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ABSTRACT

COMPLEX COMPOUNDS OF 1,5-DIMETHYLTETRAZOLE AND OF THE

l-METHYL DERIVATIVES OF DIAZOLES AND TRIAZOLES

BY

Delores Maureen Bowers

 

Complex compounds of 1,5-dimethy1tetrazole, 1-methyl-

1,2,4-triazole, 1—methyl-1,2,3-triazole, 1-methylimidazole

and l-methylpyrazole with silver(I) perchlorate were studied

in nitromethane and acetonitrile solutions by proton magnetic

resonance spectroscopy. The donor proton chemical shifts

were measured as a function of the donor-acceptor mole ratio

in order to determine the stoichiometry of the complexes

formed in solution. The stoichiometry of the 1,5—dimethyl—

tetrazole-silver(I), l—methylpyrazole-silver(I) and l-methyl—

imidazole-silver(I) complexes in nitromethane solutions were

found to be [Ag(Lig)2+]. In other cases, although evi—

dence was obtained for the complexation reaction, the re-

sulting complexes were quite insoluble in nitromethane. The

following solid complexes were isolated for the triazole—

Silver(I) systems: mono(1—methyl-1,2,3—triazole)silver(1)

perchlorate and mono(1-methyl—1,2,4—triazole)silver(I) per—

Chlorate.

From the magnitudes of the proton chemical shifts for

eaCh equivalent proton on the ligand molecules measured upon

L—‘r
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complexation with silver ions, it appears that: 1) the 1-

methylpyrazole molecule coordinates with the silver ion

through the 2—nitrogen, 2) the 1-methylimidazole molecule

coordinates with the silver ion through the 3-nitrogen, 3)

the 1-methyl-1,2,4-triazole molecule coordinates with the

Silver ion through the 4-nitrogen, and 4) the 1—methyl—1,2,3—

triazole probably coordinates with the silver ion through

the 3-nitrogen. In the case of 1,5—dimethyltetrazole, the

magnitudes of the changes in the chemical shifts of the 1—

methyl and 5—methyl protons upon ligand complexation were

approximately the same, therefore, coordination may occur

through the 3—nitrogen or have an equal probability of

occurring through 2-, 3—, and 4—nitrogen.

The relative donor abilities of the azoles were studied

by sodium-23 nmr. Erlich (1) has shown that the varying

abilities of non-aqueous solvents to change the electron

density of the sodium ion is related to the solvent's donor

ability as expressed by Gutmann's (2) donor number (D.N.).

In fact, a linear relationship exists between the sodium-23

chemical shift and the donor number of ten different solvents.

Trends in the sodium ion electron density changes in

mixed azole-solvent systems were studied by observing the

sodium-23 resonance as a function of ligand to sodium ion

mole ratios at ligand mole fractions of < 0.10. The solvents

employed in this study were nitromethane (D.N. = 2.7), aceto—

nitrile (D.N. = 14.1), acetone (D.N. = 17.0) and pyridine

'(D-N. - 33.1). The relative donor abilities were observed
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to be: l-methylimidazole > 1—methyl—1,2,4-triazole > 1—

methylpyrazole > 1—methyl—1,2,3-triazole > 1,5—dimethyl—

tetrazole.
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I. INTRODUCTION

Numerous heterocyclic nitrogen compounds possess

interesting physiological properties. In particular

numerous 1,5-disubstituted tetrazoles (I) are known for

R\. ./R

for their stimulating action on the central nervous

system (1,2) which, in certain cases, is strong enough to

cause convulsions. Pentamethylenetetrazole (often abbre—

viated as PMT) (II) is a well known convulsant which has
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been used in shock therapy and also as an agent for the
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2

evaluation of the activity of experimental anti-convulsant

drugs.

It seems reasonable to assume that the physiological

activity of the tetrazoles and other heterocyclic nitrogen

compounds is related to their physicochemical properties.

On the basis of this assumption a detailed investigation

of the physicochemical properties of tetrazoles has been

initiated in this laboratory. Since electron donor (or

complexing) abilities of tetrazoles may be important for

its physiological activity, particular attention was paid

to the study of tetrazole complexes. Previous work on these

complexes is summarized in the historical section.

It was of interest to us to extend those studies to

other nitrogen heterocycles containing two or three nitrogen

atoms. The object of the investigation, therefore, was to

compare the complexing abilities of a number of nitrogen

ring compounds and, if possible, to determine the structure

of the complexes in solution. Nuclear magnetic resonance

spectroscopy was selected as the primary investigative

technique.
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II. HISTORICAL

A. Azole Nomenclature 

Azoles are an interesting class of polyheteroatomic

five—membered ring compounds which contain nitrogen. Azole

rings contain one imino nitrogen (~N-) and at least one

tertiary nitrogen (=N-). The ring is further characterized

by the presence of two double bonds and three single bonds.

Prefixes for azoles describe the number of nitrogen atoms

in the ring; therefore, diazole, triazole, tetrazole, and

pentazole indicate two, three, four, and five nitrogens re—

spectively. Azole structures are shown in Figure 1. Di—

azole exhibits two structural isomers, 1,2—diazole or

pyrazole (Fig. 1a) and 1,3-diazole or imidazole (Fig. 1b).

Ring system numbering begins with the imino nitrogen (usu—

ally in the 1— or 2—position) and proceeds around the ring

in such a way that all the other nitrogens receive the

lowest possible number. The presence of the imino proton

and the m—electron system causes some of the azoles to as—

Sume two tautomeric forms which are not distinguishable in

the parent azoles but which appear when the ring becomes

monosubStituted. For example, the triazoles give two ring

iSOmers which can exist as two valence tautomers
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(Fig. 1c — 1f). The IUPAC nomenclature distinguishes be—

tween the possible tautomeric forms by listing the position

of the nitrogens on the ring, the position of the imino

proton, and then the base name as follows: 1,2,3—1H-tri—

azole (Fig. 1c), 1,2,3—2H—triazole (Fig. 1d), 1,2,4—1H—

triazole (Fig. 1e), and 1,2,4—4H—triazole (Fig. 1f). There

are also two tautomeric forms for the tetrazole: 1,2,3,4—

1H-tetrazole (Fig. 1g) and 1,2,3,4—2H—tetrazole (Fig. lb).

Although the IUPAC nomenclature is normally employed for

the triazoles and tetrazoles, the names pyrazole and imid-

azole are commonly employed for the diazoles.

B. Parent Compounds

The term azole first appears in the literature in the

mid 18505 and reappears as more members of the series were

discovered. By the end of the century all six of the azole

ring structures had been mentioned. Scientists most in—

volved in this work were German, Italian, and Swedish; all

interested in organic synthesis. They prepared and charac—

terized derivatives of the parent azoles which, in turn,

led to the synthesis and deScription of the parent azoles.

Diazoles

In 1858, Debus (3) discovered a compound with the

empirical formula C3N2H4 when he allowed glyoxal and am—

monia to react. The compound became known as glyoxaline;

this term is occasionally used today. Structural assignment
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7

of the two double bonds and three single bonds with protons

at the 1-, 2—, 4—, and 5-positions on the ring is credited

to Japp in 1882 (4). This compound was renamed "iminazole"

(the British equivalent, imidazole, which is most commonly

used today) by the German chemist Hantzsch in 1888 (5).

Hantzsch also developed and classified azoles as five-

membered polyheteroatomic ring systems containing at least

one tertiary nitrogen.

The imidazole nucleus is probably the most widely

studied of all the azole rings, because of its natural oc—

curence in biological systems (6). Not only does the

imidazole ring appear as part of the amino acid histidine,

but it also plays a significant role in medicine as part of

the histamine drug family.

In 1885, Knorr (7) introduced the name "pyrazole" to

designate the 1,2—diazole nucleus. He derived the name

after a comparison with pyrrole, the five—membered double—

unsaturated ring with one imino nitrogen and four carbon

atoms. The difference in the basic ring structure is the

replacement of a methine group (=CH—) next to the imino

nitrogen with a tertiary nitrogen (=N-). Knorr also syn—

thesized and characterized many members of the pyrazole

family, but Buchner (8) and Balbiano (9) were credited with

Preparing the parent compound, 03N2H4.

Until recently (10) the pyrazole moiety was not known

to occur in biological Systems. This fact is very surpris—

ing since the structural isomer, imidazole, occurs frequently.
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8

Kost and Grandberg (11) have reviewed the frequency of oc—

curence of the pyrazole moiety and its chemical applicabil-

ity. They found that initially it was used in the dye and

drug industry. More recently the use of pyrazole deriva-

tives in medicine has become more wide spread, specifically

because of their new-found bacteriostatic, bacteriocidal,

and fungicidal activity. Also pronounced sedative action

on the central nervous system (12,13) has been demonstrated

for the aryl— and alkyl—pyrazoles.

Triazoles

In 1860 both Zinin (14) and Hofmann (15) synthesized

several compounds which were shown to be derivatives of

1,2,3—triazole. The structure of the unsaturated ring was

not proposed until 1886 when Pechmann (16) prepared and

haracterized the simple monocyclic triazole ring. In 1910,

imroth and Fester (17) also synthesized the 1,2,3—triazole

ompound by condensation of hydrazoic acid and acetylene at

00°.

Little is known of the chemical nature of the 1,2,3-

riazole and its derivatives, or of their biological activ-

ty.

The name "triazole" was first given to the equivalent

2N3H3 ring by Bladin (18), when he discovered several sub—

tituted 1,2,4—triazole derivatives. His description of

he ring system was not correct (19,20), but he still re—

eives the credit for its discovery.
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All known 1,2,4—triazoles have been obtained synthe—

tically (21); this ring moiety has not been detected in

natural systems. Certain types of 1,2,4—triazoles, usually

members of the fused ring systems, are capable of inhibiting

ng formation on photographic emulsions. Some 1,2,4—tri—

azoles are useful as herbicides and stimulants. The most

widely studied herbicide is Amizol (3—amino—1,2,4—triazole).

The most widely studied stimulant is Azoman (4—cyclohexyl—

3—ethyl-1,2,4—triazole), which is about ten times more

powerful than Metrazol (pentamethylenetetrazole) as a stimu—

lant (22).

Tetrazole

Because of Bladin's interest in the synthesis of tri—

azoles, it is not surprising that in 1885 he expanded his

ork to include investigations of five—membered ring sys—

tems containing four nitrogen atoms (23). He proposed that

hese new ring derivatives be called tetrazoles (24). By

892 he had isolated the parent 1,2,3,4—tetrazole compound

(25).

Chemical investigations of tetrazoles have shown that

hey are nucleophilic reagents whose characteristics vary

ith the position and type of substitution. This, in turn,

8 believed to be the reason for the pharmacological vari—

nce in the substituted tetrazoles studied by Gross and

eatherstone (1) and Stone (2). These scientists have shown
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t substituted tetrazoles range from stimulants to depres-

ts, depending on the position and type of substitution.

Pentazoles

Ugi (26) has reviewed the history of pentazole; he has

ed that as early as 1893 Noelting and Michel (27) pro-

ed, but did not isolate or characterize, the first

tazole derivative. All known derivatives are unstable

room temperature and decompose explosively except for

p—dimethylaminophenylpentazole (28) which, according to

authors, is stable for several hours. Because of pent—

e's explosive nature, few chemical and physical proper-

have been reported, and no chemical applications have

n proposed or tested.

C. General Properties

Since each of the parent azole compounds contains one

10 hydrogen and a tertiary nitrogen giving the molecule

a polarity, it is not surprising that these compounds

highly associated through hydrogen bonding. This as—

ation can be demonstrated by comparing the boiling

ts of the azoles (b.p. > 187°) with that of 1,3-cyclo—

adiene ( b.p. 40.80), a double unsaturated five—membered

containing only carbon atoms (Table I). These parent

as are amphoteric. They can act as acids and lose

? imino proton to stronger bases, or they may act as

i by accepting a proton from stronger acids. Values of
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pKa and pKd for the various azoles are given in Table I.

Recently Hansen et a1. (29) studied the acidic and

basic nature of the azoles (with the exception of pentazole)

in water. They found that a linear relationship exists

between the pKa and the number of nitrogen atoms in the un—

saturated heterocyclic ring. However, the protonation con-

stant, pKa,, of these compounds is not a linear function of

the number of nitrogens in the ring. Instead, the order

of basicity, both from calorimetric experiments and from

pH titrations, was observed to be: imidazole >> pyrazole

: 1,2,4-triazole > 1,2,3—triazole :_1,2,3,4—tetrazole.

The last two members, 1,2,3—triazole and 1,2,3,4—tetrazole,

showed no pronounced signs of protonation by perchloric

acid.

Barlin and Batterham (30) investigated a series of

.midazole, pyrazole, 1,2,3etriazole, 1,2,4—triazole, and

.,2,3,4—tetrazole compounds by proton magnetic resonance

ind discussed the spectra of the neutral molecules, the

rations, and the anions. The neutral molecules were studied

n deuterochloroform, the cations were studied in trifluoro—

cetic acid,and the anions were studied in 2 g_sodium

euteroxide. Some of the 1—methyl derivatives were also

nvestigated. A comparison of their spectra in deutero~

hloroform and trifluoroacetic acid indicated that the

midazole and 1,2,4—triazole attain cation stabilization

hrough an amidinium type resonance (Fig. 2). After pro—

onation of the l-methylimidazole in the 3-position, the
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H\C N/CH3 H\C g/CHs

H—IC' d—H < > H—UI Ic‘——H

\g/ \N/

{a 1%

l-methylimidazolium cation

  +

H—c_I'd—CH3

H—N + N H—N N

\c/ \c/

 H—c N—CH3

I <———————>

I I

H H

1—methyl—1,2,4—triazolium cation

Figure 2. Amidinium type resonances of the pro—

tonated 1-methylimidazole and 1—methyl—

1,2,4—triazole.
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Z-proton magnetic resonance shifts downfield by 1.26 ppm,

while those of the 1—, 4—, and 5—protons shift only 0.42,

).52, and 0.64 ppm respectively. The 2—position was af-

kcted much more because of the full positive charge assoc-

ated with that position by the amidinium type resonance,

bile the other positions felt only a fraction of the

ffect of the large charge density. A similar relationship

as demonstrated for the 1-methyl-1,2,4—triazole, where the

rotonation occurred at the 4—position producing an amid—

nium resonance about the 5—position. The localization of he charge density is noted from the magnitude of the down-

'eld shifts of 1.41, 0.81, and 0.34 ppm for the 5—proton,

proton, and the l—methyl protons respectively. The 1-

2thyl—1,2,3-triazole and the 1-methyl—1,2,3,4-tetrazole

:oton chemical shifts were also given, but no assignments

5 possible cation stabilization or Specific site of inter—

!tion were made. The downfield shifts for the l—methyl—

2,3—triazole were 0.79, 1.29, and 0.37 ppm for the 4—

oton, 5-proton, and the l—methyl protons respectively;

r 1-methyl—1,2,3,4—tetrazole, they were 0.90 and 0.27 ppm

: the 5—proton and 1-methyl protons. Data for the pyrazole

ttem were not given, but the authors did include pyrazole

their summary of data for chemical shift values for

les in fourteen different solvents.

Pugmire and Grant (31) have also studied the cationic

anionic forms of the parent azoles by using carbon-13

They applied extended Hfickel and self—consistent-field
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olecular wavefunctions to both the o- and n-electrons to

xplain the observed shifts of the carbon-13 resonance in

elation to the charge densities and bond orders of the

rotonated and dissociated forms of the nitrogen hetero-

ycles. Lynch (32) performed a similar experiment and re—

orted a linear relationship between the carbon-13 chemical

hifts and the proton chemical shifts with the Hfickel n-

lectron densities of the diazoles and triazoles.

D. Methyl Derivatives of Azoles

To negate acidic properties of azoles used in this

tudy, derivatives which did not contain a free imino

ydrogen were investigated. The l—methyl derivatives were

elected because of their structural simplicity. However,

a the case of tetrazole, the 1,5—dimethyl derivative was

sed in an attempt to determine the coordination site.

leMethylpyrazole

The l—methylpyrazole ligand was first synthesized by

dichen (33) by reaction of methyl iodide and the parent

razole.v Methyl hydrazine (34) has also been used to

nthesize this ligand. The properaties of l—methylpyrazole

re not studied extensively until the mid 19005. Mangini

d Casoni (35) reported that the absorption spectrum of 1-

thylpyrazole had an absorption maximum at 214 nm which

 

ifted only slightly upon protonation. Zerbi and Alberti(36)

entified the infrared spectrum of 1-methylpyrazole for
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the region from 2000—600 cm—l. Strong bands occurring at

1050 and 940 cm_1 and a weak doublet occurring at 675 and

650 cm.1 were shown to be good indicators of the presence

of a monosubstituted pyrazole ring. The 1-substituted

pyrazoles were also different from other substituted

pyrazoles because they contained distinctive bands at 1520,

1397, 1279, cm-1; a doublet at 1100 and 1180, and a very

strong band at 755 cm_1.

Broadus and Vaughan (37) subsequently studied the di-

pole moments of l-methylpyrazole in nine different solvents.

