has been consisted of utilizing a flexible functional

form for the aggregate cost function defined over four

aggregate inputs of capital services, labor services, energy

and materials. Then, researchers have employed the well-

known Shephard's Lemma of the theory of the firm to obtain the

industry's conditional factor demand as first partialv

derivatives of the industry's aggregate cost function with

respect to input prices. In the theory of the firm,

application of Shephard's Lemma to obtain the firm's conditional

factor demands is based on the critical assumption of

exogenous input prices. Analogous application of Shephard's

Lemma in the industry context violates this assumption, since

the prices of energy and materials inputs are endogeneous

to the manufacturing sector.

The aggregate output of the manufacturing sector and

purchased.materials and energy inputs have traditionally been

‘measured as gross magnitudes. As such, these gross magnitudes

contain the intra-industrx inter-firm shipments of intermed-

iate products which move among firms. More specifically,

a considerable portion of total materials and energy inputs

purchased by the manufacturing sector is produced by other

firms within the manufacturing sector; the balance are

imported from other sectors of the economy (i.e. are

"primary" to the manufacturing sector). While the prices of

these primary energy and materials inputs can be considered
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exogeneous, the prices of the internally produced energy and

materials are endogenous, since they respond to any change in

the prices of primary factors of production. The subsequent

application of Shephard's Lemma to obtain conditional factor

demand functions, therefore, must be considered inappropriate

in these models. This is precisely the specification error

contained in these gross industry-level studies.

In this study we consider an alternative specification

for the aggregate cost and conditional factor demand functions,

and estimate the production structure of the U.S. manufacturing

sector as well as the non-energy manufacturing sector for 1947-

71 period separately. In particular, we specify our model,

properly, over the level of deliveries of the aggregate

manufacturing sector to the balance of the economy, i.e., the

"net" output level of the sector. Energy policy discussions

are usually, and properly, concerned with the energy intensity

of net output. Consequently, we must seek estimates of the

price elasticities of factor demand conditional upon the

level of net output. In contrast, the "gross" model formula-

tion does not provide an appropriate context for a meaningful

energy policy discussion, sincean1industry's net output will

fluctuate as primary factor prices change. The "net" model

formulation also corresponds to the theory of consistent

aggregation of factor demand functions of firms with neo-

classical production functions (see Green (1964), chapter 9).

Once our model is properly specified,this study will

present estimates of two commonly used summary measures of

price responsiveness; namely, the price elasticity of demand
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for capital, labor, energy and materials, and the Allen

partial elasticities of substitution between energy and

non-energy inputs. These estimates, which are considerably

different from their estimated values in other studies,

constitute a challenge to the existing estimates of these

elasticities.

Traditionally, a particular assumption frequently

employed in econometric studies has been the absence of

technical change. In connection with constant returns to

scale this implies that all changes in input bundles result

from price-induced substitution within a fixed technology.

A slightly weaker maintained hypothesis would be that all

technical change was of a "Hicks-neutral" character. Again,

in such a specification input mix changes are due to factor

price changes.

However, it is ideally desirable to estimate production

structures under weaker assumptions. In particular, we relax

both the assumptionkxf”Hicks-neutral'technical change and

constant returns to scale which have been maintained in previous

studies of manufacturing. This will allow us to examine the

effect of biased technical change, namely, input mix changes

which occur independently of relative price changes over

time. we also can examine the return-to-scale characteristic

of the production process. This amounts, therefore, to

testing the hypothesis of "Hicks neutrality” and constant

returnstxascale rather than to impose them a priori. Our
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empirical results for the manufacturing sector reveal that

technical change has been decidedly non-neutral (labor-saving;

and capital, energy, and materials using), and that scale

economies are substantial .

Finally, this study examines various types of weak

functional separability among inputs. The idea originated

with Leontief (1947), and provides a criterion for input

aggregation. According to Leontief, subsets of inputs which,

are weakly separable from others may be formed into

consistent aggregates with the property that marginal changes

in the level of other input outside the separable subset have

no effect on the technical relation among inputs inside the

subset. One important application of separability is in the

derivation of a value-added function. A large number 0f

empirical studies dealing with investment demand and degree

of technical substitution between capital and labor have

employed a value-added concept instead of output. In this

study we put this hypothesis to test along with other weakly

separable specifications.

To accomplish the objectives of this study we estimate

the production relationship via the dual cost function

because of its several econometric and theoretical advantages.

Obviously it is desirable to employ a specific functional

form which does not impose any a priori restriction on the

Allen partial elasticity of substitution. The trancendental

logarithmic (translog) function is such a candidate. Further,

in the empirical implementation of the functional form some



authors (e.g. Berndt and Wood (1975), Berndt and Christensen

(1973a, 1973b) have taken the translog function as an exact

representation of the true underlying production function.

But Blackorby, Pirmont, and Russell (1977) and Denny and Fuss

(1977) have shown that when the translog function is assumed

to be an exact representation of the underlying technology,

the separability conditions stated in these studies are too

restrictive. This study departs from this restrictive

assumption by assuming that the translog cost function is only

an approximation to the underlying production technology.



CHAPTER I

APPLICATION OF DUALITY PRINCIPLE IN THE

THEORY OF PRODUCTION AND COST-A REVIEW

1.0 Introduction
 

It is a tradition to start production theory with

a set of physica1,technological constraints or possibilities,

usually called the production or transformation function or

input requirement set, which describe the feasible production

activity of the producing unit, also called the "firm", The

theory develops,then,by'formulating the decision of the firm

which acts to achieve its objectives subject to the limita-

tion of its technology and within a certain institutional

context. This procedure results in constructed factor

demands and output supplies being a function of the technical

limitation and the economic environment surrounding the

firm.

An interesting alternative is to approach the theory

of production directly from observed economic data such as

demands, supplies, prices, costs, profits,and revenues.

This alternative method permits us to formulate the economic

theory directly in terms of these functions. This approach

is not only as fundamental as the traditional theory, but

it is also more tractable. If the production function or

input requirement set represents the firm's technological

possibilities, the cost and profit functions are concerned



with its economic behavior.

This procedure gets its power from the so called

"duality theorem" between technology and cost functions or,

more generally, profit function that establishes that the

two approaches are equivalent and equally fundamental.

There are two main practical advantages associated with the

theory of production duality. First, it enables us to

derive, painlessly, the system of demand and supply equations

consistent with the optimization behavior of the firm just

by direct differentiation of a cost, profit or revenue

function,in contrast with solving explicitly a constrained

optimization problem by the traditional (Lagrange multiplier)

method, where optimization and obtaining the explicit

solution involve messy algebraic operation even with

objective functions of relatively simple form. Second,

duality theory is attractive from the point of View

that the "comparative static" results associated with

optimizing behavior are very easily derived.

Duality theory has its roots in the work of

Hotteling (1932), Roy (1942), Hicks (1946) and Samuelson.

(1947); but it was the pioneering work of Shephard (1953)

which treated the subject comprehensively and provided the

proof of basic duality between the technology and cost

function. His work was extended and refined later on by

a number of authors, among*whom were McFadden (1962), Uzawa

(1964), Shephard (19701 Diewert (1971), Lau (1978 and 1976)

and others.



9

These works have built a framework and have paved the

way for empirical research where use can be made of

flexible functional forms such as the translog, and enabled

researchers to use such complex functional forms rather

easily, compared with the traditional methods. Empirical

works such as Nerlove (1963), McFadden (1964), Diewert

(l969a,b), Christensen, Jorgenson, and Lau (1971), Berndt

and Christensen (1973a), Berndt and Wood (1975), Humphrey

and Moroney (1975), Atkinson and Halversen (1976), and

others are examples of works in which the dual cost and

profit functions have been used as a basic tool in econo-

metric production analysis.

In what follows we start with a description of produc-

tion technology utilizing the concept of the input require-

ment set and then the production function (section 2). Then

the duality between the input requirement set and the produc-

tion function is explained. In section (4), the cost function

and the duality between the cost and production function will

be clarified; in particular we explain that, given fixed

factor prices and a production function satisfying several

properties, a total cost function may be derived under the

assumption of cost-minimizing behavior, and conversely, given

a cost function meeting some regularity conditions, a produc-

tion function can be derived which in turn may be used to

derive the original cost function. Finally, in the last

section, we study the profit function and demonstrate the

duality between the production function and profit function.
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NOW’We will introduce the following notational

conventions which will be utilized: x is an nxl vector with

1 x2 1 2
elements x1, ..., x ° x 3 (with. x and x each being

n,

n dimensional vector) means that each element of x1 is

greater than or equal to the corresponding element of x2;

x1 >‘x2 means that each element of vector x1 is greater than

or equal to the corresponding element of x2 and additionally

at least one element of x1 must be strictly greater than the

corresponding element of x2; x1 >> x2 means that each

element of x1 is strictly greater than that of x2 correspond-

ingly; x' represent the transpose of x; Q is an nxl vector

whose elements are all zero; and Rp+ = (x:x 3 Q) is the non-

negative orthant in n dimentional Euclidian space.

1.1 Definition of Production Technology
 

The technology of a producing unit, utilizing the

service of flows of several inputs to produce a single

output, can be described in several ways. One convenient

way is to use the notion ofan1"input requirement set”.

Suppose that there.are n inputs xi 3 0, i = 1, ..., n.

Then the production structure of a producing unit can be

characterized by

C(y) = {x = (x1 ,..., xn) can produce at least y}

(1.1)

where x is an nxl vectorcflfinputs,and Q(y)specifies the

set of all input combinations which result in a given level

of output, y. The familiar isoquant might be seen as the
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boundary of 0(y), i.e. the efficient set of the input

requirement set which is associated with a specified level

of output y:

I(y) = '{x' = (x1 ,..., xn) can produce, exactly, y}

(1.2)

The input requirement set is assumed to have the

following properties:

Assumption (1): 9(y) is anonempty subset of the non-

negative orthant, RP+A It is possible that some inputs are

not put to use; however, a zero level of output will result

when no inputs at all are utilized. Then it must be true

that 0(0) = Rp+.and y > 0 implies that 0 i 9(y); or stating

this differently: if 0 s I(y) =9 y = 0.

Assumption (2): 0(y) is closed. Closure means that

if a sequence of points xn in 9(y) converges, the limiting

point, say x*, also belongs to 9(y) and can produce y.

Therefore 9(y) contains all its limiting points. Considering

the definition of the isoquant we see that the isoquant of

9(y) belongs to 9(y).

Assumption (3): 9(y) is monotonic. If an input

bundle x1 can produce a given level of output, then this

level of output can also be produced by a larger input

bundle, i.e. if xlsQ(y) and x2 3 xE 2then x CO(y). Similarly,

an input bundle capable of producing a given level of output

can certainly produce a smaller output level, i.e. if

y 3 ya then 9(y) §;Q(y'). This is what is termed "free

disposal".
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Assumption (4): 0(y) is a convex set. Convexity

implies that if x1 and x2 can both produce y, then any linear

combination of x1 and x2 1

1

can also produce y, i.e. if x and

x2e9(y),then 6x + (1-9)x2s9(y), 0 s e s: 1. Convexity

ensures that we have a well-behaved technology, i.e., the

marginal rate of substitution between inputs is nonincreasing.

1.2 Production Function
 

An alternative way to describe the technology of a

firm is to utilize the concept<xfa"production function".

Samuelson (1947) refers to it as a "catelogue of

possibilities" giving the maximum amount of output, y, which

can be obtained from any given bundle of inputs (xl ,u., xn).

Using the concept ofzniinput requirement set, the production

function will be defined as:

f(x) = max {yler(y)}

y (1.3)

This means that for anyxs§2(y), f(x) is the largest output

which can be produced. With the properties (l)-(4) assumed

about 9(y), f(x) has the following properties:

(1) Domain: f(x) is a real valued function of x

defined for every xeR§+ and it is finite if x is finite;

and f(Q) - 0.

(ii) Monotonicity: the production function is

nondecreasing in x; i.e.

x2 > x1 => f(xz) 3 f(xl).

iii) Continuity: The production function is continuous
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from above; i.e., if for every integer N, xN : 0, f(xN) : y,

linl xN = x, and y = f(x), then we have lim.f(xN) = y. This

N+oo N-yco

is, of course, a weaker property than continuity, and.is also

consistent with certain discontinuous production processes.

(iv) Concavity: the production function is quasi-

concave over RP+, because the set {x:f(x) 3 y, xeRP+} is

convex for every y 3 0. This property ensures that the

marginal rates of substitution are now nonincreasing.

Proof: To show (i), f(0) = 0, we must show that:

f(Q) A = max {yIOeO(y)} =‘{0}. That is, we must Show

that the onlz element of A is zero. By assumption, y > 0

implies that Q C 9(y). Thus the elements of A can not be

positive. Therefore the only elements of A are zero. Then

08A and f(0) = max{yIOsQ(Y)} = max {0} ='{0}. Q.E.D.

To see (ii),it mast be shown thatyx2 3 x1 implies that

f(xz) 3 f(xl). To prove this it is enough to show that

A = {y2x189(y)}_c_ B='{y=X2€9(Y)}.

Let yoe:A. This implies that x1s9(y0). But x2 3 x1 and

monotonicity of 9(y) implies that xsz(yO). Thus yOsB.

Therefore A <3 B.

;f(x2) = max B 2 max A = f(x
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1.3 Duality Between Input Requirement Set and Production

Function

The production function is derivable from the input

requirement set by definition (1.3). As shown by Diewert

(1971) it is possible to assume a production function, f(x),

with the above properties and derive:

9*(y) = {x f(x) 2 y, xeRP+}. (1.4)

It can be shown that 9*(y) posses the four properties men-

tioned above about the input requirement set. On the other

hand, using 9*(y) in (1.3) results in a production function,

f*(x), which is identical to f(x), i.e. f*(x) = f(x). In a

similar way, starting with 9(y) to derive f(x), and then

using f(x) in (1.4), we obtain n*(y). Then it is true again

that 9*(y) = 9(y). This is what we refer to as full duality

between the input requirement set and the production function.

1.4 Cost Function

One of the main behavioral assumptions, or rules of

behavior, in micro analysis of a firm is that of profit

maximization. Generally a firm will choose that input

bundle that minimizes the cost of producing a given level of

output, and then selects that output level, y, which maximizes

profit. In what follows we first consider the problem of

cost minimization and then that of profit maximization.

Suppose that a producing unit, whose technology is

given by an n factor production function y==f(xl, ..., xn),
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or equivalently by input requirement set, O(y), is facing

a given vector of factor prices, w' = (w1 ,..., wh), wi > 0,

i = 1 ,...,IL and wishes to produce a specified level of

output y. Assuming that the producer will minimize the cost

of production of that output level, the cost function is

defined as

C(w,y) = min'{w'x | XEQ(Y): X 2 9} (1.5)

or equivalently

C(w,y) = min {w'x I f(x) 3 y, x 3 0} (1.5')

This simply says that the producing unit takes the factor

prices as given,and attempts to minimize the total cost of

a specified level of output. Then the total cost function,

in general, depends upon the specified level of output, y,

the given vector of factor prices,and f(x), the given

production function.

Theorem (1): C(w,y) has the following properties:

(i) C(w,y) is a positive real valued function defined

and finite for all finite y > 0.

w' = (w ,..., wn),wi>0 and C(w,0) = 0

(ii) (Kw,y) is differtiable in w and

3C(::X) a xi (w,y), i=1, ,n.

1

where the xi(x,y) are the conditional factor demand functions,

and depend upon the level of output produced and upon the

input prices. This is known as Shephard's Lemma, and for a
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simple proof see Diewert (1971, pp. 495-496).

(iii) C(w,y) is contineous in (w,y).

(iv) C(w,y) is a nondecreasing left continuous

function in y,and tends to plus infinity as y tends to plus

infinity for every w >> 0.

(v) C(w,y) is a nondecreasing function in w.

(vi) C(w,y) is homogeneous of degree one in w.

(vii) c(w,y) is concave in w.

(viii) c(w,y) is strictly convex in y.

(ix) xi(w,y) is the cost minimizing bundle of input i

needed to produce output y > 0 given factor prices w >> 0.

(x) xi(w,y) is continuous in (w,y).

(xi) xi(w,y) is homogeneous of degree zero in w.

1.5 Duality Between CoSt Function and Input Requirement Set

We saw that by using a production function or input

requirement set which satisfies certain regularity

assumptions (i-iv) we are capable of deriving a cost function

which satisfies some desirable properties (i-xi) via

definition CL5)or(15'). Now assume that we are given a cost

function, C(w,y), satisfying properties (i,iv,v,vi,vii). Then

it can be shown that this cost function enables us to

derive or generate a family of production possibility

set or input requirement sets, L(y), via the following:

L(y) ='{x: w'x 3 C(w,y), w >> 0 and x 3 0} (1.6)

for y > 0 and

L(O) = Rp+ ='{x: x 3 0} for y = 0.
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The; sets L(y) have properties (i-v) and is identical to My).

Enturn we can use L(y) in (1.5) to derive the cost function

C*(w,y) which is identical to C(w,y) which has generated

L(y). This is what we mean by the duality between the cost

function and the input requirement set. But by virtue of the

duality between the input requirement set and the production

function, there also exists a duality between the cost and

production function as

f(x) = max'{YIW‘x z C(w,y)} (1.7)

y

There are two important special cases which impose

a certain functional form on the cost function, namely those

of constant returnsto scale (CRS)technology and homotheticity

of the production function. As Varian (1978) puts it, "There

is a convincing argument that all firms should exhibit at

least constant return to scale. The reason is that the firm

can always duplicate what it has been doing before...thus

if the firm is currently producing y, (by doubling) all of

its inputs it should be able to build another plant exactly

like the first and produce exactly the same amount in each

plant. Thus with twice the inputs, the firm can produce

twice the output". However, he mentions several counter

arguments against this replication argument as follows:

First, doubling the inputs may give us twice the output,

but this does not necessarily imply that utilizing half the

inputs gives us half the output as is required for CRS.

Second, the replication argument demands that all the inputs
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be increased. Considering that, in the short run, some inputs

are fixed we would expect that Short run technologies

show decreasing rather than CRS, since it cannot be taken for

granted that doubling only some of the inputs will result in

a doubling of the output. However, even in the long run it

might be impossible to increase all inputs. Finally, we might

be faced with the possibility of increasing return to scale,

since the replication argument for CRS says only that doubling

this scale should give at least double the output. However,

the long run CRS situation is considered to be a standard

situation. The following proposition shows the form of

cost function when we have CRS technology (see Diewert (1974)),

Proposition (1): If the production function,

satisfying properties (i-iv), is, in addition, exhibiting

CR8 (or is homogeneous of degree one) the cost function

defined by (l.5')may be written as:

c(w.y) = yc(.w.l) = y Mw).

where C(w,1) = 1(w) is unit cost function.

Proof: This proposition may be proved directly from

definition (l.5'). By definition (l.5'):

C(w,y) = min'IW'leCX) z y. x 3 0} (1.5')

x

= min {w'xly-1f(x) 31,x 3 0}.

x

Linear homogeneity of f(x) implies that tf(x) = f(tx).

1
Thus by letting t = y- the above can be written as
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= min {w'xz f(y-lx) 3 1, x 3‘9}

x

= min {y W'(y-IX)= f(y'IX) 2 1. y-1

X

x 3 Q}

= y min {w'uz f(u) 3 1, u 3 0} , where u = y x.

u

Therefore, C(w,y) = y (w,1) = yl(w) Q.E.D.

Another special case is that of homotheticity of the

production function. Shephard (1953) introduced the concept

of homotheticity and defined a homothetic function as

follows:

Definition: A function, F(x), is said to be

homothetic if it can be written as g(h(x)), where g is a

monotonic transformation of h and h is a homogeneous function

of degree one; namely §§-> 0 and h(tx) = th(x).

Proposition (2): If the production function, F(x),

is a homothetic one, then the cost function C(w,y) can be

factorized as g-l(y)-l(wx i.e. C(w,y) = g-l(y)A(w), where

g-l(-) is the inverse function for g and A(w) is the unit

cost function.

Shephard has proven this proposition by using the

concept ofaidistance function, which is complex and lengthy.

We can prove this proposition in a much simplier way directly

from the definition.

Proof: By definition (5') we write:

C(w,y) = miniw'x: F(x) 3 y, x 3 9}

x

min'{w'x: g(_h(,x)) 3 y, x 3 9}

x
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= min {w'x: h(x) 3 g-1(y), x 3 Q) , by monotonicity

x

property.

min {w'x: (g'1(y>>’1 h(x) z 1. x z 9}
X

= min {g‘1(y)-w' (g‘1<y>)'1x= h((g'1(y)>’1x> z 1.
x

(3"1(y))'1°x 2 Q}

8-1(Y) ° min {W'uz h(U) 3 l. u 3 Q} , where

u

(g’1(y>>'1-x = u .

3-1(y) - CCW.l) = g-l(y)1(w). Q.E.D.

This proposition will be utilized later on in testing

homotheticity of production function. The reverse of this

proposition can also be described and proved. It can easily

be shown that a production function, F(x), derived from a

cost function of the form g-l(y)°A(W), is homothetic.

Starting from the definition of production function, F(x),

we may write (assuming that the cost function is separable

as above)

F(x) = max {yz w'x 3 g-l(y)1(w), for all w >> 0 .

From above we obtain

h(x) = g‘1<F(x>> = max {g'1(y>: w'x 2 g’1<y>x<w>.

w >> 0}.

But h(x), as defined above, is clearly homogeneous of
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degree one and this proves that F(x) is homothetic. Therefore

the proposition may be stated in general as

Proposition: The production funCtion, F(x), is

homothetic if and only if the associated cost function can

be factorized as C(w,y) = g-1(y)l(w).

1.61Profit Function
 

A traditional method of obtaining a profit function

is that of maximizing profit, defined as revenue less costs;

i.e.

Profit = py - Zwixi (1.8)

subject to technological constraints the producing unit is

faced with, symbolized as production function, f(x). Here

we obtain the derived demand and supply,and then substitute

back into the formula for profit given by CL$>and obtain

profit function as

Tr(P.W) = py* - Zwixi*

where y* and x* are the optimized values, each being a function

of p and w. The difficulty with this procedure is that of

tractibility; only those production functions of relatively

simple form can be used to solve the profit maximization

problem explicitly obtaining the derived demand and supply

functions. I

An alternative way to study the technology of a
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producing unit through the profit function is by invoking the

duality theorem between the production and profit function.

According to this theorem there exists a one-to-one relation

between the production function and the profit function under

some appropriate regularity conditions. Therefore for the

purpose of theoretical or empirical analysis one may be

better off to start by using an appropriate profit function.

Definition: Assuming that the assumptions (i-iv)

are satisfied for the production technology, and assuming

further that the production function is bounded1 the profit

function is defined as:

n(p,w) a max {py - w'x|f(x) 3 y}.

X,Y

Theorem 2: As in the case of cost function, the profit

function possesses several properties as follows:

(i) fi(p,W) is nondecreasing in p and nonincreasing in w,

i.e.; if pl'3 p and w1 5 w,then h(w1,pl) 3 h(w,p)

(ii) n(p,w) is homogeneous of degree one in (w,p).

(iii) h(p,w) is differentiable in p and w, and

W= Home) 9

3n ,w)

awi

= -xi(w,p) i=1, ..., n.

(iv) n(p,w) is a convex function in (p,w).

(v) w(p,w) is a continuous function in (p,w); at least when

p>0 and wi>0 (i=1, ..., n).

(vi) x(p,w) and y(p,w) are continuous functions in (p w).
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(vii) x(p,w) and y(p,w) are homogeneous of degree zero in

(p.W).

1
Proof: (i):for p we have ply 3 py (i-l)

I
V

1
for w we have wl-x _< w-x or

I
A £
2

-wl-x 3 -w-x; (i-2)

adding (i-l) and (i-2) side by side we have:

P]? ' Wl'x Z P? " W’X;

then

h(p1,wl) = max'{p1y-w1-xlf(x) 3 y}

3 max {py - w-XIf(x) 2 y} = “(p,w)

1 “(p1.wl) z “(p.W)

From above it can be seen that for p1 = p but 0 f w1 _< w

we have :

(a) PY ’ W1"‘ 2 FY ‘ W'Y

then 1r(p,w1) 3 n(p,w), i.e. the profit function is non-

increasing in w.

(b) for p1 3 p but wl = w, we have:

ply - w-x 3 py - Wox

then «(p1,w) 3 1r(p,w), i.e. the profit function is non-

decreasing in p.

(11): To show the linear homogeneity of 1r(_p,w) in (.p,w) we

multiply p and wbyascalar A>0; then we have:

1r(>.p,).w) =- maxUIpy- lw'x|f(x) 3 y}

= l max'{py - w'x|f(x) 3 y}

= Ah(p,w) . Q.E.D.
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Using the above result we can show (vii) as follows:

h(Ap, 1w) = Ah(p,w)

which, in turn, can be written as

Apy (AP.AW)-Aw'x(xp.kw) = Appr,W)-Aw' x(p.W).

Therefore it must be true (by the uniqueness property) that

y(Ap,Aw) = y(w,p) and x(Ap,lw) = x(p,w); they are

homogeneous of degree zero.

(iv) To prove the convexity of n(p,w) we must show that:

1r(p*,w*) 5 afl(.Po,wO) + (l-a) 1r (pl,wl) for 0 so: 5 1

where

apo + (l-a)pl (iv-l)p*

w* awo + (l-o)wl. (iv-2)

By definition of profit function we have:

h(powo)==p0y(p0,wO)-w0 x(po,WO)

0
3 p y(P*,w*) - wO 'X(.P*.W*) . (.iv'3).

0,w0) and X(p0.w0)
where the inequality sign comes because y(p

are the maximizing levels of output and inputs at prices

(p0,w0). Similarly

l 1 l l l ' 1 .

h(p .w )=p y(P .w )-w1 X(p :Wl) (iv-4).

3 ply (p*,w*) - wl'x(p*,w*).

Multiplying both sides of (iv-3) and (iv-4) by a and (l-a)

respectively and adding them up:
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om<p°.w°> + <1-a>w<p1.w1> 3 <ap0+(1-a>p1)y<p*.w*)

O l .

- (aw .+(l-a)w .)x(p*,w*) (iv-5)

Substituting (iv-l) and (iv-2) in (iv-5) we have:

an<p°.w°>+<1-a>w<p1.wl> 2 P*Y(p*.W*)-W*'X(P*.W*)

= n<p*.w*> Q.E.D.

(vi) To see the continuity of h(p,w) in w,p, we make use of

the differentiability of «(p,w) in p and w. Assuming that

h(p,w) is differentiable at w=e, we can show that it is

continuous at w=e as follows:

Since h(p.w) is differentiable at w=e then by

definition:

11:: 1r'(pr)-1r(p',6) = 1T'(p.6)

W-+ w-e

or

h(P,W);T:e(P.9) ._. page) + g(w)

where

lim e(w)=0.' Then

w+0

“(p.W) = n(p.e) + (w-e) (n'(p,e) + €(w)).

It can be seen from.above that:

lim 1r(p,w) = h(p,0).

wee
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Therefore «(p,w) is continuous in w. In a quite similar

manner can can show that n(p,w) is continuous in p too.

Q.E.D.

An interesting approach (due to Lau (1978)) to

obtain the profit function and to study its behavior,

without actually constructing it, is through the classical

Legendre's dual transformation (LT). LT changes a given

function of a given set of variables into a new function of

a new set of variables. The old and the new variables

are related to each other by a point transformation.

To clarify this let us consider a given function of

n variables 21, ..., zn,

F = F(zl, ..., Zn)'

A new set of variables may be introduced by the following

transformation:

t. s ——— , i=1, ..., n . (1.9)

Assuming that the determinant of the "Hessian" of F to be

different from zero, which guarantees the independence

of the n variables ti' the equations<1~9)can be solved

for 21 as functions of the ti’

21 = zi (t1, ..., t ) , i=1, ..., n.

We define a new function G as follows:

11

G(t1, ..., tn) = 1:1 tizi(t) - F(zl(t), ..., zn(t))
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The function G is known as the Legendre dual transforma-

tion function of the primal function F. Consider the

following partial differentiation of G with respect to t:

 

n az.(t) n 32 (t)

i j=l J i j=1 azj(t) ati

< > I a—lz' < 5—”>= z. t + t0 - 1:1, .00, no

By substituting %§—" tj we obtain:

3

i=1, ..., n.

a
)

C
)

2.,

ti 1Q
)

This is a remarkable result which expresses the duality of

TUT. The following scheme summarizes this duality:

Old System New System

Variables: zl, ..., zn t1, ..., tn

Function: F=F(zl, ..., zn) G=G(t1, ..., tn)

Transformation

8F EC
.— I: t. z I: __

3Z1 1 i ati

a = , ..., z
G G(t1, ...tn) F F(zl n)

As this scheme reveals,the new variables are the

Partial derivativescfifthe old function with respect to the

old variables,and the old variables are the partial

derivatives ofthe new function with respect to the new

Variables.
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The remarkable property of this transformation is that

of its symmetry in both systams, i.e., the same transforma-

tion that leads from the old to the new system leads back

from the new to the old system. This means that the LT of

G, G*, is:

6*(21, ...zn) = Eti(z) zi - G(t1(z), ..., tn(z)) = F.

Therefore the two functions F and G are related to each

other by the following set of dual relations:

F(zl, , z ) + G(t1, , tn) = 22 1’

BF = 3G g

‘7: t "E z

By using this transformation we are able to construct

the profit function and study its behavior. Substituting the

production function in the profit equation (1.8) results in

Profit = pf(x) - Zwixi

Assuming profit maximization as a behavioral assumption,

a price-taker firm will maximize profit with respect to x,

taking p and w as given. This resultsiJIthe profit

function h as a function of p and w, which gives the

maximized level of profit for each set of values of p and

was

Tr(P.W) = Pf(X*) — Zwixi*
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Before going further it might be more convenient

to work with normalized profit function given as

TrNO!) = f(x*) - Erixi* ,

Wi th
where r1 = If is the normalized price of 1 input; while the

one-to-one correspondence between «(p,w) and nN(r) must be

clear, because: n(p,w) = max {pf(x)-Zwixi} =

x

p max {f(x) - Erixi} = ponN(r).

x

In terms of our problem we are faced with the

production function f(x) which may be identified as F(z), a

normalized profit function nN(r) as G(t), and x as 2.

The partial derivative of f(x) with respect to x is set equal

to t, the new variable according to LT:

0
2
0
)

”
H
:

ll

(
'
1

But profit maximization implies that:

n

[I

0
2
0
)

x
l
m

I.

