
A COLLABORATIVE SOFTWARE TOOLCHAIN FOR AUTOMATIC COLLECTION AND
COMPARATIVE ANALYSIS OF SENSOR CHARACTERIZATION DATA

By

Charles Samuel Boling

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Electrical Engineering – Master of Science

2016

ABSTRACT

A COLLABORATIVE SOFTWARE TOOLCHAIN FOR AUTOMATIC COLLECTION AND
COMPARATIVE ANALYSIS OF SENSOR CHARACTERIZATION DATA

By

Charles Samuel Boling

Reproducible research has been recognized as a growing concern in most areas of science. To

achieve widespread adoption of repeatable, transparent research practices, some commentators

have identified a need for better software for authoring reproducible digital publications. Compli-

cating this goal, scientific investigations increasingly involve interdisciplinary teams, sophisticated

workflows for acquiring and analyzing data, and huge datasets that rely on considerable metadata

to interpret. Computational scientists have begun to adopt tools for managing the complex histo-

ries of their data and procedures, but software which simultaneously allows researchers to specify

experiments, remotely control equipment, and capture and organize data remains immature. This

thesis demonstrates a software architecture for programmable remote control of custom and com-

mercial lab equipment, automatic annotation and queryable storage of data sets, and provenance-

aware specification of experiment and analysis procedures. The design consists of a suite of small,

single-purpose software services which may be controlled remotely from a web browser, including

a graphical programming tool, an abstraction layer for interfacing with commercial and custom

embedded systems, and a hybrid document/table database for persistent storage of annotated ex-

perimental data. The software implementation embraces modern web technologies and best prac-

tices to produce a modular, user-extensible framework that is well-suited for helping to integrate

computer-controlled research labs with the emerging Internet of Things.

ACKNOWLEDGMENTS

I am especially thankful for the tremendous support of my family and loved ones throughout my

time at school. In particular, I want to express my appreciation for Paula, whose patience, feedback,

and reassurance have been invaluable in much more than just my academic work.

The software described in this thesis would not have been possible to realize without the benefit

of many prolonged design discussions with student researchers Ian Bacus and Yousef Gtat, and I

am tremendously grateful for their input and development support. Furthermore, the entire AMSaC

lab has been a great help and a fine community to work in the last few years.

This work was partially supported by funding from NIH grant 1R01ES022302.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 MOTIVATION . 1

CHAPTER 2 BACKGROUND . 6
2.1 Use case: Electrochemical sensor arrays . 6
2.2 Requirements and Terminology . 7

2.2.1 Automation . 8
2.2.2 Metadata and data provenance . 9
2.2.3 Version control . 10
2.2.4 Collaboration . 10
2.2.5 Extensibility . 11
2.2.6 User compliance . 11
2.2.7 Security . 12

2.3 Review of existing experiment management software 12
2.3.1 Electronic lab notebooks . 13
2.3.2 Workflow design tools . 13
2.3.3 Laboratory information management systems (LIMS) 17
2.3.4 Equipment automation tools . 18

2.4 Enhancing publication value . 19
2.4.1 Semantic provenance models . 19
2.4.2 Research objects . 20

2.5 Summary . 21

CHAPTER 3 ARCHITECTURE . 23
3.1 Network architecture . 23

3.1.1 Physical architecture . 23
3.1.2 Monolithic approach . 24
3.1.3 Microservices . 27
3.1.4 Switchboard service . 27

3.2 Device control . 29
3.2.1 Instrument manager . 29
3.2.2 Device enumeration . 29
3.2.3 Device APIs and protocol composition . 30

3.3 Data model . 31
3.3.1 Research artifact model . 31
3.3.2 Dataset management . 32

3.4 User experience . 33
3.5 Security model . 35
3.6 Summary . 35

iv

CHAPTER 4 IMPLEMENTATION . 37
4.1 Overview . 37

4.1.1 Design principles . 39
4.1.1.1 Request/Response vs. Publish/Subscribe 40
4.1.1.2 Dynamic loading . 41

4.2 Service interconnect . 43
4.2.1 REST APIs . 44
4.2.2 WAMP routing . 45

4.3 User interface . 46
4.3.1 Thin client design . 47
4.3.2 Angular 2 . 47
4.3.3 UI components on demand . 48
4.3.4 Jupyter . 49

4.4 Database management . 50
4.4.1 NoSQL and schemaless databases . 50
4.4.2 HDF5 . 52

4.5 Device management . 53
4.5.1 Enumeration . 53
4.5.2 Protocol stacks . 54

4.6 Summary . 55

CHAPTER 5 SUMMARY . 56
5.1 Contributions . 56

5.1.1 Hardware-connected lab informatics . 56
5.1.2 Modularity via microservices . 57
5.1.3 Design for customizability . 57

5.2 Implementation status and future work . 58
5.3 Conclusion . 60

APPENDICES . 61
APPENDIX A: ACRONYMS . 62
APPENDIX B: GLOSSARY . 64

BIBLIOGRAPHY . 68

v

LIST OF TABLES

Table 2.1 Comparison of lab informatics software . 13

vi

LIST OF FIGURES

Figure 2.1 Electrochemical sensor characterization . 8

Figure 2.2 Editing an IPython notebook . 14

Figure 2.3 Editing a Taverna workflow . 16

Figure 3.1 Research-relevant artifacts . 25

Figure 3.2 Monolithic web architecture . 26

Figure 3.3 Microservice-based web architecture . 28

Figure 3.4 A typical eGor workflow . 34

Figure 4.1 High-level structure of the eGor system . 38

Figure 4.2 Dynamic loading of microservices . 43

Figure 5.1 User interface screenshot . 59

vii

CHAPTER 1

MOTIVATION

Poor reproducibility of scientific publications has been recognized as a growing problem in a num-

ber of research areas, particularly those in which experiments are complex and sensitive to small

variations in methodology. Large-scale replication efforts have suggested reproducibility rates in

some fields as low as 10% [8]. Researchers have begun to call for improved documentation of the

scientific process in fields as diverse as experimental psychology [17], pharmaceutical research [8],

astronomy [1], and areas of computer science such as machine learning [11]. Much of the recent

attention paid to this issue comes in response to unique characteristics the scientific process has de-

veloped in the digital age, including unprecedented publication volume, insufficient documentation

of complex experimental procedures, and the availability of software packages for manipulating

statistics, but some critics suspect that many long-standing results are also inadequately verifiable.

It has been suggested that factors such as publishing pressure, confirmation bias, and inadequate

statistical power of hypotheses promote the widespread publication and citation of unverifiable

claims in all areas of experimental science [36]. To make matters worse, the last few years have

seen many cases of peer review fraud [25], outright data falsification [24], and ethically dubious

activities such as p-hacking [34], the practice of massaging data to cross the accepted threshold of

statistical significance.

In addition to these systemic problems with the publication process, the day-to-day practice

of modern science and engineering research presents a steadily growing host of data organiza-

tion challenges to investigators. Often an experimental program involves many personnel, each

with a unique specialization and research focus, performing interdependent experiments at mul-

tiple universities. Each such experiment is the product of a huge host of influences, and data are

often collected in ad-hoc or incompatible formats, making it difficult to draw honest comparisons

between results or to isolate methodological problems. Especially in the case of technology de-

velopment and exploratory research, it is desirable for researchers in these kinds of large projects

1

to use uniform data acquisition protocols, unambiguously describe their experimental procedures,

and collate their work into self-contained, consistently formatted units for distribution to collabo-

rators.

One proposition for improving the reproducibility of future scientific work is to better stan-

dardize documentation practices for laboratory procedures [36] and ultimately to transition from

traditional paper-based publication models to electronic formats which capture the intricacies of

modern scientific work. Ideally, a unit of disseminated research would provide enough detail for

future researchers to replicate every step of the experiment and analysis associated with a publi-

cation and for reviewers to identify sources of errors, details warranting further examination, and

academic misconduct. Confirmation studies as well as exploratory research could benefit from the

adoption of flexible software tools for collecting data and chronicling experimental procedures.

Particularly in “in-silico” fields, where experiments consist of the transformation and analysis of

data sets within the digital domain, research stands to benefit from software that can automate and

standardize tasks such as experimental design and record keeping, and some publication organi-

zations have begun to encourage sharing of code, procedures, and raw data alongside submitted

manuscripts. Software tools for managing complex simulation and data analysis pipelines have

begun to emerge in recent years which offer support for a number of powerful features, includ-

ing data provenance, sharing and refining workflows, and packaging execution environments into

virtual machines for later execution on different hardware [28, 53]. These tools typically do not

attempt to model or automate non-software research tasks in detail. To address some of the in-

formatics challenges of more “hands-on” research, several companies have developed so-called

laboratory information management system (LIMS), which are better suited to the inventory and

data management needs of traditional scientific facilities such as wet labs. However, many sci-

entific endeavors involve some mixture of structuring in-silico analysis workflows and directly

manipulating physical systems, and software toolchains for uniformly managing procedures of

this nature remain immature.

In fields where research involves both sophisticated software analysis and intensive batteries

2

of physical experiments, investigators could benefit from a software platform which unifies pro-

tocol design, data acquisition, result annotation and archiving, signal processing, and other tasks

involved in the complete research and development life cycle. Such a tool should be (i) automatic,

employing computer control whenever possible to produce organized, uniform and repeatable ex-

periments; (ii) extensible and modular, promoting adoption of new equipment, experimental meth-

ods, and data analysis techniques via user-crafted plugins; (iii) collaborative, allowing results and

proposed experiments to be shared, annotated, and reviewed at many levels of detail; (iv) bespoke,

accommodating and complementing the focus of each researcher involved in an interdisciplinary

research and development project, and (v) provenance-aware, enabling fine-grained differential

analysis of experimental outcomes and methodologies. Existing approaches do not combine data

acquisition and archiving features with interfaces for process customization in a way that meets all

the above goals. In many cases tools built for these purposes are also insufficiently adaptable for

the fast-paced and varied needs of active scientists, causing users to abandon the software once it

presents more limitations than benefits.

Fortunately, modern web technologies have begun to enable software design strategies that

make a complex, customizable end-to-end solution feasible. Network-enabled services with di-

verse purposes and internal infrastructures have become increasingly interoperable thanks to the

adoption of self-documenting web application programming interface (API)s. The increasing so-

phistication of web browsers has allowed for an explosion of rich client-side software experiences,

enabling full-featured and user interfaces which are platform-independent and easily updated. A

number of technologies such as distributed version control, demand-scaling cloud hosting services,

and real-time full-duplex network data streaming have emerged as powerful tools for rapidly build-

ing robust and flexible web applications with unprecedented capabilities. The availability of in-

expensive sensor and network hardware has begun to spur the growth of the emerging Internet

of Things (IoT), a vision of the near future in which ubiquitous computing devices collect data,

communicate with each other, and interact with their environments. Together these advancements

provide a rich software ecosystem for implementing a next-generation LIMS for performing com-

3

plex experiments, curating detailed data sets, and generating publication units with end-to-end

reproducibility.

This thesis describes the design and implementation of a suite of software tools for data acquisi-

tion and provenance tracking with the goal of leveraging computer automation to create a scientific

dissemination format with rich facilities for comparing results, identifying new directions of re-

search, and fostering collaboration than traditional print publications. The design of the described

software tool embraces modern web technologies, separating functional units into independent

networked services which communicate by discoverable web APIs. This architecture enables in-

vestigators to interact with each other’s research remotely and to independently create reusable

services of their own. The core components of the system are modular and loosely coupled, and

users are encouraged to modify, create, and share software components to meet the unique needs

of their research. By designing a modular architecture which anticipates rapidly changing require-

ments and enables users to take an active role in software maintenance, the platform is intended to

grow with its user base and enjoy broader usefulness and greater longevity than existing free and

commercial lab informatics packages. The framework provides high-level capabilities for remotely

controlling lab equipment and routing captured sensor data, with a vision of connecting research

labs to the nascent IoT. To demonstrate and explore the system’s capabilities, a embedded system

was developed for performing customizable electrochemical experiments, which includes a multi-

channel arbitrary waveform generator. The system’s architecture is described in detail along with

an overview of the developers’ implementation choices. Throughout the exposition, the design and

integration of multiple custom electrochemical instruments serve to demonstrate how users might

add and modify software components to meet the needs of their own research.

The following chapters explore the existing space of software tools, lay out the project’s design

goals describe the high-level structure of the design, and explain the techniques and technologies

used to implement the completed system. Finally we describe the characteristics of the design

that we feel are unique or notable. Due to the large volume of technical terminology involved in

discussing scientific software tools and software technologies, a glossary of terms is included at

4

the end of the thesis.

5

CHAPTER 2

BACKGROUND

A growing body of work in the field of meta-research has identified a number of obstructions

to research reproducibility and possible techniques for improving the trustworthiness of scientific

publications. One promising approach for addressing some of these factors is the widespread

adoption of standardized procedures for experiment design, record keeping, and publication, sup-

ported wherever possible by software tools for automation and research life cycle management.

This chapter identifies the functional requirements of a software system for designing and execut-

ing complex experiments and organizing their results and justifies the need for a next-generation

collaborative lab information management system. We briefly describe the electrochemical sensor

research which produced our group’s need for the software, analyze the tooling requirements of

our project, and then explore the existing ecosystem of software tools for automation and curation

of research.

2.1 Use case: Electrochemical sensor arrays

Our development of a next-generation collaborative LIMS is motivated by a concrete research task,

namely characterization and design of electrochemical sensor arrays for precise concentration es-

timation of a broad range of chemical targets [42, 71, 72]. Electrochemical sensors are sensitive to

a number of interacting environmental conditions such as temperature, humidity, ambient airflow,

and presence of trace interferent chemicals [44]. The sensitivity of a given sensor to a particular

analyte compound is also a complex function of device geometry, electrolyte and substrate mate-

rials, and applied electrical stimulus. In order to make measurements meaningful, as much of this

secondary information as possible must be collated with the raw electrical output of the sensors.

