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ABSTRACT

APPLICATION OF THE GENERAL TRANSPORT THEORY TO SOLID

STATE GALVANIC CELLS

By

Bruce Kennedy Borey, Jr.

The goal of the research described here is the solution of the set

of partial differential equations from nonequilibrium thermodynamics,

hydrodynamics, and electrostatics which describes ion transport through

a variety of energy conversion devices. The solution is obtained both

numerically and analytically under a variety of boundary conditions.

This permits simulation of many different

electrode[electrolyte/electrode systems. The electrolyte spans the

solution space and is assumed to be a continuous phase, incompressible,

free of chemical reactions, and subject only to conservative external

forces. The solutions to the differential equations are in the forms of

both numerical finite difference simulations and approximate analytical

expressions.

The importance of electrolytic properties in determining the cell

efficiency is evaluated. Inclusion of temperature as a dependent

variable allows examination of the feasibility of using temperature

gradients to enhance economic performance. Contact vith experiment is

made through the numerical calculation of the ohmic voltage drop across

the electrolyte. Extrapolation of the curve of ohmic drop versus



current yields a value for the bulk conductivity in good agreement with

the value previously obtained from a.c. measurements.

To gain information concerning overpotentials, a.c. circuit theory

is employed. Certain circuit components. (resistors, capacitors).

combine to form circuits whose behavior mimics that of real systems.

Measurements of cell impedance: taken over a wide range of frequencies

are analyzed in the complex plane. The analysis leads to estimates of

the effect of overpotentials upon cell efficiency.

Mass transport transient behavior is examined and a simple formula

is derived for calculating the time required for establishment of the

steady state.
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CHAPTER 1

MACROSCOPIC ANALYSIS OF ENERGY CONVERSION DEVICES

A. Introduction

A fuel cell is a device for converting chemical energy (fuel) to

electrical energy without the use of moving mechanical parts. Extensive

studies on a wide variety of fuel cells using different electrodes,

electrolytes. and geometries have been carried out (Etsell and Flengas

[1970] and Foley [1969]). There are generally three sources of power

loss associated with the steady state Operation of such devices, and

they are the central foci of research in the field of energy conversion

today. These three sources of power loss are classified as activation,

mass transfer. and ohmic overpotentials. Of these the first two arise

as a consequence of the kinetic limitations of the electrolyte/electrode

interface involved. The ohmic overpotential is a result of ionic

transport across the bulk or electrOlyte phase. A theoretical treatment

of these phenomena is possible using the nonequilibrium .thermodynamic

formalism. We are interested in the performance characteristics of the

fuel cell in the steady state where the production of entrOpy has

reached a minimum (Onsager [1931]).

The combined nonequilibrium. hydrodynamic, and electrostatic set of

equations can be used for many purposes. Rice [1982] uses these



equations to describe the steady state isothermal transport] of ions

through a membrane. Tasaka. Morita. and Nagasawa [1965] have

investigated membrane potentials in nonisothermal systems. Several

authors have studied the transport of vacancies, electrons, and holes in

solid state electrolytes using the macroscopic formalism (Howard and

Lidiard [1963]. Ohachi and Taniguchi [1977]. Cheung, Steele, and Dudley

[1979]. Dudley, Cheung, and Steele [1980], and Weppner and Huggins

[1977]). This dissertation deals with the theoretical study of

transport phenomena in the steady state Operation of fuel cells, and how

independent variables such as temperature, current, and external load

can be adjusted to optimize performance.

B. Objectives

The principal objective of this work is to relate in a general way

the steady state cell performance to electrolytic properties and

externally adjustable parameters such as load voltage and temperature.

This relationship is derived from the macroscopic equations of

nonequilibrium thermodynamics. hydrodynamics. and electrostatics which

govern the transport of matter. and is independent of the events

occuring at the electrode electrolyte interface. This phase of the

investigation thus deals only with ways of minimizing the ohmic

overpotential losses suffered by any operating cell. Inclusion of a

temperature gradient in the formulation of the problem is undertaken in

order to assess the feasibility of using the nonisothermal properties of

an electrolyte for the purpose of increasing power output. The

assumption of electroneutrality or the neglect of regions of space



charge in many of-the treatments cited above seems rather unrealistic in

light of the fact that one expects a buildup of charge in the region of

electrolyte near the charged surfaces of the electrodes. Provisions are

therefore made for its inclusion in the formulation of the boundary

conditions of the problem. and the importance of non-electroneutrality

in electrolytic behavior is evaluated.

The evaluation of nonohmic overpotential losses is undertaken with

the aid of equivalent circuit anaIOgies and simple a.c. circuit theory.

The goal here is to assess the relative importance of these sources of

power loss. Power losses due to concentration and activation

overpotentials are dependent upon the kinetic parameters of the

electrode/electrolyte interface and are related to kinetic rate

constants derivable from the macroscOpic transport equations (Horne,

Leckey. and Perram [1981]).

C. Plan of the Dissertation

In Chapter 2 we begin with a review of the fundamental equations of

nonequilibrium thermodynamics. hydrodynamics. and electrostatics used to

formulate the macroscOpic transport equations. The last part of Chapter

2 deals with the separation of the starting equations into a part due to

bulk behavior and a part due to nonelectroneutrality. and the

specialization of these equations to the steady state. Chapter 3 is

devoted to a discussion of the boundary conditions and in particular

their application to Open systems in which the irreversible transfer of

charge is taking place. In Chapters 4 and 5 analytical solutions to the



steady state equations are derived for the transport of ions in galvanic

cells under a variety of boundary conditions. These solutions highlight

the separation of the bulk behavior of the system from behavior due to

non-electroneutrality. Also the role of the nonisothermal properties of

the electrolyte in enhancing cell performance is discussed (Borey and

Horne [1982]). The importance of higher order terms in the. analytical

solutions is considered and the performance of the cell as a function of

current is examined.

Chapter 6 begins with a brief discussion of the numerical

formulation of the transport equations (Leckey [1981]) and their

modification and adaptation to include nonisothermal terms. A

comparison of numerical results with analytical results is made in an

attempt to verify the accuracy of the latter, and to make contact with

experiment. Simple a.c. circuit theory in conjunction with equivalent

circuit representations is invoked to extract information about

interfacial parameters such as contact resistances. This information is

then ‘Used to estimate the relative importance of nonohmic

overpotentials.

In Chapter 7 we briefly examine the time dependent problem. The

accuracy of the solution is verified by comparison to the steady state

solution. and the transient behavior of the system is examined. The

transient behavior of the system is taken to be the behavior over the

period from the closing of the circuit to the establishment of the

steady state. A simple formula is derived from which the time required

to complete this transient phase can be estimated. This transient



 

behavior in many applications may be of great importance since operating

periods may be of comparable or shorter length than this time range,

making steady state operation the exception rather than the rule

(Jasinski [1967]).



CHAPTER 2

ION TRANSPORT EQUATIONS

A. Introduction

The macroscopic equations used

ofthe fields hydrodynamics.

thermodynamics. Details of the

phenomenological equations of

to describe ion transport come from

electrostatics. and nonequilibrium

assumptions which lead to the

nonequilibrium thermodynamics are

available from many sources (deGroot and Mazur [1962], Haase [1969]. and

Horne [1966]). The systems dealt with in this dissertation are

one-dimensional, binary electrolyte-solvent mixtures in which pressure

effects are negligible.

B.

In a charged system there

(solvent, cation, and anion)

fluxes and four diffusion

thechosen as independent

diffusion fluxes defined by

11 3 ci(vi-vo), 131,2.

coefficients.

Nonequilibrium Thermodynamic Equations

are three independent velocities

and therefore two independent diffusion

With the cation and anion

species (1 and 2 respectively) the Hittorf

(2-1)



where V1 is the velocity of species i and Va is the solvent velocity.

are. according to Onsager [1931]. linear combinations of the gradients

in electrochemical potential ii and temperature T.

-Ji = 2 1ij[afij/ax]T + liq[alnT/axJ. (2-2)

Here x represents the space coordinate and the lij are the onsgger

coefficients. The Onsager equation for the flux of heat Jq is

-Jq = 2 Iqi[aEi/ax]T + qu[alnT/dx]. (2-3)

The matrix of Onsager coefficients is symmetric.

lij a ljiv i.j = 1.2. (2-4)

i = 1.2. ‘ (2-5)

The electrochemical potential of ion i is given by

n. = u“: + <RT>1n[y.c.] + 2.1% (2-6)

where yi is the molar activity coefficient. zi is the charge number of

ion i. F is Faradays constant. and 6 is the electrostatic potential.

Dudley and Steele [1980] and Horne [1981] write the gradient of ii in

terms of the independent °i and 6 as

aEi/ax = E pik(3ck/ax) + ziF(36/dx) — si(aT/ax) (2-7)
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where Si is the partial molar entropy of ion i with

[aEi/axjr - [aEi/ax] + si[aT/ax]. (2-8)

uij . [aEi/acj] . (RT/cj)[bij + (alnyi/alncj)], (2-9)

where 5ij is the Kronecker delta. With the substitution of Eq. (2-7)

into Eq. (2-2). the diffusion fluxes become for each ion

-Ji . 2 Dij[acj/ax] + (Ati/in)[ad/6x] + liq[alnT/ax]. (2-10)

with

Dij a 2 1m“. ti - [ziFZIMJ 2 zklik.

A = F222 zizjlij' Eti = 1. (2-11)

The requirement of reciprocity imposes upon the diffusion coefficients

the relation

D12911 ‘ D11ll12 = D211122 “ D22F21- (2'12)

Eq. (2-9) reduces to the Nernst-Planck equation under the necessary and

sufficient conditions that (Horne [1981])

i) V030,



192. (2-13)H
. Niii) ln(yi) . O,

The Nernst-Planck equations are valid only for ideal solutions. in which

moreover there is no diffusional coupling.

The condition of local charge neutrality implies that the current

of one species must everywhere be counterbalanced by that of the

oppositely charged species. This coupled motion can be described by

only 532 independent velocities (electrolyte and solvent). and

accordingly only 233 independent diffusion flux. For nonisothermal

diffusion we have as well only one independent thermal diffusion

coefficient. Haase [1969] defines the diffusion fluxes under these

conditions as

’J ’ D[(ac/ax) - oc(aT/ax)] (2-14)

where c is the concentration of the neutral electrolyte. o is the Soret

coefficient. and D is the diffusion coefficient (also known as the

"ambipolar" or "chemical" or "mutual" diffusion coefficient). The

diffusion coefficient defined by Eq. (2-14) can be related to the Di”

J

of Eq. (2-9) by

D ' 2(D11D22-D12D21)/(Dll + D22 ' (21/22)Dlz ’ (22/21)021) (2’15)

Dudley and Steele [1980] evaluate this diffusion coefficient in terms of
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what they call a) thermodynamic factor. Wagner [1975] derives an

expression for this same diffusion coefficient for the case of a metal

excess 8 diffusing in compounds of stoichiometric composition A1+va in

terms of the Onsager coefficients and chemical potential gradients.

Horne [1981] directly relates the diffusion coefficients of Eq. (2-9)

to the mutual diffusion coefficient D for a symmetrical electrolyte.

For a nonisothermal system the Soret coefficient a in Eq. (2-14)

can be related to the individual ionic heats of transport by

c - -O‘/Tc(ap/ac) (2-16)

where Q. is the heat of transport of the electrolyte given by Q. = leI

+ V205 and v1 and V; are the stoichiometric coefficients of species 1

and 2 respectively. The individual ionic heats of transport are defined

by

‘ #

1iq ‘ 2 1ij°j~
(2-17)

With Eq. (2-17) the heat flux can be rewritten in terms of the heats of

transport as

- H P _Jq a -2 Ii Oi + x.(aT/ax) (2 18)

where

KS a qu/T — 2 (lqu;)/T. (2-19)



11

C. Continuity Equations

In addition to the flux equations of nonequilibrium thermodynamics

given above. the system will also obey the relevant conservation of mass

equations given by

(aci/at) = - (OJi/ax) + 2 E virbr (2-20)

where t is time. vir is the stoichiometric coefficient of species i in

chemical reaction r. and hr is the rate of chemical reaction r. An

additional transport equation comes from the conservation of energy

which for a nonisothermal system is written as Haase [1969]

OC§(aT/6t) 3 “(qu/ax) - 1(36/ax)

"2 2 Virbrai - 2 Ji(aEi/ax) (2-21)

where p is the system density. Cp is the specific heat. I is the total

current. and Hi is the partial molar enthalpy of component i. An

excellent approximation to this equation for problems in which there are

neither reactions nor current.flow (Horne and Anderson [1968]) is

pC§(aT/at) = (a/ax)[x.(aT/ax)]. (2-22)

D. Electrostatic Equations
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A fundamental law of electromagnetism (Bleaney [1957]) which

relates the electrostatic potential to the concentrations of charged

species in the system is Poisson's equation and is given by

e(aE/ax) = F 2 ciz (2-23)
is

where a. the permittivity of the medium. is considered constant. and the

electric field E is defined by

E = -(36/ax). (2-24)

Taking the time derivative of the left hand side of Poisson's equation.

and substituting Eq. (2-20) for the right hand side. we find

e(a/at)(aE/ax) = -F§ zi(aJi/ax), (2-25)

where we have also used

2 virbrzi = 0. (2-26)

If the electric field and charge density as well as their space and time

derivatives are continuous functions. then it is permissible to

interchange the order of differentiation in Eq. (2-25). giving

(a/ax)[s§ ziJi + s(8E/6t)] = 0. (2-27)
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Ampere's law requires that

aI/ax = 0. (2-28)

and therefore it would be incorrect to define the total current as being

equal to the summation term in Eq. (2-27). which accounts only for the

motion of the electric charges. because this would conflict with the

continuity equations whose validity is confirmed by all experiments.

Naxwell [1865] was the first to reconcile this difficulty and correctly

defined the current as

I = F 2 11-71 + MOE/at). (2-29)

where the second term. the Maxwell displacement current, arises because

of the time dependence of the electric field.

E. Combined System of Equations

The displacement current equation. Eq. (2-29). along with the

conservation of mass and energy equations coupled with the

nonequilibrium thermodynamic equations provide the basis for a complete

macroscOpic description of the system in terms of material properties

and the dependent V'ti'bIOS 01. c2. and E. The full set of equations is

obtained by substitution of Eq. (2-10) into Eqs. (2-20) and (2-29):

(aci/at) a (a/ax)[ 2 Dij(acj/ax) + liq(alnT/3x)
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- (Ati/in)E ] + E virbr. i=l.2. (2-30)

e(aE/aT) = I + F 2 2 ziDij(8cj/8x) + F 2 ziliq(dlnT/ax)

- IE. i.j=1.2 (2-31)

where the solvent reference velocity has been neglected.

Leckey and Horne [1981] distinguished electrically neutral behavior

such as ambipolar or mutual diffusion from behavior due to

non-electroneutrality and introduced the sum 8. and difference or charge

density A composition variables.

U
.
)

I- (1/2)[(c2/z1) - (cl/22)]. (2-32)

>

I

- (1’2)[(c2/21) + (cl/12)]. . (2-33)

The transport equations become

aS/at = (a/ax)[ Tss(33/ax) + YSA(3A/ax) + qu(3T/6x)

- (8Y33/2z122F)E ] + (1/22122) 2 (vzrzz - v1,11)b,. (2-34)

aA/at = a/ax[ YAs(aS/ax) + YAA(8A/8x) + YAq(8T/8x)

q

- (aYAE/ZzlzzF)E J, (2-35)
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3(aE/at) = I — (IIZzlzzF)[ YAs(aS/6x) + YAA(aA/8x)

+ YAq(aT/ax) - (eYAE/2zlzzF)E J, (2-36)

where thfl Yij (i.j = S.A.E.q) are defined in Appendix A. These

transformed equations highlight the very different physical behaviors

associated with diffusion of neutral matter on the one hand. and

diffusion of charged matter on the other.

Eqs. (2-34) through (2-36) along with the conservation of energy

given by Eq. (2-21) form the complete set of partial differential

equations whose solution we seek. The solution will depend upon the

system's material parameters and the boundary conditions placed upon it.

F. Solving the Equations

The nonlinearity of Eq. (2-21) and Eqs. (2-34) through (2-36)

makes it highly unlikely that one can obtain analytical solutions to

them in .closed form. The Yij are in general concentration and

temperature dependent and so is the conductivity. For systems in which

there are reactions some sort of model dependent behavior for the

reaction rate must be postulated. Additionally much information is

required in order to define the material parameters necessary for

expressing a solution. For solid state systems such information is

808100.

In addition to attempting analytical solutions to the transport
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equations. it is necessary to Obtain numerical or computer solutions as

well in lieu of analytical solutions. Cohen and Cooley [1965] were the

first to simulate ion transport on a large scale. Several others (Kahn

and Naycock [1966]. Feldberg [1970], Sandifer and Buck [1975]) have

numerically solved the simplified set of transport equations

(Nernst-Planck equations) under a variety of conditions. Brumlevé and

Buck [1978] have developed the most general program of this type. The

prOgram used in the research which led to this dissertation was

developed by Leckey [1981]. and extends the generality of the Brumlevé

and Buck program by using the full set of transport equations (Eqs.

(2-34) to (2-36)) valid at any concentratiOn. for isothermal systems of

uni-univalent electrolytes. Here. the transformation of the full set of

transport equations to finite difference form is extended to include

both electrolytes of any valence and nonisothermal systems. The use of

the full set of equations allows one the option of incorporating cross

effects and activity coefficient effects. both of which are ignored in

the Nernst-Planck formulation.

A listing of the complete set of dimensionless variables chosen for

this system is included in Appendix C. A listing of the program

"IONFLO" is shown in Appendix F. A more complete discussion of the

details surrounding the transformation of the transport equations to

finite difference form can be found in Chapter 6.

The principal value in carrying out numerical solutions to problems

like this one is that one can (1) model the behavior of various material

parameters based on available data. and (2) test models by comparison
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with experiment. Numerical solutions also provide a check on the

accuracy of analytical solutions. they allow verification of the

assumptions involved in obtaining them. and they provide clues to

improved analytical solutions.



CHAPTER 3

BOUNDARY CONDITIONS

A. Introduction

For the one dimensional system described in Chapter 2 there are two

boundaries. At each boundary it is necessary to make a statement about

the concentrations of the ions. and for nonisothermal systems it is

necessary to make a statement about the temperature as well.

In order to make contact. with experimental results boundary

conditions must be devised which enable one to simulate as closely as

possible actual experimental conditions. For applications considered

here. battery-type devices, boundary conditions of the type

Ii = kifcil ‘ kibcio (3-1)

previously used by Brumlevé and Buck [1978] are employed. The flux of

an ion i at an interface is described by a forward and reverse rate

constant kif and kib and ion concentrations in each phase °il and °i0°

The direction of flux and interfacial concentrations are shown in Figure

(3-1).

The assumptions required for the validity of boundary conditions of

18
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Figure (3-1). Interfacial region at a phase boundary.
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this type have been discussed previously by Horne. Leckey. and Perram

[1983]. For closed systems application of the above boundary conditions

is a simple matter. in that all interfacial rate constants are set equal

to zero. and no matter traverses the boundaries of the system. For open

systems where electrode reactions may be occurring it becomes necessary

to assign to these constants "reasonable" values that reflect the

behavior of 'the particular electrode system. This requires additional

experimental data in the form of measurements of the a.c. and d.c.

prOperties of the electrode-electrolyte system of interest.

Braunshtein. Tannhauser. and Riess [1981] have measured these properties

for platinum electrode-doped metal oxide systems.

In the event that the electrode system behaves in a completely

reversible manner. Ji I 0 and the rate constants in Eq. (3-1) approach

infinity while °i0 9 °il (Leckey [1981]). The application of these

boundary conditions becomes more difficult for real systems (k's # 0.”)

and requires that we look at the physical interpretation of the terms in

Eq. (3-1).

B. Physical Interpretation of the Boundary Conditions

The three assumptions which lead to the kinetic flux expressions

given by Eq. (3-1) (Horne. Leckey. and Perram [1981]) are:

i. The cross terms within the interfacial region are

negligible.

ii- The quantity “3 + ziFd is a linear function of x through

the interface.

iii. The flux Ji and diffusion coefficient Di are constants

through the interface.

These assumptions result in the following expressions for the rate
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constants.

kif = (Di/8) [ aiexp(-ui)/(l-exp(-ai)) ]. (3-2)

kib = (Di/8) [ ai/(l-exp(-ai)) ], (3—3)

where

“i = AI»? + ziFdllRT. (3-4)

and 8 is the interfacial thickness. The standard state chemical

potential is included here because it is a property of the phase in

question and in general we are speaking of the exchange of matter

between two different phases. For phase boundaries at which [ziFAOI ))

[Aug]. a large positive value of “i corresponds to the situation in

which a positive ion is moving to a region of more positive

electrostatic potential. or a negative ion is moving to a region of more

negative electrostatic potential. In either event the magnitude of the

rate constant for movement in this direction (kif) is expected to be

small while the rate constant for movement in the reverse direction

(kib) should be large (see Figure (3-2)). Conversely. when “i is a

large negative number exactly the Opposite should be the case. namely

movement of positive ions to a region of more negative potential. or

negative ions to a region of more positive potential. In either case we

e31,99t th‘t kif becomes large. while kib becomes small (see Figure

(3‘2)). In cases where [Aug] >> [ziFA6|. Eqs. (3-2) and (3-3) predict

movement of ions to the phase in which their standard state chemical
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Figure (3-2). Dependence of the kinetic rate constants on a1.
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potential is lower. (Aug) -) -.. implies ai -> .. and hi. -) o. Perram

[1980] approximates the value of A“? from the Born equation

An‘i’ - [(ziF)2/2si] 131/er) — (mm (3-5)

where 'i is the radius of ion i. and er and ‘1 are the permittivities of

the right and left hand phases respectively. In accordance with the

argument presented above. when 81 < gr, A“? ( 0, and transfer of

material to the phase with the higher dielectric constant is favored.

The application of the kinetic boundary conditions given by Eq.

(3-1) should simulate as closely as possible the experimental

conditions. Under certain conditions it is possible to make

quantitative statements concerning the values these constants should

assume. For instance when an electrode is blocking to a particular ion.

that ion cannot penetrate thefiinterface from either direction, and one

can assign values of zero to the rate constants in Eq. (3-1). From

Eqs. (3-1). (3-2). and (3-3) we see that this can be true if and only

At the other extreme there is the reversible electrode at which Ji

8 0. implying kif°il 8 kibciO. In cases where “i is zero we see from

Eqs. (3‘1) and (3-2) that kif a kib' and therefore cil B ciO.

In cases where neither reversible nor blocking conditions exist at

the boundaries. the matter of assigning reasonable values to the rate

constants is complicated by the fact that it is necessary to know oi in



26

Eqs. (3-2) and (3-3) in order to obtain values for the rate constants.

The change in the value of “i from its equilibrium value of zero to its

nonequilibrium value is due entirely to the change in the value of the

contact potential (A4 in Eq. (3-4)). since the value of Aug remains

constant regardless of current flow. The change in the value of a is

defined as the overpotential. and is not experimentally measurable. For

two phase junctions in series

(0011-: 4' Ac§)/ziF = 11L + “R. (3'6)

where the overpotentials ("L and DR) are

“L a (A‘ _ A‘rov)Ls (3-7)

and "R = (A6 - A‘rev)R' (3-8)

The total overpotential loss (“L + UR) for a given electrode

electrolyte system can be estimated from the analysis of the impedance

frequency response of the system. This analysis is often aided by

analogy with equivalent electrical circuits consisting of resistors and

capacitors each associated with a single process (Sandifer and Buck

[1975]. Warburg [1899. 1901]). In Figure (3-3a). the bulk resistance is

represented by Rb. while the resistance at the interface is represented

by Rig. The charging of the double layers through the surface

resistances is associated with surface capacitance Cif° Figures (3-3b).

and (3-3c) show the equivalent circuit representations of ideally
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polarized and depolarized electrode-electrolyte interfaces respectively.

Impedance frequency response data (Braunshtein. Tannhauser and Riess

[1981]) for a given system can then be used to assign values to the

resistances and capacitances found in an equivalent circuit

representation. which leads to estimates of the magnitude of the total

overpotential given by Eq. (3-6).

C. Applications of the Boundary Conditions

Various workers have used these boundary conditions to simulate a

variety of conditions. For liquid-liquid junction cells with blocking

electrodes Leckey [1981] set the rate constants equal to zero at each

end. .He also used these boundary conditions to study charge injection

into a one dimensional cell at a blocked interface containing a

reversible electrode at the other boundary: For the reversible

electrode simulation the rate constants were set. to machine infinity.

Chang and Jaffe [1952] studied the effect of changing the values of the

rate constants on the conductance. Brumlevé and Buck [1978] simulated a

variety of effects ranging from charge steps at blocked interfaces (k's

= 0) to ion exchange membranes (k's finite). Their assignments for the

rate constants were made from analyses of the impedance frequency

responses of the systems as described above.

For the one dimensional solid state systems discussed in Chapters 4

and 5. it is convenient to break up the electrolyte into three regions

(Figure (3-4)). In the vicinity of each electrode (regions I and II)

there are reactions occurring, while in the bulk between regions I and
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Figure (3-3). Circuit representations of solid-solid interfaces. (a)

Partially blocking electrode. (b) ideally polarized

electrode. (c) ideally depolarized electrode.
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Figure (3-4). Subdivision of the electrolyte into three pseudophases

with pseudophase boundaries shown at x = t L/2.
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II there are no reactions and only transport is occurring. The lines

that separate the reaction regions from the bulk denote pseudophase

boundaries. The term pseudophase is used here because there is no

discontinuity in system prOperties at these boundaries. only a

difference in the conservation of mass equations on either side with

aci/at = -(BJi/ax) (3-9)

in the bulk and

aci/at = -(81i/ax) + 2 Virbr (3-10)

in regions I and II. Therefore at the pseudophase boundaries An? = 0

and Ad ' 0. and by Eq. (3-4) ai = 0. From Eqs. (3-1). (3-2). (3-3).

and (3-10) the flux of ion i at each boundary becomes

Ii 3 (Di/5)(Cil ’ 01°). (3’11)

1‘if = l‘ib = 131/5. (3-12)

Eq. (3-11) applies whether charge transfer between the electrode and

electrolyte is reversible or irreversible. When the reactions are at

equilibrium. b, = 0 in Eq. (3-10). and Ji(Bulk) = Ji(I) = Ii(II) = 0

with cil = °i0 by Eq. (3-11).

In general the manner in which the component fluxes in the reaction

regions change from their bulk solution values to their values at the
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electrode electrolyte interface is determined by the behavior of the

electrode (overpotentials) and by the magnitude of the reaction rates in

that region. At the steady state Eq. (3-10) gives

J1(1 or II)) = I 2 (virbr)dx. (3—13)

where the integral is taken from the electrode to the bulk solution.

Knowledge of the dependence of the reaction rates on distance from the

electrode would allow one to obtain an analytical solution to Eq.

(3-13). where the behavior of the electrode towards species i determines

the integration constant.

High values for the rate constants used in Eqs. (3-11) and (3-12)

imply electrodes behaving nearly reversibly with very little change in

ionic concentrations between bulk and reaction phases. and hence very

little double layer charging. From the equivalent circuit point of view

the value of the interfacial rate constant is a measure of the

resistance of the double layer. High rate constants mean low

interfacial resistances and little double layer charging. Low values of

the rate constants imply that significant concentration differences will

arise across the pseudOphase boundaries and double layer charging will

occur. _These rate constants correspond to high values of interfacial

resistances. In Chapters 4 and 6 the effect of charging the double

layer is examined through inclusion of the charge density terms in the

boundary condition formulation.



CHAPTER 4

STEADY STATE TRANSPORT IN OPEN SYSTEMS

A. Introduction

In this chapter the equations of nonequilibrium thermodynamics are

Used to investigate the steady state behavior of energy conversion

devices (batteries and fuel cells). Of special interest are solid state

electrolytes into which a mobile Species can enter from the static

lattice of the electrodes. Intercalation electrodes (Whittingham

[1979]) are useful for this purpose since they provide near

reversibility of reaction. The equations are. however, quite general

and can be applied with appropriate modification to other electrode and

electrolyte systems.

