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ABSTRACT

THE ELECTRONIC STRUCTURE OF

FIRST-ROW NEGATIVE IONS AND TRANSITION METAL ATOMS

BY

Beatrice Helen Botch

Negative Ions

The electron affinities of carbon, oxygen and

fluorine have been calculated using a compact MCSCF wave-

function with a [4s,4p,3d] Gaussian basis set. This wave-

function describes radial correlation of the 2p electrons

which is found to have a large differential effect between

atom and anion, and also includes the (232->2p2) near-.

degeneracy effect. Radial correlation of the 2p electrons

increases the calculated electron affinity by as much as

1.2eV over the Hartree-Fock value. An orbital model is

discussed which ascribes this effect to the diffuse nature

of the orbital occupied by the (Z+1)st electron of the

anion. Configuration interaction calculations based upon

the MCSCF wavefunction, result in electron affinities

comparable in magnitude to the large basis set calculations

of Yoshimine and Sasaki.2 The importance of higher-order

angular functions and higher-order excitations is also

examined.



Transition Metal Atoms

The major differential valence correlation ef-

fects of the lowest lying states arising from the szdn,

n+1 2 configurations of the first-row transitionsd , and an+

metal atoms have been characterized using MCSCF and CI pro-

cedures. The important correlation effects are found to

be first, angular correlation of the 432 pair arising

because of the near degeneracy of the 4s and 4p orbitals,

and second, radial correlation of the 3d electron pairs.

This large differential radial correlation of the 3d

electrons can be interpreted as being due to nonequivalent

n+1 2 excited states. Both ofd-orbitals in the sd and dn+

these effects can be incorporated into a simple MCSCF

wavefunction which reduces the error in the excited state

atomic dissociation limits (~0.2eV in Sc-Cr, and No.5ev in

Mn-Cu for the sdn+l-szdn excitation energy), yet still is

of a form which lends itself easily to molecular calcula-

tions.
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INTRODUCTION

There are many seemingly simple problems of chem-

ical interest which have presented theoreticians with dif-

ficulties, both computationally and conceptually, for many

years. This work is concerned with two such problems:

the determination of accurate atomic electron affinities;

and the calculation of the electronic excitation energies

of transition metal atoms. Each is of theoretical interest

because the procedures developed for accurately describing

atomic anions and metal excited states provide the frame-

work in which concepts about the structure and reactivity

of molecular species are developed. Experimentally, while

the atomic systems are in general well-characterized,

molecular species have been difficult to generate and

Spectra, once obtained, must lean heavily on theory for in-

terpretation. Thus, accurate experimental values aid

theory in calibrating the methods which are employed,

while reliable theoretical values aid experiment in inter-

pretating data from the more complex molecular systems.

A general development of the methods used in

calculation of these quantities is in Part A of this thesis.

Part B is concerned specifically with the calculation of

the electron affinities of carbon, oxygen and fluorine;

1



while Part C is concerned with the calculation of the 52dn

n+ n+2 . . . . .

l or d electronic exCitation energies of scandiumto sd

to COpper.

In both of the atomic systems above the Hartree-

Fock wavefunction inadequauay represents the states with

n+1

the 'extra' electron, i.e., the 2322p anion, or the

n+1 and 3dn+2

483d states of the metal atoms. Previously,

the electron affinities and the excitation energies have

only been recovered with high-order configuration inter-

action (CI) calculations. These types of calculations are

inappropriate for molecular systems and can, in fact,

obscure important physical information regarding the dif-

ferential correlation effects. We have found that these

states are more prOperly represented when the 'extra'

electron is allowed to be in a radially inequivalent or-

bital (szpnp' for the anions, sdnd' or dnd'd" for the

metal atoms), which is more diffuse in nature than the

other 2p or 3d orbitals. A more balanced zero-order de-

scription of the ground/excited state, or atom/anion

systems can be obtained from a simple multi-configuration

(MCSCF) wavefunction which includes two valence correlation

effects:

1. The differential radial correlation effect

due to the loosely-bound electron in the

excited states and anions,
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2. The (sz,p2) near degeneracy effect due

to the near degeneracy of the ns and un-

occupied np orbitals.

This MCSCF wavefunction removes many of the inconsistencies

found at the Hartree level resulting in more accurate

energy differences. CI calculations based upon the MCSCF

wavefunction give electron affinities and excitation

energies which are now in good agreement with experiment

and provide a simple and consistent method for treating

correlation effects in molecular systems containing nega-

tive ions or transition metal atoms.



Part A: METHODS



I. INTRODUCTION

The wavefunctions and energies which are used to

characterize the electronic prOperties of atoms and mole-

cules result from solution of the time-independent

Schrodinger equation within the Born-Oppenheimer approx-

imation. The nonrelativistic electronic Hamiltonian, in

1
atomic units , has the form N

n z 2
A 1 2 AB

H = Zn. + .2 r.. + A<B R (1a)
1 1 1<j 13

N Z

- 2 Ji.

hi ‘ 'L’Vi ‘ §r - (1b)

where n correSponds to the number of electrons and N to the

number of nuclei in the system.

If there were no interactions between electrons,

l/rij =0, each electron would move independently of the

others subject only to the attractive field of the nuclei.

This problem is exactly separable into n one-electron

equations which result in the one-electron orbitals, {ti},

and the one-electron energies,{€i}

h¢i = 8i ¢i (2)

The total wavefunction is simply a product of these or-

bitals and the total energy the sum of the one-electron

energies



ii) (1,...pn) = c4¢l(1)...¢n(n) (33.)

n

E = IE: 8. (3b)
1 1

This product wavefunction can be interpreted as describing

n independent particles (electrons) moving in the attrac-

tive field of the nuclei.

Because of the Coulombic repulsions between

electrons, l/ri. #0, the electrons do not move independ-

J

ently of one another, rather their motions are correlated.

The Schrodinger equation is no longer exactly separable

and approximations must be made to obtain the electronic

wavefunctions and energies. There are many methods which

have been developed for this purpose. This work has em-

ployed three ab initio procedures based upon the variation

principle: the Hartree-Fock self-consistent field method,

the multi-configuration self-consistent field method, and

the configuration interaction method. They differ in the

functional form of the wavefunction chosen to represent

the system, and it is in this way that the approximations

necessary to solve the Schrodinger equation are introduced.

The validity of using an assumed form for the

wavefunction is founded on two fundamental principles.

The first is the variation principle2 which guarantees

that for some approximate normalized wavefunction obeying

the boundary conditions of the system to, the corresponding



energy 30' will always be greater than or equal to the

lowest eigenvalue of the Hamiltonian3

3:30 '3 <WO|H|vO> (4)

While the choice of we is arbitrary, it is best chosen to

approximate.as closely as possible, the exact wavefunction.

For a given functional form, the 'best' wavefunction is

one for which the energy is a minimum, i.e., for which the

first order change in the energy with respect to any vari-

ation in the wavefunction is zero 5E(wo)=0.

Variations in the wavefunction can be introduced

by means of the second fundamental principle, the expan-

sion theorem. This theorem states that any normalizable

function may be represented as an expansion in terms of a

complete set of functions4. Thus, the single particle

orbitals above may be represented as an expansion in a-

known basis

(pi =21; aiu X11 (5)

and the n-particle wavefunction may in turn be expanded

in terms of the orbital basisS

W(l n) j J J (6)

where each configuration, ¢j, is a symmetry-adapted linear

combination of Slater determinants possessing the spatial

and Spin symmetry of the electronic state of interest.

Variations in the wavefunction translate into variations

in the expansion coefficients {aiu}’ {Cj}, which



are determined to minimize the energy, the variational me-

thod. A wavefunction is, thus, defined by the configura-

tions included in the n-particle expansion and the eXpan-

sion bases from which the configurations and orbitals are

constructed.

II . HARTREE-FOCK

In the Hartree-Fock (HF) procedure, the simplest

form of wavefunction is assumed by truncating the configura-

tion expansion at a single term

wHFtl.....n) = ¢HF (7)

thus, as in Equation (3a), the HF wavefunction is a simple

antisymmetrized product of orbitals. Minimization of the

total energy with reSpect to variations in the orbitals

results in the HF equations for each orbital. For a

closed-shell HF wavefunction with n/2 doubly-occupied or-

bitals these equations are of the form

‘1’ 34¢ 13(1) ¢lB(2)oo. <l>n8 (n) (8a)

7

HF _
h oi - Si oi (8b)

hHF=h+ 2 (2J. -K.) (8c)

3 J J

The Jj and K3. are the familiar Coulomb and exchange

Operators

l
J. = < . ——— . 8d3 ¢Jlrlzl¢3> ( )

- .2.
Kj ¢i - <¢jlr12l¢i>¢j (8e)



Since these operators depend upon all of the occupied or-

bitals, the equations must be solved self-consistently.

Expanding each orbital in terms of a known-set of basis

functions7'8 results in the matrix eigenvalue equation

. HI? I
Z: < Xulh IXV> ai\) = Si;<xplxv>ai\) (93)

v

HP

iii O.‘= 6133i. (9b)

where the energy is determined from the secular equation

HF

Ill-z -ei$|=o (10)

If {xu} is complete, this is the exact HF solution. Since

it is not possible to use a complete basis, only an ap-

proximate solution is usually obtained, referred to as the

SCF solution.

Since most of the electron density of a chemical

system is concentrated around the nuclei, it is reasonable

that the expansion basis, or basis set, be comprised of

functions which are centered on each atom and which de-

crease exponentially from their centers, linear combination

of atomic orbitals (LCAO). The two types of functions

most commonly used are Gaussian and Slater functions which

are of the form

2

xi Ym Zn e Er (11a)

rn-l e-gr ng‘ei‘i’) (11b)



The range of radial and angular functions required to re-

present different chemical processes has been thoroughly

investigated and is summarized in Reference 9. For the

two systems of concern here, negative ions and transition

metal atoms, it was necessary to augment the atomic bases

with diffuse functions to describe ionic and excited—state

behavior. This is discussed in more detail in later

chapters.

The physical significance of the HF wavefunction

is best understood by examining the potential terms in

Equation 8b. Note that an electron in orbital i is not

exposed to the full l/rij potential due to the other

electrons, rather it sees a potential of

2(2Jj "Kj )1

J

averaged over all of the electrons in the system. The na-

ture of the HF potential has been discussed by Sinanoglulo

where he compared the full Coulomb potential to that of the

HF. He showed that the HF potential accounts for the long-

range effects of the Coulomb repulsions between electrons.

The difference between the two potentials, the interactions

neglected in the HF picture, are short range in nature

falling off rapidly as the distance between the electrons

increases. This implies that there are two effects which

determine the nature of the interactions between electrons

in atoms and molecules
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- The average interactions of each electron

with the (n-l) others and,

- The instantaneous interactions as pairs

of electrons closely approach one another.

The HP wavefunction, by describing the average interactions

among the electrons, accounts for mainly the long-range

part of the Coulomb repulsions. Thus, the single-particle

picture where each electron moves in an individual orbital,

is maintained by the HF method, in the sense that the

orbitals are now determined in the average field of the

(n-l) other electrons as well as the attractive field of

the nuclei. While this neglects the short-range instant-

aneous interactions, those which are dependent upon the in-

dividual motions of the different particles, it still

provides a well-defined reference point for more sephisti-

cated approaches. The term 'correlation energy' is defined

in terms of the HF model as the difference between the

exact nonrelativistic energy of a system and the HF energyll

Ecorr I Eexact EHF (12)

referring to the interactions neglected in the HF model.

This is an appropriate term provided that the HF wave-

function describes the major physical features of the

system. For closed-shell species at equilibrium this is

the case but, in general, a single configuration descrip-

tion is too restrictive. For example, orbital degeneracy

effects or molecular dissociation cannot be represented
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11’12 and consequently, other con-by a single—configuration

figurations are needed to give a prOper 'zero order' de—

scription. Since this deficiency is, not strictly, a cor-

relation effect in the dynamic sense of short-range in-

stantaneous interactions, there are two types of correc-

tions that need to be considered beyond the HF model:

those which arise from imprOper representation because of

the single-configuration nature of the HF wavefunction; and

the 'true' instantaneous correlation effects arising from

short-range Coulomb repulsions between electrons in the

same Spatial region. Both types of interactions can be

represented by wavefunctions that do not truncate the ex-

pansion in the orbital basis at a single configuration.

III. CONFIGURATION INTERACTION

In the configuration interaction (CI) procedure

the wavefunction is written as a linear combination of many

13
orbital configurations , that are, in general, taken to

be orthonormal, Equation (6). Variation of the configura-

tion coefficients to minimize the energy leads to the

matrix eigenvalue equation

(H-E’b)¢.=o (13)

where the elements of H are defined between configurations

(1H),). = <¢ilH|¢j> (14)

and the eigenvalues are determined from the secularequation

lll-l-EAI =0 (15)
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If the expansion basis is complete this results, in prin—

ciple, in the exact nonrelativistic energy of the system.

This energy is independent of the orbital basis, although

the convergence of the expansion, the number and types of

configurations necessary to achieve a particular level of

accuracy can be accelerated significantly if the orbitals

reflect the general characteristics of the wavefunction.

