

This is to certify that the

dissertation entitled

A Immunocytochemical Analysis of Methion e Enkephalin,

Substance Pland Glutamic Acid Decarboxy Within "

Neostriatal Projection Neurons: A Light and Electron

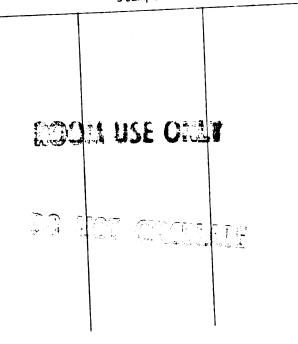
Microscopic Study presented by RONALD HOWARD BRADLEY

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Anatomy

Date $\frac{5}{20/83}$

Major professor


MSU is an Affirmative Action: Equal Opportunity Institution

0-12771

RETURNING MATERIALS:

Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

141-6208

A Immunocytochemical Analysis of Methionine Enkephalin, Substance P and Glutamic Acid Decarboxylase Within Neostriatal Projection Neurons: A

Light and Electron Microscopic Study

by

Ronald Howard Bradley

A Dissertation

submitted to

Michigan State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Anatomy

1983

A Immunocytochemical Analysis of Methionine Enkephalin, Substance P and Glutamic Acid Decarboxylase Within Neostriatal Projection Neurons: A

Light and Electron Microscopic Study

by

Ronald Howard Bradley

The aim of the present study was to analyze the putative neurotransmitters, GABA, methionine enkephalin, leucine enkephalin and substance P, contained within neostriatal projection neurons. Analysis was carried out at both the light and electron microscopy levels. Projection neurons were identified by retrograde uptake of wheat germ agglutinin, $n-[acetyl-^3H]$ following stereotaxic injections into either substantia nigra or globus pallidus.

Detection of neurotransmitters within neostriatal neurons was accomplished by immunocytochemical methods. Determination of projection neuron and neurotransmitter was accomplished by a combined double label immunofluorescence method and a retrograde labeling technique.

Immunocytochemical analysis at the electron microscopy level was accomplished by a modified avidin-biotin technique.

Results at the light level suggest that at least some medium-sized projection neurons immunocytochemically reacted with either glutamate decarboxylase (GABA marker), methionine enkephalin, leucine enkephalin or substance P. It was additionally found that some single neostriatal neurons reacted both to leucine enkephalin-GAD or methionine enkephalin-GAD. Comparison of immunocytochemically localized GAD and

γ-aminobutyric acid transaminase (GABA-T) revealed that these two enzymes are not contained within the same population of neostriatal neurons. GAD was consistently localized within medium-sized projection neurons. GABA-T was observed in medium-sized cells and also a population of large neostriatal neurons.

Immunocytochemical localization of GAD, methionine enkephalin and substance P was observed in neostriatal neurons possessing ultrastructural characteristics of medium spiny neurons. Immunoreactivity was seen localized within somatal cytoplasm specifically on ribosomes, rough endoplasmic reticulum and Golgi vesicles. Additionally, these neurotransmitters (GAD, Met-enk or SP) were localized within the cytoplasm of dendrites, spines of dendrites and pre-synaptic axonal terminals. Ultrastructural localization of GAD and GABA-T revealed these enzymes are found in different neurons. GAD immunoreactivity was only seen in medium spiny neurons whereas GABA-T was seen in medium-spiny neurons and medium aspiny neurons. Additionally, GABA-T was only seen in post-synaptic structures.

The majority of the terminals labeled for met-enk or GAD appeared to make symmetrical contacts. These synapses were formed with either labeled dendrites, labeled spines or unlabeled processes. Axoaxonic labeled synapses were not observed. Substance P antisera stained a preponderance of asymmetrical synapses with labeled and unlabeled dendrites and spines of dendrites. Somatic and axoaxonic labeled synapses were not observed.

These findings support that methionine enkephalin, GABA or substance P containing neostriatal neurons contribute to the intrinsic collateralization within striatum as well as contribute to striatopallidal and striatonigral circuitry.

To my loving wife, Susan and to my parents. These people have made everything possible and bearable.

ACKNOWLEDGEMENTS

I would like to thank my friend and advisor, Dr. S. T. Kitai, for his guidance and encouragement throughout my graduate/professional career. I would also like to thank the following scientists and friends:

W. M. Falls, I. Grofova, H. Chang, P. Patterson, J. Thornburg, G. Osborn, P. Gerhardt, J. Wang and C. J. Wilson.

I would like to thank Drs. Dennis Steindler and H. Imai for their expertise, time and encouragement in the usage of wheat germ agglutinin. I would like to thank Dr. J. Y. Wu of the Baylor College of Medicine, Houston, Texas for the use of the antiserum to glutamic acid decarboxylase and γ -aminobutyric acid transaminase. Without these antisera, this study would not have been possible.

I would especially like to thank Bryan Spann and Kevin Phelan for all their encouragement and companionship they have given me here, at Michigan State University. Kevin Phelan also has given a great deal of advice in writing this thesis. Additionally, I would like to thank and acknowledge Mrs. Brenda Schmidt for her help in typing this dissertation and her help in organizing my office.

Finally, I gratefully acknowledge my wife, Susan Kay Bradley. She has given me encouragement, understanding, love and guidance during my graduate/professional career. Susan has always been an integral factor in my education and I hope it will continue through life.

TABLE OF CONTENTS

		Page
Chapter 1.	Introduction	
	A. Neostriatal Intrinsic Organization	1
	1. Light Microscopic Studies	1
	2. Ultrastructural Characteristics of Rat Neostriatal Neurons	5
	B. Neostriatal Efferent Pathways	9
	C. Wheat Germ Agglutinin Utilized as an Axonal Tracer	10
	D. Neurotransmitter Candidates Within the Neostriatum	11
	E. Immunocytochemistry: Application in Regards to the Enkephalins, Substance P and Glutamatic Acid Decarboxylase	14
Chapter 2.	Material and Methods	
	A. Labeling of Neostriatal Neurons	18
	1. Colchicine treatment	23
	B. Antibody Purification	24
	C. Immunocytochemical Procedures - Glycol Methacrylate Sections	24
	D. Immunocytochemical Procedures - Ultrastructural Analysis	
	1. Animals	30
	2. Vibratome Section Analysis	30
	E. Wheat Germ Agglutinin: Biochemical Analysis	34
Chapter 3.	Results	
	A. Colchicine Treatment vs. Normal Morphology	36
	B. Wheat Germ Agglutinin	44
	C. Antibody Purification Results	46
	D. PAP vs. Avidin:Biotin	60

			Page
	Ε.	Light Microscopic Analysis: Neostriatal Projection Neurons and Neurotransmitters	
		1. Neuroanatomical Analysis	. 61
		2. Neuroimmunocytochemistry of Neurotransmitters	. 67
		3. Double Label: Projection Neuron-	
		Neurotransmitters	• 71
	F.	Electron Microscopy	. 91
Chapter 4.	Dis	cussion	
	Α.	Neostriatal Efferents and Utilization of Wheat Germ Agglutinin	. 115
	В.	Neurotransmitter Candidates	. 117
		1. Enkephalins	. 119
		2. Substance P	. 122
		3. GABA [GAD]	. 124
	С.	Summary	. 129
		 Summary Diagram of Neurotransmitters Utilized in Neostriatal Projection Neurons 	132

LIST OF FIGURES

		P P	age
Figure	1.	Schematic representation of WGA-colchicine injection schedule.	20
Figure	2.	Diagramatic representation of a sagittal section of the rat brain where the injection sites are located.	22
Figure	3.	Outline of the Unlabeled Antibody Enzyme technique.	27
Figure	4.	Outline of the Avidin:Biotin Complex technique.	33
Figure	5.	Electron micrograph of colchicine rat brain:striatum.	38
Figure	6.	Electron micrograph of normal rat brain:striatum.	38
Figure	7.	Electron micrograph of a colchicine treated rat striatum.	40
Figure	8.	High magnification of a colchicine treated rat striatum which is showing a neuron's cytoplasm.	40
Figure	9.	Neuropil of an untreated rat striatum.	40
Figure	10.	Low magnification of colchicine treated rat striatum near the ventricular injection site.	42
Figure	11.	SDS polyacrylamide gels of wheat germ agglutinin, $n-[acetyl-^3H]$.	48
Figure	12.	Graphs of the scintillation of the SDS gels of wheat germ agglutinin, n-[acetyl- $^3\mathrm{H}$].	50
Figure	13.	Ouchterlony of rabbit anti-methionine enkephalin.	53
Figure	14.	Immunoelectrophoresis of rabbit anti-methionine enkephalia	n. 53
Figure	15.	Ouchterlony of rabbit anti-substance P.	55
Figure	16.	Ouchterlony of rabbit anti-GAD.	55
Figure	17.	Ouch terlony of rabbit anti- γ aminobutyric acid transaminase.	55
Figure	18.	Ouchterlony of rabbit anti-leucine enkephalin.	55
Figure	19.	Electron micrograph of striatal cell which is labeled for GAD by PAP .	57
Figure	20.	Electron micrograph of a striatal cell which is labeled for GAD by Avidin:Biotin Complex.	57
Figure	21.	High magnification micrograph of a striatal dendrite which is labeled for GAD by PAP.	h 59

Figure 22.	High magnification micrograph of a striatal dendrite which is labeled for GAD by Avidin:Biotin Complex.	59
Figure 23.	Sagittal glycol methacrylate section which is autoradiographically labeled for the WGA injection site.	64
Figure 24.	Intermediate magnification which is showing the injection site of substantia nigra.	64
Figure 25.	Anti-WGA localization which is in a vibratome section of striatum.	64
Figure 26.	4 μm glycol methacrylate of WGA localization within striatal cells after a substantia nigra injection.	64
Figure 27.	Vibratome section which is exhibiting the globus pallidus WGA injection.	66
Figure 28.	Higher magnification of the globus pallidus WGA injection site in a vibratome section.	66
Figure 29.	Autoradiographic and immunocytochemical localization which is seen as a striatal vibratome section.	66
Figure 30.	Control vibratome section of striatum.	74
Figure 31.	Anti-GABA-T immunoreactivity within striatum.	74
Figure 32.	Anti-substance P immunoreactivity within striatum.	74
Figure 33.	Anti-GAD localization which is seen in dorsal striatum.	76
Figure 34.	Anti-GAD localization which is seen in ventral striatum.	76
Figure 35.	Anti-methionine enkephalin which is seen in striatum.	76
Figure 36.	Anti-GAD localization as seen in a vibratome section.	78
Figure 37.	Anti-GAD localization on a glycol methacrylate section.	78
Figure 38.	Anti-GABA-T localization in a vibratome section.	78
Figure 39.	Anti-GABA-T localization on a glycol methacrylate section.	78
Figure 40.	Anti-substance P localization in a vibratome section.	80
Figure 41.	Anti-substance P localization in a glycol methacrylate section.	80
Figure 42.	Anti-methionine enkephalin localization in a vibratome section.	80
Figure 43.	Anti-methionine enkephalin localization on a glycol methacrylate section.	80

Figure	44-45	Fluorescence of substance P neurons and rhodamine wheat germ agglutinin localization.	82
Figure	46-47	Fluorescence of substance P neurons and rhodamine of WGA localization.	82
Figure	48-49	Fluorescence of methionine enkephalin neurons and rhodamine of WGA localization.	84
Figure	50-51	Fluorescence of methionine enkephalin neuron and rhodamine of GAD localization.	84
Figure	52-53	Fluorescence of GAD localization and rhodamine of WGA localization.	86
Figure	54-55	Fluorescence of GAD positive neurons and rhodamine of leucine enkephalin immunoreactivity.	86
Figure	56.	Diagramatic representation of GAD, ME, SP and double labeled cells in sagittal section.	88
Figure	57.	Diagramatic representation of GAD, ME, SP and double labeled cells in frontal section.	90
Figure	58.	Substance P localization in a vibratome section which shows striatum.	96
Figure	59.	Control vibratome section of striatum.	96
Figure	60.	Electron micrograph of a striatal control section.	96
Figure	61.	Low magnification EM of a substance P positive neuron.	98
Figure	62.	EM of a labeled dendrite which is in striatum.	98
Figure	63.	EM of a labeled substance P spiny dendrite from striatum.	100
Figure	64.	EM of a labeled substance P striatal dendritic spine.	100
Figure	65.	EM of a labeled substance P striatal asymmetrical synapse and dendrite.	100
Figure	66.	EM of a labeled substance P striatal asymmetrical synapse onto a spine head.	100
Figure	67.	EM of a methionine enkephalin labeled neuron which is in striatum.	102
Figure	68.	EM of a methionine enkephalin medium spiny neuron which is seen in striatum.	102
Figure	69.	EM of a proximal dendrite which is labeled for methionine enkephalin.	104
Figure	70.	High magnification EM of a methionine enkephalin labeled dendrite and symmetrical synapse.	104

Figure	71.	Methionine enkephalin labeled spine.	106
Figure	72.	Methionine enkephalin labeled symmetrical synapse.	106
Figure	73.	EM of a GAD labeled medium spiny neuron in striatum.	108
Figure	74.	EM of a GAD labeled medium spiny neuron in striatum.	108
Figure	75.	GAD labeled cytoplasm of a medium spiny neuron receiving a symmetrical synapse.	110
Figure	76.	GAD labeled dendritic spine and GAD labeled dendrite which are in striatum.	110
Figure	77.	GAD labeled dendrite which is receiving a symmetrical synapse.	110
Figure	78.	GAD labeled symmetrical synapse within striatum.	110
Figure	79.	A GABA-T positive medium aspiny neuron within striatum.	112
Figure	80.	A GABA-T positive medium spiny neuron in striatum.	112
Figure	81.	GABA-T labeled cytoplasm from a medium spiny neuron receiving asymmetrical synapse.	114
Figure	82.	GABA-T labeled dendrite.	114
Figure	83.	GABA-T labeled spine of a dendrite.	114

Chapter 1. Introduction

INTRODUCTION

There have been numerous immunocytochemical studies exploring the localization of putative neurotransmitters within the neostriatum of the rat. These reports have been controversial in respect to whether these putative neurotransmitter candidates are localized within projection neurons of the neostriatum. The aim of the present study was to investigate the neostriatal projection neurons and localize their putative neurotransmitters, methionine enkephalin, substance P and GABA. Projection neurons were identified by retrograde uptake of wheat germ agglutinin, $N-[acetyl-^3H]$ following stereotaxic injections into either substantia nigra or globus pallidus. Detection of neurotransmitters with neostriatal neurons was accomplished by immunocytochemical methods. At the light level, determination of projection neuron and neurotransmitter was accomplished by a combined double label immunofluorescence method and retrograde labeling technique. Ultrastructural characteristics of immunocytochemically identified neostriatal neurons were analysed by both the conventional PAP method as well as a newer avidin-biotin technique.

A. Neostriatal Intrinsic Organization

1. Light Microscopic Studies

Neostriatal neurons in general fall into three size classifications: Large neurons with somatic diameters of 20 to 50 μm ; medium sized neurons with somatic diameters of 10 to 20 μm ; and small neurons with somatic diameters less than 10 μm . The relatively few numbers of large neurons present exhibit a large cytoplasm to nucleus ratio and the nucleus is variable in shape. The cytoplasm of these large neurons contain numerous organelles visible in Nissl stained preparations. The medium sized neurons

are the most numerous in the neostriatum and the majority contain a pale, smooth, round and unindented nucleus. The small neurons which are rarely found have a deeply invaginated nucleus and a thin rim of cytoplasm (Ramon y Cajal, 1911; Kemp and Powell, 1971; Fox and Rafols, 1976; Pasik et al., 1979; Chang, 1981).

Modern Golgi investigations have examined the cat caudate nucleus (Kemp and Powell, 1971) and the monkey neostriatum (Fox and Rafols, 1976 for a review). These investigations described a large number of medium spiny neurons possessing extensive local axon collateralization suggesting that many of these medium-sized neurons were intrinsic in their function within neostriatum. The studies of Pasik et al., (1976) and DiFiglia et al., (1976) indicated that the most frequently Golgi impregnated neostriatal neuron was that of the medium spiny type. Earlier retrograde HRP studies concluded that the majority of neostriatal projection neurons were the medium-sized type (Grofova, 1975; Bunny and Aghajanian, 1976). Several Golgi studies have examined neuronal cell types in neostriatum (Dimova et al., 1980; Danner and Pfister, 1979; Lu and Brown, 1977; Mensah and Deadwyler, 1974). These investigators have described 5 to 8 different cell types within neostriatum. The nomenclature used by these investigators has resulted in confusion and misunderstanding by other investigators. However, Chang (1981) offers an alternative, simplified classification for the rat neostriatum which is more thorough due to the correlation between intracellular HRP, retrograde HRP and Golgi-toned studies. A brief description is given below.

The <u>large type I</u> neuron possesses a fusiform-shaped soma (somatic area > 300 sq. μ m) and an absence of somatic spines. These neurons have poorly branched dendrites and are similar to the giant neurons described by Ramon y Cajal (1911) in the human. Similar reports have been made in

the cat (Kemp and Powell, 1971), the monkey (Fox et al., 1971) and the cat (Danner and Pfister, 1979). These cells resemble the "giant spiny II neurons" reported in the monkey (DiFiglia et al., 1976; Pasik et al., 1976). These large neurons are considered to be cholinergic or cholinesterase-containing interneurons (Butcher and Bilesikjian, 1975; Kimura et al., 1980). Evidence of whether these large type I neurons are projection neurons has not yet been entirely resolved.

The <u>large type II</u> neuron possesses spines on both somata and proximal dendrites. The presence of somatic and dendritic spines indicated to Chang (1981) a functional difference between the large type I and large type II neurons. These large type II neurons are similar to the "Spiny II neurons" described in the monkey (DiFiglia et al., 1976; Pasik et al., 1976). These neurons are found to possess a myelinated axon and may be a projection neuron (Chang, 1981).

The <u>type I medium</u> neuron is the most frequently impregnated neostriatal neuron. This medium spiny cell type has been previously identified in Golgi (Pasik et al., 1976; Somogyi and Smith, 1979) and intracellular HRP studies in the rat (Preston et al., 1980; Wilson and Groves, 1980; Van der Maelen et al., 1979) and the cat (Kitai et al., 1976; Kocsis and Kitai, 1977; Kocsis et al., 1976; Kitai et al., 1978). These neurons possess smooth, round and unindented nuclei (somatic area 1 100-300 sq. µm). The proximal dendrites have a smooth appearance and the distal dendrites are heavily laden with spines (Chang, 1981; Wilson and Groves, 1980; Chang et al., 1982). These neurons have been shown to exhibit extensive local axon collateralizations (Kocsis et al., 1976; Preston et al., 1980; Wilson and Groves, 1980; Bishop et al., 1982).

The efferent axons of these type I medium neurons were found to make two distinct projections after giving off local collaterals within striatum.

The main axons of the cells in the first group were unbranched in their trajectory toward globus pallidus and gave little collateralization within globus pallidus and were found to continue caudally at least as far as the internal capsule. The second group had main axons which branched into two or three primary branches within striatum. The main axons entered globus pallidus where they immediately gave rise to a very distinct spatial arborization. The axon then continued to the caudal part of globus pallidus and gave another spatial arborization. Chang (1981) concluded that despite their identical somatodendritic morphology, these represented two separate populations of neostriatal projection neurons.

The type II neuron was characterized by somatic spines. The somatic spines were sparsely distributed over the surface of the soma and can be missed if serial sections are not observed (Chang, 1981). The dendrites are sparsely covered with spines over their entire length. The nucleus is deeply indented. These cells are similar to the "medium Spiny II neuron" described by DiFiglia (1976) and Pasik et al., (1976) and the aspiny cells with somatic spines as described by Fox (1974).

The <u>type III medium</u> neuron morphologically resembled the type I medium neurons except that they possess little or no dendritic spines (Chang, 1981). These neurons are similar to the type II or type IV neuron described by Dimova et al., 1980) in the rat; the medium smooth cell of Kemp and Powell, 1971) in the cat and (the Aspiny III of DiFiglia et al., 1976). These cells similarly have local axon collaterals within striatum and are therefore considered to have a local integrative function (Chang, 1981; DiFiglia et al., 1976; Kemp and Powell, 1971).

The <u>type IV medium</u> neuron possessed a nucleus with a shallow indentation and a smooth somata. These neurons are distinguished from the type III medium cell by the presence of profusely branching dendrites.

This type of dendritic arrangement has been previously in the monkey by Fox (1971) as the "spidery aspiny neuron." The axon of these cells become myelinated 25 μ m from the soma (Chang, 1981). The type III and type IV medium neurons described by Chang (1981) have been considered by others to be one class of neuron and has been classically described as the medium aspiny neuron of the neostriatum. The basic difference as described above is that the type IV medium neuron has more dendrites than that of the type III medium neuron.

The <u>type V medium</u> neurons are characterized by a smooth soma and aspinous dendrites. The type V medium neurons have extensive radiating dendritic fields (up to 250 µm from the soma) which have shorter branching patterns (120 µm in the cat and 150 µm in the monkey). These cannot be easily differentiated from those neurons described by Kemp and Powell (1971; cat) and the Aspiny I neurons described by DiFiglia (1976; monkey). Recent reports have described neurons with radiating, beaded dendrites in the monkey (Rafols and Fox, 1979) and the rat (Dimova et al., 1980) possessing somatic and dendritic morphologies similar to this cell type.

The <u>small type</u> neuron was shown by Chang (1981) using the Golgi method to possess a defined axon which arborized locally within the dendritic field. The soma (somatic area = $< 100 \text{ sq. } \mu\text{m}$) of these neurons contain spines and a deeply invaginated nuclear envelope.

Ultrastructural Characteristics of Rat Neostriatal Neurons

The sources of major afferent to the striatum originate in the mesencephalic raphe, cerebral cortex, thalamus and substantia nigra. These synaptic inputs have been identified as asymmetrical in configuration (Kemp and Powell, 1971; Chung et al., 1977; Hassler et al., 1978; Hattori et al., 1973). The symmetrical synapses observed within the striatum are

believed to be derived from neostriatal interneurons and from the local axon collaterals of neostriatal efferent neurons (Chang, 1981; Wilson and Groves, 1980; Kemp and Powell, 1971; DiFiglia et al., 1980).

The two types of <u>large</u> neurons described by Chang (1981) are similar to those reported in other electron microscopic studies (Kemp and Powell, 1971; Pasik et al., 1976; DiFiglia et al., 1976). These neurons possess a deeply invaginated nucleus, dense bodies, numerous free ribosomes, rough endoplasmic reticulum, perinuclear Golgi complexes and numerous mitochondria. Type I large neurons lack somatic spines whereas the type II large neurons possess somatic spines. Additionally, the type II large neurons receive axosomatic synapses. The dendrites of these large neurons receive asymmetrical synapses containing medium to small-sized vesicles. Many of Chang's (1981) large neurons (type I and II) possessed myelinated axons suggesting that they are projection neurons (Fox et al., 1971). Studies using retrograde transport of HRP (Grofova, 1978) or virus particles (Bak et al., 1978) have shown that large neurons labeled following injections into SN indicating that some of these large neurons were projection neurons.

The type I medium neurons were found by Chang (1981) and Wilson and Groves (1980) to be the only medium type neuron possessing a smooth, round, unindented nucleus. These type I medium neurons are ultrastructurally very similar to the projection neurons retrogradely filled with HRP following injections into the globus pallidus (Chang, 1981). Recently, Somogyi and Smith (1979) using a combined retrograde HRP and Golgi-gold toned technique demonstrated that medium spiny neurons project to the substantia nigra. Intracellular HRP studies have identified the medium spiny type neurons as projecting to globus pallidus (Preston et al., 1980; Chang, 1981). The cytoplasm of these neurons contained numerous ribosomes

and mitochondria. Less frequently found were Golgi complexes, rough endoplasmic reticulum, and smooth endoplasmic reticulum. Numerous microtubules were observed scattered throughout the cytoplasm. Similar observations have been made by numerous investigators (Chang, 1981; Wilson and Groves, 1980; DiFiglia et al., 1976; Kemp and Powell, 1971). Additionally, an occasional dense body and cilium were observed (Chang, 1981; Rafols and Fox, 1976). Axosomatic synapses were always seen and were symmetrical. The primary dendrites were found receiving symmetrical synapses on the shafts of distal dendrites. Asymmetrical synapses were restricted to the dendritic spines. The terminal configuration was that of an asymmetrical synapse and thus originated from afferents to neostriatum. The axons of these medium type I neurons made symmetrical contacts within striatum (Wilson and Groves, 1980; Bishop et al., 1982; Chang, 1981) and globus pallidus.

