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ABSTRACT

THE REALIZATION OF ORLICZ SEQUENCE

SPACES AND HARMONIC ANALYSIS

By

James Milford Boyett

In this thesis we consider the inter-relation between the

realization problem of L. Schwartz and harmonic analysis for Orlicz

sequence spaces. A solution to the realization problem generalizing

the work of Mustari on Lp-Spaces is presented in Chapter II. Harmonic

analysis for such Orlicz sequence spaces is then carried out in

Chapter III. The latter work generalizes some work of Kuelbs and

'Mandrekar. Finally, in Chapter IV an explicit form of the Fourier

transform for Gaussian measures on an interesting subclass of these

Orlicz sequence spaces is obtained and is exploited to study a Central

Limit Theorem for this class. The results of the final chapter in-

clude and extend some work.of M;N. Vakhania.
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CHAPTER I

INTRODUCTION

We consider in this thesis two related problems. The first is

the problem due to L. Schwartz of realizations for Orlicz sequence Spaces,

which in the case of classical Lp-spaces was first studied by Mustari

[22]. In a subsequent paper [23], Mustari also studied the question

for separable Banach Spaces and obtained necessary conditions for

realization. His work does not provide sufficient conditions in the case

of separable Banach Spaces, nor does it apply if the space is an LP-

Space (O< p< 1).

Once the realization problem is settled we show that it pro-

vides the extension of methods in [13] to the Orlicz sequence Spaces.

The Bochner theorem and Lévy continuity theorem proved in [13] can then

be generalized rather simply to the case of realizable Orlicz sequence

Spaces. In essence, we essentially give our proofs as to adapt methods

in [13]. Recently, using different methods other than those in [13],

J. Kuelbs [12] has studied the generalization of the results of [13].

We note that although his method is general, it is also more complicated

than the method of [13], and in case of Orlicz sequence Spaces, which is

his main application, his results are included in ours. As a matter of

fact our realization result shows that the most general Orlicz sequence

spaces for which methods in [12] are applicable are precisely the ones

studied in this thesis. Our results bring out both the potential as



as well as the limitations of the methods in [13] while providing very

simple proofs of the extensions of the work.in [13].

As an application of methods involved in the Lévy Continuity

Theorem we establish a form of the central limit theorem for realizable

Orlicz sequence Spaces generated by a convex function. This is done

in the last chapter after obtaining the form of the Fourier transform

of Gaussian random variables (vectors) taking values in these spaces.

This last result generalizes some of the work of M;N. Vakhania [28].

Chapter II begins with some basic properties of Orlicz functions

and Spaces and other well-known results that are used throughout this

thesis. Our main result -- the realization theorem -- is given in

section 2.3 and from it we obtain, as‘a corollary, Mbstari's results

of [22]. Using this theorem we also obtain a partial solution to a

problem formulated by Lindenstrauss and Tzafriri [18].

In chapter III we give a Lévy continuity theorem and a Bochner

theorem for realizable Orlicz sequence spaces and Show that these

theorems for certain Orlicz sequence Spaces considered in [11] are con-

tained in [14].



CHAPTER II

REALIZATICNS

§2.l INTRODIIITION

Let 0 be a o-algebra of subsets of a set a, and let P

be a complete probability measure on (0,4) . We shall denote by

”(0.03) the vector Space of real valued a-measurable functions where

equality of functions is understood to be almost everywhere (a.e.).

0n 71((n,d,P) we define the distance d(f,g) = (ImdP(w)-

Then 7R(fl.d.P) with the topology induced by this distance (topology

of convergence in probability) is a tapological vector Space (t.v.s.) .

We Shall consider structural conditions on a t.v.S. B in order that

there should exist a probability Space (0,43) and a vector Space

isomorphism T mapping E into 7R(0.d.P) (T : E .. ’/l((fl,d,P)) such

that both T and T-1 are continuous. Topological vector spaces E

for which this happens are said to be realizable with the linear

homeomorphism T being called the realization. We consider a Special

case of this problem when E is a real F-space of real sequences with

a Schauder basis, and the realization T is assumed to satisfy addi-

tional conditions (cf. 52.3).

Such realizations have proved useful in the study of harmonic

analysis on certain vector spaces (e.g. [l3] and [11]). In particular,

realizations for E - LP and E = Lp[0,l] (0 < p s 2) with the usual

topologies have been established in [13] and [25]. D.H. Mushtari [22]



examined this problem for the sequence Spaces LP and showed that only

in the case o.< p s 2 does such a linear homeomorphism exist.

In this chapter we examine the problem for the Orlicz Spaces

of sequences. We obtain necessary and sufficient conditions on the

associated Orlicz function in order that a realization exists. This is

achieved through careful analysis of the works of [3] and [26] where

the Sufficiency of these conditions in the context of function spaces

was studied. After giving necessary notation and terminology in the

next section, we present our main result in the last section.



§2.2 BASIC FACTS AND PROPERTIES OF ORLEZ SPACES

2.2.1 DEFINITION. An Orlicz function :9 is a continuous, even,
 

non-negative function non-decreasing for positive x such that (p(O) - 0,

(p(x) >0 for x i 0.

For a sequence of real scalars a a {an} we write pcp“) =

2:'l¢(an) and let ch = {a - {an} : 3 1. €E+ - [0,») 9 p(pfl-la) < a}.

We also write p(a) when no misunderstanding is likely from the omission

of the subscript. If for a sequence ak = {a:} C2 I’cp and a = {8“} 64¢

p(a - 8k) ‘ E:=1¢(an - 8:) converges to zero as it tends to infinity,

then we say "{ak} converges in the mean to a". If (p is a convex

Orlicz function, then ch with the norm “a“cp = inf“, > 0 : p(x-la) s l}

(Luxemburg norm) is a Banach space. In the Banach Space (Lq), ““q’)

convergence to zero in the norm is equivalent to convergence to zero in

the mean. The Space ‘29 with the norm ““cp is called an Orlicz

sequence Space. For the most part properties relating to convex Orlicz

functions are taken from [10], [17] and [29].

2.2.2 EXAMPLES. 1) Let (p(x) -- m" (1 s p<cn). Then rap

is the classical LP Space with the usual topology. In fact the

Luxemburg norm is the {.p-norm. This example shows that in a very natural

way Orlicz sequence Spaces are a generalization of the Lp-spaces.

2) Let cp(x) - (l + 'x\)l,n(1 + \x‘) - \xl. Then it is well known

([10], p. 20) that q) generates an Orlicz sequence Space distinct from

any LP Space (1 s p < an).

Convex Orlicz functions have the representation (90:) - ng‘p(c)dt

([10], p. 5) where p(t), the right derivative of q), is a non-decreasing,

right-continuous, non-negative function defined for t 2 O. The follow-

ing proposition shows that all convex Orlicz functions with p(O) > O

generate the same Orlicz sequence space.



2.2.3 PROPOSITION ([17], p. 127). Let (p be a convex Orlicz

function with tp(x) =- J‘gx‘p(t)dt. Then p(O) > 0 if and only if (iff)

Lap is isomorphic to (.1.

As our problem has been studied for the above case, we consider

Orlicz functions which include convex functions with p(O) = 0. The

function g(s) = sup t is then a right-continuous, non-decreasing

function defined 3512151: non-negative reals such that q(O) - O and

q(s) > 0 for s > 0. The function ¢(x) = ng‘q(s)ds is a convex

Orlicz function, and following [10] we call it the complementary func-

tion of (p. It is easy to see that the relation of being complementary

is symmetric.

2.2.4 m. If (90!) = m" (1 < p<e), then fix) = m“

where l/p + l/q '3 1. The terminology "complementary functions"

originated with this example. It should be noted that in many cases

it is impossible to fénd an explicit formula for the complementary func-

tion, i.e., (p(x) - e" - 1 ([10], p. 14).

We can now define a sequence Space icp as the Space of all real

sequences a B {an} Suchthat \Hamcp - p 2321 2‘, anbn < co. icp with

this norm is a Banach Space and is related to Lq) as follows.

2.2.5 PROPOSITIW. Let (9 be a convex Orlicz function such

that p(O) a 0. Then a E LC? iff a 6ch and “a“cp s “‘3ch s Zuamp

(i.e., (L‘P"\.“‘P) and (ch"““‘<9> are isomorphic as Banach Spaces).

As stated in remark 2.2.4, for (p(x) - \x‘p (p > 1), mt) -

\le where 1/p + l/q - 1. The following proposition is an analogue

of the classical result on inequalities involving complementary functions.

2.2.6 PROPOSITION. Suppose that q) is a convex Orlicz func-

tion with the complementary Orlicz function t. Then,



i) For all x,y 2 0, xy s (p(x) + y(y) (Young's inequality)

ii) For all x ech’

z xnyn s \Hxlllcppwo) if pwm s 1 .

