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ABSTRACT

THE REALIZATION OF ORLICZ SEQUENCE
SPACES AND HARMONIC ANALYSIS

By

James Milford Boyett

In this thesis we consider the inter-relation between the
realization problem of L. Schwartz and harmonic analysis for Orlicz
sequence spaces. A solution to the realization problem generalizing
the work of Mustari on Lp-spaces is presented in Chapter II. Harmonic
analysis for such Orlicz sequence Spaées is then carried out in
Chapter ITI. The latter work generalizes some work of Kuelbs and
Mandrekar. Finally, in Chapter IV an explicit form of the Fourier
transform for Gaussian measures on an interesting subclass of these
Orlicz sequence spaces is obtained and is exploited to study a Central
Limit Theorem for this class. The results of the final chapter in-

clude and extend some work of M.N. Vakhania.
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CHAPTER 1

INTRODUCTION

We consider in this thesis two related problems. The first is
the problem due to L. Schwartz of realizations for Orlicz sequence spaces,
which in the case of classical Lp-spaces was first studied by Mustari
[22]. In a subsequent paper [23], Mustari also studied the question
for separable Banach spaces and obtained necessary conditions for
realization. His work does not provide sufficient conditions in the case
of separable Banach spaces, nor does it apply if the space is an Lp-
space (0<p<g ).

Once the realization problem is settled we show that it pro-
vides the extension of methods in [13] to the Orlicz sequence spaces.

The Bochner theorem and Lévy continuity theorem proved in [13] can then
be generalized rather simply to the case of realizable Orlicz sequence
spaces. In essence, we essentially give our proofs as to adapt methods
in [13]. Recently, using different methods other than those in [13],

J. Kuelbs [12] has studied the generalization of the results of [137.

We note that although his method is general, it is also more complicated
than the method of [13], and in case of Orlicz sequence spaces, which is
his main application, his results are included in ours. As a matter of
fact our realization result shows that the most general Orlicz sequencé
spaces for which methods in [12] are applicable are precisely the ones

studied in this thesis. Our results bring out both the potential as



as well as the limitations of the methods in [13] while providing very
simple proofs of the extensions of the work in [13].

As an application of methods involved in the Lévy Continuity
Theorem we establish a form of the central limit theorem for realizable
Orlicz sequence spaces generated by a convex function. This is done
in the last chapter after obtaining the form of the Fourier transform
of Gaussian random variables (vectors) taking values in these spaces.
This last result generalizes some of the work of M.N. Vakhania [28].

Chapter II begins with some basic properties of Orlicz functions
and spaces and other well-known results that are used throughout this
thesis. Our main result -- the realization theorem -- is given in
section 2.3 and from it we obtain, as a corollary, Mustari's results
of [22]. Using this theorem we also obtain a partial solution to a
problem formulated by Lindenstrauss and Tzafriri [18].

In chapter II1 we give a Lévy continuity theorem and a Bochner
theorem for realizable Orlicz sequence spaces and show that these

theorems for certain Orlicz sequence spaces considered in [11] are con-

tained in [14].



CHAPTER II

REALIZATIONS

§2.1 INTRODUCTION

Let @ be a g-algebra of subsets of a set (1, and let P
be a complete probability measure on (1,4). We shall denote by
m@®Q,d,p) the vector space of real valued ¢7-measurable functions where

equality of functions is understood to be almost everywhere (a.e.).

On 7M(N,d,P) we define the distance d(f,g) = J‘Q {%Qifzﬁ((f)é(w)\ ap (w) -
Then 7N(Q,4,P) with the topology induced by this distance (topology
of convergence in probability) is a topological vector space (t.v.s.).
We shall consider structural conditions on a t.v.s. E 1in order that
there should exist a probability space (Q1,4,P) and a vector space
isomorphism T mapping E into 7Q,4,P) (T : E -(Q,4,P)) such
that both T and '1‘-1 are continuous. Topological vector spaces E
for which this happens are said to be realizable with the linear
homeomorphism T being called the realization. We consider a special
case of this problem when E 18 a real F-space of real sequences with
a Schauder basis, and the realization T 1is assumed to satisfy addi-
tional conditions (cf. §2.3).

Such realizations have proved useful in the study of harmonic
analysis on certain vector spaces (e.g. [13] and [11]). 1In particular,
realizations for E = "p and E = Lp[O,l] (0 < p £2) with the usual

topologies have been established in [137 and [25]. D.H. Mushtari [22]



examined this problem for the sequence spaces Lp and showed that only
in the case 0 < p s 2 does such a linear homeomorphism exist.
In this chapter we examine the problem for the Orlicz spaces

of sequences. We obtain necessary and sufficient conditions on the

associated Orlicz function in order that a realization exists. This is
achieved through careful analysis of the works of [3] and [26] where
the sufficiency of these conditions in the context of function spaces
was studied. After giving necessary notation and terminology in the

next section, we present our main result in the last section.



§2.2 BASIC FACTS AND PROPERTIES OF ORLICZ SPACES

2.2.1 DEFINITION. An Orlicz function ¢ is a continuous, even,
non-negative function non-decreasing for positive x such that ¢(0) =0,
p(x) >0 for x # 0.

For a sequence of real scalars a = {an} we write p¢(a) =
g:_lqKan) and let L¢ = {a = {an} 3\ G.&? = [0,0) 3 p¢(k-la) < @}.

We also write p(a) when no misunderstanding is likely from the omission
of the subscript. If for a sequence ak = {a:} c "cp and a = {an} e"cp
p(a - ﬂk) = E:_1¢(8“ - a:) converges to zero as k tends to infinity,
then we say "{ak} converges in the mean to a". If ¢ 1is a convex
Orlicz function, then L¢ with the norm “a“(p = inf{)\ >0 : p(x-la) <1}
(Luxemburg norm) is a Banach space. In the Banach space (L¢’ “.“q)
convergence to zero in the norm is equivalent to convergence to zero in
the mean. The space L(P with the norm ““cp is called an Orlicz
sequence space. For the most part properties relating to convex Orlicz
functions are taken from [10], [17] and [29].

2.2.2 EXAMPLES. 1) Let ¢(x) = |x|P (1 £ p < ). Then ty
is the classical Lp space with the usual topology. In fact the
Luxemburg norm is the Lp-norm. This example shows that in a very natural
way Orlicz sequence spaces are a generalization of the Lp-spaces.

2) Let o(x) = (1 + |x\)Ln(1 + |x|) - |x|. Then it is well known
([107, p. 20) that ¢ generates an Orlicz sequence space distinct from
any Lp space (1 < p < w).

Convex Orlicz functions have the representation ¢(x) = ng‘p(c)dt
([10], p. 5) where p(t), the right derivative of ¢, is a non-decreasing,
right -continuous, non-negative function defined for t 2 0. The follow-

ing proposition shows that all convex Orlicz functions with p(0) >0

generate the same Orlicz sequence space.



2.2.3 PROPOSITION ([17], p. 127). Let ¢ be a convex Orlicz
function with ¢(x) = .f(\’x‘p(t)dt. Then p(0) >0 if and only if (iff)
ch is isomorphic to {,1.

As our problem has been studied for the above case, we consider
Orlicz functions which include convex functions with p(0) = 0. The
function g(s) = sup t 1is then a right-continuous, non-decreasing
function defined gt(ltl)::: non-negative reals such that q(0) = 0 and
q(s) >0 for s > 0. The function ¥(x) = J‘Ax‘q(s)ds is a convex
Orlicz function, and following [10] we call it the complementary func-
tion of ¢. It is easy to see that the relation of being complementary
is symmetric.

2.2.4 REMARK. If o(x) = |x|P (1 <p< =), then y(x) = |x|9
where 1/p + 1/q = 1. The terminology "complementary functions'
originated with this example. It should be noted that in many cases
it is impossible to f;nd an explicit formula for the complementary func-
tion, i.e., g(x) = e -1 ([10], p. 14).

We can now define a sequence space i‘P as the space of all real
sequences a = {an} such that \Ha“\q) = . 2:;51 T anbn < o, Z(p with
this norm is a Banach space and is related'to {'cp as follows.

2.2.5 PROPOSITION. Let ¢ be a convex Orlicz function such
that p(0) = 0. Then a € ch iff a e"(p and “a“cp < “\amq’ < 2“a“q)
(i.e., (,ch,“-“q,) and (L(P»“\“\q) are isomorphic as Banach spaces).

As stated in remark 2.2.4, for o(x) = |x|P (p> 1), y(x) =
\x\q where 1/p + 1/q = 1. The following proposition is an analogue
of the classical result on inequalities involving complementary functioms.