The <u>type II medium</u> neuron was characterized by a deeply invaginated nuclear envelope. Additionally, these nuclei possessed an intranuclear rod (Dimova et al., 1980; Chang, 1981). The cytoplasmic constituents are similar to those of type I medium neurons. Numerous axosomatic synapses are found on the smooth somatic surface and the characteristic somatic spines. The dendritic shafts of these neurons received more axodendritic synapses than those seen in the type I medium neuron (Chang, 1981).

The type III medium neuron contained shallow nuclear indentations.

Dimova et al., (1980) suggested that these neurons contain intranuclear rods. The cytoplasm contained scarce profiles of rough endoplasmic reticulum and Golgi complexes which is similar to the type I medium neuron (Chang, 1981; Kemp and Powell, 1971).

The type IV medium neuron possessed a shallow nucleus and a similar distribution of cytoplasmic organelles as described for the type III medium neuron. The major difference between this cell type and that of the type I medium neuron is the lack of dendritic spines (Chang, 1981).

The <u>type V medium</u> neuron was characterized by the presence of a large indented nucleus. The cytoplasm contained a well-developed Golgi complex and numerous arrays of rough endoplasmic reticulum. The dendrites lack spines and are presumably similar to those aspiny neurons described by DiFiglia (1980). The synapses formed by this type V medium neuron were symmetrical. These synapses were observed on dendritic shafts (axodendritic) and neighboring somata (axosomatic).

The <u>small neurons</u> within the rat neostriatum have a deeply indented nuclear envelope and a thin rim of cytoplasm. Axosomatic synapses could be identified. The dendrites lacked spines. The axons as seen at the light level arise from the dendrites (Chang, 1981). As mentioned earlier, these neurons are rare.

A summary of the cytological features of neostriatal neurons has shown the most prominent and probably the only neostriatal projection neuron is that of the type I medium cell type or the medium spiny neuron. This cell type has the characteristics of possessing a smooth, round and unindented nucleus. There is a thin rim of cytoplasm around the nucleus and the dendrites are heavily laden with spines. Since this type I medium neuron or more commonly called the medium spiny neuron, is easily recognized by the criteria established by Chang (1981) and Wilson and Groves (1980), I shall follow these criteria for their identification at the light and electron microscopic level of immunocytochemically labeled neostriatal neurons. Additionally, using the criteria for the other cell types described by Chang (1981), I will be able to differentiate these

neurons from the type I medium spiny neuron.

B. Neostriatal Efferent Pathways

The major neostriatal efferent targets are well documented as the globus pallidus (GP) and the substantia nigra (SN). The following is a brief review of current knowledge of these pathways.

The <u>striato-pallidal</u> pathway has been shown to be topographically organized in mediolateral and dorsoventral and rostrocaudal directions (Wilson and Phelan, 1982; Szabo, 1962; Szabo, 1970; Szabo, 1981). These striato-pallidal axons are known to be thinly myelinated and to make symmetrical synapses within the pallidum (Fox and Rafols, 1975; Kemp, 1970). Recent evidence by Preston et al., (1980) has indicated that neostriatal projection neurons give rise to axon collaterals within GP before they enter the internal capsule. These projection neurons were found by Chang (1981) to consist of two classes of neurons as described above.

The striatonigral pathway terminates mainly in the pars reticulata and in reverse topographical organization as observed in the neostriatum (Grofova, 1979; Domesick, 1977; Bunney and Aghajanian, 1976; Grofova and Rinvik, 1970; Schwyn and Fox, 1974). These striatonigral fibers possess a distinct mediolateral distribution within the substantia nigra. The general pattern consists of the most ventral regions of neostriatum terminating dorsally within SN and dorsal regions of neostriatum terminating in the ventral regions of SN. Striatonigral fibers terminate as symmetrical type synapses within SN, similar to those made by striato-pallidal fibers within pallidum (Kemp, 1970; Grofova and Rinvik, 1970; Ribak et al., 1976; Chang, 1981).

C. Wheat Germ Agglutinin Utilized as a Axonal Tracer

In a recent report by Steindler and Bradley (1983), wheat germ agglutinin, N-[acetyl-³H] was found to be an efficient and sensitive retrograde marker. Injections of very small quantities of WGA were shown to generate significantly high concentrations of the retrograde marker within projection neurons. Previous reports (Steindler and Deniau, 1980; Steindler, 1982) have shown this axonal tracing method (WGA) to involve a minimal amount of fibers of passage at the injection site. The power of this axonal tracing technique is the ability to localize the WGA, N-[acetyl-³H] by either autoradiography or by immunocytochemical methods. This enables the identification of the projection neuron and to simultaneously identify the putative neurotransmitter localized within the same projection neuron (Lechan et al., 1981; Steindler and Bradley, 1983; Gros et al., 1977).

Recent biochemical evidence by Margolis (1981) has suggested that there are two different populations of wheat germ agglutinin that are transported. One population retrogradely transports while another population is anterogradely transported. This view prompted a biochemical investigation of the commercially available radiolabeled derivative of WGA, N-[acetyl-³H] from New England Nuclear, Inc.

Analysis of the native and the affinity purified derivative, WGA preparations were needed to determine if there was indeed two fractions of WGA, an 18,000 dalton protein and a set of smaller fragments less than 12,000 daltons. In a previous report Margolis (1981) utilized ¹²⁵I-labeled WGA and found by biochemical analysis that there were two fractions of WGA. The first fraction was the radiolabeled WGA and was determined only to be transported in an anterograde direction. It was suggested that a nonspecific fraction was being transported in a retrograde fashion.

Biochemical analysis of WGA, N-[acetyl-³H] (Steindler and Bradley, 1983) has shown that the presence of either a dimeric form in one SDS-PAGE or a monomer form in another PAGE system which was dependent upon the SDS concentrations.

D. Neurotransmitter Candidates Within the Neostriatum

Neurotransmitter candidates must meet certain criteria before being accepted as definitive neurotransmitters. The presynaptic criteria are as follows: 1) the neuron must contain the necessary enzyme for the production of the neurotransmitter candidate; 2) the neurotransmitter must be localized within synaptic vesicles or stored in the presynaptic terminal; and 3) the neurotransmitter must be released when either chemical or electrical stimulation is applied to the neuron (Mulder, 1982; Erulker, 1978).

At present a necessary first step to show these neurotransmitters within neurons is by either immunocytochemical analysis or biochemical-lesion studies and these have been the major methods of localizing these neurotransmitter candidates within neostriatum. The following is a brief review of the neurotransmitter candidates and their origin and distribution within striatum.

Acetylcholinesterase has been shown by immunohistochemical techniques (Butcher and Bilezikjian, 1975; Butcher and Butcher, 1974), cholineacetyl-transferase localization (Hattori and McGeer, 1974; Kimura et al., 1980; Mao et al., 1977) and biochemical isolation techniques to be localized within striatum (Fonnum et al., 1978; Fonnum and Walaas, 1979). The acetylcholine striatal neurons are thought to be of the large type and are probably the interneurons within neostriatum.

Cholecystokinin has been isolated by biochemical methods from neostriatum and the exact location within a distinct neuronal type has not been resolved yet (Robberecht et al., 1978).

Dopamine has been localized within striatum by various biochemical and histological techniques. Dopamine has been well documented to originate from the nigrostriatal pathway (Fallon and Moore, 1978; Fibiger et al., 1972; Fuxe, 1965; Giorquieff et al., 1978; Hattori et al., 1973; McGeer et al., 1971; Ross and Reis, 1974; Seeman, 1981; Ungerstedt et al., 1982 for a review; Verserg et al., 1976). Evidence by Giorguieff et al., (1978) has shown GABA to cause the release of dopamine within neostriatal slice preparations. It was also thought that dopamine is deficient in Parkinson's disease and alleviation of the symptoms are caused by administration of the precursor to dopamine, namely L-DOPA (Birkmayer and Hornykiewicz, 1962; Carlsson, 1958). Ungerstedt and Arbuthnott (1970; 1971) concluded from animal experiments that by lesioning the nigrostriatal pathway they found aberrant animal behavior and it was worsened by the administration of amphetamines. It was the work of Iversen (1977) that suggested that the nigrostriatal system was involved in motor arousal while the dopamine containing mesolimbic areas are involved with the motivational arousal (Rondrup and Munkvad, 1967).

Glutamate within striatum is thought to originate from the corticostriatal pathway (see Cotman et al., 1981). The major isolation techniques utilized so far have either been biochemical (Divac et al., 1977; Fagg and Lane, 1979; Fonnum et al., 1978; Kravitz, 1967; McGeer et al., 1977; Storm-Mathisen, 1977; Walaas, 1981) or pharmacological (Nistri and Constanti, 1979). Recent advances into production of an antibody against glutamate will allow for more precise localization within striatum (Storm-Mathisen et al., 1983).

Norepinephrine has been localized within the neostriatum by biochemical methods (Fuxe, 1965; McGeer et al., 1971; Versteeg et al., 1976) and pharmacological analysis (Aghajanian and Bloom, 1967). The exact origin of the noradenalin is not known nor is the function.

Neurotensin has recently been biochemically analyzed by Leeman (1982) and immunocytochemically localized within the striatum. Earlier works isolated a neurotensin-like compound biochemically from the neostriatum (Uhl and Snyder, 1967). It has also been shown by immunohistochemical techniques that neostriatum contains neurotensin-like reactivity (Kobayashi et al., 1977). The exact effect and location within striatum has yet to be resolved.

Serotonin (5-hydroxytrytamine) has been localized within striatum by biochemical techniques (Carlsson, 1958) and more conventionally by a histochemical technique (Amin et al., 1954; Bobillier et al., 1976; Fuxe and Johnson, 1974; Ternaux et al., 1977; van der Kooy, 1979). Evidence was shown the dorsal raphe to be the source of serotonergic input to the striatum (Bobillier et al., 1976). The electrophysiological evidence of the effect of serotonin within neostriatum was shown by these investigators to be excitatory (Park et al., 1982; Vander Maelen et al., 1979).

Somatostatin has been localized within neostriatum by immunohistochemical methods and the exact effect has not been resolved yet (DiFiglia and Aronin, 1982; Kobayashi et al., 1977).

Vasoactive intestinal peptide (VIP) has also been localized within neostriatum and a possible mechanism of action is not known (Fuxe et al., 1977; Giachetti et al., 1977). VIP has been localized only on labeled terminals within striatum so far. The exact origin of these terminals has not been resolved.

The next three neurotransmitter candidates have received the most attention and are the basis for my studies. These are the 1) enkephalins (methionine or leucine), 2) substance P; and 3) glutamate decarboxylase (a GABA marker). Descriptions of these neurotransmitter candidates and their localizations are detailed below.

E. Immunocytochemistry: Application to the Enkephalins, Substance P and GAD

Any immunocytochemical study has to consider the variables involved for determination of antigenic determinants within any cell or within plasma membrane bound compartments. In recent reviews of neuroimmunocytochemical investigations of the localization of neurotransmitters (Pool et al., 1982; Moriaty, 1973; Sternberger, 1974), the importance of the specificity of the antibody for the antigen has been emphasized. Several laborious tests must be performed before the initial analysis of tissue localization. The first is to determine whether the antibody does indeed form a precipitant band with the antigen or tissue. The second is to determine whether the rabbit anti-neurotransmitter forms a precipitant band with the rabbit peroxidase-anti-peroxidase utilized in the intensification of the antigenic site. Finally, one must confirm that the rabbit peroxidase-anti-peroxidase does not absorb to the tissue in a random fashion (i.e. non-specific binding). If there is any non-specific binding occurring in the tissue preparations, the study becomes invalid.

Another important aspect of immunocytochemistry is the intensification of the antigenic site. The most widely adopted method is that of Sternberger (1974) utilizing the unlabeled antibody enzyme technique. It has become apparent from recent investigations and our own

personal usage of the PAP technique, that there are numerous variances in results obtained with the PAP method. In the present study, I shall compare the PAP method with that of the new avidin:biotin technique as outlined by Hsu et al., (1981). The problem that is encountered with the PAP method in neuroimmunocytochemical investigations could be the relative size of the PAP molecule, which reaches a million daltons. The other limiting factor of the PAP method may be the impenetrability of the 3,3'diaminobenzidine within the vibratome sections. These variabilities will be examined in this study.

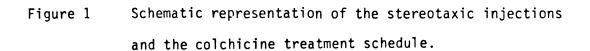
The neostriatum (caudate-putamen) contains the highest concentration of enkephalin, an opiod pentapeptide, within the central nervous system (Buijs, 1982; Elde et al., 1976; Osborne et al., 1978). The enkephalins, which are related to the morphine-line pentapeptides, have been found in substantial quantities within the neostriatum (Swaab, 1982) as well as localization of opiate receptors within neostriatum (Herkenham and Pert, 1980; 1981). Herkenham has recently demonstrated the existence of opiate receptors within striatum that are sensitive to the enkephalin antagonist, naloxone. Recently, a report on the immunohistochemical localization of leucine enkephalin in monkey basal ganglia (DiFiglia et al., 1981) localized immunoreactivity within medium-sized neurons with ultrastructural characteristics similar to type I medium (spiny) neurons. Evidence for a neurotransmitter role of enkephalin has been suggested by the \underline{in} \underline{vitro} release of enkephalin in caudate slice preparation after K^{\dagger} and veratridine application (Henderson et al., 1978). Additionally, met-enkephalin inhibits spontaneous activity of caudate neurons and their late phase responses to cortical stimulation (Fry and Zieglgansberger, 1979). An earlier work on non-calchicine treated animals was shown to exhibit met-enkephalin immunoreactivity within medium spiny neurons

(Pickel et al., 1980).

Substance P was found to be in highest concentrations within the substantia nigra (Brownstein et al., 1976). As mentioned earlier, the striatonigral pathway has been well documented (see Grofova, 1979 for review) and it has been postulated that these striatonigral neurons utilize substance P as a neurotransmitter (DiFiglia et al., 1982). Substance P has been iontophoretically applied to the substantia nigra and found to cause an excitatory state within nigra (Fry and Zieglgansberger, 1979; Zieglgansberger, 1982). The exact mechanism for the synthesis of substance has not yet been resolved. It has been shown that substance P can be released from striatal slices by capsaicin (Gamse et al., 1979). Thus, it has fulfilled one criteria of a neurotransmitter candidate. The second is the localization within terminals or neurons of origin. This criterion was recently analyzed by DiFiglia et al., (1982) by immunohistochemical methods in substantia nigra. They were able to show the localization within asymmetrical synapses within the SN neuropil. A recent report by Bolam et al., (1983) has shown substance P to be localized within medium aspiny and medium spiny neurons. The terminals possessing immunoreactivity formed symmetrical synapses. Previous reports on substance P localization has been either by biochemical lesion studies (Gale et al., 1977; Hong et al., 1977) or immunohistochemical methods (Amin et al., 1954; Brownstein et al., 1976; Cuello et al., 1977; Cuello and Kanzawa, 1978; Hokfelt et al., 1977; Jessell et al., 1978; Pelletier et al., 1977; Pickel et al., 1979; Scully et al., 1978; Walker et al., 1976). There has been no direct visualization of the projection neuron and its putative neurotransmitter localized within the same neuron.

The neostriatum has been shown to contain gamma aminobutyric acid and its synthesizing enzyme, glutamic acid decarboxylase (GAD). Perry et al., (1973) have shown a decrease in GABA concentrations in Huntington's Chorea patients, thus it has become extremely important to understand GABA's function within the normal neostriatum. It is of interest that these Huntington patients are treated with either haloperidol or by the phenothiazines (blocks dopamine receptors) and resergine (dopamine depleter). The most widely prescribed anxiolytic drug in America, the benzodiazepines, potentiate the effects of GABA (Haefely et al., 1978). The exact mechanism is not yet known. Biochemical lesion studies have identified neostriatum as the source of GABA to the globus pallidus and substantia nigra (Fonnum et al., 1978; Fonnum et al., 1974; Gale et al., 1977; Kim et al., 1971; Storm-Mathisen, 1977). The majority of the cellular localization studies have employed immunocytochemical localizations of GAD (Ribak et al., 1976; Ribak et al., 1977; Ribak et al., 1978; Ribak et al., 1979) or a histochemical localization of the digestive enzyme for GABA, GABA-transaminase (Hattori et al., 1973; McGeer and McGeer, 1975; McLaughlin et al., 1974; Vincent et al., 1982). The most recent development has been the production of an antibody directly against GABA itself (Storm-Mathisen et al., 1983). A recent study by Bolam et al., (1983) utilized direct injections of ³H-GABA into striatum combined with Golgi-gold toning to show that the neostriatal neurons with GABA are of the medium aspiny type which have been considered as interneurons. It was the work of Ribak et al., (1979) that showed GAD immunoreactivity within medium-sized neurons and dendritic spines. Ribak et al., (1979) suggested that these medium-sized neostriatal neurons were characteristic of the medium spiny.

Chapter 2: Material and Methods


A. Labeling of Neostriatal Projection Neurons

In order to retrogradely label neostriatal projection neurons, WGA, $N-[acety-^3H]$ was stereotaxically injected into substantia nigra or globus pallidus (Figs. 1 and 2).

A total of 26 male Sprague-Dawley rats weighing 250-300 grams were anesthetized with nembutol (50 mg/kg) administered intraperitoneally and placed into a stereotaxic holder (David Kopf Instruments). Following small hole dorsal craniotomy, pressure injections (.2 μ l) of wheat germ agglutinin, N-[acetyl-³H] (New England Nuclear) were stereotaxically placed into either substantia nigra or globus pallidus using a glass pipette attached to a Hamilton syringe. After 48 hours post-injection period, colchicine (5 μ l, 10 μ g/ml) was injected stereotaxically into the contralateral ventricle. The animals were allowed to survive an additional 48 hours before being processed for light microscopy.

The animals were perfused intracardially with 50 ml of a microtubule stabilizing buffer (MSB) containing lidocaine (1 ml/100 ml buffer) and heparin (25,000 units/100 ml buffer) for 10 minutes followed by the fixative (Bradley et al., 1978). The MSB is known to be effective as a biochemical isolation buffer for brain microtubules (Shelanski et al., 1973) and consists of 0.1 mM-MES (2[N-morpholino]-ethane sulfonic acid), 1 mM EGTA (ethylene glycol-bis-[beta-amino-ethyl-ether]N, N'-tetra-acetic acid), 1 mM GTP (guanosine 5-triphosphate) and 0.1 mM MgCl₂. This buffer is extremely effective in preserving neurotransmitters within synaptic vesicles due to the EGTA, MgCl₂ and GTP (Mulder, 1982). Additionally, antigenic preservation is maintained by lowered aldehyde concentrations in the fixative (Sternberger, 1973).

The fixative consisted of 1% glutaraldehyde and 1% paraformaldehyde in MSB (pH 6.9(at 37° C. A total of 800 mls was perfused through each

INJECT RAT BRAIN WITH COLD or HOT WHEAT GERM AGGLUTININ (SUBSTANTIA NIGRA or GLOBUS PALLIDUS)

WAIT FOR 48 HOURS

INJECT COLCHICINE INTO CONTRALATERAL VENTRICLE

WAIT FOR 48 HOURS

PERFUSE ANIMAL WITH 1% GLUT., 1% PARAFORM. IN MES BUFFER

HEMI-SECTION BRAIN AND EMBED IN GLYCOL METHACRYLATE OR VIBRATOME SECTION OR FROZEN SECTION

INCUBATE SECTIONS FOR PAP OR IMMUNOFLUORESCENCE

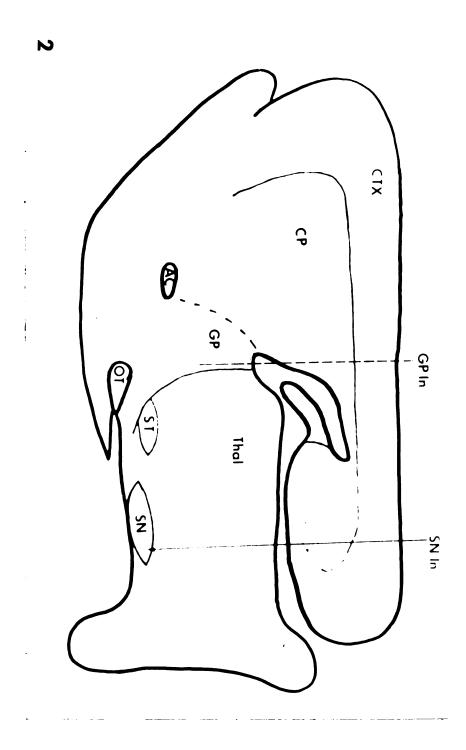

1

Figure 2 Diagramatic representation of the rat brain where the stereotaxic injection of WGA is into globus pallidus (GPIn) and substantia nigra (SNIn).

CTX (cortex); CP (caudate-putamen); GP (globus pallidus); Thal (thalamus); ST (subthalamus);

AC (anterior commissure); OT (optic tract);

SN (substantia nigra).

animal. The brains were removed from the skull, immersed for an additional hour in the same fixative and extensively washed in MSB. The brains were then either hemisectioned and embedded in glycol-methacrylate or sectioned on a vibratome at a thickness of 60 μ m in MSB.

1. Colchicine treatments

Recent studies on the localization of CNS neurotransmitters using immunocytochemical techniques have employed colchicine injections into the lateral ventricles in order to increase neurotransmitter content within the somata of neurons (Ribak et al., 1979 and Hokfelt et al., 1977). These colchicine injections have not always allowed preservation of neuronal morphology or its antigenic determinants (i.e. cellular enzymes). In part, this may be due to the buffers routinely utilized and their aldehyde concentrations. In this study we chose to employ a new buffer (MSB) and lower the aldehyde concentrations used in fixative of colchicine treated animals.

Two white Sprague-Dawley rats for colchicine treatment and two white Sprague-Dawley rats untreated were utilized for comparison. Five µls of colchicine (10 µg/ml) was stereotaxically injected into both lateral ventricles over a period of 25 minutes. After 48 hours post-injection period, the rats (untreated and colchicine treated) were perfused, via the left ventricle of the heart, with 300 mls of fixative (1% paraformaldehyde, 1% glutaraldehyde in a microtubule stabilizing buffer-MSB). Brains were removed from the skull and placed in the fixative for an additional hour. A block of tissue containing striatum was excised from the brain, washed with MSB and post-fixed in 1% osmium tetroxide in 0.1 M cacodylate buffer (pH 7.2) for 1 hour at 4°C. The blocked striatal tissue was dehydrated in graded ethanols, rinsed twice in propylene oxide (15 min.) and embedded in Epon-Araldite. Ultrathin

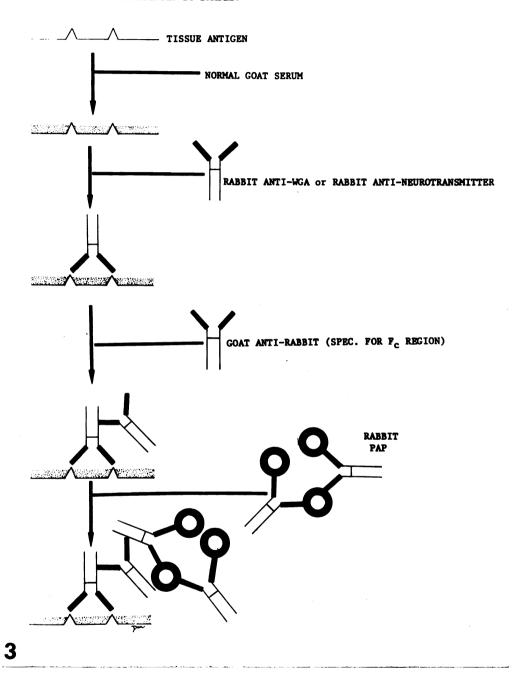
sections (80 nm thick) were cut on an LKB-V ultramicrotome and stained in lead citrate and viewed on a JEOL 100CX electron microscope.

B. Antibody Purification and Analysis

Antibodies to methionine enkephalin, leucine enkephalin and substance P were bought from Immunonuclear, Inc. and subsequently purified so as to contain only immunoglobulins (Bradley et al., 1978). Specificity of the antibodies was tested by immunoelectrophoresis, immunodiffusion (Ouchterlony) or rocket gel immunoelectrophoresis. After purification, each antibody was precipitated only with its specific antigen (Sigma) (e.g. - anti-methionine enkephalin precipitated only with methionine enkephalin). Antibodies to glutamic acid decarboxylase (GAD) and gamma aminobutyric acid transaminase (GT) were obtained from Dr. J.-Y. Wu (Baylor College of Medicine, Texas). Rat brain neostriatal synaptosomal preparations were used in testing GAD and GT antibody specificity.

Immunoelectrophoresis of GAD and GT antibodies with brain homogenate from white Sprague-Dawley rats resulted in a single precipitant band indicating cross reactivity with the rats utilized in our experiments.

Immunocytochemical localization of WGA was accomplished by a rabbit antibody to WGA purified to an IgG fraction (a gracious gift of Dr. Myron Lyon, Wayne State University). All antisera used in these experiments were free of complement and albumin (Bradley et al., 1978).


