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ABSTRACT

THE EXPERIMENTAL RESPONSE OF AN
IMPACTING PENDULUM SYSTEM

By

Douglas Brian Moore

A simple mechanical device and its response to periodic excitation is
considered. The system consists of a pendulum with rigid barriers which
limit the amplitude variation from the central position. The pendulum is con-
sidered in the normal, downward position and in the upright, inverted posi-
tion. The dynamics of the pendulum include impacts with the rigid con-
straints. When subjected to periodic excitation, the system response has been
predicted to be quite complicated and may include several stable subharmon-
ics or chaotic motions. Analytic results show the existence of bifurcations
leading to the creation of subharmonic and chaotic motions [1,2,3]. Here we

present the experimental verification of these analyses.

[1] Shaw, Steven W., "The Transition to Chaos in a Simple Mechanical Sys-
tem", Preprint, Michigan State University, 1987.

[2] Shaw, Steven W., "The Dynamics of a Harmonically Excited System
Having Rigid Amplitude Constraints, Part 1: Subharmonic Motions and
Local Bifurcations”, Transactions of the ASME Journal of Applied
Mechanics, Vol. 52 1985.

[3] Shaw, Steven W., "The Dynamics of a Harmonically Excited System
Having Rigid Amplitude Constraints, Part 2: Chaotic Motions and Global
Bifurcations", Transactions of the ASME Journal of Applied Mechanics,
Vol. 52 1985.
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1. Introduction

The development of bifurcation theory and the concept of chaos, added to clas-
sical nonlinear analysis, has allowed applied mathematicians and engineers to
analyze and understand classes of problems in a new manner. Specifically, the
development of the mathematical tools of dynamical systems theory have allowed
engineers the opportunity to study complex systems in a more complete and
rigorous manner. Inherently nonlinear systems may now be analyzed as such,
allowing system response predictions to be made and providing a global understand-
ing of the system which was not possible with linear models. These new methods
have given the theoretical basis for systematic analysis and have laid the ground-
work for development of design criteria for nonlinear engineering systems. Hirsch
and Smale [4] provides a look at these questions from a mathematicians viewpoint,
Guckenheimer and Holmes [5] look at them from a research engineering focus, and
Peitgen and Richter [6] combine a graphical and artistic approach to such equations.
While this thesis considers a specific nonlinear vibrations problem, the ideas and
methods applied are applicable to other problems including models from biological
systems to economic systems. This new way of approaching natural phenomenon,
along with the generality of the methods, are what have made this experiment a
rewarding study.

The system studied falls into the general class of impacting motion. Systems
of this type have been studied with classical methods by Veluswami and Crossley
[7], Veluswami, Crossley, and Horvay [8], Masri [9], Davies [10], and Watanbe
[11] and [12]. Studies of impacting systems using bifurcation theory have been
made by Shaw [1-3], Moon and Shaw [13], Shaw and Holmes [14], and Holmes
[15]. The predictions and analysis used in this experiment are from Shaw [1] for



the inverted pendulum and Sharif-Bakhtiar and Shaw [16] and Shaw [2,3] for the
normal pendulum.

Previous experimental work in chaotic systems has focused on showing the
existence of chaos in a system or focused on subharmonic responses; typically
coexistence of several motions is not considered. Studies where experiments were
combined with theory include, Moon and Holmes [17], Moon, Cusumano, and
Holmes [18], Moon and Shaw [13], and Shaw [19]. Theoretical developments have
usually been subject only to computer simulations for verification. Here we take
the theoretical predictions and computer simulations and compare them with a phy-

sical experiment.

The system considered consisted of a single degree of freedom impacting pen-
dulum (Figures 1a, 1b). It is single degree of freedom as we are assuming the bar
to be rigid. The analysis and experimental evidence to support this assumption are
given in the chapter on the experimental apparatus and in Appendix A. The non-
linear nature of the problem comes from the impacts at the constraints, the con-
straints themselves being close enough together to allow a small angle approxima-
tion to be used for the free flight dynamics. The other assumptions in the system
are that the coefficient of restitution, which dictates how much energy is lost at
impact, is proportional to the impact velocity, impacts are instantaneous, and the
free flight damping is linear viscous in nature. The input is provided by a

sinusoidal motion of the support structure.
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Fig. 1a Experimental device, inverted Fig. 1b Experimental device, normal

The goal in these experiments was to map out and confirm the dynamic
behavior as a function of parameters of the system as predicted in [1-3] and [16].
In these papers, predictions were made for the existence and stability of certain

subharmonic and chaotic motions of this system.

The thesis is arranged as follows. The remainder of Chapter 1 provides the
equations of motion and a brief description of the bifurcations which lead to partic-
ular types of motion. Chapter 2 describes the experimental procedures and
apparatus. Chapter 3 presents the experimental results and the observed motions

and the comparison with predicted values. In Chapter 4, deviations from the



expected results are analyzed, and experimental errors and ways to improve the
experiment are discussed.

The equations of motion for the impacting pendulum are as follows;

mi*Q “+bO "+mgiSin® = Amw3,Cos(wyt)  10/<Opax (1)

0 ,=-r0’_ 6] =0, (1a)

where m and [ are the mass of the pendulum and the length of the pendulum as
shown in Figures 1a and 1b. A is the amplitude of the support displacement, b is
the effective angular viscous damping constant at the bearing, g is the gravitational
acceleration, Wy, is the frequency of the input motion, r is the coefficient of restitu-

tion at impact, and primes denote d/dt with T being time.