,
1

Therefore r may be identified as t. The LT function can be

constructed, by definition, and by recognizing that r=t, as

G(r) = Zrixi(r) - f(x1(r), ..., xn(r)) ,

which is precisely —nN(r), i.e., the negative normalized

profit function. Moreover, from LT we obtain

= -x, (1.10)
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which is the derived factor demand function. Furthermore,

the relation between the "Hessian" matrices of the production

function and the normalized profit function can be obtained

by differentiating
Q
2

H
I

l H

r
;

0
9

N

with respect to r and by treating x as a function of r, which

results in

-—1-32f [3-35]= I
arar 3r (1 11)

where I is the matrix of unit.

But form (1.10)

3x BZWN

—E a -§E§ET =[‘U ij]. (1-12)

Therefore, by substituting (1.12) into (1.11) we obtain

N l

[U ijJ = ’[fij]

where [“Nij] and [fij] are the ”Hessian" matrices of the

normalized profit function and production function respectively.

The concept of the profit function may easily be

extended to a case when some inputs are fixed. If u represents

the vector of fixed factors of production, then the production

function may be written as

Y = f(X.u)

Then the profit function may be defined as
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n(p,w,u) = max {py-Zwixilf(x,u) 3 y}.

va

This may be called the "variable profit function” due to

Samuelson (1953-1954, p. 20). The dual corresponding to

this is obtained as follows:

f(x,u) E'{(x,u)lw(p,w,u) 3 py-Zwixi for p>0, w >>0,

u > 0}.

Alternatively, Legendre's transformation may be used

to obtain the restricted or short run normalized profit

function as hN(t,u) with the following dual transformation

 

  

 

relations:

(1) f(x,u) - wN(r,u) = Zrixi

(ii) 8f(-) = r SEESELEL = -x

3x
3r

N
... _ a (a) _ 3f(0)

(111) x — - "3r r _ 3x

N N

- 3f(°) 3 (-) a -) _ af(.)

(IV)
311 = “Bu

‘ITau _ Bu

N
.

(V) f") = “NW - 2r: if: ”NM =af<-> - wig—1%

(Vi) u u

From.this LT relationship,which represents a system of

partial differential equations,one may either construct

the normalized profit function or study its behavior,

given the production function and the first order necessary

condition for max (and vice versa).
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Moreover, asis shown by the fact that the

production function and the normalized profit function are

LT of each other, a partial differential equation for

f(x,u) in x and u transforms to a partial differential

equation for nN(r,u) in r and u; therefore the equivalent

properties of the production function and the normalized

profit function may be deduced immediately. This technique

has been extensively used by Lau (1978) to study the conse-

quences of assuming several differential properties regarding

the production function on the normalized profit function and

vice versa.

Furthermore, the LT has the advantage of being quite

useful in deriving the solution of certain partial

differential equations,being intractible otherwise.

1,7 Separability: Definition and Two Related Theorems

The concept of separability is of quite an importance

in some areas of economic theory. Sono (1945) and Leontief

(1947) are pioneers<mf the subject, the former, on the

theory of consumer behavior, and, the latter, on the theory

of production. Sono's work on the theory of consumer

behavior was published in Japanese in 1945 and remained

not very well-known outside Japan until it was translated

into English in 1961. Leontief‘s paper, developed

completelyindependently ofSono's,appeared in 1946-1942

and was primarily concerned with the theory of production.
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Since the publication of these papers,the concept of

separability has been widely used in these two areas.

To have a clear concept, consider the production

function y = f(xl, ..., xn) where y is a product, say,

steel, which has been produced by using many different kinds

of inputs, such as various kinds of heterogeneous labor,

machinery.and material. This function,in which a great

number of inputs have been involved,may be broken down

into several simpler relationships, each having fewer

variables, that is, one might think of this prodUCtion

function as a combination of some separate intermediate

relationships, each containing not only the original variable

but also some additional, intermediate variables. Then the

production function, f(x), may be written, say, as

f(x) = c<g1<x1. . . . ,xp. g2<xr+1. . . . .xk>.

3
g (xk+l""’xn-1)’ xn)

Here one might think of g1 (i=1,2,3) as the intermediate

output of sector i (iron mining industry, coal industry,...)

which lateris combined with xn’ say labor, to produce f(x),

steel. In fact gi acts as a new factor which is combined

with the original input, xn, to produce steel. One might

ask, as Leontief (1947b) puts it, "given a quantitative

description of the overall relationship such as f(x),can

one without any additional outside information, i.e., solely

through examination of the mathematical properties of the

function, f(x), establish the possible existence of such



34

subsidiary groups of variables (such as (x, ...,xr),

(xr+1,...xk)...) and describe the properties of the

corresponding intermediate functions (g1( ). 82( )...)?”

Different theorems on separability will provide a general

answer to this question.

The concept of separability has been studied under

two conditions which have been named weak and strong

separability, coined by Strotz (1957) and (1959).

Let y = f(x) represent the production function, where

X = (X1.....Xn) is a vector of inputs. Partitioning

this vector into s mutually exclusive and exhaustive subsets

N* = (N1,...,NS), the weak separability of f(x) may be

defined as follow:

Definition: The production function, f(x), is weakly

separable with respect to the above position, if the marginal

rate of substitution (MRS) between any two inputs 1 and j

from any subset Nm,msl,...,s is independent of the inputs

outside Nm’ namely,

;3—.(fi) = o v i j CN and k ¢ N
axk f; ’ ’ m m

Definition: Letting s > 2,the production function f(x) is

said to be strongly separable if the following condition is

fulfilled:

f

5%; (I?) = o, v ist, jeNh. k t NmU’Nh h # m

J
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This means that MRS between any two inputs from sub-

sets Nm and Nh is independent of the quantities of third

inputs which are not in Nm or Nh’ These conditions may

also be written as

fjfik - fifjk = 0 V i,jeNm and k e Nm for weak

separability and V ist, jeNh and k é NmUNh for strong

separability, where

f. - —££§l , partial derivative of the production function
1

2
th = 3 1?

input and fij _—3x13xj

Note that if s=2, then ieN1 implies that kELNz and hence

with respect to i

jENl; then the condition for strong separability reduces to

the condition for weak separability. The following two

theorems are of fundamental importance regarding functional

separability:

Theorem (1): The production function f(x) is weakly

separable with respect to the partition N*==(N,... ,Ns) if and

only if f(x) is of the form G(g1(x1),...,gs(xs)),where

gm(xm) is a function of the subvector xIn alone which are the

elements of Nm only.

Theorem (2): The production function f(x) is strongly

separable with respect to the partition N* = (Nl"°"Ns)

if and only if f(x) is of the form G(gl(x1)+...+gs(xs)

where gm(xm) and xm are defined as before.

These theorems have been proved by Goldman and Uzawa (1964).
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1.7A Separability and Elasticity of Substitution

To understand the nature of the relation between

functional separability and the elasticity of substitution it

is necessary to interpret functional separability in economic

language. Keeping the argument simple, let us assume a

production function with three inputs, x1, x2, and x3; and

let inputs x1 and x2 be functionally separable from the third

input, x3. This means, by the definition of weak separability,

that the marginal rate of substitution between inputs 1 and

2 is independent of the level of input 3 used. In other

words, if the usage of x1 and x2 is held constant and the

usage of x3 increases, the increased flow of x3 makes x1 and

x2 more effective at the margin, and raises their effective-

ness by exactly the same relative amount. This, as we saw

above, was stated as 3%; (:%)==0. Here we see that the

augmented usage of x3 shifts the marginal products of x1 and

x2 by the same proportion (which is observationally the same

as the familiar Rick's-neutral technological change); there-

fore x3 must have an equally close substitution or complemen-

tary relationship to both inputs, namely, the partial

elasticity of substitution between x1 and x3 is the same as

the partial elasticity of substitution between x2 and x3, one

appropriate measure of the elasticity of substitution being

the Allen partial elasticity of substitution in cases where

more than two inputs are involved.

This inequality of the partial elasticities of substi-

tution, in the case of functional separability, can be
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demonstrated mathematically. Berndt and Christensen (1973b)

have shown this equality in the case of the homothetic

production function, but in what follows it can be shown that

the homotheticity of the production function is not required.

Before showing the relation between the separability

of the production function and the equality of the elasticities

of substitution, we shall first transform the Allen partial

elasticity of substitution into a definition in terms of the

cost function. This transformation has been shown by Uzawa

(1962) for a production function which is homogeneous of

degree one and subject to a diminishing marginal rate of

substitution, and in terms of the unit cost function; while

this may be shown for a twice differentiable, strictly quasi-

concave production function f(x) with strictly positive

marginal products.

Let y = f(xl,...,xn) be a twice differentiable,

strictly quasi-concave production function with a finite

number, n, of inputs, each having a strictly positive

marginal product. Also assume that the vector x = (x1....,xn)

is partitioned into s mutually exclusive and exhaustive

 

subsets N* = (Nl”"’Ns)' The Allen partial elasticity of

substitution, Oij’ between two factors 1 and j (i#j) is

defined n

hi1 thh'Fij'

°ij ‘ xileFl

where



2

fh - %§;" fhg - giiiig , h,g 1, , n,

ro £1 . ..fn ‘

|F| = 51 £11. .fln

LfP°'°'f“1°°"fRnJ

  

and [Fiji is the determinant of (ij)th cofactor in F.

Using this formula for two particular inputs, 1 and k, such

that ist and k¢Nm (mel, ..., s), the partial elasticity

of substitutiog, oik' between them can be written by:

X f lFol

01k ' hgi.:: IFI 1k
1

 for ist and k¢Nm-

It is a well-known fact that the firm, in order to minimize

the cost of producing of a specific level of output, must

adjust the factor inputs such that the ratio of price to

'marginal product will be the same for each factor or

w

.f = --E ; where A is interpreted as being the
h A

marginal cost of output.

Also the rate of change of the independent variables

(x1, ..., xn),with respect to changes in factor input

prices, is obtained (see Samuelson (1947), pp. 63-69) as

8xi = lFikl

FE; XTFT

Substituting these relations in Gik we obtain



 

On the other hand by Shephard's Lemma we have:

x = acgw, ) = C. and

W1.. 1:
4
-

3x 2
3 Z

3w1 3 awpéx' ) = Cik ‘
k i k

By substituting these in Oik and utilizing the fact that

thxh = C(w,y) we get:

CC
ik .

Oik 3 EEC; , IENm, kiNm (1.13)

Similarly

CC.
k .

o k 35%; . JeNm. k¢Nm

Now setting oik and ojk equal to each other we get:

.CC CC.

11‘ - TUE; i,jeN , keN

tick jk m m

Or

ClClJ - CjC1k = 0, i,jeNm, keNm (1.14)

This means that Oik = ojk (i,jeNm, k¢Nm)if and only if (1.14)

holds. But(l.l3):h3nothing but the condition for weak

separability of the cost function C(w,y). On the other

hand these conditions, under a suitable assumption such as
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homotheticity of the production function or homotheticity of

the micro production functions gm(xm), are also the conditions

for weak separability of f(x). Thus, it was shown how weak

separability of the production function with respect to the

partition N* implied that Oik = Ojk (i,jeNm, kéNm). But

still we need to know under what conditions weak separability

of the production function implies weak separability of the

cost function in the same partition. To see this, let

y = f(x) = G(gl(x1), ..., gs(xs)) where gm(xm) is a micro

production function and xm is a subvector with its elements

being that of NIn only. The cost function associated with

G( ) may be defined by:

1 . S 'C(w , ..., wS,y) = min { Z w mmeG(gl(x1),... ,

1l s =

x,...,x m

gs(x3)) 3 y}

= min

x}...,xs;y1,..., ys

. S l m

{ E W In): |G(Y1.~. Y3) 3 Y;
m=1

ym = gm<xm)}.

The above is a two step cost minimization; in the first

step we minimize Zw'mxm’with respect to xm and subject to

ym = gm(xm) (m=1, ..., 3). Now if we assume that ym==gm(xm)

are homothetic functions, the result of this minimization

will be a cost function of the form
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¢m(ym)'lm(wm) (see section 5) where Am(wm) =

'm.m
min'{w x [ffi(xm) > 1}.
m -

x

s

In the second step we must minimize Z ¢m(ym)-Am(wm)

mal

with respect to ym and subject to G(yl, ..., ys), i.e.,

1 s . - S m. m m m

C(w, ....w;y)=m1n {Z¢(y)-A(w)=

l 3 mal
y ,...,y

G(yl. ..., VS) 2 y}

= C(y; 11(w1 , ..., As(ws)). Q.E.D.

In this proposition it should be noted that G is a homo-

thetically separable function.2

Next we might consider the case in which the G

S

function itself is homothetic in x1, ..., x . In this case

it can easily be shown that a weakly separable and homothetic

function implies the homotheticity of each subfunction,3

and so the problem becomes like the one we had before.

Another case is the one in which the G function and the

subfunctions gm(xm) exhibit constant return to scale, i.eu

they are homogeneous of degree one. The cost function in

this case is obtained as:

s

C(wl, ..., ws;y) = min '{ Z w'mxm:G(gl(xl),...,

1 s m=l

x , O I I ’x

ss(xs> 3 y}
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= min '{Xw'mxm:G(Y1,...Ys) Z Y;

x1,...xs;yl,..-.ys

Since each gm(xm) is homogeneous of degree one,it has a dual

cost function of the form ymlm(wm), where

1m(wm) = min{wrmxm:gm(xm) 3 l}; m=l,...,s.

m

X

Therefore we have:

C(') = min '{Zymkm(wm):G(yl.....ys) z y}

y ,...,y5

= Y‘C(Al(Wl)..... Xs(w§))since G is homogeneous

of degree one.

As Diewert (1974) has pointed out,the elasticity

of substitution will have a special feature in this case

as will be described below. Evaluating the elasticity of

substitution between the ith

jth input from group two, x?, we have, by definition (1.13)

input from group one, xi,and.the

 

 

 

  

C 32C

1 2
12 awi awi

oi.-

3 3C ac

l 2
8wi 23wj

l 2

3A 8A
0C 0C __2.

(y ) y 12 3w; 3w.

= 1 _] =CCl2 = 012

y“: 311 y“: 312 Clcz

1 a??? 2 5:?
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where Ci is the first order partial derivative of C with

respect to its 1th argument, and 012 is the second order

partial derivative of C with respect to its first and

second arguments.

The special feature about this elasticity is that

oi? does not depend on the subgroup indices 1 and j or

generally this means that 0;?1= Gmn. Therefore, the elasticity

of substitution between the two primary inputs 1 and

j from subgroups (intermediate inputs) m andtn is the same

as the elasticity of substitution between intermediate

inputs m and n.

Interestingly,the relation between a weakly separable

production function and the profit function may be established.

1, ...ws) be the profit function associated.withLet n(p,w

G(g1(x1),...,gs(xs)); then we can show that the profit

function is also weakly separable in input price aggregate

as follows.

8 '

w(p,wl,...,ws) = max '{py- Z W mimlG(gl(Xl).

y;x1,...,xs m=1

., gS(xS) 3 y}

= max

y;y1,...,ys;xl,...,xs

' 8 .mm 1 S

{py - 1w x No .....y) 23'.

gm (XIII) = ym}
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This consists of two steps: in the first step,we maximize

S I

py - Z1 w mxm subject to gm(xm) = ym and with respect to

m:

x1,...,x% which results in a cost function of the form

ymxm(wm) provided that gm(xm) is homogeneous of degree one.

In the second step,we maximize py - Zym1m(wm) subject to

G(yl,...,y8) = y and with respect to y and yl,...,ys, i.e.,

maxl '{py - Xymlmwm): G(y1,....ys) z y}.
s

y;y ,...,y

which results in n(p;Al(wl),..., As(ws)), i.e., if the produc-

tion function is weakly separable and the subfunctions are

homogeneous, then the profit function will be weakly separable.

1.8 Enngfiigné; Forms: Choice Criteria

In studying a producing unit, it is a common

procedure to assume an objective function and then a

behavioral assumption which enables the producing unit to

optimize its objective subject to a side relation, given the

conditions surrounding the problem such as market conditions

which determines the prices of inputs and outputs, etc.

However.to answer questions such as the elasticity of demand

for fuel, elasticity or ease of substitution between capital

and labor,auu1economies of scale, which are the most concrete

applicationscfifeconomic analysis to policy questions, it is

necessary to know the specific parameters describing the

producing unit's behavior.
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The answers to such questions which might have serious

policy implications can be found only by examining the

data and estimating the parameters of the agent's objective

function, using some statistical method. In doing so, it is

necessary to choose a functional form for the objective

function, say, the production function, and try to estimate

its unknown parameters.

The task of choosing a functional form is not an easy

one, since the researcher must compromise between different and

often unreconcilable properties a functional form has. The

main two desirable properties a function must have are:

first, the capability of representing a wide range of techno-

logies, in order to minimize the prior assumptions imposed

on estimating the equations, and second, the tractability,

i.e., the ease of computation, estimation, and interpretation.

Flexible functions such as the translog (TL), the generalized

Leontief (G.L.), the generalized Cobb-Douglas (GCD), etc.,

are the ones with the first property. These functions may

be considered as a second order approximation to any arbitrary

function; their elasticities of substitution between different

pairs of factors are variable, they permit the existence of

uneconomic regions, and, as far as estimation is concerned,

they are linear in parameters. However, these functions have

a complex form.and often involve too many parameters, which

makes estimation not an easy job. On the other hand, there

are simple functional forms such as the Cobb-Douglas (CD),

the constant elasticity of substitution (CBS), and the
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Leontief functions which are tractable, while they have

restrictions on the elasticity of substitution, form of

separability, constancy of factor shares (in CD case); still

the choice between these forms needs careful consideration

and depends upon the use to which they are to be put.

It is a well known fact that the CD and the Leontief

production functions have an Allen elasticity of substitution

(AES) of unity and zero for all input pairs respectively,

although there is nothing in theory which suggests that such

a restriction will be universally met. The degree of factor

substitution is of great importance, since it has a number

of repercussions. A change in an input price ratio will affect

the cost of production, product prices, and income distribution

according to factor ownership, and consequently consumption

and savings patterns will be affected. In this sequence of

events, a proper measure of the degree of factor substitution

plays an important role.

This shortcoming decreases to some extent in the case

of the CES function, since it allows the ABS to deviate from

unity, although it is doomed to be constant by construction.

Although in the case of the two factor production function it

might be justified, on the ground that the elasticity of

substitution is constant, in the case of a multi-factor tech-

nology it necessitates that all inputs be equally substituta-

ble, which is not realistic unless it is tested empirically.

In fact, in the multi—factor case the CES model stands in sharp
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contradiction to economic common sense, as well as to the very

purpose of such studies. This theoretically and empirically

unjustifiable restriction has led to several studies which

have indicated that the elasticity of substitution between

capital and labor varies, usually inversely and sometimes

significantly, as capital deepening occurs. This evidence

casts doubt on the empirical uSefulness of any CES function,

and has led several authors4 to develop functions with

the property of making the common elasticities of substitution

a function of some variables such as output level of factor

ratio, etc.

However, the CD function has been widely used in

empirical work, regardless of its shortcomings apparently

because, first, the direct estimation of the CD function,

using aggregate time series data, is not inappropriate, due

to the fact that substitution effects are not well identified

by highly colinear data, and second, as Fisher (1969) argues,

the constancy of the factor shares of labor and capital in

aggregate data fits the CD hypothesis.

With this general background in mind, we will now

review several functional forms, and will study their

properties in brief.

1.8A Functional Forms Summarized
 

There is an interesting way, due to Mundlack (1973), to

describe several kinds of functional forms by using a quadratic

form and by imposing some appropriate conStraints on
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that. The form is

yo = (1. 1') = ao+z'e+x'Bz

*9 B Z (1.15)

To derive various functions, the following transformations

will be utilized:

T1 yr 3 xi ' pi I 0

T2 y1 = 1n xi ; p1 = 0, 1=0,l, ,n,

where x0 is output and x1, ..., xn are inputs.

(1) Cobb-Douglas (CD)

The CD function is derivable from (1.15) by imposing:

B E 0, and by obtaining variables by applying the

logarithmic transformation T2. The following notation

is used to state this as

(1.15) ()(B E 0) n T2

The result is

n

1n x = a + Z a. 1n x.
0 0 i=1 1 1

(ii) CES-like

This function may be obtained by

(l. 15) 0(a0=0)O(B E 0) n T1 (1 {oi=o} for i=0.l. - . . .n;

which results in

1

pp

I
x = ( a. x. )
0 i=1 1 1
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(iii) CRES (Constant Ratio of Elasticity of Substitution)

The CRES function is developed by Mukerji (1963) and

Forman (1965), and can be derived from (1.15) by

imposing:

(1.15) n(o0=0) n (B s o>(\ Tl

which results in

o = (121 aixi )

Unlike the CES, this function does not have the identical and

constant partial elasticities of substitution. However, the

ratios of the elasticities of substitution are constant for

this function, and are not necessarily the same. The CRES is

a homogeneous function only when the 0's are all equal, and

it obviously reduces to the CES-like in this case.

(iv) CRESH (Homogeneous or Homothetic CRES) (Hanoch 1971).

The CRES functions are not homogeneous or homothetic, and this

causes the Allen-Uzawa elasticities of substitution to vary

with output, as well as with the factor combination. This

makes the expansion path (for given factor prices) curved

in a predetermined and often undesirable way, dictated by

the form of the function.

In the CRESH, this problem is removed due to homogeneity

and homotheticity of the function, so that the elasticities

of substitution vary along the isoquants and differ between

pairs of factors, although the elasticities of substitution

stand in fixed ratios everywhere.
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The CES and its limiting forms (the CD(o-l),the Leontief

(o=0), and linear (08m) functions) are special cases of CRESH.

Its functional form is

p xi pi

a (——) - l E 0

i=1 1 x0

The parameters of this function are estimatable from a system

of log-linear equations, given data on factor prices,

quantities, and output, and assuming cost minimization.

(v) Generalized Leontief (Diewert 1971)

This function is obtained from 0115)as:

(l.15)n(a020)()(a50)nTln{pO=l and pj=%} j=l, ..., n .

The functional form for this function is written as:

x = X 28.. x x.
0 i j 13 i 3

(vi) Generalized Diewert (Generalization of the

Generalized Leontief)

This function is derived as (v) by setting the

parameters as

CO = p and

. = ‘=l ..., .ojtoJ. n

The resulting functional form is also known as the

quadratic mean of order p, and is written as

2 2 1/0

x0 (2 §Bij xi xj )
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(vii) Translog Function (Christensen, Jorgenson and Lau (1971)

(1973)). The translog (TL) function developedby Christensen,

Jorgensen and Lau may be obtained from (1.15) by imposing:

(1.15) 0T2

which results:

n

I = + . l . + .. . .n x0 o0 til a1 n x1 g jle 1n x1 1n xJ

(viii) Quadratic form;

This form is obtained by imposing

(L15){)Tln{oj=l} j=0,l,...,n .

which results in

x0 = a0 + Zoixi + XZBij xixj

1.9 Translog Production Function and Its Properties
 

This function is defined in Christensen et al (1970)

as:

‘2‘n a n g ( y . ln x.)

y = no ( H x 1)( Hlxi j=l 13 J )

Taking logarithm of both sides we obtain:

n

1n y = 1n a0 + 1:1 oi ln xi + g g g Yij 1n xi 1n xj ,

(1.16)

where y is the quantity of output and the x's are inputs; a0

is a parameter which represents the state of technical

knowledge; oi and Yij are technologically determined parameters

Equality of Yij and in (i # j) is necessary for the
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applicability of Young's theorem to integrable functions,

while this equality could in principle be tested. In this

function all input quantities must be strictly positive,

because 1n}(+ -e as x + 0 and output would be ill-defined.

The translog function has several interesting properties

in both its theoretical and empirical application, especially

if all the log quadratic terms are omitted, when it reduces to

a Cobb-Douglas function; and as Christensen et al (1970) have

shown, most of the CES-like functions may be derived from it

as special cases when appropriate restrictions are imposed.

The interesting feature of the translog function, which

has entitled this function, is its flexibility. It can be

considered a second order approximation to any functional

form for values of factors near unit. To see this, let us

start, in general, with the following function:

y = ¢(x1, ..., xn)

where y denotes output, and the x's are services of inputs.

This function may be rewritten as:

In x1, e1n x

1n y 1n ¢(e n) .

or

1n y f(ln x1, ..., 1n xn) . (1.17)

Applying Taylor's method (see Allen (1938)), we expand

017) around point x_ = (1) or 1n 5 = (Q), (where x is a

n dimentional vector of input), obtaining:



53

“ 3f
1n y = f(ln 1, ..., 1n 1) + Z 3 In x.

i=1 n x 1
1n §=9

 

 

 

 

  

  

. 2
a f

+ i Z Z aln x. aln x. 1“ xi 1“ xj + R

1 J 1 3 1n =0
—'- (1.18)

where R represents the higher order terms. Note that

2
3f 3 f

and are constant fo
3In xi lnx=g 81n xialn xj 1n §=Q r

i,j=l, ..., n. Therefore we let the following:

r 3f
mi Edi 1:1, ...,n.

In ETC

= 32f = 32f

J Yij ' alnxialnx. 81nx.31nxi

J In §= Q 3 1n i=9.

= = (1.19)
- in . 1.3 l. . n

L

f(ln 1, ..., 1n 1) = 1n a0 .

Therefore, by substituting (1.19) in (1.18) and omitting the

higher order terms, R, we get (1.16) which is the translog

function.Q.E.D.

‘l-9A Monotonicity and Convexity Properties

An important neoclassical assumption on production

function is that of increasing marginal productivity of all

factors, namely:

1 3x. - , O. O ’
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This implies that

X

3 ln _ i 31 ._

a'l'n'xi - 3’ 3x1 2 0» 1‘1: “-

Because xi and y are positive therefore

a 1n n .
= 0+ .01 O>O =1, 0.0, ’TTIE_§; oi jél 713 n xJ _ 1 n

(1.20)

It is obvious that in general these monotonicity conditions

cannot be globally satisfied for all quantity configurations.

Notice that the translog function possesses an uneconomic

region over ranges of input space if

(i) xj;+ 0 (jsl, ..., n) and Yij > 0 ,

or

(11) xj + m (j=l, ..., n) and Yij < 0 .

Both cases imply negativity of fi, the marginal product of the

1th input. This indicates that the translog function exhibits

much more flexibility than either the Cobb-Douglas or the

C.E.S. function which do not allow the existence of an

uneconomic region.

Should this case (negativity of marginal product)

happen, a profit maximizing or cost minimizing producer will

not operate in that region as long as there exists a non-

negative price associated with that input. In general,

however, a local satisfaction of the monotonicity conditions,

especially at the point of approximation, x = (1), is

expected. This implies that

Q

I
V 0 i=1, ..., n .
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Having Ci 3 0, i=1, ..., n, and an arbitrary set of Yij's’

it is always possible to find 1n xj's, not all zeros,

in order to have (1.20.),satisfied.

Another property that a neoclassical production

function must also have, in addition to the monotonicity

property, is that of the concavity, i.e.,it exhibits

decreasing returns to scale. To satisfy this property,1fijj

must be negative semidefinite. Hence a necessary condition

is that fii 3'0.or

   

2
,3 y a a a}; a a alny

fii 8x. (axi) 8x. (x. a lei)
8x. 1 1 1

1

32

xi 8x. ' y
galny( 1 )+_y_3(81ny)

aInxi x2 x13x1 Blnx.
i 1

:12 <<§—}§‘T,Xq-1>§-§%§i—+yfi>go

1

This inequality must be satisfied in particular at the point

of approximation. Therefore

,2

L12 = y ((ai-l) ozi + yii) 5 0 (1.21).

3x

1 1n r=9.

To have (1.21), satisfied, given monotonicity, i.e. oi 3 0,

the following must be true:

0 f oi f l

Yiifo‘
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Moreover, we compute cross partial derivatives as

322 ="y 3'lny alny
+ y. .)

axiaxj xixj 3 In xi 3 In xj 1j

 

Evaluating this at the point of approximation we obtain

2

LL.

axiax.

y (aid. + vi.)

J J

Concavity of production function at 1n xég implies, by a

continuity argument, that.f(-) is locally concave in.the

neighborhood of 1n ETQF and this is all we need, because,

as has been shown in standard microeconomic texts, the

economic region is the concave region, even though the

function might have uneconomic or convex regions which are

locally convex and might exhibit increasing return to scale

in certain ranges of the inputs. Therefore a necessary and

sufficient conditions for f(-) to be locally concave at

ln x=Q is that the matrix

‘

r

Carnal "’ 111 O‘1‘”‘2"'1‘12 °‘1°‘n+11n

[f..]

1‘3 1n §=O

  {anal + Ynl . . . . . . . (an-1)on+ynn

J

be negative semidefinite which in turn requires that all the

principal minors be negative semidefinite. Therefore to

check concavity we must compute these principal minors to see

whether the concavity conditions are met.
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It might seem desirable to actually test for the

concavity assumption either in general or at some predeter-

‘mined level of inputs. In this regard, the translog function

is appropriate and ideal since global concavity is not

assumed a priori.

In addition to the above test, it is very convenient

to test statistically the homogeneity of the production

function. If the production function exhibits constant

returns to scale (CRS), first degree of homogeneity, it

must be true that:

1n f(lxl, ...,lixn) = 1n A°f(x1, ..., xn)

= 1n f(xl, ..., xn) + 1n 1

This implies the following set of linear parametric

restrictions:

g Yij = g yji = zzyij = o v 1,J=1, ..., n .

which can be tested easily, given the required data. Thus

we notice that how flexible the translog production function

is, since it allows increasing, decreasing, and CR8, as well

as completely variable returns to scale over the range of

inputs.

The translog function will also provide a suitable

framework for empirical work since the function and its

corresponding marginal productivity conditions are linear
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in their parameters and therefore may be estimated,

taking into account the linear equality restrictions across

equations, by applying multiple regression techniques.

1-93 Translog Function and Separability

When we were discussing separability we saw that

different aggregate indices of heterogeneous capital,

material, and labor inputs could be used in the production

function, based on the assumption that the production

function was separable in those aggregate indices.

Separability allows us to use aggregate data when disaggre-

gated data do not exist or have poor quality. Another

advantage of separability is that of its consistency with

decentralization in decision making or equivalent

optimization by stages (multistage). In some cases the

appropriate disaggregated data exist,but even in these

cases only multistage optimization and estimation is

feasible, due to the large number of inputs involved.