C. Immunocytochemical Procedures - Glycol Methacrylate Sections
Glycol methacrylate sections (4-6 µm thick) of striatum were employed
for use in identification of projection neurons and this putative
neurotransmitters. Glycol methacrylate sections, mounted on cleaned glass
slides, were initially incubated in 10% normal goat serum for 15 minutes

(4^OC) to mask all low affinity binding sites. The goat serum was drawn off and primary antiserum (WGA, ME, LE, GAD, GT or SP), 1:500 dilution in fresh 0.05 M tris buffered saline at pH 7.2 (TBS) was then applied for a period of 12-36 hours at 4° C. Sections were extensively washed and 30% goat-anti-rabbit (specific for the rabbit F_c portion of the IgG molecule) conjugated to fluorescein was incubated for 2 hours at 40°C. The sections were washed three times in TBS, rinsed three times with 1% goat-anti-rabbit, washed again with TBS and re-incubated with purified rabbit anti-WGA for 6 hours at 4°C. The sections were washed with TBS three times and incubated 2 hours with 30% goat-anti-rabbit in TBS. Finally, the sections were coverslipped and viewed in a Leitz Orthoplan light microscope with appropriate excitation radiation and filters (fluorescence: blue radiation with BG38, BG12, TK495 and K495 filters; rhodamine: green radiation with 560, BG36, TK580 and K580 filters). Several GM sections were double labeled for the co-existence of two neurotransmitters within the same neuron. GM sections were incubated in GAD antiserum for 12 hours at 4°C. The sections were washed with TBS, incubated with goat-anti-rabbit conjugated to fluorescein for 4 hours and washed extensively with TBS (seven times - 8 min. each). The sections were rinsed three times with unconjugated goat-anti-rabbit, incubated with 10% normal goat serum (10 min.), drained and incubated with either methionine or leucine enkephalin for 4 hours. Sections were then washed in TBS, incubated with goat-anti-rabbit conjugated to rhodamine for 2 hours and then washed in TBS. Sections were then coverslipped and viewed in a Leitz Orthoplan with appropriate radiation and filters (see above for details).

A series of several GM sections were alternatively incubated with a 1:1,000 dilution of primary antiserum (WGA, ME, LE, GAD, GT or SP) for

Figure 3 Diagramatic representation of the unlabeled antibody enzyme technique as modified by Bradley (1973). Tissue is incubated with normal goat serum to mask the low affinity binding sites. Tissue is then incubated with rabbit anti-neurotransmitter or anti-WGA. Tissue is then washed, incubated with goat-anti-rabbit (specific for the IgG molecule and the $F_{\rm C}$ region), washed and incubated with rabbit-peroxidase-anti-eproxidase (PAP). This reaction is then visualized with 3,3' diaminobenzidine.

UNLABELED ANTIBODY ENZYME TECHNIQUE AS MODIFIED BY BRADLEY

more precise morphological identifications of cell types. Sections were washed with TBS, incubated with a 1:20 dilution of goat-anti-rabbit (specific for F_C region on the rabbit IgG molecule) for 4 hours at 4^O C and washed three times with TBS. Sections were then incubated with rabbit-peroxidase-anti-peroxidase (1:50) for 2 hours at 4^O C, washed in 0.05 M tris (pH 7.2) and incubated with 3,3'-diaminobenzidine (DAB, 25 mg/ml buffer) for 10 minutes (Fig. 3). Sections were then incubated with fresh DAB containing 0.01% hydrogen peroxide for 15 minutes, washed with tris buffer three times and post-fixed in 0.1% osmium tetroxide in distilled water (Bradley et al., 1978). Sections were then coverslipped and viewed unstained.

Vibratome sections (40-60 μm thick) were incubated in the modified peroxidase-anti-peroxidase (PAP) technique as outlined above for GM morphological slide preparations.

Immunocytochemical methods were performed on brains where the injection site was visualized. One brain was serially vibratome sectioned (50 μm) for localization of the globus pallidus injection site. These sections were run for immunocytochemical localization of WGA (see above for details) and then subsequently dipped in NTB2, nuclear emulsion (Kodak). These sections were exposed for 6 weeks and then developed. One brain was sectioned for substantia nigra injection site at 6 μm (GM sections) and dipped in nuclear emulsion and allowed to expose for 6 weeks. These sections were then developed and counterstained. Tissue sections utilized for double labeling (projection neuron-transmitter) were selected from a suitable injection site case. These brains were observed in a Leitz Orthoplan light microscope.

antigen.

Sections were rinsed with three washes of fresh TBS (21 min.) and incubated with biotinylated goat-anti-rabbit (1:100) for 2 hrs. at 4° C with constant agitation. Sections were again rinsed with fresh TBS (3X - 21 min.) and re-incubated with avidin:biotinylated horseradish peroxidase complex (Hsu et al., 1981) (Vector Lab., Inc.) for 3 hrs at 4°C with constant agitation (Fig. 4). Sections were rinsed three times (7 min. each) with fresh tris (0.05 M) and incubated with 3'3-diaminobenzidine (0.25 mg/ml) in fresh 0.05 M tris (pH 7.2) for 15 min. at 4°C with constant agitation. The DAB solution was decanted and fresh DAB was added containing 0.01% hydrogen peroxide for 20 min. at $4^{\circ}\mathrm{C}$ with agitation. DAB- $\mathrm{H_2O_2}$ solution was drawn off and the sections were rinsed three times with tris buffer. The tris buffer was drawn off and replaced with 0.1 M cacodylate buffer (pH 7.2) for 20 min. The cacodylate buffer was then replaced with 1% osmium tetroxide in 0.1 M cacodylate buffer for 1 hr at 40°C. The sections were rinsed with cacodylate buffer, followed by a rinse in physiological saline (0.85% NaCl-aqueous) and en bloc stained with 0.25% uranyl acetate in physiological saline, dehydrated in graded ethanols and pure propylene oxide (2 changes). Sections were embedded in Epon-Araldite and cut on a LKB-V ultramicrotome with a diamond knife. Sections were cut to a thickness of 80 nm and viewed unstained in a JEOL-100CX electron microscope at 60 KV.

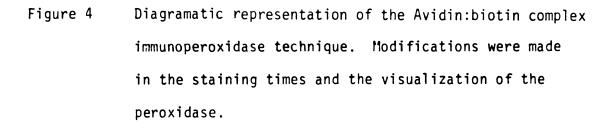
Control sections consisted of either precipitation of the antibody with excess antigen or substitution of normal rabbit serum for the primary antibody. These sections were run parallel to the previously described sections in order to check for the specificity of the avidin-biotin complex technique as well as the antibody sensitivity and specificity.

D. Immunocytochemical Procedures: Ultrastructural Techniques

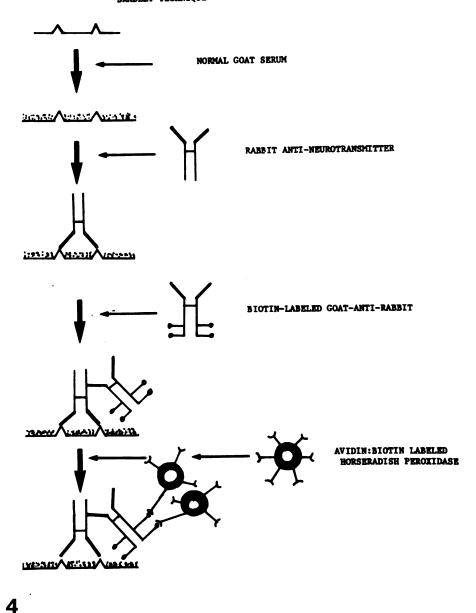
1. Animals

Eight white Sprague-Dawley rats weighing 250-300 grams were used. Animals were anesthetized with nembutol (50 mg/kg) administered intraperitoneally and placed in a stereotaxic holder (David Kopf Instruments). After performing a small dorsal craniotomy, 5 μ l of colchicine (10 μ g/ml) was stereotaxically injected into each lateral ventricle. After 48 hours the animals were deeply anesthetized with nembutol (75 mg/kg) and perfused intracardially with 50 ml of a microtubule stabilizing buffer (MSB) containing lidocaine (1 ml/100 ml buffer) and heparin (25,000 units/100 ml buffer) for 10 minutes followed by fixative.

As mentioned earlier, MSB has a unique stabilizing affect on ultrastructural preservation and details of this buffer are outlined above. The fixative consisted of 1% glutaraldehyde and 1% paraformaldehyde in MSB (pH 6.9) at 37° C. Brains were removed from the skull, hemisectioned and immersed in MSB. The hemi-brains were sectioned on a vibratome (50 µm thick) and stored in MSB.


2. Vibratome Section Analysis

Vibratome sections were incubated with 10% normal goat serum for 15 min. to mask low affinity binding sites. Sera were drawn off and sections incubated 12-36 hrs. with purified rabbit anti-neurotransmitter (met-enk, SP or GAD) diluted 1:500 in fresh 0.05 M tris buffered saline (TBS) at pH 7.2 and at 4°C. The purification and specificity of these antibodies has been previously discussed. In summary, anti-met-enk was found to react only with met-enk and not with either leucine enkephalin or substance P. GAD and SP antibodies only reacted with their specific


antigen.

Sections were rinsed with three washes of fresh TBS (21 min.) and incubated with biotinylated goat-anti-rabbit (1:100) for 2 hrs. at 40c with constant agitation. Sections were again rinsed with fresh TBS (3X - 21 min.) and re-incubated with avidin: biotinylated horseradish peroxidase complex (Hsu et al., 1981) (Vector Lab., Inc.) for 3 hrs at 40C with constant agitation (Fig. 4). Sections were rinsed three times (7 min. each) with fresh tris (0.05 M) and incubated with 3'3-diaminobenzidine (0.25 mg/ml) in fresh 0.05 M tris (pH 7.2) for 15 min. at 40°C with constant agitation. The DAB solution was decanted and fresh DAB was added containing 0.01% hydrogen peroxide for 20 min. at $4^{\circ}\mathrm{C}$ with agitation. DAB-H₂0₂ solution was drawn off and the sections were rinsed three times with tris buffer. The tris buffer was drawn off and replaced with 0.1 M cacodylate buffer (pH 7.2) for 20 min. The cacodylate buffer was then replaced with 1% osmium tetroxide in 0.1 M cacodylate buffer for 1 hr at 40°C. The sections were rinsed with cacodylate buffer, followed by a rinse in physiological saline (0.85% NaCl-aqueous) and en bloc stained with 0.25% uranyl acetate in physiological saline, dehydrated in graded ethanols and pure propylene oxide (2 changes). Sections were embedded in Epon-Araldite and cut on a LKB-V ultramicrotome with a diamond knife. Sections were cut to a thickness of 80 nm and viewed unstained in a JEOL-100CX electron microscope at 60 KV.

Control sections consisted of either precipitation of the antibody with excess antigen or substitution of normal rabbit serum for the primary antibody. These sections were run parallel to the previously described sections in order to check for the specificity of the avidin-biotin complex technique as well as the antibody sensitivity and specificity.

AVIDIN:BIOTIN IMMUNOCYTOCHEMISTRY BRADLEY TECHNIQUE

33

E. Wheat Germ Agglutinin: Biochemical Analysis

Biochemical analysis of wheat germ agglutinin (WGA) was performed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) using two distinct and separate methods. SDS-PAGE methods used a discontinuous system with reduced concentrations of SDS as outlined by Neville (1971) and Laemmli (1970). SDS-PAGE analysis was performed on the native WGA (obtained from New England Nuclear, same batch used to prepare the acetylated and radiolabeled acetylated preparations), column purified WGA, [acetyl-3H]-N-acetylated (0.8 mCi/ml, 55 Ci/mmol, in Tris buffer pH 7-0) (herin referred to as WGA, N-[acetyl- 3 H]) and a 2X concentrated WGA, N-[acetyl- 3 H] preparation. Following acetylation, the WGA was purified by affinity chromatography in a N-acetylglucosamine-Sepharose column and then extensively dialyzed against phosphate buffer by New England Nuclear. Molecular weight standards were used for comparison and consisted of the following: Cytochrome C (12,300 daltons); Lysozyme (14,300 daltons); Beta-lactoglobulin (18,400 daltons); Alpha-chimotrypsinogen (25,700 daltons) and ovalbumin (43,000 daltons). These molecular weight standards were obtained from Bethesda Research Laboratories. There were certain modifications applied to the SDS-PAGE discontinuous systems. The Neville system consisted of 0.1% SDS and 11% polyacrylamide in the running gel, using a sample buffer (pH 8.8) containing 1% SDS in .01 M tris-acetate buffer with 0.001% EDTA and 0.1% 2-mercaptoethanol. The Laemmli system consisted of 0.1% SDS and 13% polyacrylamide in the running gel using a sample buffer (6.8) containing 2% SDS in 0.0625 M tris base with 10% glycerol and 5% 2-mercaptoethanol. Both systems had 3% polyacrylamide in the stacking gel. The two systems were compared for their isolation

characteristics of the WGA polypeptide. These two systems were chosen for their low molecular weight isolation characteristics and differ in the results obtained through use of dissimilar concentrations of SDS, polyacrylamide and reducer. Fluorography was also performed on the two SDS-PAGE systems for the detection of WGA, N-[acety1-3H] bands and comparison with the Coomassie brilliant blue staining patterns. The wet gels were immersed in EN³HANCE (New England Nuclear) and reacted with continuous agitation for one hour. The EN³HANCE was then poured off and precipitated with distilled water for one hour. The gels were dried, overlaid with X-ray film (Kodak X-Omat XAR-5), and exposed for 1.5 hrs - 6 days at which time the films were then developed in D-19 for 5 min. Finally, freshly run polyacrylamide gels were cut into 2 mm sections and incubated in 10% hydrogen peroxide overnight to dissolve the gels, and then counted in a Beckman LS 7,000 Scintillation Counter. The counts from both concentrated and nonconcentrated WGA, N-[acetyl-3H1 preparations were plotted and compared to controls (vials containing samples of cold and hot acetyl-WGA) and background.

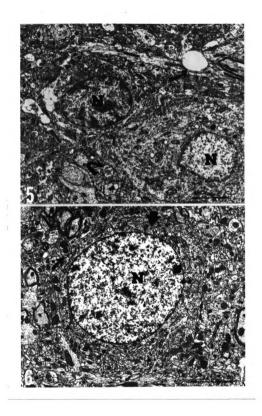
Chapter 3: Results

A. Colchicine Treatment vs. Normal Morphology

It was necessary in the present ultrastructural immunocytochemical study to evaluate the effects of colchicine on normal morphology.

The reason for such a study is that the neostriatal tissue undergoes numerous buffer washes, incubations with antiserum that are foreign to the striatal tissue and changes in the osmolarity of the buffers. It therefore became imperative to observe the ultrastructual characteristics of the neostriatal neuropil and the neurons' response to just the colchicine treatment.

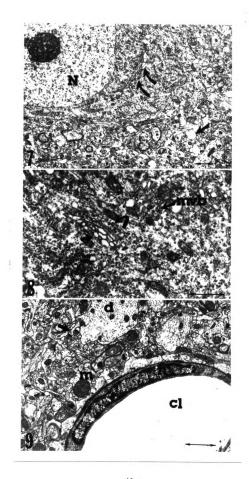
It was generally observed that the neuropil was occasionally swollen and synaptic boutons appeared disrupted (Figs. 5 and 7). Random samples from different regions of striatum were observed for the effect of colchicine. It was seen that the most widely affected cell type was those of the glial cells. The normal morphology of the untreated rat neostriatum in comparison (utilizing the MSB and low aldehyde concentrations) was morphologically intact and exhibited excellent morphological preservation (Figs. 6 and 9).


The effect of colchicine on the cytoplasm of neurons was noted to have an effect on several organelles and membrane bound structures. It was observed that there was an increase in the number of coated vesicles, a disruption in the Golgi apparatus and a noticeable increase in the number of multivesicular bodies (Fig. 8). Observations near the lateral ventricle (dorsal striatum) were seen to include an increase in the number of astrocytes, swelling in the axons and dendrites and an apparent disruption in the synaptic boutons (Fig. 10). It is not shown here but there was an apparent influx of neutrophils within the striatal neuropil presumably for cellular repair.

- Figure 5 Low magnification of colchicine treated rat neostriatum.

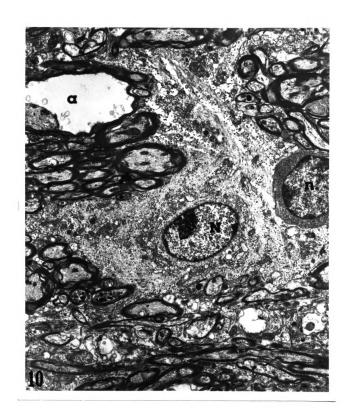
 Numerous swollen profiles are seen within the neuropil

 (arrow). A swollen synaptic terminal is seen synapsing


 onto a neuron (curved arrow). Nucleus (N). Bar = 2µm.
- Figure 6 A neostriatal neuron from a untreated rat fixed with the MSB and low aldehyde is shown to exhibit good morphological preservation. A terminal (arrow) is seen synapsing onto a medium-sized neuron(N). The cytoplasm contains numerous ribosomes, few Golgi profiles (arrowhead) and mitochondria. Bar = $2 \mu m$.

- This micrograph is of a colchicine treated rat revealing a neostriatal neuron (N) containing swollen and disrupted Golgi complexes (curved arrows).

 The neuropil appears swollen (arrow).


 Bar = 1um.
- Figure 8 The cytoplasm of a colchicine treated neostriatal neuron is seen to contain multivesicular bodies (MVB), swollen Golgi complex (arrow) and numerous coated vesicles (curved arrow). Bar = 1μ m.
- Figure 9 Neuropil from a untreated neostriatum is seen to contain a spine (arrow) emerging from a dendrite (D). The endothelial cell on the capillary (cl) is observed to be intact. Mitochondria (M). Bar = 1μ m.

This micrograph is taken from the dorsal striatum adjacent to the ventricular injection site and reveals that the neuropil lacks organization and continuity.

Swelling has occurred within a myelinated axon (a).

Remnants of a neuron (n) and an oligodendrocyte (n) can be seen. Bar = 2 um.

In contrast, the untreated rat neostriatum was found to exhibit a clear resolution of neuronal appearance (fig. 6) and an excellent preservation of the neuropil (fig. 9). Observations of the capillaries within the untreated rat neostriatum exhibited the endothelial cells to be intact without any noticeable changes in their plasma membranes or cytoplasmic constituents (fig. 9).

B. Wheat Germ Agglutinin

The results from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of wheat germ agglutinin (WGA) and radiolabeled derivatives of the lectin are shown in Fig. 11. In lanes 1 through 5 are results obtained employing the Laemmli discontinuous SDS-PAGE which was modified to contain 13% polyacrylamide. In lane 1 are the molecular weight standards. Lane 2 contains the native WGA which reveals several major bands. One band is around 20,000 daltons, another is 18,000 daltons, and there appear to be multiple bands between 18,000 and 14,000 daltons. The banding pattern of WGA appears broader than that of the molecular weight standards seen in lane 1 possibly due to glycosylation of these proteins as well as an intentional overloading of the gels in order to look for the presence of low molecular weight species and rule out contamination while examining the homogeneity of the lectin preparations. In lane 3 is cold N-acetylated WGA (made from the native WGA seen in lane 2 using the acetic anhydride method and affinity-purified in a N-acetylglucosamine Sepharose column at New England Nuclear) which was obtained to check the column purification as well as for use in comparison with the radiolabeled derivative. A major band is visible in lane 3 at 18,000 daltons which can also be seen in lane 4 which shows Coomassie blue staining of the affinity-purified radiolabeled derivative (i.e. WGA, N-[acety]-3H], and in addition, there appear to be a few faintly stained minor bands above 18,000 daltons in both lanes. The fluorograph from lane 4 is shown in 5 which, in addition to showing inseparable bands at and above 18,000 daltons, reveals the presence of a band at approximately 36,000 daltons. Clearly there are no other polypeptides which appear to have migrated below 18,000 daltons in both Coomassie blue stained gels and fluorographs from these gels of WGA,

N-[acety1-3H].

We also decided to employ a second discontinuous SDS-PAGE system similar to that described by Neville (1971) that yielded better separation of polypeptides between 18,000 and 43,000 daltons when compared to the previously described system (compare molecular weight standards shown in lane 8 to those of lane 1 where a poorer separation between 18,000 and 12,000 daltons can also be seen with the Neville system). In lane 6 are the same molecular weight standards seen in lane 1. Lane 7 again shows the Coomassie blue stained image from the native WGA. The appearance of banding here is quite different from that seen using the Laemmli system (lane 2). In addition to a band of 18,000 daltons, and rather than the presence of multiple bands below this value as seen in the Laemmli system, the Neville gel of the native WGA reveals numerous bands between 18,000 and 43,000 daltons as well as bands above this. Lane 8 is from a Coomassie blue stained gel of affinity-purified WGA, N-[acetyl-3H] that shows a major band at 18,000 daltons and a lighter stained band at approximately 36,000 daltons, and fluorography of this gel (lane 9) again reveals major bands at 18,000 and 36,000 daltons, with some labeling (though not in the form of discrete bands) between these bands and above. Lanes 8 and 9 are therefore quite similar to lanes 4 and 5 with an apparent increased resolution due to better separation between 18,000 and 43,000 daltons with the Neville system, and both systems fail to reveal any banding patterns of the affinity-purified preparations below 18,000. It should also be noted that two times concentrated samples of WGA, $N-[acetyl-^3H]$ yielded the same banding patterns as seen in lanes 4, 5, 8 and 9, although the bands were broader due to an extreme overloading of the gels, with again no apparent polypeptides that have migrated below

18,000 daltons.

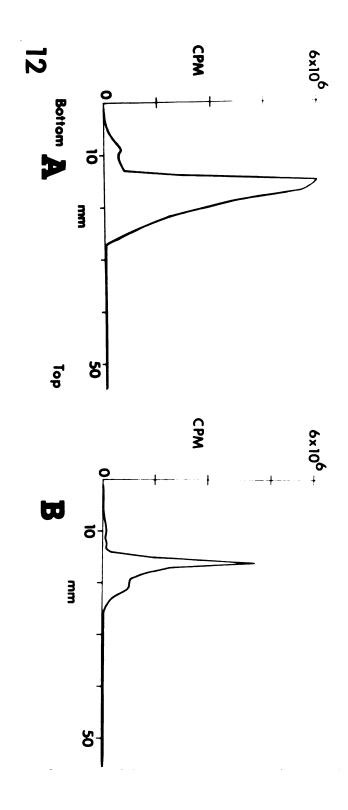
The possibility that some polypeptides below 30,000 daltons might have been eluted from the gels during fixation, staining, or washing was examined by way of performing scintillation counting on fresh gels run identical to those depicted in Fig. 11. Figure 12 is a pair of graphs from two of these gels run on a sample of affinity-purified WGA, N-[acety]-3H] using the Neville system, and can be compared with the fluorograph in lane 9 of Fig. 11. A background reading of 1500 counts per minute was obtained from a sample of cold acetyl-WGA. Measurements performed on adjacent lanes containing samples that were stained or processed for fluorography revealed the presence of a major peak (greater than 4×10^6 cpm) at 18,000 daltons and a relatively smaller peak near 36,000 daltons (approximately 775,000 cpm) (see Fig. 12). In addition, considerabley smaller peaks are visible near 12,000 daltons (approximately 98,000 cpm at its maximal height) and above 43,000 daltons (approximately 238,000 cpm). The plot of counts from a gel of two times concentrated WGA (right graph), N-[acetyl-3H] is similar to that shown in Fig. 12a. These values obtained from scintillation counting appear rather compatible with the fluorographic image shown in lane 9 of Fig. 11, with the exception of the very small peak near 12,000 daltons which was not detectable in the stained gels or their accompanying fluorographs. (These results have been reported in a paper by Steindler and Bradley, 1983).

C. Antibody Purification

All antiserum utilized in this study were purified to an immunoglobulin fraction and were free of albumin and complement. The antibodies employed were analyzed for specificity as well as their

Figure 11 Lane 1 through 7 are Laemmli SDS-PAGE system and Lane 3 through 13 are Neville SDS-PAGE system.

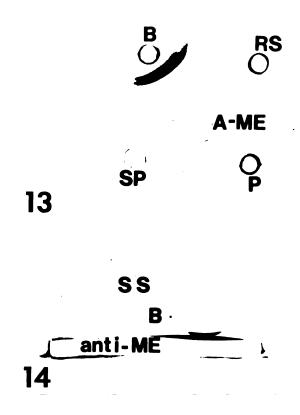
Lane 1 is the molecular weight standards which consist of the following animal polypeptides as mentioned in the material and methods: Cytochrome C-12,3000; Lysozyme-14,300; Beta-lactoglobulin-18,400; Alpha-chemotrypsinogen-25,700; and Ovalbumin-43,000 daltons. Lanes 2 and 9 are the native wheat germ agglutinin, non-column purified. Lane 3 is the column purified WGA-n-(acetylated). Lanes 4 and 10 are NGA, n-(acetyl-3H) and lane 5 and 11 are the corresponding fluorographs. Lanes 6 and 12 are 2X concentrated. Lanes 7 and 13 are the corresponding fluorographs.



