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ABSTRACT 

 

PHYTOHORMONES ASOCIATED WITH A BACTERIAL DISEASE OF CREEPING 

BENTGRASS (AGROSTIS STOLONIFERA L.) CAUSED BY ACIDOVORAX AVENAE 

SUBSP. AVENAE 

 

By 

 

Sha Liu 

Creeping bentgrass (Agrostis stolonifera) putting greens have been plagued by bacterial 

etiolation disease caused by Acidovorax avenae subsp. avenae (Aaa). Based on the visual 

symptoms of the disease we aimed to determine whether disease symptoms could be 

associated with bacterial manipulation of the phytohormone balance in creeping bentgrass 

tissues. In vitro and in vivo studies of this pathosystem for phytohormone analysis were 

performed. Aaa and a non-pathogenic, negative control Pseudomonas aureofaciens (Pa) were 

cultured at room temperature (20-22 °C) for 14 days. For in vivo studies, Aaa infected and 

uninfected creeping bentgrass ‘Tyee’ and ‘Penn A-4’ were grown in hydroponics under 

optimal 23/20°C day/night temperatures and heat stress 35/30 °C conditions in growth 

chambers. Bacterial culture or plant samples were taken for analysis of phytohormones: 

gibberellic acid isoforms (GA1, GA3, GA4, and GA20), jasmonic acid (JA), salicylic acid 

(SA), indole-3-acetic acid (IAA), zeatin riboside (ZR), and abscisic acid (ABA). GA1, GA3, 

GA4 and IAA were detected in some Aaa cultures but not in Pa. ‘Penn-A4’ was more Aaa 

sensitive under high temperature than ‘Tyee’. ‘Tyee’ infected with Aaa at high temperatures 

showed higher JA content in all plant tissues, higher SA in stolons and roots, and less GA3 

and GA20 in leaf and stolon tissues than ‘Penn-A4’ in the same conditions. Based on these 

results we hypothesized that pre-treating plants with SA or JA could be effective in reducing 

disease symptoms of Aaa in creeping bentgrass. The treatments included foliar application of 

10 µmol/L SA, 20 µmol/L SA, 0.5 mM JA in 0.02% ethanol and 2 mM JA in 0.02% ethanol 

prior to exposure to heat stress (35°C) and optimal temperature (23 °C). Physiological 



 

 

measurements included turf quality, leaf and root electrolyte leakage, chlorophyll content, 

photochemical efficiency and root viability. The results demonstrate that SA application may 

reduce disease symptoms of both cultivars under both temperature treatments. The effect of 

20 µmol/L SA was the most significant among treatments, especially under optimal 

temperature. JA application could also reduce Aaa disease severity especially under optimal 

temperature; however, the effects of 2 mM JA were more significant in cultivar ‘Tyee’ than 

‘Penn-A4’. These results suggest that under controlled conditions SA and JA may induce 

tolerance of creeping bentgrass to Aaa and reduce disease damage. Differential GA isoform 

accumulation produced by Aaa could contribute to disease severity and JA and SA 

accumulation may contribute to disease tolerance.  
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BACKGROUND 

 

Bacterial etiolation and decline of creeping bentgrass 

The first bacterial decline problem on creeping bentgrass was reported by Vargas (1981), and 

the infection was caused by Xanthomonas campestris pv. graminis (Roberts and Vargas, 1984). 

Acidovorax species have also been previously reported causing bacterial brown stripe on 

creeping bentgrass in Japan (Furuya et al., 2009). Recently, creeping bentgrass etiolation and 

decline was determined to be associated with the genus Acidovorax. Early symptoms include 

foliar chlorosis and can become severely necrotic as symptoms progress. Damage is most 

commonly seen on highly managed putting greens under high temperature conditions. 

Symptoms caused by Aaa are similar to those caused by Xanthomonas translucens pv. poae on 

annual bluegrass (Giordano et al., 2010). In creeping bentgrass, Giordano et al. (2012) observed 

bacterial streaming in infected plants and amplified a portion of the 16S ribosomal DNA. 

Koch’s postulates were used to show that Aaa is a causal agent of the disease. Roberts et al., 

(2014) isolated bacteria from etiolated samples and found A. avenae, Pseudomonas spp., 

Pantoea spp. and X. translucens may also be associated with the disease. 

 

Acidovorax species 

Aaa has been reported to infect a broad range of hosts. The genus Acidovorax contains many 

plant pathogenic species that cause extensive damage to important economic crops including 

corn, pearl millet, and rice. Three major subspecies exist in Acidovorax avenae, including A. 

avenae subsp. avenae, and A. avenae subsp. cattleyae. Acidovorax avenae subsp. avenae was 

once classified as a Pseudomonas sp. and it is pathogenic to members of the Gramineae (Che 

et al., 1999; Willems et al., 1992). The bacterium can attack young rice leaves and can also 

cause grain discoloration in mature rice (Webster and Gunnell, 1992). The disease can cause 
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water-soaked stripes on the leaves and sheaths (Kadota 1996). Aaa has been reported to infect 

maize through leaf stomata, resulting in narrow and white leaf lesions (Gitaitis et al., 1981). 

In pearl millet (Penisetum glaucum) the infection likely occurs through hydathodes and 

induces reddish-brown stripes on leaves (Gitaitis et al., 2002). Aaa is a seed-borne pathogen 

and the infection of Aaa in rice has been found in a broad range of geographical regions 

(Shakya et al., 1985). Aaa may not be able to survive well in soil or plant debris. The 

infection of Aaa is thought to spread via farm instruments (Gitaitis et al., 1978) as well as 

internal transmission in latently infected plants. High humidity and high temperatures are 

thought to be favorable conditions to trigger disease development caused by Aaa (White et 

al., 1994).   

 

Phytohormones play a role in plant defense responses 

Based on the visual disease symptoms of Aaa, we hypothesized that a phytohormones could 

play a major role in bacterial etiolation of creeping bentgrass. We further speculate that the 

phytohormone gibberellic acid (GA) could be produced by the bacteria and cause the abnormal 

etiolation symptom, since the primary function of GA in plants is to promote cellular elongation. 

The symptoms of bacterial etiolation in creeping bentgrass are similar to bakanae of rice 

seedlings, where the fungus Gibberella fujikuroi can produce GA to trigger an increase in 

height in the seedlings (Kurosawa 1926). The biosynthesis of GAs is complex and various 

isoforms of GA exist. The most active isoforms in plants are GA1 and GA4; Various soil 

microorganisms can produce GA3 (MacMillan 2001). 

Measuring phytohormone profiles in this research is important since GAs often interact with 

other phytohormones, especially under pathogen attack, and could play a role in plant 

susceptibility to Aaa under high temperatures. Components of GA signaling pathway appear 

to integrate SA and JA pathways in plant defense response (Achard et al. 2006). Similarly, 
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auxins and ABA also are important in disease responses and are associated with GA signling. 

Thus, understanding whether the accumulation of specific hormones is differential during Aaa 

disease or due to high temperature stress will help us to reveal the mechanism behind bacterial 

etiolation of creeping bentgrass. Here, a brief background on each hormone is provided. 

Auxins 

Auxins can regulate plant development and show direct and indirect effects on the 

regulation of pathogen resistance responses (Swarup and Péret, 2012; Kazan and Manners, 

2009). The plant innate immune system relies in the detection of pathogen-associated 

molecular patterns (PAMPs) and This resistance response is called PAMP-triggered 

immunity (PTI) (Dodds and Rathjen, 2010). Auxins can negatively affect plant defense by 

interacting with PTI (Robert-Seilaniantz et al., 2011). Auxin–aspartic acid (IAA–Asp) has 

been reported to exacerbate necrotrophic fungus Botrytis cinerea disease symptoms in 

infected plants (Gonzalez-Lamothe et al., 2012). 

Exogenous application of auxin has been shown to promote Pst DC3000 disease 

(Navarro et al. 2006). Auxin-treated rice was observed showing enhanced susceptibility 

to Xanthomonas oryzae pv. oryzae (Ding et al., 2008). In contrast, reduction in P. 

syringae pv. maculicola 4326 growth has been found in Auxin resistant axr2-1 mutants 

of Arabidopsis, which indicate that blocking auxin responses can increase resistance in plants 

(Wang et al. 2007). These results indicate that auxin plays a role in the attenuation of plant 

disease defense responses.  

Auxins regulation of plant development can also cause indirect effects on plant defense 

response. For instance, IAA application can reduce rice resistance to Xanthomonas 

oryzae pv. oryzae. The possible reason of pathogen growth may be caused by cell wall 

expansion and loosening which are activated by IAA (Ding et al., 2008). 
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Abscisic acid 

Abscisic acid is an essential phytohormone that regulates plants abiotic stress (Shinozaki and 

Yamaguchi-Shinozaki, 2007). In addition, ABA plays a role as a positive or a negative 

regulator of plant defense (Ton et al., 2009). Abscisic acid can positively regulate the 

resistance to some necrotrophs. For instance, ABA-insensitive mutants was found more 

susceptible to Pseudomonas syringae than wild-type plants in Arabidopsis (Arabidopsis 

thaliana). Exogenous application of ABA protects Arabidopsis against A.brassicicola and P. 

cucumerinaindicating (Ton and Mauch-Mani 2004). In addition, ABA activates stomatal 

closure that acts as a barrier against bacterial infection (Melotto et al. 2006). 

However, ABA has been shown to negatively regulate plant defense against various 

pathogens. The wild type plants increase disease severity to Fusarium oxysporum compared 

to ABA-deficient mutant of Arabidopsis (aba2-1 ) (Anderson et al. 2004). Also, enhanced 

resistance to Pseudomonas syringae has been observed in ABA-impaired mutants in tomato 

(sitiens) compared to the wild type plants. The exogenous application of ABA reduced the 

resistance of rice plants to Magnaporthe grisea (Koga et al.2004). An antagonistic interaction 

between SAR and ABA signaling in Arabidopsis has been indicated, by which ABA 

treatment showed to suppress SAR induction (Yasuda et al. 2008).In addition, ABA can also 

regulate resistance protein (R-protein) activity. ABA application can reduce the nuclear 

accumulation of SNC1 (suppressor of npr1-1, constitutive1) and RPS4 (resistant 

to Pseudomonas syringae 4) enhancing disease susceptibility to P. syringae (Mang et al., 

2012). 

Salicylic acid 

SA plays a role in the activation of defense responses against biotrophic and hemi-

biotrophic pathogens (Grant and Lamb 2006). It also regulates systemic acquired resistance 
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(SAR) (Glazebrook, 2005). In addition, SA is also important to regulate plant immunity. SA 

can interact with JA and auxin signaling pathways to trigger the efficient resistance responses 

against pathogens (Thaler et al., 2012). NPR1 (non-expressor of plant resistant genes 1) is an 

important regulatory component of SA signaling, which interacts with TGACG sequence-

specific binding protein (TGA) that can activate SA-responsive plant resistant genes 

(PR genes). In the presence of SA, NPR1 complex redox dissociate and monomers 

translocate to the nucleus. NPR1 plays an important role in SA-JA interaction. For example, 

in npr1 mutant Arabidopsis, SA-mediated suppression of JA responsive gene expression was 

decreased compared to wild type plants (Spoel et al. 2007).  SAR can activate systemic 

resistance to distal parts of the plant through the salicylic acid (SA)-mediated signaling 

pathway (Glazebrook 2005). SAR induced by SA can trigger systemic resistance to distal 

parts of the plant (Glazebrook 2005). Wild Arabidopsis plants were more resistant than SA-

deficient mutant (sid2-1) mutant (Nawrath and Métraux, 1999). Exogenous application of SA 

has been shown to reduce plant disease severity. Iwai et al. (2007) found that SA application 

could protect rice seedlings from blast fungus.  

Jasmonic acid 

JA plays a role in plant defense responses against insects and microbial pathogens. 

Previous studies have demonstrated that pathogen infection and tissue damage could promote 

local JA content, and of PR genes could be induced exogenous application of JA 

(Wasternack 2007). Exogenous application of JA results in enhanced resistance to herbivore 

attacks (Howe and Jander 2008). In Arabidopsis, JA signaling is induced in response to against 

Frankliniella occidentalis thrips (De Vos et al., 2005). Besides insects, JA can also induce 

defense response to microbial pathogens. Exogenous application of JA can reduce the growth 

of semi-biotrophic oomycete Phytophthora infestans (Cohen et al., 1993). JA-deficient 

mutants in Arabidopsis reduced resistance against necrotrophic bacteria Erwinia carotovora 
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(Pozo et al., 2005). JA treatments has been reported to against semi-biotrophic fungus Tilletia. 

laevia in wheat (Triticum. aestivum) against (Lu et al., 2006). JA treatment can also induce 

expression of specific PR genes to protect rice (Oryza sativa) against biotrophic blast disease 

(Magnaporthe. oryzae, Mei, et al 2006). 

SA and JA signaling pathways negatively interact in many aspects. WRKY33 as a 

positive regulator of JA-related genes, is component involved in mediating the antagonism 

between SA and JA, and it is also a repressor of the SA pathway (Birkenbihl et al., 2012). 