Additionally, a typical characterization experiment involves a sequence of manipulations of con-

trollable parameters such as the flow rates of input gases or applied voltage waveforms. The end

6

engineering goal of these experiments is to determine the inverse function mapping each sensor’s

instantaneous output current, input voltage, and observable environmental parameters into a con-

centration profile of the device’s chemical environment. For an experimental data set to afford such

an analysis, the input conditions should be controlled as accurately as possible, and especially for

batteries of tests involving many sensors operating in tandem it is necessary to employ computer

control to achieve uniform results.

This experimental scenario, depicted schematically in Figure 2.1, will serve as a running exam-

ple to demonstrate the capabilities and requirements of the software tool described by this thesis.

Our ideal experimental setup involves commercial lab equipment as well as custom data acquisi-

tion hardware, simultaneous operation of many sensors with different physical characteristics, and

precisely timed computer choreography of electrical interrogation protocols and gas flow rates.

Furthermore, the exact nature of the experiments being run changes frequently as researchers iden-

tify new questions, design new sensors, and involve new equipment in their work, requiring our

control and data management software to grow with the changing requirements of its users.

We believe that a software framework capable of scheduling and autonomously executing ex-

periments of this level of complexity has the potential to be more broadly useful in any scientific

environment with similar workflow needs. By generalizing our design from this use case, we hope

to meet our project’s needs and simultaneously provide the research community with powerful,

much-needed open-source solutions for a set of problems that recur in many different scientific

areas. The design goals of our software package are enumerated in the following section, followed

by an overview of the existing tools which fulfill some of these requirements.

2.2 Requirements and Terminology

Laboratory science presents a diverse set of operations management and informatics challenges,

and many research reproducibility efforts stand to benefit from carefully designed software tools.

In this section we consider some of the many scalability challenges faced by a typical research

7

Figure 2.1: Electrochemical sensor characterization. Schematic of an ex-
ample experimental apparatus for characterizing an array of electrochemical
gas sensors. Inset: some commonly used stimulus waveforms for interrogating
electrochemical sensors.

group and examine some proposed techniques for addressing them. This discussion has guided the

design of the software framework presented later in this thesis.

2.2.1 Automation

The desire to scale experiments to much higher throughput provides a major motivation for explor-

ing software solutions for lab management. As researchers begin to work with many devices and

control parameters simultaneously, data collection and tracking tasks become difficult to manage.

Additionally, when attempting to provide confident analyses of large sensor characterization data

sets, signal processing experts require accurate information about the timing of input and output

events, and adequate resolution of control events is extremely difficult to obtain under manual

8

operation.

By employing computer control of actuators and data collection equipment whenever possi-

ble, researchers should be able to maximize the consistency of their results while simultaneously

improving their productivity. The ability to automatically re-run a task with modified parameters

overnight rather than carefully manipulating control dials for hours on end would allow scientists

to focus their expertise on identifying new research questions rather than on tedious and meticu-

lous experiment execution. An ideal software tool for lab automation should allow investigators to

design, refine, and compose executable tasks, enabling researchers to build complex experimental

protocols from a library of reusable components.

2.2.2 Metadata and data provenance

Much of the data that is collected and exchanged by researchers is stored in ad-hoc file formats, of-

ten detached from the relevant metadata necessary to make these results meaningful. Examples of

metadata which are often omitted from raw data sets include measurement units, input conditions,

sample and equipment IDs, and annotations such as the hypothesis of an experiment or where to

find further documentation or references. These key pieces of information are often recorded or

remembered only by the original experimenter and may easily become unavailable to future re-

searchers. Even when data collection and management policies are established within a group,

it requires careful discipline to enforce these rules manually, especially in a typical fast-paced

research environment with little direct oversight.

Furthermore, in many cases drawing conclusions about a data set relies on information about

experimental conditions that is difficult to acquire for every trial and is not obviously relevant at

the outset, forcing researchers to backtrack and repeat work in order to be confident in their results.

By using software to collect and manage information about the flow of data through an experiment,

users can be provided with powerful tools for examining their workflows at many levels of detail

without requiring costly and time-consuming repeat trials.

Systematically tracking and organizing the history of data sets as they are collected, reformat-

9

ted, and undergo transformations and analysis is the focus of the growing area of data provenance

[12]. Provenance techniques aim to allow researchers to properly attribute a data set, understand

how it was created, and determine where and how modifications or errors were introduced. Cap-

turing and serializing accurate and sufficient provenance information about a system remains a

research topic of its own [15], but a number of existing scientific software tools provide some

features that cater to this need.

2.2.3 Version control

Whenever software provides the ability to create and modify complex documents or artifacts, ver-

sion control is a valuable feature for improving productivity and auditability. Similar in concept to

data provenance, a version control system (VCS) keeps checkpoints of important points in a file’s

edit history, allowing authors to review past states, recover lost work, and make changes to a single

file rather than attempting to manually keep track of backups. Version control tools are indispens-

able in the software industry for tracking source code, where popular tools include Git [14] and

Subversion [57], but some version control features are now commonplace in office programs such

as Microsoft Word’s “Track Changes” mode [49]. Existing version control software for plain text

files is extremely mature, full-featured, and powerful, and may be used as a third-party tool for any

work where plain text code and configuration files are artifacts of interest.

2.2.4 Collaboration

Modern research labs are increasingly interdisciplinary and rely on remote sharing of techniques,

data, and publications. Software designed for assisting researchers with performing and docu-

menting their work should reflect these realities, ideally offering native support for sharing and

collaboratively reviewing resources over the Internet. Software systems with distribution in mind

are also well equipped to enforce policies about data usage and to maintain end-to-end provenance

information about artifacts by managing records in a server-side database. Furthermore, the use

10

of electronic media enables users to assemble information-rich dissemination units, and software

which supports portable and information-dense file formats provides benefits for long-term collab-

oration as well as publication.

2.2.5 Extensibility

A common user complaint about commercial software with proprietary code bases is that tools are

overly rigid and ill-suited for adapting to the rapidly changing needs of users [52]. The fast pace

and necessary interaction with bleeding-edge technologies provides one possible reason for the

proliferation of lab management software packages with slightly different goals and feature sets. To

address this problem, we feel that researchers should be allowed and encouraged to customize and

modify their lab management software to meet their needs. Open-source projects are theoretically

arbitrarily extensible, since users may directly modify the software, but in many cases open source

tools are still not designed with customization in mind. Systems with a modular design that support

community-crafted plugins, user-level scripting, and straightforward integration with third-party

tools are able to grow alongside users’ changing needs and allow dedicated users to compound

the initial learning investment over time. Such systems, when well-designed, often benefit from

greater longevity and feature-richness than traditional monolithic programs [31, 47].

2.2.6 User compliance

A known challenge faced when developing software for applications such as reproducible research

is that feature-rich tools often present users with a substantial learning curve, deterring widespread

adoption. Tools which do not confer an obvious advantage immediately or disrupt users’ existing

workflows are likely to go unused, wasting development effort. Research on the topic suggests

that ease of use and accessibility of documentation are important concerns for promoting user

adoption [39]. Usability can also be improved and demonstrated by providing concrete examples

of how the software can solve problems faced routinely by domain scientists and encouraging users

11

to tailor the tools to their unique preferences and needs. Other important determinants of user

compliance include upgradability, technical support, reliability, and compatibility with existing

tools [70]. Addressing user experience concerns from the outset of a design and incorporating

feedback in the development process can result in an ultimately richer product, and this is one of

the key insights of the now-popular Agile development methodology [7].

2.2.7 Security

Intellectual property is an important issue in both industrial and academic research, given that

funding, commercial competitiveness, and legal and professional recognition are often contingent

on scientific priority. Internet-connected software which manages potentially sensitive data and

design documents must therefore make digital security a principal concern. An architecture for

online experiment analysis and design must carefully conform to the latest security best practices

and maintain careful access controls while allowing for collaboration.

2.3 Review of existing experiment management software

The complex needs of modern research have created a large specialized software market, and there

are now dozens of tools for computerizing various laboratory management and research tasks.

There are now many companies offering lab informatics software with a broad range of capabil-

ities. Since many of these programs are proprietary, it is difficult to compare their feature sets

precisely, and many packages are defunct or poorly documented. Below we attempt to provide a

broad overview of the major classes of software most aligned with our goals, giving a few exam-

ples of prominent products in each category. A comparison of these categories of tools and the

functions they provide is given in Table 2.1.

12

ELN WMS LIMS Model-based design
Process specification X X X X
Analysis and documentation X
Data management X X X
Collaboration X X X
Hardware control X

Table 2.1: Comparison of lab informatics software. A comparison of the
features typical of each major category of scientific informatics software. The
toolkit described in this thesis intends to provide all five of the listed capabili-
ties. .

2.3.1 Electronic lab notebooks

An electronic lab notebook (ELN) is a software tool for helping researchers to chronicle their day-

to-day investigations and results. A typical ELN package allows researchers to compose rich-text

documents consisting of text and figures alongside technical artifacts such as data tables. Several

surveys of commercially available ELNs have been published [61, 22], but the domain is still

evolving rapidly and some of these programs have begun to integrate complex capabilities such

as version control, experiment specification, and more. Many of the commercial products in this

domain offer users compliance with the FDA’s recommendation on electronic record keeping [26],

a set of guidelines promoting thorough, auditable documentation of research performed in the

agricultural and health sectors.

Most general-purpose programming language environments targeted toward scientific comput-

ing now include some degree of ELN functionality. These tools are typically environments for

literate programming [37] which are able to embed plots and data tables alongside code and natu-

ral language documentation. Popular solutions in this domain include Mathematica [75], R [58],

IPython/Jupyter [55], and MATLAB Notebook [46].

2.3.2 Workflow design tools

Defining, composing, and documenting complex procedures is a core organizational need of many

research groups. A number of so-called WMSs have emerged to help manage task schedules and

13

Figure 2.2: Editing an IPython notebook. Screenshot of an electronic lab
notebook page in IPython/Jupyter v4.1.0 [55] integrating documentation, code,
inline math, and figures.

dependencies in domains such as manufacturing [3], high performance computing [28], and busi-

ness management [13]. Workflow editors provide users with a means of constructing executable

tasks by describing how data moves through them, typically by visually manipulating a directed

graph of processes as in Figure 2.3. In some cases workflows may serve purely as documenta-

tion, while workflow tools for in-silico science are often executable and may be bundled with data

to provide direct replication of analysis flows on other machines. The most prominent examples

of workflow software targeted toward scientists are built to facilitate the design and execution of

high performance computing simulations such as Apache Taverna [53] and VisTrails [28]. Less

attention has paid to scientific processes that are not completely digital and are therefore harder to

14

fully automate. The application of similar software to managing business processes and software

development suggests that these tools may also be valuable aids for describing complicated scien-

tific experiments, and some LIMS packages provide some of this functionality [19]. By combining

these workflow specification tools with software for controlling lab equipment, it may be possible

to provide domain scientists with a powerful framework for defining executable specifications of

complicated laboratory procedures.

A related class of software reproducibility tools encourages users to bundle input sets and se-

quences of data-transforming programs into a single distributable file intended to accompany pub-

lished results. A notable example is [16], which uses virtual machines to produce self-contained

computing environments for reproducing digital analysis under identical conditions on different

physical computers. ReproZip automatically determines all the files necessary for replicating an

in-silico workflow by monitoring the operating system during ordinary task execution. These tech-

niques offer a promising strategy for improving scientists’ ability to capture the intricacies of their

work for later review or reuse while avoiding excessive demands on the user’s discipline.

Industry groups have also made several attempts to produce standardized data models for busi-

ness processes and equipment, perhaps the most popular of which is Business Process Model

Notation (BPMN) [3], typically represented by a directed graph or flowchart much like the data

models used in scientific workflow software. The most full-featured model expanding on this

concept is ISO 15926 [73]. This model promises a level of generality that is sufficient to enable in-

teroperability between businesses in different sectors and countries which rely on large, varied sets

of equipment and software. The still-growing specification encompasses information as diverse

as process specification and refinement, structural description of organizations and devices, com-

ponent life cycle information and more. ISO 15926’s representation format is based on semantic

web technologies such as OWL, which employs a graph model to describe semantic relationships

between entities, where each entity and relationship has an associated hyperlink. The standard has

been under development for 25 years, but many specification documents have yet to be published

and no software implementations are currently freely available. The extreme complexity of the

15

Figure 2.3: Editing a Taverna workflow. Screenshot of a protein sequence
analysis workflow [76] being edited in Apache Taverna v2.5 [53], an open-
source workflow management tool.

16

model is also an impediment to adoption by end users as well as implementation.

2.3.3 Laboratory information management systems (LIMS)

A LIMS is a tool for tracking the operations and assets of a laboratory. Commercial tools by

this name provide a wide range of features targeted toward different aspects of an enterprise-

level industrial lab such as letting researchers monitor their ongoing experiments, logging samples

and data sets, and notifying relevant personnel when maintenance tasks like restocking need their

attention. This field is now occupied by a staggering number of application vendors and products

with a broad range of specializations, feature sets, maturity levels, and price tags [43]. These

packages range from general-purpose systems built around a wiki or spreadsheet tool to specialized

systems for interacting with specific types of chemical analysis equipment. Some LIMS packages

provide a workflow management system (WMS) and many of them contain built-in ELNs.

The primary players in this application domain target the needs of labs in the healthcare, foren-

sics, and pharmaceutical sectors and are mostly designed for managing and optimizing huge batch

processes on fixed, well-defined equipment pipelines. The designs resulting from these assump-

tions would seem to make many of these programs a poor fit for the rapidly evolving experimental

workflow seen in academic sensor engineering, though there are exceptions. In particular, Agi-

lent’s OpenLAB suite (formerly Kalabie) [2] offers a notebook tool which combines data collec-

tion, storage, analysis, and collaboration capabilities. This package is also capable of integrating

with data collected from instruments manufactured by Agilent and some of its business partners.

