ANALYSIS OF THE SPECTRA 0F PLANAR ASYMMEWC MGLECULES‘, WITH APPUCATEOH T0 HYDROGEN TELLURiDE Thesis for the Degree of Ph D. MECHIGAN STATE UNIVERSITY N. KENT MONCUR 1967 U , . Ev - ‘ Iv - 72' I‘H'c‘s;s EJnhnns? This is to certify that the thesis entitled ANALYSIS OF THE SPECTRA OF PLANAR ASYMMETRIC MOLECULES, WITH APPLICATION TO HYDROGEN TELLURIDE presented by N. Kent Moncur has been accepted towards fulfillment of the requirements for Ph. D . degree in Physics WM4¢ ' 'Major professor Date July 28, 1967 0-169. ‘kk. ABSTRACT ANALYSIS OF THE SPECTRA OF PLANAR ASYMMETRIC MOLECULES, WITH APPLICATION TO HYDROGEN TELLURIDE by N. Kent Moncur The develOpment of the vibration-rotation Hamiltonian for a planar asymmetric non-linear XYX molecule is out— lined, and energy expressions are given by which energy levels and other quantities useful in an analysis of the Spectra of such a molecule may be calculated. Since the upper vibrational states of some of the bands may interact through a Coriolis type resonance, a modified Hamiltonian is given which includes the necessary inter- action terms for a description of these states. A method is outlined by which the theoretical energy expressions can be used in an analysis of spectra, and is applied in the analysis of the absorption spectra of l l H Te near 2900 cm- and 4050 cm- . 2 Ground state combination differences from the in- frared absorption bands vl+v2, v2+v3, 2vl, and vl+v3 are used in a least squares analysis to obtain ground state constants A, B, C, taus, and HK for the molecular species H 130T 128T 126 125 124 2 2 e, 2 Te, H2 Te, and H2 Te. upper states of the interacting bands vl+v2 and v2+v3 are e, H H The simultaneously analyzed to obtain upper state constants N. KENT MONCUR v0, A, B, C, taus, H and the perturbation coefficients KI . 130 128 126 G2 and ny, for the speCIes H2 Te, H2 Te, and H2 Te. The upper states of 2vl and vl+v3 are treated in a similar manner for the species H2130Te, H2128Te, H2126Te, H2125Te, and H2124Te. Using prOper combinations of molecular constants from the different vibrational states analyzed, the equi- librium constants Ae, Be’ and Ce are obtained from which the equilibrium structure (re,6) of HzTe is calculated. ANALYSIS OF THE SPECTRA OF PLANAR ASYMMETRIC MOLECULES, WITH APPLICATION TO HYDROGEN TELLURIDE .9.“ By C6 N? Kent Moncur A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics 1967 <7 ‘7 @197 / 9 TO MY WIFE ELAINE ACKNOWLEDGMENT I wish to thank Dr. T. H. Edwards for his help and encouragement in the direction of my research. His ideas and suggestions have been very useful and greatly appre- ciated. I also wish to thank Dr. P. M. Parker and Dr. C. D. Hause for their help and advice. I would like to thank my fellow graduate students Dr. Thomas Barnett, Lewis Snyder, Melvin Olman, and Don Keck for their many helpful suggestions and advice. I would like to acknow- ledge that the theoretical development of the interaction Hamiltonian, which was used in some of the analysis of this work, was capably carried out by Lewis Snyder. I want to thank the M.S.U. Computer Laboratory for the use of the 3600 computer in carrying out the numerical ana- lysis of the data. I wish to express my gratitude to the Air Force Cambridge Research Laboratories for their supe port of our research. I am indebted to my wife for her encouragement and help during the course of this work, and I thank her for her patience and understanding. iii TABLE OF ACKNOWLEDGMENT . . . . LIST OF LIST OF FIGURES . . . . . . . . . LIST OF APPENDICES . . . . . . . INTRODUCTION . . . . . . . . . CHAPTER I. THEORY OF THE ASYMMETRIC MOLECULE II. III. TABLES . . . . Non-linear XYX Molecule Asymmetric Rotor Wave Functions Energy Expressions Higher Order Distortion Terms [Selection Rules Intensities . METHOD OF ANALYSIS Line Fits . . CONTENTS Ground State Combination Difference Fits . . . Computer Programs PERTURBATIONS IN EXCITED VIBRATIONAL STATES . . . Coriolis Interaction nd 2 Order Distortion Interaction Treatment of Two Interacting States Computer Programs iv Page iii vi vii viii 13 15 16 19 21 24 25 26 30 30 31 32 39 CHAPTER IV. THE INFRARED SPECTRA OF H Te . . . 2 Preparation of H Te . . . . . 2 Experimental Conditions . . . Infrared Absorption Bands of H2Te Isotopic Species of HzTe . . . V. ANALYSIS OF THE INFRARED ABSORPTION VI. VII. REFERENCES APPENDICIES SPECTRA OF HZTe . . . . . . The 2900 cm-1 Region . . . . The 4050 cm-1 Region . . . . The 4900 cm.1 Region . . . . Ground State Analysis of H Reanalysis of v2 . . . . . . Vibrational Analysis . . . . STRUCTURE CALCULATIONS . . . CONCLUSION . . . . . . . . Page 41 43 45 46 51 53 53 59 67 68 73 73 76 79 81 84 Table II. III. IV. VI. VII. VIII. Ix. XI. XII. XIII. XIV. XV. XVI. LIST OF TABLES Page Classification of the Submatricies E+, E', 0*, o' . . . . . . . . . . 12 Selection Rules by Parity Change of K_1and K+1 18 Experimental Conditions . . . . . . . 50 Molecular Constants of H2130Te for the States v +v and v +v . . . . . . . 56 1 2 2 3 Molecular Constants of H 128Te for the States vl+v2 and v2+v3 . . . . . . . 57 Molecular Constants of H 126Te for the States v +v and v +v . . . . . . . 58 l 2 2 3 Molecular Constants of H2130Te for the States 2V and V +V o o o o o o o 62 1 1 3 Molecular Constants of H2128Te for the States 2v and v +v . . . . . . . . 63 l 1 3 Molecular Constants of H2126Te for the States 2V and V +V o o o o o o o o 64 1 1 3 Molecular Constants of H2125Te for the States 2v and v +v . . . . . . . . 65 1 1 3 Molecular Constants of H2124Te for the States 2v and v +v . . . . . . . . 66 l l 3 Ground State Molecular Constants of H2130Te . 70 Ground State Molecular Constants of H2128Te and H2126Te . . . . . . . . 71 Ground State Molecular Constants of 125 124 H2 Te and H2 Te . . . . . . . . 72 Molecular Constants of H2Te for the State v2 0 O O O O O O O O O O O 74 Equilibrium Structure of HzTe . . . . . 78 vi Figure LIST OF FIGURES Energy Level Diagram . . . . . Elements of the Submatrix (E: + E Elements of the Submatrix (0: + 0 Geometry of HZTe . . . . . . . Normal Modes of HzTe . . . . . Apparatus for the Production of HzTe Absorption Spectra of H2Te near 2900 cm- Absorption Spectra of H2Te near 4050 cm- Absorption Spectra of H2Te near 4900 cm- IsotOpic Absorption Lines of HzTe . vii l 1 1 Page 11 34 35 42 42 44 47 48 49 52 Appendix I. II. III. IV. VI. LIST OF APPENDICES Nonvanishing Matrix elements of the Hamiltonian Operators . . . . . . . Assigned Lines and Observed Frequencies of H2130Te for the States vl+v2, 02+v3, 201, and v1+v3 . . . . . . . . . . . Ground State Combination Differences of H2130Te . . . . . . . . . . Calculated Ground State Energy Levels . . Calculated Upper State Energy Levels for the Bigges vl+v2, v2+v3, 2vland vl+v3 of H Te 2 Listing of Program Spec-Fit 1 . . . . viii Page 84 91 110 115 126 151 INTRODUCTION The analysis of the infrared spectra of polyatom- ic molecules leads to precise information about their rotational and vibrational energy levels which in turn give information about inertial constants, centrifugal distortion constants, force constants, anharmonic con- stants, bond angles, bond lengths, and other data con- cerning their structure. Since a polyatomic molecule is a many body prob- lem, it is impossible to find exact expressions for the energy levels. A convenient approach to the problem is to treat the general theoretical eXpression for the Hamiltonian of polyatomic molecules by an expansion formulation in successive orders of approximation, and then apply it to the Specific case involved, making simplifications whenever possible. The Born-Oppenheimer approximation is used to separate the electronic problem, which will not be considered here, from the vibration- rotation problem. Molecules may be grouped into three general classes depending on their principal moments of inertia. Mole- cules, with all three principal moments of inertia equal (Ia=Ib=Ic), are called spherical top molecules and have a spherical moment of inertia ellipsoid. Examples of these include CH CC14, SiH4. Molecules with two 4' moments of inertia equal have an ellipsoid which is an ellipse of revolution and are called axially symmetric molecules. Examples of these are the prolate (Iaw H m «\Aa+nv ~\n o O o 0 .0 «\AH+nv «\n o m o o +o ~\Aflunv mxu m m m 0 nm mxfia+nv H+ Nxs m o 0 m +m b OOO e c0>m L+m Hum H+x Hum XHHflMEfldm m0 ONHm b 660 h. Gm>w XflHuwMEnaflm coflumpammmnmmm. HHH .H m .+m mmowuumEQSm may no GOHUMOHMHmmmHU .H OHQOB 13 The wave functions A(J,T) which diagonalize the rotational matrix are linear combinations of the basis functions: JT A(J,I) = 2 SK W(J,K,y) , (16) K where the sum is over only those wave functions W which - + . + - . form the same submatrix E , E , O , or O , 1.e., even K even 7, even K odd y, odd K even y, or odd K odd y. Energy Expressions The energy of a given vibration rotation state may be evaluated from E(V,J,I) = G(vl,v2,v3) + W(A,B,C) (17) 2 2 2 + A + B + C + Taaaa‘oaaaa> + Tbbbb‘obbbb> + Taabb‘oaabb> + Tabab‘oabab> ' where = G(vl,v2,v3) (18) G0 + 291(Vi+2’ + Z Exik(vi+%)(vk+%)° 1 ls G(vl,v2,v3) is the pure vibrational contribution to the energy.15 The xik are the vibrational anharmonicity constants, and G0 is a constant term. W(A,B,C) is the rotational energy where the average values of the rota- tional operators are taken in the representation A(J,T) which diagonalize the rotational Hamiltonian. The cons- 14 tants A, B, and C are dependent on the vibrational state involved. Although the definition of the taus given in Eqs. (14) show them to be independent of the vibrational states, the empirical taus determined in an analysis may show a vibrational dependence because they may try to adjust for the effect of other centrifugal distortion terms from a higher order of the Hamiltonian expansion which have not been included here. The difference between the ground and excited state energies involved in a transition is given by v = G'(vi,vé,v§) - G"(vi,v3,vg) + W'(A',B',C') (l9)_ _ W" (All’Bll ,C") . (G'-G") is the pure vibrational contribution which is called the band center or orgin, and is denoted by v0. (W'-W") is the difference between the excited and ground state rotational energy levels. A second order vibrational resonance, which exists between states of the type (vl,v2,v3) and (Vl-Z,V2,V3+2), was first recognized by Darling and Dennisonl in H20 and later by Allen and Plyler16 in H28. The vibrational energies of two such resonating states are given by _l .. Gp — 2[Gl(vl,V2,v3) + G2(vl 2,v2,v3+2)] (20) 1 22 12 *il‘GI‘Gz’ +Y vl(vl-l)(v3+l)(v3+2)] / . where Gp represents the energy of a perturbed level, and 15 G1 and G2 that of the unperturbed levels as defined in Eq. (18). The interaction matrix element is represented by Y- Higher Order Distortion Terms When higher order terms in the rotational Hamiltonian are considered, many P6 distortion terms appear. Pierce, DiCianni and Jackson17 have suggested that for nearly symmetric rotors it may be a sufficiently good approx- imation to retain only those P6 terms which do not vanish in the symmetric rotor limit. This results in the ad- dition of the following four terms to the Hamiltonian: 6 4 2 2 4 6 HJP + HJKP PC + HKJP PC + HKPc . (21) These H'S derived from an analysis of the spectrum have only empirical significance. Chung and Parkers'18 have explicitly derived all the terms in the asymmetric rotor Hamiltonian that cont- ribute to the energy in the fourth order of approximation. Using these results and the angular momentum commutation relations, Kneizys, Freedman, and Clough19 reduced the number of rotational coefficients appearing in the Ham- iltonian. When their results are examined, the same four terms that are in Eq. (21) are found among their P6 terms, which lends more justification for their addition to the Hamiltonian. 20 Watson, in a recent work, has shown that the ro- 16 tational Hamiltonian of an asymmetric molecule in general form may be transformed, by means of a unitary transforma- tion, to a reduced Hamiltonian which has the same eigen- values but fewer parameters. This procedure removes any possible indeterminacy which may exist in the coefficients.» This reduced Hamiltonian, complete through the sextic terms, has been given in a form which is suitable for fitting to observed energies. For reasons that are not clear, our efforts to fit the observed ground state com- bination differences of H2Te using Eq. (37) of Ref. (20) were not successful, since the constants would not con- verge to stable values. It may yet be possible to fit these combination differences with this equation by al- lowing only certain combinations of the constants to vary at one time in a fit, or by using a different form of the equation, however, this formulation of the Hamiltonian and energy expressions will not be considered further. Selection Rules In order that a transition from state n"+n' occur, the electric dipole matrix element Iw;.uwn.dv (22) must be non—zero. The selection rules for vibration-ro- tation transitions come from the vanishing or nonvanishing of this matrix element and have been given and discussed 14 by Cross,.Hainer and King, Hill,21 and many others. The l7 selection rules for J in the asymmetric rotor are the same as in the symmetric rotor, AJ = -l,.0, +1 corres- ponding to P, Q, and R branches respectively. The sel- ection rules of the parity change of K_1 and K+1 are given in Table II. If the change in the electric moment during a trans- ition lies along the axis of least moment of inertia (a axis), the resulting band is called a type A band, and we see that the parity of K_1 does not change and that of K+1 does, i.e.; AK_1 = *0, *2, *4, ... and AK+1 = *1, *3,.... . For a change in the electric moment along the great- est.moment of inertia (c axis), a type C band results and the parity of K_1 does change while that of K+1 does not, AK_1 = *l, *3, ... and AK+1 = *0, *2, *4, ... . For a Change in the electric moment along the inter- mediate moment of inertia (b axis) a type B band results and the parity of both K-1 and K+1 change, AK-1 = *1, *3, ... and AK+1 = *1, *3, ... . The above selection rules are subject to the restri- ctions K_1 + K+1 = J for even y and K-1 + K+1 = J+1 for odd 7 for both initial and final states. Transitions in- volving changes in K_1 and K+1 of 0 and *l are all we normally need consider since changes greater than *1 generally involve transitions with intensities an order of magnitude weaker.22 A type C band is not possible for a planar molecule in the ab plane since there can be no 18 HI. M 0 0A).? 