The equations of motion may be nondimensionalized by rescaling equation (1)

by letting ¢ =Vg/l T and ¢ = Tege__n)n)- . The nondimensionalized equations of
o —

motion for the system depicted in Figure la, for small angles from the vertical

(6 = &), are:
$+2ab-0=PCos(wr), o<1, 6=—-L"T @
. . (emax - n)
o, =-r9_ , [¢/=1 (2a)
where () = didr, and 2a = bNm?Pg, @ = wyVlig, and B = ——A—— (@2 /g/l).
(Omax — ™!

See [2] for details of a similar calculation. The parameter o represents the nondi-
mensional damping ratio, f the nondimensional driving amplitude, @ the dimension-
less driving frequency, and r is the coefficient of restitution. These parameters deter-

mine the dynamics of the system.



The equations for the normal (noninverted) pendulum system are similar to the
equations for the inverted pendulum system. See Shaw [2,3], for analysis of these
equations for a similar system. The nondimensional equations of motion for the

normal pendulum are

6 .
E" ; 3)
O,=-rdo_. , [0/=1. (3a)

6+2a¢+0=PCos(wt), Iokl, o=
The dimensionless parameters of the normal pendulum are the same as for the
inverted pendulum.

The unforced, undamped phase space for the inverted and normal pendulum

are given in Figures 2a and 2b, respectively.
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unforced, undamped inverted pendulum system

Figure 2a Phase space of



Figure 2b Phase space of unforced, undamped normal pendulum system



An interesting feature of the forced, damped normal pendulum is the possibil-
ity of coexistence of linear and nonlinear steady-state motions (Shaw [2]). Figure 3
shows an example, from simulations [2], of the coexistence of the linear nonimpact-
ing motions and the nonlinear impacting motions in the phase space. The condition

for the linear motion to exist, for a = 0, is given by

B<|1-w?| . 4)

-x'//J
r—— /

N

Figure 3 Coexistence of linear and nonlinear motion for the normal forced pendulum,
=20, r=07, =30, a=0

There are two general types of periodic motion, and subclasses of each, which
have been predicted for these systems. The particular motion which appears is

dependent upon the system parameters and the initial conditions. The two general



types will be designated Type I and Type II. A Type I motion is a periodic motion
impacting one constraint only, once per period of the motion, and Type II being a
symmetric periodic motion impacting both constraints. Other types of motion are
possible, but have not been dealt with in the analysis of the system. The normal
pendulum can undergo motions of Type II along with the linear motions which do
not impact the constraints. The inverted pendulum can undergo either Type I or

Type II motions.

Subharmonic motions are observed for this system, these are of Type I and
Type II and also other periodic motions. This represents the system responding to a
periodic input with an output having a period which is an integer multiple of the
input period. Subharmonics provide one mechanism for the development of chaos

in systems.

Bifurcations occur when the dynamics of the system, for a certain parameter
value, is qualitatively different for nearby parameter values. For the impacting pen-
dulum, bifurcations are the mechanism by which periodic motions appear, change
stability, and undergo qualitative changes. For the present case, a bifurcation
diagram may be thought of as a graph of the amplitude of steady-state motion vs. a
parameter. There are different types of bifurcations, depending upon the resulting
solution curves and their stability. The general bifurcation classifications help in
describing the system and provide a qualitative measure of the system dynamics.
There are a limited number of typical bifurcation types which can occur, even in
very complex systems. This result is due to the fact that the dynamics, near local
bifurcations, may be reduced to simpler models using the ideas of center manifolds
(Carr [20]). Details of bifurcation theory may be found in Guckenheimer and
Holmes [5].
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In the system studied, three types of local bifurcations were analyzed. These
were saddle-node bifurcations, period doubling bifurcations, and pitchfork bifurca-
tions. Bifurcation diagrams for each type are given in Figures 4,5, and 6 respec-
tively. In these diagrams the branches depicted represent some measure of the
amplitude of a periodic motion. Stability of the branches is as indicated in the Fig-

ures.
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A saddle-node bifurcation occurs when a stable motion and an unstable motion
converge and annihilate each other at the bifurcation point. Saddle-node bifurca-
tions are a mechanism by which new steady-state motions can appear, where for

nearby parameter regions, no periodic motions existed.

For this system, the saddle-node bifurcations for both Type I motions, impact-
ing one constraint only, and Type II motions, impacting both constraints, are the
first to occur as the driving amplitude is increased. An example of a Type I
motions arising from saddle-node bifurcation is shown for the phase space of the
inverted pendulum in Figure 7 (from digital simulation, see [1]). As a system
parameter is varied, these periodic motions will exist and be stable until the next
bifurcation point. Beyond that point, the motions will still exist, but will be
unstable and therefore not experimentally observable. Typically, new stable
motions will be born at the next, or secondary, bifurcation. Figure 8 shows a Type
II motion in phase space for the inverted pendulum which arose from a saddle-node
bifurcation (from [1]). Type II motions also arise from saddle-node bifurcations for
the normal pendulum.
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x=+1

Figure 7 Motion from saddle-node bifurcation of Type I in phase space
B=06, r=10, =40, a=0.1



x=-1

Figure 8 Motion from saddle-node bifurcation of Type II in phase space
B=23, r=10, ©=195, a=0.1

A pitchfork bifurcation is the splitting of a branch, representing a symmetric
solution, into two new stable branches with the old branch becoming unstable. This
type of bifurcation is found in systems with symmetry as the two new stable
motions are symmetrical about the old motion in the phase space. The new motion
will have the same period as the original motion. Figure 9 shows the a motion aris-
ing from a pitchfork bifurcation in phase space for the inverted pendulum (from
[1]). The pitchfork bifurcations are the secondary bifurcations of the Type II
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motions. For parameter values just beyond the pitchfork bifurcation curves, these

antisymmetric motions are expected to be observed.