What is more, SA induce down-regulation of JA-signaling, and increase the susceptibility 

of wrky33 mutant plants to necrotrophic fungi (Sánchez-Vallet et al., 2012). Mitogen 

activated protein kinase 4 (MPK4) also involved in mediating SA and JA interaction, which 

acts as a negative regulator of SA signaling and positive regulator of JA signaling 

in Arabidopsis. The Arabidopsis mpk4 mutants were found reduced expression of JA 

responsive genes and the resistance to Alternaria. brassicicola compared to wild plants 

(Brodersen et al. 2006). In contrast, SA content and expression of SA induced PR genes are 

increased in mpk4 mutants against Pseudomonas syringae pv. tomato (Petersen et al., 2000).  

Recent evidence reveals that monocots and dicots may be differential in SA and JA 

signaling.  A coordinate or parallel interaction between SA and JA in plant defense responses 

has been supported by Tamaoki et al. (2013). JA-dependent signaling can mediate parts of SA-

upregulated genes in rice (Oryza sativa L.). A better understanding of JA and SA signaling in 

response to abiotic and biotic stress in monocot species is needed. 

Gibberellic acid 

Gibberellins including GA promotes plant growth and regulate various developmental 

processes. DELLA proteins act as repressors of GA responses. GA- responsive genes can be 

stimulated by degradation of negative regulators of DELLA proteins via a ubiquitin E3 ligase 
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SCF complex and the 26S proteasome (Griffiths et al. 2006). GAs can be produced not only 

by higher plants, fungi and bacteria (MacMillan 2001).  

DELLA proteins and other GA signaling components are involved in plant immune responses 

(Navarro et al. 2008). DELLA proteins integrate SA and JA plant defense response pathways 

and promote resistance to necrotrophs (Achard et al. 2006). Since GA stimulates degradation 

of DELLA proteins, it is likely that GA promotes resistance to biotrophs and susceptibility to 

nectrotrophs. GA treatments resulted in enhanced susceptibility to necrotrophic 

pathogen Alternaria brassicicola by degrading DELLA proteins. To investigate the reason of 

DELLA proteins regulation of defense responses, researchers found that DELLA proteins 

regulate the levels of ROS after pathogen infection (Achard et al. 2008). 

Elongated Uppermost Internode (EUI) as a GA deactivating enzyme modulate bioactive GA 

levels and involve in disease defense against bacterial pathogens in rice Yang et al. (2008).  

Overexpress EUI in rice showed reduced GAs content and increased resistance 

to Magnaporthe oryzae; however,the eui mutants which loss function of EUI , showed 

increased levels of GAs and reduced resistance (Yang et al. 2008). 

GA perception mutants have also been shown to affect defense responses in plant. 

Probenazole inducible 1 (PBZ1) can be induced by rice blast pathogen, and the of PBZ1 was 

increased in gid1 mutant which is defective in GA reception. High content of PBZ1 results in 

strong resistance to blast disease in rice (Tanaka et al. 2006). 

Although adequate evidence demonstrates that GA and its signaling components can regulate 

plant defense responses, the mechanism of GA action on defense responses has not been fully 

elucidated. 

Disease Management  
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Up to now, there are no effective chemical methods to control or prevent this disease reported 

for turfgrass management. In rice, it is recommended to maintain proper levels of temperature 

and humidity in seedlings and choose healthy seeds to control bacterial brown stripe of rice 

caused by Aaa (Kadota 1996). Resistant cultivars have been found in sugarcane and maize by 

disease resistance screening (Mariotti et al., 1991; Pataky et al., 1997). In creeping bentgrass, 

a growth chamber study showed that the antibiotics oxyteracycline and streptomycin sulfate 

can reduce bacterial decline caused by Aaa, but only oxytetracycline could maintain healthy 

plants compared to untreated control. Antibiotic use was a way to provide further evidence 

that a bacterium is the causal agent of the disease. In other words, this was not tested as a 

practical management strategy for wide scale field use. Additionally, application of the plant 

growth regulater (PGR) trinexapac-ethyl (TE) was found to increase disease incidence 

(Giordano 2014). A better understanding of the plant-bacterial-environment interactions will 

allow for a better understanding of disease development and will allow turfgrass scientists to 

make better recommendations to turfgrass managers regarding this disease. 

 

Summary and Major Objectives 

Previous research shows that Aaa can infect weakened creeping bentgrass, under favorable 

environmental conditions; however, interactions of bacterial pathogen occurrence with changes 

in hormone content, with cultivar variation in susceptibility, environmental stress are unclear. 

Therefore, our major goals of the research are to better understand if and why heat stress may 

make creeping bentgrass more susceptible to bacterial infection and to better understand the 

mechanism behind the etiolation symptom related to endogenous and exogenous 

phytohormone content. With this research, we hope to reveal valuable information that may 

lead to better disease management practices and remediation methods that can be applied to 

this and other bacterial diseases.   
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CHAPTER ONE 

DETECTION OF GIBBERELLIN BIOSYNTHESIS GENES IN ACIDOVORAX AVENAE 

SUBSP. AVENAE 

Gibberellin Biosynthesis in bacteria 

Gibberellins are formed from geranylgeranyl diphosphate (GGPP) via a set of reactions 

catalyzed by different enzymes, including consecutively acting diterpene cyclases, 

cytochromes P450, geranyltranstransferase (GGPPS) and isopentenyl pyrophosphate (IPP). 

During this process, short-chain dehydrogenases/reductases (SDR), kaurene synthases(KS), 

and copalyl diphosphate synthases (CPS) are also important enzymes in GA biosynthesis 

pathway (Morrone et al., 2009; Marcassa 2014). The homologs of operons in GA 

biosynthesis pathway have been reported by Marcassa (2014) (Figure 1.1.); however, GA 

biosynthesis pathways in bacteria has not been fully elucidated. 

The operon associated with GA biosynthesis has been evaluated in the soybean symbiont 

Bradyrhizobium japonicum USDA 110. Gibberellin biosynthesis by bacteria may be 

specifically linked to biological nitrogen fixation (BNF) in B. japonicum (Carvalho et al., 

2014). There is a known link between the operon’s promoter and the regulatory signal 

cascade in the microbe during nodule organogenesis and BNF. A schematic diagram showing 

the operon as it is found in Bradyrhizobium (Figure 1.1., Marcassa 2014). Farnesyl 

pyrophosphate synthase (FPPS) shares similar function with GGPPS (Tully and Keister, 

1993).  
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Figure 1.1. Gibberellin Biosynthesis Operon in some proteobacteria (Marcassa 2014) 

 

 

 

Whole genome sequencing 

The whole genome sequence of Aaa used in this study was reported by Giordano (2014). 

DNA was extracted from Acidovorax spp using the Qiagen DNeasy Plant Mini Kit according 

to the manufacturer’s instructions. Genomic DNA was sequenced and assembled by the 

Michigan State University Research Technology Support Facility. Standard Illumina TruSeq 

DNA Sample Prep Kit v2 was used for sequencing libraries. Real Time Analysis (RTA) was 

used to perform on-board base calling and image analysis.  

Trimmomatic (v0.30) was used to do the adapter and quality trimming. By using Burrows-

Wheeler Aligner (BWA, v0.7.5a), non-overlapping read pairs and these pseudo long reads were 

aligned to the Acidovorax avenae reference genome (subsp. avenae ATCC 19860, NCBI 

accession # NC_015138.1). Genome Analysis Toolkit (GATK v2.4-9) was used to perform 

variant calling and filtering. Variant calling was performed by using the UnifiedGenotyper tool 

of GATK with ploidy set to one. Velvet (v1.2.7) was used to perform De novo assembly. In 

steps of 10, a range of kmers were scanned from 23 to 93 for each strain. From the set of 
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assemblies for each strain, based on maximization of the length of long scaffolds the optimal 

kmer assembly was selected to minimize the total number of scaffolds making up most of the 

assembly (Giordano 2014).  

 

Protein-nucleotide alignment of GA biosynthesis genes associated with Aaa 

To determine whether there are GA biosynthesis genes in Aaa, we searched the Aaa genome 

using potentially homologous sequences, which are well-known enzymes and precursors of 

GA biosynthesis pathway in other bacteria. The Basic Local Alignment Search Tool (BLAST) 

was used for comparing  nucleotides of RNA sequences between Aaa strains and other 

bacteria based on the amino-acid sequences of different proteins working in GA biosynthesis 

in NCBI database. Protein-nucleotide 6-frame translation (tblastn) was conducted to search 

translated nucleotide databases using a protein query. GA biosynthesis operons were selected 

from three bacteria Bradyrhizobium japonicum (USDA110), Sinorhizobium fredii (NGR234), 

and Mesorhizobium loti (MAFF303099). Aaa strain ATCC 19860 (isolate MSU 1, MSU 4 

and MSU 13) and ICMP 3183 (isolate URI 1) and were used in this study. 

 

 

 

 

 

 

 

 

 

A small set of one strain of predicted Aaa protein sequences aligned with translated 
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sequences of related bacterial organisms (Table 1). Gibberellin biosynthesis proteins with 

Aaa strain ATCC 19860 sequence by tblastn. Homologs of SDR in B. japonicum and M. loti, 

GGPPS in S. fredii and M. loti, and FPPS in B. japonicum have been found in Aaa. The match 

spanned almost the entire length of our query sequence. The S scores and expect value (E-

value) indicate the alignments are acceptable.  

Table 1. Significant alignments of gibberenllin biosynthesis proteins with the ATCC 19860 

query sequence by tblastn from data presented in Chapter One. 

 

Aaa strain Protein Source of proteins Score(S) Query cover Expect(E) value 

ATCC 19860 SDR Bradyrhizobium japonicum 110 92% 1e-27 

ATCC 19860 SDR Mesorhizobium loti  114 76% 4e-28 

ATCC 19860 GGPPS Mesorhizobium loti  150 82% 3e-41 

ATCC 19860 GGPPS Sinorhizobium fredii 146 81% 2e-39 

ATCC 19860 FPPS Bradyrhizobium japonicum 153 84% 8e-42 
      

 

The genetic regulation of GA biosynthesis in bact 

eria is complicated. Homologs of three essential emzymes facilitating the GA biosynthesis 

pathway have been found in Aaa, which indicate Aaa could have the ability to produce GA. 

However, most parts of the GA biosynthesis pathway in Aaa has not been fully explained. 

The results encourage us to evaluate whether Aaa can produce phytohormones in pure 

cultures. 
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CHAPTER TWO 

 PHYTOHORMONES ASSOCIATED WITH BACTERIAL ETIOLATION DISEASE IN 

CREEPING BENTGRASS 

 

INTRODUCTION 

 

The turfgrass industry has recently been plagued by a highly damaging new bacterial disease 

caused by Acidovorax avenae subsp. avenae (Aaa) called bacterial etiolation. It can cause 

severe damage to creeping bentgrass putting greens on golf courses (Giordano et al., 2010). 

The symptoms of the disease include chlorosis, necrosis, and etiolation of plant tissues.  

Creeping bentgrass is a cool-season turfgrass species that is highly susceptible to various 

abiotic and biotic stresses in the summer.  Aaa is most problematic to creeping bentgrass 

putting greens during periods of above optimal high temperatures in summer months (30-40°C). 

Treatments with plant growth regulators (PGRs) can inhibit GA biosynthesis and PGR 

treatment has been found to increase creeping bentgrass susceptibility to Aaa (Roberts et al., 

2015). Also, Using PGRs with different modes of action including early-GAbiosynthesis 

inhibitor, could reduce the potential of bacterial etiolation development in creeping bentgrass 

(Roberts et al., 2016). Thus, there could be an intimate link between this disease, heat stress, 

and plant growth regulator associated changes in GA content. A better understanding of this 

link and the phytohormones involved could lead to better recommendations for use of PGRs 

and a reduction of Aaa disease incidence. 

The first report of Aaa being able to produce phytohormones concluded that Aaa is 

capable of producing GA3 by enzyme linked immunosorbent assay (ELISA) (Roberts et al., 

2014). In this study, researchers only detected a single hormone and single isoform; however, 

many isoforms of GA and other plant hormones are able to be produced by plant pathogens. 

Additionally, more advanced techniques to investigate full hormone profiles are available such 
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as ultra-performance liquid chromatography (UPLC). Several different bacterial species are 

known to produce GA including Acetobacter spp., Bacillus spp., Herbaspirillum spp., and 

Rhizobium spp. (MacMillan 2001). However, less information is available for Acidovorax 

production of GA or other phytohormones and this is the first investigation of hormone profiles 

in a bacterial pathogen of creeping bentgrass. An evaluation of hormone profiles using UPLC 

may shed light on the association of this disease with GA regulation.  

Determining phytohormone profiles in creeping bentgrass and Aaa interactions is 

important due to the widespread use of PGRs in use in the turfgrass industry and the link of 

this disease to PGR application. Previous studies have suggested trinexapac-ethyl (TE), one of 

the most utilized plant PGRs in the turfgrass industry, can cause bacterial etiolation outbreak 

of creeping bentgrass (Giordano et al., 2012). TE inhibits late in the GA biosynthesis pathway 

at several points such as inhibiting 3β-hydroxylase conversion of GA20 to GA1 (Adams et al., 

1992; Rademacher 2000). TE is commonly applied to reduce turfgrass vertical growth to reduce 

labor costs associated with mowing and for other purposes such as for flower inhibition 

(Fagerness and Yelverton 2001).  Since PGRs seem to influence the severity of the Aaa 

disease and GA is involved in cross-talk with several other hormone pathways controlling 

abiotic and biotic defense signaling pathways, an evaluation of full phytohormone profiles in 

the Aaa and in plant-bacteria interactions is needed.  