2.2.6 PROPOSITION. Suppose that ¢ 1is a convex Orlicz func-

tion with the complementary Orlicz function y. Then,



1) For all x,y 2 0, xy £ g(x) + y(y) (Young's inequality)

ii) For all x GL‘ZP'
Ex, = llxll p, 1€ o 0 <1

For a convex Orlicz function ¢ we can define another vector
space of real sequences by h(p = {a = {an} :VaA>0, p(x-la) < »},
and since hcp is a subset of ch we can consider it with the norm
n“cp This new space hcp with norm ““(P has played a significant
role in the study of the topological duals of Orlicz sequence spaces,
and was introduced by Gribanov [7] who established the following result.

2.2.7 PROPOSITION. Let ¢ be a convex Orlicz function. Then
h(P is a closed subspace of ‘(’cp‘

The dual space of a t.v.s8. E 1is the vector space E' whose
elements are the continuous linear functionals on E. E' will always
be considered as having the weak-star topology ([24], p. 66). That is
the topology induced by pointwise convergence. For y €E' and x €E
we denote as (x,y) (<x,y>) the evaluation of y at x (i.e., y(x) = (x,y)).

2.2.8 PROPOSITION. If ¢ 1s a convex Orlicz function having
complementary Orlicz function y, then h" is isomorphic to Lq’.

Given a convex Orlicz function the sequence space L‘P is linear.
In general, however, the space Ltp assoclated with an Orlicz function
¢ need not be linear. An important class of Orlicz functions for which
L‘P is a vector space are those which satisfy the so called Az-condition
in a neighborhood of the origin. In addition the Az-condition ensures
us that the unit vectors (ek = (0,...,0,1,0,...), 1 in kth coordinate)

form a Schauder basis for the space ([177, [18)]).



2.2.9 DEFINITION. An Orlicz function ¢ 1is said to satisfy
the Az-condition for small x if there exists X, >0, h>0 such

that

@(2x) < hep(x) for 0 € x < Xy

Since ¢ is assumed to be non-decreasing it is obvious that

h 2 1; furthermore, for every ) > 0 there exists h()) > 1 such that

(M) € h(MDe(x) for 0% x < x,

(cf. section 3.3).
2.2.10 PROPOSITION. Let ¢ be a convex Orlicz function with
p(0) = 0. Then the following are equivalent:
1) ¢ satisfies the 4,-condition for small x.
ii) 4 =h
N4 @
iii) L(P is separable.
2.2.11 EXAMPLES. 1) o(x) = e‘x\ - |x| - 1 1is an example of
a convex Orlicz function which does not satisfy the Az-condition.
Incidently, the complementary function to ¢ does satisfy the Az-con-
dition ([10], p. 27). 2) o(x) = \x\p (0 < p< 1) 1is an example of
a non-convex Orlicz function which satisfies the Az-condition for all x.
For the Orlicz functions satisfying the Az-condition, the associated
space Ltp need not be a Banach space. For example, consider the case
p(x) = \x\P (0 < p<1l). However it is a t.v.s. as the following
proposition [21] shows.
2.2.12 PROPOSITION., Let ¢ be an Orlicz function satisfying
the A,-condition for small x. Then L‘P with the quasi-norm “a“cp =

inf{\ >0 : p(),-la) £ )\]}] 1s an F-space in which convergence to zero



in this quasi-norm is equivalent to convergence to zero in the mean.

When the Orlicz function ¢ satisfies the Az-condition for
small x, ch with the quasi-norm given above will also be called an
Orlicz sequence space.

EXAMPLE: Let o(x) = |x|P (0 < p< 1). Then (ch’“.“cp) is
the classical Lp-space with the usual topology. Note however that
““‘q: ¥ N‘\\p (“a\\p = 2:=1\an‘p : the usual quasi-norm on Lp) .

Since we are interested in the Orlicz sequence spaces as
topological vector spaces, we need to know when if ever, distinct Orlicz
functions generate the same topological vector space of sequences.

This depends on the behavior of the function in a neighborhood of the
origin as the next definition and subsequence proposition show.

2.2.13 DEFINITION. Two Orlicz functions ¢ and y§ are said
to be equivalent for small x (for large x) denoted ¢ 2 ] (cpé ¥)
if there exist an xq > 0 and strictly positive constants b1’b2’k1’k2

such that

blq)(klx) < y(x) < bch(kzx) for 0 <x < X, (for x 2 xo).

If o 1 ¥ and X0 in the definition can be taken to be zero, then we
say ¢ 1is equivalent to § for all x and write ¢ 2 v

It is easily seen that these are equivalence relations on the
collection of Orlicz functions. These relations are simpler for Orlic:z
functions satisfying the Az-condition: ) 2 vV (9 t ¥) 1if there exist

k]_,k2 strictly positive constants and x., > 0 such that k1<p(x) <

0

y(x) € kch(x) for 0 < x £ x The next proposition is

0 0)'
basic to the theory of Orlicz spaces and is taken from [21].

(x 2 x
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2.2.14 PROPOSITION. Let ¢ and y be Orlicz functions. Then,

D Ly =t, iff Q=¥

i1) 1If cpg ¥y, then pq)(ak) -0 as k- {ff pv(ak) -0 as

k - o.
iii) If ¢ satisfies the Az-condition for small x and q;i R
then y satisfies the Az-condition for small x.

2.2.15 REMARK. As an example of the above, observe that, in
view of propositions 2.2.12 and 2.2.14, if ¢ and y are two Orlicz
functions such that ¢ ~y and ¢ satisfies the A,-condition for small
x, then LQP and L* are isomorphic as topological vector spaces. Since
the topology and vector space structure of an Orlicz sequence space is
dependent only on the behavior of the Orlicz function in a neighborhood
of the origin, any given Orlicz function satisfying the Az-condition
for small x can be replaced by an equivalent Orlicz function satisfying
the A,-condition for all x ({103, p. 24). Similarly, an Orlicz func-
tion which satisfies the Az-condition for small x can be replaced by
an equivalent Orlicz function which is strictly increasing ([21], p. 104).
In particular Orlicz functions in chapter III will be assumed to be
strictly increasing as well as satisfying the Az-condition for all x.

Two real valued functions f and g are said to be
asymptotically equivalent at x = 0 if 1lim f(x)/g(x) = c > 0, denoted by
f ~g as x - 0. It is easy to see thatx;gr two Orlicz functions ¢
and §, o~ ¢ a8 x - 0 1is sufficient for ¢ = ¥, but the converse
is not true.

Facts concerning Orlicz function spaces are very similar to the

above for Orlicz sequence spaces. Aside from obvious differences some

distinction is made necessary because Orlicz function spaces over an
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interval of finite measure are determined by the behavior of the Orlicz
function in a neighborhood of infinity and not the origin. We also need
to assume that an Orlicz function is increasing with 1lim @(x) = .

For M =m((0,1], 8{0,1], Lebesgue measure) le:”pw(f) =
J";cp(f(x))dx where dx indicates the integration with respect to
Lebesgue measure on [0,1]. We let ch ={fem:3\¢€ R+ 3 pcp(),-lf) < o}.
Analogous to the situation existing in the sequence space case a further
assumption is needed to ensure that Ltp will be a linear space.

2.2.16 DEFINITION. An Orlicz function ¢ 1is said to satisfy

the Az-condition for large x with 4,-constant h 2 0 if there exists

an xg, > 0 such that

9(2x) € heo(x) for x 2 Xy *

Suppose that ¢ 1is an Orlicz function satisfying the Az-con-
dition for large x. Then L(P with the usual vector addition and
multiplication by a scalar is a linear space and becomes an F-space
under the quasi-norm “f“(P = inf{)\ >0 : p(),-lf) <) ch with this
quasi-norm will be called an Orlicz function space. A sequence
{fk} c qu is said to "converge to zero in the mean" if 11:.: pcp(fk) = 0.
It is well known ([10], p. 76) that convergence in the quasi-norm
““cp is equivalent to convergence in the mean.

Since our study deals with realizations of Orlicz function
spaces as t.v. spaces we need to know when distinct Orlicz functioms
generate the same function spaces.

2.2.17 PROPOSITION. Let ¢ and y be Orlicz functions.
Then,

1
i =L iff ¢=
) Lo =Ly Py
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1) If ¢ %y, then po(f) =0 a8 ke LFf p (£) =0
as k - o,
iii) If ¢ satisfies the Az-condition for large x and
P L ¥, then y satisfies the Az-condition for large x.

Two real valued functions f and g are said to be
asymptotically equivalent at infinity if 1lim f(x)/g(x) = c >0 de-
noted f ~g as x - ». Then for two 0r¥I:z functions ¢ and 1y,
@~y as x - o implies ¢ ¢ ¥, but the converse need not be true.

