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ABSTRACT

THE ELECTRONIC STRUCTURE OF
FIRST-ROW NEGATIVE IONS AND TRANSITION METAL ATOMS

By

Beatrice Helen Botch

Negative Ions

The electron affinities of carbon, oxyéen and
fluorine have been calculated using a compact MCSCF wave-
function with a [4s,4p,3d] Gaussian basis set. This wave-
function describes radial correlation of the 2p electrons
which is found to have a large differential effect between
atom and anion, and also includes the (282->2p2) near-.
degeneracy effect. Radial correlation of the 2p electrons
increases the calculated electron affinity by as much as
1l.2eV over the Hartree-Fock value. An orbital model is
discussed which ascribes this effect to the diffuse nature
of the orbital occupied by the (Z2+1)st electron of the
anion. Configuration interaction calculations based upon
the MCSCF wavefunction, result in electron affinities
comparable in magnitude to the large basis set calculations
of Yoshimine and Sasaki.2 The importance of higher-order
angular functions and higher-order excitations is also

examined.



Transition Metal Atoms
The major differential valence correlation ef-
2

fects of the lowest lying states arising from the s dn,

n+1, and dn+2

sd configurations of the first-row transition
metal atoms have been characterized using MCSCF and CI pro-
cedures. The important correlation effects are found to

be first, angular correlation of the 432 pair arising
because of the near degeneracy of the 4s and 4p orbitals,
and second, radial correlation of the 3d electron pairs.
This large differential radial correlation of the 3d
electrons can be interpreted as being due to nonequivalent

n+1 and dn+2 excited states. Both of

d-orbitals in the sd
these effects can be incorporated into a simple MCSCF
wavefunction which reduces the error in the excited state
atomic dissociation limits (v0.2eV in Sc-Cr, and "0.5eV in
Mn-Cu for the sdn+l-szdn excitation energy), yet still is
of a form which lends itself easily to molecular calcula-

tions.
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INTRODUCTION

There are many seemingly simple problems of chem-
ical interest which have presented theoreticians with dif-
ficulties, both computationally and conceptually, for many
years. This work is concerned with two such problems:
the determination of accurate atomic electron affinities;
and the calculation of the electronic excitation energies
of transition metal atoms. Each is of theoretical interest
because the procedures developed for accurately describing
atomic anions and metal excited states provide the frame-
work in which concepts about the structure and reactivity
of molecular species are developed. Experimentally, while
the atomic systems are in general well-characterized,
molecular species have been difficult to generate and
spectra, once obtained, must lean heavily on theory for in-
terpretation. Thus, accurate experimental values aid
theory in calibrating the methods which are employed,
while reliable theoretical values aid experiment in inter-
pretating data from the more complex molecular systems.

A general development of the methods used in
calculation of these quantities is in Part A of this thesis.
Part B is concerned specifically with the calculation of

the electron affinities of carbon, oxygen and fluorine;

1



while Part C is concerned with the calculation of the szdn

n+l o n+2

to sd rd electronic excitation energies of scandium

to copper.
In both of the atomic systems above the Hartree-

Fock wavefunction inadequatdy represents the states with

the 'extra' electron, i.e., the 2522pn+l

n+l and 3dn+2 states of the metal atoms. Previously,

anion, or the
4s3d
the electron affinities and the excitation energies have
only been recovered with high-order configuration inter-
action (CI) calculations. These types of calculations are
inappropriate for molecular systems and can, in fact,
obscure important physical information regarding the dif-
ferential correlation effects. We have found that these
states are more properly represented when the 'extra'
electron is allowed to be in a radially inequivalent or-
bital (szpnp' for the anions, sdnd' or dnd'd" for the
metal atoms), which is more diffuse in nature than the
other 2p or 3d orbitals. A more balanced zero-order de-
scription of the ground/excited state, or atom/anion
systems can be obtained from a simple multi-configuration
(MCSCF) wavefunction which includes two valence correlation
effects:

l. The differential radial correlation effect

due to the loosely-bounhd electron in the

excited states and anions,
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2. The (sz,pz) near degeneracy effect due

to the near degeneracy of the ns and un-

occupied np orbitals.
This MCSCF wavefunction removes many of the inconsistencies
found at the Hartree level resulting in more accurate
energy differences. CI calculations based upon the MCSCF
wavefunction give electron affinities and excitation
energies which are now in good agreement with experiment
and provide a simple and consistent method for treating
correlation effects in molecular systems containing nega-

tive ions or transition metal atoms.



Part A: METHODS



I. INTRODUCTION

The wavefunctions and energies which are used to
characterize the electronic properties of atoms and mole-
cules result from solution of the time-independent
Schrodinger equation within the Born-Oppenheimer approx-

imation. The nonrelativistic electronic Hamiltonian, in

atomic unitsl, has the form N
n 2,2
H= 2h, + i ::l +AZ<:B RAB (1a)
11 i<j ~ij
N 2
2 A
h, = ';’Vi = § r,. (1b)

where n corresponds to the number of electrons and N to the
number of nuclei in the system.

If there were no interactions between electrons,
l/rij =0, each electron would move independently of the
others subject only to the attractive field of the nuclei.
This problem is exactly separable into n one-electron

equations which result in the one-electron orbitals, {¢i},

and the one-electron energies,{ei}

h¢i =€; 95 (2)
The total wavefunction is simply a product of these or-

bitals and the total energy the sum of the one-electron

energies



v (1,...,n) = &¢y(1)...¢ (n) (3a)
n

E = 2: €, (3b)
1 1

This product wavefunction can be interpreted as describing
n independent particles (electrons) moving in the attrac-
tive field of the nuclei.

Because of the Coulombic repulsions between
electrons, l/rij #0, the electrons do not move independ-
ently of one another, rather their motions are correlated.
The Schrodinger equation is no longer exactly separable
and approximations must be made to obtain the electronic
wavefunctions and energies. There are many methods which
have been developed for this purpose. This work has em-
ployed three ab initio procedures based upon the variation
principle: the Hartree-Fock self-consistent field method,
the multi-configuration self-consistent field method, and
the configuration interaction method. They differ in the
functional form of the wavefunction chosen to represent
the system, and it is in this way that the approximations
necessary to solve the Schrodinger equation are introduced.

The validity of using an assumed form for the
wavefunction is founded on two fundamental principles.

The first is the variation principle2 which guarantees
that for some approximate normalized wavefunction obeying

the boundary conditions of the system wo, the corresponding



energy Eo' will always be greater than or equal to the
lowest eigenvalue of the Hamiltonian3

E <E =<y [H|[y > (4)
While the choice of wo is arbitrary, it is best chosen to
approximate, as closely as possible, the exact wavefunction.
For a given functional form, the 'best' wavefunction is
one for which the energy is a minimum, i.e., for which the
first order change in the energy with respect to any vari-
ation in the wavefunction is zero 6E(w°)=0.

Variations in the wavefunction can be introduced
by means of the second fundamental principle, the expan-
sion theorem. This theorem states that any normalizable
function may be represented as an expansion in terms of a
complete set of functions4. Thus, the single particle
orbitals above may be represented as an expansion in a -

known basis

and the n-particle wavefunction may in turn be expanded

in terms of the orbital basisS
l1,...,n) = 2: c. 9. 6

where each configuration, ¢j' is a symmetry-adapted linear
combination of Slater determinants possessing the spatial
and spin symmetry of the electronic state of interest.
Variations in the wavefunction translate into variations

in the expansion coefficients {aiu}' {Cj}, which



are determined to minimize the energy, the variational me-
thod. A wavefunction is, thus, defined by the configura-
tions included in the n-particle.expansion and the expan-
sion bases from which the configurations and orbitals are

constructed.

II. HARTREE-FOCK
In the Hartree-Fock (HF) procedure, the simplest
form of wavefunction is assumed by truncating the configura-

tion expansion at a single term

(1,...,n) = ¢HF (7)

Yur
thus, as in Equation (3a), the HF wavefunction is a simple
antisymmetrized product of orbitals. Minimization of the
total energy with respect to variations in the orbitals
results in the HF equations for each orbital. For a

closed-shell HF wavefunction with n/2 doubly-occupied or-

bitals these equations are of the form

Y =9 ]_0.(1) ¢18(2)-o. ¢n8(n) (8a)
2
HF _
h ¢; = eﬁzéi (8b)
HF
h = h + & 2J. - K. 8
3 ( 3 J) (8c)
The Jj and Kj are the familiar Coulomb and exchange
operators
1
J. = <¢,|=—|¢. 8d
3 ¢Jlr12|¢3> (8d)

_ 1
Ky ¢; = <¢jlrlzl¢i>¢j (8e)



Since these operators depend upon all of the occupied or-
bitals, the equations must be solved self-consistently.
Expanding each orbital in terms of a known-set of basis
functions7'8 results in the matrix eigenvalue equation

| HF |
Z: < Xulh IX\)> ai\) = Eiz\):<xulx\)>ai\) (93)

v
HF
ih o= da; (9b)
where the energy is determined from the secular equation

HFP
| h - 81 =0 (10)

If {xu} is complete, this is the exact HF solution. Since
it is not possible to use a complete basis, only an ap-
proximate solution is usually obtained, referred to as the
SCF solution.

Since most of the electron density of a chemical
system is concentrated around the nuclei, it is reasonable
that the expansion basis, or basis set, be comprised of
functions which are centered on each atom and which de-
crease exponentially from their centers, linear combination
of atomic orbitals (LCAO). The two types of functions
most commonly used are Gaussian and Slater functions which

are of the form

2
xt P R 78T (1la)

n-1 -¢r

r e Y., 0,0) (11b)



The range of radial and angular functions required to re-
present different chemical processes has been thoroughly
investigated and is summarized in Reference 9. For the
two systems of concern here, negative ions and transition
metal atoms, it was necessary to augment the atomic bases
with diffuse functions to describe ionic and excited-state
behavior. This is discussed in more detail in later
chapters.

The physical significance of the HF wavefunction
is best understood by examining the potential terms in
Equation 8b. Note that an electron in orbital i is not
exposed to the full l/rij potential due to the other

electrons, rather it sees a potential of

Z(ZJj - Kj ),

3

averaged over all of the electrons in the system. The na-
ture of the HF potential has been discussed by Sinanoglu10
where he compared the full Coulomb potential to that of the
HF. He showed that the HF potential accounts for the long-
range effects of the Coulomb repulsions between electrons.
The difference between the two éotentials, the interactions
neglected in the HF picture, are short range in nature
falling off rapidly as the distance between the electrons
increases. This implies that there are two effects which

determine the nature of the interactions between electrons

in atoms and molecules
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- The average interactions of each electron
with the (n-1l) others and,
- The instantaneous interactions as pairs
of electrons closely approach one another.
The HF wavefunction, by describing the average interactions
among the electrons, accounts for mainly the long-range
part of the Coulomb repulsions. Thus, the single-particle
picture where each electron moves in an individual orbital,
is maintained by the HF method, in the sense that the
orbitals are now determined in the average field of the
(n-1) other electrons as well as the attractive field of
the nuclei. While this neglects the short-range instant-
aneous interactions, those which are dependent upon the in-
dividual motions of the different particles, it still
provides a well-defined reference point for more sophisti-
cated approaches. The term 'correlation energy' is defined
in terms of the HF model as the difference between the

exact nonrelativistic energy of a system and the HF energyl1

Ecorr = Fexact ~ Enur (12)

referring to the interactions neglected in the HF model.
This is an appropriate term provided that the HF wave-
function describes the major physical features of the
system. For closed-shell species at equilibrium this is
the case but, in general, a single configuration descrip-
tion is too restrictive. For example, orbital degeneracy

effects or molecular dissociation cannot be represented
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11,12 and consequently, other con-

by a single-configuration
figurations are needed to give a proper 'zero order' de-
scription. Since this deficiency is, not strictly, a cor-
relation effect in the dynamic sense of short-range in-
stantaneous interactions, there are two types of correc-
tions that need to be considered beyond the HF model:

those which arise from improper representation because of
the single-configuration nature of the HF wavefunction; and
the 'true' instantaneous correlation effects arising from
short-range Coulomb repulsions between electrons in the
same spatial region. Both types of interactions can be

represented by wavefunctions that do not truncate the ex-

pansion in the orbital basis at a single configuration.

III. CONFIGURATION INTERACTION
In the configuration interaction (CI) procedure
the wavefunction is written as a linear combination of many

orbital configurations13

, that are, in general, taken to
be orthonormal, Equation (6). Variation of the configura-
tion coefficients to minimize the energy leads to the

matrix eigenvalue equation

(H-=e =0 (13)

where the elements of H are defined between configurations
au)ij = <o 8|0y (14)
and the eigenvalues are determined from the secular equation

I - EAl =0 (15)
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I1f the expansion basis is complete this results, in prin-
ciple, in the exact nonrelativistic energy of the system.
This energy is independent of the orbital basis, although
the convergence of the expansion, the number and types of
configurations necessary to achieve a particular level of
accuracy can be accelerated significantly if the orbitals
reflect the general characteristics of the wavefunction.