' o
.

—

x=-1 x=0

|

Figure 9 Motion from pitchfork bifurcation of Type II in phase space
=23, r=10, 0=18, a=0.1

Period doubling bifurcations occur when a motion of period T becomes
unstable and a new motion of period 2T is born. The bifurcation diagram is similar
to the pitchfork diagram, the difference in being how the old stable motion loses
stability. In the period doubling, the motion essentially ’flips’, or alternates,
between the two new stable branches, i.e., the two branches represent the same
motion. An example of a period doubling motion in the phase space is given in

Figure 10. Note that it repeats after two impacts while the original Type I motion
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repeated after each impact. Period doublings occur in the inverted pendulum sys-
tem when the stable Type I motions become unstable and the period doubled
motions appeared. When period doubling bifurcations occur in rapid sequence, this
is referred to as a period doubling cascade and is a precursor of chaotic motion in

the system (Feigenbaum [21]).

2

z=—1 x=0 z=+1

Figure 10 Motion from period doubling bifurcation of Type I in phase space

Chaotic motions are observed for this system, these arise in a global bifurca-
tion as described in Shaw [1,3]. Chaos does not refer to randomness or disorder,
but an unpredictable, complex, bounded, and deterministic motion of the system.
Chaotic motion is not random in that there are no stochastic inputs or parameters.

While chaos has broadband frequency content, the components will form pattemns,
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depending on the parameters of the system, with a few frequencies dominating. It
comes about due to very complicated mixing and recirculation of trajectories in the

phase space of the system (Guckenheimer and Holmes [5]).

The experimentally observed motions were ones which have a robust stability
region in parameter space and in initial condition space, as they all appeared within
one minute of the initial conditions and persisted for as long as the author cared to
watch. To observe motions for which the corresponding stability windows are
small, one would either need a precise choice for initial conditions and/or observa-
tion for a long time period. At many parameter values, there are a large number of
stable solutions possible. The initial conditions to produce a certain motion are not
known, we simply started the system and watched what developed. For some
parameter values it is assumed that the initial condition boundaries which lead to
the appearance of different motions is of a fractal nature [6] with a number of com-
peting attractors. In such a case, extremely small changes in initial conditions will

lead to drastically different steady state responses [5].

Noise, in the form of unmodeled inputs, exists in the physical experiment, as it
does in any experiment or computer simulation (due to finite precision). In some
parameter regions, periodic motions (typically those of large period) are predicted
by the model which have extremely small stability windows in parameter space and
the set of initial conditions which lead to that motion, i.e. the domain of attraction,
is very small [5]. When the noise level is such that the resulting disturbances are
larger than the domain of attraction of a given motion, then that motion will not be
observed in the experiment. See [1,5] for further discussion of these issues. The
conclusion of all of this is there are motions predicted by the model which will
never be observed. These are typically those of very long period which, in any

case, may be practically indistinguishable from chaos.



2. Experimental Equipment and Procedures

Design of the experimental apparatus was driven by the need to match, as
closely as possible, the conditions of the analysis. These included a single degree
of freedom system, i.e only the rigid body mode active; instantaneous, dissipative
impacts at the constraints; linear viscous damping in the bearing; and a sinusoidal
displacement of the support. The design selected has been used and improved to

the current state from several months of experimental observations.

The dimensions of the experimental apparatus are as follows. The distance
between the constraints, 2/8,,,,, is 6.6 cm. The length of the pendulum [ is 25.3
cm. The mass of the pendulum m is approximately 0.05 kg. The exact value of
the mass is not important as it does not appear in any of the nondimensional
quantities except the damping ratio and the damping ratio was measured
experimentally. The natural frequency of the system is 0.98 Hz. This gives the
nondimensionalizing parameter between the natural frequency of the system g/l
and the nondimensional driving frequency, ® = ®,/0.98. The B nondimensional
calibration value was 26.0 mV/B. This came from an accelerometer calibration of
201.6 mV/g and the geometry of the system. Details on the accelerometer

calibration are given later.

Determination of the two system parameters, o and r, which remained fixed
throughout the experiment, was done as follows. The coefficient of restitution, r,
was assumed to be constant. We analyzed the time derivative of the angular
displacement signal when impacts were occurring by using the differentiation
hardware built in the Hewlett-Packard 5423A structural dynamics analyzer. The

coefficient of restitution was assumed to be the ratio of the velocity after impact to

20
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the velocity before impact. The value computed was r= 0.95 10.04. The
uncertainty is caused primarily by the coefficient of restitution having a dependence
on the velocity at impact. We have assumed only a linear relation between impact
velocity and rebound velocity. The damping coefficient & was obtained by hanging
the pendulum in the normal position, giving the system an initial condition such
that is did not contact the constraints, and recording the subsequent motion of the
pendulum. A logarithmic decrement method was used on the data obtained to
determine the damping value. The damping for this system was determined to be
0.03. A value for the uncertainty of the a value is not known, but since the results
only depend on « to the first order, a 100% error in the damping value, or +0.03,
will only result in a 3% change in the predicted bifurcation curves. The dissipation
exhibited Coulomb damping components, so this value is an equivalent damping
value. Both the damping ratio and the coefficient of restitution are dimensionless

constants.