The study of Orlicz spaces seems to naturally divide into two
classes depending on how the rate of growth of the associated Orlicz
function compares to the function f£f(x) = xz, and with this motivation
we make the following definition.

2.2.18 DEFINITION. Let K(2,0) (K(2,»)) be the collection
of Orlicz functions ¢ such that there exists Orlicz function ¥ with
P 2 ¥y and t(x)/x2 is a non-increasing (non-decreasing) function of x.

The usefulness of this definition evolves from the next proposi-
tion which can be found in [20].

2.2.19 PROPOSITION. Let ¢ be an Orlicz function such that
¢ €K(2,0) (9 € K(2,0)). Then there exists Orlicz function ¥ such
that ¢ 2 ¥ and y(/x) is a concave (convex) function of x.

2.2.20 REMARK. Due to this proposition and the fact that equi-
valent Orlicz functions generate the same Orlicz spaces, when ¢ € K(2,0)
(p € K(2,0)) we will assume without any loss of generality that P o/
is a concave (convex) function.

We conclude this section by giving notation and well known de-

finitions that will be used throughout this thesis.



13

For two real valued functions f and g we will write

f(x) A g(x) for min{f(x),g(x)} and f(x) V g(x) for max{f(x),g(x)}.
x x
The indicator function of a set A will be denoted by ([A],

i.e. [A] = [A(w ={1 1f wea
0 if w £A

If X is a symmetric (about zero) infinitely divisible random
variable, then the characteristic function of X is given by
xx(t) = exp{-oztzlz - j’:(l - cos ut)dM(u)} where o220 and M is a
Lévy measure on R+. That is, M is a measure on ,€+ such that
j: dM(u) < » and j; usz(u) < ®. A complete discussion of this
representation for infinitely divisible distributions appears in ([6],

p.- 70).
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§2.3 REALIZATIONS OF ORLICZ SEQUENCE SPACES

Let E be a vector space on which an invariant metric d is
defined. Furthermore, suppose that the vector space operations are
continuous with respect to the topology on E induced by d, and that
the metric space (E,d) 1is complete. On E define the quasi-norm
il by ||x|| = d(x,0). Then (E,||‘||) 1is an F-space ([24], p. 8).

Now suppose that (E,||:||) is a real F-space of sequences of real
numbers with a Schauder basis {ek}. We say that the sequence space
(E,||||) is realizable if there exist a probability space (Q,d,P)
and a linear homeomorphism T : E - M(Q,4,P) such that the random
variables in T(E) are symmetric about the origin and {T(ek)} is
a sequence of independent identically distributed (iid) random vari-
ables. @(Q,d,P) 1s assumed to have the topology of convergence in
probability.)

In order to study the realizations of sequence spaces a dif-
ferent type of space is needed. Suppose that X 18 a random variable
symmetric about the origin, and let {xn} be a sequence of independent
random variables distributed as X. Define by {x the space of all
real sequences such that {zi;l anxn] is Cauchy in probability. We
say that the space {x is generated by the random variable X. Note
that since we are dealing with independent random variables,

Lx = {[an] : 2:81 anxn converges a.s.}.

Our main effort is to es.ablish that ¢ € K(2,0) is necessary
and sufficient for the sequence space L¢ (section 2.2) to be
realizable. In particular we exhibit a symmetric random variable X

such that { = 4_.
P X
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The key to the development is the following lemma which can
be found in [37] and [26].

2.3.1 LEMMA. Suppose that ¢ is an Orlicz function satisfy-
ing the AZ -condition for small x and ¢ € K(2,0). Then there exists

0 20 and a Lévy measure M such that
2 2 2
o) Lo x + [otxiu’ A 1)dM(u)

2.3.2 EXAMPLE. 1) If @(x) = |x|P (0<p<2) then 0=0
and dM(u) = u 17Pay. 2) If (x) -xz, then g=1 and M is the
zero measure on £+.

The next theorem characterizes those Orlicz sequence spaces which
can be generated by a symmetric random variable. In fact it shows that
the space Lx for X a symmetric random variable is always an Orlicz
sequence space.

2.3.3 THEOREM. If X 1is a random variable symmetric about
zero, then there exists an Orlicz function ¢ such that “X - L(p and
¢ € K(2,0). Conversely, if ¢ 1is an Orlicz function from the class
K(2,0), then there exists a random variable symmetric about zero such
that {,(p = "x

The equalities that appear above are equalities between vector
spaces. In fact the mapping I(x) = x 1is a vector space isomorphism.

PROOF. First suppose that X is a random variable symmetric
about zero and consider E = Lx Then [an} €E 1ff 2‘:_1 anxn con-
verges a.s. The Kolmogorov three series theorem ([19], p. 237) implies
the existence of A > 0 such that

i) £, P{laXx|>a)<e

i1) z:_l E(a X [|a X | sA]) <=
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-~}
iii) zn=1 Var(anxn[\anxn[ €£A) <> .
Since the random variables {Xn} are symmetric, the series ii) is zero.
Notice that using the symmetry of X i) and 1ii) can be written
as

Alla | 5

* 2 "'x dF(x) < @

dF(x) < =, and zzn-l a o

2 it a |

where F(x) is the cumulative distribution function of X. Now define
the function 9 by qA(k) = Jg(xzxz A AZ)dF(x). Then the above can
be stated as f{a_ } €E iff I , q,(a) <.

Clearly we can see the function 9, is an even function of )\
non-decreasing for )\ =2 0 with qA(O) =0 and q()\) >0 for )\ ¥ 0,
and the Lebesgue dominated convergence theorem shows that q A is con-
tinuous. Hence 9, is an Orlicz function and since for x 2 0,

(4).2::2 A Az) < 4(),2x2 A Az) for all )\ >0, 9, also satisfies the
Az-condi.tion for all ) > 0. Now let q()\) = ql().) and observe that
qA“‘) = Azq(x/A); thus, 9, 2 q and we conclude that {an} €EE 1iff
2:.14(8n) < ®, by proposition 2.2.14.

The above shows that E = Lq and so there remains only to
show that q € K(2,0), but this follows from q(),)/k2 = I';(xz A 1/),2)dF(x).

Conversely suppose that ¢ 1is an Orlicz function satisfying
the Az-condit:ion for small x and ¢ € K(2,0). Then we exhibit a
symmetric random variable X so that L(p = Lx Lemma 2.3.1 implies
there exist o 2 0 and a Lévy measure M such that o(x) 2 ozxz +
r :(xzuz A 1)dM(u) .

To simplify the details we consider three cases; the first case

is to assume that the Lévy measure M 1is identically zero. Then

L‘P =1, and Chebyshev's inequality implies that if {an} €4, then
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{an} € LX where x1 is a Gaussian distributed random variable with
1
mean zero and variance 1. Using ([2], proposition 8.37, p. 177) it is
easy to see that {an] € Lxl implies {an} € LZ ; thus, we have
o X
For the second case we will assume that ¢ = 0. Let XM be a
random variable with the characteristic function, xxM(t) =
expf—I:(l - cos xt)dM(x)} and so XM is a symmetric infinitely
. . . (-]
divisible random variable. Recall that LXM {{an} - zn=1 anxn con-
verges a.s.} where {Xn] is a sequence of iid random variables dis-
tributed as XM. ZWe show that Lw = LXM. Suppose that {an} € L¢.
© 2 )
d
Then 2n=1 j;(anu A 1)dM(u) < =, and in particular zh=1 IT/\an\ M(u)

hence

(2.3.4) 2:31 fil\an\(l - cos u a_t)dM(u) < = for all .

2
It can be easily shown that (1 - cos x/2) ~ x /2 as x - 0 and so

there exists ¢ > 0 such that for \x\ < e, (1 -cos x) € x2/2. Thus,

for 0 s u < 1/\an\, |t| < ¢ we note

1/a_| 1/)a_| t%a2u?