For a convex Orlicz function (p we can define another vector

Space of real sequences by hep a {a - {an} : V l > O, p(x-la) < co},

and since hq) is a subset of LCP we can consider it with the norm

““e' This new Space htp with norm “HP has played a significant

role in the study of the topological duals of Orlicz sequence Spaces,

and was introduced by Gribanov [7] who established the following result.

2.2.7 PROPOSITION. Let cp be a convex Orlicz function. Then

ht? is a closed subspace of Lg).

The dual Space of a t.v.S. E is the vector space 8' whose

elements are the continuous linear functionals on' E. 3' will always

be considered as having the weak-star topology ([24], p. 66). That is

the topology induced by pointwise convergence. For y 68' and x €13

we denote as (in?) (Ct,y>) the evaluation of y at x (i.e., y(x) - (x,y)).

2.2.8 PROPOSITION. If :9 is a convex Orlicz function having

complementary Orlicz function y, then h; is isomorphic to Lq).

Given a convex Orlicz function the sequence Space 4,“) is linear.

In general, however, the space ch associated with an Orlicz function

tp need not be linear. An important class of Orlicz functions for which

4‘? is a vector space are those which satisfy the so called Az-condition

in a neighborhood of the origin. In addition the Az-condition ensures

us that the unit vectors (ek = (0,...,O,l,0,...), l in kth coordinate)"

form a Schauder basis for the Space ([17], [18]).



2.2.9 DEFINITION. .An Orlicz function m is said to satisfy

the AZ-condition for small x if there exists x0 >40, h > 0 such

that

(p(Zx) S hcp(x) for O s x S x0.

Since m is assumed to be non-decreasing it is obvious that

h 2 l; furthermore, for every ). > 0 there exists h(),) > 1 such that

(p(xx) s h(),)q>(x) for O s x 5 x0

(cf. section 3.3).

2.2.10 PROPOSITION. Let (p be a convex Orlicz function with

p(0) = 0. Then the following are equivalent:

1) (p satisfies the Az-condition for small x.

ii) L = h

P T

iii) Lap is separable.

2.2.11 EXAIPLES. l) (90:) '- e‘x‘ - \x‘ - l is an example of

a convex Orlicz function which does not satisfy the Az-condition.

Incidently, the complementary function to (9 does satisfy the Az-con-

dition ([10], p. 27). 2) cp(x) - \x‘p (O < p < l) is an example of

a non-convex Orlicz function which satisfies the Az-condition for all x.

For the Orlicz functions satisfying the A -condition, the associated
2

space Lt? need not be a Banach space. For example, consider the case

:90!) - \xlp (0 < p < 1). However it is a t.v.S. as the following

proposition [21] Shows.

2.2.12 PROPOSITION. Let cp be an Orlicz function satisfying

the AZ-condition for small x. Then 4"? with the quasi-norm “a“q’ '

inf“, > 0 : p(fla) s l} is an F-Space in which convergence to zero



in this quasidnorm is equivalent to convergence to zero in the mean.

When the Orlicz function q) satisfies the Az-condition for

small x, LT ‘with the quasi-norm given above will also be called an

Orlicz sequence Space.

EXAMPLE: Let {p(x) = m" (o < p< 1). Then “WWW is

the classical LP-space with the usual tOpology. Note however that

H.“¢ 2 “.HP (“a“p = 2:;1\an\p : the usual quasi-norm on LP).

Since we are interested in the Orlicz sequence spaces as

topological vector Spaces, we need to know'when if ever, distinct Orlicz

functions generate the same topological vector space of sequences.

This depends on the behavior of the function in a neighborhood of the

origin as the next definition and subsequence proposition show.

2.2.13 DEFINITION. Two Orlicz functions q) and y are said

to be equivalent for small x (for large x) denoted q) I. t (q,9 q)

if there exist an xo >20 and strictly positive constants b1,b2,kl,k2

such that

blcp(k1x) S $(x) S b2<p(k2x) for O < x 5 x0 (for x 2 x0).

If m'9 ¢ and x0 in the definition can be taken to be zero, then we

say q) is equivalent to t for all x and write :9 3 S.

It is easily seen that these are equivalence relations on the

collection of Orlicz functions. These relations are simpler for Orlicz

functions satisfying the Az-condition: q) f, t ((9 S y) if there exist

kl,k2 strictly positive constants and x >.o such that quKx) s
O

y(x) s kch(x) for 0 < x s x (x z x The next proposition is

o 0"

basic to the theory of Orlicz Spaces and is taken from [21].
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2.2.14 PROPOSITION. Let <9 and y be Orlicz functions. Then,

1) Lap") iff (92¢

ii) If cpg y, then pcp(al3 40 as k-oco iff p'(ak) do as

k .. co.

iii) If (p satisfies the Az-condition for small x and (pi y,

than V satisfies the AZ-condition for small x.

2.2.15 R_E_M_AR_R_. AS an example of the above, observe that, in

view of propositions 2.2.12 and 2.2.14, if :9 and] V are two Orlicz

functions such that cp E t and :9 satisfies the Az-condition for small

x, then ch and L] are isomorphic as topological vector Spaces. Since

the topology and vector Space structure of an Orlicz sequence Space is

dependent only on the behavior of the Orlicz function in a neighborhood

of the origin, any given Orlicz function satisfying the Az-condition

for small x can be replaced by an equivalent Orlicz function satisfying

the Az-condition for all x ([10], p. 24). Similarly, an Orlicz func-

tion which satisfies the Az-condition for small x can be replaced by

an equivalent Orlicz function which is strictly increasing ([21], p. 104).

In particular Orlicz functions in chapter III will be assumed to be

strictly increasing as well as satisfying the AZ-condition for all x.

Two real valued functions f and g are said to be

asymptotically equivalent at x - 0 if lim f(x) /g(x) - c > 0, denoted by

f ~ g as x -+ 0. It is easy to see thatxfgr two Orlicz functions (9

and V: q) .. y as x -+ 0 is sufficient for cp E y, but the converse

is not true.

Facts concerning Orlicz function spaces are very similar to the

above for Orlicz sequence Spaces. Aside from obvious differences some

distinction is made necessary because Orlicz function Spaces over an



ll

interval of finite measure are determined by the behavior of the Orlicz

function in a neighborhood of infinity and not the origin. We also need

to assume that an Orlicz function is increasing with lim cp(x) -= as.

For 771 = 77(([0,1], B[0,l], Lebesgue measure) let-”p(pfi)

Jpgtp(f(x))dx where dx indicates the integration with respect to

Lebesgue measure on [0,1]. We let LC? - {f 67R : 3 k 6 2+ 3 pCPQ-lf) < co}.

Analogous to the situation existing in the sequence Space case a further

assumption is needed to ensure that ch will be a linear space.

2.2.16 DEFINITIQW. An Orlicz function tp is said to satisfy

the AZ-condition for large x with Az-constant h 2 0 if there exists

an x0 > 0 such that

(p(Zx) s hq)(x) for x 2 x0 .

Suppose that tp is an Orlicz function satisfying the AZ-con-

dition for large x. Then Lq, with the usual vector addition and

multiplication by a scalar is a linear Space and becomes an P-Space

under the quasi-norm “f“cp - inf“, > 0 : p(flf) s 1}. I'm with this

quasi-norm will be called an Orlicz function Space. A sequence

)ao.{£13 c: ch is said to "converge to zero in the mean" if lim pcp(fk

It is well known ([10], p. 76) that convergence in the qufST-norm

“'th is equivalent to convergence in the mean.

Since our study deals with realizations of Orlicz function

spaces as t.v. Spaces we need to know when distinct Orlicz functions

generate the same function Spaces.

2.2.12 PROPOSITICN. Let (p and t be Orlicz functions.

Then,

L
i L L iff cp ~
) tp v I
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11) 1t n9 1: then pcp(fk) -. o as k .. co iff flak) —. o

as k _. no.

iii) If (p satisfies the Az-condition for large x and

(9 £3 vb, then y satisfies the AZ-condition for large x.

Two real valued functions f and g are said to be

asymptotically equivalent at infinity if lim f(x) /g(x) = c > 0 de-

noted f ~ g as x -+ on. Then for two OrI-i'zz functions 1;) and y,

tp ~ 1) as x -+ co implies (p E y, but the converse need not be true.

The study of Orlicz Spaces seemsto naturally divide into two

classes depending on how the rate of growth of the associated Orlicz

function compares to the function f(x) - x2, and with this motivation

we nuke the following definition.

2.2.18 DEFINITION. Let K(2,0) (K(2,oo)) be the collection

of Orlicz functions m such that there exists Orlicz function y with

qag y and y(x)/x2 is a.non-increasing (non-decreasing) function of x.