On the other hand,the separability specification will cause

severe restrictions on the structure of technology,and

hence on the possible form of the production function. In spite

of this shortcoming, separability is a pivotal concept

in production function estimation; although in most of the

production function studies separability and the existence

of aggregate inputs have been assumed a priori. However,

there are two recent studies, done by Berndt and Christensen

(1973 and l974),in which empirical tests of separability
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and the possible existence of consistent aggregates of labor

and capital have been furnished for the first time, using a

translog function. Instead of using the translog function as

a second order approximation to some unknown arbitrary

production function, they have implicitly assumed the translog

function as a £323 representation of the underlying technology.

This procedure results in a different and more restrictive

test for separability, and is not accepted as a general test

of the separability hypothesis. In fact, the real problem

with tests of separability, based on an exact interpretation

of the translog function, is that they are not only tests of

the null hypothesis of separability. Instead they result

in tests of the joint null hypothesis of separability and a

particular inflexible functional form for either the

aggregate functions or the production function as a function

of the aggregate inputs. The following proposition is due

to Denny and Fuss (1977) and summarizes the whole

argument.

Proposition (3): The separable form of a translog

function,interpreted as an exact production function,must

be either a Cobb-Douglas function of translog subaggregates

or a translog function of Cobb-Douglas subaggregates.

To clarify this proposition,assume that the three input

translog function(116), interpreted as being exact, is

weakly separable as

1n y = f(ln g (1n x1, ln x2), 1n x3) ,

where g is an input aggregator function. Since f is weakly
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separable then it must be true that:

f.f. - f.f.1 3k J 1k = O i,j=l,2; and k=3

Substituting for first and cross partial derivatives in

the above we obtain:

Si ij " Sj Yik = 0

(o:i + g Yij 1n xj)yjk - (aj + g in 1n xi)yik = 0

or

3

(“ink‘o‘j Yik)+ Z (Yimyjk-Yikyjm) 1“ "m = O

m'1 (1.22)

To have G»22)equal to zero we need both parentheses equal

to zero. However, a sufficient condition for(L22) to hold

is:

Yik = ij = 0 °

which are termed "linear" separability constraints. For

nonzero Yik and ij a necessary and sufficient condition for

Ou22) to hold are

aink ‘ “j Yik = O

Yiijk ‘ ijYik = 0 ’

which may be written all together as

s
q
“
? y. y.

—£E.= vigi= 6. m=l, ..., 3

J J'k J'm
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Now there are two possibilities:

(a) Substituting the linear separability constraints

(y13 = y23 = 0 in 3 inputs caSe) in translog production

function (interpreted as'gxggg) results in a production

of the form (see Denny and Fuss (1977))

1n y = 1n a0 + 6g 1n g + 5h 1n h (1.23)

where g is a translog funCtion of x1 and x and h is a

translog function of x3, while 6 and 5h are the correspond-

8

ing parameters. Obviously(1.23)is a Cobb-Douglas function

of translog input aggregates. Here separability implies a

unitary elasticity of substitution between aggregate inputs

g and h along the y isoquant as well as 023 = 013.

(b) Now if we substitute the non-linear constraints

0‘ Y Y Y .

(—l = —l2 = -ll = —12 = 6) in translog function, again

“2 Y23 Y12 Y22

interpreted as exact, we obtain a production function of the

form5 :

1n y = 1n a0 + 8g 1n g + 8h In h

+1/2-H _ 3,3. lngln h, (1.24)

1.1-gm '

where g here represents a Cobb—Douglas function of x1 and

x2 and do, Bg,and Bh are parameters. The function(l.24)is a

translog function of Cobb-Douglas input aggregates. In this

case,separability implies a unitary elasticity of substitution

between x1 and x2 (i.e. along a g isoquant) as well as
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013 a 023, ij being the Allen partial elasticity of substi-

tution between factor i and j along a y isoquant. Then a

rejection of the maintained (separability) hypothesis might

be due to rejecting a unitary elasticity of substitution

for the subaggregate function instead of the correct maintained

hypothesis 013 = 023. To avoid this problem one must consider

the translog function not as a true function but rather as a

second order approximation.

The following proposition about the approximate weak

separability, which has been proven by Denny and Fuss (1977),

will illustrate the point.

Proposition (4)6: The translog function (16) is a

quadratic approximation to an arbitrary weakly separable

production function 1n y = f(ln g (1n x1, ln x2), 1n x3) if

0‘ Y

.1 = .12 (1.25)

“2

As we see the constraint (1.25) in this case is identical to the

first set of constraints needed for separability in the exact

case ( ). For inputs 1 and 2 being

“2 Y23 Y21 Y22

separable from.3,it is shown by Berndt and Christensen

(1973a) that the remainder of the constraints reduce to one

independent constraint of the form Y11Y22 = (Y12)2. But

this constraint is the one which forces 1n g (1n x1, 1n x2)

to become a Cobb-Douglas sub-function, as can be seen from

the proof of the proposition (3). Therefore, approximate

weak separability involves imposing the constraint
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a1y23 - a2y13 = 0 while for testing exact weak separability

the imposition of the additional constraint Y11Y22 - (y12)2==0

is needed.

1.10 Translog Cost Function
 

We saw that a producing unit was capable of producing

alternative rates of output according to a cost function

C - C(y; w1.~..‘wn). A translog cost function may be

represented as:

2

ln y + h 62 (In y) + 2a. In wiln C = a0 + 6 1
1

(1.26)

+ g ZXYij 1n wi 1n wj + 281 In wi 1n y .

One of the properties of the cost function for the cost mini-

mizing firm is that of linear homogeneity in factor prices

(see section 4). For this property to hold, it must obey

the following restrictions on the parameters of (1.26):

ZY°’=§in=§§Yij=O

£8. = 0.

One may wish to test the validity of these restrictions as a

test of the cost minimization hypothesis; or estimate the

cost with these restrictions imposed g priori.

As was shown (section 4), invoking the well known

Shephard's Lemma, the derived factor demand function can be
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obtained by partial differentiation of the cost function

with respect to the factor prices; namely,

x. a _
i=1, ..., n;

which can appropriately be written in logarithmic form for

the translog cost function as

alnC =3 "“’i="i"'i= 3 i=1 n

a InRH- a i 77 C i. ’ "" '

where Si represents the relative share of the 1th input in

total cost, which is computed from translog as

51 = oi + Bi 1n y + 1 Yij 1n wj 1=l,..., n .

J

By the monotonicity property the cost function must be an

increasing function of input prices, i.e., Si 3 0. Unlike

the derived factor demand function, xi, these shares are

linear in parameters and may conveniently be estimated.

Note that since these shares add up to one, i.e., 2 Si = 1,

only (n-l) of these equations are independent; therefore, i

the (n-l) equations may be estimated in conjunction with

the cost function itself. Later, the estimation procedure

will be discussed in detail.

Another property of the cost function is that of

concavity in input prices, which implies that the matrix

2

(gfisfifi—J must be negative semidefinite for a specified

1 5

range of input prices.

There are other economically interesting hypotheses
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which may be suitably be tested within the framework of the

translog cost function. These are homogeneity and homo-

theticity of the production function in inputs. Recall that

homogeneity of the production function implies that

C(y,w) = Y'1 (W)

To have this satisfied the following parametric restrictions

must hold for (1.26).

ll

0
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II

CB.1 i=1, ..., n .

For a homothetic production function the cost function is

factorized as

C(y.W) = h(.y)'A(w) .

which implies the following restriction on (1 26)

B. = 0 i=1, ..., n .

As was shown, the Allen partial elasticity of substitution

between two inputs 1 and j could be calculated from the

cost function as

CC .
i

o.. a C_Cl
13 i j

where the indices on C represent partial differentiation of

the cost function with respect to factor prices. Computing

this for the translog cost function we obtain,7
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.y.

“ij‘STSl.+1 iii
1 J

o.. = v.1. + Si (Si-1)

11 2

Si

 

Similarly the price elasticity of demand for a factor of

production Ei' = 311'xi is computed as

J 3 In wj

E.. = o..S.

1J 1J J

th
and the own-price elasticity of demand for i input is

(see Allen (1938, p. 519, problem number 12)),

E.. = 0.. . .

11 1181

Finally economiescflfscale are widely defined as the relative

increase in output resulting from a proportional increase

in all inputs along a ray through the origin. However,

Hanoch (1975) has discussed a more relevant concept for

microeconomic analysis as "the increase in output relative

to costs for variations along the expansion path where

input prices are constant and costs are minimized at every

output." Thus the extent of scale economies can be

expressed as the elasticitywmftotal cost with respect to

output, i.e., a 1n C/ a 1n y. An alternative way to arrive

at this elasticity is the following argument: positive

economies of scale are associated with decreasing average

cost (AC), i.e.,é§ (g)< 0 or yC' - C < 0, where C' = g; is

the marginal cost (MC). This implies that %% < l, which
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in turn can be written as {73% = (g—g)/(%) '3 g—i—E—g— < l .

Thus we can measure economies of scale by d ln C/d 1n y;

and in order to make positive scale economies associated

with positive numbers and negative scale economies (scale

diseconomies),we subtract it from unity i.e.,scale economies

= l-a 1n C/a 1n y.

lmll Translog Profit Function

The translog profit function is given as

ln1r(p, wl, ...wn)==ao + 61 1n p + k 62 (lnp)2

-+ Kai ln:wi + g XXYij ln-wi 1n wj + 2 Bi 1n wi Int).

where p and W1 are the money pricescxfthe output and the

ith factor of production respectively. It was shown that

a valid profit function was characterized by certain

conditions such as linear homogeneity in p andww,monotonicity,

and concavity. Linear homogeneity in p and w implies

following restrictions on the parameters:

61 +- f £1. = 1

i=1 1

n

Xv
i=1

..+Z s.=0 j=l,...,n.
31 i 1

1'1

+28

i=1

8 =0.

2 i

Monotonicity requires that n(p,w) be an increasing function

in p and a decreasing one in w. Thus the following must be

met:
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3'17: laln‘fl =1 -...,) p'flrT'p" p(91+921n p+ZiBiani)20.

(1.27)

an n aln n w=_-————_=—(a.+ zY.. ano+B° lnp)fo
3W1 Wi alnwi wi 1' j 1] J 1

It is obvious that these conditions can not be globally

met for all price combinations. But.as long as there

exists the actual observed ranges of price for which the

monotonicity conditions are met,we should not be concerned

so much about global monotonicity. These conditions must

be particularly satisfied at the point of approximation,

1n p 8 0, ln‘w = 0, This implies, since u, w,and p are

positive, that:

I
V 0

E’1

mi 5 0 i=1, ..., n .

These restrictions are easily testable.

For the convexity condition it is required that the

matrix (nij) be positive semidefinite - a necessary condition

is that "ii 3 0, or

2
3 "JL aln n aln u _

:2 2<-ainp-31np ””930
p P

2

 

  

3 n N aln'n 3 1n n

—2-= ( ( '1)+Y--)>0-
awi wi2 aln wi a 1n wi 11 -

Evaluating these at the point of approximation, we obtain:
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2
3 1r
-—7 = «(e (e -l) + e ) 3 0

3p ln P=0, 1n w_=_0_ 1' l 2

32'“ a ( ( -l)+ )>0 '=Iaw Troioi Yii , ,1 ,...

i
n p=0, 1n w=(_)_

From these conditions, given monotonicity, we derive a

sufficient set of conditions as

6121, 6220, Y..>O.

In order to form the matrix (fiij) we compute the cross

partial derivatives as:

an N (311117 alnw

apawi pwi a 1np a In wi + Bi)

 

 
 

32w 3 1r (8 In 1r 3 In 1r + )

awiwj wiwj a In wi 3 In Wj Yij

At the point of approximation these are equal to:

 

 

2
3 1r _

apawi ’ "(elai + Bi)

1n P=0, 1n w_=Q

2

3 1r ._

awiaw. - “(aiaj + YIJ)

3 1n p=0, ln w=0_

 

Hence the matrix (1.13.)l O 1 0 becomes:

n w=_, n p=



"70

 

I

61a1+ BI “1(“1"1y+fi1.“I’2+712""“1“n+11n

elOIn-Han analfinl O'no' 2+Yn2' ‘ ' ' o‘n(mn.l)+"nn  
To see that convexity conditions are satisfied locally we

must have all the principal minors positive semidefinite.

One of the main advantages of using the profit

function is that, by invoking the duality theorem as we saw,

we are able to derive the supply and demand functions

conveniently by differentiating the profit funCtion with

respect to the prices of output and inputs respectively.

For the translog profit function the supply function of

output and the demand functions for factors of production

are given by the linear forms (1.27). Note that only n of

these equations are independent and that linearity of the

equations is an additional advantage for econometric

estimation. 7

The own and cross-price elasticities of demand for

the factors of production are derivable from the demand

functions, and are defined as:

 

 

ax * w.

Eii .. a: 53* and
i i

*
E = 3X1 W

13 awj xii:

Utilizing:
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- a" a *
3wi x1 and

*

3x1 3 _ 32w

3 W1 awi2

Eii can be written as

 

 

32

w-—'—'—: 2l

E 3 3W1 = Si ' Si ' Yii (1.28)

11 “§?"" 31

SW].-

where 31’ as before, is the ratio of expenditure on ith

input to profit, i.e..

 

 
 

 

*

s = _ a 1n n = _ an ‘3; = wixi (1.29)

i 3 In W1 awi N N

Similarly 2

Wj 3 n

3.3. - .-..

E = wl VJ 2 $183 Y13 (1.30)
ij 3n Si

3wi

Partial elasticities of substitution are obtained by the

following definitions:

2

E11 ’(31 + Si + Yii)
 

 

a a =

11 Si $2

1

g Ei - ’(Sisi+ Yi'L)
1 8.8

J J 1 J

An interesting formula for the partial elasticities of

substitution is derived by substituting for Si and Sj’

E.. and EJ.-11 . from (1.28) - (1.30) which results in

J



 

 

 

 

 

2

w. 3xi* a “

1 n -——2

= 1L; 8W. 8W. 1r1r..
Oii 1 1 = 1 = 11

31: w 2 ‘ “"7 (1.31)

- aw. -i'- (3") ("1)

1 W 3w.
1

and similarly

TITI'..

0,, = ___Ll_

1‘] 1T. 1T.

1 J

This formula, (1-31), for the elasticity of substitu-

tion is Similar to Uzawa's formulation of the elasticity

of substitution which was in terms of the cost function and

its first and second partial derivatives. Here we have

shown that it is possible to formulate the Allen partial

elasticity of substitution in terms of the profit function

and its first and second partial derivatives with respect

to factor prices. This may be considered a generalization

of Uzawa's.

To summarize, the purpose of this chapter is to proe

vide a description of the theoretical issues which form the,

basis of empirical research. We have reviewed the

principle practical application of duality theory between

production and cost function, which establishes that the

two approaches are equivalent and equally fundamental. In

particular, we have studied the two main advantages of the

duality approach to the theory of production. First, the

advantage that enables us to derive, painlessly, the system
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of demand and supply equations consistent with the optimi-

zation behavior of the firm, just by direct differentiation

of cost or profit functions. Second, the advantage that the

"comperative static" results (elasticity of substitution,

etc.) associated with optimizing behavior are very easily

derived. we have then studied the concept of weak separa-

bility among inputs and have seen that the assumption of

weak separability on the cost function leads to severe

restrictions on the partial elasticities of substitution. In

this chapter we also have surveyed various functional forms;i11

particular, the many features of the translog functions have

been described. More specifically, we have seen that (i)

the translog function provides a second order Taylor's series

approximation to any twice differentiable function, and

therefore, there are no a priori assumptions on functional

form to be estimated in empirical investigations; (ii) many

economically meaningful hypotheses appear; as linear

restrictions on the parameters of the translog function and

thus may be readily tested; (iii) the translog function and

the marginal conditions are linear in parameters and hence

may be easily estimated by standard linear regression methods;

and (iv) the translog cost or production function, unlike the

CES, or CD functions, imposes no §_priori constraints on the

partial elasticities of substitution and,therefore, is

a powerful vehicle for the testing of specific functional

forms“



CHAPTER I

FOOTNOTES

1The production function f(x) is said to be bounded if

lim ————f(:x)-- o
A”

This ensures that an attainable solution exists for the

normalized profit maximization problem.

2A function is defined as being "homothetically separ-

able" if it is weakly separable and each subfunction is homb-

thetic; however, note that this does not necessarily imply the

homotheticity of the function itself in x1, ..., x3.

3

4One obvious approach is to make the common ABS, 0, a

function of some variable such as the level of output or the

factor ratio or factor share, etc. Such generalizations

have been called Variable Elasticity of Substitution (VES)

functions, and have been discussed by Ravankar (1971), Lu

??g7§%etcher (1968), Sato and Beckmann (1968), and Lovell

5

6Instead of repeating their proof of this proposition

a simpler proof is given as follows. SinceYthe translog of

the form (1.16) with symmetry imposed (Yi%j=Y311) is a quadratic

approximation (around the expansion point (1, ..., 1))

to an arbitrary production function of thexform lny= f(ln x1,

..., ln xn), by evaluating the Leontief conditions for weak

separability of the translog function (i. e. , equation (1.22))

at the point of approximation (by substituting ln x=0 in

equation (1.22) one obtains aiYk - anik = O. For the three

input case, where the third inpat is weakly separated from

the other two, this condition can be written as

For proof, see Lau (1969) p. 385.

For the details, see Denny and Fuss (1977).

“1 13 . .
-—— = ——— which 18 equation (1 25) Q.E.D.
a Y
2 23

7
To see this we substitute in Oi; for Ci Cj, and Cij

in terms of Si S , and the parameters of the translog cost

function. We1obtain C1 and C13 as follows.

74
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3C w’ S.C
- a In C a. i g . 8 1

Si. W W; '6‘, therefore Ci ~31- , and

S C 3C. S.C. . -
1 - 3 '1.

Similarly C. —%— . Then Cij 333— “aw (—w.)

. j j j 1

38 S 35 Y-
C i i 3C i 1

=- — + — . B Th C. . = Y
wi ij wi 5wj “t 5wj wj us 13

c . . .
+815j 5:53; Substituting for Ci’ Cj' and cij 1n 0.

we obtain the above formulas.



CHAPTER II

SPECIFICATION AND ESTIMATION OF INDUSTRIAL FACTOR

DEMAND FUNCTIONS WITH EXPLICIT ACCOUNT OF

INTERNALLY PRODUCED ENERGY AND MATERIALS INPUTS

2.0 Introduction
 

Tremendous increases in energy prices and interruption in

energy supplies associated with the oil crises of 1973 have led

to a rising interest in extensive research on the characteristics

of energy demand and factor substitution. The fact that the

manufacturing sector accounts for more than one quarter of annual

energy consumption in the United States has made this sector

a potential source of reduction in energy demand.

The growing number of econometric studies, which have

appeared in the literature in recent years with the objective of

examining the possibilities of dealing with continued increases

in the real cost of energy is an indication. Examples 0f

such studies are: Berndt and Jorgenson (1973), Hudson and

Jorgenson (1974, 1976, 1978a,l978b), Berndt and Wood (1975,

1979), Griffin and Gregory (1976), Atkinson and Halvorsen (1976),

Berndt, Fuss and Waverman (1977), Brock and Nesbit (1977), Fuss

(1977), Halvorsen (1977), Pindyck (1978), Berndt and Khaled (1979),

Berndt and White (1977), and Magnus (1979).

Since energy inputs along with other inputs (capital,

labor, and material) enter a producing unit's production process,

a cost minimizing producing unit responds to a continued

76
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energy price increase obviously through substitution. These

studies have sought to deal with the degree of energy

substitution with other inputs, which becomes a crucial

factor in driving policy implications(xfincreasingly scarce

and higher priced energy inputs. If one finds that energy

and labor are substitutable, then ceteris paribus, an

increase in the price of energy leads to an increase in the

demand for labor,and therefore employment rises. On the

other hand,if it is found that energy and labor are comple-

ments, then ceteris paribus, higher priced energy will

restrain the demand for energy.and the demand for labor and

therefore employment will fall. As another example, one may

consider the relation between capital and energy inputs.

If energy and capital inputs complement each other in the

production process, then any restraint on energy prices (e.g.

energy price control) will increase the demand for capital

goods.and therefore favor capital formation, while an

increase in energy cost reduces the demand for new plant and

equipment and consequently discourages capital formation. 'On

the other hand, if energy and capital inputs turn out to be

substitutable in the production process, then rising energy

prices facilitate capital formation by increasing the demand

for capital goods.

Aside from its attractiveness, the knowledge of

technical substitutability of energy and non-energy inputs

is very important in the choosing of an appropriate policy. If

nonreplenishable,cnrslowly growing energy such as oil and
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natural gas must be technically employed in fixed or almost

fixed proportion with other inputs such as labor or capital,

then the growth of real national product in resource-scarce

economies may become severely restricted in the near future.

Accordingly then, some knowledge of technical substitution

is essential for rational planning of private and govern:

ment policy concerning foreign trade and allocation of

revenues for energy resource development.

In general,it can be argued that the limited degree of

substitution between energy and non-energy inputs makes the

adjustment process by an industry to higher priced energy

somewhat difficult,and might cause a substantial rise in the

unit cost. The industry in question might even shift

the composition of the product away from an existing energy

intensive to a non energy-intensive production process.

The estimation of Hicks Allen elasticity of substitu-

tion between energy and non-energy inputs in manufacturing

have, therefore, been the center of attention in these

recent studies. Review of the literature indicates that

these estimates have not always been consistent. In fact,

we have witnessed apparently contradictory results, the

most interesting being the substitution possibilitieSr

between energy and capital,which may be summarized briefly

in two main categories,according to energy-capital comple-

mentarity and energy-capital substitutability.

Among these studies Berndt and Wood (1975), Berndt

and White (1979), Berndt and Khaled (1979), Berndt and
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Jorgenson (1973), using time series data on capital (K),

labor (L), energy (E), and materials (M) for the United

States manufacturing, have found energy and capital inputs

as complements. Similarly Fuss (1977) and Magnus (1979)

employing the above four (KLEM) time series data for

Canadian manufacturing pooled by different regions and KLE

time series data for Dutch manufacturing respectively found

the same K-E complementarity result.

In contrast to the above results, in studies by

Griffin and Gregory (1976), as well as Pindyck (l979),based

on KLE time series data pooled by organization for Economic

Cooperation and Development (OECD) countries, both

found K-E substitutability. Also Wills (1979), based on KLEM

time series data on the United States primary metal industry,

found capital and energy as being substitutable. Similar

results obtained in a study by Halvorsen and Ford (1970),

where employing cross section data on capital, two types of

labor and three types of energy by state for eight two-digit

SIC manufacturing industries, found either significant (E-K)

substitutability or insignificant (E-K) complementarity.

In contrast to the conflicting evidence from econometric

studies regarding E-K substitution possibilities, the

substitution possibilities regarding (K-L), (E-L), (E-M),

and (L-M) have been relatively consistent throughout these

studies with few exceptions. It is not, however, the

purpose of this study to reconcile these apparent contradic-

tions regarding factor substitution possibilities,since this
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has been done elsewhere.1 This study rather deals with

another subtle issue raised by Anderson (1980) in his

estimation of the united States non-energy manufacturing

sector.

In the large number of the empirical studies on the

possibilities of energy reduction in the manufacturing sector

which has been conducted in the recent years - which

were mentioned above — the most frequent model

specification has been consisted of choosing a flexible

aggregate cost function defined over four aggregate inputs

of capital services (K), labor services (L), energy (E), and

materials (M). Then, utilizing the well-known Shephard Lemma

Of the theory Of the £3393 researchers have, similarly,

obtained the industry's conditional factor demand functions,

as first partial derivatives of the industry's aggregate

cost function with respect to factor prices. In the theory

of the firm the application of Shephard's Lemma for

obtaining the firm's conditional factor demand, as first

partial derivativeszof the firm's cost function with respect

to factor prices, is based on the crucial assumption of

exogenous input prices. The analogous application of
 

Shephard's Lemma in the context of industry violates this
 

crucial assumption,and leads to an erroneous result as we

will see below.

The source of this error rests in the measure of

"output" in the industry-level studies due to the lack of

sufficiently detailed data. .Aggregate "output" and
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purchased "material" and "energy" have traditionally been

measured as "gross" magnitudes. As such, these gross

magnitudes contain the inter-industry shipment of inter-

mediate products which move between firms. Therefore, this

method measures industry-level "output" as firm's total

value-of—shipments; and simdlarly "energy” and ”materials"

as total amount of "energy" and "materials" purchased by

all the firms which comprise emu industry, regardless of

source. Thus, given these measures of gross output, energy,

and materials inputs, the application of the well-known

Shephard Lemma of the theory of the firm to obtain the

conditional factor demand function for industry fails. The

utilization of Shephard's Lemma, as was discussed above, is

based on the assumption that the prices of inputs are

exogeneous, while at industry level studies this

assumption obviously does not hold.

A glance at table (2.1)2 reveals that of the total

"materials purchased by all firms in the non-energy manufac-

turing sector a considerable portion have been produced by'

the firms within the game non—energy manufacturing sector.

These "intra-industry inter-firm.shipments" of traded

intermediate products (materials) constitute slightly more

than 60 percent of total "materials" purchased by firms

in the non—energy United States manufacturing sector.

Similarly, in the manufacturing sector (energy and non-energy

sectors combined) the intra-industry inter-firm shipment

of traded intermediate products ("materials" and "energy")
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constitute 60 percent and 20 percent of total purchase of

"materials" and "energy" respectively (see table (2.1)). The

balance of "energy" and "materials" then are imported from

outside of the manufacturing sector, and therefore,

these "imported" portions are primarily to the manufacturing

sector.

While the price of these "primary” energy and material

inputs are exogeneous in a partial-equilibrium competitive
 

industry model, the prices of the internally (within

manufacturing) produced energy and materials are not

exogeneous. These products are produced by some firms in

the industry. A portion of these products are sold to

other firms within the same industry to be used as inputs

and the rest are sold to firms, households, government,

etc., outside the manufacturing sector. This latter portion

which is delivered outside of the sector is what we
 

call "net output". Obviously, the prices of these internally

produced products, considered as the output of some of the

firms in the sector, will respond to any change in the price

of primary inputs and hence these prices must 222 be

considered as exogenous but endogenous variables in the
 

competitive industry general equilibrium model. The

application of Shephard's Lemma to obtain conditional

factor demands istherefore incorrect in these models,and

this is exactly the specification error contained in all of

the econometric studies mentioned above which have included

"materials", "energy", or both inputs.
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Having recognized the source of error in industry-

level studies as the employment of concepts, such as gross

industryoutput, aggregate "energy" and "materials” inputs,

which include intra-industry shipments of intermediate

products moving between firms, we consider an alternative

specification for non-energy manufacturing and manufacturing

sectors (non-energy as well as energy sectors combined). In

this alternative specification, we consider the aggregate

cost and factor demand functions not conditional upon the

"gross" output, but properly upon the level of the output

delivered by the manufacturing sector to the rest of the
 

economy, i.e. upon "net output level of the manufacturing

sector.

Nearly all energy policy discussions are, correctly,

concerned with the energy intensity of the products delivered

by the manufacturing sector to the balance of the economy,

i.e., we are interested with estimates of the potential

reduction in energy consumption for each level of the sector's

"net" output (i.e., net output held constant). Therefore, it

is proper to estimate the price elasticities of factor demand

and elasticities of factor substitution conditional upon the

level of net output. In contrast, in the "gross” model for-

mulation of the manufacturing sector, the researcher is forced

to include internally produced and traded intermediate products

as an input. Holding each firm upon its initial isoquant

(i.e., gross output held constant), an increase in the

industry's price for a primary factor (e.g., energy) will
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urge each firm to change its input mix away from.energy and

toward other factors. This, however, will increase every

finm's unit cost, and therefore the price of its output.

Consequently firms will attempt to substitute away from

energy and away from the products produced by the other

firms within the industry. Such an adjustment will alter

the net output of each firm delivered to the rest of the

economy (since each firm.was assumed to be upon its initial

isoquant). Thus, the "gross" model formulation does not

provide an appropriate context for a meaningful energy policy

discussion since the industry's net output oscillates as

primary factor prices change.

In this study we estimate the U.S. non-energy

manufacturing sector as well as the manufacturing sector

(non-energy and energy producing combined) for the 1947-71

period, separately. In our model specification for the Egg;

energy manufacturing sector, like Anderson (1980), we emphasize

the role of "materials" inputs, having netted out "gross"

materials of intra-industry shipments of intermediate»

products which move between firms. We have then employed

in our model the resulting primary materials input along

with the other primary inputs of capital, labor, and energy.

Our data, however, is different from.that of Anderson's (1980).

In his study of non-energy manufacturing, Anderson has

utilized capital, labor, and energy data developed and

utilized by Berndt and Wood (1975) in their study of the
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United States manufacturing. He then has constructed the

"primary" materials data from Faucett Associates (1973). But

one must realize that the capital, labor, and energy data

used by Berndt and WOod (1975) are not appropriate for non-

energy manufacturing studies, since they have modeled the

manufacturing sector which combines the energy as well as non-

energy sector. To study the non-energy sector, therefore,

a different and more appropriate data set must be utilized.

Thus, for the purpose of estimating the non-energy manufac-

turing sector, we employ the capital, labor, and energy data

corresponding to the non-energy sector developed and used by

Hudson and Jorgenson (1974) in their study of the business

sector of United States economy-which has been subdivided

into nine industrial groups, non-energy manufacturing being

one of themn-while the required data on materials, for the

non-energy sector, has been constructed from Faucett Associates

(1973), with consideration of inter-firms flow of materials
 

input.

However, to analyze more completely the structure of

technology in United States manufacturing-which is, tradition-

ally, the non-energy and energy sectors combined-we employ

the capital and labor data developed and used by Berndt and

Wood (1975), while the energy and materials data have been

constructed from tables in Faucett Associates (1973), again

with careful consideration of inter-firms flow of traded

intermediate products (energy as well as materials inputsB).
 

we conclude our discussion by noting that in nearly
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all of the industry-level studies the failure of researchers

to consider the role of inter-firms flow of intermediate

products (energy and materials inputs), which have been

included in their "gross" measure of aggregate "output",

"energy", and "materials", has introduced a serious specifi-

cation error and internal inconsistency,due to improper

consideration of these aggregate energy and aggregate

materials prices as exogenous and subsequent application of

Shephard's Lemma, when. in fact these prices are endogenous

and the application of Shephard's Lemma must be considered

as improper.

Considering these issues, this study will provide

technological substitution possibilities (the Allen

elasticities of substitution) between energy and non-energy

inputs, which challenge theexisting estimates of these sub-

stitution possibilities. One must note, however, that these

Allen elasticities of substitution have been measured not

along an aggregate isoquant for firm's total value-of-shipment

but along an isoquant corresponding to the total deliveries

(total sales) of the manufacturing sector to the balance of

the economy (outside of the manufacturing sector), due to

considerating and purging the aggregate energy and materials

input of' inter-firms flow of traded intermediate product,

i.e., internally produced energy and materials.