0 (1 - cos a u t)dM(u) < IO n B — M(du)

2 1/)a |
€ n 22
<3 Io a_u“M(du)
o lagl 22

and because zn-l Jo au F(du) < ® we must have for \t\ < e,
- 1/\an\ -
zn=1 jo (1 - cos a u t)dM(u) < ». Together with (2.3.4) this

implies that

0 - -]
zn=1 IO(I - cos au t)dM(u) € » for \tl < ¢ .
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Hence ([2], theorem 8.38, p. 177) implies that 2:=1 anxn converges

a.s. That is { C .
P {‘XM

(-]
Now suppose {an} E{XM. Then L -1 aan converges a.s. and

(-] .

zn-k anxn -+ 0 in probability as k - ». Since ¥ - (t) =
v _,aX
n=k n n

o oo @
exP{'r‘n=k JO(I - cos u ant)dM(u)}, we note £n=k '[';(1 - cos u ant)dM(u) -0
uniformly on compact subsets of R as n - ». In particular this

implies um j‘o =k

o(1 - cos u ant)dM(u)dt = 0. Using Tonelli's

theorem and integrating out the variable t we get

sin a u
lim ¢ T“”(1 - ——“)dM(u) = 0, but since there exists a constant
=k
Koo t‘n k Y40 anu
c > 0 such that 1-§—1::—’£zc(1/\x2) for all x >0,

i}: r.:_k j:(a:uz A 1)dM(u) = 0. Thus, z:gl ‘r;(aiuz A 1)dM(u) < o
implying that {an] GL(P. This concludes the proof of this case since
fan] was an arbitrary vector from {,xM

For the final case, suppose that ¢ >0 and M is not the
zero measure on ﬁ+. Then let ¢1(x) = J":(xzuz A 1)dM(u) where
(p(x) ~ 0 x + J‘w 2u2 A 1)dM(u). Observe that ¢ € K(2,0) implies
that cpl € K(2,0) and furthermore that L(pc {,2. Thus, ch = ch and

1 1

the question reduces to the second case.

As a corollary to the above proof we have the following.

2.3.5 COROLLARY. Suppose that ¢ is an Orlicz function
satisfying the Az-condition for small x and ¢ € K(2,0). Then
2 = l,x where the random variable X is as given in the above theorem

P
k k
for cach case, and for {a } L(P, a -0 as k-o in ¢ iff

¢

[znsl k’( } -0 as k - » in probability.

PROOF. For \t\ < ¢ with ¢ as chosen in the above proof,
© k .
Englcp(ab 2z -log Xz‘” alS( (t); hence, if a - 0 in ch as

ﬁ‘?‘“h’_‘.ﬂ.":
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as k - o then zn-l alS( - 0 in probability. Conversely, we saw

that if -log % (t) -0 as k - «» uniformly on compact sub-
a
zn=1 nn

sets of g, then c22:=1(a:)2 + Z'.:=1 I(l)((a:)ZUZ A 1)dM(u) - 0 as
k - »; therefore, ak -0 in 4 as k - =o.

Now we prove our main theorem.

2.3.6 THEOREM. Suppose that ¢ is an Orlicz function satisfy-
the Az-condition for small x. The orlicz sequence space { is
realizable as a space of random variables iff ¢ € K(2,0).

PROOF. If ¢ € K(2,0), then by theorem 2.3.3 there exists a
symmetric infinitely divisible random variable X such that ch = {,x
Let E-'{znl oXn {a}ELx} with {x} iid as X.

Then E with the topology of convergence in probability is a t.v.s.
Define T mapping ch into E (T : L‘P - E) by T({an}) = 2:=1 anxn.
This linear mapping is well-defined and injective since {an} € {'cp
iff {an} € {X’ and corollary 2.3.5 shows that T is bi-continuous.
Thus LQP has the realization given by T.

Now suppose that ch is realizable,i.e. there exist M(1,&.P)
and T : L(p - M@Q,4d,P) such that T 1is a linear homeomorphism and
{T(ek)} is a sequence of iid symmetric random variables where ek is

a T(e

V
.

the kth unit vector of {'cp' Then for {a } 6{, R T([a D= ): =13,
Let X = T(el). Then ch = “X and since T 1is a linear isomorphism
this is equality between vector spaces. Theorem 2.3.3 shows that
{'X = L‘V where § 1is an Orlicz function from the class K(2,0). Then
using the bi-continuity of T and corollary 2.3.5 we conclude
ch = L‘V (equality as t.v. spaces) and hence, ¢ € K(2,0).

2.3.7 EXAMPLE. 1) Let o(x) = |x|P (0 <p < 1). Then from

example 2.3.2 we get o =0 and dM(u) = u-l-pdu and recognize that
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exp{-I:(l - cos xu)u-l-pdu} is the characteristic function of a
symmetric stable random variable with index p. Thus {an} € L¢ iff
z:=1 anxn converges a.s. with [Xn) iid symmetric stable of index p.

As a corollary to theorem 2.3.6 we obtain the results of
Mushtari [22].

2.3.8 COROLLARY. The sequence space Lp for p > 2 is not
realizable as a space of random variables.

This result can also give some information on a problem
suggested by J. Lindenstrauss and L. Tzafriri [18]. There they prove
the following:

2.3.9 PROPOSITION. Every Orlicz sequence space generated by a
convex Orlicz function ¢ contains a subspace isomorphic to Lp for
some p 2 1.

The question raised is can more be said about the possible
values of p. Our results show the following:

2.3.10 THEOREM. If ¢ 1is a convex Orlicz function and
¢ € K(2,0), then L¢ contains a subspace isomorphic to Lp for some
P, 1 €£p< 2,

PROOF. The proof is immediate from theorem 2.3.6, corollary

2.3.8, and proposition 2.3.9.

= ,nu,

T i R TR T
-



CHAPTER III

LEVY CONTINUITY THEOREM FOR ORLICZ
SEQUENCE SPACES

§3.1 INTRODUCTION

g

In this chapter we generalize the Lévy continuity theorem to

the case of Orlicz sequence spaces when the associated Orlicz function

[

is in the class K(2,0). This extends the results of [13] which

Q:-s»-w_/r‘ﬂ-aw; < g
14

handles the situation for the classical Lp (0 < p< o) spaces. For
completeness and ease of reference a statement of the Bochner theorem
proved in {11] is included. We also show that the results of Kuelbs
and Mandrekar can be applied to LW when the Orlicz function o is
in the class K(2,»); thus, [14] includes the results given in [11]
for this class of Orlicz spaces.

Our proof of the Lévy continuity theorem is based on the
realization theorem and adaptation of techniques from [13] to this case.
Recently, by using an extension of characteristic functions due to
L. LeCam [16], J. Kuelbs has obtained some results which constitute
generalization of the work in [13]. However, his proofs are complicated
due to the generality of his approach and the precise sequence spaces
to which such results are applicable are not known. Extensions of
techniques of [8], {13] are of interest due to the simplicity of the
approach as brought out in the recent work of [11]. Our approach shows
that the problem of LéVy cont inuity theorem is intimately connected with

the existence of a realization of the space. In turn the realization
21



22

problem is intimately related to the structural problems of Banach
spaces as our theorem 2.3.10 indicates.
First we establish some terminology and preliminaries tin

section 3.2 and give our results in the last section.




23

§3.2 PRELIMINARIES

Let { denote the vector space of all sequences of real numbers
with the topology of coordinate-wise convergence (Tychonoff topology).
We will frequently think of the L¢ spaces as being subsets of

(cf. section 4.2) and if x €4 we define

PNx = (xl,...,xN,O,...)

O
»
]

(0,...,0

N KN+ N2 )

We denote the coordinate functionals on { by Bj’ j=1,2,... . That
is, Bj : 4 - R is given by ej(x) = xj for all x € ¢ and for all j.

For ¢ € K(2,0) we denote by xw the probability measure on
the Borel subsets, 8, of { by taking the product measure on { such
that the coordinate functionals have independent infinitely divisible
laws with Fourier transforms exp{-oth/Z-f:(l - cos ut)dM(u)} where
02 and the Lévy measure M are given by lemma 2.3.1.

3.2.1 DEFINITION. The Fourier transform (or characteristic
functional) of a probability measure | on the Borel subsets of a
topological vector space E is the function x defined on E' (the

topological dual of E) by

x(x) = IE exp{i(y,x)}du(y) for x €E' .

3.2.2 REMARK. If E' contains enough linear functionals to
separate points of E and if pu 1is a tight Borel probability measure
(cf. definition 3.2.7), then x determines . uniquely on the Borel
subsets of E. 1In particular we study the case where E =.L¢ and
¢ € K(2,0). While L¢ may not be locally convex, the coordinate

functionals are contained in Lé and so Lé does separate points of



2 . More will be said later concerning the tightness of Borel proba-
@
bilities on Lw'
3.2.3 LEMMA. If . 1is a probability measure on the Borel

subsets (@ of ch’ ¢ € K(2,0), then the function

~ N
(x,y) = 1:]-“" zk=1 ek(x) Bk(}’)
is a B £ Cmeasurable function on { X LQP, and

Oy X W ([ < =] = 1.

The proof of this lemma is very similar to the proof for the
Lp (0 < p 52) case as given in ([13], lemma 3.1, p. 222) and will
be omitted.
3.2.4 DEFINITION. If . is a probability measure on the Borel

subsets of {,q), o € K(2,0), then we define the extended Fourier trans-

form of 4 on {4 by

X(x) = I{, exp{i(y,x)"}du(y) for x €4 .
P

3.2.5 REMARK. The extended Fourier transform of a probability
4 on the Borel subsets of L(p is a Borel measurable function on ¢
which is finite almost everywhere with respect to the measure ),(P and
which is equal to x(x) = IL exp{i(y,x)}du(y) for all x €{,c;. Thus
X 1s truly an extension of (px from Lc'p to 4.