Keeping higher order modal vibrations out of the system was judged to be the
critical design condition as these are easily excited at impacts. Other parameters
were allowed slight variations from ideal, but the assumption of single degree of
freedom had to be preserved as closely as possible if the experiment was to
maintain the validity of the analysis. Excitation of higher modes at impact is
inevitable, the effects of this can be minimized by a choice of a bar with a high
flexural stiffness and relatively large structural damping. This will keep flexural
displacements small and will damp out these higher modes quickly. To this end, a
tube of graphite composite material was selected for the rod. Mathematical analysis
of the impact process, along with experimental observation of impacts, showed the
rod to have insignificant energy in the higher order modes for this system
(Appendix A). Also, the energy which was transferred to these higher modes could



be thought of as being lost at impact, and lumped in with the coefficient of
restitution. This assumption is reasonable since most of the transient higher mode
vibrations, excited at impact, would decay before the next impact. The high
stiffness to weight ratio of the graphite composite, along with the structural
damping inherent in the material, proved to approximate the rigid, massless beam

quite well for our purposes.

Once the pendulum beam was chosen, a mass was needed for the end. The
qualities desired here were the ability to provide for nearly instantaneous impacts,
but to minimize excitation the higher modes of the beam. For these reasons, a hard

rubber ball was chosen as the pendulum mass.

The other design considerations were linear viscous damping in the bearing
and a rigid structure to house the system and provide the constraints. Standard ball
bearings were chosen to keep the damping low and as close to viscous as possible.
The low damping and approximate viscous behavior come from the fact that the
bearings provide a rolling friction environment as opposed to a sliding friction one.
The bearings were mounted in two pillow blocks to provide uniform support for the
pendulum. The frame was constructed out of Smm aluminum T stock. This
provided both the rigidity needed for the constraints and kept the weight low. This
low weight allowed an electrodynamic shaker to be used as the driving device.
With this shaker, both large forces and clean sinusoidal signals could be applied to
the frame without significant feedback from the motion and impacts of the
pendulum. At an excitation frequency of 10 Hz, the highest harmonic observed in

the shaker was -48 db at 20 Hz.

The sensing system for the impacting pendulum was built around a Hall effect

sensor. A circular permanent magnet was attached to the end of the shaft running
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through the mounting bearings. The Hall effect sensor was attached to the frame
near the magnet to pick up the variations in the magnetic field. The magnet was
oriented such that the magnetic field could be approximated by a linear function of
the output voltage. The signal provided from the sensor was therefore proportional
to the angular displacement of the pendulum. Due to the small angles involved,
this signal could be used as a linear signal of the pendulum mass position. A
circuit was provided to zero the output of the sensor at 0 degrees displacement.
The magnetic field from he electromagnetic shaker produced no noticeable change
in output of the Hall effect sensor. The linearity of the sensor was checked by
having the pendulum in the normal position and checking that zero volts DC was
the output in the equilibrium position and + K volts existed for the pendulum in
contact with the +0,,, and the -0,,, conditions, respectively. Data was then
gathered on the output voltage vs. the pendulum position. The relationship between
pendulum position and sensor output voltage was found to approximate a linear
function with a linear regression coefficient of 0.99. Further details and the

calibration curve are in Appendix C.

An accelerometer was mounted to the base of the frame to provide information
on the excitation input to the pendulum system. The accelerometer calibration of
201.6 mV/g from the manufacturer’s specification sheet was checked against a
reference accelerometer at 10 Hz, a representative frequency for this experiment.
No measurable deviation from the manufacturer’s calibration was observed in the

amplitude response of the accelerometer.

These two signals, the displacement from the Hall effect sensor and the signal
from the accelerometer, along with the excitation frequency, provided the
information required to map out the motions in the parameter space of the system.

The signals obtained from the sensors were input into a Hewlett-Packard 5423A



structural dynamics analyzer. The Hall effect sensor signal was observed as a time
trace to determine the type of motion present in the system at the particular
parameter values. The acceleration signal was analyzed in the frequency domain to
determine the magnitude of the acceleration at the excitation frequency w,. The
acceleration is part of the nondimensional excitation parameter . The acceleration
signal was also analyzed to determine if any other harmonics of the forcing
frequency were present. In no case were any harmonics greater than -20db of the
excitation signal observed. These higher harmonics are due to the impacts of the
pendulum with the constraints. Thus the impact harmonics dominate the harmonics

which are observed in the experiment.

The experimental procedure was performed as follows:

1- Turn on shaker and set to standby. Turn on the signal generator, sensing
electronics and the measuring electronics; wait five minutes for the equipment to

warm up.
2- Set signal generator to desired frequency. (sets w)
3- Activate shaker.
4- Set shaker amplitude to appropriate level. (sets 3)
5- Measure acceleration of the system.

6- Observe and record type of motion present, save time trace to tape if

hardcopy is desired.

7- Change initial conditions of system by providing a small impact to the

pendulum mass. This allows for the observation of motions coexisting at the same
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system parameter values B,. Repeat 6-7 several times.

8- Return to number 4 until all easily observable motions have been found

(Easily observable means within 1-2 minutes).

9- Return to step 2 as often as desired. A parameter map will require at several

different frequency values in the range under study to provide good resolution.
10- Turn shaker amplifier off.

11- Turn off all devices.

