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ABSTRACT

THE ACCURACY OF SCREW AXIS ANALYSIS USING POSITION DATA FROM

ANATOMICAL MOTION STUDIES

BY

Jeffrey Howard Marcus

Research involving the kinematics of human joint mobil-

ity often involves screw axis analysis. As a prelude to

such research a screw axis analysis program was developed

and implemented for use in the Systems Anthropeometry

Laboratory. This thesis presents a detailed disussion of

the algorithms used to find Displacement Matricies (DM) and

screw axis parameters. Error prOpogation due to uncertainty

in DM is analytically developed and then demonstrated. The

rotation angle is found to be the most critical screw axis

parameter, and the components of a unit vector in the direc-

tion of the screw axis are the most sensitive to error.

Using the condition number of a matrix, a method is deve-

loped and presented for evaluating the error propagation

due to the matrix operations used to find DM.



This thesis is dedicated to those peOple whose contri-

bution to society did not end with their death:

Specifically, those people who willingly donated their

bodies to the medical school, and who were studied as part

of this project.
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CHAPTER 1

INTRODUCTION

Recently the need and capability to describe human

joint mobility has prompted studies into the kinematics of

joint motion. Particularly since the 1960's when the advent

of large digital computers made complicated three dimen-

sional kinematic analysis practical, there has been an

expansion of research aimed at creating the elements of a

model for describing human body motion.

The kinematics of body motion often involves compli-

cated three-dimensional displacement descriptions. One com-

monly used method of three-dimensional kinematic analysis is

the screw axis. By describing a displacement with a single

translation and a single rotation, screw axis analysis aids

in understanding how parts of the body move during a partic-

ular displacement.

The Systems Anthropometry Laboratory is a new facility

dedicated to the study of human body motion. Screw axis

analysis is used as a part of these studies, but how accura-

tely can a body displacement be described by the screw axis?

The displacement descriptions are derived from empirical

data such as position descriptions. Measurement errors,

which are present in empirical data, will propogate through
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the kinematic analysis. Even if there are no measurement

errors, the number of significant figures affects the

calculations.

This thesis will examine the limitations and require-

ments for accuracy in the kinematic analysis of human body

motion. Two different but related questions will be

examined. First, how do measurement errors in position data

propogate through the computation of Displacement Matricies?

The second question is, given some error in the Displacement

Matrix, how is the screw axis affected? Along with measure-

ment errors, the number of significant figures in the

Displacement Matrix may limit the screw axis analysis.

In summary, the limitations on Displacement Matricies

due to measurement errors, and the limitations on screw axis

analysis due to the Displacement Matrix will be considered

in the following pages.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Literature Review

Many situations encountered in design require a

knowledge of the position and motion of the human body.

Examples include the design of vehicles for situations where

large dynamic forces are encountered, as in a crash. The

design of a chair requires knowledge of the interaction be-

tween the chair and the person sitting in it. A prosthesis,

such as an artificial hip, must accurately reproduce the

function of the replaced part. Further applications are in

workspace definition. If a driver cannot reach the controls

of a car when wearing a shoulder harness, he is not likely

to use the shoulder harness.

Traditionally, the human body is modelled using rigid

body mechanics. By dividing the body into a series of "mass

links", and connecting these links with a number of dif-

ferent types of joints, a kinematic model of the body is

created. In the late 1800's Braune and Fisher {3,4,5} laid

the foundation for this approach when they investigated the

biomechanics of the body positions assumed by German

infantrymen. The technique of using mechanical analogues of

human anatomy, such as the "mass link”, was continued into
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the 20th century. Dempster {8,9 lachieved the most

extensive results in 1955, and much of his data is still

in use. Much of Dempster's research in body mobility con-

cerns locating a path of instantaneous joint centers of

rotation, which is a two-dimensional description of body

motion.

Dempster and other investigators prior to the 1960's

used the two-dimensional kinematics of Reuleaux {19}.

Three-dimensional kinematics existed, indeed Chasles {7}

described the screw axis theorem in 1830, but analytical

methods were cumbersome and impractical until the advent of

large digital computers in the 1960's. Potthoff{18} was

' among the first to apply the more sophisticated kinematic

analysis made possible by computers. Potthoff tried to ana-

lyze Braune and Fisher's data using the screw axis theorem,

but found that their data was not accurate enough for screw

axis analysis.