GA is involved in cross-talk with SA and JA via the systemic acquired resistance (SAR) 

and induced systemic resistance (ISR) pathways, respectively (Yang et al., 2012). SAR and 

ISR are two pathways that convey signals to systemically activate defense responses in 

response to a local disease infection site or a disease priming event (Choudhary et al., 2007). 

Inhibition of GA has resulted in differentially accumulated SA and JA in kentucky bluegrass 

(Krishnan et al., 2015). Thus, the ISR and SAR pathways may be significantly affected by 

PGRs application to creeping bentgrass and could play a role in Aaa sensitivity or tolerance. 
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Additionally, GA interacts with various other hormones that could play a role in this disease 

system, such as auxins and ABA. Whether Aaa produced phytohormones are associated with 

creeping bentgrass disease symptoms and why Aaa is more successful at causing disease under 

high temperatures has not yet been fully elucidated.  

  Therefore, our major goals of the research are to better understand if and why heat stress 

may make creeping bentgrass more susceptible to bacterial infection and to better understand 

the mechanism behind disease symptoms. Additionally, there is evidence of variation in disease 

tolerance of creeping bentgrass cultivars, but no resistant cultivars have been found to date. 

The physiological mechanisms behind variation in creeping bentgrass responses to pathogenic 

bacterial infection are not known. Additionally, we have found that the Aaa genome contains 

sequences that are homologous to bacterial GA biosynthesis genes. Therefore, we hypothesize 

that 1) Aaa may be capable of producing other phytohormones in addition to GA3; 2) 

phytohormone profiles in plant tissue is significantly affected by high temperature and bacterial 

infection; 3) differences in phytohormone accumulation between Aaa sensitive and tolerant 

creeping bentgrass cultivars could play a role in disease susceptibility or resistance. Thus, the 

objectives of the study were to determine phytohormone profiles in pure cultures of bacteria 

and to evaluate phytohormones in two cultivars of infected and uninfected creeping bentgrass 

treated with TE and differing in disease susceptibility under optimal or heat stress conditions. 

 

 

 

MATERIALS AND METHODS 

Bacterial Culture 

Four distinct strains of Aaa were isolated at Michigan State University (MSU) and the 

University of Rhode Island (URI) (Giordano et al., 2012). The strain TX-1 of Pa was isolated 

at MSU as described by Powell et al., (2000). All bacterial strains were grown in nutrient broth 
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containing 0.5 g enzymatic digest of gelatin and 0.3 g beef extract in 100 mL Erlenmeyer flasks 

on a rotary shaker set to 100 rpm at room temperature (20-22 °C). 

For hormone profile analysis, 1.0 mL samples from each four independent bacterial 

cultures (four replications of each isolate) were taken at 2, 5, 8 and 14 days of culture into 1.5 

mL tubes, and diluted to 10-6 colony forming unit (CFU) based on a growth curve. Culture 

medium was centrifuged at 20817 G for 20 min at 4 °C and the supernatant of pure bacterial 

culture was discarded. Bacterial cell pellets were extracted by consecutively adding 0.5 ml of 

ethyl acetate three times. Extracts were evaporated in a rotary evaporator (Heidolph Laborota 

4000; Cole-Parmer, IL) and the residues were dissolved in 500 µL absolute methanol (Mazzella 

et al., 2004). Phytohormones were analyzed as described below. 

Plant Material and Growth Conditions 

Creeping bentgrass cultivars ‘Tyee’ and ‘Penn-A4’ were seeded at the rate of 0.45 kg/93 m2 in 

sand in 11.4 cm pots and were established in a greenhouse for 8 weeks with daily watering and 

weekly fertilization. Plants were regularly trimmed to 2 cm height. After they were established, 

plants were separated and propagated into clonal tillers. They were then transferred to a 

hydroponic system in a controlled environmental growth chamber using the methods described 

in Merewitz et al. (2011). Growth chamber conditions were maintained a 12 h photoperiod at 

900 µmol·m-2·s-1 of photosynthetically active radiation (PAR), 65% relative humidity, and a 

day/night temperature of 23/20 °C. Plants were inserted into 2.54 cm diameter holes in foam 

boards with plastic covers. The boards were floated on the nutrient solution in black plastic 

tanks (71 x 51 x 15 cm). The hydroponic solution was aerated via a tube connected to a pump 

(115 V, 60 Hz, Tetra Whisper; Blacksburg, VA). The solution was changed weekly and solution 

pH was monitored and adjusted to a pH of 6.0 every 3 days. Once established, plants were kept 

trimmed to a height of 5 cm. All plants were sprayed with trinexapac-ethyl (Syngenta Crop 

Protection, Greensboro, NC) at the rate of 0.79 L ha-1 and applied twice before the experiment. 
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The second spray was applied two weeks later and 48 h before the bacterial treatments. 

Temperature and Bacteria Treatments 

After hydroponic plants were established, 16 plants were kept in each hydroponic tank. Four 

tanks were placed in an optimal temperature growth chamber at 23/20°C day/night temperature 

and four tanks were moved to a high temperature chamber at 35/30°C for the duration of the 

experiment (20 days). For each cultivar, one of the tanks in each chamber was infected with 

Aaa bacteria (Aaa treatment) and the other was not (control). Both chambers were equal in size, 

RH, photoperiod, and light levels are the same as described above. For infected plants, plant 

nutrient solution was replaced with bacterial culture of the pure MSU-13 strain of Aaa at a 

concentration of 10-6 CFU one day after the measurement day (0, 5, 15 and 20 days). One day 

before subsequent treatment, bacterial culture was replaced with nutrient solution. Nutrient 

solution for control plants were changed every 3 d. The canopies of bacteria-treated plants were 

trimmed to a height of 3 cm with scissors soaked in MSU-13 Aaa suspension 2 days before the 

experiment. During the treatment with bacterial culture about 0.5 cm of root tips were pruned 

with sterilized scissors every day to ensure that bacteria could enter roots through wounds. 

Control plant canopy and roots were also cut in the same manner with sterile scissors rinsed 

with de-ionized water.  

Physiological Evaluation of Plants 

Electrolyte leakage (EL), turf quality ratings (TQ), and chlorophyll content (CHL) were 

measured on plant leaves or canopies every 5 days during the study. EL gives an indication of 

cellular membrane stability. Approximately 10 leaves were rinsed and submerged in 10 mL of 

de-ionized water after taken from each plant. The samples were then placed on a shaker for 24 

h and the initial conductivity (Ci) was measured by conductivity meter (YSI Model 3200; 

Yellow Springs, OH, USA). The leaf tissues were then boiled for 20 min and put on the shaker 
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for another 24 h to measure the maximum conductivity (Cmax). Percent EL was calculated as 

Ci/Cmax x 100 (Blum and Ebercon, 1981). Total CHL of plant tissue was extracted in the dark 

for 72 h in dimethyl sulphoxide. The absorbance of the leaf extract was measured in a 

spectrophotometer (Genesys 10S UV-VIS; Thermo Fisher Scientific, Madison, WI) at 663 and 

645nmHL (Hiscox and Israelstam 1979). CHL was calculated based on the equation described 

in Arnon (1949). TQ was visually rated on a scale of 1–9 (9 representing a fully turgid, dense 

green canopy, and 1 representing necrotic plants) by evaluating the color, density, and 

uniformity of the grasses (Turgeon 2008).  

Root health was evaluated by determining root EL (REL) and root viability. REL was 

measured as described by Huang et al. (1998). 200 mg of roots were taken from individual 

plant and washed thoroughly with de-ionized water and EL was measured as described above. 

Root viability was estimated by measuring the activity of dehydrogenase by using the 

triphenyltetrazolium chloride (TTC) reduction technique (Knievel 1973; McMichael and 

Burke 1994). The activity was based on the dry weight of each root sample, which was 

determined after drying in an 80 °C oven for 72 h (Merewitz et al., 2011). 

Phytohormone analysis 

Extracts of bacteria and plant tissue were analyzed by the method described by Liu and others 

(2012). Plant tissue extracts were processed as described by Krishnan and Merewitz (2015). 

The internal standards for liquid chromatography (LC) analysis included 100 nmol of 

deuterium-labeled ABA. LC was carried out using an Ultra Performance Liquid 

Chromatography- tandem mass spectrometer [(UPLC/MS/MS) Waters Quattro Premier XE 

ACQUITY® Tandem Quadrupole; Waters, Milford, MA]. Desolvation temperature was 342-

350 °C, and the ionization mode was ES-. Cone gas flow was kept 38-50 L/hr, while 

desolvation gas flow was 717-800 L/hr.  Methanol and 0.1% formic acid were selected as 

solvents with a C18 column (5cmx2.1mmx2.7µm; ascentis express, Sigma-Aldrich, St. Louis, 
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MO). External standards for GA isoforms (GA1, GA3, GA4 and GA20) were diluted to 1.25 

µM. Standards for ABA, SA, JA, IAA, and zeatin riboside (ZR) were diluted to 12.5 µM, 25 

µM, 50 µM, 100 µM and 200 µM, respectively. 

Measurements of bacterial culture study were conducted on October 18th,2014 (experiment 1), 

and repeated on December 5th, 2014 (experiment 2). Hydroponics studies were first conducted 

on March 17th, 2015 (experiment 1), and then repeated on May 20th,2015 (experiment 2). 

Physiological indices were taken on day 0 of both studies to make sure materials of repeated 

studies had the same initial conditions. 

Experimental Design and Statistical Analysis 

The bacterial culture experimental design was a completely randomized design with four 

replications of each bacterial strain. The hydroponic plant experiment was a split-split-plot 

design with four replicates with temperature as the whole plot, bacterial treatments as the sub-

plot and cultivar as the sub-sub-plot. Bacterial treatment was randomly assigned within one 

chamber room, and cultivars were randomly arranged within a tank. Treatment effects were 

determined by analysis of variance (ANOVA) according to the mixed procedure within the 

Statistical Analysis System software (SAS 9.2; Cary, NC). ANOVA results are shown in the 

appendix. Statistical interactions and means among temperature, bacteria, and cultivar 

treatments were separated by Fisher’s protected LSD test (P ≤ 0.05).  

 

 

 

RESULTS  

Bacterial phytohormone production 

Aaa in pure culture was found to produce GA1, GA3, and IAA whereas the negative control 

Pa isolate TX-1 did not produce these hormones (Figure 2.1.). GA1 content increased with 
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days of culture in all isolates of Aaa in experiment 1(Figure 2.1. A). Differences between 

isolates were significant on day 14 where isolate MSU-4 showed significantly higher GA1 

content than other Aaa isolates and TX-1 in experiment 2 (Figure 2.1. E). GA3 was detected in 

isolates MSU-1, MSU-4 and MSU-13 (Figure 2.1. B and F). The maximum production of GA3 

was detected on day 5 in both experiments. Isolate MSU-13 showed significantly higher GA3 

content on days 5, 8, and 14 compared to other isolates, and showed maximum GA3 content 

(259.8 µM mL-1) on day 5 in experiment 1 (Figure 2.1. B). Relatively low levels of GA4 (less 

than 12 µM mL-1) were detected in all four Aaa isolates (Figure 2.1. C and G). Isolate URI-1 

showed significantly higher GA4 content than other isolates on days 2, 5 and 8 in experiment 

1 (Figure 2.1. C); however, MSU-13 showed highest GA4 content on day 5 in experiment 2 

(Figure 2.1. G). Isolate MSU-13 and isolate URI-1 produced more IAA than other isolates in 

both experiments (Figure 2.1. D and H). The highest IAA content (212.1 µM mL-1) was 

detected in isolate MSU-13 on day 2 in experiment 1 (Figure 2.1. D). URI-1 showed higher 

IAA content than other isolates in experiment 2 on days 2, 5 and 14 (Figure 2.1. H). 
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Figure 2.1. Phytohormone production by Acidovorax avenae subsp. avenae (Aaa) isolates 

(MSU-1, MSU-13, MSU-4 and URI-1) and Pseudomonas aureofaciens (Pa) isolate (TX-

1).  

  
 

Figure 2.1. Phytohormones identified include gibberellic acid-1 (GA1) in A) experiment 1 and 

B) experiment 2, gibberellic acid-3 (GA3) in C) experiment 1 and D) experiment 2, gibberellic 

acid-4 (GA4) in E) experiment 1 and F) experiment 2, and indole 3 acetic acid (IAA) in D) 
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Figure 2.1. (cont’d) 

 

experiment 1 and H) experiment 2. Different letters indicate statistically different values 

between isolates on a given day, based on LSD values determined by Fisher’s protected t test 

(P ≤ 0.05). 

 

Physiological evaluation of plants 

Without bacterial treatments, plants exposed to high temperature compared to optimal 

temperatures did not show significant differences in leaf EL (Figure 2.2. A and D). Compared 

to control plants increases of EL were more pronounced in infected plants of both cultivars at 

both temperatures. Higher EL was exhibited by infected plants at high temperature than at 

optimal temperature. In control plants, ‘Penn-A4’ at the high temperature showed higher EL 

than other treatments on days 10, 15 and 20 in experiment 1 (Figure 2.2. A). EL of infected 

‘Penn-A4’ was higher than infected ‘Tyee’ on days 5, 10 and 15 under optimal temperature. 