The usefulness of this definition evolves from the next proposi-

tion which can be found in [20].

2.2.19 PROPOSITIm. Let tp be an Orlicz function such that

cp E 1((2,0) (1p 6 K(2,an)) . Then there exists Orlicz function t such

that q>3 y and ng/r) is a concave (convex) function of x.

2.2.20 RM. Due to this proposition and the fact that equi-

valent Orlicz functions generate the same Orlicz Spaces, when m E K(2,0)

(m €‘K(2,a9) we will assume without any loss of generality that m o,f

is a concave (convex) function.

We conclude this section by giving notation and well known de-

finitions that will be used throughout this thesis.
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For two real valued functions f and 3 we will write

f(x) A g(x) for min{f(x),g(x)} and f(x) V g(x) for max{f(x),g(x)}.

x x

The indicator function of a set A will be denoted by [A],

i.e. [A] - [A](m) ={1 if u’ EA

0 if m £EA

If X is a symmetric (about zero) infinitely divisible random

variable, then the characteristic function of X is given by

xx(t) = exp[-ozt2/2 - [3(1 - cos ut)dM(u)} where a 2 0 and M is a

Lévy measure on ‘2_ That is, M is a measure on g? such that

I: dM(u) < m and I; u2dM(u) < m. A complete discussion of this

representation for infinitely divisible distributions appears in ([6],

p. 70).
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§2.3 REALIEATIONS 0F ORLICZ SEQUENCE SPACES

Let E be a vector Space on which an invariant metric d is

defined. Furthermore,suppose that the vector space operations are

continuous with reSpect to the topology on E induced by d, and that

the metric Space (E,d) is complete. 0n E define the quasi-norm

H'H by urn = d(x,0). Then (E,“o“) is an F-space ([24], p. 8).

Now suppose that (E,“-“) is a real F-Space of sequences of real

numbers with a Schauder basis {ek}. We say that the sequence space

(E,\|-\\) is realizable if there exist a probability space (e.g.?)

and a linear homeomorphism T : E ~7R(fl,d,P) such that the random

variables in T(E) are symmetric about the origin and {T(ek)} is

a sequence of independent identically distributed (iid) random vari-

ables. (7ll(fl,d,P) is assumed to have the topology of convergence in

probability.)

In order to study the realizations of sequence Spaces a dif-

ferent type of Space is needed. Suppose that X is a random variable

symnetric about the origin, and let {Xn} 'be a sequence of independent

random variables distributed as X. Define by {X the Space of all

real sequences such that (2:;1 anxn} is Cauchy in probability. We

say that the Space Lx is generated by the random variable X. ‘Note

that since we are dealing with independent random variables,

9X e {{an} : 2:81 an)!n converges a.s.].

Our main effort is to eStablish that q) 6 K(2,0) is necessary

and sufficient for the sequence Space LT (section 2.2) to be

realizable. In particular we exhibit a symmetric random variable X

such that L 3!. .

(p X
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The key to the development is the following lemma which can

be found in [3] and [26].

2.3.1 LEMMA. Suppose that m is an Orlicz function satisfy-

ing the A -condition for small x and m 6 K(2,0). Then there exists
2

o 2 0 and a Lévy measure M such that

2 2 2

cp<x> 3 o x + fish A 1)dM(u)

2.3.2 Emir. 1) If cp(x) - MP (0 < p< 2) then o = o

and dM(u) - u-l-pdu. 2) If qu) - x2, then a = 1 and M. is the

zero measure on Er.

The next theorem characterizes those Orlicz sequence Spaces which

can be generated by a symmetric random variable. In fact it shows that

the Space LX for X a symmetric random variable is always an Orlicz

sequence Space.

2.3.3 THEOREM. If X is a random variable symmetric about

zero, then there exists an Orlicz function 1;) such that {‘X - Leg and

m e K(2,0). Conversely, if m is an Orlicz function from the class

K(2,0), then there exists a random variable symmetric about zero such

that {'cp -—- LX'

The equalities that appear above are equalities between vector

spaces. In fact the mapping I(x) - x is a vector space isomorphism.

PRQQE, First Suppose that X is a random variable symmetric

about zero and consider E - LX' Then [an] 6E iff zit-1 aan con-

verges a.s. The Kolmogorov three series theorem ([19], p. 237) implies

the existence of A >10 such that

1) z:_1 P{‘anxn\ > A} < e

11) £31 E(anxn[\anxn\ s A]) < a



16

111) 3:..1 Var(aan[\aan| s A]) < e .

Since the random variables {Xn] are symmetric, the series ii) is zero.

Notice that using the symmetry of X i) and iii) can be written

as

.. A/laIn l2
220‘15/‘anidF(x) < co, and 22215130 x2dF(x) < as

where F(x) is the cumulative distribution function of’ X. Now define

the function qA by qA(A) = I:(x2x2 A A2)dF(x). Then the above can

be stated as {an} eE iff 2:31 qA(an) < e.

Clearly we can see the function qA is an even function of A

non-decreasing for A 2 0 with qA(O) = 0 and q(x) > O for A i 0,

and the Lebesgue dominated convergence theorem shows that q is con-

A

tinuous. Hence is an Orlicz function and since for x 2 0,

(1A

(4x2x2 A A2 ) s 4(x2x2 A A2) for all A > 0, qA also satisfies the

AZ—condition for all A > 0. ‘Now let q(x) - q1(X) and observe that

qA (1,) - AZqOJA); thus, qA fl q and we conclude that {an} 61?. iff

2:=1q(an) < 0" by proposition 2.2.14.

The above Shows that E = Lq and so there remains only to

Show that q E K(2,0), but this follows from q(),)/),2 - g(xz A l/x2)dF(x).

Conversely suppose that m is an Orlicz function satisfying

the Az-condition for small x and m e K(2,0). Then we exhibit a

symmetric random variable X so that [S’. Ax. Lemma 2.3.1 implies

there exist 0 2 0 and a Lévy measure M, such that mCx) g 02x2 +

53(x2u2 A l)dM(u).

To simplify the details we consider three cases; the first case

is to assume that the Lévy measure M is identically zero. Then

ch '3 L2 and Chebyshev's inequality implies that if {an} 6 {,2 then
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{a } 6.9x where X1 is a Gaussian distributed random variable with

n
1

mean zero and variance 1. Using ([2], proposition 8.37, p. 177) it is

easy to see that {an} ELXI implies {an} 61,2 ; thus, we have

:9 X1

For the second case we will assume that a = 0. ‘Let XM, be a

random variable with the characteristic function, xxM(t) =

expf-f3(l - cos xt)dM(x)] and so X is a symmetric infinitely

M

o o . Q

diViSible random variable. Recall that LXM {{an] . zn=l aan con-

verges a.s.] where {Xn} is a sequence of iid random variables dis-

tributed as XM' ‘We Show that cw =‘QXM. Suppose that {an} t L¢.

Th m jm(a2u2 A l dM( d 1 ti 1a m dM(u) < m'en £n=l O n ) u) < m. an n par cu r 2h=1 I:/\an\ ,

hence

on

(2.3.4) zn___1 finan‘u - cos u ant)dM(u) < so for all t.

2

It can be easily shown that (l - cos x/2) z x /2 as x ~10 and so

there exists a > 0 such that for \x\ < e. (1 - cos x) s x2/2. Thus,

for O s u s l/[a ], it] < e we note

n

l/la \ l/|a l tzazuz

f ‘ n (l - cos a u t)dM(u) s I n --2-—-M(du)

O n 0 2

2 l/‘a i

S. n 2 2

s 2 I0 anu M(du)

a. .l/lanl 2 2
and because En=l J0 anu F(du) < m we must have for \t\ < e,

m l/la \

anl $0 n (l - cos anu t)dM(u) < m. Together with (2.3.4) this

implies that

as Q

En=1 A0(1 - cos anu t)dM(u) < m for \t‘ < e .
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Hence ([2], theorem 8.38, p. 177) implies that 2:121 aan converges

a.s. That is L c .