In practice, it is not possible to expand the

wavefunction in terms of a complete set of functions and

both the expansion basis and the configuration set must be

truncated. The energy of this approximate wavefunction is

no longer independent of the orbital basis. The SCF

procedures are used to define a physically relevant set of

occupied orbitals. In addition, an apprOpriate set of cor-

relating orbitals are needed. There are two major require-

ments which these 'virtual' orbitals should fulfill in

order to adequately represent the correlation effects among

the occupied orbitals. They should be concentrated in the

same region of Space as the occupied SCF orbitals; and

they should have additional nodal surfaces which can allow

for effects such as in/out, left/right, or up/down correla-

tion. Thus, the virtual basis is principally comprised

of higher angular functions with radial extents similar to

those of the occupied orbitals. These requirements are

well understood and are discussed in more detail in Refer-

ence l3.
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The extent of the configuration expansion is limited by the

finite size of the orbital basis. A full CI is one in

which all of the possible configurations constructed from

a finite basis are used in the expansion. The energy of

this wavefunction is dependent only upon the space Spanned

by the orbital basis not upon the individual orbitals, and

is the best energy which can be obtained within the given

basis. In general, full CI's are not possible for all but

the smallest orbital sets and the configuration list must

be further reduced. Configurations can be classified ac—

cording to the number of replacements, or excitations,

which occur relative to a given set of reference configura-

tions, single, double, triple, quadruple, etc. Within

each level the resulting energy is independent of the in-

dividual virtual orbitals, again dependent only upon the

Space which they Span. If the zero-order wavefunction is

a good representation of the system, the dominant cor-

relation effects enter the CI expansion in terms of

double excitation configurationslo'IB-ls. Thus, most CI

calculations consist of single and double excitation con—

figurations relative to the HF configuration or a more

general zero-order wavefunction. The importance of the

higher order triple and quadruple excitations is a topic

16,17
of current interest and is Specifically addressed in

this thesis for the two systems noted previously.
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IV. MULTI-CONFIGURATION SCF

In the multi-configuration self-consistent field

(MCSCF) procedure, as in the CI procedure, the n-particle

wavefunction is constructed from a linear combination of

configurations (Equation 6), but now both the orbitals,

{oi}, and the CI coefficients, {Ci}, are optimized simulta-

18'19. Thus, the matrix eigenvalue equations for flu:neously

orbitals (Equation 9b), and for the CI coefficients (Equa-

tion 13), must be solved, though the form of the orbital

equations are not as simple as the closed-shell HF equations,

requiring solution of more than one pseudo—eigenvalue equa-

tion.

In this way, the correlating orbitals of the CI

expansion discussed previously are well-defined, increas-

ing the occupied SCF space to include a set of active

orbitals having variable occupancy to describe correlation

effects among the valence orbitals, in addition to the core

orbitals which remain doubly-occupied throughout the cal-

Culation. The generalized valence-bond (GVB) wavefunction

is an example of such a wavefunCtion which accounts essen—

tially for proper molecular dissociation and orbital

degeneracy effectszo. While this procedure could, in

principle, be used to define the entire correlating space,

in practice this has not been found to be beneficiall7.

Large MCSCF wavefunctions suffer from problems with con-

vergence and interpretability, but perhaps more importantly,

not all of the correlating orbitals need be defined
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self—consistently. The orbital set can be divided into two

groups, the primary and secondary orbital setsZI. The en-

ergy of the chemical system is critically-dependent upon

the orbitals of the primary set since it is this set that

represents the major physical features of the system. The

energy is only weakly-dependent upon the orbitals of the

secondary set, that are necessary for providing minor cor—

rections to the wavefunction.

V. GENERAL PROCEDURE

The general procedure used in the following cal-

culations has been to determine a set of occupied orbitals

self-consistently, that define the zero-order wavefunction.

For many systems, the single-configuration HF wavefunction

is apprOpriate, for other systems, more than one configura-

tion is needed. These orbitals along with a proper set of

correlating virtual orbitals are then used in CI calcula—

tions to account for other correlation effects.

We have investigated alternative forms of zero—

order wavefunctions for negative ions and transition metal

excited states since it is found that HF inadequately re-

presents these systems. Consequently, the correlation ef—

fects in these systems have been particularly confusing

when cast in the HF framework. When cast instead in terms

of an MCSCF framework these effects become very consistent

and lend insight into the physical nature of these systems.
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VI. MOLECULAR CODES

The integrals were calculated using the BIGGMOLI

integral program of R. C. Raffenetti22 as well as his in-

tegral transformation programs. The MCSCF calculations

were done using the ALIS MCSCF program from Ames Laboratory,

Iowa State, by K. Ruedenberg, S. T. Elbert and coworkersle.

The CI calculations were carried out using the CITWO pro-

gram from the California Institute of Technoloqy by

F. W. Bobrowic223.
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Part B: NEGATIVE IONS



Theoretical characterization of negative ions. Calculation

of the electron affinities of carbon, oxygen, and fluorine.
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I . INTRODUCTION

The electron affinities of atoms have been notor-

iously difficult to calculate from first principles. While

experimentally most atoms are found to have a bound negative

ion, Hartree-Fock (HF) theory is unable to predict the sta-

bility of all but a few of these.1 For 2 < 10, HF finds

only C- (43) and F-(IS) to be bound, the errors in the cal-

culated electron affinities being 0.7eV for carbon and

over 2eV for fluorine (Table I). By including electron cor-

relation beyond HF, in particular through the configuration

interaction (CI) method, the stability of anions can be cor-

rectly predicted, but it has not been clear what level is

necessary to obtain this result. Extensive CI calculations

have been reported by Yoshimine and Sasaki2 (Y&S) of the

correlation energies of the first-row atoms and their an-

ions. Despite the use of large basis sets and the inclu-

sion of up to quadruple excitations relative to the HF wave-

function the calculated EA's are still in error by as much

as 0.3-O.4eV. Since the error in the HF electron affinity,

the neglected differential correlation energy, varies con-

siderably from atom to atom, HF does not provide an appro-

priate zero-order description of negative ions. Yoshimine

and Sasaki's results indicate that CI's based upon the HF

configuration are poorly convergent, requiring many confi-

gurations for very little improvement in the overall EA.

Their approach would be impractical for molecular anions in
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TABLE I. Electron affinities and ionization energies of the first-row atoms. All

quantities are in ev.

 

 

  

 

Electron Affinity ionization Energy

aExperimental bNumerical Hartree—Fock cExperimental

Hydrogen 0.754 -0.33 13.60

Helium <0 - 24.58

Lithium 0.620(7) -0.122 5.39

Beryllium <0 - 9.32

Boron o.27au:.010)d -0.268 8.30

Carbon 1.268(5) 0.549 11.26

Nitrogen -0.07(8) -2.150 14.54

Oxygen 1.462(3) -0.541 13.61

Fluorine 3.399(3) 1.363 17.42

 

6These are the 'recommended' values taken from reference 1.

bFrom reference 17.

CR. 8. Leighton, ”Principles of Modern Physics“, (McGraw Hill, 1959), pp. 727-729.

dFrom reference 10.
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which much less extensive treatments are unavoidable, yet

electron correlation must be included before accurate re-

sults can be obtained from the calculations.

Clearly, a more general ab initio procedure needs

to be develOped which results in a more consistent descrip-

tion of negative ions, though not necessarily giving the

exact electron affinity. We have approached this problem

by redefining the zero-order wavefunction using a.multi—

configuration self-consistent field (MCSCF) function, which

provides a more balanced desoription of both the neutral

and the anion and can be used conveniently in singles and

doubles CI calculations (MCSCF+1+2). This approach yields

consistent errors at the MCSCF level, provides a convenient

method for introducing triple and quadruple excitations

(relative to the HF function) into the CI wavefunction, and

EA's comparable to Y&S using a much smaller basis set and

CI expansion.

A. Experimental Background

There are many excellent reviews of the empirical,

semi-empirical and theoretical procedures which have been

1'3-7 Work rele-used to determine the electron affinities.

vant to ours is presented below, the reader being referred

to the above reviews for more thorough discussions.

Experimental determination of electron affinities

is a difficult task so that until recently the EA's of many

elements could only be determined by extrapolation
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procedures based upon trends in isoelectronic series

(horizontal analysisa). For those systems which could be

studied eXperimentally, there are two standard techniques

which have been employed for the direct determination of

electron affinities.1'3 The first is photodetachment

threshold spectroscOpy where the long wavelength threshold

for detachment of the electron is measured, giving the EA

of the anion. The second is negative ion photoelectron

Spectroscopy where a fixed frequency of light, larger than

the EA of the neutral, is used to detach the electron, whose

kinetic energy is then measured. The EA is determined with

reSpect to a known reference based upon the conservation of

energy. While each technique has its own inherent limita-

tions (which are very thoroughly discussed in reference 3)

they Share two technological problems, the availability of

a suitable photon source and a suitable ion source. Ad-I

vances in laser technology have helped to reduce some of

the limitations of the photon source, but lack of ion

sources has slowed progress in the measurement of EA's.

Recently, Sputter-type ion sources have been used to gene-

rate beams of atomic anions for many transition metal

10 whose EA's were thenatoms , 9 and some main group elements ,

determined using photoelectron Spectroscopy. While the

range of elements able to be studied experimentally has

broadened, molecular EA's are still largely undetermined.4

Yet accurate EA's can be critical for determining the

pr0perties of many neutral species; for example, the
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controversy over the singlet-triplet separation of methylene,

as measured from the photoelectron spectra, hinges on a know-

11-14
ledge of the electron affinity of the 3B1 state.

B. Theoretical Background

Theoretical determination of electron affinities

is also a difficult task because a balance must be struck

between the description of a neutral Species and its nega-

tive ion, a system having one more electron. The electron

affinity is found by subtracting the calculated ground state

energy of the anion from the neutral, a positive value in-

dicating that the anion is stable. Because of the extra

correlation energy associated with the (z+l)st electron in

the negative ion, calculations will favor the neutral, re-

sulting in EA's which are in general too low relative to

experiment15 or even negative as is found from most HF cal-

culations.

If the total nonrelativistic energy is expressed

as the sum of the HF energy plus the correlation energy,16

the EA is Simply the difference between these quantities:

EA = AEHF + AEcorr (1)

For atoms the HF differences can be calculated very accu-

rately using the near HF-limit energiesl7 obtained from

18
numerical procedures and therefore, the problem of
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calculating electron affinities has been seen as one of

obtaining the differential correlation energy between the

atom and anion.

One approach to the calculation of electron af-

finities has been the pair-correlation schemes of

19,20 21,22
Nesbet or Weiss. In these, the total energy is

written as:

E=EHF+Zei+Zeij (2)

EHF being the total HF energy, 8i the single-particle cor-

relations, and eij' the correlation energy of the ij-pair.

It is assumed that the 5's can be calculated independently

by separate CI calculations for each ij-pair and summed to

obtain the total correlation energy. These methods were

compared by Y&S2 to the more complete CI+1+2 calculations

(Table II), where they were able to Show that although the

EA's obtained are often in excellent agreement with ex-

periment, this is due to cancellations between truncation

of the basis set and neglect of higher-order terms, and at

the limit of a complete basis set, the pair methods over-

estimate electron affinities, being 0.2eV too high for both

oxygen and fluorine.

Schaefer, et al?3(l969) approximated the EA's

of the first-row atoms based upon a first-order CI wave-

function (FOCI) which includes the internal (near-

degeneracy), and the semi-internal (near-degeneracy and



255

TABLE II. A comparison of calculated electron affinides of hydrogen, lithium and boron

through fluorine. All quantities are in eV.

 

 

 

 

H Li 8 c N o r

88 : aNumerical -0.33 -0.12 -0.27 0.55 -2.15 -0.54 1.36

ova : bGoddard 0.38 0.28

rocr : CSchaefer -0.61 0.11 -2.45 -1.12 0.53

CI(pairs): dMoser

1 and 2 particle terms 0.39 1.46 0.19 2.06 4.18

+ 3 particle terms 0.22 1.29 -0.12 1.43 3.37

°w61ss 1.47 3.47

fYoshimine and Sasaki 1.71 3.62

CI : gYoshimine and Sasaki

xr+1+2 0.15 1.11 -o.s7 1.04 3.00

sr+1+2+3+4 0.17 1.13 -0.46 1.17 3.15

hExperiment 0.75 0.62 0.28 1.27 -0.07 1.46 3.40

l‘From Reference 17.

bFrom reference 24.

cFrom reference 23.

a
Prom references 19 and 20.

O

I

From references 21 and 22.

From reference 2.

9Energies obtained from the frozen K-shell values, reference 2.

h'Remausnended‘ values taken from reference 1.
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polarization) effects. The effects represented by the FOCI

wavefunction were found to favor the neutral atom, and

rather than improving the calculated electron affinity, re-

sulted in poorer agreement with experiment.

As mentioned previously, Yoshimine and Sasaki2

(1974).have published the most extensive CI calculations to

date on the first-row atoms and their negative ions. Their

intention was to eliminate any basis set error and obtain the

exact correlation energy of each by using a very large

Slater basis which, upon reduction by an approximate natur-

al orbital analysis, consisted of an (8s,7p,6d,5f,4g,3h,21)

orbital set. Singles and doubles CI calculations were car—

ried out based on the HF reference configuration (HF+1+2),

and then the importance of higher-order terms was examined

by including selected triple and quadruple excitations

(HF+l+2+3+4). Their results are also summarized in Table II

where only the L-shell correlation energies have been used

Since it was shown by their calculations that K—shell and

KL-intershell correlations contribute less than lO-ZeV to

the EA, and, these are the energies most comparable to our

ls(HF) frozen core CI calculations. Note that the singles

and doubles CI wavefunction does correctly predict B- and 0-

to be bound whereas the FOCI23 does not. Although they

were able to calculate approximately 95% of the estimated

correlation energy of the atom and anion, only approximate-

ly 85% of the EA's were obtained. The HF+1+2 EA's are in

error by 0.l-O.4eV. Triple and quadruple excitations
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improve the energies by only m0.02eV for boron and carbon,

and m0.lSeV for nitroqen, oxygen and fluorine which reduces

the error in the calculated EA's to 0.1-0.3eV.