Braune and Fisher's data were taken from surface

targets on the skin of a person. Emanuel and Barter {10}

found that targets placed on human skin do not maintain a

stable position relative to the skeleton, or relative to

other targets on the skin, and thus violate the rigid body

assumption of the ”mass link" concept. Measurement tech-

niques not relying on surface targets were developed and

used in the late 1960's and early 1970's. Thompson {28} and

Kinzel {13,15} used instrumented linkages to describe the

relative motion between body segments. Both Thompson and
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Kinzel used screw axis analysis, with Thompson reporting

that an averaging technique was necessary before accurate

results could be obtained. Kinzel optimized his linkage

and reported use of the screw axis with confidence, but he

too noted its sensitivity to error.

The use of the "mass link" concept requires knowledge

of the characteristics of the joints which connect the ”mass

links." The least constrained joint model is the spatial

joint, which allows translation in all three coordinate

directions, and rotation around each of the three coordinate

axes. A spatial joint is, therefore, a full three-

dimensional six degree of freedom* joint, and the resulting

kinematic analysis is complicated. Researchers often make

assumptions to reduce the degrees of freedom and thus

simplify the analysis. Kinzel {13} has identified five

joint models commonly reported or implied in the literature.

These five are:

1) the one DOF hinge, or revolute joint

2) the three DOF planar joint

3) the three DOF spherical, or ball and socket joint

4) the two DOF spherical joint

5) the six DOF spatial joint

Kinzel discusses each of these in detail. Kinzel also sta-

tes "all anatomical joints permit six degrees of freedom to

some extent." The implication is that use of a joint model

 

*degree of freedom, or DOF, is defined as the minimum

number of independent parameters required to completely

define the relative position or displacement of one member

relative to another {13}.
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other than a spatial model is unduly restrictive.

While Thompson and Kinzel used instrumented linkages to

describe anatomical motion, others {6,12,17,21,26} were

investigating the use of stereo-radiography. The most nearly

rigid part of the anatomy is bone, and most single bones are

essentially rigid bodies under the forces normally encountered

in the body. Because radiography allows the determination of

a bone's position in vivo, and bones are essentially rigid

bodies, rigid body position data may be obtained. The utility

of stereo-radiography is its ability to accurately determine

the three-dimensional coordinates of a target on a bone.

Other methods such as instrumented linkages must contend with

the problems due to skin not being a rigid body.

2.2 The Systems Anthropometry Laboratory

The Systems Anthropometry Laboratory (SAL)

{20,21,22,23} of the Department of Biomechanics, College of

Osteopathic Medicine at Michigan State University is a new

facility for obtaining accurate and repeatable data relating

to the kinematics of human joint mobility. Through the use

of stereo-radiography {21,22,23} the relative movement be-

tween bones, or the absolute position of a bone with respect

to an inertial axis system may be measured. Body position

and mobility are studied from the viewpoint that the human

body is a three dimensional system composed of links con-

nected by joints with six DOF {23}.

As a bone is moved, the use of stereo-radiography allows
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the measurement of the position of the bone. Since large

doses of X-ray radiation are required, cadavers are used for

the joint mobility studies. Thus there is no restriction,

based on radiation exposure limits, on the number of

radiographs which can be obtained. Embalming tends to make

cadavers unnaturally stiff, so only fresh, unembalmed cadavers

are used.

A joint mobility study begins by imbedding x ray

targets, tungsten-carbide balls .8mm in diameter, in a bone

near a skeletal landmark. Figure 2-1 shows the subsequent

steps involved in collecting the data. The cadaver is

placed between the X-ray tubes and the film holder, as illus-

trated in Figure 2-2.

Two X-ray tubes are mounted a fixed distance apart. At

each step in the movement of the cadaver's joint, a film is

loaded into the film holder. One of the X-ray tubes then

"fires," exposing the film. The film is changed and the other

X—ray tube ”fires,” exposing the second film from a different

angle. The two pieces of exposed film are called a stereo

pair, and contain all the information necessary to determine

the three-dimensional coordinates of the X-ray targets in the

cadaver. Large film sizes of 14" x 36' are used to allow the

imaging of an entire "mass link” with all anatomical targets,

such as the femur, on one piece of film.

Between the cadaver and the film holder is a grid of

tungsten wires which define an inertial axis system.