<9 ‘XM
Q

Now suppose {an} ELXH. Then En=l aan converges a.s. and

E X _. 0 in probability as k _. 0°. Since x m (t) =

n-k an n

>2"n=kanxn

ex {. 0° ”(1 - cos u a t)dM(u)} we note 200 [ma - cos u a t)dM(u) —» O
9. rn=k do n ’ n=k -10 n

uniformly on compact subsets of R as n -+ as. In particular this

implies lim I?) E:=k [3(1 - cos u ant)dM(u)dt = 0. Using Tonellivs

“no ! ‘7‘k

theorem and integrating out the variable t we get I

a no sin anu :

11m nn=k J0(1 - —aT-)dM(u) = 0, but since there ex1sts a constant 15‘, u.

k—«ao n b

c>0 such that l-—-—-81:x2c(le2) forall x>0,

on on 2 2 co 2 2

11:: zn___k loan" A l)dM(u) - 0. Thus, 2n=l g(anu A l)dM(u) < e

implying that {an} Ech' This concludes the proof of this case since

i b .[an] was an ar itrary vector from {,xM

For the final case, suppose that o > 0 and M is not the

+ nw 2 2

zero measure on R . Then let ¢1(x) = ]0(x u A l)dM(u) where

2

¢(x) E 02x 4- [g(xzuz A l)dM(u). Observe that tp 61((2 ,0) implies

that tp €K(2,0) and furthermore that L C152. Thus, 2!, =4, and

1 (P1 ‘9 (P].

the question reduces to the second case.

AS a corollary to the above proof we have the following.

2.3.5 COROLLARY. Suppose that q) is an Orlicz function

satisfying the AZ-condition for small x and tp é 1((2 ,0). Then

I, 8 {X where the random variable X is as given in the above theorem

CP

k k

for each case, and for {a }c ch’ a -o O as k _. co in {'cp iff

co . .

{final 8:31“) -+ 0 as k _. as in probability.

PROOF. For \t] < S with e as chosen in the above proof,

k

200 (“8‘3 2 ~1og x (t); hence, if a _. 0 in l, as

n=l n zoo a‘3( (p

n=1nn
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as k «'m then fi:=1 aEXn a 0 in probability. Conversely, we saw

that if -1og Xfi kx (t) ~ 0 as k a m uniformly on compact sub-

a

=1 n n

sets of Rh then a22:=1(a:)2 + 2:;1 j3((a:)2u2 A l)dM(u) a O as

k a m; therefore, ak a 0 in L as k a m.

Now we prove our main theorem.

2.3.6 THEOREM. Suppose that m is an Orlicz function satisfy-

the Az-condition for small x. The orlicz sequence space L is

realizable as a space of random variables iff m E K(2,0).

2599:, If m 6 K(2,0), then by theorem 2.3.3 there exists a

symmetric infinitely divisible random variable X such that LT = LX'

Let E = {z:__1 anXn :{an ] E with {Xn } iid as X.

Then E with the topology of convergence in probability is a t.v.s.

Define T mapping ALT into E (T :.{,(P a‘E) by T([an}) = fi:;1 aan.

This linear mapping is well-defined and injective Since {an} E‘Lm

iff {an} 6 AX, and corollary 2.3.5 shows that T is bi-continuous.

Thus L¢ has the realization given by T.

Now suppose that LC? is realizable,i.e. there exist 77:01.43)

and T : {’cp ~Wl(fl,d,P) such that T is a linear homeomorphism and

{T(ek)} is a sequence of iid symmetric random variables where ek is

the kth unit vector of qu Then for [an ] €.L¢ , T({an ]) = E: a T(en).
=ln

Let X = T(el). Then ALT = Ax and since T is a linear isomorphism

this is equality between vector Spaces. Theorem 2.3.3 Shows that

AX = Ly where t is an Orlicz function from the class K(2,0). Then

using the bi-continuity of T and corollary 2.3.5 we conclude

.L¢ = Li (equality as t.v. Spaces) and hence, m €‘K(2,0).

2.3.7 EXAMPLE. 1) Let (p(x) :- m" (o < p < 1). Then from

example 2.3.2 we get a = O and dM(u) = u-1-pdu and recognize that
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exp{-I:(1 - cos xu)u_1-pdu] is the characteristic function of a

symmetric Stable random variable with index p. Thus {an} €.L¢ iff

E X converges a.s. with {Kn} iid symmetric stable of index p.

n=l an n

As a corollary to theorem 2.3.6 we obtain the results of

Mushtari [22].

2.3.8 COROLLARY. The sequence Space LP for p > 2 is not

realizable as a Space of random variables.

This result can also give some information on a problem

suggested by J. Lindenstrauss and L. Tzafriri [18]. There they prove

the following:

2.3.9 PROPOSITION. Every Orlicz sequence Space generated by a

convex Orlicz function m contains a subspace isomorphic to LP for

some p 2 1.

The question raised is can more be said about the possible

values of p. Our results Show the following:

2.3.10 THEOREM. If m is a convex Orlicz function and

m €_K(2,0), then 1L¢ contains a subSpace isomorphic to LP for some

p, 1 S p s 2.

23992, The proof is immediate from theorem 2.3.6, corollary

2.3.8, and proposition 2.3.9.
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CHAPTER III

LEVY CONTINUITY THEOREM FOR ORLICZ

SEQUENCE SPACES

§3 .1 INTRODIIITLON_

In this chapter we generalize the Lévy continuity theorem to

the case of Orlicz sequence spaces when the associated Orlicz function

is in the class K(2,0). This extends the results of [13] which

handles the Situation for the classical LP (0 <'p < a) Spaces. For

completeness and ease of reference a Statement of the Bochner theorem

proved in [11] is included. We also show that the reSults of Kuelbs

and Mandrekar can be applied to Lq: when the Orlicz function m is

in the class K(2,m); thus, [14] includes the reSults given in [11]

for this class of Orlicz Spaces.

Our proof of the Lévy continuity theorem is based on the

realization theorem and adaptation of techniques from [13] to this case.

Recently, by using an extension of characteristic functions due to

L. LeCam [16], J. Kuelbs has obtained some results which constitute

generalization of the work in [13]. However, his proofs are complicated

due to the generality of his approach and the precise sequence Spaces

to which Such results are applicable are not known. Extensions of

techniques of [8], [13] are of interest due to the simplicity of the

approach as brought out in the recent work of [11]. Our approach shows

that the problem of Levy continuity theorem is intimately connected with

the existence of a realization of the Space. In turn the realization

21
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problem is intimately related to the structural problems of Banach

Spaces as our theorem 2.3.10 indicates.

First we establish some terminology and preliminaries in

section 3.2 and give our results in the last section.
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§3 .2 PRELIMINARIES

Let .L denote the vector Space of all sequences of real numbers

with the topology of coordinate-wise convergence (Tychonoff topology).

We will frequently think of the Lap Spaces as being subsets of 1!,

(cf. section 4.2) and if x 64, we define
"
U

X

IIN (x1,...,xN,O,...)

(O,...,O0 >
4 II

N ’XN+1 ”‘N+2 ’ ‘ ° ')

We denote the coordinate functionals on L by Bj’ j = 1,2,... . That

is, Bj :1, —~ ,9 is given by ej(x) = xj for all x EL and for all j.

For m 6 K(2,0) we denote by km the probability measure on

the Borel subsets, B, of L by taking the product measure on 4, such

that the coordinate functionals have independent infinitely divisible

laws with Fourier transforms exp[ -ozt2/2-j':(l - cos ut)dM(u)} where

2 e

o and the Levy measure M are given by lemma 2.3.1.

3.2.1 DEFINITION. The Fourier transform (or characteristic
 

functional) of a probability measure p, on the Borel subsets of a

t0pologica1 vector Space E is the function x defined on E' (the

t0pologica1 dual of E) by

7100 = is exp{i(y.x)}du(y) for x 68'

3.2.2 REMARK. If E' contains enough linear functionals to

separate points of E and if p. is a tight Borel probability measure

(cf. definition 3.2.7) , then x determines u uniquely on the Borel

subsets of E. In particular we study the case where E = L and

1p 6 K(2,0) . While ch may not be locally convex, the coordinate

functionals are contained in {’1}; and so L' does separate points of

cP



L . More will be said later concerning the tightness of Borel proba-

T

bilities on L .

m

3.2.3 LEM. If p. is a probability measure on the Borel

subsets c. of L¢, m €.K(2,0), then the function

~ N

(X1Y) = [gm Ek=1 Bk(x)5k(Y)

is a B A Omeasurable function on L X L , and

(Ac? X u)({\(x.y)"! < col) = 1.

The proof of this lemma is very similar to the proof for the

Lp (O < p s 2) case as given in ([13], lemma 3.1, p. 222) and will

be omitted.

3.2.4 DEFINITION. If u is a probability measure on the Borel

subsets of LT, m E K(2,0), then we define the extended Fourier trans-

form of u on L by

32(X) = II. exv{i(y.x)"}du(y) for x 6 L -

W

3.2.5 REMARK. The extended Fourier transform of a probability

u on the Borel subsets of LCp is a Borel measurable function on L

which is finite almost everywhere with reSpect to the measure A and

which is equal to x(x) =DIL exp{i(y,x)]du(y) for all x €.Lé. Thus

i is truly an extension of T; from .Lé to L.

Let S be a metric space with I denoting the Borel sets in

S. We need the following concepts from the theory of weak convergence

of measures [1].