In Section 1 we discuss a model of an industry's

conditional factor demand functions derived frontthe industry's

dual unit cost function and show the consequence of the
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application of Shephard's Lemma,when some factor input prices

have been assumed, improperly, as exogenous. In Section 2

we briefly describe the translog cost model and estimation

procedure,and then report the results of estimation.

2.1 A Simple Industrial Factor Demand Model
 

Consider a competitive industry composed offin firms,

each producing a single product according to a positive,

nondecreasing, continuously twice differentiable, and

strictly concave aggregate production function. Each firm

purchases, as its inputs, r primary products - primary in

the sense of being produced outside of the industry in

question - and (n-1) products produced by the other firms

which comprise the industry. We also assume that no firm

buys any product from itself in an observable market trans-

action; and that the industry purchases the r primary inputs

at constant prices .

We may recall from chapter one that, assuming perfect

competition, each firm's dual unit cost function can be
 

obtained as a result of minimizing the cost equation

subject to its production function, i.e.,

r

i .
c w ,...,w ,w ,...,w ) = min { w x.

( l r r+1 r+n x kgl k1%:E+1Hj1J

i
| f (xil’...,xir,...,xi,rm) :1}

1=l,...,n; (2-1)
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where wk(k=l,...,r) are the prices, and xik(k=l,...,r) are

the quantities of primary factor employed by ith firm in the

industry, while wj(j=r+l,...,r+n) are the market prices,

and xij(j=r+l,...,r+n) are the quantities of n products

produced and sold to the ith firm by the other firms which

comprise the industry. ci(-) and fi(-) are the ith firm's

unit cost and production function respectively.

The unit cost function for the ith firm is obtained

from (2.1) as:

. r

.1 ._.
c (Wl"'"wr’wr+l"°°’wr+n) - kglwkx1k(wl""’wr’wr+1"'°wr+n)

r+n

*ng-H-wjxij (w1,.. . ’Wr’ Wr+l" . . , wr+n)

(2.2)

where ka and xgj are the cost minimizing levels of the kth

primary and the jth “non-primary input employedby the ith firm,

and ci(-) is its dual unit cost function. By applying the

well-known Shephard's Lemma to the cost function of a

competitive firm, equation (2.2), the conditional factor

demand function can be derived, assuming that the firm is

facing exogenous input prices.

An advantage of dealing and starting with the cost

function is that the set of factor demand functions is

available directly from the cost function as the first

derivative of the cost function without solving a set of

simultaneous equations.



90

These results, however, can be extended to include

explicit consideration of the internal flow of traded

intermediate productsirnthe industry, thereby showing

how failure to account properly for the traded intermediate

goods results in substantial errors in the estimated factor

demand e1asticities-errors which are implicit in most of the

recent empirical studies of manufacturing factor demand

functions.

Starting with the unit cost function of the ith firm,

expressed in equation (2.2) above, and differentiating it

with respect to the price of the kth primary input we obtain:

1

3C ('2 g *

awk xik(W1""'wr'wr+1" "wr+n)

1' a
*

+ kglwk awk xik<w1"'"wr’ wr+1"°"wr+n)

r+n
a *

+ J=E+1 wj awk ij(Wl""’Wr’ wr+1"°°’wr+n)

r+n 3W-

_.1 -k

+ j=§+1 BWk xij(w1""’wr’
Wr+l""wr+n.)

i = l,...,n. (2.3)

Now let us regard this single firm in isolation from the
 

others. Since a competitive firm considered in isolation

faces exogenous input prices (by definition), then it must
 

be true that:
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3W

3 = 0, j=r+l,...,r+n; and k=l,...,r . (2.4)

“k

Equation (2.4) means that any change in primary factor prices

induce no effect on the prices of the inter-firm flow of

traded intermediate products used as materials input. The

“other two terms on the right hand side of (2.3) may be

written as:

3

r rEn

w ——

j=r+l 3 3W1:

3

glwk 5‘71: ka(') + W — xinn“)mBW

r+n
X a

m-l m

k x§j(.) =

(2.5)

Since x§m(-Ys are the factor demand functions,and therefore

are homogendous of degree zero in the set of all factor

prices, equation (2.5) must be identically equal to

zero by Euler's theorem.4 Thus equation (2.3) reduces to:

i

S.C—Lil a: *
awk xik(w1""’wr’ Wr+l’°"’wr+n) , (2.6)

which has the. familiar interpretation. Therefore, in the

case where we consider each competitive firnxfacing

exogenous factor prices,in isolation from all other firms,
 

the first derivative of the firm's unit cost function results

in the set of factor demand functions, and that is what

Shephard's Lemma is all about.

The model formulated in equation (2.1) to (2.6) is

the one used empirical specification of factor demand

studies in U.S. and Canadian manufacturing in recent
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years. In these studies the services of four aggregate

inputs have been utilized: capital services (K), labor

services (L), energy (E), and materials (M). The first two

items are clearly primary to the manufacturing sector of

the economy,and do not concern us here. The problematic

issue is the treatment of the "materials" and "energy"

aggregates,since they are composed of both "primary" material

and energy, such as transportation, communication services,

crude petroleum, and electricity, and industry-produced traded

intermediate products such as plastic, steel, glass, kero-

sine, and jet fuel . While the exogeneity of prices for

the former group may not be questionable, the prices of the

latter group undoubtedly must be considered as endogenous
 

variables in the study of an industry's demand for primary

inputs such as capital, labor, and primary materials.

The case considered above,where we assumed that the

competitive firm is isolated from the other firms may be termed

the'gross output" model of industry factor demand,because

the input demand functions of each firm were obtained

conditional upon a Constant level of output for each firm.
 

To study an industry the interaction between the firms

which comprise the industry must be taken into account.

Hence, it is totally unrealistic to assume that the firms

behave in isolation from each other. It is also unrealistic

to assume that the pricescfiftraded intermediate products

- which are equal to the unit cost of their production in

perfect competition - will not be affected by changes in the
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prices of the primary inputs facing the industry. An expected

repercussion of a change in the price of a primary input, in

the analysis of industry level factor demand functions, is

that the gross output level of each firm may not remain con-

stant. On the contrary, the firm moves off its initial iso-

quant, following a primary price change, due to the attempt of

the other firms (within the industry) to substitute toward, or

away from, the use of the firm's product as an intermediate

material input. Then in this model (entitled a "net" model by

Anderson (1980)) the inter-firm flows and gross outputs of the

n traded intermediate products are supposed to respond and

adjust as their market prices vary, due to a change in the

price of a primary input, while maintaining a constant level

of industry deliveries (net output) of these products outside

of the manufacturing sector. Therefore, the case most expected

is that of an increase in the supply price of a primary factor

used by the industry that will disturb the existing equili-

brium, and eventually increase the costs and thereby the price

of the internally traded intermediate products. Even in the

cases that a firm does not purchase a particular primary factor

directly, in an indecomposable industry every firm necessarily

purchases directly, or indirectly, some quantities of every

primary factor.5

Ignoring the effect that a change in primary factor

price could have on the price of internally traded intermed-

iate products is precisely the specification error contained

in the past studies.

The mathematical demonstration of this error, which
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has resulted from the unjustified assumption of exogenous

"energy" and "materials" input prices, is as follow. Start-

ing again from the cost function of the ith firm.and taking

its derivative with respect to the kth primary input we obtain

equation (2.3) which we reproduce here:

i . r ax* (.) r-l-n 3x* (.)

3£3é_1.= x*k(.) + 2 Wk __iE___. + w __£l___

k 1 k=l Wk j=r+l 3 Wk

“,3 331+ x#.(-), i=l,...,n.

j-r+l Wk 13

(2.3)

Again according to Euler's Theorem, equation (2.5) holds,

but we relax the assumption we made in equation (2.4), which

was the result of considering the competitive firm as being

isolated from all other firms in the industry and being

faced with exogenous factor prices. Therefore we make the

following more realistic assumption, namely,

3w.

fiwl # O for all or some of j==r+l,...,r+n.

k

(2.7)

Considering (2.7) and (2.5), equation (2.3) reduces to:

8ci(-) * r+n 3w. * 1 2 8

' a . + C . . . = O O O ; 0

3wk wik( ) j'§+l awk le( )' l ' 'n ( )

which is the result of considering the pj's as properly being

endogenous to the industry model. From the above argument

it is clear that.in order to apply Shephard's Lemma,the items
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labeled as "energy" and "materials” must refer solely to

the primary materials and energy which have been purchased

by the firms which comprise the industry,and must not

include the firms' purchases of traded intermediate products;

and traded intermediate products must be netted out. This is

the case whichwe may term the "net" output model of industry

factor demand, where the cost and the factor demand functions

may be utilized conditional upon the level of deliveries

(total sales) of an aggregate manufacturing sector to the

balance of the economy (outside of manufacturing sec-

tor), i.e..,.upon the "net" output level of the manufacturing

sector.

Next we may consider the response of conditional

factor demandstx>a change in primary factor price

by these "net" and "gross" models. Differentiating the

conditional factor demand function (2.6) - for the "gross”

model - and (2.8) for the "net" model - with respect to the

prices of primary factor 5 = l, ..., r, respectively, we

obtain from.(2.6):

2 i

M: _§__ * . '= . =

awka Ws aws xik(. )3 l l,...,n, k,S l,...,r
(2.9)

and from (2 . 8) :

O 2

2 1 r+n a w

—— = — x. (.) + }' x‘é’.(-)
awk aws aws 1k j=r+l awkaws 13

r+n 3w 3

___. s

+ j=az:+1 aws Wk xiJ' )
(2.10)
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Comparison of (2.9) and (2.10) obviously reveals the

different responses of these two models to a change in a

primary factor price. The first term on the right hand

side of (2.10) is equivalent to (2.9), which according to

the law of demand for factors is negative or equal to zero

for k a s = l,...,r; i.en the conditional demand curves for

each factor are downward sloping. This follows from the fact

that the cost function is concave in input prices, and that

the second derivative of a concave function is non-positive.

This term can be regarded as the direct effect of a change

in primary factor prices. The other terms on the right

hand side of (2.10), representing the terms relating to

the effects on total unit cost of substitution among

intermediate products within the industry, can be

regarded as indirect substitution among primary factor inputs.

The different responses of these two models may also imply

different factor demand elasticities as can be seen from

equations (2.9) and (2.10).

One must, however, note that under two special circum-

stances both the "net" and the "gross" model will be equivalent:

first, if the firms comprising the industry employ a fixed

coefficient Leontier technology with, obviously, no induced

factor substitution among the traded intermediate products;

second, if there are no traded intermediate products. In

this case the traded intermediate products must have been

netted out in terms of their primary factor content.‘5 One

also must realize from equations (2.9) and (2.10) that the
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"gross" model can be considered a special case of the more

general "net" model.

In the next section we briefly describe the translog

unit cost function and the system of share equations derived

from it, then describing the estimation problems associated

with the system of share equations, finally presenting the

empirical results based upon the U.S. manufacturing and the

U.S. non-energy manufacturing data,and comparing these results

with other studies.

2.2 Empirical Specification and Estimation
 

As was discussed in the previous chapter, the

fundamental result of the duality theorem states that, given

certain regularity conditions, the specification of the

production function implies a particular cost function and

vice versa. Therefore, the structure of technology can be

studied empirically employing either cost or production

function - the choice being a statistical matter. Direct

estimation of the production function is attractive when the

output level is endogenous, while direct estimation of the

cost function becomes more attractive whenever the level of

output is exogenous.

Suppose the technology for the manufacturing sector

can be represented by a positive, finite, continuously twice

differentiable, strictly monotone increasing, and strictly

concave aggregate production function as:
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Q = F(K,L,E,M) (2.11)

where (K,L,E,M) are the input quantities of capital services,

labor services, primary energy,and primary materials. We

further assume that any technological change affecting the

aggregate inputs of K,L,E, and M is Hicks neutral. Now

given the production function (2.11) and the vector of input

prices, (WK, WL, WE, WM), the corresponding dual cost function

of the manufacturing sector can be obtained as the solution

to the following constrained minimization problem:

cch,wL,w M;Q) E LmEnM {WKK+WLL+WEEWMM|F(K,L,E,M) : q}.

(2.12)

Further, if the production function is assumed to be a first

degree homogeneous function in input space,then the cost

function (2.12) factors into the following expression:

C(WK, WL’WE’WM'Q) = Q-Kc(W ,WL ’EW ,WM) (2.13)

where c(-) is the manufacturing sector's unit cost function.

For the purpose of estimating the unit cost function.

c(°), a specific functional form.must be employed. Until very

recently the estimation of the parameters of the cost or

production function has been based upon highly restrictive

functional forms, the most popular being the Cobb-Douglas

and C.E.S. The shortcomings of these functional forms - as

we have seen - have led researchers to employ a relatively

new generation of flexible functions such as the translog,
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generalized Leontief, etc . These functional forms permit

the technology to exhibit an arbitrary set of partial

elasticities of substitution between pairs of inputs at a

given point in input price or quantity space. These

functional forms, therefore, offer substantial gain of

flexibility and create a great opportunity for the investi-

gator to test important maintained hypotheses of previous

works. With these points in mind the functional form we

choose to work with is necessarily of this family. In

particular we choose to work with the translog functional

form proposed by Christensen, Jorgenson, and Lau (1971).

This function provides a second order local approximation to

an arbitrary underlying function about a point.

Therefore, we assume that the unit cost function can

be approximated up to the second order by the following

translog cost function:

1n C(W) = (10+: aiani+g Z Zyij 1nWian., i,j=K,L,E,M;

1 1 J 3 (2.14)

where (yij) is a symmetric matrix. The equality of

yij yji is a necessary for the applicability of Young's

theorem to integrable functions, and as Denny and Fuss (1977)

have stated in proposition (1) of their paper,the symmetry

constraints must hold when one views the translog function

as a quadratic approximation to an arbitrary cost function.

Recalling the Samuelson (1947) - Shephard (1953)

duality theorem of chapter one, if we differentiate the
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unit cost function with respect to the price of an input we

obtain the derived demand for that input. Therefore, assuming

cost minimizing behavior and industry-level exogenous factor
 

prices, we apply Shephard's Lemma which yields a set of

estimable factor share equations linear in logarithm.of

factor prices,

= a 1n c = - - _
Si W mi '1‘; Yij ln Wj, 1,1 - K,L,E,M

(2.15)

where Si is the cost share for ith factor. To correspond

to a well-behaved production function, a cost function must

be homogeneous of degree one in factor prices. This yields

the following set of parametric restrictions:

201:].

[
‘
4

LY" - 2y.. 3 X y.. = 0 (2.16)

i 13 j 13 i ' 1.]

I
—
l

These restrictions will be imposed throughout the chapter.

Following Uzawa (1962) the Allen partial elasticity‘

of substitution (AES) can be computed from the cost function

by the following formula:

(’13- = «3.0) -’cij(W_.Q)/ci(fl.Q)-cj(_1~1.Q) (2.17)

and since c(W,Q) = Q-c(W), equation(2.17) can be reformulated

in terms of the unit cost function:

Oij = c(W)- cij(W)/ci(W)cj(W), i,j = K,L,E,M (2.18)
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2

= 3c 3 3 c
where ci SWI" and cij SHEEN; . Clearly, as has been seen

from the above formulas, AES's are variable. For the trans-

log cost function,we earlier saw that the own and cross AES

could be derived as:

 

7..

= 1' O O

(Y .-S-)
- i 1

on — 1+ 1 (2.19)

S i

The corresponding own and cross~price elasticities of demand

for factors were obtained as:

.. 0.. .

1J 1J J

”ii = oii Si 1,3 = K,L,E,M; (2.20)

where nij (cross-price elasticity of demand) measures the

percentage change in derived demand for input i for an

exogeneous change in the price of input, given.that all other

input prices and output quantity remain constant. Note that

while cij = 0.ji by definition “1' # "ji in general.

J

To characterize the structure of technology of the

manufacturing and non-energy manufacturing sectors, we

estimate separately the parameters of the unit cost function,

using the stochastic version of the cost share equations

(2.15) as a multivariate regression system. To do this we

specify an additive disturbance pi for each of the share
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equations on the assumption that entrepreneurs make random

errors in adjusting to their exact cost-minimizing input

levels.

The disturbance pi'S are likely to be correlated,

because random deviation from cost minimization should affect

all of the market for the inputs, and hence the estimation

procedure suggested by Zellner (1962) is expected to yield

more efficient estimates. Because of adding-up constraints

on the cost shares-which imply a zero sum of disturbances

across the four equations at each observation-togethe ‘with

the symmetry restrictions across equations, one of the cost

shares must be deleted to avoid a singular estimated

disturbance var-co 'matrix.

By deleting one of the share equations from the system

the Zellner procedure can be made operational; however, the

estimate so obtained will not be invariant to which equation

is deleted. Barten (1969) has shown that the maximum likeli-

hood estimates of the system of share equations with one

equation deleted would be invariant to which equation is

dropped.

Kmenta and Gilbert (1968) and Dhrymes (1970) have

shown in a series of Monte Carlo experiments that the

iteration of the Zellner (IZEF) estimation procedure until

convergence results in estimates which are identical to

those of maximum likelihood estimates. Accordingly the

application of the iterative Zellner estimation procedure will

yield, computationally, maximum likelihood and therefore
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consistent and asymptotically efficient estimates for the

parameters of (2.15). This is the procedure we employ here.

In preliminary application of IZEF procedure to our

data we have found a substantial degree of serial correlation

in the postwar U.S. manufacturing and non—energy producing

manufacturing sectors. To increase the efficiency for this

case we assume that the additive disturbance term, ui, in

each input share equation is both serially and contemporan—

eously correlated.

As was discussed above, the adding-up constraint on

the dependent variables (2.151 together with the symmetry

restrictions across equations imply the parametric restriction

of (2.16) which in turn requires that one cost share equation

be omitted. Therefore, imposing parametric restriction (2.16)

on the system of equations (2.15), and adding an additive

disturbance term “i to each of the equations we find:

Sit = “i + Z Yij 1“ (th/WMt) + “it i’j='K'L'E;
J t=1,,,,,1~ (2.21)

writing (2.21) in matrix notation we have:

        

( 1 f N (11 3 r 3

SKt “K YKK YKL YKE “(Wm/Wm) “Kt

SLt = °‘L YK1. YLL YLE “(Wm/Wm) + “Lt ,

(Sat, LO'E YKE YLE YEEJ \ lnmst/WMt), (“Buy

or more compactly:

-S-t = Tflt + lit . (2.23)
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Following Berndt and Savin (1975), we assume that the

autoregressive process is first order, and that the vector

of disturbances satisfies the following specification:
P-t

-'-'-t = R y—t-l + E—t , (2.24)

where 5t is a 3x1 vector of random disturbance terms with

the following property:

Gij for t=s

e. ) = i,j = K,L,E, (2.25)

O for t#s

and R is the following three by three matrix of the assumed

first-order autocorrelation process:

r \

pKK pKL pKE

pKL pLL pLE

pLE pLE ”EBJ  

Lagging and rearranging (2.23) and (2.24),we obtain

the following difference equation system:

RFW
1 ' _t-1 + at t=2.....T (2.26)at = r1, + Rat-

As it might be clear, this difference equation system has

non-linear terms due to combination of the paramters R and

r. Further we assume that the vector of the random variable

t is normally distributed with mean zero and cov matrix 9
t

with elements aij as in (2.25), where n is equal to £01 and
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r )
GKK .5KL 5K2

2 = 6KL 5L1 5LE

LSKE 51E SEE  

One must note that the error specification (2.24).

used by Hendry (1971), is in fact a generalization of the

specifications utilized by Zellner (1962) and Parks (1967).

If pij = 0 for all i and j, we have Zellner's specification

of contemporaneous correlation but no autocorrelation;

while if pij - 0 only for i f j, we have Parks' case of

first-order autocorrelation in each equation,as well as

contemporaneous correlation. Parks' diagonal specification,

however, is not applicable for our model since the maximum

likelihood estimates so obtained will not be invariant to

which equation is deleted. This difficulty, however, can

be overcome if we choose the R matrix as a diagonal matrix

with equal elements (scalar matrix),i.e.,pii = p and

pij = 0 for all i and j (see Berndt and Saving (1975)).

,In this chapter,we specifically have estimated four

specifications, namely, the unrestricted R.matrix,symmetric

R matrix, the scaler R matrix, and finally the null matrix

(R=0). The results for manufacturing,as well as non-energy

manufacturing sectors,are reported in table (2.2) and (2.3).

The hypothesis that R is the null matrix (R=0) is

decidedly rejected for both sectors. The hypothesis that R

is diagonal (with equal elements) is rejected for the manu-

facturing sector. For the non-energy manufacturing sector,
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this hypothesis is rejected at the five percent level, but

accepted at the one percent level, since the value of the

LR test statistic (19.24) falls between these two x2 critical

values. Finally, the hypothesis that R is a symmetric matrix

cannot be rejected for the non-energy manufacturing sector,

while for the manufacturing sector this hypothesis is

rejected at the five percent level but accepted at the one

percent level.

We now proceed to our discussion of the empirical results

in the next section.

2.3 Empirical Results
 

We have characterized the structure of technology in

U.S. manufacturing as well as non-energy manufacturing over the

1947-1971 period by the estimation of a translog unit cost

function (2.14) through the system of share equations (2.26)

with linear homogeneity restrictions (2.16) imposed. These

IZEF estimates shown in Tables (2.2) and (2.3) are based on the

corresponding data for input prices and cost shares, where

data construction and sources have been discussed in the

appendix. Before proceeding to the price and substitution

elasticities it is necessary to discuss and establish whether

the estimated translog unit cost functions for both sectors

are well-behaved.

A cost function is said to be well-behaved if it is:

(i) concave in input prices and if (ii) its derived condi-

tional input demand ftmctions are strictly positive. Since the

translog cost function doesrun:meet these conditions globally,
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we must look for the fulfillment of these restrictions at

each point of observation. The second condition, namely the

positivity, is satisfied if the fitted cost shares are

positive. Based on our IZEF parameter estimates, we have

found that this condition is satisfied at each annual

observation for both sectors. To check the concavity, we

must look for a negative semi-definite Hessian matrix. ~

Again, based on our IZEF estimate this condition is also

satisfied at most of our annual observations,and we can

conclude that our estimated translog unit cost functions

are well-behaved for both sectors.

The empirical results presented in Tables (2.2) and‘(;2.,3)

show that most of our IZEF parameter estimates are different

from zero at afive percent level of significance for the

manufacturing as well as the non-energy manufacturing

sector. Each sector has been estimated with and without

the autocorrelation correction. As is apparent from the

Tables,the estimation of both sectors without autocorrelation

results in low values of Durbin-Watson statistics, suggesting

that our system of regression equations has disturbances '

which may be both serially and contemporaneously correlated.

Correcting for such a correlation as was described, substan—

tially improves our Durbin-Watson statistics for both sectors,

as can be seen byaidirect comparison between the two models.

Improvement also occurs in the conventional R2 (computed as

one minus the ratio of the residual sum of squares to the

total sum of squares in each equation), and in the logarithm

of likelihood function after this correction, (see Tables).
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The estimated Allen partial elasticity of substitution

(AE8), Oij’ and the own and cross-price elasticities, nij’

for capital, labor, energy, and materials inputs obtained

from.the cost function are reported for the manufacturing

and non-energy manufacturing sectors in Tables (2.4) and (2.7).

Elasticity estimates are the essence of this study. Since

these estimates are fairly stable over the period of the

study,we only present the results for three selected years.

We will make some comments about them and compare them.with

the results of other studies. In particular we are interested

in comparing our manufacturing results - as results obtained

from our "net" model - with those of Berndt and Wood (1975),

interpreted as the "gross" model. we then talk briefly about

the non-energy manufacturing sector. Tables (2.8) and (2.9)

presents a summary of some comparable estimates from other

studies.

A direct comparison of our AES, o.., and the own and

13

cross-price elasticities, n.. with those of Berndt and Wood1 .

(1975) reveals that both set: of parameter estimates are in

substantial agreement at least in terms of signs, with the 011

(K,L,E,M) and "ii (K,L,E,M) all having the correct negative

sign implied by satisfaction of the concavity condition. On

the other hand, the magnitude of difference between our substi—

tution and price elasticities and those of Berndt and Wood is

quite sizable, and we should make a few comments about them.

Comparison of our energy-energy AES, GEE, with that

of Berndt and Wood reveals that this elasticitity has changed

substantially from -lO.7 to -2.0, while the important own-price
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elasticity of energy, "EE’ has increased to about -.13 from

-.47, namely, about one-third of the value obtained from the

inconsistent gross output model of Berndt and Wood (1975),

Berndt and Khaled (1979), and Berndt and White (1979). This

means that the response of energy demand for changing energy

prices (in the net model) is likely to be more inelastic

than in the gross output model. Our inelastic result may

indicate that, after an energy price increase, each firm finds

itself facing higher priced produced inputs, including

intermediate energy products as well as higher priced energy

input; therefore the substitution possibilities away from

energy would be smaller than if only energy increased in

prices. An alternative estimate of own price elasticity

is provided by Pindyck (1979) and also by Griffin and Gregory

(1976). Using pooled international data, they argue that

their estimates "provide a reasonable long run alternative

to the time series literature" on energy, capital, and labor

substitution elasticities. They report a "long-run” own

price elasticity for energy of about -.08. whereas the estimates

of the other time series studies,which probably elicits a

short-run elasticity have generally been reported to be

around —.4 to -.5.

Comparing our estimated 011 (K,L,M) with those obtained

by Berndt and Wood exposes the difference between these two

studies. While our own AES for capital and labor increase

to -2.12 and -.66 respectively form -8.75 and -l.66 estimated

by Berndt and Wood, our own AES for materials fell to -.75

from their estimate of -.36. Our estimate of OKK’ however,
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TABLE 2 . 4

MAXIMUM LIKELIHOOD (IZEF) ESTIMATES OF THE

ALLEN ELASTICITIES OF SUBSTITUTION (AES)

UNDER FIRST ORDER AUTOCORRELATION

SELECTED YEARS, U.S. MANUFACTURING

 

 

AES 1948 1959 1971

OKK -l.29 -2.12 -l.10

OLL - .69 - .66 - .61

GEE -3.02 -2.04 - .60

OMM - .70 - .75 .70

URL .17 .31 .30

OKE - .98 - .90 -2.16

OKM .27 .35 .08

OLE .53 .48 .44

ULM .59 .58 .62

.17 .02 - .05
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TABLE 2.5

MAXIMUM LIKELIHOOD (IZEF) ESTIMATES OF

PRICE ELASTICITIES OF CONDITIONAL FACTOR DEMAND

UNDER FIRST ORDER AUTOCORRELATION (UNRESTRICTED R)

SELECTED YEARS, U.S. MANUFACTURING

 

 

nij 1948 1959 1971

”RR -.11 -.22 -.08

”KL .07 .14 .01

0KB -.07 -.06 4.12

"KM .11 .14 .03

"LR .Ol .03 .002

nLL -.30 -.29 -.28

"LE .04 .03 .02

"LM .24 .23 .26

“ER -.09 -.09 -.15

"BL .23 .21 .21

“EB -.21 —.13 -.03

”BM .07 .Ol -.02

“MK .02 .04 .01

"ML .26 .26 .29

"ME .01 .001 -.002

-.29 -.29 -.29



MAXIMUM LIKELIHOOD (IZEF) ESTIMATES OF THE

ALLEN ELASTICITIES OF SUBSTITUTION (AES) UNDER

FIRST ORDER.AUTOCORRELATION (UNRESTRICTED R)

SELECTED YEARS, U.S. NON-ENERGY MANUFACTURING
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TABLE 2.6

 

 

AES 1948 1959 1971

CKK - 1.99 - 1.99 - 1.80

CLL - 1.73 - 1.53 - 1.38

GEE -28.41 -29.72 -28.88

OMM - 1.63 - 1.85 - 1.80

OKL .67 .70 .65

OKE - .07 - .10 - .33

OKM .12 .06 - .14

OLE 1.44 1.43 1.39

OLM 1.43 1.44 1.41

OEM .78 .75 .76



MAXIMUM LIKELIHOOD (IZEF) ESTIMATES OF

PRICE ELASTICITIES OF CONDITIONAL FACTOR DEMAND

UNDER FIRST ORDER AUTOCORRELATION (UNRESTRICTED R)

SELECTED YEARS, U.S. NON-ENERGY MANUFACTURING

115

TABLE 2.7

 

 

nij 1948 1959 1971

”RR -.32 -.33 .24

"KL .28 .31 .30

"RE -.002 -.003 -.01

"KM .05 .02 -.05

“LR .ll .12 .09

”LL -.72 -.68 .65

“LE .04 .04 .04

“LM .56 .52 .52

“BK -.01 -.02 -.O4

“EL .60 .63 .65

"BE -.89 -.89 -.89

”EM .31 .27 .28

”MK .02 .01 4.02

"ML .59 .64 .66

”ME .02 .02 .02

-.64 -.67 -.66
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is in the range estimated by Pindyck (1979), while our °LL

estimate is close to the estimated Berndt and Khaled obtained

from.their more general specification.

Looking at our own-price elasticities in Table (2.9),

and comparing these with those of Berndt and Wood, we realize

that these estimates have the correct negative sign required

for stability. However, our “ii (K,L,E,M) for capital, labor,

energy, and material, being -.22, -.29, -.l3, and -.29

respectively, are more inelastic (except for nMM) compared

with these elasticities estimated to be, -.48, -.46, -.47,

and -.22 respectively by Berndt and Wood.

Another interesting result is that the controversial

energy-capital complementarity relationship persists in this

study, though considerably weaker compared with estimates

obtained in other studies, numerically our OKE = -.90 versus

-3.14 of Berndt and Wood. The corresponding cross-price

elasticities of ”RE = -.06 and ”EK - .09 show that capital

(energy) is less responsive to a change in price of energy

(capital) in this study than in Berndt and Wood's.

The labor-capital substitution elasticity of .31,

which we have found, is well below that obtained in other

studies. For example, Berndt and Wood found labor and

capital quite substitutable, and have placed the estimate of

“KL around 1.01, which is consistent with numerous traditional

two input (capital-labor) studies. Our finding of lower

“KL is, however, in line with the CES literature as surveyed

by Nerlove (1967) and Nadiri (1970), which places the esti-

mate of ”KL between .3 and .7. It is also consistent with
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the translog study by Griffin and Gregory (1976), which

places this elasticity between .39 for United Kingdom and

Belgium and .52 for Denmark, while their estimate of OKL

for U.S. is considerably lower at about .06. The correspond-

ing ”KL and ”LR in our study are .14 and .03 respectively,

which are, respectively, about one-half of the estimates

reported by Berndt and Wood.