0 O O U o o o m 1:... J. o 0 MM . . a m 0 0 ++ O O ~+ M O 0 ++ 0 O m an :H Oman cmEo ma mwamnu H+M “Ix +4 L+M ”Ix wwowwo 0” make wuwnmm one macauflmcmua CT3OHH4 Hmaamumm maxd pawn ~+M paw HIM mo mmcmno muwumm an mmasm coauomamm .HH OHQMB 19 out of plane vibrations. For a non-linear XYX molecule, any band which includes an odd multiple of 03 is a type A band, all others are type B bands. We have found it convenient to use the familiar symmetric top notation for designating transitions. The terminology is AK AJK(J) where J and K refer to the ground state quantum numbers, K being the K in the nearest sym- metric tOp limit (K_1 for prolate and K+1 for oblate). Since the degeneracy in K is removed in an asymmetric molecule, there are two components to each transition, an even component which orginates from a symmetric energy level and an odd component orginating from an antisym- metric level. As usual the symbols P, Q, and R indicate changes in J and K of -l, 0, and +1 respectively. Thus, the possible transitions for A and B type bands include RRK(J), PPK, R0K, and PRK(J>. Intensities The relative intensities of transitions within a band may be calculated with the expression 2 e(-W"hc/kT) n.,n. , (23> I S 9|u(v<)| (-W"hc/kT) 2 is the Boltzman factor and |u(K)ln" n' I where e the line strength. The line strength includes the factor (2J+1) which arises because of the (2J+1) fold degenercy of the total angular momentum in the absence of an exter— nal field. The g is the statistical weight factor of the 20 ground state level which arises when two of the nuclei in a molecule such as H2Te are identical. For HZTe the ratio of g for symmetric levels (ee, 00) and antisymmetric levels (eo, oe) is 1:3. CHAPTER II METHOD OF ANALYSIS The rotational energy, including the four terms of Eq. (21) and written in a form which is convenient for the analysis of spectra, is W = “A + BB + YC + xlTaaaa + XZTbbbb + x3Taabb (24’ + X4Tabab + xSHJ + XGHJK + x7HKJ + XBHK ' where a = (25) B = y = x1 = <0aaaa> x2 = ‘Obbbb’ x3 = X4 = X5 = = J3(J+1)3 x6 = = J2(J+l)2 X7 = = J(J+l) x8 = . The average values of the operators are calculated from the eigenvectors of the diagonalized Hamiltonian. 21 22 The average value of any operator F may be expres- sed as Jr * JT = 2 Z,(SK ) SK, FKK, (26) KK where * FKK. = II (J,K.y)Fw(J.K:Y)dv are the matrix elements of F in the original basis set. For simplification of the calculation it should be noted * that since FKK' = FK'K for a hermitian operator, then (27) J1 * JT JT 2 Jr * Jr 2 2 (S ) s , F . = 2|s | F + 2 2 2Re[(S ) s ,F .1. K K, K K KK K K KK K, connecting the same states as the Coriolis term, and is large enough that it cannot be ignored.. This is a term which orginated in the untransformed H2 Eq. (2). In cm.1 G is Ky (40) 2 . SlnY] . ny = -6(l/N1Q3)l/ZAeBe[(Ce/Ae)l/zcosy+(Ce/Be)1/ 32 The above two interaction terms also have the non- zero matrix elements , but as noted by Wilson,12 since the energies of the interacting states must be reasonably close together for any effect to be observed, the interaction is seen only between the states (v1,v2,v3) and (v1*l,v2,v3*l). For HZTe, some of the states that satisfy the re- quirements for these interactions to be observed are, v1 and v3, v1+vz and 02+v3, 2vl and vl+v3, vl+v3 and Zv +2v . Note v2 3 1 and 2V3, thus, an 3, 2v1+v2 and vl+vz+v3, vl+vz+v3 and that v1+03 interacts with both Zv analysis Of any of these states should include all three, even though one may be too weak to be observed. The same situation-is true of the three bands 201+v2, v1+02+- v3, and v2+2v3. The interaction terms which must be added to the Hamiltonian when analyzing these interacting bands is HI = Gz(q1p3-q3pl)Pz + G q1q3(P P -P P ) . (41) XY XYYX The matrix elements of these Operators are given in Ap- pendix I. Treatment of Two Interacting States and v +v will 1 2 2 3 be considered in more detail. As mentioned earlier, each The two interacting states v +v J block of the matrix elements of the Hamiltonian without the interaction terms may be factored into four submatrices 33 + - + - + - + - for each state, E1, E1' 01, 01’ and E3, E3, 03, 03. The subscripts l and 3 refer to states vl+v2 and vz+v3 respectively. Similarly, each J block of the matrix ele- ments of the Hamiltonian including the interaction terms may be factored into the four submatrices (E: + E3),- (E; + E1), (0: + OS), and (0; + 01). The matrix elements of the interaction terms connect the submatrices of the states 1 and 3. The general form of (E: + E3) is shown in Fig. 2 and that of (01 + 0;) in Fig. 3. The E1 KK' are the matrix elements of the Hamiltonian in the basis set Y(J,K,y) for the vibrational state i, and ELL' are the matrix elements of the interaction terms of Eq. (41) connecting states i and j. The matrices (E; + E1) and (0; + 0;) are Obtained by interchanging the superscripts 1 and 3 on ERK' and Eii, and the subscripts l and 3 on Wi- The wave functions A(V,J,T) which diagonalize the Hamiltonian with the interaction are now combinations of not only the rotational basis set W(J,K,y), but also of the vibrational wave functions wv of the two states in- volved. The basis set of wave functions is 4. l va(JIKIY) where v = l or 3. The A(V,J,T) are linear combinations of the 0. l A(V,J,I) = Z SZJT¢i , (42) l 34 m o . . . . . emu em «mm . v.mfimm m.mfimm .o . . . . sea as New o «.mfimm m.~fimm «.mfimm o . 311. :11. :11. . . . . . . . . o . . . . m+qmwm ~+qmw o . emu 4mm mmm o . . 311 311. . .1. .1. .1. .1. . . . o ~+qmm H+qmmm o ems «mm mmm emu . . . . H+qmwm . o emu «Mm own 9 . . m+qo ~+q H+qe . «a me No He 10.x.s11m1 u z AOsmshv&MS "m+q Aesfishv&ma HN+A AQsM~hv9H9 " A Amsmshvifla V Amsfishv?H3 m A0~Nsbv9H9 N Aw~05hv9H9 H e e e e m + was xnuumsnsm we» no mucmsmam .N .mnm 35 O m+q.m m1 m+q.~ m1 ~+g.m ma m+q.~ m1 ~+q.a m1 H+q.m m1 H+q.1 m1 m+q N+A H+A O o o 0 mm mm am an as Hm mm mm am am Hm Hm m1 m1 H1 as am an me me He + 10.x.hvsms n 20 1O.m.nvsms um+qe A0~m~hv5ma "N+A0 AOsHshv&m5 "H+QO 10.m.nvsas m II o Amsm~hv9H9 N I) 0 II o Amsflsbv9H9 H HOV xwuumfinsm mzu mo mucmemam .m .mHm 36 where the sum is over only those wave functions of the two interacting submatrices involved. The energy of a given vibration—rotation state is the expectation value of the Hamiltonian in the represen- tation A(V,J,T): * E(V,J,I) = = Z Z (SYJT> SYJTH,. , (43) 1 1 J 13 where * * * I I Hij = feiH0jdv = (wv w (J,K,y)H0V,w(J ,K ,7 )dV . It is convenient to separate the sum in Eq. (43) into three parts: * VJT 1 E(V,J.I) = E §(Si ) Sj Hij (44) VJT * VJT 3 + S. S. H.. g? 1 ) J 13 VJT * VJT 13 + E §(Si ) Sj Hij I where Hij are the matrix elements of the Hamiltonian in state 1 (01+v2), H?. are the matrix elements of the Ham- 13 O O I 13 iltonian in state 3 (02+v3), and Hij are the interaction matrix elements connecting states 1 and 3. The Hamiltonian may be broken up into its various components such that Eq. (44) becomes (45) E(V,J,I) = X {( (sZJT)*s¥:T[vO (1)+ A(1)(P: )i jy+B”)(P ). i j + C *(1)(P:)i (1) (O ) + (1) (O ). xxxx xxxx ij yyyy yyyy ij fii) (O ). .+ (1) (0 ) ] yy xxyy ij xyxy xyxy ij 2 (SVJT)*SVJT “’33) (3) (3) i j +A (Px)ij+B (P; ). 13 + P-M 37 *(3) 2 (3) (3) + C (Pz)i'+1xxxx(oxxxx)ij+ Tyyyy(oyyyy)ij + (3) (O ) (3) (O ) ] xxyy xxyy ij xyxy xyxy ij 2 (SYJT)SSVJT[Gz(q1P3 9391)i'(Pz) 13 ij + )mbn (.1 + ny(qlq3)i j(PxPy Pny)ij] ’ The three sums in both Eqs. (44) and (45) are not each summed over all i and j. The first is summed over-only the i and j of state 1, the second over only the i and j of state 3, and the third over only the i and j which connect states 1 and 3. To aid in the calculations, we can use the relation for any hermitian Operator F, 2 2 (SVJT)*SYJTP.. = 2 ISYJTIZF.. (46) 1 J 13 . 1 11 1 j 1 VJT * VJT + 2Re S. ) S. F.. . 1% . . 1 Consideration of higher order P6 type distortion terms results in the addition of the four terms of Eq. (21) to both the first and second sums of Eq. (45). The energy including these four terms may be expressed £1)vo(1)+a(1)A(l)+B(1)B(l)+y(l)C*(1) (47) (l) (l) (l) (l) (l) (1) (l) (l) xl xxxx+ 2 Tyyyy+x3 Txxyy+x4 Txyxy E(VJT) = x + + + x(3)v (3)+a(3)A(3)+8(3)3(3)+Y(3)C*(3) O O The superscript 1 is for state (v1+v2) and 3 for (v2+v The a, BI Operators gr» (II) a (n) B Y(n) X(n) PM PM PM PM PM PM PM PM P-M P-M P-M P-M P-M U-M UM UM UM UM UM UM U-M U-M U-M UoM UM U-M (3) (3) T (3)H (3) HJ + x9Gz + xloG Y: and Xi var * VJt (si ) sj (5‘1”?) sxg’JWuij * (SXJ‘) s¥3‘(93)ij * (sgar) 5‘3.”prij VJ? VJT' (Si ) *Sj (Oxxxx)ij * (SXJ‘) s‘j’JWoyyyy)ij * (SXJT) S¥J1(Oxxyy)ij * (ng‘) s-‘J."“(oxyxy)ij (SXJT) *SVJTJ 3(J+1)3 3 * , (SXJ‘) SgJT(P:)ijJ2(J+l)2 (sVJ‘) *ngT(p:)ijJ(J+1) (SXJI)*S¥JT(Pg)ij (SVJT)*S VJT l +X((3) $3) 38 (3) (3) (3) xxxx 2 Tyyyy x3 (3)3 H1(+"7 xY represent the average values of the and are calculated with the expressions xxyy x4 (qlp3- q3pl)-- P 39 VJT * VJT x = {(S. )S. (qq)..(PP-PP).. 10 E j 1 j l 3 13 x y y x l] where n may be 1 or 3 and the sums of “(n)’ 8(n), Y(n)' and xén) through xén) are over only those i and j of the state n, while the sums of x9 and x10 are over only those i and j which connect states 1 and 3. Computer Programs Several more programs were written to aid in the analysis of the two interacting bands vl+v2 and v +v 2 3’ l. SPEC-FIT 1 Ground state constants, upper state constants and band center for both bands, perturbation cons- tants G2 and ny, and all the frequencies of the assigned transitions with their quantum numbers are input. Using the constants that are input, the computer calculates a spectrum and the average values of all the Operators for the upper state levels, and then fits the differences between the observed and calculated frequencies to Eq. (49) to obtain revised values of the upper state con- stants of both bands and G2 and ny. = z [x(n)Av(n)+a(n)AA(n)+B(n)AB(n) o -\) obs calc n o u (n)AC(n) + X i=1 + Y xin’ATi“) <49) 8 + 2 xin)AHin) ] + X9AGZ +xlOAny 1:1 In this equation n is equal to l and 3. 40 A listing of program SPEC-FIT l is in Appendix VI. CORIOLIS Ground state constants, upper state constants and band center for both bands are input along with the perturbation constants G2 and ny. The energies of all the upper state levels of both bands with and without the perturbation terms are calculated by the computer. The perturbed calculation, un- perturbed calculation and their difference are pr- inted out for each level. This calculation allows one to see the effect the perturbation has on the individual levels. Optionally, the matrix elements of the Hamiltonian before diagonalization and the eigenvectors of the diagonalized Hamiltonian may be printed out. CHAPTER IV THE INFRARED SPECTRA OF HZTe Previous spectrosc0pic work on hydrogen telluride has been quite limited. The far ultra-violet absorption spectra of H2Te was reported on by Price, Teegan, and Walsh (1950).27 The work of Rossmann and Straley28 pro- duced a prism spectrum of v2 near 860 cm"1 and a prism- grating spectrum of v1 and v3 which are overlapped near 2070 cm-1. From these they determined approximate values for the molecular constants. In 1964 Hill, Edwards, Rossmann, Rao, and Nielsen29 gave an analysis of a high- resolution (=0.l cm-l) spectrum of v2 from which they ob- tained values for both ground and upper state molecular constants. This work will consider the combination bands v1+v2, v2+v3,l2v1, vl+v3, two bands near 4900 cm-1, and a re- analysis of the fundamental v2. Hydrogen telluride is an oblate planar asymmetric molecule and is the most nearly symmetric member of a series of asymmetric molecules which include H20, H28, and ste. The geometry and normal modes of vibration of H2Te are given in Figs. 4 and 5. As the figure shows, it is a non-linear triatomic molecule with a bond angle 41 42 Fig. 4. Geometry of HZTe / Fig. 5, Normal Modes of H2Te 43 near 90°. Preparation of H Te 2 The gas sample of hydrogen telluride was prepared by reacting powdered aluminum telluride with distilled 30 water as discribed by Moser and Ertl. The reaction is given by AlZTe3 2 2 A diagram of the apparatus used in the production of the + 6H 0 + 3H Te + 2A1(OH)3 . (50) gas is shown in Fig. 6. Small amounts of powdered alu- minum telluride were allowed to fall on frozen distilled water in the reaction chamber. The reaction went slowly at first, but sped up when the heat of reaction' began to melt the ice. The resulting gas was then pas- sed through a drying tube and collected in the liquid nitrogen cold traps. The system was kept under a vacuum to draw the gas from the reaction chamber to the cold traps. Since any H2Te that passed beyond the cold traps would contaminate the oil of the vacuum pump, a 5 gallon jar was evacuated and used as a vacuum in place of the pump. A bypass around the first cold trap was provided in the event the center tube plugged up. The most suc- cessful run produced a 58% yield of 23 grams of H Te from 2 45 grams of AlzTe3 and 80 grams H 0. Care must be ex- 2 ercised when working with HZTe since it is a very poi- sonous gas. It readily decomposes at room temperature or in the presence of H20, 0 or ultraviolet light, so 2 44 SUOMNV I mack. Boo _ (H J O T. pom a/I4 mcflmnflpm . Oom \ 1< .325 \ Q T! a mflma mew: mo coau0260um How mopmummmd .o mam 45 the sample was kept as pure as possible and frozen at liquid nitrogen temperatures until used. Experimental Conditions The infrared absorption spectrum of H Te in the 2 region 1.0 - 3.6u was obtained with the Michigan State University high resolution infrared spectrometer. The spectrometer, which has been discussed in detail by 31 and Keck,32 uses a Littrow-Pfund type nonochromator Aubel with 300 line/mm and 600 line/mm gratings mounted back to back on a turntable. In the 1-3 micron region the source used was a 300 watt zirconium arc and the detector a type N lead sulfide photoconductor cooled by liquid nitrogen. Beyond 3 u a type P lead sulfide detector was used and the source was a zirconium arc box with a sapphire window which transmits radiation with wavelength greater than 3 microns. A small volume coolable multiple traverse 33'34 was used to hold the cell of the J. U. White type gas sample. All spectra were run with the cell maintained at -50° C by circulating methyl alcohol, cooled by heat exchange with dry ice and acetone, through the cooling coils of the cell. The frequencies of the infrared lines were obtained by interpolating between fringes of constant frequency spacing which were recorded simultaneously with the infra- red spectra?5 These fringes were obtained from Edser- Butler bands produced by a Fabry-Perot etalon of =3 mm 46 spacing. The fringes were calibrated by recording both before and after the spectrum of interest, the absorption lines of molecules which have been accurately measured by Rank and co-workers.36'37r38 Infrared Absorption Bands of HZTe Strong absorption bands of H2Te were found near 1 1 2900 cm- and 4050 cm-1, with weaker bands near 4900 cm- . Slow speed slave recordings of these bands are shown in Figs. 7, 8, and 9. Throughout the 2900 cm-1 region may be seen strong absorption lines of the (1-0) band of HCl which was used as a calibration gas before the HzTe spectra and could not be entirely removed from the cell. Fortunately the HCl lines are widely spaced and seldom interfer with the HZTe absorption lines. The high resolution spectra were recorded on long 1 l at 2900 cm“ , , and 0.06 cm"1 at 4900 cm-1. charts with a resolution limit of 0.05 cm- 0.04 cm-1 at 4050 cm"1 Table III gives the eXperimental conditions under which the spectra were recorded. The procedure by which measurments of the lines on the chart were actually made involves photographing the charts and making the measurments on the film by means of avadel semiautomatic digitized film reader connected to an IBM 526 card punch. This procedure is given in some 39 detail by Barnett, and in Ref. 35. To help minimize 47 ...... Exp/._.._... .. {to fl3i.. _ .... .13).... ...... 