B. Description of the system

The fuel cell arrangement (Figure 4-1) (Kiukkola and Wagner [1957])

consists of a solid electrolyte (C) sandwiched between two electrodes

(B.B') not necessarily at the same temperature. Each electrode is

attached to a wire (A.A') which leads to a terminal at some mean

temperature TA- The measurable EMF is A6 = ‘VIII - 61. The model

electrolyte (Figure 3-4) extends from x = -L/2 to x = +L/2 and the

voltage drOp across it is 6v - ‘IV (Figure 4-1). In general there are

34
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Figure (4-1). Nonisothermal galvanic cell.
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reactions occurring near the electrode electrolyte interfaces which

provide the driving forces (gradients of chemical potential and

temperature) that cause the flux of material through the electrolye to

occur. We assume in general a one dimensional problem with the goal of

determining the voltage loss across the electrolyte (JV-61v) using the

equations of nonequilibrium thermodynamics. This voltage loss can then

be subtracted from the theoretical or Nernst potential. and an estimate

of the thermodynamic efficiency of such a device can be obtained. This

estimate neglects overpotentials. which are changes in heterogeneous or

contact potentials (‘VII - ‘VI' “VT - 6v. ‘IV - ‘III' and 6111 - 611)

from their equilibrium values. Contact potentials arise as a

consequence of charge transfer from one phase to another. Estimates of

these contributions to the total voltage loss across any Operating

device can be obtained from the measurement of both the a.c. and d.c.

prOperties of the system of interest. Such measurements lead to

improved estimates of the true operating efficiency of such devices.

C. Steady State Equations

At the steady state the time derivatives of all intensive variables

vanish and the fluxes defined by Eqs. (2-10) reduce to

-J"{ - E Dij(dcjldx) - (Ati/ziF)E + liq(dlnT/dx). (4-1)

where I: represents the constant steady state value of the flux of ion

i. The sum and difference pseudo fluxes are defined in the same way as

the sum and difference concentrations,
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IX - (1/2) [(13/21) + (If/22)]. (4-2)

I; = (1/2) [(13/21) - (If/22)]. (4—3)

From Eqs. (2-34) through (2-36) we see that in terms of dependent

variables and material parameters.

-J§ . Yss(dS/dx) + Y5A(dA/dx) - YSEK'IB + qu(dT/dx). (4-4)

-JX - YAS(dS/dx) + YAA(dA/dx) - YAEx’lE + YAq(dT/dx). (4-5)

where

K = (23122F)/e. (4—6)

The pseudo fluxes IE and I: are not true Onsager fluxes since there is

no reciprocal relationship involving only the Yij Of Eqs. (4-4) and

(4-5).

Simplification of these equations results from simultaneously

solving them for (dS/dx) and (dA/dx):

dS/dx = as + BSE + 13(dT/dx). (4-7)

dA/dx = “A + 3A5 + 7A(dT/dx). (4-8)

where the coefficients a. B. and y are defined in terms of the Y-. in

1J
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Appendix A. In general these coefficients incorporate all effects due

to nonideality of the system and are themselves dependent upon the

concentrations of all species present as well as the temperature. It is

this dependence that gives rise to the nonlinearity of Eqs. (4-7) and

(4-8). The a's are related to the fluxes at the boundaries and would be

zero for the case of the system sandwiched between blocking electrodes.

For ideal systems for which the Nernst Planck equations are valid the

c's behave as constants. while the 3's are linear functions of the ionic

concentrations. The 1's incorporate nonisothermal effects such as the

heats of transport of the ionic species. For systems in which there are

small temperature gradients these coefficients are nearly constant. with

values dependent upon the mean temperature of the system (Cowen [1979]).

It is possible to eliminate A as a variable by combining Eq. (4-8)

with Poisson's equation to give

(A’s/4x2) - (KBA) - (KaA) + K1A(dT/dx). (4—9)

Eqs. (4-7) and (4-9) are the starting set of equations for the

macroscopic investigation of the steady state problem. The only

assumptions made up to this point are those implicit in the Onsager

formulation of the transport equations of nonequilibrium thermodynamics

(Haase [1969]. Horne [1966]. and Onsager [1931]). All effects due to

nonideality are retained.

D. Solution to the isothermal problem
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For the case of no temperature gradient. the nonisothermal terms in

Eqs. (4-7) and (4-9) vanish. giving

2 2 _
(d E/dx ) - (KBA)E - KOA (4 10)

dS/dx 8 as + SSE. (4-11)

For ideal solutions Eq. (4-10) reduces to the Poisson-Boltzmann

equation with KBA the reciprocal of the Debye length squared.

KBA - (2F2I°)/SRT. (4—12)

and Ic is the ionic strength of the solution.

The boundary conditions for the Open system are

I; de - Constant. (4-13)

A = 9L. 1 = -L/2. (4—14)

A ‘ PR) x '3 +L/29 (4-15)

where 9L and 9R are the charge densities of the system at the left and

right hand walls respectively. Their values will depend upon the speed

of charge transfer across the interface separating the Open system from

the adjoining phase. The first boundary condition is simply a statement

that the total mass of the system is fixed at the steady state.
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Because of the nonlinearity of Eqs. (4-10) and (4-11). it is

generally not possible to obtain solutions to them in closed form. For

this reason a pertubation approach is used in which system parameters

and variables are characterized according to their departures from their

mean values. Before introducing this technique it is useful to

transform the starting equations to dimensionless form in order to

facilitate comparison with numerical results. The pertubation scheme is

simplified simultaneously. The following dimensionless variables are

introduced

s - (s - s.’/S.' aj - (AA/Sn)cj. j . s.A.

‘- - _ 2
A - A/sn. pj - [( 221z2F(AA) )/.o]aj. j - S.A.

x - x/AA. 'E . -[eo/(22122F8n(AA))]E. (4-16)

where S. is the mean value of the sum concentration. so is the

permittivity of a vacuum. and the barred quantities represent

dimensionless variables. The value of AA in the above equations is

chosen such that the reduced Debye length is fixed at a value of 5.0.

This number has been found to give a convenient grid spacing length for

numerical simulations (Brumlevc and Buck [1978]). The dimensionless

variables used here are the same as those used in subsequent numerical

simulations. In terms of reduced variables the starting equations

become

(dz-EM?) - (Pi - —;A/EP_S. (4-17)



42

(dS/d'x') - Es? + ESE. (4-18)

where EPS is the dielectric constant of the system (78.5 for water) and

X is the reciprocal of the reduced Debye length of the system. given by

I - JEAI'EPS (4-19)

In reduced variables the boundary conditions become

I; 3‘13 " 0: (4-20)

I - 91/3... I =- —L/2AA. (4-21)

I - .313... 2 = +L/2AA. (4-22)

The pertubation scheme is defined for the dependent variables as

follows

8 = so + 881 + 682 + °'°, (4-23)

E-Eo+ael+aaz+ (4-24)

where 5 is a bookkeeping device that allows one to characterize the

departure of Eqs. (4-17) and (4-18) from linearity. The barred

notation has been omitted from Eqs. (4-23) and (4-24) for simplicity.

The coefficients (L) are expanded in a Taylor's series about their mean
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values according to

L(S.A) = Lo + 8[LS(S) + LA(A)] + °-°. (4—25)

where L0 represents the value of L at the mean values of S and A. and Lj

(j = S. A) is the derivative of L with respect to j evaluated at the

mean values of S and A.

Substitution of Eqs. (4-23) through (4-25) into Eqs. (4-17) and

(4-18) and subsequent ordering of the terms according to their power in

6 results in sets of coupled linear ordinary differential equations

solvable by standard techniques. Although in principle this set of

equations is solvable. there is no guarantee of success in this

technique. as the magnitude of higher order terms may increase leading

to a divergent solution.

Collection of terms of order zero in 8 results in

(donldxz) - AfiEo = -aA0/EPS. (4-26)

(dSoldx) 8 “$0 + BSOEO' (4-27)

where Lij is the jth order approximation to the coefficient Li (1 = S,A,

j ' 0.1.2.°°'). This system of equations would be the true description

of the system if it were ideal.

To obtain E0. we first solve Eq. (4-26). To obtain So. we use the
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solution to Eq. (4-26) in Eq. (4-27). The zeroth order contribution

to the charge density (A0) is obtained by simple differentiation of E0

in accordance with Poisson's equation. The general solution shown below

results in the generation of three arbitrary constants whose values are

fixed by application of the boundary conditions. 'e require that the

zeroth order solution satisfy totally the charge density requirement at

each wall while higher order solutions in charge density will be zero at

the walls. The boundary conditions then become

I: Sidx . o. i - o.1.2,--~, (4—23)

A0 3 pL/Sn. x a -L/2AA.

A0 '- pR/Sn. x = +L/2AA.

A1 = 0. i - 1.2.-~-, E - i(L/2AA). (4-29)

The zeroth order solution is

30 - -(qu/BA0) - (p/A(EPS)) [cosh(Ax)/sinh(A§)].

s0 . (szo/BAO)(sinh(Ax)/sinh(A§)) + [(asoaAo - aAoBso)/9Ao]"

D0 - p [sinh(Ax)/sinh(A§)]. (4-30)

where the dimensionless cell length defined by
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E ' (L/2AA) ~ (4-31)

and p the charge density

p = “(PL/3..) - (pk/Sn) (4—32)

have been introduced.

It is apparent from the form of the solution that the redefinition

of the concentration variables has served an exceedingly useful purpose

in that each of the first two expressions is separated into two parts.

one due to charge density and one due to bulk or electrically neutral

behavior.

At 298 K. for an aqueous solution of ionic strength 0.01M. and a

cell length of 1 cm. the value of 5 is on the order of 108. For solid

electrolytes (where dielectric constants are much lower) at temperatures

up to 1000 K and at cell lengths of up to 1 cm. the value of t is on the

order of 108 or higher. This means that contributions to E0 and SO due

to nonelectroneutrality are going to be negligible everywhere except

within approximately 5 Debye lengths of the walls. In the bulk solution

a linear drop in concentration with a constant value for the electric

field is found as expected.

Collection of terms of order one in 8 gives

(d2E1/dx2) - (A30)E1 - -(1/EPS)[BASSO + BAAAO]EO. (4-33)
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(dslldX) ' 33031 I [53380 + BSAAO]EO' (4‘34)

where the Lij' (i.j - S.A) are the derivatives of Li with respect to j

evaluated at the mean concentrations of the system. Inclusion of terms

involving derivatives of the u's is deferred until higher orders because

of their expected smallness. The procedure for solving the first order

set of equations is similar to that for the zeroth order. first the

expressions for So and B0 are substituted into Eq. (4-33). and a

solution for 81 is obtained. Then. E1. along with S0 and E0 are

substituted into Eq. (4-34) to obtain 81' As before A1 results from

simple differentiation of E1 in accordance with Poisson's equation. The

complete first order result is shown in Appendix B. Higher order

solutions are obtained in the same way. The inclusion of more and more

terms in the starting equations results in more and more complicated

algebraic problems as one progresses to higher orders. This is already

apparent in the first order case.

The way the problem was defined and the nature of the pertubation

scheme result in solutions that alternate in parity. For the zeroth

order case. E0 is an even function while So and A0 are odd; at first

order. 81 is odd while 81 and A1 are even. This requires that one

obtain a second order solution for the electric field in order to

determine the first correction to the voltage drop Ad across the

electrolyte since. for E1 odd.

A61 - - I: Eldx = o. ‘ (4-35)
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The results are shown in Appendix B.

E. Determination of Efficiency

The current delivered to the load is I 8 F 2 2111 I 11 + I2. where

11 and I2 are the individual ionic currents. The efficiency a defined

here is the product of the voltage efficiency (A¢)/(A¢ ) and the
rev

faradaio efficiency (I/In). where In is the maximum current that would

be produced by the cell if it could operate ideally.

The power P delivered to the load by an ideally Operating fuel cell

(Bockris [1969]) is

P = 1A6 = I[A¢rev - IL/Am], (4-36)

where Am is the mean specific conductance of the electrolyte. IIn is

easily determined by setting the derivative of the power with respect to

the current equal to zero. giving

Im = AmAerev/ZL. (4—37)

Measurement of the a.c. end d.c. prOperties of the electrode-

electrolyte system of interest enables one to determine the value of Am

and to calculate faradaio efficiencies as a function of total current

produced by the cell.

The electrochemical contribution 6v - ‘IV to the total measured
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voltage across the cell A6 is obtained from integration of Eq. (4-30).

In the isothermal case. TA = Th 8 Th: so that 611 = 61. and ‘VII 3 6v111

(see Figure (4-1)). The measured EMF consists of the sum of the

heterOgeneous contributions A‘het and the homogeneous contributions

A‘hoxav

A‘ ‘ A‘hom + A‘het = AVIII ‘ 61. (4‘33)

where Aehom = 6V - ‘IV' (4-39)

A‘het = UVIII ‘ ‘VI’ + (‘VI ‘ Av) + (‘Iv ' “111’

+ (5111 - 51), (4—40)

The assumption of electrochemical equilibrium across the wire/electrode

interfaces allows us to write

fie(A') = Ee(B'). fie(B) = He(A).

i,(B) = He(x=-L/2). fie(3') = He(x=+L/2). (4—41)

By substituting the full expression given by Eq. (2-6) for the

electrochemical potentials above and solving for A‘het' we obtain

FAdhet = (RT)ln[a,(-L/2)/ae(+L/2)]. (4-42)

where ac. the activity of the electron, is different at either end of
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the electrolyte. Because both the standard state chemical potential and

the activity of the electron are equal in phases A and A' since the

measurement of A6 must take place between wires of the same phase. they

do not appear in the final expression for the heterogeneous potential.

The heterogeneous contribution is then added to the homogeneous

contribution.

FAd = F(6v-s1v) + (RT)ln[ae(-L/2)/ae(+L/2)], (4-43)

which enables one to determine the voltage efficiency of the Operating

device. From a knowledge of the total efficiency of the Operating

device as a function of current given by the macrosCOpic description of

the system, it becomes possible to predict under what external loads the

cell operates most efficiently and how the material parameters affect

cell performance.

F. Results and Discussion

1. Introduction

The results and ensuing discussion presented in this section are

based upon the prOperties of the mixed (ionic-electronic) conductor

solid electrolyte doped Cerium (1V) oxide. Choudhury and Patterson

[1971]. Tannhauser. [1978]. and Riess [1981] have all derived analytical

expressions relating the steady state voltage output of high temperature

(T 3 1100 K) fuel cells employing this electrolyte to the current

produced by the cell. Such relationships are termed "characteristics."



50

and depend upon the material parameters of the electrolyte. Their

calculations all share the common shortcomings of using the

Nernst-Planck transport equations rather than the full set of Onsager

flux equations. and at some point in their calculations all assume

electroneutrality throughout the electrolyte. In addition they neglect

the spatial dependence of the various system parameters (D. I. and K)

and in effect consider only the zeroth order solution for an ideally

behaving system. These assumptions could. collectively. lead to a

serious overestimation of the efficiency and hence of the economic

performance of such systems. From the data acquired by the above

workers and the more accurate expressions for the potential derived here

it is possible to assess the importance of these effects and to arrive

at a more realistic theoretical prediction of the economic feasibility

of such devices.

2. The Mixed Conductor System

The electrolyte is a membrane of doped CeOz, typically at high

temperature. extending from x=-L/2 to x=+L/2. The arrangement and phase

boundary sections are shown in Figures (3-1) and (3-4). The doping is

done with a lower-valent metal. Ca2+, creating vacancies V, in the oxide

sublattice with an effective double positive charge above what exists in

the undoped material. These charged vacancies conduct the ionic portion

of the electrical current. The overall reaction which provides the

driving force for the cell is given by the sum of the reactions

occurring at the phase boundaries,
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“.203 + GFCO - “.3040 (4‘44)

The oxygen partial pressures at the phase boundaries are fixed by the

equilibria in the two phase electrode compartments.

Anode: 6Fe0 + 05(g) = 2Fe304. (4-45)

Cathode: 6Fe203 - 4Fe304 + 0§(g). (4-46)

Substitution of Eqs. (4-45) and (4-46) into Eq. (4-44) produces

02(s.B) - 02(s.B') (4—47)

with a AG. equal to that of the reaction given in Eq. (4-44). This

value of AG. is the amount of reversible work required to displace one

mole of 02(g) from its partial pressure at B' to its partial pressure at

B. The reversible potential is therefore

A"rev ' (RI/“F, ln [P02(g.B')/P02(g.8)]' (I-48)

where n is the number of equivalents of electrons required to displace

one mole of 02. and P02 is the partial pressure of oxygen. Due to the

kinetic problems at the phase boundaries and the ohmic losses that occur

in the electrolyte the useful voltage obtainable from such a cell will

always be less than Aerev.

For the reactions given by Eqs. (4-45) and (4-46) the equilibrium
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conditions at either end of the electrolyte are (Schmalzried [1974])

phase I: 02— - 2e- + (1/2)02(g) + V3. (4-49)

phase II: v, + (1/2)02(a) + 2a” a 02'. (4-50)

Since the partial pressures of oxygen are fixed in the two phase

electrode compartments. the electrochemical potentials of the electrons.

vacancies. and oxide anions will in general be different at each end of

the electrolyte. and therefore a flux of each species occurs. The

entropy production (0) for this system is (Howard and Lidiard [1963])

e = Jv'xv' + J. x.- + Joz-x02—. (4—51)

where

xi - - (ail/ax). , (4-52)

The conservation of lattice sites requires that 102- = -Iv'. since every

jump of an oxide anion from one lattice site to another is accompanied

by a vacancy jump in.the opposite direction. Therefore 0 becomes

-Jv, [ (apv./ax)-(au02-/ax) ] - Je- (duo-lax). (4-53)

and Onsager thermodynamics yields

-11 - 111 [ (apl/ax) — (auoz-Iax) - 202-F(66/ax) ]
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+ 112 (apzlax). (4-54)

-12 = 121 [ (Bel/6x) - (BuOZ-Iax) — zoz-F(ad/ax) ]

+ 122 (Buzlax), (4‘55)

where the subscripts 1 and 2 denote vacancies and electrons

respectively. and Eq. (2-7) has been used. Because the number of

vacancies is far less than the number of oxide anions. the relative

change in the oxide anion concentration will be far less than that of

the vacancies. We therefore neglect the change in the oxide anion

chemical potential. Eqs. (4-54) and (4-55) simplify to the prototype

flux equations for isothermal tranSport given by Eqs. (2-2)

-Ji = 2 Iij[aHj/axj. i.j = 1.2 (4-56)

where 21 8 202- is the effective charge on the vacancies.

3. Calculation of Efficiency

From the definition of efficiency and Eqs. (4-37) and (4-43) we

write

n = [21L/Am(A6rev)2] [ (av-61v) + (RT/F)

.ln[cz(-L/2)/c2(+L/2)] ] (4-57)
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where the activities have been replaced with concentrations. These

concentrations subsequently serve as boundary conditions through the

equilibrium constants for the reactions given by Eqs. (4-49) and

(4-50). The value of ‘VP‘IV_in Eq. (4-57) is determined by integration

of Eq. (4-30) and allows us to determine the effect of selectively

changing the value of p on the efficiency through Eq. (4-57). All

effects due to the nonideality of the electrolyte are retained in the

evaluation of ev-JIV.

The more mobile electrons enter and leave the electrolyte faster

and therefore create a region of negative charge at the anodic end of

the electrolyte and a positive charge at the cathodic end. Integration

of Eq. (4-30) reveals a linear relationship between the yoltage loss

and this charge buildup. (p).

(av-in) - . + bp. _ (4-58)

with the values of a and b displayed as a function of current in Table

(4-1). These data highlight the importance of the inclusion of space

charge upon voltage loss estimates. Only when one approaches complete

charge separation (p 9 1) does this effect become important. but it is

precisely at the charged surface of the electrode where one might expect

complete separation of charge to occur. From Eq. (4-57) a linear

relationship between the efficiency and the charge density results with

n = c + dp. (4-59)
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The values of the coefficients c and d for Eq. (4-59) are tabulated

alongside those of Eq. (4-58) in Table (4-1). These data demonstrate

that the inclusion of space charge may be of great importance in

theoretical determinations of efficiency. In Figure (4-2) a plot of

efficiency versus current density shows that in the absence of

overpotentials we expect behavior similar to that of an ideally

Operating fuel cell (see Eq. (4-16)). The ratio. (R). of the voltage

loss obtained from Eq. (8-18) to that obtained from integration of Eq.

(4-30) obeys the linear relationship

R = e + fp. (4-60)

The coefficients e and f for Eq. (4-60) are displayed in Table (4-1).

Figure (4-3) shows the relationship between R and the current. The

increase in R with both p and the current is not surprising since the

higher the current or charge_ density the greater the departure from

linearity. where higher order solutions are expected to make a greater

relative contribution.
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TABLE 4-1. Least Squares Values of the Empirical Constants Given

in the Equations (OV - OIV) = a + bp, n = c + do, and

R = e + £0 for Various Values of the Current.

Current 2 2 2 3 3

Densiti' a bXIO CX10 dXIO e><10 leO

(A-Cm' ) (volts) (volts)

0.00 -0.135 -9.58 0.00 0.000 5.251 10.91

0.05 -0.167 -9.58 3.74 -0.400 5.982 12.40

0.10 -0.201 -9.54 7.19 -0.800 7.043 13.77

0.15 -O.241 -9.58 10.26 -1.169 8.44 16.04

0.20 -0.283 -9.52 13.02 -1.584 10.45 18.31

0.25 -0.330 -9.52 15.30 -1.980 13.01 21.63

0.30 -0.383 -9.52 17.02 -2.388 16.94 25.33
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Figure (4-2). Dependence of efficiency on current density. (a) Ohn's

Law behavior, (b) behavior predicted by Eq. (4-57).
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Figure (4-3). Dependence of R on current density.
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CHAPTER 5

STEADY STIIE NONISOTEERMAL TRANSPORT IN OPEN SYSTEMS

A. Introduction

A nonisothermal cell or thermogalvanic cell is a galvanic cell in

which the temperature is not uniform. The first experiments on

nonisothermal liquid systems were done over 100 years ago by, Ludwig

[1859] and Soret [1879. 1880]. The possibility of using solid salt

compounds as electrolytes in nonisothermal galvanic cells has been

discussed by Sundheim [1960]. Christy [1960]. Howard and Lidiard [1964].

and Wagner [1972]. One of the concerns of this chapter is to explore

the relationship between EIF of such cells snd,the ionic prOperties that

arise in nonisothermal systems. particularly the entropies of transport

of the ions (8;) and the Soret coefficient.

Thermoelectric effects in the metallic leads extending from the

electrodes may also contribute to the EMF of such cells. By inserting

reversible electrodes at suitable points as in Figure (4-1), the overall

cell potential can be broken up into the sum of EIF's of successive

terminals. 'e can thus break up the total RIF into the ElF of an

isothermal cell at a known temperature and the EIF due to nonisothermal

effects. It is upon the effect of these distinctly nonisothermal

features on cell performance that we shall focus our attention in this

chapter.

61
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For nonisothermal systems the steady-state ion transport equations

in dimensionless form are

(427m?) — (FOE - (-1/E§)[EA + ism/43)]. (5-1)

«IE/a; - 33 + 58?: + ?s(dT/d;). (H)

B. Thmperature Distribution

At the steady-state, aT/at 8 0 and Eq. (2-21) becomes

0- -I(de/dx) - (dJ’q/dx) — E Ji(dHi/dx) — E 2 virbtfli (5-3)

The heat flux in Eq. (5-3) is eliminated through substitution of Eq.

(2-3). while the electrostatic-potential is eliminated by solving Eq.

(2-2) for deldx, where

(5-4)

and the elimination gives

2 fi

0 = I n. + (d/dx)[x.(d'r/dx)] - 211[(in/dr) + (dHi/dx)

- “iii/“M - (Oz/THdT/dfl] - E 2 virbrmi + 0;). (5-5)

The entropy of transport 3; and enthalpy of transport H; are defined by
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s; 2 31 + (cg/T) (5-6)

11;: n1 + (1;. (5-7)

and

(Hui/61)T ' (Builds) + 81(aT/ax). (5-8)

Substitution of Eqs. (5-6-8) into Eq. (5-5) gives

0 . 121; + (d/dx)[x,(dI/dx)] - 2 Ji[ 'r(ds;/dx)T

+ T(38;/3T)(dT/dx) ] '.' 2 2 virerI. (5-9)

The first two terms in the energy balance are the Joule heat (ll/1) and

thermal conduction (d/dx)[K°(dTde)] respectively. The first summation

contains terms related to the Peltier heat Q and Thomson heat r defined

(IT/F) 2 (ti/zi)S;. (5-10)0

l
l

«
1 ll

.

(IT/F) 2 (ti/zi)(dsi/dT). (5-11)

where

Ii . (ti/11F)I. (5-12)
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With Eq. (5-11) and (5-12) the energy balance becomes

0 - 12“. + (d/dx)[K°(dT/dx)] + Ir(dT/dx)

- mm} (ti/xiFHdSEIdflT. (5-13)

Comparison of Eqs. (5-10) and (5-13) shows that the summation term in

Eq. (5-13) represents a continuous Peltier heat contribution. The

Peltier and Thomson heats are cross effects and are of minor importance

compared to the thermal conduction term and the Joule heating term in

Eq. (5-9). In addition, if the cell electrodes are operating nearly

reversibly the reaction terms will vanish (br = 0). leaving an energy

conservation law of the form

0 - Izlx + (d/dx)[x,(dr/dx)]. (5-14)

For the case of zero current and constant thermal conductivity. Eq.

(5-14) reduces to the well known Fourier heat equation [1822]. Anderson

and Borne. using a pertubation approach, have solved the time dependent

energy balance equation, for the case of no current, in a binary liquid

mixture. A similar approach is used here. We write the temperature as

the sum of the mean temperature Ti and higher order pertubation terms Ti

(i-0,1,2."°). and we expand the thermal conductivity and electrical

conductivity of the system in a Taylor's series about their values at

the mean composition and temperature. This results in
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T - Ti + Tb + 5T1 + 5T5 + "' (5—15)

L - L0 + 5[ (9—3 ) + L (n) + (Tet )] + -°- (5-16)
LS m A LT m

where L - L or la. La (j - 8,A.T) is the derivative of L with respect to

j evaluated at the mean system concentrations and temperature. and 8 is

the pertubation parameter.

Substitution of Eqs. (5-15) and (5-16) into Eq. (5-14) and

collection of zeroth order terms results in

12 + 2.010(d2T0/dx2) - 0. (5-17)

Eq. (5-17) is rendered dimensionless by introducing the dimensionless

temperature T - (T - Th)/T. and using Eq. (4-16). The result is

(dz-Told?) + 12L2/(4tzloK0Tn) = 0. (5-18)

The boundary conditions are T(-L/2) - TB, and T(+L/2) - T3,. In terms

of dimensionless variables these are

"r'om - (AT/2'1"). (5-19)

flue) - o. 1 - 1.2.°°'. (5-21)
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where AT 8 (Th. - Th) and TI 8 (Th + Tb.)/2. The barred notation is

drapped at this point with all subsequent references to the dependent

variables in their dimensionless form.

The solution of Eq. (5-14) subject to Eqs. (5-15-16) is

To - (KT/T‘)(x/2§) + (:2 - x2)(IzL2/2§210K0Ti). (5-22)

For solid electrolytes the thermal conductivity is about 10-1

Jcm-IK-1s_1. while the electrical conductivity is about 10"1 (0cm)-1.

For a cell 1 cm long at room temperature the maximum contribution of

Joule heating occurs at the center of the cell and is

T (x - 0) = [(1L)2/4i T ] - 25(I/T ) (5-23)
0 0:0 m m '

For cells at low temperatures (Ti 2 300!) current densities as low as l

amp/cm2 result in contributions to the zeroth order temperature less

than 9 percent of the mean temperature. For high temperature fuel cells

(Ti 2 1000!), the same current density results in a contribution of less.

than 3 percent. Joule heating is less important at high temperatures

and can safely be neglected for high temperature fuel cells operating at

low current densities. Indeed, as is shown in Appendix D. inclusion of

the Joule heating term in the temperature expression has no effect upon

the voltage loss across the electrolyte considered in this work.