3.2.6 DEFINITION. A sequence of probability measures {Pu}

on I is said to converge weakly to the probability measure P on
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I if ijdPn a IsfdP for every bounded continuous real valued func-

tion defined on S.

If {Pn} converges weakly to P, we write Pn =rP.

3.2.7 DEFINITION. A probability measure P on (8,3) is

said to be tight if for every positive a there exists a compact set

K CZS such that P(K) > 1 - e-

We shall deal only with Orlicz spaces for which m satisfies

the AZ-condition, and by proposition 2.2.10 these .Lw Spaces are

separable. The L Spaces are a priori complete being F-Spaces;

hence, every probability measure on LCp is tight ([1], p. 10).

3.2.8 DEFINITICN. A family {paz oz EA} of probability

measures on S are said to be tight if for every positive e there

exists a compact set X C S such that ”d(K) > 1 - e for all a 6A.

3.2.9 DEFINITIW. A family [110: a 6A} of probability

measures on (8,1) is said to be relatively (conditionally) compact

if every sequence of elements {pork} (ark 6A, k = 1,2,...) contains

a weakly convergent subsequence.

The next proposition is due to Prohorov and can be found in

[1].

3.2.10 PROPOSITION. Let S be a separable and complete metric

space. Then a family {pa: 0 EEA} of probability measures on (8,3)

is tight iff the family is relatively compact.

We shall be dealing with tight sequences of measures on L

for m E K(2,0) and satisfying the AZ-condition. In order to do this

we need a description of the compact subsets of Such spaces. For the

LP case such a description is readily available [4]. We give the

following generalizations which do not seem to be available in the

literature.
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Suppose that m is an Orlicz function satisfying the Az-con-

dition for 0 s x s x with constant h 2 l (i.e. ¢(2x) s h(p(x)

0

for 0 s x s x0). We now assume without any loss of generality, that

.9 is strictly increasing (remark 2.2.15). If mathl, \s‘] 5 x0

we have the following

(p(t‘s) = <P(l'~"3l) 5 y(itl + lsl) S <90 maxiltl".sll)

S hwmflltl’lSll) 5 WWW + “PUSH

(3.2.11) (p(t-S) s hcp(t) + h(p(S) if max{\t\,\sl} 5 x0 .

Thus if to satisfies the AZ-condition for all x 2 0,

(3.2.12) p(p(x + y) s hpcp(x) + hpcp(y).

Note that the characterization we give for the compact subsets

is in terms of the mean function and not in terms of the quasi-norm

on the Space .

3.2.13 THEOREM. Suppose (p is an Orlicz function satisfying

the Az-condition with constant h for O s x s x0. Then a set R C L

is compact iff the following conditions are satisfied:

1) sup p(f) < es

£3

11) lim sup pN(f) = o where pun?) = z:=N+1<p(Bn(f)).

N—«o f6(

PROOF. Suppose K C ch is such that i) and ii) are satisfied.

Let {fk} be a sequence from X. Then by i), (p(en(fk)) s p(fk) s

sup p(f) < as for n = 1,2,...; k = 1,2,... . So by the usual diagonal

f3

process we can extract a Subsequence {fk ] from {f such that,1

lim (p(a (f )) exists for each n, n = 1,2,... . Since q) is strictly

J—m “ *1
increasing with lim (p(x) = on, we must have lim Bn(fk ) existing for

x-m 1"” J
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for each n. Now to Show {fk } converges in L . Since (p satisfies

J

the Az-condition, it will Suffice to show for e > 0, 3 J 3 for all

i,j 2 J, p(f - f )< a. By assumption ii) 3 N 3 Sup pN(f) <

min{rp(x0), e/3h]. Then,

e V - N _
p(fk' - fk') finalcp(en(fk.) Sn(fko)) + p (fk. fk)

1 J 1 J 1 j

Since iljim iBn(fk.) ‘ Bn(fk')l = 0 and (p is continuous at the

S “m 1

origin, a J a v i,j 2 J, £=ltp(fin(fk) - enak )) < 6/3. Then by the

1'.

assumption n1ax{\5n(fk )1, \Bn(fk )\} < x0 for all i,j and n 2N + 1,

i J

using the fact that (p is increasing, and equation 3.2.11, we find

N

p (fk - fk) S hpN(fk) + hpN(fk) S 23/3 .

i J 1 J

Hence, p(f - fk ) < e for all i,j 2 J.

i J

Conversely,suppose that K c: [”29 is compact. Then clearly i)

k

holds since p is a continuous function on ch. Now take 1 > e > O.

L

where or = min[tp(xo) 9 e/Zh], but if “f“cp S 1 then p(f) a “fum’ so

Then 3131,...,£ EKsuchthat for feKai,lsisL9“f-f1\\ <0,

P

p(f - £1) < a. Now choose N so that pN(fi) < o for all 1,

l s i 5L. Take f 6K and choose i so that p(f - f1) S 01. Then,

pN(f) == pN(f - fi + fi) s hpN(f -fi) + hpN(fi) implying that pN(f) < 3.

Since 1 > e > O was arbitrary and f was an arbitrary vector from K,

condition ii) is verified.

3.2.14 THEOREM. Suppose (p is an Orlicz function satisfying

the Az-condition for all x with Az-constant h. A set R C (1‘? is

compact if for every 6 > 0 3 x1,...,xr E L:P such that

r

KCU S(xj=1 ) s 5}.16) where S(x-1,6) = {y GLCP : p(y _ X

J J



28

PRQQE, For the proof it will suffice to Show that under the

stated hypothesis, conditions i) and ii) of theorem 3.2.13 are

satisfied. Take e > 0. Then by assumption 3 x1,...,xr ELCP such

that K': JE=1 S(xj,e/2h). For f E'K choose i, 1 s i S r, such that

f E S(xi,e/2h).

p(f) = p(f - Xi + xi) S hp(f - xi) + hp(xi)

S e/Z + h SUP p(xi) < m .

lsisr

Hence sup p(f) < m and the first condition is shown. Now choose

fEK

N0 such that N 2 N0 implies pN(x.) < e/Zh for all 1, 1 s 1 s r.
1

Then again we see pN(f) 5 hpN(f - xi) +'hpN(xi) yielding

pN(f) a 3/2 + hpN(xi) < 6- Therefore, lim Sup pN(f) = 0, and the

Nflm f6(

theorem is proved.
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53.3 LEVY CONTINUITY THEOREM AND BOCHNER'S THEOREM

We now prove Lévy Continuity Theorem for Orlicz sequence

Spaces with m E_K(2,0). The section also includes a statement of

Bochner's Theorem and concludes by showing that the case m E K(2,m)

is derivable from the work in [14]. This is done to Show that the work

in [11] which uses techniques similar to [13] is included in [14].

In this section until further notice, m will denote an Orlicz

function satisfying the AZ-condition for all x with Az-constant h,

and we define ¢(t) by

2 2 m

(3.3.1) S(t) = o t /2 + [0(1 - cos xt)dM(x)

where o > 0 is the constant and M is the Lévy measure of lemma

2.3.1. Recall that corollary 2.3.5 implies q): y; hence, i will

generate the same topology on L as does ¢° In particular for

{xk}Cch, pcp(x|3 -»0 as k—Om iff p'(xk) —.0 as k-o0;hence,

for every 6 > 0 there exists 6(a) = 6 > 0 such that

(3.3.2) if p¢(X) > c then p¢(x) > 5

We begin the proof of Lévy's Continuity Theorem with the

following lemmas.

3.3.3 LEWIA. If {a : 0 EA} is a family of probability

"‘—" o

measures on .Lcp such that

lim Sup J (u. ) = 0

N—m; wo as. "'Y a

where

J < ) =1‘ 1 - «mm-[13" vwx ) + pN(x)]}du (x)
NsY “a LT n=1 n V o

Then (no: or EA] is conditionally compact.
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PROOF. Take e20,0<8<l and define E={y EL-P:

N .
£1 (p(yyn) + pcp(y) 2 B/Zh], where h 1.8 the AZ-constant for tp. For

0 s. t «.r 1, t/2 r 1 - e-t, so we find ”(T(E) = %- ]‘Eo spam where 5

corresponds to B/Zh as in 3.3.2, and clearly 5 can be chosen less

than 1. Thus

2 -6 2 N

”q(E) S 6- IE1 - e duabt) S '6' IE1 ' exp{ ‘12: MW“) + pw(x)]}dua(x) . a J

.1.