In practice, it is not possible to expand the
wavefunction in terms of a complete set of functions and
both the expansion basis and the configuration set must be
truncated. The energy of this approximate wavefunction is
no longer independent of the orbital basis. The SCF
procedures are used to define a physically relevant set of
occupied orbitals. In addition, an appropriate set of cor-
relating orbitals are needed. There are two major require-
ments which these 'virtual' orbitals should fulfill in
order to adequately represent the correlation effects among
the occupied orbitals. They should be concentrated in the
same region of space as the occupied SCF orbitals; and
they should have additional nodal surfaces which can allow
for effects such as in/out, left/right, or up/down correla-
tion. Thus, the virtual basis is principally comprised
of higher angular functions with radial extents similar to
those of the occupied orbitals. These requirements are
well understood and are discussed in more detail in Refer-

ence 13.



13

The extent of the configuration expansion is limited by the
finite size of the orbital basis. A full CI is one in
which all of the possible configurations constructed from
a finite basis are used in the expansion. The energy of
this wavefunction is dependent only upon the space spanned
by the orbital basis not upon the individual orbitals, and
is the best energy which can be obtained within the given
basis. In general, full CI's are not possible for all but
the smallest orbital sets and the configuration list must
be further reduced. Configurations can be classified ac-
cording to the number of replacements, or excitations,
which occur relative to a given set of reference configura-
tions, single, double, tfiple, quadruple, etc. Within
each level the resulting energy is independent of the in-
dividual virtual orbitals, again dependent only uﬁon the
space which they span. If the zero-order wavefunction is
a good representation of the system, the dominant cor-
relation effects enter the CI expansion in terms of

double excitation configurationslo'l3-15. Thus, most CI
calculations consist of single and double excitation con-
figurations relative to the HF configuration or a more
general zero-order wavefunction. The importance of the
higher order triple and quadruple excitations is a topic

16,17

of current interest and is specifically addressed in

this thesis for the two systems noted previously.
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IV. MULTI-CONFIGURATION SCF

In the multi-configuration self-consistent field
(MCSCF) procedure, as in the CI procedure, the n-particle
wavefunction is constructed from a linear combination of
configurations (Equation 6), but now both the orbitals,
{¢i}, and the CI coefficients, {Ci}, are optimized simulta-

neouslyls'lg.

Thus, the matrix eigenvalue equations for the
orbitals (Equation 9b), and for the CI coefficients (Equa-
tion 13), must be solved, though the form of the orbital
equations are not as simple as the closed-shell HF equations,
requiring solution of more than one pseudo-eigenvalue equa-
tion.

In this way, the correlating orbitals of the CI
expansion discussed previously are well-defined, increas-
ing the occupied SCF space to include a set of active
orbitals having variable occupancy to describe correlation
effects among the valence orbitals, in addition to the core
orbitals which remain doubly-occupied throughout the cal-
culation. The generalized valence-bond (GVB) wavefunction
is an example of such a wavefunction which accounts essen-
tially for proper molecular dissociation and orbital
degeneracy effectszo. While this procedure could, in
principle, be used to define the entire correlating space,
in practice this has not been found to be beneficiall7.
Large MCSCF wavefunctions suffer from problems with con-

vergence and interpretability, but perhaps more importantly,

not all of the correlating orbitals need be defined
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self-consistently. The orbital set can be divided into two
groups, the primary and secondary orbital set521. The en-
ergy of the chemical system is critically-dependent upon
the orbitals of the primary set since it is this set that
represents the major physical features of the system. The
energy is only weakly-dependent upon the orbitals of the

secondary set, that are necessary for providing minor cor-

rections to the wavefunction.

V. GENERAL PROCEDURE

The general procedure used in the following cal-
culations has been to determine a set of occupied orbitals
self-consistently, that define the zero-order wavefunction.
For many systems, the single-configuration HF wavefunction
is appropriate, for other systems, more than one configura-
tion is needed. These orbitals along with a proper set of
correlating virtual orbitals are then used in CI calcula-
tions to account for other correlation effects.

We have investigated alternative forms of zero-
order wavefunctions for negative ions and transition metal
excited states since it is found that HF inadequately re-
presents these systems. Consequently, the correlation ef-
fects in these systems have been particularly confusing
when cast in the HF framework. When cast instead in terms
of an MCSCF framework these effects become very consistent

and lend insight into the physical nature of these systems.
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VI. MOLECULAR CODES

The integrals were calculated using the BIGGMOLI
integral program of R. C. Raffenettiz2 as well as his in-
tegral transformation programs. The MCSCF calculations
were done using the ALIS MCSCF program from Ames Laboratory,
Iowa State, by K. Ruedenberg, S. T. Elbert and coworkersla.
The CI calculations were carried out using the CITWO pro-
gram from the California Institute of Technology by

F. W. Bobrowic223.
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Part B: NEGATIVE IONS



Theoretical characterization of negative ions. Calculation

of the electron affinities of carbon, oxygen, and fluorine.
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I. INTRODUCTION

The electron affinities of atoms have been notor-
iously difficult to calculate from first principles. While
experimentally most atoms are found to have a bound negative
ion, Hartree-Fock (HF) theory is unable to predict the sta-

1 For Z < 10, HF finds

bility of all but a few of these.
only C~ (*s) and F (1s) to be bound, the errors in the cal-
culated electron affinities being 0.7eV for carbon and

over 2eV for fluorine (Table I). By including electron cor-
relation beyond HF, in particular through the configuration
interaction (CI) method, the stability of anions can be cor-
rectly predicted, but it has not been clear what level is
necessary to obtain this result. Extensive CI calculations
have been reported by Yoshimine and Sasaki2 (Y&S) of the
correlation energies of the first-row atoms and their an-
ions. Despite the use of large basis sets and the inclu-
sion of up to quadruple excitations relative to the HF wave-
function the calculated EA's are still in error by as much
as 0.3-0.4eV. Since the error in the HF electron affinity,
the neglected differential correlation energy, varies con-
siderably from atom to atom, HF does not provide an appro-
priate zero-order description of negative ions. Yoshimine
and Sasaki's results indicate that CI's based upon the HF
configuration are poorly convergent, requiring many confi-
gurations for very little improvement in the overall EA.

Their approach would be impractical for molecular anions in
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TABLE I. Electron affinities and ionization energies of the first-row atoms. All

quantities are in ev.

Electron Affinity 4onization Energy
aExpoer.ntal bNumerical Hartree-Fock cExperimental
Hydrogen 0.754 -0.33 13.60
Helium <0 - 24.58
Lithium 0.620(7) -0.122 5.39
Beryllium <0 - 9.32
Boron O.278(£.010)d -0.268 8.30
Carbon 1.268(5) 0.549 11.26
Nitrogen -0.07(8) -2.150 14.54
Oxygen 1.462(3) -0.541 13.61
Fluorine 3.399(3) 1.363 17.42

3These are the 'recommended’ values taken from reference 1.
bFrom reference 17.
®Rr. B. Leighton, "Principles of Modern Physics", (McGraw Hill, 1959), pp. 727-729.

dProu reference 10.
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which much less extensive treatments are unavoidable, yet
electron correlation must be included before accurate re-
sults can be obtained from the calculations.

Clearly, a more general ab initio procedure needs
to be developed which results in a more consistent descrip-
tion of negative ions, though not necessarily giving the
exact electron affinity. We have approached this problem
by redefining the zero-order wavefunction using a multi-
configuration self-consistent field (MCSCF) function, which
provides a more balanced description of both the neutral
and the anion and can be used conveniently in singles and
doubles CI calculations (MCSCF+1+2). This approach yields
consistent errors at the MCSCF level, provides a convenient
method for introducing triple and quadruple excitations
(relative to the HF function) into the CI wavefunction, and
EA's comparable to Y&S using a much smaller basis set and

CI expansion.

A. Experimental Background
There are many excellent reviews of the empirical,
semi-empirical and theoretical procedures which have been

1,3-7 work rele-

used to determine the electron affinities.

vant to ours is presented below, the reader being referred

to the above reviews for more thorough discussions.
Experimental determination of electron affinities

is a difficult task so that until recently the EA's of many

elements could only be determined by extrapolation
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procedures based upon trends in isoelectronic series

(horizontal analysisa). For those systems which could be
studied experimentally, there are two standard techniques
which have been employed for the direct determination of

electron affinities.l'3

The first is photodetachment
threshold spectroscopy where the long wavelength threshold
for detachment of the electron is measured, giving the EA
of the anion. The second is negative ion photoelectron
spectroscopy where a fixed frequency of light, larger than
the EA of the neutral, is used to detach the electron, whose
kinetic energy is then measured. The EA is determined with
respect to a known reference based upon the conservation of
energy. While each technique has its own inherent limita-
tions (which are very thoroughly discussed in reference 3)
they share two technological problems, the availability of
a suitable photon source and a suitable ion source. Ad-
vances in laser technology have helped to reduce some of
the limitations of the photon source, but lack of ion
sources has slowed progress in the measurement of EA's.
Recently, sputter-type ion sources have been used to gene-
rate beams of atomic anions for many transition metal

10 whose EA's were then

atoms, 2 and some main group elements,
determined using photoelectron spectroscopy. While the
range of elements able to be studied experimentally has
broadened, molecular EA's are still largely undetermined.4

Yet accurate EA's can be critical for determining the

properties of many neutral species; for example, the
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controversy over the singlet-triplet separation of methylene,
as measured from the photoelectron spectra, hinges on a know-
11-14

ledge of the electron affinity of the 3B1 state.

B. Theoretical Background

Theoretical determination of electron affinities
is also a difficult task because a balance must be struck
between the description of a neutral species and its nega-
tive ion, a system having one more electron. The electron
affinity is found by subtracting the calculated ground state
energy of the anion from the neutral, a positive value in-
dicating that the anion is stable. Because of the extra
correlation energy associated with the (Z2+1l)st electron in
the negative ion, calculations will favor the neutral, re-
sulting in EA's which are in general too low relative to
experiment15 or even negative as is found from most HF cal-
culations.

If the total nonrelativistic energy is expressed
as the sum of the HF energy plus the correlation energy,16
the EA is simply the difference between these quantities:

EA = AEHF + AEcorr (1)
For atoms the HF differences can be calculated very accu-
rately using the near HF-limit energies17 obtained from

18

numerical procedures and therefore, the problem of
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calculating electron affinities has been seen as one of
obtaining the differential correlation energy between the
atom and anion.

One approach to the calculation of electron af-
finities has been the pair-correlation schemes of

19,20 21,22

Nesbet or Weiss. In these, the total energy is

written as:

E=EHF+§: €i+Zeij (2)

EHF being the total HF energy, € the single-particle cor-
relations, and Eij’ the correlation energy of the ij-pair.
It is assumed that the e's can be calculated independently
by separate CI calculations for each ij-pair and summed to
obtain the total correlation energy. These methods were
compared by Y&S2 to the more complete CI+1+2 calculations
(Table II), where they were able to show that although the
EA's ohtained are often in excellent agreement with ex-
periment, this is due to cancellations between truncation
of the basis set and neglect of higher-order terms, and at
the limit of a complete basis set, the pair methods over-
estimate electron affinities, being 0.2eV too high for both
oxygen and fluorine.

Schaefer, et al?3(1969) approximated the EA's
of the first-row atoms based upon a first-order CI wave-

function (FOCI) which incluées the internal (near-

degeneracy), and the semi-internal (near-degeneracy and
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TABLE II. A comparison of calculated electron affinites of hydrogen, lithium and boron

through fluorine. All quantities are in eV,

H Li B [ N (0]
HP : ®Numerical -0.33 -0.12 -0.27 0.55 =-2.15 -0.54
GvB : Pooddara 0.38  0.28
FOCI : Sschaefer -0.61 0.11 =2.45 ~-1.12
CI (pairs): dMoser
1 and 2 particle terms 0.39 1.46 0.19 2.06
+ 3 particle terms 0.22 1.29 -0.12 1.43 3.37
®Weiss 1.47  3.47
fYoshimine and Sasaki 1.71 3.62
CI : gYoshimine and Sasaki
HF+1+2 0.15 1.11 -0.57 1.04 3.00
HP+1+2+3+4 0.17 1.13 -0.46 1.17 3.15
hExperiment 0.75 0.62 0.28 1.27 -0.07 1.46 3.40
%prom Reference 17.
brtom reference 24.
c?ron reference 23.
4

Prom references 19 and 20.

®rrom references 21 and 22.

l!ron reference 2.

9Bnorgio- obtained from the frozen K-shell values, reference 2.
Bipecommended® values taken from reference 1.
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polarization) effects. The effects represented by the FOCI
wavefunction were found to favor the neutral atom, and
rather than improving the calculated electron affinity, re-
sulted in poorer agreement with experiment.

As mentioned previously, Yoshimine and Sasaki2
(1974)_ have published the most extensive CI calculations to
date on the first-row atoms and their negative ions. Their
intention was to eliminate any basis set error and obtain the
exact correlation energy of each by using a very large
Slater basis which, upon reduction by an approximate natur-
al orbital analysis, consisted of an (8s,7p,6d4,5f,4q9,3h,2i)
orbital set. Singles and doubles CI calculations were car-
ried out based on the HF reference configuration (HF+1+2),
and then the importance of higher-order terms was examined
by including selected triple and quadruple excitations
(HF+1+2+3+4) . Their results are also summarized in Table II
where only the L-shell correlation energies have been used
since it was shown by their calculations that K-shell and
KL-intershell correlations contribute less than lO-ZeV to
the EA, and, these are the energies most comparable to our
18 (HF) frozen core CI calculations. Note that the singles
and doubles CI wavefunction does correctly predict B~ and 0~

to be bound whereas the FOCI23

does not. Although they
were able to calculate approximately 95% of the estimated
correlation energy of the atom and anion, only approximate-
ly 85% of the EA's were obtained. The HF+1l+2 EA's are in

error by 0.1-0.4eV. Triple and quadruple excitations
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improve the energies by only ~0.02eV for boron and carbon,
and ~0.15eV for nitrogen, oxygen and fluorine which reduces
the error in the calculated EA's to 0.1-0.3eV.