While all of the previously mentioned calculations

have examined the overall correlation energies in the atom

and anion, none have addressed some key questions which can

lend insight into the description of negative ions:

--What are the minimum correlation effects requir-

ed to account for the stability of the anion?

--How is the electronic structure of the ion dif-

ferent from that of its isoelectronic neutral?

--What other types of correlation effects are

differential between atom and anion and what is

the minimum level required to describe each

(particularly with reSpect to the higher an-

gular momentum functions used in all of the

previous calculations)?

The first and second of these questions were ad-

dressed by Goddard24 (1968) in his paper on the stability

of the negative ions of hydrogen and lithhm.and will be

discussed in detail below. We have attempted to address

the last question through MCSCF and CI calculations which

isolate various differential contributions to the EA's

of carbon, oxygen and fluorine.
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II. ORBITAL MODELS FOR NEGATIVE IONS

A negative ion is characterized by a very diffuse

charge distribution relative to the neutral atom. If the

energy to remove the 'last' electron in an atom, which is on

the order of 10eV, is compared to that of the anion, which

is on the order of leV, it is clear that the (z+l)st elec-

tron is much more loosely bound than the other z electrons

(Table I). The failure of the HF wavefunction to predict

the stability of negative ions can be related to its inabil-

ity to allow for this diffuse nature of the orbital for the

(Z+l)st electron. Using Goddard's example,24 this point is

illustrated by contrasting three different zero-order repre-

sentations of the l5(132) state of H-: the restricted

Hartree-Fock (RHF) wavefunction; the unrestricted HF (UHF)

wavefunction; and the generalized valence bond (GVB) wave-

function;25 in terms of the physical model represented by

each, and their ability to predict the stability of the

anion. The RHF wavefunction is of the form:

= 2
dlsHF 018

‘1’th (3)

Physically, this wavefunction represents two electrons Sing-

let-coupled in the same Spatial lsHF orbital. The UHF wave-

function is given by:

‘PUHF =dllsalss “8 (4)
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This wavefunction relaxes the restriction that the

electrons be in the same Spatial orbital, but at the ex-

pense of the Spin symmetry,\pUHF, being a mixture of the

singlet and triplet couplings of the electrons.

An alternate way to relax the Spatial restric-

tions on the Is electrons is to use the GVB wavefunction

for H- which allows the two electrons to be in nonequiva-

lent ls orbitals while maintaining the prOper spin sym—

metry:

qJGVB =J(lsls' + ls'ls)aB (5)

The overlap between ls and 15' is nonzero. Equation 5

can be expressed as an equivalent two configuration MCSCF

wavefunction in terms of an orthOgonal basis26 which,

computationally, is more convenient to use:

2 2

)pMC “((CllsMC - c228MC )08 (6)

<ls|23> = 0

2 2_
c1 + c2 - l
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The relationship between the nonorthogonal GVB orbitals and

the orthogonal MCSCF orbitals is given by:

 

ls = (2.)"5 fine)” lsMC + (l-s)Li 25140] (7a,

15' = (2)45 [(l+S);5 lsMC - (1-S);’ ZSMC] ‘ (7b)

c -c
1 2

S = <ls[ls'> =
cl+c2

All of these wavefunctions maintain the single-particle in-

terpretation of an electron moving in an average potential

due to the other electron and the nucleus.

The energies and EA's calculated with each of

these wavefunctions (Equations 3,4,6) are summarized in

Table III. The (58/38) hydrOgen basis of Huzinaga27 was

used for these calculations but, in order to obtain a

negative orbital energy for H-, it was neceSsary to augment

this set with two diffuse functions (determined by an even-

tempered expansion), to give a (7s/Ss) basis set.

The RHF wavefunction, which places two electrons

in equivalent ls orbitals, results in the energy of the
HF

anion being 0.33eV above the energy of the hydrogen atom,

predicting the anion to be unstable relative to the atom.

The UHF wavefunction, not being restricted to keeping the

electrons in the same Spatial orbital, places the extra

electron at infinity, also predicting an unbound negative



3(3

 

 

 

 

TABLE III. A comparison of the RHF, UHF and GVB energies for H, H-, and He. Units are as

indicated.

an 2 a - I , b l
g S) H g S) SHE EA He( 8) AHF

hartree hartree ev ev hartree eV

RHF -.4998 -0.4877 0.0 -0.33 -2.8612 0.0

UHF -0.4998c - 0.0 -

GVB —0.5250 1.01 0.37 -2.8774 0.44

Experimental 0.75

aCalculated using an augmented (Se/3s) r (7s/Ss) basis. See text.

bCalculated using the (63/43)

cSet to atomic value.

basis set from reference 29.

See reference 24.
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ion. The GVB wavefunction, on the other hand, correctly

predicts the electron to be bound with an EA of 0.37eV.

Thus, by simply allowing the electrons to be in radially

nonequivalent ls orbitals while maintaining the singlet

Spin symmetry, a prOper zero-order physical description

of H- is obtained. Goddard showed this to be true for the

15(282) state of L1’ as well.24

Radial plots of the ls and the ls and 13' GVB
HF'

orbitals help to illustrate the difference between the RHF

and GVB models. The RHF orbitals for H and H- are pre-

sented in Figure la. Since the ls electrons partially

shield one another from the nuclear charge, forcing both

electrons to be in the same orbital results in a decrease

in the attraction felt by each, and the anion orbital

(dashed line) expands relative to the atom (solid). A1-

ternatively, the 2nd electron could be placed in a more

diffuse orbital which does not shield the other electron as

effectively (GVB), and thus does not decrease the net at-

traction as significantly.28 These ls and 13' orbitals

(dashed lines) are presented in Figure lb along with the

atomic ls orbital (solid). The diffuse nature of the IS'

orbital is very apparent, the overlap with the tight ls,

being only 0.57. Note that the tight ls orbital has es-

sentially the same radial form as the atomic orbital.

For comparison Figure 1c shows the lsH and the
FI

ls and 13' GVB orbitals for the l8(152) state of helium

using the same two configuration wavefunction as for H-



Figure

Figure

Figure

Figure

la.

1b.

1c.
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A comparison of the RHF and GVB radial am-

plitudes for the ls orbitals of H, H- and He.

Distance is in bohr; plots are all on the same

scale.

H (solid) and 8‘ (dashed) RHF orbitals.

<R> = 1.50 and 2.51ao for s and H“, reSpective-

ly.

H RHF (solid) and H’ GVB (dashed) orbitals.

<R> = 1.50, 1.44 and 5.07ao for ls 1

ls GVB, reSpectlvely.

RHF' sGVB

He RHF (solid) and GVB (dashed) orbitals.

<R> = 0.93, 0.69 and 1.22aO for lSRHF.15GVB

ls GVB' respectively.
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(Equation 6). Note now, the higher overlap between ls and

15', S=0.88, and the small deviation from the HF orbital.

Further note that the (lsZ->252) radial correlation energy

is much smaller for He, 0.44eV, than for H-, l.OleV

(Table III).

The helium orbitals, with their high overlap, are

typical of radial correlation within a singlet-coupled

electron pair, indicating that the electrons are bound

nearly equivalently. The H- orbitals, on the other hand,

vary much more from one another and the HF orbital, indicat-

ing that the electrons are not bound equivalently. Rather,

one electron is bound as in the atom while the second is

only loosely bound, occupying a much more diffuse orbital.

This suggestsa general physical model for negative

ions where an anion can be thought of as having 2 electrons

bound as in the neutral atom with the (Z+l)st electron oc-

cupying a more diffuse orbital. A negative ion differs from

its isoelectronic neutral because in the neutral all (Z+l)

electrons are bound nearly equivalently. Thus F- is physi-

cally very different than Ne, C- very different than N.

We have applied this model of a loosely-bound

electron in the negative ion to developing a balanced zero-

order MCSCF wavefunction for the atom and anion of carbon,

oxygen, and fluorine. When viewed in terms of this model,

many of the apparent inconsistencies in the HF representa—

tion are clarified, revealing a very consistent, physical-

ly reasonable description of the negative ion.
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III. CALCULATIONAL DETAILS

The basis set used in the MCSCF calculations was

the (lls,6p) Gaussian basis of Duijneveldt29 augmented with

an additional p function determined by an even-tempered ex-

pansion of the last two functions. This was contracted to

[4S,4p] using the general contraction scheme of Raffenettin),

based upon the HF orbitals of the ground state of the atom.

This contraction resulted in HF EA's which are about 0.01eV

less than the numerical results.17

The configurations used in the MCSCF calculations

were chosen to describe the differential p2 pair energies

between the atom and anion due to the diffuse nature of the

(Z+l)st electron in the anion. This requires configura-

tions similar to those used in H- and Li-; double excita-

tions from 2p2 into 3p2. This type of radial correlation

describes not only the tight/diffuse nature of the (2+1)

electrons in an anion, as demonstrated previously for H-,

but also simple in/out type correlation arising from pair

repulsions, as seen in He. It must, therefore, be included

in the zero-order wavefunction of both the atom and the

anion, although as will be seen, the effect is much more

dramatic in the anion. Thus the wavefunctions used in the

following MCSCF calculations are:

Atom: «I! c 2322pn - C.
1 ZS22ph-23p2] (8a)

2

Anion: «11 [c12522pn+1 - C 2322pn-13p‘]2 (8b)
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In addition, for the 3p(2$22p2) state of carbon, the

(252->2p2) near-degeneracy effect,31 arising because of the

unoccupied 2p orbital, was included in the zero-order wave-

function by adding the configuration:

c32p4a8ao (8c)

For the CI calculations the [4S,4p] basis was augmented with

3 sets of d-funCtions. The first two functions were taken

from a two-term Gaussian expansion of a Slater 3d function.32

These exponents were then scaled together to minimize the

energy for the neutral in terms of an MCSCF+1+2 wavefunc-

tion. Then a more diffuse exponent was added and optimized

for oxygen and fluorine to describe the anion. This was

done by allowing all single and double excitations out of

one of the doubly occupied 2p orbitals, based upon the.

MCSCF orbital set of the anion. Since for carbon there is

not an equivalent procedure to follow, the third exponent

was chosen in the same ratio as Optimized for fluorine.

These exponents are given in Table IV.

An f-function was also added to the fluorine basis

and optimized for both the atom and the anion in HF+1+2

and MCSCF+1+2 calculations. The exponent was found not to

be a strong function of the state or orbital set and, there-

fore, the optimum values for 2P and 1S were averaged

(cf 3 1.9167).

For the most part the CI wavefunctions consisted

of all single and double excitations from either the HF
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TABLE IV. Optimized 3d and 4f Exponents for carbon. oxygen and fluorine

 

 

 

Carbon Oxygen Fluorine

£36 1.0886 2.2887 3.0238

0.3223 0.6777 0.8954

0.0954 0.2651 0.2651

1 . 9167
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reference configuration (HF+l+2) or from the MCSCF reference

configurations (MCSCF+1+2). These calculations were parti-

tioned to include first the (Sp) Space, then the effect of

adding the d and f-functions was examined. For all three

systems full-CI's within just the (p) Space were performed

to test the adequacy of the (2p2->3p2) MCSCF description,

and for carbon and oxygen selected full-CI calculations are

also reported. The lS(HF) orbital was kept frozen in all

of the calculations, and symmetric orbital sets were used.

IV. CALCULATION OF THE EA'S OF CARBON, OXYGEN AND FLUORINE

A. Carbon

The results for carbon are summarized in Table V.

Carbon is somewhat anomalous because of the near-degeneracy

31
effect found in the 3P(235p2) state of the atom but not

in the negative ion. Since this effect is ignored at the

HF level, the energy of the 3P state is artificially high,“

resulting in a larger EA than would be the case if HF

treated both the atom and anion equivalently. If the

(282->2p2) near-degeneracy effect is included in the 3p

33 this statewavefunction, the GVB description of carbon,

is lowered by 0.47eV giving an EA of only 0.06eV.

Allowing the 2p orbitals to radially correlate by

including 2p2 to 3p2 excitations, lowers the 3p state by

0.12eV. This correlation lowers the 4S state by 0.49eV,

larger than expected based on the effect in the 3p state.

Full CI's within the (p) Space improve the MCSCF energy of
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TABLE V. Hartree-Fock, MCSCF and 3CI calculations on the 3P state of the carbon atom and

the ‘5 state of the carbon anion. Basis set: [4s,4p,3d), units are as indicated.

 

 

 

 

3PI232222) ahr 45(2s2293) our g5
artree eV hartree eV eV

Hartree-rock ‘ -37.6880 0.0 -37.7076 0.0 0.33

ncscr (282+292) -37.7054 0.47 0.06

(2p2r3p2) -37.6924 0.12 -37.7256 0.49

bc1 (9) Full -37.6924 0.12 -37.7269 0.52

scscr (282*2p2)+(2p2*3p2) -37.709s 0.58 0.44

cc1 (sp)

sr+1+2 -37.7293 1.12 ' -37.7588 1.39 0.80

ncscr+1+2 '37.7296 1.13 -37.7607 1.45 0.84

Full -37.7297 1.13 ~37.7611 1.46 0.85

dCI (Spd)

HF+1+2 -37.7740 2.34 -37.8114 2.83 1.02

ncscr+1+2 -37.7747 2.36 -37.8144 2.91 1.08

Full -37.7755 2.38

a'eCI Yoshimine & Sasaki

ar+1+2 1.11

ar+1+2+3+4 1.13

r .
Experiment 1.27

 

‘The ls orbital remained doubly-occupied in all calculations.

bFull CI within the (p) space.

cExcitations allowed only in the (sp) space.