See Figure 11 for a schematic of the experiment. In the particular setup used
for this experiment, a voltage sum and null circuit were provided to condition the
signal from the Hall effect sensor. This allowed the spectral analyzer to be set an a
mode where the analyzer could process the signal accurately. The unprocessed
output from the Hall effect sensor was a voltage level between 0-15 volts DC. The
spectral analyzer performed better when the signals were a balanced * voltage
level. Therefore, a negative voltage was applied and summed with the signal
voltage to produce an output having the same magnitude at the constraints and zero

output at zero deflection angle of the pendulum.
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Signal Generator Dynamic Analyzer
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Pendulum celeration

Shaker

Figure 11 Experimental equipment



3. Results

3.1 Inverted Pendulum

The results of the experiments for the inverted pendulum are given in Figures
12 and 13. These figures show the observed motions vs. the predicted bifurcation
curves from Shaw [1] in the B, parameter space for Type I and Type II motions of
the inverted pendulum, respectively. The letters correspond to motions which exist
at the point in parameter space given by the lower left corner of the first letter. The
lines on the figures are the bifurcation curves, above which the associated motion
exists. For Figure 12, the BL(SN) curves give the set of points above which we
expect to find Type I periodic motions of period »T, impacting one wall only. The
motions born at the the saddle-node bifurcations will exist and be stable until the
corresponding BL(PD) curve is reached. At these parameter values, the Type I
motion loses stability and a new motion of period 2T with two impacts is born.
Therefore, in the region between the BL(SN) curves and the BL(PD) curves we
expect to observe the Type I motion. Just above the ﬁf,(PD) curves, we expect to

observe the associated period 2T motions.
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Key of Motions ( Type, Period, Impacts per Period )
A-11,1 I-0I0,12
B-121 J-I,32
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D-141 L-1,72
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Figure 12 Experimental observations of Type I motions vs. predictions
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Key of Motions ( Type, Period, Impacts per Period )
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Figure 13 Experimental observations of Type II motions vs. predictions
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Looking at Figure 12, we observe the motions corresponding to the B{(SN) are
given by the letter A. Figure 14 shows an example of this motion in a time trace
along with a representative excitation signal. That the signal is not perfectly
periodic is due to the small amplitudes of the motion present. Therefore any noise
or external vibration will show in the signal. The data was taken so as to show the
lowest points for which the motion existed. For the higher frequencies, the
agreement with the predicted bound is good. The B4(SN) curve gives the values
above which we expect to see motions of letter B occur. Figure 15 gives a time
trace of the motion corresponding to letter B along with the excitation signal.
Again note the correspondence between the predicted values for the motion to exist
and the actual experimental results. The BQ(SN) curve gives the parameter values
above which we expect motions corresponding to letter C to exist. Figure 16 shows
the motion corresponding to C along with a represenative excitation signal. Note
that the region above the B{,(SN) curve but below the BQ(PD) curve, A,B, and C
motions exist and are stable. Figure 17 gives the motion corresponding to the letter
D along with a represenative excitation signal. The letter E corresponds to Type I

motion from a saddle-node bifurcation of period ST with one impact per period.
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Figure 14 Type I motion from a saddle-node bifurcation, period T
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Figure 15 Type I motion from a saddle-node bifurcation, period 2T
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Figure 16 Type I motion from a saddle-node bifurcation, period 3T
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Figure 17 Type I motion from a saddle-node bifurcation, period 4T
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The B{(PD) curve gives the expected parameter values for which we expect
the A motions to lose stability and motions corresponding to the letter F to arise.
Figure 18 shows a time trace of the period doubling motion corresponding to letter
F and a represenative excitation signal. This signal is not perfectly periodic due to
the same small amplitude and noise considerations as for Figure 14. The agreement
between the experimental results and the predictions is not as good as for the
BL(SN) motions but the general trend does occur as expected. The motions
corresponding to F and the next higher period doubling G, the motion shown in

Figure 19 with a represenative excitation signal, appear at lower B values than
predicted.
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Figure 18 Type I motion from a period doubling bifurcation, period 2T
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Figure 19 Type I motion from a period doubling bifurcation, period 4T
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The curve denoted B.. gives the limit curve as n—ee for all the bifurcation
curves. This means that all the curves will accumulate onto this curve as n
approaces infinity. Therefore, above this curve, an infinity of unstable periodic
motions exist. This curve is the parameter conditions above which chaos may
occur. Choatic motions are represented by the letter M and a time trace of chaos is
shown in Figure 20. Notice however, that an infinity of stable motions also exist

above this curve so chaos may not appear as the ’steady-state’ motion.

200 1

mV |

ma

T T T T

T LS L 5 2
sec 20
Figure 20 Chaotic motion, angular displacement vs. time

For all parameter values above the B{(SN) curve, at least two motions, or

solutions to the diffe quation with the p B,w, exist. One of these

motions may be the rest case, the motion where the mass stays in contact with one



39

of the constraints and denoted by the letter H, see Appendix B. The existence of
more than one stable steady-state motion means that the one which occurs depends
upon the initial conditions given to the system. This is how both chaos and a stable

periodic motion can coexist for the same parameter values.

The other periodic motions given by the letters N,O and Q are shown in a time
trace with a representative excitation signal in Figures 21-23, respectively. No
predictions on the regions of existence and stability of these motions exist. It was
expected that these other periodic motions would occur, but the analysis to
determine their existence and stability regions is extremely complicated [1]. The
letter P corresponds to a motion of Type I, period 6T, with two impacts per period.
The other motions corresponding to the letters I,J,K, and L will be discussed in the

discussion of Type II motions.
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Figure 21 Other periodic motion, inverted pendulum, period 3, 3 impacts per period
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Figure 13 shows the Type II experimentally observed motions vs. their
associated bifurcation curves. Notice the difference in the B scale on Figure 13 as
opposed to the P scale on Figure 12. This means that the Type II motions occur at
larger excitation values than the Type I motions. This is intuitively correct as a
larger excitation is required to push the inverted pendulum over the ’energy hill’ of
the unstable unforced equilibrium position and to the other side. Note that again, as
for the Type I motions, there are PY(SN) bifurcation curves and associated B/(PF)
bifurcation curves. For parameter values above the Type II saddle-node bifurcation
curves, the associated motions exist and are stable until the corresponding pitchfork
bifurcation curve is reached. At these points, the motions from the saddle-node
bifurcations become unstable and two new antisymmetric periodic motions are born.
Here the secondary bifurcation is a pitchfork rather than a period doubling due to

the symmetry of the motion.