When the dipole moment of the azole was plotted as a func—

tion of the dielectric constant of the solvents, a smooth

curve was not observed. The deviations were attributed to

the weak donor-acceptor interactions of l—methylpyrazole

and the solvent and/or to the ability of the solvents to

form weak hydrogen bonds with the 2—nitrogen of the pyrazole

ing.

With the development of nmr as an instrumental tool,

—methylpyrazole proton magnetic resonance assignments in

  
  

 

arious solvents were investigated. Prominent investigators

n this field of study were Batterham and Bigum (38),

lguero g£_gl. (39), Cola and Perotili (40), and Bystrov

t al. (41). Rees and Green (42) studied the carbon-13 nmr

f this ligand and reported the chemical shifts of the pure

igand with reSpect to the benzene resonance an external

.tandard.

 

 



 

 

 

 

Although son

of the l-methylpy

have been reporte

That the imi

in several biolog

little is known

imidazole. 1t ha

the pH of biologi

and coordinates w

molecules (43).

vulsions in rabbi

and it is lethal

The l-methyl

1377 (45). Sever

in Table I. Perc

infrared and Rama

imidazole, l—meth

They also reports

Plexes (47,48) wi

and silver(I) nit

Proton nmr s

(49)- They detei

azole in deutero<

repOrted values <

and 5-protons re:

 



17

Although some work has been reported on the protonation

the 1-methylpyrazole (30), no coordination compounds

ve been reported.

leMethylimidazole

That the imidazole moiety occurs in an amino acid and

,several biologically active substances is known. However,

ttle is known about the biological activity of l-methyl—

ddazole. It has been shown that this compound changes

,e pH of biological systems through protein interactions

d coordinates with Specific receptor sites on biomacro—

ilecules (43). The l—methylimidazole also produces con—

lsions in rabbits when administered in doses of 45 mg/kg,

d it is lethal at doses of 75 mg/kg (44).

The 1-methylimidazole was first prepared by wyss in

77 (45). Several of its physical properties are listed

Table I. Perchard and Novak (46) have reported the

1 for l—methyl-frared and Raman spectra from 4000—200 cm—

idazole, l—methylimidazole—ds, and l—methyl—da-imidazole.

ey also reported the vibrational spectra of ligand com—

exes (47,48) with zinc(II) halides, copper(II) halides,

d silver(I) nitrate between 4000-500 cm_1.

Proton nmr studies have been conducted by Reddy §£_3£.

3)- They determined the chemical shifts of l-methylimid—

ole in deuterochloroform (internal reference TMS) and

Dorted values of 7.90, 7.20, and 7.39 ppm for the 2—, 4—,

1 5-protons respectively. Barlin and Batterham (30)
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tudied the protonation of 1—methylimidazole in trifluoro-

cetic acid by proton nmr and found protonation to occur at

he 3—nitrogen. The fact that the 3—nitrogen is a good

onor site for the coordination of metal ions has been

emonstrated in the investigations of solid complexes (47,

,50—53). The 1—methylimidazole complexes have been formed

'th silver, magnesium, calcium, manganese, iron, cobalt,

'ckel, copper, zinc, and cadmium ions and have the general

rmula [M(1-MeIz)nm+], where n is 2, 4, or 6 and the

arge, me, is 1 or 2. These complexes have been charac—

rized and identified with the aid of chemical analysis,

-ray powder patterns, ligand field spectra, infrared and

man spectra, magnetic susceptibility measurements, and

pr spectra.

Formation constants for the silver(I) complexes with

nethylimidazole (51,52) have been reported as log k1 =

.00 and log k2 = 3.89 at 25° for the formation of

lg(1eMelz)11+] and [Ag(1-MeIZ)21+] respectively. These

)nstants were obtained by potentiometric measurements of

{followed by data treatment using Bjerrum's method (54).

uman and Wang (51) also found the heat of complex forma-

on (—15.6 kcal mole—1) by calorimetric methods at 25° and

re then able to determine the change in free energy

9.4 kcal mole—1) and the change in entropy (21 e.u.) by

ing the previously reported formation constant for the

action.
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1-Methyl—1,2,3—triazole

The 1—methyl—1,2,3—triazole was first prepared in 1910

dmroth and Fester (55) when they allowed the silver

:of the parent triazole to react with methyl iodide.

.912 Wolff (56) prepared the ligand by decarboxylating

5—carboxyl-1-methyl—1,2,3—triazole. No extensive in—

;igations of the properties of this compound have been

artaken. Elguero §$;§i: (57) have investigated the nmr

‘acteristics of 1,2,3—triazole and its derivatives,

 

.uding the 1-methyl—1,2,3—triazole. They reported posi-

,s for the proton absorptions in d6—DMSO, CDCl3, Py,

. CF3C02H, and pure ligand. To date, no investigations

erning coordination compounds of 1—methyl—1,2,3—triazole

been reported.

1—Methyl—1,2,4—triazole

Pellizari and Soldi (58) first prepared the l-methyl—

-triazole in 1905 by alkylation of the sodium salt of

arent azole and by heating NzN'—diformylmethylhydrazine

ormamide. Few studies have been performed on this

ole compound. Proton nmr absorptions in CDCl3 and

have been measured and reported by Jacquier et_§l. (59);

icrate derivatives have also been reported for the 1—

l—1,2,4—triazole. Greatest downfield shifts of the 5—

tons occurred after interaction of the ligand with

C acid. Therefore, protonation probably occurs at the

ition to give the l—methyl-l,2,4—triazolium cation.
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2O

1,5-Disubstitutedtetrazoles

imeth ltetrazole -— The 1,5—dimethyltetrazole was first

esized and patented by A. G. Knoll (60). He allowed

ime to react with hydrazoic acid to produce the 1,5-

hyltetrazole. In 1950, Harvill, eg_al. (61) prepared

igand by reaction of methylacetamide and hydrazoic acid.

Kaufman gp_§l, (62) measured the dipole moment of the

imethyltetrazole and found it to be of the order of

Debyes. Some other physical properties of this ligand

isted in Table I. McEwan and Rigg (63) have studied

eat of formation and combustion of this ligand at 25°.

eat of formation of the disubstituted tetrazole

i kcal mole—1) was less than that of the parent

role (56.66 kcal mole-1), although the heat of combus—

i532.19 kcal mole—1) was higher than that of the

: tetrazole (219.03 kcal mole—1). These data seem to

.te that the 1,5-dimethyltetrazole is much more stable

he parent tetrazole. Markgraf e£_gl. (64) reported

oton magnetic resonance spectra of this ligand in

ochloroform solution (TMS as internal standard) as

two sharp peaks in the ratio of 1:1 observed at

al shifts of 4.05 and 2.58 ppm for the l—methyl and

yl protons respectively.

oordinating ability of 1,5-dimethyltetrazole has been

med only once (65) in all the studies reviewed for

ale systems. This seems unusual because the l-methyl—

Dle (66), the 5—methyltetrazole (67), and the
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,5-disubstituted tetrazole, pentamethylenetetrazole, often

ferred to as PMT (68),have been studied extensively and

ve been shown to form rather strong complexes.

Gross and Featherstone (1b) have measured the pharmaco—

ogical properties of the 1,5—disubstituted tetrazoles and

ound that 1,5—dimethyltetrazole is one of the least potent

pressants; a dosage of 750 mg/kg had only slight sedative

tion on the rat.

entamethylenetetrazole —- The 1,5—disubstituted tetrazole, 

sntamethylenetetrazole (PMT),was first synthesized and

laracterized by Schmidt in 1925 (69). Later Knoll im—

oved Schmidt's method of preparation and patented the

ocedure which is similar to that presently used by Knoll

armaceutical Company (70) and Knoll Ltd. in England (71).

is synthesis consists of treating cyclohexanone with

drazoic acid causing ring expansion and formation of the

cyclic ring compound, PMT.

Gross and Featherstone in 1946 (1a) reported the

armacological activity of PMT on rabbits and rats. They

and the minimum convulsive does for rats was 25 mg/kg,

ile the minimum lethal does was 50 mg/kg.

The complex compounds of PMT have been previously

1died in this laboratory. This work has recently been

nmarized in a review article (68). Complexation of PMT

1 other 1,5—cyclopolymethylenetetrazoles with such Lewis

.ds as halogens, interhalogens, silver ions and n—acids

e been studied in solution to determine strength of the
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- and n—type interactions of the tetrazole ring. Forma—

ion constants of halogen and interhalogen complexes with

Tr and substituted PMT's (72,73) in carbon tetrachloride

>lutions as well as formation constants of iodine complexes

Lth PMT and other cyclopolymethylenetetrazoles (74) in

,2-dichloroethane were determined spectrophotometrically

: 25°. Formation constant values for the iodine mono—

iloride—tetrazole interaction were about 2 X 103 M_1,

iile those for the iodine—tetrazole interactions were much

ass (1.4 to 2.6 Mil). D'Itri and Popov (74) measured

. L . . +

[uilibrium constants for the reaction Ag + T2 = [Ag(Tz)2+]  
1 aqueous medium at 250 by following potentiometrically

is silver ion concentration in solutions containing a

lver salt and a tetrazole; Tz represents the series of

clopolymethylenetetrazoles (trimethylene- through hepta—

thylene—). Equilibrium constant values for the silver

n-tetrazole interaction were of the order of 1 x 103 g_1.

rmation constant for the PMT complexes with such m—acids

tetracyanoethylene, tetracyanoquinodimethane, chloranil,

initrobenzene, and trinitrofluorenone (75) were also

:ermined spectrophotometrically in dichloromethane solu—

>ns at 25°. Values for the formation constants for the

:ter systems were very small (0.06 to 1.31 Mil) and may

icate very weak m—type interactions between the m—acids

the tetrazole ring.

The iodine monochloride—PMT solid complex was the only

Dgen complex isolated and structurally characterized.
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ystallographic study by Baenziger, §£_gl. (76) indicated

bond between the iodine monochloride and the nitrogen

he 4-position (next to the carbon atom on the tetrazole

) of the tetraaole ring.

There is little evidence of complexation between transi-

metal ions and 1,5—disubstituted tetrazoles (68) except

the PMT complexes (77-81). These complexes have the

owing general formulae: MII(PMT)6(C104)27

(PMT)4(ClO4)2; MII(PMT)2X27-and MII(PMT)1XZ, where

‘is Mn, Fe, Co, Ni, Cu, and Zn and x. is Cl and Br.

lexes containing six PMT molecules per metal ion and

perchlorate anion were shown to have an octahedral or

arted octahedral structure. They are soluble in water

in a number of polar nonaqueous solvents. They melt or

npose between 148-2400, and most probably are ionic in

:e. However, the mono-PMT complexes with metal halides

ass quite different properties. These complexes are

.uble in polar and nonpolar solvents. They have much

er melting or decompositions points than the perchlorate

exes. These differences, as well as magnetic suscepti-

y and spectroscopic data, indicate that the metal halide

axes are probably polymeric and contain halogen bridges

force the tetrazole ring into a bridging position.

5 (32) reported a similar condition for the copper(II)

-triazole chloride complex. In this case, copper(II)

.re octahedrally coordinated; the ring of the triazole

le acts as a bridging ligand with two adjacent
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>gens coordinated to two different copper(II) ions, thus

.ng long polymeric chains. If a similar structure does

' for the PMT-metal halide system, it is the first

1 case where the tetrazole ring acts as a bidentate

id.

E. General Theory of NMR 

The energy of the resonance frequency of a given

ius obtained by nmr is dependent upon the electronic

tonment of that nucleus. It has been shown that elec—

: shield the nucleus in Such a way that the magnitude

1e field felt by the nucleus (Hn) is different from the

wed field (H0) by a value known as the shielding con—

(o); therefore,

H = H0 (l—o) . (1)

s of the shielding constant are dependent on several

rs. One of the most important factors is the hybridi—

n of the electronic orbitals within the molecule and

lectronegativity of the groups attached to the molecule.

:ement of the actual applied field or the field felt

a nucleus is very difficult; therefore, a reference

,al is employed to measure the difference between the

strength at which the sample nucleus (HS) and the

nce nucleus (Hr) resonates:
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t given nmr probe, the total field felt by the nucleus

when it undergoes resonance is constant (whether it is

re sample or the reference). Hn is only dependent on

value of the shielding constant for the particular

tronic environment of the nucleus. Thus

 

a OS <<< 1 expression 5 reduces to:

e the difference in the shielding constants of the

.e and the reference is known as the chemical shift and

presented by the symbol, delta (5). Relationship be—

the field experienced by the nucleus (Hn) and the

ancy (v) in Hz is expressed by:

YH
n

“MTV— (7)

h is Planck's constant and y is the gyromagnetic

a constant characteristic of the given nucleus being
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.ured. Separation between sample and reference absorp—

1 is often measured in Hz. Therefore, the chemical

Et value may be written in terms of frequency as:

5 = o - o = -———-———— . (8)

The values of vs and VI are large numbers which

only slightly different in frequency from that of the

be, v The expression for the chemical shift can also0.

written as:

5 : s r _ A x 106

V0 _ V0

(9)

re Va is usually a fixed frequency of 40, 60, or 100 MHz

proton magnetic resonance. The term delta, A, is the

Eerence Vs — Vr and usually expressed in units of Hz

:h allows the chemical shift value, 6, to be expressed

3pm when substituted into equation 9.

Factors within the equilibrium system, other than those

in the molecule itself, which affect the nucleus under

urement relate to molecular interactions with solvents

solutes, to paramagnetic Species, and to nuclei with

3 quadrupole moments. These factors are classified as

lgnetic and paramagentic effects depending on the direc-

of the total shielding and are discussed in most general

which deal with nmr theory.
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F. Complexation Studies by 1H-NMR 

Valuable information pertaining to the structure and

teraction of molecular and ionic complexes in the electron

nor—acceptor systems may be obtained by using proton mag—

tic resonance. For the equilibrium: nA + mD = An Dm

here A and D represent the acceptor and donor mole—

les and Aan the donor-acceptor complex), either the

emical shift of the proton nucleus on the acceptor or on

e donor molecule can be studied as a function of concen—

ation. Since the acceptor and donor molecules are ex—

anging between the uncomplexed and complexed states, two

change conditions arise. If the exchange is very slow

en compared to the life time of the complex, two resonance

mes appear. The areas of these lines are proportional to

3 concentration of the respective complexed and uncomplexed

lecules in the system and may be used to calculate the

iilibrium constants for the reaction. The position of

:se lines is determined by the chemical shift values for

:particular species; assuming the measured nucleus is on

eptor molecule, then 6 a aA’ AD’ etc. are the chemi—
AD2 ’

shift values for the free acceptor, the 1:1 complex,

the 1:2 complex. However, if the exchange is very fast

1 compared to the life time of the complex, a time-averaged

nance is observed. Assuming the measured nucleus is on

acceptor molecule, the position of the time—averaged

lance can be represented as:

 

 



 

 

 

where a, 5,

species at any 9

When the 1

stoichiometry o

by applying one

1. The che

tion (bobs) is

of either the d

mncentration i

a function of th

molecules while

constant.

4. The re]

function of the

The shape c

extremes: 1 .

curved line. Ir

the composition

that represented

M...—

‘k

The term Aobs 5

tion 9, but rat

Chemical shift

plexed molecule

 



are a. B, and y are the mole fractions of each

ecies at any given time.

When the latter exchange condition prevails, the

oichiometry of the complex in solution can be obtained

applying one of the following procedures:

1. The chemical shift of the nucleus under investiga—

.on (éobs) is plotted as a function of the concentration

’either the donor or acceptor while the other reactant's

Incentration is held constant.

2. The chemical shift of the nucleus under investiga—

on (d ) is plotted as a function of the mole ratio of
obs

e donor and acceptor.

3. The relative chemical shift (A )* is plotted as
obs

function of the concentration of the donor or acceptor

lecules while the other reactant's concentration is held

nstant.

4. The relative chemical shift (Aobs) is plotted as a

rction of the mole ratio of donor and acceptor.

The shape of the plotted function can vary between two

remes: 1. two intersecting lines or, 2. a smooth

ved line. In the first case, two intersecting lines,

composition of the complex in solution corresponds to

: represented by the point of intersection. In the other

 

2 term A should not be confused with that used in equa—

obs

n 9, but rather equals the difference between the observed

mical shift of the nucleus in the complexed and uncom-

Xd : =5 -6.e molecule thus Aobs obs A
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5e, a smooth curve, an extrapolation of tangential lines

plied to the initial and final portions of the curve will

:ersect at a point corresponding to the composition of

a complex in solution.