The tool appears to provide many of the capabilities found in a typical LIMS combined with some

support for real-time hardware control, making it an attractive candidate for meeting several of our

application’s needs. Unfortunately, this tool is restricted to a specific set of associated hardware

and at the time of this writing lacks desirable features such as modularity, user-customizability,

and version control.

Most LIMS toolkits are proprietary and closed-source, but given the demand for this type of

application from large industrial groups the field is in some ways fairly mature. Some of the

17

architectural decisions that are commonplace in modern LIMS, especially their cloud-oriented

model, support for user customization, and focus on auditability, seem well-suited for the kind of

end-to-end research management system we intend to build. Throughout this thesis we refer to the

software tool we are interested in building as a LIMS due to the broad range of functionality seen

in tools which label themselves in this way.

2.3.4 Equipment automation tools

To extend automation of scientific processes beyond the purely computational domain, several

vendors offer tools for coordinating simultaneous operation of actuators and data acquisition mod-

ules. Likely the most visible software package providing this functionality is National Instruments

LabVIEW [23], as well as similar tools for model-based design such as Simulink [62] LabVIEW’s

G visual programming language allows users to connect devices, signal processing blocks, and

graphical interface elements, ultimately building a custom front panel and controller for a “virtual

instrument” (VI) which may communicate with many different pieces of lab equipment. LabVIEW

interacts with National Instruments’ line of data acquisition and control hardware and also ships

with a large library of drivers for scientific instruments produced by many vendors. G programs

can be regarded to some degree as workflow-style executable process specifications, but different

versions of LabVIEW have well-documented compatibility problems, preventing VIs from serving

as self-contained process dissemination units.

Other software toolkits have begun to capitalize on the recent emergence of affordable network-

connected microcontrollers and single-board computers. One toolkit overlapping with some of our

application requirements, ZettaJS, intends to provide a hardware abstraction layer for controlling

and coordinating embedded data acquisition platforms over the web [77], with the stated goal of

connecting devices to the IoT using existing web technologies.

Unfortunately, relatively few LIMS vendors incorporate equipment automation into their fea-

ture sets. Even fewer packages seem to recognize the ways ELN capabilities could be comple-

mented by end-to-end experiment design and execution support. We feel that there is a promising

18

niche for software synthesizing the best features of automation software, cloud-based LIMS, and

metadata-rich ELN, and this thesis intends to articulate the design of such a framework.

2.4 Enhancing publication value

To help manage the complexities of modern research and promote reproducible science, some

commentators have identified a need for more richly structured publication units than currently

exist [6]. Simple examples of rich publications include PDFs containing hyperlinks to external

papers or other scientific resources, and these have already begun to proliferate now that most re-

search is exchanged digitally. Especially in scientific computing it is also desirable for publication

to be executable, unifying code and documentation and allowing for complete reproducibility of a

unit of research. Knowledge engineering and data archiving researchers have proposed several ap-

proaches for representing the broad space of research-relevant information in a machine-readable

form, and some of these models are recognized in this section.

2.4.1 Semantic provenance models

Academic work on structured representations of research artifacts, their relationships, and their

provenance has largely built on semantic web technologies such as the so-called linked data net-

work [10]. The semantic web refers to a body of Internet resources which are connected to one

another by hyperlinks which stand for specific kinds of relationships, such as subclassOf or was-

DerivedFrom. Similarly, linked data are scientific resources on the web which include hyperlinks

to semantically related external pages. In particular, this provides a mechanism for published data

sets to record their provenance by explicitly stating a chain of relationships to their point of cre-

ation. A standards-track recommendation endorsed by the the World Wide Web Consortium known

as W3C PROV [50] has recently been developed to specify how dissemination units should iden-

tify their influences. Semantic web technology has enjoyed many years of academic development

and resulted in some promising high-profile projects such as DBpedia [40]. However, criticism of

19

https://www.w3.org/TR/2004/REC-rdf-schema-20040210/#ch_subclassof
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#dfn-wasderivedfrom
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#dfn-wasderivedfrom

the semantic web’s vision and approach has been readily available throughout its long history [45],

and in some ways the tooling support for integrating modern web apps with resource description

framework (RDF) metadata remains limited.

An important specification tool used in the linked data community is the notion of an ontology

language. These are sets of RDF predicates which provide a well-defined vocabulary for discussing

abstract relationships between entities, allowing domain experts to encode contextual information

about concepts and resources in their field in a machine-readable format. W3C PROV, for instance,

extends more generic ontology languages such as OWL2 [54] to include terms which are explicitly

concerned with information about an entity’s relationship to its predecessors. These “knowledge

graphs” can then be examined and searched for relationships by using a specialized graph query

language such as SPARQL [56]. Unfortunately, existing knowledge databases require complex

external tools to draw inferences based on the semantic values of the predicates in question, such

as concluding from the knowledge that A relies on B and B relies on C that A relies on C indi-

rectly. This can make knowledge graphs very difficult to work with. Some interesting theoretical

work has recently made efforts to address these shortcomings by applying mathematical tools for

automated reasoning to knowledge representation, e.g. [64]. Semantic web technologies provide

some interesting ideas for organizing documents and providing users with meaningful connections

between research artifacts of interest.

2.4.2 Research objects

A research object is a proposed format for archiving scientific data as well as an example of a

richly annotated electronic publication format [6]. The progenitors of this model argue that paper

publications are inadequate to capture the intricacies of modern research activities which draw on a

heterogeneous mixture of digital and physical resources. Instead, these authors call for scientists to

use recent developments in social network technology and information capture to collaboratively

create and share rich digital science resources such as executable workflows and electronic lab

notebooks. This vision has provided a major source of motivation for our present work: we aim to

20

build an e-laboratory software framework where research objects are native and first-class, and sci-

entists may construct, review, and refine their experiments and analyses in a flexible, provenance-

aware toolkit.

Many of the existing publications on the research object model [18, 9] use linked data and

semantic web technology to specify the format a research object should use for encoding rela-

tionships between the constituent artifacts of a research object as well as between data sets and

the resources that produced them. This approach seems like an interesting way to leverage the

existing organization mechanimss of the linked data web to further promote the usefulness of rich

publication units.

2.5 Summary

A number of software tools for automating data collection, analyzing and comparing data sets, and

interdisciplinary scientific collaboration have emerged in recent years. Many of these packages

provide much-needed informatics capabilities that are currently being leveraged by both academic

and industry labs, especially in the biomedical and healthcare sectors. However, addressing the

full set of challenges posed by interdisciplinary high-throughput sensor research and development

will require the integration of LIMS functionality, an electronic notebook editor, and a scripting or

graphical programming solution for equipment automation into a cloud-based software framework

that currently does not exist. The remainder of this thesis will describe the proposed design and

prototype implementation of a suite of software tools which synthesizes and expands upon the

programs described above.

The following sections describe the design and implementation of eGor, a lab informatics soft-

ware package intended to cover most of the use cases of the tools reviewed in this section and more.

eGor comprises several programs which in practice typically run on several different machines and

help to manage the complete process of developing a scientific experiment. This custom tool in-

tends to provide all of the major functions listed in Table 2.1 and improve both user productivity

21

and research reproducibility by synthesizing these capabilities into a single software tool.

22

CHAPTER 3

ARCHITECTURE

Characterization and development of sensor arrays presents a broad range of research challenges,

not least of which relate to data organization. A LIMS adequate to the needs of our example ap-

plication must provide a number of interacting software components to mediate between users and

target resources such as data stores, richly featured research documents, computer-controllable lab

equipment, and collaborators. This chapter abstractly describes the constituent components of the

software framework we have built for collaborative design, execution, and analysis of experiments.

For ease of reference we refer to our software by its pseudonym “eGor”, the Digital Lab Assistant.

When describing each element, we document some of the phases of our iterative design process

that led to these decisions.

3.1 Network architecture

Given that the resources of interest to our software system are inherently distributed, a careful

design of the system’s network interconnect is critical to its scalability, security, and usefulness.

Below we describe the physical system constraints driving some of our design decisions and ex-

plain how we iteratively arrived at our final design.

3.1.1 Physical architecture

Typical workflows for interdisciplinary digital research involve a number of computing resources

which are physically and logically separated from each other. These include (i) individual work-

stations where researchers perform analysis and compose code and documentation, (ii) online

information banks such as chemical and biological databases, (iii) intranet and cloud storage

drives for archiving and sharing documents and data, (iv) logs of research-relevant communica-

tions such as email correspondence, and (v) dedicated, typically shared scientific resources such

23

as lab instruments and high-performance computers. In many cases, especially in electrical engi-

neering, a device we generically categorize as a piece of “lab equipment” is a focus of research in

its own right, and can be further decomposed to include computer controllers, instrumentation elec-

tronics, and physical processes or devices of interest. Often some or all of these resources interact

with each other in an ad-hoc fashion manually facilitated by users. We believe that tremendous

gains can be made for research organization, accuracy, and reproducibility by coordinating the in-

teractions between these components with a carefully designed software framework. A schematic

diagram of some of these interacting components is depicted in Figure 3.1.

The most important goal of the present work is to automatically execute physical experiments

by employing computer control, automatically collating raw experimental data with secondary data

and metadata to produce self-contained research artifacts that are more amenable to unambiguous

analysis than present ad-hoc formats. Ideally we would like for collaborating researchers at differ-

ent universities to be able to review each others’ experiments in real time, allowing for continuous

feedback between investigators with different areas of expertise.

Although some pieces of modern lab equipment possess network interfaces and can directly act

as web servers in their own right, a majority of scientific instruments of interest operate over short-

range or legacy communication links. In order to allow users to remotely interact with physical

resources of this kind, at least one additional machine is required. This machine is typically rep-

resented by a PC physically located in a research lab and connected directly to external hardware

devices over non-networked connections such as USB.

3.1.2 Monolithic approach

A traditional architecture for web application software involves a single server executable serving

presentation-layer applications to clients and making database accesses on their behalf, as in Figure

3.2. In our case, the server would also mediate access to lab equipment, providing users with

indirect and high-level access to these resources in much the same way as it abstracts over the

database.

24

Figure 3.1: Research-relevant artifacts. Representation of some of the digi-
tal resources found in typical scientific workflows and their relationships. Raw
data sets captured from an experimental run are often insufficient to recon-
struct meaningful plots or perform detailed analysis, and researchers must rely
on undocumented, hidden information sources to perform a complete analysis.

25

Form
input S0

S2

S1

Application logic

1. You put

your right

foot in

2. You take

your right

foot out

1. You put

your right

foot in

2. You take

your right

foot out

Presentation

Authentication

Storage

Web browser
clients

Figure 3.2: Monolithic web architecture. A traditional “monolithic” web
application architecture where one server process manipulates a database on
behalf of many clients.

This architecture is attractive for its ease of deployment and its apparent simplicity, and early in

the project’s development we pursued a design along these lines. However, attempting to bundle all

of eGor’s server-side functionality into a single program eventually caused difficulty with system

integration. For example, coupling the code for communicating with lab instruments into the

server’s application logic complicates both portions of the program and makes it difficult to test

and develop them in isolation. This agrees with a common observation [65] that architectures of

this kind are often less modular, making them more difficult for multiple programmers to develop

independently and complicating the process of introducing new functionality. We feel that a more

compartmentalized, modular approach better reflects the structure of the domain being modeled as

well as conferring a number of software engineering benefits.

26

3.1.3 Microservices

As opposed to the conventional frontend-backend divide, some developers have suggested an ar-

chitecture for web applications based on simple communicating modules termed microservices. In

a traditional monolithic architecture, programmers compose a complicated application hierarchi-

cally, using one main module which calls library functions from many subordinate components.

A microservice architecture splits functionality into many independent programs which communi-

cate using ordinary network protocols, and modules are designed to assume that their dependencies

are completely separate programs potentially running on other machines [41].

This approach promises better modularity than traditional web applications since capabilities

can be added and extended independently of one another [5]. Since all services expose their func-

tionality over a similar web API, implementations are decoupled from each other and internally

have very different architectures tailored to their special-purpose needs. Services may even be

written in completely different programming languages. The flexibility that this approach affords

is a good fit with our desire to adapt the framework to meet users’ changing needs. Furthermore,

a microservice architecture lends itself naturally to a design where capabilities and resources are

distributed geographically, as is the case with large, remotely collaborating groups of researchers.

In some cases microservice architectures also scale better as performance demands on the system

increase [74].

A schematic depicting the connections between some of our core microservices can be found

in Figure 3.3. In our approach, no microservice is truly “central” – services may communicate with

any other service provided they know its URI and present an authorized access token. Throughout

the following, we use the terms microservice and service interchangeably.

3.1.4 Switchboard service

Despite its internally distributed design, the web application must present a primary gateway for

user interaction. In our design this role is taken by a microservice we refer to as a switchboard,

27

Local user’s frontend

(webpage)

Local

authorization

H(s)

Device

management

Collaborator’s

switchboard

Asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf
asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf

asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf
asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf
asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf

asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf
asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf
asdfasdfasdfsasdfsadfasdffddfasdfasdfasdf

Raw data

storage

Individual device

services

Signal processing

Experiment

annotation &

metadata archive

To collaborator’s

services

Local

switchboard

Peer

authorization

Collaborator’s frontend

(webpage)

. . .

Other collections

(e.g. device info)

Figure 3.3: Microservice-based web architecture. High-level interconnec-
tion between the critical microservices composing our final design.

which is primarily responsible for enumerating microservices and providing proxy access to them

at appropriate uniform resource identifier (URI)s. The switchboard confirms that users are au-

thorized to manipulate their target resources, then delegates their requests to the microservices

responsible for performing actual resource accesses.

Since the switchboard is itself a microservice, multiple switchboard services may be employed

by a system, affording system administrators fine-grained access controls for different components.

Additionally, the switchboard of a completely different installation of the software at a different

facility may be treated as an available microservice, facilitating collaboration by allowing appro-

priately authorized users to access external resources as if they were part of one’s own installation.