While all of the previously mentioned calculations
have examined the overall correlation energies in the atom
and anion, none have addressed some key questions which can
lend insight into the description of hegative ions:

--What are the minimum correlation effects requir-

ed to account for the stability of the anion?

--How is the electronic structure of the ion dif-

ferent from that of its isoelectronic neutral?

--What other types of correlation effects are

differential between atom and anion and what is
the minimum level required to describe each
(particularly with respect to the higher an-
gular momentum functions used in all of the
previous calculations)?

The first and second of these questions were ad-
dressed by Goddard®? (1968) in his paper on the stability
of the negative ions of hydrogen and lithim and will be
discussed in detail below. We have attempted to address
the last question through MCSCF and CI calculations which
isolate various differential contributions to the EA's

of carbon, oxygen and fluorine.
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II. ORBITAL MODELS FOR NEGATIVE IONS

A negative ion is characterized by a very diffuse
charge distribution relative to the neutral atom. If the
energy to remove the 'last' electron in an atom, which is on
the order of 10eV, is compared to that of the anion, which
is on the order of leV, it is clear that the (Z+1l)st elec-
tron is much more loosely bound than the other Z electrons
(Table I). The failure of the HF wavefunction to predict
the stability of negative ions can be related to its inabil-
ity to allow for this diffuse nature of the orbital for the

(Z+1)st electron. Using Goddard's example,24

this point is
illustrated by contrasting three different zero-order repre-
sentations of the 15(132) state of H : the restricted
Hartree-Fock (RHF) wavefunction; the unrestricted HF (UHF)
wavefunction; and the generalized valence bond (GVB) wave-
function:25 in terms of the physical model represented by

each, and their ability to predict the stability of the

anion. The RHF wavefunction is of the form:

= llsﬂg ofB

WYRHF (3)

Physically, this wavefunction represents two electrons sirg-

let-coupled in the same spatial lsH orbital. The UHF wave-

F
function is given by:

=dlsals oB (4)

¢UHF B
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This wavefunction relaxes the restriction that the
electrons be in the same spatial orbital, but at the ex-
pense of the spin symmetry,tpUHF, being a mixture of the
singlet and triplet couplings of the electrons.

An alternate way to relax the spatial restric-
tions on the 1ls electrons is to use the GVB wavefunction
for H- which allows the two electrons to be in nonequiva-
lent 1ls orbitals while maintaining the proper spin sym-

metry:

Yoyp =¥ (1sls' + 1s'1s)aB (5)

The overlap between 1ls and 1ls' is nonzero. Egquation 5
can be expressed as an equivalent two configuration MCSCF
wavefunction in terms of an orthogonal basis26 which,

computationally, is more convenient to use:

2 2
Yye = (c118yc" - cy28y ") aB (6)
<ls|2s> =0
2 2
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The relationship between the nonorthogonal GVB orbitals and

the orthogonal MCSCF orbitals is given by:

1s = (2)7F [(1+5)L’ sy + (1-5) % ZsMC]

(7a)

1s' = (2)°% [(1+s>"i ENIE (1-5) 2sMC] (7b)
c,-C
~ v _[C17¢2
S = <1s|ls'> = EI;E;

All of these wavefunctions maintain the single-particle in-
terpretation of an electron moving in an average potential
due to the other electron and the nucleus.

The energies and EA's calculated with each of
these wavefunctions (Equations 3,4,6) are summarized in
Table III. The (5s/3s) hydrogen basis of Huzinaga27 was
used for these calculations but, in order to obtain a
negative orbital energy for H , it was neceSsary to augment
this set with two diffuse functions (determined by an even-
tempered expansion), to give a (7s/5s) basis set.

The RHF wavefunction, which places two electrons

in equivalent lsH orbitals, results in the energy of the

F
anion being 0.33eV above the energy of the hydrogen atom,
predicting the anion to be unstable relative to the atom.
The UHF wavefunction, not being restricted to keeping the

electrons in the same spatial orbital, places the extra

electron at infinity, also predicting an unbound negative
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TABLE III. A comparison of the RHF, UHF and GVB energies for H, H , and He. Units are
indicated.

as

3 (‘s) 3~ (s) AHF EA Phe ('s) LHF
hartree hartree eV eV hartree eV
RHF -.4998 -0.4877 0.0 -0.33 -2.8612 0.0
UHF -0.4998° - 0.0 -
GVB -0.5250 1.01 0.27 -2.8774 0.44
Experimental 0.75

3calculated using an augmented (58/38) » (7s8/58) basis. See text.

bCalculated using the (6s/4s) basis set from reference 29.

Cset to atomic value. See reference 24.
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ion. The GVB wavefunction, on the other hand, correctly
predicts the electron to be bound with an EA of 0.37eV.
Thus, by simply allowing the electrons to be in radially
nonequivalent 1ls orbitals while maintaining the singlet
spin symmetry, a proper zero-order physical description
of H is obtained. Goddard showed this to be true for the
15 (282) state of Li~ as well.?4

Radial plots of the 1s and the 1s and 1ls' GVB

HF’
orbitals help to illustrate the difference between the RHF
and GVB models. The RHF orbitals for H and H are pre-
sented in Figure la. Since the 1ls electrons partially
shield one another from the nuclear charge, forcing both
electrons to be in the same orbital results in a decrease
in the attraction felt by each, and the anion orbital
(dashed line) expands relative to the atom (solid). Al-
ternatively, the 2nd electron could be placed in a more
diffuse orbital which does not shield the other electron as
effectively (GVB), and thus does not decrease the net at-

28 These 1ls and 1s' orbitals

traction as significantly.
(dashed lines) are presented in Figure 1lb along with the
atomic 1ls orbital (solid). The diffuse nature of the 1s'
orbital is very apparent, the overlap with the tight 1s,
being only 0.57. Note that the tight 1s orbital has es-
sentially the same radial form as the atomic orbital.

For comparison Figure lc shows the lsH and the

Fl
1s and 1s' GVB orbitals for the lS(lsz) state of helium

using the same two configuration wavefunction as for H~
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A comparison of the RHF and GVB radial am-
plitudes for the 1s orbitals of H, H and He.
Distance is in bohr; plots are all on the same
scale.

H (solid) and H (dashed) RHF orbitals.

<R> = 1.50 and 2.5la  for H and H , respective-
ly.

H RHF (solid) and H GVB (dashed) orbitals.

<R> = 1.50, 1.44 and 5.07ao for 1s

1s GVB, respectively.

1

RHF' ~SGVB

He RHF (solid) and GVB (dashed) orbitals.

<R> = 0.93, 0.69 and 1.22a_ for ls ... 1Sgyp

1s GVB’ respectively.
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(Equation 6). Note now, the higher overlap between 1ls and

1s', S=0.88, and the small deviation from the HF orbital.
Further note that the (192->252) radial correlation energy
is much smaller for He, 0.44eV, than for H , 1.0leV

(Table III).

The helium orbitals, with their high overlap, are
typical of radial correlation within a si;glet-coupled
electron pair, indicating that the electrons are bound
nearly equivalently. The H orbitals, on the other hand,
vary much more from one another and the HF orbital, indicat-
ing that the electrons are not bound equivalently. Rather,
one electron is bound as in the atom while the second is
only loosely bound, occupying a much more diffuse orbital.

This suggests a general physical model for negative
ions where an anion can be thought of as having 2 electrons
bound as in the neutral atom with the (Z+1)st electron oc-
cupying a more diffuse orbital. A negative ion differs from
its isoelectronic neutral because in the neutral all (Z2+1)
electrons are bound nearly equivalently. Thus F is physi-
cally very different than Ne, C very different than N.

We have applied this model of a loosely-bound
electron in the negative ion to developing a balanced zero-
order MCSCF wavefunction for the atom and anion of carbon,
oxygen, and fluorine. When viewed in terms of this model,
many of the apparent inconsistencies in the HF representa-
tion are clarified, revealing a very consistent, physical-

ly reasonable description of the negative ion.
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III. CALCULATIONAL DETAILS

The basis set used in the MCSCF calculations was
the (11s,6p) Gaussian basis of Duijneveldt29 augmented with
an additional p function determined by an even-tempered ex-
pansion of the last two functions. This was contracted to
[4s,4p] using the general contraction scheme of Raffenettgo,
based upon the HF orbitals of the ground state of the atom.
This contraction resulted in HF EA's which are about 0.0leV
less than the numerical results.17

The configurations used in the MCSCF calculations
were chosen to describe the differential p2 pair energies
between the atom and anion due to the diffuse nature of the
(Z+1)st electron in the anion. This requires configura-
tions similar to those used in H and Li-; double excita-
tions from 2p2 into 3p2. This type of radial correlation
describes not only the tight/diffuse nature of the (Z+1)
electrons in an anion, as demonstrated previously for H ,
but also simple in/out type correlation arising from pair
repulsions, as seen in He. It must, therefore, be included
in the zero-order wavefunction of both the atom and the
anion, although as will be seen, the effect is much more

dramatic in the anion. Thus the wavefunctions used in the

following MCSCF calculations are:

Atom: 4 E:12322pn -c 2522pn—23p2] (8a)

2

2 1 2 n-l3p/.]

- ¢,2872p

Anion: & |c,2s 2pn+ 2

1 (8b)
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In addition, for the 3P(2522p2) state of carbon, the

31 arising because of the

(2sz->2pz) near-degeneracy effect,
unoccupied 2p orbital, was included in the zero-order wave-

function by adding the configuration:

c52p*asaa (8c)
For the CI calculations the [4s,4p] basis was augmented with
3 sets of d-funétions. The first two functions were taken
from a two-term Gaussian expansion of a Slater 34 function?z
These exponents were then scaled together to minimize the
energy for the neutral in terms of an MCSCF+1+2 wavefunc-
tion. Then a more diffuse exponent was added and optimized
for oxygen and fluorine to describe the anion. This was
done by allowing all single and double excitations out of
one of the doubly occupied 2p orbitals, based upon the .
MCSCF orbital set of the anion. Sinc; for carbon there is
not an equivalent procedure to follow, the third exponent
was chosen in the same ratio as optimized for fluorine.
These exponents are given in Table IV.

An f-function was also added to the fluorine basis
and optimized for both the atom and the anion in HF+1+2
and MCSCF+1+42 calculations. The exponent was found not to
be a strong function of the state or orbital set and, there-
fore, the optimum values for 2P and 1S were averaged
(Cf = 1.9167).

For the most part the CI wavefunctions consisted

of all single and double excitations from either the HF
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TABLE IV. Optimized 3d and 4f Exponents for carbon, oxygen and fluorine

Carbon Oxygen Fluorine
€34 1.0886 2.2887 3.0238
0.3223 0.6777 0.8954
0.0954 0.2651 0.2651
1.9167
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reference configuration (HF+1+2) or from the MCSCF reference
configurations (MCSCF+1+2). These calculations were parti-
tioned to include first the (sp) space, then the effect of
adding the d and f-functions was examined. For all three
systems full-CI's within just the (p) space were performed
to test the adequacy of the (2p2->3p2) MCSCF description,
and for carbon and oxygen selected full-CI calculations are
also reported. The 1ls (HF) orbital was kept frozen in all

of the calculations, and symmetric orbital sets were used.

IV. CALCULATION OF THE EA'S OF CARBON, OXYGEN AND FLUORINE
A. Carbon
The results for carbon are summarized in Table V.

Carbon is somewhat anomalous because of the near-degeneracy

31

effect found in the 3P(Zs%p% state of the atom but not

in the negative ion. Since this effect is ignored at the

HF level, the energy of the 3P state is artificially high,

resulting in a larger EA than would be the case if HF

treated both the atom and anion equivalently. If the

2 3

->2p2) near-degeneracy effect is included in the “p
33

(2s
wavefunction, the GVB description of carbon, this state
is lowered by 0.47eV giving an EA of only 0.06eV.

Allowing the 2p orbitals to radially correlate by
including 2p2 to 392 excitations, lowers the 3p state by
0.12eV. This correlation lowers the 1S state by 0.49eV,

larger than expected based on the effect in the 3p state.

Full CI's within the (p) space improve the MCSCF energy of
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TABLE V. Hartree-Fock, MCSCF and aCI calculaticns on the JP state of the carbon atom and

the ‘s state of the carbon anion. Basis set: [4s3,4p,3d], units are as indicated.

3p (25222 AHF 4s25%2p3) AHF EA
artree ev hartree eV aVv
Hartree-Fock -37.6880 0.0 -37.7076 0.0 0.53
mcsce (232+2p2) -37.7054 0.47 0.06
(2p%-3p%) -37.6924 0.12 -37.7256 0.49
5c1 (p) Full -37.6924 0.12 -37.7269 0.52
McSCP (282-2p%) +(2p%+3p?) -37.7095 0.58 0.44
€ct (sp)
HP+1+2 -37.7293 112 -37.7588 1.39 0.80
MCSCP+1+2 -37.7296 1.13 -37.7607 1.45 0.84
rull -37.7297 1.13 -37.7611 1.46 0.85
de1 (spa)
HF+1+2 -37.7740 2.34 -37.8114 2.83 1.02
MCSCF+1+2 -37.7747 2.36 -37.8144 2.91 1.08
Full -37.7755 2.38
2:8c1 Yoshimine & Sasaki .
HF+1+2 1.11
HF+1+42+3+4 1.13
fExperiment 1.27

%The 1s orbital remained doubly-occupied in all calculations.