Once the stoichiometry has been determined, it is de-

rable to evaluate the formation constant of the complex

solution. Hanna and Ashbaugh (83) were the first inves-

lators to develop a method which gave an equilibrium

>tient (note that the activity coefficient correction was

.included in the derivation). They considered an equi-

rium of the type expressed in Equation 11 and applied

well—known Benesi-Hildebrand method of absorption spec—

scopy (84) to the nmr data. Hanna and Ashbaugh considered

A+D=AD (11)

-)(-

chemical shift of the protons on the acceptor molecule

    
  

   

  

   

    

   

'ch undergo rapid exchange between complexed and uncom—

ed states) as being concentration dependent. In addi—

. they applied data treatments similar to those used

equilibrium constant determination of hydrogen bonding

mr (82) to the complexation equilibrium and showed that:

A A [D] Q
<3 — <5 = ____.___ 5A — 5A ) 12
obs O (1 _ [D])Q g AD 0 ( )

value Q represents the quotient of the concentrations

imilar derivation applies if the nuclei on the donor

ecules are followed.
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reaction products and reactants, 53 is the observed

emical shift of the acceptor protons in the uncomplexed

A

cm, éobs is the observed chemical shift of the acceptor

A

)tons in the complexing media, 5AD is the chemical shift

the acceptor protons in the pure complex AD, and [D] is  
a total concentration of the donor, which is always much

eater than the acceptor concentration. Equation 12 can

simplified to:

AA [D] Q
Aobs = (1 _ [D]) Q (AAD) (13)

expressing the differences of

  

1 1 1 1

= ————————- (-———) + ———-——— ~ (14)
A A

Aobs AiD (Q) [D] AAD

form is analogous to the Bensi—Hildebrand equation.

ver, the concentration of the acceptor does not appear,

the relative chemical shift value for the acceptor pro—

in the pure complex, AiD’ replaces the molar absorb—

ty of the complex. The value of the equilibrium

ient may be evaluated from the slope of the line obtained

 

is plotted and extrapolated to pure

[T]
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is possible under certain conditions to study both nuclei

the donor molecules and on the acceptor molecules by nmr

ods. Where this is possible, the limiting chemical

ft of the acceptor nuclei, 62D, and the donor nuclei,

, can be determined graphically by making chemical shift

urements on a series of solutions where the concentra-

of the supporting reactant is varied such that the mole

'o of the supporting reactant to the measured reactant

uite large; thus increasing the amount of the complexed

of the measured molecules and causing the observed

. . ... D A
ical shift to approach its limiting value, 5AD or 5AD

Two values for the equilibrium quotient can also be

ined and should agree with one another. These values

llt from data treatment of two experiments where each of

two reactants are held constant while the other is

ed. Hanna and Ashbaugh list some criteria for ideal

ems in which both the donor and acceptor can be studied.

1. Both donor and acceptor molecules should contain

protons (or other magnetic nuclei) which preferably

give single sharp lines when the absorption spectra

are recorded.

2. Either the donor or acceptor concentration should

be greater than the other components (excluding

solvent).

3. Nmr absorptions of the donor and solvent should not

overlap the absorptions of the acceptor (or vice

versa if the donor protons are being studiedS. (83)

‘Second method for the evaluation of the formation

at for 1:1 acceptor-donor complexes by nmr data has
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also been proposed by Foster and Fyfe (86). They base their

derivation on the optical method described by Foster,

Hammick, and Wardly (87), thereby obtaining the following

expression:

--— + — A K 15

where A corres onds to AA - A corres onds to AA
9 obs ' o 9 AD

and K corresponds to Q in the derivation by Hanna and

Ashbaugh. Foster and Fyfe assume that the solutions are

yAD

7A 7D

 

ideal or that the activity coefficient quotient

remains constant over the range of solutions being studied. 
1

n this method, when YET XE A is plotted, a straight

ine is obtained whose negative slope gives K directly

1nd enables A0 to be obtained by extrapolation to infin—

.tely dilute solutions rather than to highly concentrated

nes as does the Hanna and Ashbaugh method.

To study complexation in solution by proton nmr, the

ioice of an acceptor is quite important. If the acceptor

5 a metal ion, as is the case of this investigation, it

iOUld:

1. show a fairly strong tendency to complex with weak

2. have well—defined coordination numbers,

3. be diamagnetic to eliminate magnetic field correc—

ms of the measured resonances,
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4. form salts which are fairly soluble in solvents

low donor properties.

se the silver(I) ion best met these requirements, it

he most acceptable metal ion for the study.

NMR techniques have been used to study several ionic

Lexes with silver(I) salts. As early as 1960, Powell

;heppard (85) used nmr to study structural properties

1e silver(I) nitrate complex with but-2-ene and cyclo-

ie in deuterium oxide. The silver(I) ion seemed to

irb the double bond of the olefin and not affect the

.e bonds. Quinn and VanGilder (89) also studied the

:r(I) ion complexes with olefins, such as cyclopentene,

mexene, gig-cyclooctene, and their l—methyl substituted

>gues. The olefinic protons were deshielded by 30—50 Hz

coordinated to the silver(I) ion. They attributed this

to the stronger o—type than n—type component of the

ination bond. Schug and Martin (90) studied the proton

cal shifts of aqueous silver ion complexes of cyclo—

e, but—2-ene, benzene, and toluene. The nmr spectra of

n-containing aqueous solutions were independent of the

:(I) nitrate concentration. However, aqueous solutions

.ning aromatic molecules, produced chemical shift values

varied with the silver(I) nitrate concentration. Dif-

es in the two Systems were explained by the rapid

ge of the silver(I) ion between the different species

equilibrium mixture. Species in the aromatic system

Iought to be free donor, Ar; 1:1 complex, Ar-Ag+;
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plex, Ar-Ag§+; etc. Therefore, the observed chemical

»f the donor nucleus being measured was written as an

: of the various ligand environments weighted ac-

[ly, wheres

n

éobs = .2 Xi 5i ' (16)
1:0

.ghting factors, Xi’ cannot be evaluated unless all

>rium constants for the system studied are known,

.5 not the case with this system. The fact that the

rplex is the most predominant one may be established

iming that the total aromatic concentration is given

.r]T = [Ar]O + [Ar—Ag+] + [Ar—Ag§+] ————— (17)

plotting the average observed chemical shift versus

al aromatic concentration; this process should yield

ght line if the highest complex species is the 1:1

([Ar]T = [Ar]O + [Ar-Ag+]). Schug and Martin (90)

linear relationship between the observed chemical

ad the total aromatic concentration for both benzene

lene. They were also able to determine the limiting

a chemical shifts for the pure 1:1 complexes. These

mre 15.6 and 17.1 Hz for benzene—Ag1+ and toluene—

pectively when studied at 40 MHz. These shifts were

ed to the transfer of electrons from the n-electron

o the silver(I) ions.
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[n addition to structural information obtained by nmr

as of silver(I) complexes with various organic ligands,

stability measurements have been made. Foreman, et al.

have re—examined the silver(I) nitrate-benzene system

ueous solution by proton nmr. They derived the expres-

K1A1[Do] + K1K2A2 [13012

A = (18)

1 + K1[D0] + K1K2[Do]2

is similar to that derived by Foster and Fyfe (86)

:1 complexes, except they also consider the formation

e 1:2 complex as well,

K1 = ——JE£2L— for A + D = AD (19)

[A] [D]

[AD2]

K2 = —-——— for AD + D = AD2 (20)

[AD] [D]

:se studies, Foreman et al. defined the acceptor as

e and the donor as silver(I) ion, and maintained

(I) nitrate concentrations in excess of benzene con-

tions. When the 1:2 complex was considered, the

ination of the formation constants K1 and K2 be—

iite involved; therefore, several steps were taken to

?y the expression. First new terms were defined as:

= K1 A1 A2 * KiKz A2 (21)

- K1 A4 = K1K2  



i and subsets"

  

  

   

 

  

 

    

 

A

llotof — V5
P D0 —

when only the 1:1

K27“) the gradi

function:

Thenmr data, in

aleast square cu

A1: and A2 are

less complex, For

and 0.48 kg mole-

  

    

  

shift values for

respectively whe

Deb et a1 .

   

   

   

   

   

   
   

   

  

tion between sil

donors in aceton

8dilution to incl

Shown that silve

94L When aceto

silver(I) ion co

sumed to be in t

Thus the folloWi

Systems studied:



36

d substituted into Equation 18 and re—arranged to give:

A

E)— = A1 +A2 [D0] -A3 A -A4[D0] A . (22)

plot of %_ XE A gives a straight line of gradient —K1
0

an only the 1:1 complex is present, K2 = 0. However, if

# 0 the gradient of the plot is given by a complex

iction:

A

d(Do ) dDo

T = A2 — A4 A (if) "' A3 "‘ A4 D0 0 (23)

: nmr data, in such cases where K2 # O, are treated by

,east square curve fitting computer program, and K1, K2,

and A2 are evaluated. In the silver(I) nitrate—ben-

e complex, Foreman et al. (91) obtained values of 2.30

0.48 kg mole_1 for K1 and K2 and limiting chemical

ft values for pure [Angzl+] and [AgZB22+] of 26 and 51 Hz

Pectively when measured at 100 MHz.

Deb et al. (92) used proton nmr to study complex forma—

n between silver(I) ions and nitrogen, oxygen, and sulfur

ors in acetonitrile. They modified the Hanna-Ashbaugh

ation to include solvent effects. Several workers have

fin that silver nitrate is complexed by acetonitrile (93,

- When acetonitrile is in large excess as compared to

Jer(1) ion concentrations, all silver(I) ions are as-

id to be in the 1:2, silver(I) ion-acetonitrile complex.

5 the following equilibrium was considered for the donor

:ems studied:
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A82 + D = DAS+S (24)

are S represents solvent molecules (acetonitrile), A

presents acceptor (silver(I) ions), and D represents

. donors (indol, benzofuran, and benzothiophene). Using

_al concentration units, they derived the following

>ression:

1 ms 1 1 2
—=—<—>+—<1——> <25)A0 KAC ‘ mA Ac ‘ K

the determination of the formation constant, K, where

and mS were the molal concentrations of acceptor and

vent and A0 and Ac were the observed relative chemi-

shift for the donor and limiting relative chemical

ft of the pure complex DAS for the donor protons.

Observed chemical shifts of each proton environment on

se heterocyclic ligands were recorded and used in the

culation of equilibrium constants for each site. Although

calculated equilibrium constant values varied for the

ferent sites on a particular ligand molecule, valuable

Drmation was obtained concerning the presence or absence

localized interactions.

Re—arrangement studies of the bullvalene or bicyclo-

l‘0)Octa-2,5--diene (containing four equivalent proton

as 1—4) protons have been studied using the spin-echo

inique (95). The protons participate in rapid exchange
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actions and the effect of silver(I) ion upon the olefinic

rds can be detected. Rate of exchange was slowed by the

:sence of the silver(I) cation. Also, the steady state

re width for the two active proton sites at 2 and 3

:arest the double bonds) was increased upon complexation.

es of bullvalene proton exchange were determined to be

perature dependent both in the presence of silver(I) ions

in the free state. Activation energy for the rearrange—

t of bullvalene was shown to be higher when silver(I)

s were present.

The univalent potassium cation has also been used in

elucidation of formation constants for ionic complexes.

Stegard and Chan (96) have studied the nature of the

iing Of potassium(I) ion to macotetrolide, nonactin, by

:on magnetic resonance spectroscopy at 220 MHz. They

Lied a least squaes curve fitting program to their nmr

1 to obtain an apparent formation constant of 7 i 2 x 104

lcentration expressed in mole fraction) for the Kl+-

tctin complex. Their theoretical expression was:

1

5 = 1/2 éc{(1 + o + n) — [(1 + o +Tfi2 — 4¢] /2] (25)

e 5 is the observed chemical shift
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5 is the observed chemical shift in the complexed

state,

¢ is the stoichiometric concentration ratio of K1+

to nonactin,

n is the reciprocal of the apparent formation con-

stant, K, and the stoichiometric nonactin con-

centration.

The stoichiometric concentration of nonactin was fixed in

reir experiments and KClO4 concentration was varied.)

ley compared the family of curves derived by plotting

be XE ¢ with their experimental data to obtain the equi-

.brium constant.

Another novel method for the determination of formation

nstants for donor—acceptor complexes by nmr has recently

en outlined by Foster and Twiselton (97). The nmr chemi—

1 shift measurements were obtained on a series of solu—

ons where the initial concentrations of the reactants are

ried and the acceptor/donor ratio is always 1:1. This

ocedure was employed to minimize the use of termolecular

ecies created when the reaction conditions are [Do]>>>[AO]

he usual conditions). Under these new conditions,

0] = [A0], the relative chemical shift is much smaller

an under the previous condition, [Do]>>>[AO]. The equi-

arium constant, K , for the formation of the 1:1 complex

1 be expressed as:
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[AD]

[A01

which combined with the usual expression for the observed

:hemical shift,

5 =oe oA+ ES (SAD .(28)

aecomes:

A
A 0 A__=KA(_-2+—).

(29)
A0] ‘A A0

:quilibrium constants, K, and limiting relative chemical

:hifts, A0,

colal scale for a series of values for [A0] and A using

were evaluated on both the molar scale and

.computer curve fitting program.

M

Information obtained from proton nmr studies on donor

cceptor systems is often valuable in the elucidation of

olution structure and strength of interaction, but it is

ot always obtained directly from the site of interaction.

he site of interaction can be studied by using more direct

ethods such as sodium—23 nmr.

Sodium—23 nmr is a useful tool in solvation studies of

>dium salts in non—aqueous solvents. Nmr data obtained in

ris laboratory (98) have recently shown that the chemical

rift of the sodium—23 magnetic resonance is dependent upon
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cation-anion and cation—solvent interactions. The cation—

anion interactions were studied in a variety of non-aqueous

solvents having sodium salt concentrations ranging from 0.10

to 0.50 g, The chemical shifts of the sodium thiocyanate

and iodide solutions were shown to be concentration dependent,

while the chemical shifts of the sodium perchlorate and

tetraphenylborate solutions were not concentration dependent

:0 within the limits of detectability of the instrument (up

:0 i0.3 ppm). The cation—solvent interactions were studied

rsing both sodium perchlorate and sodium tetraphenylborate

solutions in 10 different solvents. When the cation—anion

.nteractions were absent from the system under investigation,

he changes in electron density around the sodium ion were

:hown to be a result of solvent interactions. The varying

milities of the solvents to change the electron density

as related to the solvent's donor ability. Gutmann (99)

moposed a Scale of donor numbers defined as the enthalpy

f the reaction (Kcal mole—1) between a given solvent and

ntimony pentachloride in 1,2-dichloroethane solution. These

onor numbers (the enthalpy of complex formation between

olute and solvent) were shown to be linear functions of

he chemical shift for the sodium ion for both sodium per—

hlorate and tetraphenylborate solutions in nitromethane,

cetonitrile, acetone, ethyl acetate, tetrahydrofuran, di—

ethylformamide, dimethylsulfoxide, pyridine, hexamethy1_

hosphoramide, and water. Herlem and Popov (97) have ex-

anded this study to include some very basic solvents
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:liquid ammonia, ethylenediamine, ethylamine, iggrpropyl—

mine, Efbutylamine, hydrazine, and 1,1,3,3-tetramethyl—

manidine). The higher the donor number of the solvent the

ore negative the chemical shift value (external reference

as saturated aqueous sodium chloride) for the sodium-23

esonance; for example nitromethane D.N. = 2.7, 523Na =

5.6 ppm; acetone, D.N. = 17.0, 623Na = 8.56; DMSO, D.N. =

9.8, 523Na = 0.72; and Py, D.N. = 33.1, 623Na = —0.72 ppm.

The chemical shift of the sodium—23 resonance has also

een measured in mixed solvent systems (98) using the tetra—

henylborate anion. The study demonstrates the competition

f the solvents for the solvation or coordination positions

round the sodium(I) ion. An iso—solvation point was defined

5 that point at which the chemical shift value of the

>dium-23 resonance has reached a value 50 percent of the

1y between the value obtained in pure solvent A and the

alue obtained in pure solvent B. At this point, there is

requal solvation or complexation of the cation by the two

>lvents. When a plot of observed chemical shift for the

adium ion XE the mole fraction of one solvent is made, a

moth curve is obtained.

The study of the azole systems using this technique

buld give some information about the relative donor

rengths of these ligands.
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III. EXPERIMENTAL

A. Chemicals

litromethane

Amine impurities were removed from nitromethane (c.p.

grade obtained from Fisher Scientific) by passing it through

In Amberlite IR—120 (acid form) cation exchange resin at a

rate of 1—2 ml per minute. The resin had previously been

Lctivated with 75 ml of 0.1 g_hydrochloric acid followed by

hree 75 ml washings of anhydrous methanol and packed into

.column 20 cm long and 1 cm in diameter. The column was

hen washed with about 100 ml of nitromethane, which was

iSCarded, before the nitromethane to be purified was added.

he eluted nitromethane was refluxed over barium oxide (ob—

ained from Barium and Strontium Chemicals) for 12 hours

nd fractionally distilled directly into dark storage bottles.

he boiling point of the purified nitromethane was determined

3 be 1010 at 760 mm, as compared to the literature value

f 100.80 (101).

:etonitrile

Two liters of acetonitrile (A.C.S. analyzed reagent

:ade obtained from J. T. Baker Co.) were purified by

43

 

 



 

  

washing with two

hydroxide soluti

portions of anhy

then decanted an

12 hours. It w

pentoxide and fr

was determined t

nitrile was stor

sieves until nee

gyridine

Pyridine (r

and Bell) was dr

followed by frac

The boiling poi

be 101° at 760 In

Other Solvents
M

Rezigent gr

    

 

  

   
  

    

this study were

to use.