28

3.2 Device control

A core goal of our design is to enable researchers to incorporate choreography of physical lab

equipment into the executable workflows they create. Interacting with the variety of commercial

and custom hardware found in a typical experimental lab requires a flexible approach, given that

computer control interfaces and data formats for scientific equipment are heterogeneous and very

poorly standardized. This section describes an approach for building a modular library of device

drivers which integrate with the rest of the eGor framework while providing users with tools for

extension and customization.

3.2.1 Instrument manager

The instrument manager is a service responsible for detecting connected devices, determining

the appropriate device driver for communicating with them, and presenting a unified interface

to the switchboard. This service runs as a background application on the client machine which

is physically connected to lab equipment and is responsible for relaying control commands to

appropriate devices as well as routing captured instrument data to sinks such as a database or

real-time display viewport. Much as the switchboard service identifies other microservices and

mounts them at appropriate URIs, the instrument manager identifies currently connected devices,

determines an appropriate driver and communication protocol for exchanging messages with them,

and exposes their high-level functionality as an API available at an appropriate endpoint, allowing

the rest of the system to behave as if the instruments themselves were ordinary microservices.

3.2.2 Device enumeration

One of the instrument manager’s chief responsibilities is to determine which devices are presently

connected to the PC hosting the service. The process of establishing a connection with a piece

of equipment and confirming its identity is dependent on the physical interface as well as device-

specific packet formatting. Fortunately, many scientific instruments follow a standard convention

29

for identifying themselves to controller PCs. In some cases, however, the instrument manager must

receive explicit user guidance about which devices are connected.

Once a device produces an identification response or the user explicitly identifies an attached

device, the instrument manager locates detailed device information by querying our device infor-

mation service. In particular, the database record retrieved by the instrument manager includes a

device driver and a protocol stack for translating low-level device commands to and from a generic

high-level format. This approach allows the device-connected PC to always use the latest driver for

each device, retrieve devices on demand, and communicate with any device known to a given eGor

installation with minimal user interference. After the downloaded device driver code has been

successfully installed, the instrument manager maps an appropriate URI to the attached device and

delegates requests transmitted to the instrument to the appropriate protocol stack and device driver.

In earlier iterations of the design, the instrument manager looked for device drivers and protocol

libraries in a directory on its local filesystem rather than retrieving them from the network. This

would have required users to manually install or update libraries for interacting with device drivers.

Additionally, the database-oriented approach allows the concrete communication code for a given

instrument to be associated with the abstract data model representing the instrument as a research

artifact, allowing users to examine their equipment at a finer level of detail when developing an

experiment.

3.2.3 Device APIs and protocol composition

The protocol stack bundle associated with a given device is expected to expose an API that al-

lows instruments themselves to be treated as microservices. The uniformity of this design makes

it possible for the software to model many kinds of remote resources using a similar approach, and

leverages existing network infrastructure to manage how commands are delegated to devices. An

important responsibility of these device proxy services is translating complex sequences of com-

mands received by the network to and from bit-level packets formatted for individual instruments.

Borrowing from Internet design terminology, we refer to the sequence of data transformations and

30

flow control operations involved in this process as a protocol stack.

To simplify and modularize the creation of communication protocols for interacting with a wide

range of lab equipment, protocol stacks are designed using a library of basic data transformations

as building blocks. In addition to functionally pure encoding and decoding processes, a given

“layer” of a protocol stack may trigger changes in flow control or provide signals to other layers

in response to certain packets. The resulting framework gives programmers the freedom to define

many different kinds of communication strategies.

By compartmentalizing device drivers in this way, we improve the maintainability of the in-

strument management code base and provide users with the ability to extend eGor with their own

modules. This is especially important for device drivers since the number of possible commu-

nication protocols is far too large to maintain an adequate library of drivers without community

support.

3.3 Data model

eGor must manage data with very heterogeneous structures. In particular, research artifacts such as

equipment, experimental runs, and publications may be attached to quite different sets of informa-

tion. Additionally, we wish to present these records to a number of services, each of which must

have access to enough information to provide a complex set of functionalities. This section outlines

an object schema focused on flexibility that serves as the core model for records in our database of

research artifacts. A distinguishing feature of this model is that a given artifact may have several

attached groups of assets including code and data that indicate how the artifact’s attributes should

be treated in different execution contexts.

3.3.1 Research artifact model

One of the most basic datatypes in our object model is referred to as an artifact, and is intended

to provide a generic representation of research-relevant entities such as equipment, experiments,

31

publications, analysis pipelines, et cetera. A given artifact is equipped with a set of “capabilities”,

which are additional data records that are interpreted in different ways in different software con-

texts. Example capabilities a research artifact might have include a lab notebook’s ability to be

edited, an experimental workflow’s ability to be executed on physical equipment, an instrument’s

ability to operate as a standalone microservice, or an instrument’s ability to capture and tabulate

results. Each service may optionally load some or all capabilities and interpret them in service-

dependent ways to provide extended functionality.

Artifacts may also possess “assets”, which are files and resources with internal structures that

are opaque to the eGor system. Examples of assets include images, code for external tools, and

attachments such as PDF documents. Assets are defined by a URI and optional type information

and may be accessed or created on a server’s local filesystem by services with appropriate access

permissions. Using an asset rather than an object model to package data is appropriate when the

data does not possess an internal structure that should be managed by eGor directly. For instance,

a text file containing source code might be an appropriate choice of asset – its content may change,

but eGor does not need to represent it internally as a structured object. Managing and interpreting

the content of an asset is typically the purview of external tools, though operating these tools may

be mediated by an eGor service. In the case of a text file, it would be more appropriate to use

existing version control tools to represent the asset in a structured way.

3.3.2 Dataset management

Ordinarily data are captured via eGor-controlled lab instruments, adapted via an appropriate pro-

tocol stack, and delivered to one or more data sink services. Typical data sinks include real-time

plotting and signal processing services. To support later analysis and experiment reuse, one of the

core eGor features is a data tabulation service, which supports streaming live data captures into a

data structure for permanent storage.

To achieve efficient usage of space and fast retrieval times, large tables of raw data are stored by

a different strategy than metadata documents. To some extent these array data sets can be treated as

32

ordinary assets belonging to an “experimental run” artifact, but datasets are special because their

high-level structure must be cross-referenced with eGor artifacts encoding their metadata.

Externally generated datasets may also be added to the system by uploading known file for-

mats, which are dispatched to appropriate adapter services and committed to the database. Simi-

larly, previously recorded datasets may be exported and downloaded for processing with external

scientific computing tools. In these situations, the user is trusted to provide the structural informa-

tion needed to enrich and contextualize the raw data they enter and to appropriately document the

external transformations that take place.

3.4 User experience

Each capability has a corresponding user interface component, allowing users to manipulate arti-

facts as well as inspect the system’s inner workings from the graphical browser frontend. Using

a similar mechanism to the approach described above for downloading driver code on demand,

the interface plugin for a given capability is loaded when the user examines its associated artifact.

Artifacts may declare some capabilities as hidden by default in order to avoid cluttering the user’s

workspace.

A usage example of eGor’s core functionality from a user’s point of view is depicted in Figure

3.4, with the following major phases indicated by numerals in the figure.

1. The user constructs a virtual workbench describing the configuration and interconnections

between their lab equipment. The workbench defines the set of resources available to one or

more workflows, which are specified by wiring component inputs and outputs together and

providing a script of when and how to change parameters as the experiment runs.

2. The user schedules their workflow to run on the equipment during an available timeslot.

3. The workflow is compiled into a timetable of device-specific instructions. Assuming this

process completes without errors, the workflow is recorded in the database as having been

33

Workflow Editor
(browser app)

1

Workflow with
experimental procedures

1. You put

your right

foot in

2. You take

your right

foot out

1. You put

your right

foot in

2. You take

your right

foot out

2

Remote server:
Routing, scheduling,

validation,
collation 3

ERROR @ t=0:

unknown

command

ERROR @ t=0:

unknown

command

1. You put

your right

foot in

2. You take

your right

foot out

1. You put

your right

foot in

2. You take

your right

foot out

Annotated with results,
filtered to user specifications

7

1. You put

your right

foot in

2. You take

your right

foot out

1. You put

your right

foot in

2. You take

your right

foot out

1. You put

your right

foot in

2. You take

your right

foot out

Detailed execution instructions

4

Commercial equipment

5

Custom hardware

ERROR @ t=0:

unknown

command

ERROR @ t=0:

unknown

command

ERROR @ t=0:

unknown

command

Complete results and execution traces

6

Figure 3.4: A typical eGor workflow. A typical sequence of user opera-
tions for interacting with eGor to design, schedule, execute, and analyze an
experiment.

scheduled for the desired execution time.

4. The scheduled, compiled workflow is submitted to the instrument manager to await execu-

tion. Nearing the scheduled experiment time, an experiment executor service ensures that

the experiment’s preconditions are met.

5. The experiment executor service executes desired hardware commands at the user’s specified

times. As the experiment runs, real-time data is captured and streamed to the data sinks

indicated in the workflow specification, allowing researchers to confirm that the experiment

is proceeding as expected.

6. A complete log indicating the status of the experiment, any errors, and any failures to meet

the user’s constraints is returned to the server for archiving and later review. The experiment

executor service attempts to confirm that experimental postconditions are met and prepares

34

for the next scheduled experiment.

7. The raw output log is transformed and returned to the user, producing a filtered result struc-

ture that reflects only the user’s specified outputs of interest.

3.5 Security model

Especially when dealing with sensitive scientific data and remote access to expensive lab equip-

ment, careful access control is an important architectural concern. As in a traditional client-server

model, when clients authenticate themselves to the system they are provided with an access token

that can be used to preserve their credentials between browser sessions. When a user makes a

request through a sequence of proxy services, this access token is provided along with the request

and is passed along to each service on the way to the request’s destination. Each eGor service

requires client services to produce an access token before it will perform work on their behalf, and

a service may query a user management service with an access token to determine the identity of a

user and whether their access is authorized.

Switchboard services for collaborator’s installations may also query the user management ser-

vice of the installation requesting access in order to either deny access to a token outright or to

generate an access token corresponding to a foreign user. Users may provide labmates or collabo-

rators with authorization rights to services and artifacts which they own or manage, and doing so

modifies the list of user IDs the service will permit to access certain operations.

3.6 Summary

We have outlined an end-to-end system architecture for a set of interacting e-laboratory software

components. We feel that this approach provides a reasonable combination of our target system’s

ambitious list of desirable features and includes a number of noteworthy design ideas. In particular,

we believe that the emphasis on modularity from the ground up will be rewarded by benefits in

35

scalability, extensibility, and user customization that are not seen in existing LIMS. In the next

chapter we describe our efforts to implement this vision in detail.

36

CHAPTER 4

IMPLEMENTATION

The complete eGor system is a distributed application consisting of numerous software compo-

nents running on several different computers. To manage this complexity, the developers have

attempted to make disciplined use of best practices for web programming and to make judicious

use of a range of cutting-edge third party libraries, only accepting those which have a record of

stability and continued maintenance.

Our complete system draws on a wide range of technologies from every level of the software

stack. This chapter provides a description of what new components were implemented by the

project’s development team, which external tools and libraries were used, and what architectural

and practical concerns factored into the selection of these methods. This is intended to provide an

overall understanding of how the application is structured rather than detailed developer documen-

tation, which can be found at https://github.com/egor-elab/doc.

4.1 Overview

Figure 4.1 shows a high-level schematic of the current structure of the eGor platform. The com-

ponents depicted are divided across three different machines in the simplest scenario, although

more complex configurations are possible since all services interact over network-ready protocols

such as HTTP. These machines are, from top to bottom (i) the end-user’s PC, where an interactive

single-page browser application is used to interact with various eGor services graphically, (ii) a

server running microservices for functions such as authentication, remotely accessible persistent

data storage, and routing requests to other services and digital resources, and (iii) one or more

machines physically connected to scientific equipment of interest, responsible for managing and

issuing commands to appropriate device drivers.

This chapter will elaborate the organization and communication strategies used to implement

37

https://github.com/egor-elab/doc

Figure 4.1: High-level structure of the eGor system. A high-level archi-
tectural view of the implemented eGor system, divided across three different
machines where primary activity takes place: a user’s machine, connected to
an eGor server via a web browser, which issues commands to a lab PC running
device management services to connect with lab equipment.

38

this framework in software, followed by a technical discussion of each component’s internals.

Other than the in-browser graphical interface, which is written as a single-page application in

HTML5 and JavaScript using the Angular framework [32], the majority of the eGor web appli-

cation is written in Python [60], making use of the mature and modern palette of networking and

communications libraries available in the language. An important exception is found in some por-

tions of the database access layer, which use NodeJS [21] libraries to present a simple and effective

API. The user-facing web application structure uses all the major third party components of the

popular MongoDB, ExpressJS, AngularJS, and NodeJS (MEAN) stack, but interacts with several

Python microservices to add hardware connectivity.

Additionally, the eGor team has developed a model embedded device to help demonstrate how

physical actuators and data acquisition modules might interact with the system – the software for

this target is written in C++. This device, known as aMEASURE I, is intended to act as a flexible

instrument for performing electrochemical experiments and recordings and lies outside the scope

of the eGor project proper, but throughout this chapter we use it as a concrete example of the kind

of device the framework supports. aMEASURE I can store and produce arbitrary waveforms by a

number of methods, record digitally-converted analog measurements and stream them over a serial

interface in real-time, and interact with external circuits via banks of I/O pins.

The software for all these core components is open-source and available in several Git repos-

itories hosted at https://github.com/egor-elab. The diverse set of languages used helps

to demonstrate a chief strength of eGor’s microservice architecture: components are sufficiently

decoupled that they can individually be implemented in a language and style well-suited to their

unique challenges.

4.1.1 Design principles

Over the course of developing and refining the eGor toolchain, several recurring patterns have

emerged which seem natural fits for addressing the application’s goals and have informed sub-

sequent iterations of the design. This section discusses several key design patterns which have

39

https://github.com/egor-elab

been observed and employed throughout the code base, providing a feel for the philosophy of the

complete system before delving into implementation details.