4

.From reference 2.

f'Recommended' value from reference 1.

Excitations allowed in the (spd) space.
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the 4S state only slightly, having no effect on the 3P state,

demonstrating the adequacy of the (2p2->3p2) MCSCF descrip-

tion for carbon. The result of incorporating both effects,

near-degeneracy and radial 2p2 correlation in the 3P wave-

function is a lowering Of 0.58eV, just the sum of the in-

dividual effects, and results in an MCSCF EA of 0.44eV for

carbon.

The orbitals obtained from the HF and MCSCF cal-

culations were used in CI+1+2 and full CI calculations

within the (Sp) space. The total lowerings (relative to HF)

obtained from the full-CI calculations are 1.13eV for the

3P state and 1.46eV for the 4S state, predicting an EA of

0.85ev.. The MCSCF+1+2 calculations lower both states by

essentially the full-CI result, 1.13eV for C and 1.45eV for

C-. HF+1+2 calculations within (sp) give a similar 3P-

lowering but are 0.07eV higher for the 4S state, predicting

the EA to be 0.80eV. Thus, about 57% of the EA of carbon

is obtained by full correlation within the (sp) space. En-

largement of the (Sp) basis would improve this to perhaps

65-70%, leaving about 0.4eV which can be ascribed to higher

angular momentum terms.

CI calculations within the (Spd) Space are also

reported in Table V. A full-CI was only possible for the

3P state, lowering it by 2.38eV relative to HF. The

MCSCF+1+2 and HF+1+2 lowerings for this state are Similar,

being only 0.02 and 0.04eV higher than the full-CI result.

The energy of the anion is affected more than the neutral
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by the higher-order excitations in the MCSCF+1+2 calcula-

tion, picking up 0.08eV over the HF+1+2 energy and giving an

EA of 1.08eV. The HF+1+2 EA is 1.02 eV. While about 0.2eV

of the EA is Still unaccounted for at this level, a com-

parison to the CI calculations of Y&S2 show that our

HF+1+2 EA is only 0.09eV less than theirs, thus providing an

estimate of the basis set limitations within our calcula-

tion. Since the MCSCF+1+2 wavefunction contains quadruple

excitations relative to the HF configuration, the EA can be

compared to the HF+1+2+3+4 result, being only 0.05eV less

than this value. If the basis set error is on the order of

at least 0.1eV, a more complete basis would yield an

MCSCF+1+2 EA larger than obtained by Y&S and about 0.1eV

smaller than experiment.

B. Oxygen

Calculations on the oxygen 3P(2322p4) neutral

atom and the 2P(2322p5) negative ion are summarized in

Table VI. HF finds the anion to be unbound (as was also

23). The (2p2->3p2)

3

the case for the FOCI description

radial correlation effect lowers the P state by 0.9leV,

and the anion by 1.92eV. Now the energy Of the anion lies

below the atom giving the correct physical description at

zero-order with an EA of 0.46eV.

Full-CI's within the (p) space are more important

in oxygen than in carbon resulting in an additional lower-

ing Of 0.l7eV for the atom and 0.47eV for the anion over the
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TABLE VI. Hartree-Fock, MCSCF and 8CI calculations on the 3P state of the oxygen atom and

the 2? state of the oxygen anion. Basis set: [4s,4p,3d), units are as indicated.

 

 

3 2 4 2 S
P(2s 22 ) as? 9(23222 ) 388 55
ar ree ‘EV artree ev ' eV

 

Hartree-Foch -74.8077 0.0 -74.7875 0.0 -0.55

MCSCF (2p2-3p2) -74.8411 0.91 -74.8580 1.92 0.46

b
CI (9) Full ~74.8474 1.08 -74.8754 2.39 0.76

cc1 (sp)

HF+1+2 -74.8774 1.90 -74.9057 3.22 0.77

MCSCF+1+2 -71.8792 1.94 -74.9132 3.42 0.92

Full -74.8794 1.95 -

dCI (spd)

HF+1+2 -74.9S44 3.99 -74.9871 5.43 0.89

MCSCF+1+2 -74.9S7S 4.07 -74.9976 5.72 1.09

7'.CI Yoshimine s Sasaki

HF+1+2 1.04

HP+1+2+3+4 1.17

{Experimentk 1.46

 

aThe 1s orbital remained doubly-occupied in all calculations.

bFull CI within the (p) Space.

cExcitations allowed only in the (sp) space.

dExcitations allowed in the (Spd) Space.

‘trom reference 2.

1’Recommended' value from reference 1.
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MCSCF (2p2->3p2) energies. This is because more than one

effect must be described by the 2p and 3p MCSCF orbitals

once the 2p orbitals become doubly occupied. For the

neutral, correlation of the intra-p2 pair as well as the

inter-p2 pairs must be represented by the two orbitals.

For the anion, in addition to these, the effect of one

diffuse electron correlating with four tighter electrons

is also present. Allof these effects are averaged in the

MCSCF procedure but are more fully represented by addi-

tional p-functions, as demonstrated by the full-CI (p)

energies.34

Full-CI calculations within the (Sp) space could

only be done for the neutral because of the size of the

configuration list, lowering the 3P state by 1.95eV rel-

ative to HP. As was found for carbon, the MCSCF+1+2 and

HF+1+2 correlation energies for this state are only

slightly higher, 1.94 and 1.90eV respectively. The energy

of the anion is lowered by 3.42eV for MCSCF+1+2, while

it is 0.2eV smaller for HF+1+2. Thus, the effect of the

triple and quadruple excitations upon the energy of the

anion is becoming pronounced. The HF+1+2 EA is 0.77eV.

The MCSCF+1+2 EA is 0.92eV, 63% of the experimental value.

For the CI calculations within the entire (Spd)

virtual Space, the higher-order excitations begin to

show an effect on the energy of the neutral, HF+1+2 being

0.12eV above the MCSCF+1+2 energy. For the anion this
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effect is even larger, 0.29eV. The HF+1+2 EA is 0.89eV,

0.15eV less than that of Y&S, again an indication of basis

set limitations. The MCSCF+1+2 EA is 1.09eV, only 0.08eV

less than that of Y&S, but still in error by 0.37eV with

experiment. Correcting for limitations in the basis set,

we estimate the MCSCF+1+2 limit for the EA of oxygen to be

more than 1.24eV.

C. Fluorine

Calculations on the 2P(2$2p5) atom and 18(23226%

anion of fluorine are summarized in Table VII. HF, while

properly predicting the stability of F-, accounts for less

than half of the experimental EA of 3.40eV. Radial

(292 l

by 1.16eV, resulting in an MCSCF EA of 2.51eV. Full-CI

->3p2) correlation differentially lowers the S anion

calculations within the (p) Space Show the same trend as

for oxygen reducing the energy of the anion more than that

of the neutral, giving an EA of 2.78eV. CI's within the

(sp) and (spd) Spaces also Show the trend that the higher-

order terms included in the MCSCF+1+2 wavefunction are

more important for the anion than the neutral; a differen-

tial effect of 0.l8eV for (sp) and 0.25eV for (Spd).

Within the (sp) Space the MCSCF+1+2 calculations account

for 87% of the EA of fluorine. Within the (Spd) Space,

the MCSCF+1+2 EA is 3.16eV, HF+1+2 being 2.9leV. Thus,

in the [4s,4p,3d] frozen core basis the HF+1+2 EA is only

0.09eV less than that of Y&S, while the MCSCF+1+2 EA is
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TABLE \II. Hartree-rock, MCSCF and aCI calculations on the 2p state of the fluorine atom

and the 1S state of the fluorine anion. Basis set: [4s,4p,3d,1f], units are as indicated.

2P(2522252 AH? 15(232226) AHF §§

hartree eV hartree eV eV

Hartree-Foch —99.4067 ' o.o -99.4563 0.0 1.35
e

MCSCF (2p‘t392) ~99.4646 1.58 -99.5570 2.74 2.51

b

CI (9) Full -99.472¢ 1.79 ~99.S746 3.22 2.78

cc: (5;)

HF+1+2 -99.5043 2.66 -99.6068 4.09 2.79

HCSCF+1+2 -99.5070 2.73 ~99.6163 4.35 2.97

dCI (spd)

HF+1+2 -99.5948 5.12 -99.7016 6.68 2.91

MCSCF+1+2 -99.5992 5.24 -99.7153 7.05 3.16

CI (spdf)

HF+1+2 ~99.6159 5.69 -99.7229 7.25 2.91

MCSCF+1+2 -99.6202 5.81 -99.7369 7.64 3.18

"°c1 Yoshimine 5 Sasaki

HF+1+2 ’3.00

HF+1+2+3+4 3.15

¢ .

‘Experiment
3.40

3The ls orbital remained doubly-occupied in all calculations.

bFull CI within the (p) space.

cBxcitations allowed only in the (sp) space.

dExcitations allowed in the (spd) space.

eProm reference 2.

f‘Recommended' value from reference 1.
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actually 0.01eV better. Addition of an f-function shows no

differential effect for the HF+1+2 EA, while the MCSCF+1+2

EA is only improved by 0.02eV. If the basis set error is

about 0.1eV, the EA obtained with the MCSCF+1+2 wavefunc-

tion should be about 0.1eV less than the experimental

value.

V. DISCUSSION

The importance of the differential p2 correla-

tion energy in determining the electron affinity of an

atom is best illustrated by comparing isoelectronic sys-

tems. These energies relative to HP, are given in Table

VIII for the systems: C-, N(4S); 0-, F (2P); and F-,

Ne(18), at various levels of calculation (oxygen 3P is

also included for completeness). Comparing the anion and

isoelectronic neutral, it is clear that correlation of

the p-electrons is larger in the anion than the neutral,

even though the p-orbitals contract as Z increases and so

an Opposite trend might be expected. For carbon the 3P

state shows a p2 repulsion energy of 0.12eV/pair. If the

effect in the anion were the same, the lowering in the 48

state would be 0.36eV (0.12 x 3 pairs), while it is, in

fact, 0.l3eV larger. This can be associated with the

extra correlation energy due to the diffuse electron. Note

though, that the effect for nitrogen atom is 0.34eV,

as predicted from the pair energy for carbon. The im-

portance of this differential radial correlation increases
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a , . . . .
TABLE VIII. MC‘CF and Cl correlation energies relative to Hartree-Fock for the isoelectronic

0

series: 45(2322p3) of C and N; 2P(2522p5) of O- and F; and 18(232p6) of F- and Ne. All

units are in eV.

 

 

 

 

ucscr Vbc1(p) cCI(sp)

(2 2,3 2, Full HF+1+2 MCSCF+1+2 Full

43(2822p3)

c' 0.49 0.52 1.39 1.45 1.46

d'eu 0.34 0.35 1.12 1.14 1.14

A 0.15 0.17 0.27 0.31 0.32

3P(2s22p4)

o 0.91 1.08 1.90 1.94 1.95

2P(2522p5)

0' 1.92 2.39 3.22 3.42

F 1.58 1.79 2.66 2.73

3 0.34 0.60 0.56 0.69

15(2s22p6)

9‘ 2.74 3.22 4.09 4.35

d'fxe 2.33 2.55 3.50 3.61,

A 0.41 0.67 0.59 0.74

 

The ls orbital remained doubly occupied in all CI calculations.

Full CI within the p-space.

Excitations allowed only in the (sp) space.

Calculated using the (11s,7p/4s,4p) basis from reference 29.

O
D
-
O
O
'
O
I

EHF--54.4000 hartree.

f .-
EH? 128.5431 hartree.
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with the number of p electrons, where for F- the effect

accounts for 0.4leV more correlation energy than found in

neon.

Table Ix summarizes the errors in the calculated

EA'S at various levels for HF-based and MCSCF-based wave-

functions. Since in every case the difference between atom

and anion is the addition of one more electron, it is rea-

sonable that the differential correlation energy be similar

from atom to atom. This is consistent with the concept

that the addition of an electron to a system should cost

about leV in correlation energy. Thus, the error in the

uncorrelated EA should be about leV. But for HF, as pre-

viously mentioned, these errors range from little more than

0.5eV to over 2eV as the p-orbitals become doubly occupied.

The FOCI wavefunction, by removing the degeneracy and po-

larization effects but not the differential p2 correlation

increases this error to 2.01:0.8SeV. The MCSCF description

which includes the differential (2p2->3p2) radial correla-

tion (and the near-degeneracy effect in the 39 state of

carbon), results in EA's which do reflect this trend,

being in error by 0.91:0.09ev, even though the p-orbitals

are doubly occupied in oxygen and fluorine. Thus, the

nonrelativistic electron affinity (Equation 1) may be more

consistently represented by:

EA = ABC + AEcorr (9)



Carbon Oxygen Fluorine Mean Error

Hartree-Peck 0.74 2.01 2.05 1.40 t 0.66

aSchaefer FOCI 1.16 2.58 2.87 2.01 1 0.85

HF+1+2 (sp) 0.47 0.69 0.61 0.58 t 0.11

(Ipd) 0.25 0.57 0.49 0.41 t 0.16

b (spdf) 0.49

YSS HF+1+2 0.16 0.42 0.40 0.29 i 0.13

cacscr 0.83 1.00 0.89 0.91 1 0.09

MCSCT+1+2 (sp) 0.43 0.54 0.43 0.49 t 0.05

(spd) 0.19 0.37 0.24 0.20 f 0.09

b (Spdf) 0.22

Y&S HF+1+2+3+4 0.14 0.29 0.25 0.21 t 0.08

419

TABLE IX. Errors in the calculated electron affinities of carbon,

EA(expc)-EA(1), All units are in eV.

oxygen and fluorine,

 

 

 

 

aFrom reference 23.

b

cCalculated using equations 8a, b and c.