The time traces of motions corresponding to letters I and J are given along
with representative excitation in Figures 24 and 25, respectively. While not
showing the close correspondence with the saddle-node bifurcation curves as the
Type I motions, the trends are as expected. Motions denoted by the letters K and L
correspond to Type II motions of ST, two impacts per period, and 7T, two impacts
per period, respectively. Chaotic motions, given by the letter M, as for Figure 12,
occured throughout the region above the B, curve and only a few were plotted for
representation. No clear examples of motions arising from the secondary pitchfork
bifurcations were observed. This may be due to two things. One is that the
parameter region for some pitchfork motions to exist is for a large excitation (B)
and low frequency (w). Our experimenal apparatus was not able to provide
excitation of this type. The second reason is that in a time trace of the motions, the

motions from the saddle-node bifurcation and the motions from the pitchfork



bifurcation are very similar. A phase potrait of the motions is usually required to
determine if the motion has undergone a pitchfork bifurcation. Thefore, some
motions may have been from a pitchfork bifurcation, but were not able to be

classified as such.
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Figure 24 Type II motion from a saddle-node bifurcation, period T
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Figure 25 Type II motion from a saddle-node bifurcation, period 3T
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On both Figures 12 and 13, there are parameter values for which both Type I
and Type II motions coexisted. This was as expected, as for low  values, there
are regions where stable Type I and Type II motions coexist. Both figures show
the general trends predicted in Shaw [1] for the response of the inverted pendulum

system.

3.2 Normal Pendulum

Figure 26 shows the observed motions vs. the predicted bifurcation curves
from Shaw [2] for the normal pendulum system. These bifurcation curves are for
the case of no damping (a = 0). The assumption of no damping is reasonable due
to the low value for the actual damping and the fact that the bifurcation curves
depend on the damping only to the first order. Here we have linear motions and
nonlinear motions coexisting. Linear motions are those which do not impact the
constraints and the nonlinear motions are Type II, impacting both constraints. The
B1(SN) curve are the parameter values above which the motions corresponding to
the letter X are predicted to occur. This motion is of period T with two impacts
per period. The B3(SN) curve gives the parameter values above which the motions
given by the letter Y are expected to exist. Figure 27 gives a time trace of this
motion along with a represenative excitation signal. The Bs(SN) curve gives the
parameter values above which we expect to find the motions corresponding to letter
Z. This motion is of period 5T with two impacts per period. No bifurcation curve
for the B,(SN) was plotted, however motions arising from this bifurcation are

denoted by the letter W.
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XY

XY

Figure 26 Experimental observations vs. predictions for normal pendulum

Key of Motions ( Type, Period, Impacts per Period )

X-1,1,2 R -11,9,6

Y - 11,3,2 P - 11,6,2

Z-115,2 M - Chaos

W -11,7,2 LIN - Linear Motion Only
Q - I1,3,2,PF
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200

mV

Figure 27 Impacting motion of normal pendulum from a saddle-node bifurcation, period
3T

In the normal pendulum system, the secondary bifurcations are of a pitchfork
type as for the Type II motions in the inverted pendulum system. For the normal
pendulum system, the difference between the motions from the saddle-node
bifurcations and the motions from the pitchfork bifurcations were clearer than for
the inverted pendulum system and some motions were able to be classified as
arising from pitchfork bifurcations. The motions from the pitchfork bifurcation are
given by letter Q. A time trace of this motion and a represenative excitation signal
are shown in Figure 28. The conditions for the pitchfork bifurcation to occur are

not given explicitly by Shaw [2] and are hence not plotted in Figure 28. It is
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expected that similar behavior occurs for the normal pendulum system as for the
inverted pendulum system. This means that it is expected that there will be some
region for which the motion from the saddle-node bifurcation will exist and be
stable and a secondary bifurcation will occur where the motion from the saddle-

node will lose stability and new motions will be born.

250 o
mV 4
4
4
4
-m L v v v v v LA v v
sec 2
1 T

| B4 T T T T T T T L g |

Figure 28 Impacting motion of normal pendulum from a pitchfork bifurcation, period 3T,

The motion denoted by the letter R represented another periodic impacting
motion which was not able to be classified as from either a saddle-node bifurcation
or a pitchfork bifurcation. A time trace and associated excitation signal for motion
R is given in Figure 29. The letter P corresponds to a periodic motion of period

6T, with two impacts per period. The letter M, as for the inverted pendulum
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system, corresponds to the observance of chaotic motions of the normal pendulum.
For the normal pendulum, the occurance of chaos was not as widespread as for the
inverted pendulum. The letters LIN denote a parameter value where only the linear,
nonimpacting motion occured. Linear motions are not otherwise represented as

they occurred everywhere throughout the parameter space.

mV

-250
sec 2

Figure 29 Other periodic motion, normal pendulum, period 9, 6 impacts per period



4. Discussion

This experiment validated the theoretical models used for normal and inverted
pendulum systems. Observed motions closely corresponded to the predicted values.
The small discrepancies from the predicted values were most likely from the
assumptions made in the models of the systems. The assumptions of linear viscous
friction in the bearing, single degree of freedom, and instantaneous impacts based
on an impact rule proportional to velocity are all valid approximations this system
but are not full descriptions of the reality of the situation. There was also
experimental uncertainty in measuring the damping and the coefficient of restitution.
Even with the errors in these assumptions, the system retained most of the predicted

behavior.