4.1.1.1 Request/Response vs. Publish/Subscribe

The most common form of high-level network traffic on the web is HTTP, which uses request/response

exchanges to pass data between hosts. For instance, a client such as a web browser might issue an

HTTP request to a server with the contents GET /users, causing the server to respond with a text

payload encoding a resource named “users”. The client submits user input such as form data in

a similar way (typically via an HTTP POST action), resulting in an acknowledgment message from

the server. This approach is sufficiently flexible to allow for much of the broad range of content

found on the modern web, especially since servers often deliver JavaScript source code for clients

to execute locally in addition to static text documents such as HTML. Issuing commands to lab

equipment can often be modeled in a similar way: a controlling computer submits a configuration

message and the device responds with a (possibly empty) acknowledgment that the command was

received and executed. In many ways these operations are also analogous to the ubiquitous pro-

gramming construct of calling a subroutine, and some authors place transactions such as HTTP

actions under the umbrella of remote procedure call (RPC)s [68].

Request-and-response communication is, however, a poor fit for systems where communica-

tions must be initiated bidirectionally, with event-driven applications providing a key example. A

typical data-collecting lab instrument or digital microsystem produces values in real time which

must be transmitted to destinations such as databases and display monitors at roughly the same rate

as they are captured. Implementations can still accommodate this dataflow into a request/response

framework by periodically requesting buffers from the data source, but this approach is fraught

with difficulties and is typically complicated to use when many data sources need to be managed

simultaneously.

A more elegant design pattern for systems with soft real-time requirements is given by the

publish/subscribe approach, also sometimes called the Observer pattern [29]. In this scheme, a

40

“topic” or “observable” object maintains a list of “subscribers”, and notifies each of them when a

variable of interest changes or an event is “published” to the event stream. The publish/subscribe

technique has been adopted to solve software problems like real-time data acquisition as well as

for building “reactive” applications such as user interfaces and games, where graphical interfaces

are expected to react seamlessly to event streams such as user input and network communications.

eGor adopts this pattern for both these use cases, treating data collection devices as publishers of

streams of data fragments which may be subscribed to by other services or graphical interfaces

throughout the system.

4.1.1.2 Dynamic loading

One of the chief observations underpinning eGor’s design is that researchers’ needs are too diverse

and rapidly changing to be satisfactorily addressed by a single rigidly constructed application. The

implementation effort has therefore focused on constructing a core infrastructure which allows

future developers to easily integrate new functionality without disturbing the system’s overall op-

eration. Each major component of eGor allows its users to load new extensions at runtime. The

core subsystems each specify an interface for how a module should allow itself to be installed and

expose its functionality to the network, and otherwise community-contributed extensions are not

required to depend on eGor APIs or even to be written in the same programming language as the

rest of the framework.

In addition to being an essential part of the daily workflow for eGor’s developers, a distributed

version control system (namely Git [14]) provides a runtime mechanism for achieving this dynamic

loading functionality. Git was designed to allow many programmers to collaborate on a software

project, share contributions remotely, and review and revert changes. Importantly, Git is distributed

in the sense that each user may maintain an independent timeline of the history of the code base

on a private computer, with or without network connectivity, sharing or publishing changes in a

peer-to-peer fashion if and when they choose.

An example of the dynamic loading process is illustrated in Figure 4.2. The following sequence

41

of steps describes how, for instance, the device management system might lazy-loads a device

driver, waiting to download and install the appropriate code until the device has been physically

connected to a given host machine for the first time. Here the phases are listed with the same

numbering as in Figure 4.2.

1. A client service attempts to access functionality on another service which is not presently

running, or explicitly requests for a new service to be loaded. In this case, the client is a

service responsible for enumerating the serial ports available on the system and attempting

to retrieve identifying information from connected devices, and its request for a device driver

includes identifying information but may not name the driver explicitly.

2. The “service-hosting service”, responsible for managing dynamically loaded programs, queries

a database of service information to determine where it can download the requested code.

The database responds with a URI specifying either a direct link to the necessary files or a

Git repository.

3. The service-hoster downloads the module, possibly from an internal server or from a publicly

hosted location such as GitHub [30], and executes necessary startup routines. If the service-

hoster determines that the service is already loaded, it instead checks if an updated version

exists and provides the client with the option to download and use the new version. eGor ser-

vices are expected to implement a common interface of setup, start, stop, and cleanup scripts

so that the service-hoster can install and run them automatically. The service-hoster also

indicates to the new service instance how it can communicate with the system switchboard

responsible for triggering the download.

4. Once the dynamically loaded device driver is live, it registers its public API with the switch-

board, at which point the driver’s functionality is available for other services to use.

5. The switchboard completes any pending procedure calls requested by the client service, and

routes subsequent requests to the appropriate service.

42

Figure 4.2: Dynamic loading of microservices. Phases of the dynamic load-
ing process for downloading and installing a user-defined device driver at run-
time. The service-hosting service and the services it hosts (green) run on the
same physical hardware, whereas each other service may be on a different de-
vice connected via the Internet.

A similar procedure is employed for several other subsystems, such as loading new user in-

terface components or adding new waveform generation routines to our real-time electrochemical

interrogation platform.

4.2 Service interconnect

As described in Chapter 3, the microservice architectural pattern provides a strategy for com-

partmentalizing the development effort, promoting modularity of design, allowing for future cus-

43

tomization and extension, and building a system that employs many different software technolo-

gies and physical machines. However, communication between microservices involves some chal-

lenges compared to traditional architectures and relies on several recently emerged web technolo-

gies to allow services to locate and use one another. Nonetheless, the microservice approach pairs

well with eGor’s high-level goals and has enabled us to build a flexible and sophisticated system.

4.2.1 REST APIs

One of the elements of the web’s modern infrastructure that has made networked microservice-

oriented applications a practical possibility is the widespread adoption by businesses and open-

source software providers of relatively uniform, publicly available APIs over HTTP. Most com-

monly, companies expose reusable public components of their web servers as HTTP interfaces

which aspire to representational state transfer (REST) principles, i.e., they model the evolution

of an application’s state as a sequence of transitions between states which are modeled by URIs.

These conventions have allowed for unprecedented interoperability between applications written

at different companies for very different purposes. As a prominent example, Google’s Maps API

provides a mechanism for other applications to retrieve geographical information over an Internet

connection rather than maintaining independent location databases. Given that many consumers of

these APIs are web browser applications which use JavaScript to issue background HTTP requests,

JavaScript Object Notation (JSON) is a popular serialization format for passing data payloads to

and from API endpoints. This structure, where a website provides an indexable collection of

JSON-encoded resources which can be retrieved and manipulated via HTTP verbs, is often what

is meant by a REST API in today’s software jargon.

REST APIs are useful interfaces for making application state and data externally accessible,

but are also a viable option for structuring networked communication between different parts of

the same app. Most commonly, a REST API is used to provide structured database access to client

code running in a browser app. For example, a news website might allow clients to retrieve a

list of articles (in JSON format) by making a GET /articles HTTP request, then retrieve the

44

user’s selected document by querying GET /articles/2, then commit a submitted comment to

the database with POST /articles/2/comments. Many of the existing tools for constructing

REST APIs with web programming frameworks such as Python’s Flask [4] or Express in NodeJS

[20] provide for this use case.

In eGor we assign URIs in a similar hierarchical fashion, but the total application consists of a

number of groups of microservices, each potentially possessing a REST API. As new services are

loaded by a particular switchboard, their APIs are attached to the tree of existing URIs, much as a

filesystem on a new hard drive might be mounted at a particular path on a UNIX filesystem. An

eGor switchboard achieves this by serving a proxy at a URI corresponding to a known lab machine,

such as /machines/0, relaying traffic to and from that machine which in turn provides access to

connected devices as REST APIs at appropriate URIs. Information about the waveform types that

a device called “aMEASURE I” is capable of producing would then be available by accessing GET

/machines/0/devices/aMEASURE I/wave/info, assuming that the REST API for aMEASURE I

understands how to interpret the path /wave/info. Specifying a REST API is part of a user’s

responsibility when defining a driver for a new device, as explained further in section 4.5.2.

4.2.2 WAMP routing

Web Application Messaging Protocol (WAMP) is an open protocol and software stack definition

created by Tavendo, who provide reference implementations in several languages in the form of the

Autobahn protocol libraries and a request router called crossbar.io [67]. The authors of these tools

claim that their protocol simultaneously addresses many of the use cases of existing protocols for

machine-to-machine communication such as Advanced Message Queueing Protocol (AMQP) and

socket.io [59]. The protocol is built on top of WebSockets, which uses a TCP connection to achieve

reliable full-duplex streaming and is now supported by all major web browsers and a number of

web frameworks in several programming languages. One advantage provided by this protocol

design approach is that machines for hosting microservices or acting as clients for WAMP networks

can require less special software than is required for using some message queuing infrastructures

45

such as AMQP, simplifying the installation process for end users.

WAMP provides a set of capabilities which are a good match for our application, including

built-in support for routing remote procedure calls between any two connected services and bidi-

rectional publish/subscribe-style message passing [35]. Notably, WAMP also describes how a

service called a router facilitates organized communication between nodes by redirecting remote

procedure calls and data streams to appropriate client endpoints. The protocol was explicitly de-

signed to simplify the implementation of IoT applications, especially those with service-oriented

architectures that span multiple devices of different types. Furthermore, WAMP is designed to tar-

get many different languages and target devices, providing a common network interface between

server-side code, browsers, and mobile apps, and the abstraction and separation of concerns pro-

vided by such a framework is well-matched to heterogeneous service-oriented architectures such

as eGor’s. This provides an attractive solution for addressing many of the problems faced when

developing our system, especially given that it allows for dynamic registration and removal of

remotely-callable methods, flexible routing of data sources through different machines and end-

points, and is inherently bidirectional in the sense that any service can initiate communication with

any other so long as it has sufficient security privileges. In our existing implementation, WAMP’s

capabilities have primarily been used for service-to-service communication and to organize stream-

ing data transactions from data sources to sinks such as real-time plots and array storage services.

A more elegant and truly service-oriented design could be achieved by adopting WAMP for issuing

user commands and making database accesses as well, but at the time of this writing WAMP has

poorer tooling and documentation than some of its more established counterparts.

4.3 User interface

Providing a useful and manageable interface for scientific users who are not computer experts is

one of eGor’s most important design constraints. The development effort has leveraged several

powerful libraries for developing web applications and providing desired user interface features to

46

allow researchers to immediately take advantage of eGor’s capabilities.

4.3.1 Thin client design

All graphical interface components of eGor are implemented as interactive web pages and require

only a modern web browser and an Internet connection to use. In this way the user interface acts

as a thin client portal connecting users to an eGor server. This approach has the advantage of

requiring no installation on the user’s part other than registering an account, as well as making

software updates transparent to users, since the latest version is automatically retrieved from the

server each time a user connects. Furthermore, our approach implements the user interface as a

single-page application, meaning that a user’s entire session takes place without retrieving more

than one page from the server or refreshing, instead using asynchronous HTTP requests in the

background and bidirectional WebSocket communication to synchronize application state with the

server. Structuring client-server interactions in this way helps to decouple the browser from the

back-end, allowing these components to be developed independently. By leveraging abstractions

provided by WAMP’s application framework, it is possible for user interface components such as

plots and control panels to act as peers with other microservices, simplifying the structure of the

program.

4.3.2 Angular 2

The JavaScript framework underpinning eGor’s browser app user interface (UI) is Angular 2, a

complete rewrite of the popular and sophisticated AngularJS framework for building single-page

applications [32]. Angular gives programmers a toolkit for defining custom HTML5 tags with

dynamic behavior and for “two-way data binding” between elements of a web page and JavaScript

objects. This means that display elements are automatically updated when specified JavaScript

variables change, and similarly user inputs such as changes to form elements are automatically

reflected in bound JavaScript data structures. This synchronization between elements of a page’s

47

document object model (DOM) and corresponding variables in the JavaScript program allows for

a declarative programming style to be used to describe how an app is displayed while writing the

control logic with sequential, imperative JavaScript.

Advantages of Angular 2 over its predecessor and other client-side programming frameworks

include a structured, object-oriented style, a focus on reactive programming using the Observer

pattern, and improved support for asynchronous functionality such as lazy-loading components

and application structure. In particular, the design patterns embraced by Angular allow eGor’s

developers to carry a modular, service-oriented philosophy through to the user interface, compart-

mentalizing functionality into a connected group of independent, dynamically loaded services.

4.3.3 UI components on demand

Although Angular is built for creating single-page browser applications, their associated JavaScript

code often makes many behind-the-scenes network requests to retrieve requested or up-to-date

information. A map application provides a familiar example: rather than loading geographical

information about the entire globe when the page is first loaded, new connections to REST APIs

are made asynchronously in the background to retrieve more data as the user pans and zooms the

map to view different locations. In addition to providing full-featured abstractions for retrieving

and managing remote data sources of this kind, Angular 2 has capabilities for dynamically loading

application code as well. A typical use-case for this feature is to lazy-load components that do

not need to be present in the page initially, reducing startup time by waiting to download some

JavaScript modules or HTML templates until the user navigates to a state which requires them.

eGor’s design makes use of this dynamic loading functionality to allow for arbitrary exten-

sions to the UI. Each document stored in eGor’s artifact database may be associated with one or

more UI components, self-contained Angular modules which provide special-purpose functional-

ity associated to a user, device, or experiment. For instance, the aMEASURE I electrochemical

measurement device provides a real-time data monitor and several control panels corresponding to

the different waveform generation mechanisms it supports. The database record storing informa-

48

tion about this device contains an entry for each of these UI widgets including links to JavaScript

code defining an Angular component and its business logic, HTML and CSS files declaring how

they should be displayed, and links to additional asset files such as images and PDF operator’s

manuals.