”(T(E) S 6 JNwmo) ° A

 By our assumption there exists No(e,6) and y0(e,6) such that for J r

2 .N 2 No, v S YO’ JN,y(p'oz) S e6/ for all (1 EA Hence,

N

ua{x€L(p:)jlicp(yxn)-l—p(x)<
6/2h]>1-e

for ySy0,N2N0

and all a E A. With no loss of generality we take Y0 < 1. For

x 6 EC, :1: MW“) < S/Zh < l < $2 therefore, “131‘!me <3: . Since

{x E PNLCP : “PNxHq;< l/y} is a bounded subset of a finite dimensional

- l.Space, we can find x1,...,xr 1n PNLCp Such that “Xi‘\¢< l/y and

for all x EL with lPx <1/ we get min Px -x. <B/2h<l,

hence, min p(P x - x ) < Q/Zh.

N J
lSer

Then using 3.2.12 we can write

S(xj.%) = {y 6% = 9er - xj) s a}

N

2 {y 62¢ : pch’Ny - x1) 5 B/Zh, p¢(y) S B/Zh] .

So for y EEC, 91;“) S B/Zh and 3j :1 S j S r such that

p(PNy - xj) s e/2h; thus, y 65:13.3). This shows Ec cfi=13(xj,a)

and theorem 3.2.l4yields that EC is compact. Then p. (EC) 2 l - e

or

for all C! EA, and Ec compact implies using proposition 3.2.10

that the family in, : q EA} is conditionally compact.

’ '1
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3.3.4 LEMMA. Let {“k} be a sequence of probability measures

on LCp such that fik] converges in xqrmeasure to i where i is

the extended Fourier transform of a measure u on L . Then

T

lim sup J (u ) = O.

N—Ooo; )110 k N’Y k

The proof of this lemma is similar to the proof of lemma 3.3

in [13] with the x¢-measure replacing the symmetric stable measure

used there, and hence, is omitted.

3.3.5 LEVY CONTINUITY THEOREM. Let {uk} be a sequence of

probability measures on LCP with Fourier transforms {Xk} defined on

4;. Then {“k} converges weakly to a measure p with Fourier trans-

form x iff {ik} converges in xw-probability to i and {Xk} con-

verges to x on L].

PROOF. First assume that {pk} converges weakly to u on

LT. Then it is obvious that lim xk(x) = x(x) on L'.

Tkam

jlr -2\2d1 =u lilzdx -§iidx
L k <9 JL k <9 411‘ <9

-J"iidx +fl'il2dx-
L k T L m

Furthermore, {pk} converging weakly to u implies {pk x pk] con-

verges weakly to {p X n] and hence,

, . .. 2 _ , .

111:" “up dhcp - 111.!" f,j,¢exp{1(x.y>}duk(y> ltwex"{‘("’z”d”k‘z’d"o

1' ° , - d d d1:"! L’Jtcpjéexfiflx Y 2)} ACP(X) uk(y) 111(2)

lim hwjflpexvi -pw(y-2) lduk(y)duk(2)

I j exPi‘P (Y‘z)}du(y)d
p(z) = A .

Lt? Le? *

Similarly ‘1‘;ka (um converges to A which is Iblxl dlcpo Thus {Xk}

converges in mean-square to i, and so also in A -measure.
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Conversely, using the preceding two lemmas we find {pk} is a

conditionally compact sequence. Thus there exists a Subsequence {pk ]

J

converging weakly to a probability measure v with Fourier transform

g. Then g = lim Xk = x, and the uniqueness of the Fourier transforms

for measures implies {”k } must converge weakly to a (i.e. u = v

J

on L ). Furthermore this shows that any convergent Subsequence of

(p I

{pk} must converge to u. Hence, every Subsequence of {pk} in turn [1

has a Subsequence which converges to u and so {uk} converges

weakly to H1 since weak convergence in this case is metric convergence.

 The Bochner theorem for these Spaces was proved in [11] using 5

techniques developed in [13]. In the following statement of the

theorem let C denote the complex numbers and a positive definite

function is a function satisfying £:,j=lzi£jf(ri - rj) 2_0 for any

finite collection of real numbers r1,...,r and complex scalars

N

21,...,zN.

3.3.6 BOCHNER THEOREM. Suppose that m isian Orlicz function
 

satisfying the AZ-condition for small x and T E'K(2,0). Let

f : L} —oC. Then

T

f(y) = j, EXP{1(X.Y)}du(X) (y 614))

m

for some Borel probability measure on LQp iff f is positive definite,

sequentially weak-star continuous and

H

II f(0) = 11mN f,.f(y)dxcp(eN.y)

T

where

r = -,Lexmuxsndxcpuww II;=18XP( emwejoo».
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= ,..., 11 th I: Z 0for any sequence of EN (eN,l €N,N) sue a 6N,j

(for all N and j) and lim max gN = O, and when w is given

N—m lSjQ‘l ’

by equation 3.3.1.

Now we consider the case where the Orlicz function is from the

class X(2,a9: still satisfying the AZ-condition for all x 2 0. We

derive the Lévy continuity theorem and Bochner theorem for the sequence

space LT ‘by Showing that Lq> satisfies conditions given in the

work of Kuelbs and Mandrekar. First we give necessary notation and

terminology from [14], state the theorems, and then show that their

hypotheses are satisfied by this class of Orlicz sequence Spaces.

Let Lco denote the Banach Space of all bounded sequences of

real numbers with the usual supremum norm, and L: the positive cone

of Lm. E will be a real F-space with a basis {bu}.

3.3.7 DEFINITION. If A EL: and (no: (1! EA] is a family

of probability measures on E such that

x GEE ° m A 2 < m] ' 1

”J ' zk=l kxk

for each a EA, we say A is sufficient for the family [11 : 0 EA].

‘ a

3.3.8 DEFINITION. A family of probability measures

4..

{”02 a 63A] on E is a x-family for some 1 ELco if A is sufficient

for {u : 0 63A] and for every 3,6 >10 there is a sequence {3N}

a

such that

( EE ° °° x2 6 >1 -
”Cy-x ' zk=N+lxk k < 1 6

implies

a:

nap: EE . “2k=N+1xkka< b(6)} > 1 - (a + 6N)

where lim a“ = 0 and b is a strictly increasing function on

N

[0,e) with b(0) =0.
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Now let o(°) be a convex function on [0,m) such that

q(O) = 0 and q(s) > 0 if s > 0. Further, assume that for every

compact K of E there exists an r > 0 such that y E;K implies

2

A(y) = 2T=1 q(yi) < r, and for every r > 0 there exists M > 0 Such

m 2

that A(y) < r implies 21=1a(yi) S My(“y]) where y(-) is another

continuous function on [0,m) such that y(0) = 0.

3.3.9 DEFINITION. If the quasi-norm, H-“, on E admits the .1 g

existence of functions a(*) and y(-) having the above properties we

will say that it is accessible.

 If the quasi-norm on E is accessible then by the Try-topology 9

we will mean the tOpOlogy on E' generated by taking as a subbase all A

translates of sets of the form {x E;E' : T(x,x) < 1] as T(°,-)

varies over the symmetric, positive definite, bilinear forms on E'

which are jointly weak-Star sequentially continuous on E' and

satisfying ::=la(tkk) < m where tkk = T(Bk’ek) with Bk the kth

coordinate functional on E (i.e. ak(x) = xk).

3.3.10 BOCHNER THEOREM [14]. If E has an accessible quasi-
 

norm then a function x on E' is the Fourier transform of a proba~

bility measure iff

i) ((0) = l, A is positive definite,

ii) X is continuous in the T -tOpology,

0

iii) the family of measures {on} correSponding to x(PN(-))

4.

has a Subsequence which is a A—family for some A EL0°

satisf in l' m t r 0 whenever fim

‘ y g i” z1=k"1 11 1:1“

Here a(-), of course, is the function aSsociated with the

(‘11) < w.

accessibility of the quasi-norm.
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For ¢ E K(2,¢0 we now let AcP denote the product probability

on L such that the ith coordinate is Gaussian with mean zero and

variance Ai > 0, and A E.é: is chosen so that it is sufficient for

the probability measure u on E.

3.3.11 LE'VY CONTINUITY THEOREM [14]. Let ink} be a sequence

of probability measures on E with Fourier transforms {xk]. Then

Yuk} converges weakly to a measure p with Fourier transform x iff

{”k} is a A-family for some A E L: which is also sufficient for u,

{Xk} converges to x on a subset of E' which is dense in E' with

reSpect to weak-star sequential convergence, and {RR} converges in

AT measure to i,

To show these results apply to Lm when m E K(2,m) we need

only Show H-“w is accessible since we already know .LQp is an F-Space

with a basis (T satisfies Az-condition).

Let q(s) = mQ/S). Then by proposition 2.2.19 we know a is

a convex function on [0,m) such that q(O) = 0 and q(s) > 0 for

s > O. For K a compact subset of L , theorem 3.2.13 implies

T

__ Q co 2 .

jug}: pep”) < co and pch’) - Ei=1<P(Y1) = 2i=1a(yi), thus the first

conditions for accessibility is met. There remains only to be

exhibited for r > 0 a constant M and continuous function y(°)

such that y(0) = 0 such that A(y) < r implies A(y) S.My(“yflq).