Devices on the film holder create images which can be used
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to determine the geometry of the film holder relative to the

X-ray tubes. The film holder is free to move between the

two exposures of a stereo pair. To aid in imaging the

bone, the film holder may translate in a plane parallel to

the wire grid, and the film holder may rotate in the same

plane around an axis normal to the wire grid.

Once the film is devleoped it is placed on an X-Y

digitizer, which is accurate to within 1.013 cm. The output

from the digitizer, the coordinates of a digitized image,

are then processed through an algorithm which computes the

three-dimensional coordinates of the target. The coor-

dinates are reported in the inertial axis system defined by

the wire grid.

To summarize, radiopaque targets implanted on a bone

are tracked as the bone is moved through a series of finite

steps representative of the joint's mobility. Radiographs

of the targets on the bone are digitized for later use and

study.



CHAPTER 3

DESCRIPTION OF THREE-DIMENSIONAL MOTION

3.1 Introduction
 

The description of three-dimensional motion involves a

4 x 4 matrix called the Diplacement Matrix (DM). All infor-

mation necessary to describe a three-dimensional displace-

ment of a rigid body is contained in DM. Screw axis analy-

sis is an attempt to put DM into a form more easily

understood.

For a change of position of a rigid body there exists

a unique instantaneous screw axis (ISA) {7}. The ISA is

simply a line in space. All points on the rigid body may be

thought of as translating parallel to the screw axis by an

equal amount 3, and rotating around the screw axis by an

angle¢ . The screw axis analysis describes displacement in

terms of two vector quantities and two scalars. The two

scalars are the translation 5, and the rotation<b. The vec-

tor quantities are a unit vector U in the direction of the

screw axis, and the position vector of a point A which fixes

the screw axis in space. All of these parameters are found

from DM, but not all of the parameters are independent.

There are eight parameters for screw axis analysis (s,¢ ,

three in U, and three in A), but since this is six DOF

ll
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displacement, only six are independent.

3.2 Displacement Matrices

If A is a point on a rigid body, and A is known at two

different positions 1 and 2, then there exists a linear

transformation which maps A from 1 to 2. This linear

transformation, called the Displacement Matrix by Suh

and Radcliffe {27}, is defined as follows:

DM 51:32

where:

AI is the position vector of a point A at

rigid body position 1

'A7 is the position vector of a point A at

rigid body position 2

Point A is expressed in homogeneous coordinates. The need

for homogeneous coordinates arises from the fact that in

order to fully describe an object in n dimensional space,

n+1 coordinates are needed. The subject of homogeneous

coordinates is treated in computer graphics, and a typical

text is Rogers and Adams {25}. Insight into the need for an

n+1 system for n dimensional space can be attained from the

classic text FLATLAND {l}. The fourth coordinate for a

three-dimensional system is arbitrary and usually 1. Thus

A2 in homogeneous coordinates is



l3

——A2x

AZY

{3
|

l
l

A22

1
—~  

DM may be partitioned as follows:

"' " "”311 a12 813| 314‘

.321 322 £323] 824

DM. = (3.2)

a31 a32 a33| a34

    

where for homogeneous coordinates

a41=a42=a43=0.0 and a44=l.0

The upper 3 x 3 represents a rotation matrix (RM),

while the last column has information about the translation.

If there is no translation of the rigid body,

a14=a24=a34=0.0

and

RM AI = A7 (3.3)

If no rotation occurs then RM = I, the identity matrix.

Note that for equation (3.3) both AI and A2 are not in
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homogeneous coordinates, and are simply position vectors

with x, y, and 2 components. Unless otherwise stated in

this thesis, all position vectors and position matrices are

in homogeneous coordinates.

3.3 Computation of DM for Position Data

If the coordinates of a rigid body are known at two

different poisitons, DM can be computed. Assume there are

four points A, A, U, U in homogeneous coordinates at

two different positions 1 and 2. Then the following is true

      

{27}:

- - F- __ __ .—

Aly 31 c1V 01 A2 32 c2v 02
DM . Y .. Y 8 y Y - Y (3.4)

A12 312 C12 012 A22 322 C22 022

L 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

or

DM P1 = P2 (3.5)

Post multiply both sides by P1 ‘1 to get:

DM pz Pl '1 (3.6)

where:

P1 is a 4 x 4 matrix describing the first

position of the rigid body
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P2 is a 4 x 4 matrix describing the sec-

ond position of the rigid body

Thus DM may be found directly from three-dimensional

empirical data in homogeneous coordinates. In this example

it has been assumed that four points are specified. In

fact, only three non-collinear points are needed. A fourth

point may be created at each position by point C 90°

about an axis from A to A. Alternatively, a

coordinate system based on the three non-collinear data

points may be set up. Four new points are then available,

one on each axis, and the origin. Once DM is calculated the

parameters which specify the screw axis can be determined.