As with other elements of the eGor framework that employ dynamic loading, this design allows

the core software to remain small, efficient, and single-purpose while allowing future developers

and users to create and customize components to meet their needs. By choosing WAMP as the

network interconnect between services, we have also made it possible for JavaScript components

in the browser to interact with back-end services over the same communication interface as the

microservices use with each other, promoting scalability and modular design. This component-

based approach to building the browser app could be supplemented by a graphical tool allowing

users to drag-and-drop interface components to build their ideal control panel in a similar way that

users of LabVIEW are accustomed to constructing control panels for their virtual instruments [23].

This approach also aligns with our microservice architecture, where functionality is contained

in independent interacting components which may have very different internal behaviors. The

decoupled design also allows the system to embed third-party web components and even entirely

different browser apps into the front-end, enabling eGor to integrate existing open-source software

packages such as electronic lab notebooks with our design.

4.3.4 Jupyter

The Jupyter project (formerly IPython) is an open-source software tool providing a flexible archi-

tecture for creating electronic lab notebooks for scientific computing. Jupyter now supports many

of the most popular programming languages for science and engineering applications and has

several extension packages providing additional functionality, most notably JupyterHub. Jupyter-

Hub provides a web server which allows teams to share and collaboratively edit notebooks in the

browser, embedding plots, equations, code and more inside a document that doubles as an exe-

cutable analysis program. This tool is well-supported and has addressed many of the important

49

challenges associated with building a collaborative documentation tool for computational science.

eGor experiment artifact model includes a UI component called “Notebook” which embeds a

Jupyter Python notebook inside the eGor browser app. This allows researchers to attach analysis

and observations to an experiment in a flexible format using a full-featured language and toolkit

for scientific computing. Since many eGor components were developed with Python, this also

provides a mechanism for users to interact directly with other system components at many levels

of abstraction, potentially interleaving instrument control commands and signal processing in a

single notebook. Python libraries such as Numpy [69] or Pandas [48] also provide powerful high-

level APIs for interacting with data sets, and eGor provides access to an experiment’s raw data files

from within the associated Jupyter notebook. This approach uses a mature program to supplement

eGor with much-needed ELN functionality and demonstrates how the modular design allows for

embedding useful third-party tools into the browser app.

4.4 Database management

A careful choice and implementation of the system’s data model is important for performance,

flexibility, and determining the organization of the app. eGor employs multiple server-side data

stores for persisting datasets, images and documents, information about experiments, devices, and

users, and records describing eGor components such as code for dynamically loaded modules.

4.4.1 NoSQL and schemaless databases

For many years web applications primarily used relational databases for persistent data storage,

querying and assembling them using Structured Query Language (SQL). These databases are based

on well-understood theoretical foundations and have a number of advantages for applications such

as business operations management and traditional web architectures, but have performance dif-

ficulties when dealing with complex data structures that are not naturally suited to a table format

50

[51]. Relational databases are often also rigidly tied to a database schema, making them ill-suited

for records with many small variations in structure or with structures that change over time.

In response to the difficulties posed by this technology, considerable investment has been made

in recent years in developing alternative database styles which offer more flexibility and paral-

lel scalability. These so-called “NoSQL” databases have native data structures such as graphs,

key-value pairs, or object models such as those found in object-oriented programming languages.

Often these tools bill their data models as “schemaless”, contrasting themselves with traditional

relational databases where administrators must provide a predefined set of names, types, and rela-

tionships for the rows when a new table structure is created. Claimed benefits of NoSQL database

software include improved adaptability to changing data formats and better performance for some

applications [38].

The primary information of interest to eGor is complexly structured and chiefly concerned

with relationships between publications, experiments, data sets, and devices, and we sought to

adopt a database technology capable of naturally modeling these artifacts and their connections.

For this reason we initially examined graph databases and relational database representations of

semantic web content, but ultimately chose the document database MongoDB to reflect the nested,

inheritance-focused structure of our data model. MongoDB’s internal structures also map directly

to the JSON object structure used for communication and state representation throughout the eGor

system. The popularity of document databases in the NodeJS ecosystem has created a thriving

space of open-source tools for working with systems like MongoDB and connecting them to other

important application components.

Constructing an API layer to expose RESTful access to a database involves a substantial

amount of boilerplate and can become quite error-prone and difficult to manage as system and

data model complexity increases. StrongLoop LoopBack [66] is an open-source framework which

generates API endpoints and documentation for one or more server-side data stores. LoopBack is

built on top of the NodeJS web application framework ExpressJS, allowing it to be used in conjunc-

tion with the wide array of community plugins and middlewares available for Express. In eGor,

51

LoopBack is used to produce object models for artifacts such as instruments, virtual workbenches,

experimental runs, result sets, and eGor software plugins. LoopBack generates hand-customizable

REST APIs for declaratively defined data models, automatically handles accesses to several dif-

ferent database backends, and includes application logic for important fundamental tasks such as

access controls, account creation, and file uploads.

4.4.2 HDF5

Although NoSQL databases such as MongoDB provide a flexible solution for persistent storage of

complex document-like data, they are ill-suited for efficiently querying large array-like scientific

data sets. HDF5 is a technology for manipulating multidimensional time-indexed formats that

has seen strong adoption in the finance, machine learning, and data science fields in recent years

[33]. The open source working group responsible for developing the HDF5 specification has also

provided a Python web server for storing datasets and presenting them as network resources, which

includes a reference implementation of a REST API for remotely manipulating and extracting

subsets of datasets.

eGor keeps a record of a given experimental run by capturing its metadata in a MongoDB

collection reserved for cataloging past experiments. This document contains annotations about

the experiment’s purpose and outcomes, links to related artifacts, such as a workbench record

describing the instruments involved and their connections, and an embedded result log document

providing information on the experimental results. This result log provides information about

where the tables of associated data can be found, in the form of links to HDF5 resources stored

elsewhere on the network, and metadata about how the attached data sets should be interpreted

such as information about measurement units. The HDF5 interfacing portion of eGor also includes

a microservice which subscribes to data streams published by device drivers over WebSockets,

buffers the incoming data, and appends it to appropriately organized HDF5 stores.

52

4.5 Device management

eGor’s core framework includes a microservice which runs on an instrument-connected lab PC and

is responsible for detecting which instruments are connected, loading appropriate device drivers

and protocol-translating software modules, and presenting a uniform network interface for han-

dling device controls and data in the form of REST and WAMP APIs. This section discusses the

design of the instrument management service (written in Python) and explains how some of the

challenges in its implementation were addressed.

4.5.1 Enumeration

One complication that arises when attempting to communicate with many different lab devices is

that it is difficult for a PC to determine exactly which devices are connected to it. Many scien-

tific instruments use legacy protocols and hardware such as serial or parallel ports which provide

no built-in mechanism for identifying a device or its capabilities to a host machine. To address

this problem, the measurement equipment industry standardized the Virtual Instrument Software

Architecture (VISA) API, which is implemented by instruments from a number of different man-

ufacturers [27]. To determine what device is connected and load an appropriate device driver, the

host must send a message to the instrument asking for identifying information.

Typically serial instruments are connected to modern PCs using USB-to-serial adapters. Fur-

ther complicating the enumeration process, information provided to user-space applications about

USB connected devices and USB connection events varies by operating system and does not nec-

essarily contain information about whether a given USB device is a serial port. The eGor microser-

vice responsible for tracking connected devices therefore uses the following algorithm to keep an

up-to-date record of which equipment is connected.

1. When a USB event occurs signaling connection or disconnection of a device, the instrument

manager triggers a re-scan of all serial ports.

53

2. To scan a given port, the instrument manager transmits the VISA identification command

“*IDN?” and waits for a response. Since the communication rate of the target device is

unknown, this step must sequence through a list of commonly used baudrates, pausing after

each transmission to see if a response is received. Since some devices of interest to not

conform to the VISA specification, different identification messages are transmitted to probe

for some other known devices.

3. Once a response is received to an identification request, the database is queried with the

instrument’s response string and the baudrate that was used to retrieve it. The database is

searched for a known device driver matching this profile.

4. If an appropriate device profile is found, the service-hosting service on the lab PC is asked

to download and install the microservice used to manage interaction with the target device.

5. The device driver microservice is brought up, issues startup commands to the device, and

registers its high-level API with the eGor switchboard.

4.5.2 Protocol stacks

One of the most important capabilities of the eGor system is its ability to connect to computer-

controlled lab equipment. Scientific processes often involve a wide range of legacy instruments

which use different communication protocols and data formats. Rather than attempting to provide

individual drivers and protocol translators for the many devices that our future users may need, we

have constructed a Python library of simple protocol building blocks which can be connected into

more elaborate protocol stacks.

We abstractly define a protocol layer as a composable software unit for transforming units of

data from one format to another. A protocol layer consists of a codec, a transport, and a controller.

One or more of these subcomponents may inherit the default implementation from the “layer”

base class, which simply passes data through unaltered. A codec is a direct, often reversible,

transformation from one encoding to another, a transport is responsible for logically partitioning

54

streams into different units, and a controller determines how packets are generated or consumed at

each layer. Layers are bidirectional and symmetric by default, in the sense that device-bound traffic

and host-bound traffic are assumed to have the same format at a given layer. Using different layer

assembly functions provided by the library, layers are “stacked” to form more complex protocols

Since the protocol stack abstraction captures the process of transcoding data between different

formats as well as managing data transfers, combining a sequence of protocol layers can be used

to assemble a Python device driver for a custom or commercial instrument. A completed eGor-

compatible driver captures and transmits data to a low-level byte interface at one end and presents

a high-level network-connected API at the other. eGor drivers typically expose a set of remote

procedure calls for manipulating the associated device and produce one or more event-driven data

streams which are published to the WAMP router. A developer may make a new device driver

known to the system by assembling an appropriate protocol stack, identifying its network-facing

communication points, and pointing eGor’s database at a Git repository containing the driver code

and an appropriate metadata file via the graphical interface. We have developed complete device

drivers for aMEASURE I, its successor aMEASURE II, and a commercial gas flow control device

manufactured by Alicat. Additionally, the eGor team provides a “seed” repository containing

skeleton code for a custom device driver at https://github.com/egor-elab/driver-seed.

git. We are hopeful that researchers who find our toolchain useful will help support the project’s

long-term usability by developing and contributing to a library of device drivers and other eGor

services.

4.6 Summary

This chapter outlined the design patterns employed by the implemented eGor software and investi-

gated some of the concrete tool selections and problem solving approaches chosen for assembling

the system. The resulting application draws on a broad swath of

55

https://github.com/egor-elab/driver-seed.git
https://github.com/egor-elab/driver-seed.git

CHAPTER 5

SUMMARY

This thesis has provided a review of the design and implementation of software systems for fa-

cilitating reproducible research and has described eGor, a toolkit for collaboratively specifying,

executing, and analyzing real-world experiments. The completed design has a number of subsys-

tems and draws inspiration from a number of existing free and commercial software packages,

and would not be possible without the huge range of open source libraries available for web pro-

gramming today. Nevertheless, creating eGor has involved solving a number of difficult software

development problems and has resulted in several design approaches and capabilities that appear

to be unique. While minimum functionality has been achieved, this project is an ongoing effort

and will rely on continued contribution from core developers and the open-source community to

make a truly powerful framework.

5.1 Contributions

eGor was designed in response to a set of challenges that are not adequately addressed by existing

scientific software. The tool described in this thesis combines a number of features that have not

previously been explored in this application domain, centered around a modern, flexible web appli-

cation architecture built on a broad range of advanced software technologies and design patterns.

Here we reiterate the unique features of the system and their value for automated, reproducible

research as well as other large scale web applications.

5.1.1 Hardware-connected lab informatics

eGor represents the only software solution we are aware of for cloud-based structured management

of experimental data and procedures that is also capable of directly interacting with arbitrary com-

mercial or custom hardware. The system’s design allows users to remotely control lab equipment

56

via an ordinary browser interface, but also allows scheduled sequences of device commands and

parameters to be captured alongside datasets, discussion, and analysis in an electronic lab notebook

document. Raw datasets and the metadata necessary for their interpretation can be automatically

recorded in a richly structured archival format, allowing collaborators or reviewers to examine,

analyze, and share the complete lifecycle of an experiment involving manipulations of physical

equipment as well as sophisticated software analysis. We believe that this integrated set of capa-

bilities will improve researcher productivity, the reproducibility of scientific work, and the state of

software-driven scientific workflows in general.

5.1.2 Modularity via microservices

The core of eGor’s design is its focus on subdividing functionality into small functional subsystems

called microservices which communicate over ordinary network protocols and may be composed

into larger systems. This is not a design innovation on its own, and in fact is being increasingly

adopted by a number of technology companies to power their internal operations. However, eGor

makes extensive use of dynamic module loading to allow new microservices to be created and

enabled at runtime and seamlessly integrated with existing functionality. This behavior is made

possible by a special microservice responsible for installing other services. By compartmentalizing

each service into its own version-control repository, ystem components can also be upgraded using

this mechanism whenever they change, allowing the entire system to cooperate with continuous

integration strategies and making sure all users stay up-to-date. Additionally, each device driver is

encapsulated in a service, and this strategy at once simplifies the design and makes it possible for

users and eGor developers to add support for new devices far into the future.

5.1.3 Design for customizability

The ability to dynamically load new services also provides users with a powerful mechanism for

customizing and extending the eGor system to meet their needs. Ultimately the developers envi-

57

sion an ecosystem where researchers can create and share services independently, collaboratively

extending eGor in much the same way as scientists share publications or technical tips. eGor’s

design is marked by focus on user customization, and we provide libraries for creating new device

drivers and user interface components. User interface components may also be loaded dynamically

into the browser interface, and each service or device driver may be associated with any number

of these graphical control panels. The browser app makes use of a “hot reloading” approach to

allow parts of the page to be updated without performing a complete refresh, enabling a very fast

development cycle for users to create and customize their control panels. We believe the novel

architectural choices made to enable these capabilities will help to overcome the limited longevity

of many lab informatics software packages.