Energy and labor are slightly substitutable in our

"net" model as well as in the "gross" model with an AES of

.50. Substitution possibilities between energy and material

were found to be very limited in this study, compared to what

Berndt and Wood have found in their study. The cross price

elasticity of materials with respect to the price of energy

falls from .03 (estimated by Berndt and Wood) to almost zero

(.001). The cross price elasticity of energy with respect

to price of materials fall to .01 from .47 obtained by Berndt

and Wood.

As for our manufacturing sector,we conclude that our

findings on the ABS and input price elasticities are in general

agreement with past literature at least in terms of signs.

But as far as the degree of these estimates is concerned,we

observe that a respecification of our model over the net

industry output and primary factors of production will result

in a fall in the absolute value of these elasticities. We

also observe that the technological possibilities for

substitution between energy and non—energy inputs are

present but to a very limited extent. Specifically energy

appears to be a complement with capital, while it is rather



120

weak substitute for labor and materials. Our estimates of

price elasticities suggest that higher priced energy

- ceteris paribus - causes a slight decline in the quantity

of capital and energy demanded, and at the same time,

leads to an insignificant increase in demand for labor and

material.

As for the non-energy manufacturing sector, the results

on the AES and own and cross-price elasticities are presented

in Tables (2.6),(2.7), (2.10),and (2.11). Looking at these

elasticities, we find that these estimates are also in general

agreement with other studies,at least in terms of signs.

However, the magnitude of these estimates are quite different

from those reported in other studies. For comparison "

purposes, Hudson and Jorgenson (1974) could be quite useful,

as their study contains the non-energy manufacturing sector

as one of the nine sectors into which they have subdivided

the U.S. business sector; unfortunately, they have not reported

estimated substitution or factor price elasticities. Here we

make the following comments about our findings for the

non-energy manufacturing sector.

(1) The estimate of the own price elasticities of

factor demand,nii (i - K,L,E,M).indicate that labor, energy,

and materials are quite responsive to a change in their own

prices, "EE is about -.89.while "LL and "MM are -.68 and

-.67 respectively. Capital appears to be less responsive.

as "KR is about -.33.
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(ii) again as expected, we find that capital and

energy are complements, though substantially weak, even

substantially weaker than what we found in the manufac-

turing sector. OEK is about -.10, and the corresponding

cross—price elasticities, “KE’ ”EK’ are about -.003 and 0.02.

(iii) Energy and labor appear to be quite

substitutable with the estimated AES of about 1.40 versus

the weak result obtained in our manufacturing model or in

other studies. The estimated cross-price elasticities, ”LE

and ”EL’ are .04 and .63 respectively, more responsive

than suggested by the estimates we found for our manufacturing

sector.

(iv) Capital and labor are slightly substitutable

with OKL of .70, although this substitutability appears to

be stronger than the one we found in the manufacturing

sector.

(v) Energy and materials remain weak substitutes

with an AES of about .75, which is about the same value found

by Berndt and Wood, and stronger than the result we obtained

for the manufacturing sector. The cross-price elasticities,

”EM and "ME’ are .27 and .02 respectively.

(vi) Materials and labor are found to be close

substitutes with °LM being about 1.40 in contrast with a

weak substitutability of about .60 found in other studies.

The cross price elasticities, ”LM’ "ML’ are .52 and .64

respectively.

For the non-energy manufacturing sector, our findings
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TABLE 2.10

ALTERNATIVE MAXIMUM LIKELIHOOD (IZEF)

ESTIMATION OF ALLEN PARTIAL ELASTICITIES OF

SUBSTITUTION (AES), UNDER VARIOUS SPECIFICATIONS

OF AUTOREGRESSION: U.S. NON-ENERGY MANUFACTURING,

 

 

1959

Unrestricted Diagonal Symmetric

AES R30 R R: p 89 R
ii

OKK - 1.85 - 1.99 - 2.04 - 1.99

OLL - .70 - 1.53 - 1.15 - 1.34

GEE -20.76 -29.72 —29.03 -30.38

CMM - .23 - 1.85 - 1.38 - 1.64

OKL 1.11 .70 .79 .71

OKE - .45 r .10 .02 - .03

GKM - .54 .06 — .04 .05

CLE .85 1.43 .87 1.35

°LM .31 1.44 1.02 1.23

OEM .90 .75 1.24 .83



TABLE 2.11

ALTERNATIVE MAXIMUM LIKELIHOOD (IZEF)

ESTIMATION OF DEMAND PRICE ELASTICITIES

UNDER VARIOUS SPECIFICATIONS OF AUTOREGRESSION

U.S. NON-ENERGY MANUFACTURING, 1959

 

 

unrestricted Diagonal Symmetric

ij R80 R R: 0118p R

"KK -.31 -.33 .34 -.33

"KL .51 .31 .35 .32

"KB -.01 -.003 .001 -.001

”KM -.18 .02 .01 .02

“LR .19 .12 .13 .12

"LL -.32 -.68 .52 -.60

nLE .03 .04 .03 .04

“LM .11 .52 .36 .44

"BK -.08 -.02 .003 -.004

"EL .39 .63 '.39 .61

"BE -.62 -.89 .83 7.90

”BM .31 .27 .44 .30

“MK -.09 .01 .01 .01

”ML .14 .64 .46 .55

"ME .03 .02 .04 .02

-.08 -.67 .49 -.58
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show that the direction of these substitution and input price

elasticities are consistent with results in other studies

and those results obtained for our manufacturing study above.

All of our own-Allen elasticities of substitution and own-

price elasticities have the negative sign required for

stability. These estimates, however, are somewhat different

from.the result obtained for manufacturing. Here, the

important own-price elasticity of energy demand is estimated

to be more elastic, compared with the value obtained in
 

other studies and particularly compared with the value we

found above for manufacturing. Our estimate of ”BE for the

non-energy manufacturing sector is about -.89 and quite stable.

This estimate is at the same level of the more elastic,

long-run price elasticities of energy demand, estimated by

Griffin and Gregory (1976) from pooled international data

(four years: 1955, 1960, 1965, 1969) for the manufacturing

sector of nine industrialized countries; while the own-price

elasticity of manufacturing energy as surveyed by Waverman

(1977), is found to be quite robust among studies, with a

common value of around -.50. As we recall our estimate of

”EB for the manufacturing sector — around -.15 - about one-

third of the value estimated in other studies.

We also observe that technological possibilities for

substitution between energy and non-energy inputs are present

in non-energy manufacturing sector. In particular, we

find that: energy and labor are quite substitutable (OLE

is about 1.40), energy and material are slightly substitutable
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with an AES of .75, and energy and capital are rather weak

complements (aKE is about -.10). This suggests that, except

for labor, the technological possibilities for substitution

between energy and non-energy inputs are somewhat limited.

For a given level of net output, an increase in the price

of energy will increase the quantities of labor and materials,

though not in a significant amount, while leading to a

reduction in the quantity of energy demanded, and to a very

small reductions in quantity of capital demanded.



CHAPTER II

FOOTNOTES

lSee Berndt and Wood (1979) and Berndt (1976).

2This table has been calculated from data and tables

in Faucett Associates (1973).

3Here one must realize that, like materials input,

there are energy products which are primary to the

manufacturing sector as well as the energy products which

are produded by the firms within manufacturing sector.

Necessary information and data for distinguishing these two

types of energy products are obtained from Faucett Associates

(1973).

4Euler's theorem states that: If a function

y - f(x1,...,xn) is homogeneous of degree k, then:

n
af

2 '-—— x. = ky.

1-1 3‘1 1

5
As an example we may consider that an increase in

the price of a primary input such as labor or energy will

increase the price of say textiles, leather, glass, rubber

and plastic, steel,..., which are produced within manufacturing

sector (the internally traded intermediate products). The

firms producing furniture and automobiles would substitute

away from labor, or energy, but are also faced with higher

priced textiles, leather, glass, rubber and plastic, steel'

. . The industry's new optimum (cost minimizing) choice of

primary input quantities is obviously through factor

substitution involving internally-traded intermediate products.

6Green (1964, Chapter 9) has demonstrated that the

second case is a necessary condition for consistent aggrega-

tion of the factor demand functions of the firms with neo-

classical production function.

7For proof, see page 12.
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CHAPTER III

TOWARD A MORE GENERAL SPECIFICATION AND ESTIMATION OF

INDUSTRIAL FACTOR DEMAND FUNCTIONS '

3.0 Introduction
 

The study of the production function entered a new era

with the pioneering work of Cobb and Douglas (1928), titled

"A Theory of Production Function". The new production

function framework which they originated has stimulated a

great deal of theoretical as well as empirical research,

and has remained dominant in the field for more than thirty

years.

Recognition of severe limitations of the traditional

functional forms, such as the CES or Cobb-Douglas, has led

researchers to an attractive class of flexible functional

forms which started to emerge around 1970; these are the

Generalized Leontief (Diewert (1971)), the translog (Christensen

et a1 (1971, 1973)), the Generalized Cobb-Douglas, etc., which

we reviewed in Chapter I. These functions have some desirable

properties such as the capability of representing a wide

variety of technologies. These functions can be considered

as a second order Taylor series approximations to any

arbitrary function. Unlike the CD and CES functions, these

functional forms no longer assume a unitary or constant

elasticity of substitution between different pairs of

factors; and unlike the CD and CES they do not imply any

127
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stringent separability restrictions a priori. In fact the

separability conditions which we are interested in can be

tested rather than imposed as maintained hypothesis.

In recent years these flexible functional forms

(especially the translog) have been utilized in different

areas where a production, cost, or utility function has“

been required. The U.S. manufacturing sector has been such

an area, where a growing amount of empirical analysis

has emerged. Examples of such works have been cited

above.

In the previous chapter we discussed a common problem

with these industry-level studies, in which the researchers

have employed static profit-maximization models defined

over gross output, gross energy, and gross materials input

(where these contain intra-industry shipments of traded

intermediate products). In models of this kind the price

of "energy" and "materials" aggregate inputs must be taken

as endogenous, rather than exogenous variables as these

authors have assumed. The subsequent utilization of

Shephard's Lemma, which requires exogenous factor prices,

is therefore inaccurate as a method of obtaining factor demand

functions. In the previous chapter the exact nature of this

error was examined and a proper alternative was proposed.

Another issue is that in the empirical implementation

of the functional form some authors (e.g. Berndt and Wood

(1975)) have assumed that the translog function is an

exact representation of the true underlying production
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function. Blackorby, Primont and Russell (1977), and Denny

and Fuss (1977) have shown that when the translog function

is interpreted to be an exact representation of the

technology the separability conditions outlined in these

studies are too restrictive and cannot be accepted in

performing statistical tests of the separability hypothesis.

In this study we depart from this restrictive assumption

by interpreting the translog cost function as an approxima-

tion to the underlying production structure.

The translog cost function does not oblige the

structure of production to exhibit homotheticity, homogenity,

or constant return to scale. Rather we can statistically

test the validity of the parameter restrictions implied by

these structures. If any of the restrictions are valid

statistically, it is desirable to adopt the simplified

model.

With these remarks in mind, in the present study of the

U.S. manufacturing sector (1947-1971), we adopt a general,

non-homothetic cost function considered to be a second-

order Taylor series approximation to the underlying production

structure. The technology involves four types of inputs:

capital services (K), labor services (L), primary energy (E),

and primary materials (M); and a technology index (I). By

employing this general model we are able to measure the

contribution of economies of scale and technological change

as sources of growth in output after World War II. We can

also study and measure the relative changes in various factor
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shares, Allen partial elasticities of substitution, and

factor price elasticities of demand. This flexible model

also permits us to perform several interesting tests about

the structure of the production technology and examine the

approximate weak separability conditions for the cost

function.

3H1_ Technical Change

One of the problems of considerable importance in applied

economics is that of distinguishing movements along the pro-

duction function from.movements from one production function

to another. Suppose we observe that point P1(X(t) , Q(t)) in

input-output space shifts in time to point P2(X(t+l), Q(t+1))

in the next period. Letting the level of output remain the

same, one might ask whether the input movement from X(t) to

X(t+l) has been along the isoquant of the assumed production

function (substitution, or a movement from.one production

function to another (technical change). Similarly, it is of

importance to identify whether, for X(t+1) = XXCt), A > 0,

the output has moved from one to another isoquant of the game

production function (scale effect), or there has been a shift

from one production technology to another (technical change).

This suggests that it is useful to try to measure economies

of scale and technical change, and separate the effect of

one from the other. First we start with the definition of

technical change.

Assume a neoclassical aggregate production function



Q=F<§.T>. g; > o. -§—§_§ _>_ o; (3.1)

where Q and E represent output and a vector of inputs

respectively while the variable T represents time to allow

for technical change. Technological change by its very

nature allows a producing unit to produce more output with

the same level of input quantities. 0r equivalently, the

existing level of output, after technological advancement,

can be produced with smaller quantities of at least one input

while the quantities of other inputs remain the same.

Therefore, it seems quite natural to measure the rate at

which technology advances as

' = a 1n

% a

If factor input prices and output quantities are

(3.2)

 X

exogenously determined, the duality theory between cost and

production implies that, assuming cost-minimizing behavior,

the production technology given by'(3.1) can be uniquely

represented by the cost function

C = C(H. Q. T) (3.3)

where C is total cost and‘W;is the vector of factor input

prices. Technological change, therefore, can be measured

by utilizing the cost function. A producing unit at

internal equilibrium, ceteris paribus, can produce a given

level of output at a lower cost after technological

advancement. Thus, the rate of technological change can
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directly be measured by

a 1n CC
- = 3.4
C 31‘ E: Q ( )

on the cost side.

To undertake empirical work, we need to be more

specific about the nature and character of technological

change. Technological change may be biased with respect

to one factor or the other, or it may be neutral with

regard to all inputs involved. According to Hicks (1932,

p. 121), technological changes are classified as labor-

saving, neutral, or capital-saving respectively, "as their

initial effects are to increase, leave unchanged, or

diminish the ratio of the marginal product of capital to

that of labor". If the producing unit is to attain a

position of internal equilibrium, then one must examine

the effect ofatechnological change along the firm's

expansion path where the firm minimizes the cost of producing

any given level of output. In this sense Hicks neutral

technological change can be interpreted as "expansion path .

saving". Technological change is said to be Hicks neutral,

in this sense, if marginal rates of technical substitution

between each pair of factor inputs are independent of

technological change. Therefore, representing technical

change by the production function (3.1) the following can ‘

be defined (see Lau (1978)).

Definition: A production function exhibit Hicks

neutrality, in the above sense, if it can be written in the
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form

Res. T) f(gcg) .T) (3.5)

An alternative interpretation of Hicks' classification,

which is widely accepted, is the one which seeks the

effect of technical advancement along a ray from.the origin

where factor proportions remain constant at their pre-

technical-change level. However, if one considers the

effect of technological change along a ray,as suggested by

this interpretation, then we are faced with a quite different

notion of neutrality, i.e., implicit Hicks neutrality

the term used by Blackorby et a1 (1976). Technological

change, therefore, is defined to be implicitly Hicks

neutral if marginal rates of technical substitution between

each pair of factors, at constant factor ratios, are

independent of technological change. Constructing the

implicit representation of the production function(3.l) in the

implicit form of H(Q, x, T) = O, Blackorby et a1 (1976) have

proved that technical change is implicitly Hicks neutral

if and only if H(;) can be written as

H(Q, 32, T) E G(Q. T. g(Q. 29) (3.5)

According to this interpretation, technical change

is classified as labor-saving, neutral, or capital-

saving depending on whether, at a constant capital-labor

ratio, the marginal rate of technical substitution increases,

stays unchanged, or decreases. This classification can
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immediately be interpreted in terms of factor input shares.

If at a constant value of a factor ratio, the marginal rate

of substitution (or the ratio of capital price to labor

price) is rising, then the labor share is declining.

Similarly, if the marginal ratio of substitution is declining,

the capital share will decrease, and if technical change is

classified as neutral, factor shares remains constant.1

Another type of technological change, different from

the former two types, but often confused with them, is

one which can be written in the following decomposable form:

F(g, T) a A(T) . f(_)_() (3.7)

In this case the isoquant map remains unchanged,but the

output number attached to each isoquant is multiplied by

A(t). This type of neutrality is what Blackorby et a1 (1976)

call "extended Hicks neutrality".

The practical implication of Hicks neutrality, as

is evident from all three types of Hicks neutrality, is that

the ratio of the marginal products<xfany two factors of

production is independent of time.2 However, it is clear

that these three types of Hicksian neutrality are not

equivalent in general. Besides the fact that extended Hicks

neutrality (3-7)implies Hick neutrality (35), none of the three

types of Hicks neutrality implies either of the other two,

unless additional assumptions are imposed. One such

assumption is that of homotheticity in inputs which serves

as a necessary and sufficient condition for simultaneous

Hicks and implicit Hicks neutrality. The reason is that
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the expansion path through any arbitrary point coincides

with a ray through that point under input homotheticity.

Therefore homotheticity is a necessary condition for the

equivalence of all three types of Hicks neutrality. The

second assumption is that of input homogeneity,which is a
 

sufficient condition for the equivalence of all three types.

(See Blackorby et a1 1978).

Corresponding to Hicks neutrality in the production

function F(-), we may define indirect Hicks neutrality for

the dual cost function C - C(W, Q, T), as Lau (1978) did

for the normalized profit function.

Definition: A cost function is said to be indirectly
 

Hicks neutral if it can be written in the following form:

c = Emma). Q. T). (3.8)

Practically, indirect Hicks neutrality implies that the

ratio of the derived demands of each pair of inputs is

independent of technical change.

In general Hicks neutrality does not imply indirect

Hicks neutrality or vice-versa, unless additional assumptions

are made. Under the homotheticity assumption, Hicks neutral-

ity implies and is implied by indirect Hicks neutrality.

Also, as Lau (1978) has shown in the context of the normalized

profit function, "a technology is both directly and indirectly

Hicksian neutral only if either it is homothetic or it is

additive in T." (See Lau (1978))

An alternative classification of technical change,
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which has played a more central role in growth literature,

is the Harrod classification of technical change. According

to Harrod, technical change is defined to be neutral if at

any constant value of the capital-output ratio the marginal

product of capital remains unchanged. Here we compare points

with constant capital-output ratios, while in Hicks' classi-

fication points with a constant capital-labor ratio are

compared. The Harrod classification can also be stated in

terms of the effect upon factor input shares as technological

progress proceeds. Technological change is defined to be

labor-saving (capital-saving) in Harrod's sense if, at any

constant level of the capital-output ratio, the capital

share is increasing (decreasing) relative to the labor share.

Technical change is classified as Harrod neutral if, at

any constant value of the capital-labor ratio, the capital

share and labor share increase at the same rate.

The importance of Harrod neutrality stems from the

fact that only technical change of this form can be consistent

with balanced growth in the usual growth model. In parti- .

cular, it has been demonstrated by Joan Robinson (1938)

and Uzawa (1961) that Harrod neutral technical change is

exactly equivalent to pure labor-augmenting technological pro-

gress, and can easily be incorporated in the usual growth

model. Harrod neutral technical change, therefore, may be

defined as labor-augmenting technical change as follows:

Definition: Production function (3.1) exhibits Harrod

neutral technological change if one can write the production
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function in the following separable form:

F(zgff) s f(h(L,T),)_9 (3.9)

where L is labor, the primary factor of production.

The practical implication of Harrod neutrality, fog-

mulatedirttbe weakly separable form above, is that the ratio

of the marginal product of labor to the rate of technological

change measured in terms of output,is independent of g.

For the dual side of the problem,and corresponding to the

dual cost function (3.3),indirect Harrod neutrality can be

defined as:

Definition: Cost function (3.3) exhibits indirect
 

Harrod neutral technological change if it can be written in

the following weakly separable form:

c = é<g(wL.T>. WEQ) (3.10),

The practical implication of indirect Harrod neutrality is

that the ratio of the demand for labor to the rate of

technical changepmeasured in terms of cost,is independent

of WX. Here again direct Harrod neutrality does not imply

indirect Harrod neutrality or vice-versa. Only under the

two following conditions is a production function both

directly and indirectly Harrod neutral (See Lau (1978) for

a proof in the case of the normalized profit function):

1) h(L,T) = h(A(T)L)

2) Q = F09. +h(L.T)

(3.11)
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One interesting form of technical change is that of

factor and/or output-augmenting technical change. Under

general specification of factor and output-augmenting, the

production function can be written as follows:

F(§,T) = c(T) f(gl(T)Xl, ...., an(T)Xn) (3.12)

where c(T) represents output-augmenting technical change

and ai(T) is "factor-augmenting" technical change correspond-

ing to input i. Hicks and Harrod neutrality may be considered

two special cases associated with (3.12). The former occurs

when ai(T) = 8(T) for all i and f is a homothetic function.

In this case it can be shown that:

Q = c(T)-g(;(T)'1h(xl, ,..., Xn)) (3.13)

which clearly exhibits Hicks neutrality,3 while Harrod

neutrality occurs when the c(T) and ai(T)'s are all constant,

except for the ai(T) corresponding to labor, the primary

factor of production.

3.2 Return to Scale

A common assumption in theoretical and empirical

research is the assumption of linear homogeneity of the

production function implying the existence of constant

returns to scale. The assumption of constant returns

to scale is of some importance, because the justification

of this assumption at the industry level is that in the long

run, a perfectly competitive industry with price taking firms
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and free entry and exit will be able to duplicate what it has

been producing before. Thus, by doubling all of their inputs

the firms should be able to build another plant identical

to the first and produce twice the output. In this case,

then, the average cost remains the same for all levels of

output.

Scale effecum however, at the industry level may be

present due to externalities or lack of freedom for entry

and exit, or it may be the case that the firm's production

functions are not homogenous of degree one. It might also

be the case that the production function exhibits decreasing

returnsto scale,because the scale effects are genuinely

decreasing or because some factor remains fixed in the long

run. Similarly, we might be faced with increasing scale

effects; for example one factor explaining the rapid post-

World War II economic growth in the U.S. might be due to

the presence of increasing scale effects. In these

circumstances it may be desirable to allow for non-constant

return to scale,and not to impose constant returns to scale

a priori on the estimating model.

In the theory of production,we recognize two

different concepts of returnstx>scale. The first concept,

which has widely been used as a measure and definition of

returmsto scale, is the proportional change in output

relative to the preportional change in the inputs for move-

'ments along a ray through the origin. This is, in other

words, the elasticity of output with respect to an
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equiproportional variation of all inputs. This concept is

known as the function coefficient, and using the production

function (3.1), it may be given more precisely by

- d , dk = d 1n

E’UQ'R‘ d—In—‘E

where k > O is a scalar. ~

According to Hanoch (1975) the second concept, which

is more relevant as a measure of scale economies, is

obtained from the relationship between total cost and output

along the expansion path where the producing unit must

remain if it is to minimize the cost of producing any

given level of output. For this purpose,elasticity of cost

with respect to output appears to be a natural measure to

express returnstx>scale. This elasticity measures the

proportional increase in cost relative to the proportional

increase in output for movement along the expansion path

where input prices are constant and costs are minimized at

every level of output. This can be written symbolically as:

E = 3 ln‘C

a In C W '

where E S l,depending on whether the cost function exhibits

a o o . 4

increaSIng, constant, or decreaSIng returnstx>scale. By

subtracting this elasticity from unity, one can associate

positive numbers with economies of scale and negative

numbers with scale diseconomies, i.e.,we have SE = l - E E 0

as there is increasing, constant, or decreasing returns to

scale.
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For purposes of empirical implementation, it is neces-

sary to adopt an explicit function form for the cost

function (3.3). Our choice is the translog function. In this

flexible framework we are able to explicitly-deal with

these issues and further examine various other specifications

as we proceed.

343 The General Empirical Model

we assume that the production technology in U.S.

manufacturing can be presented by the production function

Q = F(K,L,E,M3T) (3.14)

where the flow of output Q is related to the service flow

of four aggregate inputs; capital (K), labor (1), energy (E),

and intermediate materials GM). T is an indicator of

technical change and is measured in years. we further

assume that the production function F is positive, finite,

contineously twice differentiable, strictly monotone,

strongly quasi concave, and nondecreasing in technical

change, T. If factor prices and output levels are

exogenously determined, and assuming costaminimizing

behavior, the production structure implied by (3-14) can

uniquely be described by a cost function of the form:

= ' - 3.15C C(NK_,WL,wE,wM,Q,T)_ , ( )

where C represents total cost and the Wi’ i = K,K,E,M,

are factor prices.
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For purposes of estimation, it is necessary to employ

a specific functional form for the cost function G. The

highly general functional form we have chosen for this study

is the translog cost function proposed by Christensen,Jorgenson

and Lau (1971, 1973). It places no apriori restrictions on the

Allen partial elasticities of substitution (AES) among the

factors of production. An important property of the translog

function is that it can be interpreted as a second order

approximation to an arbitrary cost function. It also

allows scale economies to vary with the level of output.

Also, technical change can be incorporated into translog cost

function conveniently.

The production structure is represented by a non-

homothetic translog cost function which can be written by

the following approximation to an arbitrary cost function:

1
1n C = a0 + g a. 1n w. + 2 Z X yij 1n Wi 1n Wj

l. l l J

+ 5 1n w ln Q + 1n Q +'1 (In Q)2
,- YiQ i “Q I YQQ - .

+ Z T ln W + T + L T2 + T 1n Q
Yit i 0‘1: 2 Ytt YtQ '

i, j = K,L,E,M. (3.16)

The derived demand functions for each factor of production

are conveniently obtained by partially differentiating the

cost function with respect to factor prices, namely,
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3C
_ = X.

3Wi l

where X. is the cost-minimizing quantity demanded of ith

input. 1Using this result, known as Shephard's lemma

(Shephard (1953, 1970)),one can express the input demand

functions in terms of cost shares simply by logarithmic

differentiation of the translog cost function as

‘a In C i i

a In Wi C i

 

where Si denotes the cost share of the ith factor input.

Then the translog cost function produces cost share

equations of the form

Si = ai + g Yij

K,L,E,M.

1n Wi + YiQ 1n Q + Yit T: (3.17)

where i,j

Since the systems of demand equations (3-17) must

satisfy the adding-up restriction (X Si = l) the following

parameter restrictions hold:

X a. = 1
1

gym, = g,“ = £32,113, = 0 (3.18)

2H: = 0 i,j = K,L,E,M

1

In addition to these parameter restrictions (3.18) the

following symmetry constraints, implied by equality of the

cross partial derivatives, are required.
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y.. = y.. ia‘j (3.19)

These restrictions, (3.18) and (3.19), will be imposed through-

out the study.

The translog cost function must satisfy the following

conditions: (1) Linear homogeneity in prices; that is,

for a given level of output, total cost must increase

proportionally with a proportional increase in all factor

prices. This implies the same parameter restrictions as

(118)- (ii) Menotonicity: that is,the cost function must

be an increasing function of input prices. This implies

that the cost shares be strictly positive. (iii) Concavity

32C ,

awi DJ.
in input prices: this means that the Hessian matrix,

must be negative semidefinite.

The Allen-Uzawa partial elasticity of substitution

between input i and j, as we sawrbefore, can be obtained

from the cost function by the formula

CC

- i'
Gij ‘ Ctr} (3‘20)

1 J

For the translog cost function these elasticities are:

Yi' . .
Oij = l + —-g—Sij l # J (3.21)

7.. -S.

o. = 1+_1-i___£ (3.22)
11 52

1

Obviously these elasticities entail no apriori restrictions

with respect to their value of constancy. The own and

cross-price elasticities of demand for factors of production
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can be obtained as:

a 1n Xi (3 23)

“ij "' Trix—W3 = (:1ij '

3 1n X

= i a - - = 3.24

"ii S‘Ifi‘fi; Oiisi 1'3 K'L'E'M ( >

where the nij (demand price elasticity) measures the percentage

change in demand for input i for an exogenous change in the

price of input j, given all other input prices and output

quantity remain constant. Note that while 0.. - 0.. by
l] 31

definition, "ij # ”ji in general.

3.4 Technical Change and Bias

Inclusion of T, as an input, in the translog cost

function (16) will facilitate the study of technical change

biases. The Hicksian concept, which is the most common

concept of the biases of technical change, can be handled

conveniently in the cost function framework in terms of

input cost shares. Letting Si represent the share of the ith

input of total cost, as in(3J7). a technical change is said

to be i-using, idsaving, or neutral if the ith cost share

(Si), at constant input prices, increases, decreases, or

remains the same. Therefore the Yit's are the estimates of

factor using or factor saving Hicks biases of technological

change. These parameters represent, in fact, the rate of

change in the cost Shares not attributable to prices, i.e.,

 1 = . i = K,L,E,M. (3.25)
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Here, a zero value for the Yit (for all i==K,L,E,M) implies

Hicks neutral technical change.

If the production structure is non-homothetic,

technological change may be biased with respect to the returns

to scale. A biased technological advancement of this kind will

increase the scale level at which decreasing returns set in,

and thus may change the output level at which minimum average

cost could be attained. The scale bias (SB) therefore, can

be defined as a time (technical change) derivative of the

scale measure, i.e.

_ a 3 1n C

SB ' 3T (m)-

With respect to our translog cost function this,derivative

is equal to YtQ’ and thus we can measure the scale bias

after estimation of the parameters of the translog cost

function.

Other alternative models regarding technical change

may be tested. For example a parametric restriction of

Ytt = 0, in addition to Hicks neutrality constraints

(git = 0), implies scale bias technical change along with a

linear Hicks neutral technical change. While a further

imposition of th = 0, in addition to Yit = 0 and Ytt = 0,

implies the usual type of exponential Hicks neutral technical

change. Finally, we may have a production structure with no

overall technological effect which implies the following

parameter restrictions;

(3.26)

= O O i = K,L,E,M
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3J5 Homotheticity, Homogeneity, and Return to Scale

A common assumption in theoretical and empirical

research is that the production function is linear homogenous,

meaning that there are constant returns to scale. This is

the kind of assumption which one may wish to test, rather

than imposeaipriori. The cost function specified in.(3.15)

is assumed to be non-homothetic with the corresponding trans-

log approximation represented by (3.16).