1.1.4)... .. . ._ ._.._... 3...... .... 9......) ...... ; .... . ... ... ... ...... :.2...32. . . .. ..Iog ......__...._. ...... .... ._.._... EU OOmN Hmmg mBN HI ....3.... ...... ...... ...... 2...... ... ...... ...... .../...); m mo muuommm coHumHOmQ¢ .h .mam ....) O. i 1| 48 ._.._... e, .../...)!‘144... .I 2...... .. .... .... 2...... ...... .3... ...?§£.’._.. (3.4.3.4.... . ...... ...... ...... ,- ......Ifl... ... . .. 4.11 ... ... _. 1.“....,..,....3:....._.H. age ... .44.... .1....1....... 95 121.114.... ......111544 .4413... .3... 3...}. ...)..111}...:..... *1...)..\/».,; \ II}, ...... 9.56.21.11.11... ...:I! 1.... 1.111.211... 1.1.) J . .. __ ...! it .41: ._ .. .. . . . _ . . HIEo omov How: memm mo manommm coaumHOmnd .m .mflm 49 EU ommv H 4 22 3.4:)... . .412... 512534.}. ..4.. 7.21. _ 1:414 4.54.2.4 . .:::). .:::).3 421.4..fl_.).:: 4 4.4..4_:I.J.r:.:3.4..4 44:: .JJ..._4,.,.... 44 .... :.. . . . 4.42.2. : 4.445.. _: .. :.:.4 4: ... _ «231.444.... ...11.42;.34¢J;.4..4.)}...334 3.4.4441: : ::: :44 __::_4::. .:4 .:::: ::::: :::::::::: .:::: ::: :::::...2.2. :: 4:: ::: . EU ommv 4.. . EU oomv 22. 24.2.... 2.1.222}. 2 H1 \1:}ISJ._.\. 1...: 4.4 JJ 21.322145; ... .... _ 3.21.344:2222...4_ : _. 1322.12... 4.4. ..rJ...:.J..:. 4412242434.. .3fi.:.:%_ 4.: 2.31.44.34.13—3; I _._ :.:—J}: $.12 :_ :.: :: :— 32}. .. .... : ._.._... 3.. .2: .4 2. :4 : 4 . . N o 002%..“ Ham: we m mo muuommm coflumHOmnd m Eu oomv H- 50 vmoo.o mmoo.o AH‘o~Hvzom AH.o.NvoNz oo.o mo.o mmao¢.o vmao«.o com com ma ma Zumnm z-mnm uum uumz com m.m m.m Uooml Uooml mm mu w v oomv hHoo.o v0.0 mmHNm.o com ma Zlmnm Uooml vvloa vmoo.o Acumvoo Acumvaom vo.o nmamm.o com vH Zlmnm hNoo.o vo.o hmamm.o oom va Zlmnm cum uumz oom m.m Uooml leoa m omov w.m Uooml m m mmoo.o mmoo.o AH~o.ovzum Acufivaom no.0 mo.o mmhm~.o vmhom.o com com am om mumnm mumnm NOD OHM .UHflN m.m w.o ooomu ooom- mu om p m comm H uflm cofiumunflamu mo cofiUMH>wn cuqumum mmmmo coaumunflamo HIEo ‘cofiusHOmmm IEo .COfiumummwm mmcflum EE\m:H .mcflumnw : .nuofizuflam Hmuuowmm Houowuwa monsom a ‘Hamo :H sumcwq numm musumuwmfiws mmw EE .mHSmmmum mmw .oz uumno HIEo .coflwmm mGOfluflwcoo Hmucmfifiuwmxm .HHH manna 51 any experimental error, at least two recordings of the spectrum in each region were made (three in the 4050 cm-1 region). Each of these charts were individually measured and calibrated, and the frequencies obtained from charts of the same regions were averaged. Isotopic Species of HzTe Tellurium in its natural state has the 6 isotopes 130Te, 128Te, 126Te, 125Te, 124Te, and 122 Te occuring with percent abundance 34, 32, 19, 7, 5, and 2 respectively. The absorption lines of the 6 molecular species of H Te 2 have been well resolved in all the bands recorded. A small region near 4980 cm.1 which clearly shows this iso- 13oTe had tope effect is reproduced in Fig. 10. Since H2 the strongest absorption lines, these were analyzed in detail first. It was then a relatively simple matter to analyze the other molecular species by working with the apprOpriate lines just to the right of the corresponding H2130Te line. Unfortunately, many of these lines, espec- ially those of the less abundent species, were blended or masked by other stronger transitions of another isotopic species, and could not be used in an analysis. 52 Fig Tellurium Isotope 130 128 126 124 122 125 Percent Abundance 34 32 19 5 2 CHAPTER V ANALYSIS OF THE INFRARED ABSORPTION SPECTRA OF HZTe The 2900 cm"1 Region From Eq. (18) and the fact that v of H Te is 2 2 at 860 cm"1 and a survey of the fundamentals v1 and v3 1 indicate they are overlapped near 2070 cm- , it is expec- ted that the combination bands vl+v2 and v2+v3 will both be found in the 2900 cm"1 region. The differences betwe- en the sums of the fundamental frequencies and the obse- rved band centers of the combination bands is due to the anharmonicities in the vibrations and any vibrational resonances that may exist in the band under consideration. Examination of the spectrum near 2900 cm-1 reveals several regularly spaced series of lines proceeding out in both directions from a group of strongly gathered lines near the center of the absorption region. The regularly spa- ced series were assigned as zero series (RRJ(J) and P PJ(J) ), first series (RRJ_1(J) and PP (J) ), second J-l series (RRJ_2(J) and PPJ_2(J) ), etc. lines and the gat- hered lines assumed to be unresolved Q branch transitions of a type A band. Attempts to identify the gathered lines and the first few members of the series which are Split because of the asymmetry, indicated that these 53 54 series and gathered lines were not those of an A band, but those of a type B band where the gathered lines were the RQO(J) transitions. After the band was assigned as a B band (v1+v2) with band center at 2911.42 cm-l, most of the stronger and many of the weak lines in this region were identified and assigned to that band. After most of the transitions of the B band had been identified, several weaker series of unassigned lines were noted which even- tually led to the identification of the type A band (v2+v3) with band center at 2915.97 cm-l. This band was found to be much weaker than v1+v2 and many lines were masked, however, enough lines were identified to allow an analysis. The ground state combination differences formed from the observed lines in these two bands were combined with l and used in a those formed from the bands near 4050 cm- ground state analysis. Although, as noted earlier, the upper states of vl+v2 and v2+v3 perturb each other, the initial analyses of both these upper states were made ignoring the inter- action and the bands were fit separately to Eq. (32) holding the ground state constants obtained from the ground state analysis fixed and varying only the upper state constants. Even though the fits by this method were poor they allowed many assignments in both bands to be made. From Eqs. (37) and (40), initial estimates of 55 G2 and ny were made which were used along with the upper state constants from the single band fits as starting values to simultaneously fit the bands 0 +v and v +v3 to Eq. (49). l 2 2 The simultaneous analysis of the two bands including the the interaction terms gave a very good fit and helped to identify many more lines that were badly perturbed. One of the most notably affected series of lines were the 1+V2° Although these lines were strong and easily identified, they fit very poorly lines of the PQl(J) series of v in the single band fit in which the interaction was ig- nored, the deviations being as large as 0.5 cm-l. When these same lines were used in the perturbation analysis, they very well, with most deviations no larger than 0.01 -1 cm . The results of the simultaneous analysis of v +v l 2 and v2+v3 are given in Tables IV, V, and VI. The ranges of the constants are for a simultaneous confidence inter- val of 95% which is about 6 times the standard error in these fits. The constants in the tables are given to six numbers past the decimal for H2130Te so that future calculations will agree with those given in the append- icies. The significant integers may be determined from the simultaneous confidence intervals. All fits were made holding the ground state constants fixed at the values obtained from the ground state analysis. The assigned transitions of vl+v2 and v2+v3 for H2130Te are listed in Appendix II, and Appendix V lists the calculated upper State energy levels for these two bands both with and 56 130 Table IV. Molecular Constants of H Te for -l the States vl+v2 and v2 3, (cm ) State v1+v2 02+v3 Vo 2911.4157 i0.0074 2915.9697 10.019 A 6.347845 t0.0018 6.319069 10.0047 B 6.136936 10.0017 6.165087 10.0042 c* 2.960471 10.00035 2.975441 i0.0011 T -0.003776 10.00013 -0.004229 10.00083 aaaa Tbbbb -0.003125 t0.00008 -0.003736 10.00042 T +0.003ll3 10.00006 +0.003769 10.00070 aabb 1 -0.000953 10.00006' -0.000471 10.00028 abab HK -34x10"9 13x10-9 -l88x10-9 i96x10-9 K +0.876 +0.908 No. of pts. 199 47 G2 +0.025882 10.033 G -0.164l34 i0.0031 XY Total No. 246 of pts. Std. Dev. 0.007 57 128 Table V. Molecular Constants of H2 Te for the States v1+02 and 02+v3. State vl+vz v2+v3 V0 2911.583 10.010 2916.146 i0.027 A 6.3488 t0.0022 6.3176 10.0053 B 6.1369 10.0019 6.1659 10.0050 c* 2.96089 10.00048 2.9755 t0.0018 T -0.00376 10.00015 -0.00376 10.00097 aaaa Tbbbb -0.00312 t0.00009 -0.00356 10.00046 T +0.00311 t0.00007 +0.00351 t0.00090 aabb 1 -0.00096 10.00006 -0.00063 t0.00036 abab HK -37x10'9 15x10-9 -181x10'9:262x10‘9 K +0.875 +0.909 No. of pts. 167 35 G2 ' +0.033 10.036 G -0.1651 10.0034 XY Total No. 202 of pts. Std. Dev. 0.008 58 Table VI. Molecular Constants of H2126Te for the Statesvl+v2 and 02+v3. State vl+v2 v2+v3 vo 2911.752 10.008 2916.318 i0.037 A' 6.3506 10.0019 6.3216 10.0070 B 6.1378 10.0019 6.1662 i0.0052 * C 2.96171 10.00048 2.9762 i0.0028 T -0.00382 10.00014 -0.0041? 10.00100 aaaa Tbbbb -0.00309 10.00007 -0.00353 10.00050 Taabb +0.00311 i0.00007 +0.00342 t0.00160 T -0.00099 t0.00007 ' -0.00053 10.00081 abab -9 -9 - -9 HK -42x10 t6x10 -118x10 t500x10 K +0.874 +0.90? No. of pts. 139 20 G2 +0.04? 10.030 G -0.1665 10.0029 XY Total No. 159 of pts. Std. Dev. 0.006 59 without the interaction terms and the difference. This allows one to see how much each level is perturbed beca- use of the interaction of the two bands. It can be seen for high J low K levels, the perturbation can contribute as much as several cm-1 to the energy. The 4050 cm"1 Region It is expected that the bands 201, vl+v3, and 2v3 will be near the 4050 cm-1 region. Darling and Dennisonl have shown that a vibrational resonance can exist between states of the type (vl,v2,v3) and (v112,v2,v3*2) which tends to push the two states apart. In analogy with H25, where the bands 201 and 0 +03 were separated by 1 1 (203 was not observed)40, and HZSe21 where Zv and vl+v3 were separated by 2.04 cm-l, the two bands of 130 1 H2 Te, 201 at 4062.89 cm‘1 and 01+03 at 4063.37 cm“ , were identified. The band 203 of H2Te was not observed. The fact that the two bands were very close together and 2.24 cm_ 1 that the zero, first, second, etc. series within each band were nearly coincident, combined with the isotope effect to give the striking feature in this region of strong, badly overlapped series of lines proceeding out in both directions from the band center. Because of this, many lines were blended or masked and could not be used in the analysis. Between these large groups of lines were found weaker lines that were identified as the Q branches.‘ 60 The ground state combination differences formed from the observed transitions listed in Appendix II. were com— bined with those formed from the bands near 2900 cm-1 and used in a ground state analysis. As noted earlier, there is an interaction between the upper states of 201 and vl+v3, and also between vl+v3 and 293. Because of this, an analysis of the upper states of these bands should simultaneously include all three. Unfortunately, 293 of H2Te was not observed and therefore could not be used in any such analysis. It was expected 1) and 203 was expected to be about 80 cm-‘1 away, the effect since 201 and vl+v3 were so close together (20.48 cm- of the interaction between 203 and vl+v3 would be much smaller than that between 201 and vl+v3 and therefore the effect of 203 could be ignored and the two bands 2v and l vl+v3 treated as two interacting bands. The initial analysis of the upper states of 201 and vl+v3 ignored all interactions and each band was fit separately to Eq. (32), holding the ground state constants fixed and varying only the upper state constants. By this method many of the lines, such as the zero series and first members of the Q branches which were least affected by the interaction, were assigned and approximate values of the upper state constants were obtained. These con- stants were used as starting values along with the per- turbation terms G2 and ny obtained from the analysis of the 2900 cm.1 region in a fit of the spectrum of 2vl and 61 01+03 to Eq. (49). When the two bands were fit together with the interaction term included, many lines that were badly perturbed were identified in both bands. A few of the upper state energy levels were extremely sensitive to the values of the constants used, and a small change in the value of a constant resulted in a large change in the energy of that level. Any line that involved such a level was not included in the fit until near the end of the analysis when the constants used were almost the final ones.. The results of the simultaneous analysis of 291 and vl+v3 are given in Tables VII , VIII , IX , X , and XI. The ranges of the constants are for a simultaneous confidence interval of 95% which for these fits is about 6 times the standard error. All fits were made with the ground state constants held fixed at the values obtained from the ground state analysis. The definitions of G2 and ny (Eqs. (3?) and (40) ), show they are not vibrationally dependent, so one would expect to obtain the same values for these constants from the analysis of vl+v2 and 02+v3, and from the analysis of 291 and 01+03. Different values of these constants were obtained from the bands in the two regions as can be seen from Tables IV and VII. One reason for this may be because the effect of the interaction of 203 with vl+v3 was ignored in the analysis of 4050 cm.1 region. Exam- ination of the definition of Gx in Eq. (37) shows that Y its theoretical value is relatively insensitive to the 62 130 Table VII. Molecular Constants of H2 Te for the States 201 and vl+v3r State 2v v1+v3 Vo 4062.8902 i0.011 4063.3743 10.012 A 6.068978 10.0045 6.063802 10.004? B 5.940074 t0.0046 5.946441 10.0046 3% C 2.956935 10.00044 2.959565 i0.00052 T -0.003281 10.0001? -0.003351 t0.00028 aaaa Tbbbb -0.002679 10.00018 -0.002805 i0.00014 r +0.002326 t0.00007 +0.002405 10.00013 aabb 1 -0.000508 10.000062 -0.000445 t0.00013 abab HK -31xlo"9 t6x10-9 -22xlo‘9 t6xlo'9 K +0.91? +0.924 No. of pts. 214 187 G2 +0.011163 10.0059 G -0.229786 50.0018 XY Total No. 401 of pts. Std. Dev. 0.011 63 Table VIII. Molecular Constants of H2128Te for the States Zvl and vl+v3. State 2vl vl+v3 v0 4063.109 10.012 4063.594 10.014 A 6.0695 10.0056 6.0636 10.005? B 5.9413 10.0056 5.9478 t0.0053 0* 2.95761 10.00059 2.96078 10.00076 Taaaa -0.00325 10.00022 -0.00312 10.00034 Tbbbb -0.00269 10.00021 -0.00282 10.00016 Taabb +0.00229 10.00009 +0.00226 t0.00016 Tabab -0.00048 10.00008 -0.00050 i0.00015 HK -31xlo'9 110x10'9 -26x10‘9 1‘20x10'9 K +0.9l8 +0.925 No. of pts. 179 144 G2 +0.0134 10.0066 ny -0.2303 10.0022 Total No. 323 of pts. Std. Dev. 0.011 64 Table IX. Molecular Constants of H2126Te for the States 201 and vl+v3. State 2V1 vl+v3 Vo 4063.340 10.016 4063.832 t0.017 A 6.0685 10.0085 6.0630 10.0078 B 5.9448 10.0081 5.9503 i0.0075 c* 2.95846 10.00091 2.9599 10.0012 Taaaa -0.00323 10.00034 -0.00308 10.00044 Tbbbb -0.00283 10.00033 -0.002?9 10.00025 Taabb +0.00235 £0.00011 +0.00229 t0.00022 Tabab -0.00050 10.00010 -0.00064 10.00021 HK -45x10‘9 1255410"9 --30x10‘9 136x10‘9 K +0.920 +0.92? No. of pts. 134 113 G2 +0.0166 i0.0077 ny -0.2317 10.0028 ‘Total No. 247 of pts. Std. Dev. 0.011 65 125 Table X. Molecular Constants of-H2 Te for the States 201 and vl+v3. State 20 v1+v3 “6. 