C. Solution to the Nonisothermal Problem
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Substitution of Eq. (5-22) into Eq. (5-1) and collection of terms

of order zero gives

2 2 2 _
(4 Holds ) - (A0)Eo - (1/EPS)[ «A0 + 1A0(AT/2§Ti)] (5-24)

dSo/dx 8 “SO + “SOEO + 730(KT/2tTi). (5-25)

where the Joule heating contribution has been neglected. Comparison of

the above set of equations to their isothermal analogs suggests the

introduction of two new parameters,

When Eqs. (5-26) and (5-27) are substituted into Eqs. (5-24) and

(5-25). the result is

(d2 ldxz) - 28 . -u' IEPS (5-28)
1-'-0 A0 0 A0 '

This set of equations has exactly the same form as Eqs. (4-26) and

(4-27). and we can therefore write down their solutions by inspection.

The complete set of first order equations and their solutions are shown

in Appendix E.
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D. Efficiency

The efficiency is defined as before as the product of faradaio and

voltage efficiencies. written as

n s an.) (Ad/um). (5-30)

For the nonisothermal case Th. # Tb and thermal gradients are present in

the wire phases (A. A'), as well as the electrolyte (C).

Assuming electrochemical equilibrium across each interface. we

write for the heterogeneous potential contribution across the cell (Agar

[1963]. Watanabe [1980])

[p°(A)]Th' - [p°(A)]TB + [p°(C)]TB] - [flo‘c’lrh.' (5-31)

where the chemical potential of the electron ("e) is written as "e = u:

+ IT ln °e' giving for the heterogeneous potential

FA‘hot a [“°(A)]Tsv - [pom]TB + (“2(C)]Ts - [":(C)]Ts'

(RTi)ln[c2(-L’2)l°2(+L/2)] - (RAT/2)1n[c2(*L’2)°2(-L/2)]. (5-32)

where °2 is the concentration of electrons in the electrolyte. and the

definitions of AT and Ti are used. The homogeneous potential A‘hom 2
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(‘VIII ' ‘VII’ + (5v - 61v) + (611 - 61) is determined by the solution

to the flux equations in the appropriate phases. The solution for the

electrolyte (‘V’_ 61v) has been given above. For the wire phases (A,A')

only the electron is mobile, and there are no composition gradients

present. The flux equations for these phases become

I = -A(A)(de/dx) + [A(A)Q:/FT](dT/dx)A. (5-33)

with an exactly snalagous equation for phase A'. Rearrangement and

integration gives

+ j (syn/mar. (5-34)

Since A(A) is large for metals (1(Ag) = 105 (0cm)-1). the ohmic drop

across the wire phases can safely be neglected, and the homogeneous

potential becomes

FMho. = - I (syn/mar + Fuv - an). <5-35)

The total measurable potential A6 i A‘hom + Adhet is given by the

sum of Eqs. (5-32) and (5-35). Before combining Eqs. (5-32) and

(5-35) to arrive at an expression for Ad. it is necessary to expand the

chemical potential a: in Eq. (5-32) and the quantity Qle in Eq.

(5-35) in a Taylor's series about the mean temperature. The Taylor's
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series expansion for a: has the form

o - o o _ 2 o Is _ 2
“OCH u,<‘r.) + (ago/mu- Tn) + (1mm .../a m I.) 1

+ see, (5-36)

where all derivatives are evaluated at the mean values of the

temperature. Truncation of the above power series beyond the linear

terms and substitution into Eq. (5-32) gives

. - - 0 - _ ,

pnsh,t (8°(A) 30(C))[r . Th] + ‘31.) ln[c2( L/2)/c2(+L/2)]

- (RAT/2) lnlc2(+L/2)c2(-Ll2)] (5-37)

Similarly, we expand the quantity (Q:/T) in a Taylor's series about the

mean temperature and obtain

O O C

03/1“ - (Q./'l‘).r- + [a(0°/'r)/a'r]T-('r - Tn) +

2 ‘ 2 ...
(1/2)[a (OalT)/3T2]Ti(T - Th) + . (s-ss)

Truncation of the above series beyond terms linear in temperature and

substitution of the result into Eq. (5-35) gives

a

Fuho. g -(Q°/T)T-[TBO - TB] + FI‘V - ‘IVJ' (5-39)

The measurable EMF is given by the sum of Eqs. (5-37) and (5-39).



71

FAd - F“v"xv’ - (S:(A)-S.(C))AT + (21‘)1n[cz(-L/2)/c2(+L/2)]

- (RAT/2) 1n [1 + [(c°(+L/2) - c°(-L/2))/2c:]2 ]. (5-40)

where the mean concentration (c:) is defined as

a: = [c°(+L/2) + c°(-L/2)1/2. (5-41)

0 _ m -
and S. R lnc° So.

When the fluxes of both species are zero. the flux equations become

~ 0

o - 2 111 I (anjlax).r + (ej/rm'r/ax) I. (5-42)

Since the electrochemical potential and the temperature gradient are

linearly independent forces. the-term in brackets in Eq. (5-42) must be

zero for all j, and substitution of Eq. (5-4) into Eq. (5-42) gives

(4v - 61v) - - (llsiF) I [ (Bui/ax)T + <0§xr><arlax) 1“ (5-43)

where i is the species to which the electrode is reversible.

Substitution of Eq. (5-43) into Eq. (5-35) results in

Arno. = - (l/F) I [ (Q;(A)/T) - s:(C) Idr

+ ["°(C)]Th - [n°(C)]Th'. <5-44)
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The overall potential which results by summing Eqs. (5-32) and (5-44)

is known as the thermoelectric power (PC-A) of the thermocouple C-A,

PC—A = -(l/F) I[ «gun/tr) — szm In

+ ["°(A)]TB' "' [u°(c)]TBs (5'45)

and is related to the difference in the entropy of transport of the

electron between the two phases. This is more easily seen by expanding

the chemical potential in Eq. (5-45) in a Taylor's series about the

mean temperature and substituting Eq. (5-7) for Q:(A) into Eq. (5-45).

The result is

8‘0» + s‘(c m: (5-46
PC-A ' I- e e ) ' )

With this result it is now possible to express the total measurable

potential given by Eq. (5-40) in terms of experimentally measurable

parameters. This is done by substituting Eq. (5-46) and the zeroth

order result for ‘V'- ‘IV into Eq. (5-40). The result is

O

1w - F[PC_A + (aw/9A0» + (o (cur/Tan

+ RT. 1n[c°(-L/2)/c°(+L/2)] - RAT ln[l - (Ace/20:)2] ] (5-47)

where Iq is given in Appendix A and Q. = v10; + v20; is the heat of

transport of the electrolyte. Substitution of Eq. (5-47) into Eq.
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(5-30) gives

21 [ PC—A - RAT In [1 - (Ace/2c:)2] I
n ' [ZIL/FxmA‘rev

+ (RI-)ln[c°(-L/2)/c°(+L/2)] + “AOL/BAD + (Q?(C)AT/Tm)Kq. (5-48)

which relates the efficiency to the current and the material parameters

of the system. For the isothermal case AT - 0. and both Eqs. (5-47)

and (5-48) reduce to their isothermal analogs. Eqs. (4-43) and (4-57)

respectively.

B. Results and Discussion

For the mixed conductor system described previously there is. in

addition to the component fluxes. a heat flux as a result of the

presence of a temperature gradient, and the entropy production becomes

(Howard and Lidiard [1963])

e - quq + 11x1 + J2 2. (5-49)

where component 1 represents vacancies and component 2 represents

electrons. and

Xq I -aln T/ax. (5-50)

The resulting transport equations take the form of Eqs. (2-2) and (2-3)

where 21 I -202- as before.
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The measurable EMF for the nonisothermal case is given by, Eq.

(5-47) and retains exactly the same form as for the isothermal case. in

which Eq. (4-30) was integrated to obtain dvr- ‘IV‘ The difference is

that now the alphas are replaced with the alpha primes defined by Eqs.

(5-26) and (5-27). It is these primed alphas that contain the heat of

transport of the electrolyte. The reversible EMF for the nonisothermal

cell is obtained from the Nernst equation

Ac° - -nFAd (5-51)
rev'

where A00 is the free energy change accompanying the reversible transfer

of one mole of 02(3) from the electrode atTh' to the electrode at Ti

and n is the number of electrons accompanying the transfer. In terms of

the material parameters this is

A6rev 2 (RT/nF) 1n [Fab/P32] +

_ 2 _ _
(RAT/2nF) 1n [1 (AP02/2P32) 1 302(8)AT. (s 52)

where P82 is the arithmetic mean of the electrode 02 pressures.

By selectively altering the value for the heat of transport of the

electrolyte. its effect on output performance for this system has been

determined. A plot of efficiency as a function of current is shown in

Figure (5-1). When the sign of Q‘AT < 0 the upper curve results. There

are two cases to consider. When Q.AT < 0 thermal diffusion reinforces

the electrolytic flux. This corresponds to one of two situations.
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Figure (5-1). Dgpendence of the efficiency 9n current density. (a)

QAT<0. (b)QAT-O. (c)QAT>O.
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Either the cathode is cooler than the anode (AT < 0. 0‘ > 0). or the

cathode is warmer than the anode (AT ) 0. 0’ < 0). In either event.

because of its nonisothermal properties. the electrolyte prefers to be

in the environment of the cathode. Therefore. to produce a current as

great as the equivalent isothermal cell requires less ohmic loss across

the electrolyte and results in an enhanced efficiency.

Exactly the Opposite is true for the case of Q‘AT ) 0. Now.

regardless of which direction the temperature gradient lies. the

nonisothermal properties of the electrolyte dictate that it prefers the

environment of the anode. Therefore. to produce the same current as the

equivalent isothermal cell requires greater ohmic loss across the

electrolyte and results in reduced efficiency.

For selected values of Q.AT the efficiency has been calculated

using Eq. (5-48). and the results fit to the empirical equation

I: - a + le‘AT/T]. (5-53)

Although heat of transport data are not available for this electrolyte.

the values of the empirical constants a and b displayed in Table (5-1)

indicate that the greater the heat of transport of the electrolyte. the

greater the potential for enhancing the efficiency. and the more

profitable it becomes to exploit the nonisothermal properties of the

electrolyte.
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TABLE 5-1. Least Squares Values of the Empirical Constants Given

in n = a + b(Q*AT/T) for Various Values of the Current.

.. .. -..M w—- ... _ .._.- ——-.—.—.---——-——— - _. ~—
_ . ___—_.——————..

  

I (A—cm'z) __£L__ b (kcal-1 mol)

0.05 3.66 -5.00

0.10 6.98 -10.00

0.15 9.91 1-14.84

0.20 12.42 -20.16

0.25 14.40 -25.00

0.30 15.79 -30.00

 



CHAPTER 6

NUMERICAL APPROACH

A. Introduction

The transport equations and boundary conditions described in

Chapters 2 and 3 form a set of equations which are. in general. not

solvable in closed analytical form. In an effort to verify the accuracy

of the pertubation solutions obtained in Chapters 4 and 5 it is

reasonable to resort to numerical techniques. Moreover numerical

techniques can provide extremely accurate simulation results. The

numerical technique of choice is the finite difference method. The

details and theory behind the finite difference approach have been,

available for some time (Smith [1978] Rosenberg [1969]).

The essence of the finite difference approach is the replacement of

the continuous space time domain with a discrete space time grid such as

that depicted in Figure (641). In doing this the starting set of

partial differential equations Eqs. (2-34) to (2-36). is converted to a

set of algebraic. or finite difference. equations. In general. the grid

spacing is nonuniform both in space and time. The nonuniformity in time

allows one to expand the time steps as one approaches the steady state.

where dependent variables are essentially constant. and to compress the

time spacing at short times. when dependent variables are changing very

rapidly. Nonuniformity in the space grid exists for a similar reason.

79
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Figure (6-1). Nonuniform space and time grid.
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It is expected that the dependent variables will exhibit their greatest

spatial dependence in the vicinity of the boundaries. where charged

surfaces exist. Therefore it is desirable to increase the density of

space points in these regions at the expense of the bulk of the

electrolyte. where dependent variables are expected to exhibit very

little spatial dependence.

B. Finite Difference Formulation

Leckey [1981] was the first to transform the correct set of

isothermal transport equations to finite difference form. The following

discussion derives from that formulation. with appropriate modification

for nonisothermal non uni-univalent systems.

The dependent variables. denoted by U (U - S. A. E) are specified

in space and time with the indices i and n respectively. Thus. Ui.n

represents the value of U at space column i and time row n with

1 .<. 1 S a. (6-1)

H |
A

3 I
A

0. (6‘2)

where R is the number of space points per time row and Q is the number

of time rows. There are therefore for J dependent variables. J-R

unknowns and JoR equations at each time row.

The method for converting Eqs. (2-34) to (2-36) to their algebraic
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analogs consists of expanding both Ui+l/2.n+1 and Ui-1/2.n+1 in Taylor's

series about ui.n+1' The weighted sum of the two series represents the

second derivative approximation. and the weighted difference represents

the first derivative approximation. with

- 2 2 2

(an/3”1,n+1 ' 2 [ U1+1/2.n.+1(“1-1’ + "1,n+1[‘A‘1-1’ ‘ 1‘31) 1

“ 01-1/2.n+1(Ax.)2 ]/[(Axi)(Axi_1)(Axi + Axi_1)]. (6—3)

2 2

(a "/33 )i.n+l ' 4 [ “1+1/2.n+1(“1-1’ + Ui-1/2.n+1“‘1’

- Ui'n+1[Ax1_1 — All] ]/[(Ax1_1)(Axi)(Axi_1 + Ax1)]. (a—4)

where Ari - x1+1 - xi. and terms of order greater than (Ax)2 are

neglected.

Similarly. the time derivatives are approximated by expanding Ui.n

in a Taylor's series about Ui.n+1 and truncating beyond the linear

terms. This results in little error if an appropriate time expansion

scale is used. The resultant time derivative approximation is

where At - tn+l - tn‘ Eqs. (2-34) to (2-36) are converted to finite

difference form by repeated application of Eqs. (6-3) to (6-5).

The first and last space points require special treatment. Strict
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application of Eqs. (6-3) and (6-4) to the transport equations requires

knowledge of both dependent variables and transport coefficients (18E.

YAE) at the points i - 0. R+1. and transport coefficients (Yss. YAA'

YSA' YAS) at grid points i - 1/2. Rsl/Z. In both cases these grid

points lie outside the system boundaries. The treatment of these "image

points" requires knowledge of the behavior of the transport coefficients

in these regions. These coefficients are in turn dependent upon the

concentrations of each species as well as the temperature. Tb determine

exactly the nature of the behavior of these coefficients at the

boundaries requires that the solution be available. Therefore we are

forced to approximate their behavior by noting that for ideal systems

the coefficients YSS' YAA’ YSA' and YAS are independent of concentration

and can therefore be evaluated at grid points 1 and R instead of at 1/2

and R + 1/2. The electric field at the image points is eliminated

through the use of Poisson's equation. The fluxes written in finite

difference form are equated to the kinetic boundary flux equations. and

both S and A at the image points are eliminated. The remaining

coefficients YSE and YAE are determined by noting that for an ideal

system they are linearly dependent on concentration. In the region of

the left boundary we therefore write

(ragga/avia,1 = [ (133) 1,2 - at“) 1,0 ]/2Ax1

s ISISi.2 - Si_o]l2Ax1 + KAIAi-z - Ai-OJIZAxl’ (6-6)

where the constants Is and [A are the S and A derivatives of YSE

evaluated at the mean system concentrations. From the solutions to si-O
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and ”i=0 and Eq. (6-6) YSE at the image points is eliminated.

The full set of finite difference equations is shown in Appendix E.

The finite difference procedure described above has been coded as a

Fortran program for the purpose of checking the accuracy of the

analytical results obtained in Chapters 4 and 5. A complete listing of

the program is included in Appendix F.

C. Numerical Results

The data available for the doped CeOz electrolyte the steady state

voltage loss across the electrolyte has been determined numerically. A

comparison of the numerical results versus the analytical results

obtained through integration of Eq. (4-30) is shown in Table 6-1. The

relative deviation of the two solutions (Adana/A60) increases with the

current density. This is not surprising since Ado represents the

solution to the linearized problem and as the current density increases

the starting equations (Eqs. (2-34) to (2-36)) become more nonlinear.

It is for this same reason that the relative contribution of higher

order solutions to the potential loss across the electrolyte increase as

the current density increases.

As we saw in Chapters 3 and 4 the rate constants are dependent upon

the behavior of the particular electrode-electrolyte system. In the

numerical simulations the bulk potential drop is unaffected by the

choice of rate constants. This does 32; mean that the cell performance

is independent of the choice of rate constants. since as we saw in
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TABLE 6-1. Comparison of A00 Obtained from Integration of Eq. (4-30)

and the Computer Simulation Results for the Doped Solid

 

   

Electrolyte CeOz-+Ca0..

1 (A-cm'z) A¢NUM (volts) A00 (volts) A¢NUM/A¢O

0.00 -o.112 -o.110 1.02

0.05 -0.150 -0.147 1.02

0.10 -o.192 -0.187 1.03

0.15 -O.238 -0.232 1.03

0.20 -0.239 -0.280 1.03

0.25 -O.346 -0.334 1.04

0.30 -0.408 -0.394 1.04
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Chapter 4 this choice is a reflection of the overpotential loss

occurring at the interface. and is the primary cause of power loss. The

numerical as well as the analytical results focus only on the bulk

behavior which is independent of the properties of the interface. Thus

although agreement between the numerical and analytical results based on

the transport theory is good they are strictly valid only when no

current is flowing. and give increasingly misleading results as the

current density increases.

The ohmic loss across the electrolyte is defined as the potential

drop that would be observed if only pure electric conduction were

occurring and the potential drop across the electrolyte were given by

Mom. - - I [I/A(S.A)]dx. (6-7)

The right hand side of Eq. (6-7) is integrated numerically and a plot

of the ohmic potential drop versus current density is shown in Figure

(6-2). For a conductor with homogeneous composition the specific

conductance of the bulk is defined as (Levine [1978])

1b = IL/Ad. (6—8)

which is 22; a statement of Ohm/s law but simply the definition of Ab.

and applies to all substances. From the plot in Figure (6-2) a value

for 2b of 0.117 (ohmrcm)-1 is extracted by fitting the data to Eq.

(6-8). This value compares quite favorably to a value of 0.113

(ohm-cm).1 measured for the same system using alternating current
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Figure (6-2). Dependence of the ohmic voltage drop on current density.
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techniques (Braunshtein. Tannhauser. and Riess [1981]). The predictions

of the transport equations are much more accurate when considering only

bulk properties such as Ab.

An important aspect of the analysis which has been neglected is the

effect of overpotential losses on cell performance. Although

overpotentials are not experimentally measurable their values can be

estimated based upon measurements of the cell impedance 2(0) or

admittance 1(0) I 2.1(0) taken over a wide range of frequencies a.

Sluyters [1960. 1963. 1964. 1965] has used this technique extensively in

his study of aqueous cell polarisation phenomena. If one plots the

imaginary part of these complex impedances or admittances versus the

real part the resulting locus shows distinctive features for certain

combinations of circuit components. Thus. these plots are useful for

determining the appropriate equivalent circuit for the system under

study. Examples of such plots for simple circuits are shown in Figure

(6-3). The exact equations for these curves can be derived from a.c.

circuit theory (Euler and Dehmelt [1957]). The resistance values in the

circuit representations are related to the circular arc intercepts on

the real axis. while the capacitance values are related to the

frequencies at the peaks of the area. Once the appropriate equivalent

circuit for the system has been selected. it is necessary to determine

which portions of the equivalent circuit correspond to the bulk

electrolyte properties. and which portions of the circuit correspond to

the interfacial properties.

In their measurements on the doped CeOz platinum paste electrode
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Figure (6—3). Equivalent circuits and their corresponding admittance

plots. The conductance (G) is plotted versus the

susceptability (B).
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electrolyte system. Braunshtein. Tannhauser. and Riess [1981] observed a

clearly defined quarter circle. which corresponds to the circuit shown

in Figure (6-4) (Bauerle [1969]). The Warburg impedance is the analog

for a diffusive process. From the arc intercepts the values of R1 and

R2 are obtained. with

a, - 3132/(21 + 32) (6-9)

no ' 81a (6’10)

where R. is the measured resistance for u‘9 I and R0 is the measured

dynamic resistance for u I 0. The value of R1 thus represents the

resistance for current entering the solid electrolyte directly from the

gas-electrode-electrolyte interface. The overpotential defined in Eqs.

(3-7) and (3-8) is approximated by

“L + “a . 131. (6-11)

Typical values for R1 and R2 for the Ce02 platinum paste electrode as a

function of temperature are shown in Table (6-2). Since R1 >> R2. Eq.

(6-9) reduces to

Rb . Ru 2 32 (6-12)

where Rb is the bulk resistance. It is from these resistance

measurements that the literature value of 0.113 (ohm-cm).1 for the

specific conductance was extracted.



Figure (6-4).
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Warburg Impedance plot.
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The "Warburg impedance" is designated by the symbol

~—\A/——-

and is equivalent to the infinite R-C line
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Figure (6-4)
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Inclusion of the overpotentials estimated from Eq. (6-11) results

in a far greater loss of power than that predicted by the transport

equations alone. A comparison of the power output excluding

overpotentials and including them is shown in Table (6-3). and a plot of

efficiency versus output current illustrating this same comparison is

shown in Figure (6-5). Comparison of these results with those shown in

Table (4-2) and Figure (4-2) indicates that neglect of overpotentials is

a far more serious error than neglect of space charge in predicting cell

performance.
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Figure (6-5). Dependence of the efficiency on the current density. (+)

Neglecting overpotentials. (0) including overpotentials.
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TABLE 6-2- Comparison of the Values of R1 and R2 Measured at High

Temperatures for the Doped Solid Electrolyte Ce02-+Ca0.

 

 

T (°C) R1 (ohms) R2 (ohms)

700 35.71 4.88

750 25.00 3.00

800 18.57 3.27

850 13.21 3.17

900 10.00 4.66

 

 

 
 

 

TABLE 6-3. Comparison of Power Densities With and Without

Overpotentials.

------Power (W-cm-2)><102------

_2 Without With

I (A-cm ) Overpotential Overpotential

0.00 0.00 0.00

0.05 4.49 3.26

0.10 8.63 3.71

0.15 12.35 1.29

0.20 15.63 -___

0.30 20.44 .___

 



CHAPTER 7

THE TINE DEPENDENT PROBLEM

A. Introduction

Throughout this work we have assumed that the transient period of

Operation of the fuel cell (the period from closing the circuit until

the steady state is achieved) is short compared to the total Operating

period of the cell. Tb test the validity of this assumption it is

necessary to examine the time dependent behavior of the system within

the framework of nonequilibrium thermodynamics.

For systems with reversible electrodes the transient period of

operation is determined by the thee constant for the establishment of a

steady state for mass transport across the bulk electrolyte. The bulk

phase is essentially electrically neutral except within a few Debye

lengths of the boundaries where kinetic effects dominate. Thus. for

estimating the magnitude of the mass transport time constant. we treat

the electrolyte as one mutually diffusing species under the influence of

temperature and concentration fields. The rate of attainment of the

steady state depends upon the magnitudes of the mutual diffusion

coefficient. and the thermal conductivity of the solution. We suppress

the dependence of this rate upon the thermal conductivity by noting that

the thermal relaxation time is generally much shorter than the diffusive

relaxation time. Thus we define time zero to be the point at which the

100
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steady state thermal gradient has established itself but before

appreciable chemical diffusion occurs. The transient period of

operation of the cell thus becomes a function of the mutual diffusion

coefficient.

For the doped solid state conductor Ce02 + CaO. the transport of

material occurs via a vacancy mechanism operating in the anion

sublattice (Schmalzreid [1974]). We therefore choose as a reference

species the Ca+2 dopant which is bound to the lattice positions of the

essentially rigid cation framework. which results in a negligible

reference velocity. The more nearly perfect the cation sublattice. the

closer the reference velocity approaches zero. since there are fewer

vacant sites to which the reference species can move. We choose the

concentration as the composition variable because it allows us to

formulate the time dependent problem directly in terms of the

fundamental quantities a and D. and results in an explicit dependence of

the composition variable upon these quantities. This in turn leads to

estimates of the length of the transient period of cell operation.

B. Formulation of the problem

Historically the Soret problem has been in a certain sense a zeroth

order problem in that electroneutrality has always been assumed. As we

saw previously. this assumption can lead to significant errors in the

calculation of output voltages when the electrolyte approaches a charged

surface such as an electrode.
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Implicit in the electroneutrality assumption is the requirement

that the velocities of the two ions are the same. If the positive ion

moved faster than the negative ion. it would leave behind pockets of

negative charge while creating pockets of positive charge. and the

electroneutrality [assumption would be invalidated. By Eq. (2-1) the

faradaig current (IF) becomes. under the electroneutrality assumption.

1,. - F E (ziciHvi-vo) .. 12} (cizian-vo) = o (7-1)

where vm I v1 (i I 1.2) is the velocity of the mutually diffusing

electrolyte. The total current defined by Eq. (2-29) then becomes

I I s(3E/0t) I s(dE/dt). (7-2)

which says that in the steady state the total current must vanish. and

that the magnitude and duration of the displacement current is governed

by the current produced by the cell as a function of time.

Dunlap and Casting [1959] measured the thermOpower of the

thermocell

I Pt I Ag I AgN03(aq) | Ag iPt l. (7-3)

and found that after imposition of a temperature gradient across a cell

initially uniform in temperature several minutes elapsed before the

displacement current vanished.
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The initial value of the thermopower is taken to be the value of

the thermopower measured at the time when the steady temperature field

is established. but before appreciable chemical diffusion has occurred.

The basis for assuming that the steady temperature field is established

before noticeable- diffusion occurs is that the rate of thermal

conduction is ordinarily much greater than that of diffusion. The

steady state temperature profile is linear since no Joule heating is

present.

From Eq. (5-49) the entrOpy production for a nonisothermal binary

electrolyte system is

where the component fluxes are subject to the electroneutrality

condition.

Ii ' v11”. 1 3 1,2,
(7—5)

where Jll is the flux of the mutually diffusing electrolyte. In

addition. the driving forces Xi are related through the definition of

the chemical potential of a dissociated electrolyte.

and X. I -au./ax is the driving force for the mutually diffusing

electrolyte. From Eqs. (7-4) to (7-6).
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e - J.;_ + quq. (7-1)

and for the Hittorf diffusion fluxes.

-Jn I l-(0un/0x) + l.q(aln T/ax). (7-8)

'Jq I lq.(0un/0x) + qu(aln T/ax). (7-9)

where

1g. - lug. (7—10)

The Onsager coefficients are related to the Soret coefficient. the

thermal conductivity. and the mutual diffusion coefficient. the three

experimentally accessible quantities required to characterize this type

of system.

The Hittorf diffusion flux defined by deGroot and coworkers [1953].

is.

"I. - (n/covoiiao_/ax) - D[(ox‘xoV0/V2) - (an/VHWT/ax). (7-11)

where B is the thermal expansivity of the solute. xi the mole fraction.

°i is the concentration. Vi is the partial molar volume. and V is the

volume of the mixture. When the solvent velocity is neglected.

-J. I D(acn/ax) - Dc.(a - fl)(0T/ax). (7-12)
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where xi I civ. From Eqs. (7-9) and (7-13).

0 - 1_(0un/acn). (7-13)

l'q/T - (s - 00an - ino'l'r. (7-14)

From Eqs. (7-13) and (7-14) we recover the relationship expressed by

Eq. (2-16)!

ocm - -Q./T(0|1I/0cn). (7—15)

where the thermal expansivity of the electrolyte has been neglected.

The sum flux defined by Eq. (4-3) is related through Eq. (7-5) to

the flux Jll by

Is I [v/(z1 - 22)]JIn (7-16)

and Eq. (7-12) can be rewritten in terms of the previously defined

concentration variable 8 and flux J8 as

--J8 I 0(08/0x) - DS[e - 01(0T/ax). (7-17)

where

s = [ v/(21 - :2) Ion. (7—13)
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We now examine time dependent behavior and compare the steady state

result to previously obtained steady state solutions. The general

continuity equation (Eq. (2-20)) becomes

(as/at) - (aJ,/ax) = 0. (7-19)

where Is is given by Eq. (7-17). and the temperature distribution is

given by Eq. (5-18).

C. Solution of the Soret Problem

The solution domain consists as before of a one dimensional

electrolyte extending from x I -L/2 to x I +L/2 (see Figure 4-1). Time

zero is defined as the time when the temperature field has been

established with no appreciable diffusion having occurred. The initial

concentration distribution is

So(x.tI0) I 8‘. (7-20)

The boundary conditions are in general time dependent because they

reflect the behavior of the electrodes towards the system. For

completely reversible electrodes. Ii 2 0. and by Eq. (7-17).