Frozen K-shell values taken from reference 2.
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where ABC is the difference between the MCSCF energies of

the neutral and anion, and AEcorr is on the order of leV..

Comparing the CI calculations based upon the HF

wavefunction to those based upon the (2p2->3p2) MCSCF wave-

function also points up the consistency of the MCSCF ap-

proach. While the CI+1+2 error within the (sp) Space is

0.5810.llev for the HF-based calculations, this is re-

duced to 0.49:0.05eV for those based upon the MCSCF wave-

function. CI's within the (Spd) space result in HF+1+2

errors of 0.4110.16ev, which is reduced to 0.2810.09eV if

the MCSCF reference wavefunction is used.35 These results

can be compared to the results of Y&S, 0.2910.l3ev for the

HF+1+2 errors. Including higher-order excitations,

HF+1+2+3+4, which are most comparable to our MCSCF+1+2

calculations, Y&S have an error of 0.21:0.09eV, only

0.07eV less than ours deSpite the far larger basis sets

and configuration lists. Note that the importance of the

higher-order terms for the description of the anion in-

creases with the number of p—electrons.

VI. CONCLUSIONS

The zero-order MCSCF wavefunction which includes

the differential radial correlation due to the diffuse

nature of the (z+l)st electron in the negative ion, prOp—

erly predicts the stability of H-, Li-, and 0-. This wave-

function gives a consistent error of approximately leV in

the calculated EA. At higher levels, CI+1+2 calculations
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based upon these orbitals and configurations provide a con—

sistent method for introducing triple and quadruple excita-

tions (away from the HF configuration) into the wavefunc-

tion. With only a [4s,4p,3d] basis we have calculated the

HF+1+2 EA's of carbon, oxygen and fluorine to within

0.12eV of the large basis set calculations of Y&S.2 If

the configuration list is based on the MCSCF generating

configurations and orbital set, this difference is reduced

to 0.07eV, where for fluorine the resulting EA is slightly

better than obtained in the near basis set limit

HF+1+2+3+4 calculations of Y&S. The MCSCF+1+2 EA'S differ

from those determined experimentally by about 0.2eV.
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I. INTRODUCTION

There is much interest currently in obtaining a

consistent theoretical description of the electronic states

arising from the szdn, Sdn+1, and dn+2

1-4

configurations of

the transition metal atoms. While Hartree—Fock (HF)

calculations are known to inadequately represent these low-

lying states, it has not been well-understood what level of

description is required. This inability of the HF model

to reproduce the atomic separation has important conse-

quences for the description of the bonding between transi-

tion metal atoms and other atoms and molecules. In part-

icular, for manganese through c0pper, the atomic dissocia-

tion limits for small molecular Species are biased in

2dn state in the HF picture by as much asfavor of the s

1.3eV compared to experiment, raising serious doubts as to

the validity of interpretations based on molecular calcu—

lations which do not go beyond the HF model. We have

examined the differential correlation effects within the

lowest lying states corresponding to the Szdn, sdn+l, and

dn+2 configurations of the first row transition metal

atoms using MCSCF and CI approaches (nonrelativistic) with

the intention of:

1. Characterizing the major valence cor-

relation effects in these states, and,

2. DevelOping a compact yet accurate multi-

configuration description for each of

the states.



56

A. Background

The metal atoms typically have a szdnground state

n+2

n+1 as the first excited state, and the d state sever—sd

a1 eVs higher. Experimentally5 the excitation energies

1 5
(AE) follow two trends, decreasing with Z for d to d

(half-filled shell), increasing abruptly at d6, then de-

10 n+1 2 n

creasing again to d (filled shell). The Sd —s d AE'S

denoted by A(n+l), are plotted in Figure la. Note that at

Cr(d5) and Cu(dlo) the two states invert, sdn+l becoming

more stable, i.e., the ground state.

Numerical HF results6 are also presented in

Figure lb as the error with reSpect to experiment (solid

lines). While the general trends are reproduced by HF,

the AB in Sc-Cr is underestimated by ~0.3eV favoring the

sdn+1 state, and overestimated in Mn-Cu by ~1.0eV favoring

the szdn state. These trends are more consistent if view-

ed in terms of the number of singlet-coupled electron

pairs in each state which are not expected to be represent-

ed well in the HF description. In Mn-Cu the two states

have the same number of singlet-coupled pairs, i.e., the

same multiplicity, and so the HF level of description

should be comparable for both states. In Sc-Cr on the

2
other hand, the s dn state always has the one 452 Singlet-

coupled pair whereas the sdm'l state, being high Spin

coupled, has no Singlet pairs. Thus, a description for the

first half of the row comparable with that of the second

half would require correlation of the 452 pair. The dashed
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Figure l.

l-4sz3dn excitation energies of scandium to c0pper,4s3dn+

[E(Sdn+l)-E(szdn)]. All units are in eV.

a) Experimental values (reference 5).

b) Error in the numerical HF excitation

energye, [AHF - AEEXPER] (solid line).

The dashed line is the HF error cor-

rected for the (452,4p2) near

degeneracy effect, AEH + 0.78eV(an).

F
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line gives the AE's for Sc-Cr including this correlation

(to be discussed in detail later). Now the calculated

trend is clear; the AE'S are consistently overestimated,

2dn state by m0.5eV for Sc-Cr, and ml.0eV

for Mn-Cu. For the dn+2-szdn AB, A(n+2), the same type

favoring the s

of HF trends are observed, the error being ~1.4eV for Sc-V

and ~3.5eV for Cr-Cu.

Clearly, the inclusion of electron correlation

is necessary to prOperly represent the excitation energies

of the low-lying states of the transition metal atoms.

n+1

A most puzzling point is that is the sd and dn+2 states

which are less accurately described, even though for

dz—d5 the electrons all occupy different orbitals and all

are high Spin coupled. It is this problem which our paper

addresses, first by examining in detail the differential

correlation effects in terms of a valence MCSCF wavefunc-

tion, and then by comparing the AE'S obtained with this

approach to valence CI and experimental values.

B. Basis Set

The primitive Gaussian basis set used in the

following calculations, (l4s,llp,6d), is that of Wachters7

augmented with two additional p functions to describe the

4p orbital and one additional, diffuse d function to

l and dn+2 states.6describe the 3d orbital of the sdn+

This set was contracted to [55,4p,3d] using the general

contraction scheme of Raffenetti.8 Since the contraction
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was based on the atomic orbitals for the 52dn state we ex-

pect a slight bias toward this state.. The HF AE'S, A(n+l)

and A(n+2), for this basis are compared to numerical re-

sults in Table I. In general, the basis set error is on

the order of m0.1eV for A(n+l) and m0.lSeV for A(n+2).

For Sc-Cr CI calculations were carried out in

which a full set of single-component f-functions was added

to the basis and the exponent Optimized for each state of

the atom based upon a CI wavefunction which included all

single and double excitations with reSpect to the MCSCF

configurations. The Optimal f-exponents changed signifi-

cantly from one atom to another but not between states of

the same atom; consequently an average f-exponent was used

for each atom: SC(0.27), Ti(0.45), V(0.77), Cr(l.l4).

The [53,4p,3d,1f] basis was examined further.

for titanium where an additional function Of each sym-

metry type was added and the exponent was Optimized in

CI calculations with the ls-3p core orbitals frozen. The

additional functions were found to have no significant

2 2 3
effect on the s d to sd excitation energy.9

II. VALENCE CORRELATION EFFECTS IN THE EARLY TRANSITION

METAL ATOMS, Sc-Cr

Since energy differences are the quantities re-

lated to experimental observables, the important correla-

tions are those which are differential between the states
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TABLE I. A comparison Of numerical and Gaussian basis set of calcula-

1 2 n 2 2 n

tions of the Hartree-Fock sdn+ -s d , A(n+1), and dn+ -s d , A(n+2), exci-

tation energies of scandium to COpper. All quantities are in eV.

 

 

  

 

A(n+l) A(n+2)

numericala Gaussian _A__ numericala Gaussian _A__

Sc 1.00 1.10 0.10 4.47 4.63 0.16

Ti 0.54 0.63 0.09 4.25 4.41 0.16

V 0.12 0.21 0.09 3.27 3.44 0.17

Cr -1.27 -1.17 0.10 5.75 5.90 0.15

Mn 3.32 3.38 0.06 9.15

Fe 1.80 1.86 0.06 7.46

CO 1.53 1.55 0.02 7.05

Ni 1.28 1.30 0.02 5.47

Cu -0.37 -0.34 0.03

 

 

aFrom reference 6
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of the atoms. There are three types of pair correlations

which arise in the (4s,3d) valence shell:

1. 32 correlation of the 4szpair

(largely the near degeneracy effect)

2. d2 correlation of the 3d electrons

3. sd correlation between the 4S and

3d electrons

We have used an MCSCF wavefunction to describe the 52 and

d2

correlation effects. The sd correlation effect was not

represented at this level but was, however, included in

subsequent CI calculations (discussed in more detail later).

Correlation of the 432 pair is clearly a dif-

ferential effect, occuring only in the den state. The

most important correlating configurations are those which

allow angular correlation of the 43 pair represented by a

double excitation from 43 into the 4p orbitals. This is

the third-row analog Of the well-know near degeneracy

effect found in first-row atoms.lo While the magnitude

Of this effect decreases with z in the first row as the 2p

orbitals become occupied, the 4p orbitals for the states of

interest in the metal atoms are unoccupied, so the effect

would be expected to remain relatively constant across the

row. Inclusion of this effect favors, i.e., differential-

2
1y lowers the energy of the s dn state.

The d2 pair correlation effect, on the other

hand, occurs in all States Of the atoms. We have found

that radial correlation of the 3d electrons is by far the
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most important contribution to the energy11 and thus, have

used correlating configurations which are double excita-

tions from 3d2 into 4d2, for all 3d pairslz. This effect

would be expected to be proportional to the number of pairs

Of d-electrons, i(i-l)/2 for d1, favoring the states in

the following order:

dn+2 > sdn+1 > SZdn.

Since the d-orbitals are known to contract with increasing

Z, the d2 correlation effects would also be expected to in-

crease with Z.

Thus, the valence MCSCF wavefunctions used in the

following calculations include angular correlation of the

452 pair and radial correlation of the 3d2 pairs:

32d“ : c14323dn + c24p23dn + c34323dn‘24d2 (la)

sdn+1 : c14s3dn+1 + c24s3dn‘14d2 (lb)

dn+2 : cl3dn+2 + c23dn4d2 (lc)

A. Scandium and Titanium

Scandium and titanium, being the simplest transi~

tion metal atoms, serve as a useful point to begin discus-

sion Of the above effects without the added complication

which more d-electrons present. Scandium has a 2D(4523d)

ground state with the 4F(453d2) first excited state 1.43eV

higher. The present HF calculations predict an excitation
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energy of 1.10eV, 0.lOeV above the HF limit and 0.33eV be-

low the experimental value (Table II). The valence MCSCF

wavefunction for the 32d1 state contains no d2 correlation

term since there is only one d-electron. Addition of the

4p2 configuration lowers the energy by 0.75 eV. The MCSCF

wavefunction for the sd2 state has one configuration in ad-

dition to the HF configuration to describe the correlation

between the two d-electrons. The d2 correlation energy for

this state is 0.21eV. The resulting excitation energy,

1.64eV, now favors the 82d1 state by 0.21eV. Improvement

of the core basis as judged from numerical HF calculations

could reduce the difference with eXperiment to about 0.1eV.

23d2) ground state with theTitanium has a 3F(4s

5F(4s3d3) first excited state 0.8leV above it (Table III).

The HF AB is 0.63eV, again 0.09eV above the HF limit, but

underestimating the experimental value by 0.18eV. The

82d2 state has both 52 and d2 correlation terms. The 32

correlation accounts for a 0.77eV lowering relative to HF,

slightly larger than for scandium. The d2 correlation in

32d2 is only 0.09eV. The combination of both 32 and d2

correlation is essentially additive, 0.85. In the sd3

state of Ti the d2 correlation energy is 0.49eV. The

valence MCSCF gives an AB of 0.99, 0.l9eV above experi-

ment.13

While the d2 state of titanium (szdz) shows a

lowering of 0.09eV for one 3d2 pair, the effect in

scandium (sdz) is 0.21ev, 2.5 times larger. Further, the



€55

 

   

 

TABLE II. Calculated and experimental energies for the s d , sd2 states of the scandium

atom. Basis set: (Se, 4p, 1f]. Units are as indicated.

?0(4s‘3d) “8(4s3d‘) “8(3d3)

2 2’

Energy AH? Energy AHF A(s d) Energy £§§_ A(s d)

hartree e .artree eV 9 ar ree eV eV

HF -759.7251 0.0 -759.6847 0.0 1.10 -759.5551 0.0 4.63

MCSCF

3d2-4d2 -- -7S9.6924 0.21 -759.5833 0.77

8011‘ ~759.7527 0.75 -- 1.64 -- 4.61

CI

HF+1+2 -759.7625 1.02 -759.7005' 0.43 1.69 -759.5929 1.03 4.62

MCSCF+1+2 -759.7636 1.05 -759.7007 0.44 1.71 -759.5987 1.19 4.49

Pullb -759.7638 1.05 -759.7007 0.44 1.72 -759.5991 1.20 4.48

Experimentalc 1.43 4.18

 

 

aMCSCF wavefunctions defined by equations la—c

b

cFrom reference 5

Full-CI for 3 valence electrons
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TABLE III. Calculated and experimental energies for the s d , sd , and d4 states of the titanium

atom. Basis set: (5s, 4p, 3d, 1f]. are as indicated.