Ppull €I within the (p) space.

Cexcitations allowed only in the (sp) space.
decitatlonn allowed in the (spd) space.

®prom reference 2.

f'Recommonded' value from reference 1.
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the 4S state only slightly, having no effect on the 3P state,

demonstrating the adequacy of the (2p2->3p2) MCSCF descrip-
tion for carbon. The result of incorporating both effects,
near-degeneracy and radial 2p2 correlation in the 3P wave-
function is a lowering of 0.58eV, just the sum of the in-
dividual effects, and results in an MCSCF EA of 0.44eV for
carbon.

The orbitals obtained from the HF and MCSCF cal-
culations were used in CI+1+2 and full CI calculations
within the (sp) space. The total lowerings (relative to HF)
obtained from the full-CI calculations are 1.13eV for the
3P state and 1.46eV for the 4S state, predicting an EA of
0.85ev.. The MCSCF+1+2 calculations lower both states by
essentially the full-CI result, l1l.13eV for C and 1l.45eV for
C . HF+1+2 calculations within (sp) give a similar 3P'
loweringy but are 0.07eV higher for the 4S state, predicting
the EA to be 0.80eV. Thus, about 57% of the EA of carbon
is obtained by full correlation within the (sp) space. En-
largement of the (sp) basis would improve this to perhaps
65-70%, leaving about 0.4eV which can be ascribed to higher
angular momentum terms.

CI calculations within the (spd) space are also
reported in Table V. A full-CI was only possible for the
3P state, lowering it by 2.38eV relative to HF. The
MCSCF+1+42 and HF+l1+2 lowerings for this state are similar,
being only 0.02 and 0.04eV higher than the full-CI result.

The energy of the anion is affected more than the neutral



41
by the higher-order excitations in the MCSCF+1+2 calcula-
tion, picking up 0.08eV over the HF+1+2 energy and giving an
EA of 1.08eV. The HF+1+2 EA is 1.02 eV. While about 0.2eV
of the EA is still unaccounted for at this level, a com-
parison to the CI calculations of Y&S2 show that our
HF+1+2 EA is only 0.09eV less than theirs, thus providing an
estimate of the basis set limitations within our calcula-
tion. Since the MCSCF+l1+2 wavefunction contains quadruple
excitations relative to the HF configuration, the EA can be
compared to the HF+1+2+3+4 result, being only 0.05eV less
than this value. If the basis set error is on the order of
at least 0.leV, a more complete basis would yield an
MCSCF+1+2 EA larger than obtained by Y&S and about 0.1leV

smaller than experiment.

B. Oxygen

Calculations on the oxygen 3P(2322p4) neutral

2

atom and the P(2322p5) negative ion are summarized in

Table VI. HF finds the anion to be unbound (as was also

23). The (2p2—>3p2)

3

the case for the FOCI description
radial correlation effect lowers the “P state by 0.91leV,
and the anion by 1.92eV. Now the energy of the anion lies
below the atom giving the correct physical description at
zero-order with an EA of 0.46eV.

Full-CI's within the (p) space are more important

in oxygen than in carbon resulting in an additional lower-

ing of 0.17eV for the atom and 0.47eV for the anion over the
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TABLE VI. Hartree-Fock, MCSCF and 81 calculations on the 3? state of the oxygen atom and

the 2? state of the oxygen anion. Basis set: [4s,4p,3d], units are as indicated.

3 2, 4 2 5

p(2s%2p4) sHP p(2s%2p°) sBF EA
artree “ev artree eV ev

Hartree-Fock -74.8077 0.0 -74.7875 0.0 -0.58
MCsCr (292’3p2) -74.8411 0.91 -74.8580 1.92 0.46
b
CI (p) Pull -74.8474 1.08 -74.8754 2.39 0.76
Scr (sp)
Hr+1+2 -74.8774 1.90 -74.9057 3.22 0.77
MCSCP+1+2 -71.8792 1.94 -74.9132 3.42 0.92
Full -74.8794 1.95 -
dcz (spd)
HP+1+42 -74.9544 3.99 -74.9871 5.43 0.89
MCSCP+1+2 -74.957S 4.07 -74.9976 5.72 1.09
8/8c1 yoshimine & Sasaki
Hr+l+2 1.04
HP+1+424344 1.17
fzxpcriment 1.46

2The 1s orbital remained doubly-occupied in all calculations.
b?ull CI within the (p) space.

Cpxcitations allowed only in the (sp) space.

d!xcitltionl allowed in the (spd) space.

®rrom reference 2.

f'Rcco«lu.ndod' value from reference 1.
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MCSCF (2p2->3p2) energies. This is because more than one
effect must be described by the 2p and 3p MCSCF orbitals
once the 2p orbitals become doubly occupied. For the
neutral, correlation of the intra-p2 pair as well as the
inter-p2 pairs must be represented by the two orbitals.
For the anion, in addition to these, the effect of one
diffuse electron correlating with four tighter electrons
is also present. Allof these effects are averaged in the
MCSCF procedure but are more fully represented by addi-
tional p-functions, as demonstrated by the full-CI (p)
energies.34
Full-CI calculations within the (sp) space could
only be done for the neutral because of the size of the
configuration list, lowering the 3P state by 1.95eV rel-
ative to HF. As was found for carbon, the MCSCF+1+2 and
HF+1+2 correlation energies for this state are only
slightly higher, 1.94 and 1.90eV respectively. The energy
of the anion is lowered by 3.42eV for MCSCF+1+2, while
it is 0.2eV smaller for HF+1+2. Thus, the effect of the
triple and quadruple excitations upon the energy of the
anion is becoming pronounced. The HF+1+2 EA is 0.77eV.
The MCSCF+1+2 EA is 0.92eV, 63% of the experimental value.
For the CI calculations within the entire (spd)
virtual space, the higher-order excitations begin to
show an effect on the energy of the neutral, HF+1+2 being

0.12eV above the MCSCF+1+2 energy. For the anion this
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effect is even larger, 0.29eV. The HF+1+2 EA is 0.89%eV,
0.15eV less than that of Y&S, again an indication of basis
set limitations. The MCSCF+1+2 EA is 1.09eV, only 0.08eV
less than that of Y&S, but still in error by 0.37eV with
experiment. Correcting for limitations in the basis set,
we estimate the MCSCF+1+2 limit for the EA of oxygen to be

more than 1l.24eV.

C. Fluorine

Calculations on the 2P (Zszps) atom and lS (2322p6)
anion of fluorine are summarized in Table VII. HF, while
properly predicting the stability of F , accounts for less
than half of the experimental EA of 3.40eV. Radial

lS anion

(2p2->3p2) correlation differentially lowers the
by 1.16eV, resulting in an MCSCF EA of 2.51leV. Full-CI
calculations within the (p) space show the same trend as
for okygen reducing the energy of the anion more than that
of the neutral, giving an EA of 2.78eV. CI's within the
(sp) and (spd) spaces also show the trend that the higher-
order terms included in the MCSCF+l1+2 wavefunction are
more important for the anion than the neutral; a differen-
tial effect of 0.18eV for (sp) and 0.25eV for (spd).
Within the (sp) space the MCSCF+1+2 calculations account
for 87% of the EA of fluorine. Within the (spd) space,
the MCSCF+1+2 EA is 3.16eV, HF+1+2 being 2.91eV. Thus,

in the [4s,4p,3d] frozen core basis the HF+1l+2 EA is only

0.09eV less than that of Y&S, while the MCSCF+1+2 EA is
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TABLE VII. Hartree-Pcck, MCSCF and 3CI calculations on the 2p state of the fluorine atom
and the 1s state of the fluorine anion. Basis set: [4s,4p,3d,1f], units are as indicated.
2p (25%2p°) LHF 1s 28%255) LHF EA
hartree eV hartree ev ev
Hartree-Fock -99.4067 0.0 -99.4563 0.0 1.35
b
MCSCF (2p‘~2;2) -99.4646 1.58 -99.5570 2.74 2.51
bCI (p) Full -99.4724 1.79 -99.5746 3.22 2.78
Ccr (sp)
HF+1+2 -99.5043 2.66 -99.6068 4.09 2.79
MCSCF+1+2 -99.5070 2.73 -99.6163 4.35 2.97
4c1 (spd)
HF+1+2 -99.5948 5.12 -99.7016 6.68 2.91
MCSCF+1+2 -99.5992 5.24 -99.7153 7.05 3.16
CI (spdf)
HF+1+2 ~99.6159 5.69 -99.7229 7.25 2.91
MCSCF+1+2 -99.6202 5.81 -99.7369 7.64 3.18
Cl Yoshimine & Sasaki
HP+1+2 3.00
HF+1+2+3+4 3.15
£ 3.40

Experimert

8The 1s orbital remained doubly-occupied in all calculations.

brull CI within the (p) space.
SExcitations allowed only in the (sp) space.
dtxcitationl allowed in the (spd) space.

®From reference 2.

t'Rccommended' value from reference 1.
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actually 0.0leV better. Addition of an f-function shows no
differential effect for the HF+1+2 EA, while the MCSCF+1+2
EA is only improved by 0.02eV. If the basis set error is
about 0.leV, the EA obtained with the MCSCF+1+2 wavefunc-
tion should be about 0.leV less than the experimental

value.

V. DISCUSSION

The importance of the differential p2 correla-
tion energy in determining the electron affinity of an
atom is best illustrated by comparing isoelectronic sys-
tems. These energies relative to HF, are given in Table
VIII for the systems: C , N (4s); 0, F (2P); and F ,
Ne(IS), at various levels of calculation (oxygen 3P is
also included for completeness). Comparing the anion and
isoelectronic neutral, it is clear that correlation of
the p-electrons is larger in the anion than the neutral,
even though the p-orbitals contract as Z increases and so
an opposite trend might be expected. For carbon the 3P
state shows a pz repulsion energy of 0.12eV/pair. If the
effect in the anion were the same, the lowering in the 4S
state would be 0.36eV (0.12 x 3 pairs), while it is, in
fact, 0.13eV larger. This can be associated with the
extra correlation energy due to the diffuse electron. Note
though, that the effect for nitrogen atom is 0.34eV,
as predicted from the pair energy for carboA. The im-

portance of this differential radial correlation increases
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TABLE VIII. MCSCF and 3cI correiation energles relative to Hartree-Fock for the 1soelectronic
[ 4
series: 4S(ZsZZpJ) of C and N; 2P(2322p5) of O° and F; and 15(232p6) of F_ and Ne. All

units are in evV.

MCSCF Pt (p) c1(sp)
2522302 Full HF+1+2 MCSCF+1+2 Full
1s28%2p™)
c” 0.49 0.52 1.39 1.45 1.46
d.ey 0.34 0.35 1.12 1.14 1.14
8 0.15 0.17 0.27 0.31 0.32
3p(28%2p)
o 0.91 1.08 1.90 1.94 1.95
25 (25%2p%)
o~ 1.92 2.39 3.22 3.42
F 1.58 1.79 2.66 2.73
s 0.34 0.60 0.56 0.69
s (25%2p%)
F 2.74 3.22 4.09 4.35
4 fye 2.33 2.55 3.50 3.61
5 0.41 0.67 0.59 0.74

3The 1s orbital remained doubly occupied in all CI calculations.
Prull cI within the p-space.

CExcitations allowed only in the (sp) space.

Calculated using the (11s,7p/4s,4p) basis from reference 29.

e

EHF--SC.looo hartree.

Q.

tEHF--128.5431 hartree.
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with the number of p electrons, where for F the effect
accounts for 0.4leV more correlation energy than found in
neon.

Table IX summarizes the errors in the calculated
EA's at various levels for HF-based and MCSCF-based wave-
functions. Since in every case the difference between atom
and anion is the addition of one more electron, it is rea-
sonable that the differential correlation energy be similar
from atom to atom. This is consistent with the concept
that the addition of an electron to a system should cost
about leV in correlation energy. Thus, the error in the
uncorrelated EA should be about leV. But for HF, as pre-
viously mentioned, these errors range from little more than
0.5eV to over 2eV as the p-orbitals become doubly occupied.
The FOCI wavefunction, by removing the degeneracy and po-
larization effects but not the differential p2 correlation
increases this error to 2.01:0.85eV. The MCSCF description
which includes the differential (2p2->3p2) radial correla-
tion (and the near-degeneracy effect in the 3p state of
carbon), results in EA's which do reflect this trend,
being in error by 0.91+0.09eV, even though the p-orbitals
are doubly occupied in oxygen and fluorine. Thus, the
nonrelativistic electron affinity (Equation 1) may be more

consistently represented by:

EA = AEO + AEcorr (9)



49

TABLE IX. Errors in the calculated electron affinities of carbon,

EA(expt)-EA(i). All units are in ev.

fluorine,

Carbon Oxygen Fluorine Mean Error
Hartree-Fock 0.74 2.01 2.05 1.40 ¢ 0.66
85chaefer FOCI 1.16 2.58 2.87 2.01 t 0.85
HF+1+2 (sp) 0.47 0.69 0.61 0.58 £ 0.11
(spd) 0.25 0.57 0.49 0.41 ¢t 0.16

b (spdf) 0.49
Y&S HP+1+2 0.16 0.42 0.40 0.29 0.13
cHCSCF 0.83 1.00 0.89 0.91 0.09
MCSCFP+1+2 (sp) 0.43 0.54 0.43 0.49 0.05
(spd) 0.19 0.37 0.24 0.28 0.09

b (spdf) 0.22
Y&S HF+1+2+3+4 0.14 0.29 0.25 0.21 0.08

2From reference 23.

b

€calculated using equations 8a, b and c.