0 - 0 [ (ea/ax) - Sle - p](ar/ax) I. x = 1 L/2. (7-21)

For nearly reversible electrodes. the time dependent boundary conditions
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are approximated by

a: -= 0(03/ax) + 08(0T/0x). x = 1 L/2. (7-22)

where J: is the steady state flux defined by Eq. (4-3). and e 2 [g -

o]D. The pertubation expansions for S and the parameter L I D.e are

2 0..

S'sm+so+5s1+5sz* , (7-23)

L - 1.0 + 6[L‘(S-S‘) + urn-r9] + (7.24,

Since no current flows there is no Joule heating and the

temperature distribution (Eq. (5-18)) is linear. Substitution of Eqs.

(7-17). (7-23). and (7-24) into Eq. (7-22) and collection of terms of

order zero gives

- 2 2 _
0 I (BSD/at) D0(3 80/02 ) - 00(AT/L)(aSOIaz). (7 25)

where z = x + L/2 has been introduced for convenience. We impose upon

the zeroth order solution the requirement that it satisfy the boundary

conditions while all higher order solutions vanish at the boundaries.

Thus.

00(aso/az) + sour/mm.) + S”) -= 4:. z .. 0. L (7-26)

80(190) ‘ 0. (7'27)
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Although Eq. (7-25) lends itself easily to solution by separation

of variables. the boundary conditions expressed by Eq. (7-26) do not.

In order to separate variables it is necessary to transform Eqs. (7-25)

to (7-27) so as to allow separation of both the resultant partial

differential equation and boundary conditions. We utilize the

Danckwerts transformation (Crank [1956]) and define the function U(z.t)

as

U(z.t) I Soexp[-(az + bt)]. (7-28)

where

a I ~(moAT)/(2LD0). (7-29)

b = - I (qur)/(2Lno) I200 - -a2Do. (7—30)

This transforms Eq. (7-25) to

(an/at) - 00(020/322) - 0 (7-31)

with boundary conditions of the form

00(00/021 - anon - [ 41: + 2:008” ]exp[-(az + bt)] (7-32)

at z I 0.L with

U(z.0) I 0. (7-33)
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We transform the problem posed by Eqs. (7-31) to (7-33) to one

with homogeneous boundary conditions (Boyce and Diprima [1977]) by

subtracting from U(z.t) a function V(z.t) which satisfies both the

boundary conditions given by Eq. (7-32) and the steady state equation

given by

(02V(z.t)/azz) - 0. (7-34)

With I

W(z.t) I U(s.t) - V(z.t). ' (7-35)

V(z.t) 3 [[12 + Izlexp(-bt). (7-36)

:1 - [-J: + 2aS-Do][(I-exp(-aL))/(aSnD0L)]. (7-37)

:2 - [ [(1-exp(-aL))/(aL)] - 1 ][(-J: + 2‘3.Po”“3.”o’l' (7-38)

Eqs. (7-31-33) yield

(aw/at) - 00(62W/azz) - 01:12 + Kzlexp(-bt). (7—39)

with the homogeneous boundary conditions

(aw/a2) - aW . 0, z - 0.1 (7-40)

and the initial condition
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«2.0) - «xi: + :2). (Hi)

We solve the problem posed by Eqs. (7-39) to (7-41) by assuming

that the solution can be expressed as a series of eigenfunctions of the

form

man) - E bn(t)dn(z). (7-42)

and then determine the coefficients bn(t). Moreover we expand ‘the

nonhomogeneous term in Eq. (7-39).

b(Xls + I2)exp(—bt) I 2 7n(t)6n(z). (7-43)

The first step in determining the coefficients in the eigenfunction

expansion for W(s.t) is to solve the analagous homogeneous problem

(aw°/at) - 00(azw°/a22) = 0. (7-44)

for which a Fourier series solution of the form

1%...) 1- 2 cn6n(s)gn(t) (1—45)

exists where gn(t) and dn(z) are determined by substitution into Eqs.

(7-44) and (7-40) respectively. The initial condition given by Eq.

(7-41) is then used to determine on. From the homogeneous problem we
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get

dn(s) I sin[(nns)/L] + (nn/aL)cos[(nnz)/L].

gn(t) I exp(Ant). An I -(nn/L)2Do.

an . zdz[-y: + 2aS-Do][l - (-1)nexp(dn)]

°[aS-Do(n2 + d2)nn]-1.

d = -aL/n.

Substitution of Eqs. (7-42) and (7-43) into Eq.

(dbn(t)/dt) - hnbn(t) - 7n(t) I 0.

Before solving Eq. (7-50) for bn(t). we obtain

integration of Eq. (7-43).

7n(t) I -bexp(-bt)un.

Substitution of Eq. (7-51) into Eq. (7-50) and

where bn(0) I on to an arbitrary time t gives

(7-46)

(7-47)

(7-48)

(7-49)

(7-39) gives

(7-50)

1n(t) by appropriate

(7-51)

integration from tI0

bn(t) I [an/(An + b)][1nexp(Ant) + bexp(-bt)]. (7-52)
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From Eqs. (7-46) to (7-48). (7-42). and (7-52) we have the

complete solution to the problem posed by Eqs. (7-39) to (7-41) and are

in a position to transform back to the original set of equations. When

this is accomplished the final result for the zeroth order solution for

S in terms of dimensionless variables is

80(2.t) I [(J: - ZlS-Do)/2aS-D0][l + [2aL/(l-exp(2aL))]exp(2az)]

+ exp(az) 2 [anAn/(An + b)]6n(z)exp[(An + b)t]. (7-53)

For AT I 0. two applications of L'Hopitals rule to Eq. (7-53) give

So(s.t) = -(LJ:/s_po> [ (z/L) - <1/2)

2 2
+ (4/n ) E [cos[(2n+1)nz/L)]/(2n+1) ]exp(Ant) ] (7-54)

which corresponds to the solution to the diffusion equation given by

Carslaw and Jaeger [1959]. As t 9 I in Eq. (7-54) the steady state

solution

C

80(x.°) I -(J‘/S-Do)x (7-55)

is approached (x I s - (L/2)). From Eq. (4-30) we have. with p = 0.

So(x) - I a,osAo - “103.0 ]x/BA0. (7-56)
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The solutions given by Eqs. (7-55) and (7-56) are equivalent. This is

easily demonstrated by substituting Eq. (4-27) into the right hand side

of Eq. (7-56). giving

So(x) I (dSo/dx)(xlSn). (7-57)

By setting the two solutions given by Eqs. (7-55) and (7-56) equal to

one another we regenerate with the help of Eq. (7-57) the diffusion

equation

—J8 I Do(dSo/dx) (7-58)

for an isothermal system.

The characteristic time (0) governs the rate at which the steady

istate is approached. and is defined by Tyrell [1961] as

e = 1.2/(.1200) (7—59)

where L is the length of the system and D0 is the zeroth order

approximation to the diffusion coefficient. The terms in the sum of Eq.

(7-53) converge rapidly and those for which n > 1 can be neglected when

tie is sufficiently large. Indeed deGroot [1947] assumed this was

always so and neglected higher order terms at all times. If we retain

only the first term. Eq. (7-53) simplifies to

So(s.t) I So(z.I) - exp(az+bt)(u11161/0)exp(-t/0). (7-60)
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Weinberger [1965] defines an upper bound for the error made in

approximating an infinite Fourier sum with a partial sum Sm(z). where m

is the number of terms included in the sum. For a generalized Fourier

series of the form

f(s) I a0/2 + E [ ancos(ns) + busin(nz) ] (7-61)

this error (if(z) - Sn(z)|) is given by

1/2

In.) - 34:” =[ (1/«1I [f'(z)]2dz - § 1121.1} + 1.1121 ]

[ («z/s) — 2 (1/n2) I1”. (7-62)

Application of the above to Eq. (7-60) reveals an upper bound for error

of 16 per cent. For purposes of estimating the time required for the

system to reach the steady state Eq. (7-60) is sufficient since at t >

50 the error involved in using Eq. (7-60) is less than 1 percent. Eq.

(7-60) is. therefore. sufficient for estimating the length of transient

behavior in cell operation. It also reveals the effect of the Soret

coefficient upon the length of this transient period. From Eq. (7-30)

we see that regardless of the algebraic sign of the Soret coefficient or

the direction of the temperature gradient. b is always positive in Eq.

(7-60). thus the time required to reach the steady state decreases as

the magnitude of the nonisothermal effects increases. This decreased

warm up time could be economically beneficial provided the nonisothermal

effects are large enough.



CHAPTER 8

FUTURE WORK

To correctly model the time dependent behavior of electrolyte

solutions. and gain information concerning single ion properties. it is

necessary to know the dependence of the Onsager coefficients upon

individual ionic concentrations. This requires making measurements in

the first 10"8 s of a liquid junction potential experiment. (Leckey and

Horne [1981]). Until such data become available it is difficult to make

any statement concerning the validity of any given model in this time

domain.

Measurements on electrolytes have been carried out on essentially

neutral solutions. (Miller [1966]) and necessarily yield information

only on the dependence of the Onsager coefficients on the total

electrolyte concentration. and forces us to treat the electrolyte as if

it were a singly diffusing neutral species. This poses no problem until

one reaches a charged interface. where it is necessary to postulate some

sort of single ion dependence for the Onsager coefficients.

Introduction of a temperature gradient has been suggested as a

means of increasing the time available for observing single ion

behavior. However this introduces additional parameters (Q71. and KO).

raising to six the number of independent observations required to

characterize a binary system in this time domain. An additional
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complication is that the temperature dependence of these parameters must

also be considered. The introduction of the temperature. and the energy

balance equation brings to four the number of dependent variables and

linearly independent equations respectively. that are required to

characterize this system. The numerical treatment of this problem will

require the redemensioning of program "IONFLO" and modeling of the

dependence of the above parameters on the temperature and the single ion

concentrations. Further experimental data are required in order to more

fully deve10p this treatment.

Alternatively one can treat the electrolyte as one mutually

diffusing species. reducing the number of equations and dependent

variables to two. This treatment decouples the electric field from the

dependent variables. (see Eq. 7-2). thus yielding information only on

the temperature and concentration distribution of the system. "IONFLO"

can be revised to simulate such a system. and the data necessary for

carrying out the simulation. (Miller [1966]. Longsworth [1957]. Snowden

and Turner [1960]). are available for liquid electrolytes. Similar data

for solid electrolytes are virtually nonexistant. Experiments to

determine the temperature and concentration dependence of the diffusion

coefficient. Soret coefficient. and thermal conductivity of solids are

needed.

The electrodelelectrolyte/electrode system is not. in general.

symmetrical. The solutions obtained in Chapters 4 and 5 can be further

generalized by imposing nonsymmetrical boundary conditions of the type

encountered in most real systems. This may result in predictions of
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significant contributions to the voltage loss from Joule Heating.

Another area deserving of more theoretical and experimental

attention is the effect of hydrostatic pressure upon transport phenomena

in solids. One might expect large effects due to the stress gradients

which may be present in many practical situations.
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APPENDIX A

TRANSPORT COEFFICIENTS

in Equations (2-34) to (2-36) are

(1/2)[ (011 + D22) ' [(21/22)D12 + (22/21)021] ]L

+ + +(1/2)[ (011 022) 1121/221012 (.2/2110211 ].

(1’2)[ (”11 ”22) ' [(21/12)912 ‘ 112/Z119211 ]-

.
.
.

(1/2)[ (011 022) [(21/22)D12 - (.212110211 ][

(F2/e)[ 23122 - z§111 I.

(F2/8)[ 2&111 + 22122112 + 2%122 1'

(1/2zlzz)[ (-Q;/T)(21111 - 22112)

+ (cg/11(22122 - 21111) ].

<1/22122)[ (QI/T)(z1111 + .2112)

+ (cg/11...... + .2122) I. (1-1)
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with

K I Num/Den. (Ar2)
q

where

Num 3 -YSS(z1111 + 12112) - YAS(11111 - 12112). (A-3)

Den I v1F[ YSS(Z1111 + 2z122112 + zglzz) - YAs(z%122

- 2&111) I. (Ar4)

For electrically neutral regions in an electrolyte. A I O. and

D I [YSSYAE - YSEYASIIYAE' (AIS)

with -oS = 03/[r(au/a3)l = [quYAa - YSEYAq1/(DYAE) (Ar6)

where D and o are the diffusion coefficient and Soret coefficient of the

electrolyte respectively.

The a's. B's. and 7's in Equations (4-7) and (4-8) are

as ’ [YSAJX ’ YAAJEJIIYSSYAA ‘ YASYSAl'

O

«A = [YASJX - YsstlllYSSYAA - YASYSA].
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as = [ [YSEXAA - YSAYAEJIIYSSYAA - YASYSA] 1(8/22122F).

BA [ [YAEYSS _ YSEYASJIIYSSYAA ’ YASYSA] ](8/22122F).

75 ‘ [ISAYAq - YSqYAAIIIYSSYAA - YASYSAI'

' ”ASYSq ".YAqusl/ [YssYAA ' YASYSAJ .c
‘

p
. I

(A-7)



APPENDIX B

FIRST ORDER SOLUTION FOR THE STEADY STATE ISOTHERMAL PROBLEM

Substitution of the zeroth order results into Eq. (4-33) results

in the ordinary differential equation

(dzfilldxz) - (A3)El = cl: + C2sinh(on) + C3sinh(2on). (3-1)

where the constants C1. C2. and C3 are known from the zeroth order

solution. In addition to the particular solution which satisfies the

right hand side of Eq. (B-l) there is the complementary solution

obtained by solving the homogeneous problem. The complementary solution

introduces two new constants whose values are fixed by the boundary

conditions. From Eq. (4-29). A1 I 0 at the walls. thereby fixing the

values of the constants through Poisson's equation with

dElldx I 0. x = t L/2AA. (B-2)

The general first order solution for the electric field is thus given by

E1 = T1 + T2 + T3 + T4 (B-3)

where

11 = [BAsw/(AOBAOHI [sinh(on)/cosh(Ao§)] - A0: I.
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:
3

[aPBA3/(4BAosinh(Ao§))][ (on)zsinh(on) - (on)cosh(on)

~

[010112 + (Ao§)tanh(Ao§) - 1 ]sinh(on) I.

r3 - [pE°/(2BAosinh(A0§))][BAA + (psosAs/0A011[ (on)cosh(A0x)

- [1 + (A0§)tanh(Ao§)]sinh(on) ].

T4 I I(9)2Ao/(6(BA0)281nh2(Ao§))1[BAA + (BAsBso/BA0)1

-[ sinh(2A0x) - 2[cosh(2A0§)/cosh(Ao§)]sinh(A0x) ]. (3-4)

with

° ' [asofiso ’ “AOBSO]/BAO' (3'5)

E0 - '“AOIBAO' (B—6)

and the Lij' (i.j I S.A) are as defined in Chapter 4. The charge

density A1 is obtained from differentiation of Eq. (B-4) in accordance

with Poisson's equation.

To obtain the first order solution for the total concentration 8.

the first order solution for E given by Eqs. (B-3) and (B—4) is

substituted into Eq. (4-34). producing

(dSIIdx) I Clx + Czsinh(on) + C3sinh(2on) + C4x2sinh(on)
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+ Csxcosh(A0x). (B-7)

where the constants C1 to C5 are known from zeroth order results and E1.

and are not necessarily the same as the constants given in Eq. (B-l).

Integration of Eq. (B-7) produces the first order solution for 8 along

with an integration constant whose value is fixed by Eq. (4-28). which

states that the total mass of the system is constant. The complete

first order solution is

Sl=n+T2+T3+T4+T5+T6. (B-8)

where

T1 3 K1[32 - :2/3ls

T2 I Kzlxsinh(A0x) - (cosh(on)/Ao) - (cosh(A0§)/Ao)

+ (2sinh(A0§)/(A3§))].

r3 = x3[ [(10:21 - (A0§2)]cosh(on) - [Ssinh(Ao§)/(A3§)]

- 3xsinh(A0x) + (Scosh(A0§)/Ao) + (sinh(A0§)tanh(A0§)/Ao)

- {tanh(A0§)cosh(on) I.
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T4 I K4 [cosh(2A0x) - (sinh(2Ao§)/(2Ao§))].

rs = x5 [cosh(on) - (sinh(Ao§)/(A0§))].

T6 = r6 [ [1 - (BSD/BAo)][(cosh(on)/Ao) - (s1nh<Ao§)/(2A3:))l

+ (Bso/ZBAo)[xsinh(on) - §tanh(Ao§)cosh(on)]. ' (B-9)

where. moreover.

K1 I [335 - (BsoBAs/BA0)1(uE°/2).

K2 - apflss/[BAosinh(Ao§)].

X3 = apAsssop/[4sfiosinh(Aot)l.

r4 = [p2/(4BAosinh2(Ao§))][ [BSA + (BSSBSOIBAO)]

+ (BSOIBBAO)[BAA + (BAsBso/BA0)1 ].

x5 = -pzflso[BAA + (BAspso/BAO)l/(3sfiosinhz(A0§)).

K6 a ps9tsss + (BSABso/BA0)]/sinh(A0§). (3-10)

The solutions for 51 and 51 given by Eqs. (B—3) to (B-lO) are easily

simplified by noting that the argument of all of the sinh and cosh terms

above contains the reciprocal of the Debye length of the system. which
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is of the order of 108 cm'l). Therefore. all of the terms in which 9

appears in both El and 81 vanish except within a few Debye lengths of

the wall. The simplified expressions for E and S through first order.

obtained by neglecting these terms. and valid everywhere except within a

few Debye lengths of the walls are

t
o I

’ Bo + E1 = E°[1 ‘ (BAsa/BAo)xl. (B-ll)

(
I
)

I

' So + S. = ax + [ass - (BsoBAs/BAO)][x2 - :2/31. (3-12)

The determination of the first order correction to the voltage dr0p

across the electrolyte must be zero since E1 is an odd function.

Therefore in order to obtain the first correction to the voltage drop

across the electrolyte it is necessary to determine the electric field

to second order. The procedure for doing so is the same as outlined

above and leads to extremely cumbersome expressions. Therefore an

initial 4ttOflPt at determining 32 is undertaken by neglecting terms in

which p appears. This leads to the result

32(pI0) I Kl[ (A0)xsinh(on) - [(Ao)§coth(A0§) + l]cosh(on) I

+ x2[ (A01)2cosh(on) - (on)sinh(on) - [(10:12

+ (Ao§)coth(Ao§) - 1]cosh(on) I + K3[(Ax)2 + 2

- (2A0§)cosh(on)/sinh(Ao§)] + K4. (B-13)
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where

K1 = («(s°)20As/(pAosgcoshiAoc)>1[0AA + (pAspso/0A011.

x2 . [33320.2/(4agpgoco.h(Aoc)1.

x3 = -[pAsa°a/(A30Ao)l[ (E°/2)[Bss — (BASBSOIBAO)]

- (BAsn/BAO)].

K. = [BAsa(E°)2/1430Ao)][ 0.. + ipss - (BAsBso/PAo)ll<Ao€>2/61

+ [BAgflso/BAOJ[tanh(Ao§)/(Ao§)]. (3-14)

and

32(p = 0) a K1(on)2sinh(on) + K2(on)cosh(on) + K3sinh(on)

+ [4,3 + x53, (B-15)

where. moreover.

x1 = [pAsaxzaAolztpsosP/(AgcoshiAO:))1.

K2 2 [sAsaE°/(A30A0cosh(Aot))][ (upss) + (BSOBAAEO/Z)

- [(BAsBso/ZBAO)2(uBSOE°)] ].
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x3 . 1aa°0As/(Agco.h(101))1[ [upsosAs/4niolt1 + (Aoc)2

+ (Ao§)coth(A0§)] - (Eoflso/BAO)[BAA + (BASBso/BA0)]

-[1 + (Act/2)coth(A0§)] + [BSA + (BSOBSS/BAO)]E°

- [afiss/BAol ] + [2taE°9sofils/(AgflaosinhiAofii>1

[ (E°/2)[Bss - (BASBSOIBA0)] - (uBAs/BAO) ].

K4 3 (aE°/3)[Bss - (BsoflAs/BA0)][ (E°/2)[Bss _ (BsoBAs/BA0)1

‘ (“BAs/BAO) 1'

K. = -1as°/A311053 — (BAsBso/BAO)][ [(Ao§)2/6][Bss

- (BASBso/BA0)] + [3A8580/(AOBA05)lt‘nh(A0§) ]

+ [BA520a/A31[ 2°(Bso/0A0110AA - (ass - (BAsBso/BA0))

- BSA] + (zaaAsasoiafio) ]. (3-16)

The preceding results represent the second order contributions to the

electric field and total concentration due to bulk behavior only.

Integration of Eq. (B-l3) from x I -§ to +§ produces

A42(p-0) = (2E°§3/3)(uBAsIBAo)2. (3-17)
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where terms of order 62 and below have been neglected. It is from Eq.

(B-17) that the voltage drops corresponding to the A/SIII I 0 entries in

Table (4-1) are calculated. Inclusion of terms linear in p enables us

to examine .the effect of non electrically neutral behavior upon the

voltage loss across the electrolyte. and results in the expression

Adz - A62(pI0) - (up/BAO)(BAs§/BA0)2[ (30/8) - (E°Bso/3) ], (3.13)

where terms of order 52 and below have been neglected. The second order

contributions to the voltage drop as a function of charge density in

Table (4-1) are computed from Eq. (B-lS).



APPENDIX C

DINENSIONLESS VARIABLES USED FOR COMPUTER SIMULATION

Dimensionless variables are denoted by an overline. The following

list contains dimensionless variables used in addition to those

introduced in Eq. (4-16). The definition of each variable is given in

the comment section of the program ”IONFLO."

cpl I 8(3I0.IIO).

EPS I epm/eo,

.t- . tIYuAEEFSJD

CON ‘ 80/(22122F)e

GDE a CpflYmAE/(22122F),

20 =- -Q(C0N)/[eo(M)sm],

21 = -I(c0N)/[(AA)smrgEepml.

E3 = -Ad(C0N)/[2(AA)ZSn10-7].
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213 - Yij(CON)/[(AA)ZGDE]. 1.1 = S.A.q

if? - kij(CON)/[(AA)GDE]. i = S.A; j = L.0.A,R.



APPENDIX D

JOULE HEATING

Neglect of the Joule heating term in the energy balance equation

(Eq. (5-10)) resulted in a linear temperature gradient. The resultant

steady state equations for nonisothermal transport (Eqs. (5-24) and

(5-25)) thus assumed a form identical to their isothermal analogs (Eqs.

(4-26) and (4-27)). Inclusion of the Joule heating term in the energy

balance equation transforms Eq. (5-24) to

(don/dx) - (A3)Eo = -(l/EPS)[ u'Ao - (27A01/(10K01ni)

-[IL/2§]2 I, (0—1)

which reduces to Eq. (5-24) when I I 0. The general solution to Eq.

(D-l) is

£0 a (IL/zcizlszox/(xoxormaAo)1 - (aAo/BAO)

+ Clcosh(A0x) + Czsinh(on). (D-2)

where the constants C1 and C2 are determined by the boundary conditions

given by Eq. (4-29). Under the conditions of Eq. (4-32). which states

that the charge density is equal but apposite in sign at either end of

the cell. the constants become
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C. = p/[A0(EPS)sinh(Ao§)]. (0-3)

C2 ’- 27A0(IL)2/ [ (2§)210K0T3AOBAocosh(Ao€)] e (D-4)

With Cl and C2 substituted into Eq. (D-2) the zeroth order expression

for E0 _reduces to Eq. (4-30) when the current density vanishes.

Integration of Eq. (D-2) across the electrolyte produces the same

expression for Ado as we obtain from Eq. (4-30) regardless of the value

of the current density. This does not mean that the voltage loss across

the electrolyte is independent of the current density: rather. it means

that for the purpose of calculating the voltage loss across the

electrolyte it is not necessary to include the Joule heating term in the

energy balance equation. provided that the charge density distribution

is symmetrical. If Eq. (4-32) is not valid (pL # -pR), then the

constants C1 and C2 defined by the boundary conditions will change. thus

altering the final expression for_Ado obtained by integration of Eq.

(D-2). We would therefore expect Joule heating to be important in the

determination of voltage loss for systems employing different kinds of

electrodes where nonsymmetrical charge distributions are expected.



APPENDIX E

TRANSPORT EQUATIONS IN FINITE DIFFERENCE FORM

The following definitions are useful in simplifying the finite

difference form of the transport equations.

A - 1/(Axi + Axi-1). P - 4/(Axi + Axi-1)2.

Y0v ' YUV(si.n+1' Ai.n+1)' Yfiv ' YUV(Si+1/2.n+l' Ai+1/2.n+1’»

Yfiv ' Yuv(31-1/2,n+1: Ai-1/2.n+1)' YUE ‘ YUE(Si+1.n+l' Ai+l.n+l)'

YUE ' YUE(si-l.n+l' Ai-l.n+1)' YUE ' YUE(si'n+1' Ai.n+1)'

Rat I Ali/Axi-1. Sub I Ali - Ali-1.

Amul I (Axi)(Axi-1). K I e/(ZzlzzF). (E-l)

where (U = 5.4 and V = S.A.q). with Ui.j referring to the value of U at

space point i and time row j.

Equation (2-34) becomes for 2 S i i RI1,

.. + ..

Si,n/At 3 -PYSSSI‘1,n+1 + [P(YSS + Yss) + l/At]Si'n+1
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_ - - +

PY§ssi+1,n+1 ' PYSAAi-l.n+l + P‘YSA + YSA)Ai.n+1

+

+ [K(Sub)/Amul]YSEEi'n+1 - pyqui+1'n+1 _ PYSqTi-1 + P(Y§q

+ Y§4)Ti-n+1'
(E—Z)

Equation (2-35) becomes. for 2 i i g er.

Ai,n/At = - PYKssi-1,n+1 + p(st + YAS)si.n+1

_ - — +

pYXsSi+1,n+1 ' PYAAAi-l.n+1 + (PYAA + PYAA + llAt)Ai.n+1

+

‘ +
(AK)(R.t)YAEEi+1.n+1 ‘ (AK/R1E)Ei_1.n+1

+ [K(Sub)/Amul]YAEEi'n+1 ’ PYXqu-1,n+1 + P(YAq

- +

YAq’Ti,n+1 ‘ PYAqTi+1,n+1- (E—3)

Equation (2-36) becomes. for 2 S i S Rel.

(I/e) + Ei,n/At = Ei'n+1[(1/At) + YAE] - (AYAs/K)

°[(R‘t)si+1.n+1 ' (31-1'n+1/R8t)] ‘ (AYAA/K)[(R‘t)Ai+1,n+l

- (Ai_1'n+1/Rat)] - AYAq[(Rat)Ti+1,n+1 - (Ti-1,n+1/Rat)l. (E—4)
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The rate constants enter through the elimination of the values of S

and A at the image points i 8 0. 3+1. The assumption of a linear

temperature gradient being established at time zero, with T1 = To and

Tk+1 s Th, results in the cancellation of all temperature terms from the

transport equations at the boundaries. Thus for i = 1, Eq. (2-34)

becomes

si'n/At + 4A[ (KSL)SL + (KAL)AL] = -2PYSSSZ.n+1 -' 2PYSAA2,n+1

+ [(1/At) + 2PYSS + 4A(KSO)]Sl,n+1 + [szSA + 4A(l10)

+

+ YSEIA1.n+1 + ZAKYSEE1.n+3 + 2A1“(313.151.1144- (5'5)

For i = 1, Eq. (2-35) becomes

Ai'n/At + 4A[(KSL)AL + (KAL)SL] = -2PYAss2'n+1 - 2PYAAA2’n+1

+ [ZPYAS + 4A(KDO)]sl,n+1 + [(llAt) + ZPYAA + 4A(KSO) + YAE]

+

(A1,n+1) + ZAKYAEEI,n+1 + ZAKYAEE1,n+1° (8’6)

For i = 1, Eq. (2-36) becomes

(I/e) + (31.n/At) ’ (1/K)[(KAL)SL + (KSL)AL] = (El'n+1/At)

- (1/K)[(KD0)Sl'n+1 + (KSO)A1'n+1]o (E'?)
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For i = R. Eq. (2-34) becomes

81.n/At + 4Al‘KSR)SR + (KAR)AR] = ’ 2PYSSSRPI,n+1 - ZPYSAAR?1,n+1

+ [zPYSA + “(mm + YSElARm-t-l + [(l/At) + 2PYSS + 4A(KSA)]

'SR.n+1 ' ZAKYszEk.n+1 ' ZAKYEEER,n+1o (E-B)

For i = R, Eq. (2-35) becomes

A1.n/At + 4A[(KAR)SR + (KSR)AR] 3 -2PYASSR71,n+1 - ZPYAAAR-1,n+1

+ [(l/At) + ZPYAA + 4A(XSA) + YAEJAR,n+1 + [szA8 + 4A(KAA)]

+

08R.n+1 - 2AKYAEER,B+1 ‘ ZAKYAEER,n+1° (8’9)

For i = R. Eq. (2-36) becomes

(Us) + (Emu/At) + (unuxmsn + (xsmm = (Emma/At)

+ (1/K)I(KAA)SR,H+1 + (KSA)AR.n+1] (E-IO)
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APPENDIX F

LISTING OF PROGRAM “IONFLO”

The following is a listing of the program ”IONFLO”:

PROGRAM IONFLO (INPUT,OUTPUT,TAPE 6I'OUTPUT,TAPE 50-INPUT)

PROGRAM IONFLO SOLVES THE SYSTEM OF EQUATIONS, GENERALIZED NERNST-

PLANCK, POISSON, DISPLACEMENT CURRENT, FOR THE TRANSPORT OF A

BINARY ELECTROLYTE IN A FINITE SPACE DOMAIN. DERIVATIVES ARE

APPROXIMATED USING FINITE DIFFERENCES.