If the production technology exhibits homotheticity,

the cost function (315) can be written as a separable function

of output and factor prices; that is,

C = h(Q,T)oC(W,T) , (3.27)

where C(W,T) is the unit cost function corresponding to

F(§,T). To apply the translog approximation to (3.27) we take

logarithms of both sides and obtain

1n C = 1n h(Q,T) + 1n c(WhT) (3.28)

The non-homothetic translog cost function (3.16) will correspond

to a homothetic production technology, represented by the

cost function (3.27) , if we impose the restrictions:

yiQ = O l = K,L,E,M. (3.29)

Two other versions of (27) which are also implied by the

homotheticity of the production structure are

C = k(Q)-C(W,T) (3.30)
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C = g(Q,T).CCW). (3.30)

For these cases the additional parameter restrictions are:
 

th =- 0 for (3.30) and Yit = 0 for (3.31) respectively.

These two specifications will exhibit, in addition to

homotheticity, scale unbiasedness (YtQ = O), and Hicks

neutrality (Yit = 0) respectively.

A homothetic production technology is further

restricted to be homogeneous (of degree %) if and only if

the elasticities of cost with regard to output are constant.

The cost function (3.15) can be written in the form

_ k

C - Q -CQ_J_,T) (3.31)

The translog cost function (3.16) can serve as a second order

approximation to (332) if we impose the following restrictions

on (3.16).

= 0, = 0, = O i = K,L,E,M (3.32)

‘YQQ YtQ *iQ

Finally, if the underlying production function

exhibits constant returns to scale (linear homogeneous),

then the correspOnding cost function can be written as

C = Q-c(fl,T) (3.33)

This imposes an additional parameter restriction on the

translog cost function (3.16), i.e., in addition to (3.33) we

5

have =



149

Economies of scale are among the factors , such as technical

change and relatively cheap material resource inputs, which

have been mentioned as contributing phenomena in the growth

of industrial output after WWII. Earlier, scale economies

(SE)were defined in terms of the cost elasticities of

output. With the translog cost function.(316)this elasticity

is obtained as:

g l: C = aQ + YQQ 1n Q + zYiQ 1n W1 + YtQ T ~(3.35)

UnderTIdifferent specification and with different parameter

restrictions imposed, this elasticity can be derived

accordingly. For example, if the homotheticity restriction

(JiQ = O) is imposed,then, under this restriction, one can

rewrite this formula as:

a 1n C
§_IE—Q aQ + YQQ 1n Q + YtQ T; (3.36)

and so on.

3.6 Estimation and Hypothesis Testing
 

The parameters to be estimated are contained in the

derived factor share equations(3 LT)and the translog cost

function itself, which form our estimable equations. It is

of course feasible to estimate the parameters of the translog

cost function alone, using ordinary least squares. This

procedure, however, may result in a high degree of multi-

collinarity and therefore highly imprecise coefficient

estimates, due to the large number of terms involved in the
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translog cost function. In addition, this method neglects

the additional information contained in the factor share

equations.

An alternative estimation method used by many (e.g.

Berndt and Wood (1975)) is to estimate only the share

equations as a multi-variate regression system. This method

is satisfactory when the factor share equations contain all

the parameters of the translog cost function (for example,

in case we assume constant returns to scale - Hicks neutral

technical change). Since we have adopted a nonhomotheticé

nonneutral specification for the translog cost function,

many parameters do not appear in the factor share equations.

Consequently, the estimation of factor share equations is

not an appropriate approach,and must be abandoned in this

case.

An optimal approach, practiced by many authors,

has consisted of joint estimation of the translog cost

function and the factor share equations as a multivariate

regression system. Therefore the model to be estimated

consists of the translog function itself and the three

share equations for capital, labor, and primary energy,

after deleting one share equation - arbitrarily the materials

factor share - to avoid singularity of the disturbance

var-cov matrix. With constraints for linear homogeneity

in factor prices and symmetry constraints imposed (i.e.,

restrictions (3.18) and (3.19)), the estimating equations are

written as:
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si = ai +JZaij1n(Wj/WM)+ aiQ 1n Q + yit T + pi

ln(C/WM) = a0 + E oi magi/WM)

+ a; E J) Yij 1n (Wi/Wm) 1n (,wj/wM)

+ g HQ 1,, (WI/WM) 1n Q + E yit 1n (Vii/WM) T

+ nQ 1n Q + g YQQ(1n Q)2 + atT + :5 Ytt T2

+ th T 1n Q + no; i,j = K,L,E.

where yij = and "O and pi are random disturbances.
in’

Assuming that the random error vector u = (“0’ “K’ “L’ “E)

is independently and identically distributed as multivariate

normal with mean vector zero and nonsingular covariance

matrix, we have estimated the parameters of the model

employing the Uiterative'Zellner" estimation method, This

estimation procedure is well known to yield coefficient

estimates identical to maximum—likelihood estimates (see

Kmenta and Gilbert (1968)), and therefore the estimates are

consistent and asymptotically efficient.

Since the parameter estimates so obtained are

maximumrlikelihood estimates,we can test the validity of

various hypotheses (specifications) such as homotheticity,

homogeneity, etc. Our statistical tests for various

specifications are based on the likelihood ratio method.

The likelihood ratio is A = Lmax(m)/Lmax(fl)’ where
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Lmax(m) and Lmax(a) stand for the maximum of the likelihood

function under restricted and unrestricted models respectively.

It is well known (Wilks, (1938)) that the test statistic

-2 1n A has an asymptotic distribution that is chi-square
 

with degrees of freedom equal to the number of independently

imposed restrictions.
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3.7 Empirical Results
 

3.7.A Tests of Underlying Assumptions

3.7.A.l Manufacturing

We now proceed to a discussion of our various

specifications estimated by employing the Zellner iterative

estimation method. The parameter estimates for these speci-

fications are reported in Table (3.2) along with their

corresponding sample log-likelihood values. The reported

sample log-likelihood values indicate that casting Mbdel l

as the unconstrained model, the homothetic specification

(Model 3, YiQ = 0) must be rejected. This can be seen by

computing the likelihood ratio test statistic which is

twice the difference of the sample log-likelihood values.

The test statistic for the homothetic model (Model 3) is

19.854, while the .01 chi-square critical value with three

(parameter restrictions) degrees of freedom (.01 x23) is

11.345. The two other versions of the homothetic production

function, specified in equations (3.30) and (3.31), and

presented as Model 4 and Model 5 in table (3.2), are also

rejected. The likelihood ratio test statistics are 20.842

and 23.128 for Model 4 and Model 5 respectively, while the

.01 x24 and .01 X26 critical values are 13.277 and 16.812

respectively. Model 4 assumes homotheticity but no scale

bias (th = 0), while Model 5 assumes homotheticity along

with Hicks neutral technical change.

Since the homotheticity hypothesis is rejected,

the technology is not homogeneous of any degree. As
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indicated in table (3.2) the homogenous and constant returns

to scale (CRS) hypotheses are rejected, where test statistics

for these models (Model 6 and 10) are 21.590 and 47.628,

compared with the corresponding.01x2 critical values of 11.070

and 12.592 respectively. However, if the (rejected) homothe-

tic model is maintained, the homogeneith restrictions would

not be rejected, while the CRS model would be rejected.

As for the effect of technological advancement, the

model with 4"no technical change" (Model 12: at- Ytta Yit- th

= 0) has decisively been rejected against the unrestricted

model (Model 1). For our nonhomothetic.unrestrained model

(Mbdel l), "Hicks neutral technical change" (Model 13; yit-IO)

is also rejected; the test statistics is 14.322 while the

.01 X23 is equal to 11.345. However, once the (rejected)

homothetic, homogeneous, or CRS specifications are maintained

as out unconstrained models, the imposition of Hicks neutrality

restrictions on each causes very little additional loss

of fit respectively; and thus "Hicks neutrality" will not be

rejected for these models (Model 5, 8, and 11). For example,

if homotheticity is maintained, then the imposition of Hicks

neutrality will result in a test statistics of 3.274, while the

.01 x23 is ll.345,and hence "homothetic-Hicks neutral

technical change" can not be rejected.

Model 11 (CRS-HiCks neutral technical change) is the

same model chosen by Berndt and Wood (1975) in their study

of the U.S. manufacturing sector. Berndt and.Wood, however,

did not estimate the rate of technical change,as they only
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TABLE 3.1

ALTERNATIVE MODEL SPECIFICATIONS WITH

THEIR CORRESPONDING PARAMETER RESTRICTIONS

 

 

Mbdel Specification Parameter Restrictions

1 Unrestricted: None

2 No scale bias: YtQ - 0

3 Homothetic: Y,Q = 0

4 Homothetic Y = Y = O

- no scale bias: 1Q tQ

5 Homothetic Y1Q = Yit = 0

- Hicks neutral technical

change

6 Homo eneous: . = = 0

7 Homogeneous/conditional on Y1Q - YQQ . 0

no scale bias:

8 Homogeneous Y = Y = Y 8 Y = 0

- Hicks neutral technical 1Q QQ tQ it

change:

9 Homogeneous Y. = Y = Y) = 0

- Hicks neutral/conditionalcnI 1Q QQ Lt

no scale bias

10 Constant return to scale: GQ = l, Y1Q = YQQ a YtQ = O

11 Constant return to scale a - 1, Y = Y I Y - Y = 0

- Hick neutral technical Q 1Q QQ tQ it

change:

12 No technical change: at = Yit = Ytt = YtQ = 0

13 Hicks neutral technical change: Yit - 0

l4 Hicks neutral technical change Y. - Y = 0
it tQ

- no scale bias:

15 Hicks neutral linear technical Y1t ' Ytt = YtQ = 0

change:

16 Hicks neutral linear technical Yit = Ytt = 0

change/conditional on no

scale bias:

17 Unitary elasticity of Yij = 0

substitution:

18 Homogeneous Y Y Y a Y r Y - 0

- no technical change: 1Q QQ tQ t it Ct

19 Homogeneous = O - Hicks neutral linear

technical change:
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estimated the three cost share equations which are independent

of the rate of technical change. When the null hypotheSis of

"CRS-Hicks neutral technical change" is tested against the

general unconstrained model, the null hypothesis is rejected

(as was seen above) when estimating the system either with

the cost function included or excluded.

The rejection of Hicks neutral technical change

(Mbdel 13) will make imposition and estimation ofzifurther

restriction of "no scale biad', (Model 14, YtQ-O), or Ytt-O

(Model 16), somewhat pointless. These two models are

rejected, as expected. Conditional on the "Hicks neutral

technical change" we also have tested for the validity of

the "Hicks neutral linear technical change" restrictions

(Ytththo‘ Model 15) against our unrestricted specification,

Model 1. Based on the likelihood ratio test criterion, the

test statistic for this hypothesis is 15.594, while the

.01 (.005) x25 is 15.086 (16.750), which indicates rejection

at .01 level of significance but "acceptance" at .005 level.

However, if these models (i.e., models 14, 15, and 16) are

tested against the (rejected) "Hicks neutral technical change?

none of them will be rejected, while the null hypothesis of

"no technical change" (Model 12) is rejected when tested

against the same alternative.

We also have tested a model that assumes techno-

logical change but no scale bias (Ytqao; Model 2). The

sample log-likelihood value.as well as the estimates of the

parameters for this model.are almost identical to those of
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the unrestricted model; fherefore it has the same

explanatory power as the unrestricted model. Accordingly,

one may test for the validity of the "homothetic" specification

'with or without YtQ-O, as can be seen by comparing the

sample log-likelihood values and the parameter estimates

of Model Band Model 4. The same is true about the "homogeneous"

specification of Model 7 and Model 6, the "Hicks neutral

technical change" specification of Model 14 and Model 13,

and.the "homogeneous Hicks neutral" specification of MCdel 9

and Model 8 as indicated in table C12). All of these models,

(i.e"IModels 3, 4, 7, 14, 13, 9, and 8), however, are

rejected when tested against the unrestricted specification

(or the specification with no scale bias, Model 2). An

exception occurs, however, in moving from Model 16

(Yit=Ytt=0) to Model 15 (Yit-Ytt=YtQ-0). Both Model 15 and

16 are rejected at the .01 level of significance when tested

against the unrestricted specification (Model 1), while

Model 15 (Hicks neutral linear technical change) can be

accepted at the .005 level of significance. We may conclude

that, in order to appropriately study the structure of

production for the U.S. manufacturing sector, a flexible

nonhomothetic cost function,which exhibiusnon-neutral

technical change.shou1d be employed.

The estimates of Hicks biases, Yi , reported for the
t

unrestricted model show that four estimates are significantly

different from zero. These estimates indicate that biased

technical change has been labor-saving; capital, energy,



.
.
.
3

O
"

[
Q

and-intermediate material using. The labor-saving and other-

factor-using biased technical change is consistent with

factor price data, where the labor price had the fastest rate

of growth. The labor-saving bias is somewhat strong. It

amounts to an annual .86 of one percentage point change in the

labor cost share not attributable to substitution within an

unchanged technology. It implies that if the production

technology had remained static over the period, the share

of labor in "net" output would have been about 21.57. larger

than it is. In the case of capital, energy, and material,

their shares in "net" output would have been 3.257., 1.57.,

and 16.757. smaller than if the production technology

had remained static over the period.

3. 7. A2 Non-energy Manufacturing

As for the non—energy manufacturing sector, we have

tested the same seventeen specifications we tested for the

manufacturing sector. The parameter estimates of these

models are reported along with the maximum value of the log-‘

likelihood functions in table (3.4). To our surprise, our

non-energy manufacturing data can only reject three

specifications at the .01 level of significance. These

specifications are CRS, CRS-Hicks neutral technical change,

and the unitary elasticity of substitution. All other models

can be accepted even at .05 level of significance.

The "rejection" of CR8 and "acceptance" of the homo-

geneous specification will obviously lead us to conclude
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that, to portray the production structure of the non-energy

manufacturing sector, it is very reasonable to assume a

homogeneous production function. On the other hand, due

to acceptance of the "no technical change" specification, and

conditional on the homogeneous specification,we have tested

for the validity of the "homogeneous-no technical change"

specification (Mbdel 18). So, maintaining the homogeneous

specification (which could not be rejected), we impose "no

technical change" restrictions (ataytt'YitsYtQ‘o) which

result in the likelihood ratio test statistic of 16.218.

Consequently, this hypothesis (Mbdel 18) is rejected at the .01

level of significance.6 This suggests that it is not

realistic to assume the absence of technological change.

Next, conditional on the homogeneous specification

‘we test for the validity of the Hicks neutral technical change

restrictions (Yit-O). The resultant test statistic is

9.622, while the .025 (.01) .3 critical value with three

degrees of freedom is 9.348 (11.345). This implies

rejection of the null hypothesis at the .025 level of

significance, but "acceptance” at the .01 level, since the

test statistic falls between these two critical values.

This rejection of Hicks neutral technical change.at the

.025 level may make estimation under the further restriction

of "Hicks neutral linear technical change" (Yit=Ytt=0) some-

what pointless. For the record, however, when the null hypothesis

of "homogeneous-Hicks neutral linear technical change"

(Mbdel 19) is tested against the alternative hypothesis of'the
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homogeneous-Hicks neutral specification, the null hypothesis

is rejected at the .05 level, but accepted at the .025 level

of significance.

It must be noted, however, that neither of these two

hypotheses (i.e. homogeneous-Hicks neutral and homogeneous-

Hicks neutral linear technical change) was rejected

when they were tested against the unrestricted model (Model 1).

On balance, we may conclude that, for the nonenergy

manufacturing sector, characterization of the production

structure by a function exhibiting homogeneity and Hicks

neutrality is justifiable. Indeed, to examine the validity

of various types of separability hypotheses for the non-

energy-manufacturing sector, we have made such an assumption.

3. 7.B Elasticity Estimates

3. 7. Bl Manufacturing

Estimates of the Allen partial elasticity of

substitution (Oij) and of the factor input demand elasticities

(nij) which have been derived under various specifications,‘

are reported in table (3.5) and (3.6)7. The purpose of this is

to observe the effect which these specifications have on

these elasticities.

In the first column of table (3.5) we present the

substitution elasticity estimates corresponding to our

general nonhomothetic nonneutral model, while in other

columns we report the estimates corresponding to the models

specified at the top of each column. As is apparent from
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table (35),the substitution elasticity estimates which we

have obtained under the three specifications of "Hicks neutral

technical change", "Hicks neutral linear technical change",

and "no technical change" are generally of a larger magnitude

than those estimates derived under the unrestricted

specification. This is to be expected since some of what is

classified as substitution response under one specification

is reclassified as technical change under the other.

Comparing the estimated °ij for the homothetic

specification with. those of the homogeneous model, we observe

that the estimates are very close. This closeness must be

regarded as natural since, as we saw earlier, the homogeneous

specification could not be rejected when homotheticity was

maintained. The same conclusion holds when Hicks neutrality

is imposed on the homothetic and homogeneous specifications.

The resultant elasticity estimates of these two specifications

(homothetic-Hicks neutral and homogeneous-Hicks neutral)

are almost identical.

The estimated Allen elasticities of substitution (oij)

and price elasticities ("ij)’ reported in tables(3.5) and (3.6),

show that the own-Allen elasticities of substitution are

negative for all specifications. But, here we obtain a

smaller magnitude for these elasticities compared to the

Berndt-Wood (1975). and Berndt-Khaled (1979) gross output

models, excepting the OHM which is of a larger magnitude in our

specifications. In particular, our ”EE (own-price elasticity

of primary energy) is Of a smaller magnitude compared to the
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robust estimate of about -.5 reported by Berndt-Wood (1975),

Hudson-Jorgenson (1974), and Berndt-Khaled (1979). We have

also found a stable and substantial primary energy-capital

complementarity relationship under all specifications.

Although it is not as strong as those reported by Berndt-

Wood and Berndt-Khaled for their gross output model, the

OKE is -1.3 for our unrestricted model and between -1.5 to

-1.8 for other specifications, while the estimated cross-

price elasticities (nKE and ”EK) are about -.1 and -.15

respectively.

Capital and labor again appear to be substitutable

as has been the case in numerous traditional two input

(capital-labor) studies. The estimated OKL for our

unrestricted model is about .85 (compared to 1.0 obtained

by Berndt-Wood and .8 to 2.1 obtained by Berndt-Khaled),

while for other specification (K—L) substitutability is

quite stronger with an estimated OKL between 1.0 and 1.7. our

estimates for nKL and DLK are .38 and .08 for the

unrestricted model compared to nKL=.58 and nLK-.12 obtained'

by Berndt-Khaled.for'their unrestricted specification. We

find primary energy-labor and labor-primary materials

substitution elasticities positive (substitutable) every-

where, with their magnitude oscillating mildly across the

various specifications. Berndt-Khaled found these

elasticities not quite stable; in fact the estimated OLM

for their unrejected models turned out to be negative.

Finally, we have foundwa capital-primary material
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complementarity relationship (OKM<O), which persists for all

specifications. Also, primary energy and primary materials are

found to be complementary for all selected models except

for our unrestricted one. Berndt-Wood (1975) found the

material inputs as substitutable for both energy and Capital

With an estimated 0,013.55 and GEMS“ 75,‘ while Berndt-Khaled

(1979) foundaCF-M) complementarity relationship (0101(0) under

their unrejected specifications and positive OKM under

rejected ones. Their estimates of CEM, however, turn out

to be positive for all specifications,tnn:about .3 for the

unrestricted model.

3 .7. B. 2 Non-Energy Manufacturing

NOW’We look at the estimated Allen partial elasticities

of substitution, Oij’ and the estimated price elasticities

of demand for factors, nij’ for the non-energy manufacturing

sector, which are presented in tables (3.7) and (3.8) A glance

at these tables reveals the equivalence of the estimated

price and substitution elasticities we have obtained under the

homothetic and homogeneous specifications. Estimated price

and substitution elasticities derived under the homogeneous-

Hick neutral technical change, the homogeneous-Hicks neutral

linear technical change,anuithe homogeneous-no technical change

specifications are also equivalent. As is evident from

these tables,the price and substitution elasticities from

these various models are reasonably close. This should not

be surprising since none of these specifications (except the
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CRS-Hicks neutral) are rejected.

The calculated own price elasticities, "ij’ are all

negative which indicates that the factor demand functions

are all downward sloping and all are inelastic. For this

sector, energy demand is more responsive to a change in its

own price with own-price elasticities of about -.6 for the

homogeneous model, and -.7 to -.8 for others. Again, the

capital-energy complementarity relationship persists for

all specifications, although ii: turned out to be much

weaker than thatreported for the manufacturing sector.

The estimated OKE are between -.01 to -.47 for these

selected specifications while the estimated cross-price

elasticities, nKE and "EK' are about -.01 and -.08

respectively.

Capital and labor are found to be quite substitutable

with the estimated substitution elasticity of 1.11 for the

homogeneous-Hick neutral specification, while between

.72 and 1.18 for other specifications. The estimated

capital-labor cross price elasticities show a stronger

responsiveness than those we found either for

manufacturing, or those reported by Berndt and Wood (1975).

The estimated "KL’and nLK for our homogeneous-Hicks neutral

specification are 0.5 and 0.2 respectively. Labor and

energy are inelasticly substitutable with 0LE=0.85 and

price elasticities of nLE=0.03 and nEL=0.4.

Capital and primary materials display complementarity

with an estimated cKMof about -O.5 for our homogeneous-Hicks
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neutral specification. This complementarity, which is in

agreement with findings we reported for the manufacturing

sector, is not in accord with the weak substitutability

found by Berndt and Wood. We also found energy and primary

materialsto be substitutable with an estimated =-.9, which

EM

is in accordance with the Berndt and Wood findings, although a

bit stronger than their results. The cross price

elasticities, ”EM and nME,are 0.3 and .03 respectively.

117.C Economies of Scale and the Rate of Technological

Advancement

Next, we may turn to the question of economies of

scale. For this purpose we have calculated the index of

scale economies,SE,suggested by Christensen and Green

(1976) defined as one minus the cost elasticity along an

output ray. For our translog cost function, this index is

formulated as

SE = 1 - BInC/Ban = l-(oQ+ QanQ-FgYinnWi-l-YtQT),

(3.37)

where SE is positive for scale economies and negative for

scale diseconomies. This index has a natural interpretation

(when multiplied by 100) as the percentage difference

between total cost and total revenue,assuming that the

output is priced at marginal cost, i.e., SE = (C-PQ)/C.

The translog cost function allows scale economies to vary,

in general, with the level of output, factor prices, and

the state of technology,11(measured in years). If the

production function is homothetic (Yngo V ii and if there
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is no technological scale bias (YtQ=O) , then SE= l-aQ-YQanQ,

which varies with output. If in addition, the production

function exhibits homogeneity (YQQ-O) of degree l/oQ in input

quantities, then SE = 1-aq, which is a constant.

An estimation of scale economies can be derived for

each specification by evaluating the formula (3.37) for the

corresponding specification at the observed level of output

and factor prices. For comparison with scale economies

estimated from the unrestricted translog cost function, we

have also presented scale economies estimates for other

restricted specifications in tables (3.9) and (3.10) for manu-

facturing and nonenergy manufacturing respectively. The

estimates of scale economies for both sectors indicate

substantial positive scale economies for all selected

specifications. These estimates (except for Model 5) all

are statistically significant as judged by the corresponding

standard error given in parentheses.

The estimates of scale economies for manufacturing

(reported in table (3.39)) seem somewhat large for all

specifications (except for CRS which is zero by definition).

For our unrestricted nonhomothetic-nonneutral net output

model the estimates of scale economies is .345. Berndt and

Khaled (1979), however, obtained an estimate of .199 for their

unrestricted gross output model, which they considered to be

rather large when compared with the estimated obtained in other

studies of returns to scale involving value-addeds.

As is indicated in table (3.9). the estimates of scale
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economies are quite sensitive to the function specification.

We obtain quite a large estimate of .624 for our (rejected)

homogeneous specification (Model 6), while our estimate from

Model 12 (nonhomothetic zero technical change) is the

smallest, where SE - .260. This latter estimate is

remarkably close to the estimate of .240 obtained by

Nadiri and Schankerman (1981) for U.S. manufacturing sector.

Imposition of Hicks neutrality on the non-homothetic-

nonneutral specification (Model 1) reduces the implied

estimate of economies of scale to .300 for Model 13 (the Hicks

neutral specification). The same results holds for the homothetic

and homogeneous specification when we compare Model 6

(homogeneous) with Model 8 (homogeneous-Hicks neutral) and

Model 3 (homothetic) with Model 5 (homothetic-Hicks neutral).

The figures in table (3.9) in general indicate that the estimation

of scale economies enlarges as we move from the unrestricted

to the homogeneous specification. Berndt and Khaled (1979)

found quite the contrary as their estimate of scale economies

got smaller under the homogeneous-Hicks neutral speCificatio‘n.

As for the nonenergy manufacturing sector, the

figures intable (3.10) once again display the sensitivity of

the scale economies estimates to various specifications. For

the homogeneous specification (Model6) we obtain the high

estimate of .587 for scale economies, while the homothetic-Hicks

neutral model (Model 5) renders a relatively smaller estimate

of .336. Furthermore, when the Hicks neutrality restriction

(Yitao V i) is imposed on the nonhomothetic-nonneutral model, the
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resulting specification (Model 13) producese1higher estimate

of scale economies (i.e.,.48l). However, quite the opposite

is true about the homothetic and homogeneous specifications,

since the imposition of the Hicks neutrality restrictions yield

relatively lower estimates of scale economies.

In tables (3 9) and (3.10) we also have reported the

corresponding estimates of the rate of technological advance-

ment for each specification measured by alnC/aT (output

quantity and input prices fixed). The negative of this

measure is defined as "the dual rate of total cost diminution"

by Ohta (1974) and utilized by Berndt and Khaled (1979). As

is evident from tables(3.9) and (3.10), the estimated rate

technical change are affected by various functional specifi-

cations. Our unrestricted model for manufacturing produces

a positive and statistically insignificant estimate of the

rate of technological change, while our (rejected) CRS-Hicks

neutral model yields a negative and statistically significant

estimate of 1.32% per annum. The sensitivity of the rate of

technical change to functional specification was also

realized by Berndt and Khaled as they got a statistically

significant negative estimate of .72% per annum for their

(rejected) CRS-Hicks neutral specification, and a positive

and statistically insignificant estimate for their-unrestricted

model.

For the nonenergy manufacturing sector once again we

obtain a negative and statistically significant estimate of

the rate of technological change for our (rejected) CRS-Hicks
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neutral model, while other specifications imply positive

estimates, some of which are statistically significant

and some not. Earlier we concluded that the production

structure for'the nonenergy manufacturing sector may

satisfactorily be characterized by a homogeneous-Hicks

neutral specification. For this specification, however,

we obtain a positive and statistically insignificant

estimate for alnC/BT.

These results indicate that for'the U.S. nonenergy

manufacturing sector, like the manufacturing sector, the null

hypothesis ofa zero rate of technological change would not be

rejected, while the null hypothesis of no scale economies

(SE=0) would be rejected. Consequently we are persuaded

that in U.S. manufacturing and nonenergy manufactur-

ing (1947-71) the source of growth has been due mainly to the

utilization of economies of scale. The same conclusion is

reached by Berndt and Khaled (1979) although our estimates

of scale economies are somewhat stronger.

Following Berndt and Khaled (1979), we may now'examine

the effect of changes in relative factor prices on the

average productivity of various inputs. Average

productivity, which is typically measured as Q/Xi (e.g.,output

per man hour), is obviously affected by (among other things)

changes in relative input prices. A natural way to express

this responsiveness is the elasticity of the average producti-

vity of the ith input with respect to jth input price, i.e..

aln (Q/Xi)/31n Wj where output quantity and other input



183

prices are held fixed. But aln (Q/Xi)/31nWj = -31nXi/Ban .

which is the negative of the well known price elasticity of

demand for the factor of production, namely,

a 1n (Q/Xi)/aln Wj = -n i,j = K.L.E.M (3.38)ij’

We may also compute the elasticity of average productivity

with respect to output and time by the following two

formulas,i.e.,

aln (Q/Xi)/aan = 1-alnC/aan - YiQ/S" input prices

1 fixed

(3.39)

aln(Q/Xi)/FT==-alnC/8T - Yit/S., output quantity and
1 .

Input prices fixed

(3.40)

and

Table (3.11) summarizes estimates of these elasticities

for U.S. manufacturing in 1971, based on our unrestricted, non-

homothetic-nonneutral specification. The average productivity

of various inputs, increases with growth in their own prices.9

Average labor productivity increases as the price of the labor

input rises, and decreases with growth in the prices of K, E,

and M, since labor is substitutable with K, E, and M. Energy

average productivity increases with growth in the price of

the capital input, due to the complementarity relationship

between energy and capital inputs. The response of average

energy productivity to growth in the prices of K, L, and M

(shown in Table (3.11)) are considerably weaker (in magnitude)

in our net output model, compared to the estimates Berndt

and Khaled (1979) obtained in their gross output model.10
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TABLE 3.11

ESTIMATED ELASTICITIES OF AVERAGE PRODUCTIVITY OF

INPUTS WITH RESPECT TO FACTOR PRICES, OUTPUT, AND

TIME; NONHOMOTHETIC-NONNEUTRALMODEL,

MODEL, U.S. MANUFACTURING, 1971

 

 

 

-nij 13K L E M

j=K 1.15 .38 .12 .10

L -.06 .14 -.01 -.06

E .16 .07 -.11 .01

M .02 .07 .002 .05

3 1n (Q/X )
i

3 1n Wj .780 -.039 .479 .632

3 1n (Q/Xi)

 ST -.022 .015 -.013 -.020
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TABLE 3.12

ESTIMATED ELASTICITIES OF AVERAGE PRODUCTIVITY OF INPUTS

WITH RESPECT TO FACTOR PRICES, OUTPUT, AND TIME;

HOMOGENEOUS HICKS-NEUTRAL MODEL, U.S. NON-ENERGY

MANUFACTURING, 1971

 

 

‘Tlij 12K L E M

j=K .23 -.53 .02 .27

L -.15 .32 -.03 -.14

.10 -.40 .62 -.33

M .10 -.18 -.O3 .10
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For the average factor productivity elasticities

with respect to output, formula (3.40) indicates that the

value of these elasticities is determined by two terms,

i.e.,by the estimate of scale economies (l-alnC/aln Q)

and by the value of -YiQ/Si' But

a(SE)/31nWi = -YiQ I=K,L,E,M

where YiQ>0 indicates that higher factor prices have a

depressing effect on scale economies and cause Q/Xi to

decline, while YiQ<0 indicatestfluaopposite. Therefore, as

long as economies of scale are present (SE>0L a negative

value of YiQ implies a positive value for the elasticity

of average factor product with respect to output. For the

manufacturing sector (unrestricted model-1971) these

elasticities are positive for K,E, and M since YiQ<O

(i - K,E,M).

For the labor input, however, YLO turns out to be posi-

tive, which implies a depressing effect on scale economies.