3.4 Determining The Screw Axis Parameters from DM

In this section an algorithm for determining the

screw axis parameters is presented. This algorithm is based

on a method presented by Sub and Radcliffe {27}. Begin with

the Rotation Matrix, which is the upper 3 x 3 partition in

equation (3.2).

ux2V¢ + co uxuyv¢ - qu¢ uxuzv¢ + uYS¢

RM . uxuyv¢ + qu¢ uy2V¢ + c¢ uyqu¢ - uxS¢ (3.7)

uxqu¢ - uYS¢ uyqu¢ + uxS¢ u22v¢ + C¢

_J  
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V¢ = l-cos

C¢ = cos

S¢ = sin

and ux, uy, and uz are components of a unit

vector U which indicates the direction of

the screw axis.

The rotation angle d is found in the following manner:

Trace = all + a22 + a33 (3.8)

where aij indicate entries in RM

Trace ux2V<b+ C<p+ uy2V¢ + co + uzzvo + C¢ (3.9)

(ux2 + uy2 + uzz) (l-cos¢ ) + 3 cos¢ (3.10)

Since U is a unit vector

1 = ux2 + uyz + u22 (3.11)

Combining (3.10) and (3.11)

 

Trace = l + 2 cos¢ (3.12)

_
(3.13)

cost = Tracef l

2

¢ = cos"1
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Once o is calculated ux, uy, and uz are determined.

Referring to equation (3.7).

a32 = uyuzv¢ + uxS¢ (3.15)

3.23 = UVUZV¢ - ude) (3.16)

a32 - 323 = 2 uxS¢) (3.17)

__ a‘32 ' a23
“x " =—"__ (3.18)

33$¢

By similar reasoning

uy = ___.____ (3.19)

u2 = ——____ (3.20)

Note that for this algorithm the values of ux, uv, and uz

are computed using the value of'? calculated in equation

(3.14).

Now assume that two points, A and U, are on a rigid

body. A31 is a vector from point A to point A when the rigid

body is at position 1, and AB? is the same vector at rigid

body poisition 2. Since A and B are on a rigid body the

magnitude of AB cannot change, but AA will follow the rigid

body rotation. From equation (3.3):

RM ABl = 2 (3.21)

or

BIRM( -AI)=B_-A—2 (3.22)
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where:

ET is point 5 when the rigid body is at

position 1

52 is point 3 when the rigid body is at

position 2

Point A has similar notation

A, 5, AB are not in homogeneous coordinates

Rearrange (3.22)

RM(§T-X1)+X§=§2 (3.23)

Equation (3.23) is a 3 x 3 system of equations. Add the equa-

tion l=l to get:

132x RM : 32' - RM Ki 131x

132 Bl

Y = | y (3.24)

822 --------- Blz

1 o o o: 1 1

      

The 4 x 4 matrix mapping 51 to 37 is DM. The

elements of the fourth column of DM can be defined from

equation (3.24).

314 ‘3 AZX " allAlx - a12A1Y - al3Alz (3.25)

and so on.

AI is any arbitrary point on the same rigid body as E.
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Assume A is on the screw axis so that it translates only, and

rotations do not change the position of A. Thus,

A2 = A2 + s 5.

Therefore:

a14 = sux + A1x - a11A1x - a12A1y - a13Alz (3.26)

and so on for a24 and a34

In matrix form:

'— 11—1

a14 “x (l‘all) ”a12 -a13 S

    

  

a24 = “Y -a21 (l-a22) -a23 Alx (3.27)

a34 uz ‘331 '332 (1'3331J A1y

L. _J __ A12

The translation 5, and Alx, Aly, and A12 cannot be

solved for because there are three equations and four

unknowns. However, A is of interest only because it fixes

the screw axis in space. Thus any point on the screw axis

will suffice. The point where the screw axis intersects a

coordinate plane of the inertial axis system is called a

piercing point. At a piercing point one of the coor-

dinates is 0.0 depending on which plane is intersected. For

example, the piercing point for the XY plane has a z coor-

dinate of 0.0. Setting one of the components of A equal to

0.0, reduces equation (3.27) to three equations and three
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unknowns, which yields A and s.