Let S be a metric space with T denoting the Borel sets in
S. We need the following concepts from the theory of weak convergence
of measures [1].

3.2.6 LDEFINITION. A sequence of probability measures {Pn]

on T is said to converge weakly to the probability measure P on
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T if Isfdrn - IsfdP for every bounded continuous real valued func-
tion defined on S.

if {Pn} converges weakly to P, we write Pn = P,

3.2.7 DEFINITION. A probability measure P on (S,T) is
said to be tight if for every positive ¢ there exists a compact set
KC S such that P(K) > 1 - ¢.

We shall deal only with Orlicz spaces for which ¢ satisfies
t he Az-condition, and by proposition 2.2.10 these L¢ spaces are
separable. The { spaces are a priori complete being F-spaces;
hence, every probability measure on L¢ is tight ([1], p. 10).

3.2.8 DEFINITION. A family {p,a: a €A} of probability
measures on S are said to be tigh; if for every positive ¢ there
exists a compact set K C S such that ua(K) >1 - ¢ for all o €A.

3.2.9 DEFINITION. A family {pa: a €A} of probability
measures on (S,7) is said to be relatively (conditionally) compact
if every sequence of elements {uak} (qk €A, k=1,2,...) contains
a weakly convergent subsequence,

The next proposition is due to Prohorov and can be found in
[1].

3.2.10 PROPOSITION. Let S be a separable and complete metric
space. Then a family {ua: a €A} of probability measures on (S,7T)
is tight iff the family is relatively compact.

We shall be dealing with tight sequences of measures on ¢
for ¢ € K(2,0) and satisfying the Az-condition. In order to do this
we need a description of the compact subsets of such spaces. For the
LP case such a description is readily available [4]. We give the
following generalizations which do not seem to be available in the

literature.
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Suppose that ¢ 1is an Orlicz function satisfying the Az-con-

dition for 0 s x ¢ X,

for 0 £x < xo). We now assume without any loss of generality, that

with constant h 21 (i.e. ¢(2x) € he(x)

p 1is strictly increasing (remark 2.2.15). If max{|t|, |s|} < X,

we have the following
o(t-s) = g({t-s|) < @(jt] + |8]) < @2 max{lt],|s|])
< hp(max{|t|,|s|}) < he(|t]) + he(|s|)
(3.2.11)  (t-s) < hg(t) + he(s) 1if max{|t|,|s|} < x, -
Thus if ¢ satisfies the p,-condition for all x 2 0,
(3.2.12) P (X + ) S hp (x) +hp ().

Note that the characterization we give for the compact subsets
is in terms of the mean function and not in terms of the quasi-norm
on the space.

3.2.13 THEOREM. Suppose ¢ is an Orlicz function satisfying

the Az-condition with constant h for 0 € x < xo. Then a set KC ¢

is compact iff the following conditions are satisfied:
i) sup p(f) < =
f&X

ii) lim sup p (f) = 0 where " (f)
N-o f&K

PROOF. Suppose K C L¢ is such that i) and ii) are satisfied.

ﬁ:=N+1¢(Bn(f))'

Let {fk} be a sequence from K. Then by i), ¢(an(fk)) < p(fk) <

sup p(f) <® for n=1,2,...; k=1,2,... . So by the usual diagonal
fX
process we can extract a subsequence {fk } from {fk} such that

lim (B (£ )) exists for each n, n =1,2,... . Since ¢ 1is strictly
[
increasing with 1lim ¢(x) = », we must have 1lim B (f ) existing for
n k
X0 j= J
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for each n. Now to show {fk } converges in L¢. Since ¢ satisfies
j
the Az-condition, it will suffice to show for ¢ >0, 3 J 3 for all

i,j 2J, p(f, - f ) < e¢. By assumption ii) I N 3 sup pN(f) <
k k
i b fX
min{¢(xo), ¢/3h}. Then,

oy " F) T £ )

N
. n-1¢(en(fki) B (£ ) o (f - £

3 i b
Since -lim ien(fk ) - Bn(fk,)\ =0 and ¢ is continuous at the
i,jo i
origin, 3 J >3V i,j=21J, £:=1¢(B“(fki) - sn(fk )) < ¢/3. Then by the
assumpt ion max{\an(fki)\, \Bn(fkj)\} < x4 for all i,j and n 2N + 1,

using the fact that ¢ 1is increasing, and equation 3.2.11, we find

N N N
p (F, -~ f ) sh (fki) +hp (f, ) < 2¢/3 .

i ] h]
Hence, p(fk - fk ) < ¢ for all i,j =J.

i ]
Conversely,suppose that K C g¢ is compact. Then clearly i)

holds since p 1is a continuous function on Lw. Now take 1 > ¢ > 0.
Then 3 fl"' L
where o = min{¢(x0), ¢/2h}, but if “f“¢ <1 then p(f) < “f“w, 8o

.»f,€K such that for f €K3i,1sistd||f-f| <a
@

p(f - fi) < . Now choose N so that pN(fi) < a for all i,
1l <i<{. Take f €K and choose i so that p(f - fi) < o. Then,
oNeey = NeE - HE) ho' (£ -£) + hpN(fi) implying that o (f) < .
Since 1 > ¢ » 0 was arbitrary and f was an arbitrary vector from K,
condition ii) is verified.

3.2.14 THEOREM. Suppose ¢ 1is an Orlicz function satisfying
the Az-condition for all x with Az-constant h. A set KC L¢ is
compact if for every § >0 3 XyseeosXy € L@ such that

K c.u;=1 S(xj,a) where S(xj,s) = {y €.L¢ tply - xj) < 38}.
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PROOF. For the proof it will suffice to show that under the
stated hypothesis, conditions i) and ii) of theorem 3.2.13 are

saticsfied. Take ¢ > 0. Then by assumption 3 xl,....xr GAL¢ such

r
Jj=1
f ¢ S(xi,e/Zh).

that K = S(xj,e/Zh). For f €K choose i, 1 € i < r, such that

p(E) = p(f = x; + %) < hp(f - x) + hp(x))

€ ¢/2 4+ h sup p(xi) < o .
1<i<r

Hence sup p(f) < ©» and the first condition is shown. Now choose
fX
No such that N = No implies pN(xi) < e/2h for all i, 1 €1i<r.

Then again we see pN(f) < hpN(f - xi) + hpN(xi) yielding
pN(f) < e/2 + hpN(xi) < ¢. Therefore, lim sup pN(f) = 0, and the

N-o f&X
theorem is proved.
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§3.3 LEVY CONTINUITY THEOREM AND BOCHNER'S THEOREM

We now prove Lévy Continuity Theorem for Orlicz sequence
spaces with ¢ € K(2,0). The section also includes a statement of
Bochner's Theorem and concludes by showing that the case ¢ € K(2,»)
is derivable from the work in [14']. This is done to show that the work
in [11] which uses techniques similar to [13] is included in (14].

In this section until further notice, p will denote an Orlicz
function satisfying the Az-condition for all x with Az—constant h,

and we define y§(t) by
2 2 g
(3.3.1) y(t) =gt /2 + j‘o(l - cos xt)dM(x)

where o > 0 1is the constant and M is the Lévy measure of lemma
2.3.1. Recall that corollary 2.3.5 implies (pi ¥; hence, y will
generate the same topology on { as does ¢. In particular for
{xk} c l‘cp’ pcp(x‘s -0 as k-+o iff p*(xk) -0 as k - 0; hence,

for every ¢ > 0 there exists §(g) = § > 0 such that
(3.3.2) if p(p(x) > ¢ then p*(x) > 5

We begin the proof of Lévy's Continuity Theorem with the

following lemmas.
3.3.3 LEMMA. If {u : o €A} is a family of probability
e n

measures on 4  Ssuch that

lim sup J, (») =0
New; y10 q@d Y @
where
o) =], 1- exp{-[tl: v(yx ) + pN(X)]]du (x) .
N:Y ud ch =1 n * o

Then {p.at o €A} 1is conditionally compact.
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PROOF. Take ¢ »0, 0 <R <1l and define E ={y ¢ { :
P

N
z‘: q)(yyn) + pcp(Y) 2 B/Zh}, where h is the Az-constant for ¢. For
0=t ~1,t/251 -e¢ t, so we find p, (E) -—‘[‘Eé dp, (x) where §

corresponds to B/2h as in 3.3.2, and clearly § can be chosen less

than 1. Thus

2 -5 2 N
E -1 - <-f(1 - - +
ng®) % 5 [l - e 0 5 T 1 - exnlL2] yom) + 6y (0 1), 00, n
wd