5.2 Implementation status and future work

The design vision elaborated in this thesis is ambitious and has not yet been completely realized.

At the time of this writing the system’s core architecture is in place, but some usability features

have yet to be implemented. The infrastructure for dynamically loading microservices and com-

municating between them has been completed, and the system can automatically detect connected

devices, look up appropriate drivers by querying our internal server, and bind the driver to the

connected port. Real-time remote interaction with devices via the browser interface is available,

as shown in Figure 5.1. A small set of device drivers for the equipment used by our collaborators

has been implemented by composing together simple protocol and control elements from a library

provided as part of the eGor system.

An archiving subsystem has also been developed, allowing data streams from multiple devices

to be permanently recorded in an efficiently indexable table format. These data tables are cross-

referenced with a database of user-provided metadata describing the experiment which created

them, and can be examined via the user interface and downloaded for external use. This function-

ality is intended to allow researchers to manage their datasets alongside the specifications for their

58

Figure 5.1: User interface screenshot. Screenshot from the web browser
front-end, showing a user interacting with a remote piece of equipment. Data
may be captured and monitored in real time, and the device may be controlled
either using graphical interface elements or directly communicating with the
device over a browser-embedded terminal.

experiments, ultimately building publication units which include detailed links to all the research

artifacts that contributed to a set of findings.

Given the scope of eGor’s application domain and the opportunities such a tool provides for

researcher productivity and scientific auditability, the developers have begun to maintain large and

continually growing list of desired features. Much of the functionality still to be implemented has

to do with improving the richness of the experiment metadata model. In particular, researchers

should be able to compare different experimental trials and configurations to better understand the

impact of changing a parameter or piece of equipment. A more object-oriented approach for defin-

ing and refining experiment templates would also be beneficial for improving research productivity,

and an object database may be a good fit for improving how systems are modeled. Additionally,

given the infrastructure already in place it should be straightforward to expand the existing system

to allow interaction between many different machines and independent eGor installations, but this

functionality was not necessary to our immediate use case and is not yet implemented.

59

5.3 Conclusion

As it exists, eGor is usable for remotely controlling devices and for capturing and sharing data

in richer formats than are currently typically found in ad-hoc scientific data collection. The core

architecture has been implemented for allowing user interface components, database access lay-

ers, and device drivers to interact, and due to the architectural focus on modularity and runtime

extensibility we believe that future users will be able to gradually extend the system to meet their

unique research goals. The current implementation acts as a usable proof of concept for the vision

elaborated in this thesis, connecting researchers, equipment, and data in unprecedented ways using

the nascent Internet of Things as a technological substrate.

60

APPENDICES

61

APPENDIX A: ACRONYMS

AMQP Advanced Message Queueing Protocol. 45, 46, Glossary: AMQP

API application programming interface. 3, 4, 27, 29, 30, 42, 44, 45, 51, 53–55, Glossary: API

BPMN business process model notation. 15, Glossary: BPMN

DOM document object model. 48, Glossary: DOM

ELN electronic lab notebook. 13, 17–19, 50, Glossary: ELN

IoT Internet of Things. 3, 4, 46, Glossary: IoT

JSON JavaScript Object Notation. 44, 51, Glossary: JSON

LIMS laboratory information management system. 2, 3, 6, 13, 15, 17–19, 21, 23, 36, Glossary:

laboratory information management system (LIMS)

MEAN a web application software stack consisting of MongoDB (database), ExpressJS (web

server middleware), AngularJS (client front-end), and NodeJS (network programming ar-

chitecture). 39

RDF resource description framework. 20, Glossary: RDF

REST representational state transfer. 44, 51, 53, Glossary: REST

RPC remote procedure call. 40, Glossary: RPC

SQL Structured Query Language. 50, Glossary: SQL

UI user interface. 47–50, Glossary: UI

URI uniform resource identifier. 28–30, 32, 42, 44, 45, 66, Glossary: URI

62

VCS version control system. 10, Glossary: VCS

VISA Virtual Instrument Software Architecture. 53, 54, Glossary: VISA

WAMP Web Application Messaging Protocol. 45–47, 49, 53, 55, Glossary: WAMP

WMS workflow management system. 17, Glossary: WMS

63

APPENDIX B: GLOSSARY

AMQP a network protocol for sharing data and computations between a cluster of connected

computers. Implemented most prominently by RabbitMQ [63]. 45

API An application programming interface (API) is a publically exposed set of software function-

ality intended to be used for composing other applications. In a web programming context,

sometimes a REST API is meant. 3

artifact a generic term for an entity of interest to a research project, especially a data set, source

code of a program, or an experimental protocol specification. 10, 13

backend the internal server-side logic of a web app, typically responsible for interacting with

databases and performing intensive computations . 27

BPMN Business Process Model Notation, a specification of a flowchart-like format for describing

procedures found in business and manufacturing settings. See [3]. 15

data provenance A generalized term for tracking scientific data as it undergoes a sequence of

transformations from raw data into a publication-ready figure. 10

database schema a specification describing the structure of allowed database entries . 51

declarative a programming style which focuses on asserting relationships between software enti-

ties rather than describing the state transitions necessary to transform data . 48

design pattern a recurring, reusable approach for structuring software; a blueprint for how a par-

ticular programming problem may be solved . 39, 40, 48, 55

DOM a term for the data structure used to represent components of a web page, namely the tree

of HTML or XML tags and their associated properties. 48

64

ELN An electronic lab notebook (ELN) is a software tool for helping researchers to chronicle their

day-to-day investigations and results by composing rich-text documents which consolidate

data, code, plots, and natural-language research questions and analysis. 13

frontend the user-facing portion of a web app, e.g. the graphical interface displayed by a browser.

27

in-silico A designation applied to scientific endeavors which consist entirely of computer analysis

of data, named in contrast with in-vivo biological experiments. 2, 14, 15

IoT The Internet of Things describes a near-future network infrastructure characterized by un-

precedented device-to-device communication and ubiquitous Internet-capable sensors and

actuators. 3, 18

JSON a simple text format, originally native to JavaScript, for encoding hierarchical data struc-

tures containing fields of many different types . 44

laboratory information management system (LIMS) A bundle of software tools for coordinat-

ing the activities of researchers, tracking inventory and data sets, and describing and moni-

toring experimental processes in one or more laboratories. 2

lazy-load a strategy where an application waits to load subcomponents until they are about to be

used, decreasing the program’s startup time and allowing it to depend on resources which

may not be locatable until runtime information is available . 42, 48

microservice a small, single-purpose web application intended to communicate with a collection

of other microservices. 27, 66

protocol stack a series of translation steps converting one communication protocol into another.

31

65

RDF a formalism for encoding graphs of semantic connections between entities via subject-verb-

object triples which serves as the base language level for the W3C’s semantic web standards.

20

research object a proposed type of rich electronic publication format for packaging data, exe-

cutable procedures, and documentation in a single semantically-linked archive. 20

REST a software architecture where clients interact with servers by navigating a sequence of

states or resources, each associated with a particular URI. 44

REST API An API adhering to Representational State Transfer (REST) principles. REST APIs

are endpoints for issuing control and data commands over an HTTP interface, allowing web

servers to expose functionality over the internet in a client-agnostic fashion. 44, 45, 48, 52,

64

RPC a programming abstraction where a sequence of network transactions is thought of as one

machine remotely invoking a subroutine over the network, receiving its return value as a

response. 40

scientific priority credit for being the first to publish or describe an invention or discovery. 12

semantic web an approach to knowledge management where Internet resources are annotated

with groups of hyperlinks describing their relationships to other resources. 66

SQL a standardized language for accessing and managing databases using sets of search criteria.

50

switchboard a microservice responsible for determining which other microservices are active and

making them available at appropriate URIs . 27–29

thin client a hardware or software component which acts as a lightweight portal connecting users

to server-side functionality, involving little or no client-side software to use . 47

66

UI the portion of a software application concerned with accepting input from the user and produc-

ing output; often synonymous with graphical user interface (GUI). 47

URI a text string uniquely identifying an Internet resource. 28

VCS A set of software features related to tracking file revisions and allowing authors to revert

files to previous states. 10

VISA an industry standard specification for the communication interface that a scientific testing

or measurement instrument should provide. 53

WAMP a high-level application protocol built on top of WebSockets for allowing heterogeneous

services to communicate via remote procedure calls and publish/subscribe event streams. 45

WMS A software package for creating and composing directed graphs of process phases and/or

dependencies.. 13, 17

67

BIBLIOGRAPHY

68

BIBLIOGRAPHY

[1] Alberto Accomazzi et al. Aggregation and Linking of Observational Metadata in the ADS.
2016. eprint: arXiv:1601.07858.

[2] Agilent Technologies. OpenLAB Software Suite. (Accessed on 05/06/2016). URL:
https://www.agilent.com/en-us/products/software-

informatics/openlabsoftwaresuite.

[3] Thomas Allweyer. BPMN 2.0. BoD, 2010. ISBN: 3839149851, 9783839149850.

[4] Flask authors Armin Ronacher. Flask (A Python Microframework).
http://flask.pocoo.org/. (Accessed on 06/01/2016).

[5] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture”. In: IEEE Softw. 33.3 (May
2016), pp. 42–52. DOI: 10.1109/ms.2016.64. URL:
http://dx.doi.org/10.1109/MS.2016.64.

[6] Sean Bechhofer et al. “Research objects: Towards exchange and reuse of digital
knowledge”. In: (2010).

[7] Andrew Begel and Nachiappan Nagappan. “Usage and perceptions of agile software
development in an industrial context: An exploratory study”. In: Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First International Symposium on.
IEEE. 2007, pp. 255–264.

[8] C. Glenn Begley and Lee M. Ellis. “Drug development: Raise standards for preclinical
cancer research”. In: Nature 483 (2012). DOI: 10.1038/453531a.

[9] Khalid Belhajjame et al. “Using a suite of ontologies for preserving workflow-centric
research objects”. In: Web Semantics: Science, Services and Agents on the World Wide Web
32 (2015), pp. 16–42.

[10] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far. Ed. by
Amit Sheth. Hershey, PA, 2011.

[11] Mikio L. Braun and Cheng Soon Ong. “Open Science in Machine Learning”. In:
Implementing Reproducible Research. Ed. by Victoria Stodden, Friedrich Leisch, and
Roger D. Peng. CRC Press.

69

arXiv:1601.07858
https://www.agilent.com/en-us/products/software-informatics/openlabsoftwaresuite
https://www.agilent.com/en-us/products/software-informatics/openlabsoftwaresuite
http://flask.pocoo.org/
http://dx.doi.org/10.1109/ms.2016.64
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1038/453531a

[12] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. “Data provenance: Some basic
issues”. In: FST TCS 2000: Foundations of software technology and theoretical computer
science. Springer, 2000, pp. 87–93.

[13] Jorge Cardoso, Robert P Bostrom, and Amit Sheth. “Workflow management systems and
ERP systems: Differences, commonalities, and applications”. In: Information Technology
and Management 5.3-4 (2004), pp. 319–338.

[14] Scott Chacon. Pro Git. 1st. Berkely, CA, USA: Apress, 2009. ISBN: 1430218339,
9781430218333.

[15] James Cheney et al. “Provenance: A Future History”. In: Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Programming Systems Languages
and Applications. OOPSLA ’09. Orlando, Florida, USA: ACM, 2009, pp. 957–964. ISBN:
978-1-60558-768-4. DOI: 10.1145/1639950.1640064. URL:
http://doi.acm.org/10.1145/1639950.1640064.

[16] Fernando Chirigati, Dennis Shasha, and Juliana Freire. “ReproZip: Using Provenance to
Support Computational Reproducibility”. In: Proceedings of the 5th USENIX Conference
on Theory and Practice of Provenance. TaPP’13. Lombard, IL: USENIX Association,
2013, pp. 1–1. URL: http://dl.acm.org/citation.cfm?id=2482613.2482614.

[17] The Open Science Collaboration. “Estimating the reproducibility of psychological
science”. In: Science 349.6251 (2015). DOI: 10.1126/science.aac4716. URL:
http://science.sciencemag.org/content/349/6251/aac4716.

[18] Oscar Corcho et al. “Workflow-centric research objects: First class citizens in scholarly
discourse.” In: (2012).

[19] CoreLIMS. Workflow Management in the Core LIMS.
https://corelims.com/workflowmanagement.htm. (Accessed on 05/05/2016).

[20] ExpressJS developers. Express - Node.js web application framework. http://expressjs.com/.
(Accessed on 06/01/2016).

[21] Node.js Developers. Node.js. https://nodejs.org/. (Accessed on 06/01/2016).

[22] Ulrich Dirnagl and Ingo Przesdzing. “A pocket guide to electronic laboratory notebooks in
the academic life sciences”. In: F1000Research (Jan. 2016). DOI:
10.12688/f1000research.7628.1. URL:
http://dx.doi.org/10.12688/f1000research.7628.1.

[23] C ELLIOTT et al. “National Instruments LabVIEW: A Programming Environment for
Laboratory Automation and Measurement”. In: Journal of the Association for Laboratory

70

http://dx.doi.org/10.1145/1639950.1640064
http://doi.acm.org/10.1145/1639950.1640064
http://dl.acm.org/citation.cfm?id=2482613.2482614
http://dx.doi.org/10.1126/science.aac4716
http://science.sciencemag.org/content/349/6251/aac4716
http://dx.doi.org/10.12688/f1000research.7628.1
http://dx.doi.org/10.12688/f1000research.7628.1

Automation 12.1 (Feb. 2007), pp. 17–24. DOI: 10.1016/j.jala.2006.07.012. URL:
http://dx.doi.org/10.1016/j.jala.2006.07.012.

[24] Daniele Fanelli. “How Many Scientists Fabricate and Falsify Research? A Systematic
Review and Meta-Analysis of Survey Data”. In: PLoS ONE 4.5 (May 2009). Ed. by
Tom Tregenza, e5738. DOI: 10.1371/journal.pone.0005738. URL:
http://dx.doi.org/10.1371/journal.pone.0005738.