Suh and Radcliffe's method {27} has been presented so

far. Kinzel, et a1. {13, 14} present a different algorithm.

As part of this research Kinzel's methods were compared to

Suh and Radcliffe's. In most cases both methods gave similar

answers, but at not time did Kinzel's method give more

accurate results, and on occasion Kinzel's method gave less

accurate results. Suh and Radcliffe's method involves less

computation, and is more straightforward.

One final note on the algorithm. In determining ux,

uy, and uz Suh and Radcliffe rely on the off diagonal ele-

ments of DM. These terms are very small for a small

rotation, and thev mav be adversely effected by round off

error. For this case one further method exists for finding

5. Recall equation (3.7).

 

all = ux2V¢+ c¢ (3.28)

all - c¢ = ux2 (1 - c¢) (3.29)

a11 ‘ °¢ (3.30)

ux 3 .1-c¢

(an - w11,, = T7071). (3.31)

This method can be similarly applied for uy and uz.

Note that in equation (3.31) the sign of ux is not known.

The sign must be determined using Suh and Radcliffe's
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method, but the magnitude of ux is found with equation

(3.31). In the screw axis program implemented 5 is found

using equations (3.18-3.20). If the magnitude of U is not

within some epsilon (1.01 in SAL) of 1, then equation (3.31)

is used.

3.5 Relationship to the Eigenvalue Problem

If an eigen analysis is done on RM there will be one

real eigenvalue, and one pair of complex conjugate

eigenvalues. The imaginarv part of the complex eigenvalue is

the rotation angle g in radians. The one real eigenvector will

be a vector in the direction of the screw axis. Because of

the different algorithms used to compute eigenvectors, the

eigenvector may not have a unit magnitude, but a simple scaling

of the eigenvector will give 5. The real eigenvalue also

gives a method of determining if RM is orthogonal. If the

real eigenvalue does not equal 1, RM is not orthogonal. In

computer graphics, if the size of an object is to be enlarged

or shrunk, the eigenvalue represents the magnification

factor. Orthogonal transformations preserve lengths and

thus have eigenvalues (magnification factors) of 1. The

real eigenvalue of RM provides information on how much the

lengths between the data points changed between position 1

and position 2.



CHAPTER 4

THREE DIMENSIONAL POSITION DESCRIPTION

4.1 Introduction

As discussed in Section 3.3, ”Computation of DM from

Position Data“, only three non-collinear points are needed

to describe the position of a rigid body in space. Two

algorithms for computing DM from position data were

presented, namely, 1) a fourth point may be created by

rotating the third data point about an axis between the

first two data points, or 2) a coordinate system based on

the three data points is set up, and three new points at

unit distances from the created origin, one on each axis,

together with the origin make up the four points.

If the first method, rotating the third point, is

used, the three points must maintain their position relative

to one another, from one position of the rigid body to

another. Any change in the true relative position of the

points, or an apparent change due to measurement error,

violates the rigid body assumption. Violating the rigid

body assumption results in a non-orthogonal RM. The effect

of measurement error is an apparent shrinking or stretching

of the rigid body. DM reflects this change in size even

though the object has not changed. Numerical problems mav

22
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result. For example, in the determination of ¢ through

equation (3.14) it may be necessary to find the inverse co-

sine of a number greater than 1. Or the computed magnitude

of 5 may deviate from 1. Different values of s, the

translation parallel to the screw axis, may result from

using different piercing points.

Early in the work for this thesis the possibility was

investigated that scaling the magnitudes of the columns of

RM to 1.0 would avoid a non-orthogonal RM. This did not

work because scaling simply changes the magnitudes of the

entries in RM. The reason RM is not orthogonal is that

the ratios within the rows and columns of RM are incorrect.