Silver Perchlor

Anhydrous

°19anics) was u

it was divided

0its: to ensure



 

44

ashing with two 300 ml portions of saturated potassium

ydroxide solution followed by shaking twice with 60 gram

artions of anhydrous sodium carbonate. The solvent was

hen decanted and allowed to stand over calcium sulfate for

2 hours. It was then dried by refluxing over phosphorus

entoxide and fractionally distilled. The boiling point

as determined to be 81.00 at 750 mm. The purified aceto—

itrile was stored in dark bottles over type 5A molecular

ieves until needed.

zridine

Pyridine (reagent grade obtained from Matheson Coleman

nd Bell) was dried over barium oxide by refluxing for 12 hr

ollowed by fractional distillation into storage bottles.

he boiling point of the dried pyridine was determined to

e 1010 at 760 mm.

  

her Solvents

 

Reagent grade acetone and all other solvents used in

is study were dried over type 5A molecular sieves prior

use.

lver Perchlorate Anhydrous

Anhydrous silver perchlorate (obtained from Alfa In—

ganics) was used without further purification. However,

was divided into smaller portions and stored in a desic—

tor to ensure dryness.
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3dium Tetraphenylborate 

Sodium tetraphenylborate (obtained from J. T. Baker)

as used without further purification.

3dium Perchlorate

Anhydrous sodium perchlorate (obtained from Alfa In-

rganics) was used without further purification.

etrabutylammonium Perchlorate

Tetrabutylammonium perchlorate was prepared by the

ethod outlined by Coetzee and McGuire (102). Equivalent

nounts (0.10 mole) of tetrabutylammonium iodide (obtained

rom Eastman Organic Chemicals) and sodium perchlorate were

issolved in a minimum amount of acetone. The tetrabutyl—

onium perchlorate was precipitated from the acetone solu—

'on by the addition of 10 volumes of ice water to each

lume of acetone present. The solid was isolated and re—

ystallized from acetone—water mixtures several times,

til no yellow iodide residue was observed. A samll por—

on, about 30 mg, was tested for the presence of the iodide

dissolving it in acetone and adding a solution of silver

rchlorate; if no silver iodide was detected, the tetra—

tYlammonium perchlorate was dried in a vacuum oven at 80°

r 12 hours in the presence of phosphorus pentoxide.
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Hydrazoic Acid

A solution of hydrazoic acid in benzene was prepared

by the method of Braun (103) by suspending practical grade

sodium azide (210 grams, 3.23 moles) in 210 ml of water.

The mixture was placed in a 3—liter three-necked round—

bottomed flask equipped with a dropping funnel, mechanical

stirrer, and an alcohol thermometer. One liter of benzene

was added to the aqueous slurry, and the mixture was cooled

and maintained between 0—100 by an external ice bath. Con—

centrated sulfuric acid (85 ml, 1.60 moles) was added drop-

 

wise to the vigorously stirred slurry. When the addition

of sulfuric acid was complete, the benzene layer,with

hydrazoic acid dissolved in it, was decanted from the

almost solid sludge of sodium sulfate. The hydrazoic acid—

benzene solution was stored over anhydrous sodium sulfate

until needed. The normality of the acid was determined by

extracting the acid into water and titrating with standard—

ized Sodium hydroxide solution to the phenolphthalein end-

point.

CAUTION: Hydrazoic acid vapors are highly toxic; therefore,

all reactions involving this reagent should be carried out

in a well-ventilated hood.

B. Ligands

1,5-Dimethyltetrazole (1.5-DiMQEEl

The 1,5—dimethyltetrazole was prepared by the method
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outlined by Margraf, Bachmann, and Hollis (64). The reac—

tion medium consisted of 345 ml of 1.0 g_aqueous sodium

hydroxide solution in which acetone oxime (26 grams, 0.556

  

(C6H5 )sozcl NaN3 CHéc fiCH3

(CH3 )2C=N-OH NaOH > (CH3 )2C=N-Cl > ,, ,

mole) was dissolved. The reaction mixture was mechanically

stirred and externally chilled while benzenesulfonyl chlor—

ide (65 grams, 0.353 mole) was added dropwise over a period

of 30-40 minutes. During the addition of benzenesulfonyl

chloride to the reaction mixture, a white solid was formed.

Sodium azide (24 grams, 0.353 mole) was dissolved in a mini—

mum amount of water and added dropwise to the chilled sus—

pension over a period of 30 minutes. The solution was al-

lowed to reach room temperature, warmed slowly by a heating

antle, and was refluxed for 12—15 hours. The solvent,

ater, was removed under reduced pressure, and a solid

esidue was obtained. This solid material was extracted

hree times with 400—500 ml of hot benzene followed by two

xtractions with 300 ml of hot chloroform. The solvent

xtracts were combined and allowed to evaporate to dryness

0 yield the crude tetrazole. If the solid residue from

he reaction mixture retained a large amount of solvent,

he residue was slurried with acetone and filtered. The

cetone and water filtrate was placed in an evaporating dish

nd concentrated. The solid residue obtained using this

ethod was then extracted as previously described. The
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oduct was recrystallized from a benzene—ether (40:60)

xture followed by vacuum sublimation which gave a yield

14.7 grams (41%). The 1,5—DiMeTz obtained had a melting

int of 71.5—72o as compared to the literature value of

.8—72.6°. The infrared and nmr spectra of this compound

e shown in Figures 1, 3 and 21 in Appendix II.

Analysis: calc. %C, 36.72; %H, 6.18; 77h], 57.11

Found %c, 36.54; %H, 6.12; win, 56.85.

deth l—1 2,4-triazole 1—Me—1,2,4—Trz

The 1—methyl—1,2,4—triazole was prepared by the method

Pellizzari (58) as outlined by Alkinson and Polya (104).

3 grams of 1,2,4—triazole (obtained from Aldrich Chemical

.) were dissolved in a solution containing 7 grams of

iium methoxide in 60 ml of methanol. The mixture was

 

/H H\ /CH3

— N NaOCHa + CH3I c ——N

' ‘ " ' + NaI
\ ¢N CH30H N\ ¢N

c c
I l

H H

nsferred to an 100 ml high pressure tube and about

1 of methyl iodide was added. The solution was cooled

an isgfpropyl alcohol-dry ice bath. The pressure

e was then sealed. The sealed tube was then allowed to

urn to room temperature, shaken gently to ensure mixing,

ced in an oil bath and heated to 120° for 2 hours. (Due

the high pressure generated upon heating the reaction
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ixture, the reaction was carried out in a safety room.)

he reaction vessel was allowed to return to room tempera—

ure, placed in liquid nitrogen until frozen and opened.

he unreacted triazole was removed from the yellow reaction

ixture by evaporation of the methanol and extracting the

oncentrated mixture with two 30 ml portions of hot benzene

nd three 30 ml portions of hot chloroform. When the ex-

racts were cooled, the 1,2,4—triazole precipitated and was

ecovered by filtration. The residue containing the pro—

uct (1—Me—1,2,4-Trz) was fractionally distilled. The frac—

ion boiling at 1720 at 735 mm was collected and stored in

dark bottle until used. The infrared and nmr spectra of

his compound are shown in Figures 5, 7, and 22 in Appendix

I.

Analysis: Calc. %c, 43.35; %H, 6.08,- %N, 50.57.

Found %c, 43.24; %H, 5.97; %N, 50.87.

-Methyl-1,2,3—triazole fl-Me—1,2,3-Trz)

The 1—methyl—1,2,3—triazole preparation was attempted

:ing two different methods, each involving a two—step

'nthesis.

The first method involved the preparation of 1,2,3~

iazole followed by methylation of the 1—position. The

2,3-triazole was prepared from 4—carboxy—1,2,3—triazole

decarboxylation. The 4—carboyx-1,2,3—triazole (105) was

ePared by refluxing propionic acid (35 grams, 0.50 mole)

3 a portion of the benzene stock solution of hydrazoic

 



   
 
 

 

  

  

   

acid (page 46)

This reaction

flask equipped

water-cooled

the hood due t

caped during

began to separ

tion mixture

product was r

in a well-ven

hydrazoic aci 
and found to h

218-222". The

at 220°. The

distilled unde

as compared t1

‘ Attempts

r the silver sa

(55) or the s

in methanol (

The seed

bOxylation of

by Pedersen l

triazole, it

 



 

50

acid (page 46) equivalent to 1.5 moles of hydrazoic acid.

This reaction was performed in a three—necked round—bottomed

 

H /H H\ /H

\c N c —— N
_ HN3 u I —C02 n I

HCICCOOH Benzene C/C\N&N Heat > H—C\NéN

O

O

H

flask equipped with a mechanical stirrer and an effective

ater—cooled condenser. The reaction was carried out in

the hood due to the toxicity of hydrazoic acid which es-

caped during the heating process. A solid white product

egan to separate after a few hours of heating. The reac-

tion mixture was cooled in an ice—water bath and the solid

roduct was removed by filtration. (This step was performed

in a well-ventilated hood, due to the presence of unreacted

hydrazoic acid.) The solid was recrystallized from water

and found to have a melting or decarboxylation point at

318—222°. The 4—carboxy—1,2,3-triazole was decarboxylated

it 220°. The resulting 1,2,3—triazole was then fractionally

listilled under reduced pressure at a b.p. of 100° at 29 mm

6 compared to the literature value of 205-206° at 760 mm.

Attempts to methylate the 1,2,3-triazole using either

he silver salt of the triazole and methyl iodide in ether

55) or the sodium salt of the triazole and dimethylsulfate

n methanol (106) were unsuccessful.

The second method involved the preparation and decar—

nylation of 1—methyl—4-carboxy—1,2,3-triazole, as reported

y Pedersen (105). To prepare the 1-methyl—4-carboxy—1,2,3-

riazole, it was necessary to prepare gaseous methyl azide
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and pass it through the reaction mixture containing 100 ml

of dry toluene and propiolic acid (14 grams, 0.20 mole).

Methyl azide (107) was generated from a solution of sodium

\

H\C N/CH3 H\C N/CH3

CH3N3 “CO2

HCECCOOH —-———-—> " ' _____> n I

Toluene /C\\N¢§N heat C\\N¢¢N

azide (39 grams, 0.60 mole) and 100 ml of 0.25 §_sodium

hydroxide by the dropwise addition of dimethylsulfate (37 ml,

0.39 mole) from a graduated addition buret. The sodium

azide solution was warmed to 40° in order to increase the

Methyl  rate of liberation of the generated methyl azide.

azide was passed over anhydrous calcium chloride and then

bubbled into the reaction mixture in a high pressure bottle,

through a disposable Pasteur pipette at a rate of 2 bubbles

per second. The rate of methyl azide evolution was adjusted

by the regulation of the rate of addition of dimethylsulfate

to the sodium azide solution. After all the dimethylsulfate

was added, the sodium azide solution was heated for an addi—

tional 30 minutes before the toluene reaction mixture was

sealed off with a pinch clamp. The toluene solution was

allowed to stand overnight at room temperature. A white

Solid formed on the inner surface of the reaction vessel.

The reaction vessel, a high pressure bottle, was sealed and

heated in boiling water for 2 hours. After cooling the

reaction vessel in ice water, the seal was removed, and the

precipitate was filtered. Since the mixture had charred

iuring the heating process, the product was dissolved in hot
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toluene and treated with Norit-A decolorizing carbon. The

crude product was recovered from the hot filtrate and then

recrystallized from water. A white crystalline material

(7.8 grams, 0.094 mole) was isolated. The preparation was

repeated with the omission of the last step, sealing and

heating of the pressure bottle. The latter method yielded

8.4 grams of the triazole. Therefore, all further prepara—

tions of the ligand omitted the heating step.

The 1-methyl—4—carboxy-1,2,3—triazole
was decarboxylated

by heating 5-10 grams portions in a round—bottomed flask

equipped with a distillation head and a receiver. The

flask was heated to 2450 by lowering it into a beaker con-

taining molten WOod's metal. Once the evolution of carbon

dioxide ceased, the product was distilled under reduced

pressure, b.p. 140° at 20 mm. The infrared and nmr spectra

of this compound are shown as Figures 9, 11, and 23 in Ap-

pendix II.

Analysis: Calc. %C, 43.35; %H, 6.08; %N, 50.57.

Found %c, 43.25; %H, 5.88; %N, 50.44.

l-Methylimidazole (1-MeIZ2

The 1-methylimidazole (obtained from Aldrich Chemical

CO-) was vacuum distilled at 630 at 6 mm to give a colorless

liquid, The infrared and nmr spectra of this compound are

Shown as Figures 17, 19, and 25 in Appendix II.

Analeis: Calc. %c, 58.50; %H, 7.38; %N, 34.12.

Found %C, 58.28; %H, 7.28; flN, 33.94.  
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l—Methylpyrazole (1-MePz)
 

The 1-methy1pyrazole was prepared by the methylation of

pyrazole (obtained from Aldrich Chemical Co.) in the 1—posi—

tion by using the method outlined by Finar and Lord (108).

a reaction mixture consisting of pyrazole (15 grams, 0.22

nole), potassium hydroxide (12.4 grams, 0.22 mole), ethanol

:10 ml), and water (2 ml) was warmed in a 50 ml round-bottomed

flask equipped with a condenser and stirrer. The mixture was

[ H H K H CH3\ / /
/C -— N KOH > \c — N CHal \c —— N + KI

. " ' ethanol " ether " '-
-

H N
‘ c\c/N water H C\ /N {\C/

I I I

H H H

tirred until homogeneous, then 50 grams (22 ml, 0.35 mole)

f methyl iodide, dissolved in 20 ml of anhydrous ether,

ere added dropwise during a period of 1 hour. The reaction

ixture was refluxed for an additional hour. The product

as extracted from the cooled mixture with two 30 ml por-

ions of ether followed by two 30 ml portions of chloroform.

ne extracts were combined and concentrated before the pro—

JCt was fractionally distilled, yielding 9.8 grams (0.12

ale) 0f 1-MePz. The boiling point of the ligand was

Etermined to be 117° at 735 mm. The infrared and nmr spec—

:a Of this compound are shown as Figures 13, 15, and 24 in

>pendix II.

Analysis: Calc. wt, 58.50; mm, 7.387 %N, 34.12-

Found %c, 58.56; %H, 7.20; %N, 34.07.  
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C. Solid Compounds Isolated

,5-dimethyltetrazple)silver(I) Perchlorate

1-methyl—1,2,4-triazole)silver(I) Perchlorate

1—methyl-1,2,3—triazole)silver(I) Perchlorate

Each of the above complexes was prepared in 20 ml of

methane solution containing 0.01 mole of silver per—

‘ate, by the dropwise addition of a 2.0 M_solution of

.igand in nitromethane. When the ligand to silver ion

ratio was greater than 4:1, the solution was allowed to

for an additional 15 minutes. The solid complex was

isolated by filtration. The complex was washed first

nitromethane to remove excess silver perchlorate then

anhydrous ether. The solid was dried at 30° for several

before the infrared spectra and melting points were

ved. The infrared spectra obtained on a Nujol mull of

of the complexes are listed in Figures 2,4,6,8,10, and

Appendix II. Melting points and chemical analysis for

complexes are as follows:

'

° lts at

A 1,5-D MeTz Clo m.p. Opaque at 40 me

[ g( l )2] 4 139-1410.

Analysis: Calc. %c, 17.85; %H, 3.00; %N, 27.77.

Found %C, 17.59; %H, 3.12; %N, 26.68.

0

[Ag(1—1Me—1,2,4—Trz)1]cio4
m.p. dec. ~ 285 .

Analysis: Calc. %C, 12.40; %H, 1.74; %N, 14.47.

Found %C, 12.30; %H, 1.70; %N, 14.68.
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[Ag(1%Me—1,2,3—Trz)1]ClO4 m.p. dec. ~ 230°.

Analysis: Calc. %c, 12.40; %H, 1.74; %N, 14.47.

Found 2c, 12.45; %H, 1.68; %N, 14.49.

Bis(1—methylimidazple)silver(I) Perchlorate

Bis(1—methylpyrazole)silver(I) Perchlorate

No solid complexes could be isolated in nitromethane

solutions of the ligands, 1—methyl- imidazole and -pyrazole

even when diethylether was added in order to lower the di—

electric constant of the reaction medium. Therefore, each

of the complexes was prepared from absolute ethanol solu—  
tions containing 0.01 mole of silver perchlorate by the drop—

wise addition of 2.0 M_solution of the ligand in ethanol. \

When the ligand to silver ion ratio was 4:1, the solution

was stirred for an additional 15 minutes. The solid complex

which had formed was isolated by filtration. The complex

was washed with a small portion of absolute ethanol and

then with anhydrous ether. The infrared spectrum and the

nelting point of the complex were obtained after drying the

3°mPlex at 30° for several hours. The infrared spectra are

3h0Wn in Figures 14, 16, 18, and 20 in Appendix II. Anal—

1518 and melting points for the complexes are:

[Ag(1-MeIz)2]ClO4
m.p. 119—119.5°.

Analysis: Calc. %C, 25.86; %H, 3.26; %N, 15.08.

Found %c, 25.75; %H, 3.78; %N, 15.20.
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[Ag(1-MePz)2]ClO4 m.p. 126—1280.