Frozen K-shell values taken €from reference 2.
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where AEO is the difference between the MCSCF energies of
the neutral and anion, and AEcorr is on the order of leV.
Comparing the CI calculations based upon the HF
wavefunction to those based upon the (2p2->3p2) MCSCF wave-
function also points up the consistency of the MCSCF ap-
proach. While the CI+1+2 error within the (sp) space is
0.58%0.1leV for the HF-based calculations, this is re-
duced to 0.49+0.05eV for those based upon the MCSCF wave-
function. CI's within the (spd) space result in HF+1+2
errors of 0.4110.16eV, which is reduced to 0.28:0.09%eV if

35 These results

the MCSCF reference wavefunction is used.
can be compared to the results of Y&S, 0.29%0.13eV for the
HF+1+2 errors. Including higher-order excitations,
HF+1+2+3+4, which are most comparable to our MCSCF+1+2
calculations, Y&S have an error of 0.21t0.09eV, only
0.07eV less than ours despite the far larger basis sets
and configuration lists. Note that the importance of the

higher-order terms for the description of the anion in-

creases with the number of p-electrons.

VI. CONCLUSIONS

The zero-order MCSCF wavefunction which includes
the differential radial correlation due to the diffuse
nature of the (Z+1)st electron in the negative ion, prop-
erly predicts the stability of H , Li , and 0 . This wave-
function gives a consistent error of approximately leV in

the calculated EA. At higher levels, CI+1+2 calculations
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based upon these orbitals and configurations provide a con-
sistent method for introducing triple and quadruple excita-
tions (away from the HF configuration) into the wavefunc-
tion. With only a [4s,4p,3d] basis we have calculated the
HF+1+2 EA's of carbon, oxygen and fluorine to within
0.12eV of the large basis set calculations of Y&S.2 If

the configuration list is based on the MCSCF generating
configurations and orbital set, this difference is reduced
to 0.07ev, where for fluorine the resulting EA is slightly
better than obtained in the near basis set limit

HF+1+2+3+4 calculations of Y&S. The MCSCF+1+2 EA's differ

from those determined experimentally by about 0.2eV.
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I. INTRODUCTION
There is much interest currently in obtaining a

consistent theoretical description of the electronic states

arising from the szdn, sdn+l, and dn+2

1-4

configurations of
the transition metal atoms. While Hartree-Fock (HF)
calculations are known to inadequately represent these low-
lying states, it has not been well-understood what level of
description is required. This inability of the HF model

to reproduce the atomic separation has important conse-
quences for the description of the bonding between transi-
tion metal atoms and other atoms and molecules. In part-
icular, for manganese through copper, the atomic dissocia-
tion limits for small molecular species are biased in

2dn state in the HF picture by as much as

favor of the s
1.3eV compared to experiment, raising serious doubts as to
the validity of interpretations based on molecular calcu-
lations which do not go beyond the HF model. We have
examined the differential correlation effects within the

lowest lying states corresponding to the szdn, sdn+l, and

dn+2 configurations of the first row transition metal
atoms using MCSCF and CI approaches (nonrelativistic) with
the intention of:
1. Characterizing the major valence cor-
relation effects in these states, and,
2. Developing a compact yet accurate multi-

configuration description for each of

the states.
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A. Background

The metal atoms typically have a szdnground state

n+2

n+l as the first excited state, and the d state sever-

sd

al eVs higher. Experimentally5 the excitation energies

(AE) follow two trends, decreasing with Z for dl to d5

(half-filled shell), increasing abruptly at d6, then de-

10 n+l _2.n

creasing again to d (filled shell). The sd -s"d"” AE’'s

denoted by A(n+l), are plotted in Figure la. Note that at

Cr(ds) and Cu(dlo) the two states invert, sdn+l

becoming
more stable, i.e., the ground state.

Numerical HF results6 are also presented in
Figure 1lb as the error with respect to experiment (solid
lines). While the general trends are reproduced by HF,
the AE in Sc-Cr is underestimated by ~0.3eV favoring the

sdn+l state, and overestimated in Mn-Cu by ~v1.0eV favoring

the szdn state. These trends are more consistent if view-
ed in terms of the number of singlet-coupled electron
pairs in each state which are not expected to be represent-
ed well in the HF description. 1In Mn-Cu the two states
have the same number of singlet-coupled pairs, i.e., the
same multiplicity, and so the HF level of description
should be comparable for both states. In Sc-Cr on the

2dn state always has the one 452 singlet-

coupled pair whereas the sdn+l state, being high spin

other hand, the s

coupled, has no singlet pairs. Thus, a description for the
first half of the row comparable with that of the second

half would require correlation of the 432 pair. The dashed
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Figure 1.

n+l 2_,.n . . . .
4s3d -4s”3d" excitation energies of scandium to copper,
(E(sa™1)-E(s%a™)]. All units are in ev.

a) Experimental values (reference 5).
b) Error in the numerical HF excitation

energy6 - AE (solid 1line).

' [AHF EXPER]
The dashed line is the HF errcr cor-

rected for the (452,4p2) near

degeneracy effect, AE o + 0.78eV (avg) .

F
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ENERGY (ev)

Figure 1.
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line gives the AE's for Sc-Cr including this correlation
(to be discussed in detail later). Now the calculated

trend is clear; the AE's are consistently overestimated,

2dn state by 0.5eV for Sc-Cr, and ~Vv1.0eV

n+z-szdn AE, A(n+2), the same type

favoring the s
for Mn-Cu. For the d
of HF trends are observed, the error being ~1l.4eV for Sc-V
and ~3.5eV for Cr-Cu.

Clearly, the inclusion of electron correlation
is necessary to properly represent the excitation energies
of the low-lying states of tHe transition metal atoms.

n+l and dn+2

A most puzzling point is that is the sd states

which are less accurately described, even though for

dz-d5 the electrons all occupy different orbitals and all
are high spin coupled. It is this problem which our paper
addresses, first by examining in detail the differential
correlation effects in terms of a valence MCSCF wavefunc-

tion, and then by comparing the AE's obtained with this

approach to valence CI and experimental values.

B. Basis Set

The primitive Gaussian basis set used in the
following calculations, (14s,11lp,6d), is that of Wachters7
augmented with two additional p functions to describe the
4p orbital and one additional, diffuse d function to

n+l and dn+2 states.6

describe the 3d orbital of the sd
This set was contracted to [5s,4p,3d] using the general

contraction scheme of Raffenetti.8 Since the contraction
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was based on the atomic orbitals for the szdn state we ex-
pect a slight bias toward this state._ The HF AE's, A(n+l)
and A(n+2), for this basis are compared to numerical re-
sults in Table I. 1In general, the basis set error is on
the order of ~0.leV for A(n+l) and "0.15eV for A(n+2).

For Sc-Cr CI calculations were carried out in
which a full set of single-component f-functions was added
to the basis and the exponent optimized for each state of
the atom based upon a CI wavefunction which included all
single and double excitations with respect to the MCSCF
configurations. The optimal f-exponents changed signifi-
cantly from one atom té another but not between states of
the same atom; consequently an average f-exponent was used
for each atom: Sc(0.27), Ti(0.45), Vv(0.77), Cr(l.14).

The [5s,4p,3d,1f] basis was examined further
for titanium where an additional function of each sym-
metry type was added and the exponent was optimized in
CI calculations with the 1ls-3p core orbitals frozen. The
additional functions were found to have no significant
effect on the szd2 to sd3 excitation energy.9
LI. VALENCE CORRELATION EFFECTS IN THE EARLY TRANSITION

METAL ATOMS, Sc-Cr

Since energy differences are the quantities re-

lated to experimental observables, the important correla-

tions are those which are differential between the states
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TABLE I. A comparison of numerical and Gaussian basis set of calcula-

tions of the Hartree-Fock sdn+1-82dn, A(n+l), and dn+2-szdn, 4 (n+2), exci-

tation energies of scandium to copper. All quantities are in eV,

A (n+l1) A (n+2)

numerical®  Gaussian s numerical®  Gaussian .
Sc 1.00 1.10 0.10 4.47 4.63 0.16
Ti 0.54 0.63 0.09 4.25 4.41 0.16
v 0.12 0.21 0.09 3.27 3.44 0.17
Cr -1.27 -1.17 0.10 5.75 5.90 0.15
Mn 3.32 3.38 0.06 9.15
Fe 1.80 1.86 0.06 7.46
Co 1.53 1.55 0.02 7.05
Ni 1.28 1.30 0.02 5.47
Cu -0.37 -0.34 0.03

aProm reference 6
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of the atoms. There are three types of pair correlations
which arise in the (4s,3d) valence shell:
1. 32 correlation of the 4szpair
(largely the near degeneracy effect)
2. d2 correlation of the 34 electrons
3. sd correlation between the 4s and
3d electrons

We have used an MCSCF wavefunction to describe the s2 and

d2

correlation effects. The sd correlation effect was not
represented at this level but was, however, included in
subsequent CI calculations (discussed in more detail later).

Correlation of the 432 pair is clearly a dif-
ferential effect, occuring only in the szdn state. The
most important correlating configurations are those which
allow angular correlation of the 4s pair represented by a
double excitation from 4s into the 4p orbitals. This is
the third-row analog of the well-know near degeneracy

effect found in first-row atoms.10

While the magnitude

of this effect decreases with Z in the first row as the 2p
orbitals become occupied, the 4p orbitals for the states of
interest in the metal atoms are unoccupied, so the effect
would be expected to remain relatively constant across the
row. Inclusion of this effect favors, i.e., differential-

2dn state.

ly lowers the energy of the s
The dz pair correlation effect, on the other
hand, occurs in all states of the atoms. We have found

that radial correlation of the 34 electrons is by far the
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most important contribution to the energyll and thus, have
used correlating configurations which are double excita-
tions from 3d° into 4d%, for all 3d pairsi?. This effect
would be expected to be proportional to the number of pairs

of d-electrons, i(i-1)/2 for dl, favoring the states in

the following order:

dn+2 > sdn+l N den'

Since the d-orbitals are known to contract with increasing
Z, the dz correlation effects would also be expected to in-
crease with Z.

Thus, the valence MCSCF wavefunctions used in the
following calculations include angular correlation of the

432 pair and radial correlation of the 3d2 pairs:

s2a™ . c14823dn + c24p23dn + c34523dn-24d2 (1a)
sa™tl | c14s3dn+l + c24s3dn‘14d2 (1b)
antz clsdn+2 + c23dn4d2 (1c)

A. Scandium and Titanium

Scandium and titanium, being the simplest transi-
tion metal atoms, serve as a useful point to begin discus-
sion of the above effects without the added complication
which more d-electrons present. Scandium has a 2D(4323d)
ground state with the 4F(433d2) first excited state 1l.43ev

higher. The present HF calculations predict an excitation
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energy of 1.10eV, 0.10eV above the HF limit and 0.33eV be-
low the experimental value (Table II). The valence MCSCF
wavefunction for the 32d1 state contains no d2 correlation
term since there is only one d-electron. Addition of the
4p2 configuration lowers the energy by 0.75 eV. The MCSCF
wavefunction for the sd2 state has one configuration in ad-
dition to the HF configuration to describe the correlation
between the two d-electrons. The d2 correlation energy for
this state is 0.21leV. The resulting excitation energy,
1.64evV, now favors the szdl state by 0.21leV. Improvement
of the core basis as judged from numerical HF calculations
coula reduce the difference with experiment to about 0.leV.

23d2) ground state with the

Titanium has a 3F(4s
5F(433d3) first excited state 0.8leV above it (Table III).
The HF AE is 0.63eV, again 0.09eV above the HF limit, but
underestimating the experimental value by 0.18eV. The
szd2 state has both s2 and d2 correlation terms. The s2
correlation accounts for a 0.77eV lowering relative to HF,
slightly larger than for scandium. The d2 correlation in

s2d% is only 0.09eV. The combination of both s and 42

correlation is essentially additive, 0.85. 1In the sd3
state of Ti the d2 correlation energy is 0.49eV. The
valence MCSCF gives an AE of 0.99, 0.19eV above experi-
ment.13

While the d2 state of titanium (szdz) shows a
lowering of 0.09eV for one 3d2 pair, the effect in

scandium (sdz) is 0.21lev, 2.5 times larger. Further, the
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TABLE II. Calculated and experimental energies for the szdl, sd2 and d3 states of the scandium

atom. Basis set: (5s, 4p, 3d, 1f]. Units are as indicated.