Therefore the average labor productivity elasticity is deter-

mined by the value of SE and the negative value of 'YLQ/SL'

For the year 1971, we obtain a negative value (—.039) for this

elasticity. Although Berndt and Khaled (1979) obtained a

positive value for this elasticity for all input, their esti-

mate of the average material productivity elasticity was the

smallest since YMQ turned out to be positive in thier gross

output model.

Finally, we turn to our estimates of the average factor

productivity elasticity with respect to T. These estimates
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are quite consistent with the pattern of technical change

biases we obtained for our general specification. Since

technical change has been found to be labor-saving, the

input-output ratio for L decreases over time, implying an

increase in average labor productivity indicated by the

positive value of this elasticity.

For the nonenergy manufacturing sector, we have reported

in Table (3.12) the estimates of the average factor productivity

elasticities for 1971, based on the homogeneous Hicks neutral

11 The average productivity of all inputsspecification.

For the nonenergy manufacturing sector, we have

reported in Table (3.12) the estimates of the average factor

productivity elasticities for 1971, based on the homogeneous

11 The average productivity ofHicks neutral specification.

all inputs increases with growth in their own price. For

energy, this elasticity is the largest. Average labor

productivity rises with increases in the price of the labor

input and decreases with growth in the prices of capital,

energy, and materials, since these inputs appear to be

substitutable with labor. Finally, average energy producti-

vity increases with growth in the prices of capital and

energy, while it declines with growth in the price of labor

and materials.



CHAPTER III

FOOTNOTES

1A point to be clarified about the relation between

technical change and factor shares is that a labor-saving

technical change, for example, which increases the ratio

of the marginal product of capital to that of labor need not

actually decrease the marginal product of labor and conse-

quently labor's absolute share. At any rate, however, a

labor-saving technical change will decrease the relative

share of labor. Exactly a similar relation is true for

a capital-saving technical change.

2Mathematically this can be stated as:

F.
3 l ___

.. =3? (F3) 0 or Fith FjFit 0

3 ‘ .
If,°‘i(T) = c(T) for a111, then (12) may be written as

Q = 01(T) f(a(T)X1. ...., c(T)xn). By the homotheticity of

f(.) we further have: Q = 6(T) g (h(a(T)x1, ...., d(T)xn)),

where h(.) is homogeneous of degree one, i.e..h(Ax)==Ah(x),

where A is a positive scaler. Letting A = 1/0(T) we obtain:

Q = 9(T)'g(a(T)-l h(xl’ ----. Xn)): this completes

the proof. -

4We can justify this formula as a measure of return

to scale in the following way. It is well-known that

increasing, constant, or decreasing returns to scale

prevail as long run average cost decreases, stays constant,

or increases respectively. Mathematically this can be

stated as:

éiglgl 5 O, or (0-38 - C)/Q2 E O.
Q >

To have this satisfied we must have: (Q-gg - C) E O,

which implies 38 E g . Or further,

dQ ' Q d In Q > '

188
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‘sThe parameter restrictions in this case and the

homogeneous case involve the restriction YtQ - 0, due to the

requirement that the elasticity of cost With respect to

output must be constant or equal to one,depending on whether

the production structure is homogeneous or linear homo:

geneous respectively. The impOSition of this restriction

implies, at the same time, the absence of scale bias.

6Thismodel has been rejected at-the .05 level of

significance when tested against the unrestricted model,

but accepted at the .025 level.

7The concavity condition is violated, though not

severely at some point for models with no restriction on.the

yit(i=K,L,E,M) coefficient. The noncavities disappear for

these models when neutrality (Yit=0) is imposed. This

violation of regularity conditions, as Wales (1977) explains,

does not necessarily imply the absence of the underlying cost-

minimization process, rather it may indicate the inability

of the flexible functional form to approximate the true

cost function over the range of the data. Here, in Tables

(3.5) and (3.6) we have reported the estimated substitution

and price elasticities for the manufacturing sector for the year

1958 (which is very close to the mid-point of the sample

year, 1959L since the concavity condition is satisfied for

all specifications at that point. '

8Berndt and Khaled computed the dual rate of returns

to scale as one over the elasiicity of cost with respect to

out ut, i.en (3 1n C/3 1n Q)‘ . To compare with our estimates,

we ave inverted their estimate and subtracted it from

one .

 

9Although the point estimate of ”ER is positive

(”WEE < O) for the year 1971, this curvature violation does not

seem to be statistically significant when judged by its

standard error. The standard error for ”EE’ under the

assumption that the share SE is constant and equal to the

mean of its estimated value. turned out to be about .15.

which is quite large. See also footnote 7 above.

10The elasticity estimates reported‘by Berndt and

Khaled are: 'nEj = .293, -.434, .546, and -.405 for

j = K.L.E,M respectively.
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11'The reasons for choosing the homogeneous Hicks

neutral specification are twofold: (1) this

specification appeared to be justifiable for representing the

non-energy manufacturing sector, and (2) for the unrestricted

model the estimates of YiQ and Yit turned out to be

insignificant. Since for the homogeneous Hicks neutral specifi-

cation YiQ == Yit = 0 holds, we only have reported -n. . in

13

Table (3. 12) .



CHAPTER IV

TESTS FOR THE EXISTENCE OF REAL VALUE-ADDED AND

OTHER TYPES OF INPUT AGGREGATION IN U.S. MANUFACTURING

4.0 Introduction
 

The estimation of the production relation and factor

demand functions requires some measure of the output or acti-

vity level. Real value-added has been used as such a measure

in virtually all empirical studies of labor-capital substi-

tubility and investment demand, where in the existence of

real value-added has been assumed a priori. It has been

shown by some authors (e.g. Sims (1969), Gordon (1969), and

Arrow (1972)) that when material inputs are used in the produc-

tion process, as they are in the manufacturing sector,

then the existence of real value-added rests upon the

existence of weak separability between the primary input

and material inputs. This allows us to write the production

function, F, as G(g(K,L),E,M) where g(-) has been identified

as real value-added. In this chapter we will test the value-

added specification and other types of separability among

inputs; but first we summarize the discussion of weak

separability in Chapter I.

4.1 Weak Separability Defined

The notion of weak separability, which we are mainly

concerned with, is defined as follows: If we partition therp-

tuple vector of the input x= {Kr X2: ~-. Kn} into r mutually

exclusive and exhaustive subsets as N* = {N1, ..., Nr}, a

function, f(x), is said to be weakly separable with respect

191
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to the partition N* if the marginal rate of substitution

between a pair of inputs i, je:Nm (mFl, ..., r) is indepen—

dent of changes in the level of inputs outside Nm’ i.e.,

f.
3 1

___ ( ) = 0

a f?xk J

or

f.f. -f.f. = o Vi,j 2N , andkéN (4.1)
m m

Goldman and Uzawa (1964) have proved that f(x) is

'weakly separable with respect to the partition N* (r > 2) if

and only if it is of the form

_ 1 1 r r (4 2)

f(X) - G(g (x). g (X)) -

where gm(xm) is a function of the subvector x!11 e Nm alone.

Berndt and Christensen (1973a) have shown that if

f(x) is homothetically separable,then the dual cost

function C(Q,W) is also separable and therefore we must have:

C.C. - C.C. = 0 (4.3)

Berndt and Christensen (1973a) have also proved, in the

context of production theory, that a strictly quasi-concave

homothetic production function, f(x), is locally weakly

separable with respect to the partition N* if and only if

Oik = ojk’ i.e.,the Allen partial elasticity of substitution

between input i and k is the same as that between input j

and k.
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4.2 Various Specifications Discussed

In several recent studies of manufacturing a restric-

tive assumption about the structure of production has

been the weak separability of capital, labor, and energy

inputs, as a group from the materials input. Examples are

Humphrey and Moroney (1975), Griffin and Gregory (1976),

Pindyck (1979), and Magnus (1979). This separability

assumption has been necessarily adopted in these studies

due to unavailability of reliable data from which to construct

price or quantityindices of the materials input. However, one

might ideally wish to test this hypothesis rather to impose it

apriori. But it is feasible to do so only when price and

quantity indices for the materials input are available. In

this section we attempt to test this and other similar

restrictions on the production structure.

Specifically we assume that the general non-homothetic

production function (3.14) is weakly separable as:

F(K,L,E.M;T) = f(g(K.L.E.T).M.T) (4.4)

where g(g) is an input aggregator function or microfunction.

If g(}) is homothetic in primary inputs, then the dual non-

homothetic cost function (3.1.5) will be weakly separable as:

C(wK_.w .WE.WM.Q.T) = H.(h.(.WK.WL.WE.T)..WM.Q.T) (4.5)

where h(-) is aggregate input price.
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The translog cost function (_3,16)._will be approximately1

weakly separable as in.Qg5yif the following parameter

restrictions hold:

“inM ‘ “5. HM " 0

and

ainQ - aj YiQ C) i,j = K,L,E (4.6)

These constraints follow directly by applying condition

(4.3) to the translog function (3.16),.

The price aggregator function h(°) is homothetic, and

thus independent of the level of output. Since homotheticity

of the aggregator fimction is a necessary and sufficient

condition for the validity of the two-stage optimization,one

may estimate equation (4.5) in stages. Excellent examples

of this two-stage optimization procedure are Fuss (1977),

and Pindyck (1979). In the first stage, by choosing an

appropriate price aggregator function for energy, they have

optimized the mix of fuels that make up the energy input;

and then they have optimally chosen quantities of capital,

labor, and energy. While the price aggregator functions

chosen by Fuss (1977) and Pindyck (1970) are linear

homogeneous and homothetic translog functions respectively,

we may observe a less restrictive alternative.

The less restrictive alternative we may consider is the

following formulation.which may be quite useful in many

practical situations. More specifically, we assume that
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the non-homothetic cost function (3.15) is weakly separable

as:

C = H(h(WK.WL.WE.Q.T). WM.Q.T) (47)

where the microfunction h(o) is non-homothetic in terms of

the primary inputs, and includes the output as one of its

arguments.

The translog cost function (3.16) will be approximately

weakly separable as in equation (4-7) if the parameter

restrictions

ain'M ' ajyiM = 0 i,j = K,L,E (48)

hold.

This model specification may be proposed when data

for output can be constructed, although the information on the

complete list of inputs may not be available. This being

the case, the assumption of homotheticity or homogeneity

of the aggregator function is unnecessarily restrictive.

A multi-stage procedure may also be adopted even in cases

when a complete set of data is available. For example,

when a large number of disaggregated inputs are involved,

or when the data are of low quality, a researcher may be

forced to consider a two-stage procedure in order to overcome

these limitations to some extent. And hence, this less

restrictive version of separability may be adopted instead

as alternative. An example of this procedure is the work
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by Denny and Fuss (1980) on labor.

Another form of separability is that of weak homothe-

ticityu .As was defined by Shepard (1970), a function is

said to be homothetic if it is a monotonic transformation of

a linear homogeneous function. Homotheticity of the production

function implies the separability of the dual cost function

in the form given in equation (3.27). As Denney and May (.1978)

discuss, there are two special economic properties associated

with this definition as follow:

(i) Taking partial derivatives of (3.27) With respect to

the price of factor inputs, one realizes that the ratio

between any two input demand equations does not depend

xi ac/awi

upon the level of output, i.e.,—— = 3_7§W— i,j==K,L,E,M;

and

(ii) The elasticity of cost with respect to output is a

function of output only, i.e.,%¥%%—8 = g(Q).

In the light of this argument a production function is

defined to be weakly homothetic if it satisfies the first
 

property. The dual cost function corresponding to a weakly

homothetic production function may take the form

C = H(h(Ij.T)..Q.T). (4.9)

where the factor price vector, W, is weakly separable from

output Q. .As it is obvious from.04.9), only the first property

holds, where the factor demand equations are derived as
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x. = —— -—-— i=K,L,E,M.

Therefore, the dual production function is no longer a

positive monotonic transformation of a linear homogeneous

production function (see McFadden (1978, Ch. 1)).

To have a weakly homothetic production structure,

the translog cost function (3.16) must satisfy the following

parameter restrictions :

ainQ - aniQ = 0 1 g K,L,E,M.

Adoption of weak homotheticity is sufficient for properties

such as linear expansion paths, and therefore the stronger

assumption of homotheticity may be too restrictive to

assume.

However, an unfortunate limitation of weak homothe-

ticity is that the imposition of parameter restrictions

for weak homotheticity in all inputs,along with the adding-up

constraints (ZSi = 1), immediately implies homotheticity,

i.e.,y1Q = 0. To see this let us assume that there are

only two inputs. The condition for weak homotheticity is

“IYZQ - 0:2qu - 0. But imposing this condition along with the

adding-up constraints of a1 + a2 = l and le + Y2Q - 0 implies

that the weak homotheticity condition cannot hold unless

le - YZQ = 0. Therefore, we only consider weak homotheticity

in primary inputs and energy. The cost function, thus,

may be written
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c a H(h(WK,W ,WE,WM,T),WM,Q,T), (4.9a)

and the parameter restrictions for this case are

ow. - a Y. = o i,j = K,L,E. (4.10a)

One important application of separability is in the

derivation ofthe value-added functions. National income

accountants have measured the output of an industry or a

sector in terms of value-added by allocating the origins

of national income to the services of labor and capital.

The vast majority of theoretical and empirical studies of

production by economists deal with capital and labor and the

degree of substitutability between them only and refer to

value-added rather than to output. Materials or "non-factor"

inputs are eliminated from.the production function and

subtracted from.its results.

The omission of particular inputs imposes certain

separability restrictions on the production structure and

therefore affects the possible functional form of the

production function- Again, consider production function

(1) which.relates the total output Q of a sector to the

services of the four aggregate inputs of capital (K), labor (L),

energy (E), and materials (M). In the context of production

function (1), it is possible to use real value-added to

measure the output if K and L are homothetically weakly

separable from E and M. This condition holds if and only
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if we can write

F(.K.L.E,M.T) = G(g(.K.L.T).E.M.T) (4-11)

where the subfunction g(:) is homothetic and represents

real value-added. This separability assumption places

severe restrictions on the Allen partial elasticity of

substitution between pairs of inputs; namely it implies that

(IKE *3 OLE and CKM = (IKE.

Berndt and Wood (1975), using a four-input translog

cost function, have tested the value-added assumption,and.have

concluded that the condition necessary for a value-added

specification do not seem to be satisfied for the U.S.

manufacturing sector during the period 1947-1971, In

carrying out their test Berndt and WOod (1975) have

implicitly assumed that the translog function is an exact

representation of the true function, and therefore the

separability conditions outlined in their study are too

restrictive.2 This study departs from Berndt and Wood (1975)

by examining the approximate weak separability conditions

for the value-added specification, as was the case in

previous tests.

If the production function is weakly separable as in

equation (“1), then the dual cost function will be weakly

separable as

c = H(h(.W’K.WL.T) .WE.WM.Q.T) (4.12)
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where h(WK,W ,T) is a real value-added aggregate price. The

condition for the validity of the value-added specification

can be checked statistically by testing whether the

parameter restrictions imposed by (4.12) on the translog cost

function (3.16) are satisfied with our (KLEM) data. The

translog cost function (3.16) will be approximately weakly

separable as in equation (4.12) if

“ink ‘ “jYik g 0

and (4.13)

aiij - aniQ = 0 1,3 = K,L, and k = E,M .

We may consider a real-value added aggregate price

which is more general than the one in (4.12) by assuming a

non-homothetic real value-added aggregate price, as we did

for the previous case in equation (4.7). If this is the

case the cost function may be written as:

c -- H(h(.WK_.WL.Q.T).WE.WM,Q,T) (4.14)

where the primary input prices are now separable from

only the price of energy and materials and not from output.

What are the parameter restrictions on the non-homothetic

translog cost function (4.16) such that it will be approximately

weakly separable as in equation (4.14)? The conditions are:

aink - anik 3 0 i,j = K.,L and k = E,M. (4.15)
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There might be other kinds of separability consistent

with our data which are worth checking; especially the

((K,E), (L,M)) weak separability is an attractiveeandidate.

Berndt and Wood (1975) have tested the linear weak separa-

bility restrictions for ((K,E), (L,M)) separability and were

not able to reject these restrictions with their data;

consequentlyg they could not reject the consistent

aggregation of K and B (an index of "utilized capital" as

they called it) and of L and M. Here we test two versions

of this hypothesis with our data, departing from Berndt and

Wood (1975) again by examining the approximate weak

separability conditions which are less restrictive.

The dual cost function corresponding to ((K,B), (L,M))

weak separability may be written as

c = H.(h(:-JK.WE.T>,.gwL.wM.Q.T> ,Q,T) (4.16)

where h(x) and g(°) are homothetic in input prices and independent

of the level of output. For our non-homothetic translog

cost function, inputs K and B will be approximately weakly-

separable from.L and M if the following parameter restrictions

hold:

“'ij ' a-Yik = 0 i,j = K,E, and k = L.M.Q;

and (4.17)

= 0 i,j = L,M and k = K,E,Q



202

Another version of ((K,E),(L,M)) weak separability

is

c = H(h(WK,WE,Q,T),g(WL,WM,Q,T)) (4.18)

where h(-) and g(-) are non-homothetic functions in input

pricesB. The non-homothetic translog cost function (3.15)

is approximately weakly separable as specified in equation

(4.18) if the parameter restrictions implied by (4.18) are

satisfied, i.e.,

Qink-GjYik = 0, i,j K,E, and k = L,M; and

aiyjk-ajyik = 0, i,j L,M, and k = K,E . (4.19)

There is of course no reason to restrict our analysis

to various possibilities of weak separability among factor

inputs. The separability specification also permits us

to analyze technological change. We earlier saw that a

production function is defined to exhibit Hicks neutrality

if it can be written in the following form

c = H(h(!/J_.Q).Q.T) (4.20)

The parameter restrictions implied by (4.20) on our non-

homothetic translog cost function (3.16) are

ainT - aniT = 0 1,3 = K,L,E,M . (4.21)

An unfortunate limitation of this specification is

that the parameter restrictions (4.21) cannot be imposed

simultaneously with adding up constraints (281 = 1) without
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imposing extended Hicks neutrality. For example, if there

are only two inputs,the condition for indirect Hicks

neutrality is a1Y2T - azle = 0. This constraint, however,

cannot hold simultaneously with the adding-up constraints

a1 + a2 - l and le + YZT - 0 unless le = YZT = O, which

only holds for extended Hicks neutrality. Therefore, we

adopt and test indirect Hicks neutrality for a subset of the

inputs; namely we write (4.20) as

C = HChCWK.W .WE.WM7Q).WM.Q.T) (4-208)

and the implied parameter restrictions as

GinT - aniT = O i,j = K,L,E. (4.21a)

Finally, we check the condition for the validity of

Harrod neutral technical change with our data. We saw

earlier that a cost function exhibits indirect Harrod

neutral technological change if it can be written in the

following weakly separable form:

c = H(h(WK.WE.WM.Q).WL.Q.T) (4.22)

The non-homothetic translog cost function (3-16) Will be

approximately weakly separable if the following parameter

restrictions are satisfied:

“inL ‘ “jYiL 7 0

- = °°= 4.2aiij an1T 0 1,3 K,E,M. ( 3)
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4.3 Statistical Results
 

4.3.A Manufacturing

We have statistically checked the conditions for the

validity ofthe imposed parametric restrictions implied by the

various types of separability specifications,which were

discussed above. To perform these statistical tests we

have estimated all eleven specifications,and have computed

the likelihood ratio test statistics as twice the difference

of the sample log-likelihood values of the unrestricted

and restricted models. As is generally well known,the

asymptotic distribution of this test statistic is x2 with

degrees of freedom equal to the number of restrictions.

Of the eleven specifications we have tested, five

specifications could not be rejected as the likelihood

ratio test statistic for these models turned out to be

small compared to the .05 (.01) x2 critical values. These

specifications are the ((K,L,E),M) separability specified in

equation (4.7) , the value-added specification of equation

(4.18), and the two versions of the ((K,L,E),M) weak separability

specifications (see footnote 3), and finally one of the

((K,E),(L,M)) weak separability specifications specified in

equation (4.18), i.e., H(h(WK,WE.Q.T) . gCWL.WM.Q.T)) .

The likelihood ratio test statistics we have obtained

for these five models (in above order) are 0.282, 3.732,

4.076, 2.818, and 7.346; while the 0.05 x2 critical values

(with two and three degrees of freedom) are 5.991 and 7.815
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TABLE 4.1

ALTERNATIVE WEAK SEPARABILITY TESTS

U.S. MANUFACTURING, 1947-71

 

 

Type of Separability Independent Likelihood Ratio Test

Parameter Statistics: Result

Restrictions - 2 1n L(w)/L(Q)

[(W ! :L,:E,T) ,WM’Q,T] 4 26.290 *

[(WK EQ T). WM.Q.T] 2 .282

[(WK WE.W T)WM’Q' T] 2 19.506 *

[(WKWL’ T).WE’WM.Q.T] 3 42.370 *

[(WK.WL’Q’T)’WE’WM’Q'T] 2 3.732

[(WKWE,T)’(WL :WM,T):Q9T] 5 15.986 *

[(WK,WE T),WL’ WM’Q’ T] 3 4.076

[(WK’ WE,1»IQ,'JL‘),(L WM.Q.T)1 3 7.346

[(WK 'WE ,Q,T),WL WM,Q,TJ 2 2.818

[(W, Q), WM,Q, T] 2 14.168 *

[(WK ,WE ,WM)L,Q T] 4 25.504 *

[(WK ,WL ,WE), WML] 2 12.536 *

W( W)WE ,WM] 2 40.426 *

[(W:, WE) WL ,WM] 2 14.748 *

3 24.176 *[(wK. WE) .(wL.wM>J

* Weak separability hypothesis is rejected at .01 level of

significance.
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TABLE 4.2

ALTERNATIVE WEAK SEPARABILITY TESTS

U.S. NON-ENERGY MANUFACTURING,.I947v7l

 

Type of Separability Independent Likelihood Test

 

Parameter Ratio Results

Restrictions Statistics

~21nL(m)/L(9)

[(WK .WL. T)WMQ, T] 4 7.644

[(WK ,WLW,w:,Q, T),WM,Q, T] 2 6.522

[(WK ME’W,T)WM,Q, T] 2 3.184

[(WK’W:,T),WE, WM,Q,T] 3 1.310

[(WK,WL,Q,T),WE;WM,Q,T] 2 .018

[(WK,WE,TL(WL,WM,TLQ,TJ 5 11.920

[(WK,WE,T),WL,WM,Q,TJ 3 10.498

[(WK»WE.Q.T).(Wt,WM,Q.T)] 3 10.744

[(WKL,wE,Q,T),w ,WM,Q,T] 2 10.498 *

[(W, Q),WM,,Q T] 2 3.616

[(W’ ’WE ,WN)L,.Q T1 4 4.722

[(WK ,LW ,WEL WM] 2 15.138 7"

[(WK W)WE ,WM] 2 15.772 *,

[(w:,,WE), WL ,WM] 2 22.968 *

[(Wk, WE),(WL,WM)J 3 41.432 *

*Weak separability hypothesis is rejected at .01 level of

significance.
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respectively. These five specifications, therefore, cannot

be rejected based on these test statistics. However, we are

inclined to reject the first four specifications on the

grounds that none of them will satisfy the concavity condition

required for well-behavedness of the cost function. The

((K,E),(L,M)) weak separability specification of equation

(418)13 the only specification that our net output data and

model specification (nonhomothetic-nonneutral) cannot reject,

while at the same time the concavity conditions are satisfied

for this model. However, the other version of this

separability specification,i.e.,H(h(Wk,WE,T), g(Wi.WM.T),Q,T)

is rejected at .01 level of significance. It is interesting

to note that the ((K,E),(L,M)) separability specification

was the only specification that Berndt and WOod (1975) could

not reject with their data and model specification (CRS -

Hicks neutral technical change), and that the cost function

was alsowell-behaved.4

One important result is the "rejection" of the value-

added specifications. Many empirical studies of investment‘

demand and capital-labor substitutability in the U.S.

'manufacturing sector have in fact assumedaapriori the value«

added specification. One, therefore, is inclined to view

the results of such studies as unreliable due to the

rejection of value-added specification.

4.3.B Non—manufacturing Energy

As for the non-energy manufacturing sector, we have
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repeated the same number of statistical tests to check

whether any of the parametric separability conditions

imposed on the translog cost function (16) are satisfied.

0f the eleven separability specifications we have tested for the

non-energy manufacturing sector, we could reject only one

at the 0.01 level of significance, where the general

"nonhomothetic-nonneutral" specification was chosen as the

unrestricted model. The rejected model is the weak separ-

ability specification of H(h(Wk,WE,Q,T),WL,WM,Q,T)5.

This "nonrejection" situation here is quite similar

to what we experienced in the previous chapter when we were

estimating and testing for the validity of various model

specifications for the nonenergy manufacturing sector. There

we concluded that, forthe nonenergy manufacturing sector, the

characterization of the production structure by a nonhomo-

thetic-nonneutral cost function was unnecessary, and that

the adoption of a homogeneous-Hicks neutral specification

was justifiable.

Maintaining the "homogeneous-Hicks neutral" specification

as the unrestricted specification, we have tested for the

validity of three well-known separability specifications;

i.e., ((K,L,E),M) weak separability; the value-added

specification, (-(K,L) ,E,M); and (‘.(K,E),(L,M)) weak separ—

ability. These specifications have frequently been utilized

by many researchers in a number of empirical studies. For

example, ((K,L,E),M) weak separability has been assumed by

Griffin and Gregory (1976) and Magnus (1979) in their
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studies, due to lack of reliable data on.the materials input

price. The value-added specification has also been employed

in many empirical studies of investment demand and capital-

labor substitutability in U.S. manufacturing. And finally,

the ((K,E),(L,M)) weak separability is the separability

that Berndt and Wood (1975) were not able to reject in their

study of U.S. manufacturing.

All these specifications, however, are rejected at

the 0.01 level of significance with our data for'the nonenergy

manufacturing sector. The likelihood ratio test statistics

for these specifications (in the same order mentioned above)

are 15.138, 22.968, and 41.432, while the 0.01 x2 critical

values with two and three degrees of freedom are 9.210 and

11.345 respectively.



CHAPTER IV

FOOTNOTES

1There is a distinction between the translog as an

exact representation of a functional form.and as an

approximation to a functional form. Tests ofthe separability

hypothesis based on an exact interpretation of the translog

are restrictive. Specifically, the separability constraints

imply that the separable form of a translog function must

be either a Cobb-Douglas function of translog subaggragates

or a translog function of Cobb-Douglas subaggragates. To

avoid this restriction in carrying out our tests, we have

chosen the more general interpretation oftfluatransloe as a

second-order approximation to some unknown arbitrary cost

function.

2See footnote 1 above.

3Two less restrictive versions of (4-16) and (4.18) are

C = H(h(WK,WE.T). WLWM.Q,T) and c = H(h(WK,wE.Q»T),wL,wM,Q.T)

respectively. The parameter restrictions for the former

spec1f1cation are: aink-anik=0’ and aiij-ajyiQ=O;

i,j=K,E, and k=L,M. While for the latter specification the

following implied parametric restrictions must hold:

aiyjk-ajyik=0; i,j=K,E, and k=L,M.

4For the record, however, we have also checked the

validity of the separability conditions for three commonly

utilized specifications using the same model specification A

(CRS-Hicks neutral technical change) employed by Berndt and

Wood (1975). The specifications tested are: ((K,L,E),M)

weak separability, the value-added specification, and

((K,E),(L,M)) weak separability. All these three specifi-

cations have been rejected at the .01 level of significance

when each was tested against the maintained "CRS-Hicks neutral

technical change" specification.

5In addition to this specification, there are four

other separability specifications which our data can reject,

although at a lower level of significance. Specifically,

the specification number312,6, 7, and 8 in Table (4.2) are

rejected (the two former ones at the .05, and the two latter

ones at the .025 level of significance).

210



CHAPTER V

SUMMARY AND CONCLUSIONS

The oil crisis of 1973 and the subsequent continuing

increases in the price of energy have led to increased

interest in the characteristics of energy demand and substi-

tution elasticities between energy and nonenergy inputs.

The U.S. manufacturing industries that account for

approximately one-fourth of aggregate energy consumption

have attracted a- great deal of attention as a potential

sourse of reductions in energy demand.

In recent years, a growing number of econometric

studies have focused on the estimation of the Hicks-Allen

substitution elasticities among energy and nonenergy inputs

imithe manufacturing process. The information regarding these

elasticities provided by empirical studies is very

essential in deriving policy implication of increasingly

scarce and higher priced energy inputs. A review of the

literature, however, indicates that these estimates have

not always been consistent. One interesting result is the

contradictory evidence concerning substitution possibilities

between capital and energy. It has not been, however, the

purpose of this study to reconcile these differences

concerning factor substitution. This study rather has

dealt with another subtle issue ignored in past studies of

211
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manufacturing.

The primary objective of this study has been to examine

past studies of manufacturing energy demand and to employ

an alternative model for the estimation of industrial

conditional factor demand functions. More specifically,

in past econometric studies of manufacturing sectors the

researchers have specified a flexible cost function over

four aggregate inputs of capital services (K), labor services

(L), energy (E), and materials (M). In these studies,

output, materials and energy have been measured as "gross"

magnitudes in the sense that they contained intra-industry

shipments<xftraded intermediate products (energy and materials).

But, as was revealed in table (2.1), a considerable

portion of purchased materials and energy inputs have been

produced within the same Sector. The prices of these

internally produced and traded materials and energy must be

considered, properly, as endogenous variables in a competitive

industry general equilibrium model, as shown by Samuelson

(1953). In fact, the prices of these internally produced

materials and energy respond to any change in the prices

of primary inputs such as labor, capital, primary energy

and materials. The application of Shephard's Lemma in these

models to derive industry conditional factor demand functions

is not proper, as exogeneity of input prices is a necessary

condition for such an application. Therefore, the source of

error in past studies has consisted of a model specifi-

cation over "gross" industry output which has forced the
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researchers to include the internally produced products in

their aggregate "energy" and ”materials" inputs. The

prices of these inputs are not exogeneous, and the application

of Shephard's Lemma by these authors is inappropriate.

In this study, we have considered an alternative

model for aggregate cost and conditional factor demand

functions, and have estimated the production structure of the

U.S. manufacturing sector as well as the non-energy manufac-

turing sector for the 1947-71 period separately. In parti-

cular, we have specified our model, properly, conditional

upon the level of industry output net of internally produced

materials and energy, (i.e., the level of industry deliveries

to the balance of the economy). Such a model specification

presents a proper context for energy policy discussions,

since we are commonly interested in reducing the energy

intensity of a given level of a sector's output delivered

to final demand, i.e., the net output.