® <13 @)

u'ot 5 N,y “'01
By our assumption there exists N (e,é) and y (e,8) such that for J

N 0, Y £ v J (p, ) £ ¢6/2 for all o € A. Hence,

ua{xEch:):l:(p(yxn)+p(x)<ﬂ/2h]>1-e for YSYO,NZNO
and all o € A. With no loss of generality we take Yo < 1. For
c 1 1
x €E, LI; olyx ) < 8/2h < 1 < N therefore, "PNx“<P< ; . Since
{x € PNch : HPNx“q)< 1/y} 1is a bounded subset of a finite dimensional

N

for all x € with P x|| <1/y we get min |[P.x - < 8/2h < 1,
L Pyxlly <ty we ger - min IR - xjllg <@

space, we can find x;,...,x  in P ch such that “xi“cp< 1/y and

hence, min p(P.x - x,) < 8/2h.
N 3
1<j<r
Then using 3.2.12 we can write

S(xj,%) = {y éch : ptp(y - xj) < 8}
N
2 {y €, pcp(pNy -x) € 8/2h, p(P(y) < 8/2h}

So for vy EEC, p?p(y) <p/2h and 3 j : 1 £ j <r such that

p(PNy - xj) < B8/2h; thus, y GS(_x-j,B). This shows E€ cuU ; IS(x ,8)

and theorem 3.2.14yields that E€ is compact. Then p (E ) 21 - ¢
o

for all o € A, and ES compact implies using proposition 3.2.10

that the family {p,q : o €A} 1is conditionally compact.
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3.3.4 LEMMA. Llet {“k] be a sequence of probability measures
on L¢ such that {ik] converges in xw-measure to X where X is
the extended Fourier transform of a measure yu on {4 . Then

@

1lim sup J (p,) = 0.
New; vi0 k oY K

The proof of this lemma is similar to the proof of lemma 3.3
in [13] with the x¢-measure replacing the symmetric stable measure

used there, and hence, is omitted.

3.3.5 LEVY CONTINUITY THEOREM. Let f{u, } be a sequence of
probability measures on L¢ with Fourier transforms {xk} defined on
{é. Then {pk} converges weakly to a measure p with Fourier trans-
form x iff {ik} converges in x¢-probabi1ity to X and {xk} con-
verges to K on 4'.

PROOF. First assume that {uk} converges weakly to  on

Lw. Then it is obvious that 1lim xk(x) = x(x) on 2'.
@

ko
| X --X'\zdx = \i\zdx -j‘i‘dx
I{, k @ JL'7k () ka )
- XX +j\i\2dx .
17k ¢ 1 ¢
Furthermore, {uk} converging weakly to u implies {uk X uk} con-

verges weakly to {u X u} and hence,

STRL: : :
Lim /1% "an,, = Lim fLIquxP{l(x,y)]duk(y)fcqfxp{-(x,Z)}duk(z)dk¢

. i - d d
lim quJLqJLexp{l(x.y z)]dk¢(x) e (¥) du (2)

lli;m I‘LQP‘I“L exP{'Pv(Y‘z) }duk()')du'k(z)

?

§, T, expl-p (v-2) }dp(y)dp(2) = A .
L¢ L¢ ¥

~ 2 ~ 2 ~
Similarly bekx dx¢ converges to A which is IL‘X‘ dxw. Thus (¥}

converges in mean-square to ¥ and so also in ) -measure.

.

i
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Conversely, using the preceding two lemmas we find {uk} is a
conditionally compact sequence. Thus thereexists a subsequence {uk }
i

converging weakly to a probability measure v with Fourier transform

g. Then € = lim K =X and the uniqueness of the Fourier transforms

for measures implies {“k } must converge weakly to u (i.e. p =y
b
on 4 ). Furthermore this shows that any convergent subsequence of
¢ »
{uk] must converge to u. Hence, every subsequence of {uk} in turn t!

has a subsequence which converges to . and so {uk} converges

weakly to ., since weak convergence in this case is metric convergence.

The Bochner theorem for these spaces was proved in [11] using H
techniques developed in [13]. 1In the following statement of the
theorem let C denote the complex numbers and a positive definite
function is a function satisfying Ig,j=lzi£jf(ri - rj) >0 for any

finite collection of real numbers rl,...,tN and complex scalars

ZyseeesZye

3.3.6 BOCHNER THEOREM. Suppose that ¢ 1is an Orlicz function

satisfying the Az-condition for small x and ¢ € K(2,0). Let

f : L' -C. Then
Y

E(y) = [, exp{1G,)}u(x) (v € 1)
P

for some Borel probability measure on Lw iff f 1is positive definite,

sequentially weak-star continuous and

-
]

£(0) = limg ‘['L.f(y)dx(p(en,y)
P
where

[ Pea ) (qoy) = T exp(-q 1¥(8,(0)),
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for any sequence of ey = (eN,l"”’eN,N) such that G'N,j 20
(for all N and j) and 1lim max ey = 0, and when ¢ is given
N-o 1<j<N ’
by equation 3.3.1.
Now we consider the case where the Orlicz function is from the

class K(2,»): still satisfying the Az-condition for all x 2 0. We

derive the Lévy continuity theorem and Bochner theorem for the sequence

space &w by showing that L¢ satisfies conditions given in the
work of Kuelbs and Mandrekar. First we give necessary notation and
terminology from [14], state the theorems, and then show that their
hypotheses are satisfied by this class of Orlicz sequence spaces.

Let 1, denote the Banach space of all bounded sequences of
real numbers with the usual supremum norm, and L: the positive cone
of L - E will be a real F-space with a basis {bn}.

3.3.7 DEFINITION. If E‘L: and {ud: @ €A} is a family

of probability measures on E such that
CE : 5% 2 < =1
o lX F By W < )

for each o €A, we say )\ 1is sufficient for the family {u : o € A}.
o
3.3.8 DEFINITION. A family of probability measures
+
fu:a €A} on E is a )\-family for some ) € L, if A is sufficient
a
for {ua: o € A} and for every ¢,5 >0 there is a sequence {gN}

such that

2
<6}>1-e

(-]
bol® €E & Ty e MK

implies
b (% €E : T X il < B8} > 1 - (e+ q)

where 1lim g =0 and b is a strictly increasing function on
N

(0,0) with b(0) = 0.
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Now let «(-) be a convex function on [0,») such that
a(0) =0 and o(s) >0 if s > 0. Further, assume that for every
compact K of E there exists an r >0 such that y € K implies
A(y) = 2T=1 a(yi) < r, and for every r > 0 there exists M >0 such
that A(y) <« r implies z:=1a(y§) < My(|ly'|) where «v(.) 1is another
continuous function on [0,») such that +(0) = 0.

3.3.9 DEFINITION. If the quasi-norm, ||-||, on E admits the
existence of functions «(:) and +v(:) having the above properties we
will say that it is accessible.

If the quasi-norm on E 1is accessible then by the Tq-topology
we will mean the topology on E' generated by taking as a subbase all
translates of sets of the form {x €E' : T(x,x) <1} as T(-,-)
varies over the symmetric, positive definite, bilinear forms on E'
which are jointly weak-star sequentially continuous on E' and

h

satisfying 2:=1a(tkk) < o where = T(ek,ak) with ek the kt

kK

coordinate functional on E (i.e. ek(x) = xk).

3.3.10 BOCHNER THEOREM [147. If E has an accessible quasi-

norm then a function x on E' is the Fourier transform of a proba-
bility measure iff
i) x(0) =1, x 1is positive definite,
ii) x 1is continuous in the Ta-topology,
iii) the family of measures {pN} corresponding to x(PN(-))
has a subsequence which is a )\-family for some ) € (:
satisfying lim z?;kkitii = 0 whenever z:=la

Here «(-), of course, is the function associated with the

accessibility of the quasi-norm.
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For ¢ € K(2,0) we now let \w denote the product probability
on ¢ such that the ith coordinate is G#ussian with mean zero and
variance *1 >0, and ) € L: is chosen so that it is sufficient for
the probability measure , on E.

3.3.11 LEVY CONTINUITY THEOREM [14]. Let fu } be a sequence

of probability measures on E with Fourier transforms {xk). Then
fuk} converges weakly to a measure y with Fourier transform x 1iff
{uk] is a \-family for some ) € L: which is also sufficient for u,
{xk} converges to x on a subset of E' which is dense in E' with
respect to weak-star sequential convergence, and fik} converges in
xw measure to ¥.

To show these results apply to LQ when ¢ € K(2,») we need
only show “.“¢ is accessible since we already know L¢ is an F-space
with a basis (¢ satisfies Az-condition).