11 • • • • • •

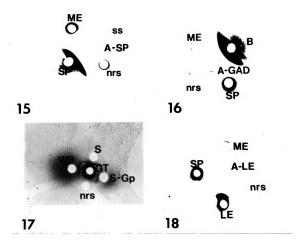
Figure 12 Graphs A and B are representations of the scintillation counting from the Neville SDS-PAGE of concentrated and non-concentrated wheat germ agglutinin, n-(acetyl-³H). The SDS-PAGE gels were cut from the migrating dye front (bottom) towards the Top of the gel.

The cut gels were 2 mm. sections and counted respectively.

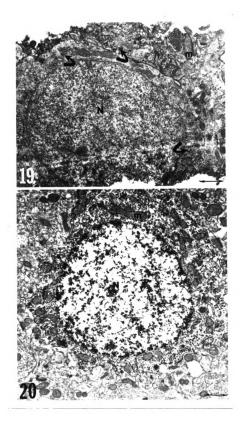

sensitivity to rat brain homogenates. Initial analysis of the rabbit anti-methionine enkephalin (ME) antiserum revealed a double precipitant band when incubated with rat brain homogenates identified by immunodiffusion-Ouchterlony (Fig. 13). However, the rabbit anti-ME was not observed to cross react with either substance P, rabbit-peroxidase anti-peroxidase or normal rabbit serum. It was believed that the anti-ME sera contained additional antibodies to leucine enkephalin, a common contaminate in Immunonuclear, Inc. antibody. The rabbit anti-ME sera were then absorbed with 10 ug/ml leucine enkephalin, spun down, and the supernatant re-analyzed with immunoelectrophoresis (Fig. 14). This purified rabbit anti-ME sera exhibited only one precipitant band with rat brain homogenate. Rat brain homogenate was additionally found not to cross react with normal sheep serum.

Analysis of the rabbit anti-substance P showed specificity for substance P and exhibited no cross reactivity to either methionine enkephalin, normal sheep serum or normal rabbit serum (Fig. 15).

GAD and GABA-T antisera obtained from Dr. Wu's lab were analyzed for rat brain cross reactivity. Rabbit anti-GAD sera was shown to cross react with white Spraque-Dawley rat brain homogenates (Fig. 16) and no cross reactivity to either methionine enkephalin or normal rabbit serum was shown. Rabbit anti-substance P sera showed partial cross reactivity with rat brain homogenates, indicating no cross reactivity with the GAD antisera. Analysis of rabbit anti-gamma aminobutyric acid transaminase (GABA-T) sera showed a cross reactivity with whole brain, striatum, and striatum plus globus pallidus homogenates (fig. 17). Rabbit anti-GABA-T sera did not cross react with normal rabbit serum.


- Figure 13 Ouchterlony characterization of rabbit anti-methionine enkephalin: A-ME (1:100 rabbit anti-methionine enkephalin) is located in the center well. B(rat brain homogenate); RS (10% normal rabbit serum); SP (substance P-10 ug/ml) and P (1:50 dilution of rabbit peroxidase anti-peroxidase).
- Figure 14 Immunoelectrophoresis Gel of absorbed rabbit antimethionine enkephalin (anti-ME is in the center well).

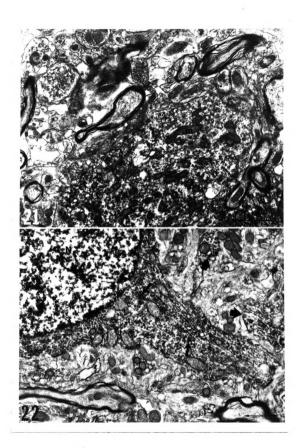
 SS (1:20 normal sheep serum), B (rat brain homogenate).



- Figure 15 Ouchterlony gel immunodiffusion of rabbit antisubstance P (A-SP); ME (10 µg/ml methionine enkephalin);
 ss (10% normal sheep serum); nrs (10% normal rabbit
 serum) and SP (10 µg/ml substance P).
- Figure 16 Ouchterlony gel immunodiffusion of rabbit anti-glutamic acid decarboxylase (A-GAD); ME (10 µg/ml methionine enkephalin);

 B (rat brain homogenate); SP (1:1000 rabbit anti-substance P); nrs (normal rabbit serum).
- Ouchterlony gel immunodiffusion of rabbit anti-gamma aminobutryic acid transaminase (GT); WB (whole rat brain homogenate); S (striatal homogenate); S-GP (rat striatal and globus pallidus homogenate); nrs (10% normal rabbit serum).
- Ouchterlony gel immunodiffusion of rabbit anti-leucine enkephalin (A-LE); ME (10 µg/ml methionine enkephalin); nrs (normal rabbit serum); LE (leucine enkephalin-10 µg/ml); SP (10 µg/ml substance P).

- Figure 19 This is a cross section of 10 μ m vibratome section of rat neostriatum incubated with rabbit anti-GAD and visualized with rabbit PAP. Curved arrows are shown to exhibit a labeled rough endoplasmic reticulum. Nucleus (N); Mitochrondria (M). Bar = 1 μ m.
- Figure 20 This vibratome section (60 μ m) is of rat neostriatum that was incubated with rabbit-anti-GAD and visualized with the avidin:biotin complex immunoperoxidase technique. Nucleus (N); Mitochrondria (M). Bar = 1 μ m.



- Figure 21 Vibratome section (30 um) was incubated with 1:500 rabbit anti-GAD revealing a labeled dendrite visualized with rabbit PAP. Mitochrondria (M).

 Bar = 1 um.
- Figure 22 This vibratome section (60 um) was incubated with 1:500 rabbit anti-GAD and visualized with the avidin:biotin complex immunoperoxidase technique.

 Arrows indicate specific localizations within the dendrite.

 Arrowheads show labeled dendritic profile which is in the striatal neuropil. Bar = 1 um.

Rabbit anti-leucine enkephalin sera were absorbed with 10 ug/ml of methionine enkephalin and analyzed with immunodiffusion (Fig.18).

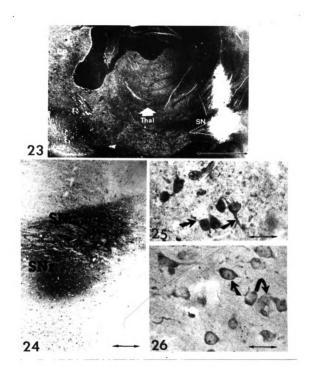
Rabbit anti-LE sera were shown to cross react with leucine enkephalin and not with substance P, normal rabbit serum or methionine enkephalin.

D. Peroxidase-Anti-Peroxidase vs. Avidin:Biotin Immunocytochemistry
Initial experiments employing PAP gave inconsistent results as well
as spurious, random staining for putative neurotransmitters. Vibratome
sections were analyzed for the depth of penetration of antibody and
the PAP or avidin:biotin complex method.

Cross sections of vibratome sections were viewed in the electron microscope. Localization of the enzyme GAD was chosen for the comparitive analysis of penetration properties. The use of PAP for the intensification of GAD resulted in a limited penetration of the PAP (less than 1.5um)into the cytoplasm of the neuron (Fig. 19). As can be seen by this micrograph, this vibratome section thickness was rather thin (less than 15 um). The overall PAP labeling of the GAD antigens appeared cloudy and was not specfically localized within the cytolasm. However, analysis of the avidin:biotin complexes yeilded an entirely different picture. Penetration obtained with the avidin:biotin method was seen to go as deep as 25 um within a 60 um vibratoem section (Fig. 20). Immunocytochemical labeling of GAD utilizing avidin:biotin method was distinctly localized on the ribosomes and rough endoplasmic reticulum within neostriatal neurons. Proximal dendrites labeled for GAD were found to contain labeling on ribosomes and within the cytoplasm (Fig. 22). In contrast, GAD labeling with PAP molecules were found to be nonspecifically localized throughout the cytoplasm of dendrites (Fig. 21).

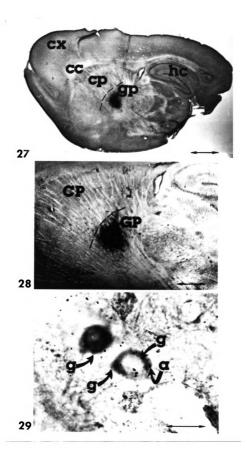
Therefore, due to the better penetration of labeling obtained with the avidin:biotin method, further analysis of neurotransmitters at the ultrastructual level were visualized with the avidin:biotin method.

- E. Light Microscopic Analysis: Neostriatal Projection Neurons and their Putative Neurotransmitters
- 1. Neuroanatomical Analysis of Wheat Germ Agglutinin Labeling Labeling of neostriatal prjection neurons was accomplished by stereotaxic injections of wheat germ agglutinin (WGA) into either substantia nigra (Fig. 23) or globus pallidus (Fig. 27). Autoradiographic identification of these injection sites showed that regions adjacent to either the substantia nigra (Fig. 24) or the globus pallidus (Fig. 28) injection sites contained very little concentrations of the radiolabeled WGA. An additional method for analyzing the injection site and the labeled neostriatal neurons containing the WGA antigen was to employ an immunocytochemical method. It was found that the neostriatal neurons could be seen to have the WGA antigen within their cytoplasm located in dense granules. To further confirm that the radiolabel was indeed located within these neurons, a combined double label technique was employed. The vibratome sections had been immunocytochemically identified for the WGA antigen. Therefore, the sections were mounted on glass slides and dipped in NBT2 nuclear emulsion and exposed. This autoradiographic identification revealed that the neostriatal neurons that contained immunoperoxidase also had silver grains above the cells (Fig. 29).


Observations were made of hippocampus to discern any labeleing and to control for the injection into globus pallidus. Hippocampal neurons were not autoradiographically labeled. Observations of cortex showed an occasional cerebral cortical neruon to be labeled. Observations of substantia nigra after a globus pallidus injection of WGA revealed several neurons labeled and the subthalamus also revealed neuronal labeling. Observations and samples were only made on the ipsilateral side as that of the WGA injection into either substantia nigra or globus pallidus.

Observations of neuronal labeling were made after the substantia nigra injection of WGA and the injection site was localized with anti-WGA and autoradiography (Fig. 24). Neostriatal neurons were labeled throughout neostriatum and cerebral cortex was shown to have only a background silver grain content. The substantia nigra injection was seen also to label the subthalamus with numerous silver grains over neurons. The labeling within the substantia nigra was seen in neurons and scattered throughout the neuropil (Fig. 25). The small pressure injections of WGA did not appear to destroy the cellular intregrity of the substantia nigra.

- Figure 23 A 4µm glycol methacrylate darkfield autoradiographic section exposed for the localization of wheat germ


 3 agglutinin, N-(acetyl- H) which was stereotaxically injected into substantia nigra (SN). Thalamus (Thal);

 Caudate-putamen (CP). Bar = 2mm.
- Figure 24 Higher magnification of the injection site as seen in brightfield. Autoradiographic labeling is seen in substantia nigra pars compacta (SNc) and substantia nigra pars reticulata (SNr). Bar = 200µm.
- Figure 25 This vibratome section was incubated with purified rabbit anti-WGA revealing numerous labeled neurons and their dendrites (arrows) after a substantia nigra injection. Bar = $20\mu m$.
- Figure 26 A 4 μ m glycol methacrylate section was incubated with rabbit anti-WGA and visualized with avidin: biotin technique. The straight arrows depicit a labeled neuron whereas the curved arrows show an unlabeled neuron. Bar = 20μ m.

- Figure 27 A vibratome section (60µm) of the globus pallidus injection site of WGA. The WGA was visualized by incubating the section with rabbit anti-WGA and intensified with the avidin:biotin immunoperoxidase method. Cortec (Cx); corpus callosum (CC); caudate-putamen (CP); globus pallidus (GP) and hippocampus (hs). Bar = 2mm.
- Figure 28 Vibratome section of globus pallidus injection site which is exposed for autoradiography identification and was incubated with anti-WGA to identify the neostriatal projection neurons. This section is therefore, autoradiographically and immunocytochemically labeled. Caudate-putamen (CP) and globus pallidus (GP).

 Bar = 200µm.
- Figure 29 Autoradiographic (a) and immunocytochemically (g) identification of WGA is seen within a single neostriatal neuron. Bar = $10\mu m$.

2. Neuroimmunocytochemistry of Putative Neurotransmitters

Vibratome sections were utilized for examining the distribution of immunocytochemically identified neurons within the rat brain and for the determination of somatic sizes. Additionally, glycol methacrylate sections were used for examining the morphological characteristics of neostriatal neurons identified for putative neurotransmitter.

Control sections were performed by incubating vibratome sections with either normal rabbit serum (10%) or antibody absorbed with the antibody's specific antigen (Substance P plus anti-substance P). These control sections showed a lack of any somatic staining anywhere within the rat brain after osmium intensification (Fig. 30). The myelinated fiber fascicles are observed to be stained by the osmium.

Observations of the sections incubated with GABA-T antisera revealed numerous different cell types stained throughout the rat brain (Fig. 31). The cells labeled within the striatum appear to be large neurons, medium-sized and a small class of neurons. Different sized neurons could also be seen in cerebral cortex, globus pallidus, substantia nigra and subthalamus. The corpus callosum exhibited cellular staining in a small punctate type of cell.

Rabbit anti-substance P was shown to label cells within striatum that were medium-sized. These cells were observed to be the heaviest stained in the rostral region of striatum while other regions exhibited staining to a lesser degree (Fig. 32). Substance P was localized in fibers within the substantia nigra and the caudal region of the globus pallidus. The pontine reticular formation showed several neurons to be stained as well as fibers.

Glutamic acid decarboxylase (GAD) antisera was seen to stain the greatest number of medium-sized neurons in the ventrocaudal regions (Fig. 34). The dorsal region of striatum contained GAD positive neurons but to a lesser degree (Fig. 33). GAD positive neurons within striatum were seen in clusters of 4-7. The heaviest concentration of GAD positive medium-sized neurons was seen clustered along the caudal border of striatum adjacent to globus pallidus. GAD positive neurons were seen scattered throughout the cortex but was not specifically localized in any specific layer or region. Staining within the globus pallidus was rarely if ever observed. GAD positive neurons and numerous fibers were observed in the substantia nigra pars reticulata. GAD immunoreactivity was also seen localized within the hippocampus. The staining within neurons was seen to be mainly in the cytoplasm of the somata and occasionally dendritic profiles. GAD was observed in the cerebellum.

Methionine enkephalin immunoreactive cell bodies were observed to be the heaviest in the ventral striatum and regions of striatum adjacent to the globus pallidus (Fig. 35). The cell bodies were those of the medium-sized neurons and they appeared to be in clusters scattered throughout striatum. Methionine enkephalin fibers were mainly confined to the rostral regions of globus pallidus with less fiber staining observed in the caudal regions. Several large neurons were seen stained within the globus pallidus. Fiber staining in the substantia nigra was relatively small in comparison to striatum or rostral globus pallidus. The methionine enkephalin immunostaining in the medium-sized neurons observed above was mainly in the cytoplasm perinuclear orientated and occasionally the dendrites were labeled.

Observations at a higher magnification of immunopositive neurons within the neostriatum are reported below. These observations were made on vibratome sections (60 um) and 4 um glycol methacrylate (GM) sections for an overall characterization of the neuronal morphology.

GAD immunoreactive medium-sized neurons (10-15um) are seen in clusters of five in this vibratome section from the ventral region of striatum (Fig.36). Several dendritic profiles are seen labeled coming off the main soma of immunopositive somata. Numerous immunopositive fibers are observed adjacent in the neuropil. GM sections stained for GAD exhibit staining in the cytoplasm in a perinuclear fashion (Fig.37). Numerous cellular profiles are seen to be not stained for GAD scattered around immunopositive neurons. The GAD immunopositive neurons possess a smooth, round, unindented and pale nuclei. The nucleoli appear to be positive for GAD.

GABA-T immunopositive neurons are seen scattered throughout the striatum. A vibratome section from the rostral region of the neostriatum is shown to exhibit several sizes of immunopositive neurons (Fig. 38). Large, medium and small neurons appear to be immunopositive and possess an immunopositive rim of cytoplasm. The background staining within the striatum is seen to be considerably heavier than any other neurotransmitter localized. Dendrites are not stained for GABA-T. A GM section reveals immunoreactivity within a large neuron possessing a variable rim of cytoplasm (Fig. 39). Several other neuronal profiles are seen to lack any GABA-T staining.

Vibratome sections that were incubated with rabbit anti-methionine enkephalin revealed immunoreativity within medium-sized neurons (Fig. 40). These neurons possess a thin rim of immunopositive cytoplasm and staining within dendrites was occasionally seen. Numerous immunopositive fibers were scattered throughout the neuropil. A glycol methacrylate section stained for ME is shown to exhibit a medium-sized neuron with a thin rim of immunopositive cytoplasm (Fig. 41). The dendrites are observed here to contain immunoreactivity.

Substance P immunoreactivity was seen in vibratome sections to be localized within medium-sized neurons. These medium-sized neurons were seen to possess a round nucleus and a thin rim of immuno-reactivity in the cytoplasm. Numerous substance P immunopositive fibers are seen scattered throughout the neuropil. Incubation of substance P with a GM section is shown to reveal a medium-sized neuron with a thin rim of immunopositive cytoplasm. The nucleus is found to be round and pale. Several dendrites are observed to contain immunoreactivity (Fig. 43) which are seen to be projecting away from the immunoreactive soma.

3. Double Label: Projection Neuron/Neurotransmitter

Double label immunofluorescent staining was performed on glycol methacrylate sections for the identification of the neostriatal projection neuron and their putative neurotransmitter. The neurotransmitter was visualized with fluorescein and the identification of the retrogradely transported WGA was visualized with rhodamine.

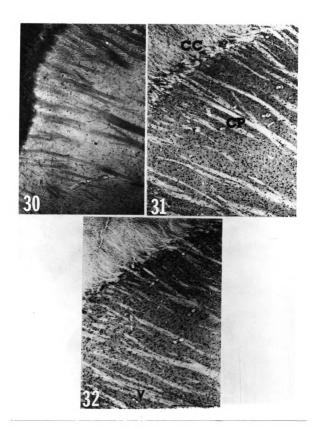
Substance P positive neurons from the rostral striatum (Fig. 44) were shown to also contain the WGA antigen (Fig. 45) following a globus pallidus injection of WGA. However, not all substance P positive neurons (Fig. 46) were shown to contain the WGA antigen following a substantia nigra injection (Fig. 47). The neuropil shows fiber staining especially in the fiber bundles within striatum (Figs. 46 and 47). The immunofluorescent staining patterns of the immunopositive neuron clouds the nuclear configuration. Sometimes, one can make out the dendritic profiles of the neurons that are stained (Fig. 44).

Rabbit anti-methionine enkephalin is seen to stain numerous neostriatal neurons from the caudal region of striatum (Fig.48).

Observation of the WGA localization reveals that the same population of neurons is also stained (Fig. 49). The WGA injection site was into globus pallidus. The background staining pattern is a little heavier than that of other neurotransmitters. When a glycol methacrylate section was incubated with anti-GAD (Fig. 50) and re-incubated with rabbit anti-methionine enkephalin (Fig. 51), staining of a single neostriatal neuron can be seen. The glycol methacrylate section is from the caudal region of striatum near the globus pallidus border.

Glycol methacrylate sections of ventrocaudal region of striatum incubated with rabbit anti-GAD (Fig. 52) and re-incubated with anti-WGA reveals a different population of neurons that is stained.

The injection of WGA was into substantia nigra and the striatonigral neurons (Fig. 53) that are labeled for the NGA antigen do not all contain the enzyme GAD. This area is near large fibers that are passing through striatum and show some degree of staining. Another section of caudal striatum incubated for GAD reveals four different neurons that are positive (Fig. 54) and when the same section was re-incubated for leucine enkephalin it now only reveals that three of these neurons contain the peptide (Fig. 55).

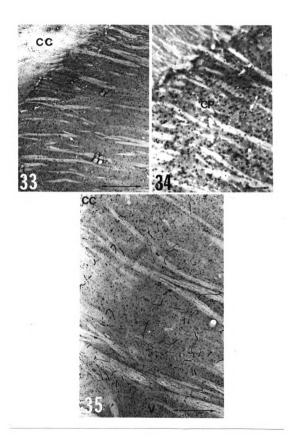

A summary of all the combined immunostaining patterns from PAP and immunofluorescent experiments are diagramatically represented in Figures 56 and 57. It was generally found that the substance P neuronal distribution was the heaviest in the rostral and dorsal regions of the rat neostriatum. There was some degree of substance P immunoreactivity with the substantia nigra. The majority of this staining was in the fibers with an occasional neuron stained. The distribution of methionine enkephalin immunoreactivity was localized in the caudal region of the striatum with a heavy fiber staining in the rostral region of globus pallidus. The medial regions of striatum appeared to contain the heaviest patterns of immunoreactivity for methionine enkephalin. GAD appeared to have a similiar pattern of distribution to that of methionine enkephalin. However, there appeared to be a clustering of GAD immunoreactive neurons in the caudal region of striatum adjacent to the globus pallidus. GAD immunoreactive neurons were also seen in the subthalamus and the substantia nigra reticulata. Double labeling for the putative neurotransmitters was seen in the caudal regions of striatum (either GAD plus LE or GAD plus ME).

- Figure 30 A control section (60 μ m). Normal rabbit serum (10%) was substituted for the primary antibody and treated the same.
- Figure 31 This vibratome section (60µm) was incubated with 1:500 rabbit anti-GABA-transaminase was visualized with the avidin:biotin technique. Corpus callosum (cc) and Caudate-putamen (CP).
- This vibratome section (60µm) was incubated with

 1:500 rabbit anti-substance P and was visualized

 with the avidin:biotin technique. Ventral striatum (V).

 Bar = 200µm and is the same for figs. 30, 31 and 32.

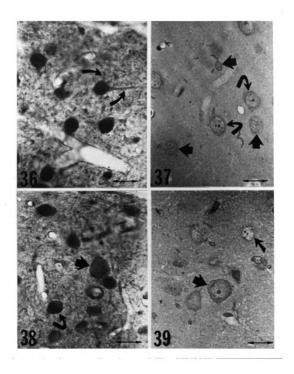


- Figure 33 Vibratome section (60 um) of dorsal striatum was incubated with 1:500 rabbit anti-GAD and was visualized with avidin:biotin technique. Corpus callosum (cc). Bar = 200 μ m.
- Figure 34 Higher magnification of a vibratome section (60 um)

 from ventral striatum which was incubated with 1:500

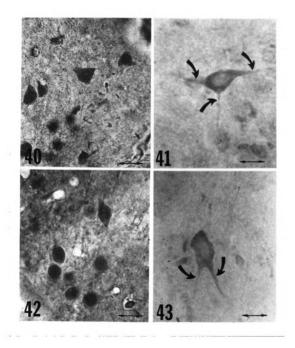
 rabbit anti-GAD. Caudate-putamen (CP). Bar = 200 µm.
- Figure 35 Low magnification light micrograph of a vibratome section (60 um) which was incubated with 1:500 rabbit anti-methionine enkephalin and was visualized with PAP.

 Ventral striatum (V). Bar = 200 µm.

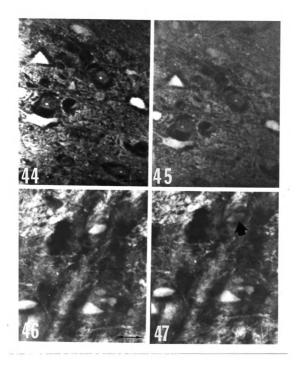

- Figure 36 A vibratome section (60 um) of ventral striatum which is exhibiting GAD immunoreactivity within neostriatal neurons. Dendrites are seen labeled (arrows). Bar = 20 µm.
- Figure 37 A 4 um glycol methacrylate section of striatum was incubated with 1:500 rabbit anti-GAD.

 Several medium-sized neurons are seen labeled (curved arrows). Unlabeled neurons are seen scattered throughout the neuropil (arrowheads).

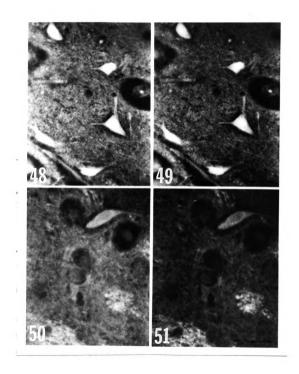
 Bar = 20 µm.
- Figure 38 This vibratome section (60 μm) of rostral neostriatum was incubated with 1:500 rabbit anti-GABA-T and reveals labeled neurons.