‘Penn-A4’ treated with bacteria under high temperature showed the highest leaf EL compared 

to other treatments except for day 10. For instance, on day 15 under bacteria and high 

temperature treatments, ‘Penn-A4’ had a leaf EL of 41.8%, whereas ‘Tyee’ had a leaf EL of 

35.4% (Figure 2.2. D). 

CHL of plants without bacterial treatment under optimal temperature treatments did not 

change significantly over time throughout the study (Figure 2.2. B and E). Without bacterial 

treatment, both cultivars exhibited less CHL at high temperature compared to optimal 

temperature on days 15 and 20 in experiment 2 (Figure 2.2. E). Infected plants of both cultivars 

exhibited a more rapid decline in CHL at high temperature than at optimal temperature in 

experiment 1(Figure 2.2. B). Infected ‘Penn-A4’showed lower CHL than infected ‘Tyee’ at 

both temperatures on all measure days, except for day 20 at optimal temperature.  

TQ did not statistically significant different among treatments under optimal 

temperatures without Aaa treatment (Figure 2.2. C and F). TQ ratings declined in both cultivars 

at high temperature treatment with and without Aaa treatment, with a greater decline in plants 
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treated with Aaa (Figure 2.2. C). Infected ‘Penn-A4’ had significantly lower TQ than infected 

‘Tyee’ under high temperature treatment on days 15 and 20 (Figure 2.2. F). 

Figure 2.2. Electrolyte leakage (% EL), chlorophyll content (CHL) and turf quality rating 

(TQ) of ‘Penn-A4’ and ‘Tyee’ creeping bentgrass in response to bacterial and temperature 

treatments. 

 

Figure 2.2. A. Electrolyte leakage (% EL) in the experiment 1. B. Electrolyte leakage (% EL) 

in the experiment 2. C. Chlorophyll content in the experiment 1. D. Chlorophyll content in the 

experiment 2. E. Turf quality ratings (TQ, 1–9 scale; 1 = worst, 9 = best) in the experiment 1. 

F. Turf quality ratings in the experiment 2.  

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05).  
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Root health as measured by REL was also affected by bacterial infection, high 

temperature and cultivar difference (Figure 2.3. A and C). Both cultivars showed higher REL 

under high temperature than optimal temperature with and without bacterial infection 

throughout the study in experiment 1 (Figure 2.3. A). Under both temperature conditions, 

infected plants exhibited higher REL than control plants (Figure 2.3. A and C). However, under 

optimal conditions, infected ‘Penn-A4’ had significantly higher REL than infected ‘Tyee’ in 

experiment 2 on days 15 and 20 (Figure 3 C).  

Without bacterial infection, RV was higher in ‘Tyee’ than ‘Penn-A4’ at optimal 

temperature (Figure 2.3. B and D). Uninfected ‘Penn-A4’ showed higher RV than uninfected 

‘Tyee’ at high temperature in experiment 2 (Figure 2.3. D). With bacterial infection, plants 

exhibited lower RV at high temperature compared to optimal temperature in experiment 1 on 

days 10,15 and 20 (Figure 3B). No significant differences in RV was detected between infected 

cultivars at high temperature. However, RV of infected ‘Tyee’ was higher than infected ‘Penn-

A4’ on days 10 and 20. For instance, on day 20, at optimal temperature, RV of infected ‘Penn-

A4’ and ‘Tyee’ were 7.9 and 21.7 OD•g-1 respectively. 
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Figure 2.3. Root electrolyte leakage (% REL) and Root viability (RV), of ‘Penn-A4’ and 

‘Tyee’ creeping bentgrass exposed to bacterial and temperature treatments.  

 

 

Figure 2.3. A. Root electrolyte leakage (% REL) in the experiment 1. B. Root electrolyte 

leakage (% REL) in the experiment 2. C. Root viability (RV) in the experiment 1. D. Root 

viability (RV) in the experiment 2.  

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). No LSD bar indicates lack of significant differences on that day. 

 

Phytohormone analysis of plant tissues 

 In leaves without Aaa treatment, both cultivars contained higher SA at high 

temperature than at optimal temperature at day 20 (Figure 2.4).  Infected ‘Tyee’ at optimal 

condition contained more leaf SA than ‘Penn-A4’ under the same conditions. In stolons, at high 

temperature, infected ‘Tyee’ had more SA than ‘Penn-A4’ in experiment 1 on days 5 and 10 

(Figure 2.4. B).  ‘Penn-A4’ exhibited an increase in SA in leaves and roots due to elevated 

temperature; however, ‘Penn-A4’ did not exhibit a significant increase in SA in response to 
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bacterial infection (Figure 2.4 A and C). In contrast, uninfected ‘Tyee’ did not exhibit 

significant differences in SA content of leaves or roots in response to high temperature but SA 

content was responsive to bacterial infection in experiment 2 (Figure 2.4. D and F). Infected 

‘Tyee’ at high temperature showed more SA content in roots compared to ‘Penn-A4’ under the 

same conditions on days 10, 15, and 20.  

Higher JA content was detected in leaves and stolons of both cultivars at high 

temperature than at optimal temperature without bacteria treatment in experiment 1 (Figure 2.5. 

A and C). In infected plants at optimal temperature, JA content was higher in ‘Tyee’ than ‘Penn-

A4’ at 10, 15, and 20 days in leave; in stolons, however, ‘Penn-A4’ had more JA content than 

‘Tyee’ except on days 10 and 15. At high temperature, infected ‘Tyee’ accumulated more JA 

compared to infected ‘Penn-A4’ in leaves, stolons, and roots in experiment 2 (Figure2.5. D, E 

and F).  
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Figure 2.4. Endogenous hormone salicylic acid (SA) contents of ‘Penn-A4’ and ‘Tyee’ 

creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.4. A. Salicylic acid (SA) contents in leaves in the experiment 1. B. Salicylic acid (SA) 

contents in leaves in the experiment 2. C. Salicylic acid (SA) contents in stolons in the 

experiment 1. D. Salicylic acid (SA) contents in stolons in the experiment 2. E. Salicylic acid 

(SA) contents in roots in the experiment 1. F. Salicylic acid (SA) contents in roots in the 

experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 
  



36 
 

Figure 2.5. Endogenous hormone jasmonic acid (JA) contents of ‘Penn-A4’ and ‘Tyee’ 

creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.5. A. Jasmonic acid (JA) contents in leaves in the experiment 1. B. Jasmonic acid (JA) 

contents in leaves in the experiment 2. C. Jasmonic acid (JA) contents in stolons in the 

experiment 1. D. Jasmonic acid (JA) contents in stolons in the experiment 2. E. Jasmonic acid 

(JA) contents in roots in the experiment 1. F. Jasmonic acid (JA) contents in roots in the 

experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 
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 Infection generally increased GA1 content in leaves and roots of both cultivars, but 

not in stolons (Figure 2.6.). Without infection, plants at high temperature showed lower GA1 

than optimal temperature in experiment 2 (Figure 2.6.D, E and F). Infected ‘Penn-A4’ at 

optimal temperature showed the highest GA1 content compared to other treatments in leaves 

in experiment 1 (Figure 2.6.A).  Higher GA1 content was detected in infected ‘Tyee’ at high 

temperature compared to infected ‘Penn-A4’ in stolons and roots (Figure 6B and C).  

Uninfected leaves showed higher GA3 at optimal temperature than high temperature 

(Figure 7A and D). With bacterial treatment, GA3 content was higher in ‘Tyee’ than ‘Penn-A4’ 

at optimal temperature in stolons and roots, but not leaves in experiment 1 (Figure 2.7.B and 

C). Infected ‘Penn-A4’ showed highest GA3 content in stolons and roots than other treatments 

on days 15 and 20 in experiment 2 (Figure 2.7.E and F). 
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Figure 2.6. Endogenous hormone gibberellic acid-1 (GA1) contents of ‘Penn-A4’ and 

‘Tyee’ creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.6. A. Gibberellic acid-1 (GA1) contents in leaves in the experiment 1. B. Gibberellic 

acid-1 (GA1) contents in leaves in the experiment 2. C. Gibberellic acid-1 (GA1) contents in 

stolons in the experiment 1. D. Gibberellic acid-1 (GA1) contents in stolons in the experiment 

2. E. Gibberellic acid-1 (GA1) contents in roots in the experiment 1. F. Gibberellic acid-1 (GA1) 

contents in roots in the experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 
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Figure 2.7. Endogenous hormone gibberellic acid-3 (GA3) contents of ‘Penn-A4’ and 

‘Tyee’ creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.7. A. Gibberellic acid-3 (GA3) contents in leaves in the experiment 1. B. Gibberellic 

acid-3 (GA3) contents in leaves in the experiment 2. C. Gibberellic acid-3 (GA3) contents in 

stolons in the experiment 1. D. Gibberellic acid-3 (GA3) contents in stolons in the experiment 

2. E. Gibberellic acid-3 (GA3) contents in roots in the experiment 1. F. Gibberellic acid-3 (GA3) 

contents in roots in the experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 
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Without infection, plants exhibit more GA4 at optimal temperature than high 

temperature in experiment 2 (Figure 2.8. D, E and F). At high temperature, uninfected ‘Tyee’ 

showed less GA4 than uninfected ‘Penn-A4’ in leaves and stolons in experiment 1 (Figure 2.8. 

A and B). At high temperature, infected plants of both cultivars had more GA4 than uninfected 

plants in roots (Figure 2.8 C).  

Without infection, plants exhibit more GA20 at optimal temperature than high 

temperature in stolons (Figure 2.9. B and E). In leaves of both cultivars, at high temperature, 

GA20 content was higher in infected plants than uninfected plants (Figure 2.9. D). Infected 

‘Penn-A4’ at high temperature had more GA20 accumulation compared to ‘Tyee’ in leaves and 

stolons (Figure 2.9. A, B, D and E). GA20 content in roots was not significantly affected by 

bacteria, cultivar, or temperature treatment (Figure 2.9. C and F).   
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Figure 2.8. Endogenous hormone gibberellic acid-4 (GA4) contents of ‘Penn-A4’ and 

‘Tyee’ creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.8. A. Gibberellic acid-4 (GA4) contents in leaves in the experiment 1. B. Gibberellic 

acid-4 (GA4) contents in leaves in the experiment 2. C. Gibberellic acid-4 (GA4) contents in 

stolons in the experiment 1. D. Gibberellic acid-4 (GA4) contents in stolons in the experiment 

2. E. Gibberellic acid-4 (GA4) contents in roots in the experiment 1. F. Gibberellic acid-4 (GA4) 

contents in roots in the experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 
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Figure 2.9. Endogenous hormone gibberellic acid-20 (GA20) contents of ‘Penn-A4’ and 

‘Tyee’ creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.9. A. Gibberellic acid-20 (GA20) contents in leaves in the experiment 1. B. 

Gibberellic acid-20 (GA20) contents in leaves in the experiment 2. C. Gibberellic acid-20 

(GA20) contents in stolons in the experiment 1. D. Gibberellic acid-20 (GA20) contents in 

stolons in the experiment 2. E. Gibberellic acid-20 (GA20) contents in roots in the experiment 

1. F. Gibberellic acid-20 (GA20) contents in roots in the experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 
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ABA content was higher at high temperature compared to optimal temperature without 

bacterial infection in plant leaf tissues on days15 and 20 (Figure 10). Infected ‘Penn-4’ showed 

higher ABA content compared to ‘Tyee’ at both temperature treatments on day 20 in solons in 

experiment 1 (Figure 10B). Infected ‘Penn-4’ showed higher ABA content compared to ‘Tyee’ 

at high temperature in leaves and roots on day 20 in experiment 1 (Figure 10A and C). At high 

temperature, infected plants of both cultivars showed more ABA than at optimal temperature 

in experiment 2 on days 10, 15 and 20 (Figure 10D, E and F).   

Uninfected plants of both cultivars showed more ZR at optimal temperature than high 

temperature in leaves in experiment 1 (Figure 11A). Uninfected ‘Penn-A4’ showed more ZR 

than uninfected ‘Tyee’ at high temperature in stolons and roots in experiment 1 (Figure 11B 

and C). Uninfected ‘Tyee’ exhibited highest ZR content than other treatments in roots in 

experiment 2 (Figure 11F). Infected ‘Tyee’ showed more ZR than infected ‘Penn-A4’ in leaves 

and stolons at high temperature in experiment 2 (Figure 11D and E).  
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Figure 2.10. Endogenous hormone abscisic acid (ABA) contents of ‘Penn-A4’ and ‘Tyee’ 

creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.10. A. Abscisic acid (ABA) contents in leaves in the experiment 1. B. Abscisic acid 

(ABA) contents in leaves in the experiment 2. C. Abscisic acid (ABA) contents in stolons in 

the experiment 1. D. Abscisic acid (ABA) contents in stolons in the experiment 2. E. Abscisic 

acid (ABA) contents in roots in the experiment 1. F. Abscisic acid (ABA) contents in roots in 

the experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 
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Figure 2.11. Endogenous hormone zeatin riboside (ZR) contents of ‘Penn-A4’ and ‘Tyee’ 

creeping bentgrass exposed to bacterial and temperature treatments in repeated 

experiments in leaf, stolon, and root. 