“D (48°34) “F (483d°) X ‘F(3a”) X
HP -759.7251 0.0 -759.6847 0.0 1.10 -759.5551 0.0 4.63
MCSCF
3a%-4a? -- -759.6924  0.21 -759.5833  0.77
Fa11? -759.7527  0.75 - 1.64 - 4.61
cr
HF+1+2 -759.7625 1.02 -759.7005 0.43  1.69 -759.5929 1.03 4.62
MCSCF+1+2 -759.7636 1.05 -759.7007 0.44 1.71 -759.5987  1.19  4.49
run® -759.7638  1.05 -759.7007  0.44 1.72 -759.5991  1.20  4.48
Exporimcnta;c 1.43 4.18

2MCSCF wavefunctions defined by equations la-c

bFull-CI for 3 valence electrons

SFrom reference 5



TABLE III. Calculated and experimental energies for the s$°d“, sd

atom. Basis set:

(5s, 4p, 34, 1f].

66

Units are as indicated.

2

, and d4 states of the titanium

2 5
jrgufzd ) SFM:Jd ) p(3d%)
Energy LHF Energy LHF Agszdzz Energy AHF A(s’&2>
hartree ev hartree eV eV hartree eV eV
HF -848.3927 0.0 -848.3697 0.0 0.63 -848.2306 0.0 4.41
MCSCF
3d2-4d2 -848.3961 0.09 -848.3877 0.49 -848.2761 1.24
2
4s’-4p? -848.4210 0.77 -- --
Full? -848.4241  0.85 - 0.99 - 4.03
CI
HF+1+2 -848.4377 1.22 -848.4009 0.85 1.00 -848.2909 1.64 4.00
MCSCF+1+2 -848. 4396 1.27 -848.4019 0.88 1.03 -848.2974 1.82 3.87
Fullb -848.4399 1.28 -848.4020 0.88 1.03 -848.2982 1.84 3.86
Exp.rimentalc 0.81 3.55

2MCSCP wavefunctions defined by equations la-c.

b

Full-Cl for 4 valence electrons

SFrom reference S
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d2 correlation energy in the sd3 state of Ti, 0.49ev, is
much larger than the 0.27eV (0.09eV/pair x three pairs)
that would be predicted on the basis of a simple pair de-

pendence of the correlation energy.

B. Differential Trends .
The results of the 32 and d2 correlation effects
for the early transition metal atoms are summarized in

n
4s2*4p2 to denote the

energy lowering, relative to the HF energy, obtained from

the (452,4p2) correlations of the 452

2

Table IV. Here we use the symbol €

3dn states. Similar-

ly, €,,2 2 represents the (3d ,4d2) energy lowering of

n
3d"+44
those states with n d-electrons.

Columns 1-3 show the effect of including 4p2 and

2

4d2 configurations in the 4s 38" wavefunction. As mention-

ed earlier, 5232*4p2 is relatively constant being 0.78 ¢
0.03evV. For the 4523dn states Egd2+4d2 increases approx-

imately quadratically with the number of d-electrons fol-

lowing the simple pair formula:

n -—
€332+4a%2 = €44

n(n-1) (2)
2

where Aedd = 0.087eV, and corresponds to the energy lower-

ing associated with correlation of a parallel spin 3d

electron pair. Note that it is also approximately the

pair energy calculated for the de2 state of titanium. The



68

TABLE IV. Valence MCSCF (452,4p2), (3d2,4d2) correlation energy

differences from Hartree-Fock. All quantities are in eV.

_ as?3a” 4s3a™*! . 3aR*2
Ful1? as’+4p? 3a2%+442 3a%+442 3a+4d°

sc 0.75 0.75 0.0 0.21 0.77
i 0.85 0.77 0.09 0.49 1.24
v 1.03 0.79 0.27 0.84 1.69
cr 1.28 0.80 0.52 1.21 2. 48
Mn 1.55 0.81 0.79 1.85
Fe 2.03 0.82 1.29 2.48
Co 2.53 0.83 1.81 3.16
Ni 3.07 0.84 2.37 3.86
Cu 3.67 0.84 2.99 4.59

3MCSCF wavefunction defined by equation la.
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first column shows the results of incorporating both ef-

fects into an MCSCF wavefunction (Equation la). As can be

2 2

seen, the d° and s energies are essentially additive as

would be expected if the orbitals are indeed concentrated
in different regions of space and the correlation effects
noninterfering.

If the same type of d2 correlation energy were

1

associated with the (n+l) electrons of the sdn+ states of

the atoms, €n+% 2 would simply be equal to e 2 2 of
3d"+44 3d"+4d

Z2+1l. Comparing columns 3 and 4 shows that this is not the

case. Consistent with the results given above for Sc and

1

Ti, the d2 correlation energy for the sdn+ state in all

cases is larger than for the szdn state with the same

number of d-electrons. Apparently a different type of

correlation is involved with the (n+l) electrons of the

n+l

sd state than the simple pair repulsions between the

n electrons in the szdn state.
We have found the d2 correlation energy for the

n+l state to follow a form which is the sum of two termé.

sd
The first term represents the correlations between the n
d-electrons as in the ground state; the second describes
the extra energy of the (n+1)St electron correlating with

each of the other n:

n+l
€ _ n(n-1)
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The difference between the d2 correlation in the two states

should, therefore, be linear in n:

A33d2+4d2 = Aedd' n (4)

where the slope of the line gives this extra energy associat-
ed with the (n+l)St electron. Figure 2 shows a plot of the
d2 correlation energies for the two states. The energy low-
ering in the 32dn state is represented by the diamonds. The
dotted line is a plot of equation (2) with Aedd = 0.087eV.
The observed good agreement between the calculated energy
lowerings and dotted line, rms = 0.005eV, validates the sim-
ple pair model of this correlation effect. The d2 correla-

tion energy for the sdn+l state, €n+% 2t is represented Ey

3d"+4d
the circles. The difference between these values (squares)

is seen to be linear in n, where the value of the slope,

Megqs is 0.18eV, with ms=0.04 (solid line). The dashed

n+l

line, associated with the sd state, is simply the sum of

the solid and dotted lines.

C. Orbital Interpretation

From the above discussion, it is clear that the d2

correlation effects in the sdn+l states are unusually large.
An understanding of the unique nature of this extra cor-
relation energy is given by contrasting these states to the

analogous Spn+1

states of the first row atoms. In carbon,
for example, the excitation szp2+sp3 places a 2s electron

into a 2p orbital. The shielding of the nuclear charge
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Figure 2.
Calculated (3d2,4d2) energy lowering relative to HF for the

2 1

s dn (diamonds) and sdn+ (circles) states of scandium to

chromium, [E 2

HF-EMCSCF]. The dotted line through the s an
points corresponds to the formula, 0.087 x n(n-1)/2
(rms=0.005eV). The squares correspond to the calculated
differential energy lowering between the two states, while
the solid line corresponds to the equation 0.18 x n
(rms=0.04eV). The dashed line is the sum of the solid and

dotted lines. All units are in eV.
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by the 2s and 2p electrons is essentially equivalent accord-

14 so that this excitation is not ex-

ing to Slater's rules,
pected to greatly change the net potential felt by the 2p
electrons. For carbon the p2 radial correlation energy for

22p2) state is calculated to be 0.12eV using an

the 3p(2s
MCSCF wavefunction which includes the 3p2 configurations.
If the pair effects were transferable, the p2 correlation
enerqgy for the 5S(232p3) state would simply be three times
this amount, or 0.36eV. The calculated energy lowering of
0.30eV is only slightly less.

In the transition metals, on the other hand, the

excitation den to sdn+1

removes an 'outer' 4s electron,
placing it into an 'inner' 34 orbital. 1In this case,
Slater's rules state that the 4s electrons do not shield
electrons in the 3d shell, however, 3d electrons do par-
tially shield one another. If the (n+1)St d-electron were
put into an orbital equivalent to the other n there would
be a decrease in the net potential felt by all of the
d-electrons, resulting in an expansion of the entire 34
shell. This is, indeed, what happens in a HF wavefunctionﬁ
Alternatively, the (n+l)St electron can be placed in a
somewhat more diffuse orbital, 3d', which does not shield
the other n 3d electrons as effectively, and, thus, does
not decrease the net potential which they feel. It is this
later model that explains the anomalous d2 correlation

n+l

effects in the sd states noted above.
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n+l

This type of description for the d states of

the transition metal atoms was first proposed by Froese

Fischer15

3d10(15)nl, where she suggested that the last 34 electron

in discussing the ionization potential of copper

should be treated differently from the previous nine,

]
93d (IS)nl. This was further discussed for the 7P(3d54p)

11

3d
state of chromium where, by allowing the fifth 34 elec-
tron to be nonequivalent to the other four, the improper
HF ordering of the two septet P states arising from 3d54p
and 3d44s4p is corrected.

In support of this picture of the 3d correlation
effects we compare the calculated d orbitals of the
4323d2 state of Ti to those of the 4s3d2 state of Sc. 1In
order to meaningfully interpret orbitals from an MCSCF
calculation it is simplest to first transform them into an
equivalent independent particle wavefunction involving non-

16

orthogonal orbitals. This is analogous to the natural

orbital to nonorthogonal pair orbital transformation
used to interpret generalized ?alence bond wavefunctions.17

In the following, 3di and 4di denote the various
components of the orthogonal 3d and 4d natural orbitals ob-
tained from the MCSCF calculations, while di and1d; denote
the nonorthogonal orbitals of the equivalent independent
particle wavefunction. The necessary orbital transforma-
tion can then be written:

A[c,3d.3d, - c,4d.44,] o
1771 73 i

2 3
- 2 -;5 [ [
= (2048?17 A [g;d", + a}4; Jaa
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where,

d = [(1+5)/2]% 3d + [(1-S)/2]" 44

dl

[(1+5) /2] 3a - [(1-5)/2]1% 4d

S

<d|d'> = (cl-cz)/(c1+c2)

To make the independent particle nature of this
wavefunction more evident we define a projection operator
3% which eliminates all but the F component of a many elec-
tron wavefunction. With this definition, the wavefunction
for the 3F state of Ti may be written as:

.?F-‘didsaa
where now the physical interpretation of these orbitals is
clear; one electron is bound in orbital di and the second
electron is bound in a nonequivalent orbital, dé. The
projection operator then assures that the wavefunction will
have the correct spatial symmetry.

The overlap between the nonorthogonal orbitalé,

d and d' is high when the contribution of the 4d correlat-
ing orbital is low, resulting in two orbitals very similar

to the HF orbital18

(Lf s=1, d=d'=3dHF). Comparing these
orbitals to 3dHF is then a measure of the breakdown of the
single configuration representation of the 3d orbitals
inherent to the HF wavefunction. 1In Figures 3 and 4 the
radial amplitudes of the d, 4' and 3dHF orbitals are
plotted as a function of the distance from the nucleus, R.

The Ti 32d2 nonorthogonal d orbitals (dashed

lines) and the HF orbital (solid line) are shown in
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Figure 3. The essential equivalence of these orbitals is
reflected in their high overlap, S=0.91, and in the small
deviation of the expectation value of R, <R>, from that of
the HF orbital: 1.20, 1.82, and 1.46 a, for 4, 4' and 3dHF'
respectively. Contrast this with the sd2 orbitals of Sc
plotted in Figure 4. Here the nonequivalence of the d and
d' orbitals is reflected in the lower overlap, S=0.81, and
in tle larger deviation of <R> from HF: 1.52 and 3.06a°
compared to 2.l3ao for 3dHF' The nonorthogonal d orbital
in the sd? excited state of scandium is actually very
similar in radial extent to the 3d orbital in the szdl
ground state (<R>=l.68ao).

Thus, an orbital picture emerges which ascribes a
2

different type of binding to the 3d electrons in the s a"

and sdn+l states of the transition metal atoms:'

2

- The s dn states have n 3d-electrons in

essentially equivalent orbitals with
Aedd = 0.087eV correlation energy for

each pair of d-electrons.

- The sdn+l states have n 3d-electrons

bound approximately the same as in the

ground state with the same correlation

energy, Aedd for the —E%QZLL

and one electron, the (n+1)St, in a

pairs;

more diffuse orbital with an additional

Asdd’ = 0.18eV correlation energy for
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Figure 3.

Radial plots of the Hartree-Fock (solid) and nonorthogonal

2

d-orbitals (dashed curves) for the 3F(4s 3d2) state of

titanium.
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Radial plots of the Hartree-Fock (solid) and nonorthogonal

d-orbitals (dashed curves) for the 4F(4s3d2) state of

scandium.
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each of the n other d-electrons
with which it correlates.
The HF description, restricted to a single confi-
guration wavefunction, is unable to allow for the diffuse

3d' orbital in the sdn+l

state, resulting instead in equi-
valent 3d orbitals, all of which expand relative to those
of the szdn state. The valence MCSCF wavefunction, which
lifts this restriction, finds that n electrons are bound as

in the 82dn ground state, with only the (n+1)St electron

occupying a more diffuse orbital.

D. CI Calculations
While the valence MCSCF wavefunction presents a
consistent picture of the differential s and d correlations

within the szdn and sdn+l

states of the atoms, its utility
as a practical method for use in electronic structure cal-
culations depends upon its ability to track the energy dif-
ferences obtainable in a full valence CI. In the following
section, we compare the excitation energies obtained at
each level in order to determine the additional correlation
effects which have been neglected or underestimated in the
valence MCSCF wavefunction.

Valence CI calculations within the entire virtual
space were carried out for scandium to chromium which in-
cluded all single and double excitations with respect to

the HF reference configuration (HF+1+2), or the MCSCF

reference configurations (MCSCF+1+2), constructed from the
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MCSCF orbitals for each state (Tables II, III, V, VI). For
both Sc and Ti full valence CI calculations are reported as
well. As previously noted, for the CI calculations the
basis set was expanded to include an f-function.