The second method of computing DM from position data,

setting up a coordinate system based on the three data

points, prevents measurement errors from propagating through

the analysis. An algorithm for setting up a coordinate

system is presented in the next section. The coordinate

system approach always gives an orthogonal RM since the

coordinate systems rather than the measured data are used to

compute DM. Each point used is always a unit distance away

from the origin. Further, since the coordinate system set

up has three mutually perpendicular axes, the system is

already orthogonal. This does not mean the method is error

free. An error in any of the data points used to create the

new coordinate system will change the location and orien-

tation of the new axis system.
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4.2 Algorithm for Setting Up a Coordinate System Based on

Three Data Points

Three points define a plane, and in the problem at

hand the three points define one of the coordinate planes.

Call the data points A, A, and 5. Create vectors from A to

A (AA), and from A to 5 (A5). This is done by subtracting

components.

A3 = vector from A to B

= (Bx - Ax) i + (By - AY) j + (82 - Az) k (4.1)

where i, j, k are unit coordinate vectors

A5 is similarly defined

The dot product of the two vectors AB and AC is defined by

AE - KE 2 ABxACx + ABYACY + ABzACz = IABIIACI case

(4.2)

Rearrange (4.2) to get:

Xfi - AC

cos<3 = __ __ (4.3)

IABI IACI

The origin of the new coordinate system is a point on

A3 which lies on a line perpendicular to AA and containing

5. The distance along AB from A to the new origin (5?) is

$6 cose . Thus the three dimensional coordinates of the

origin are determined from:
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AB

 

6? = A + IXEI cose (4.4)

|A§|

Vector AB is divided by its magnitude to form a unit

vector in the direction of AB. Once the origin's coor-

dinates (5?) are established with equation (4.4) unit vec-

tors in the direction from 5? to B (5B), and from 5? to 5

(55) are determined. These unit vectors are then added to

B? to determine the location of a point on each axis.

Finally, the vector cross product of the unit vectors 5B and

55 determines the direction of the third axis. Four points

have been created, 5?, and the end points of unit vectors

5B, 55, and 5B x 55. These four new points may now be used

to directly solve for DM.

4.3 Effect of Errors on Coordinate System Determination

The effect of an error in a data point used to define

a coordinate system has been analyzed by Robbins 24 . The

analysis which follows uses a different technique but simi-

lar conclusions are reached. Recall equation (4.2).

|A§| IAEI cose = ABxACx + ABYACY + ABZACZ (4.5)

The effect of an error, dx, in the x coordinate of point B

can be evaluated using the partial derivative with respect

to x {2} of equation (4.5).



27

[AB] IKE] d 9 sin = Adex (4.6)

Adex

d0 = ::r—::T (4-7)
[ABIIACI sine

If the angle 0 between AB and AB is small then sine will be

small, and the error propogation will become large.

Adex

 

lim d6 = 1im __ __ =

640 9+0 |AB||AC| sine

” (4.8)

In addition, the closer point B is to point A, the smaller

the magnitude of AB.

Adex

lim d6 a 15m __ __ = m (4.9)

IAB|+o lABI+0 IABIIACI sine

 

Equations (4.8) and (4.9) show that the angle between

AB and AB should be as close to 900 as possible, and points

B and B should be located as far away from point A as

possible. At present the computer program which creates the

coordinate system for use in the screw axis analysis, does

not check for either of these conditions, and this is an

area worthy of further investigation in SAL.



CHAPTER 5

ERROR ANALYSIS

5.1 How Errors in Position Effect the DM
 

The propagation of measurement errors through the

matrix operations used to compute DM is a complicated

question to analyze. This section develops a method of

bounding this error propogation based on methods used in

numerical analysis. It is not within the scepe of this the-

sis to provide a full and complete analysis of matrix propo-

gation of measurement error. Rather, this thesis provides an

introduction to this subject. Recall equation (3.6):

DM = 22 p1 '1 (3.6)

The error in P1"1 is difficult to evaluate because each ele-

ment of P1‘1 is a function of several elements of P1. In

addition, the elements of P1 which determine an element of

131'1 are different for each element of Pl'l.

The field of numerical analysis has dealt with the

question of how error in a matrix effects the inverse.

Round off error in a computer has an effect similar to

measurement error in empirical data. To analyze the effect

of round off error, Forsythe and Moler {11} define a number

28
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called the condition number. Assume a system of linear

equations exists,

A x = b (5.1)

where:

A is a known n x n matrix

x is an unknown n vector, or an unknown matrix,

and is to be solved for

b is a known n vector, or a known matrix

By definition:

condition number = cond(A) = IIAII [IA-1|) (5-2)

where [IAII is the euclidean norm of

the matrix A. For an n x n matrix A,

the euclidean norm is

 

.\/

The condition number will never be less than 1, but it

aijz (5.3)

"
M
D

"
M
S

1 1 j 1

may approach infinity. The greater cond(A), the greater

the error propagation in the resulting inverse and/or solu-

tion to a set of linear equations.