 Large neurons (arrowhead) and medium sized neurons (curved arrow) are seen labeled.

 Bar = 20 μm.
- Figure 39 Glycol methacrylate section (4 um) of neostriatum was incubated with rabbit anti-GABA-T and reveals a 'labeled large neuron (arrowhead) and a unlabeled cell (arrow). Bar = 20 µm.


- Figure 40 A vibratome section of rostral striatum was incubated with 1:500 rabbit anti-substance P which shows labeling in numerous neurons.

 Bar = 20 µm.
- Figure 41 A glycol methacrylate section of striatum was incubated with 1:500 rabbit anti-substance P and visualized with PAP. Arrows show dendrites of this labeled noestriatal neuron. Bar = 10 μ m.
- Figure 42 Vibratome section of the ventrocaudal region of striatum which is showing methionine enkephalin positive neurons. Bar = 20 µm.
- Figure 43 Glycol methacrylate section of the ventrocaudal region of striatum and is showing a labeled neostriatal neuron for methionine enkephalin localization. Arrows show the dendrites of this neuron. Bar = $10~\mu m$.


- Figure 44 This glycol methacrylate section of rostral striatum was incubated with 1:100 rabbit anti-substance P and visualized with goat-anti rabbit conjugated to fluorescein. Bar = 20 µm.
- Figure 45 Same section as in fig. 44 but it is re-incubated with 1:100 rabbit anti-WGA and visualized with goat-anti-rabbit conjugated to rhodamine.

 These neurons labeled with for WGA represent projection neurons, i.e.-striatopallidal neurons
- Figure 46 A glycol methacrylate section that was incubated with 1:100 rabbit anti-substance P. Bar = $20 \mu m$.
- Figure 47 Same section as in fig. 46 which was reincubated with rabbit anti-WGA and visualized with goat-anti-rabbit-rhodamine after a substantia nigra injection of WGA. Arrowhead shows a neostriatal neuron which does not label for WGA.

- Figure 48 A glycol methacrylate section of ventral stritaum which is revealing several methionine enkephalin positive neurons as visualized with fluorescene.
- Figure 49 Same section as fig. 48 which was re-incubated with goat-anti-rabbit-rhodamine. WGA was injected into globus pallidus. Bar = 20 µm.
- Figure 50 This glycol methacrylate section was incubated with 1:100 rabbit anti-methionine enkephalin and visualized with goat-anti-rabbit-rhodamine.

 A single neuron is seen labeled in the upper right hand corner.
- Figure 51 Same section as fig. 50 which was re-incubated with 1:100 rabbit anti-GAD and visualized with goat-anti-rabbit-rhodamine. Bar = $20~\mu m$.

- Figure 52 Glycol methacrylate section of ventrocaudal striatum is seen to reveal GAD positive cells as visualized with goat-anti-rabbit-fluorescene to identify the rabbit anti-GAD. Arrow shows a lack of staining in this cell. Bar = 20 µm.
- Figure 53 Same section as fig. 52. which was re-incubated with 1:100 rabbit anti-WGA and visualized with goat-anti-rabbit-rhodamine.
- Figure 54 A 4 um glycol methacrylate section was incubated with rabbit anti-GAD-fluorecene. Arrowhead shows a positive GAD neuron which does not react in fig. 55 for anti-WGA. Bar = 20 µm.
- Figure 55 Same section as fig. 54 but was re-incubated with 1:100 rabbit anti-leucine enkephalin and visualized with goat-anti-rabbit-rhodamine.

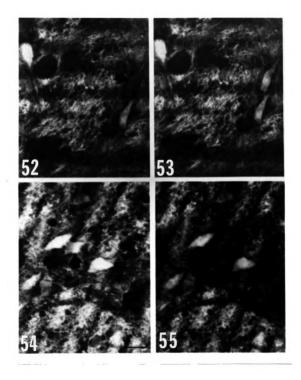


Figure 56

Diagramatic representation of immunocytochemical findings of the topography of neurotransmitters as seen in saggittal sections of the rat brain.

A = methionine enkephalin

B = GAD

S = substance P

D = double label neurotransmitters (GAD & LE, ME)

Cortex = Cx

Subthalamus = ST

Substantia nigra = SN

Caudate-putamen = Cd

Globus pallidus = gp

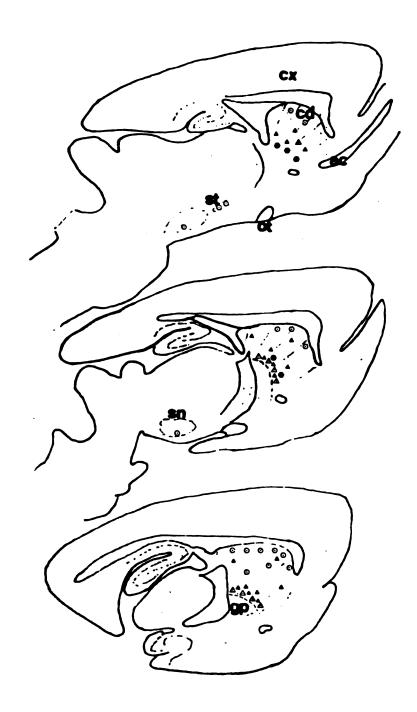
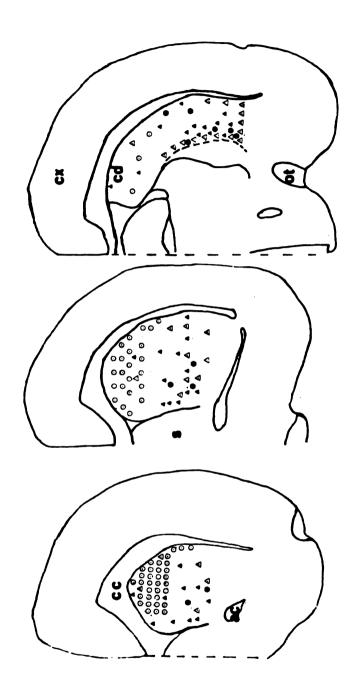



Figure 57 Frontal sectional of the topographical distribution of immunocytochemically localized neurotransmitters which was seen within striatum.

- ▲ = methionine enkephadin
- $\triangle = GAD$
- · = substance P
 - = double label for neurotransmitter (GAD & LE)

Cortex = Cx
Anterior commissure = Ac
Caudate-putamen = Cd

F. Electron Microscopy

Ultrastructural observations on neurotransmitter localization within neostriatum were carried out on rats that received bilateral colchicine injections with a survival time of 48 hours. Vibratome sections (60 µm thick) were incubated with the appropriate neurotransmitter antiserum and these neurotransmitters were visualized with the modified avidin:biotin complex (ABC) method as described in the Material and Methods.

Vibratome sections incubated with a control sera (substance P plus rabbit anti-substance P) were found to exhibit no identifiable immunoreactivity at the light level (Fig. 59) when compared to sections incubated with rabbit anti-substance P (Fig. 58). When these control sections were observed at the electron microscope level no immunoreactivity was seen (Fig. 60). It was mentioned earlier that the swelling in the neuropil was due to the colchicine injections and not due to the processing of the tissue for immunocytochemical localizations.

Substance P immunoreactive medium-sized neurons (10-15 um in diameter) in rostral striatum possessed a round nucleus with a thin rim of immunoreative cytoplasm (Fig. 61). Immunoreactive dendrites of varying sizes were observed throughout the cytoplasm (Figs. 61, 62, 63). Numerous substance P immunoreactive spine laden dendrites were seen receiving unlabeled symmetrical synapses (Figs. 62, 63, 64). It was a common feature to find many labeled dendrites receiving unlabeled synapses from axons. There were no observations of labeled dendrodendritic synapses or labeled axoaxonic synapses within the neuropil.

Substance P immunoreactive presynaptic boutons made asymmetrical type synapses (Figs. 65, 66). The vesicles within these labeled presynaptic terminals were small and round in configuration. The average diameter of the labeled vesicle was 45 nm (n=75) with a range of 35 - 53 nm. Observations of labeled or unlabeled axoaxonic terminals were not seen.

Methionine enkephalin immunoreactive medium-sized neurons were seen scattered throughout the striatal neuropil. The heaviest concentration of these medium-sized neostriatal neurons was seen in ventral striatum. These methionine enkephalin immunoreactive medium-sized neurons had somatic diameters of 10-14 um which contained a round, smooth, unindented and pale nucleus. Juxtaposition to the nucleus could be seen a thin rim of immunoreactive cytoplasm (Fig. 67, 68, 69). Numerous other medium-sized neurons could be seen unlabeled within the neuropil (Fig. 67). Labeled dendritic profiles (large and small) were seen adjacent to labeled neurons (Fig.67, 68, 69). The localization of the ABC immunoperoxidase in somata was consistently found on rough endoplasmic reticulum (Fig. 69), within microtubules (Figs. 70, 71) and on the surface of mitochondria (Figs. 69, 70, 71). This type of immunoperoxidase labeling was seen in all the methionine enkephalin labeled profiles. Numerous dendritic spines were seen labeled throughout the neuropil (Figs. 70, 72). A majority of the time these dendritic spines were seen receiving asymmetrical sympases (Fig. 71). Numerous presynaptic terminals were seen to contain methionine enkephalin immunoreactivity throughout the neuropil. An example of one of these presynaptic terminals was seen synapsing onto a labeled dendrite making a symmetrical synapse (Fig. 70). Such labeling

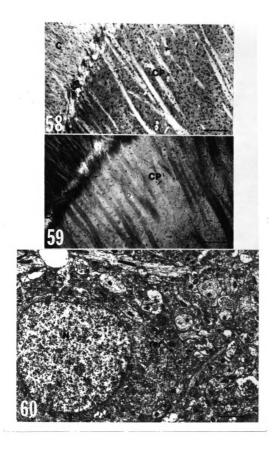
of axodendritic structures was rarely seen. The more typical presynaptic labeling was that exhibited by Figure 72, with the labeled presynaptic terminal being small in configuration and synapsing onto a dendritic spine. The average diameter of the labeled vesicles contained within the presynaptic bouton was 55 nm (n = 76) with a range of 54 - 61 nm. There was no labeled axoaxonic terminals observed.

Vibratome sections incubated with rabbit anti-GAD revealed immunoreactive medium-sized neostriatal neurons concentrated mainly in the caudolateral region of striatum. Ultrastructural observations of these GAD immunopositive medium-sized neurons with a somatic size of 10-13 µm possessing a smooth, round and unindented nucleus (Figs. 73, 74, 75). These GAD immunoreactive neurons were seen to have a thin rim of cytoplasm with immunoreactivity on different cytoplasmic organelles. A typical medium-sized neostriatal neuron exhibiting immunoreactivity is seen to receive an unlabeled asymmetrical synapse (Fig. 74). The immunoreactivity within this medium-sized neuron was observed to be localized on coated vesicles, mitochondria and polyribosomes (Fig. 75). Numerous dendritic profiles are seen labeled which are adjacent to the labeled somata (Fig. 76). Numerous dendritic spines were seen labeled throughout the neuropil. The majority of the dendritic spines that were labeled for GAD were seen to receive asymmetrical synapses that contained no GAD labeling (Fig. 76). Another common occurrence was to see a labeled dendrite of small diameter receiving a symmetrical synapse which was not GAD labeled (Fig. 77). The observations of GAD labeled symmetrical symapses were rarely seen in the neuropil. Labeled presynaptic vesicles were found to have an average diameter of 33 nm (n - 69) with a range of 32 - 36 nm. GAD positive labeled axoaxonic terminals were not observed.

Labeling of GABA-T immunoreactive neurons was homogenous throughout striatum as well as other basal ganglia structures. As mentioned in the light microscopic observations of GABA-T immunoreactive regions of the rat brain included not only the basal ganglia but almost every other region as well. GABA-T immunoreactive neostriatal neurons possessed ultrastructural characteristics similar to those of a type II medium neuron, namely a medium aspiny neuron (Fig. 79). This GABA-T immunoreactive neurons possessed a deeply invaginated nucleus with dark heterochromatin. This type of characteristics were seen in a vast majority of the neostriatal neurons stained for GABA-T. On occasion a medium-sized GABA-T immunoreactive neuron was seen to possess a round and smooth unindented nucleus (Fig.80). These GABA-T immunoreactive neurons were seen to possess a thin rim of immunoreactive cytoplasm (Fig. 81). The immunoperoxidase localization was seen in the cytoplasm on rough endoplasmic reticulum, mitochondria and polyribosomes (Figs. 80, 81). Immunoreactive dendrites (Fig 82) with large and small diameters were routinely found throughout the neostriatum. Smaller labeled dendritic spines were occasionally observed (Fig. 83) receiving unlabeled presynaptic boutons. Labeling of presynaptic and axoaxonic synapses were not observed.

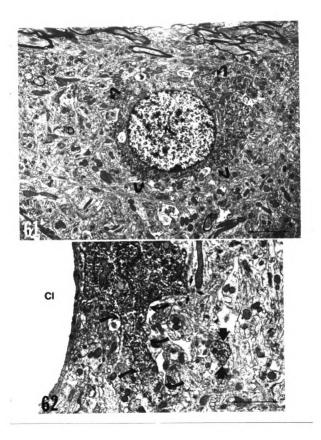
Figure 58 A vibratome section of dorsorostral striatum was incubated with 1:250 rabbit anti-substance P Corpus callosum (C); Caudate-putamen (CP). Bar = $180 \mu m$.

Figure 59 A control section from rostral striatum.


Substance P (10 ug/ml) was added to 1:250 rabbit anti-substance P and spun down.

The supernate was then applied and the rest of the avidin:biotin technique followed.

This vibratome section was then osmicated to identify any reactive cells. Bar = 180 µm.


Figure 60 Ultrastructural analysis of the control section from striatum is seen to lack any reaction product within the neuropil or cytoplasm of a neuron (N). Stacks of rough endoplasmic reticulum (rer) are seen within the cytoplasm.

Bar = 2 µm.

- Figure 61 An ultrathin section of neostriatum was incubated in a 1:1000 rabbit anti-substance P and visualized with the avidin:biotin technique.

 Curved arrows outline a immunopositive neuron (N). This section was cut and viewed unstained (all ultrastructural analysis were performed in this fashion). Bar = 3 um.
- Figure 62 Intermediate magnification mi rograph of substance P immunoreactivity within a spine of a dendrite located within the neostriatal neuropil. Curved arrows outline the dendritic spine and small arrows show a synapse onto the dendrite. Arrowheads show a labeled dendrite. Bar = 2 µm.

- Figure 63

 A substance P labeled proximal dendrite is from rostral neostriatum. Arrowheads depict a symmetrical synapse onto the labeled dendrite. Open arrowheads show there is labeling located on the rough endoplasmic reticulum. Mitochrondria (M) are seen to appear to have little or no immunoreactivity. An unlabeled asymmetrical synapse (curved arrow) is seen adjacent within the neuropil. Bar = 2 µm.
- Figure 64 A substance P labeled dendritic spine within neostriatum was seen to recieve a asymmetrical synapse. Labeling is seen within the cytoplasm and on mitochrondria. Bar = 0.5 μ m.
- Figure 65 Neostriatal neuropil is labeled for substance P.

 Arrows out ine a labeled pre-synaptic terminal making a asymmetrical synapse. Bar = 7.5 um.
- Figure 56 A substance P labeled pre-synaptic terminal is observed making a asymmetrical synapse with a dendritic spine head (small arrows). Bar = 0.5 um.

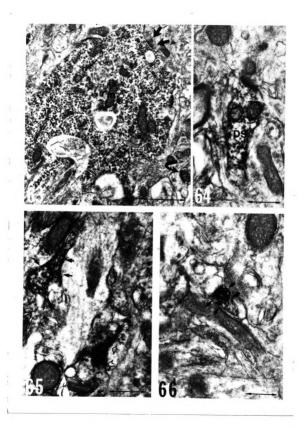


Figure 67 The ventral region of striatum was incubated 1:1000 rabbit anti-methionine enkephalin and visualized with the avidin:biotin technique. Two unlabeled neurons are seen on the top of the micrograph. Curved arrows outline a labeled neostriatal neuron and its primary dendrites. Solid arrowheads show one labeled dendrite in the neuropil. Bar = 2 µm.

Figure 68

An intermediate magnification micrograph of ventral striatum which was labeled for methionine enkephalin. This labeled neostriatal neuron (N) contains labeled rough endoplasmic reticulum (arrows) and other cytoplasmic organelles.

Numerous dendritic profiles are labeled throughout the neuropil (arrowheads).

Bar = 2 µm.

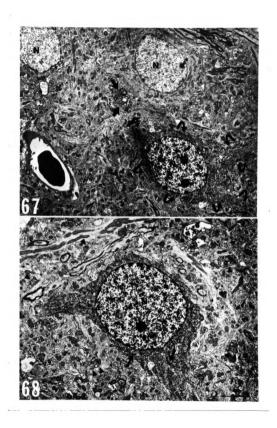
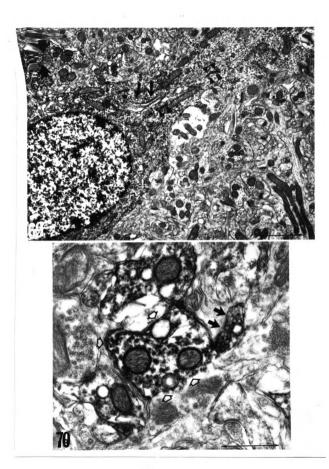



Figure 69 An intermediate magnification micrograph of ventral striatum which was incubated with rabbit anti-methionine enkephalin. Labeling is seen within a medium-sized (spiny) neuron and within its proximal dendrite. Labeling is seen localized on rough endoplasmic reticulum (arrowheads) and vesicles (arrows) forming off the forming face of the Golgi complex.

Bar = 1 µm.

Figure 70 Labeling for methonine is seen within the neuropil in dendrites (open arrowheads) and a pre-synaptic terminal (solid arrows) making a symmetrical synapse. Bar = 1 µm.

- Figure 71 Methionine enkephalin is seen localized within a dendritic spine (solid arrowheads) which is recieving a asymmetrical synapse.

 Bar = 0.5 m.
- Figure 72 A methionine enkephalin labeled terminal (open arrowhead) is observed making an asymmetrical synapse onto a spine head. Bar = $0.5\mu m$.

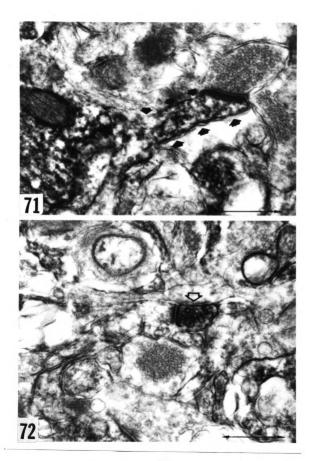
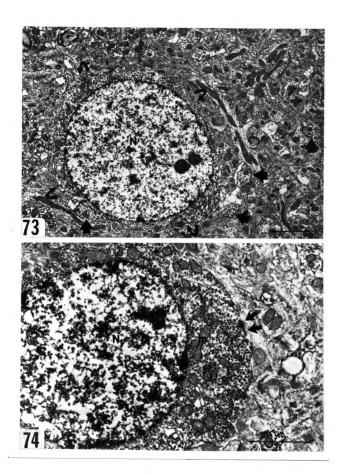



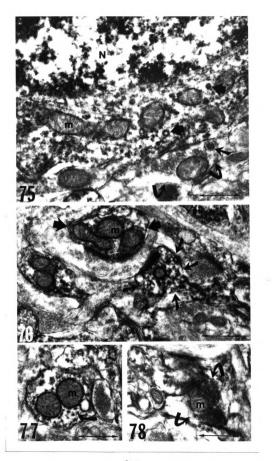
Figure 73

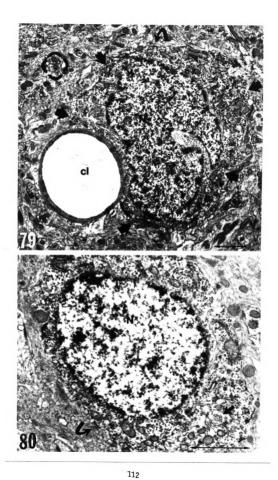
A ventrocaudal region of striatum was incubated with 1:1000 rabbit anti-GAD and visualized with avidin:biotin technique. A labeled mediumsized neuron (spiny) is outlined (N) with curved arrows. Several dendritic profiles are labeled within the neuropil (solid arrowheads). Bar = 2 µm.

Figure 74 A GAD labeled neuron (N) is seen to have a somatic synapse (solid arrowheads). Seen within the somatic cytoplasm is labeling localized onto ribosomes, rough endoplasmic reticulum, and occasionally on mitochondria. Bar = $2 \mu m$.

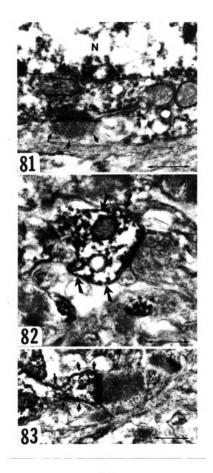
- Figure 75 A GAD labeled neuron (N) from neostriatum is observed to possess a somatic synapse (curved arrows). The synaptic vesicles are pleomorphic in size with a dense core vesicle within the terminal (arrow). Contained within the cytoplasm of the labeled neuron is observed labeling on coated-vesicles (solid arrowheads).

 Mitochondria (m) are occasionally seen to possess labeling on their surface. Bar = 0.5µm.
- Figure 76 GAD labeling is seen within the neuropil in dendrites (solid arrowheads) and in dendritic spines (arrows). The dendritic spine has labeling throughout the cytoplasm. Bar = $0.5\mu m$.
- Figure 77 A GAD positive dendrite which has labeling within microtubules (arrow) and on the surface of mitochondria (m). A labeled dendrite is seen recieving a symmetrical synapse. Bar = 0.5µm.
- Figure 78 A single terminal is seen making two symmetrical synapses and the terminal is labeled for GAD (curved arrows).
 Numerous small round vesicles are contained within the terminal. Bar = $0.5\mu m$.




Figure 79

A section from the ventral region of striatum which was incubated with 1:500 rabbit anti-GABA-transaminase. This micrograph is exhibiting a labeled neuron (arrowheads) with a deeply indented nucleus (N) and labeling is seen throughout the cytoplasm. A somatic synapse is observed on the labeled neuron (curved arrows). A labeled dendrite is also observed within the neuropil (brackets). Bar = 2 µm.


Figure 80

A GABA-transaminase labeled neostriatal neuron (N) is seen to possess a somatic synapse (curved arrows) and labeling on mitochondria, rough endoplasmic reticulum and ribosomes. A lack of labeling is noted on the multivesicular body (arrowhead).

Bar = 2 µm.

- Figure 81 A GABA-T labeled soma is seen within neostriatum exhibiting a somatic synapse (arrows) and labeling is on mitochondria (m). Nucleus (N). Bar = 0.5 um.
- Figure 82 A GABA-T labeled dendrite (arrows) is observed to possess heavy labeling on the mitochrondria as well as throughout the cytoplasm. Bar = 0.5 um.
- Figure 83 A dendritic spine (arrows) is seen labeled for GABA-T. Labeling is observed throughout the cytoplasm and on the mitochondrial membrane (m). Bar = 0.5 µm.

Chapter 4: Discussion

A. Neostriatal Efferents and Utilization of Wheat Germ Agglutinin

The major target of neostriatal projection neurons have been identified as globus pallidus and substantia nigra. The neurotransmitters localized within these striatopallidal and striatonigral neurons have not been directly analyzed. Various anatomical and electrophysiological techniques have been used to demonstrate the striatopallidal (Bishop et al., 1978; Cuello and Paxinos, 1978; Fornum et al., 1978; Fox and Rafols, 1976; Grofova, 1979; Jessell et al., 1978; Kemp, 1970; Nagy et al., 1978; Obata and Yoshida, 1973; Pasik et al., 1976; Preston et al., 1980; Szabo, 1962; Szabo, 1970; Szabo, 1981 and Wilson and Phelan, 1982) and striatonigral projections (Bak et al., 1975; Bak et al., 1978; Bunny and Aghajanian, 1976; Carpenter, 1976; Domesick, 1977; Fonnum et al., 1974; Fonnum et al., 1978; Fox and Rafols, 1976; Gale et al., 1977; Grofova, 1975; Grofova, 1979; Grofova and Rinvik, 1970; Hattori et al., 1973; Hong et al., 1977; Garcia et al., 1977; Jessell et al., 1978; Kanazawa et al., 1977; Kemp, 1970; Kim et al., 1971; Kitai et al., 1975; Kocsis and Kitai, 1977; Mroz et al., 1977; Nagy et al., 1978; Nauta et al., 1975; Preston et al., 1980; Ribak et al., 1980; Rosegay, 1944; Somogyi et al., 1981; Somogyi and Smith, 1979; Spano et al., 1977; Szabo, 1962; Szabo, 1970; Szabo, 1981).