2 TYPES OF BOUNDARY VALUE PROBLEMS ARE POSSIBLE. KEY-I IS FOR THE

DIFFUSION POTENTIAL KEY-2 IS FOR KINETIC ELECTRODE MODELING

BOTH EMPLOY A NON-UNIFORM SPACE MESH WHICH DEPENDS ON THE

MEAN CONCENTRATION OF THE ELECTROLYTE AND THE INPUT PARAMETER

RANGE.

Q

INPUT

ALL INPUT IS READ THROUGH SUBROUTINE AIO. THIS SUBROUTINE SHOULD

BE INSPECTED TO DETERMINE PROPER ORDER AND FORMAT OF INPUT

PARAMETERS.

THE FOLLOWING IS A LIST OF INPUT VARIABLES AND THEIR MEANING.

TITLE DESCRIPTION OF SIMULATION

KEY I FOR DIFFUSION POTENTIAL SIMULATION

2 FOR KINETIC ELECTRODE MODELING

R NUMBER or SPACE POINTS UP T0 100

Q NUMBER or TIME ROWS

ISET NUMBER OF EQUAL INCREMENT SPACE POINTS AT EACH ELECTRODE

OR SIDE OF INTERFACE

IJK FRACTION OF TIME ROWS TO BE WRITTEN

ISTOP NUMBER OF TIME ROWS TIME STEP SIZES ARE CONSTANT

MMM SPECIFIES A TIME ROW FOR WHICH MANY INTERNAL PARAMETERS WILL

OUTPUT AND SHOULD ONLY BE USED FOR DEBUGGING. WHEN NOT IN

USE SET MMM GREATER THAN Q.

NPLT FRACTION OF TIME ROWS THAT ARE WRITTEN THAT ARE TO BE

PLOTTED

137
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IOFF

ISTOP

RANGE

DT

TOL

ZP

ZM

ZQ

ALF

A

GDE

SIZE
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I FOR COMPLETE ITERATION PROCEDURE

0 FOR NO ITERATION

O WRITES OUTPUT ONLY FOR LAST ITERATION OF EACH TIME ROW

SPECIFIED BY IJK

I WRITES OUTPUT FOR EVERY ITERATION OF EACH TIME ROW

SPECIFIED BY IJK

LAST TIME ROW THAT CURRENT IS TURNED ON FOR

DETERMINES RATE AT WHICH GRID SPACING EXPANDS FROM SMALL

STEP SIZES TO LARGE ONES.

INITIAL TIME STEP SIZE IN SECONDS

DETERMINES RATE OF TIME STEP SIZE INCREASE.

MAXIMUM ALLOWABLE FRACTIONAL CHANGE FROM ONE ITERATION TO

THE NEXT FOR PROGRAM TO PROCEED TO THE NEW TIME ROW

CHARGE NUMBER FOR POSITIVE ION

CHARGE NUMBER FOR NEGATIVE ION

FINAL CHARGE ON ELECTRODE IN C/CM**2

TIME CONSTANT FOR CHARGE INJECTION

CHARACTERISTIC LENGTH IN CM

MEAN ZDE VALUE IN MOL*S*C/G*CM**3

LENGTH OF SYSTEM IN CM

EPM PERMITTIVITY OF A VACUUM IN C*C*S*S/G*CM**3.

SM MEAN ELECTROLYTE CONCENTRATION IN MOLES/CM**3

KDO,KSO.KDA.KSA. RATE CONSTANTS FOR TRANSPORT ACROSS

SR’SL,

C(I)

ELECTRODE-ELECTROLYTE INTERFACES.

DR.DL. RESERVOIR CONCENTRATIONS.

THROUGH C(lO) EXPANSION COEFFICIENTS FOR ONSAGER

COEFFICIENTS AND ACTIVITY COEFFICIENT DERIVATIVES.

C(I) AND c(2) FOR L++, c(3) AND C(A) FOR L--, C(5) ANO C(6)

FOR L+-, C(7) ANO C(8) FOR M, C(9) ANO C(Io) FOR 3

UNITS ARE S*MOL*MOL/(G*CM**3) FOR ONSAGER

COEFFICIENTS. M AND a ARE IN CM**3/MOLE.

EXPANSIONS ARE OF THE FORM:

L++ - Cl*CP + C2*CP**I.5

L-- - C3*CM + CA*CM**I.5

L+— - C5*S**l.5 + c6*s**2
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M - C7*S - C8/S**(0.5)

B - C9 + ClO*S

NAME(I,2,3) TITLES FOR PLOTS

JNAME(I,2.3) TITLES FOR PLOTS

P0|NT(l,2.3) SYMBOLS FOR PLOTS

OUTPUT

ALL OF THE INPUT PARAMETERS. THE OEBYE LENGTH OF THE SYSTEM,

AND THE TRANSPORT COEFFICIENTS IN OIMENSIONLESS FORM ARE WRITTEN

BEFORE THE FIRST TIME ROW IS EXECUTED

s SUM CONCENTRATION. WRITTEN FOR EVERY TIME ROW AS INOICATEO

BY IJK AND EVERY SPACE POINT AS INDICATED BY IW. UNITS

ARE MOLES/CM**3 . .

SM IS SUBTRACTEO FROM 5 FOR THE OUTOUT

D CHARGE DENSITY LABELEO RHO ON OUTPUT. WRITTEN FOR EVERY

TIME ROW AS INOICATEO BY IJK AND EVERY SPACE POINT As

INOICATEO BY IW. UNITS ARE C/CM**3

E SAME COMMENT As FOR 0. UNITS ARE VOLTS/CM

PSI SAME COMMENT AS FOR D. UNITS ARE VOLTS RELATIVE TO THE

POTENTIAL AT X-O.

CP POSITIVE ION CONCENTRATION

CM NEGATIVE ION CONCENTRATION

x SPACE POSITION IN CM RELATIVE TO NEAREST WALL.

T TIME IN UNITS OF SECONOS

EJ CELL POTENTIAL DIFFERENCE IN VOLTS

ZI DIFFERENCE IN CURRENT DENSITY BETWEEN ARBITRARY TIME

T AND STEADY STATE, AMPS/CM**2.

CLE TOTAL CHARGE IN SYSTEM IN COULOMBS

RCOND SEE LINPACK DOCUMENTATION

IF SUBROUTINE SGBFA IS USED BY IONFLO RCOND IS MEANINGLESS

RTEST ARBITRARY CUTOFF VALUE TO TELL COMPUTER THAT MATRIX IS

NEARLY SINGULAR AND TO STOP ATTEMPTING A SOLUTION. A VALUE

OF IO**(-25) HAS BEEN USED SUCCESSFULLY.

EPS RATIO OF PERMITTIVITY OF ELECTROLYTE TO THAT OF A VACUUM.

SO INITIAL CONDITION ON S.

DO INITIAL CONDITION ON D.



n
n
n
n

n
n
n
n
n
n
n

n
n

n
n
n
n

n
o

15

13

n
o

140

ED INITIAL CONDITION ON E.

QDELT IS THE QUANTITY Q*(TR - TL)/TM IN CALORIES PER MOLE.

VI AND v2 ARE THE STOICHIOMETRIC COEFFICIENTS OF SPECIES I AND 2.

DELT IS THE TEMPERATURE DIFFERENCE, TR-TL, IN KELVIN.

INTEGER R.RR.Q

DOUBLE XER.DEL.SIZE.DEBL

DIMENSION B(3OO),IPVT(3OO),BB(3OO),2(3OO)

DIMENSION Y(300),DEL(IOO),XER(IOO).YY(300)

DIMENSION ABD(I6.300)

DIMENSION NPT(IO).JNAME(IO).NAME(IO)

COMMON /ELEC/ EPS,ZI

COMMON /GREEK/ c(2h)

COMMON /PARAM/ KEY,R,Q,DT,F,TOL,RANGE,ISET

COMMON/UNITS/SM,DF,GDE.EPM,A,ZP,ZM,CON,TM,DIM,CREF,ZREF

COMMON /BOX/ IW,NPLT,IJK

COMMON/ICOND/SO,DO,EO

COMMON /PLTPTS/POINT(IO)

COMMON /CHRG/ ZQ,ALF

COMMON/MATRIX/RTEST,BCOND

SUBROUTINE AIO READS THE INPUT DATA AND CONVERTS VARIABLES T0

DIMENSIONLESS FORM. MOST OF THE INPUT DATA IS ALSO WRITTEN

CALL AIO (IOFF,ISTOP,SIZE,DEBL,NPT,NAME,JNAME.MMM)

IF BCOND IS ZERO THEN THE PROGRAM WILL SOLVE ONLY THE

STEADY STATE PROBLEM.

IF (BCOND .EQ. O.O)GO TO 335

SUBROUTINE GRIDXX, WHERE XX IS PR FOR ONE BLOCKING ELECTRODE,

RR FOR TWO BLOCKING ELECTRODES, AND RR FOR LIQUID JUNCTION

SIMULATIONS. GENERATES THE NONUNIFORM SPACE MESH ACCORDING TO R.

GAUGE, AND KEY. DEL IS THE INCREMENT VECTOR AND XER HOLDS THE

SPACE POSITIONS OF THE GRID PTS.

CALL GRIDPR (DEL,XER,SIZE.DEBL)

SHIFTING ORIGIN FOR KEY-l PROBLEM

IF (KEY .EQ. 2) GO TO 13

DO I5 I-I,R

XER(I)-XER(I)-(O.5*SIZE)

CONTINUE

CONTINUE

RR-3*R

TIME-0.0

RCOND-I.O

ZI - 0.0

M - o

KOUNT IS THE NUMBER OF ITERATIONS PERFORMED AT EACH TIME ROW.

KOUNT-O
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SUBROUTINE IC ASSEMBLES THE INITIAL CONDITIONS FOR 5.0, AND E.

CALL IC (KEY,Y,R)

OUTPUTTING THE INITIAL CONDITIONS

CALL lANDW(Y,TIME,KOUNT,RCOND.XER,NPT,NAME,JNAME,M,KFLAG,SIZE)

SAVING F AS FF FOR USE AFTER CHARGING IS COMPLETE.

FF - F

BEGINNING OF TIME LOOP

DO I7 M-I,Q

ZI - ALF*ZQ*EXP(-ALF*TIME)

IN GENERAL TIME(N.F.DT)'DT*((I+F)**N-I)/F

TIME-TIME+DT

SUBROUTINE RHSVO COMPUTES THE PORTION OF THE RHS-VECTOR GENERATED

BY THE SOEUTIONS FROM THE PREVIOUS TIME ROW. RHSVO IS CALLED ONLY

ONCE FOR EACH TIME ROW. THE RHS-VECTOR IS RETURNED AS B.

CALL RHSVO (R,OEL,DT,Y,B,M,MMM)

THE UNCHANGING PORTION OF B IS SAVED AS BB FOR USE WITH EACH

SUBSEQUENT ITERATION.

DD 18 I-I,RR

BB(I)-B(I)

CONTINUE

SUBROUTINE COEMAT ASSEMBLES THE COEFFICIENT MATRIX, ABD, IN BAND

STORAGE FORM.

CALL COEMAT (R,DEL.DT,Y,ABD,M,MMM)

IF RCOND LESS THAN RTEST THEN MATRIX WILL BE NEAR SINGULAR.

RTEST IS SUPPLIED BY THE USER BY OBTAINING THE CONDITION

OF THE MATRIX NEAR THE STEADY STATE.

IF (ABS(RCOND) .LE. RTEST) GO TO 333

SUBROUTINE RHSVN COMPUTES THE PORTION OF THE RHS-VECTOR DUE TO

THE SOLUTION TO THE PREVIOUS ITERATION. THIS VECTOR IS RETURNED AS

B. THE VECTOR B+BB IS THE COMPLETE RHS-VECTOR FOR ANY GIVEN

ITERATION.

CALL RHSVN (R,DEL,DT,Y,B)

DO l9 J-I,RR

B(J)-B(J) + BB(J)
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YYIJ)-Y(J)

CONTINUE

LDA IS THE LEADING DIMENSION OF ABD. ML IS THE NUMBER OF DIAGONALS

ABOVE THE MAIN, MU IS THE NUMBER OF DIAGONALS BELOW THE MAIN.

LDA-l6

ML-S

Mu-S

SGBCO FACTORIZES THE MATRIX ABD. RCOND IS RETURNED AS I/COND.

WHERE COND IS THE CONDITION OF THE MATRIX.

IF RCOND IS NOT NEEDED. SUBROUTINE SGBFA MAY BE USED TO DECREASE

EXECUTION TIME

JOB-O

CALL SGBCO (ABD,LDA,RR,ML,MU,IPVT,RCOND,Z)

SGBSL SOLVES THE MATRIX EQUATION ABD*Y-B. WHERE ABD IS THE BAND

MATRIX FACTORIZED BY SGBCO, B IS FORMED FROM RHSVO AND RHSVN.

AND Y IS THE SOLUTION VECTOR RETURNED AS B. THE ENTERING

RHS-VECTOR. B. IS DESTROYED.

CALL SGBSL (ABD,LDA.RR.ML,MU,IPVT,B,JOB)

DO 20 K-I,RR

Y(K)-B(K)

CONTINUE

CMPR COMPARES THE CURRENT ITERATION SOLUTIONS WITH THE PREVIOUS

ONES. IF THE RELATIVE CHANGE IS LESS THAN TOL FOR EACH VARIABLE.

KFLAG IS RETURNED AS ZERO AND THE MAIN PROGRAM CONTINUES TO THE

NEXT TIME ROW. OTHERWISE KFLAG-I AND ANOTHER ITERATION IS

PERFORMED.

CALL CMPR (Y,YY,TOL,R,KFLAG)

THE NEXT CARD REDUCES EXECUTION TIME FOR SMALL PERTURBATIONS

BY ELIMINATING THE ITERATION PROCEDURE

KFLAG-IOFF*KFLAG

KOUNT-KOUNT+I

IF KOUNT REACHES II ITERATION IS PROBABLY DIVERGING SO PROGRAM

IS TERMINATED.

IF (KOUNT .EQ. II) GO TO I6

DO 27 J-I,RR

Y(J)-YY(J)

CONTINUE

IF M IS NOT EQUAL TO I OR A MULTIPLE OF IJK. THE OUTPUT

AT THAT TIME ROW WILL NOT BE WRITTEN
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L-MOD (M.IJK)

IF (L .NE. D .AND. M .NE. I) GO TO IA

IF (IN .EQ. 0) GO TO II

IANDW CALCULATES THE CHARGE AND MASS IN THE SYSTEM, THE POTENTIAL

AS A FUNCTION OF X, WRITES EVERY IJK TH TIME ROW AND PLOTS

S.D.AND E AS A FUNCTION OF X.

CALL IANDW(Y,TIME,KOUNT,RCOND,XER,NPT,NAME,JNAME,M,KFLAG,SIZE)

CONTINUE

CONTINUE

IF (KFLAG .EQ. I) GO TO 2I

IF (L .NE. 0 .AND. M .NE. I) GO TO I2

IF (IN .NE. 0 ) GO TO I2

CALL IANDW(Y.TIME.KOUNT,RCOND,XER,NPT,NAME,JNAME.M,KFLAG,SIZE)

CONTINUE

DT IS INCREMENTED AT EACH TIME ROW ACCORDING TO THE VALUE OF F

THAT IS SPECIFIED IN THE INPUT DATA

F KEEPS TIME STEP SIZES CONSTANT WHILE ELECTRODE

IS BEING CHARGED

IF (M .LE. ISTOP) F's 0.0

AFTER ELECTRODE CHARGE IS COMPLETED TIME STEP SIZES ARE

GRADUALLY INCREASED IF F IS SET POSITIVE

IF (M .GT. ISTOP) F - ABS(FF)

IF F IS SET BETWEEN 0 AND -I TIME STEP SIZES WILL BE

DECREASED BY ABSIFF) FOR TIME ROW ISTOP+I AND THEN

GRADUALLY INCREASED THEREAFTER AS USUAL

IF (M .EQ. ISTOP .AND. FF .LT. O.O) DT - ABS(FF)*DT

DT-(F+l.0)*DT

KOUNT-0

CONTINUE

STOP

CONTINUE

WRITE (6I,IO)

FORMAT (Ix.28HSOLUTION VECTOR Is DIVERGING)

GO To 335

NRITE (61.33h)

FORMAT (Ix,23HMATRIx IS NEAR SINGULAR)

CONTINUE

END

SUBROUTINE AIO (IOFF,ISTOP,SIZE,DEBL,NPT,NAME,JNAME,MMM)
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’SUBROUTINE AIO READS IN ALL THE DATA NEEDED BY IONFLO. ALL

INPUT DATA IS ALSO WRITTEN BY AIO. ALL INPUT FORMAT IS EITHER

I5 OR EIO.3 EXCEPT NAME AND JNAME WHICH ARE A5 AND TITLEI

AND TITLEZ WHICH ARE AIO.

DIMENSION NPT(IO),JNAME(IO).NAME(lO)

REAL II,I2,ITOT

DOUBLE SIZE.DEBL

REAL KSL,KDL,KSO,KDO.KSA.KDA.KSR.KDR

INTEGER R,Q

COMMON/CURRENT/II,I2

COMMON /ELEC/ EPS.ZI

COMMON /GREEK/ C(2A)

COMMON/UNlTS/SM,DF,GDE,EPM,A,ZP,ZM,CON,TM.DIM,CREF,ZREF

COMMON /PARAM/ KEY,R,Q,DT,F,TOL.RANGE.ISET

COMMON /PLTPTS/ POINT(IO)

COMMON /BOX/ IW,NPLT,|JK

COMMON/ICOND/SD,DO,EO

COMMON /CHRG/ zq.ALF

COMMON/RATES/KSL,KDL.KSO,KDO.KSA,KDA,KSR,KDR

COMMON/BNDRY/SL.SR,DL,DR

COMMON/MATRIX/RTEST.BCOND

COMMON/DIFF/DI.Dz,OELTA

COMMON/THERM/ODELT,VI,V2

DOO,AND DA ARE THE DIFFERENCE CONCENTRATIONS AT x--L/2 AND

x-+L/2 RESPECTIVELY

READ (50,37) TITLEI,TITLE2

READ (50,I0) KEY,R,Q,ISET,IJK,NPLT,IOFF,IW,MMM,ISTOP,RANGE,DT,F

READ (50.I3) ZP.ZM.ZQ,ALF,EPS,TOL,TM,RTEST

READ (50,13) EPM,zREF,SIzE,CREF,SO,DO,EO,BCOND

READ (50,I3) CRESL2.CRESR2.DL.DR

READ (50,l3) II,ITDT,DI.Dz,DELTA.DOO.DA

READ (50,13) (C(I),I-I,IO)

READ (50,13) QDELT,VI.V2

READ (50,ll) (POINT(J),J-l,3)

READ (50,l2) (NAME(J),J-I,3)

READ (50.12) (JNAME(J).J-I.8)

CRESLI - (2*ZP*ZM*DL - CRESL2*ZM - CREF*ZREF)/ZP

CRESRI - (2*ZP*ZM*DR - CRESR2*ZM - CREF*ZREF)/ZP

SL - O.5*((CRESL2/ZP) - (CRESLI/2M))

SR - O.5*((CRESR2/ZP) - (CRESRI/2M))

SM - (SL+SR)/2.0

5L - (SL-SM)/SM

SR - (SR-SMI/SM

DR - DR/SM

DL - DL/SM

DOO - DOO/SM

DA - DA/SM

DF--ZREF*CREF/(ZP*ZM*2.0)

FIII-C(I)*(ZM*(DF-SM))

FIIZ'C(2)*(((ZM*(DF-SM)))**I.5)

FIZI-C(5)*((((ZP+ZM)/2.0)*DF + ((ZP-ZM)/2.0)*SM)**I.5)

\
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Flzz-C(6)*((((ZP+ZM)/2.0)*DF + ((ZP-ZMI/2.0)*SM)**2.0)

F22]-C(3)*(ZP*(DF+SM))

F222-C(h)*(((ZP*(DF+SM)))**l.5)

GII-(FIII + Fll2)*ZP*ZP

Gl2-2.0*ZP*ZM*(FIZI + FI22)

GZZ-ZM*ZM*(F221 + F222)

GDE-(96h85.0/(2.0*ZP*ZM))*(GII + GI2 + G22)

SC - (ZP*ZM*SM/2.0)*(((ZP+ZM)*(DF/SM)) + (2M-2P) +

+ ((ZREF*ZREF)*CREF/(ZP*ZM*SM)))

DEBL-((8.3lhE7*EPS*EPM*TM)/(2.0*(96h85.0**2.0)*SC))**0.5

IO

II

12

13

In

15

I6

22

25

26

27

28

A-DEBL/5.0

KSL- (DZ+DI)/(2.0*DELTA)

KDL - (DZ-DI)/(2.0*DELTA)

KSA I

KSO

KSR

KDA

KDO

KDR I

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

KSL

KSL

KSL

KDL

KDL

KDL

(61.33)

(6I.28)

(61.35)

(6I,32)

(61.31)

(6I.ho)

(6I,AI)

TITLEI,TITLE2

R,Q,KEY

DT,F,TOL,RANGE,RTEST

A.ALF

IJK,ISET,IW,IOFF,ISTOP,NPLT

GDE.EPM,SM,DF,ZQ,SIZE

CREF.EPS

(6I,38)KSO,KDO,KSA,KDA

(6I,83)KSL,KDL,KSR,KDR

(6I.53)DELTA

(61.27)

(61.26)

(61.25)

(6I.IA)

(61.15)

(6I.I6)

(6I.29)

C(I).C(2)

C(3).C(II)

C(5).C(6)

C(7).c(8)

C(9).C(IO)

DEBL.TM

(6I.68)SL.SR.DL.DR

(IOI5,3EIO.3)

(3A1)

(8AIo)

(8EIO.3)

(///.2x.I9H M AND B EXPANSIONS./)

(SXQBHM -DE100395H/S T 9E100397H*S**]°Ss/)

(3X,3HB -,El0.3,3H + ,EIO.3.2H*S,/)

(//.2X,3lH ONSAGER COEFFICIENT EXPANSIONS,/)

(3X,5HLPM -,ElO.3,l2H*(S)**l.5 + ,El0.3,7H*(S)**2./)

(3X,5HLMM -,EIO.3,IIH*(S + D) + ,EIO.3,I3H*(S + D)**l.5,/)

(3X,5HLPP -.EIO.3,IIH*(S - D) + ,EIO.3,I3H*(S - D)**I.5./)

(/,IX,|A,IOH SPACE PTS,AX,IA,IOH TIME ROWS,

l2X.6H KEY -.I2.//)

29 FORMAT (////,2x,I5H DEBYE LENGTH -.EIO.3,7x,5H TM -,EIO.3,//)

3I FORMAT (2x,6H IJK -,I3,8x,7H ISET -,I3,6x,5H IW -,I3,on,7H IOFF .

I,I3,on,8H ISTOP -,I3,on,7H NPLT -,I3,//)
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FORMAT (2X,4H A -,EIO.3,3x,7H ALF =,EIO.3,//)

FORMAT (IHI.6OX.2AIO.///)

FORMAT (2X,4H DT-,EIO.3,3x,3H FI,EIO.3,3X,5H TOL=,EIO.3,3x,7H RANG

IEI,EIO.3,3X,7H RTESTI,EI0.3,//)

FORMAT (3X,7HDELTA I,EIO.3,//)

FORMAT (//,3X,4HSL I,EIO.3,3X,4HSR I,EIO.3,3X,4HDL I,EIO.3,

+ 3x,hHDR -.EIO-3.//)

FORMAT (IX,6HCOMP I,EIO.3,3X,5HSUM I,EIO.3,//)

FORMAT (ZAIO)

FORMAT (3X,5HKSO I.EIO.3,2X,SHKDO I,EIO.3,2X,5HKSA I,EIO.3,.

+ 2X,5HKDA I,EIO.3,/)

FORMAT (3X,5HKSL I,EIO.3,2X,5HKDL I,EIO.3,2X,5HKSR I,EIO.3,

+ 2X,5HKDR =.EIO.3,/)

FORMAT (2X,5H GDEI,EIO.3,2X,5H EPMI,EIO.3,IX,SH SM I,EIO.3,

+3X,SH DF I,EIO.3,5X,5H ZQ I.EI0.3,7H SIZE I,EIO.3,//)

FORMAT(2X, 6H CREF'.EIO.3,2X,4HEPSI,EIO.3,///)

CONVERSION OF DT, ZQ, ALF, AND THE C-EXPANSION COEFFICIENTS TO

DIMENSIONLESS QUANTITIES FOR USE IN THE MAIN PROGRAM

CON - EPM/(2.0*96485.0*ZP*ZM)

DIM-CON/(A*GDE)

DT - GDE*DT/CON

ZQ - -CON*ZQ/(A*SM*EPM)

ALF - CON*ALF/GDE

DO 50 I-I,6

C(I) - (8.3IAE7)*TM*C(I)*CON/(A*A*GDE*2.0)

CONTINUE

C(2) - C(2)*(SM)**0-5

C(A) - C(4)*(SM)**O.5

6(5) 5 C(5)*(SM)**0.5

C(6) - c(6)*SM

6(7) . C(7)*SH

C(8) - C(8)*SQRT(SM)

C(9) - C(9)*SM

C(IO) I C(I0)*SM**2.0

DETERMINATION OF THE STEADY STATE ANALYTICAL SOLUTION.

IF (BCOND .EQ. 0.0)CALL BCONDIT(II,ITOT,DOO,DA,SIZE)

I2 I ITOT-II

KDOIKDO*DIM

KSOIKSO*DIM

KDAIKDA*DIM

KSAIKSA*DIM

KDLIKDL*DIM

KDRIKDR*DIM

KSRIKSR*DIM

KSLIKSL*DIM

RETURN

END
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SUBROUTINE IANDW (Y,TIME,KOUNT,RCOND,XER,NPT,NAME,JNAME,M

+ .KFLAG,SIZE)

IANDW CALCULATES THE POTENTIAL AS A FUNCTION OF X, THE TOTAL

CHARGE AND MASS IN THE SYSTEM. AND WRITES THE OUTPUT FOR EACH

TIME ROW SPECIFIED BY IJK.

DIMENSION Y(3OO),XER(IOO),PSI(IOO).YER(IOO)

DIMENSION E(IOO),YI(IOO),YJ(IOO)

DIMENSION NPT(IO),JNAME(IO),NAME(IO)

DIMENSION ZXARAY(IOO.3).ZARAY(IOO,3)

DIMENSION PD(I50),PDT(I50)

COMMON /ELEC/ EPS,ZI

COMMON /PARAM/ KEY,R,Q,DT,F,TOL.RANGE.ISET

CDMMON/UNITS/SM,DF,GDE,EPM,A,2P,2M,CON,TM,DIM,CREF,ZREF

COMMON /BOX/ IW,NPLT.IJK

COMMON /PLTPTS/ POINT(IO)

COMMON/CURRENT/II,I2

COMMON/DIFF/DI,Dz,DELTA

COMMON/BNDRY/SL.SR.DL.DR

INTEGER R,RR.Q.RSTOP,RSTART

DOUBLE XER.XLO.XUP.AVINT,TMS,TCS,PSI,SIZE

REAL II,I2

DATA I0/6)/.MAX/lQO/,ISCALE/l/,NF/3/

DATA ZXARAY/300*0.0/

RR-3*R

RSTDP-R/z

RSTART-RSTOP+I

STRIPPING OUT THE MASS CHARGE.AND ELECTRIC FIELD VECTORS FOR

INTEGRATION AND FORMING THE + AND - ION CONCENTRATIONS FOR PLOTS.