 

 

Figure 2.11. A. Zeatin riboside (ZR) contents in leaves in the experiment 1. B. Zeatin riboside 

(ZR) contents in leaves in the experiment 2. C. Zeatin riboside (ZR) contents in stolons in the 

experiment 1. D. Zeatin riboside (ZR) contents in stolons in the experiment 2. E. Zeatin 

riboside (ZR) contents in roots in the experiment 1. F. Zeatin riboside (ZR) contents in roots in 

the experiment 2. 

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). No LSD bar indicates lack of significant differences on that day. 
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DISCUSSION 

Aaa in pure culture produced GA3, GA1, and IAA whereas the non-plant pathogenic 

Pa did not.  Previous research on Aaa using an ELISA method determined that Aaa is able to 

produce GA3 (Roberts et al., 2014). In our study, we used UPLC as a more sensitive method 

to detect full phytohormone profiles and showed that Aaa in pure culture has the ability to also 

produce GA1 and IAA. Many microorganisms are known to produce phytohormones that 

contribute to disease progression and symptom development (Ortíz-Castro et al., 2009). 

Several studies have characterized GAs in microbes. In Azospirillum spp., for instance, GA1 

and GA3 were detected in gnotobiotic cultures of A. brasilense (Janzen et al., 1992). In addition 

to Azospirillum spp., GAs have also been found in Acetobacter diazotrophicus, Herbaspirillum 

seropedicae (Bastián et al., 1998) and Bacillus sp. (Gutiérrez-Mañero et al., 2001). A closely 

related bacterium, Acidovorax avenae subsp. citrulli, which is a pathogen of watermelon 

(Citrulus lanatus), has also been shown to produce IAA (Oliveira et al., 2007).  The 

determination of these hormones specifically in Aaa cultures is important due to their potential 

to cause disease symptoms when synthesized by the bacteria in plant tissues. Additionally, 

since GA1 and GA3 have different levels of activity in promoting stem elongation, this 

identification of GA1 in this system is also important in order for changing potential disease 

management strategies or selection of PGR chemistries. 

Variation in phytohormone production did exist among Aaa isolates in this study. Aaa 

isolate MSU-13 was the only isolate able to produce all three phytohormones GA1, GA3, and 

IAA. Variation in the biochemistry of bacterial isolates is known to occur in Acidovorax spp. 

and many other bacteria. For instance, isolates of the closely related Acidovorax avenae subsp. 

citrulli was found to have variation in antibiotic resistance (Bull et al., 2001).  The differential 

ability of Aaa strains to cause disease could be positively associated with phytohormone 

production. In other words, Aaa isolate MSU-13 tended to cause greater disease symptoms in 
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our preliminary tests than the other isolates used in the pure culture study. Thus, the MSU-13 

isolate was used in the in vivo studies discussed below.  

Based on the plant physiological responses we observed, bacterial infection can be 

influenced by plant cultivar. ‘Tyee’ was more tolerant than ‘Penn-A4’ based on lower EL and 

REL, higher CHL and TQ in infected ‘Tyee’ than in infected ‘Penn-A4’.  It was demonstrated 

that the cultivars had differential levels of phytohormones under high temperature and Aaa 

infection, which could play a role in disease susceptibility or tolerance. How each hormone 

responded to high temperature with and without bacteria treatment in the more Aaa tolerant 

and sensitive cultivars is discussed below.  

In response to high temperature without bacteria treatment, SA levels were enhanced 

leaves in both cultivars. Increases in SA are most directly associated with the induction of SAR 

for pathogen responses but can also be found during abiotic stress (Metraux et al., 1990; 

Fragnière et al., 2011). The increase in SA content can also be inhibited by high temperatures, 

since at a certain high temperature level, increases in SA were blocked under high temperatures 

in tobacco plants during infection with tobacco (Nicotiana tabacum) mosaic virus but were 

restored when plants were moved to optimal temperatures (Malamy et al., 1992). The results 

here are consistent with previous work that showed higher levels of SA in creeping bentgrass 

leaves under heat stress (30°C) compared to optimal temperature (23°C) (Krishnan, Ma, and 

Merewitz 2016). 

With high temperature and bacteria treatment, SA content in stolons and roots was 

higher in ‘Tyee’ compared to ‘Penn-A4’.  As Aaa is taken up by the roots, SA accumulation 

in root tissue could be associated with a disease response. Since ‘Tyee’ exhibited a greater 

tolerance to this disease, a greater increase in SA levels in roots and stolons could be associated 

with a greater level of tolerance to Aaa. Other plants species have demonstrated that leaf levels 

of SA play a role in disease tolerance. Younger potato (Solanum tuberosum) leaves containing 
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higher levels of SA were more resistant to potato blight (Phytophthora infestans) infection than 

older leaves. Moreover, higher levels of SA were detected in potato varieties with race-

nonspecific resistance to P. infestans than susceptible ones (Coquoz et al., 1995). The cultivar 

of rice, ‘C101LAC’, is more resistant to rice blast fungus (Magnaporthe oryzae) than ‘CO39.’ 

‘C101LAC’exhibits a faster response to exogenous SA application and generated a stronger 

antioxidant system than susceptible ‘CO39’ against M. oryzae (Li et al., 2012). Previous studies 

have shown that SA application to roots can effectively control root diseases. Dipping roots of 

tomato (Solanum lycopersicum) seedlings in a high concentration of SA reduced root rot 

incidence and severity caused by Rhizoctonia solani, Fusarium solani, and Sclerotium rolfsii 

(El-Mohamedy et al., 2014). In a study of another bacterial pathogen, potato soft rot (Dickeya 

solani), exogenous SA application reduced disease symptoms in potatoes grown in tissue 

culture (Czajkowski et al., 2015). Further research would be needed to determine whether SA 

levels is associated with Aaa tolerance in creeping bentgrass and whether supplementation with 

SA would reduce Aaa incidence. 

JA is also related to pathogen defense since JA is a key regulator of the ISR pathway 

and plays a signaling role primarily in response to infection with necrotrophic pathogens 

(Glazebrook 2005 and Van der Ent et al., 2009). When plants are exposed to elevated 

temperature, JA biosynthesis is often stimulated (Herde et al., 1996). In this study, we found 

more JA content under high temperature than optimal temperature in both infected and 

uninfected plants of both cultivars. Drought stress caused the accumulation of JA in creeping 

bentgrass at a 20-40% loss of water from leaves (Krishnan and Merewitz 2015). In another 

study, JA content was elevated in both trimmed and untrimmed bentgrass due to high 

temperature (Krishnan et al., 2016). In regards to JA responses due to high temperature and 

pathogen infection, we found a higher content of JA in infected ‘Tyee’ than infected ‘Penn-A4’ 

at high temperature in leaves, stolons, and roots. Accumulation of JA has also been found in 
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many other disease systems in response to pathogen infection such as infection of 

Pseudomonas syringae pv. maculicola in and Phytophthora infestans in potatoes (Landgraf et 

al., 2002 and Halim et al., 2004). Moreover, JA is essential for plant defense against root rot 

fungi (Pythium mastophorum) and JA-mediated responses help Arabidopsis to defend against 

P. mastophorum (Vijayan et al., 1998).  JA levels were elevated in a resistant wheat cultivar 

(Triticum aestivum L.) after it was infected with the Fusarium head blight fungus (Fusarium 

graminearum) (Ding et al., 2011). A more apparent increase of JA could be associated with 

Aaa tolerance since the more tolerant ‘Tyee’ had greater shifts in JA content compared to the 

sensitive ‘Penn-A4’; however, additional work is needed to clarify this. 

The results show high temperature can increase the susceptibility of both a tolerant and 

sensitive cultivar of creeping bentgrass to Aaa infection. During times of heat stress plants 

often reduce or cease to grow in order for a metabolic shift towards stress defense. The 

reduction in growth is often regulated by GAs and GA biosynthesis can be repressed (Huot et 

al., 2014). Conversely, the content of GAs is often found to be elevated during heat stress. 

Elevated temperature promoted GA1 accumulation in six genotypes of near-isogenic wheat 

(Pinthus et al., 1989) and high temperature promoted accumulation of GA1, GA3, GA4, and 

GA20 in creeping bentgrass (Krishnan et al., 2016).  Higher GA3 and GA20 were found in 

plant leaves under high temperature compared to in plants under optimal temperature. It is 

important to note that GA isoform levels were likely affected in all plants in this study as they 

were all under TE treatment; however, Aaa bacteria may be able to take advantage of the heat-

induced stimulation of plant synthesized GA by heat stress in order to proliferate and cause 

disease symptoms. 

In regards to how TE may promote Aaa infection, the mechanism is not yet clear based 

on the results of this study. Through the multistep and complicated process of GA biosynthesis, 

the most biologically active GAs are typically GA1 (derived from GA20), GA3, and GA4 as 
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well as other GAs. GA20 can be converted to GA1 by GA3 oxylase (Olszewski et al., 2002) 

and also be converted to GA3 (Spray et al., 1996). Aaa has the ability to produce GA3 and 

GA1. TE can repress the conversion of GA53 to GA19, GA19 to GA20, GA20 to GA1, and 

GA1 to GA8. All of these steps are late in the GA biosynthesis pathway, which conceptually 

should inhibit the accumulation of most of the active forms of GAs such as GA3 and GA1 in 

plants. The accumulation of GA1 in infected plants may be produced by Aaa (Figure 12) 

(Hedden and Thomas 2012). Regarding the GA biosynthesis in Aaa-infected plants, the 

accumulation of GA1 and GA3 in infected plants could be produced by Aaa. The production 

of GAs by Aaa could stimulate etiolation and increase disease incidence and severity; however, 

it is not clear why repression of GAs by TE coupled with promotion of GAs by heat stress and 

GA production by Aaa promotes disease in creeping bentgrass. Additional work would be 

needed to better understand this complex GA regulation. Another possibility is that the 

reduction of GA in plant tissues caused by TE application is not the main or only factor that 

causes increased susceptibility to Aaa. In fact, other physiological consequences of TE 

application could play a role in TE-induced susceptibility to Aaa; for instance, TE becomes an 

acid when dissolved in plant tissues (Rademacher, 2000). Acidovorax spp. prefer an acidic 

growth environment to grow and reproduce (Atlas, 2004). Furthermore, GA inhibition in 

creeping bentgrass has been shown to reduce JA accumulation, which could play a role in 

disease susceptibility (Krishnan et al., 2015). Thus, future work could be performed to 

determine whether GA, GA crosstalk with JA, or pH plays more of a role in this pathosystem.  

GA levels are also closely associated with ABA in plants. ABA levels could also play a 

role in the contrasting GA content results in the studies discussed above (Chandler and 

Robertson 1994). High temperature can stimulate ABA biosynthesis, which can inhibit GA 

actions in plants (Toh et al., 2008). The high accumulation of ABA in plants treated with high 

temperature in our study, could be associated with GA accumulation and disease incidence. 
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ABA is important for mediating abiotic stress responses (Tuteja 2007). Accumulation of ABA 

was more readily apparent due to bacterial infection than due to high temperature in ‘Penn-A4’.  

ABA in ‘Penn-A4’ was upregulated by Aaa in leaves, while uninfected ‘Penn-A4’ at high 

temperature did not have any increase in ABA content. ABA is not only important for 

regulating abiotic stress responses, but also plays an important role in plant immunity (Cao et 

al., 2011). Accumulation of ABA increases the susceptibility of plants to several pathogens like 

Xanthomonas oryzae pv. oryzae by suppressing SA-mediated defense genes (Xu et al., 2013). 

Fan et al. (2009) also showed that ABA is involved in defense signaling networks or interact 

with effectors of defenses. More accumulation of ABA was found in infected ‘Penn-A4’ 

indicated that “Penn-A4” is more susceptible to Aaa. This could partially explain why Aaa 

disease is more prevalent under high temperature conditions. 

Conclusions 

Aaa has the ability to produce phytohormones that could be associated with etiolation. 

Interestingly, the etiolation symptom remained elusive in our growth chamber study whereas 

chlorosis and necrosis were readily apparent as were shifts in phytohormones that conceptually 

could cause etiolation. Thus, much more is needed to be learned about how this etiolation 

symptom develops and why it only develops under certain conditions. Regardless, this study 

has shown that high temperature exacerbated Aaa necrosis and chlorosis disease symptoms of 

creeping bentgrass. Creeping bentgrass ‘Tyee’ was more resistant to Aaa infection than ‘Penn-

A4’ which could be associated with differential accumulation of SA and JA in plant tissues to 

mount a defense response. We now also have a better understanding of GA involvement in this 

pathogen system. All of these hormone results will lead to better disease management practices 

and remediation methods that can be applied to this and other bacterial diseases. Ongoing 

studies aim to isolate etiolated tissue for determining phytohormone responses, to evaluate 

phytohormone gene expression in Aaa, and to determine whether SA and JA could be used 
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exogenously for better creeping bentgrass tolerance of Aaa. 
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CHAPTER THREE  

JASMONIC AND SALICYLIC ACID TREATMENTS REDUCE BACTERIAL 

ETIOLATION DISEASE SYMPTOMS OF CREEPING BENTGRASS 

 

INTRODUCTION 

Jasmonic acid (JA) and salicylic acid (SA) play important roles in signaling plant 

defense systems against pathogen attacks and in response to abiotic stress (Bari and Jones 

2009). Recently, it has become clear that defense response systems associated with JA and SA 

in dicots and monocots may be differential. In monocots, it is likely that JA and SA coordinately 

induce a defense response via a parallel model rather than an antagonistic type model as in 

dicots. SA has long been associated with resistance against biotrophic type pathogens and JA 

with necrotrophic pathogens; however, those associations do not seem to hold true in monocots 

(Tamaoki and others 2013). Even in dicots, the effects of SA and JA in plants could be more 

complex than previously thought (Mur and others 2006; Tsuda and others 2009).  A better 

understanding of JA and SA effects on monocot species is needed. Additionally, little to no 

information is available for bacterial pathogens of creeping bentgrass or other valuable 

turfgrass species. Aaa is a biotrophic pathogen or creeping bentgrass. Whether both SA and JA 

may play a role in disease symptom development of this disease will help to further support 

the parallel model of SA and JA signaling. 