In order to label projection neurons and their neurotransmitter, WGA, N-[acety1-3H] was stereotaxically injected into substantia nigra or globus pallidus. Visualization of retrogradely transported WGA antigens were accomplished with rabbit anti-WGA and neurotransmitter candidates were visualized within the identified projection neuron with rabbit anti-neurotransmitters (methionine enkephalin, substance P and GAD). Striatal neurons that were retrogradely labeled with WGA have a similar

distribution as seen by previous workers. Several other considerations of WGA are detailed below.

In recent studies utilizing WGA, N-[acety1-3H] for bidirectional labeling, it was found that this axonal tracing technique was extremely effective and sensitive (Steindler and Bradley, 1983 for a review; Margolis et al., 1981; Ruda and Coulter, 1980; Steindler and Deniau, 1980). WGA was used in the current study due to the high concentration found in striatal cells when retrogradely labeled from globus pallidus or substantia nigra injections. Injections of WGA into substantia nigra were found to cover both compacta and reticulata which resulted in a homogenous labeling within striatum. These results are in agreement with previous reports (see Grofova, 1979, for a review). Injections into globus pallidus were seen to be confined to a small area. Injections of globus pallidus were not seen to spread into striatum and were small in comparison to other HRP labeling studies. We were able to utilize WGA because of its antigenic qualities and our ability to localize WGA by autoradiography if the need arose.

Column IgG-purified rabbit anti-WGA sera was made available to us from Dr. Myron Lyon for immunocytochemical identification of neostriatal projection neurons. Commercially available rabbit anti-WGA sera were analyzed as well and it was found to identify the WGA antigen. We were unable to utilize HRP retrograde labeling due to the fact that peroxidase is employed in peroxidase-anti-peroxidase and avidin:biotin complex. It is additionally known that utilization of WGA has a specific uptake mechanism (Gros et al., 1977; Lechan et al., 1981 and Nagata and Burger) and probably does not involve fibers of passage at the injection site (Steindler, 1982; Steindler and Bradley, 1983; Lechan et al., 1981). WGA, N-[acetyl-3H] utilized as an axonal tracing technique has proven to be

compatible with our neuroimmunocytochemical procedures and its antigenic nature has not been significantly altered by colchicine injections.

B. Neurotransmitter Candidates

In the late nineteenth century it was realized that the nervous system consisted of independent cells which possessed a nucleus, membrane, axon and dendrites to communicate with each other (Cajal, 1894). Cajal proposed sites where neurons make contact with otherneurons whereby allowing communication between these cells. The term synapse was introduced by Sherrington (1904) and Elliot (1904) suggested that adrenalin was released by these synapses in the peripheral nervous system. This idea of chemical transmission was proven later by Loewi (1921). Dale (1935) proposed that this principle of chemical transmission was also utilized by the central nervous system. Eccles (1954) was originally opposed to these ideas, but it was his experiments on spinal cord which finally proved chemical transmission within the central nervous system.

Our basic concepts regarding chemical neurotransmission were derived from studies on cholinergic and noadrenergic transmission in a small population of peripheral tissues or specialized structures. The structure most studied is the neuromuscular junction. The possible

neurotransmitter role of a substance in the CNS presupposed that there is a great deal of analogy between central neurotransmission and peripheral transmission-cholinergic and noradenergic mechanisms (Krnjevic, 1974 and Orrego, 1979). The major presynaptic criteria that have been utilized for the CNS are as follows: 1) the neuron has the necessary enzyme(s) to synthesize the transmitter candidate; 2) the transmitter is stored and localized within synaptic vesicles; and 3) that the neurotransmitter candidate is released in a calcium dependent manner thereby causing upon its release depolarization of the nerve terminals (Mulder, 1982 and Erulker, 1979).

Discussion of the neurotransmitter candidates within the basal ganglia will be restricted herein to methionine enkephalin, substance P and GABA. This is not to say that there are not other neurotransmitter candidates. A brief review of other investigator's efforts to identify these neurotransmitter candidates within the basal ganglia are as follows: acetylcholine (Butcher and Bilezikijan, 1975; Butcher and Butcher, 1974; Chubb et al., 1980; Fonnum et al., 1978; Fonnum and Walaas, 1979; Hattori and McGeer, 1974; Kimura et al., 1980; Kitai et al., 1978; Kravitz, 1967; Mao et al., 1977; Mulder, 1982; Dalkovits, 1978 and Swaab, 1982) cholecystokinin (Fonnum and Walaas, 1979; Robberecht et al., 1978), dopamine (Buijis, 1982; Fallon and Moore, 1978; Fibiger et al., 1972; Fonnum et al., 1978; Fonnum and Walaas, 1979; Fuxe, 1965; Gelfen et al., 1976; Giorguieff et al., 1978; Hattori et al., 1973; Korf et al., 1976; McGeer et al., 1971; Mulder, 1982; Oertel et al., 1982; Pollard et al., 1977; Ross ane Reis, 1974; Sokoloff et al., 1980; Seeman, 1981; Ungerstedt, 1971; Ungerstedt and Arbuthnott, 1970; Ungerstedt et al., 1982 and Versterg et al., 1976), glutamate (Cotman et al., 1981; Divac

et al., 1977; Fagg and Lane, 1979; Fonnum et al., 1978; Fonnum et al., 1979; Frotscher et al., 1981; Kravitz, 1967; McGeer et al., 1977; Nistri and Constanti, 1979; Storm-Mathisen, 1977; Storm-Mathisen et al., 1983; Walaas, 1981 and Zieglgansberger, 1982), norepinephrine (Aghajanian and Bloom, 1967; Buijs, 1982; Fonnum and Walaas, 1979; Fuxe, 1965; McGeer et al., 1971; Mulder, 1982 and Versteeg et al., 1976), neurotensin (Leeman and Carraway, 1982; Kobayashi et al., 1977; Fonnum and Walaas, 1979 and Uhl and Snyder, 1976), serotonin (Amin et al., 1954; Bobillier et al., 1975; Bobillier et al., 1976; Carlsson et al., 1958; Fonnum and Walaas, 1979; Fuxe and Jonsson, 1974; Mulder, 1982; Park et al., 1982; Pasik et al., 1981; Ternaux et al., 1977 and Van der Kooy, 1979), somatostatin (DiFiglia and Aronin, 1982; Fonnum and Walaas, 1979 and Kobayashi et al., 1977) and vasoactive intestinal peptide-VIP (Fonnum and Walaas, 1979; Fuxe et al., 1977; Giachetti et al., 1977 and Palkovits, 1978).

Enkephalins

The enkephalins have received widespread acclaim due to their binding to opiate receptors within the central nervous system (Atweh and Kuhar, 1977; Buijs, 1982; Herkenham and Pert, 1980; Herkenham and Pert, 1981; Osborne et al., 1978 and Palkovits, 1978) and their possible role in pain pathways. Immunohistochemical investigations have shown striatum to contain enkephalin (methionine or leucine) immunoreactive terminals and neurons (Cuello and Paxinos, 1978; DiFiglia et al., 1982; Elde et al., 1976; Emson et al., 1980; Graybiel et al., 1981; Hokfelt et al., 1977; Hong et al., 1977; Osborne et al., 1978; Pickel et al., 1980; Sar et al., 1978; Simantov et al., 1976; Simantov et al., 1977; Somogyi et al., 1982; Wamsley et al., 1980; Watson et al., 1977 and

Yong et al., 1977) as well as its release from striatal slice preparation upon appropriate stimulation (Henderson et al., 1978 and Iversen et al., 1978). The possible action of the enkephalins on sensitive neurons are to decrease excitability (Fry and Zieglgansberger, 1979 and Zieglgansberger, 1982). Recent evidence has shown the enkephalins to decrease substance P release from rat trigeminal nucleus (Jessell and Iversen, 1977) and an apparent inhibitory effect on substance P release as well as decreased action potential of cultured sensory neurons (Mudge et al., 1979). Finally, an enzyme involved in neuronal synthesis of enkephalin (enkephalinase) has recently been identified (De la Baume et al., 1981; Schwartz et al., 1980). Experiments to date have identified only cells that contain enkephalin immunoreactivity and correlated the somatic architecture to separate anatomical or electrophysiological HRP studies.

In the present study, WGA containing projection neurons (striatopallidal and striatonigral) and their putative neurotransmitter methionine enkephalin were localized within the same neuron. Light microscopic analysis of the size of neurons were entirely made up of a medium-sized neostriatal population. The distribution of these enkephalin containing neurons correlates to previous studies (DiFiglia et al., 1982; Khacheturion et al., 1983; Watson et al., 1977; Sar et al., 1978 and Pickel et al., 1980). There were no observations of a patch-like distribution of enkephalin immunoreactivity as was seen by Graybiel (1981) in the cat caudate nucleus.

The present study utilizes a 48 hour survival time after colchicine injections which has the effect to increase the amount of immunoreactive cell bodies. Similar results have been found by other investigators

utilizing colchicine to increase somatal concentrations of putative neurotransmitter (DiFiglia et al., 1982; Hokfelt et al., 1977 and Ribak et al., 1979).

Ultrastructural observations of methionine enkephalin immunoreactive (MEI) neurons were seen to possess medium-spiny neuronal characteristics. These MEI neurons had a smooth round unindented nucleus and thin rim of MEI cytoplasm. These MEI neurons also have been identified by other investigators (DiFiglia et al., 1982; Pickel et al., 1980 and Somogyi et al., 1982). Labeling was also seen in dendrites, spines of dendrites and presynaptic boutons. The type of synapses made by MEI presynaptic terminals in this study were of symmetrical configuration (Gray type II) and to equal extent were asymmetrical (Gray type I). The labeled vesicle size was an average of 55 nm and the range was narrow (55-61). The sampling size was not as extensive as the study by Somogyi (1982) and coworkers. However, great care was taken when viewing synaptic configurations in the electron microscope. If a synapse appeared fuzzy or not distinct, the section was tilted in the microscope to aid in photographing and eventual analysis. Somogyi (1982) found an equal number of symmetrical and asymmetrical synapses, whereas DiFiglia (1982) and Pickel (1980) found more labeled asymmetrical synapses than labeled symmetrical synapses. These discrepancies are easily attributed to the small sampling size utilized at the electron microscopic level. A more fastidious study is needed before any conclusions can be derived such immunocytochemical experiments.

The findings of two types of MEI boutons raises an interesting question as to their origin. The first and easiest response would be to explain all immunocytochemical investigations as not specific or artifactual. This possibility can be only answered by each investigator.

In the present study, a modified avidin:biotin complex technique was utilized for the identification of neurotransmitters. It is the belief that the immunoperoxidase technique is entirely specific and sensitive enough to detect picograms of antigen (Parson and Erlandsen, 1974; Sternberger, 1974).

A second theory of the two types of labeled boutons (symmetrical and asymmetrical) origin are that they may originate from two separate populations of cells. Recent evidence by Somogyi (1982) has indicated such a theory. Symmetrical synapses are known to be derived from neostriatal projection neurons from their axon collaterals (Wilson and Groves, 1980). However, it is known from degenerative studies that asymmetrical synapses are derived from afferent inputs and these terminate onto spines (Hassler et al., 1977 and Somogyi et al., 1981). Somogyi (1982) stated he was unable to observe labeled presynaptic terminals forming a symmetrical synaptic appearance. In this study, I have observed several labeled presynaptic terminasl that were labeled onto dendritic spines forming a symmetrical synapse were observed (Fig. 72).

2. Substance P

Substance P was the first neuropeptide to be pharmacologically characterized. It displays a wide distribution in both the peripheral and central nervous system whereby it displays some type of neuronal function (Zieglgansberger, 1982). However, little is known about its cellular mechanism of synthesis or breakdown. Gamse (1979) and coworkers have shown substance P release from slice after addition of capsaicin and it is known that capsaicin inhibits uptake of substance P (Mudler, 1982). Immunohistochemical studies have shown substance P to be

localized within the basal ganglia (Amin et al., 1954; Brownstein et al., 1976; Brownstein et al., 1977; Buijs, 1982; Cuello et al., 1977; Cuello and Kanzawa, 1978; DiFiglia et al., 1981; Duffy et al., 1975; Emson et al., 1980; Fonnum and Walaas, 1979; Gale et al., 1977; Hokfelt et al., 1977; Hong et al., 1977; Jessell et al., 1978; Kanzawa et al., 1976; Kanzawa and Jessell, 1976; Mulder, 1982; Palkovits, 1978; Pelletier et al., 1977; Pickel et al., 1979; Scully et al., 1978 and Walker et al., 1976). However, the highest concentrations of substance P were found within the substantia nigra (Brownstein et al., 1976) and it is known that the major afferent inputs to substantia nigra arise from neostriatum (Grofova, 1979 for a review). To date there has been no direct observations of substance P within neostriatal neurons.

In the present study, substance P was found to be localized within neostriatal neurons. The light microscopic characteristics of these neurons were of medium-size possessing a round nucleus and a thin rim of substance P immunoreactive (SPI) cytoplasm. SPI neurons were seen in both striatopallidal and striatonigral neurons. These substance P projection neurons were mianly located in clusters (4-6) within the rostral regions of striatum.

Ultrastructural characteristics of these substance P immunoreactive SPI neurons were consistently similar to that of a medium-spiny neuron (Wilson and Groves, 1980; Chang, 1981). The SPI neurons were seen to possess an unindented, smooth, round nucleus and a thin rim of SPI cytoplasm. The cytoplasmic elements labeled were restricted to rough endoplasmic reticulum, polyribosomes and microtubules. All of these known cytoplasmic constituents are presumed to be involved with synthesis and transport of proteins. Labeling of SPI could also be seen

in dendrites, spines of dendrites and presynaptic terminals.

The types of synapse that were observed consisted of a preponderance of asymmetrical and to a lesser extent symmetrical. The labeled terminals were found to contact round and clear vesicles with an average diameter of 44 nm (n = 75) possessing a range from 35-52 nm. DiFiglia (1981) and coworkers have recently found SP labeled vesicles within substantia nigra to range from 35 nm to 50 nm in size and these investigators have shown asymmetrical labeled boutons within substantia nigra. In the present study, I was unable to find labeled large granular vesicles within striatum as compared to what DiFiglia (1981) observed within substantia nigra. Labeled post-synaptic structures (i.e. somata, dendrites, spines of dendrites) were observed to receive symmetrical and asymmetrical synapses. The origin of the labeled symmetrical synapses are probably due to axon local collaterals from neostriatal projection neurons (Wilson and Groves, 1980). The origin of asymmetrical synapses are probably from afferent inputs from other nuclei.

3. GABA [GAD]

It has long been known that amino acids are primarily concerned with general metabolic functions of the cell. It was the work of Eccles (1962) who postulated that GABA was the most promising neurotransmitter candidate in the spinal cord for mediating primary afferent depolarization. The general mechanism of GABA is believed to be that the pre- and post-synaptic effects dealing with increases of Cl permeability (Ten Bruggencate and Enberg, 1979). This increase of Cl permeability was

shown to result in hyperpolarization rendering the cell less excitable to chemical or electrical synaptic stimulation (see Zieglgansberger, 1982 for a review). Recent evidence has suggested that there are at least two GABA receptors with spatially different conformations (Nistri and Constanti, 1979). The neurons of sympathetic ganglia, interneurons and motor neurons are found to possess one configuration, whereas GABAergic actions on cortical neurons, dorsal root ganglia and primary afferent terminals might be mediated through another type of receptor (Zieglgansberger, 1982). The binding sites for the benzodiazepines are found to be GABAergic in nature. Thus, the effects of the benzodiazepines to relieve anxiety, insomnia, convulsions and muscle spasms could be functionally linked to GABAergic transmission (Haefely et al., 1978). Phenobarbital which is used clinically for its ability to induce a general anesthetic state and its actions of phenobarbital are apparently GABAmimetic whereby it activates C1 channels coupled to a GABA-receptor (Barker and Mathers, 1981). Additionally, Perry (1973) and coworkers were able to find a decrease in GABA in striatum from Huntington Chorea patients. Lloyd (1979) and coworkers were able to find a decrease in GABA in Parkinson's patients. GABA has been shown to excitatory (Obata, 1976) in the CNS, involved as a transmitter in the peripheral nervous system, a vasodilator of cerebral blood vessels and the more accepted function is an inhibitory neurotransmitter (Wu et al., 1982). It has also been shown that GABA can activate release of dopamine from rat striatal slice (Giorguieff et al., 1978).

Immunohistochemical and biochemical-lesion studies into the location of GABA within the basal ganglia have been extensive (Bolam et al., 1983; Brownstein et al., 1977; Fonnum et al., 1978; Fonnum et al., 1974;

Fonnum and Walaas, 1979; Fry and Zieglgansberger, 1979; Gale et al., 1977; Giorguieff et al., 1978; Kim et al., 1971; Kravitz, 1967; Mao et al., 1977; Hattori et al., 1973; McGeer and McGeer, 1975; McLaughlin et al., 1974; Nagy et al., 1978; Nistri and Constanti, 1979; Oertel et al., 1982; Ribak et al., 1976; Ribak et al., 1977; Ribak et al., 1978; Ribak et al., 1979; Ribak et al., 1980; Storm-Mathisen, 1977; Storm-Mathisen et al., 1983; Vincent et al., 1982a, b and Wu et al., 1982). Additional studies on GABA have been performed on its location within cerebellum (Chan-Palay, 1982; Chan-Palay, 1978 a, b and Chan-Palay, 1979).

In the present study, antisera to glutamate decarboxylase (GAD) were used to identify GABA containing neurons within striatum. Comparison of rabbit anti-GAD to rabbit anti-GABA-T were made in order to determine the best marker for GABA neurons. At the light microscopic level, we were able to identify GAD immunoreactive neurons (GAD-I) throughout striatum with the heaviest concentration in dorsolateral distribution. Heavy GAD fiber staining was observed in globus pallidus and substantia nigra. Neuronal staining was observed in subthalamus and substantia nigra, but there were very few neurons labeled in globus pallidus. The morphological characteristics of GAD-I neostriatal neurons were that of a medium-sized neuronal population, consisting of a round nucleus and a thin rim of GAD-I cytoplasm. However, GABA-T immunostaining was shown to be in medium-sized and large-sized neuronal populations. McGeer (1975) and Vincent (1982) have consistently used a histochemical technique for GABA-T and hypothesized that these histochemically stained neurons were the GABAergic cells of striatum. In the present fluorescence studies of neurotransmitter-projection neuron, evidence was presented that only medium-sized projection neurons

contained GAD-I. Additionally, Vincent (1982) and co-workers utilizing this GABA-T histochemical technique have concluded the major GABAergic pathway to substantia nigra arises from the globus pallidus. However, the present study shows little or no neuronal staining was obtained within globus pallidus. These results are consistent with other biochemical-lesion studies (Fonnum et al., 1978; Gale et al., 1977 and Fonnum et al., 1979). The striatonigral neurons and striatopallidal were found in this study to contain GABA and I believe that anti-GAD is a better marker of GABA neurons than is GABA-T. It is not surprising that other investigators have found different results, since GABA-T is known to break down GABA into succinic semialdehyde and the same enzyme converts α-ketoglutarate into fumurate. Therefore, the specificity of GABA-T as a marker for GABA is questionable.

Bolam (1983) and co-workers have recently utilized injections of ³H-GABA to identify neostriatal GABA containing cells. Their studies concluded that the GABA concentrating neurons were of a medium-aspiny type. In the present study, only medium-spiny GAD immunoreactive labeled neurons were identified at the ultrastructural level. These neurons possessed a smooth, round and unindented nucleus with a thin rim of GAD-I cytoplasm. These characteristics are identical to those medium-spiny neuron characteristics that have been described by Chang (1981) and Wilson and Groves (1980). The GABA-T immunoreactive cells were seen to be either medium-aspiny neurons, medium-spiny neurons or large neurons. GABA-T immunoreactivity was seen in only post-synaptic structures including labeled somata, labeled dendrites and spines of dendrites. Therefore, GABA-T is probably a good marker for cells receiving GABA synapses.

The GAD-I labeled synapses were found to consist mainly of symmetrical synapses and to a lesser degree asymmetrical synapses. These labeled synapses were only occasionally found. Th- sample size here is limited due to the poor labeling of GAD terminals within striatum. The symmetrical GAD-I synapses are probably due to axon collaterals of medium spiny neurons which project out of striatum (Wilson and Groves, 1980 and Chang, 1981). The labeled synaptic vesicles were found to be small and clear within shape with an average of 33 nm (n = 69) and a range of 32 nm to 36 nm in size. The extrinsic source of GAD labeled asymmetrical synapses could possibly originate from substantia nigra and there has been a recent report which suggests that nigrothalamic neurons send collaterals to striatum (Steindler and Deniau, 1980). It is assumed that the nigrothalamic neurons could utilize GABA as their neurotransmitter and that the inhibitory effects from the nigrostriatal axons could in part be due to GABA (Ferger et al., 1979). However, this does not exclude the possibility that these GAD-I asymmetrical synapses are derived either from cortex or thalamus (Grofova, 1979).

Ribak (1979) and co-workers postulated that these GAD-I labeled asymmetrical synapses could be derived from interneurons within striatum. To date, there has been a lack of documentation supporting this possibility.

In the present study GAD immunoreactivity was found to coexists within the same neuron labeled for methionine enkephalin or leucine enkephalin.

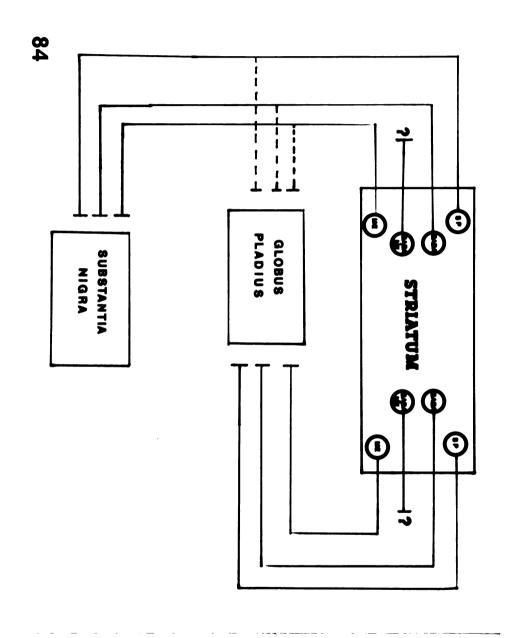
Coexistence of two neurotransmitter candidates is not a new concept (Brownstein et al., 1974; Burnstock, 1976 and Osborne, 1977). This idea of more than one neurotransmitter contradicts Dale's (1935) original hypothesis that one transmitter is utilized by a neuron. However, this

hypothesis still may be true because the exact mechanism of action of the enkephalins and GABA are not yet resolved.

Summary

It has been shown in this study that striatopallidal and striatonigral neurons possess methionine enkephalin, substance P and GAD immunoreactivity. It has been demonstrated that at least some neostriatal cells possess enkephalin immunoreactivity and GAD-immunoreactivity within the same neuron.

Oltrastructural characteristics of these labeled neurons were that of a medium-spiny neuron possessing a smooth, round and unindented nucleus. The immunoreactivity (ME, SP, GAD) was localized within the cytoplasm is on rough endoplasmic reticulum, microtubules and mitochondria. The labeled synaptic characteristics were both symmetrical and asymmetrical. The origin of the labeled symmetrical are probably from axon collaterals of neostriatal projection neurons. The synaptic vesicles with the labeled boutons varied in size according to the transmitter labeling. GAD-I labeled vesicles were found to range from 32-36 nm; substance P vesicle size was found to range from 35-61 nm in size. What must be emphasized here is that these sizes are totally dependent upon fixatives utilized and buffers.


Therefore, it is concluded, from the present study, that by using the microtubule stabilizing buffer (360 nm 0sm) and low aldehyde concentrations, the vesicles were observed consistently small and round. The labeled vesicles were found to exhibit different sizes when they were labeled for different neurotransmitters. This may vary from investigator to investigator and therefore may be of little consequence.

Possible clinical implications can be drawn from the presence of GABA containing striatonigral and their possible interaction in degenerative diseases states such Huntington Chorea and Parkinson's disease. It is of particular interest to note the interactions of benzodiazepines with GABA receptors within the central nervous system and especially these interactions within the basal ganglia. Clinical implications in regards to the other neurotransmitter candidates, methionine enkephalin and substance P, has to be further investigated.

In conclusion, I have shown that some striatopallidal and striatonigral neurons utilize GABA and methionine enkephalin as a possible neurotransmitter. The topographical arrangement between these two neurotransmitter candidates also share similar arrangements.