Analysis: Calc. %C, 25.86; %H, 3.26; %N, 15.08.

Found %C, 25.68; %H, 3.24; %N, 15.06.

D. Instrumentation

Proton Nuclear Magnetic Resonance Spectra

All the proton nuclear magnetic resonance spectra were

obtained on a Varian A 56/60 D spectrometer. Tetramethyl—

silane was used as an internal standard. Sweep calibration

on the Spectrometer was Checked daily by employing the side—

band technique (109). Several of the ligand proton nuclear

magnetic resonance positions were more precisely determined

by linear interpolation between two TMS sidebands. The side—

bands were generated through the use of a Hewlett Packard

Model 4202 A frequency oscillator (10 Hz to 1 MHz).

Sodium Nuclear Magnetic Resonance SPQCtra

 

The majority of the sodium nuclear magnetic resonance

Spectra were obtained on the Varian DA-60 spectrometer in

:he wideline configuration which was modified to allow the

:ecorder sweep potentiometer to sweep the magnet power supply.

l model V 4310C ££ unit, modified for phase detection and

>perating at 15.88 MHz was employed. Because the natural

.ine width for the sodium—23 resonance in water is on the

mder of 10 Hz (98), standard non—spinning, 15-mm test tubes

ere employed as sample tubes for the measurements. The

. . ed

Eference was a co—axial 8 mm tube containing saturat  
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aqueous sodium chloride solution. The spectra were cali—

brated by means of the sidebands produced by the wideline

modulation unit operating at 400 Hz and the chemical shift

of the samples was determined by linear interpolation from

the sidebands. A sweep rate of 250 seconds (or more) per

sweep was employed, and the Spectra were retraced at least

three times to average the effects of field drift.

A saturated solution of sodium tetraphenylborate in

nitromethane, as a secondary standard, was used in cases

where the chemical shift of the sample was masked by the

saturated aqueous sodium chloride reference resonance.

The sodium nuclear magnetic resonance Spectrum of a

few samples was obtained on a Nuclear Magnetic Resonance

Specialties MP 1000 pulsed nmr spectrometer operating in

the time sharing mode. In this configuration, the spectrum

obtained is a plot of the integrated free induction decay

Signal from the sample as the ordinate yersgs the radio fre-

quency as the abscissa. The spectrum appears as a frequency

Swept continuous wave nmr spectrum but at a much higher sig—

nal to noise ratio and at a scan rate of 20 seconds. Scans

were collected on a time averaging computer (Fabri-Tek MOdel

1080) until the resonance absorption Signal 0f the sample

:ould be observed on the computer's readout oscilloscope-

The sample was then replaced with the reference solution of

saturated aqueous sodium chloride and the computer was

lllowed to continue collecting data until the reference peak

1nd the sample peak were both discernible. This spectrum
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was then transferred to the recorder, and the chemical shift

was determined. Calibration was obtained by accurately

setting the time base of the pulse synthesizer and matching

:he scan length of the recorder to the spectrometer.

During the time required for one spectrum (two minutes)

:he instrument drift was less than 5 Hz. No corrections  
were made for susceptibility changes from one sample to

another as these were shown in previous work (98) to be

small in the case of Na—23 studies. '

infrared Spectra

 

The infrared Spectra of all the ligands and their re—

spective silver perchlorate complexes as well as the 1—

nethylimidazolium tetraphenylborate salt were obtained on

:he Perkin Elmer 237 spectrometer in the 4000—650 cm—1

tegion and on the Digit Lab FTS-16 interferometric spectrom—

ter in the 600—150 cm_1 region. The interferometer was

.quipped with a 3 micron beam splitter. A reference, con-

isting of three 2 mm thick polyethylene windows, was scan-

ed 500 times and stored. The sample was then placed be—

ween two 2 mm thick polyethylene windows and scanned 500

imes. The ratioed spectra were then plotted as percent

ranSmittance from 600—150 cm‘l. The samples were either

un as neat liquids or as Nujol mulls.
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pH Determinations 

A Beckman MOdel 76 expanded scale pH meter equipped

with a Beckman 41263 glass electrode and a standard satur—

ated calomel electrode was used to determine the changes in

pH of the 1—methylimidazole and sodium tetraphenylborate

system in water. The pH meter was calibrated with Beckman

pH 7.00 buffer solution.

Melting Points

Melting points of the isolated solids were determined

on a Fisher—Johns melting point apparatus.

Microanalysis

Microanalyses were performed by the Spang Microanaly-

tical Laboratory in Ann Arbor, Michigan, and by F. M. D'Itri

of the Institute of Water Resources at Michigan State Uni—

versity.

E. Solution Preparations

Proton Nuclear Magnetic Resonance

The solutions to be studied were prepared, either by

direct weighing of the reactants or by preparing concentrated

stock solutions of silver perchlorate and ligand and pipet—

ting the appropriate amounts of each stock solution into a

2 ml volumetric flask and diluting to the reference mark

with the appropriate solvent. An aliquot of this solution,

  

 

 



 

 

0.D. nmr tubes ,

reference. Th

the probe tem

were obtained.

some times as

In all ca

perchlorate—1i

Thus the eerie

methane soluti

reduction of 31‘

solutions were

oration .

Sodium Nuclear

 

The solut

weighing the 5‘

sodium perchlo

adding the app

solutions foll

the solvent.

Samples 1:

the l-methyl 0‘

Weighing the s

 



60

or in some cases when precipitation occurred, an aliquot of

the supernatant liquid was transferred to the standard 8 mm

O.D. nmr tubes, and tetramethylsilane was added as internal

reference. The samples were then allowed to equilibrate to

the probe temperature of about 38° before the nmr spectra

were obtained. All scans were repeated at least twice and

some times as many as four times to ensure reproducibility.

In all cases, except 1-methylimidazole, the silver

perchlorate-ligand solutions were stable for several days.

Thus the series of solutions to be measured could be pre—

pared and measured on different days, if necessary, without

changing the observed nmr spectra. In the case of nitro—

methane solutions of l-methylimidazole, however, a slow

reduction of silver ion was observed. Therefore, these

solutions were prepared and measured immediately after prep—

aration.  
Sodium Nuclear Magnetic Resonance

The solutions to be studied were prepared by directly

weighing the sodium salts, sodium tetraphenylborate or

sodium perchlorate, into 5 ml volumetric flasks and then

adding the appropriate aliquots of concentrated ligand Stock

solutions followed by dilution to the reference mark with

the solvent.

Samples used in the determination of donor numbers of

the l-methyl derivatives of the ligands were prepared by

Weighing the sodium tetraphenylborate into 2 ml volumetric
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flasks and then adding the pure ligand. These solutions

were very near saturation, thus they were placed in a

sonicator for about 10 minutes and then were allowed to

stand overnight to ensure solubility.
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IV. RESULTS AND DISCUSSION

 
Proton Nuclear Magnetic Resonance Studies in Nitromethane 

Nitromethane was selected as the solvent for a proton

nmr study of the coordination site of azole ligands to

silver ion. Gutmann (99) has shown that nitromethane pos-

sesses very low donor ability. Therefore, it should not

compete with the azoles in the complexation reactions.

However, because of its high dielectric constant (e =  
35.9) and its polarity, it is a good solvent for silver(I)

perchlorate. I

To ensure that in these complexation studies the lig—

ands reacted as neutral molecules the acidic imino proton

was removed by substitution in the 1—position. The PMT

molecule represents the most throughly studied 1,5—disub-

Stituted tetrazole, but this ligand is not especially

suited for pmr studies due to the complexity of the methylene

proton resonances (77). Therefore, in order to study the

coordination of a tetrazole to silver ion by pmr, it was

felt that the pentamethylene ring of PMT Should be replaced

with simpler substituents. Substitution of the 1— and 5-

positions can take many forms. The substituents can be

aromatic, aliphatic, or mixed aromatic—aliphatic. The

62
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m—dimethyltetrazole was selected for this study because of

:observed Simplicity of its proton magnetic resonance

ctrum (64). Single resonance lines are observed at chemi-

shift values of 4.05 ppm of the l—methyl protons and at

8 ppm for the 5-methyl protons in deuteriochloroform.

se lines provide a simple and very suitable means of

dying the donor—acceptor interaction in solution.

It seems reasonable to assume that if coordination

urs through the 2—nitrogen, the 1—methyl resonance would

shifted more than the 5-methyl resonance. If, however,

coordination occurs through the 4—nitrogen (as was the

e for the isolated solid ICl-PMT complex), then the 5—

hyl resonance absorption would Shift more than the 1—

hyl resonance absorption. The remaining possibilities

that coordination could occur at the 3—nitrogen or have

Equal probability of occurring at the 2—, 3-, and 4-nitro—

5- In these latter cases the differences in the long

Je shielding through the lenitrogen and 5—carbon by the

Jhtly aromatic ring should be small, and the magnitudes of

chemical shifts of 1—methyl and 5-methyl protons should

:omparable.

Chemical shift data (for each equivalent proton environ—

:) of the ligands, 1,54dimethyltetrazole, 1—methyl‘112r4'

izole, 1—methy1—1,2,3—triazole, 1—methylimida201e' and

Ethylpyrazole in nitromethane solutions were obtained

2r two conditions: 1) constant ligand concentration With

I
' ' '

constant silver

’lng concentration of Silver ion and 2)  
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concentration with varying ligand concentration. Assign-

ts of observed chemical shifts for the ligands in nitro—

hane were made on the basis of the literature values

ted in Table II for these ligands in various other sol—

ts.

The 1,5-DiMeTz had two singlet proton resonances in

romethane, one for the 1—methyl protons at 3.98 ppm and

for the 5-methyl protons at 2.50 ppm (TMS as internal

ndard). When the concentration of the ligand was held

stant at 0.130 M_and the silver perchlorate concentration

ied from 0.0120 to 1.211 M_(correSponding to a silver ion

ligand mole ratioof from 0.10 to 9.32), the chemical

ft of the l-methyl protons gradually increased from 4.01

until it became obscured by the solvent resonance at

les >4.26 ppm. Chemical shift values of the 5-methyl

tons gradually increased from 2.55 to 2.83 ppm (Table III).

1 reversing the reaction conditions, where the silver

chlorate concentration was held constant at 0.101 M and

ligand concentration
was varied from 0.0101 to 0.406 M

rreSponding to a ligand to silver ion mole ratio of from

3 to 4.0), the chemical shift gradually decreased from

3 to 4.08 ppm for the l—methyl protons and from 2.78 to

9 Ppm for the 5-methyl protons respectively (Table IV).

mole ratios (Lig/Ag+) > 2.00, the solutions became slight—

‘
' ' solutions

cloudy. only the supernatant liquid of these

used in the measurements.  
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The proton magnetic resonance spectrum for 1rMe—1,2,4-

rz in nitromethane consisted of three singlets at 3.89,

.77, and 8.08 ppm from TMS with relative intensities of

:1:1. The high field peak at 3.89 ppm, therefore, was as—

igned to the 1—methyl protons; the peak at 7.77 ppm was

ssigned to the 3-proton; and the low field peak at 8.08 ppm

as assigned to the 5—proton based on literature values for

his ligand shown in Table II.

When the concentration of the 1-Me—1,2,4-Trz was held

onstant at 0.476 M and the silver perchlorate concentration

as varied from 0.00112 to 0.972 M_(corresponding to a sil—

er ion to ligand mole ratio of from 0.002 to 2.04), the

hemical shift gradually increased from 3.90 to 4.06 ppm for

he l-methyl protons, from 7.77 to 8.11 ppm for the 3—pro-

on; and from 8.08 to 8.58 ppm for the 5—proton, (Table v).

hen the reaction conditions were reversed and the silver

erchlorate concentration was held constant at 0.238 M and

he l-Me—1,2,4—Trz concentration was varied from 0.0577 to

.730 M_(corresponding to a ligand to silver ion mole ratio

E from 0.24 to 7.27), the chemical shift gradually de-

ceased from 4.08 to 3.93 ppm for the l—methyl protons, from

.59 to 8.26 ppm for the 3—proton, and from 8.12 to 7.88 ppm

>r the 5—proton (Table VI).

In all cases the complex formed in solution exceeded

:8 solubility limit in nitromethane, therefore, all solu-

.ons contained solid material. Only the supernatant liquid

.5 used in the pmr measurements. At constant ligand
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:oncentration when the mole ratios (Ag+/Lig) were > 0.85

and at constant silver ion concentration when the mole

ratios (Lig/Ag+) were < 0.97, the amount of free 1—Me-1,2,4—

Prz and soluble [Ag(1-Me—1,2,4—Trz)n1+] complex in the

supernatant liquid were undetectable by pmr measurements.

The proton magnetic resonance spectrum for the leMe—

L,2,3—Trz was very similar to that of the 1:Me-1,2,4-Trz.

1t consisted of three singlets at 4.09, 7.52, and 7.71 ppm

from TMS with relative intensities of 3:1:1. The peak at

L.09 ppm was assigned to the l—methyl protons. The high

field peak at 5.52 ppm was assigned to the 5-proton, and the

.ow field peak at 7.71 ppm was assigned to the 4—proton

>ased on literature values for this ligand shown in Table II.

When the concentration of the ligand was held constant

Lt 0.122 M_and the silver perchlorate concentration varied

?rom 0.00994 to 0.248 M_(corresponding to a silver ion to

.igand mole ratio of from 0.08 to 2.03), the chemical shift

if the l—methyl protons gradually increased from 4.12 ppm

ntil it was obscured by the solvent peak at > 4'26 ppm.

he results, therefore, are analogous to those observed in

he 1,5-DiMeTz — Ag+ system. The Chemical shift for the 4-

roton gradually increased from 7.79 to 8.08 ppm while the

hemical shift for the 5—proton gradually increased from

.68 to 7.96 ppm from TMS (Table VII). At Silver ion to

igand mole ratios 3.0-82 the solutions contained precipi—

. . eas—

ate, and only the supernatant 11QU1d was used for the m

. . ios

rements. In solutions with Silver to ligand mole rat
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)0, the l—methyl proton absorption was obscured by the

ant absorption. At silver ion to ligand mole ratios

33, the amount of ligand remaining in solution was so

.n either free or complexed state that it could not

:tively be measured with any degree of accuracy.

When the reaction conditions were reversed and the sil-

>erchlorate concentration was held constant at 0.248 M

: the ligand concentration was varied from 0.0244 to

; g (corresponding to ligand to silver ion mole ratios

0.10 to 5.90), the observed chemical shift gradually

:ased from 4.27 to 4.09 ppm for the 1—methyl protons,

8.09 to 7.89 ppm for the 4—proton, and from 7.97 to 7.77

‘or the 5-proton (Table VIII). At constant ligand con—

ation, when the mole ratio Ag+/Lig was > 1.22 and at

(ant silver ion concentration, when the mole ratio Lig/Ag+

0.98, the amount of free 1—Me—1,2,3-Trz and soluble

fine—1,2,3-Trzn1+] complex in the supernatant liquid

undetectable by pmr measurements.

The 1-MeIz proton magnetic resonance spectrum in nitro-

ne has been reported by Barlin and Batterham (30). They

ned the chemical shift at 7.57 ppm to the 2-proton and

08 to the 4— and 5-protons. They did not distinguiSh

en the 4— and 5—positions. We observed two singlet

ances at 3.66 ppm and at 7.36 ppm with relative intensi-

of 3:1. We also observed what appears as a doublet

g Shoulders at 6.92 ppm (Figure 3a) with a relative

Sity of about twice that of the smaller singlet peak.
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Figure 3. Comparison of the pmr Spectrum of the 4—

and 5—protons of a) l—MeIz and b) l—MeIz—

AgClO4 system in nitromethane.
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apparent doublet, however, was shown to consist of two

lets at 6.91 and 6.93 ppm, reSpectively. Upon the addi-

of silver perchlorate such that (Lig/Ag+) mole ratio

1 0.05, the two triplets became well defined, as illus—

ad in Figure 3b. Chemical shift values were assigned as

>ws: 3.66 ppm to the 1-methyl protons, 7.36 ppm to the

>ton, 6.93 ppm to the 4—proton, and 6.91 ppm to the 5—

»n. These results agreed with those reported for the

;d in other solvents (Table II).

When the concentration of the l—MeIz was held constant

333 M and the silver perchlorate concentration was

d from 0.0393 to 1.180 M_(corresponding to silver ion

gand mole ratios from 0.12 to 3.54), the chemical shift  ally increased from 3.72 to 3.86 ppm for the 1—methyl

ns, from 7.48 to 7.90 ppm for the 2—proton, from 7.02

38 ppm for the 4—proton, and from 6.94 to 7.27 ppm for

proton (Table IX). When the reaction conditions were

ed and the silver perchlorate concentration was held

nt at 0.268 g_and the ligand concentration was varied

.146 to 2.080 g (corresponding to ligand to silver

1e ratios from 0.51 to 7.30), the chemical shift grad—

decreased from 3.84 to 3.69 ppm for the l—methyl pro—

from 7.84 to 7.50 ppm for the 2—proton; from 7.25 to

pm for the 4-proton; and from 7.14 to 6.95 ppm for the

on (Table X). No precipitation was observed in this

. Slight reduction of the silver ion was observed

he solutions were prepared 1 hour before measurement or
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n they were exposed for more than 10 minutes to the probe

perature (~ 38°C). To minimize the effect of the reduc-

n upon the data obtained, the solutions were mixed and

sured immediately. This reduction was most noticeable

Lig/Ag+ mole ratios > 2.