DO I6 K-I,R

ZARAY(K,I)-ZM*SM*(Y(3*K-l) - Y(3*K-2) + (OF/SM) - I.O)*I.OE-6

ZARAY(K,2)IZP*SM*(Y(3*K-l) + Y(3*K-2) + (OF/SM) + l.O)*I.0E-6

ZARAY(K,3) - Y(3*K)*l.0E-II*A*SM/CON

YI(K) - Y(3*K-I)

YJ(K) - Y(3*K-2)

E(K) - Y(3*K)

CONTINUE

LOWER AND UPPER BOUNDS FOR INTEGRATION

XLO I XER(I)

XUP I XER(R)

CALCULATING THE TOTAL CHARGE AND EXCESS MOLES OF IONS IN THE

SYSTEM

TCS-AVINT(XER,YI,R.XLO,XUP,IND)

TMs- (ZP+ZM)*AVINT(XER.YI,R,XLO.XUP,IND)

+ + (ZP-ZM)*AVINT(XER,YJ,R,XLO,XUP,IND)
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CALCULATING THE POTENTIAL AS A FUNCTION OF X

DO 26 JII.R

XUP-XER(J)

PSI(J)I (l.OE-O7*A*SM/CON)*AVINT(XER,E,R,XLO,XUP,IND)

CONTINUE

RJ - PSI(R)

ZJD - -DlM*(l2+Il)/(2.0*ZP*ZM*96485.0*SM)

COMPUTING THE POTENTIAL LOSS DUE TO OHMIC DROP.

PSOM - O.O

PSOD - 0.0

no 231 J - 2,R

SMM - Y(3*J-5)

SPP - Y(3*J-2)

DMM - Y(3*J-4)

DPP - Y(3*J-l)

S - O.5*(SMM + SPP)

D = 0.5*(DMM + DPP)

SETTING ARGUMENTS FOR THE FUNCTION SUBROUTINE.

Tl~- ZIJ(S,D)

SPAC - XER(J) - XER(J-l)

PSOD - PSOD - (ZI+ZJD)*(I.OE-O7*A*SM/CON)*SPAC/ZDE(S,D)

PSOM - PSOD + PSOM

CONTINUE

PD(I+M/IJK) - PSI(R) - PSOM

IF (M .EQ. 0 .OR. M .EQ. I)GO TO 232

CHNG - (PD(I+M/|JK) - PD(I+(M-l)/|JK))/PD(l+M/IJK)

,CHNG - ABS(CHNG)

IF (CHNG .LT. O.OOI)QIM

CONVERTING EJ TO VOLTS, TIME TO SECONDS. TCS TO COULOMBS, TMS TO

MOLES. AND ZI TO AMPS PER CM**2

RIME I TIME*CON/GDE

PDT(I + M/IJK) I RIME

RI I -A*SM*GDE*EPM*ZI/CON**2

TCS I TCS*2.0*ZP*ZM*96485.0*SM

TMSISM*TMS

WRITE (61,24) RIME,KOUNT,TMS

WRITE (6I.25) RJ,TCS.RI

WRITE (6I.444) RCOND

FORMAT (IHI./.7X,IHX,IOX,3HSUM,9X,3HRHO.9X,2HC+,IOX,2HC-,IOX,IHE,

IIOX, 3HPSI, 6X, 3H TI, EIO. 3, 2X, 7H KOUNTI, I2, 7X, 6H TMS I ,EIO. 3, /)

FORMAT (86X, 4H EJI, EIO. 3, IX, 5H TCSI, E10. 3, IX, 4H ZII, EIO. 3, /)

FORMAT (86X, 8H RCOND I ,EIO. 3)

AY IS THE SUM CONCENTRATION LESS THE BULK CONCENTRATION

BY IS THE CHARGE DENSITY IN COULOMBS/CC

CY IS THE ELECTRIC FIELD IN VOLTS/CM

CP IS THE POSITIVE ION CONCENTRATION

CM IS THE NEGATIVE ION CONCENTRATION
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OD 888 K-I.RSTOP

YER(K) - XER(K) + 0.5*SIZE

CONTINUE

DO 999 KIRSTART,R

YER(K)I0.5*SIZE - XER(K)

CONTINUE

JR - RR — 2

DO II l-l.JR,3

AY - Y(l)*SM

BY - Y(l+l)*SM*ZP*ZM*2.0*96485.0

CY - -Y(I+2)*l.OE-07*A*SM/CON

CP-ZM*((Y(I+I)+(DF/SM)) - (Y(I)+(I.o)))*SM

CMIZP*((Y(I+I)+(DF/SM)) + (Y(I)+(I.O)))*SM

WRITE (6I.23) YER((I+2)/3).AY,BY,CP,CM,CY,PSI((I+2)/3)

FORMAT (7El2.5)

CONTINUE

IF (M .EQ. Q) GO TO 15

RETURN

MQ - I + Q/IJK

NRITE (6I.28)

NRITE (6I.27) (PDT(I),PD(I).I-I,MQ)

CPO - ZM*((Y(2)+(DF/SM)) - (Y(l)+(l.0)))*SM

CMO - ZP*((Y(2)+(DF/SM)) + (Y(l)+(l.0)))*SM

CPA - ZM*((Y(RR-l)+(DF/SM)) - (Y(RR-2)+(l.0)))*SM

CMA - ZP*((Y(RR-I)+(DF/SM)) + (Y(RR-2)+(l.0)))*SM

CPL - ZM*((DL+(DF/SM)) - (SL+(I.0)))*SM

CML - ZP*((DL+(DF/SM)) + (SL+(I.0)))*SM

CPR - ZM*((DR+(DF/SM)) - (SR+(I.0)))*SM

CMR - ZP*((DR+(DF/SM)) + (SR+(l.O)))*SM

ZIIL - (DI*ZP*96485.0/DELTA)*(CPL-CPO)

2I2L - (DZ*ZM*96485.0/DELTA)*(CML-CMO)

ZIIR - (DI*ZP*96485.0/DELTA)*(CPA-CPR)

ZIZR - (02*ZM*96485.0/DELTA)*(CMA-CMR)

NRITE (6I,789)ZIIL.2I2L,2IIR,2I2R

FORMAT (//,Ix,5HIIL -,EI2.5,3x,5HI2L I,EI2.5,3X,5HIIR -,E12.5,

+ 3x,5HI2R -,E12.5.//)

FORMAT (2X,2EI3.6)

FORMAT (//.IX.46H POTENTIAL DIFFERENCE CORRECTED FOR OHMIC DROP./)

RETURN

END

SUBROUTINE BCONDIT (II, ITOT, Doo, DA, SIZE)

REAL II, I2, ITOT

‘COMMON /ELEC/ EPS.ZI

COMMON/GREEK/CIZ4)

COMMON/UNITS/SM,DF,GOE,EPM,A,zP,2M,CON,TM,DIM,CREF,2REF

COMMON/THERM/QDELT,VI,V2

I2 - ITOT-II
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DETERMINATION OF STEADY STATE PARAMETERS

ZJS - -DIM*(I2-II)/(2.0*ZP*ZM*96485.0*SM)

ZJD - ~0|M*(l2+lI)/(2.0*ZP*ZM*96485.0*SM)

S - 0.0

D - O.O

TI - ZIJ(S,D)

zz - (ZSSIS.D)*ZDD(S.D)) - (ZSD(S.D)*ZDS(S.D))

BDO - ((ZSS(S.D)*ZDE(S.D)) - (ZSEIS.D)*ZDS(S.D)))/ZZ

BSD - ((ZDDIS.D)*ZSE(S.D)) - (ZSD(S.D)*ZDE(S.D)))/ZZ

..ADO - -((ZDS(S.D)*ZJS) - (ZSSIS.D)*ZJD))/ZZ

ASO - -((ZSD(S.D)*ZJD) - (ZDD(S.D)*ZJS))/ZZ

AA - (-BDO/(A*A*EPS))**0.5

CALCULATION OF FIRST ORDER TERMS.

BSD - ((ZDD(S.D)*ZSED(S.D)) - (ZSD(S.D)*ZDED(S.D)))/ZZ

BSS - ((ZDD(S.D)*ZSEP(S.D)) - (ZSD(S.D)*ZDEP(S.D)))/ZZ

BOD - ((ZSSIS.D)*ZDED(S.D)) - (ZDS(S.D)*ZSED(S.D)))/ZZ

BDS - ((ZSS(S.D)*ZDEP(S.D)) - (ZDSIS.D)*ZSEP(S.D)))/ZZ

ZZP - ZSS(S.D)*ZDDP(S.D) + ZSSP(S.D)*ZDD(S.D)

+ - ZSDIS.D)*ZDSP(S,D) - ZSDP(S,D)*ZDS(S,D) ,

zzn - ZS$(S.D)*ZDDD(S.D) + ZSSD(S.D)*ZDD(S.D)

+ - ZSDIS.D)*ZDSD(S.D) - ZSDD(S.D)*ZDS(S.D)

TI - -((ZDSP(S.D)*ZJS) - (ZSSPIS.D)*ZJD))

T2 - -((ZDS(S.D)*ZJS) - (ZSSIS.D)*ZJD)) '

ADOP - (ZZ*TI - ZZP*T2)/(ZZ**2.0)

TI - -((ZDSD(S.D)*ZJS) - (ZSSDIS.D)*ZJD))

ADOD - (22*Tl - ZZD*T2)/(ZZ**2.0)

TI - -((ZSDP(S.D)*ZJD) - (ZDDP(S,D)*ZJS))

T2 - -((ZSD(S.D)*ZJD) - (ZDD(S.D)*ZJS))

ASOP - (ZZ*TI - ZZP*T2)/(ZZ**2.0)

TI - -((ZSDD(S.D)*ZJD) - (ZDDD(S.D)*ZJS))

ASOD - (ZZ*Tl - zzo*T2)/(zz**2.o)

CALCULATION OF THE THERMAL TERMS.

Y-D+(DF/SM)-S-l.0

z- D + s + I.O + (OF/SM)

IF (Y.GE.O.O) Y--I.OE-IO

IF (z.LE.O.O) z-I.OE-IO

SUM-((ZM*ZM)*Y - (ZP*ZP)*Z)/(ZM-ZP)

ZPPIC(I)*(ZM*(Y)) + C(2)*(ZM*(Y))**I.5

Inn-C(3)*(ZP*(Z)) + C(h)*(ZP*(Z))**1-5

ZPM-C(5)*(SUM**I.5) + C(6)*(SUM**2.0)

TI - ZSSIS.D)*(ZP*ZPP+ZM*ZPM) + ZDS(S,D)*(ZP*ZPP-ZM*ZPM)

T2 - ZSS(S,D)*(ZP*ZP*ZPP + 2.0*ZP*ZM*ZPM + ZM*ZM*ZMM)

T3 - -ZDS(S.D)*(ZM*ZM*ZMM - ZP*ZP*ZPP)

T5 - QDELT/(SIZE*VI)

T4 - Tl*T5*CON*BDO*l.0E+07/(A*96485.0*4.184*SM*(T2+T3))

ADO - ADO + T4

THE FOLLONING ARE ELECTROLYTE CONCENTRATIONS AT THE NALLS,

AND NOT RESERVOIR CONCENTRATIONS.
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SAI - (((ASO*BDOI'(ADO*BSO))/BDOI*(SIZE/(2.0*A))

SA2-(BSO/BDo)*(DA-DOO)/2.O

THE ZEROTH ORDER SUM CONCENTRATION AT THE WALLS.

SRO - SAI + SA2

SLo--SRO

ALPHA - ((ASO*BDO) - (ADO*BSO))/BDO

GAMMA - SIZE/A

SAI - (ALPHA*(GAMMA**2.0)/12.0)*(-ADO/BDO)

SAI - SAI*(BSS-(BDS*BSO/BDO))

SA2 - ALPHA*GAMMA/2.0

SA2 - SA2*(BSS-(BDS*BSO/BDO)I*(DA/BDO)

SA3 - 2.0*((DA/2.0)**2.0)/BDO

SA3 - SA3*((BSD+(BSS*BSO/BDO)) - ((BSO/BDOI*(BDD+(BDS*BSO/BDO))))

THE FIRST ORDER CONTRIBUTION TO THE SUM CONCENTRATION AT

THE NALLS.

SRI - SAI + SA2 + SA3

SLI - SRI

SSR - SRO + SRI

SSL - SLO + SLI

COMPUTATION OF SECOND ORDER CONTRIBUTION TO THE POTENTIAL

DROP ACROSS THE ELECTROLYTE.

TI - (BDS*SIZE*ALPHA/(BDO*A))**2.0

T2 - -ADO*SIZE/(A*l2.0*BDO)

T3 - TI*T2

T4 - 3.0*ALPHA*BDS/2.0

T5 - -BDS*BSO*ADO/(3.0*BDO)

T6 - BDS*ALPHA*(DA-DOO)/(8.0*BDOI

T7 - (SIZE/(A*BDO))**2.0

T8 - T6*T7*(T4-T5)

T9 - T8 + T3

PHI2 - (l.0E-07)*A*A*SM*T9/CON

NRITE (6I,III)BDO,BSO,ADO,ASO

NRITE (6I.II2)BSD.BSS.BDD.BDS

NRITE (61,ll4)ADOP,ASOP,ADOD,ASOD

THE VALUE OF PHI REPRESENTS THE ZEROTH ORDER CONTRIBUTION

TO THE TOTAL POTENTIAL DIFFERENCE ACROSS THE CELL.

PHI - -(I.OE-07*A*A*SM/(CON*BDOI)*((DOO-DA) + ADO*SIZE/A)

NRITE (6I.II3)AA.PHI

NRITE(6I,67) II,I2

NRITE (6I.555)SLO.SRO.SLI.SRI.SSL,SSR

THE VALUE OF PHI2 REPRESENTS THE SECOND ORDER CONTRIBUTION TO

THE POTENTIAL DROP ACROSS THE ELECTROLYTE.

NRITE (6I,478)PHI2

FORMAT (2x,6HPHI2 I,ElO.3,//)

FORMAT (IHI.Ix.5HBOO -,EIO.3.2x.5HBso -.EIO.3.2x,5HADO -.EIO.3.

+ 2X,5HASO I,EIO.3,//)

FORMAT (2X,5HBSD I,EIO.3,2X,5HBSS I,EIO.3,2X,5HBDD I,EIO.3,

+ 2X,5HBDS I,EIO.3.//)

FORMAT (2X,6HADOP I,EIO.3,2X,6HASOP I,EIO.3,2X,6HADOD I.EIO.3,

+ 2x,6HASOD -.E10.3.//)

FORMAT (2X,4HAA I,EIO.3,3X,5HPHI I,EIO.3,5HVOLTS,//)

FORMAT (2X,I5HIONIC CURRENT I,EI2.5,3X.20HELECTRONIC CURRENT I

+.EIZ-5.//)



n
o
n
n
n
n
n
n

555

80

20

9O

70

I00

30

40

152

FORMAT (2X,5HSLO I.EIO.3,3X,5HSR0 I,EIO.3,3X,5HSLI I,EIO.3,

+ 3X,5HSRI I,EIO.3,3X,5HSSL I,EIO.3,3X,5HSSR I,EIO.3,//)

RETURN

END

SUBROUTINE GRIDPR (DEL.XER.SIZE.DEBL)

GRIDPR GENERATES A NONUNIFORM SPACE MESH WITH INCREASING

DISTANCE BETWEEN GRID POINTS AS X INCREASES. IT IS

DESIGNED FOR SIMULATIONS USING A POLARIZABLE ELECTRODE

AT XIO AND A REVERSIBLE ELECTRODE AT XII.

THE VALUE OF RANGE SHOULD BE SELECTED WITH CARE TO

AVOID UNDERFLOW AND OVERFLOW FROM THE EXPONENTIAL FUNCTION

DIMENSION DEL(Ioo).XER(IOO)

INTEGER R

DOUBLE DEL.XER.SIZE.DEBL.GAUGE

COMMON/UNITS/SM.DF.GDE.EPM.A.2P,2M.CON,TM,DIM.CREF.2REF

COMMON /PARAM/ KEY,R.Q,DT,F,TOL,RANGE.ISET

GAUGE - DEBL/5.O

DO I0 I - I,ISET

DEL(I) - GAUGE

CONTINUE

JSET - ISET + I

L-MOD(R.2)

IF (L.EQ.O)GO TO 70

JR-(R-l)/2

DO 20 JIJSET,JR

DEL(J)IGAUGE*EXP((J-ISET)*RANGE)

CONTINUE

KSET-JR+2-L

LSET-R-I

DO 90 J-KSET.LSET

DEL(J)IDEL(R-J)

CONTINUE

GO TO IOO

JR-(R/2)-I

DEL(R/ZIIGAUGE*EXP(((R/Z)-ISET)*RANGE)

GO TO 80

JR-R-l

SUM - 0.0

DO 30 M - I,JR

SUM - SUM + DEL(M)

CONTINUE

DO 40 L - I,JR

DEL(L) - DEL(L)*SIZE/(A*SUM)

CONTINUE

XER(I) - 0.0

no 50 M - 2,R
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XER(M) - XER(M-l) + DEL(M-I)

CONTINUE

DO 60 N-2,JR

XER(N) - A*XER(N)

CONTINUE

XER(R)-SIZE

RETURN

END

SUBROUTINE COEMAT (R.DEL.DT.Y.ABD.M.MMM)

SUBROUTINE COEMAT ASSEMBLES THE CORE MATRIX FOR USE IN THE

NEWTON-RAPHSON ITERATION PROCEDURE. THE MATRIX IS ASSEMBLED

DIRECTLY INTO BAND STORAGE FORM FOR USE IN THE LINPAC SUBROUTINE

SGBCO. R IS THE NUMBER OF SPACE GRID POINTS. RR IS THE TOTAL

NUMBER OF'DEPENDENT VARIABLES. DEL IS THE GRID SPACING VECTOR.

DT IS THE TIME STEP. ABD(LDA,RR) IS THE MATRIX IN BAND STORAGE

FORM. LDA=2*ML+MU+I ML-NUMBER OF DIAGONALS ABOVE THE MAIN.

MU-NUMBER OF DIAGONALS BELOW THE MAIN. Y IS THE SOLUTION VECTOR

FROM THE PREVIOUS TIME ROW OR PREVIOUS ITERATION. COEMAT CALLS

THE 2 COEFFICIENT FUNCTION SUBPROGRAMS.

FOR THIS ROUTINE. THE CONVERSION FROM BAND FORM TO BAND STORAGE

IS ABD(I-J+II.J)IA(I,J)

THE BAND STORAGE MATRIX IS PASSED TO THE MAIN PROGRAM THROUGH

THE COMMON BLOCK COE. THE RATE CONSTANTS ARE PASSED TO COEMAT

THROUGH THE COMMON BLOCK RCNSTS.

IF THERE WERE I5 SPACE GRID PTS. THE A AND ABD MATRICES WOULD LOOK

LIKE THE FOLLOWING BLOCKS.
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REAL KDL,KSL,KDO,KSO,KDA,KSA,KDR.KSR

DOUBLE DEL

DIMENSION DEL(IOO),Y(300),ABD(16,300)

COMMON/UNITS/SM,DF,GDE.EPM.A.ZP.ZM.CON.TM.DIM,CREF,ZREF

COMMON /ELEC/ EPS,ZI

COMMON/RATES/KSL,KDL,KSO,KDO,KSA,KDA,KSR.KDR

RR I 3*R

RSTOP I RR - 5

INITIALIZING THE ABD MATRIX TO ZERO

DO IOO I-I.I6

DO IOO J-I.RR

ABD(|.J) - O.O

CONTINUE

ASSEMBLING THE MATRIX ELEMENTS ARISING FROM THE BOUNDARY

CONDITIONS AT XIO

02 . DEL(I)/2.0

022 - DEL(I)*DEL(I)/2.0

s - Y(I)

D - Y(2)

SP - Y(4)

DP - Y(S)

SETTING THE COEFFICIENT ARGUMENTS FOR THE FUNCTION ROUTINES.

TI - ZIJ(S,D)

T2 - ZIJUP(SP,DP)

FI - I.O/OT

F2 - KSO/DZ

F3 - ZSS(S.D)/Dzz

TI - FI + F2 + F3

T2 - ZSSP(S.D)*Y(l)/DZZ

FI - ZSDP(S.D)/022

F2 - -ZSEP(S.D)/EPS

T3 - (FI + F2)*Y(2)

T4 - ZSEPIS.D)*Y(3)/(2.0*DZ)

T5 - 'ZSSPIS.D)*Y(4)/022

T6 - -ZSDP(S.D)*Y(5)/DZZ

ABD(II.I) I Tl + T2 + T3 + T4 + T5 + T6

FI - KOO/DZ

F2 - ZDS(S.D)/022

TI - FI + F2

T2 - ZDSP(S.D)*Y(I)/022

FI - ZDDP(s.D)/022

F2 - -ZDEP(S.D)/EPS

T3 - (FI + F2)*Y(2)

T4 ZDEP(S.D)*Y(3)/(2.0*02)

T5 - -ZDSP(S.D)*Y(4)/DZZ

T6 - -ZDDP(S,D)*Y(S)/022
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ABD(12,I) - TI + T2 + T3 + TA + T5 + T6

ABD(I3,I) I KDO/EPS

TI - KDO/DZ'

T2 - ZSD(S.D)/022

T3 - -ZSE(S.D)/EPS

T4 - ZSSD(S.D)*Y(I)/DZZ

T5 - ZSDDIS.D)*Y(2)/022

T6 - -ZSSD(S.D)*Y(4)/DZZ

T7 - -ZSDD(S,D)*Y(5)/DZZ

T8 - -ZSED(S.D)*Y(2)/EPS

T9 - ZSED(S,D)*Y(3)/(2.0*DZ) .

ABD(IO.2) - TI+T2+T3+T4+T5+T6+T7+T8+T9

TI - I.O/OT

T2 - KSO/DZ

T3 - ZDD(S.D)/022

T4 - -ZDE(S.D)/EPS

T5 - ZDSD(S.D)*Y(I)/022

T6 - ZDDDIS.D)*Y(2)/022

T7 - -ZDSD(S.D)*Y(4)/022

T8 - -ZDDD(S.D)*Y(5)/DZZ

T9 - -ZDED(S.D)*Y(2)/EPS

TIO - ZDED(S,D)*Y(3)/(2.0*DZ)

ABD(II.2) - Tl+T2+T3+T4+T5+T6+T7+T8+T9+TIO

ABD(Iz.2) - KSO/EPS

TI - ZSEIS.D)/(2.0*02)

T2 - ZSEUP(SP,DP)/(2.0*DZ)

ABD(9.3) - TI + T2

TI - ZDE(S.D)/(2.0*DZ)

T2 - ZDEUP(SP,DP)/(2.0*DZ)

ABD(IO,3) - TI + T2

ABD(II.3) - I.O/OT

ABD(8,4) - -ZSS(S,D)/022 + (0.5*ZSEPUP(SP.DP)/DZ)*Y(3)

ABD(9,4) - -ZDS(S,D)/022 + (0.5*ZDEPUP(SP,DP)/DZ)*Y(3)

ABD(I0,4) - o.o

ABD(7.5) - -ZSD(S,D)/022 + (0.5*ZSEDUP(SP,DP)/DZ)*Y(3)

ABO(8,5) - -2DD(s,D)/Dzz + (0.5*ZDEDUP(SP,DP)/DZ)*Y(3)

ABD(9.5) - 0.0

ABD(6.6) - O.O

ABD(7.6) - 0.0

ABD(8.6) - O.O

ASSEMBLING THE INTERIOR MATRIX ELEMENTS

IT IS CONVENIENT TO LOOP IN MULTIPLES OF 3 BECAUSE THERE ARE 3

EQUATIONS AT EVERY GRID POINT

DO IOI K-4,RSTOP,3

KM - (K-I)/3

KK - (K+2)/3

SF - (Y(K-3) + Y(K))/2.0

SMM - Y(K-3)

SPP - Y(K+3)

S - Y(K)

SP - (Y(K+3) + Y(K))/2.0



n

156

on - (Y(K-z) + Y(K+I))/2.0

DMM - Y(K—z)

D - Y(K+I)

DP - (Y(K+A) + Y(K+l))/2.0

OPP - Y(K+4)

AD - DEL(KM) + DEL(KK)

OENM - DEL(KM)*AD/2.0

DENK - DEL(KK)*AD/2.0

RAT - DEL(KK)/DEL(KM)

. AMUL I DEL(KK)*DEL(KM)

SUB - DEL(KK) - DEL(KM)

SETTING THE COEFFICIENT ARGUMENTS FOR THE FUNCTION RDUTINES.

TI I ZIJ(S.D)

T2 I ZIJUPISP,DP)

T3 - ZIJDN(SF,DM)

TA - PPZIJ(SPP,DPP)

T5 - DDZIJ(SMM,DMM)

TI - —ZSSDN(SF.DM)/DENM

T2 - -ZSSPDN(SF.DM)*Y(K-3)/DENM

T3 - -ZSDPDN(SF,DM)*Y(K-2)/DENM

TA . ZSSPDN(SF,DM)*Y(K)/DENM

T5 - ZSDPDN(SF.DM)*Y(K+I)/DENM

T6 - -DDZSEP(SMM,DMM)*RAT*Y(K+2)/AD

ABD(IA,K-3) a TI + T2 + T3 + TA + T5 + T6

TI - —ZDSDN(SF,DM)/DENM

T2 - -ZDSPDN(SF.DM)*Y(K'3)/DENM

T3 - -ZDDPDN(SF.DM)*Y(K-2)/DENM

TA - ZDSPDN(SF.DM)*Y(K)/DENM

T5 - ZDDPDN(SF,DM)*Y(K+l)/DENM

T6 - -DDZDEP(SMM,DMM)*RAT*Y(K+2)/AD

ABD(15,K-3) - TI + T2 + T3 + TA + T5 + T6

ABD(I6,K-3) - -ZDS(S.D)*RAT/(EPS*AD)

TI - -ZSDDN(SF.DM)/DENM

T2 - -ZSSDDN(SF.DM)*Y(K-3)/DENM

T3 - -ZSDDDN(SF,DM)*Y(K-2)/DENM

TA - ZSSDDN(SF,DM)*Y(K)/DENM

T5 - ZSDDDN(SF,DM)*Y(K+l)/DENM

T6 - -DDZSED(SMM.DMM)*RAT*Y(K+2)/AD

ABD(I3.K-2) - TI + T2 + T3 + T4 + T5 + T6

TI - -2DDON(SF.DM)/DENM

T2 - -ZDSDDN(SF.DM)*Y(K-3)/DENM

T3 - -ZDDDDN(SF.DM)*Y(K-ZI/DENM

TA - ZDSDDN(SF,DM)*Y(K)/DENM

T5 . ZDDDDN(SF,DM)*Y(K+l)/DENM

T6 - -DDZDEDISMM.DMM)*Y(K+2)*RAT/AD

ABD(IA.K-2) TI + T2 + T3 + TA + T5 + T6

ABD(I5,K-2) -ZDD(S,D)*RAT/(EPS*AD)

ABD(I2.K-I) . 0.0

ABD(I3,K-l) - 0.0

ABD(Ith'I) . 0.0
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TI - -ZSSUPISP.DP)/DENK

T2 - ZSSPUP(SP,DP)*Y(K)/DENK

T3 - ZSDPUP(SP,DP)*Y(K+l)/DENK

TA - -ZSSPUP(SP,DP)*Y(K+3)/DENK

T5 - -ZSDPUP(SP,DP)*Y(K+4)/DENK

T6 - PPZSEP(SPP,DPP)*Y(K+2)/(AD*RAT)

ABD(8,K+3) - TI + T2 + T3 + TA + T5 + T6

TI - -ZDSUP(SP.DP)/DENK

T2 - ZDSPUP(SP,DP)*Y(K)/DENK

T3 - ZDDPUP(SP.DP)*Y(K+l)/DENK

TA - -ZDSPUP(SP,DP)*Y(K+3)/DENK

T5 - -ZDDPUP(SP,DP)*Y(K+4)/DENK

T6 - PPZOEP(SPP,DPP)*Y(K+2)/(AD*RAT)

ABD(9,K+3) - TI + T2 + T3 + TA + T5 + T6

ABD(IO,K+3) - ZDs(s.D)/(EPSARAT*AD)

TI - -ZSDUP(SP.DP)/DENK

T2 - ZSSDUP(SP,DP)*Y(K)/DENK

T3 - ZSDDUP(SP,DP)*Y(K+l)/DENK

TA - -ZSSDUP(SP,DP)*Y(K+3)/DENK

T5 - -ZSDDUP(SP,DP)*Y(K+4)/DENK

T6 I PPZSED(SPP,DPP)*Y(K+2)/(AD*RAT)

ABD(7,K+4) I TI + T2 + T3 + T4 + T5 + T6

TI I -ZDDUP(SP,DP)/DENK

T2 I ZDSDUP(SP,DP)*Y(K)/DENK

T3 - ZDDDUPISP.DP)*Y(K+l)/DENK

TA - -ZDSDUP(SP,DP)*Y(K+3)/DENK

T5 . -ZDDDUP(SP,DP)*Y(K+4)/DENK

T6 - PPZDED(SPP,DPP)*Y(K+2)/(AD*RAT)

ABD(8.K+A) - TI + T2 + T3 + TA + T5 + T6

ABD(9,K+A) ZDD(S.D)/(EPS*RAT*AD)

ABD(7,K+5) - 0.0

ABO(8,K+5) I 0.0

CONTINUE

ASSEMBLING THE MATRIX ELEMENTS ARISING FROM THE BOUNDARY

CONDITIONS AT XIA

Dz - DEL(R-I)/2.O

022 - DEL(R-l)*DEL(R-l)/2.o

S - Y(RR-z)

SF - Y(RR-S)

D - Y(RR-I)

DM - Y(RR-4)

SETTING THE COEFFICIENT ARGUMENTS FOR THE FUNCTION RDUTINES.