Substance P is located in a different population of topographically arranged striatopallidal and striatonigral neurons. Additionally, existence of leucine enkephalin and GAD immunoreactivity were exhibited to occur within the same neostriatal neuron.

Figure 84 A diagramatic representation of the projections (striatopaliidal and striatonigral) neurons.

REFERENCES

- Adinolfi, A. M. (1971) The organization of synaptic junctions in cat putamen. <u>Brain Res</u>. 32, 53-67.
- Adinolfi, A. M. & Pappas, G. D. (1968) The fine structure of the caudate nucleus of the cat. J. Comp. Neurol. 133, 167-184.
- Aghajanian, G. K. & Bloom, F. E. (1967) Electron microscopic localization of tritiated norepinephrine in rat brain: Effect of drugs. J. Pharmac. Exp. Ther. 156, 407-416.
- Amin, A. H., Crawford, T.B.B. & Gaddum, J. H. (1954) The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol. Long. 126, 596-618.
- Atweh, S. F. & Kuhar, M. J. (1977) Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res. 134, 393-405.
- Bak, I. J., Choi, W. B., Hassler, R., Usunoff, K. G. & Wagner, A. (1975) Fine structural synaptic organization of the corpus striatum and substantia nigra in rat and cat. Adv. Neurol. 9, 25-41.
- Bak, I. J., Markham, C. H., Cook, M. L. & Stevens, J. G. (1978) Ultrastructural and immunoperoxidase study of striatonigral neurons by means of retrograde axonal transport of herpes simplex virus. Brain Res. 143, 361-368.
- Barker, J. L. & Mathers, D. A. (1981) GABA receptors and the depressant action of pentobarbital. Trends Neurosci. 4, 10-13.
- Barber, R. P., Vaughn, J. E., Slemmon, J. R., Salvaterr, P. M., Roberts, E. & Leeman, S. E. (1979) The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J. Comp. Neurol. 184, 331-351.
- Birkmayer, W. & Hornykiewicz, O. (1961) Der L-Dioxyphenylalanin (= L-DOPA)-Effekt bei der Parkinson-Akinese. Wien. Klin. Wochenschr. 73, 787-788.
- Bishop, G. A., Preston, R. J. & Kitai, S. T. (1978) Demonstration of rat caudate projection neurons by intracellular horseradish peroxidase technique. Neuroscience Abstracts 4:41.
- Bobillier, P., Petitjean, F., Salvert, D., Ligier, M. & Seguin, S. (1975) Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res. 85, 205-210.
- Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M. & Jouvet, M. (1976) The raphe nuclei of the cat brainstem: A topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113, 449-486.

- Bolam, J. P., Somogyi, P., Totterdell, S. & Smith, D. (1981) A second type of striatonigral neuron: A comparison between retrogradely labelled and golgi-stained neurons at the light and electron microscopic level. Neuroscience 6, 2131-2157.
- Bolam, J. P., Clarke, D. J., Smith, A. D. & Somogyi, P. (1983) A type of aspiny neuron in the rat neostriatum accumulates [3H] gamma aminobutyric acid: Combination of golgi staining, autoradiography and electron microscopy. J. Comp. Neur. 213, 121-134.
- Bradley, R. H., Ireland, M. & Maisel, H. (1979) The cytoskeleton of chick lens cells. Exp. Eye Res. 28, 441-453.
- Brownstein, M., Mroz, E. A., Kizer, J. S., Palkovits, M. & Leeman, S. E. (1976) Regional distribution of substance P in the brain of the rat. Brain Res. 116, 299-305.
- Brownstein, M. J., Mroz, E. A., Tappaz, M. L. & Leeman, S. E. (1977)
 On the origin of substance P and glutamic acid decarboxylase (GAD)
 in the substantia nigra. Brain Res. 135, 315-323.
- Brownstein, M. J., Saavedra, J. M., Axelrod, J., Zeman, G. H. & Carpenter, D. O. (1974) Coexistence of several putative neurotransmitters in single identified neurons of <u>Aplysia</u>. Proc. Natl. Acad. Sci. 71, 4662-4665.
- Buijs, R. M. (1982) The ultrastructural localization of amines, amino acids and peptides in the brain. Progress in Brain Research, In:

 Chemical Transmission in the Brain. The Role of Amines, Amino Acids and Peptides, Vol. 55, 167-182 (Eds.) Buijs, R. M., Pévet, P. & Swaab, D. F., Elsevier Biomedical Press, Amsterdam, NY.
- Bunny, B. S. & Aghajanian, G. K. (1976) The precise localization of nigra afferents in the rats as determined by a retrograde tracing technique. Brain Res. 117, 423-435.
- Burnstock, G. (1976) Do some nerve cells release more than one transmitter? Neuroscience 1, 239-248.
- Butcher, L. L. & Bilezikjian, L. (1975) Acetylcholinesterase-containing neurons in the neostriatum and substantia nigra revealed after punctate intracerebral injection of di-isopropylfluorophosphate. Eur. J. Pharmac. 34, 115-125.
- Butcher, S. G. & Butcher L. L. (1974) Origin and modulation of acetylcholine activity in the neostriatum. Brain Res. 71, 167-171.
- Ramon y Cajal, S. (1911) Histologie du Systeme Nerveux de l'Homme et des Vertebres (transl. by L. Azoulay), Vol. 2, 504-518, Maloine, Paris.
- Carlsson, A., Lindqvist, M., Magnusson, T. & Waldeck, B. (1958) On the presence of 3-hydroxytyramine in brain. Science 127, 471.

- Campochiaro, P., Schwarcz & Coyle, J. T. (1977) GABA receptor binding in rat striatum: Localization and effects of denervation. Brain Res. 136, 501-511.
- Carmen, J. B., Cowan, W. M., Powell, T.P.S. & Webster, K. E. (1965) A bilateral cortico-striate projection. J. Neurol. Neurosurg. Psychiat. 28, 71-77.
- Carpenter, M. B. (1976) Anatomical organization of the corpus striatum and related nuclei. In: <u>The Basal Ganglia</u>, (Eds.) Yahr, M. D., Raven Press, NY.
- Carpenter, M. B. & Peter, P. (1972) Nigrostriatal and nigrothalamic fibers in rhesus monkey. J. Comp. Neurol. 144, 93-116.
- Chan-Palay, V. (1978a) Autoradiographic localization of γ -aminobutyric acid receptors in the rat central nervous system using ³H-muscimol. Proc. Nat. Acad. Sci. U.S.A. 75, 1024-1028.
- Chan-Palay, V. (1978b) Quantitative visualization of γ -aminobutyric acid receptors in the hippocampus and area dentata demonstrated by $^3\text{H-muscimol}$ autoradiography. Proc. Nat. Acad. Sci. U.S.A. 75, 6281-6284.
- Chan-Palay, V. (1979a) Immunocytochemical detection of substance P neurons, their processes and connections by <u>in vivo</u> microinjections of monoclonal antibodies: Light and electron microscopy. Anat. Embryol. 156, 225-240.
- Chan-Palay, V. (1982) Gamma-aminobutyric acid pathways in the cerebellum studied by retrograde and anterograde transport of glutamic acid decarboxylase (GAD) antibody after in vivo injections. Progress in Brain Research, In: Chemical Transmission in the Brain. The Role of Amines, Amino Acids and Peptides, Vol. 55, 51-76 (Eds.) Buijs, R. M., Pévet, P. and Swaab, D. F., Elsevier Biomedical Press, Amsterdam, NY.
- Chang, H. T. (1981) Morphological analysis of rat neostriatal neurons.

 Doctoral Thesis, Michigan State University.
- Chronister, R. B., Farnell, K. E., Marco, L. A. & White, L. E. (1976)
 The rodent neostriatum: A Golgi analysis. Brain Res. 108, 37-46.
- Chubb, I. W., Hodgson, A. J. & White, G. H. (1980) Acetylcholinesterase hydrolyzes substance P. Neurosci. 5, 2065-2072.
- Connell, P. H. (1958) Amphetamine Psychosis, Maudsley Monograph No. 5, Chapman and Hall, London.
- Coons, A. H. (1958) Fluorescent antibody methods. In: General Cytochemical Methods (Eds.) Danielli, J. F., pp. 399-422, Academic Press, NY.
- Chung, J., Hassler, R. & Wagner, A. (1977) Degeneration of two of nine synapses in the putamen after ceter median coagulation in cat. Brain Res28:345-361.

- Cotman, C. W., Foster, A. & Lanthorn, T. (1981) An overview of glutamate as a neurotransmitter. In: Glutamate as a Neurotransmitter, Advanc. Biochem. Psychopharmacol., Vo. 27, 1-27 (Eds.) Dichiara G. & Gessa, G. L., Raven Press, NY
- Coyle, J. T. & Schwarcz, R. (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington's chorea. Nature (London) 263, 244-246.
- Cuello, A. C., Jessell, T. M., Kanazawa, I. & Iversen, L. L. (1977) Substance P: localization in synaptic vesicles in rat central nervous system. J. Neurochem. 29, 747-751.
- Cuello, A. C. & Kanazawa, I. (1978) The distribution of substance P immunoreactive fibers in the rat central nervous system. J. Comp. Neurol. 178, 129-156.
- Cuello, A. C. & Paxinos, G. (1978) Evidence for a long-leu-enkephalin striatopallidal pathway in rat brain. Nature (London) 271, 178-180.
- Dale, H. (1935) Pharmacology and nerve-endings. Proc. R. Soc. Med. 28, 319-332.
- De la Baume, S., Patey, G. & Schwartz, J. C. (1981) Subcellular distribution of enkephalin-dipeptidyl carboxypeptidase (enkephalinase) in rat brain. Neuroscience 6, 315-321.
- Di Chiara, G., Olianas, M., Del Fiacco, M., Spano, D.-F. & Tagliamonte, A. (1977) Intranigral kainic acid is evidence that nigral non-dopaminergic neurons control posture. Nature (London) 268, 743-745.
- DiFiglia, M. & Aronin, N. (1982) Ultrastructural feature of immunoreactive somatostatin neurons in the rat caudate nucleus. J. Neurosci. 2, 1267-1274.
- DiFiglia, M., Aronin, N. & Leeman, S. E. (1981) Immunuoreactive substance P in the substantia nigra of the monkey: Light and electron microscopic localization. Brain Res. 233, 381-388.
- DiFiglia, M., Aronin, N. & Martin, J. B. (1982) Light and electron microscopic localization of immunoreactive leu-enkephalin in the monkey basal ganglia. J. Neurosci. 2, 303-320.
- DiFiglia, M., Pasik, P. & Pasik, T. (1978) Electron microscopy of Golgi impregnated spiny and aspiny neurons in monkey neostriatum. Neuroscience Abstracts 4:42.
- Dimova, R., Vuillet, J. & Seits, R. (1980) Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections. Neurosci. 5, 1581-1596.

- Divac, I., Fonnum, F. & Storm-Mathisen, J. (1977) High affinity uptake of glutamate in terminals of corticostriatal axons. Nature (London) 266, 377-378.
- Domesick, V. B. (1977) The topographical organization of the striatonigral connection in the rat. Anat. Rec. 187, 567.
- Donoghue, J. P. & Kitai, S. T. (1981) A collateral pathway to the neostriatum from cortifugal neurons of the rat sensory-motor cortex: An intracellular HRP study. J. Comp. Neur. 20, 1-13.
- Dray, A., Gonye, T. J. & Oakley, N. R. (1976) Caudate stimulation and substantia nigra activity in the rat. J. Physiol. London 759, 825-849.
- Duffy, M. J., Mulhall, D. & Powell, D. (1975) Subcellular distribution of substance P in bovine hypothalamus and substantia nigra. J. Neurochem. 25, 305-307.
- Eccles, J. C., Fatt, P. & Koketsu, K. (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons. J. Physiol. London 126, 524-562.
- Eccles, J. C., Schmidt, R. F. & Willis, W. D. (1962) Pharmacological studies on presynaptic inhibition. J. Physiol. (London) 168, 500-530.
- Elde, R., Hokfelt, T., Johansson, O. & Terenius, L. (1976)
 Immunohistochemical studies using antibodies to leucine-enkephalin:
 Initial observations on the nervous system of the rat. Neuroscience 5, 349-351.
- Elliot, T. R. (1904) On the action of adrenalin. J. Physiol. (London) 31, 20-21.
- Emson, P. C., Arregui, A., Clement-Jones, V., Sandberg, B.E.B. & Rossor, M. (1980) Regional distribution of methionine-enkephalin and substance P-like immunoreactivity in normal human brain and in Huntington's disease. Brain Res. 199, 147-160.
- Engberg, G., Svensson, T. H., Rosell, S. & Folkers, K. (1981) A synthetic peptide as an antagonist of substance P. Nature (London) 293, 222-223.
- Erulkar, S. D. & Fine, A. (1979) Calcium in the nervous system. Rev. Neurosci. 4, 179-232.
- Fagg, G. E. & Lane, J. D. (1979) The uptake and release of putative amino acid neurotransmitters. Neuroscience 4, 1015-1036.
- Fallon, J. H. & Moore, R. Y. (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J. Comp. Neurol. 180, 545-580.

- Feger, J., Deniau, J. M., de Champlain, J. & Feltz, P. (1979) A survey of electrophysiology and pharmacology of neostriatal input-output relations. In: The Neostriatum (Eds.) Divac, I. & Oberg, R.G.E., pp. 71-102, Pergamon Press.
- Fibiger, H. C., Pudritz, R. E., McGeer, P. L. & McGeer, E. G. (1972)
 Axonal transport in nigro-striatal and nigro-thalamic neurons:
 Effects of medial forebrain bundle lesions and 6-hydroxydopamine.
 J. Neurochem. 19, 1697-1708.
- Fonnum, F., Gottesfeld, Z. & Grofova, I. (1978) Distribution of glutamate decarboxylase, choline acetyl-transferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striato-entopeduncular and striatonigral GABAertic fibers. Brain Res. 143, 125-138.
- Fonnum, F., Grofova, I, Rinvik, E., Storm-Mathisen, J. & Walberg, F. (1974) Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Res. 71, 77-92.
- Fonnum, F., Storm-Mathisen, J. & Divac, I. (1979) Glutamate as neurotransmitter of the cortico-striatal and cortico-thalamic projections. (To be published).
- Fonnum, F. & Walaas, I. (1979) Localization of neurotransmitter candidates in the neostriatum. In: <u>The Neostriatum</u>, (Eds.) Divac, I. & Oberg, R.G.E., pp. 53-69, Pergamon Press.
- Fox, C. A., Andrade, A. N., Hillman, D. E. & Schwyn, R. C. (1971/1972a)
 The spiny neurons in the primate striatum: A Golgi and electron
 microscopic study. J. Hirnforsch. 13, 181-201.
- Fox, C. A., Andrade, A. N., Schwyn, R. C. & Rafols, J. A. (1971/1972a)
 The aspiny neurons and the glia in the primate striatum: A
 Golgi and electron microscopic study. J. Hirnforsch. 13, 341-362.
- Fox, C. A. & Rafols, J. A. (1976) The striatal efferents in the globus pallidus and in the substantia nigra. In: <u>The Basal Ganglia</u>, (Eds.) Yahr, M. D., pp. 37-55, Raven Press, NY.
- Frotscher, M., Rinne, U., Hassler, R. & Wagner, A. (1981) Termination of cortical afferents on identified neurons in the caudate nucleus of the cat. Exp. Brain Res. 41, 329-337.
- Fry, J. P. & Zieglgansberger, W. (1979) Comparison of the effects of GABA and enkephalin on synaptically evoked activity in the rat striatum. Appl. Neurophysiol. 42, 54-56.
- Fuxe, K. (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 64, Suppl. 247, 39-85.

- Fuxe, K., Hokfelt, T., Said, S. I. & Mutt, V. (1977) Vasoactive intestinal polypeptide and the nervous system: immunohistochemical evidence for localization in central and peripheral neurons, particularly intracortical neurons of the cerebral cortex. Neuroscience Letts. 5, 241-246.
- Fuxe, K. & Jonsson, G. (1974) Further mapping of central 5-hydroxytryptamine neurons: Studies with the neurotoxic dihydroxytryptamines. In: Advances in Biochemical Psychopharmacology, 10, 1-12, Raven Press, NY.
- Gale, K., Hong, J. S. & Guidotti, A. (1977) Presence of substance P and GABA in separate striatonigral neurons. Brain Res. 136, 371-375.
- Gamse, R., Molnar, A. & Lembeck, F. (1979) Substance P release from spinal cord slices by capsaicin. Life Sci. 25, 629-636.
- Garcia-Munoz, M., Nicolaou, N. M., Tulloch, I. F., Wright, A. K. & Arbutnott, G. W. (1977) Feedback loop or output pathway in strio nigral fibers? Nature (London) 265, 363-365.
- Gelfen, L., Jessell, T., Cuello, A. & Iversen, L. L. (1976) Release of dopamine from in rat substantia nigra. Nature (London) 260, 258-260.
- Giachetti, A., Said, S. I., Reynolds, R. C. & Koniges, F. C. (1977) Vasoactive intestinal polypeptide in brain: Localization in and release from isolated nerve terminals. Proc. Nat. Acad. Sci. U.S.A. 74, 3424-3428.
- Giorguieff, M. F., Kemel, M. L., Glowinski, J. & Bessom, M. J. (1978) Stimulation of dopamine release by GABA in rat striatal slices. Brain Res. 139, 115-130.
- Graybiel, A. M., Ragsdale, C. W., Jr., Yoneoka, E. S. & Elde, R. P. (1981) An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience 6, 377-397.
- Grofova, I. (1975) The identification of striatal and pallidal neurons projecting to the substantia nigra. An experimental study by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 19, 286-291.
- Grofova, I. (1979) Extrinsic connections of the neostriatum. In: The Neostriatum (Eds.) Divac, I. & Oberg, R.G.E., pp. 37-51, Pergamon Press.
- Grofova, I. (1979) Types of striato-nigral neurones labeled by retrograde transport of horseradish peroxidase. Appl. Neurophysiol. 42, 25-28.

- Grofova, I. & Rinvik, E. (1970) An experimental electron microscopic study on the striato-nigral projection. Exp. Brain Res. 11, 249-262.
- Gros, D., Obrenovitch, A., Challice, C. E., Monsigny, M. & Schrevel, J. (1977) Ultrastructural visualization of cellular carbohydrate components by means of lectins on ultrathin glycol methacrylate sections. J. Histochem. Cytochem. 25, 104-114.
- Groves, P. (1980) Synaptic endings and their post-synaptic targets in neostriatum: Synaptic specializations revealed from analysis of serial sections. Proc. Nat. Acad. Sci. U.S.A. 77, 6926-6929.
- Haefely, W., Pole, P. Schaffner, R., Keller, H., Pieri, L. & Mohler, H. (1978) Facilitation of GABA-ergic transmission by drugs. In: GABA-Neurotransmitter, (Eds.) Krogsgaard-Larsen, P., Scheel-Krueger, J. & Kofod, H., pp. 357-375, Munksgaard, Copenhagen.
- Hassler, R. (1976) Electron microscopic differentiation of the extrinsic and intrinsic types of nerve cells and synapses in the striatum and their putative transmitters. Adv. Neurol. 24, 93-108.
- Hassler, R., Chung, J. W., Rinne, U. & Wagner, A. (1978) Selective degeration of two out of the nine types of synapses in cat caudate after cortical lesions. Exp. Brain Res. 31, 67-80.
- Hattori, T., Fibiger, H. C., McGeer, P. L. & Maller, L. (1973)
 Analysis of the fine structure of the dopaminergic nigrostriatal projection by electron microscopic autoradiography. Exp. Neurol. 41, 599-611.
- Hattori, T., McGeer, P. L. (1974) Electron microscopic identification of cholinesterase-containing structures in the corpus striatum by Diisopropyl Fluorophosphate uptake. Exp. Neurol. 45, 541-548.
- Hattori, T., McGeer, E. G. & McGeer, P. L. (1979) Fine structural analysis of the cortico-striatal pathway. J. Comp. Neurol. 185, 347-353.
- Hattori, T., McGeer, P. L. & McGeer, E. G. (1976) Synaptic morphology in the neostriatum of the rat: possible serotonergic synapse. Neurochem. Res. 1, 451-467.
- Hattori, T., McGeer, P. L., Fibiger, H. C. & McGeer, E. G. (1973)
 On the source of GABA-containing terminals in the substantia nigra.
 Electron microscopic autoradiographic and biochemical studies.
 Brain Res. 54, 103-114.
- Hedreen, J. C. (1977) Corticostriatal cells identified by peroxidase method. Neurosci. Lett. 4, 1-7.
- Henderson, G., Hughes, J. & Kosterlitz, H. W. (1978) <u>In vitro</u> release of leu- and met-enkephalin from the corpus striatum. Nature (London) 271, 677-679.

- Herkenham, M. & Pert, C. B. (1980) <u>In vitro</u> autoradiography of opiate receptors in rat brain suggests <u>loci of opiatergic pathways</u>. Proc. Nat. Acad. Sci. U.S.A. 77, 5532-5536.
- Herkenham, M. & Pert, C. B. (1981) Mosaic distribution of opiate receptors, parafiscular projections and acetylcholinesterase in the rat striatum. Nature 291, 415-418.
- Hokfelt, T., Elde, R., Johansson, O., Ternius, L. & Stein, L. (1977)
 The distribution of enkephalin-immunoreactive cell bodies in the rat.
 Neurosci. Letts. 5, 25-31.
- Hokfelt, T., Johansson, O., Kellerth, J. O., Ljungdahl, A., Nilsson, G., Nygards, A. & Pernow, B. (1977) Immunohistochemical distribution of substance P. In: Substance P., (Eds.) von Euler, U. S. & Pernow, B., pp. 117-145, Raven Press, NY.
- Hong, J. S., Yang, H.-Y. T., Fratta, W. & Costa, E. (1977) Determination of methionine enkephalin in discrete regions of rat brain. Brain Res. 134, 383-386.
- Hong, J. S., Yang, H.-Y., Racagni, G. & Costa, E. (1977) Projections of substance P containing neurons from neostriatum to substantia nigra. Brain Res. 122, 541-544.
- Hornykiewicz, O. (1976) Neurohumoral interactions and basal ganglia function and dysfunction in "The Basal Ganglia," (Eds. Yahr, M. D., Raven Press, NY.
- Hsu, S. M., Raine, L. & Fanger, H. (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29, 577-580.
- Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A. & Morris, H. R. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature (London) 285, 577.
- Ibata, Y., Nojyo, Y., Matsuura, T. & Sano, Y. (1973) Nigro-neostriatal projection A correlative study with Fink-Heimer impregnation, fluorescence histochemistry and electron microscopy. Z. Zellforsch. 138, 334-344.
- Iversen, S. D. (1977) Striatal function and stereotyped behavior,
 In: Psychobiology of the Striatum, (Eds.) Cools, A. R., Lohman,
 A.H.M. & van den Bereken, J.H.L., pp. 99-118, Elsevier/North Holland
 Biomedical Press, Amsterdam.

- Jessell, T. M., Emson, P. C., Paxinao, G. & Cuello, A. C. (1978)
 Topographic projections of substance P and GABA pathways in the striato- and pallido-nigral system: A biochemical and immunohistochemical study. Brain Res. 152, 487-498.
- Jessell, T. M. & Iversen, L. L. (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature (London) 268, 549-551.
- Kanazawa, I., Emson, P. C. & Cuello, A. C. (1977) Evidence for the existence of substance P-containing fibers in striatonigral and pallido-nigral pathways in rat brain. 119, 447-453.
- Kanazawa, I. & Jessell, I. (1976) Postmortem changes and regional distribution of substance P in the rat and mouse nervous system. Brain Res. 117, 362-367.
- Katayama, Y., North, R. A. & Williams, J. T. (1979) The action of substance P on neurones of the myenteric plexus of the guinea pig small intestine. Proc. Roy. Soc. B. 206, 191-208.
- Kawana, E., Akert, K., Bruppacher, H. (1971) Enlargement of synaptic vesicles as an early sign of terminal degeneration in the rat caudate nucleus. J. Comp. Neurol. 142, 297-308.
- Kemp, J. M. (1970) The termination of striatopallidal and striatonigral fibers. Brain Res. 17, 125-128.
- Kemp, J. M. & Powell, T.P.S. (1971) The structure of the caudate nucleus of the cat: Light and electron microscopy. Phil. Trans. R. Soc. Lond. (Biol.) 262, 383-401.
- Kemp, J. M. & Powell, T.P.S. (1971a) The structure of caudate nucleus of the cat: Light and electron microscopy. Phil. Trans. R. Soc. Lond. B. 262, 383-401.
- Kemp, J. M. & Powell, T.P.S. (1971b) The synaptic organization of the caudate nucleus. Phil. Trans. R. Soc. Lond. B. 262, 403-412.
- Kemp, J. M. & Powell, T.P.S. (1981c) The site of termination of afferent fibres in the caudate nucleus. Phil. Trans. R. Soc. Lond. B. 262, 413-427.
- Khachaturian, H., Lewis, M. E., Hollt, V. & Watson, S. J. (1983)
 Telencephalic enkephalinergic systems in the rat brain. J. Neurosci.
 3. 844-855.
- Kim, J. S., Bak, I. J. Hassler, R. & Okada, Y. (1971) Role of gamma-amino-butyric acid (GABA) in the extrapyramidal motor system.
 2. Some evidence of a type of GABA-rich striato-nigral neurons.
 Exp. Brain Res. 14, 95-104.