4063.453 $0.031 4063.948 $0.011 A 6.065 $0.010 6.060 $0.010 B 5.950 $0.010 5.955 $0.010 C* 2.9592 $0.0020 2.9596 $0.0019 T -0.00307 $0.00052 -0.00305 $0.00064 aaaa Tbbbb -0.00315 $0.00058 -0.00296 $0.00051 T +0.00252 $0.00046 +0.00234 $0.00029 aabb T -0.00068 $0.00023 -0.00057 $0.00023 abab HK -68xlo'9 1141x10'9 -20x10"9 1100x10'9 K +0.925 +0.931 No. of pts. 30 57 G2 +0.021 $0.011 XY Total No. 87 of pts. Std. Dev. 0.005 66 Table XI. Molecular Constants of H2124Te for the States 291 and vl+v . 3 State 2vl v1+v3 vo 4063.588 $0.019 4064.068 $0.008 A 6.071 $0.012 6.068 $0.011 B 5.943 $0.011 5.948 $0.011 c* 2.9582 10.0007 2.9605 10.0010 Taaaa The distortion terms were held constant at the ground state values in this fit. Tbbbb Taabb Tabab HK K 0.919 0.924 No. of pts. 39 46 G2 +0.0150 $0.0085 ny -0.2305 $0.0050 Total No. 85 of pts. Std. Dev. 0.006 67 value of y and therefore a fairly accurate estimate of its size can be made by substituting reasonable values of ”1' w3, A Be’ and C8 and most any value of y in er this equation. Doing this, we find theoretically, for a y of 45°, ny z -0.11. In all cases the experimental. value obtained in the least squares fit was much larger than this by 50%-100%. The theoretical value of G2 is quite sensitive to the value of y, so without knowing y fairly accurately, a comparison between the theoretical value and eXperimental value cannot be made. The 4900 cm.1 Region Consideration of the sums of the fundamental vibra- tion frequencies and the Darling-Dennison Resonancel between states of the type (v1,v2,v3) and (v1$2,v2,v312) +v and v +v +0 to be 1 2 l 2 3 overlapped in the 4900 cm-1 region. Examination of the~ leads one to expect the bands 2v absorption spectrum in this region revealed what appeared to be a single band with the zero, first, second, etc. series of the R and P branches distinct and well separated and a few Q branches between these series.” Attempts to form ground state combination differences from these ser- ies which agreed with those combination differences formed from the bands in the other regions failed. However, it was possible by using ground state combination differences to identify a few RQ lines from the assigned RR lines and to identify a few PQ lines from the assigned PP lines. 68 It was concluded that the absorption lines observed were actually due to two bands separated less than 0.2 cm_l, one band at 4891.7 cm-1 having strong transitions with AK=+l, and very weak AK=-l transitions, and the other at 4891.9 cm.1 having strong AK=-l transitions and very weak AK=+1 transitions. As noted earlier, there is an interaction between the states 2v1+v2 and vl+vz+v3, and also between v +v +0 1 2 3 and 02+293. The two bands were assigned as 20 +v and l 2 v1+v2+v3, and attempts made to analyze the two bands together, as was done in the 4050 cm.1 region, using the few identified lines were not successful, so the analysis was not carried further. Ground State Analysis of H Te 2 As mentioned before, whenever possible it is generally better to analyze the ground state using ground state com- bination difference fits to Eq. (34) instead of line fits. An analysis by this method eliminates the upper state energy levels, which may be perturbed, and the ground state combination differences from all bands may be simul- taneously used. The analysis of the ground state using combination differences may proceed before or at the same time the upper states are being analyzed, although final values of the ground state constants are not obtained until all possible assignments in all the bands have been made and combination differences formed from them. The 69 ground state combination differences are very useful in assigning new lines and verifying the assignments of others already identified. Thus, the analysis consists of a series of ground state combination difference fits and line fits, each time identifying more lines and forming more combina- tion differences from these lines until as many assignments as possible are made. The ground state constants obtained by Hill 33 21.29 were used for starting values. As many ground state combination differences as possible were. formed from the four bands analyzed, and each was given a weight depending on the weights of the two lines used to form it. If the same combination difference was formed in more than one band, a weighted average was taken and given a weight equal to the sum of the separate weights. In this manner the ground state combination differences were formed and fit to Eq. (34). Tables XII, XIII, and XIV give the results of these fits. The ranges of the constants are for a simultaneous confidence limit of 95%, which is about 4 times the standard error in these fits. The observed and calculated ground state combination differences of H2130 Te are compared in Appendix III. It was not necessary to include all four H terms to get a good fit, but if at least one of them was allowed to vary, the fit was improved. It was decided to include only HK, although the choice was somewhat arbitrary as to which H term to use because, for our data mainly lines with K equal to or slightly less than J are observed, 70 130 Table XII. Ground State Molecular Constants of H2 Te Taaaa Tbbbb Taabb Tabab No. of pts. Std. Dev. 130 H2 6.247489 6.094834 3.035999 -0.003139 -0.002791 +0.002285 -0.000533 9 -20x10’ +0.905 218 0.006 Te $0.00049 $0.00048 $0.00024 $0.000030 $0.000034 $0.000046 *0.000025 112x10"9 Values quoted by Hill‘gglgl.29 6.2486 6.0970 3.0361 $0.0014 -0.0025 $0.0014 -0.0032 $0.0010 +0.00219 $0.00035 +0.906 118 0.028 Table XIII. 71 Ground State Molecular Constants of Te and H2126Te H2128Te H2126Te A 6.24899 10.00053 6.25162 10.00073: B 6.09460 10.00051 6.09470 10.00053. c 3.03642 10.00025 3.03690 10.000213 Taaaa -0.003146 10.000034 -0.003273 10.000099 Tbbbb -0.002769 10.000034 -0.002748 10.000051 Taabb +0.002268 10.000047 +0.002312 10.000054 Tabab -0.000531 10.000026 —0.000555 10.000026 HK -21x10‘9 1:12:410‘9 --23xlo‘9 112x10'9 K +0.904 +0.902 No. of pts. 176 136 Std. Dev. 0.006 0.005 72 Table XIV. Ground State Molecular Constants of H Te and H 124Te. H2125Te H2124Te A 6.2514 $0.0018 6.2533 $0.0021 B 6.0958 $0.0020 6.0943 $0.0018 C 3.03712 $0.00059 3.03722 $0.00014 Taaaa -0.00315 $0.00036 -0.0033l $0.00031 Tbbbb -0.00288 $0.0002? -0.00271 $0.00025 Taabb +0.00236 $0.00021 +0.00228 $0.00014 Tabab -0.00059 $0.00012 -0.00054 $0.00009 HK -41x10'9 142x10'9 -24x10"9 132x10“9 K +0.903 +0.901 No. of pts. 49 44 Std. Dev. 0.005 0.004 73 giving a high correlation between the quantum coefficients of the H'S and therefore, the effect on the energy levels of any of the H'S is about the same. Reanalysis of 02 Because of limited computer programs available at that time, the analysis of 02 by Hill gt 21°29 used only transitions involving Jle even though quite a number of lines were identified with J>12. For this reason it was decided to reanalyze the upper state of 92 including all the identified transitions. The ground state constants obtained from the analyses of the other regions were used and were not varied. The spectra had a resolution limit $0.10 cm.1 and the various isotOpes were not resol- ved on this record.’ 92 is a type B band and fortunately the upper state is not perturbed so the spectrum was fit to Eq. (32). The results are given in Table XV. Vibrational Analysis The band center of a particular state may be written as a function of the normal frequencies mi and anharmonic constants xik' From Eq. (18), in the absence of a vib- rational resonance, vo(vl,v2,v3) = G(vl,v2,v3) - G(0,0,0) (51) l E viwi + E g Xik[vivk + §(Vi+vk)] . Expanding these sums for the bands that are available 74 Table XV. Molecular Constants of HzTe for the State v2. Values obtained Values quoted by from this analysis Hill 22 3E.29 v0 ' 860.765 $0.022 860.79 $0.01 A 6.4296 $0.0050 . 6.4306 B 6.2259 $0.0048 6.2258 C 3.00555 $0.00052 3.0064 $0.001? Taaaa -0.00379 $0.00056 -0.0034 $0.0016 Tbbbb -0.00318 $0.00040 -0.0029 $0.0013 Taabb +0.00314 $0.00016 +0.00257 $0.00046 Tabab -0.00095 $0.00014 -0.00088 $0.00036 HK -46x10‘9 110x10”9 K +0.880 +0.880 No of pts. 170 96 Std. Dev. 0.026 0.029 75 we have 00(0,1,0) = 02 + 2x22 + 2x12 + %x23 (52) vo(l,1,0) = ml + 2xll + 02 + 2X22 + 2x12 + %x13 + %x23 00(0,1,1) = 02 + 2x22 + w3 + 2X33 + %x12 + %xl3 + 2x23 00(1,0,1) = wl + 2xll + m3 + 2x33 + %X12 + 2Xl3 + %X23 , and from Eq. (20) we have for 201, 00(2,0,0) = %[(2wl+6xll+X12+X13)+(2w3+6x33+X13+X23)] - %[4y2+{(261+6x11+x12+x13)-(203+6x33+x13 +x23)}2 1/2 Unfortunately the above band centers that have been observed are not enough to solve for the constants mi and xik’ but if additional data is sometime obtained, it may be possible to solve for some of these constants individually or at least more useful combinations of them. This additional data could come from a positive identifi- l cation and analysis of the bands near 4900 cm- , and from an analysis of the fundamentals vl and v which have 3 been observed overlapped near 2070 cm-1. Besides yielding valuable information for a vibrational analysis, v1 and v3 perturb each other through the interaction term Eq. (41) and they could be simultaneously analyzed as two inter- acting bands in the same manner as vl+v2 and 02+v3. CHAPTER VI STRUCTURE CALCULATIONS It can be seen from the definition of A, B, and C in Eq. :10) that by the analysis of the prOper set of 3 bands one can solve for the 0' and consequently the equilibrium constants Ae, Be' and Ce' With the equili- brium constants available, the equilibrium structure may easily be calculated.‘ The constants obtained from the analysis of the ground state and the bands v2, vl+v2, vz+v3 and 01+03 are sufficient to allow a least squares analysis determination of the 0?, and a?.. In principle the-0E cannot be determined from these bands since the analysis of the upper states of the bands 01+02, 02+03, and vl+v3 yields C* instead of C because of the Coriolis interaction. However, since the Coriolis perturbation coefficient Gz determined in the fits is so small, it may well be possible that C*$ C for the states analyzed, then the a? may be determined and Ce calculated. A test of the validity of this would be a comparison of the calcul- ated quantities Ce and AeBe/(Ae+Be) which, because of the 2+1: From Eq. (10) we can determine the relations, planarity condition I: = I should be equal. 1 A Ae = A(0,0,0) + 52 6i (53) 76 77 and +aA A A A(0,0,0)-A(vl,v2,v3) = a v1 + a 3v3 , (54) 1 2V2 with similar relations for B and C. The constants from the ground state and the four bands mentioned were used in a least squares fit to Eq. (54) to determine the 0?, and similarly, a? and 0% assuming C*= C. The results of this fit are given in-Table XVI along with the equilibrium constants Ae’ Be’ Ce calculated with Eq. (53) and the equilibrium moments of inertia calculated from Ae, Be’ and Ce through Eq. (11). The ranges given for the “i deter- mined in the fit are the-standard errors. The equilibrium structural parameters re and 0 [see Fig. 4.] listed in Table XVI were calculated using the equations, r = [(1/2m){1§ + [(2m/M) + 1 11:}11/2 e (55) tan(§) = [IS/{1:[(2m/M) + 1]}11/2 where m and M stand for the masses of the hydrogen and tellurium atoms respectively. In these calculations, the constants from the 130 isotope of HZTe were used, except for the constants from 02 where the isotOpes were not resolved. This is valid since the 01 are approximately equal for each isotOpe i.e.; iagz 1300?, iag= 1300?, iaCz 130 C J ajwhere i is equal to 128, 126, 125, 124, and 122. Examination of the equilibrium constants obtained 1 . -1 shows thatCe and AeBe/(Ae+Be) differ by only 0.001 cm which tends to suggest the validity of the assumption 1: C 2 C. 78 Table XVI Equilibrium Structure of H2Te a? +0.0787 .0.002 cm'1 a? +0.0885 10.0004 cm'1 A . B 02 -0.1793 0.002 62 . -0.1306 10.0003 A 1 B 03 +0.1064 0.003 03 +0.0602 10.0004 Std. Dev. 0.002 Std. Dev. 0.0004 -1 -l A 6.2504 cm B 6.1038 cm 8 e 1: 4.4783 x 10’409 cm2 1: 4.5858 x 10‘409 cm2 * Assuming C = C 0E +0.0454 10.0004 cm'1 0% +0.0302 10.0003 G? +0.0308 10.0004 Std. Dev. 0.0004 -1 c 3.0892 cm 6 I: 9.0608 x 10'409 cm2 . 513' (re)H_Te = 1.646 A 0 = 90° 38' CHAPTER VI I CONCLUSION The development of the vibration-rotation Hamiltonian for a planar asymmetric non-linear XYX molecule has been outlined and energy expressions by which energy levels. and other quantities, useful in an analysis of the Spectra of such a molecule, may be calculated have been given. Since the upper vibrational states of some of the bands may interact through a Coriolis type resonance, a modified Hamiltonian was given which included the necessary inter- action terms for a description of these states. High resolution (10.05 cm-l) calibrated recordings of the vibration-rotation absorption spectra of HZTe 1 1 were obtained near 2900 cm- , 4050 cm- 1 , and 4900 cm’ . The frequencies of all individual absorption lines in these regions were measured from these recordings. A method was outlined by which the theoretical energy expressions could be used to analyze spectra, and was applied in the analysis of H2Te. Computer programs were written which would calculate energy levels, line freq- uencieslperform least squares fits of ground state comb- ination differences or line frequencies and make a simul- taneous least squares fit of the upper states of two bands 79 80 which perturb each other through a Coriolis like inter- action. The results of the ground state analysis yielded the ground state constants A, B, and C, centrifugal distortion constants (taus and HK) for the molecular species H2130Te, 2128Te, H2126Te, H2125T 124T state analysis came the molecular constants, centrifugal H e, and H2 e. From the upper distortion constants, and band centers for the bands 02, 01+02, 02+03, 201, and 01+03,.and the perturbation coef- ficients G2 and ny of the interacting states. The upper states of the species H2130Te, H2128Te, H2126Te, H2125Te, 124 2 while the analysis of the upper states of vl+02 and v2+v3 included the species H2130Te, H2128Te, and H2126Te. and H Te were all analyzed in the bands 201 and vl+v3, Finally, by a proper combination of molecular constants from the different vibrational states, the equilibrium constants Ae, Be’ and Ce were obtained, from which the equilibrium structure (re and e) of H2Te was calculated. 10. 11. 12. 13. 14. 15. 16. REFERENCES B. T. Darling and D. M. Dennison, Phys. Rev. 21, 128 (1940). M. Goldsmith, G. Amat and H. H. Nielsen, J. Chem. Phys. 24, 1178 (1956). R. C. Herman and W. H. Shaffer, J. Chem. Phys. 16, 453 (1948). L. E. Snyder, forthcoming thesis, Michigan State University, (1967). K. T. Chung and P. M. Parker, J. Chem. Phys. 28, 8 (1963). J. M. Dowling, J. Mol. Spectroscopy 6,550 (1961). T. Oka and Y. Morino, J. Phys. Soc. Japan 16, 1235 (1961). T. H. Edwards, N. K. Moncur, and L. E. Snyder, J. Chem. Phys. 46, 2139(1967). R. A. Hill and T. H. Edwards, J. Chem. Phys. fig, 1391 (1965). R. A. Hill and T. H. Edwards, J. Chem. Phys. 14, 203 (1964). K. T. Chung and P. M. Parker, J. Chem. Phys. 43, 3896 (1965). E. B. Wilson, Jr., J. Chem. Phys. 4, 313 (1936). B. S. Ray, Z. Physik. 