The observed chemical shift values for the 1-MePz in

romethane have been reported by Elquero, §t_gl. (39).

mical shift values of 3.81 ppm, 7.37 ppm (doublet), 6.18

(triplet), and 7.40 ppm (doublet), were assigned to the

ethyl protons, and the 3—, 4—, and 5-proton respectively.

observed one very sharp singlet at 3.82 ppm with a rela-

e intensity of 3 as COmpared to a triplet at 6.19 ppm.

absorption at 3.82 ppm was assigned to the 1-methyl pro—  s and the absorption at 6.19 ppm was assigned the 4-pro—

. We did not observe two distinguishable doublets as re—

ted by Elquero, eE_§l. but rather a broad combination of

doublets whose center appeared at about 7.39 ppm as

Wn in Figure 4a. These doublets were shown to be at 7.37

7.40 ppm and were assigned to the 3- and 5—protons re-

ctively based on those values listed by Elquero, et_§£.

n the addition of silver perchlorate such that the

g/Ag+) mole ratio was 1 0.05, the broad doublet was split

o two distinct doublets (Figure 4b).

When the concentration of the 1—MePz was held constant

.299 M_and the silver perchlorate concentration varied

0.00494 to 0.742 g_(corresponding to silver ion to ligand

'08 from 0.02 to 3.24), the chemical shift gradually

 
 



 (a)

(b)

 

L__, I J

8.0 7.5 7.0

8 (p p m)

igure 4. Comparison of the pmr spectrum of the 3—

and 5—protons of a) 1—MePz and b) 1—MePz —

AgClO4 system in nitromethane.
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eased from 3.85 to 4.10 ppm for the l-methyl protons,

7.36 to 7.78 ppm for the 3-proton, from 6.20 to 6.55

for the 4—proton, and from 7.78 to 7.86 ppm for the 5—

on (Table XI). When the reaction conditions are re—

ed and the silver perchlorate concentration was held

tant at 0.223 M_while the ligand concentration was varied

0.0229 to 1.375 g (corresponding to ligand to silver

nole ratios from 0.10 to 6.77), the chemical shift grad—

] decreased from 4.07 to 3.90 ppm for the 1—methyl pro—

, from 7.72 to 7.47 ppm for the 3-proton, from 6.50 to

ppm for the 4—proton, and from 7.81 to 7.58 ppm for

S—proton (Table XII).

At very low mole ratios (Lig/Ag+ < 0.30), it was very

Lcult to determine the position of the 3~, 4-, and 5—

)n resonances, because of the broadness of the peaks

he lack of reproducibility in determining the center

e absorption band within the limits of i 1 Hz on repeti-

scans .

The observed chemical shift, éobs’ for the individual

n environments in all cases studied was a weighted

ge of the ligand environments as free and complexed

d. Since the usual coordination number for the silver

the acceptor) is 2, the observed chemical shift can be

en as the weighted sum of the following three terms:

hemical shift of the free ligand, 0D, the chemical shift

e 1:1 complex, 6AD’ and the chemical shift of the 1:2

ex, éADz' Therefore, 0 = aéD + 60obs AD + YéAD2 where
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and y are the mole fractions of total ligand in each

s respectively. The observed chemical shift data for

:hese systems are also shown in Tables III through XII

>served relative chemical shifts, Aobs (in Hz). The

:ved relative chemical shift is defined as the differ—

between the observed chemical shift, éobs’ and the

Lcal shift of the free ligand, 6D,

A - 0 — 5 . (30)

When the observed relative chemical shifts of each pro-

anvironment for each ligand were plotted as a function

1e silver ion to ligand mole ratios, a variety of curve

as were obtained (Figures 5—9). In each case illustrated

Ligand concentration was held constant and the concen—

.on of the silver ion was varied. The shapes of the

:s appear to be dependent on the relative strength of

[onor—acceptor interaction, the nearness of the measured

‘us to the reaction site, the predominant species in

ion, and the limiting chemical shifts for each species

lution.

The extrapolation procedure outlined on page 29 can

7 be applied to the three systems 1,5—DiMeTz — AgClO4

fe 5), l-MeIz - AgClO4 (Figure 8), and l-MePz - AgClO4

7e 9). For each case the 1:2 complex (AD2) appears to

* predominant species in solution. However, the

.2,4-Trz — AgClO4 (Figure 6) and 1—Me-1,2,3-Trz -

(Figure 7) systems do not indicate clearly the

 

 



     



 

Figure 5.

89

Relationship between the observed relative chemi—

cal shift f the protons of 1,5-dimethyltetrazole

and the Ag /Lig mole ratio in nitromethane [Lig]

was constant [AgClO4] was varied

O 1—methyl protons

O 5—methyl protons
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Aq+/Lig MOLE RA TIO

Figure 5.

h

 

 



     



 

91

Figure 6. Relationship between the observed relative chemi-

cal shift of the protons on 1-methyl—1,2,4—tri-

azole and the Ag+/Lig mole ratio in nitromethane

[Lig] was constant [AgClO4] was varied

O 1-methyl protons

O 5-proton

I 3—proton
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Figure 7.

93

Relationship between the observed relative chemi-

cal shift of the protons of 1-methyl-1,2,3-tri-

azole and the Ag+/Lig mole ratio in nitromethane

[L19] was constant [AgClO4] was varied

O l-methyl protons

o 5-proton

I 4-proton



 

94

 
l

Ag”/Lig MOLE RATIO

Figure 7.
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Figure 8.

95

Relationship between the observed relative chem—

cal shift of the protons of 1—methylimidazole and

the Ag+/Lig mole ratio in nitromethane [Lig] was

constant [AgClO4] was varied

o 1-methyl protons (left ordinate)

O 5-proton (left ordinate)

o 2-proton (right ordinate)

I 4-proton (right ordinate)
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Figure 9.

97

Relationship between the observed relative chemi-

cal shift of the protons of 1—methylpyrazole and

the Ag+/Lig mole ratio in nitromethane [Lig] was

constant [AgClO4] was varied

e 1-methyl protons (left ordinate)

O 5-proton (left ordinate)

n 3-proton (right ordinate)

I 4—proton (right ordinate)
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predominant Species in solution. Although there appears to

be a slight break in Figure 6 at Ag+/Lig mole ratio of 0.5,

corresponding to a 1:2 complex (AD2), it is tenuous at most

to say that such a species exists in solution. Further

support for this fact is that these data were obtained on

the supernatant liquid, thus the observed chemical shifts

represent not only the strength of the interaction but the

solubility of the solid complex [Ag(1-Me—1,2,3-Trz)n]ClO4.

The limiting relative chemical shift for the 1:2 com—

plex (ADZ) and the 1:1 complex (AD) cannot be easily ob-  
tained from these Figure 5-9. Only in the case of 1,5-Di-

MeTz could the limiting values for the 1:2 complex (AADZ)

of 20 Hz for the 5-methyl protons and 17 Hz for the 1-methyl

protons be obtained (Figure 5).

In most cases it appears that the limiting relative

chemical Shift values for the complexed species in solution

can be best obtained from the plots of the observed relative

chemical shifts (A ) of each equivalent proton environment

obs

+ . .

for each ligand XE the Lig/Ag mole ratios (Figures 10—14).

In each case illustrated, the silver ion concentration was

held constant while the concentration of the ligand was

. . + . .

varied. At very small Lig/Ag mole ratios these figures

represent infinitly dilute solutions of the complexed donor,  
While at large Lig/Ag+ mole ratios the predominant Species

are the free donor molecules. By extrapolating the curves

to Lig/Ag+ mole ratios of zero, the limiting relative chemi-

cal shifts (AAD ) of the complexed Species could be obtained

n  
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Figure 10. Relationship between the observed relative chemi-

cal shift of the protons of 1,5—dimethyltetrazole

and the Lig/Ag+ mole ratio in nitromethane

[AgClO4] was constant [Lig] was varied

o l—methyl protons

o 5—methyl protons
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Figure 11.

102

Relationship between the observed relative chemi-

cal shift of the protons of 1—methyl-1,2,4—tri-

azole and the Lig/Ag+ mole ratio in nitromethama

[A9C104] was constant and [Lig] was varied

o 1-methyl protons

O 5-proton

n 3—proton
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Figure 12. Relationship between the observed relative chemi-

cal Shift of the protons of 1—methyl-1,2,3'trl‘

azole and the Lig/Ag+ mole ratio in nitromethane

[AgClO4] was constant [Lig] was varied

o l—methyl protons

o 5—proton

I 4—proton
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Figure 13. Relationship between the observed relative chemi-

cal shift of the protons of 1—methylimidazole amfl

the Lig/Ag+ mole ratio in nitromethane [AgClO4]

was constant [Lig] was varied

o 1-methyl protons (left ordinate)

O 5-proton (left ordinate)

a 2-proton (right ordinate)

I 4-proton (right ordinate)
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Figure 14. Relationship between the observed relative chemi-

cal Shift of the protons of 1-methylpyrazole and

the Lig/Ag+ mole ratio in nitromethane [AgClO4]

was constant [Lig] was varied

O l-methyl protons (left ordinate)

I 5—proton (left ordinate)

I 3—proton (right ordinate)

a 4—proton (right ordinate)

 

 



109

 

F
28

28*
24

24'
-20

20—
_ls

§I2L
_ 8

<

8-
- 4

4'
— O

01
_  

L

0 | Z 3 4 5 6

“ii/As? MOLE RATIO

Figure 14.

 

 



 



110

for each proton environment. The limiting relative chemical

shifts for the 1- and 5—methyl resonance of 1,5—DiMeTz was

estimated to be 14 and 17 Hz respectively. For the l-Me—

1,2,4-Trz ligand the limiting relative chemical shifts were

estimated to be 15, 29, and 42 Hz for the 1—methyl, 3-proton,

and 5-proton respectively. The limiting relative chemical

shift for the 1-Me—1,2,3—Trz were estimated to be 14, 25, and

18 Hz for the l—methyl, 4—proton, and 5-proton respectively.

The extrapolation procedure could not be applied to the

l-MeIz — AgClO4 and 1-MePz — AgClO4 systems, because in these

cases the plots go through a maximum observed relative chemi—

cal shift at Lig/Ag+ mole ratios 2 2.00. These maxima may

indicate that there is sufficient amount of the 1:1 complex

in solution which has a different relative chemical shift  value (AAD) from that of the 1:2 complex (AADZ) or that the

formation constant K1 > K2. Either condition might cause

the plots to deviate from the smooth curves postulated on

page 28. Since these curves go through a maximum, the limit-

ing chemical shift values for the different ligand positions

were not clearly defined.

In order to ensure that the Shape of the curves obtained

in Figures 5—14 were due to complexation and not just solu-

tion effects, two additional types of experiments were per—

formed. The solvent resonance was measured as a function of

1,5—DiMeTz concentration (from 0.2212 to 0.7112 g) and

silver(I) perchlorate concentration (from 0.0504 to 0.3571 g).

The solvent resonance did not vary by more than 1 Hz over
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the concentration range for the ligand and not more than 2H2

for the concentration range of the silver(I) perchlorate

(Table XIII). The effect of changing the ionic strength of

the solution by addition of a noninteracting electrolyte,

tetrabutylammonium perchlorate, was also studied. A series

of solutions was prepared in which the concentrations of

1,5-DiMeTz and silver(I) perchlorate were held constant at

0.0249 and 0.0254 M_respectively. The concentration of the

tetrabutylammonium perchlorate was varied from 0.0056 to

0.497 g. The observed resonance frequency of the 5—methyl

and l—methyl protons of the donor molecule remained essenti-

ally constant. The differences between the two extreme

concentrations of tetrabutylammonium perchlorate were ~ 1 Hz

(Table XIV). The effect of the ionic strength was also

studied for all the other ligand systems by holding the con—

centration of the ligand constant at ~ 0.103 g_and varying

the concentration of tetrabutylammonium perchlorate from

~ 0.01 to 0.50 M_(Tables XV through XVIII). In all cases

the effect of increasing the salt concentration did not

affect the ligand chemical shifts by more than 1 or 2 Hz.

Similar results were obtained for the position of the sol~

vent resonance. These studies indicate that the observed

chemical shifts of the ligand protons were in fact due to

complexation reactions between ligand and silver(I) ions,

and that Figures 5—14 are representative of the ligand—

silver(I) ion interaction in solution.
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Since so many of the reaction mixtures in nitromethane

contained some solid complex, the solid silver(I) perchlorate

complexes with the various ligands were prepared and their

compositions determined (pages 54—56). Triazole ligands

formed 1:1 solid complexes whereas the diazoles and tetrazole

formed 1:2 (Ag+:Lig) complexes with silver(I) perchlorate.

A comparison of the infrared Spectra of the free ligands

with those of the complexes leaves little doubt that the

vibrational patterns of the ligands have been influenced by

the presence of the silver ion (Figures 1-20, Appendix II).

Reports of solid complexes for the l—methyl derivatives

of diazoles and triazoles are limited to the l-MeIz system.

Reedijk (53) and Perchard and Novak (47,48) have reported

solid complexes with silver salts and divalent first row

transition metal ions. They propose that 1-MeIz coordinates

to the metal ion through the 3—nitrogen. Reedijk (113) has

also studied the coordination properties of the parent

imidazole and pyrazole ligands with divalent metal perchlor—

ates and tetrafluoroborates. Reedijk's studies indicate that

neutral imidazole coordinates through the 3—nitrogen and that

neutral pyrazole coordinates through the 2—nitrogen. Reimann,

32:31. (114,115) have also shown that pyrazole coordinates

to first row transition metal ions through the 2—nitrogen.

The mono(1,2,4—triazole)copper(II) chloride complex was

studied crystallographically by Jarvis (82) (page 23). His

Studies indicate that the two adjacent nitrogens are involved

in coordination. It appears, however, that this is the
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1,2,4—4H—triazole isomer whose 1— and 2—nitrogens might

possess properties Similar to the 3- and 4—nitrogens of the

tetrazole ring:

H

1412c —— T011; iflfi —— T0)

(wk/Cg?) (MK/(“(2)

(1) ‘ (3)

1,2,4-4Hetriazole 1,2,3,4—1H—tetrazole

Recently two additional crystallographic studies have

been performed on tetrazole complexes. The crystal Struc—

ture of dichlorobis(1—methyltetrazole)zinc(II) was identi—

fied by Baenziger and Schultz (116). The zinc ion is co-

ordinated to the tetrazole ring and is essentially planar

with the ring. A charge—transfer o—bond is formed between

the zinc ion and the 4—nitrogen of the tetrazole ring.

These data agree with those described for the PMT — ICl

complex (page 23). In addition the crystal structure of

bis[nitratobis(pentamethylenetetrazole)Silver(I)] has been

determined in this laboratory (117). The study indicates

that a dimer is formed having two silver ions, two nitrate

ions and four PMT molecules. Two of the PMT molecules act

as bidentate ligands with nitrogen-silver distances of 2.541

and 2.216 X for the 3— and 4-nitrogens respectively. The

other two PMT molecules act as monodentate ligands with

nitrogen—silver distances of 2.238 R for the 4—nitrogen.

The nitrate ion also enters into the coordination sphere of
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the silver ion and acts as a monodentate ligand. The oxygen-

silver distance was shown to be 2.422 X. This crystal struc-

ture indicates that the tetrazole ring can indeed form poly—

mer structures @imilar to 1,2,4—triazole as proposed in our

previous study) by acting as a bridging ligand.

In addition to the location of the preferred sites of

interaction for metal ions, some protonation studies by pmr

have been performed on the l—MeIz and lane—1,2,4—Trz ligands

(page 12). The l—MeIz has been Shown to protonate at the

3-nitrogen while lane—1,2,4—Trz protonates at the 4-nitrogen.

These data support the conclusions of the previous authors

concerning metal—ion complexes. It seems reasonable, there-

fore, that our pmr measurements of the silver(I) perchlor—

ate - ligand systems should indicate some selectivity for

the interaction site. To identify this interaction site

the following items were compared:

1) The chemical shift of the free ligand, 0D, in

nitromethane solution,

2) The maximum chemical Shift observed, 6C , under

max

the reaction conditions where [Lig]
constant

[AgClO4]varied’

3) The maximum chemical shift observed, 5C, I under

max

the reaction conditions where [A9C1041constant

[nglvaried’

4) The average value of the maximum chemical shift ob—

served minus the chemical shift of the free ligand,

max + Clmax
-——-——————)—0

2 D °
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A summary of these data are presented in Table XIX. The

specific interaction sites appear to be as follows, based

on the values of AC : the 2-nitrogen for the 1—MePz,

max

the 3—nitrogen for 1—MeIz, the 3—nitrogen for 1-Me—1,2,3-Trz,

and the 4-nitrogen for 1—Me—1,2,4—Trz. However, in the case

of 1,5-DiMeTz, the difference in the attachment of the two

methyl groups to carbon and nitrogen on the ring and the

distance from the interaction Site to the probing nucleus

leaves some doubt about the proper assignment. Most prob-

ably the proper assignment is one of two alternatives; the

silver ion either is coordinated to the 3—nitrogen or it is

coordinated with equal probability to the 2—, 3—, and 4—nitro—

gens respectively.