- Kimura, H., McGeer, P. L., Peng, F. & McGeer, E. G. (1980) Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208, 1057-1059.
- Kitai, S. T. & Kocsis, J. D. (1978) An intracellular analysis of the action of the nigrostriatal pathway on the caudate spiny neuron.

 In: <u>Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System</u>, (Eds.) Ryall and Kelly, 17-24, Elsevier/North Holland Biomedical Press.
- Kitai, S. T., Kocsis, J. D. & Preston, R. J. (1978) Physiologic and morphologic characteristics of the caudate spiny neuron. In:

 <u>Cholinergic-monoaminergic interactions in the Brain</u>, 157-165, Academic Press, NY.
- Kitai, S. T., Wagner, A., Precht, W. & Ohno, T. (1975) Nigro-caudate and caudato-nigral relationship: A electrophysiological study. Brain Res. 85, 44-48.
- Kobayashi, R. M., Brown, M. & Vale, W. (1977) Regional distribution of neurotensin and somatostatin in rat brain. Brain Res. 126, 584-588.
- Kocsis, J. D. & Kitai, S. T. (1977) Dual excitatory inputs to caudate spiny neurons from substantia nigra stimulation. Brain Res. 138, 271-283.
- Kocsis, J. D., Sugimori, M. & Kitai, S. T. (1977) Convergence of excitatory synaptic input to caudate spiny neurons. Brain Res. 124, 403-413.
- Korf, J., Zielman, M. & Westernik, B. (1976) Dopamine release in substantia nigra? Nature (London) 260, 257-258.
- Kravitz, E. A. (1967) Acetylcholine, γ-aminobutyric acid and glutamic acid: Physiological and chemical studies related to their roles as neurotransmitter agents. In: <u>The Neurosciences</u>, (Eds.) Quarton, G. C., Melnechuk, T. & Schmitt, F. O., 433-444, Rockefeller University Press, NY.
- Krnjevic, K. (1977) Effects of substance P on central neurones in cats.
 In: Substance P, (Eds.) von Euler, U.S. & Pernow, B., 217-230,
 Plenum Press, New York, NY.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of th- head of bacteriophage T4. Nature (London) 227, 680-685.
- Lechan, R. M., Nestler, J. L. & Jacobson, S. (1981) Immunohistochemical localization of retrogradely transported wheat germ agglutinin with the central nervous system of the rat. J. Histochem. Cytochem. 29, 1255-1262.

- Leeman, S. E. & Carraway, R. E. (1982) Neurotensin: Discovery, isolation, characterization, synthesis and possible physiological roles In: Neurotensin, A Brain and Gastrointestinal Peptide, (Eds.) Nemeroff, C. B. & Prange, A. J., 1-16, Ann. New York. Acad. Sciences.
- Ljungdahl, A., Hokfelt, T., Nilsson, G. & Goldstein, M. (1978)
 Distribution of substance P-like immunoreactivity in the central nervous system of the rat--2. Light microscopic localization in relation to catecholamine-containing neurons. Neuroscience 3, 945-976.
- Lloyd, K. G., Shemen, L. & Hornykiewicz, O. (1977) Distribution of high affinity sodium-independent (³H)-gamma aminobutyric acid [(³HO GABA] binding in the human brain: Alterations in Parkinson's disease. Brain Res. 127, 264-278.
- Mao, C. C., Cheney, D. L., Mario, E., Revuelta, A. & Costa, E. (1977) Turnover times of gamma-aminobutyric acid and acetylcholine in nucleus caudatus, nucleus accumbens, globus pallidus and substantia nigra: Effects of repeated administration of haloperidol. Brain Res. 132, 375-379.
- Margolis, T. P., Marchand, C.M.-F., Kistler, H. B. & LaVail, J. H. (1981) Uptake and anterograde axonal transport of wheat germ agglutinin from retina to optic tectum in the chick. J. Cell Biol. 89, 152-156.
- Marshall, J. F. & Ungerstedt, U. (1977) Striatal efferent fibers play a role in maintaining of rotational behaviour in the rat. Science 198, 62-64.
- McGeer, E. G. & McGeer, P. L. (1976) Duplication of biochemical changes of Huntington's Chorea by intrastriatal injections of glutamic and kainic acids. Nature (London) 263, 517-519.
- McGeer, E. G., McGeer, P. L. & Wada, J. A. (1971) Distribution of tyrosine hydroxylase in human and animal brain. J. Neurochem. 18, 1647-1658.
- McGeer, P. L. & McGeer, E. G. (1975) Evidence for glutamic acid decarboxylase-containing interneurons in the neostriatum. Brain Res. 591, 331-335.
- McGeer, P.L., McGeer, E. G., Scherer, U. & Singh, K. (1977) A glutamatergic corticostriatal path? Brain Res. 128, 369-373.
- McLaughlin, B., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E. & Wu, J.-Y. (1974) The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res. 76, 377-391.
- Miller, J. J., Richardson, T. L., Fibiger, H. C. & McLennan, H. (1975) Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res. 97, 133-138.

- Mori, S. (1966) Some observations on the fine structure of the corpus striatum of the rat brain. Z. Zellforsch. 70, 461-488.
- Moriaty, G. C. (1973) Adenohypophysis: Ultrastructural cytochemistry. A. Review. J. Histochem. and Cytochem. 10, 855-894.
- Mroz, E. A., Brownstein, M. J. & Leeman, S. E. (1977) Evidence for substance P in the striato-nigral tract. Brain Res. 125, 305-311.
- Mudge, A., Leeman, S. & Fischbach, G. (1979) Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Nat. Acad. Sci. U.S.A. 76, 526-530.
- Mulder, A. H. (1982) An overview of subcellular localization, release and termination of action of amine, amino acid and peptide neurotransmitters in the central nervous system. Progress in Brain Research, In: Chemical Transmission in the Brain. The Role of Amines, Amino Acids and Peptides, (Eds.) Buijs, R. M., Pevet, P. & Swaab, D. F., 55, 135-156, Elsevier Biomedical Press, Amsterdam, NY.
- Nagata, Y. & Burger, M. M. (1974) Wheat germ agglutinin: Molecular characteristics and specificity for sugar binding. J. Biol. Chem. 249, 3116-3122.
- Nagy, J. I., Carter, D. A. & Fibiger, H. C. (1978) Anterior striatal projections to the globus pallidus entopeduncular nucleus and substantia nigra in the rat: The GABA connection. Brain Res. 158, 15-29.
- Nauta, H.J.W., Kaiserman-Abramof, I. R. & Lasek, R. J. (1975) Electron microscopic observation of horseradish peroxidase transported from caudoputamen to the substantia nigra in the rat: Possible involvement of the agranular reticulum. Brain Res. 85, 373-384.
- Nauta, H.J.W., Pritz, M. B. & Lasek, R. J. (1974) Afferents to the rat caudoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method. Brain Res. 67, 219-238.
- Neville, D. M., Jr. (1971) Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. Biol. Chem. 246, 6328-6334.
- Nistri, A. A. & Constanti, A. (1979) Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates. Prog. Neurobiol. 13, 117-235.
- Obata, K. (1976) Excitatory effects of GABA. In: GABA in Nervous System Function, (Eds.) Roberts, E., Chase, T. N. & Tower, D. B., 283-286, Raven Press, NY.

- Obata, K. & Yoshida, M. (1973) Caudate-evoked inhibition and actions of GABA and other substances on cat pallidal neurons. Brain Res. 64, 455-459.
- Oertel, W. H., Tappaz, M. L., Berod, A. & Mugnaini, E. (1982) Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta. Brain Res. Bull. 9, 463-474.
- Oka, H. & Jinnai, K. (1975) Common projection of the motor cortex to the caudate nucleus and the cerebellum. Exp. Brain Res. 31, 31-42.
- Orrego, F. (1979) Criteria for the identification of central neurotransmitters and their application to studies with some nerve tissue preparations in vitro. Neuroscience 4, 1037-1057.
- Osborne, N. N. (1977) Do snail neurones contain more than one neurotransmitter? Nature, New Biol. 270, 622-623.
- Osborne, H., Hollt, V. & Herz, A. (1978) Subcellular distribution of enkephalins and endogenous opioid activity in rat brain. Life Sci. 22, 611-618.
- Otsuka, M. & Konishi, S. (1976) Release of substance P-like immunoreactivity from isolated spinal cord of newborn rat. Nature (London) 264, 83-84.
- Palkovits, M. (1978) Topography of chemically identified neurons in the central nervous system: A Review. ACTA Morph. Acad. Sci. Hung. 26, 211-290.
- Park, M. R., Gonzales-Vegas, J. A. & Kitai, S. T. (1982) Serotonergic excitation from dorsal raphe stimulation recorded intracellularly from rat caudate-putamen. Brain Res. 243, 49-58.
- Parsons, J.A. and S.L. Erlandsen (1974) Ultrastructual immunocytochemical localization of prolactin in rat anterior pituitary by use of the unlabeled antibody enzyme method. J. !!istochm/Cytoch. 22:340-351
- Pasik, P., Pasik, T. & DiFiglia, M. (1976) Quantitative aspects of neuronal organization in the neostriatum of the Macque monkey, In: The Basal Ganglia, (Eds.) Yahr, M. D., Raven Press, NY.
- Pasik, P., Pasik, T., Saavedra, J. P. & Holstein, G. R. (1981) Light and electron microscopic immunocytochemical localization of serotonin in the basal ganglia of cats and monkeys. Anat. Rec. 199, 194A.
- Pelletier, G., Leclerc, R. & Dupont, A. (1977) Electron microscope immunohistochemical localization of substance P in the central nervous system of the rat. J.Histochem. Cytochem. 25, 1373-1380.
- Perry, T. L., Hansen, S. & Kloster, M. (1973) Huntington's Chorea. Deficiency of gamma-aminobutyric acid in brain. N. Engl. J. Med. 288, 337-342.

- Pickel, V. M., Joh, T. H., Reis, D. J., Leema, S. E. & Miller, R. J. (1979) Electron microscopic localization of substance P and enkephalin in axon terminals related to dendrites of catecholaminergic neurons. Brain Res. 160, 387-400.
- Pickel, V. M., Sumal, K. K., Beckley, S. C., Miller, R. J. & Reis, D. J. (1980) Immunocytochemical localization of enkephalin in the neostriatum of rat brain: A light and electron microscopic study. J. Comp. Neurol. 189, 721-740.
- Pollard, H., Llorens-Cortes, C. & Schwartz, J.-C. (1977) Enkephalin receptors on dopaminergic neurons in rat striatum. Nature (London) 268, 745-747.
- Pool-Chr, W., Buijs, R. M., Swaab, D. F., Boer, G. J. & Van Leeuwen, F. W. (1982) On the way to a specific immunocytochemical localization. In: Neuroimmunocytochemistry, (Eds.) Cuello, A. C., IBRO Handbook Series, Methods in Neurosciences, John Wiley, New York/London, In Press.
- Preston, R. J., Bishop, G. A. & Kitai, S. T. (1980) Medium spiny neuron projection from the rat neostriatum: An intracellular horseradish peroxidase study. Brain Res. 183, 253-263.
- Rafols, J. A. (1978) Local circuit neurons in the primate corpus striatum. Anat. Rec. 190, 516-517.
- Rafols, J. A. & Fox, C. A. (1979) Fine structure of the primate striatum. Appl. Neurophysiol. 42, 13-16.
- Rafols, J. A. & Fox, C. A. (1971/1972) Further observations on the spiny neurons and synaptic endings in the striatum of the monkey (Saimiri sciureus). J. Hirnforsch. 13, 299-308.
- Randrup, A. & Munkvad, I. (1967) Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia 11, 300-310.
- Ribak, C. E., Vaughn, J. E. & Roberts, E. (1979) The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol. 187, 261-284.
- Ribak, C. E., Vaughn, J. E. & Roberts, E. (1980) GABA-ergic nerve terminals decrease in the substantia nigra following hemitransections of the striatonigral and pallidonigral pathways. Brain Res. 192, 413-420.
- Ribak, C. E., Vaughn, J. E. & Siato, K. (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 140, 315-332.

- Ribak, C. E., Vaugh, J. E., Saito, K., Barber, R. & Roberts, E. (1976) Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res. 116, 287-298.
- Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. & Roberts, E. (1977)
 Glutamate decarboxylase localization in neurons of the olfactory
 bulb. Brain Res. 126. 1-18.
- Robberecht, P., Deschodt-Lanckman, M. & Vanderhaeghen, J.J. (1978)

 Demonstration of biological activity of brain gastrin-like peptideric material in the human: Its relationship with the COOH-terminal octapeptide of choliecystokinin. Proc. Nat. Acad. Sci. U.S.A. 75, 524-528.
- Rosegay, H. (1944) An experimental investigation in the connections between the corpus striatum and substantia nigra in the cat. J. Comp. Neurol. 80, 293-321.
- Ross, R. A. & Reis, D. J. (1974) Effect of lesions of locus coerulus on regional distribution of dopamine-beta-hydroxylase activity in rat brain. Brain Res. 113, 563-574.
- Rossier, J. & Bloom, F. (1979) Central neuropharmacology of endorphins. Adv. Biochem. Psychopharmacol. 20, 165-185.
- Ruda, M. A. & Coulter, J. D. (1980) Lectins as markers of axoplasmic transport in the nervous system. J. Histochem. and Cytochem. 28, 607-614.
- Sar, M., Stumpf, W. E., Miller, R. J., Chang, K. J. & Cuatrecases, P. (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J. Comp. Neurol. 182, 1-38.
- Sato, M., Itoh, K. & Mizuno, N. (1979) Distribution of thalamo-caudate neurons in the cat as demonstrated by horseradish peroxidase. Exp. Brain Res. 34, 143-153.
- Scally, M. C., Ulus, I. H., Wurtman, R. J. & Pettibone, D. J. (1978)
 Regional distribution of neurotransmitter-synthesizing enzymes in substance P within the rat corpus striatum. Brain Res. 143, 556-560.
- Schenker, C, Mroz, E. A. & Leeman, S. E. (1976) Release of substance P from isolated nerve endings. Nature (London) 264, 790-792.
- Scherrington, C. S. (1906) <u>The Integrative Action of the Nervous System</u>, Yale University Press, New Haven, CT.
- Schwartz, J. C., De la Baume, B., Malfroy, B., Patey, G., Perdrisot, R., Swerts, J. P., Fournie-Zaluski, M. C., Gacel, G. & Roques, B. P. (1980) Properties, variations and possible synaptic functions of "enkephalinase": A newly characterized dipeptidyl carboxypeptidase, In: Neural Peptides and Neuronal Communication, (Eds.) Costa, E. & Trabucchi, M., Advanc. Biochem. Psychopharmacol. 22, 219-235, Raven Press, NY.

- Seeman, P. (1981) Brain dopamine receptors. Pharmacol. Rev. 32, 229-313.
- Simantov, R., Kuhar, M. J., Pasternak, G. W. & Snyder, S. H. (1976)
 The regional distribution of a morphine-like factor enkephalin in monkey brain. Brain Res. 106, 189-197.
- Simantov, R., Kuhar, M. J., Uhl, G. R. & Snyder, S. H. (1977) Opiate peptide enkephalin: Immunohistochemical mapping in rat central nervous system. Proc. Nat. Acad. Sci. U.S.A. 74, 2167-2171.
- Simantov, R., Snowman, A. M. & Snyder, S. H. (1976) A morphine-like factor "enkephalin" in rat brain. Brain Res. 107, 650-657.
- Sokoloff, P., Martres, M. P. & Schwartz, J. C. (1980) Three classes of dopamine receptor (D-1, D-3, D-4) identified by binding studies with ³H-apomorphine and ³H-domperidone. Arch. Pharmacol. 315, 90-102.
- Somogyi, P., Bolam, J. P. & Smith, A. D. (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure. J. Comp. Neurol. 195, 567-584.
- Somogyi, P., Priestley, J. V., Cuello, A. C., Smith, A. D. & Takagi, H. (1982) Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: A correlated light and electron microscopic study. J. Neurocyt. 11, 779-807.
- Somogyi, P. & Smith, A. D. (1979) Projection of neostriatal spiny neuron to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase transport procedure at both light and electron microscopic levels. Brain Res. 178, 3-15.
- Spano, P. F., Trabucchi, M. & di Chaiara, G. (1977) Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating from the corpus striatum. Science 196, 1343-1345.
- Steindler, D. A. & Bradley, R. H. (1983) Wheat germ agglutinin, N-[acetyl-3H]: Anatomical and biochemical studies of a sensitive bidirectionally transported axonal tracer. Neuroscience (Accepted for publication).
- Steindler, D. A. & Deniau, J. M. (1980) Anatomical evidence for collateral branching of substantia nigra neurons: A combined horseradish peroxidase and tritiated wheat germ agglutinin axonal transport study in the rat. Brain Res. 196, 228-236.
- Steindler, D. A. (1982) Differences in the labeling of axons of passage by wheat germ agglutinin after uptake by cut peripheral nerve versus injections within the central nervous system. Brain Res. 250, 159-167.

- Sternberger, L. A. (1974) <u>Immunocytochemistry</u>, Prentice Hall, Englewood Cliffs, NJ.
- Storm-Mathisen, J. (1977) Glutamic acid and excitatory nerve endings: Reduction of glutamic acid uptake after axotomy. Brain Res. 120, 379-386.
- Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Hang. F.-H.S. & Ohersen, O. P. (1983) First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 301, 517-520.
- Swaab, D. F. (1982) Nuropeptides. Their distribution and function in the brain. Progress in Brain Research, In: <u>Chemical Transmission in the Brain</u>. The Role of Amines, Amino Acids and Peptides, (Eds.) Buijs, R. M., Pevet, P. and Swaab, D. F., 55, 97-122, Elsevier Biomedical Press, Amsterdam, NY.
- Szabo, J. (1962) Topical distribution of the striatal efferents in the monkey. Exp. Neurol. 5, 21-36.
- Szabo, J. (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp. Neurol. 27, 1-15.
- Szabo, J. (1981) Retrograde double labeling experiments on the striatal efferents in cat and monkey. Anat. Rec. 199, 251A.
- Tappaz, M. L., Oertel, W. H., Wassef, M. & Mugnaini, E. (1982) Central GABAergic neuroendocrine regulations pharmacological and morphological evidence. Progress in Brain Research, In: Chemical Transmission in the Brain. The Role of Amines, Amino Acids and Peptides, (Eds.) Buijs, R. M., Pevet, P. & Swaab, D. F., 55, 77-96, Elsevier Biomedical Press, Amsterdam, NY.
- Ten Bruggencate, G. & Engberg, I. (1969) The effect of strychnine on inhibition in Deiter's nucleus induced by GABA and glycine. Brain Res. 14, 536-539.
- Ternaux, J. P., Hery, F., Bourgoin, S., Adrien, J., Glowinski, J. & Hamon, M. (1977) The topographical distribution of serotonergic terminals in the neostriatum of the rat and the caudate nucleus of the cat. Brain Res. 121, 311-376.
- Uhl, G. R. & Snyder, S. H. (1976) Regional and subcellular distributions of brain neurotensin. Life Sci. 19, 1827-1832.
- Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the brain. Acta Physiol. Scand. Suppl. 367, 1-48.
- Ungerstedt, U. (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by fotational behavior. Acta Physiol. Scand. Suppl. 367, 49-68.
- Ungerstedt, U. & Arbuthnott, G. W. (1970) Quantitative recording of rotational behavior of rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485-593.

- Ungerstedt, U. & Herrera-Marschitz, M. (1981) Behavioural pharmacology of dopamine receptor mechanisms, In: <u>Chemical Neurotransmission --</u> 75 years, 418-494, Academic Press, London.
- Ungerstedt, U., Herrera-Marschitz, H. & Zetterstrom, T. (1982) Dopamine neurotransmission and brain function. Progress in Brain Research, In: Chemical Transmission in the Brain. The Role of Amines, Amino Acids and Peptides, (Eds.) Buijs, R. M., Pevet, P. & Swaab, D. F., 55, 41-49, Elsevier Biomedical Press, Amsterdam, NY.
- van der Kooy, D. (1979) The organization of the thalamic, nigral and raphe cells projecting to the medial versus lateral caudate-putamen in rat. A fluorescent retrograde double labeling study. Brain Res. 169, 381-387.
- VanderMaelen, C. P., Bonduki, A. C. & Kitai, S. T. (1979) Excitation of caudate-putamen neurons following stimulation of the dorsal raphe nucleus in the rat. Brain Res. 175, 356-361.
- VanderMaelen, C. P. & Kitai, S. T. (1980) Intracellular analysis of synaptic potentials in rat neostriatum following stimulation of the cerebral cortex, thalamus and substantia nigra. Brain Res. Bull. 5, 725-733.
- Versteeg, D.H.G., vanderGugten, J., deJong, W. & Palkovits, M. (1976) Regional concentrations of noradenaline and dopamine in rat brain. Brain Res. 113, 563-574.
- Vincent, S. R., Kimura, H. & McGeer, E. G. (1982) A histochemical study of GABA-transaminase in the efference of the pallidum. Brain Res. 241, 162-165.
- Vincent, S. R., Kimura, H. & McGeer, E. G. (1982) GABA-transaminase in the basal ganglia: A pharmacohistochemical study. Brain Res. 251, 93-104.
- Walaas, I. (1981) Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain. Neuroscience 6, 399-405.
- Walaas, I. & Fonnum, F. (1978) The effects of surgical and chemical lesions on neurotransmitter candidates in nucleus accumbens. Neuroscience 6, 399-405.
- Walker, R. V., Kemp, J. A., Yajima, H., Kitagawa, K. & Woodruff, G. N. (1976) The action of substance P on mesencephalic reticular and substantia nigra neurons of the cat. Experientia (Basel) 32, 214-215.
- Wamsley, J. K., Young, W. S. & Kugar, M. J. (1980) Immunohistochemical localization of enkephalin in rat forebrain. Brain Res. 190, 153-174.

- Watson, S. J., Akil, H., Sullivan, S. & Barchas, J. D. (1977) Immunocytochemical localization of methionine enkephalin: Preliminary observations. Life Sci. 21, 733-788.
- Weber, K. & Osborn, N. (1969) The reliability of molecular weight determinations by dodecyl sulfate polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406-4412.
- Webster, K. E. (1961) Cortico-striate interrelations in the albino rat. J. Anat. (London) 95, 532-545.
- Werman, R. (1969) An electrophysiological approach to drug-receptor mechanisms. Biochem. Physiol. 30, 997-1017.
- Wilson, C. J. & K. D. Phelan (1982) **Dual topographic representation** of neostriatum in the globus pallidus of rats. Brain Res. 243:354-359.
- Wilson, C. J. & Groves, P. M. (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase. J. Comp. Neurol. 194, 599-615.
- Wilson, S.A.K. (1912) Progressive lenticular degeneration: A familial nervous disease associated with cirrhosis of the liver. Brain 34, 295-509.
- Wilson, S.A.K. (1914) An experimental research into the anatomy and physiology of the corpus striatum. Brain 36, 427-492.
- Wu, J.-Y., Lin, C.-T., Brandon, C., Chan, T.-S., Mohler, H. & Richards, J. G. (1982) Regulation and immunocytochemical characterization of glutamic acid decarboxylase, In: Cytochemical Methods in Neuroanatomy, 279-296, Alan R. Liss, Inc., NY.
- Yaksh, T. L., Jessell, T. M., Gamse, R., Mudge, A. W. & Leeman, S. E. (1980) Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature (London) 286, 155-157.
- Yang, H.-Y., Hong, J. S. & Costa, E. (1977) Regional distribution of leu- and met-enkephalin in rat brain. Neuropharmacology 16, 303-307.
- Zieglgansberger, W. & Tulloch, I. F. (1979b) The effects of methionineand leucine-enkephalin on spinal neurones of the cat. Brain Res. 167, 53-64.
- Zieglgansberger, W. (1982) Actions of amino acids, amines and neuropeptides on target cells in the mammalian central nervous system. Progress in Brain Research, In: Chemical Transmission in the Brain. The Role of Amines, Amino Acids and Peptides, (Eds.) Buijs, R. M., Pevet, P. & Swaab, D. F., 55, 297-320, Elsevier Biomedical Press, Amsterdam, NY.