Creeping bentgrass (Agrostis stolonifera) is one of the most widely used turfgrasses on 

golf course greens, tees, and fairways but can be highly susceptible to various abiotic and biotic 

stresses (Dernoeden 2013). Bacterial etiolation caused by Acidovorax avenae subsp. avenae 

(Aaa) can cause severe damage to creeping bentgrass putting greens on golf courses (Giordano 

and others 2010). Creeping bentgrass is a cool-season turfgrass species and bacterial etiolation 

caused by Aaa is most problematic during periods of above optimal high temperatures (30-
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40 °C).  Visual symptoms of the disease include chlorosis, necrosis, and etiolation of plant 

tissues, which reduces turf quality. Physiological plant symptoms include an increase in leaf 

and root electrolyte leakage, a reduction in chlorophyll content, and reduced root viability. 

Cultivar variation in susceptibility to Aaa and physiological damage caused by Aaa has been 

found. Creeping bentgrass cultivar ‘Tyee’ is more tolerant of Aaa than ‘Penn-A4’ (Liu and 

others 2017).  

Plant growth regulators (PGRs), which inhibit gibberellic acid (GA) biosynthesis, have 

also been found to increase creeping bentgrass susceptibility to Aaa (Roberts and others 2015), 

which may be associated with the mode of action of the GA inhibitor (Roberts and others 2016). 

PGR application coupled with heat stress have been shown to increase Aaa disease incidence. 

The close linkage of this disease with PGR use and the unique etiolation symptoms have 

indicated that this disease is likely to be highly associated with bacterial synthesis of 

phytohormones or significant shifts in plant phytohormone profiles. Certain pathogenic strains 

of Aaa are capable of producing GA1, GA3, and indole-3-acetic acid (Liu and others 2017). 

Creeping bentgrass phytohormone profiles are also significantly affected by Aaa infection and 

are differential in ‘Tyee’ compared to ‘Penn-A4.’  With high temperature and bacterial 

treatment, creeping bentgrass cultivar ‘Tyee’ had greater SA accumulation in stolons and roots 

than ‘Penn-A4’. Higher content of JA was found in infected ‘Tyee’ than infected ‘Penn-A4’ at 

high temperature in leaves, stolons, and roots. PGR application has also been found to reduce 

the accumulation of jasmonic acid (JA) under abiotic stress conditions (Krishnan and Merewitz, 

2015). This repression of JA could play a role in the increased sensitivity of PGR-treated 

creeping bentgrass to Aaa. Therefore, SA and JA levels in plants could be associated with Aaa 

tolerance or susceptibility, particularly in plants treated with PGRs. PGR application causing a 

reduction in a JA responses and/or cultivar variation in JA or SA production could play a role 

in disease susceptibility (Liu and others 2017).  
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Integrated management of plant diseases requires the exploitation of host defense 

responses to control plant diseases (Sundin and others 2016). Therefore, the objective of the 

study was to determine whether treatment of creeping bentgrass with JA or SA prior to Aaa 

exposure can reduce disease incidence in an Aaa sensitive and a more tolerant creeping 

bentgrass cultivar. If exogenous treatment with SA or JA is effective in reducing disease 

incidence, this would serve as additional evidence that these hormones are highly important in 

creeping bentgrass tolerance of Aaa and possibly related bacteria or pathogens.  With this 

research, we hope to better understand the plant-bacterial interaction of this disease and reveal 

simple, integrated management strategies that could be recommended to turf managers and to 

manage Aaa disease.  
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MATERIALS AND METHODS 

Plant Material and Growth Conditions 

Creeping bentgrass cultivars ‘Tyee’ and ‘Penn-A4’ were seeded at the rate of 0.45 kg/93 m2 in 

sand in 11.4 cm pots and were established in a greenhouse for 8 weeks with daily watering and 

weekly fertilization. Plants were regularly trimmed to 2 cm height. After they were established, 

plants were separated and propagated into clonal tillers. They were then transferred to a 

hydroponic system in a controlled environmental growth chamber using the methods described 

in Merewitz and others (2011). Growth chamber conditions were maintained a 12 h 

photoperiod at 900 µmol·m-2·s-1 of photosynthetically active radiation (PAR), 65% relative 

humidity, and a day/night temperature of 23/20 °C. Plants were inserted into 2.54 cm diameter 

holes in foam boards with plastic covers. The boards were floated on the nutrient solution in 

black plastic tanks (71 x 51 x 15 cm). The hydroponic solution was aerated via a tube connected 

to a pump (115 V, 60 Hz, Tetra Whisper; Blacksburg, VA). The solution was changed weekly 

and solution pH was monitored and adjusted to a pH of 6.0 every 3 days. Once established, 

plants were kept trimmed to a height of 5 cm. The hydroponic system and experimental design 

has been used previously (Liu and others 2017). Trinexapac-ethyl (Syngenta Crop Protection, 

Greensboro, NC) was sprayed on all plants at the rate of 0.79 L ha-1 and applied twice, every 

other week. The second spray occurred 48 h before the experimental treatments. 

Experimental Treatments 

Prior to temperature and bacterial infection, the plants were exposed to six chemical 

treatments: 1) SA at a concentration 10 µmol/L; 2) SA at a concentration 20 µmol/L; 3) de-

ionized water; 4) 0.5 mM JA in 0.02% ethanol; 5) 2 mM JA in 0.02% ethanol; 6) control de-

ionized water with 0.02% ethanol. The rates for SA were selected based on previous research 

in creeping bentgrass (Larkindale and Huang 2004). JA application rates were based on 
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previous research in wheat seedlings (Qiu and others 2014). Plants were given chemical pre-

treatments by spraying 50 mL of the appropriate solution to the foliage of the plant three times 

daily for two days, and for a final time just prior to exposure to high temperatures and bacteria 

treatments. 

For temperature and bacterial treatments, 16 plants were kept in each hydroponic tank. 

Four tanks were placed in an optimal temperature growth chamber at 23/20 °C day/night 

temperature and four tanks were moved to a high temperature chamber at 35/30 °C for the 

duration of the experiment (12 days). Both chambers were equal in size, RH, photoperiod, and 

light levels are the same as described above. For infected plants, plant nutrient solution was 

replaced with bacterial culture of the pure MSU-13 strain of Aaa at a concentration of 10-6 CFU 

one day after the measurement day (0, 5, 15 and 20 days). One day before subsequent treatment, 

bacterial culture was replaced with nutrient solution. Nutrient solution for control plants were 

changed every 3 days. The canopies of bacteria-treated plants were trimmed to a height of 3 

cm with scissors soaked in MSU-13 Aaa suspension 2 days before the experiment. Plants were 

sprayed with 100 mL MSU-13 Aaa suspension right after trimming.  During the experiment, 

about 0.5 cm of root tips were pruned with sterilized scissors every day to ensure that bacteria 

could enter roots through wounds.  

Physiological Evaluation of Plants 

Electrolyte leakage (EL), turf quality ratings (TQ), chlorophyll content (CHL), photochemical 

efficiency (Fv/Fm), root leakage (REL) and root viability (RV) were measured on plant leaves 

and roots every 3 d during the study. EL indicate cellular membrane stability in leaves. 

Approximately 10 leaves were taken from each plant and rinsen de-ionized water to avoid the 

inference of chemical treatments. Samples then were submerged in 10 mL of de-ionized water 

and shaken for 24 h. The conductivity meter (YSI Model 3200; Yellow Springs, OH, USA) 

was used to measure the initial conductivity (Ci). Leaf tissues were then boiled for 20 min and 
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put on the shaker for another 24 h to measure the maximum conductivity (Cmax). Percent EL 

was calculated as Ci/Cmax x 100 (Blum and Ebercon 1981).  

TQ was visually rated and evaluated by the color, density, and uniformity of the grasses 

(Turgeon 2008). The rating scale is from 1 to 9 (9 representing a fully turgid, dense green canopy, 

and 1 representing necrotic plants). 

Leaf senescence was evaluated by leaf chlorophyll content (CHL) and photochemical 

efficiency (Fv/Fm). Total CHL was extracted in dimethyl sulphoxide in the dark for 72 h. The 

spectrophotometer (Spectronic Genesys 2; Spectronic Instruments, Rochester, NY, USA) was 

used to measure the absorbance at 663 nm and 645 nm. CHL was calculated using the formula 

described in Arnon (1949). Fv/Fm was evaluated by using a chlorophyll fluorescence meter 

(Fim 1500; Dynamax, Houston, TX, USA). Fv/Fm represents a ratio of the variable 

fluorescence (Fv) to the maximal fluorescence (Fm). Leaf clips were adapted to darkness for 30 

min prior to reading the Fv/Fm ratio with the fluorescence meter (Krause and others 1989).  

Root health was evaluated by determining root EL (REL) and root viability (RV). REL was 

measured as described by Huang and others (1998). 200 mg of roots were taken from individual 

plant and washed thoroughly with de-ionized water and EL was measured as described above. 

RV was estimated by measuring the activity of dehydrogenase by using the 

triphenyltetrazolium chloride (TTC) reduction technique (McMichael and Burke 1994). The 

activity was based on the dry weight of each root sample, which was determined after drying 

in an 80 °C oven for 72 h (Merewitz and others 2011). 

Hydroponics studies were first conducted on July 20th, 2016 (experiment 1), and then repeated 

on October 7th, 2016 (experiment 2). Physiological indices were taken on 0 day of both studies 

to make sure materials of repeated studies had the same initial conditions. 

Experimental Design and Statistical Analysis 

The experiment was a completely randomized block design with four individual plants serving 



65 
 

as the replications per treatment. Treatment effects were determined by analysis of variance 

(ANOVA) according to the general linear model procedure within the Statistical Analysis 

System software (SAS 9.2; Cary, NC). Results of ANOVA are shown in the appendix. 

Statistical interactions and means among temperature, bacteria, and cultivar treatments were 

separated by Fisher’s protected LSD test (P ≤ 0.05). 

RESULTS 

Leaf EL was increased under bacterial treatment (Figure 3.1.). At the optimal temperature, 

plants of both cultivars treated with either JA or SA showed significantly lower leaf EL than 

control plants in experiment 1 (Figure 3.1. C and G). Plants treated with SA at either 

concentration showed significantly lower leaf EL than other treatments in both cultivars at the 

optimal temperature in experiment 2 (Figure 3.1. D and H).  ‘Penn-A4’ plants treated with 20 

µmol/L SA showed the significantly lowest leaf EL throughout experiment 2 at optimal 

temperatures (Figure 3.1. H). Plants treated with 2 mM JA had the significantly lowest leaf EL 

on days 9 and 12 in ‘Tyee’ at the optimal temperature in experiment 1 (Figure 3.1. C). At the 

high temperature, plants of both cultivars treated with SA at a concentration 20 µmol/L showed 

significantly lowest leaf EL on days 6, 9 and 12 (Figure 3.1. A, B, E and F).  
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Figure 3.1. Electrolyte leakage (% EL) of ‘Penn-A4’ and ‘Tyee’ creeping bentgrass in 

response to bacterial, temperature, and phytohormone treatments. 
 

 

 

Figure 3.1.A. Electrolyte leakage (% EL) of ‘Tyee’ exposed to bacterial treatments at 35°C in 

the experiment 1; B. EL of ‘Tyee’ exposed to bacterial treatments at 35°C in the experiment 2;  
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Figure 3.1. (cont’d) 

 

C. EL of ‘Tyee’ at 23°C in the experiment 1; D. EL of ‘Tyee’ at 23°C in the experiment 2; E. 

EL of ‘Penn-A4’ at 35°C in the experiment 1; F. EL of ‘Penn-A4’ at 35°C in the experiment 2; 

G. EL of ‘Penn-A4’ at 23°C in the experiment 1; H. EL of ‘Penn-A4’ at 23°C in the experiment 

2. LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05).  

 

CHL of plants was decreased under bacterial treatment (Figure 3.2.). At the optimal 

temperature, ‘Tyee’ treated with SA at both concentrations showed significantly higher CHL 

than other treatments on days 6, 9 and 12 in the experiment 1 (Figure 3.2. C). ‘Tyee’ treated 

with SA at a concentration 20 µmol/L had significantly highest CHL on days 9 and 12 at 

optimal temperature (Figure 3.2. C and D). Plants treated with either SA or JA had 

significantly higher CHL than control groups in ‘Penn-A4’ at the optimal temperature 

throughout the study in experiment 1; however, ‘Penn-A4’ treated with 10 µmol/L SA had the 

significantly highest CHL (Figure 3.2. G). Plants treated with 20 µmol/L SA showed 

significantly highest CHL in ‘Penn-A4’ at the optimal temperature on days 3, 9 and 12 in 

experiment 2 (Figure 3.2.H). At high temperature, plant treated with either SA or JA showed 

significantly higher CHL than control plants in ‘Penn-A4’ throughout the study (Figure 3.2. E 

and F). In ‘Tyee’, plants treated with SA at either concentration had significantly higher CHL 

than control plants on days 6, 9 and 12 at the high temperature (Figure 3.2. A and B). 
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Figure 3.2. Chlorophyll content (CHL) of ‘Penn-A4’ and ‘Tyee’ creeping bentgrass in 

response to bacterial, temperature, and phytohormone treatments. 