Having done that, this study has then addressed

questions concerning factor demand, and possibilities for

substitution among energy and non-energy inputs. To

accomplish this we have estimated the production relationship

for the U.S. manufacturing and non-energy manufacturing sectors,

via the dual cost function, because of its several econometric

and theoretical advantages. For purposes of estimation a

translog cost function is specified as a quadratic approxima-

tion to the underlying production process. The relevant

inputs are capital services (K), labor services (L), primary
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energy (E), and primary materials (M). Estimation of a trans-

log cost function has made it possible to calculate the extent

of factor substitution without imposing any a priori constraint

on the values of AES. Moreover, the use of a flexible

functional form (such as the translog) has made it possible

to test a number of hypotheses concerning other characteris-

tids of the production function, such as C.R.S., homogeneity,

homotheticity, and the rate and bias of technological change.

Here we briefly summerize our findings concerning the

estimates of price and substitution elasticities which are

the essence of this study.

Among the major findings of this study concerning the

input price elasticities and factor substitution in the

manufacturing sector are that: (i) the ”ii and °ii (i=K,L,E,M)

(i - K,L,E,M) all have the correct negative sign indicating

satisfaction of the concavity condition; (ii) the controver-

sial energy-capital complementarity relationship has

persisted in this study, but is substantially weaker than the

estimates obtained by Berndt and Wood (1975); (iii) energy

and labor are slightly substitutable; (iv) our net model has

displayed a considerably smaller magnitude for factor price

and substitution elasticities then the gross specification

employed by Berndt and Wood and Berndt and Khaled (1979). In

particular, the important own-price elasticity of energy, "EE

is found to be , substantially, of smaller magnitude (about

-.13) compared to the robust estimate of about -.50 reported
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by Berndt and Wood, Hudson and Jorgenson (1974), and Berndt

and Khaled. This means that the response of energy demand

to a changing energy price is likely to be more inelastic

in the net output model than in the gross output model.

Our inelastic result may indicate that after an energy

price increase, each firm finds itself facing higher priced

produced inputs, including intermediate energy products

as well as higher priced energy inputs. Therefore, the

possibilities of substituting away from energy would be

smaller than if only energy increased in price. For the

manufacturing sector we conclude that our findings on

the AES and input price elasticities indicate that respeci-

fication of our model over the net industry output and

primary factors of production has resulted in a fall in the

absolute value of these elasticities. We have also observed

that the technological possibilities for substitution

between energy and non-energy inputs are present, but are

very limited. Specifically, energy appeared to be complement

with capital, while it has been a rather weak substitute

for labor and materials.

Relevant policy implications of our empirical results

suggest that, since GEE and ORE are negative and OLE is

positive, higher priced energy - ceteris paribus — dampens

the demand for energy and new plant and equipment, while at

the same time it will stimulate employment. This leads,

therefore, to an increase in the labor intensiveness of the

production process, and a decline in energy and capital
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intensiveness. Furthermore, investment tax credits, and

accelerated depreciation allowances, which decrease the

price of capital services, result in increased demand for

capital and energy. This requires a careful handling of

these policy instruments since a particular energy policy

may contradict investment policy.

As for the non-energy manufacturing sector our

estimates of the AES and nij indicate again that the

technological possibilities for substitution among energy

and non-energy inputs are present. It is unfortunate,

however, that we cannot compare our results with similar

studies of the non-energy manufacturing sector as we are

not aware of any such studies. The estimated input price

and substitution elasticities obtained for non-energy

manufacturing reveals that (i) all of the own-Allen

partial elasticities of substitution and own-price

elasticities have the correct negative sign required for

stability; (ii) labor, energy, and materials are quite

responsive to a change in their own prices, while capital

appears to be less responsive; (iii) capital and energy are

again complementary but substantially less so than what we

have found for the manufacturing sector; (iv) labor and

energy are quite substitutable; (v) capital and labor are

slightly substitutable, although this substitutability

appears to be stronger than what we found in manufacturing

sector; and (vi) the important own-price elasticity of energy

demand is more elastic than the Berndt-Wood estimates and the
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estimate we obtained for the manufacturing sector. For the

nonenergy manufacturing sector, therefore, we have found

that, except for labor, the technological possibilities for

substitution between energy and nonenergy inputs are some-

what limited. For a given level of net output, an increase

in the price of energy will lead to small increases in the

quantities of labor and materials demanded and to very

small reductions in the quantity of capital demanded.

We also have tested a number of nypotheses concerning

other characteristics of the production process for the

manufacturing and nonenergy manufacturing sectors. For the

manufacturing sector our empirical results imply that

homotheticity, homogeneity, and C.R.S. must all be rejected.

Neutrality of technical change has also been rejected. The

estimation of Hicks biases obtained for our non-homothetic-

nonneutral model indicates that over the 1947-71 period

technical change has been labor-saving; capital, energy, and

material-using. The labor-saving and other factor-using

biased technical changes are consistent with input prioedata,

since labor input price had the largest rate of growth

over the 1947-71 period. Our result is in contrast with that

of Berndt and Khaled (1979) since their "gross" output model

displays technical change that is capital and energy-using,

approximately labor neutral, and intermediate material-saving.

As for the nonenergy manufacturing sector, we have

also done several tests concerning the nature of technical

change and the characteristics of the production process for
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I

the 1947-71 period. Of the nineteen specifications tested,

our nonenergy manufacturing data could only reject three of

them at the .01 level of significance. These specifications

are CRS, CRS-Hicks neutral technical change, and unitary

elasticity of substitution. All other models could be

accepted even at the .05 level of significance. On balance

we have concluded that for the non-energy sector, the

characterization of the production structure by a function

exhibiting homogeneity and Hicks neutrality was justifiable.

This study has also addressed the question of economies

of scale. For this purpose the index of scale economies

suggested by Christensen and Green (1976) was calculated.

This index was defined as one minus the cost elasticity

along an output ray. The translog cost function allows

scale economies to vary, in general, with the level of

output, factor prices, and the state of technology. The

estimates of scale economies for both sectors, reported in

Tables (3.9 ) and (3.10), show substantial positive and

statistically significant scale economies for all selected ‘

specifications. The estimates of scale economies are quite

sensitive to the model specification. For the manufacturing

sector we have obtained quite a large estimate of .624 for

our (rejected) homogeneous specification (Mbdel 6L'while our

estimate for Model 12 (nonhomothetic-no technical change)

is .260. This latter estimate is remarkably close to the

estimate of .240 obtained by Nadiri and Schankerman (1981) for

the U.S. manufacturing sector. For our unrestricted net
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output model the estimate of scale economies is .345. Berndt

and Khaled obtained an estimate of .199 for their unrestricted

gross output model, which they judged to be somewhat large

compared to the estimates obtained in other studies of

returnsto scale involving value added.

For the nonenergy manufacturing sector we have obtained

the high estimate of .587 for scale economies for the homogeneous

model (Model 6), while the homothetic Hicks neutral specification

(Mbdel 5) has rendered a relatively smaller estimate of .336.

Mbreover, the imposition of the Hicks neutrality restriction

(Yit30) on the nonhomothetic-nonneutral model has produced a

high estimate of scale economies, while for the homothetic and

homogeneous models the imposition of Yitao has rendered

relatively low estimates.

We also have estimated the rate of technical

a 1n C

3T

period. The negative of this measure is defined as "the dual

advancement measured by for both sectors over the 1947-71

rate of total cost diminution" by Ohta (1974) and was

utilized by Berndt and Khaled (1979). Our empirical results

indicate that the null hypothesis of zero rate of technical

advancement would not be rejected while the null hypothesis

of no scale economies would be rejected. Consequently, we

are persuaded to conclude that, in both sectors over the 1947-71

period, the source of growth has been primarily the

utilization of economies of scale.

Finally, this study makes possible tests of the hypothesis

of weak separability among inputs. Of the eleven specifica-

tions tested for the manufacturing sector, we could only accept
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the [(K,E),(L,M)] weak separability of equation (4.18), where

the nonhomothetic nonneutral specification was maintained

as the unrestricted model. It is interesting to note that

the [(K,E),(L,M)] weak separability specification was the

only one that Berndt and Wood were not able to reject with

their data and model specification (CRS-Hicks neutral

technical change). For the record, however: when the null

hypothesis of [(K,E), (L,M)] weak separability was tested

against the same model specification employed by Berndt

and Wood as the unrestricted model, the null hypothesis was

rejected.

For the nonenergy manufacturing sector we have main-

tained the "homogeneous-Hicks neutral" specification as our

unrestricted specification, and we have tested for the

validity of three well-inown weak separability specifications,

i.e., the [(K,L,E,M),M)] weak separability, the value-added

specification [(K,L),E,M], and the [(K,E),(L,M)] weak

separability. These specifications have repeatedly been

utilized by many researchers in a number of empirical studies.

For example, the [(K,L,E),M] weak separability has been

assumed by Griffin and Gregory (1976) and Magnus (1979) in

their studies due to lack of reliable data on the materials

input price; the value-added specification has also been

employed in many empirical studies of investment demand and

K-L substitutability in U.S. manufacturing; finally the

[(K,E),(L,M)] weak separability is the form of separability

found by Berndt and Wood (1975). All these specifications,

however, were rejected.
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One important result is the rejection of the value-

added specification for both sectors. Many empirical studies

of investment demand and capital-labor substitutability in

the U.S. manufacturing sector have in fact assumed, a priori,

the value-added specification. One, therefore, is inclined

to view the results of such studies as unreliable due to

rejection of the value-added specification.

One important requirement of the net model framework,

utilized in this study, is the necessity of obtaining

sufficiently detailed energy and materials data that enable

us to partition these inputs into "internal" and "external"

(primary) portions. This becomes a major deficiency of the

"net" output model since recourse must be made to national

input-output tables, which are available infrequently and

with a time lag; however gross model estimation can be

performed with readily available value-of-shipment data. But

as this study has shown, estimation performed by the gross

output data may lead to biased estimates of factor substitu-

tion for an industry.

This study has shed light on a number of issues

such as factor demand and factor substitution elasticities,

technical change, scale economies, characteristics of the

production process, and weak separability among inputs. At

the same time it suggests areas for further study. While

this study has examined and estimated an alternative model

conditional upon the industry's net output (wherein the

rate of inter-firm flow of intermediate productsiasconsidered,
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a maintained hypothesis of the "net" model is that the

primary input prices are exogenous to the industry as a whole.

Since the use of Shephard's Lemma in this context is dependent

upon the assumed exogenity of primary input prices, it is

thus highly desirable to test the validity of this hypothesis

(see Geweke (1978) for description of such a test). As far

as our data is concerned, it unfortunately ends in 1971. It

would of course seem desirable to find out whether our 1947-

71 data yield results consistent with the post-1973 OPEC

price increases. There is need for further work on reconciling

substitution possibilities between energy and capital from

time series analysis with those of cross-section studies,

employing the "net" model instead of the gross model as the

framework of study. For this purpose, the utilization of

post-1971 data, and, perhaps more significantly, pooled

cross-section and time series data would be useful and provide

us with more accurate estimates of factor demand and substi-

tution elasticities, returns to scale, and the rate and

bias of technical change. Since the static profit- maximiza—

tion model is an inadequate description of the actual decision

process, a possible extension of this study would consist of

the specification and estimation of a dynamic factor demand

model, which would be more general than our instantaneous

adjustment assumption. Another possible research project

would consist of using the "net" model framework for specifi-

cation and estimation of production relations for other

sectors of the U.S. economy.
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APPENDIX A

DATA CONSTRUCTION AND SOURCES

Annual price and quantity indices for inputs of

capital and labor services are obtained from.Berndt and Wood

(1975). The price and quantity indices for capital services

have been constructed from nonresidential structures and

producers' durable equipment, following the procedure

outlined by Christensen and Jorgenson (1970). To construct

a quantity index of capital input, it is necessary to

start with the measurement of the capital stock corresponding

to each type of capital service. For the purpose of such

measurement a perpetual inventory method is chosen to estimate

the 19‘791 015 capital stock corresponding to equipment and

structures. In discrete time the perpetual inventory formula

may be written in the form

Kit = Iit + (l - Hi) Ki,t-l i = e,s; (A.l)

where Kit denotes end—of-period capital stock, Iit the quan~

tity of investment taking place in the period, 31 the average

rate of replacement; and the subscripts e,s;,and t refer to

producer durable equipment, nonresidential structures, and

the time period respectively. To implement this perpetual

inventory method it suffices to have data on investment in

constant dollars, a capital benchmark, and an average rate of

replacement1 for each type of capital stock. Then an

aggregate quantity index of capital services is computed by

Divisia2 aggregation of the two capital services from

223
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nonresidential structuresand.producers' durable equipment by

the following discrete approximation to the continuous

Divisia formula,

1n Kt-ln Kt-l = git (1n Kit-ln K i=e,s
i,t-l)’

PitKit (A.2)
where S = .

it PetKet+Pstht

 

As for the capital service price, Berndt and Wood

(1975), following Christensen and Jorgenson (1969), have

constructed and used the rental price of capital services

from nonresidential structures and producers' durable

equipment. The imputation of rental prices for capital

services is based on the correspondence between the acquisi-

tion price of an asset and the present value of the services

it provides, where in competitive equilibrium these two

prices are equal.

To make this correspondence explicit according to the

perpetual inventory method, it is assumed that the quantity

of service flow from.an asset declines geometrically over

time. The service price of an asset at time t is obtained

as

= . . - - A.3

Pt qt-l rt + qt d (qt qt-l) ( )

where qt denotes the acquisition price of the asset at time

t, r the nominal rate of return, and d the rate of replace-

ment. In fact the service price is stated as the sum of the

cost of capital, qt_1-rt, the current cost of replacement,
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qt°d' and the cost of capital gain or loss on the value of

the asset, (qt - qt-l)‘

The service price may be formulated as the sum of

the real cost of capital, qt_l°rt*, and the current cost of

replacement qt-d; where rt* - rt - (qt — qt_1)/qt_1 is the

real rate of return. Since the U.S. manufacturing sector

is overwhelmingly incorporated enterprises, Berndt and Wood

have used the corporate service price formulas developed by

Christensen and Jorgenson (1969).

The tax treatment of property income generated by

each asset alters the service prices, and therefOre the

tax structure for property income generated by that asset

must be incorporated in these service prices. For the

corporate sector in U.S. manufacturing these service price

formulas, derived by Christensen and Jorgenson (1970), are:

l-u Z -k +y

8 t et t t _ _

Pet [ 1'“: ][qe,t-l rt+qetae (qet qe,t-l)]

 

(A.4)

+ qet et

l-u Z
, t st _ _

Pst I‘“t ][qs,t-l rt+qstas (qst qs,t-l)]

(A.5)

+q 6

Stt

where r is the nominal after-tax rate of return on corporate

property, 3e and as are the average rate of replacement for

equipment and structures respectively,ins the effective

corporate profit tax rate, 2 and ZS refer to the present
et t
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value of depreciation deductions for tax purposes on a

dollar's investment in equipment or structures over the life

time of investment, k is the investment tax credit, y is

equal to kuZe for 1962 and 1963 and zero for all other years,

qe and q8 are price indices of new equipment and structures,

and e is the tax rate on corporate property in U.S. manu-

facturing.

Having computed the service price measures of Pet

and Pst’ an aggregate service price of capital can be

constructed by employing the discrete approximation to the

Divisia index given by the following formula:

 

ln Pkt-ln Pk’t_l = E Sit(ln Pit-1n Pi t_1) i=e,s

(A.6)

P. K

where git 3 P lit-'1; T- i=e,s.

et at st St

In practice, instead of constructing a Divisia price

index for capital by (A6), one may compute an implicit

Divisia price index as Pkt' (PetKet+PstKst)/Kt’ where Kt

is the Divisia quantity index obtained from (A.2). Or alter-

natively, given a Divisia price index Pkt by (A.6), one may

construct an implicit Divisia quantity index as

=(P The empirical results based on
Kt etKet+PstKst)/Pst

either alternative, however, remain basically unchanged.

The construction of a measure of a labor service

price index, Wt, starts with constructing a measure of labor

service, L. The quantity index for labor services has been

constructed as a Divisia index of production and
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non-production3 labor man-hours adjusted for quality changes

using the educational attainment index of Christensen and

Jorgenson (1970).

A man-hour index is traditionally measured as the pro-

duct of the number of workers employed and the average hours

per worker worked. Therefore, a man—hour series for produc-

tion (non-production) workers may be constructed as the product

of the number of production (non-production) workers and the

average hour per worker. These man—hour series has been

constructed for production and non-production workers based

on data provided by the U.S. Bureau of Labor Statistics - the

two series which reflect changes in the average hour worked by

production and non-production labor as well as change in

production and non-production persons engaged. These man-

hours estimates, however, do not reflect changes in the

quality of labor.

Quality adjustment may be achieved by incorporating

an index of educational attainment constructed by Christensen

and Jorgenson (1970). Multiplication of the production and

non-production man-hours series by the Christensen and

Jorgenson.educational index results ina.quantity series for

production and non-production labor which takes account of

changes in average hours worked, changes in workers engaged,

and changes in the quality of labor as measured by changes

in educational attainment.

Next, an aggregate quantity index of labor services

may be constructed by Divisia aggregation of the two adjusted
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manehours series. Total compensation of employees in U.S.

manufacturing, which is the sum of wages, salaries and

supplements to wages and salaries,is obtained from.the U.S.

Department of Commerce, Office of Business Economics. Total

compensation is also adjusted for labor compensation to

proprietors,which has been imputed on the assumption that

proprietors, on the average, earn the same compensation as

the average compensation of all labor types in U.S.

manufacturing.

we then construct annual price and quantity indices

for "primary” energy and intermediate materials in U.S.

manufacturing, 1947-71. A rich source for this purpose is

the annual interindustry flow tables described in Faucett

(1973) . These tables have been constructed on the basis ofrdata

from various sources such as the annual Bureau of Mines and

'Minerals Yearbook, the Census of Mineral Industries (1954,

1958, 1963, and 1967), the census of Manufacturers (1947,

1954, 1958, 1963, and 1967), the U.S. Department of Commerce

Input Output Tables (1947, 1958, 1963), and the Annual Surveys of

Manufacturers. The energy input-output matrices presented

in Faucett measure flows of goods and services from 25

producing sectors of the economy (represented by the rows

of the tables) to 15 consuming sectors (represented by the

columns)4 in current as well as constant dollars.

The producing sectors are: (1) Agriculture, non-

fuel mining, and construction, (2) Manufacturing excluding

petroleum products, (3) Transportation, (4) Communications,
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trade, and services, (5) Coal mining, (6) Crude petroleum,

(7) Natural gas, (8) Motor gasoline, (9) Aviation gasoline,

(10) Kerosine, (11) Distillat fuel oil, (13) Jet fuel,

(14) Petroleum coke, (15) Still gas, (16) Liquified gases,

(17) Other petroleum.and coal fuels, (18) Other refined

petroleum.products, (l9) Asphalt and related products,

(20) Lubricating oil and grease, (21) Electric utilities,

(22) Gas utilities, (23) Water and sanitary services,

(24) Imports, and (25) Value added.

The consuming sectors consist of ten industrial

categories and five categories of final demand. The ten

industrial categories which we focus on in our data

construction are enumerated below. The first five industrial

categories of the consuming sector have the same title as the

first five categories of the producing sector. The remaining

five categories are: (6) Crude petroleum and natural gas,

(7) Petroleum refining and related industries, (8) Electric

utilities, (9) Gas utilities, and (10) Water and sanitary

services.

There is harmony between the first 24 producing

sectors and the ten industrial consuming sectors. Producing

sector Nos. (6), Crude petroleum, and (7), Natural gas are

a disaggregation of consuming sector No. (6), i.e., Crude

petroleum.and natural gas. Likewise, the detailed petroleum

products of producing sectors (8) through (20) serve as a

breakdown of the output of consuming sector No. (7),

Petroleum refining and related industries. The U.S.
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manufacturing sector, as has been conventionally defined, is

the row sum of column (2), Nonenergy manufacturing, and

column (7), Petroleum refining and related industries.

Looking at the input-output tables described in

Faucett reveals that the manufacturing sector purchases

"energy" and "materials" inputs from two sources. First,

"energy" and "materials" inputs purchased from sectors other

than the manufacturing (for example: transportation, commu-

nication services, crude petroleum, electricity). Second,

those "energy" and "materials" inputs produced within

manufacturing sector (for example: plastic, steel, glass,

kerosin, jet fuel). This latter portion of "energy” and

"materials inputs is what constitutes our traded intermediate
 

products such that their prices must be considered as

endogenous variables; the former portion constitutes our
 

primary "energy" and "materials" inputs and their prices can

be taken as exogenous variables.
 

Based on tables described in Faucett we construct

annual price indices of "primary" energy input as the

Divisia price indices of coal, crude petroleum and natural

gas, electricity, and gas purchased by firms in the U.S.

manufacturing sector. Note that in constructing the

Divisia price index for primary energy we only have taken

into account those energy inputs (products) produced by

sectors other than U.S. manufacturing; we have netted

out the trade intermediate energy products produced within

manufacturing sectors.5
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Similarly we construct annual price indices of

"primary" materials input purchased by establishment in the

U.S. manufacturing as the Divisia price indices of non

energy intermediate products (materials) produced by the

following sectors: agriculture, non-fuel mining, and

construction; transportation; communication, trade, and

services; water and sanitary services; and imports. Note

that we have constructed "primary" materials price indices

having taken account of only those intermediate materials

products (inputs) produced by sectors other than the U.S.

manufacturing. The additional data needed for the manufac-

turing sector to implement the estimation are total input

cost (in current dollars) and net aggregate output quantity

series. These data series are constructed as total cost

and gross output quantity, net of traded intermediate
 

products, from.input-output tables given in Faucett (1973).

As for the U.S. nonenergy manufacturing sector,
 

i.e.,sector (2), energy products (inputs) are entirely

purchased from firms outside this sector, and thus, may

entirely be considered as "primary" products (inputs) -

primary in the sense of being produced outside of the sector

in question - and therefore energy input prices may be taken

as exogenous. While the nonenergy manufacturing sector

purchases the materials input from two separate sources, it

buys a portion of its materials input from firms outside

of this sector, and the rest from.firms within the sector.

It is the former portion which constitutes "primary”
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materials input and its price may be considered

exogenous.

The data series for prices of capital, labor, and

energy have been obtained from astudy done by Hudson and

Jorgenson (1974), while data series for prices of

‘materials, total input cost, and net aggregate output

for nonenergy manufacturing is constructed from input-output

tables given in Faucett (1973). Specifically, we construct

annual price indices of "primary" materials input purchased

by firms in the U.S. nonenergy manufacturing as the Divisia

price indices of nonenergy intermediate products (materials

input) produced by other sectors, namely: agriculture,

non-fuel mining, and construction; transportation;

communication, trade, and services; water and sanitary

services; and imports.
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TABLE A.2

DIVISIA PRICE INDEXES* OF CAPITAL, LABOR, NET ENERGY,

AND NET MATERIALS INPUTS - U. S. MANUFACTURING

 

 

1947- 71

Year W

K wL WE WM

1947 .76477156 .57660151 .71737357 .33073573
1943 .76633645 .66572631 .33222603 .35407191
1949 .56376326 .66645909 .31029933 .35743226
1950 .70739075 .71230463 .33439311 .91427722
1951 .30206947 .77140057 .39611520 .93509179

1952 .76231375 .79541602 .90402134 1.0067070
1953 .76976552 .32713100 .94692339 .99031923
1954 .33174261 .33315949 .95142633 .99265973
1955 .34365775 .37136020 .94323203 1. 0251343
1956 .76175336 .91210237 .95203265 1.0535201

1957 .31311277 .94932249 1. 0310370 1.0293797
1953 33422123 .96516750 1. 0206031 1.0535356
1959 1. 0005000 1. 0000000 1. 0000000 1.0000000
1960 .95912276 1.0279652 .99935131 1.0633733
1961 .96612062 1.0492321 1. 0037373 1.0319354

1962 .96762722 1.0370726 1.0159240 1.0394329
1963 1. 0117469 1.1150262 1.0032460 1.0425924
1964 1.0156013 1.1539575 1.0034162 1.1235703
1965 1.0757200 1.1351410 1.0010161 1.1655357
1966 1.1096335 1.2307040 1.0069533 1.2226400

1967 1.0601034 1.2720752 1.0136071 1.2459966
1963 1.1464002 1.3434922 1.0350763 1.2609333
1969 1.1035399 1.4203153 1.0631259 1.4613036
1970 1. 0130470 1.5022314 1.1170396 1.4329606
1971.91907952 1.5915643 1.1769643 1.4732506

 

* Divisia price indexes have been normalized to equal unity

at the midpoint of the sample so as to maximize the

"goodness" of the translog quadratic approximation.
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TABLE A.4

DIVISIA PRICE INDEXES* OF CAPITAL, LABOR, NET ENERGY,

AND NET MATERIALS INPUTS - U.S. NONENERGY MANU-

FACTURING, 1947-71

 

 

Year WK WL WE WM

1947 .83224756 .52385496 .84468938 .83306244

1948 .90390879 .57633588 .97895792 .85503462

1949 .84446254 .59828244 .89779559 .85829597

1950 1.0724756 .64694656 .93887776 .91362980

1951 1.1653094 .67843511 .97895792 .98588882

1952 .96661238 .70515267 .99799599 1.0067518

1953 .951954:0 .72709924 .97394790 .98999181

1954 .85667752 .80152672 .95190381.99189090

1955 1. 0643322 .82729008 98496994 1. 0241544

1956 .97719870 .86545802 1. 0110220 1.0513212

1957 .94218241 .91507634 99098196 1.0293457

1958 .81433225 .95419847 1. 0020040 1.0534361

1959 1.0000 00 1. 0000000 1. 0000000 1.0000000

1960 .93811075 1.0085878 1. 0170341 1.0618913

1961 .90879479 1.0419847 1. 0160321 1.0811315

1962 1.0323733 1.0801527 1. 0140281 1.0888789

1968 1.0602606 1.1040076 98697395 1.0429792

1964 1.1392508 1.1727099 1.0200401 1.1281778

1965 1.2500000 1.1870229 1.0791583 1.1660756

1966 1.2622150 1.2547710 1.0360721 1.2237448

1967 1.1074919 1.3043893 1.0270541 1.2460704

1968 1.1'33225 1.3883588 1.0681363 1.2618934

1969 1. 545603 1.4866412 1.0661323 1.4595950

1970 .90472313 1.6192748 1.0651303 1.4827018

1971.97149837 1.7070611 1.2124248 1.4755299

 

Divisia price indexes have been normalized to equal unity at

the midpoint of the sample so as to maximize the "goodness”

of the translog quadratic approximation.



APPENDIX A

FOOTNOTES

1These rates of replacement are .135 and .071 for

equipment and structures respectively. These rates have

been computed by Berndt and Christensen (1973) as "the

arithmatic mean of the replacement rates implicit in the

OBE capital stock and investment series".

2For 21 brief discussion of Divisia index see

appendix (B).

3The concept of "nonproduction" and "production"

workers have been defined in various studies. Berndt

and Christensen (1974) have mentioned the BLS definitions

of these terms as "office and related workers" for non-

production.workers, and "non office workers" for

production workers; while the OBE definitions are "wage

labor” for production labor and "salaried labor" for

non-production labor; i.e.,the distinction is mainly

based on the degree of direct association with the physical

production process. And, in that spirit one might use

'blue collar labor" for production labor and "white collar

labor" for non production labor.

4Asector's output distribution is described by its

row and its input purchase by its column.

5These consist of energy products produced by

sectors (8) through (20) (enumerated above) which constitute the

energy producing section of the U.S. manufacturing sector,

namely, Petroleum refining and related industries.

237



APPENDIX B

DIVISIA INDEX

Divisia price indices have been utilized in

this study. A.brief description of such indices and

their construction may seem desirable in this section.

The Divisia index is defined in terms ofaiweighted sum

of growth rates, the weights being the component's shares in

total value. Specifically, if x(t) - {x1(t),...,xn(t)}

is the set of observations on quantities of inputs and

p(t) - {p1(t),...,pn(t)} the corresponding price observations

which are to be indexed, the Divisia price index, in its

continuous form, is defined as:

n éi<t)
exp 2 Bi 171—(E5. , (3.1.)

t:i=1

where Si 3 pi(t)xi(t)/£pj(t)xj(t) is the relative share of

the value of ith input in total value, and dots over variables

denote derivativesvfi¢11respect to time. A Divisia quantity,

index may also be constructed by inkaing the above

definition and replacing p/p by x/x in (3.1). The Divisia

quantity index is dual to the price index. The rate of

growth of these price and quantity indexes are

§<t)/p(t) - z si §i<t>/pi<t>.

. . (B.2)

x(t>/x(t) = 2 s1 xi(t)/xi(t)

respectively.
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However, due to the nature of economic data, which

take the form of observations at discrete points in time,

the following discrete form of the Divisia index is used in

practice:

1°3 Pt‘ 1°55 pt-l ”X % (~Si,t+si,t-1)(1°g Pi,t' logpi,t-l)

(B.3)

where sit = Pitxit/E p. The discrete Divisia index (B.3)
itxit'

is in fact the discrete approximation to the continuous-time

Divisia index (B.l). This is Tornqvistt's discrete approxima-

tion to the continuous formula. It approaches the continuous

form as At+0.

The Divisia index has many desirable properties such as

an aggregation procedure discussed by Richter (1966), Theil

(1967), Hulten (19731 and Diewert (1976). It is also a fact

that this index suffers from one extremely serious problem.

Since the index is a line integral, it is dependent, in

general, upon the path on which the integral is taken.

Hulten (1973), however, has shown that if the aggregate (x)‘

exists, is homogeneous of degree one in its components

(xi) and there exists a corresponding price (p) normal at

each point unique up to a scalar multiple, then the Divisia

index is path independent,and retrieves the actual values

of the aggregating function, subject to an arbitrary

normalization in some base period. Therefore, the Divisia

index preserves, up to the normalization, all the information

in the problem; and it is at least as good as any other
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index. In other words, the Divisia index is the best choice

among index numbers, given the above conditions.

The Tornqvist's discrete approximation (B.3) i8 Proved

by Diewert (1976) to belong to the class of "superlative"

indexes. As such it is exact1 for an aggregating function

which is interpretable as a second order approximation to

a first degree homogeneous function. Therefore, the

discrete approximation to the Divisia index, (B.3),may

itself serve as a second order approximation to an arbitrary

(unknown) proper aggregation procedure.



APPENDIX B

FOOTNOTES

An index is said to be exact for an aggregating .

function if it retrieves the actual value of the function.
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