The overall objective of this work was to confirm, in qualitative terms, the
predictions of Shaw [1-3] and Sharif-Bahktiar and Shaw [16]. This thesis has
demonstrated that the types of motions predicted do in fact occur and they occur in
the regions of parameter space perdicted by the model. This experiment was
designed more to prove the ideas in the model than to measure precise details of the
motions. It was enough to know what type of motion was occuring and a

reasonable measure of the parameters at which it occured.

On the question of improved equipment, one which would extend and benefit
the experiment significantly would be a data acquisition system capable of long
time record data at useful sampling frequencies. This would allow the generation
of Poincare maps for the system. Along with the data acquisition equipment,
software to automatically analyze the data would be convenient. Outlines and some

details of this software have been completed but further work is required. Other

<1
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equipment details involve high stability amplifiers for the sensing electronics and as
much shielding of cables as possible to cut down on interference. Also, a real time
analog differentiator with no phase lag would be useful for obtaining velocity

signals.

This is one of the few works combining a theoretical, numerical, and
experimental study of the same system. We have taken predictions from an
analytic model and verified them, providing a good indication of the validity of the
theoretical model. Having a theoretical knowledge of the system allowed for an
experiment to be designed to test for specific results. Experimental evidence of
chaos has been shown before [17-20], but typically is checked only against
simulations or asymptotic analytic work. Due to the piecewise linear nature of the
impacting pendulum, we were able to compare results from exacr analysis
[1,2,3,16], to simulations [1,2,3] and experiments [this thesis]. In fact, this was
done for a wide range of motions from linear, nonimpacting motions, to various
types of subharmonics as well as chaos. That the predictions and experiment agree
so closely is a clear fact on the usefulness of bifurcation theory in engineering

analysis.



Appendix A



Appendix A

Effect of Higher Modes of Vibration on the System

The dynamics of the pendulum system during and immediately following
impacts will affect the subsequent motion of the pendulum. If modes other than the
rigid body mode are present at subsequent impacts discrepancies will arise between
the physical system and our simple model. Presented here are an analysis and
simulation to verify our assumption of a single degree of freedom system. The
analysis dealt with duration of impacts, the beam velocity profile at impact, and the
velocity profile at release. This information will allow for determination of how

much energy is transferred from the rigid body mode into higher modes at impact.

A uniform beam without the end mass is considered here. This is valid since
during contact the mass remains fixed at the wall and plays no essential role in the
flexing of the beam at impact. It will affect the dynamics of the the beam after

impact but not the amount of energy transferred to the higher modes during impact.

The analysis for the system switches back and forth between pinned-free and
pinned-pinned modes depending on whether the system is in contact with the

constraint or in free flight.

Consider a continuous system described by the partial differential equation
(Meirovitch [22])

L[ W(P,t)] + M(P) ﬁz—vgfz'l"l =f(P.) + F{OS(P - P) . (A1)

This is the full equation of motion for a continuous beam with displacement and

time varying applied forces. The L operator gives the fourth partial derivative with
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respect to the solution W(P,), M(P) is the mass distribution along the spatial
variable P, the second partial gives the acceleration of the beam at that spatial
location and time, the f{P,r) give the spatial and time varying forces on the beam,
and F, j(t)S(P - pj) give the modal impulsive forces on the beam. The solution to
equation A.1 may be expressed in a more familiar form as

WP, = SwAPIM) + Fay A2)

r=1

This is the separation of variables for a continuous system with orthogonal

eigenvectors.

The first section of analysis will determine the magnitude of the impulsive
force needed to exactly stop the end (x(L)) of the beam. The velocity at the end of
the beam will be zero at impact and the rest of the beam will have some velocity
profile. The pinned-free mode shapes are given by

A . . .
w, ’f(x) = Cosh [T,x] - Cos [L:] - G; [Sinh [—ti] - Sin [&Ec—]] (A.3)

[COShli - COSA.,‘]

; = 4
i =~ Sinkh, - Sink; (Aa.4)

The A, is given by the solution to the equation
TanM = TanhA (A.5)

The w,(x) are the mode shapes of the system and the m,(r) are the modal

amplitudes, which are given by

Sinw, ¢

t
n() = -(;— [ N,(@) Sinw,(-—t)dt + 1,(0) Cosa,t + 1',(0) (A.6)
r0

r

nA0) = { M(x)w, (x)w(x,0)dx (A.7)
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n'(0) = )! MX)w,(x)W'(x,0)dx (A.8)

These equations correspond to the forces applied to the system, the initial
displacement, and the initial velocity. For the system under consideration, the
linear velocity is proportional to distance along the beam, €x, i.e. rigid rotation is
assumed at an angular velocity Q2. The unknown impulsive force at x =L is E.