TI - ZIJ(S.D)

T2 - ZIJDN(SF.DM)

ABD(I4,RR-5) I -ZSS(S,D)/022 - (0.5*ZSEPDN(SF.DM)/DZ)*Y(RR)

ABD(I5,RR-5) I -ZDS(S,D)/022 - (O.5*ZDEPDN(SF.DM)/DZ)*YIRR)

ABD(I6,RR-5) I 0.0



ABD(I3.RR-A)

ABO(IA.RR-A)

ABD(I5,RR-A)

ABD(12.RR-3)

ABD(I3.RR-3)

ABD(IA,RR-3)

FI -

F2 -

F3

TI

T2

T3

TA

FI

F2

T5

T6
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0.0

G
O
O

G
O
O

I.O/OT

KSA/DZ

zss(s.D)/Dzz

FI + F2 + F3

-ZSSP(S,D)*Y(RR-5)/022

-ZSDP(S,D)*Y(RR-4)/022

ZSSPIS.D)*Y(RR-2)/022

ZSDP(S.D)/Dzz

-ZSEP(S,D)/EPS

(FI + F2)*Y(RR-I)

-ZSEP(S.D)*Y(RR)/(2.0*DZ)

ABD(II,RR-2) I T) + T2 + T3 + TA + T5 + T6

FI I

F2 I

TI I

T2

T3

T4

FI

F2

T5

T6I

KDA/02

ZDS(S.D)/022

FI + F2

-ZDEP(S,D)*Y(RRI/(2.0*02)

-ZDDP(S,D)*Y(RR-4)/022

ZDSP(S.D)*Y(RR-2)/DZZ

ZDDP(S,D)/022

-ZDEP(S.D)/EPS

(FI + F2)*Y(RR- I)

-ZDSP(S, D)*Y(RR-5)/022

ABD(IZ. RR- 2) I T) + T2 + T3 + TA + T5 + T6

ABD(IL RR- 2) I -KDA/EPS

TI

T2

T3

TA

T5

T6

T7

T8

T9-

IKDA/DZ

ZSD(S, D)/Dzz

-ZSE(S.D)/EPS

-ZSSD(S,D)*Y(RR-5)/022

-ZSDD(S,D)*Y(RR-4)/022

ZSSD(S.D)*Y(RR-2)/022

ZSDD(S.D)*Y(RR-l)/022

-ZSED(S. D)*Y(RR- I)/EPS

-ZSED(S, D)*Y(RR)/(2. 0*02)

ABD(IO. RR- 1) I TI+T2+T3+TA+T5+T6+T7+T8+T9

TI -

T2 -

T3

TA

T5

T6

T7 -

T8 -

T9 -

I. O/DT

KSA/DZ

ZDD(S.D)/Dzz

-zoE(S.O)/EPS

-ZDSD(S.D)*Y(RR-5)/022

-ZDDD(S.D)*Y(RR-4)/022

ZDSD(S.D)*Y(RR-2)/022

ZDDD(S,D)*Y(RR-l)/022

-ZDED(S.D)*Y(RR-I)/EPS

TIO I -ZDED(S.D)*Y(RR)/(2.0*DZ)

ABD(II.RR-I) . TI+T2+T3+TA+T5+T6+T7+T8+T9+TIo

ABD(12,RR-I) I -KSA/EPS

ABD(9.RR) - -ZSE(S,D)/(2.0*02) - ZSEDN(SF.DM)/(2.0*DZ)

-ZSD(S,D)/DZZ - (O.5*ZSEDDN(SF,DM)/DZ)*Y(RR)

-ZDD(S,D)/DZZ - (0.5*ZDEDDN(SF,DM)/DZ)*Y(RR)
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ABD(IO.RR) - -ZDE(S.D)/(2.0*DZ) - ZDEDN(SF.DM)/(2.0*DZ)

ABD(II,RR) - I.O/0T

IF (M .NE. MMM) GO TO IO3

00 I02 IM - I.I6

00 l02 JM - I.RR

NRITE (6I.I) ABD(IM,JM)

FORMAT (2x.EIA.7)

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE RHSVN (R,DEL,DT,Y,B)

WHEN IFLAGIO (THE FIRST TIME RHSV IS CALLED AT A GIVEN TIME ROW)

SUBROUTINE RHSV COMPUTES THE RHS VECTOR FOR THE MATRIX EQUATION AT

THE N+I TH TIME ROW FROM THE SOLUTION TO THE MATRIX EQUATION AT

THE N TH TIME ROW. WHEN IFLAGII. RHSV COMPUTES THE CURRENT

VALUE OF THE AUXILLARY VECTOR. IN THE MAIN PROGRAM THIS VECTOR

WILL BE ADDED TO THE RHS VECTOR TO FORM THE CURRENT RHS VECTOR

FOR A GIVEN ITERATION. R IS THE NUMBER OF SPACE PTS. RR IS THE

TOTAL NUMBER OF DEPENDENT VARIABLES. DT IS THE TIME STEP SIZE.

DEL IS THE NON-UNIFORM GRID SPACING VECTOR. Y(RR) IS THE SOLUTION

VECTOR FROM THE N TH TIME ROW IF IFLAGIO AND THE SOLUTION TO THE

PREVIOUS ITERATION STEP IF IFLAGII. BIRR) IS THE RIGHT HAND SIDE

VECTOR IF IFLAGIO AND THE AUXILLARY VECTOR IF IFLAGII.

THE ONLY DIFFERENCES BETWEEN THE RHS VECTOR AND THE AUX VECTOR

ARE IN THE TERMS INVOLVING DT AND IN THE BOUNDARY TERMS.

INTEGER R.RR.RSTOP

REAL KDL,KSL,KDO,KSO,KDA,KSA,KDR,KSR

DOUBLE DEL

DIMENSION DEL(IOO),Y(300),B(300)

COMMON/UNITS/SM,DF,GDE.EPM,A,ZP,ZM,CON,TM,DIM,CREF,ZREF

COMMON /ELEC/ EPS.ZI

COMMON/RATES/KSL.KDL,KSO,KDO,KSA,KDA,KSR,KDR

RR I 3*R

RSTOP I RR - 5

VECTOR ELEMENTS ARISING FROM THE BOUNDARY CONDITIONS AT XIO

02 - DEL(I)/2.0

022 - DEL(I)*DEL(l)/2.o

s - Y(I)

SP - Y(A)

D - Y(2)

DP - Y(5)

SETTING THE COEFFICIENT ARGUMENTS FOR THE FUNCTION RDUTINES.
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TI I ZIJ(S,D)

T2 . ZIJUP(SP.DP)

FI -I.O/0T

F3 -KSO/DZ

TI (FI + F2 + F3)*Y(l)

T2 (-ZSD(S.D)/022 + ZSE(S.D)/EPS - KDO/DZ)*Y(2)

T3 -(ZSE(S.D)/(2.0*DZ) + ZSEUP(SP.DP)/(2.0*DZ))*Y(3)

TA (ZSS(S.D)/022)*Y(4)

T5 (ZSD(S.D)/022)*Y(S)

B(I - TI + T2 + T3 + TA + T5

I
I
I
I
I
N
I
I
V
I
I
I
I
I
I
I
I

TI (-KOO/02 - ZDS(S.D)/DZZ)*Y(II

FI -I.0/0T

F2 -ZOD(S.0)/022

F3 ZDE(S.D)/EPS

FA -KSO/DZ

T2 (FI + F2 + F3 + F4)*Y(2)

T3 ~(ZDEIS.D)/(2.0*02) + ZDEUP(SP.DP)/(2.0*DZ))*Y(3)

TA (ZDSIS.D)/022)*Y(4)

T5 I (ZDD(S,D)/022)*Y(5)

8(2) I TI + T2 + T3 + TA + T5

TI I (-I.0/DT)*Y(3)

T2 - -KSO*Y(2)/EPS

T3 I -KDO*Y(l)/EPS

8(3) I TI + T2 + T3

VECTOR ELEMENTS FROM THE INTERIOR SPACE POINTS

THE DO-LOOP IS IN MULTIPLES OF 3 SINCE THERE

ARE 3 EQUATIONS AT EACH SPACE POINT

00 IOI KI4,RSTOP.3

KM I (K-II/3

KK I (K+2)/3

SF . (Y(K-3) + Y(K))/2.O

SMM - Y(K-3)

SPP I Y(K+3)

S - Y(K)

SP I (Y(K+3) + Y(K))/2.0

0M . (Y(K-2) + Y(K+I))/2.0

DMM - Y(K-z)

D I Y(K+I)

DP.I (Y(K+A) + Y(K+l))/2.0

OPP - Y(K+4)

A0 - DEL(KM) + DEL(KK)

DENM - DEL(KM)*AD/2.0

DENK - DEL(KK)*AD/2.0

RAT - 0EL(KK)/0EL(KM)

AMUL - DEL(KK)*DEL(KM)

SUB - DEL(KK) - DEL(KM)

SETTING THE COEFFICIENT ARGUMENTS FOR THE FUNCTION RDUTINES.
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TI . ZIJ(S,D)

T2 - ZIJUP(SP,DP)

T3 - 2IJ0N(SF,DM)

TA - PPZIJ(SPP,DPP)

T5 - ODZ|J(SMM,DMM)

TI - ZSSDN(SF,DM)*Y(K-3)/DENM

T2 . ZSDDNISF.DM)*Y(K-2)/DENM

FI - -DDZSE(SMM.DMM)*RAT/AD

F2 - PPZSE(SPP,DPP)/(RAT*AD)

F3 - ZSE(S.D)*SUB/AMUL

T3 - -(FI + F2 + F3)*Y(K+2)

FI - -I.0/0T

F2 . -ZSSUP(SP,OP)/DENK

F3 . -ZSSDN(SF,DM)/OENM

TA - (FI + F2 + F3)*Y(K)

FI - -ZSOUP(SP.DP)/DENK

F2 - -ZSDDN(SF.DM)/0ENM

F3 - ZSE(S.0)/EPS

T5 I (FI + F2 + F3)*Y(K+I)

T6 - ZSSUP(SP,DP)*Y(K+3)/DENK

T7 - ZSDUP(SP,DP)*Y(K+A)/DENK

VECTOR ELEMENTS FROM S EQUATION

B(K) I TI + T2 + T3 + TA + T5 + T6 + T7

TI - ZDSDN(SF,DM)*Y(K-3)/DENM

T2 . -ZDSDN(SF.DM)*Y(K)/DENM

T3 . ZDDDN(SF,DM)*Y(K-2)/DENM

TA . -ZDDON(SF.DM)*Y(K+l)/DENM

T5 - ZDOUP(SP,DP)*Y(K+4)/DENK

T6 . -ZDDUP(SP,DP)*Y(K+l)/DENK

FI - -I.O/0T

F2 I ZDE(S.D)/EPS

T7 I (F) + F2)*Y(K+I)

T8 I ZOSUP(SP,DP)*Y(K+3)/DENK

T9 . -ZDSUP(SP.DP)*Y(K)/DENK

FI . -DDZDE(SMM.DMM)*RAT/AD

F2 - PPZDEISPP,DPP)/(RAT*AO)

F3 I ZDE(S,D)*SUB/AMUL

TIO I -(FI + F2 + F3)*Y(K+2)

VECTOR ELEMENTS FROM D EQUATION

B(K+I) I TI + T2 + T3 + TA + T5 + T6 + T7 + T8 + T9 + TIo

TI - 205(5, D)*Y(K-3)*RAT/(EPS*AO)

T2 - 200(5. D)*Y(K-2)*RAT/(EPS*AD)

T3 - -ZDS(S.D)*Y(K)*SUB/(EPS*AMUL)

TA - -ZDO(5.0)*Y(K+l)*SUB/(EPS*AMUL)

T5 - (-I.O/0T + ZDE(S,D)/EPS)*Y(K+2)

T6 I 'ZDSIS.D)*YIK+3)/(EPS*RAT*AD)

T7 -ZDD(S.D)*Y(K+4)/(EPS*RAT*AD)



n

o
n

n
o

IOI

163

VECTOR ELEMENTS FROM E EQUATION

B(K+2) - TI + T2 + T3 + TA + T5 + T6 + T7

CONTINUE ~

VECTOR ELEMENTS ARISING FROM THE BOUNDARY CONDITIONS AT XIA

02 . 0EL(R-I)/2.0

022 I DEL(R-I)*DEL(R-I)/2.0

s . Y(RR-z)

SF - Y(RR-5)

D - Y(RR-I)

0M - Y(RR-A)

SETTING THE COEFFICIENT ARGUMENTS FOR THE FUNCTION RDUTINES.

TI I ZIJ(S,D)

T2 I ZIJDN(SF.DM)

TI - ZSS(S.D)*Y(RR-5)/DZZ

T2 - ZSD(S.D)*Y(RR-4)/022

Fl - -I.O/0T

F2 - -KSA/DZ

F3 - -zss(s.0)/022

T3 - (FI + F2 + F3)*Y(RR-2)

FI - -KDA/D2

F2 - -ZSD(S.D)/022

F3 - ZSE(S.D)/EPS

TA - (FI + F2 + F3)*Y(RR-I)

T5 - (ZSE(S,D)/(2.0*02) + ZSEDN(SF,DM)/(2.0*DZ))*Y(RR)

B(RR—z) - TI + T2 + T3 + TA + T5

TI - ZDS(S.D)*Y(RR-5)/DZZ

T2 - ZDD(S,D)*Y(RR-4)/DZZ

T3 I (-KDA/D2 -ZDS(S,D)/DZZ)*Y(RR-2)

FI I -I.O/DT

F2 I -KSA/DZ

FA - 20E(S.0)/EPS

T4 I (FI + F2 + F3 + F4)*Y(RR-I)

T5 I (ZDE(S.D)/(2.0*DZ) + ZDEDN(SF,DM)/(2.0*DZ))*Y(RR)

B(RR-l) I TI + T2 + T3 + TA + T5

TI I (-I.O/0T)*Y(RR)

T2 I KSA*Y(RR-I)/EPS

T3 I KDA*Y(RR-2)/EPS

B(RR) I TI + T2 + T3

RETURN

END
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SUBROUTINE RHSVO (R.DEL.DT.Y.B.M.MMM)

SUBROUTINE RHSVO GENERATES THE PORTION OF THE B VECTOR THAT DOES

NOT CHANGE WITH EACH ITERATION.

INTEGER R,RR,RSTOP

REAL KDL,KSL,KDO,KSO,KDA,KSA,KDR,KSR

REAL II,I2 .

DOUBLE DEL

DIMENSION DEL(IOO).Y(300),B(300)

COMMON /ELEC/ EPS.ZI

COMMON/UNITS/SM,DF,GDE.EPM.A,ZP,ZM,CON,TM,DIM,CREF,ZREF

COMMON/RATES/KSL,KDL,KSO,KDO.KSA.KDA,KSR,KDR

COMMON/CURRENT/II,I2

COMMON/BNDRY/SL.SR.DL.DR

. RR I 3*R

RSTOP-RR-3

ZJD - -DlM*(Il+I2)/(2.0*ZP*ZM*96485.0*SM)

TlIY(I)/DT

T2 . 2.0*(KSL*(SL+I.O) + KDL*(DL+(DF/SM)))/DEL(I)

T3 - -2.0*(KSO + KDO*(DF/SM))/DEL(I)

B(I)ITI+T2+T3

TI-Y(2)/0T

T2 . 2.0*(KSL*(DL+(DF/SM)) + KDL*(SL+I.O))/DEL(I)

T3 - -2.0*(KSO*(DF/SM) + K00)/0EL(I)

B(2)-TI+T2+T3

TI-Y(3)/DT + ZI/EPS

T2 - ZJD/EPS

T3 . (KSL*(DL+(DF/SM)) + KDL*(SL+I.0))/EPS

TA . -(KSO*(DF/SM))/EPS - (KOO/EPs)

8(3)-TI+T2+T3+TA

00 I00 II4,RSTOP

B(I) . Y(I)/0T

LIMOD(I,3)

IF (L .EQ. 0) B(I)IB(I)+Zl/EPS + ZJD/EPS

CONTINUE

TI-Y(RR-2)/0T

T2 - 2.0*(KSR*(SR+I.O) + KDR*(DR+(DF/SM)))/DEL(R-l)

T3 - -2.0*(KSA + KDA*(DF/SM))/DEL(R-l)

B(RR-2)-TI+T2+T3

TI-Y(RR-I)/0T

T2 - 2.0*(KSR*(DR+(DF/SM)) + KDR*(SR+I.0))/DEL(R-l)

T3 - -2.0*(KSA*(DF/SM) + KDA)/DEL(R-I)

B(RR-I)-TI+T2+T3

TI-Y(RR)/0T + 2I/EPS

T2 - ZJD/EPS

T3 - -(KSR*(DR+(DF/SM)) + KDR*(SR+I.0))/EPS

TA - (KSA*(DF/SM) + KDAI/EPS

B(RR)ITI+T2+T3+TA

IF (M .NE. MMM)GO TO IIO

00 I09 IIl,RR

NRITE (6I.I) B(I).I

CONTINUE
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CONTINUE

FORMAT (2X,EI4.6,I5)

RETURN

END

SUBROUTINE CMPR (Y.YY,TOL,R,KFLAG)

SUBROUTINE CMPR COMPARES THE CURRENT ITERATION VECTOR, Y, TO THE

CURRENT SOLUTION VECTOR, YY+Y. (YY+Y IS RENAMED YY DESTROYING THE

OLD SOLUTION VECTOR) THE CURRENT ITERATION VECTOR IS TESTED TO

DETERMINE IF IT IS SMALL ENOUGH FOR THE PROGRAM TO PROCEED TO THE

NEXT TIME STEP. SINCE SOME OF THE SOLUTION VECTOR COMPONENTS ARE

MUCH SMALLER AND HENCE LESS ACCURATE THEN OTHERS, THEY ARE NOT

INCLUDED IN THE TESTING. EACH OF THE 3 COMPONENTS MAKING UP THE

SOLUTION VECTOR, S,D, AND E ARE CHECKED SEPARATELY. KFLAG-0 MEANS

THE PRESENT ITERATION VECTOR IS SMALL ENOUGH FOR THE PROGRAM TO

PROCEED TO THE NEXT TIME STEP. KFLAGII MEANS THE PROGRAM WILL

ITERATE AGAIN WITH THE DERIVATIVES EVALUATED AT YY+Y. TOL IS THE

RELATIVE CHANGE TOLERANCE ALLOWED.

DIMENSION Y(300),YY(300)

INTEGER R.RR

KFLAGIO

RRI3*R

‘FORMING THE NEN SOLUTION VECTOR

00 I00 III,RR

YY(I)IYY(I)+Y(I)

CONTINUE

M-I STRIPS OUT THE s COMPONENTS, M=2 THE 0 COMPONENTS. M=3 THE E

COMPONENTS.

00 I03 MIl,3

YMAx-ABS(YY(M))

FINDING THE MAXIMUM VALUE OF 5 (IF MIl),D (IF M-2). 0R E (IF M-3)

00 IOI I-M,RR.3

YMAXIAMAXI(ABS(YY(I)),YMAX)

CONTINUE

FINDING THE MINIMUM VALUE THAT NILL BE CHECKED

YMIN I YMAX/I.0E+09

D0 I02 JIM.RR.3

TESTING TO DETERMINE IF A VALUE SHOULD BE CHECKED
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IB-MAX0(2,IB)

IB-MINO(IB,N-I)

DO 2 III,N

IF (XUP .GE. X(J)) GO TO 8

JIJ-l

JIMINOIJ.N-I)

JIMAX0(IB,J-l)

00 3 JMIIB,J

XIIX(JM-I)

szX(JM)

X3 - X(JM+I)

TERMIIY(JM-l)/((XI-X2)*(XI-x3))

TERMz-Y(JM)/((x2-XI)*(x2-X3))

TERM3-Y(JM+I)/((x3-XI)*(x3-X2))

A-TERMI+TERM2+TERM3

BI-(X2+X3)*TERMI-(XI+X3)*TERM2-(XI+X2)*TERM3

CIX2*X3*TERMI+XI*X3*TERM2+XI*X2*TERM3

IF (JM .GT. IB)G0 TO IA

CA-A

CB-B

cc-C

GO TO I5

CAIO.S*(A+CA)

CBI0.5*(B+CB)

CCI0.5*(C+CC)

DIFF - x2-SYL .

SUM - SUM + CA*((SYL**2.0)*DIFF + SYL*(DIFF**2.0)

+ + (DIFF**3.0)/3.0)

+ + CB*(SYL*DIFF + (DIFF**2.0)/2.0) + CC*DIFF

CA-A

CB-B

cc-C

SYL-Xz

DIFF - XUP-SYL

AVINT - SUM + CA*((SYL**2.0)*DIFF + SYL*(DIFF**2.0)

+ + (DIFF**3.0)/3.0)

+ + CB*(SYL*DIFF + (DIFF**2.0)/2.0) + CC*DIFF

AVINT-AVINT

IF (IND .EQ. I) RETURN

IND-I

SYLIXUP

XUP-XLO

XLOISYL

AVINT--AVINT

RETURN

END

SUBROUTINE IC (KEY,Y,R)
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DIMENSION Y(300)

INTEGER R.RR.RRR.RSTOP.RSTART

COMMON/ICOND/SO.DO,E0

L - MOD(R.2)

RRI3*R

RSTOP I (RR/2)-2

RSTART I RSTOP + 3

IF (L .NE. O)RSTART I RSTOP + 2

RRRIRR-Z

DO I60 lIl.RSTOP,3

Y(I)-SO

Y(I+I)-Do

Y(I+2)IE0

CONTINUE

DO I70 IIRSTART,RRR,3

Y(I)-~50

Y(I+I)-DO

Y(I+2)IEO

CONTINUE

IF (L .EQ. O)RETURN

M.I (RR+I)/2

Y(M-I) I 0.0

Y(M) I 0.0

Y(M+l) I 0.0

RETURN

END

FUNCTION ZIJ(S,D)

COMMON/UNITS/SM,DF,GDE.EPM.A,ZP,ZM,CON,TM,DIM,CREF,ZREF

COMMON/GREEK/c(2A)

REAL IC.M,ICP.MP.ICD.M0

ICI(ZP*ZM/2.O)*(((ZP+ZM)*(D+(DF/SM))) + (ZM-ZP)*(S+I.O)

+ + ((ZREF*ZREF*CREF)/(ZP*ZM*SM)))

IF (IC.LE.0.0) ICII.OE-IO

Y-0+(0F/SM)-S-I.0

z- D + s + I.O + (DF/SM)

IF (Y.GE.0.0) YI-l.OE-IO

IF (z.LE.0.O) z-I.OE-I0

SUM-((ZM*ZM)*Y - (ZP*ZP)*Z)/(ZM-ZP)

ZPPIC(I)*(ZM*(Y)) + C(2)*(ZM*(Y))**I.5

ZMMIC(3)*(ZP*(Z)) + C(4)*(ZP*(Z))**I.5

ZPMIC(5)*(SUM**I.5) + C(6)*(SUM**2.0)

HIC(7) - C(8)/((IC)**0.5)

BIC(9) + C(IO)*IC

CAI((ZP*ZPP) - (2M*2PM))/(Y)

CBI((ZP*ZPM) - (ZM*ZMM))/(Z)

CE-I.0 - ((0.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(M+B))

CG-I.0 - ((0.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(Z)*(M-B))

CF-I.0 - ((0.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(M+B))
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CH-I.0 + ((0.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(Z)*(M-B))

CCI((ZP*ZPP) + (ZM*ZPM))/(Y)

CDI((ZP*ZPM) + (ZM*ZMM))/(Z)

SUMPI(ZP-2M)/2. O

ICPIZP*ZM*(ZM-2P)/2. O

ZPPPI-(C(I)*ZM) - (I. 5*ZM*C(2)*(ZM*(Y))**O. 5)

ZMMPI+(C(3)*ZP) + (I. 5*ZP*C(4)*(ZP*(Z))**O. 5)

ZPMPII.5*C(5)*(SUM**O.5)*SUMP + 2.0*C(6)*(SUM)*SUMP

MPI(C(8)/(IC**I.5))*ICP

BP'CIIO)*ICP

CCPI((ZP*ZPPP) + (ZM*ZPMP))/(Y)

+ +((ZP*ZPP) + (ZM*ZPM))/((Y)**2.0)

CDPI((ZP*ZPMP) + (ZM*ZMMP))/(Z)

+ -((ZP*ZPM) + (ZM*ZMM))/((Z)**2.0)

CFPI-((O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(MP+BP))

+ + ( (o . 25) * (ZP/ZM) * ( (ZPAZP) - (ZM*ZM) ) *ZM* (PH-8))

CHPI+((0.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(Z)*(MP-BP))

+ +((0.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(M-B))

CAPI((ZP*ZPPP) - (ZM*ZPMP))/(Y)

+ +((ZP*ZPP) - (ZM*ZPM))/((Y)**2.0)

CBPI((ZP*ZPMP) - (ZM*ZMMP))/(Z)

+ -((ZP*2PM) - (ZM*ZMM))/((Z)**2.0)

CEPI-((0.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(MP+BP))

+ +((O.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(M+B))

CGP--((0.25)#(ZM/2P)*((ZP-ZM)**2.0)*ZP*(Z)*(MP-BP))

+ -((0.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(M-B))

DCLI((ZP*ZP*ZPP) + (2.0*ZM*ZP*ZPM) + (ZM*ZM*ZMM))

SCLI((ZP*ZP*ZPP) - (ZM*ZM*ZMM))

SCLPI(ZP*ZP*ZPPP) - (ZM*ZM*ZMMP)

DCLPI((ZP*ZP*ZPPP) + (2.0*ZP*ZM*ZPMP) + (ZM*ZM*ZMMP))

SUMDI-(ZP+ZM)*0.5

lCDIZP*ZM*(ZP+ZM)/2.O

ZPPDI(C(I)*ZM) + (I.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMDI(C(3)*ZP) + (I. 5*ZP*C(A)*(ZP*(Z))**O. 5)

ZPMDII .5*C(5)*(SUM**0. 5)*SUMD + 2. O*C(.6)*(SUM)*SUMD

M0-(0. 5*C(8)/(IC**I. 5))*|CD

BDIC(IO)*ICD

CADI((ZP*ZPPD)/(Y)) - ((ZM*ZPMD)/(Y))

+ '(((ZP*ZPP) - (ZM*ZPM))/((Y)**2.0))

CBDI((ZP*ZPMD)/(Z)) - ((ZM*ZMMD)/(Z))

+ -((IZP*ZPM) - (ZM*ZMM))/((Z)**2.0))

CEDI-(0.25)*(ZP/ZM)*((ZP-ZM)**2.O)*ZM*(M+B)

+ - ((0.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(MD+BD))

CGDI-(0.25)*(ZM/ZP)*((ZP-ZM)**2.O)*ZP*(M-B)

+ - ((O.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(Z)*(MD-BD))

CCDI((ZP*ZPPD)/(Y)) + ((ZM*ZPMD)/(Y))

+ -(((ZP*2PP) + (ZMIZPM))/((Y)**2.O))

CDDI((ZP*ZPMD)/(Z)) + ((ZM*ZMMD)/(Z))

+ -(((ZP*ZPM) + (ZM*ZMM))/((Z)**2.0))

CFDI-(O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(M+B)

+ - ((O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(MD+BD))

CHDI-(O.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(M-B)

+ + ((0.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(Z)*(MD-BD))
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SCLDI(ZP*ZP*ZPPD) - (ZM*ZM*ZMMD)

DCLDI((ZP*ZP*ZPPD) + (2.0*ZP*ZM*ZPMD) + (ZM*ZM*ZMMD))

00 222 II4.IO

TEST - 0.0

IF (C(I) .NE. 0.0)TEST - I.O

CONTINUE

ZIJI((CA*CE) — (CB*CG))/(ZP*ZM)

RETURN

ENTRY zss

ZIJI((CA*CE) - (CB*CG))/(ZP*ZM)

RETURN

ENTRY 200

ZIJI((CF*CC) + (CD*CH))/(ZP*ZM)

RETURN

ENTRY ZSD

ZIJI((-CA*CF) - (CB*CH))/(ZM*ZP)

RETURN

ENTRY 20$

ZIJI((-CC*CE) + (CD*CG))/(ZM*ZP)

RETURN

ENTRY z0E

ZIJI-(96485.0*SM*A*A*DCL)/(ZP*ZM*CON*(8.3I4E7)*TM)

RETURN

ENTRY ZSE

ZIJI(96485.O*SM*A*A*SCL)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZSSP \

ZIJI((CAP*CE) + (CEP*CA))/(ZP*ZM)

+ -((CB*CGP) + (CGACBP))/(2P*2M)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ = 0.0

RETURN

ENTRY 200P

ZIJI((CF*CCP) + (CC*CFP))/(ZP*ZM)

+ + ((CD*CHP) + (CH*CDP))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ - 0.0

RETURN

ENTRY ZSDP

ZIJI-((CA*CFP) + (CF*CAP))/(ZP*ZM)

+ - ((CB*CHP) + (CBP*CH))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ - 0.0

RETURN

ENTRY ZDSP

ZIJI((CD*CGP) + (CG*CDP))/(ZP*ZM)

+ '(ICE*CCP) + (CEP*CC))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ - 0.0

RETURN

ENTRY ZSEP

ZIJI(96485.O*SM*A*A*SCLP)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZDEP .

ZIJI-(96485.0*SM*A*A*DCLP)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

ENTRY zss0
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ZIJIIICA*CED) + (CE*CAD))/(ZM*ZP)

+ -((CB*CGO) + (CG*CBD))/(ZM*ZPI

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ = 0.0

RETURN

ENTRY 2000

ZIJI((CF*CCD) + (CC*CFD))/(ZM*ZP)

+ + ((CD*CHD) + (CH*CDD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ - 0.0

RETURN

ENTRY 2500

ZIJI-((CA*CFD) + (CF*CAD))/(ZM*ZP)

+ -((CB*CHD) + (CBD*CH))/(ZM*ZP) '

IF (c(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ = 0.0

RETURN

ENTRY 2050 -

ZIJI((CD*CGD) + (CDD*CG))/(ZM*ZP)

+ -((CC*CED) + (CE*CCD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJ - 0.0

RETURN

ENTRY ZSED

ZIJI(96485.0*SM*A*A*SCLD)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

ENTRY ZDED

ZIJI-(96485.O*SM*A*A*DCLD)/(CON*(8.314E7)*TM*ZP*ZM)

RETURN

END

FUNCTION ZIJDNIS.D)

C0MM0N/UNIT5/SM.0F,GDE.EPM.A.ZP.2M.CON.TM.0IM.CREF.2REF

C0MM0N/GREEK/C(2A)

REAL IC,M.ICP,MP.IC0.M0

ICI(ZP*ZM/2.O)*(((ZP+ZM)*(D+(DF/SM))) + (ZM-ZP)*(S+I.O)

+ + ((ZREF*ZREF*CREF)/(ZP*ZM*SM)))

IF (IC.LE.0.0) ICIl.OE-lo

YID+(DF/SM)-S-I.o

z- 0 + S + I.O + (OF/SM)

IF (Y.GE.O.O) YI-I.OE-IO

IF (z.LE.0.0) z-I.0E-I0

SUM-((ZM*ZM)*Y - (ZP*ZP)*Z)/(ZM-ZP)

ZPPIC(I)*(ZM*(Y)) + C(2)*(ZM*(Y))**I.5

ZMMIC(3)*(ZP*(Z)) + C(4)*(ZP*(Z))**I.5

ZPMIC(5)*(SUM**I.5) + C(6)*(SUM**2.0)

M-C(7) - C(8)/((IC)**0.5)

B-C(9) + C(IO)*IC

CAI((ZP*ZPP) - (ZM*ZPM))/(Y)

CBI((ZP*ZPM) - (ZM*ZMM))/(Z)

CE-I.0 - ((0.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(M+B))

CGII.O - ((0.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(Z)*(M-B))

CFII.O - ((0.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(M+B))
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CHII.O + ((O.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(Z)*(M-B))

CCI((ZP*ZPP) + (ZM*ZPM))/(YI

CDI((ZP*ZPM) + (ZM*ZMM))/(Z)

SUMPI(ZP-ZM)/2.0

ICPIZP*ZM*(ZM-ZP)/2.O

ZPPPI-(C(l)*ZM) - (I.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMPI+(C(3)*ZP) + (l.5*ZP*C(4)*(ZP*(Z))**0.5)

ZPMPII.5*C(5)*(SUM**0.5)*SUMP + 2.0*C(6)*(SUM)*SUMP

MP'ICIBI/(IC**I.S))*ICP

BPIC(IO)*ICP

CCPI((ZP*ZPPP) + (ZMAZPMF))/(Y)

+ +((ZP*ZPP) + (ZM*ZPM))/((Y)**2.0)

COP-((ZP*ZPMP) + (ZM*ZMMP))/(Z)

+ -((ZP*ZPM) + (ZM*ZMM))/((Z)**2.0)

CFP--((0.25)*(2P/2M)*((2P*2P)-(ZMAZM))*2MA(Y)*(MP+BP))

+ +((O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(M+B))

CHP-+((0.25)*(2M/2P)*((2P*2P)-(2MA2M))A2PA(2)A(MP-BP))

+ +((O.25)*(ZM/ZP)*(IZP*ZP)-(ZM*ZM))*ZP*(M-B))

CAPI((ZP*ZPPP) - (ZM*ZPMP))/(Y)

+ +((ZP*ZPP) - (ZM*ZPM))/((Y)**2.0)

CBPI((ZP*ZPMP) - (ZM*ZMMP))/(Z) ‘

+ -(IZP*ZPM) - (ZH*ZMH))/((2)**2.o)

CEPI-((O.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(MP+BP))

+ +((O.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(M+D))

COPI-((0.25)*(ZM/ZP)*((ZP-ZM)**2.O)*ZP*(Z)*(MP-BP))

+ -((0. 25)*(ZM/ZP)*((ZP-ZM)**2. 0)*ZP*(M-B))

DCLI((ZP*ZP*ZPP) + (2. OAZM.32P*2PM) + (ZMIZM*ZMM))

SCLI((ZP*ZP*ZPP) - (ZM*ZM*ZMM))

SCLPI(ZP*ZP*ZPPP) - (ZM*ZM*ZMMP)

DCLPI((ZP*ZP*ZPPP) + (2.0*ZP*ZM*ZPMP) + (ZM*ZM*ZMMP))

SUMDI-(ZP+ZM)*O.5

lCDIZP*ZM*(ZP+ZM)/2.O

ZPPDI(C(I)*ZM) + (I.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMDI(C(3)*ZP) + (I.5*ZP*C(4)*(ZP*(Z))**O.5)

ZPMDII.5*C(5)*(SUM**O.5)*SUMD + 2.0*C(6)*(SUM)*SUMD

MDI(O.5*C(8)/(IC**I.5))*ICD

BDIC(IO)*ICD

CAD-((ZP*ZPPD)/(Y)) - ((ZM*ZPMD)/(Y))

+ '(((ZP*ZPP) - (ZM*ZPM))/((Y)**2.0)).

COD-((ZP*ZPMD)/(Z)) - ((ZM*ZMMD)/(Z))

+ -(((ZP*ZPM) - (ZH*ZHM))/((Z)**2.0))

CED--(0.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(M+B)

+ - ((0.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(MD+BD))

CGDI-(0.25)*(ZM/ZP)*((ZP-ZM)**2.O)*ZP*(M-B)

+ - ((O.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(Z)*(MD-BD))

CCDI((ZP*ZPPD)/(Y)) + ((ZM*ZPMD)/(Y))

+ -(((ZP*2PP) + (ZM*ZPM))/((Y)**2.0))

CDDIIIZP*ZPMD)/(Z)) + ((ZM*2MM0)/(z))

+ -(((ZP*ZPM) + (ZM*ZMH))/((Z)**2.0))

CFDI-(O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(M+B)

+ - ((O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(MD+BD))

CHDI-(O.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(M-B)

+ + ((0.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(Z)*(MD-BD))
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SCLDI(ZP*ZP*ZPPD) - (ZM*ZM*ZMMD)

DCLDI((ZP*ZP*ZPPD) + (2.0*ZP*ZM*ZPMD) + (ZM*ZM*ZMMD))

00 222 II4,IO

TEST I 0.0

IF (C(I) .NE. 0.0)TEST I I.O

CONTINUE

ZIJDNIIICA*CE) - (CB*CG))/(ZP*ZM)

RETURN

ENTRY ZSSDN

ZIJDNI((CA*CE) - (CB*CG))/(ZP*ZM)

RETURN

ENTRY ZDDDN

ZIJDNI((CF*CC) + (CD*CH))/(ZP*ZM)

RETURN

ENTRY ZSDDN

ZIJDNIII-CA*CF) - (CB*CH))/(ZM*ZP)

RETURN

ENTRY ZDSDN

ZIJDNI((-CC*CE) + (CD*CG))/(ZM*ZP)

RETURN

ENTRY ZDEDN

ZIJDNI-(96485.O*SM*A*A*DCL)/(ZP*ZM*CON*(8.3IAE7)*TM)

RETURN

ENTRY 25E0N

ZIJDNI(96485.0*SM*A*A*SCL)/(CON*(8.3)4E7)*TM*ZP*ZM)

RETURN

ENTRY ZSSPDN

ZIJDNI((CAP*CE) + (CEP*CA))/(ZP*ZM)

+ -((CB*CGP) + (CG*CBP))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN - 0.0

RETURN

ENTRY ZDDPDN

ZIJDNI((CF*CCP) + (CC*CFP))/(ZP*ZM)

+ + ((CD*CHP) + (CH*CDP))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN - 0.0

RETURN

ENTRY ZSDPDN

ZIJDNI-((CA*CFP) + (CF*CAP))/(ZP*ZM)

+ - ((CB*CHP) + (CBP*CH))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN - 0.0

RETURN

ENTRY ZDSPDN .

ZIJDNI((CD*CGP) + (CG*CDP))/(ZP*ZM)

+ -((CE*CCP) + (CEPICC))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN - 0.0

RETURN

ENTRY ZSEPDN

ZIJDNI(96485.0*SM*A*A*SCLP)/(C0N*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZDEPDN

ZIJDNI-(96485.0*SM*A*A*DCLP)/(C0N*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZSSDDN
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ZIJDNIIICA*CED) + (CE*CAD))/(ZM*ZP)

+ -((CB*CGD) + (CG*CBD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN - 0.0

RETURN

ENTRY ZDDDDN

ZIJDNI((CF*CCD) + (CC*CFD))/(ZM*ZP)

+ + ((CD*CHD) + (CH*CDD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN - 0.0

RETURN

ENTRY ZSDDDN

ZIJDNI-((CA*CFD) + (CF*CAD))/(ZM*ZP)

+ -((CB*CH0) + (CBD*CH))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN = 0.0

RETURN

ENTRY 20500N

ZIJDNI((CD*CGD) + (CDD*CG))/(ZM*ZP)

+ '((CC*CED) + (CE*CCD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJDN = 0.0

RETURN

ENTRY zSEDDN

ZIJDNI(96485.O*SM*A*A*SCLD)/(CON*(8.3l4E7)*TM*ZP*ZM)

RETURN

ENTRY z0EDDN

ZIJDNI-(96485.0*SM*A*A*DCLD)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

END

FUNCTION ZIJUP(5.D)

COMMON/UNITS/SM,DF,GDE.EPM,A.ZP,ZM.CON,TM,DIM,CREF,ZREF

COMMON/GREEK/C(2A)

REAL IC.M.ICP.MP.IC0.M0

lCI(ZP*ZM/2.O)*(((ZP+ZM)*(D+(DF/SM))) + (ZM-ZP)*(S+I.0)

+ + ((ZREF*ZREF*CREF)/(ZP*ZM*SM)))

IF (IC.LE.0.0) ICII.OE-l0

Y-0+(OF/SM)-S-I.O

ZI D + S + I.O + (DP/SM)

IF (Y.GE.0.O) YI-I.OE-IO

IF (Z.LE.0.0) ZII.OE-IO

SUMI((ZM*ZM)*Y - (ZP*ZP)*Z)/(ZM-ZP)

ZPPIC(I)*(ZM&(Y)) + C(2)*(ZM*(Y))**I.5

ZMMIC(3)*(ZP*(Z)) + C(4)*(ZP*(Z))**I.5

ZPMIC(5)*(SUM**I.5) + C(6)*(SUM**2.0)

MIC(7) - C(8)/((IC)**0.5)

B-C(9) + C(IO)*IC

CAI((ZP*ZPP) - (ZM*ZPM))/(Y)

CDI((ZP*ZPM) - (ZM*ZMM))/(Z)

CE-I.0 - ((0.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(M+B))

CG-I.0 - ((0.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(Z)*(M-B))

CF-I.0 - ((O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(M+B))
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CH-I.0 + ((0.25)*(ZM/2P)*((2P*2P)-(ZMAZM))*ZPA(Z)*(M-B))~

CCI((ZP*ZPP) + (ZM*ZPM))/(Y)

CDI((ZP*ZPM) + (ZM*ZMM))/(Z)

SUMP-(ZP-ZM)/2.0

ICPIZP*ZM*(ZM-ZP)/2.O

ZPPPI-(C(I)*ZM) - (I.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMPI+(C(3)*ZP) + (I.5*ZP*C(4)*(ZP*(Z))**O.5)

ZPMPII.5*C(5)*(SUM**O.5)*SUMP + 2.0*C(6)*(SUM)*SUMP

MPI(C(8)/IIC**I.5))*ICP

BPIC(IO)*ICP

CCPI((ZP*ZPPP) + (ZM*ZPMP))/(Y)

+ +((ZP*ZPP) + (ZM*ZPM))/((Y)**2.0)

CDPI((ZP*ZPMP) + (ZM*ZMMP))/(Z)

+ -((ZP*ZPM) + (ZM*ZMM))/((Z)**2.0)

CFPI-((O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(MP+BP))

+ +((O.25)*(ZP/ZM)*((ZP*ZP)‘(ZM*ZM))*ZM*(M+B))

CHPI+((O.25)*(ZM/ZP)*((2P*ZP)-(ZM*ZM))*ZP*(Z)*(MP-BP))

+ +((O.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(M-B))

CAPI((ZP*ZPPP) - (ZM*ZPMP))/(Y)

+ +((ZP*ZPP) - (ZM*ZPM))/((Y)**2.0)

CBPI((ZP*ZPMP) - (ZM*ZMMP))/(Z)

+ -((ZP*ZPM) - (ZM*ZMM))/((Z)**2.0)

CEPI-((0.25)*(ZP/ZM)*((ZP-ZM)**2.O)*ZM*(Y)*(MP+BP))

+ +((O.25)*(ZP/ZM)*(IZP-ZM)**2.0)*ZM*(M+B))

CGPI-((O.25)*(ZM/ZP)*((ZP-ZM)**2.O)*ZP*(Z)*(MP-BP))

+ -((0.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(M-B))

DCLI((ZP*ZP*ZPP) + (2.0*ZM*ZP*ZPM) + (ZM*ZM*ZMM))

SCLI((ZP*ZP*ZPP) - (ZM*ZM*ZMM))

SCLPI(ZP*ZP*ZPPP) - (ZM*ZM*ZMMP)

DCLPI((ZP*ZP*ZPPP) + (2. O*ZP*ZM*ZPMP) + (ZM*ZM*ZMMP))

SUMDI-(ZP+ZM)*O. 5

ICDIZP*ZM*(ZP+ZM)/2.0.

ZPPDI(C(I)*ZM) + (l.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMDI(C(3)*ZP) + (l.5*ZP*C(4)*(ZP*(Z))**O.5)

ZPMDII.5*C(5)*(SUM**O.5)*SUMD + 2.0*C(6)*(SUM)*SUMD

MDI(O.5*C(8)/(IC**I.5))*ICD

BDIC(IO)*ICD

CAD-((ZP*ZPPD)/(Y)) - ((ZM*ZPMD)/(Y))

+ ‘(((ZP*ZPP) - (ZM*ZPM))/((Y)**2.0))

CBDI((ZP*ZPMD)/(Z)) - ((ZM*ZMMD)/(Z))

+ -(((2P*zPM) - (ZM*ZMM))/((Z)**2.0))

CED--(O.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(M+B)

+ - ((O.25)*(ZP/ZM)*((ZP-ZM)**2.0)*ZM*(Y)*(MD+BD))

CGDI-(O.25)*(ZM/ZP)*((ZP-ZM)**2.O)*ZP*(M-B)

+ - ((O.25)*(ZM/ZP)*((ZP-ZM)**2.0)*ZP*(Z)*(MD-BD))

CCDI((ZP*ZPPD)/(Y)) + ((ZMAZPMO)/(Y))

+ -(((ZP*ZPP) + (ZM*ZPM))/((Y)**2.0))

CDDI((ZP*ZPMD)/(Z)) + ((ZM*ZMMD)/(Z))

+ -(((ZP*ZPM) + (ZM*ZMM))/((Z)**2.0))

CFDI-(O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(M+B)

+ - ((O.25)*(ZP/ZM)*((ZP*ZP)-(ZM*ZM))*ZM*(Y)*(MD+BD))

CHOI-(O.25)*(ZM/ZP)*((ZP*ZP)-(ZM*ZM))*ZP*(M-B)

+ + ((0.25)*(ZM/ZP)*(IZP*ZP)'(ZM*ZM))*ZP*(Z)*(MD-BD))
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SCLDI(ZP*ZP*ZPPD) - (ZM*ZM*ZMMD)

DCLDI((ZP*ZP*ZPPD) + (2.0*ZP*ZM*ZPMD) + (ZM*ZM*ZMMD))

DO 222 II4.I0

TEST - 0.0

IF (C(I) .NE. 0.0)TEST - I.O

CONTINUE

ZIJUPI(96485.O*SM*A*A*SCL)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZSSUP

ZIJUPI((CA*CE) - (CB*CG))/(ZP*ZM)

RETURN

ENTRY ZDDUP

ZIJUPI((CF*CC) + (CD*CH))/(ZP*ZM)

RETURN

ENTRY ZSDUP

ZIJUPI((-CA*CF) - (CB*CH))/(ZM*ZP)

RETURN

ENTRY ZDSUP

ZIJUPI((-CC*CE) + (CD*CG))/(ZM*ZP)

RETURN

ENTRY zOEUP

ZIJUPI-(96485.O*SM*A*A*DCL)/(ZP*ZM*CON*(8.3l4E7)*TM)

RETURN

ENTRY ZSEUP

ZIJUPI(96485.0*SM*A*A*SCL)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY 255PUP

ZIJUPI((CAP*CE) + (CEP*CA))/(ZP*ZM)

+ '((C8*CGP) + (CG*CBP))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP . 0.0

RETURN

ENTRY 200PUP

ZIJUPI((CF*CCP) + (CC*CFP))/(ZP*ZM)

+ + ((CD*CHP) + (CH*CDP))/IZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP = 0.0

RETURN

ENTRY 250PUP

ZIJUPI-((CA*CFP) + (CF*CAP))/(ZP*ZM)

+ - ((CB*CHP) + (CBP*CH))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP - 0.0

RETURN

ENTRY ZDSPUP

ZIJUPI((CD*CGP) + (CG*CDP))/(ZP*ZM)

+ ’((CE*CCP) + (CEP*CC))/(ZP*ZM)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP - 0.0

RETURN

ENTRY ZSEPUP

ZIJUPI(96485.0*SM*A*A*SCLP)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZDEPUP

ZIJUPI-(96435.0*SM*A*A*DCLP)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZSSDUP
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ZIJUPI((CA*CED) + (CE*CAD))/(ZM*ZP)

+ '((C8*CGD) + (CG*CBD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP - 0.0

RETURN

ENTRY 2000UP

ZIJUPI((CF*CCD) + (CC*CFD))/(ZM*ZP)

+ + ((CD*CHD) + (CH*CDD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP - 0.0

RETURN

ENTRY ZSDDUP

ZIJUPI-((CA*CFD) + (CF*CAD))/(ZM*ZP)

+ -((CB*CHD) + (CBD*CH))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP - 0.0

RETURN

ENTRY ZDSDUP

ZIJUPI((CD*CGD) + (CDD*CG))/(ZM*ZP)

+ '(ICC*CED) + (CE*CCD))/(ZM*ZP)

IF (C(2) .EQ. 0.0 .A. TEST .EQ. 0.0)ZIJUP - 0.0

RETURN

ENTRY ZSEDUP

ZIJUPI(96485.0*SM*A*A*SCLD)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY ZDEDUP

ZIJUPI-(96485.O*SM*A*A*DCLD)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

END

FUNCTION DDZIJ(S,D)

COMMON/UNITS/SM,DF,GDE,EPM,A,ZP,ZM,CON,TM,DIM,CREF,ZREF

C0MM0N/GREEK/C(2A)

YID+(DF/SM)-S-l.0

ZI D + S +1.0 + (DF/SM)

IF (Y.GE.O.0) YI-I.0E-I0

IF (z.LE.O.0) ZIl.OE-lO

SUMI((ZM*ZM)*Y - (ZP*ZP)*Z)/(ZM-ZP)

ZPPIC(I)*(ZM*(Y)) + C(2)*(ZM*(Y))**I.5

INN-C(3)*(ZP*(Z)) + C(A)*(ZP*(Z))**I-S

ZPMIC(5)*(SUM**I.5) + C(6)*(SUM**2.0)

DCLI((ZP*ZP*ZPP) + (2.0*ZM*ZP*ZPM) + (ZM*ZM*ZMM))

SCLI((ZP*ZP*ZPP) - (ZM*ZM*ZMM))

SUMPI(ZP-ZM)/2.O

ZPPPI-(C(l)*ZM) - (I.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMPI+(C(3)*ZP) + (I.5*ZP*C(4)*(ZP*(Z))**O.S)

ZPMPII.S*C(5)*(SUM**O.5)*SUMP + 2.0*C(6)*(SUM)*SUMP

DCLPI((ZP*ZP*ZPPP) + (2.0*ZP*ZM*ZPMP) + (ZM*ZMIZMMP))

SCLPI(ZP*ZP*ZPPP) - (ZM*ZM*ZMMP)

SUMDI-(ZP+ZM)*O.5

ZPPDI(C(I)*ZM) + (l.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMDI(C(3)*ZP) + (l.5*ZP*C(4)*(ZP*(Z))**O.5)
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ZPMDII.5*C(5)*(SUM**O.5)*SUMD + 2.0*C(6)*(SUM)*SUMD

DCLDI((ZP*ZP*ZPPD) + (2.0*ZP*ZM*ZPMD) + (ZM*ZM*ZMMD))

SCLDIIZP*ZP*ZPPD) - (ZM*ZM*ZMMD)

DDZIJI(96485.O*SM*A*A*SCLP)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY DDZDE

DDZIJI-(96485.0*SM*A*A*DCL)/(ZP*ZM*CON*(8.3IAE7)*TM)

RETURN

ENTRY DDZSE

DDZIJI(96485.O*SM*A*A*SCL)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

ENTRY DDZSED

DDZIJI(96485.0*SM*A*A*SCLD)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

ENTRY DDZDED

DDZIJI-(96485.0*SM*A*A*DCLD)/(CON*(8.314E7)*TM*ZP*ZM)

RETURN

ENTRY DDZSEP

DDZIJI(96485.0*SM*A*A*SCLP)/(CON*(8.314E7)*TM*ZP*ZM)

RETURN

ENTRY DDZDEP

DDZIJI-(96485.0*SM*A*A*DCLP)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

END

FUNCTION PPZIJ(5.D) ,

C0MM0N/UNIT5/5M.OF,G0E.EPM,A,2P.2M.C0N.TM,0IM.CREF.2REF

COMMON/GREEK/C(2A)

YID+(DF/SM)-S-I.o

ZI D + S + I.O + (DP/SM)

IF (Y.GE.0.0) Y--I.0E-I0

IF (z.LE.0.0) z-I.0E-I0

SUMI((ZM*ZM)*Y - (ZP*ZP)*Z)/(ZM-ZP)

ZPP-C(I)*(ZM*(Y)) + C(2)*(ZH*(Y))**I.5

ZMMIC(3)*(ZP*(Z)) + C(4)*(ZP*(Z))**I.5

ZPMIC(5)*(SUM**I.5) + C(6)*(SUM**2.0)

DCLI((ZP*ZP*ZPP) + (2.0*ZM*ZP*ZPM) + (ZM*ZM*ZMM))

SCLI((ZP*ZP*ZPP) - (ZM*ZM*ZMM))

SUMPI(ZP-ZM)/2.O

ZPPPI-(C(I)*ZM) - (I.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMPI+(C(3)*ZP) + (I.5*ZP*C(4)*(ZP*(Z))**O.5)

ZPMPII.5*C(5)*(SUM**O.5)*SUMP + 2.0*C(6)*(SUM)*SUMP

DCLPI((ZP*ZP*ZPPP) + (2.0*ZP*ZM*ZPMP) + (ZM*ZM*ZMMP))

SCLPI(ZP*ZP*ZPPP) - (ZM*ZM*ZMMP)

SUMDI-(ZP+ZM)*O.5

ZPPDI(C(I)*ZM) + (I.5*ZM*C(2)*(ZM*(Y))**O.5)

ZMMDI(C(3)*ZP) + (I.5*ZP*C(A)*(ZP*(Z))**O.5)

ZPMDII.5*C(5)*(SUM**O.5)*SUMD + 2.0*C(6)*(SUM)*SUMD

DCLDI((ZP*ZP*ZPPD) + (2.0*ZP*ZM*ZPMD) + (ZM*ZM*ZMMD))
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SCLDI(ZP*ZP*ZPPD) - (ZM*2M*ZMMD)

PPZIJI(96485.0*SM*A*A*SCL)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

ENTRY PPZDE ’

PPZIJI-(96485.O*SM*A*A*DCL)/(ZP*ZM*CON*(8.3IAE7)*TM)

RETURN

ENTRY PPZSE

PPZIJI(96485.O*SM*A*A*SCL)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY PPZSED .

PPZIJI(96485.0*SM*A*A*SCLD)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

ENTRY PPZDED

PPZIJI-(96485.O*SM*A*A*DCLD)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

ENTRY PPZSEP

PPZIJI(96485.O*SM*A*A*SCLP)/(CON*(8.3I4E7)*TM*ZP*ZM)

RETURN

ENTRY PPZDEP

PPZIJI-(96485.0*SM*A*A*DCLP)/(CON*(8.3IAE7)*TM*ZP*ZM)

RETURN

END.
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