18, 74(1932). G. W. King, R. M. Hainer, and P. C. Cross, J. Chem.‘ Phys. 11, 27 (1943). H. H. Nielsen, The Vibration-rotation Energies of Molecules and their Spectra in the Infra-red, Handbuch der Ph sik, Vol. XXXVII/l (Springer-Verlag, BerIin, 1959), p. 247. H. C. Allen and E. K. Plyler, J. Chem. Phys. 35, 1132 (1956). 81 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 82 L. Pierce and N. DiCianni, J. Chem. Phys. 38, 730 (1963). K. T. Chung and P. M. Parker, J. Chem. Phys. 43, 3865 (1965). F. X. Kneizys, J. N. Freedman and S. A. Clough, J. Chem. Phys. 44, 2552 (1966). J. K. G. Watson, J. Chem. Phys. 46, 1935 (196?). R. A. Hill, Thesis, Michigan State University (1963). H. C. Allen, Jr. and P. C. Cross, Molecular Vib- Rotors, John Wiley and Sons, New York, 1963, pgs. I78 and 207. N. W. Naugle, N.A.S.A., Manned Spacecraft Center, Houston, Texas. M. A. Efroymsen, Mathematical Methods for Digital Computers, Ralston and Wilf (Eds.), New Yor ,' 0, p 191. H. H. Nielsen, Revs. Mod. Phys. 23, 90 (1951). S. A. Clough and F. X. Kneizys, J. Chem. Phys. 11, 1855(1966). W. G. Price, J. P. Teegan, and A. D. Walsh, Proc. Roy. Soc. A201, 600 (1950). K. Rossman and J. W. Straley, J. Chem. Phys. 34, 1276 (1956). R. A. Hill, T. H. Edwards, K. Rossman, K. Narahare Rao, and H. H. Nielsen, J. Mol. Spectry. 14, 221 (1964.. L. Moser and K. Ertl, Z. Anorg. Allgem. Chem. 118, 269 (1921). J. L. Aubel, Thesis, Michigan State University, (1964). D. B. Keck, J. L. Aubel, T. H. Edwards, and C. D. Hause, 1966 Symposium on Molecular Spectroscopy and Structure, Columbus, Ohio. J. U. White, J. Opt. Soc. Am. 32, 285 (1942). T. H. Edwards, J. Opt. Soc. Am. 21, 98(1961). 35. 36. 37. 38. 39. 40. 83 K. N. Rao, C. J. Humphreys,.and D. H. Rank, Wave- len th Standards in the Infrared, Academic Press, New York: 1966. D. H. Rank, D. P. Eastman, B. S. Rao, ant T. A. Wiggens, J. Opt. Soc. Am. 52, l (1962). D. H. Rank, G. Skorinko, D. P. Eastman, and T. A. Wiggins, J. Mol. Spectry. 4, 518 (1960). D. H. Rank, D. P. Eastman, B. S. Rao, and T. A. Wiggins, J. Opt. Soc. Am. 51, 929 (1961). T. L. Barnett, Thesis, Michigan State University, (1967). H. C. Allen and E. K. Plyler, J. Chem. Phys. 32, 1104 (1954). APPENDIX I NONVANISHING MATRIX ELEMENTS OF THE HAMILTONIAN OPERATORS The nonvanishing matrix elements of the Hamiltonian operators in the symmetric t0p basis 0(J,K) are given below. f = J(J+1) Y = 2 _ l — -2- = Y y Z x x x $%[f-K(K$l)]1/2 §tf-K x = - X K2 2 2 %[3f2-2f-6fK +5K +3K4] 1/2 -%[2f—K2-(K$2)2]{[f-K(K$1)][f-(K$l)(K12)]} §g{tf-K(K11)1tf-(K11>(K12)1[f-(K12)(K1311 [f-(K.3)(K14)]}1/2 84 85 = y x Y Y = K = = XY yx 4 X IK$4> K2(f-K2) -%[K2+ 2 2 [£2+2f-+2fK -5K +K4] bIH -%{[f-K(K11)1[f- = %(f-K2) K = 1, 1 2 1 <,§(1111_l)lPx|/§(wltw_l)> K g 0, l 2 l '2'(f-K 2* If 1 2 1 _ WEEW’K’w-K)lPx'./2(“’K+2*“’-K-2)> ‘ -%{[f-K(K+l)][f-(K+l)(K+2)]}1/2 86 K = o, K751,K7!0, = %(f-K2) K = 1, ‘/%(¢1*W-1)|P§'/%‘¢1‘¢-1)’ = 2(2'K2)*%f K g 0, K = 0, <¢0|Pi|/%(w2+w_2)> = ‘< P: > = K2 K ¢ 0, K g 1, K g 2' 2 2 = %[3f2-2f-6fK +5K +3K4] K =~0I = $[3f2-2f] - %[(3f2-8f+8)12f(f-1)] A Ema A e- [.1 H- -e I H v ’U x.> Ens A e- [_I 5+ 6- I l'-' V I %[3f2-26f+68]$%3f(f-2) K # 0, K g 1, l 4 1 87 K 1 0, ./%(¢K1¢_K)|p:|/%(¢K+41¢_K_4)> = (1/16){[f-K(K+l)][f - = 8/%{f(f-2)(f-6)(f-12)}l/2 K#0.K;€1,K¢2, = < P: > K = o, 4 4 <¢0|Pylwo> = (WOIPXIwO> K = 1, < l(¢1*¢_1)lP;I/%(wl$w_l)> = %[3f2-8f+8$2f(f-1)] K = 2, 4 <1/%(w2tw—2) IPy|é(W22W_2)> = < P: > K110.K11. 1 4 1 _ 4 "' "< PX > K = o, = -< P: > 88 K 1, = %{(£-2)(f-6)}1/2[(2£-10)1%f] K 1 0, = < P: 2 K = 0, <¢0|P;I/%(w4+W_4)> = < P: 2 1 4 1 4 = K K P 1, = K2(f-K2) K = 1, = (f-l)1%f = -/2[f(f- 2)] 1/2 K 2 1,‘ 1 2 2 2 2 = K (f—K ) K = 1, = (f-l)*%f 89 K ¢ 0, = -< IP2P2+P2 zP2| > K g 0, K A 2, = %[f2+2f-2fK2-5K2+K4] K = 0, <00|Pipi+Pipilwo> = %[f2+2f] K = 2, = %(f2-6f-4)1%f(f-2) K 1 1, = 0 K = 1, = 1%f{(f-2)(f-6)}1/2 K P 0, = -§{[f-K(K+l)[ [f-(K+l)(K+2)][f-(K+2)(K+3)][f-(K+3)(K+4)]} 1/2 K = 0, <¢0|P2 xPy+Py 2P2|,- = 47-{f(f- -2)(f- 6)(f- 12)} 1/2 = K K = 1, f NI P- 1 1 _ _ t 90 K g o, < 1(W 2w )IP P +P P I 1’(11: w )> = /2 K -K x y y x /2 K+2‘F -K-2 ' 1/2 + 1tf-K(K+1)] 1/2 [f-(K+l)(K+2)] K = o, 1 _ 1 _ 1/2 - 12[f(f 2)] K > 2, 1 1 _ _ ' 1/2 -1[f-K(K-1>1 [f-(K-1)(K-2)]1/2 APPENDIX II 130 ASSIGNED LINES AND OBSERVED FREQUENCIES OF H2 Te FOR THE STATES vl+v2, v2+v3, 2vl, AND v1+v3 The observed frequencies of H2130Te are compared with the calculated frequencies, where the ground state rotational energy levels are calculated with Eq. (24) and the upper state energy levels with Eq. (47). 91 ASSIGNED LINES 0F H 13075 FOR nu¢aaa~uo+ X I X *0- NDHW‘P‘RJFJOF‘AJHJDF‘RDPJDCDHiOW‘CDH‘DO‘C3HH3h.CDDHDP‘OM*CDH43hficHACDHWDF‘C’Hwatb 0ED\IO\IJMHEDNHJ ICIICCOIIIIQOIIICCHCfllfllllllllitlllfllllllllIJIIIIC-‘II L. 0WD\IOWJJBOHUF‘FMD X l x O PNNNJ-‘NPNPNPNFMFPDHDFDPOPDPOHDHDHDHOMDFDPOFDHCPO 2 ‘00D‘JO\3JHUIJF*H43 PmuwAP-M~ i)O‘iOJIJMHNH‘CI.CdNHACD0MD\JO\3OWdNH‘ u+bflh hJHWHPMo 92 095 2920.733 2926.437 2926.610 29329283 2937.993 2943.338 2948.640 2953.793 2958.798 2963.646 2968.353 2972.907 2977.309 2981.571 2985.681 2989.640 2993.450 2997.119 2902.251 2896.018 2889.920 2883.534 2877.018 2870.350 2863.539 2856.585 2949.490 2842.252 2834.878 2827.378 2819.740 2811.970 2933.545 2938.981 2945.175 2950.865 2956.458 2961.882 2967.168 2972.301 2977.306 2982.121 2986.813 2991.349 3000.028 2889.780 2884.439 vl+v2 OHS-GALE 0.011 00.002 0.006 09009 00007 ”0.001 90.001 90.000 0.002 10.004 90.003 I0.007 80.018 00.013 900013 90.012 '00003 00027 '900035 I00008 00007 .09002 01004 00005 09006 0.007 0.006 80.001 ‘00009 009011 000021 90.036 09007 90.000 00002 90.003 00006 00003 00010 01011 00032 00008 00007 000006 00011 000010 100003 NY 0.00 1.00 1.00 0.40 0.40 1.00 1.00 0.40 1.00 1.00 1.00 0.40 0.40 1.00 0.40 0.40 0.40 0.40 0.00 0.01 0.40 1.00 0.01 0.40 0.40 1.00 1.00 0.40 0.01 0.40 0.40 0.00 1.00 0.40 0.40 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 0.01 0.40 1.00 03“.) 3.3.10 ‘GIJLOJHOIGhbfiibfidlb‘CdJMNIIOLOCHNJGHDOINWH“OOH““OOH“GdNHDGdNJGFUGINMHOINW‘RDFWUF‘NDHJONIH H». ocn~aoxnauunapr.:rcun~aoxnauua:m Ht‘h‘ rsawunla (HhihfiHW‘abD‘OQDNIOWIlb.CHOHONSHwalDD‘HOKULdeNHU QUICIIIIICCOIIICCIIICOCIC‘...IltfllflllliillllflIlilfilllt‘ HfiJF‘H EDGHDU‘CWOID\IOWIOL‘ Fwd—5H 'OID\JOWIUMbILOJHRNDVDCVNCDULQCd up.» ~60~Odl\lJnNH‘CD(DCHQ¢!OIUH30h&Cd Glb‘flfitblb.Cd‘Il.Mlfitbfii.fil.filflfllfil“HUGH“GIMGlbuvflifl(IGHDGlflfi‘NHHKHUH‘NW‘NHJRDHIUHH‘“! pAH-m- flvmws awoktcnourvc>UI.caOI ”0‘. -.(d0‘NU0HHOID‘JOWJIIOHHRDNW‘HHDE‘GP0¢D\JOWIJIOHHRDNHUF‘OHD\JOWIIIGHDF‘ 93 2877.962 2878.029 2871.785 2865.424 2858.893 2352.238 2845.439 2838.508 2831.441 2824.238 2816.916 2946.840 2952.585 2957.989 2963.919 2969.410 2975.143 2980.938 2985.773 2990.872 3000.619 3005.776 3009.777 2872.919 2871.902 2866.126 2866.337 2860.180 2853.954 2847.595 2841.093 2834.450 2827.689 2820.759 2813.726 2959.433 2963.844 2965.809 2970.826 2971.303 2976.970 2977.n33 2982.785 2988.404 2993.882 2999.204 3004.418 3009.454 2865.448 2859.287 2861.666 2854.850 2854.361 2848.758 90.005 I'09006 09004 0.018 0.003 09007 0.006 01010 0.010 0.005 0.008 0.001 0.007 0.008 80.011 0.004 09003 00007 00003 09009 0.003 90.002 I0o020 I0.002 30.005 90.009 00.005 0.015 00.006 0.002 0.006 0.008 00026 0.006 0.009 '01006 '00029 00.001 30.009 I0I000 30.001 80.003 80.002 .00002 0.002 09001 0.038 0.042 '0.009 I0.003 0'003 l0.005 90.004 901004 DQQJ$JJUD~J rbpoArsH a.sasu«-J HP‘ 3JJAJ03¢.ANDH.r-.JO)V’@JVOJQ)J¢¢JOJ‘IJJOJQJJxI \fl‘JHNH‘H‘ONIOMHRDHCDDWDGHidbO‘Q\JO\IOWJUH3UIO\IOHJJIUJLUM50I&\I&Jfllbm\M‘bm\lbwflédfllbfl MNNMMNODDDDSHHHFF‘QCANHUN”30W‘UNROG&UNHPD‘3~OOVObaCdMNO-‘Vomb CIIIIOI'ICO‘CIOIIIOQOIIIICUQCIICKIIIIOI......ICCHCIGCCI 9w. O‘QOJIUHJOM‘CDOCD 9.5 (IOKULdehJOWIJIOHDF‘H50WD‘QCVNOD\JOHO¢D\JOHD‘OOD\IOJNF.GHO¢D\IOJD\I I‘F‘PW‘F‘FW‘FW‘F‘FW‘CMDCDCHUF‘NH‘CDO‘HNH‘VIOJHRJHWD\JO\IOMHRJNH*‘HD‘JOWIOUURDHW‘CiO‘dOWfl 94 2842.852 2836.450 2830.099 2823.596 2972.665 2976.090 2979.156 2984.856 2983.594 2990.173 3001.626 3007.160 3012.545 3017.776 3022.864 2853.578 2850.582 2847.098 2843.580 2837.310 2831.520 2825.445 2819.237 2985.801 2988.083 2997.932 3003.021 3009.094 3014.761 2841.952 2839.571 2830.812 2826.431 3002.645 3005.946 3008.480 2830.459 2822.840 3016.938 3030.616 3044.n31 2908.173 2914.770 2915.209 2915.936 2916.951 2918.308 2920.029 2901.624 2902.679 2903.413 2904.222 2905.040 2902.825 90.008 .0.001 0.006 90.001 '00019 90.003 90.006 0.001 90.006 I00004 90.008 '00007 90.005 90.008 90.007 0.008 0.000 90.004 00.008 00.009 '0.008 00.004 .00001 90.003 0.006 '0.001 0.046 0.001 00.014 0.000 '.0.004 '0.005 0.001 .00016 0.011 0.014 00.003 00.006 00.020 90.025 30.049 0.005 90.000 90.012 0.001 00.000 80.001 00.007 0.001 00.002 l0.°03 90.007 90.001 ~ 0.021 0.01 0.40 0.01 0.01 0.00 0.40 1.00 0.40 0.40 0.40 1.00 0.40 0.70 0.40 0.00 0.00 0.01 0.40 0.00 0.01 0.01 0.01 0.00 0.40 0.00 0.40 0.00 0.40 0.00 1.00 0.40 0.00 0.01 1.00 0.40 1.00 0.01 0.00 1.00 0.01 0.01 0.01 1.00 0.40 1.00 1.00 1.00 0.00 1.00 0.40 0.40 0.40 1.00 0.00 Vl’OJVIJJJOJDVI’JOD‘3’.)bOO‘DVVJbDH‘QJ’JJbfid)DflD’JbJQJ’J'de00‘! P‘H\JUHHOIHWIJBOJONDOIIOKbJLNFOOHflUIOGdHW"IO\IJMJOIOJUOIP(IU050dOHDhioChOWflUfl‘JLNHU‘IU OillL‘JLObbLflUUmklUBUHflfldOiaCdOIblbhbbibJI‘JURINFONDMWURJMFOOIaCdOIGCdONMF‘HW‘F‘HW‘F‘HWUND ‘QOV0¢D\6OJ3CPO‘D‘JOWfliDOHMOhvhfiiroab\FH\IJMD\WHIDOHUKIJB&(dGMO‘dOhOWflJHW‘QOKOJflUI‘(NAPO‘Q 1M!“lb$flflmh3\du\lbhafi.WIGCdOH‘Hh‘GIO\llflflhfiD\I.MNOHUQHFHUCD\IO\HlbuchH‘NIUW$1b00MF‘F‘OCD UHJ\flUHM\flUh§Jbb45‘h‘JIOMbIbOHbOHHOWUCd0H30‘0”“OUHCdOMQGIGHURJNNDNHDAJNHUhJNHUflJNHURDHW‘ 95 2905.770 2906.765 2921.389 2920.083 2922.846 2921.317 2923.601 2921.739 2924.184 2922.386 2895.319 2695.600 2896.797 2.97.077 2897.I03 2898.977 2900.276 2698.395 2927.981 2927.660 2927.688 2926.920 2928.110 2929.292 2928.520 2928.954 2930.134 2930.990 2688.576 2089.337 2491.772 2891.127 2092.133 2893.698 2893.164 2933.387 2933.967 2934.665 2935.280 2936.266 2936.518 2881.733 2882.647 2883.701 2884.642 2886.084 2887.260 2939.314 2940.000 2940.746 2941.661 2942.358 2674.742 2875.657 90.004 0.002 90.008 0.001 90.001 00.015 90.009 90.022 '0.005 '0.011 I0.001 0.003 0.001 0.003 l0.004 00.009 I0.019 0.012 0.006 00.009 0.002 90.008 l0.006 00.006 0.001 00.007 I0.007 0.013 .0.002 90.004 0.010 0.001 0.000 90.014 0.001 90.002 0.002 90.008 90.008 90.000 0.005 0.002 80.004 0.006 0.024 90.005 90.005 0.010 0.005 l0.005 80.014 80.012 I0o001 0.014 1.00 0.40 0.40 0.40 0.40 0.01 0.40 0.01 1.00 0.40 0.40 0.40 0.40 0.01 0.00 1.00 0.00 1.00 0.40 1.00 0.40 0.00 0.40 0.40 0.00 0.01 0.40 0.40 1.00 1.00 0.70 0.40 0.40 0.01 0.01 1.00 0.40 0.01 0.00 0.40 0.00 0.01 0.40 0.01 0.40 0.20 0.01 0.40 0.20 ‘QJKOJD~C)\JJD0.D\|J-J(DD'thlabiDOJD\lfl.lhnD‘J\LfiJ|J.lJ-bddJID‘QJH)&IO>J‘QJIfi~lJlbad\DO‘Q HW‘\lUHflGIHW’JIOHDROCDOIDJIONDEJO\RULOGIHW"IOWIJIUCIOHUOIHW¥UI.{H.H0hio(’OUW\IJD‘IDNFV\N 05hlhblb‘bbEflWHJUI“\ROIUCdOIqulhfilbOrblbfifivflDMFOAlMfiofl3M00OiquOIGGdOUUF‘HW‘P‘HW‘E‘HWONB ‘30“0‘3‘00JQCIOHD‘JOKUNO(D\JOWIJIQHOOD\FV\BJDGVN‘QOKOWflklJthdODCVVI’CFUL§Cd‘IOWF\DULD(dAPO‘H ‘MIO85‘00NDJ\CUKIOFGF.UHQOWGF‘HHQGbO\IOHBflJD\IOMflJLM€dHHUCI\ID\fllbW0flGU‘\flUN‘lbOIat‘H*DCD UHJ\HUHM\IULbJL‘458h‘lbbublbbnflbflflfii9H3(dOUHCdOI“CdOHflfldGHHhDNHUFONHDhJNHUflJNHDfiJNHUBDHW* 95 2905.770 2906.765 2921.389 2920.383 2922.846 2921.317 2923.601 2921.739 2924.184 2922.386 2895.319 2395.800 2896.797 2097.077 2897.003 2898.977 2900.?76 2:93.395 2927.981 2927.060 2927.688 2928.520 2928.110 2929.292 2928.520 2928.954 2930oi34 2930.990 2680.576 2889.337 2491.?72 2891.i27 2892.133 2893.698 2893.164 2933.387 2933.967 2934.665 2935.280 2936.766 2936.518 2881.733 2982.547 2883.701 2884.042 2886.084 2887.260 2939.314 2940.000 2940.748 2941.561 2942.358 2874.742 2875.057 909004 0.002 .00008 0.001 50.001 90.015 90.009 90.022 '00005 ”0.011 30.001 0.003 0.001 0.003 00.004 90.009 .00019 0.012 0.006 90.009 0.002 90.008 90.006 .01006 0.001 00.807 .00007 0.013 l0.002 00.004 0.010 0.001 0.000 "0.014 09001 00.002 00002 90.008 909008 90.000 0.005 0.002 80.084 0.006 0'024 '0.005 90.005 0.010 0.005 I0.005 309014 90.012 A-0o001 0.014 1.00 0.40 0.40 0.40 0.40 0.01 0.40 0.01 1.00 0.40 0.40 0.40 0.40 0.01 0.00 1.00 0.00 1.00 0.40 1.00 0.40 0.00 0.40 0.40 0.00 0.01 0.40 0.40 1.00 1.00 0.70 0.40 0.40 0.01 0.01 1.00 0.40 0.01 0.00 0.40 0.40 0.40 0.40 0.00 0.00 0.01 0.01 0.40 0.01 0.40 0.20 0.01 0.40 0.20 H.‘ ._.._30 H.‘ fl’flljlflJ-JJJJ‘JOJNIJAJbC‘JOOODfljfl-GVIJ 94‘ CdOIOJU‘JOW’NflOLb\IflJH13(DOHNORUL§€thPWDRONDP4DC3Odohiuum€d L»‘CdOFVF‘F‘HW‘f‘HlH*Dc3CDD<3C3GID€3<0JDO‘Q\IO‘Q‘JUHJ\IO*O{) H.‘ p. IF\flOMQ‘Q‘JOJI\flJLbIDCDCHI‘lOWBJbOHUCDi3€VOCD‘JGVH‘O\HDh‘GWO '6‘ p. NDDCHHL.‘QULfiGiflfluflw:(>D\JO\IJIGhOPWDH‘PW.:Dafi‘GHSHWDO‘h \fl\fl‘h‘flflcflofllNHURJKH‘F3HW‘F‘HW‘F‘HHD\OODGHD‘QOMOCFOH’\QUVW 96 2878.362 2879.726 2881.146 2945.096 2945.899 2947.856 2867.618 2868.923 2950.674 2956.127 2957.066 2052.965 2961.416 2966.571 2952.739 2965.012 2977.949 2.91.059 3004.418 3017.975 3031.749 3045.715 3059.896 2957.836 2985.379 2987.493 2998.404 2994.762 3006.990 2025.481 3029.032 2995.582 3021.186 3013.099 3026.775 0.003 0.001 90.025 0.032 0.004 90.003 30.003 0.016 0.006 0.009 0.009 '0.000 0.001 0.009 90.002 00.003 '0.004 90.028 I0.015 00.017 90.010 90.020 80.04‘ 90.001' 0.004 90.023 90.015 90.027 90.021 0.008 0.010 0.010 I0.013 0.006 .0.012 0.01 0.01 0.00 0.00 0.20 0.40 0.40 0.00 0.40 0.40 0.40 0.01 0.00 0.40 1.00 1.00 0.40 0.00 0.00 0.40 0.40 0.01 1.00 0.01 0.01 0.00 1.00 0.01 1.00 0.00 0.01 0.40 0.40 0.01 0.00 ASSIGNED anss or H213OTE FOR 94‘. ‘J:.V"D&COO\-'3“C.OCDV"J.u~&;‘vDCb-‘9.0~CJO¢.C‘J‘rfi'aJ OJ'.U.U~ (- X 0 X .- 9+: "”HI‘FO‘VO‘OIOUIUNCOVOG&MMPDO\I.“HHOODOQ‘GMPODODU‘bCINN . ‘ . . . » ~ - « p x n . - - d n. . F‘HW‘ FHDF‘CHO‘JONIOHHIOHHOII\LbGINH‘t. 1. “w. o. p ,_ (dNH‘UHHCPO‘dOUHOMQIflF1D€H’\JOWIJHH¢IOJIDJH “~Fuuafl0flauaafl3FCI-‘NPNO."I.”MFNO‘PFOPOOFOFOFOOPOFOPOF X 0 I O p. ooooaoum.u.~&ooouau¢amou¢aw Hwawm «atop-ano~.owausauoufcup~4o4unowwa 97 098 2931.670 2031.174. 2906.970 2942.725 2440.270 2964.270 2969.379 2974.329 2906.I40 2000.780 2894.519' 2088.227 2081.013 2875.291 2060.634 2.551600* 20473995 20403064 2033.620 29373580 2949.067 2909.603 2061.416 2967.000 2000.080‘ 2806.486 2002.647 2878.478 2070.221 2363.052 2057.350 2050.746 2044.004 2037.192 2957.060 2962.704~ 2074.074 2000.208 2044.003 2058.789 2046.220 2039.750 2962.031 2909.019i~ 2912.920 2913.554 2914.041 02+v3 OBS!CALC 0.007 90.035' 0.003 0.039 0.001 30.034 '90.013 '0.002 0.000 '0.000 '0.007 '0.002 00.001 '09003 ”0.004 0.003 0.001 0.003 0.043 '9.003 0.002 0.006 0.015 I0.001 '0.053: "0.003 0.017 0.004 0.006 0.012 90.001 '0.007 00.037 00.019 0.020 0.003 0.001 I0.006 I0.003 0.009- .0.002 00.042 0.007 '0.004 90.003 80.016 0.002 H? 0.01 0.00 0.40 0.00 1.00 0.01 0.40 0.40 0.01 0.01 0.40 1.00 0.90 0.40 0.40 0.40 0.40 0.01 0.01 0.40 0.40 0.40 0.00 0.40 0.00 0.01 0.00 0.40 0.01 0.00 0.40 0.40 0.01- 0.00 0.00 0.00 0.01 0.40 0.40 0.40 0.00 0.00 0.00 1.00 0.90 0.01 0.40 lbbnlJHISIQI‘J‘dL‘Q‘MHiOIJQIN0finIflH OhfihDHW‘GINHaflDOH‘F‘PW)UN&09GLbRDP' MWDCIUH’OIJMflRDOHHGIFW0h0NNOIJOCDGD III. III. .008 Illlill Ill- IIII I UHHF30HI\IUlldfl£flOHHIDNMO\I‘IIDOJUE‘ ~hnnocanuanamm:gnaw-uw.u.