Let ~(s) = @(/s). Then by proposition 2.2.19 we know « is
a convex function on [0,») such that o(0) = 0 and qo(s) >0 for

s > 0. For K a compact subset of { , theorem 3.2.13 implies
¢

e W @ 2 .
.;ug;z pcp(y) < » and pcp(y) = Ei=1cp(yi) = zi=la(yi). thus the first

conditions for accessibility is met. There remains only to be
exhibited for r >0 a constant M and continuous function (')
such that +(0) = 0 such that A(y) <r implies A(y) s My(“y“q).
Since ¢ 18 convex so is ¢ (composition of convex functions)
and then using the Az-condition we note (Ax) < \p(x) for O < )\ <1

2n-l

and (\x) < hn¢(x) for <\ < 2“, n=1,2,... . Now define

h) 0<saAas1l

Y\ =
L B L 1y

2n-l

W
N
3
n
-
..N
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Then clearly +vy 1is a continuous piece-wise linear function and
v(0) = 0. Recall that since ¢ is convex \\y‘\q) = inf{e >0 :

p(p(y/e) < 1}. Take y e{,cp and choose the smallest n such that
Nyl /20 < 1.
¥y

il .
¢ i\Y‘-.\q,) "oy z“Q \\g“.\(p)

= I
P =0 (P(\\Y.
so 2" X4 <" /) <h" .

" bl =P,

But 2”71 < bl = 2%, so y(|y!|) = h". Therefore PV =AW =
vy ) -

Thus the results of [14] apply to Orlicz sequence spaces when
® € K(2 »®) .



CHAPTER IV

GAUSSIAN MEASURES ON ORLICZ
SEQUENCE SPACES

34.1 INTRODUCTION AND PRELIMINARIES

In this chapter the problem of characterizing the Fourier
transforms of Gaussian measures on Orlicz sequence spaces is con-
sidered with the main theorem being for the case ¢ € K(2,0) and
convex. This extends the results of ([287], p. 1561) in which
Gauss ian measures on the classical Lp spaces (1 < p < ») are
treated. In the last section our result is used to derive a central
limit theorem for these spaces.

What follows are some known results and notation that we use
in this chapter.

4.1.1 DEFINITION. A probability measure  on a topological
vector space E 1is said to be Gaussian with mean a € E 1if the dis-
tribution of <«-.,y> 1is Gaussian with mean <a,y> for each linear
functional y € E' (the topological dual of E).

If 4 (the space of all real sequences x = {xn}) is given
the Tychonoff topology, then it becomes a separable reflexive Fréchet
([247], p. 8) space. Let L0 denote the linear subspace of { which
consists of those elements of 4 containing only a finite number of

nonzero coordinates. Then the topological dual of ¢ is ¢

0’ i.e.

' =1y

37
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4.1.2 PROPOSITION. Let ¢ be an Orlicz function, then L¢
is a Borel subset of 4.

PROOF. The coordinate functionals defined on { are Borel
measurable maps (i.e. Bj : £ - R defined by Bj(x) = xj for all
X €4 is a Borel measurable map for all j). Since ¢ 1is a con-
tinuous function, ¢ o Bj is Borel measurable for all j; thus,
z§=1¢ o aj defines a Borel measurable map on {4 for all N. That

1 is a Borel subset of 2 now follows from these remarks and that

=0 Jx et 8';=1<p(3

@ n=1 'm=

j(x)) <n} .

The above proposition implies that the Borel subsets of L¢
are Borel subsets of {; hence, a measure | defined on the Borel
subsets of L¢ can be considered as a Borel measure on (.

4.1.3 DEFINITION. A matrix S = (si ) 1is said to be positive

]
definite if eSe' 20 for all e € (e' denotes transpose of the
vector e).

If S = (sij) is a symmetric positive definite matrix then

(4.1.4) Sij S,/'sii /%jj for all i and j

This is easy to see by considering in definition 4.1.3, the vector e
having - /§;; in the 1th coordinate, /EIZ in the jth coordinate and
zero's elsewhere.
The next proposition is well known and can be found in [28].
4.1.5 PROPOSITION. If . 1is a Gaussian measure on { then

the Fourier transform of . is given by

(4.1.6)  x(£) =exp{i <f,m- - 1/2 <S£,65} £ €t ,
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where <f,m> = 2:=1fnmn’ m = {mn} €4 and <Sf,f> = z;,k=lsjkfjfk
with the matrix (sjk) being symmetric and positive definite. Con-
versely, all functionals of the form 4.1.6 defined on LO are the
Fourier transforms of Gaussian measures on {.

A relation between moments of a Gaussian random variable and
its standard deviation is given by the next proposition [27]; the proof
of which is straightforward and can be found through a change of vari-
ables and the definition of the gamma function, [.

4.1.7 PROPOSITION. Let X be a Guassian random variable with

. 2
mean zero and variance ¢ . Then,

(4.1.8) E|X|P = c(p,2) Ex})P/?

’

where c(p,2) = ['(p + 1/2)/(2m /2.

We also have need for the following special case of a result
of Fernique [5] pertaining to the integrability of Gaussian vectors.
4.1.9 PROPOSITION. If .. 1is a Gaussian measure on an F-

space (E,'|-||), then

[lixliguco - = .

B~ o i e e o




40

§4.2 REPRESENTATION OF GAUSSIAN MEASURES ON ORLICZ SEQUENCE SPACES

In this section we will characterize Gaussian measures on Orlicz
sequence spaces which are generated by a convex Orlicz function ¢
where ¢ € K(2,0) by giving a representation for their characteristic
functionals.

For convex Orlicz functions ¢ with a right derivative p(t)
that is strictly positive at the origin (p(0) > 0) proposition 2.2.3
says that L¢ is isomorphic (as a topological vector space) to Ll.
Since the form of Fourier transforms of Gaussian measures on Ll are
well known (e.g. [28]), we assume that p(0) = 0.

4.2.1 THEOREM. Let ¢ be a convex Orlicz function satisfying
the Az-condition for all x with o(x) = jéx\p(t)dt. Furthermore,
suppose that ¢ € K(2,0) with p(0) = 0. Then p is a Gaussian
measure on L¢ with mean a G‘L¢ iff the Fourier transform ¥ of

p defined on L$ has the form
(4.2.2) X(f) = exp{i <a,f> - 1/2 <Sf,f>} for all f € Lé ,

where <Sf,f> = 2; k=lsjkfjfk with (s k) being a symmetric positive

i
definite matrix such that z:=1¢(szk) < ©. In addition, S can be taken
as s, =J"£ ej(x-a)ak(x-a)dp(x) for §j=1,2,...; k=1,2,...

ggggg. Let ¢ be a convex Orlicz function satisfying the
hypothesis of the theorem, and let y§ denote the Orlicz function
complementary to ¢ (2.2.4).

Now suppose that . 1is a Gaussian measure on L¢ with mean
a € Lw. The Bochner theorem 3.3.6 for L¢ implies that the Fourier

transform x of p on L; is weak-star sequentially continuous;

thus, x(f) = lime(PNf) for f €,L$. Now L$‘: 4 and PNf € LO
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for all N, so thinking of . as a Gaussian measure on { and
applying proposition 4.1.5 we get the existence of a symmetric positive
definite matrix S = (sjk) with sjk = J'Laj(x-a)ek(x-a)dp.(x) =

”L Bj(x-a)Bk(x-a)dp(x) for j=1,2,...; k=1,2,...; and such that
. o ) N
x(f) = ILme(PNf) = llmNexp{l <a,PNf> - 1/2 zj,k=lsjkfjfk}

for f € L(L. Note that 11mN<a P f> =«<a,f> for f 6{, To

complete this part of the proof we need to show lirnNzN k=1 jkj k

exists for all f ¢ Lt:o and that {s:ik} € {'cp' We do this by first
proving the following lemma.