Since a is convex so is T (composition of convex functions)

and then using the Az-condition we note m(Ax) S AqKX) for 0 < A S l

2n-l

and (p(Ax) S hnq;(x) for < A S 2“, n = 1,2,... . Now define

h), OsAsl

Y0.) =
l (hn+l - hn)A + 2hn _ hn+1 2n-l g A n
 

I
A

N :
1 ll

H '
N

2n-l
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Then clearly y is a continuous piece-wise linear function and

«((0) = 0. Recall that since (p is convex “y‘lcp = inf{¢ > 0 :

p<p(y/e) S 1]. Take y €ch and choose the smallest n Such that

Eychp/z“ s 1.

()- (“u _1_)_ (M15220 .21..)

pay pep Y‘s Hyl-lq, pw 2“ HYHQP

s (2“ -1—) s h“ (-Y——) s hIn

9%) llY‘lq, pa “3'“,

-1

But 2n S HyHCp S 2n, so y(lly‘lcp) 2 11“. Therefore pcp(y) = A(y) S

l .
MOLD)

Thus the results of [14] apply to Orlicz sequence Spaces when

(p 6 1((2 ,co) .



CHAPTER IV

GAUSSIAN MEASURES ON ORLICZ

SEQUENCE SPACES

§4.l INTRODUCTION AND PRELIMINARIES

In this chapter the problem of characterizing the Fourier

transforms of Gaussian measures on Orlicz sequence spaces is con-

sidered with the main theorem being for the case m E K(2,0) and

*
1
“
‘
{

«
r
h
-
A
_
m
(
f
i
n
—
'
3
'
.
“

convex. This extends the results of ([28], p. 1561) in which

Gaussian measures on the classical Lp Spaces (1 S p < «0 are

treated. In the last section our reSult is used to derive a central

limit theorem for these Spaces.

What follows are some known results and notation that we use

in this chapter.

4.1.1 DEFINITION. A probability measure p on a topological

vector space E is said to be Gaussian with mean a GEE if the dis-

tribution of <-,y> is Gaussian with mean <a,y> for each linear

functional y E_E' (the topological dual of E).

If L (the Space of all real sequences x = {xn}) is given

the Tychonoff topology, then it becomes a separable reflexive Fréchet

([24], p. 8) Space. Let Lo denote the linear subSpace of L which

consistscu those elements of L containing only a finite number of

nonzero coordinates. Then the topological dual of L is L , i.e.
0

1 =10.

37
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4.1.2 PROPOSITION. ‘Let T be an Orlicz function, then LT

is a Borel subset of L.

PRQQE, The coordinate functionals defined on L are Borel

measurable maps (i.e. Bj : L a E’ defined by Bj(x) = xj for all

x 6 L is a Borel measurable map for all j). Since m is a con-

tinuous function, m o Bj is Borel measurable for all j; thus,

i§=1T o Sj defines a Borel measurable map on L for all N. That

Lm is a Borel subset of I now follows from these remarks and that
J

to co m

L - U 1 flm=1[x €‘L . Ej=1¢(8T n= (x)) S n} .

J

The above proposition implies that the Borel subsets of Lm

are Borel subsets of L; hence, a measure a defined on the Borel

subsets of LT) can be considered as a Borel measure on L.

4.1.3 DEFINITION. A matrix S = (31 ) is said to be positive

J

definite if eSe' 2 0 for all e E.L (e' denotes transpose of the

vector e).

If S = (Sij) is a symmetric positive definite matrix then

(4.1.4) sij S/sii jsjj for all 1 and J

This is easy to see by considering in definition 4.1.3, the vector e

having - /§;;- in the ith coordinate, ngzf in the jth coordinate and

zero's elsewhere.

The next proposition is well known and can be found in [28].

4.1.5 PROPOSITION. If u is a Gaussian measure on L then
 

the Fourier transform of u is given by

(4.1.6) x(f) = expii <f,m2 - 1/2 <Sf,f>] f 6 {,0 9
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where <f,m> = 2:31:39“, 111 = {on} e L and <Sf,f> = gikflsjkfjfk

with the matrix (sjk) being symmetric and positive definite. Con-

versely, all functionals of the form 4.1.6 defined on L0 are the

Fourier transforms of Gaussian measures on L.

A relation between moments of a Gaussian random variable and

its standard deviation is given by the next proposition [27]; the proof

of which is straightforward and can be found through a change of vari-

ables and the definition of the gamma function, F.

4.1.7 PROPOSITION. Let X be a Guassian random variable with

, 2

mean zero and variance 0 . Then,

(4.1.8) E‘X‘P = c(p,2)(EX2)p/2
9

where c(p,2) = T(p +.1/2)/(2“)1/2.

We also have need for the following Special case of a result

of Fernique [5] pertaining to the integrability of Gaussian vectors.

4.1.9 PROPOSITION. If A is a Gaussian measure on an F-

space (E,u-“), then

[Ellxndmm ., .
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§4.2 REPRESENTATION 0F GAUSSIAN MEASURES ON ORLICZ SEQUENCE SPACES

In this section we will characterize Gaussian measures on Orlicz

sequence Spaces which are generated by a convex Orlicz function T

where T E K(2,0) by giving a representation for their characteristic

functionals.

For convex Orlicz functions m with a right derivative p(t)

that is strictly positive at the origin (p(O) > 0) prOposition 2.2.3

says that cm is isomorphic (as a topological vector Space) to L1.

Since the form of Fourier transforms of Gaussian measures on L1 are

well known (e.g. [28]), we assume that p(O) = 0.

4.2.1 THEOREM. Let T be a convex Orlicz function satisfying

the Az-condition for all x with mCx) = ng‘p(t)dt. Furthermore,

suppose that m E K(2,0) with p(O) - 0. Then u is a Gaussian

measure on 'Lm with mean a Epr iff the Fourier transform x of

p defined on L; has the form

(4.2.2) x(f) = exp{i <a,f> - 1/2 <Sf,f>] for all f E.Lé ,

where <Sf,f> = 2m _ 8. f.f with (s ) being a symmetric positive

definite matrix such that 2:;1qKSEk) < a. In addition, S can be taken

as (x-a)Bk(x-a)du(x) for j = 1,2,...; k = 1,2,...

81k 8 JP; 51

{5992, Let q) be a convex Orlicz function satisfying the

hypothesis of the theorem, and let V denote the Orlicz function

complementary to m (2.2.4).

Now suppose that u is a Gaussian measure on L¢"with mean

a E‘LT. The Bochner theorem 3.3.6 for .L¢ implies that the Fourier

transform x of u on L; is weakrstar sequentially continuous;

thus, )((f) = liniNx(PNf) for f ELc'p. Now Lc'pC L and PNf 6 L0
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for all N, so thinking of p, as a Gaussian measure on L and

applying proposition 4.1.5 we get the existence of a symmetric positive

definite matrix S = (sjk) with sjk 3 ILBj(X-a)6k(x-a)du(X) =

JflL Bj(X-a)_6k(x-a)dp,(x) for J = 1:23°°'; k = 1,2,...; and such that

. _ . . N
x(f) — lime(PNf) — limNexp{1 <a,PNf> - 1/2 2j,k=lsjkfjfk}

for f E Lc'p. Note that limN<a,PN f) = <a, f> for f EL' To

complete this part of the proof we need to Show linkifijp.kgls jkfj fk

exists for all f E Lc'p and that {313k} E LT. We do this by first

proving the following lemna.

4.2.3 LEMMA. With the notation as given above {SER} E LT.

PROOF. Since p. is Gaussian with mean vector a 6LT,

Bj(-) is Gaussian with mean <a,Bi>= 3j(a) for j = 1,2,... . By

proposition 4.1.7,

IL ‘Bj(x'a)‘d
u(x) = E\8j(X-a)-‘

= C(1,2)[E(B
j(x_a))2]%

’

(p

i.e.,

(4.2.4) = (l/c(l,2))IL \Bj(x-a)\du(x)

T

Proposition 2.2.8 implies that h] is isomorphic to ch, and so to

complete the proof of the lemma it will Suffice to Show

on k

stlskk

r > 0 such that p¢(ek(y)/r) S 1. Now using 4.2.4,

Bk”) < on for all y E hl‘. Take y E hi. Then there exists

\SNMss’éskkakom s <1/c(1 2)) hftsflek‘“ -a)HBk(y)|du(X)

Multiplying the right hand side by l and applying proposition 2.2.6,
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*2
zi=18kk8k(y) s <r/c<1.2)>p (y/nj, uxx-amwdm»

1 <9

but the right hand side is finite since p*(y/r) s l and proposition

4.1.9 yields I; “\x-a“\q§u(x) < m. Now define SN : hW » 5’ by

A: ‘P . .
SN(y) ‘£:=lskkek(y)' The above shows that the limit on N of SN(y)

exists for every y E hV, and applying the uniform boundness principle

[24], S(y) = limNSN(y) is a bounded linear functional on by. By the

earlier remark that h; can be identified with qu there must exist

a unique x E.L¢ such that S(y) = <y,x> - zk=16k(x)ak(y) for all

3.5; _&
*, but S(y) zk=lskkak(y) implies that x - {skk} and so

2:=1¢KSER) < m completing the proof of the lemma.