5 4’

jF(4s27 ) SF(4s3d3) D(3d )

Energy 4H? Energy LHF lgszdzz Energy AHF 0(s d )

hartree ev hartree eV V hartree eV eV

HF -848.3927 0.0 -848.3697 0.0 0.63 -848.2306 0.0 4.41

MCSCF

3d2-4d2 -848.3961 0.09 -848.3877 0.49 -848.2761 1.24

n

4s‘-4p2 -848.4210 0.77 -- --

Ful‘a -848.4241 0.85 -- 0.99 -- 4.03

CI

HF+1+2 -848.4377 1.22 -848.4009 0.85 1.00 -848.2909 1.64 4.00

MCSCF+1+2 -848.4396 1.27 -848.4019 0.88 1.03 -848.2974 1.82 3.87

Fullb -848.4399 1.28 -848.4020 0.88 1.03 -848.2982 1.84 3.86

Experimentalc 0. 81 3 . 55

 

 

aMCSCF wavefunctions defined by equations 1a-c.

bFull-CI for 4 valence electrons

cFrom reference 5
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d2 correlation energy in the sd3 state of Ti, 0.49eV, is

much larger than the 0.27eV (0.09eV/pair x three pairs)

that would be predicted on the basis of a simple pair de-

pendence of the correlation energy.

B. Differential Trends .

The results of the 32 and d2 correlation effects

for the early transition metal atoms are summarized in

Table IV. Here we use the symbol €232+4p2 to denote the

energy lowering, relative to the HF energy, Obtained from

2
the (432,4p2) correlations of the 4S 3dn states. Similar-

2
ly, e 2 2 represents the (3d ,4d2) energy lowering of

n

3d +4d

those states with n d-electrons.

Columns 1-3 Show the effect of including 4p2 and

2
4d2 configurations in the 4S 3dn wavefunction. As mention-

ed earlier, €282+4p2 is relatively constant being 0.78 t

2 n n .

0.03eV. For the 4s 3d states €3d2+4d2 increases approx-

imately quadratically with the number Of d-electrons fol-

lowing the simple pair formula:

n -

e3d2+4d2 ‘ Aedd

n n-l) (2)

2

where Aedd = 0.087eV, and corresponds to the energy lower-

ing associated with correlation of a parallel Spin 3d

electron pair. Note that it is also approximately the

pair energy calculated for the 52d2 state of titanium. The
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2
TABLE IV. Valence MCSCF (4s ,4p2), (3d2,4d2) correlation energy

differences from Hartree-Fock. All quantities are in eV.

 

 

 

 

__ 43230“ 433dn+1 3dn+2

Fulla 4s2+422 3d2+4d2 3d2+4d2 3d2+4d2

Sc 0.75 0.75 0.0 0.21 0.77

Ti 0.85 0.77 0.09 0.49 1.24

v 1.03 0.79 0.27 0.84 1.69

Cr 1.28 0.80 0.52 1.21 2.48

Mn 1.55 0.81 0.79 1.85

Fe 2.03 0.82 1.29 2.48

CO 2.53 0.83 1.81 3.16

Ni 3.07 0.84 2.37 3.86

Cu 3.67 0.84 2.99 4.59

 

 

aMCSCF wavefunction defined by equation la.’
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first column shows the results of incorporating both ef-

fects into an MCSCF wavefunction (Equation 1a). As can be

2 2
seen, the d and s energies are essentially additive as

would be expected if the orbitals are indeed concentrated

in different regions of Space and the correlation effects

noninterfering.

If the same type Of d2 correlation energy were

1
associated with the (n+1) electrons Of the S.dn+ states of

the atoms, €n+§ 2 would simply be equal to en 2 2 of

3d +4d 3d +4d

Z+1. Comparing columns 3 and 4 shows that this is not the

case. Consistent with the results given above for Sc and

1
Ti, the d2 correlation energy for the sdn+ state in all

cases is larger than for the 32dn state with the same

number of d-electrons. Apparently a different type of

correlation is involved with the'(n+l) electrons Of the

dn+1
3 state than the simple pair repulsions between the

n electrons in the den state.

We have found the d2 correlation energy for the

n+1 state to follow a form which is the sum of two terms.sd

The first term represents the correlations between the n

d-electrons as in the ground state; the second describes

the extra energy of the (n+1)8t electron correlating with

each of the other n:

n+1
e _ n(n-l)

3d2+4d2 ‘ Aedd "'2“— + A’de' n ‘3)
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The difference between the d2 correlation in the two states

should, therefore, be linear in n:

n (4)

where the SlOpe of the line gives this extra energy associat-

ed with the (n+1)St electron. Figure 2 shows a plot of the

d2 correlation energies for the two states. The energy low-

ering in the szdn state is represented by the diamonds. The

dotted line is a plot of equation (2) with AS = 0.087eV.
dd

The observed good agreement between the calculated energy

lowerings and dotted line, rms = 0.005eV, validates the sim-

ple pair model of this correlation effect. The d2 correla-

tion energy for the sdn+1 state, €n+l , is represented by

3d2+4d2

the circles. The difference between these values (squares)

is seen to be linear in n, where the value of the SlOpe,

is 0.18ev, with rms=0.04 (solid line). The dashed

. n+1

Aedd’

line, associated with the sd state, is simply the sum Of

the solid and dotted lines.

C. Orbital Interpretation

From the above discussion, it is clear that the d2

correlation effects in the Sdn+1 states are unusually large.

An understanding of the unique nature of this extra cor-

relation energy is given by contrasting these states tO the

analogous Spn+1 states of the first row atoms. In carbon,

for example, the excitation 32p2+sp3 places a ZS electron

into a 2p orbital. The Shielding of the nuclear charge
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Figure 2.

Calculated (3d2,4d2) energy lowering relative to HF fOr the

2 1
s dn (diamonds) and sdn+ (circles) states of scandium to

chromium, [E 2

HF-EMCSCF]. The dotted line through the s dn

points correSponds to the formula, 0.087 x n(n-l)/2

(rms=0.005eV). The squares correspond to the calculated

differential energy lowering between the two states, while

the solid line corresponds to the equation 0.18 x n

(rms=0.04eV). The dashed line is the sum of the solid and

dotted lines. All units are in eV.
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by the 25 and 2p electrons is essentially equivalent accord-

14 SO that this excitation is not ex-ing to Slater's rules,

pected to greatly change the net potential felt by the 2p

electrons. For carbon the p2 radial correlation energy for

22p2) state is calculated to be 0.12eV using anthe 3P(Zs

MCSCF wavefunction which includes the 3p2 configurations.

If the pair effects were transferable, the p2 correlation

energy for the 58(232p3) state would simply be three times

this amount, or 0.36eV. The calculated energy lowering of

0.30eV is only slightly less.

In the transition metals, on the other hand, the

excitation den to sdn+1 removes an 'outer' 4s electron,

placing it into an 'inner' 3d orbital. In this case,

Slater's rules state that the 4s electrons do not shield

electrons in the 3d shell, however, 3d electrons do par-

tially shield one another. If the (n+1)St d-electron were

put into an orbital equivalent to the other n there would

be a decrease in the net potential felt by all Of the

d-electrons, resulting in an expansion of the entire 3d

shell. This is, indeed, what happens in a HF wavefunction.)5

Alternatively, the (n+1)St electron can be placed in a

somewhat more diffuse orbital, 3d', which does not shield

the other n 3d electrons as effectively, and, thus, does

not decrease the net potential which they feel. It is this

later model that explains the anomalous d2 correlation

n+1

effects in the sd states noted above.
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This type of description for the dn+1 states Of

the transition metal atoms was first prOposed by Froese

Fischer15

3d10(lS)nl, where she suggested that the last 3d electron

in discussing the ionization potential of COpper

should be treated differently from the previous nine,

9
I

3d 3d (lS)nl. This was further discussed for the 7P(3d54p)

state Of chromium11 where, by allowing the fifth 3d elec-

tron tO be nonequivalent to the other four, the imprOper

HF ordering of the two septet P states arising from 3d54p

and 3d44s4p is corrected.

In support of this picture of the 3d correlation

effects we compare the calculated d orbitals of the

4sz3d2 state of Ti to those of the 433d2 state of Sc. In

order to meaningfully interpret orbitals from an MCSCF

calculation it is simplest to first transform them into an

equivalent independent particle wavefunction involving non-

16
orthogonal orbitals. This is analogous to the natural

orbital to nonorthogonal pair orbital transformation

used to interpret generalized valence bond wavefunctions.l7

In the following, 3di and 4di denote the various

components of the orthogonal 3d and 4d natural orbitals Ob-

tained from the MCSCF calculations, while di andcl; denote

the nonorthoqonal orbitals of the equivalent independent

particle wavefunction. The necessary orbital transforma-

tion can then be written:

4di4d ] ad

2 jl 12 3

= - '
[2(1+S )] [[did'j + didjlaa
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where,

d [(1+5)/21l5 3d + ((1-s)/2]* 4d

d' ((1+s)/21is 3d - [(1-s)/21‘5 4d

8 <dld'> = (cl-c2)/(cl+c2)

To make the independent particle nature of this

wavefunction more evident we define a projection Operator

.3? which eliminates all but the F component of a many elec-

tron wavefunction. With this definition, the wavefunction

for the 3F state of Ti may be written as:

ypddidsaa

where now the physical interpretation Of these orbitals is

clear; one electron is bound in orbital di and the second

electron is bound in a nonequivalent orbital, d3. The

projection Operator then assures that the wavefunction will

have the correct Spatial symmetry.

The overlap between the nonorthogonal orbitals,

d and d' is high when the contribution of the 4d correlat-

ing orbital is low, resulting in two orbitals very similar

18
to the HF orbital (if S=l, d=d'=3dHF). Comparing these

orbitals to 3dH is then a measure of the breakdown of the
F

single configuration representation of the 3d orbitals

inherent to the HF wavefunction. In Figures 3 and 4 the

radial amplitudes of the d, d' and 3dHF orbitals are

plotted as a function of the distance from the nucleus, R.

The Ti 32d2 nonorthogonal d orbitals (dashed

lines) and the HF orbital (solid line) are Shown in
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Figure 3. The essential equivalence of these orbitals is

reflected in their high overlap, S=0.91, and in the small

deviation of the expectation value of R, <R>, from that of

the HF orbital: 1.20, 1.82, and 1.46 aO for d, d' and 3dHF'

reSpectively. Contrast this with the Sd2 orbitals Of Sc

plotted in Figure 4. Here the nonequivalence of the d and

d' orbitals is reflected in the lower overlap, S=0.81, and

in thalarger deviation of <R> from HF: 1.52 and 3.06ao

compared to 2.13ao for 3dHF' The nonorthogonal d orbital

in the sd2 excited state of scandium is actually very

similar in radial extent to the 3d orbital in the 52d1

ground state (<R>=l.68ao).

Thus,an orbital picture emerges which ascribes a

different type of binding to the 3d electrons in the Szdn

1 states of the transition metal atoms:-

- The 32dn states have n 3d-electrons in

and adn+

essentially equivalent orbitals with

Aedd = 0.087eV correlation energy for

each pair of d-electrons.

- The Sdn+1 states have n 3d-electrons

bound approximately the same as in the

ground state with the same correlation

energy, Aedd for the —2%2:$L pairs;

and one electron, the (n+l)St, in a

more diffuse orbital with an additional

Asdd' = 0.18eV correlation energy for
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Figure 3.

Radial plots of the Hartree-Fock (solid) and nonorthogonal

2
d-Orbitals (dashed curves) for the 3EMS 3d2) state of

titanium.
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Figure 4.

Radial plots of the Hartree-Fock (solid) and nonorthogonal

d-orbitals (dashed curves) for the 4F(4S3d2) state of

scandium.
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each of the n other d-electrons

with which it correlates.

The HF description, restricted to a Single confi-

guration wavefunction, is unable to allow for the diffuse

3d' orbital in the sdn+1 state, resulting instead in equi-

valent 3d orbitals, all of which expand relative to those

of the 32dn state. The valence MCSCF wavefunction, which

lifts this restriction, finds that n electrons are bound as

in the 32dn ground state, with only the (n+1)St electron

occupying a more diffuse orbital.

D. CI Calculations

While the valence MCSCF wavefunction presents a

consistent picture of the differential s and d correlations

within the szdn and sdn+1 states of the atoms, its utility

as a practical method for use in electronic structure cal-

culations depends upon its ability to track the energy dif-

ferences obtainable in a full valence CI. In the following

section, we compare the excitation energies obtained at

each level in order to determine the additional correlation

effects which have been neglected or underestimated in the

valence MCSCF wavefunction.

Valence CI calculations within the entire virtual

Space were carried out for scandium to chromium which in-

cluded all single and double excitations with reSpect to

the HF reference configuration (HF+1+2), or the MCSCF

reference configurations (MCSCF+1+2), constructed from the
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MCSCF orbitals for each state (Tables II, III, V, VI). For

both Sc and Ti full valence CI calculations are reported as

well. As previously noted, for the CI calculations the

basis set was expanded to include an f-function.

2 n+1 states it isDiscussing first the s dn and sd

seen from Table VII that the MCSCF calculations faithfully

represent the AE'S obtained from the CI calculations, the

differences ranging from 0.04 to 0.07eV. Note that

HF+1+2 gives AE'S closer to experiment than either the

MCSCF+1+2 or the full-CI,19 but all three are quite com-

parable and well-represented by the valence MCSCF wave-

function.