¢n.n..aou~ CDHW‘Ib‘hfiGdGHHfiDNHUNH‘U‘HW‘V‘FW‘F‘ 98 2919.163 2919.311 2919.850 2006.257 2007.340 2909.138 2910.278 2911.542 2925.444 2000.010 2000.456 2901.527 2981.020 2093.346 2894.179 2988.679 2006.676 2007.591 2944.286 2970.339 2051.937 90.008 0.003 'I0.002 0.029 0.002 90.056 '90.102 90.193 0.000 I0.000 90.034‘ 0.010 00.008 '0.033 0.029 90.007 0.006 90.010 "0.002 0.000 0.004 0.00 0.40 0.40 0.00 0.01 0.00 0.00 0.00 o... 0.00 0.00 0.01 0.40 0.00 0.00 0.40 0.00 0.00 0.40 1.00 0.40 99 l AfiSIGNED LINES OF H2 94‘ ‘00I\IOWIOHHIJFMJC:FH3IDGHQGIUI.GINHD0‘ 4; t-uwAu-Hwa UL‘G‘EDFH: OHD\IOJllLbGIGHM x: 1 ‘x O tsuunusuHUbsNHnnouuut6NnAaovunc:uu:uuor-auac:flwauuor-anac15n¢c39u=rsauacanwar- 99a Otis-owlanunnwu‘c6943460HQGIUIucannn4a HW‘F‘HW‘ ‘anH-c- rnpwa *- IUFPFHBIDHWDIDD‘OOWIIHHOINWOFHI ‘OCD\I°HQIBGINHUF.¢2CHI‘lOWflIbOHNO‘F.CD (_ Hunk-ww- .‘cuaouw: uwa 0HD\OOWIJHHGINHDF‘OWI ‘5 0 9+4 .caeuonoe X C ‘x O FDHJFWUNJHWUF‘RDHWDF‘NJHWUF‘RJHW‘CDHH:F‘C’FWDF‘C3HW3F‘CDHWDF‘HWDF‘CDHWDF‘C2HWDF.C3 p. '0‘D\JOWOJIGHUIOF‘CWOCD‘JOIULdeNDHwfi(D HF‘ ouuaoflw*caown~40wnlbouuaoflwaca 3015 r09 20 088 4071.660 4077.426 4077.561 4082.997 4088.337 4093.914 4098.526 4103.380 4108.072 4112.602 4116.962 4121.160 4053.606 4047.397 4047.256 4040.682 4034.249 4027.471 4020.924 4013.423 4006.174 3998.763 3991.194 3003.494 3975.633 3967.624 3959.460 3951.153 3942.699 4003.295 4088.562 4088.966 4093.914 4093.969 4098.926 4103.748 4108.410 41124907 4117424. 4121.402 4125.425 4129.293 4132.948 4040.702 4034.249 4033.933 ,.027.543 1 OBS-C‘LC .0400; .0900: .0000, 04003 7.0000: .00000 .0000: .0000‘ .0000; '04000 0.001 0.005 0.001 04001 .0300. 0.005 0.003. 0.003! "03000 .04001 .0300: 04002 0.001 0.000 0.010 “0.001. 04002 01000 04007 0.009 04007 0,003, 0.001 .0000:- 0.001 '04015 04001 0.083 0.010 .0300. 0.009 .00006' .0400: NT .0.00 0.70 0.01 1.00 0.40 1.00 1.00 0.40 1.00 0.70 1.00 0.40 0.01. 0.00 1.00 1.00 1.00 0.40 0.70 0.01 1.00 1.00 1.00 0.40 1.00 1.00 0.20 0.50 0.40 1.00 0.00 0.01 0.20 1.00 1.00 1.00 1.00 0.70 0.40 0.01 0.01 0.00 0.00 0.40 0.00 0.01 0.40 9‘F‘PW‘F59d‘ ‘0¢D\IOWIIHHGiOHIIIGHMrfic9QHD‘JOHU OCVOU.UNN p O 944 94a ~ocruahul.6amnncamn- 94‘ 0a POOOVU‘I‘OOOVOU.‘ 00080..UPOOOVOUU usugugabguauaMAQbumumamumumumuumamamumumumumpwpnumumpm4- .U.G‘H.HH.H.GI..UNGNHN“N“flu”“NMHNUNQNGNHNGEDFNPNFNPNPNI"N VOU.HPPOO\IO\I‘HNN ONOW.~NPVOU‘HNI‘D‘ 9 un- 4020.560 4013.445 4006.174 3998.763 3991.194 3903.457 3975.577 3967.544 3959.363 3951.031 3942.549 3933.924 4099.144 4099.942 4104.391 4109.104 4113.551 4117.682 4122.031 4125.986 4129.704 4133.429 4136.907 4140.222 4027.616 4020.112' 4013.706 4006.576 3999.142 3991.524 3933.029 3475.936 3967.664 3959.664 3451.355 3942.657 3934.211 3925.423 4109.623 4110.445 4114.742 4118.629 4122.902 4126.056 4130.677 4134.263 4014.142 4009.772 4005.625 3992.195 3984.516 3976.560 3960.610 3960.414 .0400. '04012 '0401‘ 04002 04011 04003 04000 04000 04001' .0400“ '04007 '04003 '04023 '0400‘ 04002 '04000‘ '0401’. 04011 04000 .0401? ‘04010' .04007 04009 04000 “04003 04002 04004 '04030 04015 0.015 0.006 “04002 04011 04002 .04000 '04009 ’04000 04008 .0400. '04003' '04064- .000‘, 04003 .0401ar .00003' '04003 04003 ’04010 .0400, '030’0 04023 04003 0.40 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.01 1.00 0.00 0400 0.40 0.70 0.00 0.40 0.01 0.20 0.01 0.00 0.00 0.01 0.00 1.00 0.00 0.01 0440 1400 0440 0470 0440 1.00 0.70 0.20 0440 0440 0400 0410 0440 0.01 0.00 0.00 0.40 0400 0.40 1.00 1.00 0.00 0440 0.00 0.01 0.00 p. Co I aw: 0490 H44 NINW‘ Han UL. 9449» 4a «awn»19c~40u319¢~aouno~ 94- UL. H44 0. Fl-‘FFHHHD-‘PPHFOOOF.NPU.GNHNFNPOMPNPOHOOONWOGNFUIAOJNH .a NHOOOVOU.UN9‘QNHOPOVOOONOOOOCV‘OV‘IOU OOVOW.GNP~FOOOOO\IO\IOWOOO‘DVVOUOU‘UQWU.W‘.U.\I‘4'“.G.“ 9. OOVOU&GNPUDFOOOOOOVOU “4‘ um: 944 91: nwn .5 FooaflomvaMI-DOUNPONVNOUOWOOONONOOUOUbeWJb0.“\l$\fl§\flbbflbub NOOOOOOOOOOOHPPOHPO‘HNI‘OHNUNI‘.NGNPOOOQO.BNI‘OOW.“ 3952.057 3943.561 3934.911 3926.114 39174176 4120.359 4123.872 41264213 4131.942 4135.340 4000.486 3991.090 3964.730 3977.603 3969.581 3953.153 3944.611 3935.984 3927.192 3918.244 4130.556 4129.086 4133.944 4138.366 4145.616 4152.873 4146.764 4151.273 4193.796 4166.329 3964.677 3971.632 3962.440 3994.344 3973.015 3960.354 39314139 3945.854 4059.399 4096.381 4056.691 4065.763 4065.309 4064.628 4063.871 4063.102 4062.375 4061.730 4061.176 4060.674 4060.196 4099.685 440534099 0.012 0.012 0.005 994009 '04099 '0.013 .04013 0.043 0.097 04001 0.009 '0.099 .0400: 04004 0.065 0.011 0.023 0.019 0.006 .04055 .04019 '04902 90.001, 04009 0.042 0.014 '04000 0.011 '94036 0.010 '0.005 '0.007 50.002. '040‘1 0.010 '0.024 .04919 0.019 0.003 .0003, .04017 '04009 0.027 04005 0.003 0.003 .0000; "0400’ 04006 04011 0.019 '0.006 '04009 0.01 0.50 0.20 0.40 0.40 0.00 0.00 0.00 0.01 0.01 0.40 1.00 0.00 0.40 0.00 0.40 0.00 0.00 0.40 0.01, 0.00 0.00 0.01 0.01 0.00 0.00 0.40 0.40 0.40 0.00 0.01. 0.00 0.01 0.01 0.01 0.01 0.00 0.40 0.00 0.40 0.00 0.01" 0.00 0.00 0.40 0.01 1.00 1.00 0.40 0.40 0.40 0.00 0.00 0.00 (3‘60“)‘JONUGINIOWIGPNGFUI.‘IOHGIIOWIIMHlIOHU\III‘4H0UO‘Q\IOHD0.00.6dGHUHDGW‘ObOWIII.CdGHM tflt‘F‘UHHGiHM‘IONND(DJIOJDIOGIGH‘F‘UI.4HE‘KL.‘H§3NH‘F’CDGHHGROWQ\I.L.IdflJNH“iUL§\IO‘GHUIDFH’ 050W,lbQLQIIUIUHW\IGIGHHOIQI&dblbOJ“IURDNHUGIGIHHHGlGlGH‘O‘H‘HH‘t‘H‘FW‘F‘FH‘00RDNHUFUNDNH903N9 . . . A ‘ A (.‘lOWI‘JCHQGI\IOHIGD\IOWIIB\IOWIILO‘thfidfilOHlNl.h.¢d04GHH\IOWD\IUI.JHGIQDNHD‘£OHD\IIIQMHE‘R) #4051.FONMD\flOiOHfl‘DOJQH‘F400.00%}.(HRJGH*\H.Hu¢dNJNH‘\JOHM1I34OCAOiNH‘F‘CDCHO\flO~bJDOUUFDR) 'W\R\IUHW\IUI&H54bJIOHDlbJub‘dfiibhfl‘dGdOHM(HIOADNHUIQRJNHUFOKDNHU00h)NHUIUEJNHHO‘F‘HH‘b‘HHflD‘F3 102 4052.084 4052.250 4051.200 4051.117 4049.470 40504181 4044.010 4048.000 4040.780 4035.964 4070.454 4071.182 4009.500 4071.592 4070.954 4005.309 4070.184 4002.702 4009.290 4059.904 4000.280 4007.197 4040.034 4049.490 4044.709 4044.505 7 4043.211 4042.786 4040.523 4076.004 4076.051 4075.240 4073415. 4070.501 4039.026 4037.380 4035.360 4033.124 4002.101 4060.369‘ 4070.129 4075.576 4072.285 4031.902 4029.949 4027.687 ‘02‘.932 4007.350 4005.173 4002.604 4079.604 4024.626 40224370 4019.796 '04009 '04000 904001 04009 0.002 '0.004 0.011 '04009 '90401? '04019 '04010 04027 0.016 '0.005 90.00, '90000? 904003| 0.010 “0.001 '904012 .0400: 0.014 .0400, 04010‘ 04003 '04000' ‘04009 0.009 0.oo§~ '04000‘ 0.002 04°02 0.002 904009 '0400“ 04002 04001 04005 '04009 04010 0.003~ 04006 '0.005 04002 0.031 '04005 04009 '04009 04005 0.016 0.40 0.40 0.40 0.01, 1.00 0.00 0.40 0.40 0.40 0.00 0.00 0.00 0.00 0.40 0.40 0.01 1.00 0.40 1.00 00.00 1.00 1.00 0.40 . 0.01 0.00 1.00 0.40 0.70 0.40 0.01 0.40 1.00 0.01 0.01 0.70 1.00 0.70 0.01 1.00 0.40 0.40 40.00 '0.00 0.70 1.00 0.00 0.01 1.00 1.00 0.40 0.00 1.00 0.01 0.40 .s OOOOOQOOVDQOO FW‘ \ICDO‘dflfillb0MI\IO¢dHH3<)OGIGFN~IOWDUI.CINDOWD\IO\llflfldb$0994 p. ID‘QNIGIGH‘F‘OIC~Ohb¢3 n , . V 1 . , 00V°W$HNFPOL fit 0 9+: 19a~aownouanomuofls oauou¢anne NHMHHNHNHMHMHNHNHHNHOHOFOHOI‘OOPOPOHOHOHOHOHOPOHOX 00VOW§UNHFOX 105 0' l 3075 FOR .085 4072.28! 49774909 4078.088 4088.821 4088.886 409‘4093 4099.144 4108.780 4118.862 4117.779 4122.081 4126.141 4180.082 4188.876 4187.464 4054.242 4047.950 4047.851 4041.884 4084.770 4028.009 4021.087 4014.025 4006.880 3999.471 3991.965 8984.314 8979.800 4089.012 4089.988 4094.492 4099.474 4104.329 4109.017 4118.874 4117.95! 4122.177 4126.288 4180.150 4188.874 4187.899 4140.882 4041.727 4085.152 4028.009 4021.087 4014.007 v +0 1 3 OBS-CILC --0.000 .0000, 04003 0.010- 040057 0400‘* 0.002- 0.001 ‘04002 0.003- ‘04002 .00011 ‘04000’ 0.005. 0.030' 04016 "0.002 "04001 "00009 '000‘0' .0400: 90.000 '00009 .0300? 0.007 0.005 04000~ 0:003 ”00017 0.002 04004 0.004 04000 0.003. “00010 0.000 ‘-0.000 .0000“ '0.013- 04000 .0401‘ '04067 '.°4°‘3' =00.003' 0.001 0.013- .00009 0.002 HT 000° 0'01 0.40 1.00 0.40 0.40 0.40 1.00 1.00 0.40 1.00 0.20 0.70 0.70 0.00 0.70 0.40 0.01 0.00 0.40 0.40 0.01' 0.40 0.00 0.00 0.01 0.00 0.01 0.00 0.40 0.40 1.00 0.70 1.00 0.407 0.01. 1.00 0.20 0.70 0.70 0.00 0.00 0.40 0.01 0.40 0.00 0.40 0.00 iICHiflbUl.€l1NO‘iO| GHD‘IO\IIIGRDHWD‘IOVI iDO‘iOWIIHHHDOHOGDV 4 . . A . V 03*.HH‘ ouursa> p. .. HJ‘P‘ kurbcro¢n~4owmAsauuracacun~80~ OHI‘OONM\IJL¥¢HI}CHQ€bUL.€l aw» c8¢HI~IowlauuaoHIunenl.cnuwot.c-cub~4owlauucannoH-oxlanunonw: HW‘ own~aoulusaub\4owaal 94‘ aunxu0\lnunrsauaca«aawurscnouns4ou349uwuxu«no~¢\aowaauocna»ULuca~aown p. RWWCd0404ilb$00\FV\HUHNOIOGPOM§NJVHUOKW\IOHQCDGM)Jbb0005mhb 'ucravoxnunmxnunAJ-anu4-acuouucuanon:Nwoununapwauuar4wwapsH 109 4136.016 4147.421 4158.882 4016.792 4002.221 3990.869 3973.099 3941.904. 3908.697 8997.164 3983.931 3969.483 3956.489 3955.030 3940.147 3928.521 3078.033 3950.210 3930.630 3021.493 3005.760 3050.887 3944.609 3930.200 3915.746 0900.766 30064009 3939.200 3924.900 3010.366 8895.084 3800.874 3919.614 3905.094 8090.345 3899.902 90.005 0.015. 0.014 “.0000; "04005 90.000 0.001 90.009 4.04078 '0.017 0.000 0.004 .0400, 0.006 0.000 0.002 .0401; 0.006 0.006 "0401‘ .09001 "°9006 .0 40"” 909001 0.000 0.009 0.011. 0.070 0.002 04009 0.011 0.007 0.40 0.00 0.01 '0.00 0.40 0.01 0.00 0.40 0.00 0.40 0.00 0.01 0.40 0.01 1.00 0.00 c0.00 0.40 0.01 1.00 0.40 0.00 0.00 0.01 0.01 0.00 90.00 0.01 0.40 0.40 0.01 0.00 0.00 0.01 0.00 0.00 GROUND STATE COMB!NATION DIFFERENCES FOR H ummmmwmuwuuuuuua¢t;.a&¢A.A¢¢&o¢;uuuuuauauuaummm L K. K9 uuuuu;.‘a¢mmwumwvmwmmuuuuuu‘.&¢&oopwanmnuauupwN WNNNNPPNPF‘F‘OHDO.‘GHGMNNNNPHPFPOHUUGNMHPPOOPHI‘MH b‘hfl“.804$“b“O‘NWOINUNUMNNbHQWGfiNNOJNO-‘NPNPOINMHO‘NPHI" L. APPENDIX III I I X . “PPQGNNNNb“UGQWPHNNONGPPPPGONNNNNOHHPODMHPPPPHD H"ONGPNGPPNHONNNPPGOONbNNI-‘OJGPOPPPPONHGPNOUPPOH 110 085 24.984 12.147 24.378 37.679 25.514 61.683 49.557 36.303 24.601 61.290 36.959 49.106 36.691 11.704 50.481 86.303 86.788 25.770 75.087 48.061 24.275 49.382 37.595 86.346 36.787 73.621 49.313 61.019 24.715 48.746 11.787 12.906 110.893 63.385 74.090 111.446 59.643 23.887 61.778 110.113 85.410 61.184 97.967 37.173 98.785 37.287 2 0.003 0.006 0.007 0.007 0.009 0.003 00019 '0.003 0.002 0.009 0.009 0.010 0.001 0.004 '00003 0.003 '00006 0.009 00000 0.010 “00003 0.006 0.007 0.004 0.016 '0.009 0.003 00006 0.005 0.007 0.009 04003 "04009 0.002 0.003 .0000? 06001 ”0.001 00000 0:013 .0.009 '0.00‘ '00000 '0.009 0000‘ 09009 00005 130 OBS-GALE TE 97 2.41 1.59 0.02 0.42 0.04 0.02 0.99 2.16 1.59 2.94 0.40 0.02 VQVVVQQQVVHVVVVVOOOOOO00000000OOOOOOOOOOODOOWWUWWWWU’IWU1 WWWWWWWOOOOOVVVVHPNNNU04080496.8...‘UWWWWWWOOOOOOOPPPNNNNN MNUNMMNPHHHPHPDDOOWUJW‘bbbAUUGQNNNNPNNMHPPOPHWWbb.(duuuol muoommomoomumomom¢2mm5chommgomuxbmma‘mommmoa5m§uaasaubu1ub puuauwvlmaosun-wmumwpmmouHo-nur-ammgm‘puumuamm¢a¢5~onapoamazon: A.U$~ONGGPPGHPNN&‘GHWN.0N‘FWHPNN‘MFO‘NHWGOHHQUNN.UHWF(a! 111 61.534 86.244 49.973 35.744 110.827 61.614 24.023 73.402 60.867 11.560 76.356 135.998 135.407 26.485 100.240 71.051 74.222 37.599 61.317 134.464 135.422 111.413 73.020 134.797 49.863 73.746 49.813 109.519 73.800 36.618 62.414 135.398 97.815 73.901 23.931 85.462 72.994 11.384 98.507 172.734 89.365 160.414 23.085 158.646 82.302 108.787 182.542 84.610 145.930 158.836 122.211 85.906 36.303 196.021 0.007 0.008 0.010 900013 '0.008 00007 0.007 0.011 .02005 -0.004 '00001 .0400; 0.000 '00008 '0.009 '00001 '00008 0.000 0.002 0.031 0.008 0.019 '0.008 0.004 'Oooo‘ '0.005 '00003 01011 0.000 .02013' 0.001 '0.009 '00000 0.003 .0000‘ 0.000 0.001 '0.002 '00009 '00012 .02008 .02011 .02002 '0001‘ .02001 '0.009 .02005 "0.009 0.001 '0.008 '0.002 ’0.004 0.001 04009 2.56 0.42 0.03 0.85 0.84 3.24 0.59 0.01 0.04- 0.40 0.57 0.02 2.29 0.40 1.71 1.16 0.02 0.02 0.57 ‘050190HOIDCHDGDCHDGICHDGICHDGICWDGIOWIGIOCDGICMDGICHDGICMDGIVFV‘GNIQ‘i‘F“i‘ffl‘ifirfl‘i\r"i Odi‘CNICHIF‘HWQ“OhiuHHGdeOHblblw‘\IUHG\lUIOW’OlOMQ‘IVPQ‘IGHDCDOM‘F‘HWUhDNHUfllUHHOI.Hb150m. ClGHVflJHW‘GICMC\IVC’O‘O\IUNU\IUHJ15.9.458““CdGHflhDHJUN0NN‘FVQ‘GO|OW!UIW\IUWUILJI&GIGIGHHCI ‘Q‘WO‘Qarfl‘ifiwfl\IOWDOVH‘iGIOMQ\IO”QODOM10|04D\lV¢h\8OJ.\ICHiOHUGhuui‘lOHJ\IONO\IOBOWDUIV4) .QJbU\fiGWOF‘HW:nDNF‘OH‘C3N00hifillH4304“\IbdbOM504V\IUHMCMDROOCdHW‘CD‘CDNHVVflOHHhiofUNIb (dULthHW*OMO‘QUHMGDOCD\JV\NUHHOIOWDJHURDOUWF‘OI‘9‘hibFDOHH\nULbJLO‘dOHflCdUHUhJ&\IHHu\I04 112 85.703 49.478 159.448 59. 921 135. 517 85. 905 122.545 48.319 86.026 £09. 962 159.940 36.924 74.818 86.184 97. 570 23. 768 05.101 11. 206 102.363 27.415 99. 537 37. 871 184.137 93.416 ‘221.741 98. 640 74.956 49.429 103.745 146. 284 61. 666 183. 871 61.856 160. 090 134.313 48.608 .98.087 164.110 774.471 172. 909 98.252 122. 015 67. 912 109.646 23. 617 96.440 97.707 11. 036 206.847 104. 469 206.376 34. 872 48.660 907.318 '900006 "00032 .0001: 0.00, '0.000 .00006 0.003 0.007 '0.009 "00008 0.007 0.009 "00007 0.009 0.009 0.007 "O000’ 50.005 “00021 '00032 “00038 ”00012 ‘.00027 ”00010 "0.022 '0000‘ "00001 "00°1" '0.009 0.003 “00001 .0000, ‘.00033 '0.020 0.002 0.006 ”0000‘ .0003, --0.008 '0.007 0.000 0.000 0.001 ”00002 0.064 0.003 .0000. .0000: 0.009 0.021 0.020 10.002 0.011 1.45 1.33 0.53 0.02 0.60 0.03 0.59 0.02 1.40 0.55 000‘ 1.33 0.31 1.99 1.57 1.75 0.59 2.01 0.50 0.02 0.61 0.59 0.02 0.40 0.02 0.44 0.42 0.29 0.01 0.02 0.42 0.44 0.05 0.01 0.06 0.71 1.63 0.44 0.44 0.04 1.30 0.59 0.02 1.99 0.71 2.00 1.14 1.99 0.02 0.40 0.01 0.01 0.01 0.57 000000000000000000000000 94a6994‘rswn‘r-Hw¢r5ww¢rsuwa OODDDDODOOOOOOODO ol-‘HHNNG‘UIUIVOPPNNNG‘“G.&.UIWDOOVODOHPPNNNGUGGUG..&"UIUIUIMU! 94a <>ocnxaochan:crown(nocnaam~¢~8ucro~mxnu0s6s«Joananaxau~¢owra~oc20~mxnunmxnas;Asa»; 1ar4wwa ”00° 96. awn p. OOOOOOOOOOOOOGOODOOQOOG00OOOOOOVDNOQGNEOOOVVOVONQQOCDa“ OUPPNNO‘.VUI‘IGDPPNONG-Il‘uwb‘umm.OWONOGPPNbNPWQPPGNNO‘AUUWVW ... OOOOOVOW‘OflPmmNOVOQO‘JWWO.VUIUI.PVVOOQNU’W0.0QO.VWMUWOO‘NN 113 171.502 71.962 109.838 61.472 171.700 110.044 158.653 60.613 208.127 74.071 146.335 208.480 86.759 110.231 48.368 197.440 134.054 35.968 110.439 110.680 121.722 23.471 109.308 10.867 232.639 121.834 121.901 231.946 195.969 60.639 122.103 158.305 48.263 122.351 146.088 122.616 35.853 133.793 122.922 23.351 121.398 10.715 254.733 220.134 133.867 72.673 182.387 170.286 158.102 134.751 135.117 145.825 23.222 133.468 I'08002 0.009 01002 0.002 '0.004 '0.003 0.004 01008 .08011 “0.010 “0.001 I'0.006 .08001 '0.003 0.001 .08005 .0400‘ 0.001 .08006 '0.005 '0800‘ .08003 '0.004 .08008 04020 01006 .08008 '0.010 '0.020 '04001 .0000, .09008 .0800; 01004 '00001 0.001 '0.002 0.002 0.005 0.005 0.000 01003 04021 01016 01004 '08002 "0.009 01003 '0.006 .08010 .0401. '0.018 '0.006 .0800: 0.03 0.59 0.04 0.04 0.01 0.77 0.02 0.02 0.40 0.04 0.40 0.01 0.02 0.05 0.40 0.01 0.99 0.44 0.40 1.61 1.84 1.08 2.04 0.44 0.57 0.02 0.04 0.02 0.01 0.01 0.72 0.01 0.02 0.59 0.40 0.02 1.96 1.14 0.27 1.79 0.03 0.57 0.40 0.02 0.02 0.02 0.27 0.40 0.04 0.02 0.02 0.63 NOGHNQ‘OAO 11 10 10 12 10 13 13 10 10 10 11 10 12 11 13 NOUPNPANN 114 10.544 170.106 182.233 146.878 157.882 145.528 158.477 157.566 206.011 "0.009 .08004 '0.004 .0800‘ 01002 08003 '0.014 01004 04010 0.02 0.04 0.02 0.33 0.04 0.97 0.02 0.02 APPENDIX IV CALCULATED GROUND STATE ENERGY LEVELS GRWU 0 STATE CQHSTANTS A = 6.2474600000 Q 3 640749540000 C 33 3140159900000 TAAAA = -0.003139000 THWBH : -0.009701000 TAABH : 0.007285000 YAiAfi = -0.000533000 “J = -0.000000000000 HJ4 = -n.000000000000 HK! = -0.000000“00000 N< = -0.00“000‘20000 KA’PA = 009(1406 J K- 5+ th 1 1 0 12.3420 1 0 1 9.1290 1 1 1 9.2929 2 - 0 37.0200 2 0 2 - 74.4715 2 1 2 24.4934 2 1 1 33.6568 2 2 1 34.1104 3 6 0 74.0719 3 1 2 61.4379 3 2 2 61.4960 3 2 1 70.4160 3 0 3 45.8170 115 APPENDIX IV CALCULATED GROUND STATE ENERGY LEVELS GPWU 0 STATE CGNSTLNTS A : 5,2474dnufi0n Q 3 6.0943640NDn C = 3.0159900fi0n TAAAA : ~n.n0‘139”00 7H45@ : -n.n09/o1n00 TA\BH = fi.fl0?295"00 TA4AH = -n.FU“535fiUn HJ = -n.rnnonor0coog HJ< = -n.n0~onor09000 HK! = -n.nn"0nonnaona “< = -U.PU“U“U’20000 KAJPA : 0.9"40é J K- W+ tflb 1 1 n 12.3420 1 n 1 9.1290 1 1 1 9.2925 2 7 0 37.0700 2 n P . 