 

 

Figure 3.2. A. Chlorophyll content (CHL) of ‘Tyee’ exposed to bacterial treatments at 35°C in 

the experiment 1; B. CHL of ‘Tyee’ exposed to bacterial treatments at 35°C in the experiment 

2; C. CHL of ‘Tyee’ at 23°C in the experiment 1; D. CHL of ‘Tyee’ at 23°C in the experiment  
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Figure 3.2. (cont’d) 

 

2; E. CHL of ‘Penn-A4’ at 35°C in the experiment 1; F. CHL of ‘Penn-A4’ at 35°C in the 

experiment 2; G. CHL of ‘Penn-A4’ at 23°C in the experiment 1; H. CHL of ‘Penn-A4’ at 23°C 

in the experiment 2. LSD bars are present on days when statistically significant differences 

were observed among treatments (P ≤ 0.05). 

 

TQ was decreased due to bacterial infection (Figure 3.3.). At optimal temperatures, TQ was 

statistically higher in plants treated with either SA or JA than control plants in cultivar ‘Tyee’ 

on days 6, 9 and 12 in experiment 1 (Figure 3.3. C). ‘Tyee’ treated with 20 µmol/L SA or 2 

mM JA showed significantly higher TQ than other treatments on days 6, 9 and 12 at the 

optimal temperature in the experiment 2 (Figure 3.3. D). In ‘Penn-A4’, TQ was significantly 

higher in plants treated with SA compared to all other treatments throughout the study at 

optimal temperatures in experiment 1(Figure 3.3. G). ‘Penn-A4’ treated with 20 µmol/L SA 

showed the statistically highest TQ on days 9 and 12 in experiment 2 (Figure 3.3. H). At high 

temperature, ‘Tyee’ treated with either SA or JA showed significantly higher TQ than controls 

on days 9 and 12 (Figure 3.3. A and B). SA treated ‘Penn-A4’ a showed statistically highest 

TQ on days 9 and 12 at the high temperature (Figure 3.3. E and F). 

Bacterial treatment reduced Fv/Fm in both cultivars at both temperatures (Figure 3.4). At the 

optimal temperature, SA treated plants had significantly higher Fv/Fm in ‘Tyee’ than other 

treatments on days 6, 9 and 12 (Figure 3.4C). Plants treated with either 2 mM JA or 20 µmol/L 

SA showed statistically highest Fv/Fm in ‘Tyee’at the optimal temperature on days 6, 9 and 12 

in the experiment 2 (Figure 3.4D). In ‘Penn-A4’, plants treated with SA at a concentration 20 

µmol/L showed statistically highest Fv/Fm on days 9 and 12 at optimal temperature (Figure 

3.4G and H). At the high temperature, plants treated with 20 µmol/L SA showed the statistically 

highest Fv/Fm in both cultivars on days 9 and 12 (Fig 3.4. A, B, E and F). In ‘Penn-A4’, plants 

treated with either SA or JA showed significantly statistically higher Fv/Fm than control plants 

at high temperature on days 9 and 12 (Figure 3.4E). 
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Figure 3.3. Turf quality rating (TQ) of ‘Penn-A4’ and ‘Tyee’ creeping bentgrass in 

response to bacterial, temperature, and phytohormone treatments. 
 

 

 

Figure 3.3. A. Turf quality ratings (TQ, 1–9 scale; 1 = worst, 9 = best) of ‘Tyee’ exposed to  
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Figure 3.3. (cont’d) 

 

bacterial treatments at 35°C in the experiment 1; B. TQ of ‘Tyee’ exposed to bacterial 

treatments at 35°C in the experiment 2; C. TQ of ‘Tyee’ at 23°C in the experiment 1; D. TQ of 

‘Tyee’ at 23°C in the experiment 2; E. TQ of ‘Penn-A4’ at 35°C in the experiment 1; F. TQ of 

‘Penn-A4’ at 35°C in the experiment 2; G. TQ of ‘Penn-A4’ at 23°C in the experiment 1; H. 

TQ of ‘Penn-A4’ at 23°C in the experiment 2.  

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05).  
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Figure 3.4. Photochemical efficiency (Fv/Fm) of ‘Penn-A4’ and ‘Tyee’ creeping bentgrass 

in response to bacterial, temperature, and phytohormone treatments. 

 

 

Figure 3.4. A. Photochemical efficiency (Fv/Fm) of of ‘Tyee’ exposed to bacterial treatments 

at 35°C in the experiment 1; B. Fv/Fm of ‘Tyee’ exposed to bacterial treatments at 35°C in the 

experiment 2; C. Fv/Fm of ‘Tyee’ at 23°C in the experiment 1; D. Fv/Fm of ‘Tyee’ at 23°C in 

the experiment 2; E. Fv/Fm of ‘Penn-A4’ at 35°C in the experiment 1; F. Fv/Fm of ‘Penn-A4’  
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Figure 3.4. (cont’d) 

 

at 35°C in the experiment 2; G. Fv/Fm of ‘Penn-A4’ at 23°C in the experiment 1; H. Fv/Fm of 

‘Penn-A4’ at 23°C in the experiment 2.  

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05).  

 

REL was increased throughout the study. At the optimal temperature, ‘Tyee’ treated with 

either SA or JA showed significantly lower REL than control groups on days 9 and 12 in the 

experiment 1 (Figure 3.5. C). In ‘Tyee’, plant treated with SA at a concentration 20 µmol/L 

showed significantly lowest REL at optimal temperature throughout the study in the 

experiment 2 (Figure 3.5. D). In ‘Penn-A4’, plants treated with SA at either concentration 

showed significantly lower REL than other treatments at optimal temperature on days 9 and 

12 in the experiment 2 (Figure 3.5. H); however, plants treated with SA at a concentration 20 

µmol/L showed significantly lowest REL on days 9 and 12 in the experiment 1 (Figure 3.5. 

G). At the high temperature, REL was significantly lower in plants treated with SA in ‘Tyee’ 

than other treatments on days 6, 9 and 12 (Figure 3.5. A and B). In ‘Penn-A4’, REL was the 

significantly lowest in plants treated with SA at a concentration 20 µmol/L at the high 

temperature throughout the study (Figure 3.5. E and F). 

RV was reduced by bacterial infection throughout the study (Figure 3.6.). At the optimal 

temperature, plants treated with both SA and JA showed significantly higher RV than control 

plants in ‘Penn-A4’, while plants treated with SA at a concentration 20 µmol/L showed 

significantly highest RV (Figure 3.6. G and H). In ‘Tyee’, RV was significantly higher in plants 

treated with SA at a concentration 20 µmol/L than other treatments at optimal temperature on 

days 6, 9 and 12 (Figure 3.6. C and D). At the high temperature, plants treated with SA at a 

concentration 20 µmol/L showed the significantly highest RV in ‘Tyee’ throughout the study 

(Figure 3.6. A and B). In ‘Penn-A4’, RV was significantly higher in plants treated with SA and 

plants treated with 2 mM JA on day 12 at the high temperature in the experiment 1 (Figure 3.6. 

E). ‘Penn-A4’ treated with SA had significantly higher RV than control groups at the high 
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temperature on days 9 and 12 in the experiment 2 (Figure 3.6. F).

Figure 3.5. Root electrolyte leakage (% REL) of ‘Penn-A4’ and ‘Tyee’ creeping bentgrass 

in response to bacterial, temperature, and phytohormone treatments 

 
Figure 3.5. A. Root electrolyte leakage (% REL) of of ‘Tyee’ exposed to bacterial treatments 

at 35°C in the experiment 1; B. REL of ‘Tyee’ exposed to bacterial treatments at 35°C in the  
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Figure 3.5. (cont’d) 

 

experiment 2; C. REL of ‘Tyee’ at 23°C in the experiment 1; D. REL of ‘Tyee’ at 23°C in the 

experiment 2; E. REL of ‘Penn-A4’ at 35°C in the experiment 1; F. REL of ‘Penn-A4’ at 35°C 

in the experiment 2; G. REL of ‘Penn-A4’ at 23°C in the experiment 1; H. REL of ‘Penn-A4’ 

at 23°C in the experiment 2.  

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05).  
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Figure 3.6. Root viability (RV) of ‘Penn-A4’ and ‘Tyee’ creeping bentgrass in response to 

bacterial, temperature, and phytohormone treatments. 

 

 

Figure 3.6. A. Root viability (RV) of of ‘Tyee’ exposed to bacterial treatments at 35°C in the  
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Figure 3.6. (cont’d) 

 

experiment 1; B. RV of ‘Tyee’ exposed to bacterial treatments at 35°C in the experiment 2; C. 

RV of ‘Tyee’ at 23°C in the experiment 1; D. RV of ‘Tyee’ at 23°C in the experiment 2; E. RV 

of ‘Penn-A4’ at 35°C in the experiment 1; F. RV of ‘Penn-A4’ at 35°C in the experiment 2; G. 

RV of ‘Penn-A4’ at 23°C in the experiment 1; H. RV of ‘Penn-A4’ at 23°C in the experiment 

2.  

LSD bars are present on days when statistically significant differences were observed among 

treatments (P ≤ 0.05). 

 

DISCUSSION 

Acidovorax pathogens cause disease in a wide range of economically important 

monocotyledonous and dicotyledonous plants, including rice, watermelon, corn, as well as 

grass species. Aaa infects rice seedlings resulting in brown stripes on sheaths. Other symptoms 

include the elongation of the mesocotyl, irregular curvature of leaf sheaths, and the inhibition 

of seed germination (Kadota and Ohuchi 1983). The most typical symptoms produced on grass 

hosts by Aaa consist of leaf streaks and stripes, often extending into the leaf sheaths with 

occasional development of stalk rot (Saddler and others 1995). Severely affected plants are 

necrotic, and the infections often cause an overall inhibition of germination (Xie and others 

1998).  

In bacterial etiolation of creeping bentgrass, symptoms include chlorosis and necrosis 

of leaf tissue. A unique etiolated appearance is also observed in stem tissue. These symptoms 

caused by Aaa occur in conjunction with a significant shift in the phytohormone profiles of 

plants. In pure culture, certain strains of Aaa are capable of producing GA1, GA4, and IAA 

(Liu and others 2017). The bacterial production of phytohormones is likely coupled with the 

plant mounting a defense response and shifting endogenous hormone production, particularly 

of JA and SA. JA and SA were detected at higher levels in a more Aaa tolerant creeping 

bentgrass compared to a sensitive one (Liu and others 2017), it follows that exogenous 

application of JA or SA may be an effective means of managing this newly identified disease.  

JA and SA play important roles in transducing the activation of plant defense systems 
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against pathogen attacks (Diaz and others 2002; Mitchell and Walters 1995). JA and SA defense 

signaling pathways interact antagonistically but can also interact together in a complex manner. 

There appears to be differences in monocots and dicots in SA and JA signaling (Tamaoki and 

others 2013; Koornneef and Pieterse 2008). JA-dependent signaling can mediate parts of SA-

upregulated genes in rice (Oryza sativa L.) suggesting that JA and SA signaling interacts 

coordinately in rice defense responses (Tamaoki and others 2013). JA biosynthesis mutants in 

Arabidopsis are altered in their resistance against necrotrophic bacteria Erwinia carotovora 

(Pozo and others 2005). Regardless of the signaling mechanism, it is accepted that these 

hormones play an important role in plant tolerance of abiotic and biotic stresses.  

SA and JA have been used to chemically prime plants for stress defense, largely based 

on the life cycle and strategy of each tested pathogen. SA is typically associated with tolerance 

of biotrophic pathogens, whereas JA plays a role in tolerance to necrotrophic pathogens 

(Glazebrook 2005) Recently however, the lines of these associations are becoming increasingly 

blurred. In potato and tomato plants, JA treatment decreased germination and growth of semi-

biotrophic oomycete Phytophthora infestans (Cohen and others 1993). Exogenous application 

of JA was found to protect wheat against semi-biotrophic fungus Tilletia laevia (Lu and others 

2006). In rice, JA treatment provided protection against biotrophic blast disease (Magnaporthe. 

oryzae), by inducing the activation of defense response genes PR1a, PR1b, PR2, PR3, PR5, 

and PR10 (Mei and others 2006). Exogenous application of SA can induce pathogenesis-related 

(PR) genes and activate SAR in a wide variety of plant species (Mauch and others 

2000). Application of exogenous SA has been found to protect rice seedlings from rice blast 

fungus (Iwai and others 2007). SA treatment can induce wheat resistance to Gaeumannomyces 

graminis var. tritici by accumulation of free SA in wheat roots (Khaosaad and others 2007). SA 

treatment has also been shown to help barley against powdery mildew (B. graminis f. sp. hordei) 

disease (Beßer and others 2000).  
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In turfgrasses, less is known about the plant immune responses displayed by pathogens with 

various virulence strategies. The high input of pesticides common to turfgrass management 

makes it essential to have integrated management strategies. Little information is available for 

the efficacy of use of SA and JA in a diverse set of plant pathogens. Additionally, Aaa is a 

relatively newly characterized disease for which recommendations of management strategies 

are lacking.  Our results indicate that both SA and JA are effective in reducing creeping 

bentgrass symptoms of Aaa infection. Similarly, SA pre-treatment reduced the disease 

incidence and severity of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by 

Magnaporthe oryzae (Rahman and others 2015).  