In order to verify that the 82 and d2 differential

pair correlation energies are well-represented by the

valence MCSCF wavefunction, pair CI calculations were car-

ried out consisting of Single and double excitations from

the 43 or 3d orbitals into the virtual Space for the 5D

and 7S states of chromium. In addition, the Sd correlation

energy was estimated from a Similar CI calculation by a1—

1owing simultaneous single excitations from the 4s and 3d

orbitals into the virtuals. These results are summarized

in Table VIII where the difference with EH is given for
F

MCSCF, and CI calculations in which excitations were al—

lowed within the (S,p,d) and (S,p,d,f) virtual Space.

Comparing the energies of the MCSCF wavefunction with the

CI within the (S,p,d) Space, it is noted that there is

less than 0.1eV improvement in either the 32 or d2
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TABLE V. Calculated and experimental energies for the szd3, sd4 and d5 states of the vandium

atom. Basis set: [5s,4p,3d,1f). Units are as indicated.

4“45239) 60(433d4) 6suds)
3 5 ;

Energy AHF Energy AHF 3(32d ) Energy AHF A(s“d )

hartree 5V hartree 8V 6V hartree 6V eV

HF -942.8678 0.0 -942.8602 0.0 0.21 -942.7414 0.0 3.44

MCSCF

3d2-4d2 -942.8777 0.27 -942.8912 0.84 -942.8037 1.69

482-4p2 -942.8966 0.79 -- --

8011‘ -942.9058 1.03 -- 0.40 -- 2.78

CI

HF+1+2 -942.9255 1.57 -942.9117 1.40 0.38 -942.8245 2.26 2.75

MCSCF+1+2 -942.9286 1.65 -942.9l37 1.45 0.41 -942.8322 2.46 2 62

Experimentalb 0.24 2.46

 

 

aMCSCF wavefunctions defined by equations la-c.

bFrom reference 5
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TABLE VI. Calculated and experimental energies for the szd4,sds, and d6 states of the chromium

atom. Basis set: (5s,4p,3d,1f]- Units are as indicated.

50(4-23df)_ 75(4s3d5) 58(306)

Ener AHF Energy AHF agsjd‘) Energy AHF 0(82d42

hartree eV hartree eV eV hartree SV SV

HF -1043.2891 0.0 -1043.3323 0.0 -1.17 -1043.0724 0.0 5.90

MCSCF

3d2-4d2 -1043.3082 0.52 -1043.3766 1.21 -1043.1637 2.48

482-4p2 -1043.3184 0.80 -- --

€011a -1043.3360 1.28 -- -1.10 -- 4.69

CI

HF+1+2 ~1043.3648 2.06 -1043.4046 1.97 -1.08 -1043.209lb 3.72 4.24

MCSCF+1+2 -1043.3695 2.19 -1043.4077 2.05 -1.04 -1043.2258b 4.17 3.91

Experimentalc -1.00 3.40

 

 

 

aMCSCF wavefunctions defined by equations 1a-c

bConverged only by deleting the 4s orbital from the

cFrom reference 5

virtual Space
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TABLE v11. 453dn+

energies for scandium to chromium.

82

All units are in eV.

-4523dn calculated and experimental excitation

 

 

 

Sc Ti V Cr

HF 1.10 0.63 0.21 -1.17

MCSCFa 1.64 0.99 0.40 -1.10

CI:

HF+1+2 1.69 1.00 0.38 -1.08

MCSCF+1+2 1.71 1.03 0.41 -1.04

Fullb 1.72 1.03

Experimental:

Relativisticc 1.43 0.81 0.24 -1.00

'Non-Relativistic'd 1.31 0.67 0.07 -1.21

 

 

aMCSCF wavefunctions defined by equations la and lb.

bFull-CI for (n+2) valence electrons

c
From reference 5

dCorrected for differential relativistic effects taken from

numerical relativistic HF calculations (reference 27) for

each state.
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TABLE VIII. 4S , 3d2 and 4s3d pair correlation energy differences

from Hartree-Fock for the chromium atom. All units are in eV.

 

 

LCSEF.

S0(4sz3d4)

4s2 0.80

3d2 0.52

453d --

75(4s3d5)

3d2 1.21

433d --

5D(3d6)

3d2 2.48

HF+1+2
 

a

fl

0.87

0.54

0.26

0.09

3.11

AMCSCF

0.07

0.02

0.26

0.09

(spgf)6 AMCSCF

0.88 0.08

0.90 0.38

0.48 0.48

1.79 0.58

0.21 '0.21

3.72 1 24

 

 

aSingle and double excitations restricted to the (Spd) virtual

Space.

bSingle and double excitations allowed within the entire (spdf)

virtual Space..
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correlation energy for either state. SO inclusion of other

S,p or d functions does not affect the description of these

correlation effects which are indeed well-represented by the

valence MCSCF wavefunction. The sd correlation effect is

seen to favor the szdn state, the state with the most

s-electrons. This implies that all three pair effects in-

cluded in a single and double CI within the (S,p,d) virtual

space Should increase the AE relative to the MCSCF energy,

20
which, in fact, it does by 0.2eV. If f—excitations are

2
allowed in the CI, the 3 description is still unaffected,

2
but now the energy lowerings from d and sd excitations are

significantly larger. Relative to the Spdf-CI then, the

MCSCF calculation for the 82d4 state neglects correlation

effects worth 0.94eV while for the SdS state the difference

is 0.79eV. Thus, the differenCe between the MCSCF and'

Spdf-CI AB is only 0.15eV.

Thus, without f-functions the Sdn+l-Szdn excita-

tion energy will increase at the CI+1+2 level over the

valence MCSCF energy because the differential Sd correla-

tion, favoring the 82dn state, is now included. Including

f-functions has little effect on the $2 correlation energy

but increases both the d2 and the sd pair correlation

energies, leading to essentially the same AE as obtained at

the valence MCSCF level. While the lowering from the Sd

excitations shows a differential effect in the pair-CI

calculation, it Should be noted that the three effects,

taken together, are not completely additive, implying
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that the results in Table VIII overestimate this effect.

Secondly, this correlation description is not expected to

change the qualitative features of the orbitals signif-

icantly, thus supporting its exclusion at the MCSCF level.

It is appropriate at this point to discuss the

calculations on the dn+2 states of Sc-Cr. In general,

2
the dn+ states are expected to be more difficult to

describe than the sdn+1 states using a valence MCSCF

wavefunction which makes use of only 3d and 4d orbitals.

Now three nonorthogonal orbitals, d, d', and d", may well

be required to represent the diffuse nature of the (n+1)St

and (n+2)nd d-Orbitals.21 Although the d2 valence MCSCF

energy lowerings relative to HF, €n+§ 2, are larger than

3d +4d
n+

seen for Sd 1 (Table IV), CI'S within the (3d,4d,5d) Space

indicate that the 5d orbital also plays an important role

in describing the d2 correlation effect, i.e., the 3d and

4d MCSCF orbitals alone are not sufficient. Comparing

these results to other levels of description (Table IX), it

is seen that the valence MCSCF wavefunction is a much bet-

n+2 state than is the HF wave-ter description of the d

function, leading in all cases to AE'S less than 0.2eV

above those obtained from CI's in which the entire virtual

Space is included. We note that a large part of the dif-

ference between the MCSCF and full virtual CI+1+2 results

can be accounted for by allowing excitations from the

MCSCF wavefunction into a third set of d-functions (5d).



n+2

TABLE IX. 3d -4sz3dn calculated and experimental excitation

' energies for scandium to chromium. All units are in eV.

 

 

 

 

 

Sc Ti V Cr

HF 4.63 4.41 3.44 5.90

MCSCFa 4.61 4.03 2.78 4.69

CI:

b

ar+1+2 4.62 4.00 2.75 4.24

MCSCF+1+2

(3d,4d,5d)c 4.53 3.86 2.59 3.92

all virtualsd 4.49 3.87 2.62 3.91b

Full-CIe 4.48 3.86 -- --

Experimentalz'

Relativisticf 4.18 3.55 2.46 3.40

'Non-Relativistic'g 4.00 3.33 2.18 3.09

 

aMCSCF wavefunctions defined by equations la and 1c-

bThe d6 state converged only by deleting the 4s orbital from the

virtual space.

cSingle and double excitations of the 3d electrons restricted to

the (3d,4d,5d) space.

dSingle and double excitations Of all (n+2) valence electrons

allowed into the entire virtual Space.

eFull-CI for the (n+2) valence electrons.

fFrom reference 5.

9Corrected for differential relativistic effects taken from

numerical relativistic HF calculations (reference 27) for each

state.
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As indicated by the CI calculations, the valence

MCSCF wavefunction provides a compact representation of the

differential 82 and d2 correlation effects between the 82

n+1

d“,

, and dn+2 states of Sc-Cr. While this form of the

wavefunction is not as accurate for the dn+2 state, it is

sd

still a far better description than the HF wavefunction

provides. For all of these states, the valence MCSCF des-

cription condenses the major valence correlation effects

into a form which lends itself to molecular calculations.

E. Experimental Excitation Energies

Comparing the calculated AE's A(n+l) and A(n+2),

to the experimental values for Sc-Cr (Tables VII and IX),

indicates that even with full valence correlation of the

(4s,3d) electrons the AE's are overestimated, favoring the

82dn state by N0.2eV for A(n+l), and ~0.3eV for A(n+2).

Note that the error is much larger, 0.52eV, for the d6-szd4

AE of Cr due to the presence of the doubly-occupied

d-orbital in the upper state.

III. VALENCE CORRELATION EFFECTS IN THE LATE TRANSITION

METAL ATOMS, Mn-Cu

We have examined the differential valence correla-

tion effects between the 32dn and sdn+1 states of manganese

through COpper in terms of the valence MCSCF wavefunction

(Equations la-c) discussed previously. The same type of

32 and d2 correlations were incorporated into the MCSCF
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orbitals as in the first half of the row except now, Since

the d-orbitals are doubly-occupied, there are four types

of d-d interactions: (aB)ii, (aB)ij, and (88)ij, as well as

the (0101)ij term from before. Thus, configurations which

allow iii—emf and 3d? ad?-—»38.4a.3a.4a., as well as
l J 1 1 j j

3dinT>4di4dj, were included in the calculations.

A. Differential Trends

The results of the S2 and d2 differential correla-

tion effects for the late transition metal atoms are sum-

marized in Table IV. The S2 correlation in the 32dn state

was again found to be essentially constant and approxflmate-

1y equal to that for the early transition metal atoms,

0.82 i 0.02eV. As in the first half of the row, the 52 and

d2 correlation energies are found to be nearly additive.

Because the d2 correlation effects are now complicated by

the additional interactions due to the presence of the

B-electrons, they are best understood by considering all of

the 0,8 interactions within the n and (n+1) d-electrons.

Since both states have five d-electrons, there will always

be 5(4)/2 aa-interactions. In addition, for the szdn

state, there are (n-S) doubly-occupied orbitals so there

will be:

(n-S) (018)ii interactions,

4(n-5) (dB)ij interactions,

and, (n-S)(n-6) /2 (BB)ij interactions.
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For the Sdn+1 state there are (n-4) doubly-occupied orbitals,

with the correSponding number of interactions, resulting in

the differential energy expression:

0E3d2+4d2 = 611(08) + 4eij(08) + (n-5)eij(88)

This eXpression is linear in n as with the first half of the

row (Equation 4), but has an additional constant term, due

st
to the correlations of the (n+1) B-electron with the five

a-electrons. In Figure 5, AE3d2+4d2 is plotted as a func-

tion of n for Sc-Cr as well as Mn-Cu. As predicted, these

differences are linear in n, the line for Mn-Cu shifted

upward relative to Sc-Cr because of the additional constant

term. Note that the SlOpeS of each are Similar, being 0.18

and 0.14 eV (rms=0.02) for the first and second halves~

reSpectively, indicating that the correlation energy of

the (n+1)St electron with the other n electrons is similar

for Sc-Cr and Mn-Cu. This d-d' interaction energy for the

second half is also ~0.leV higher than that found in the

2
s dn state, implying again that the (n+1)St electron is

loosely bound.

B. CI Calculations on the Nickel Atom

Because of its experimental and theoretical im-

portance,22 we have carried out valence CI calculations

2 8 9
(HF+1+2) for the S d and sd states of the nickel atom,

within the [55,4p,3d] basis, using the orbitals obtained
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Figure 5.

Differential (3d2, 4d2) energy lowerings for the 52dn and

n+1

sd states of scandium to COpper as calculated in this

work. All units are in eV.
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from the valence MCSCF calculations. These results are sum—

marized in Table X. The valence MCSCF wavefunction pre-

dicts an sdg-szd8 AE of 0.51eV while HF+1+2 gives a value

_of 0.42. Similar valence HF+1+2 calculations by Martin,2

in which the HF orbitals were used as the expansion basis,

resulted in an energy separation of 0.32eV. This separa-

tion increased to 0.46eV upon uncontracting the 3s and 3p

core orbitals, whereupon, addition of an f-function to

describe (4s,3d) correlation, was found to lower this AE

to 0.30eV. These results are consistent with the conclu-

sions for the first half of the row that the valence

MCSCF wavefunction does present a reasonable description of

2 n+1
the valence correlation in the S dn and sd states even

when doubly occupied d-orbitals are involved.