94.4715 2 1 2 94.4334 2 1 1 33.6568 2 2 1 34.1104 3 A 0 74.0?19 3 1 2 ‘1.4379 3 2 2 ‘1.4968 3 2 1 70.4160 3 n 3 45.8170 115 UT A UTU“: U'l U703 U30"! O‘O‘O‘O‘ 00‘ 0‘0‘ 00‘ .‘J in K)..- ...L 3‘.) fi mwb AND (AH #MO OAR.) OANO 0'10. W(AH H 116 71.3755 “5.8177 125.5285 110.637? 76.2219 110.8133 75.2220 119.3991 95.1197 120.8942 95.1745 194.9126 171.9977 114.8791 172.4527 1‘4.d?96 180.5382 156.6816 156.6959 192.7706 186.6710 1"6.6889 256.7354 245.4309 298.6960 146.2152 246.2274 298.6986 146.2152 255.8226 2xo.3444 190.5965 236.8955 230.4321 1“U.5“65 0000 JMJ‘V {05):}? HCAJN 3 HLNJ‘V NAU‘O‘ r-‘TIJJ'VC V5303 O‘AMO 0301512 117 344.7436 330.8415 294.5394 232.3998 332.2417 294.5487 232.3898 339.1984 316.1115 266.6219 101.7971 343.1953 316.2543 266.6722 191.7971 442.8654 428.1297 392.4808 3R0.6413 243.4303 430.3918 392.5086 330.6414 243.4303 436.6210 443.8457 364.7120 290.2346 441.5825 414.1859 364.7132 290.2346 553.0095 537.1966 582.3450 440.8753 354.1154 540.6155 502.4169 440.8755 364.1154 118 9 V 1 546.0478 9 5 3 593.4181 9 4 5 474.7604 9 2 7 4fi0.6797 9 0 9 3n1,1n93 9 9 1 551.9555 9 7 3 594.0267 9 5 5 474.7646 9 3 7 490.6797 9 1 9 391.1093 10 1o 0 675.0‘59 10 8 2 657.9465 10 6 4 694.0063 10 4 6 562.9845 10 2 8 476.7308 10 n 10 364.8279 10 9 2 662.8421 10 7 4 624.1729 10 5 6 562.9953 10 3 8 476.7308 10 1 10 364.8779 10 9 1 667.4400 10 7 3 644.6777 10 5 5 596.6563 10 3 7 593.0965 10 1 9 474.0760 10 10 1 674.2911 10 8 3 645.7777 10 6 5 596.6690 10 4 7 523.0765 10 2 9 424.0760 11 11 0 806.9104 11 9 2 700.2689 11 7 4 757.3145 11 5 6 696.8479 11 3 8 611.1586 11 1 "0 499.9589 11 10 2 796.9925 11 8 4 757.6674 11 6 6 696.8507 11 4 8 611.1586 11 9 *0 499.9589 11 1n 1 890.7600 11 H 3 77/.4567 11 6 5 730.2730 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 n HIAJ‘VCH JinJ‘NOH 12 in :v33‘ 11 r-‘CAJ‘PV H14 N HCVmCAH CV {boa-Mo 4.; MC MOmO‘bNO HOVU'IOJH HOVU'OJP MDOJO‘AN AA MOGObN —A .-.l 119 657.1559 558.7973 434.5787 808.1¢b4 779.3087 730.3067 657.1560 558.7973 434.5787 954.4110 934.1357 9na.oa99 842.379“ 757.2679 646.8408 510.3531 942.9795 902.7947 842.3384 767.2679 666.8408 510.3531 945.9658 921.5311 875.4645 802.9357 705.2634 5“1.9053 953.8144 974.5052 875.5457 842.9362 7n5.2634 591.9158 1111.4369 1U“9.4145 1058.1206 999.2779 914.9143 605.3318 669.8571 1100.7085 1059.4030 999.3n12 914.9144 805.3318 669.8571 120 13 12 1 1143.0016 13 10 3 1076.8“64 13 8 5 1032.0616 13 6 7 960.2190 13 4 9 845.3115 13 2 11 740.8220 13 0 13 592.1410 13 13 1 1110.930? 13 11 3 1081.2329 13 9 5 1012,2425 13 7 7 960.2207 13 5 9 863.3115 13 3 <1 740.8820 13 1 13 592.1410 14 14 0 1279,8686 14 12 2 1256.0314 14 10 4 1225.1637 14 h 6 1167.5199 14 6 8 1043.9390 14 4 40 975.2766 14 2 «2 840.9001 14 n «4 679.9310 14 13 2 1270.0793 14 11 4 1297.3954 14 9 6 1167.5779 14 7 8 1093,9394 14 5 «0 975.2766 14 3 «2 840.9001 14 1 14 679.9310 14 13 1 1271.7902 14 11 3 1243.2339 14 9 5 1199,8656 14 7 7 1128.8435 14 5 9 1032,7747 14 3 11 911.3531 14 1 13 763.8017 14 14 1 1279.430? 14 12 3 1249.330! 14 10 5 12P0.2420 14 R 7 1128.848? 14 6 9 «032.7747 14 4 «1 911.3531 14 2 13 763.8017 15 15 0 4459.610? 15 13 2 1433.8839 15 11 4 14h2.9587 15 9 6 1346,8589 15 7 8 1264.1475 NHL—I \FU'IU‘ 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1n 12 14 WWH‘OVUWCN'H ANOODO~3N UTCNr-‘OVUWCAH P‘ U A-JAA 0&NOCDO‘AN 337105“) AVA 4. J 0.5ny HOVWCAH 121 1156,5459 1U?3.3158 863,7;71 1450.988? 1496,6307 1346.9940 1264,1691 1156.5”59 10?3.3158 863.7771 1452.2328 1470,5732 1378,6411 1398.679? 1213.4817 1093,1516 946.8832 773.7997 1469,2273 1478,5988 1379,3787 1308,6435 1213,4818 1093,1516 946.893? 773,7n97 1650.604? 16?2.8194 1591,2524 1537,0467 1485.4n84 1348.8355 4216,9239 1058,8177 873.4620 1643,3303 1596,9729 1537.3624 1455,4131 1348.8355 1216.9239 1058,8177 873.4620 1644,2156 16n8,6982 1568.1496 1499.3752 1445,2454 1286,0954 122 16 3 «3 1141.266& 16 1 15 969.6195 16 16 1 1650.267? 16 14 3 1618,7963 16 12 5 1569,4759 16 18 7 1499,4119 16 8 9 1445.245; 16 6 11 1286,0954 16 4 13 1141.2"66 16 ? 15 969.6190 17 17 0 1852,8334 17 15 2 1622,6154 17 13 4 1789.8315 17 11 6 1737,8734 17 9 8 1657.4505 17 7 1n 1552,0652 17 5 12 1491,5296 17 5 14 1265.0114 17 1 16 1081.4611 17 16 2 1847,0031 17 14 4 1798,2818 17 12 6 1738.4856 17 10 8 1657,4637 17 8 10 1552.065! 17 6 12 1471.5294 17 4 14 1265,0114 17 2 16 1081,4611 17 16 1 1847,6196 17 14 3 1847,7466 17 12 5 1767,9494 17 10 7 17n0.8559 17 8 9 1607,8615 17 6 11 1489,9971 17 4 13 1346,5794 17 2 15 1176.688? 17 0 17 979.1705 17 17 1 1852,5412 17 15 3 1819.636? 17 13 5 1770.3439 17 11 7 1740,9434 17 9 9 1607,8628 17 7 11 1489,9871 17 5 13 1346,5794 17 3 «5 1176.688? 17 1 17 979.1705 18 18 0 9066,3186 18 16 2 9032,9950 18 14 4 1998.5424 18 12 6 1948,9556 123 18 19 8 1870,0998 18 8 10 1765,9773 18 6 12 16‘6.9216 18 4 14 1462,1123 18 2 16 1300,4776 18 n 18 1090,8156 18 1’ 2 9061,9663 18 15 4 2010,4128 18 16 6 1950,1886 18 11 8 1870,0944 18 9 10 1765,9777 18 7 ‘2 1636,9216 18 5 14 1482,1023 18 3 16 13“0,4776 18 1 18 1090,8156 18 17 1 9062,3283 18 15 3 7017,6965 18 13 5 1977,8140 18 11 7 1912.8130 18 9 9 1821,1070 18 7 11 1714,6130 18 5 13 1562,7928 18 3 15 1394,7134 18 1 17 1199,2352 18 18 1 2066,0738 13 16 3 9030,8035 18 14 5 1981,7735 18 12 7 1913,0113 18 10 9 1821.1196 18 9 11 1794,6130 18 6 13 1562,7926 18 4 15 1394,7154 18 2 17 1199.235? 19 1g 0 2291,0886 19 17 2 9253,6258 19 15 4 7217,2956 19 13 6 9169,9268 19 11 8 9092,9756 19 9 10 1990,3348 19 7 12 1862,8728 19 5 14 1709,8687 19 3 16 1530,2943 19 1 18 1592,9206 19 1“ 2 7297,9538 19 16 4 7235,2183 19 14 6 9172,1739 19 12 8 7093,0694 19 1” 10 1990.336? 19 H 12 1862,8729 19 6 14 1709,8687 19 4 16 1530,2943 124 19 7 ‘8 1572,9708 19 18 1 2288,2359 19 16 6 7238,5129 19 14 5 9197,3788 19 12 7 2134.9d60 19 1” 9 2044,7364 19 8 11 1999,7414 19 6 13 1789,0227 19 4 «5 1623.475? 19 2 17 1410,1665 19 U 19 1218,5751 19 19 1 7290,8946 19 17 3 2252.028) 19 15 5 92n5,5241 19 13 7 2135,3709 19 11 9 9044,7461 19 9 11 1929,7415 19 7 13 1789,6227 19 5 15 1693.475? 19 3 17 1430,1661 19 1 19 1298,3751 90 2" 0 a597.1449 20 18 2 9484,2997 20 16 4 9446,0290 20 14 6 9490,3434 90 1? 8 9625,8923 20 10 10 9224,8789 20 8 12 2099.137? 70 6 14 1948,0726 20 4 16 1770,6788 20 2 1a 1565,7328 ?0 0 20 1531,8238 20 19 2 2525,0535 20 17 4 7466,5515 70 15 6 94n4.3232 20 13 8 2326,0936 ?0 11 10 7294.883? 20 9 12 9099,1375 70 7 14 1948,0726 20 5 1 1770,6788 20 5 18 1565,7328 20 1 20 1531,8238 20 19 1 9525,2339 20 17 3 9470,2538 20 1S 5 9426,4n93 20 13 7 9366,8971 20 11 9 9278,4793 70 9 11 2155,1911 20 7 13 9026,8774 20 6 *5 16‘2.7387 20 J 17 1671,7338 ?0 P0 20 9D ?0 20 20 20 70 20 20 21 18 16 14 1? 1n JO53‘ 19 \JU‘CAH *0 11 15 17 1.9 125 1 452.4959 9527.013: 85.111. 9156/. 7421.) 9278,5167 9155,1215 7096,8774 18‘2,7387 1671,7338 1452,4959 APPENDIX V CALCULATED UPPER STATE ENERGY LEVELS FOR THE 130 STATES vl+v2, v2+v3, Zvl, and vl+v3 of H2 Te The output from PROGRAM CORIOLIS is given. The upper state energy levels are calculated with Eq. (47) both with and without the perturbation terms G2 and ny. The perturbed calculation, unperturbed calculation and, their difference are printed out for each level. 126 127 GRWUND STATE CONSTANYS A a 6,2474890000 9 a 6.0945340000 C a 3.035999onun TAAAA = 90.003139n00 78989 a 90.002791fi00 TAABR : n,n02285n00 TAAAR I gn,n00533noo NJ 3 vflofiOODnDHOUOOO “JR 8 v0.000000000000 HKJ I sfl.nUDOnOn00000 MK 8 —n,nononon20000 UPDER STATE CONSTANT? A 3 6,347845000fl vl+v2 B I 6.1369360000 C : 2.9604710000 1131A s 90.003776000 TBQBR 8 90.n031?5000 TAABH I 0.003113000 TAQAB 3 909000953n00 HJ : encfi000fl0fi00000 NJ! I v0.000000fi00000 HKJ I -0.0000n0"00000 NK 3 909000000034000 BAHD CENTEq = Q911.415700 KADPA 3 098755 A s 6.3190690900 v2+v3 R : 6.1850870000 C a 2.9754410000 TAAAA s on.n04299noo 78088 : .n,n03736n00 TAABB = O.n03769n00 TAnAB = 90.non417noo HJ 3 -n.nonononooooo HJK : 90.nonononooono HKJ : .n,nonon0000000 an a en.nonono188000 BAHD CENTER I 2915,969700 KADPA 3 “.9079 62 8 20.000110n GXY = no.00000n GZ 3 00°?5882 va : 90.164134 J K. K. 1 1 o 1 D 1 1 1 1 2 2 o 2 n 2 2 1 2 2 1 1 2 2 1 3 3 n 3 1 2 3 2 2 3 2 1 3 D 3 3 3 1 3 1 3 vl+v2 P FNG 2923.900 2920.510 2920.722 2948.875 2935.721 2935.734 2945.248 2945.880 2986.351 2973.092 2973.155 2982.320 2956.758 2983.559 2956.758 U9 ENG 2923.900 2920.512 2990.793 2948.866 2935.722 2935.739 2945.262 2945.892 2986.305 2973.093 2973.178 2982.363 2956.762 2983.616 2956.763 128 PBUP 09000 90.002 90.001 0.009 90.001 90.005 ‘09014 009012 09047 90.002 90.023 90.043 009004 20.057 60.005 J K! K9 1 1 0 1 1 1 1 0 1 2 1 2 2 2 0 2 0 2 2 2 1 2 1 1 3 2 2 3 3 0 3 .1 2 3 3 1 3 1 3 3 2 1 3 0 3 vz+v3 P ENG 2928.454 2925.265 2925.110 2940.345 2953.418 2940.339 2950.390 2949.927 2977.754 2990.856 2977.721 2988.061 2961.451 2987.161 2961.450 UP ENG 2928.454 2925.263 2925.109 2940.354. 2953.414 2940.338 2950.375 2949.915 2977.799 2990.833 2977.721 2988.010 2961.454 2987.096 2961.453 P'UP 0.000 0.002 0.001 ”00009 0.005 0.000 0.014 0.012 -0.045 0.023 0.000 0.051 90.004 0.065 ”09003 b b b &b# \flUim m\fl\n W\flU! OC’O\O 370 p. A .‘oem 910.5 fiCflU‘ 900350 .5N30 “0‘ Ur‘ 1° \flGflH OM&HJO 3036.340 3022.806 2983.703 3022.994 2983.703 3031.693 3006.605 3033.661 3006.611 3098.847 3084.767 3045.993 3085.199 3045.993 3093.330 3068.794 3016.561 3096.013 3068.815 3016.561 3173.858 3158.863 3120.580 3055.330 3036.203 3022.806 2983.709 3023.057 2983.709 3031.784 3006.619 3033.854 3006.627 3098.537 3084.766 3046.012 3085.342 3046.013 3093.492 3068.821 3016.569 3096.553 3068.852 3016.569 3173.266. 3158.869 3120.616 3055.341 129 0.137 90.000 90.007 80.064 90.007 90.092 90.014 90.194 l0.017 0.311 09001 w0.019 90.143 90.019 90.163 90.027 90.009 20.540 I0.037 u0.009 0.592 90.006 90.036 20.011 5.5 & mxn mxnu1 mxnuw HWN <3h3& A H%H\fl ¢3AJ& «bflJO OIP #40:: MOiP' 3027.564 2908.503 3040.755 3027.462 2988.503 3038.254 3011.307 3036.846 3011.303 3089.727 3050.802 3103.095 3089.481 3050.801 3100.927 3073.515 3021.499 3099.072 3073.501 3021.499 3027.691 2988.506 3040.686 3027.457 2988.506 3038.128 3011.327 3036.619 3011.320 3090.001 3050.821 3102.936 3089.460 3050.820 3100.673 3073.567 3021.502 3098.445 3073.539 3021.502 '00127 900003 0.069 0.005 ”09003 0.126 .00020 0.226 '00016 “00274 “09019 0.159 0.021 “09018 0.254 "0.052 ”00003 0.627 "09037 909003 9-1 6 1'1. 0.] 1.? 1...! lulu Ill! 6. 0‘04) V‘JVIV ‘V\JV ‘V‘JNIV m ‘Vlbo ”Cd 9‘010‘9 NJ‘C) DfiOO-O 0““) \nOJH mCdH' Ohbhlo O|&FO ‘N\flOIH 3159.700 3120.582 3055.330 3167.192 3143.238 3091.279 3170.416 3143.301 3091.280 3261.329 3244.973 3207.373 3142.465 3246.395 3207.331 3142.465 3253.238 3229.828 3178.235 3100.008 3159.997 3170.620 3055.341 3167.446 3143.281 3091.303 3171.641 3143.374 3091.303 3260.328 3245.004 3207.432 3142.493 3246.941 3207.447 3142.493 3253.605 3229.890 3178.278 3100.022 130 00.288 90.038 00.011 00.254 90.04‘ 90.023 01.225 90.073 309023 11001 90.031 90.059 .0.028 90.506 90.066 009020 20.366 90.063 20.043 90.014 OC’O o<>o~o O<>O\ V‘Q\J V‘U\IV V‘d‘FN 'N\JV PCdU' 0703.0 “3&4) rooam “3‘4! I4CdUPH I‘CdUVQ nacho 05¢“) Ow‘RDO \flOH‘ Ow‘hl Ombhrc ‘V\30H‘ WCflF‘ 3164.197 3125.402 3060.435 3177.847 3163.690 3125.399 3060.435 3176.022 3148.002 3096.230 3173.936 3147.961 3096.230 3250.934 3212.216 3147.587 3264.967 3250.010 3212.207 3147.587 3263.469 3234.687 3183.202 3105.307 3256.792 3234.580 3183.201 3164.689 3125.446 3060.438 3177.532 3163.625 3125.441 3060.438 3175.571 3148.113 3096.250 3172.529 3148.028 3096.249 3251.711 3212.301 3147.608 3264.406 3249.837 3212.282 3147.608 3262.734 3234.891 3183.246 3105.309 3258.823 3234.680 3183.245 “00492 .09044 '00002 0.315 0.066 ”0.042 '00002 0.451 “00110 "09020 1.407 '0.067 “09020 ”0.778 ”00085 .00021 0.561 0.174 ”09075 ’09021 0.735 ”09044 ”00002 .20031 P00101 ‘09044 \INVN mmmmm mmmm (DONG monmm VOVO'O'OO Humu ONfiGL’D #0401“ FUJI“ M500 HUUIUQ VU‘CAH moamo (DO‘M NIUIOJH VUIC'JH OO#MO 3261.396 3229.986 3178.235 3100.008 3361.138 3342.995 3306.266 3241.766 3150.593 3345.133 3306.288 3241.733 3150.593 3351.419 3328.425 3277.325 3199.548 3361.302 3328.775 3277.326 3199.548 3473.342 3452.811 3417.130 3353.119 3232.524 3259.029 3230.119 3178.278 3100.022 3359.629 3343.066 3306.352 3241.816 3150.610 3346.137 3306.397 3241.816 3150.610 3351.927 3328.513 3277.394 3199.580 3358.608 ‘3329.004 3277.396 3199.560 3471.049 3452.957 3417.248 3353.196 3262.561 131 2.367 90.133 n0.043 n0.014 1.559 '09051 00.087 90.049 90.016 91.004 90.108 u0.049 '00016 00.505 I0.088 90.069 90.032 2.694 n0.229 90.070 .0.032 2.292 90.146 90.118 90.077 «0.037 7 @0010 0300030) mama @0003 0000 0 P0301“ ONAOO N‘OO puuw 10.00 7 00b“) CDO~500c3 VU'IOJP VWO‘P QO&N 3105.307 3349.882 3311.144 3246.911 3156.106 3364.395 3348.394 3311.117 3246.910 3156.106 3363.191 3333.481 3252.314 3204.869 3355.154 3333.233 3282.313 3204.869 3460.960 3422.071 3358.291 3268.067 3476.060 3105.309 3351.013 3311.290 3246.957 3156.107 3363.470 3347.978 3311.234 3246.957 3156.107 3362.057 3333.817 3282.393 3204.891 3357.287 3333.362 3282.391 3204.891 3462.534 3422.309 3358.371 3268.090 3474.617 -00002 ”1.131 -00147 "00046 "0.001 0.925 0.416 ”0.116 ”0.046 ”04001 1.134 ”0.336 '0.079 ”00022 “2.133 "0.129 ”09078 '0.022 ”10573 90.239 ”0.081 .00023 1.443 0000 00000 00000 10 10 10 10 10 10 10 10 10 10 10 M50403 3603.0‘3 HGU‘IVO QNbOCDD HUW‘IVO émo‘mo (1300M 0VU‘IMH 0‘101031‘ 0030’” 3455.693 3417.190 3353.119 3262.524 3461.670 3438.858 3388.434 3311.173 3207.080 3473.506 3439.552 3366.438 3311.173 3207.080 3597.691 3574.382 3539.814 3476.394 3386.450 3269.465 3577.842 3539.954 3476.394 3386.450 3269.465 3583.893 3457.501 3417.361 3353.196 3262.561 3462.374 3438.987 3358.536 3311.228 3207.100 3470.252 3439.940 3388.543 3311.228 3207.100 3594.442 3574.586 3539.964 3476.566 3386.513 3269.487 3560.946 3540.223 3476.507 3386.513 3269.467 3584.910 132 91.808 v0.172 .09077 90.037 .o.705 P09130 90.102 90.056 90.019 3.254 90.387 90.106 90.056 90.019 3.249 90.205 90.150 90.112 90.062 00.022 939105 90.269 90.113 90.062 90.022 91.012 0000 00000 00000 10 10 10 10 10 10 10 10 10 10 10 “(1401‘ ”(11000 QNAOCD PGWVI'O ON‘O‘OO 00$“) 1"me 0NUIOIP CH30~ARD 1DCDOMbRJO 3458.848 3422.000 3358.291 3268.067 3475.109 3444.301 3393.451 3316.523 3212.822 3465.502 3443.780 3393.446 3316.523 3212.822 3584.053 3544.872 3481.599 3392.030 3275.440 3599.891 3551.369 3544.699 3481.597 3392.030 3275.440 3457.931 3422.162 3358.371 3268.090 3473.426 3444.796 3393.578 3316.571 3212.823 3467.888 3443.909 3393.569 3316.571. 3212.823 3586.204 3545.243 3481.723 3392.082 3275.440 3597.729 3579.582 3544.902 3481.721 3392.082 3275.440 0.917 ”0.163 ”00080 '0.023 1.682 v0.495 ”0.127 ’00049 "00001 ”2.385 .00129 ”00123 "00049 ”0.001 ’2.151 “0.370 ”0.125 ”0.052 0.000 2.162 1.787 "0.203 ’00124 '00052 0.000 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 . 11 11 11 11 11 11 11 11 11 r‘iflkfl‘d 30500-3 “(4801\20.