Substituting these values into the above equations yields

t L

n) = ml [wALYES@Sine, (-t + { M) w,(x)Qx dx . (A.9)
r 0
This reduces to
-] {
wi(

n,0) = Sin(w,t) + QM [ w,(x)x dx . (A.10)

r 0

This integral evaluates to

2 2 2 2
+ [_L_ - i—] Cos)»i + [L— - i—] Si’l)\.i (A.11)

This equation will be expressed as /(A;) in future calculations. Using this notation,

the equation is
L)F Sin(®
uda Sin(w,2) + I(A;) in@h

r r

n,() = (A.12)

Since W(x,r) = w,(xm,(¢) , the velocity at impact is given by the derivative

with respect to time of the time function multiplied by the spatial function. The

i

condition of zero velocity at end of the beam is W’(L,0") =0, where (') = >

The equation for F is then
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. Q)M

=D (A.13)

We now transfer to the pinned-pinned modes to evaluate how long the beam
will remain in contact with the stop. To do so, the velocity profile from the
pinned-free system just after impact will be used as initial conditions. The velocity

profile is
W (x,0) = w,(x)pf[(l—mM)l(li)] . (A.14)

The pinned-pinned mode shapes are

W,(x,8),p = Sin [%] N - (A.15)
Sin@ & |
M8y, = mmr ol !; Sin [-%x-] W',(x,O)pf dx . (A.16)

The integral is a function of Sinh, Cosh, Sin, and Cos arguments. It may be broken

into four separate integrals with the result as follows

I =M(1-MQ) [A +B-0(C+ D)] IA) . (A.17)

A, B, C, and D are given as

_ Sinp—q)L _ Cos(p+q)L
AT T 2w -
g = —Cos—q)L _ Cos(p+q)L _ , (A.17b)
2(p—q) 2(p+q)
C= aCosh(aL)Sin(pL) — pSinh(aL)Sin(pL) (A.17¢)
@ + p?
D= aSinh(aL)Sin(pL) — pCosh(aL)Cos(aL) (A.17d)

@ + p?
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Q

I

Q

I
~|.2

p= -‘2.12 (A.17e)

These equations for the initial conditions allow for the determination of the
motion of the beam while it is contact with the constraint to be determined. The

equation of motion is

2 (A.18)

; Sin(w;t
Wj(th)pp = Sin[ntx] b/ ( : )
The time the beam will remain in contact with the constraint is the time the shear
force in the beam at x=L, V(L,t) is holding it against the wall. When V(L,t)
becomes nonpositive, the beam will release from the wall since the stop cannot
provide a force to maintain contact. The shear is the third spatial derivative of the

displacement:

PWL) 22 . Sin(w;t)
" = 12 Cos(in) II o

(A.19)

Computer simulations were performed using these equations to determine the
duration of impact and the amount of energy transmitted to higher modes. In
Figure Al, the time required for the shear to change sign, and thus the impact time,
is shown. Physical property values were investigated in the region of the values of
the actual impacting system, and all simulations showed short impact times on the
same order as Figure Al. The approximation of instantaneous impacts is therefore

a reasonable one. The amount of energy input to each mode is represented by the

magnitude of the F ;/s. Simulations showed that less than —;- of 1% of the impact

energy was transmitted to higher modes for any impact velocity. Figure A2 shows
the experimental time trace of multiple impacts as the pendulum velocity vs. time.
After impact, there is a small amount of higher mode activity, but this is damped

out by the structural damping in the system. The apparent persistent vibrations are
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noise associated with 60 Hz electronic interference. The simulation and

experimental evidence show the assumption of a single degree of freedom system to

be valid for this experiment.
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Figure A1 Simulation of shear at x=L
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sec

Figure A2 Pendulum impacts, angular velocity vs. time
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Appendix B

The Derivation of the Rest Solution Limit

This development shows the conditions for the existence of the rest solution of
the inverted pendulum system. A free body diagram is given in Figure BIl.

Summing moments about the point O yields
IMy = 0 = mgiSin@ — NICosO + mylCos6 (B1)
where the base motion is

y = ACosw,,t (Bla)

myCos(w,,T) G

mg

Fy

Figure B1 Free body diagram of inverted pendulum at impact
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Solving this equation for the normal force, N gives

N

= CI:! - [gSinO - Amﬁ,CosOCoscod,t] (B2)
For N to remain >0 for all time, we can check its behavior over a single
forcing cycle. The worst case is when Coswg,s =*1 for the left and right

constraint, respectively. The N>0 condition then becomes

AwZ
Sin - —=

Cos6>0 (B3)

Using the small angle approximations Sin® = 0 and Cos6 = 1, we can reduce B3 to

the following equation

0> Af" (B4)

The nondimensional parameter B is equal to e:n ] (cof,,!g/l). The angle 0 is
Omax for this case. This yields the final result

B<1 (BS)

This is the parameter values for which the rest solution will exist.
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Calibration of the Hall Effect Sensor

The Hall effect sensor is a electronic device which generates an output voltage
proportional to the magnetic field near it. Mounting a circular magnet near the
sensor will let the sensor produce a voltage proportional to the sine of the angle of
the magnet. Since we want a linear relationship between voltage and pendulum
displacement, the portion of the sine curve where the sine of the angle is
approximately equal to the angle will be used. This provides a sensor whose output

is nearly linear.

The sensor was calibrated by fixing the pendulum displacement and recording
the resulting output voltage. This was done for various pendulum positions over
the maximum range used in the experiment. The measuring voltmeter had an error
of 1% and the pendulum position measuring device (a ruler) had an error of about
1% over the range measured. These errors show as the uncetainty boxes on the
plot of voltage vs. displacement of the Hall effect sensor (Figure C1). The line fit
through these points by a linear regression method had a regression coefficient of

0.99. The calibration constant was determined to be 0.13 mV/in or 0.05 mV/cm.
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Figure C1 Rotational Sensor Calibration Curve
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