[25] Cat Ferguson, Adam Marcus, and Ivan Oransky. “Publishing: The peer-review scam”. In:
Nature 515.7528 (Nov. 2014), pp. 480–482. DOI: 10.1038/515480a. URL:
http://dx.doi.org/10.1038/515480a.

[26] United States Food and Drug Administration. Guidance for Industry Part 11, Electronic
Records; Electronic Signatures - Scope and Application. URL:
http://www.fda.gov/RegulatoryInformation/Guidances/ucm125067.htm.

[27] IVI Foundation. IVI Specifications.
http://www.ivifoundation.org/specifications/default.aspx. (Accessed on 05/23/2016).

[28] J. Freire and C. T. Silva. “Making Computations and Publications Reproducible with
VisTrails”. In: Computing in Science Engineering 14.4 (July 2012), pp. 18–25. ISSN:
1521-9615. DOI: 10.1109/MCSE.2012.76.

[29] Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995. ISBN:
0-201-63361-2.

[30] Inc. GitHub. GitHub. https://github.com/. (Accessed on 06/01/2016).

[31] GNU Emacs. https://www.gnu.org/software/emacs/. (Accessed on 05/07/2016).

[32] AngularJS developers Google. One framework. - Angular 2. https://angular.io/. (Accessed
on 06/01/2016).

[33] The HDF Group. Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/.
1997-NNNN.

[34] Megan L. Head et al. “The Extent and Consequences of P-Hacking in Science”. In: PLOS
Biology 13.3 (Mar. 2015), e1002106. DOI: 10.1371/journal.pbio.1002106. URL:
http://dx.doi.org/10.1371/journal.pbio.1002106.

[35] Fuguo Huang. “Web Technologies for the Internet of Things”.

71

http://dx.doi.org/10.1016/j.jala.2006.07.012
http://dx.doi.org/10.1016/j.jala.2006.07.012
http://dx.doi.org/10.1371/journal.pone.0005738
http://dx.doi.org/10.1371/journal.pone.0005738
http://dx.doi.org/10.1038/515480a
http://dx.doi.org/10.1038/515480a
http://www.fda.gov/RegulatoryInformation/Guidances/ucm125067.htm
http://dx.doi.org/10.1109/MCSE.2012.76
http://dx.doi.org/10.1371/journal.pbio.1002106
http://dx.doi.org/10.1371/journal.pbio.1002106

[36] John P. A. Ioannidis. “Why most published research findings are false”. In: PLoS Med
(2005). URL: http://dx.doi.org/10.1371/journal.pmed.0020124.

[37] Donald E. Knuth. “Literate Programming”. In: Comput. J. 27.2 (May 1984), pp. 97–111.
ISSN: 0010-4620. DOI: 10.1093/comjnl/27.2.97. URL:
http://dx.doi.org/10.1093/comjnl/27.2.97.

[38] Neal Leavitt. “Will NoSQL Databases Live Up to Their Promise?” In: Computer 43.2 (Feb.
2010), pp. 12–14. ISSN: 0018-9162. DOI: 10.1109/MC.2010.58. URL:
http://dx.doi.org/10.1109/MC.2010.58.

[39] Albert L. Lederer et al. “The technology acceptance model and the World Wide Web”. In:
Decision Support Systems 29.3 (Oct. 2000), pp. 269–282. DOI:
10.1016/s0167-9236(00)00076-2. URL:
http://dx.doi.org/10.1016/S0167-9236(00)00076-2.

[40] Jens Lehmann et al. “DBpedia–a large-scale, multilingual knowledge base extracted from
Wikipedia”. In: Semantic Web 6.2 (2015), pp. 167–195.

[41] James Lewis and Martin Fowler. Microservices.
http://martinfowler.com/articles/microservices.html. (Accessed on 05/09/2016). Mar. 2014.

[42] H. Li et al. “Low Power Multimode Electrochemical Gas Sensor Array System for
Wearable Health and Safety Monitoring”. In: IEEE Sensors Journal 14.10 (Oct. 2014),
pp. 3391–3399. ISSN: 1530-437X. DOI: 10.1109/JSEN.2014.2332278.

[43] LIMSWiki. LIMS vendor. http://www.limswiki.org/index.php/LIMS vendor. (Accessed on
05/06/2016).

[44] S. Marco and A. Gutierrez-Galvez. “Signal and Data Processing for Machine Olfaction and
Chemical Sensing: A Review”. In: IEEE Sensors J. 12.11 (Nov. 2012), pp. 3189–3214.
DOI: 10.1109/jsen.2012.2192920. URL:
http://dx.doi.org/10.1109/JSEN.2012.2192920.

[45] Catherine C. Marshall and Frank M. Shipman. “Which Semantic Web?” In: Proceedings of
the Fourteenth ACM Conference on Hypertext and Hypermedia. HYPERTEXT ’03.
Nottingham, UK: ACM, 2003, pp. 57–66. ISBN: 1-58113-704-4. DOI:
10.1145/900051.900063. URL: http://doi.acm.org/10.1145/900051.900063.

[46] MATLAB R2016a. Natick, Massachusetts, 2016.

[47] James McCartney. “Rethinking the computer music language: SuperCollider”. In:
Computer Music Journal 26.4 (2002), pp. 61–68.

72

http://dx.doi.org/10.1371/journal.pmed.0020124
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1109/MC.2010.58
http://dx.doi.org/10.1109/MC.2010.58
http://dx.doi.org/10.1016/s0167-9236(00)00076-2
http://dx.doi.org/10.1016/S0167-9236(00)00076-2
http://dx.doi.org/10.1109/JSEN.2014.2332278
http://dx.doi.org/10.1109/jsen.2012.2192920
http://dx.doi.org/10.1109/JSEN.2012.2192920
http://dx.doi.org/10.1145/900051.900063
http://doi.acm.org/10.1145/900051.900063

[48] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings of
the 9th Python in Science Conference. Ed. by Stéfan van der Walt and Jarrod Millman.
2010, pp. 51–56.

[49] Microsoft Inc. Microsoft Word. 2013. URL:
https://products.office.com/en-us/word.

[50] Paolo Missier, Khalid Belhajjame, and James Cheney. “The W3C PROV Family of
Specifications for Modelling Provenance Metadata”. In: Proceedings of the 16th
International Conference on Extending Database Technology. EDBT ’13. Genoa, Italy:
ACM, 2013, pp. 773–776. ISBN: 978-1-4503-1597-5. DOI: 10.1145/2452376.2452478.
URL: http://doi.acm.org/10.1145/2452376.2452478.

[51] C. Mohan. “History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL
Hoopla”. In: Proceedings of the 16th International Conference on Extending Database
Technology. EDBT ’13. Genoa, Italy: ACM, 2013, pp. 11–16. ISBN: 978-1-4503-1597-5.
DOI: 10.1145/2452376.2452378. URL:
http://doi.acm.org/10.1145/2452376.2452378.

[52] Lorraine Morgan and Patrick Finnegan. “Benefits and drawbacks of open source software:
an exploratory study of secondary software firms”. In: Open Source Development,
Adoption and Innovation. Springer, 2007, pp. 307–312.

[53] Tom Oinn et al. “Taverna: lessons in creating a workflow environment for the life sciences:
Research Articles”. In: Concurrency and Computation: Practice & Experience 18 (June
2006). ISSN: 1532-0626. DOI: 10.1002/cpe.v18:10. URL:
http://dl.acm.org/citation.cfm?id=1148437.1148448.

[54] W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
Available at http://www.w3.org/TR/owl2-overview/. W3C Recommendation, 27
October 2009.

[55] Fernando Pérez and Brian E. Granger. “IPython: a System for Interactive Scientific
Computing”. In: Computing in Science and Engineering 9.3 (May 2007), pp. 21–29. ISSN:
1521-9615. DOI: 10.1109/MCSE.2007.53. URL: http://ipython.org.

[56] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Complexity of
SPARQL”. In: ACM Trans. Database Syst. 34.3 (Sept. 2009), 16:1–16:45. ISSN:
0362-5915. DOI: 10.1145/1567274.1567278. URL:
http://doi.acm.org/10.1145/1567274.1567278.

[57] Michael Pilato. Version Control With Subversion. Sebastopol, CA, USA: O’Reilly &
Associates, Inc., 2004. ISBN: 0596004486.

73

https://products.office.com/en-us/word
http://dx.doi.org/10.1145/2452376.2452478
http://doi.acm.org/10.1145/2452376.2452478
http://dx.doi.org/10.1145/2452376.2452378
http://doi.acm.org/10.1145/2452376.2452378
http://dx.doi.org/10.1002/cpe.v18:10
http://dl.acm.org/citation.cfm?id=1148437.1148448
http://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1109/MCSE.2007.53
http://ipython.org
http://dx.doi.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278

[58] R Development Core Team. R: A Language and Environment for Statistical Computing.
ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna, Austria, 2008.
URL: http://www.R-project.org.

[59] Guillermo Rauch. Socket.IO. http://socket.io/. (Accessed on 06/01/2016).

[60] Guido Rossum. Python Reference Manual. Tech. rep. Amsterdam, The Netherlands, The
Netherlands, 1995.

[61] Michael Rubacha, Anil K. Rattan, and Stephen C. Hosselet. “A Review of Electronic
Laboratory Notebooks Available in the Market Today”. In: Journal of Laboratory
Automation 16.1 (Feb. 2011), pp. 90–98. DOI: 10.1016/j.jala.2009.01.002. URL:
http://dx.doi.org/10.1016/j.jala.2009.01.002.

[62] Simulink. Natick, Massachusetts. URL: http://www.mathworks.com/help/simulink/.

[63] Pivotal Software. RabbitMQ - Messaging that just works. https://www.rabbitmq.com/.
(Accessed on 06/01/2016).

[64] David I Spivak and Robert E Kent. “Ologs: a categorical framework for knowledge
representation”. In: PLoS One 7.1 (2012), e24274.

[65] Rod Stephens. Beginning Software Engineering. 1st. Birmingham, UK, UK: Wrox Press
Ltd., 2015. ISBN: 1118969146, 9781118969144.

[66] StrongLoop. LoopBack Framework. https://strongloop.com/node-js/loopback-framework/.
(Accessed on 06/01/2016).

[67] Tavendo. Crossbar.io. http://crossbar.io/. (Accessed on 06/01/2016).

[68] Sabu M. Thampi. “Introduction to Distributed Systems”. In: CoRR abs/0911.4395 (2009).
URL: http://arxiv.org/abs/0911.4395.

[69] Stef́an van der Walt, S Chris Colbert, and Gaeël Varoquaux. “The NumPy Array: A
Structure for Efficient Numerical Computation”. In: Comput. Sci. Eng. 13.2 (Mar. 2011),
pp. 22–30. DOI: 10.1109/mcse.2011.37. URL:
http://dx.doi.org/10.1109/MCSE.2011.37.

[70] Huaiqing Wang and Chen Wang. “Open source software adoption: A status report”. In:
Software, IEEE 18.2 (2001), pp. 90–95.

[71] Zhe Wang et al. “Highly Sensitive Capacitive Gas Sensing at Ionic Liquid–Electrode
Interfaces”. In: Analytical Chemistry 88.3 (Feb. 2016), pp. 1959–1964. DOI:

74

http://www.R-project.org
http://dx.doi.org/10.1016/j.jala.2009.01.002
http://dx.doi.org/10.1016/j.jala.2009.01.002
http://www.mathworks.com/help/simulink/
http://arxiv.org/abs/0911.4395
http://dx.doi.org/10.1109/mcse.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37

10.1021/acs.analchem.5b04677. URL:
http://dx.doi.org/10.1021/acs.analchem.5b04677.

[72] Zhe Wang et al. “Methane–oxygen electrochemical coupling in an ionic liquid: a robust
sensor for simultaneous quantification”. In: The Analyst 139.20 (June 2014),
pp. 5140–5147. DOI: 10.1039/c4an00839a. URL:
http://dx.doi.org/10.1039/C4AN00839A.

[73] Matthew West. “Complex Systems in Knowledge-based Environments: Theory, Models
and Applications”. In: Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Chap. Ontology Meets Business - Applying Ontology to the Development of Business
Information Systems, pp. 229–260. ISBN: 978-3-540-88075-2. DOI:
10.1007/978-3-540-88075-2_9. URL:
http://dx.doi.org/10.1007/978-3-540-88075-2_9.

[74] E. Wolff. Microservices: Flexible Software Architectures. CreateSpace Independent
Publishing Platform, 2016. ISBN: 9781523361250. URL:
https://books.google.com/books?id=X7YzjwEACAAJ.

[75] Wolfram Research, Inc. Mathematica 8.0. Version 0.8. 2010. URL:
https://www.wolfram.com.

[76] Katy Wolstencroft. myExperiment - Workflows - Blast Align and Tree (Katy Wolstencroft)
[Taverna 2 Workflow]. http://www.myexperiment.org/workflows/3369.html. (Accessed on
05/08/2016). Jan. 2013.

[77] Zetta. Zetta - An API-First Internet of Things (IoT) Platform - Free and Open Source
Software. http://www.zettajs.org/. (Accessed on 05/04/2016).

75

http://dx.doi.org/10.1021/acs.analchem.5b04677
http://dx.doi.org/10.1021/acs.analchem.5b04677
http://dx.doi.org/10.1039/c4an00839a
http://dx.doi.org/10.1039/C4AN00839A
http://dx.doi.org/10.1007/978-3-540-88075-2_9
http://dx.doi.org/10.1007/978-3-540-88075-2_9
https://books.google.com/books?id=X7YzjwEACAAJ
https://www.wolfram.com

	List of Tables
	List of Figures
	Motivation
	Background
	Architecture
	Implementation
	Summary
	Appendices
	Appendix A: Acronyms
	Appendix B: Glossary
	Bibliography