2 n+l states it is

Discussing first the s d" and sd
seen from Table VII that the MCSCF calculations faithfully
represent the AE's obtained from the CI calculations, the
differences ranging from 0.04 to 0.07eV. Note that

HF+1+2 gives AE's closer to experiment than either the

MCSCF+1+2 or the full-CI,Y?

but all three are quite com-
parable and well-represented by the valence MCSCF wave-
function.

In order to verify that the 52 and d2 differential
pair correlation energies are well-represented by the
valence MCSCF wavefunction, pair CI calculations were car-
ried out consisting of single and double excitations from
the 4s or 3d orbitals into the virtual space for the 5D
and 7S states of chromium. In addition, the sd correlation
energy was estimated from a similar CI calculation by al-
lowing simultaneous single excitations from the 4s and 3d
orbitals into the virtuals. These results are summarized
in Table VIII where the difference with EHF is given for
MCSCF, and CI calculations in which excitations were al-
lowed within the (s,p,d) and (s,p,d,f) virtual space.
Comparing the energies of the MCSCF wavefunction with the
CI within the (s,p,d) space, it is notéd that there is

less than 0.1leV improvement in either the s2 or d2
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TABLE V. Calculated and experimental energies for the 52d3, su:!‘i and d° states of the vandium

atom. Basis set: (5s,4p,3d,1f). Units are as indicated.

S (48°3d°) € (4s3d) ®s (3d°)
Energy AHF Energy AHF A(géqfl Energy LHE  A(s™d7)
hartree EV hartree eV ev hartree eV eV
HF -942.8678 0.0 -942.8602 0.0 0.21 -942.7414 0.0 3.44
MCSCP
3d2-4d2 -942.8777 0.27 -942.8912 0.84 -942,8037 1.69
‘.2_‘92 -942.8966 0.79 - --
Full? -942.9058 1.03 -- 0.40 -- 2.78
CI
HF+1+2 ~942.9255 1.57 -942.9117 1.40 0.38 -942.8245 2.26 2.75
MCSCF+1+2 -942.9286 1.65 -942.9137 1.45 0.41 -942.8322 2.46 2.62
Experimentalb 0.24 2.46

2vcsCP wavefunctions defined by equations la-c.

b?rom referance 5
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TABLE VI. Calculated and experimental energies for the szd‘,sds,

and a8

states of the chromium
atom. Basis set: (5s,4p,3d,1f]. Units are as indicated.
5p (4s23d4) 7s (483a°) Sr(3a%)
Energy LHP Ener AHP A!lzd‘! Energy AHF A(szd‘!
artree eV hartree eV eV hartree eV eV
HP -1043.2891 0.0 -1043.3323 0.0 -1.17 -1043.0724 0.0 5.90
MCSCP
3d2-4d2 -1043.3082 0.52 -1043.3766 1.21 -1043.1637 2.48
4.2-4p2 -1043.3184 0.80 - --
Ful1? -1043.3360 1.28 - -1.10 - 4.69
Cl
HP+1+42 -1043.3648 2.06 -1043.4046 1.97 -1.08 -1043.2091b 3.72 4.24
MCSCF+1+2 -1043.3695 2.19 -1043.4077 2.05 -1.04 -1043.2258b 4.17 3.91
Experimental® -1.00 3.40

3MCSCP wavefunctions defined by equations la-c

bConverqed only by deleting the 4s orbital from the

SProm reference 5

virtual space
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1

TABLE VII. as3a™ -4523dn calculated and experimental excitation

energies for scandium to chromium. All units are in eV,

Sc Ti v (03

HF 1.10 0.63 0.21 -1.17
Mcscr? 1.64 0.99 0. 40 -1.10
CI:

HF+1+2 1.69 1.00 0.38 -1.08

MCSCF+1+2 1.71 1.03 0.41 -1.04

Ful1® 1.72 1.03
Experimental:

Relativistic® 1.43 0.81 0.24 -1.00

'Non-Relativistic'd 1.31 0.67 0.07 -1.21

3MCSCF wavefunctions defined by equations la and 1b.

bFull—CI for (n+2) valence electrons

c
From reference 5

dCorrected for differential relativistic effects taken from

numerical relativistic HF calculations (reference 27) for

each state.



83

TABLE VIII. 452, 3d2 and 4s3d pair correlation energy differences

from Hartree-Fock for the chromium atom. All units are in eV.

HF+1+2
MCSCF (spd)®  AMCSCF  (spdf)°  AMCSCF
5p (4s23a?)
4 0.80 0.87 0.07 0.88 0.08
3a2 0.52 0.54 0.02 0.90 0.38
4s3d -- 0.26 0.26 0.48 0.48
75 (4s3d°)
3a2 1.21 1.26 0.05 1.79 0.58
4s3d -- 0.09 0.09 0.21 0.21
b (3a%)
332 2.48 3.11 0.63 3.72 1.24

aSingle and double excitations restricted to the (spd) virtual

space.

bsingle and double excitations allowed within the entire (spdf)

virtual space.
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correlation energy for either state. So inclusion of other
s,p or d functions does not affect the description of these
correlation effects which are indeed well-represented by the
valence MCSCF wavefunction. The sd correlation effect is
seen to favor the den state, the state with the most
s-electrons. This implies that all three pair effects in-
cluded in a single and double CI within the (s,p,d) virtual
space should increase the AE relative to the MCSCF energy,

20 If f-excitations are

which, in fact, it does by 0.2eV.
allowed in the CI, the s2 description is still unaffected,
but now the energy lowerings from d2 and sd excitations are
significantly larger. Relative to the spdf-CI then, the
MCSCF calculation for the szd4 state neglects correlation
effects worth 0.94eV while for the sd5 state the difference
is 0.79eV. Thus, the difference between the MCSCF and
spdf-CI AE is only 0.15evV.

n+l-szdn excita-

Thus, without f-functions the sd
tion energy will increase at the CI+1+2 level over the
valence MCSCF energy because the differential sd correla-
tion, favoring the szdn state, is now included. 1Including
f-functions has little effect on the 52 correlation energy

but increases both the d2

and the sd pair correlation
energies, leading to essentially the same AE as obtained at
the valence MCSCF level. While the lowering from the sd
excitations shows a differential effect in the pair-CI

calculation, it should be noted that the three effects,

taken together, are not completely additive, implying
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that the results in Table VIII overestimate this effect.
Secondly, this correlation description is not expected to
change the qualitative features of the orbitals signif-
icantly, thus supporting its exclusion at the MCSCF level.

It is appropriate at this point to discuss the

calculations on the dn+2 states of Sc-Cr. In general,

2

the a™“ states are expected to be more difficult to

describe than the sdr”l

states using a valence MCSCF
wavefunction which makes use of only 3d and 4d orbitals.
Now three nonorthogonal orbitals, 4, 4', and d'', may well

be required to represent the diffuse nature of the (n+1)St

and (n+2)nd d-orbitals.21 Although the d2 valence MCSCF
energy lowerings relative to HF, €n+§ or are larger than
3d"+4d

n+
seen for sd 1

(Table 1IV), CI's within the (3d4,4d,5d) space
indicate that the 5d orbital also plays an important role
in describing the d2 correlation effect, i.e., the 3d and
4d MCSCF orbitals alone are not sufficient. Comparing
these results to other levels of description (Table IX), it
is seen that the valence MCSCF wavefunction is a much bet-

n+2 state than is the HF wave-

ter description of the d
function, leading in all cases to AE's less than 0.2eV
above those obtained from CI's in which the entire virtual
space is included. We note that a large part of the dif-
ference between the MCSCF and full virtual CI+1+2 results

can be accounted for by allowing excitations from the

MCSCF wavefunction into a third set of d-functions (5d4).
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TABLE IX. 3dn+2-4823dn calculated and experimental excitation

" energies for scandium to chromium. All units are in eV.

Sc Ti \Y Cr
HF 4.63 4.41 3.44 5.90
MCSCF2 4.61 4.03 2.78 4.69
CI:
HF+1+2 4.62 4.00 2.75 4.24
MCSCF+1+2
(3d,44,5d) € 4.53 3.86 2.59 3.92
all virtualsd 4.49 3.87 2.62 3.01P
Full-c1® 4.48 3.86 - -
Experimental:
Relativistict 4.18 3.55 2.46 3.40
'Non-Relativistic'9  4.00 3.33 2.18 3.09
—
3MCSCF wavefunctions defined by equations la and lc.
b,

The d6 state converged only by deleting the 4s orbital from the
virtual space.

cSingle and double excitations of the 3d electrons restricted to
the (34,4d4,5d) space.

dSingle and double excitations of all (n+2) valence electrons
allowed into the entire virtual space.

eFull—CI for the (n+2) valence electrons.
fFrom reference 5.
gCorrected for differential relativistic effects taken from

numerical relativistic BF calculations (reference 27) for each
state.
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As indicated by the CI calculations, the valence

MCSCF wavefunction provides a compact representation of the

differential 32 and d2 correlation effects between the szdn,

n+1’ and dn+2 states of Sc-Cr. While this form of the

n+2

sd
wavefunction is not as accurate for the d state, it is
still a far better description than the HF wavefunction
provides. For all of these states, the valence MCSCF des-

cription condenses the major valence correlation effects

into a form which lends itself to molecular calculations.

E. Experimental Excitation Energies

Comparing the calculated AE's A(n+l) and A (n+2),
to the experimental values for Sc-Cr (Tables VII and IX),
indicates that even with full valence correlation of the
(4s,3d) electrons the AE's are overestimated, favoring the

32dn state by ~0.2eV for A(n+l), and ~0.3eV for A(n+2).

Note that the error is much larger, 0.52eV, for the de-szd4
AE of Cr due to the presence of the doubly-occupied

d-orbital in the upper state.

III. VALENCE CORRELATION EFFECTS IN THE LATE TRANSITION
METAL ATOMS, Mn-Cu

We have examined the differential valence correla

2

tion effects between the s“d™ and sc1n+l states of manganese

through copper in terms of the valence MCSCF wavefunction
(Equations la-c) discussed previously. The same type of

32 and d2 correlations were incorporated into the MCSCF
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orbitals as in the first half of the row except now, since
the d-orbitals are doubly-occupied, there are four types
of d-d interactions: (aB)ii, (aB)ij, and (Be)ij, as well as

the (aa)ij term from before. Thus, configurations which

allow 3d§—>4di and 3d% 3d%—$34.44.3d.4d., as well as
1 J i 71773773

3di3d3-p4di4dj, were included in the calculations.

A. Differential Trends

The results of the 52 and d2 differential correla-
tion effects for the late transition metal atoms are sum-
marized in Table IV. The 52 correlation in the szdn state
was again found to be essentially constant and approximate-
ly equal to that for the early transition metal atoms,
0.82 ¢+ 0.02eV. As in the first half of the row, the s2 and
d2 correlation energies are found to be nearly additive.
Because the d2 correlation effects are now complicated by
the additional interactions due to the presence of the
B-electrons, they are best understood by considering all of
the o,B8 interactions within the n and (n+l) d-electrons.
Since both states have five a-electrons, there will always
be 5(4) /2 ca-interactions. In addition, for the s2an
state, there are (n-5) doubly-occupied orbitals so there
will be:

(n=5) (aB)ii interactions,

4 (n-5) (aB)ij interactions,

and, (n-5) (n-6) /2 (BB)ij interactions.
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For the sdn+l state there are (n-4) doubly-occupied orbitals,
with the corresponding number of interactions, resulting in
the differential energy expression:

AE3d2+4d2 = eii(aB) + 4eij(a8) + (n—S)Eij(BB)

This expression is linear in n as with the first half of the
row (Equation 4), but has an additional constant term, due

st

to the correlations of the (n+l) B-electron with the five

a-electrons. In Figure 5, AE3d2+4d2 is plotted as a func-
tion of n for Sc-Cr as well as Mn-Cu. As predicted, these
differences are linear in n, the line for Mn-Cu shifted
upward relative to Sc-Cr because of the additional constant
term. Note that the slopes of each are similar, being 0.18
and 0.14 eV (rms=0.02) for the first and second halves
respectively, indicating that the correlation energy of
the (n+l)St electron with the other n electrons is similar
for Sc-Cr and Mn-Cu. This d-d' interaction energy for the
second half is also "0.1leV higher than that found in the

2

s“a? state, implying again that the (n+1)St electron is

loosely bound.

B. CI Calculations on the Nickel Atom
Because of its experimental and theoretical im-
portance,22 we have carried out valence CI calculations

2.8

(HF+1+2) for the s"d~ and sd9 states of the nickel atom,

within the [5s,4p,3d] basis, using the orbitals obtained
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Figure 5.

Differential (3d2, 4d2) energy lowerings for the 52dn and

n+1l

sd states of scandium to copper as calculated in this

work. All units are in eV.
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from the valence MCSCF calculations. These results are sum-
marized in Table X. The valence MCSCF wavefunction pre-
dicts an sdg-szd8 AE of 0.51leV while HF+1+2 gives a value
of 0.42. Similar valence HF+1+2 calculations by Martin,2
in which the HF orbitals were used as the expansion basis,
resulted in an energy separation of 0.32eV. This separa-
tion increased to 0.46eV upon uncontracting the 3s and 3p
core orbitals, whereupon, addition of an f-function to
describe (4s,3d) correlation, was found to lower this AE
to 0.30evV. These results are consistent with the conclu-
sions for the first half of the row that the valence
MCSCF wavefunction does present a reasonable description of

2 n+l

the valence correlation in the s an and sd states even

when doubly occupied d-orbitals are involved.