4.2.3 LEMMA. With the notation as given above {sEk} € L(p.

PROOF. Since . 1is Gaussian with mean vector a E{‘cp’

Bj(-) is Gaussian with mean a,ai> = aj(a) for j=1,2,... . By

proposition 4.1.7,

fL \Bj(x-a)\du(x) = E\aj(X-a); = c(1,2)[E(ej(x—a))2]%,
P
i.e.,

(4.2.4) s = (1/c(1,2>)j%\ej(x-a>\du<x>

Proposition 2.2.8 implies that h; is isomorphic to {,(P, and so to

complete the proof of the lemma it will suffice to show
o X
Zem1® ki

r >0 such that p*(ak(y)/r) < 1. Now using 4.2.4,

ak(y) < o for all y € hv. Take y € h¢. Then there exists

I S B | < (1e,2)) j%z“kgl\eku -a) | |8 () | du(x) -

Multiplying the right hand side by 1 and applying proposition 2.2.6,
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%

N
T=1%kkPrY) * (r/c(1,2))p (y/r)IL “\x-a“\qﬁu(x),

' P

but the right hand side is finite since pv(y/r) < 1 and proposition

4.1.9 yields I& “\x-a“\¢?p(x) < ®. Now define Sy ¢ hv - R by

¥ @ .
SN(y) £i=lskkek(Y)' The above shows that the limit on N of SN(y)
exists for every y € hV’ and applying the uniform boundness principle
(247, S(y) = limNSN(y) is a bounded linear functional on hv. By the

earlier remark that h; can be identified with L¢’ there must exist

a unique x € L¢ such that S(y) = <y,x> = zk=13k(x)ak(y) for all

IR et
v but S(y) zk=lskkek(y) implies that x = {skk] and so
2:=1¢(szk) < ©® completing the proof of the lemma.

y €h

Upon proving the lemma we can finish the "if'" portion of the
proof of the theorem by showing that limNzg,k=lsjkfjfk exists for all
f € Lé. Since (sjk) is a symmetric positive definite matrix, in-
equality 4.1.4 can be used to derive,

LACIANIES R LA ENIERE A LA AN

Then by the above lemma {s:k} e.Lw implying that we have a bound
independent of N by proposition 2.2.6(i) completing the proof.
Conversely suppose that x(f) = exp{i «a,f> - 1/2 <Sf,f>})
where (sjk) is a symmetric positive definite matrix such that
X

L -]
zkﬁquskk) < » and &Sf,f> = zj,k=lsjkfj

fk. Let {”N} denote the
sequence of Gaussian measures on Lw with Fourier transform XN(f) =
x(PNf) for N =1,2,... . Since for each N we are dealing with a
measure on a finite dimensional space, the form of xN(f) implies that

by is a Gaussian measure. Now to show that the sequence of measures

{pN} is conditional compact. Take ¢,5 > 0.
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L @
iy €1, ¢ () > 0] < 1/8 _f%zi=L+1¢<ei(y))duN<y)

= 1/6 :;";:Lﬂj&;p(ei(y))dpﬂ(y)

Since ¢ € K(2,0) proposition 2.2.19 implies that ¢ o,/ is con-

cave; thus,

) o 2
mg{y € Ly "I:p(") > 6} s 1/s 2i=L+1(P([IL Bi(y)du(y)]%).
P

However ,

) s, for 1sisN :
Jo B0 - '

0 for N« i

and since {Stk] € L‘P we can choose L sufficiently large independent
of N so that p;({s:‘:k]) < 6/¢; therefore, p.N{y € L(p : pL(y) >6} < e
for N =1,2,... . From this fact and utilizing the techniques in the
proof of lemma 3.3.3, we see that the sequence of measures {uN} is
conditionally compact and must converge weakly to some measure . on
"tp' Since x(f) = li.trhx(PNf) for each £ 64,("), X 1is the Fourier trans-
form of the measure . We are done if yu can be concluded to be
Gaussian. Choose y € L;. Then the sequence of Gaussian random vari-
ables {<'PN-,y>} converges to the random variable <.,y>; hence, the
random variable <-,y> must be Gaussian for each y € {,('P. Therefore
» 1is a Gaussian measure on Ltp'

As a corollary to this theorem we get the result of M. Nicolas
Vakhania [28) (see also [15]).

4.2.5 COROLLARY. x(f) = exp{i <a, > - 1/2 <Sf,f>} for

f ¢ Ll; is the Fourier transform of a Gaussian measure p on Lp



44

is a symmetric positive

) o _p/2
zj,kelsjkfjfk and Ti=1%KkK

with mean a € .t,p (l<ps?2) Iiff (Sjk)

definite matrix such that <Sf,f> = < o.



45

§4.3 A CENTRAL LIMIT THEOREM FOR ORLICZ SEQUENCE SPACES

We now study a central limit theorem for sequences of independent
identically distributed random variables (vectors) taking values in an
Orlicz sequence space .{,q).

4.3.1 THEOREM. Suppose that ¢ 1is a convex Orlicz function
satisfying the Az-condition for all x with ¢ € K(2,0). Let
ZI'ZZ"' . be independent identically distributed random vectors with
values in ch and having zero expected values. Let T denote the

%

measure induced on l’cp by YN =N (Z1 +...+ ZN) and , denote a

measure equivalent to e Then if

® 2
P

and if <Sf,f> = 2‘; k-lsjkfjfk (f € {,q',) is a norm continuous function

on % where ik~ I& Sj(y)Bk(y)dp.(y) (for all § and k), then
{p,N] converges weakly to the Gaussian measure v on l’cp with Fourier
transform x(f) = exp{-1/2 <Sf,f>} for all f GL:P.

4.3.3 REMARK. Noting that S = (sjk) is a symmetric positive
definite matrix and that {s:‘:k] € l’fp' we have the hypothesis of theorem
4.2.1 satisfied; thus, we conclude that x is the Fourier transform
of a Gaussian measure on { . Now we prove the theorem.

PROOF. For f E"@'P define

Ay (£) = Efexp{i<¥y,f>}} = J"%expf,i <y, £>}due (¥)

and
x(f) = E{exp{i<Z,,f>}} = j‘L exp{i <y,f>}du(y) .
P

Then for all f GL('p, X (E) = [x(f//N)]N. Using the series expansion
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for the exponential function we write,

X(EWN) = [, [L+ i<y EWN> - 1/2 <IN
P

+ o(1/N)Jdu(y),

but Z1 having zero mean implies
XCEWD = 1 - AUID[, <, SN au(y) + o(L/N)
P

=1 - (I/ZN)zj,k=18jkfjfk+ o(1/N);
thus,

limg xy(£) = limN[x(f/\/N)]N

= exp{-1/2 <S£,£>} = x(f).

Hence x must be a positive definite function on .{,(;) with ¥x(0) = 1.
Now we show that the sequence of measures {“'N} is conditionally com-

pact and must converge weakly to a measure v.

Take ¢,5 >0. Since ¢ € K(2,0), by proposition 2.2.19

@ o/ 1is concave, implying,

il €4 0 ) > 8) 5 ADE] ], W8 OO
P

© %
S (1/6)2j=L+1(P(sjj) .

2 2
Since j'&q’Bj(y)duﬂ(y) = j’L By(Yduly) for j = 1,2,...; and by
assumption 4.3.2 as in the proof of theorem 4.2.1, we conclude that
the sequence of measures {"N} is conditionally compact. Therefore

{”'N} converges weakly to a measure v on {,(p, and since limeN(f) =

%x(f) for all f € l’c'p’ the Fourier transform of v is x. Then by
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theorem 4.2.1 (remark 4.3.3) v is a Gaussian measure on L‘P. Thus

we know by =V and v 1is the Gaussian measure with the required

Fourier transform.

REETT T K
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§4 .4 CONCLUDING REMARKS

The question of the realization of Orlicz function spaces can
be discussed following these definitions taken from [3] and [26].

Let E denote a topological vector space of Borel measurable functions
defined on the interval [0,1].

4.4.1 DEFINITION. A random linear form (r.l.f.) X, defined
on E 1is a linear mapping of E into a space of measurable functions
mniQ.,a,p) -

4.4.2 DEFINITION. A r.l.f. X defined on E is said to have
independent increments if for all finite collections of elements
{fl,. .. ,fn} C E having disjoint support, the random variables
X(fl),...,X(fn) are independent; furthermore, f“ -0 a.e. implies
X(fn) - 0 1in probability.

4.4.3 DEFINITION. A r.l.f. X defined on E is said to be
homogeneous if for congruent Borel subsets EI’EZ of [0,1],
=£(X([El])) = AX([E,])).

4.4.4 DEFINITION. A r.l.f. X defined on E 1is said to be
symmetric if the random variable X(f) 1is symmetric about zero for
all f €E.

A t.v.s. E 1is said to be realizable as a space of random variables
if there exists a probability space ((1,4,P) and a linear homeomorphism
T mapping E into 7(Q,4,P) such that the map T when considered as
ar.l.f., is symmetric, homogeneous with independent increments.

The problem as formulated above is considered by Urbanik and
Woyc zynski [26], and Bretagnolle and Dacunha-Castelle [3] when the
topological vector space E is an Orlicz function space L(p[O,l]. Their

results can be used to show that as in the sequence space case ¢ € K(2,0)
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is necessary and sufficient for the function space L¢ to be
realizable.

The following problems are presently under study: 1) Harmonic
analysis on realizable Orlicz function spaces. 2) The domain of attrac-
tion problem for Gaussian measures on realizable Orlicz sequence spaces.
3) Representation of Fourier transforms of infinitely divisible dis-
tributions on realizable Orlicz sequence spaces. The results of this

study will be presented elsewhere.
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