One of the aims of this study was to determine the

formation constants for the complexation reactions between

the azole ligands and the silver(I) perchlorate in nitro—

methane solutions. The proton magnetic resonance measure-

ments have indicated that the exchange of the donor environ—

ment between free and complexed states is very rapid, thus

only one absorption per proton environment was observed.

This study has also shown that the predominant component in

Solution at Lig/Ag+ mole ratios > 2.00 is the 1:2 complex

(ADZ) for the ligands 1—MeIz, l-MePz, and 1,5—DiMeTz.

An attempt was made to determine the fOrmation constant

Of the complex [Ag(1,5—DiMeTz)2]C104 in nitromethane solu—

tion. It was assumed that the concentration of the 1:1

complex was negligible. Thus the relative fractions of the
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complexed and uncomplexed tetrazole were calculated from

the chemical shift data (Table III) and the estimated

limiting chemical Shift values of 20 and 17 Hz for the 5—

methyl and 1—methyl protons respectively. The resulting

values for the overall formation constant were scattered

over at least one order of magnitude (Table XX). It seems,

therefore, that the 1:1 complex does indeed play an important

role in the complexation reaction.

It appears that the methods outlined for the formation

constant determination are limited to that reported by

Foreman, et al. (91) (page 35). However, the expression

derived by them holds for the case where A, the acceptor

(benzene) possesses the nucleus being measured and is com—

Plexed to the donor (Silver ions) forming the complexed

SPecies AD2. However, if the donor possesses the nucleus

being measured, as in our case, a new expression must be

derived as follows:

   

A+D=AD AD+D=AD2(31)

[AD ]

K = __JEEZL_ K2 : .....i:.. (32)

1 [A] [D] [AD] [D]

2

[AD] = K1[A] [D] [AD2] =K1K2 [A] [D] (33)

34
Aobs = x1:1 A1 + x1:2 A2 ( )

thus:

 



F
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Table XX. Overall formation constant determination for the

1:2 complex based on relative fractions of free

and complexed ligand.

 

 

 

A

[D0] Aobs ———-A°bs [AD2] [A] [D] Kf

AD2

Based on 1—CH3 where AADZ = 17 Hz

0.259 14.8 0.871 0.113 0.0168 0.033 6,176

0.286 15.5 0.950 0.119 0.0114 0.048 4,531

0.337 16.1 0.945 0.123 0.00689 0.091 2,156

0.389 16.4 0.965 0.125 0.00455 0.139 1,422

0.441 16.2 0.953 0.124 0.00611 0.193 545

0.519 16.8 0.988 0.128 0.00156 0.263 1,186

Based on 5—CH3 where A = 20 Hz

AD2

0.259 19.0 0.950 0.124 0.00650 0.011 157,660

0.286 19.0 0.950 0.124 0.00650 0.038 13,211

0.337 18.9 0.945 0.123 0.00715 0.091 2,077

0.389 19.4 0.970 0.126 0.00483 0.137 1,390

0.441 19.3 0.965 0.125 0.00455 0.191 753

0.519 19.5 0.975 0.127 0.00325 0.265 556

0.623 19.4 0.970 0.126 0.00390 0.371 235

0.778 19.4 0.970 0.126 0.00390 0.526 117

1_Aobs

[A] = A0 ( A ) [D] = D0 — 2 [AD2]

AD2

b

[AD2] = A0 (ToS)
AD2

[AD2]
K :

f [A] [D 2

  



 

126

 

 

[AD] K1 [A] [D] (35)

x = = ———-—-———

1:1 IDO] [Do] .

2[AD2] 2 K1 K2 [A] [D]2
X = ______ = —————-——+———-——

36

1:2 [Do] [Do] ( )

combining equations 34, 35, and 36:

K1 [A] [D] A1 + 2 K1 K2 [A] [D]2 A2

Aobs = D0 (37)

Since [A0] >>> [Do]:

[A] = [A0] (38)

and

[D] = [Do] - [AD] - 2[AD2] = [Do] — K1[A] [D] — 2K1K2

[A] [D]2 (39)

Substituting equation 38 into equation 37:

K1 [AO][D] A1 + 2K1K2 [AO][D]2 A2

obs = (40)

[D0]

 

Even if one substitutes equation 39 into equation 40 one

does not eliminate the value for the equilibrium concentration

of the free donor, [D], which we have no way of measuring in

our systems. Thus the application of Foreman, Gorton, and

Fosters' approach to the determination of the formation

constant values for the 1:2 and 1:1 complexes in solution by

nmr seems impossible. It is interesting to note, that when

the acceptor nucleus is being measured the workable method is

obtained, but when the donor molecule is being measured the

method is no longer applicable.
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Equation 40 may help to explain the Shapes of the curves

in Figures 5—14. Assuming that 99% of the donor is in the com—

plexed form and only 1% is free in solution, then [D] =

0.01 [D0]. Under these conditions four factors govern the

value of AO they are A1, A2, K1, and K2. In systems
bS’

where the plots of AobS XE Lig/Ag+ (or Ag+/Lig) mole ratios

give smooth curves with no maxima, it appears that A2 > A1

and K2 > K1. However, in the cases where the plots pass

through a maximum value, there are two possibilities; either

A2 < A1 and K2 > K1 or A2 > A1 and K2 < K1. The first

case assumes that the azole ligands coordinate with Silver

ions to form stepwiSe complexes Similar to those exhibited

for other nitrogen bases where K2 > K1 (Table xXI). If this

condition holds then the terms A1 and A2 must influence

the observed relative chemical Shift and cause the maximum to

occur. This maximum can only occur if A1 > A2. The second

case assumes that A2 > A1 and indicates that K2 < K1.

This is not the usual ordering of K1 and K2 in complex

formation but it must not be overlooked as a possible ex-

planation. The formation constants for these systems have not

been measured by any other method, except for the 1—MeIz - Ag+

system in water (51).

In order to check the importance of the 1:1 complex in

the 1,5—DiMeTz - AgClO4 system in nitromethane solutions one

additional experimental parameter was studied. In these

studies the Lig/Ag+ mole ratio was held constant while the

Concentration of the reactants was varied. Three systems
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Table XXI. Literature values for the formation constants for

silver(I) ligand interactions in aqueous solu—

tions.\

Ligand Method Timp Conditions log 109 Ref.
Used C K1 K2

Ammonia g1 25 -> O NH4N03 3.315 3.915

sol 25 O—corr 3.37 3.84

Ag 25 1 KNO3 3.31 3.91

Methyl amine 91 25 0.5 CH3NH3N03 3.15 3.54

Ethyl amine g1 25 0.5 KN03 3.37 3.93

Diethyl amine gl 25 50 mole% C2H5OH 3.26 3.17

gl 30 0.5 KN03 2.98 3.22

Triethylamine g1 25 0.4 C6H15NHN03 2.6 2.1

gl 25 50 mole% C2H5OH 2.31 1.79

ngutylamine gl 25 0.5 C4H11NHN03 3.43 4.05

 
7
5
w

m
m
t
d
w

u
.
(
n

m
t
n
m

:
‘
Q

H
I
(
D

a
H
T
Q
a
m

m
(
L
O
t
r
m

i—Butylamine 91 25 0.5 KN03 3.38 3.86

E—Butylamine gl 25 50 mole% C2H5OH 4.01 4.25

524:5:- 251m .
gl 20 0.1 NaNO3 4.70 3.00

Ethanol amine gl 25 50 mole% C2H5OH 3.41 3.99

g1 30 ———> 0 3.07 3.57

gl 25 0.5 KN03 3.13 3.55

Benzylamine g1 25 0.5 KNO3 3.29 3.85

Imidazole gl 25 0.058 KCl 3.78 3.26

Pyridine gl 25 > 0 1.97 2.38

sol 25 -——+ 0 2.00 2.11

g1 25 0.5 KN03 2.04 2.18

d—Picoline gl 25 0.5 KN03 2.27 2.41

B—Picoline gl 25 ———> 0 2.00 2.35

Y-Picoline g1 25 ———> 0 2.03 2.36

2,4-Dimethyl—

Piperdine gl 25 0.5 KNO3 3.16 3.45 d

gl 25 0.5 KNO3 3.03 3.45 e

Aniline g1 25 50 mole% C2H50H 1.38 1.50 f

2.6—Xylidine g1 25 50 mole% C2H50H 1.47 1.33 f

QUinoline g1 25 50 mole% C2H50H 1.79 1.95 f

1,10—Phen— Ag 25 0.1 NaNO3 5.02 7.05 m

anthroline

Continued
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Table XXI. Continued.

gl

sol

Ag

_>.0

0—corr

glass electrode

solubility measurements

potentiometrically using silver electrode to follow

free Silver ions.

value obtained by extrapolation to infinite dilution

corrected to infinite dilution.

J. Bjerrum, ”Metal ammine formation in aqueous solu—

tion,“ Thesis, 1941, reprinted 1957, Copenhagen:

P. H. Haase and Son.

W. C. Vosburgh and R. S. McClure, J. Am. Chem. Soc.,

65” 1060 (1943).

R. Nasanen, Acta Chem. Scand., 11 763 (1947).

J. Bjerrum, Chem. Rev., 46” 381 (1950).

R. J. Bruehlman and F. H. Verhoek, J. Am. Chem. Soc.,

10, 1401 (1948).

C. T. AnderSon, Doctoral Dissertation, Ohio State

University, 1955.

G. A. Carson, J. P. McReynolds, and F. H. Verhoek,

J. Am. Chem. Soc., 61, 1334 (1945).

G. Schwarzenbach, et al., Helv. Chim. Acta, 22} 2337

(1952).

J. R. Lotz, B. P. Block and W. C. Fernelius, J. Phys.

Chem., 63, 541 (1959).

I. C. Smith, Doctoral Dissertation, Kansas State

University, 1961.

R. K. Murman and F. Basolo, J. Am. Chem. Soc., 71/

3484 (1955).

W. C. Vosburgh and S. A. Cosswell, J. Am. Chem. Soc.,

65” 2412 (1943).

J. M. Dale and C. V. Banks, Inorg. Chem., 2, 591 (1963).
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were studied where the Lig/Ag+ mole ratios were held constant

at 0.076, 1.02, and 1.53 (Table XXII). It appears from this

study that the magnitude 0f the chemical shifts were de-

pendent on the total concentration of the reactants as well

as the Lig/Ag+ mole ratio. The Shapes of these curves

Aobs XE [Lig] are compared in Figures 15 and 16.

Proton Nuclear Magnetic Studies in Acetonitrile

Proton nmr studies for the complexation of azole deri—

vatives with silver(I) perchlorate were also studied in a

competitive solvent, acetonitrile. Acetonitrile has a

Gutmann‘s donor number of 14.1 as compared to 2.3 for nitro-

methane.

The chemical shift assignments for the various proton

environments of the free ligands in acetonitrile were made

based on the literature values listed in Table II for other

Solvents. These assignments are summarized in Table XXIII.

The observed chemical Shifts for the protons on the ligand

molecules were measured on a series of solutions where the

silver(I) perchlorate concentration was held constant at

about 0.250 M and the concentration of the ligand was varied

from about 0.01 to 1.25 M_(correSponding to ligand to Silver

ion mole ratios from 0.04 to 5.00),(Tables XXIV - XXVIII).

These values were used to calculate the observed relative

which were plotted as a function of
chemical shifts (Aobs)z

h

.tethe Lig/Ag+ mole ratios (Figures 17-21). In most cases

- ver the

Curves obtained went through a maleum value, howe I
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Table XXII. Proton magnetic resonance study of the role of

complex dissociation at constant 1,5-dimethyl-

tetrazole to Silver perchlorate mole ratios.

 
 

(M)

1,5-DiMeTz/Ag+ = 0.765

0.0502

0.1005

0.1507

0.2009

0.2512

0.3014

0.4018

0.5023

1,5—DiMeTz/Ag+

0.0249

0.0499

0.0898

0.1497

0.2495

0.3494

0.4492

1,5-DiMeTz/Ag+

0.0502

0.1005

0.1507

0.2009

0.2512

0.3014

0.5100

[1,5-DiMeTz]

(M)

.0384

.0768

.1153

.1537

.1921

.2306

.3074

.3843

[I
O
O
O
O
O
O
O
O

H O [
0

0
0
0
0
0
0
0

H 0
1

[
\
3

H

= 1.53

0.0768

0.1537

0.2306

0.3074

0.3843

0.4611

0.6123

 

5-CH

0(Hz) A(Hz)

163.7 13.6

164.5 14.4

166.8 16.1

166.1 16.0

167.2 17.1

167.6 17.5

167.8 17.7

168.0 17.9

161.6 11.5

162.4 12.3

163.6 13.5

165.1 15.1

166.2 16.1

166.5 15-4

166.6 16.5

164.5 14.4

164.5 14.4

165.0 14.9

166.5 16-5

ppt ‘—

PPt 7’

1-CH

0(Hz) Ain)

247.0 8.4

247.1 8.5

249.5 10.9

250.4 11.8

251.0 12.4

251.8 13.2

252.4 13.8

252.4 13.8

245.6 7

246.5 7.

247.6 9

249.2 10.6

250.6 12.0

under solvent

under solvent

247.0 8

247.2 8

248.4 9

250.8 12

ppt ‘-

ppt ‘—

ppt '-

 





 



Figure 15. A comparison of the curve shapes obtained when Um

observed relative chemical shifts of the protons

of 1,5—dimethyltetrazole were plotted versus flag]

at constant Lig/Ag+ mole ratio of 1.02, 0.76, and

1.53

1—methyl protons

0 mole ratio 0.76

0 mole ratio 1.02

I mole ratio 1.53

Figure 16' A compariSOn of the curve shapes obtained when Um

observed relative chemical shifts of the protons

Of 1,5—dimethyltetrazole were plotted versus [L19]

itsgonstant Lig/Ag+ mole ratio of 1.02, 0.76, and

5—methyl protons

0 mole ratio 0.76

0 mole ratio 1.02

I mole ratio 1.53
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Figure 17.

140

a) Relationship between the observed relative

chemical shift of the protons of 1,5—dimethyl-

tetrazole and the Lig/Ag+ mole ratio in aceto-

nitrile [AgClO4] was constant [Lig] was varied

O 1—methyl protons (left ordinate)

O 5-methyl protons (right ordinate)

b) Relationship between the observed relative

Chemical shift of the protons of 1,5—dimethyl—

tetrazole and the Ag+/Lig mole ratio in aceto-

nitrile [Lig] was constant [AgClO4] was varied

° l-methyl protons (left ordinate)

0 5—methyl protons (right ordinate)
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Figure 18.
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Relationship between the observed relative chemi-

cal shift of the protons of 1—methyl-1,2r4“trl‘

azole and the Lig/Ag+ mole ratio in acetonitrile

[AgClO4] was constant [Lig] was varied

o 1—methyl protons

o 5—proton

I 3—proton
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Figure 19. Relationship between the observed relative cheml-

cal shift of the protons of 1—methyl-1.2,3jtr}'

azole and the Lig/Ag+ mole ratio in acetonitrile

[AgClO4] was constant [Lig] was varied

o 1—methyl protons

O 5—proton

I 4—proton
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Figure 20. Relationship between the observed relative chemi-

cal shift of the protons of l—methylimidazole and

the Lig/Ag+ mole ratio in acetonitrile [AgClO4]

was constant [Lig] was varied

o 1—methyl protons (left ordinate)

o 5-proton (left ordinate)

u 2—proton (right ordinate)

I 4—proton (right ordinate)
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Figure 21. Relationship between the observed relative chemi-

cal shift of the protons of l-methylpyrazole and

the Lig/Ag+ mole ratio in acetonitrile [AgClO4]

was constant [Lig] was varied

O l-methyl protons (left ordinate)

I 5-proton (left ordinate)

u 3-proton (right ordinate)

I 4-proton (right ordinate)
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1-methyl and the 5—methyl protons of the 1,5—DiMeTz (Figure

17a), the l-methyl protons of 1-Me—1,2,4—Trz (Figure 18),

and the 1—methyl protons of 1-Me—1,2,3—Trz (Figure 19)

gave smooth curves with no maxima. In addition to the

reasons outlined for the systems in nitromethane whose

curves went through maximum values, the solvent acetonitrile

has a greater influence upon the complexation equilibrium.

The ligand molecules are not only involved in the simple AD

and AD2 complexes but are also involved in mixed solvent—

ligand complexes (or intermediate solvated Species) such as

sn A D2_n.