C. Experimental Excitation Energies

The excitation energies calculated with the
valence MCSCF wavefunction are compared to the experimental
values in Table XI. While the error for HF ranges from
1.0 to 1.3eV, this has been reduced using the valence

MCSCF approach to 0.5-0.2eV for F‘e-Cu.z3

This error is
larger than seen in Sc~-Cr but is still reasonable since it
is estimated that single and double valence CI calcula-

tions would give similar results.



TABLE X.

sd9 states of the nickel atom.

as indicated.
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Basis set:

8

Calculated and experimental energies for the szd and

(5s,4p,3d]. Units are

3p (452388 3p (4834°)
Energy AHF Energy K(S‘EBT
hartree ev hartree ev
HF -1506.8214 0.0  -1506.7736 1.30
MCSCF
3a2-442 -1506.9084 2.37 -1506.9155
as%-4p? -1506.8522  0.84 --
Full® -1506.9341  3.07 -- 0.51
c1
HF+1+2 -1506.9533  3.59 =1506.9377 0.42
Experimentalb -0.03

3MCSCF wavefunctions defined by equations la and b.

bFrom reference 5




n+l

TABLE XI. 4s3d -4s

energies for manganese to copper.

All units are in ev.

3@" calculated and experimental excitation

Co Ni Cu
HF 1.55 1.30 -0.34
Mcscr2 0.93 0.51 -1.26
Experimental:
Relativistic? 0.42  =0.03  -1.49
’Non—Relativistic'c -0.38

3MCSCF wavefunctions defined by equations la and 1lb.

bFrom reference 5.

cCorrected for differential relativistic effects taken from

numerical relativistic HF calculations (reference 2) for each

state.
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IV. OTHER CONSIDERATIONS
2

Since the valence correlated energies of the s an

n+l states of the transition metal atoms are still in

and sd
error by ~0.2eV for Sc-Cr and 0.5 for Mn-Cu compared to
the experimental AE's, there must be other differential ef-
fects which are of importance. The two major effects which
have been neglected are:

-- Correlation effects involving the

'core' (3s,3p) electrons

-- Relativistic effects

A. Core Correlations
While true core electrons would be expected to be
unaffected by changes within the valence electron occupancy,
the (3s,3p,3d) orbitals are all concentrated in similar
regions of space so that changes in the 3d occupancy could
induce a differential effect in correlation of the 3s and
3p electrons. There are three types of correlation effects
which could arise:
1. The (3s,3p,3d) near degeneracy effect
2. Core/valence dynamic correlation
3. Correlation of the 3s and 3p electrons,
including space and spin polarization
effects.
The near degeneracy effect observed in the N=3
shell is analogous to the effect in (4s,4p) discussed

previously only now excitations into the empty 34 orbital
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are involved. It can be represented by a CI wavefunction
which allows double excitations from (3s,3p) into 3d. As
with the first row, this effect will decrease as the
d-orbitals become occupied. It will favor the state with
the fewest d-electrons, szdn, since the more 4 'holes'’
there are, the more orbitals available for correlation.
This effect is evident in the paper by Guse, et al.3
(labeled as a differential core-core correlation effect).
The core/valence dynamic correlation effect
describes the instantaneous correlation of the core and
valence electrons. It is represented by simultaneous
single excitations of (3s,3p) and Bd,4s) into the virtual
space. This effect would be largest for the state with
the most d-electrons, since it is the 3d's which should
interact most strongly with the (3s,3p) electrons de-

n+l 2.n

creasing the sd -8“°d"” excitation energy. Preliminary

calculations24 show that a second tight f-function is

needed to describe this correlation properly25 as the

dominant configurations are those which involve 3p,3d+nd, £&£.
Spatial and spin polarization effects among the

3s and 3p electrons can be induced by the asymmetric

charge distribution of the 3d and 4s electrons. Munch and

Davidson, in calculations on the 4F(szd3) state of vana-

dium,26 noted the importance of the single excitation
3p+£, which describes the polarization of the 3p shell by
the asymmetric 4 shell. Thus, a second f-function is also

needed to describe spatial polarization of the 3p electrons
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as well as the dynamic correlation between core and
valence. These effects will be state-dependent since the
orbital occupancies vary considerably from Sc-Cu. For

7

example, the Cr S(sds) state should show no spatial ef-

fects but spin polarization due to the six a-electrons may

15a1%) both effects will be

be important; whereas for Ni
zero. It is not clear what kinds of differential trends
will emerge due to these effects.

Thus, two competing effects occur in the correla-
tion of the n=3 shell: the (3s,3p,3d) near degeneracy ef-
fect favoring the szdn state; and the dynamic correlation
of the 3s and 3p electrons with the valence 4s and 34,

n+l n+2

favoring the sd and d states. A third effect, spa-

tial and spin polarization within the (3s,3p) electrons
may also be important but not clearly favoring either the
ground or excited states. Data taken from Guse, et aZ.3

imply that correlation of the core electrons increases in

importance from Sc-Cu.

B. Relativistic Effects

Relativistic HF calculations have been carried

27 for Sc-Cr to determine the dif-

2 n+l and dn+2 states

out by Martin and Hay
ferential effects between the s dn, sd
of the transition metal atoms. Their results indicate that
in all cases the relativistic energies lower the szdn
states. The differential effect for A(n+l) is 0.leV for

Sc, increasing to 0.2eV for Cr. The differential effect
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for A(n+2) is 0.2eV for Sc, increasing to 0.3eV for Cr. It
appears that this trend prevails across the row so that for
nickel the relativistic effect has increased the sdg-szd8
splitting by 0.35eV2. Because this effect is large, the
calculated nonrelativistic AE's should actually be com-
pared to 'nonrelativistic experimental' values, given in
Tables VII, IX and XI, where the experimental values have
been corrected for the differential relativistic effects
taken from Martin and Hay's numerical HF calculations.

2

With the s“d™ state being differentially lowered by these

effects, the AE's which are comparable to the calculated
values are all smaller in magnitude than the reported
values and consequently, the error in the calculated values

is even larger.

V. CONCLUSIONS

A reasonable description of the differential

2 n+l

valence correlation effects within the s dn, sd , and

n+2

d states can be obtained at the MCSCF level by using

2,4d2) radial cor-

a wavefunction which incorporates (3d
relation, and (482,4p2) angular correlation effects. This
simple wavefunction reproduces well the results of a single
and double excitation valence CI calculation including
f-functions in the basis. The AE's obtained from the
simple MCSCF wavefunction are in error by 0.2eV for Sc-Cr

and 0.5eV for Mn-Cu for the sdn+l-szdn excitation energies.
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An interpretation which is consistent with

n+l and dn+2 states of the

these results is that in the sd
transition metal atoms the (n+1)St and (n+2)nd 3d-electrons
are not bound as tightly to the nucleus as the other n
electrons. These states are more appropriately described
as:

n+l

4s3d™ > 4s533™3q"

3@"M2 - 3@M3434 "

signifying that n electrons are bound as in the 82dn

ground state with the additional d-electrons occupying more
diffuse orbitals, 3d' and 3d'', nonorthogonal to the other
3d orbitals.

If relativistic effects are included in the
description of each state, the error in the excitation
energy appears to increase. This implies that a highly
accurate description of the splittings of the low-lying
states of the transition metal atoms requires that differ-

ential correlation involving the (3s,3p) 'core' electrons

also be taken into account.
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The diverse and complex chemistry of the first row
transition metal atoms is in large part due to the near
degeneracy of the 4s and 3d orbitals. Thus, depending
on the molecular environment, the formal configuration
of the transition metal atom may be 4s523d4", 4s34™!, or
34", Clearly then, it is important that the theoretical
methods used to study transition metal compounds be
able to accurately predict the relative energies of these
atomic states. Despite its widespread use in calcula-
tions on molecules containing transition metal atoms,
the Hartree-Fock method does not satisfy this criterion,
e.g., for the nickel atom Hartree-Fock calculations®
place the *D(4534°) state 1.28 eV and the '5(34'%) state
5.47 eV above the 'F(45s*34") state, whereas the experi-
mental separations are -0.03 eV and 1.71 eV.?

In calculations on the ground and low-lying excited
states of the titanium atom, we have found that the
Hartree-Fock descriptions of the 4s34° and 3d* states
are inadequate. These calculations indicate that the
“(n+1)st” 34 orbital of the 4s3d™ ! states and the
“(n+1)st” and “(n +2)nd” 3d orbitals of the 3d™? states
of the transition metal atoms are functionally inequiva-
lent to the other 3d orbitals, being much more diffuse.
Thus, the proper orbital configurations of these states
are 4s3d"3d’ and 3d"34'3d".

The primitive basis set used in the calculations on the
titanium atom, (14s11p8d), is that of Wachters® aug-
mented with two additional p functions to describe the
4p orbital and one additional, diffuse d function to de-

J. Chem. Phys. 72(5), 1 Mar. 1980

0021-9606/80/0534 19-02$01.00

scribe the 3d orbital of the 4s34° state. Hartree-Fock
(HF) calculations with this basis set predict a *F=F
splitting of 0.55 eV; numerical HF calculations® give a
nearly identical result, namely, 0.54 eV. For the sub-
sequent atomic calculations the primitive set was con-
tracted to (6s6p3d| using the general contraction scheme
of Raffenetti.®

If one of the 3d orbitals in the $F(4s34°) state of tita-
nium is functionally different from the remaining two
3d orbitals, the resulting projected Hartree~Fock (PHF)
wave function has the form (with the core orbitals de-
leted)

TABLE 1. Summary of Hartree—Fock (HF) and multi-
configuration Hanreo-f‘ock (MCHF) calculations on
the *F(4s3d4°) and "F(4s°3d") states of the titanium
atom.

SF(4834%) F(1s'3d)
Eyy (hartree) - 348.3715 -848.3918
AE g CF ='F) (eV) 0.55
Eucyy (hartree) - 3483882 - 848, 4202
c 0.90 0.96
[ 0.43 0.29
Eucnr ~Eny (eV) -0.45 -0.77
AE ycqy CF="F) (eV) 0.87 ee

© 1980 American Institute of Physics
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FIG. 1. Radlal plots of the 43, 34, and 34’ orbitals of the

’F(4334°) state of the titanium atom obtained from multiconfigura-
tion Hartree-Fock calculations.

¥puy(*F) = 14534"d'acaa, (1a)

where & is a projection operator which insures that the
wave function has the proper spatial symmetry. Noting
that

3d' scy3dscydd ,
(1a) can be rewritten as a mulliconfiguration Hartree-
Fock (MCHF) wave function

VycnyCF) =c, A4s3d aara + ¢y 1453d%4d-aaaa . (1b)

It is in this form that calculations were carried out with
the BISON-MC program.® There is, of course, a simple

relationship between the two sets of coefficients (cy, cy) °

and (c,, c,) and, correspondingly, between the two wave
functions (1a) and (1b).

The energy computed with (1), along with the HF re-
sults, are given in Table [. The size of the energy
lowering, 0.45 eV, and the large value of c,, 0.43, re-
flects the unusual strength of this correlation effect even
though the electrons involved are in spatially different
3d orbitals and are high spin coupled. The 4s, 3d, and
3d’ orbitals obtained from the MCHF calculations are
plotted in Fig. 1. The difference in the spatial extension
of the 3d and 34’ orbitals is clearly evident. The 3d’
orbital is much more diffuse than the 3d orbital (the
overlap being only 0. 76) and is more like the 4s orbital
in radial extent.

In earlier HF calculations on the transition metal
atoms Hay* found that the 34 orbitals of the 4s34™' states
were more diffuse than those of the 45*34" states. In
fact, as noted above, basis sets appropriate for the
4334d" states must be augmented with an additional, more

Letters to the Editor

diffuse d function to properly describe the 4s34™! states.
From the present calculations we see that this uniform
expansion of the 3d orbitals is a consequence of the
equivalence restriction in the HF calculations and, when
projection effects are properly taken into account, only
one of the 3d orbitals becomes diffuse. To a good ap-
proximation the 3d orbital of the 4s34® state of titanium
obtained from the HF calculation is an occupation num-
ber weighted average of the 34 and 3d’ orbitals.

Turning now to the ground state, *F(4s234®), of the
titanium atom, we use the MCHF wave function,

VYucar(F) =c, 44s*3d*aBaa +c, 14p*3d*aBaa , @)

where the second configuration accounts for the 4s-4p
near degeneracy effect. The results of the HF and
MCHF calculations on the *F state of titanium are also
summarized in Table I. Use of (2) decreases the energy
of the 'F state by 0.77 eV over that obtained with a
single configuration.

Using (1) for the *F state of titanium and (2) for the ’F
state, we obtain a F-*F splitting of 0.87 eV, in good
agreement with the experimental separation of 0.81 eV.?

In ber MCHF calculations on the copper atom, Froese-
Fischer’ noted that inclusion of the 4s34°¢d configuration
in the calculations on the 35(4s3d"%) state led to a dra-
matic decrease in the energy of this state (>2 eV).
Further, she noted that the resuiting wave function was
equivalent to a PHF wave function of the form 4s34*3d’.
Thus, both the present titanium calculations and the
copper calculations of Froese-Fischer’ argue for the
importance of a PHF description of the 4s3d™! states
of the transition metal atoms. .
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