C. Experimental Excitation Energies

The excitation energies calculated with the

valence MCSCF wavefunction are compared to the experimental

values in Table XI. While the error for HF ranges from

1.0 to 1.3eV, this has been reduced using the valence

23 This error isMCSCF approach to 0.5-0.2eV for Fe-Cu.

larger than seen in Sc-Cr but is still reasonable since it

is estimated that single and double valence CI calcula-

tions would give Similar results.
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TABLE X. Calculated and experimental energies for the 32d8 and

ad9 states of the nickel atom. Basis set: [Ss,4p,3d]. Units are

as indicated.

 

  

  

38(4sz3d8) 30(4s3d9) A

Energy AHF Energy AHF A(s[d8)

hartree eV hartree eV eV

HF -1506.8214 0.0 -1506.7736 0.0 1.30

MCSCF

3d2-4d2 -1506.9084 2.37 -1506.9155 3.86

432-4352 -1506.8522 0.84 -- ‘

Fulla -1506.9341 3.07 -- 0.51

CI

ar+1+2 -1506.9533 3.59 -1506.9377 4.47 0.42

Experimentalb -0.03

 

  (_—  

aMCSCF wavefunctions defined by equations 1a and b.

bFrom reference 5
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1
TABLE XI. 4s3dn+ -4sz3dn calculated and experimental excitation

energies for manganese to copper. All units are in eV.

 

 

     

 

Mn Fe Co Ni Cu

at 3.38 1.86 1.55 1.30 -0.34

MCSCFa 3.07 1.40 0.93 0.51 -1.26

Experimental:

Relativisticb 2.14 0.88 0.42 -0.03 -1.49

'Non-Relativistic'c -0.38

 

 

aMCSCF wavefunctions defined by equations la and lb.

b
From reference 5.

cCorrected for differential relativistic effects taken from

numerical relativistic HF calculations (reference 2) for each

state.
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IV. OTHER CONSIDERATIONS

2

Since the valence correlated energies of the s dn

n+1 states of the transition metal atoms are still inand sd

error by N0.2eV for Sc—Cr and 60.5 for Mn-Cu compared to

the experimental AE'S, there must be other differential ef-

fects which are of importance. The two major effects which

have been neglected are:

7- Correlation effects involving the

'core' (33,3p) electrons

-- Relativistic effects

A. Core Correlations

While true core electrons would be eXpected to be

unaffected by changes within the valence electron occupancy,

the (33,3p,3d) orbitals are all concentrated in similar

regions of space so that changes in the 3d occupancy could

induce a differential effect in correlation of the 3S and

3p electrons. There are three types of correlation effects

which could arise:

l. The (3s,3p,3d) near degeneracy effect

2. Core/valence dynamic correlation

3. Correlation of the 3s and 3p electrons,

including Space and Spin polarization

effects.

The near degeneracy effect observed in the N=3

shell is analogous to the effect in (4s,4p) discussed

previously only now excitations into the empty 3d orbital
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are involved. It can be represented by a CI wavefunction

which allows double excitations from (3s,3p) into 3d. As

with the first row, this effect will decrease as the

d-orbitals become occupied. It will favor the state with

the fewest d-electrons, Szdn, Since the more d 'holes'

there are, the more orbitals available for correlation.

This effect is evident in the paper by Guse, et al.3

(labeled as a differential core-core correlation effect).

The core/valence dynamic correlation effect

describes the instantaneous correlation of the core and

valence electrons. It is represented by simultaneous

single excitations of (3s,3p) and Gd,4s) into the virtual

Space. This effect would be largest for the state with

the most d-electrons, Since it is the 3d's which Should

interact most strongly with the (3s,3p) electrons de-

n+l 2 n
creasing the Sd -s d excitation energy. Preliminary

calculations24 Show that a second tight f-function is

needed to describe this correlation prOperly25 as the

dominant configurations are those which involve 3p,3d+nd,4&

Spatial and Spin polarization effects among the

3s and 3p electrons can be induced by the asymmetric

charge distribution of the 3d and 4S electrons. Munch and

4
Davidson, in calculations on the F(szd3) state of vana-

dium,26 noted the importance of the Single excitation

3p+f, which describes the polarization of the 3p shell by

the asymmetric d shell. Thus, a second f-function is also

needed to describe Spatial polarization of the 3p electrons
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as well as the dynamic correlation between core and

valence. These effects will be state-dependent since the

orbital occupancies vary considerably from Sc-Cu. For

example, the Cr 7S(sd5) state Should Show no Spatial ef-

fects but Spin polarization due to the Six a—electrons may

be important; whereas for Ni15(d10) both effects will be

zero. It is not clear what kinds of differential trends

will emerge due to these effects.

Thus, two competing effects occur in the correla-

tion of the n=3 Shell: the (33,3p,3d) near degeneracy ef-

fect favoring the Szdn state; and the dynamic correlation

of the 35 and 3p electrons with the valence 4s and 3d,

n+1 2

favoring the sd and dn+ states. A third effect, Spa—

tial and Spin polarization within the (35,3p) electrons

may also be important but not clearly favoring either the

ground or excited states. Data taken from Guse, et al.3

imply that correlation of the core electrons increases in

importance from Sc-Cu.

B. Relativistic Effects

Relativistic HF calculations have been carried

27 for Sc-Cr to determine the dif-

2 n+1 and dn+2 states

out by Martin and Hay

ferential effects between the s dn, sd

of the transition metal atoms. Their results indicate that

in all cases the relativistic energies lower the Szdn

states. The differential effect for A(n+l) is 0.1eV for

Sc, increasing to 0.2eV for Cr. The differential effect
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for A(n+2) is 0.2eV for Sc, increasing to 0.3eV for Cr. It

appears that this trend prevails across the row so that for

nickel the relativistic effect has increased the sdg-szd8

Splitting by 0.35eV2. Because this effect is large, the

calculated nonrelativistic AE'S Should actually be com-

pared tO 'nonrelativistic experimental' values, given in

Tables VII, IX and XI, where the experimental values have

been corrected for the differential relativistic effects

taken from Martin and Hay's numerical HF calculations.

2
With the s dn state being differentially lowered by these

effects, the AE'S which are comparable to the calculated

values are all smaller in magnitude than the reported

values and consequently, the error in the calculated values

is even larger.

V. CONCLUSIONS

A reasonable description of the differential

2 n+1

valence correlation effects within the S d“, sd , and

n+2

d states can be obtained at the MCSCF level by using

2
a wavefunction which incorporates (3d ,4d2) radial cor-

2,4p2) angular correlation effects. Thisrelation, and (43

simple wavefunction reproduces well the results of a single

and double excitation valence CI calculation including

f-functions in the basis. The AE'S obtained from the

simple MCSCF wavefunction are in error by 0.2eV for Sc-Cr

and 0.5eV for Mn—Cu for the Sdn+l_32dn excitation energies.
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An interpretation which is consistent with

n+1 and dn+2

these results is that in the Sd states of the

transition metal atoms the (n+1)St and (n+2)nd 3d-electrons

are not bound as tightly to the nucleus as the other n

electrons. These States are more apprOpriately described

as:

n+1

4s 3d —————o 4s 3dn3d'

n+2

3d -———>3dn3d' 3d"

signifying that n electrons are bound as in the 32dn

ground state with the additional d-electrons occupying more

diffuse orbitals, 3d' and 3d", nonorthogonal to the other

3d orbitals.

If relativistic effects are included in the

description of each state, the error in the excitation

energy appears to increase. This implies that a highly

accurate description of the splittings of the low-lying

states of the transition metal atoms requires that differ-

ential correlation involving the (3s,3p) 'core' electrons

also be taken into account.
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The diverse and complex chemistry of the first row

transition metal atoms is in large part due to the near

degeneracy of the 4s and 3d orbitals. Thus, depending

on the molecular environment, the formal configuration

of the transition metal atom may be 4.42371", 4s3d'”‘, 01'

3d'". Clearly then, it is important that the theoretical

methods used to study tranSition metal compounds be

able to accurately predict the relative energies of these

atomic states. Despite its widespread use in calcula-

tions on molecules containing transition metal atoms,

the Hartree-Foe): method does not satisfy this criterion,

e.g. , for the nickel atom Hartree-Fool: calculations‘

place the ’D(4s3d°) state i. 28 eV and the ‘S(3d‘°) state

5. 47 eV above the 3I“(4.«i’3d‘) state, whereas the experi-

mental separations are -0.03 eV and 1.71 eV.‘

In calculations on the ground and low-lying excited

states of the titanium atom, we have found that the

Hartree-Foch descriptions of the 433dJ and 34‘ states

are inadequate. These calculations indicate that the

“(he list" 3d orbital of the 4534!" states and the

“(n +1)st" and “(n +2lnd” 3d orbitals of the 3d'" states

of the transition metal atoms are functionally inequiva-

lent to the other 3d orbitals, being much more diffuse.

Thus, the proper orbital configurations of these states

are 453d'34‘ and 3d'8d'3d".

The primitive basis set used in the calculations on the

titanium atom, (14sllp6d), is that of Wachters’ aug-

mented with two additional 11 functions to describe the

4p orbital and one additioml, diffuse d function to de-

J. Chem. Phw. 72(5), 1 Mar. 1980 0321 -96m/80/053419-02$Ol .(X)

scribe the 3d orbital of the 453(1’ state. ‘ Hartree-Fock

(HF) calculations with this basis set predict a sF-‘F

splitting of 0. 55 eV; numerical HF calculations‘ give a

nearly identical result, namely, 0.54 eV. For the sub-

sequent atomic calculations the primitive set was con-

tracted to [6561534] using the general contraction scheme

of Raffenetti.s

if one of the 3d orbitals in the sI-‘(4s3d°) state of tita-

nium is functionally different from the remaining two

3d orbitals, the resulting projected Hartree-Fact: (PHF)

wave function has the form (with the core orbitals de-

leted)

TABLE 1. Summary of Hartree-Foe): (HF) and multi-

cont‘iguration Hartree-Foe): (MCHF) calculations on

the 51714.434”) and 'Fih'lld‘) states of the titanium

atom.

 

 

 

‘F(4ssd") 3F(4s2342)

E," (hartree) -848.3715 -848.3918

isnfirdri (eV) 0.55

Eu," (hartree) - 848. 3882 - 848. 4202

c. 0. 90 0.96

c; 0. 43 0.29

5”,-En' (CV) -0.45 -0.77

AimyistF) (9V) 0.87 "°

 

 

O 1983 American institute of Physics
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THE TITANIUM ATOM
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FIG. 1. Radial plots of the 4s. 34, and 34’ orbitals of the

’inner’) state of the titanium atom obtained from multicontigurao

tion Hartree-Fool: calculations.

inf!) snowman, (1a)

where 5 is a projection operator which insures that the

wave function has the proper spatial symmetry. Noting

that

3d' scu3d+c.4d ,

(1:) can be rewritten as a mulliconfiguraft'on Hartree-

Focl: (MCHF) wave function

Wucnél-‘l-c,d433d'aaao4c,v!4s3d'4d-aoaa . (lb)

ft is in this form that calculations were carried out with

the BlSON-MC program.“ There is, of course, a simple

relationship between the two sets of coefficients (cu, c.)

and (c,, c.) and, correspondingly, between the two wave

functions (is) and (1h).

The energy computed with (1), along with the HF re-

sults, are given in Table l. The size of the energy

lowering, 0.45 eV, and the large value of c” 0.43, re-

flects the unusual strength of this correlation effect even

though the electrons involved are in spatially different

34 orbitals and are high spin coupled. The 43, 3d, and

3d' orbitals obtained from the MCI-1F calculations are

plotted in Fig. 1. The difference in the spatial extension

of the 3d and 3d' orbitals is clearly evident. The 34'

orbital is much more diffuse than the ad orbital (the

overlap being only 0. 70) and is more like the 4s orbital

in radial extent.

hi earlier HF calculations on the transition metal

atoms Hay‘ found that the 3d orbitals of the 43341" ‘ states

were more diffuse than those of the 4s‘3d“ states. In

fact, as noted above, basis sets appropriate for the

4034' states must be augmented with an additional, more
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diffuse d function to properly describe the 453!" states.

From the present calculations we see that this uniform

expansion of the 3d orbitals is a consequence of the

equivalence restriction in the HF calculations and, when

projection effects are properly taken into account, only

one of the 3d orbitals becomes diffuse. To a good ap-

proximation the 3d orbital of the 4531!“ state of titanium

obtained from the HF calculation is an occupation num-

ber weighted average of the 3d and 3d' orbitals.

Turning now to the ground state, 31“(4s'3d'), of the

titanium atom, we use the MCI-1F wave function,

than?“ :- c1 .445’3d'afloa +c,544p’3d'oflao , (2)

where the second configuration accounts for the 4s-4p

near degeneracy effect. The results of the HF and

MCHF calculations on the ’1’ state of titanium are also

summarized in Table 1. Use of (2) decreases the energy

of the ’1? state by 0. 77 eV over that obtained with a

single configuration.

Using (1) for the '5' state of titanium and (2) for the ’F

state, we obtain a ‘F—‘F splitting of 0.87 eV, in good

agreement with the experimental separation of 0. 81 eV.’

In her MCHF calculations on the copper atom, Froese-

Fischer' noted that inclusion of the 4334'“ configuration

in the calculations on the ’S(433d‘°) state led to a dra-

matic decrease in the energy of this state (> 2 eV).

Further, she noted that the resulting wave function was

equivalent to a PHF wave function of the form 4s3a‘3d’.

Thus, both the present titanium calculations and the

copper calculations of Froese-Fischer" argue for the

importance of a PHF description of the 4334'" states

of the transition metal atoms. .
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