An additional experiment was performed in acetonitrile

to compare the complexing ability of 1,5-DiMeTz with the bi-

tetrazole, 1,4—bis(1-methyl—5-tetrazolyl)n—butane recently

studied by Septemia Policec (118) in this laboratory. In

both cases, the ligand concentration was varied, such that

the Lig/Ag+ mole ratios varied from 0.10 to i 10. The chem—

ical shifts of the 1—methyl protons of 1,5—DiMeTz increased

from 3.92 to 4.01 ppm while the value for the 5-methyl pro—

tons increased from 2.47 to 2.56 ppm (Table XXIX). The

limiting relative chemical shift for the l—methyl protons of

the bitetrazole was about 6 Hz (0.10 ppm) while that for the

1,5-DiMeTz was about 4 Hz. When the relative chemical shifts

observed were plotted as a function of the Ag+/Lig mole

ratios, smooth curves were obtained (Figure 17b).
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Sodium—23 Magnetic Resonance Studies 

To determine the relative donor abilities of the azoles,

a mixed solvent study (page 42) was performed in nitrometh—

ane, acetonitrile, and acetone solutions. However, in all

cases the sodium ion resonance line width at half peak

height became so broad that at mole fractions (Ligand/

Ligand + solvent) > 0.10 the data could not be collected

using the Varian DA60 spectrometer in wideline configuration

Thus only solutions Lig/Lig + solvent mole fraction < 0.10

were studied in order to note trends in the sodium ion elec-

tron density changes. Since the amount of solvent was

nearly constant, the chemical shift of the sodium—23 reso—

nance was observed as a function of the mole ratios

Lig/Na+ (Tables XXX—XXXIV). Figures 22, 23, and 24 repre—

sent the five ligands in nitromethane, acetonitrile, and

acetone respectively.

If the donor ability of the azole ligands is greater

than the solvent, one would expect a rapid decrease in the

sodium-23 chemical shift. In the least donating solvent

nitromethane (D.N. = 2.3), this type of trend is noted. All

five ligands show a decrease in the chemical shift with in—

creasing Lig/Na+ mole ratio. When acetonitrile (D.N. :

14.1) is used as the reaction medium, the donating abilities

of the azole ligands begin to differentiate (Figure 23).

When a solvent with donor number 17.0 (acetone) was chosen,

the ligands are clearly differentiated and 1~MeIz appears

to have the greatest donating ability with
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Sodium—23 nuclear magnetic resonance study of

1,5-dimethyltetrazole and sodium tetraphenyl—

 
 

 

borate in nitromethane, acetonitrile, and acetone.

. O

[1,5-DiMeTz] [NaB(C6H5 )4] Lig/Na+ Na—23 L.W.

(H) (14) (Hz) (ppm) (Hz)

in nitromethane K

—— 0.250 ~— 247 15.6 26

0.0776 0.255 0.30 238 15.0 37

0.155 0.253 0.61 221 13.9 42

0.233 0.258 0.90 215 13.5 46

0.388 0.257 1.51 194 12.9 55

0.776 0.252 3.08 175 11.0 70

1.164 0.256 4.55 144 9.1 83

in acetonitrile

—— 0.250 —— 131 8.25 18

0.0693 0.241 0.29 131 8.25 30

0.139 0.245 0.57 133 8.38 38

0.208 0.240 0.87 133 8.38 35

0.346 0.245 1.41 135 8.50 35

0.693 0.241 2.88 121 7.62 38

1.039 0.244 4.26 117 7.37 35

in acetone

-- 0.250 -— 164 10.3 17

0.0736 0.258 0.29 146 9.19 29

0.147 0.247 0.60 148 9.32 27

0.221 0.262 0.84 141 8.88 30

0.368 0.254 1.45 147 9.26 26

0.736 0.260 2.83 142 8.94 27

1.104 0.257 4.30 140 8.82 26
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Table XXXI. Sodium—23 nuclear magnetic resonance study of

1—methyl—1,2,4-triazole and sodium tetraphenyl—

borate in nitromethane, acetonitrile, acetone,

and pyridine.

 

 

 

 

[l—Me—1,2,4-Trz] [NaB)C6H5)4] Lig/Na+ 5Na—23 L.W.

(11) (b1) (HZ) (ppm) (HZ)

in nitromethane ‘

-- 0.247 -— 245 15.4 28

0.0726 0.241 0.30 219 13.8 52

0.145 0.243 0.60 202 12.7 63

0.218 0.244 0.89 179 11.3 74

0.363 0.243 1.49 153 9.63 109

0.726 0.249 2.92 103 6.49 very broad

1.089 0.250 4.36 74 4.66 very broad

in acetonitrile

-- 0.250 —- 130 8.19 18

0.0912 0.243 0.38 127 8.00 26 ‘

0.182 0.243 0.75 123 7.75 33

0.274 0.241 1.14 113 7.12 31

0.456 0.243 1.88 101 6.36 36 1

0.912 0.242 3.77 74 4.66 38

1.368 0.241 5.65 55 3.46 43 )

in acetone

__ 0.250 —— 162 10.2 19 ‘

0.0904 0.246 0.37 , 143 9.01 37 )

0.181 0.242 0.75 131 8.25 37 1

0.271 0.242 1.12 127 8.00 37 1

0.452 0.242 1.87 117 7.37 37

0.904 0.243 3.72 91 5.73 41

1.356 0.239 5.67 76 4.79 47

in pyridine

-- 0.246 -- —3 -0.19 30

0.0990 0.236 0.42 —4 —0.25 33 )

0.198 0.236 0.84 -6 —0.35 35

0.297 0.236 1.26 —6 -0.38 35

0.495 0.236 2.10 —7 —0.44 36

0.989 0.236 4.19 —16 «1.01 38

1.485 0.234 6.35 —21 -1.32 41

 



Table XXXII.

 

Sodium-23 nuclear magnetic resonance study of

1—methyl—1,2,3-triazole and sodium tetraphenyl—

borate in nitromethane, acetonitrile, and

acetone.

 

 

 

  

[1-Me—1,2,3-Trz] [NaB(C6H5 )4] Lig/Na+ éNa—23 L.W. I

<4) 04) (Hz) (ppm) (Hz) )

in nitromethane

-— 0.250 —— 247 15.6 27

0.0868 0.240 0.36 236 14.7 38

0.174 0.241 0.72 221 13.9 39

0.347 0.242 1.43 190 12.0 51

0.521 0.240 2.17 172 10.8 79

0.868 0.241 3.60 133 8.38 99

1.302 0.239 5.45 -- —- very broad W

in acetonitrile

-- 0.250 —— 130 8.19 18 I

0.0923 0.250 0.37 130 8.19 27 )

0.184 0.242 0.76 128 8.06 31

0.369 0.241 1.53 123 7.75 31 1

0.554 0.238 2.33 116 7.30 32 1

0.923 0.240 3.85 110 6.93 31

1.384 0.239 5.79 101 6.36 31

in acetone

__
0.250

—— 163 10.3 18

0.0875
0.240 0.36 146 9.19 36

0.175
0.242 0.72 143 9.01 35

0.350 0.238 1.47 146 9.19 29

0.525
0.247 0.213 135 8.50 27

0.875
0.242 3.62 129 8.12 31

1.313
0.233 5.64 128 8.06 32
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Table XXXIIL Sodium—23 nuclear magnetic resonance study of

lfmethylimidazole and sodium perchlorate in

nitromethane, acetonitrile, acetone and pyridine.

 

 

 

 

[1 MeIz] [NaB(C6H5 )4] Lig/Na+ 5Na_23 L.W. I

()1) 01) (Hz ) (ppm) (HZ)

in nitromethane

—- 0.250 —— 247 15.6 28

0.0272 0.252 0.11 216 13.6 46

0.0950 0.256 0.37 178 11.2 63

0.149 0.256 0.58 173 10.9 69

0.336 0.258 1.30 144 9.07 72

0.506 0.256 1.98 138 8.69 86

0.674 0.254 2.65 115 7.24 119

1.010 0.258 3.91 86 5.42 144

in acetonitrile

-- 0.500 —— 132 8.31 31

0.0800 0.496 0.16 134 8.44 34

0.198 0.506 0.39 123 7.75 37

0.274 0.500 0.55 114 7.18 39

0.352 0.508 0.70 109 6.86 43

0.524 0.508 1.03 100 6.30 46

0.720 0.504 1.43 89 5.60 51

0.984 0.508 1.93 77 4.85 63

1.180 0.490 2.41 72 4.53
‘

in acetone

—- 0.500 -- 163 10.3 43

0.0694 0.498 0.14 149 9.38 43

0.278 0.502 0.57 134 8.44 46

0.556 0.502 1.11 103 6.49 49
‘

0.832 0,508 1.63 89 5.60 58

1.25 0.496 2.52 72 4.53 63

1.64 0.506 3.24 49 3.09 75

1.96
0.504 3.90 34 2.14 81

2.50
0.508 4.52 26 1.64 81

in pyridine

--
0.500

-~ ~3.0 -0.19 30

0.214
0.514 0.42 —3.0 -0.19 88

0.428
0.516 0.83 ~7.0 -O.44 9

I

o -18 -1.13 95

0 854
0.538

1.53

'
—29 —1 .83 97

1 28
0.498

2.57
. _43 -2.71 100

1.71 0.520 3 .29
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Table XXXDL Sodium—23 nuclear magnetic resonance study of

l-methylpyrazole and sodium tetraphenylborate in

nitromethane, acetonitrile, and acetone.

 

 

 

[l-MePz] [NaB(C6H5 )4] Lig/Na+ 5Na_23 L.W.

(1‘11) ' (1’1) (HZ) (ppm) (H2)

in nitromethane

-- 0.250 -- 247 15.6 28

0.0769 0.261 0.29 240 15.1 33

0.154 0.261 0.59 226 14.2 39

0.231 0.260 0.89 212 13.4 45

0.384 0.261 1.47 191 12.0 53

0.769 0.260 2.96 159 10.0 59

1.153 0.260 4.44 120 7.56 >86

in acetonitrile

-- 0.250 —- 131 8.25 20

0.0781 0.259 0.30 101 6.36 28

0.156 0.263 0.59 76 4.79 30

0.234 0.263 0.89 62 3.90 33

0.391 0.260 1.50 63 3.97 34

0.781 0.263 2.97 60 3.78 35

1.172 0.259 4.52 54 3.40 38

in acetone

--
0.250

—— 163 10.3 19

0.0793
0.256 0.31 134 8.44 29

0.159
0.244 0.65 139 8.75 30

0.238
0.257 0.93 139 8.75 28

0.397
0.256 1.55 135 8.50 32

0.793 0.255 3.11 123 7.75 34

1.190
0.257

4.63 116 7.30 34
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Figure 22. Relationship between the observed chemicalsflfiit

of the sodium—23 ion and the Lig/Na+ mole ratMJ

for the azole ligands in nitromethane.
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Figure 23. Relationship between the observed chemical shift

of the sodium-23 ion and the Lig/Na+ mole ratio

1
for the azole ligands in acetonitrile.

)

1,5-DiMeTz

1—Me—1,2,3—Trz

1-Me—1,2,4—Trz

1—MeIz

<
>
I
:
I
<
I
>
O

l—MePz

 
 

 



Figure 23.

L

2

Lig /NO+

I I

3 4 5

MOLE RATIO

 

N
a
-
2
3

C
H
E
M
I
C
A
L

S
H
I
F
T

.
5

<
9
m
e

5
5

I
I

162



  



u
—
—

.
.
.
.
.
.
v
‘

 

Figure 24.
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Relationship between the observed chemical Shjrift

of the sodium—23 ion and the Lig/Na+ mole ratna

for the azole ligands in acetone.
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1-Me-1,2,4-Trz > l-MePz > 1-Me-1,2,3-Trz > 1,5—DiMeTz (Fig-

ure 24). Since leMe-1,2,4—Trz and 1—MeIz were similar in

donor abilities in nitromethane and acetonitrile, a fourth

solvent (pyridine) was also studied in order to substantiate

the donor order observed in acetone. The results are shown

in Figure 25 and do indicate that l-MeIz has better donor

ability than 1—Me-1,2,4-Trz.

In order to check on the relative donor strengths of

these compounds four nearly saturated solutions of sodium

tetraphenylborate in the pure ligands 1—Me—1,2,3—Trz

([Na+] = 0.250 LII), 1-Me—1,2,4-Trz ([Na+] = 0.125 )1): l-MePz

([Na+] = 0.250 g_) and 1—MeIz ([Na+] = 0.250 a) were measured

on the NMR Specialities MP100 Pulsed Spectrometer. The ab—

sorptions (referenced to saturated aqueous sodium chloride

solution) were very broad ~ 200 Hz at half peak height.

Therefore, only the positions of the sodium—23 resonance

were recorded. The chemical shifts for 1-Me-1,2,3—Trz, 1—

MePz, 1-Me-1,2,4-Trz, and l—MeIz were -1.23, -4.08, —4.32,

and -11.02 ppm respectively. These chemical shift values

correspond to donor numbers of 36, 41, 41.5, and 54 based

on the data presented by Erlich and Popov (98) and Herlem

and Popov (100) (Figure 26). From these data, it seems that

the azoles are comparatively strong donors.

 





 



 

Figure 25.
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Relationship between the observed chemical 52%gt
of the sodium-23 ion and the Lig/Na+ mole re 1

for l—methylimidazole and 1—methyl-1l2,4’tr1‘
azole in pyridine.

E] l—MeIz

‘7 l-MePz

 



(
p
p
m
)

N
a
-
2
3

C
H
E
M
I
C
A
L

S
H
I
F
T

 

167

I 41 I I

2 5 4 5

LIg/NJ MOLE RATIO

Figure 25.

.
—

 



   



Figure 26.

168

Relationship between the observed chemical shift

of the sodium—23 ion in nonaqueous solvents and

the donor number of the solvent.

1 nitromethane, 2 benzonitrile, 3 acetonitrile

4 acetone, 5 ethyl acetate, 6 tetrahydrofuIML

7 dimethylformamide, 8 dimethylsulfoxide,

9 Pyridine, 10 hexamethylphosphoramide,

11 hydrazine, 12 ethylenediamine, 13 ethylaInine

14 lSO-propylamine, 15 ammonia, 16 11Me4L2134EL

17 i-MePZI 18 1-Me—1,2,4—Trz, 19 l—MeIz.
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APPENDIX I

1-Methylimidazolium Tetraphenylborate

Sodium tetraphenylborate is a prominent analytical re—

agent for the determination of potassium ions by quantitative

precipitating potassium tetraphenylborate from aqueous solu-

tions. Pflaum and Howick (1) have shown that dissolution

of this salt in acetonitrile leads to a system that is

especially suited for spectrophotometric measurements of

the tetraphenylborate ion at 266 and 274 nm. In addition

the tetraphenylborate anion forms insoluble salts in aqueous

medium with many organic bases (1—9). Included in these

studies has been a recent study of organo sodium compounds

of N-substituted imidazoles by Tertov and Burykin (9).

During this study, when an aqueous solution of sodium

tetraphenylborate was mixed with an aqueous solution of

l-methylimidazole, a white solid formed which appears to be

l-methylimidazolium tetraphenylborate C4H6N2H B1(C6H5)4.

Two experiments seem to support this hypothesis. When 1—

methylimidazole was added to a 1 N sodium hydroxide solution

of sodium tetraphenylborate, no precipitate was formed.

However, when l—methylimidazole was added to 1 N HCl solu—

tion of sodium tetraphenylborate, a white precipitate was

formed which dissolved upon the addition of 2 N NaOH solu-

tion.
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When the pH of a 0.0103 N_aqueous solution of sodium

tetraphenylborate was measured with the addition of 0.403 N

aqueous l—methylimidazole (Figure 1), the pH of the system

increased rapidly. It appears that the equilibrium:

1—MeIz + (c6H5)4B' + HOH = 1—MeIzH(C6H5)4B +OH—

is shifted to the right by the presence of the tetraphenyl—

borate anion and the formation of the insoluble 1-methy1-

imidazolium tetraphenylborate.

A small portion of this solid was isolated in order to

study some of its properties. The solid appears to be sol-

uble in acetone, dimethylsulfoxide, pyridine, ammonium

hydroxide and other strong bases. It is insoluble in benzene,

chloroform,alcohol and water. The infrared spectrum from

4000-600 cm—1 was recorded (Figure 2). A comparison of this

spectrum with that of l—methylimidazole molecule (Figure 13,

Appendix II) indicates that there are several bands present

which are characteristic of the 1—methylimidazole. In addi—

tion,there is a strong band at 3280 cm_1 which is in the

region, 3300-3030 cm-l, observed for the N-H stretching

Vibrations of amine salts.

Three samples, A, B, and C, were prepared from aqueous

solution containing 4:1, 1:1, and 1:6 mole ratios of sodium

tetraphenylborate to 1—methylimidazole. The samples were

recrystallized from 10% acetone-water. Chemical analyses

indicate that they all have the same composition:
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p
H

  
J l l L

2 3 4 5O
r
-

ml of 0.304M l-Melz

Figure I. Comparison of the pH changes upon the addition

of 0.304 M_aqueous I-MeIz to a) 100 m1 of

distilled water b) 100 m1 of 0.103 M_aqueous

sodium tetraphenylborate
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A B C Theor

75c 83.68a 83.25a 83.29b 83.51a 84.01

%H 6.87 6.73 6.87 6.70 6.29

7511 6.60 6.58 7.00 6.72 7.00

aAnalysis by F. M. D'Itri.

bAnalysis by Spang Microanalytica
l Laboratory in Ann Arbor,

Michigan.
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