The effect of 20 µmol/L SA against Aaa was more significant and consistent under the 

optimal temperatures than at high temperatures. In other plant species, SA content in plants are 

influenced by high temperatures. Elevated temperature (32 °C) blocked the increase in SA 

levels during the resistance response of tobacco (Nicotiana tabacum) to tobacco mosaic virus 

(TMV) infection. Also, the exogenous SA to infected plants at this temperature was not 

sufficient to induce hypersensitive response (HR) (Malamy and others 1992). High temperature 

increased the accumulation of SA in creeping bentgrass (Krishnan and others 2016). Yalpani 

and others (1991) found that HR and the induction of the PR-1 genes were blocked at high 

temperature, when SA was applied to tobacco (Nicotiana tabacum) against TMV. There are 

common pathways and components in response to different biotic and abiotic stress, and SA 

signaling in thermotolerance could interact with SAR (Pastori and Foyer 2002). Based on our 

results and results from previous studies, it is not clear why SA was more effective under 

optimal temperatures compared to high temperatures; however, it could be that the plant is not 

at as great of a disadvantage under optimal temperature and Aaa compared to high temperature 

and Aaa treatment. 

Cultivar differences in response to JA or SA were found in this study. Both JA and SA improved 
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Aaa tolerance; however, 2 mM JA was more effective in reducing Aaa symptom expression in 

cultivar ‘Tyee’ compared to ‘Penn-A4’. This is consistent with previous work by Hsiang and 

others (2014) that found cultivars of creeping bentgrass vary significantly in their response to 

ISR activators and have a major impact on effectiveness of these activators (Tung 2011).  

Cultivar resistances in many crops are closely associated with effective biochemical and 

cellular defenses against pathogen infection (Miles and others 2011). The different response to 

JA treatments against pathogens could associated with differential JA-induced transcriptional 

regulation of PR genes expression in different cultivars (Lee and others 2014).  

Here, we found that both SA and JA exogenous applications could reduce Aaa severity 

of creeping bentgrass. SA at the concentration of 20 µmol/L exhibited the greatest Aaa 

suppression among treatments. The effect of 2 mM JA was most significant in cultivar ‘Tyee’ 

under optimal temperature. These results will lead to better disease management practices and 

remediation methods that can be applied to Aaa and other bacterial diseases on turfgrass. 

Ongoing studies aim to further study temperature and cultivar influences on SA and JA 

applications and creeping bentgrass tolerance of Aaa. The different rates of JA and SA used in 

the study prevented a direct comparison of effectiveness of JA to SA. The parallel model of 

disease response pathways signaled by JA and SA could indicate that JA may play more of an 

important role in disease responses than previously thought. Thus, future work to directly 

compare these hormones for applied use in turfgrass management may be warranted, 

particularly in a diverse set of cultivar. 
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Table 2. Analysis of variance (AOV) table for leaf electrolyte leakage within cultivars, temperature and bacterial treatments from 

data reported in Chapter Two. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS * * * * NS * * * * 

Error(T) 3      
      

Bacteria(B) 1 NS NS * * * NS * * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS 

Error(B) 6      
      

Cultivar 1 NS NS * * * NS NS NS * * 

CxT 1 NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS 

CxTXB 1 NS NS NS NS NS NS NS NS NS NS 

Error(C) 12      
      

Total 31                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 3. Analysis of variance (AOV) table for chlorophyll content within cultivars, temperature and bacteria treatments from 

data reported in Chapter Two. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS NS NS * * NS NS NS * * 

Error(T) 3      
      

Bacteria(B) 1 NS * * * NS NS NS NS * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS 

Error(B) 6      
      

Cultivar 1 NS NS * * * NS NS NS NS * 

CxT 1 NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS 

CxTXB 1 NS NS NS NS NS NS NS NS NS NS 

Error(C) 12      
      

Total 31                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 4. Analysis of variance (AOV) table for turf quality within cultivars, temperature and bacteria treatments from data 

reported in Chapter Two. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS NS * * * NS * * * NS 

Error(T) 3      
      

Bacteria(B) 1 NS * * * * NS NS * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS 

Error(B) 6      
      

Cultivar 1 NS * * * * NS NS * * * 

CxT 1 NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS 

Error(C) 12      
      

Total 31                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 5. Analysis of variance (AOV) table for root electrolyte leakage within cultivars, temperature and bacteria treatments from 

data reported in Chapter Two. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS NS * * * NS * * * NS 

Error(T) 3      
      

Bacteria(B) 1 NS * * * * NS NS * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS 

Error(B) 6      
      

Cultivar 1 NS * * * * NS NS * * * 

CxT 1 NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS 

Error(C) 12      
      

Total 31                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 6. Analysis of variance (AOV) table for root viability within cultivars, temperature and bacteria treatments from data 

reported in Chapter Two. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS NS * * * NS * * * NS 

Error(T) 3      
      

Bacteria(B) 1 NS * * * * NS NS * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS 

Error(B) 6      
      

Cultivar 1 NS * * * * NS NS * * * 

CxT 1 NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS 

Error(C) 12      
      

Total 31                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 7. Analysis of variance (AOV) table for salicylic acid content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 * * * * * * * * * * NS NS NS * * * * * * * * * * * 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 * * * * * * * * * * NS NS * * * * * * NS NS * * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 * NS NS * * * * * * * NS NS NS * NS * NS * * * NS NS * * 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively                     
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Table 8. Analysis of variance (AOV) table for jasmonic acid content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 NS NS * * * * * * NS NS NS NS * * * * NS NS NS NS * * * * 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 NS NS * * NS * NS NS NS NS * * * * * * * * NS * NS * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 NS NS * * * * NS NS NS * * NS NS * * * NS * NS * NS NS NS NS 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         

*and NS indicate significance and not significant at P=0.05, respectively                     
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Table 9. Analysis of variance (AOV) table for gibberellic acid 1 content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 * * * * * * * * NS * * NS * * NS * NS * * * NS NS * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 * * NS NS * NS NS * NS NS NS NS NS NS NS NS * * NS NS NS NS NS * 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         

*and NS indicate significance and not significant at P=0.05, respectively                     
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Table 10. Analysis of variance (AOV) table for gibberellic acid 3 content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 * * * * * * * * NS * * NS * * NS * NS * * * NS NS * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 * * NS NS * NS NS * NS NS NS NS NS NS NS NS * * NS NS NS NS NS * 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         

*and NS indicate significance and not significant at P=0.05, respectively                     
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Table 11. Analysis of variance (AOV) table for gibberellic acid 4 content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 * * * * * * * * NS * * NS * * NS * NS * * * NS NS * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 * * NS NS * NS NS * NS NS NS NS NS NS NS NS * * NS NS NS NS NS * 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         

*and NS indicate significance and not significant at P=0.05, respectively                     
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Table 12. Analysis of variance (AOV) table for gibberellic acid 20 content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 * * * * * * * * NS * * NS * * NS * NS * * * NS NS * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 * * NS NS * NS NS * NS NS NS NS NS NS NS NS * * NS NS NS NS NS * 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         

*and NS indicate significance and not significant at P=0.05, respectively                     
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Table 13. Analysis of variance (AOV) table for abscisic acid content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 * * * * * * * * * * NS NS NS * * * * * * * * * * * 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 * * * * * * * * * * NS NS * * * * * * NS NS * * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 * NS NS * * * * * * * NS NS NS * NS * NS * * * NS NS * * 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively                     
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Table 14. Analysis of variance (AOV) table for zeatin riboside content within plant tissues, cultivars, temperature and bacteria 

treatments from data reported in Chapter Two. 

    Duration of treatments (d) 

    leaf stolon root 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Source of 

variation 
df 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

Replicate 3    
     

     
     

     
      

Temperature 

(T) 
1 NS NS * * * * * * NS NS NS NS * * * * NS NS NS NS * * * * 

Error(T) 3    
     

     
     

     
      

Bacteria(B) 1 NS NS * * NS * NS NS NS NS * * * * * * * * NS * NS * * * 

BxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(B) 6    
     

     
     

     
      

Cultivar 1 NS NS * * * * NS NS NS * * NS NS * * * NS * NS * NS NS NS NS 

CxT 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

CxTxB 1 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Error(C) 12    
     

     
     

     
      

Total 31                                         
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*and NS indicate significance and not significant at P=0.05, respectively                     

 

 

 

 

 

 

 

Table 15. Analysis of variance (AOV) table for leaf electrolyte leakage within cultivars, temperature and bacteria treatments from 

data reported in Chapter Three. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS * * * * NS * * * * 

Error(T) 3      
      

Chemical treatment (Ch) 5 NS NS * * * NS * * * * 

Cultivar (C) 1 NS NS NS NS NS NS NS NS NS NS 

TxCh 5      
      

CxT 1 NS NS * * * NS NS NS * * 

CxCh 5 NS NS NS NS NS NS NS NS NS NS 

CxTxCh 5 NS NS NS NS NS NS NS NS NS NS 

Error(C) 66      
      

Total 95                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 16. Analysis of variance (AOV) table for turf quality within cultivars, temperature and bacteria treatments from data 

reported in Chapter Three. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS * * * * NS * * * * 

Error(T) 3      
      

Chemical treatment (Ch) 5 NS NS * * * NS * * * * 

Cultivar (C) 1 NS NS NS NS NS NS NS NS NS NS 

TxCh 5      
      

CxT 1 NS NS NS NS NS NS NS NS * * 

CxCh 5 NS NS NS NS NS NS NS NS NS NS 

CxTxCh 5 NS NS NS NS NS NS NS NS NS NS 

Error(C) 66      
      

Total 95                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
 

 



97 
 

 

 

 

 

 

 

 

 

 

 

Table 17. Analysis of variance (AOV) table for chlorophyll content within cultivars, temperature and bacteria treatments from 

data reported in Chapter Three. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS * * * * NS * * * * 

Error(T) 3      
      

Chemical treatment (Ch) 5 NS * * * * NS * * * * 

Cultivar (C) 1 NS NS NS NS NS NS NS NS NS NS 

TxCh 5      
      

CxT 1 NS NS NS NS NS NS NS NS NS NS 

CxCh 5 NS NS NS NS NS NS NS NS NS NS 

CxTxCh 5 NS NS NS NS NS NS NS NS NS NS 

Error(C) 66      
      

Total 95                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 18. Analysis of variance (AOV) table for photochemical efficiency within cultivars, temperature and bacteria treatments 

from data reported in Chapter Three. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS NS NS * * NS NS NS * * 

Error(T) 3      
      

Chemical treatment (Ch) 5 NS NS * * * NS * * * * 

Cultivar (C) 1 NS NS NS NS NS NS NS NS NS NS 

TxCh 5      
      

CxT 1 NS NS NS * * NS NS NS * * 

CxCh 5 NS NS NS NS NS NS NS NS NS NS 

CxTxCh 5 NS NS NS NS NS NS NS NS NS NS 

Error(C) 66      
      

Total 95                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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Table 19. Analysis of variance (AOV) table for root electrolyte leakage within cultivars, temperature and bacteria treatments 

from data reported in Chapter Three. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS * * * * NS * * * * 

Error(T) 3      
      

Chemical treatment (Ch) 5 NS NS * * * NS * * * * 

Cultivar (C) 1 NS NS NS NS NS NS NS NS NS NS 

TxCh 5      
      

CxT 1 NS NS * * * NS NS NS * * 

CxCh 5 NS NS NS NS NS NS NS NS NS NS 

CxTxCh 5 NS NS NS NS NS NS NS NS NS NS 

Error(C) 66      
      

Total 95                     
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*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
 

 

 

 

 

 

 

 

 

 

 

 

Table 20. Analysis of variance (AOV) table for root viability within cultivars, temperature and bacteria treatments from data 

reported in Chapter Three. 

  Duration of treatments (d) 

    Experiment 1 Experiment 2 

Source of variation df 0 5 10 15 20 0 5 10 15 20 

Replicate 3      
      

Temperature (T) 1 NS NS NS NS * NS NS NS NS * 

Error(T) 3      
      

Chemical treatment (Ch) 5 NS NS * * * NS * NS * * 

Cultivar (C) 1 NS NS NS NS NS NS NS NS NS NS 

TxCh 5      
      

CxT 1 NS NS NS NS * NS NS NS * * 

CxCh 5 NS NS NS NS NS NS NS NS NS NS 

CxTxCh 5 NS NS NS NS NS NS NS NS NS NS 

Error(C) 66      
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Total 95                     

*and NS indicate significance at P=0.05, and not significant at P=0.05, respectively 
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