‘ M00030 'Dmboao DmObMD 0\IU'1CA 0‘01040-4 94303560 H0‘JU‘OJH 3560.922 3511.427 3434.755 3331.389 3597.890 3562.168 3511.438 3434.755 3331.389 3734.141 3707.643 3674.131 3611.444 3522.230 3406.139 3711.472 3674.435 3611.446 3522.230 3406.139 3717.966 3694.403 3646.148 3570.152 3467.594 3337.742 3561.132 3511.570 3434.840 3331.431 3593.817 3562.825 3511.592 3434.840 3331.431 3729.644 3707.874 3674.313 3611.600 3522.394 3406.145 3716.374 3674.856 3611.605 3522.374 3406.185 3719.487 3694.757 3646.343 3570.274 3467.663 3337.767 133 P00211 90.144 n0.085 10.042 4.072 00.657 60.154 IOOOBS 30.042 4.496 .0.231 90.182 00.156 90.094 00.047 94.901 40.420 «0.159 90.094 90.047 91.521 90.354 90.195 90.122 Q0.069 00.025 10 10 10 10 10 N000! 10 10 10 10 10 HUU'IVO 11 1 11 11 11 11 NAQOO 11 1 11 11 11 11 11 #040190“ 11 1 11 11 11 11 P. p. HNUVVOF 0VU|GH 0VU‘GH OGO‘ON 000.320 PONUIOJP 3599.149 3567.077 3516.481 3440.140 3337.170 3587.799 3566.085 3516.466 3440.140 3337.170 3719.008 3679.415 3616.687 3527.854 3412.162 3735.825 (3715.814 3679.028 3616.682 3527.854 3412.162 3735.254 3701.740 3651.257 3575.577 3473.421 3343.938 3596.718 3567.716 3516.672 3440.223 3337.194 3590.605 3566.129 3516.643 3440.223 3337.194 3721.949 3679.967 3616.867 3527.941 3412.188 3732.684 3712.827 3679.247 3616.858 3527.941 3412.188 3731.816 3702.441 3651.530 3575.703 3473.476 3343.937 2.431 "0.639 ”0.191 ”0.083 .00025 '20806 ”0.043 "0.178 "0.083 ”00025 “2.942 '00552 ”00181 “00087 ”00026 3.141 2.987 90.218 ”0.176 90.087 90.026 3.438 ’09700 '00273 '00126 '00054 0.001 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 fitfl\l‘l¢+‘ P‘U\fl‘l°b* H\O\HmOiH' “)0CDohfihJo ”.4 urn «Jocno~;ha HWO\4UH3I‘ 3734.353 3696.391 3646.180 3570.152 3467.594 3337.742 3882.611 3852.556 3819.854 3758.107 3669.706 3554.599 3411.902 3861.912 3820.464 3758.112 3669.706 3554.599 3411.902 3863.683 3839.111 3792.419 3717.203 3615.539 3486.765 3729.149 3697.546 3646.401 3570.274 3467.663 3337.767 3876.484 3852.746 3820.073 3758.317 3669.838 3554.675 3411.930 8863.672 3821.126 3758.332 3669.838 3554.675 3411.930 3866.038 3839.679 3792.676 3717.371 3615.641 3486.817 134 5.205 91.155 $0.221 90.122 20.069 90.025 6.127 90.190 90.219 90.211 90.132 90.076 90.028 91.760 90.662 90.220 90.132 90.076 90.028 92.355 90.568 90.257 50.163 90.103 .0.052 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 <3AJ&CFODO h‘GHJ\JOF‘ Al‘tlai H44 #4; HWO‘JUNUO‘ IUCDOtiédo “JGMDO~OJUC3 powwow GH‘ 3721.970 3700.075 3651.213 3575.577 3473.421 3343.938 3865.641 3825.566 3763.391 3675.378 3560.680 3418.289 3833.817 3856.595 3824.766 3763.375 3675.378 3560.680 3418.289 3883.385 3848.211 3797.615 3722.671 3621.420 3493.022 3867.898 3845.806 3725.424 3699.814 3651.453 3575.703 3473.476 3343.937 3869.691 3826.353 3763.640 3675.509 3560.738 3418.287 3879.377 3857.560 3824.942 3763.612 3675.508 3560.738 3418.287 3878.621 3848.802 3797.989 3722.850 3621.511 3493.049 3872.325 3844.764 ”3.453 0.261 90.240 90.126 '00054 0.001 '4.050 20.787 ”0.249 . ”0.130 I'09057 0.002 4.440 ’0.965 ’0.176 90.237 90.130 .00057 0.002 4.764 '09591 ”0.375 '0.179 ’04091 ”0.027 ”49427 1.042 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 9.. Pd; #9‘ HOVUCAP “Octbohbhlo NOWO‘N GPOVWCAH 3882.820 3841.859 3792.500 3717.204 3615.539 3486.765 4043.041 4009.089 3976.714 3916.195 3828.705 3714.675 3573.261 4019.377 3977.828 3916.210 3828.705 3714.675 3573.201 4020.822 3994.890 3950.027 3875.732 3775.052 3847.457 3491.937 3876.083 3843.974 3792.815 3717.372 3615.641 3486.817 4034.791 4009.129 3976.987 3916.474 3828.885 3714.787 3573.318 4022.719 3978.893 3916.512 3828.885 3714.787 3573.318 4024.468 3995.745 3950.361 3075.957 3775.195 3647.540 3491.909 135 69736 920115 u0.515 90.188 90.103 .09052 8.250 fiOQO‘O 90.273 .0.278 .0.180 90.112 .0.057 93.342 910065 90.302 90.180 90.112 H00057 939645 n0.354 .0933“ p0.225 90.143 90.083 90.031 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 HWNKIV n+- M.- 9+4 PWO\Mfi “HDODOH‘NJ IUCDOIIJHOC: UHflP‘ urétruxnou‘ 3797.503 3722.670 3621.420 3493.022 4023.744 3983.198 3921.528 3834.427 3720.823 3579.722 4043.839 4013.242 3981.675 3921.485 3834.427 3720.823 3579.722 4043.520 4006.377 3955.380 3851.241‘ 3780.991 3653.785 3498.455 4025.414 4003.365 3955.114 3797.805 3722.848 3621.511 3493.049 4029.350 3984.268 3921.859 3834.608 3720.918 3579.750 4037.736 4013.670 3981.689 3921.784 3834.607 3720.918 3579.750 4037.072 4006.583 3955.873 3881.481 3781.126 3653.846 3498.452 4031.272 4000.815 3955.466 ’09302 900178 .09091 “00027 '5.606 ”10070 '00331 “00181 ’00095 909028 6.103 '09428 '09014 ’09299 “00181 '00095 ’09028 6.448 '09207 '00493 ”09239 '00135 “00060 0.003 ’50858 2.550 '00552 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 (dHHO\JmCdH 9.4 4043.231 3998.205 3950.216 3875.733 3775.052 3447.457 3491.937 4215.389 4177.210 4144.418 4085.502 3999.035 3886.182 3746.160 3577.835 4187.960 4146.214 4085.540 3999.035 8886.182 3746.160 8577.835 4189.150 4161.617 4118.713 4045.540 3945.945 3819.632 3665.616 4034.459 4001.954 3950.666 3875.961 3775.195 3647.540 3491.969 4204.409 4176.934 4144.774 4085.841 3999.274 8886.336 3746.250 8577.870 4193.387 4148.013 4085.956 8999.274 3886.336 3746.250 8577.870 4194.649 4162.839 4119.151 ‘045.838 3946.137 3819.752 3665.678 136 8.772 93.749 .00449 90.227 90.143 90.083 909031 10.950 0.276 00.356 no.359 90.239 40.154 90.091 904035 95.427 91.799 90.417 90.239 90.154 90.091 904035 95.499 91.221 90.433 90.298 90.192 -09121 20.062 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 11 13 (ShibCB 14 12 10 10 14 4 14 4 14A 4 11 14 2 10 ID\HIQOP* 49964060 49034210 4704.641 40404430 52704034 52514705 51974736 51174257 50124200 4.824056 47254907 0329.790 ‘9295.220 0254.511 5197.774 5117.257 0012.200 40524050 4725.907 5329.736 5260.235 5220.733. 51604560 50674022 49504311 40074323 49974806 49034758 47804906 46404446 5290.800 5257.446 5199.366 5110.214 5012.777 4002.330 4726.005 53064503 52054273 52554419 51994308 51104214 50124777 49024330 47204005 5305.721 5277.969‘ 5231.043 5161.705 5060.572 4950.734 4007.471 “04930 _04548 “09265 '04016 0204254 ”54661 914631 ”04957 .04577 “04282 .04018 23.253 9.940 90.909 914535 .04956 .0457? '04282 ’04018 24.01! -9.735 .24310 “1422‘ ”04750 "04924 '041‘2 Hw- ou¢4o\uacnn» IDCI§IDGD 10 14 5329.791 5240.255 5224.007 5159.097 5047.072 4949.432 4406.283 5509.410 5470.447 5424.034 5371.122 5291.534 5107.446 5454.307 4903.544 5450.449 5423.730 5371.044 5291.533 5187.446 5054.347 4903.544 5440.150 5446.401 5402.285 5334.379 5242.572 5126.002 4904.249 4016.139 5305.652 i5277.724 5230.541 5141.240 5047.912 4949.930 4804.514 5400.949 5457.761 5420.120 5373.243 5292.903 5144.331 0050.927 4903.747 5474.041 54314240 ‘5373.360 5292.904 5100.331 5050.927 4903.797 5475.631 5445.799 5404.247 5336.090 5243.674 5126.764 4904.641 46164254 149 24.139 09.971 92.556‘ I14343 00.840 00.506 20.235 20.649 134166 00.067 .24121 01.369 90.906 60.540 00.251. "9234552 974510 -I2.316‘ 21.371 90.666 90.540 00.251 935.981 04632 I1.962 914711 ‘21.102 204702 -20.391 204115 n+4 caHho~euuu4- 5296.148 52734765 52204379 51604564 5067.322 4950.311 4007.323 5450.725 5423.946 5371.720 5292.226. 5130.240 5059.330 49044677 5509.506 5470.436- 5424.175 5371.792 5292.227 5180.240 5059.330 4904.677 5301.029 5273.420 5230.757 5141.700 5044.572 4950.734 4407.471 5474.050 5431.605 5373.795 5293.454 5149.022 5059.779 4904.034 5401.190 5457.754 5429.339 5373.661 5293.452 5109.022 5059.779 4904.036 15 15 1 5509.575 5400.476 15 13 3 5470.603 5451.763 10.040 ”4.881 0.137 .14878 '14216 .04750 90.424 “04148 .290132 “7.739 v2.075 .10228 ’04782 .04999 “04159 20.396 124678 '04164 '14870 '14225 .04782 “04999 .00159 29.099 15 15 1 15 13 3 15 11 5 15 9 7 9 15 5 11 15 3 13 15 1'15 5505.625 5440.130 5401.326 5334.371 9242.572 5126.082 4904.249 4016.139 5400.335 5451.690 5404.700 5336.101 5243.674* 5124.704- 49544641 48160254 150 29.290 V114560 934455 15 15 15 15 15 15 15 15 15 15 15 15 15 15 414731' 414102. 304702 40.391 904115 1970050”- 5401.512 5335.037 5243.305 5126.946 4905.202 4017.379 5471.211 5446.701 5402.407 5335.045 5243.300 5126.946 49554252 4017.379 5405.154 5334.500 5244.291 5127.553. 4905.582 4.174399‘ 5475.465 5446.169 5404.610 5336.576 5244.291 5127.553 4905.502 4017.399 734644 714551 904983 .0960? “09301 .04020 .54254 0.612 .24142 ”14531 .04983 '04607 '04501 .04020 APPENDIX VI LISTING OF PROGRAM SPEC-FIT 1 This program is set up for the simultaneous analysis of the two interacting bands v1+v2 and v2+v3. To set the program up for the analysis of any other two interacting bands (v1,v2,v3) and (vi,vé,v§), the only changes that must be made are in the calculation of the vibrational ...— matrix elements, PQ and'QQ, of the interaction terms. I I I PQ (VlIVZIVBIqlq3IV1rv21v3> 00 = For (v1,v2,v3) = (1,1,0) and (vi,vi,v5) = (0,1,1), P0 = -l.0 and 00 = +0.5 as can be seen in the program. It is necessary that the unprimed quantum numbers (v1,v2,v3) represent the type B band, and the primed represent the type A band. 151 HELJK 152 18 L LISlINb OF PROGRAM SPEc-VIT 1 JF4,151154,NKM, 5: ”OKCUH, SPEC-FIT 1 FT!)X’L TYCJ’UTTCW ‘7 PROGRAM SPEC FIT 1 DIMENSION AV(14,E),AA(?).88(?).CC(2)IT1(2)IT2(2)IT3(2)IT4(2).H1(2) 1:H?<2).H5<2).H4(2>.voc2;.mstc?).PX(3).PY(6>.PZ(5).sz<3),Pvz(3), 2PXV(3).P>2(21.71>.PZ2.P1(21.21I.92<21.21).PS<21.21).P4<21. dPl)IA(?1.21).SS(?1.21).PHXY(?1.21)IPRZ(21:21):JJU(800)IKKU(300). 4LLu.JJG(500>.KKG<800).LLstaUO),oas<800).E~G(aoo>,wHT(2,aoo;. bIFHSF(800).CAP(2) COMMON JJU.AKU,LLU,JJG,KKG,LLG,OPS,ENG,NHT COMPLEX A,Sb.FRXY,PbZ THIS PROGRAM IS SET up FOR THE SIMULTANEOJS ANALYSIS OF THt BANDS (1'110) AND (0:111) THE VIBRATIONAL MATRIX ELEMENTS USED ARE (1:110 0103 091:1) a (0.1.1 01C3 131.0) = 1./2. (1'133 ONES-(“3‘1 0,1,1) 2 nit! (0:1.1 0195'03P1 1:110) : *1*I RENINU 51 PT?=SQRT(2.) 00: 0.5 PO .1 -1,0 MM=21 kHO:1,nE-Oo IE°=0 PEAU 500. AA(1).F5(1),CC(1):Tl(1),T2(1)aTS‘l),T4(1),V0(1)3H1(1), 1H2I1),H5(1).H4¢1) 510 rovaT(6F1b,6/4F10.6.F10.5/4F20.12) CA°(1)=(2.*65(1)*AA(1)'CC(1))/(AA(1)-CC(1)) AA(2)=AA(1) $ PB(2)=PQ(1) C CC(2):CC(1) $ 11(2)ST1(1) T2f2)=T2(1) $ TS(2)=T3(1) fi T4(2)=T4(1) $H1(2)=H1(1) S H2(2)=H2(1) H6!2)=H3(1) $ H4(2):H4(1) m VO(2) a VOC1) PRINT 501.(AA(1).BB(1).CC(1).T1(1).T2(1).Té(1)oT4(1).Hl(1)oH2(1). 1H3(l):H4(1)ICAP(l)) R=Rd(1)t*2/(AA(1)+RB(1))*t2 i S=AA(1)**2/(AA(1)*BB(1))**2 mprscl):kPTS(2)=I=D 591 FOR“AT(*16RUUND STATE CONSTANTS*//* A: #715,10/t B = tF15,10/ 1* C = «F15.10//t TAAAA a «F15.9/* T8898 I *‘15.9/* TAABB 8 «F15,9/ 2 t TAEAB = «F1fi.9/,t HJ = tF20.1?/t HJK = *F20.12/* HKJ a tF20.12 3 / u HK a «F20.12//* KAPPA = *F10I4) P0 12 J=1.2 D0 10 K=1.hOO I=J+1 READ bU4IJJU(IngKU(I)ILLU(I),JJG(I)I(KG(I)oLLG(I)IUBS)J&O=JFO'1 IFtfiM,LE.NPTS(1))GO TO 145 GO T0¢140.141.140.141).JE0 340 JEn=JEn+1 so To 142 141 JEO=J&O'1 14? COUTINUc 145 GO TOI146,147,146,147).JF0 146 IF(N6AMD.EQ.(WRAAUIZ).?)GO T0 3 GQ T0 148 147 IFIVRANU - (NPAhD/2)t?)3,148 14a ASV=AA(1)548v:28(1)£CSV=CC(1) i VUSV=VO<1) TlQV=Tl(1) $ T28V3T2f1) $ T38V=T3(1)$T4SV:T4(1) H19V=H1(1) $ H9SV=H2(1) ¢ H3SV=H3(1) fl H4SV=H4(1) PI_):-PQ AA(1)=AA(2) $ PB<1)=BB(2) I CC(1)=CC(2) $V0(1)=V0(2) T1<1$=T1<2> f T2(l)=72(2) £T3(1)=T3(2) S T4(1)8T4(2) H1(1)=H1(2) b w2(1)=H2(2) $ H3¢1)=H3(2) i H4(1)IH4(2) AA(2)=ASV i HBIZ)=HSV $ CC(2)=CSV $V0(2)=VOSV T1(2)=TISJ i Y?(2)=T2SV £T3(2)=T35V $Y4(2):T4SV - “1(2)=H1$V S H9(2)=fl?SV $ H3(2)=H38v 5 H4(2)=H4SV NBAVD : NdAND¢1 3 stttd+1) IF(JEO-2)119,119.123 11Q NSZ=2*(J/2)*1 N=J/?+2 GO TO 124 125 NSI=2*((J+1)/2) N:(J+1)/2 124 CONTINUE no 4 1:1.VSZ no 4 JJ=1.NSZ 4 A(I.JJ)= (0..0.) no In I=1.2 IFIJEO-2)126.176.1?7 N:N-‘ CONTINUE IFtN.&O.fl) GO TO 70 NN=D IFKI.EQ.2)NN=(VSZ+1)/2 DO 7” L:1,V IFtJhU-2)133.1K0.135 530 IF(I-2)16;15 15 K=Q~L 60 T0 17 16 K=2*L-? GO TO 17 fljflj K=?~L-1 17 CONTINUE M:L¢HN «.1 ~.\) \19 155 PX9(H.H)=(F-h*V)/2. PZ9(HIM)=K*K px(1)=(5.*FiV-?.*F-6,9FtKrK+5,cKtKfisq‘.KgKaK)/d' PY(1)=PX(1) PZ(1)=KwK*K*K Px7<1>=K*K*(F—KIK) PY7(1)=PXZ(1) pXV(j)=(FrF+2,¢F-2,tFtKwK-S,thK+KtK*(*K)/4. IF=-9X(2) PZ(2)=PZ(S)=U, PX?(?)=-(K*K*(K*?)**9)*SOHT((F-K*(K¢1))*(F-(K+1)*(K+2)))/4. pY7(2)=-PXZ(2) PXY(?)=O. IF(L.EO.Na1)GO T0 15 PZB(P,M+?)=PX2(4,M+2)=0.0 PXCJl=SuRT((F-K*(K*l))*(Fu(K+1)t(K+2))t(F'(K*2)i(K*6))‘(Fv(K+3)*(K 1*41)‘/1b. PYLS):PX(3) PX7C3):U. PY7(3)=0. va(3)=-2,.px.NE.J)GO T0 226 1F(LLG(MMM)'(LLG(MMM)/9)*2)216,214 10:2 FfiFzfl, 30 T0 218 ID=4 EOF=1. . IF.10 NN=LLO(MMM)/?+1 IF(ID.EO.2)NN=NN+J/2 GO TO 225 NN=(LLG/2*1 IFtID.FO.2)NN=MN+J/2 GO TO 236 NN=(LLU(MM)+1)/2 IFIID.E0.4)NN=NN+(J*1)/2 COM1INUE DO 280 IJ=MMINSUV IF(IJ.E0,MM)00 T0 249 IFIIFU§E(IJ).NC.0)GO T0 280 IFIJJUIIJ).NF,J)GO TO 780 IFILLUIIJ)-(LLU(IJ)/2)*2)239.238 ?5d 769 ?40 249 THE 950 349 121 152 150 158 10:2 80 T0 740 13:4 IFtJ.EQ.KKU(lJ)*LLU(IJ))YD=ID'1 IDR=ID IF(IJ.LE.NPTS(1))GO TO 243 GO T0(?41.?42.741.242).ID ID=IU+1 GO TO 243 ID=IP-1 CONTINUE IFtID.NE.JEO)Gn T0 280 GO TU(946,240,948,248),IDR MNzLLU(IJ)/2+1 IF(1DR,E0.2)NN=Nhtd/? 00 T0 949 NN=(LLO+2.*C°NJG(SS(1:0N))*SS(NP,NN)*P6XY(1IVP) C(TWTIFVUC Do 160 M=1.N II2W JJ=M+N IF(JFO,GT.2)UU TC 158 II=I]*1 JIJ=JIH1 CONTINUE ICNT = lI+1 JCNT = JJ+1 IF(M,EO.N)UO TO 159 AV(13.1)BAV(13,1)*?,*CONJG(SS(IIINN))tSS(JCNTINN)*PBZ(IIIJCNT)*2.* 100NJ0(SS(JJ;NN))ISS(ICVTIMM)*PBZ(JJIICNT) AV!14,j)=AV(14,1)+2.vCOVJG(SS(IIINN))OSS(JCNTINN)'°BXY‘IIIJCNT’* 1 2,.CONJG(SS*2.rC0NJG(SS(IIINN))¢SS(JJINN)*pUXY(IIIJJ) CONTINUE WRITE TAPE 51,JJO(IJ>,KKU DIMENSION A(21,21). S(?1.21) COMPLEX A, 5. V1. v2, V3. cSNT. SNT, TEMP 10C = 0 IEF : n FPIZ : 0.000000000001 FN = FLOATF(N) DU 1 1:11N [‘10 1 J=1,N 8(YIJ) = (0.",0.0) JF(I.E0.J)S(1,J) =(1.n.0.0) CONTINUE IFIN.LE.1)00 TU 12 sorrn = 0,0 NM1 = Nvl D0 2 I=1INM1 IJ = 1+1 PO 2 J:lJ,N X1:A(I,J) X22A(I,J)*(0-0.'1.9) QOFFD = SDFFH * 2.0!(X1tX1+X2*K2> IFISUFFU .LT. n.1E-10)GO To 12 THP : SQRTF60 To 21 IFIIND ,LE. DIGU T0 11 IN“ = n GO TO 4 11 IFITHN-FTHR)12.12.3 12 RETUPN 21 IE? 2 1 RETUPN END SURdOUTINE RFGQESS(NODATA) DIMENSION DATA<35), VFCTORI56.36I,AVE(35>.AVI26)I 1SIGMA<35>.CUEN¢55).SIGMCO(35).INDEX<3SI.CONSTIS5).NK<39)INTI 800) 2 .JJbIBUO)IKKU(800).LLU(800). JJGIBOOII KK0<800),LLG(800). 3 owscono>,tuh<900).Dv(800);NHT(2.aoo) COMMON JJU,KFU,LLU,JJU.KKG.LLGIOBSIENGIWHT TYPE DnUHLE VEFTOR, AVE. SIGMA. CotN. SIGMCU. SIGY TOL:,un1 $ EIIN=EFOUT=,oan000101 IFNTleSTEP=IFAVE=IFCOFNzerRED:IFHEV:0 IFSTEle 100 READ 53o (NKIII. I=1.33).XDEVMAX.LNOUT,BDLNILAST 33 FORMATISSI2. F5.1. 1?, F5.1. 12) XDFVNAX=XDEVNAYIXDEVHAX NOPROB=INVAH:IFRAN:IFHFSD=IFCNST=1 05§N0=SUMNHT=0. LNCNT : D IFIBDLNI36.34 34 BDLN = 10, 36 CONTINUE DU 38 1:1.55 $ IF(NK(I))37.39 37 INVAP=INVAR+1 38 CONTINUE PEMIND 50 HENINU 51 IFUT = 1,THEN ALL NHTS = 1,0 IFSTIP = 1, DO NOT PRINT EACH STtp IFQAW = 1 00 NOT PRINT QAN SUNS AND SQUARES IFAVE = 1 DO NOT PRINT AVERAGES Iruzsn = 1 Do NOT PRINT RESIDUAL SUNS SQUARES IFCOFN = 1 Do NUT PRINT PARTIAL COEFFICIENTS Irpngn : 1 Do NOT CALC PREDICTED VALUES IFCNST = 1 00 NOT HAVE CONST TERM IV EQUATION NOVAP = INVAH NVDI = NOVAR + 1 495 CONTINUE LNCNT : LNCNT*1 NDIN 3 U VAQ z n U K : 0 I"LEVEL. = 0.0 NOLjVI 2 0 NOHIN = 0 NOVA! : 0 3 0 DO 120 3 I 3 1: MVP} .30 DU 1?0 J = in NVPl 162 120 VECIGHII.J) = ”.0 IF(L.NCNT.GT.1)CU TO 506 519 D0 235M=1,NUDATA REAO TAPE 51.J3.LL1.KK1.JJ.LL.KK.ORSFREQ.EN61.EGowT( M). 1 (¢V(II):II=1176):1J FRFJ=EN61~EG ENOIIJazFREO OATAINOVAR)= OHSFREQ-FPEO IF(dT( M))2L6,200.2P4 €F4 IFIAPSFIOBSPREO-FREO)~FOLN>264.264.205 ?€b PRINT 218.J1.LL1.KK1.JJ.LL.KK.OOSFREO,FREO.IJ 718 FORMATI «THF HEIGHT OF THIS LINE Is BEING SET EQUAL T0 ZERO*// 1 ?(2x.313). 2F11,5.I11) WHT(JIIJ)=09 wT(M)=O, GO TO 206 2n4 SUPNhT=SUMNHT+wT( M) OBSNO=OOSNO+J. 2C6 NU”=P O0 220 I=1.Zb IFINKII))223.2?O.210 210 NUM=HUM+1 UATAINUM):AV