Y €.h

Upon proving the lemma we can finish the "if" portion of the

proof of the theorem by showing that limN£:,k=lsjkfjfk exists for all

f €.L$r Since (sjk) is a symmetric positive definite matrix, in-

eQuality 4.1.4 can be used to derive,

. 5
‘£:,k=lsjkfjfk\ s fi§,k=lsjk‘fj“fk‘ s (i:=ls?jlfj\)i:=lskk‘fkl .

Then by the above lemma {83k} €.L¢_ implying that we have a bound

independent of N by proposition 2.2.6(i) completing the proof.

Conversely suppose that g(f) = exp{i <a,f> - 1/2 <Sf,f>}

where (sjk) is a symmetric positive definite matrix such that

a: 5 _ co

zksquskk) < m and <Sf,f> - 2j,k=lsjkfj fk. Let {nN} denote the

sequence of Gaussian measures on Lq> with Fourier transform xN(f) =

xflBNf) for N = 1,2,... . Since for each N we are dealing with a

measure on a finite dimensional Space, the form of xN(f) implies that

”N is a Gaussian measure. Now to show that the sequence of measures

{“14} is conditional compact. Take 3,5 > O.
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L m

“NW 6% : p(pm > a} 5 1/5 IL¢21=L+1¢(°1‘”)““N‘”

= 1/5 filmlhjmdflwwm

Since (p G. K(2,0) proposition 2.2.19 implies that (p o / is con-

cave; thus,

. m 2

My e LC? = 9:)(3’) > a, s 1/5 Zi=L+1<p(ULCPBi(Y)du(Y)]%).

However,

s. for 1 s i s N

ii2

f, Bi(y)du(y) =

(p 0 for N<.i

and since {SER} €.L¢ 1we can choose L sufficiently large independent

of N so that pgqstkp < 6/3; therefore, p.“{y E ch : pL(y) > 6} < e

for N 8 1,2,... . From this fact and utilizing the techniques in the

proof of lemma 3.3.3,'we see that the sequence of measures {nu} is

conditionally compact and must converge weakly to some measure a on

.Lw. Since x(f) = limhxiPNf) for each f €.L$, x is the Fourier trans-

form of the measure p. We are done if u can be concluded to be

Gaussian. Choose y E (,4). Then the sequence of Gaussian random vari-

ables {<PN-,y>} converges to the random variable <-,y>; hence, the

random variable <-,y> must be Gaussian for each y 6 Lc'P. Therefore

u is a Gaussian measure on cw.

As a corollary to this theorem we get the result of MJ‘Nicolas

Vakhania [28] (see also [15]).

4.2.5 COROLLARY. x(f) == exp{i <a,f> - 1/2 <Sf,f>} for

f 6 LI; is the Fourier transform of a Gaussian measure p on LP
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with mean a Ein (l'< p s 2) iff (sjk) is a symmetric positive

on p/Zm

= f odefinite matrix SUCh that <Sf,f> zj,k=lsjkfj k and Ek=lskk < a:
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§4.3 A CENTRAL LIMIT THEOREM.FOR QELTCZ SEQUENCE SPACES

We now study a central limit theorem for sequences of independent

identically distributed random variables (vectors) taking values in an

Orlicz sequence Space Lw.

4.3.1 THEOREM. Suppose that m is a convex Orlicz function

satisfying the AZ-condition for all x with m G K(2,0). Let

21,22.... be independent identically distributed random vectors with

values in Lq> and having zero expected values. Let “N denote the

’5
measure induced on ch by YN 8 N- (21 +...+ ZN) and LL denote a

measure equivalent to “I. Then if

(a 3 2) ° (p([j' ' 82( )d (u) A5) a.. . Zk=1 LC? k y P 1 <

and if <Sf,f> a zj,k!lsjkfjfk (f €.L¢) is a norm continuous function

on it? where sjk'jt Bj(y)5k(y)dp,(y) (for all j and k), then

{nu} converges weakly to the Gaussian measure v on L“, with Fourier

transform x(f) - exp{-l/2 <Sf,f>} for all f €.L'.

v

4.3.3 REMARK. Noting that S I (s is a symmetric positive

jk’

definite matrix and that {BER} E.L¢,*we have the hypothesis of theorem

4.2.1 satisfied; thus, we conclude that X is the Fourier transform

of a Gaussian measure on L . Now we prove the theorem.

M. For f 61,4) define

Nu?) = E{exp{i<Y ,f>}} = japexwi <y.f>}duN(y)

and

x(f) = E{exp{i<Zl,f>}} = IL exp{i <y,f>}dn(y) .

m

Then for all f 6 Lc'p’ xN(f) = [x(f/,/N)]N. Using the series expansion
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for the exponential function we write,

X(f//N) =41, [1 4‘ i<Y.f//N> - 1/2 <y,f/,/N>2

¢

+’0(1/N)]du(y).

but 21 having zero mean implies

x<f//N) = 1 - may, <y.f//N>zdu-(Y) + cum)

W

II

H

I (l/2N)}:j ,k=lsjkfjfk + o(l/N);

thus,

limN xN(f) limNExm/NHN

exp{-1/2 <sr,£>} = x(f)-

Hence x must be a positive definite function on .Lé with x(0) = 1.

Now we show that the sequence of measures (”N3 is conditionally com-

pact and must converge weakly to a measure v.

Take e,6 > 0. Since m €‘K(2,0), by proposition 2.2.19

(p o f is concave, implying,

, L m

My 6 cc? . p (y) > a} s (umzflflj‘cpcpmjo)mum

52
jj).s (1/5)2:éb+1¢(s

2 2

Since IL¢BJ(Y)d“N(Y) - I, Bj(y)du-(y) for j - 1.2.--.. and by

assumption 4.3.2 as in the proof of theorem 4.2.1, we conclude that

the sequence of measures {“N} is conditionally compact. Therefore

{nu} converges weakly to a measure v on qu and since limth(f) =

'x(f) for all f E Lé, the Fourier transform of v is x. Then by
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theorem 4.2.1 (remark 4.3.3) v is a Gaussian measure on L . Thus

we know u“ a v, and v is the Gaussian measure with the required

Fourier transform.
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§4 .4 CONCLUDING REMARKS

The question of the realization of Orlicz function spaces can

be discussed following these definitions taken from [3] and [26].

Let E denote a topological vector space of Borel measurable functions

defined on the interval [0,1].

4.4.1 DEFINITION. A random linear form (r.l.f.) X, defined

on E is a linear mapping of E into a space of measurable functions

”((0 ’4’?) '

4.4.2 DEFINITION. A r.l.f. X defined on E is said to have
 

independent increments if for all finite collections of elements

{f1,. . "fn} C; E having disjoint support, the random variables

X(f1),...,X(fn) are independent; furthermore, fn -+ O a.e. implies

X(fn) —~ 0 in probability.

4.4.3 DEFINITION. A r.l.f. X defined on E is said to be

homogeneous if for congruent Borel subsets E1,E2 of [0,1],

manly) - £(X([Ez]))-

4.4.4 DEFINITION. A r.l.f. X defined on E is said to be

symmetric if the random variable X(f) is synmetric about zero for

all f GE.

A t.v.s. E is said to be realizable as a Space of random variables

if there exists a probability space (0,4,?) and a linear homeomorphism

T mapping E into Wt(fl,d,P) such that the map T when considered as

a r.l.f., is symmetric, homogeneous with independent increments.

The problem as formulated above is considered by Urbanik and

Woyczynski [26], and Bretagnolle and Dacunha-Castelle [3] when the

topological vector Space E is an Orlicz function space L¢[0,l]. Their

results can be used to show that as in the sequence space case (p G K(2,0)
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is necessary and sufficient for the function Space LCP to be

realizable.

The following problems are presently under study: 1) Harmonic

analysis on realizable Orlicz function spaces. 2) The domain of attrac-

tion problem for Gaussian measures on realizable Orlicz sequence spaces.

3) Representation of Fourier transforms of infinitely divisible dis-

tributions on realizable Orlicz sequence Spaces. The results of this

study will be presented elsewhere.
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