As an example of equations (5.1-5.3), assume
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1 4

A:

Li 5

80

F“ .—

5 -4

A'1= '%

-3 1

__ __J  

From equation (5.2)

 

“((1)2 + (3)2 + (4)2 + (5)2

 

A =

and

A-1 = ‘\](1/7)2 + (5)2 + (-3)2 + (-4)2 + (1)2.

Using equation (5.2)

cond(A) = (7.14) (1.02)

Forsythe and Moler {11} state that for

equations such as equation (5.1).

Max“ HebH
i cond(A)

b

 

 

where:

ex is a matrix containing the errors in the

solution x

7.14

1.02

a system of

(5.4)

eb is a matrix containing the errors in matrix b
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In similar fashion, an error in A, eA, produces an error in

x bounded by

e e

..._|.._|._X.LL icond (A) I..|.__A_l_l. (5,5)

||X+exl| IIAII

Assume that ex is insignificant compared to x, then equation

(5.5) becomes

  

e e

:l xll _<_ com, (A) I AH (5.6)
l

lxll IIAH

Assume the worst case in equation (5.4) and (5.6) so that

the inequality is replaced by an equality.

Define exb as a matrix containing the error in the .

solution due to errors in b, and define exA as a matrix con- ‘

taining the error in a solution due to errors in A. Combine

equations (5.4) and (5.6)

e e e (5.7)

t1_§§LL. +[J_3211. = cond(A) .11_§11. + cond(Aflldilil

II x ll II x [I [| All II b II

Define ex = eXA + eXb

| |~
5.8

He llglfxll cond(A)leAl
+ Heb”

( )

X

‘*————-

llAll llbll

To continue the previous example assume A and b con-

sist of measurements with a measurement error of +.01.
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Then,

{— -—1

.01 .01

eA = eb =

.01 .01

  

Use equation (5.2) to find

  

HeAH = Hebll =.01\(4 =.02

Assume

1.5 4.25

b:

2.5 5.6

and

 

|| bl] =;fl(1.5)§ + (2.5)5 + (4.25)5 + (5.6)2A = 7.61

Equation (5.1) may be solved by inverting A and multiplying

the inverse times b.

 
 

      

 

x = A ‘1 b

"‘1

-5/7 4/7 1.5 4.25

x:

3/7 -1/7 2.5 5.6

.357 .164

.286 1.02
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and using equation (5.3)

 

||x ||= «J(3.57)2 + (.206)2 + (.164)2 + (1.02)2 = 1.13;

Substitute into equation (5.8)

llex II (1.13) (7.28) .02 + .02

7.14 7.61

0.45

In computing DM, A is Pl, b is P2, and x is DM. Substitute

into equation (5.8) to get

[[eDM II = '[DM'I cond(A) l|e91IL+Iszll (5.9)

"_PI" “§2“

II II II II

5.2 How Errors in DM Effect the Screw Axis

In determining the screw axis parameters the oppor-

tunity for error to multiply is enhanced by the fact that B

is determined fromwb, which may already be in error, and s

is determined from B. In this section it will be shown that

an error in the angle of rotation may be very large, and yet

that rotation angle is needed to determine directly, or

indirectly, all other screw axis parameters. Recall from

Chapter 3 that the first step in finding the screw axis

parameters is to find 9 using equation (3.14).

Trace -1

<0: cos-1 (5.10)

2
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The trace is the sum of the diagonal elements of RM. If

each element is in error by an equal amount eDMr the trace

will be in error by the following

eTr = 90M '43 (5.11)

This is derived by setting the resulting error equal to the

square root of the sum of the individual errors {2}. As an

example assume eDM = 1.0008, then eTr = 1.00138.

PrOpogation of errors in the inverse cosine is

calculated by taking the derivative of the function {2}:

0 = cos-1 x (5.12)

dx

d¢=——_—

1.- x (5.13)

Tnms-—l.
 

where: x

Figure 5-1 presents the error in the rotation angle

resulting from eTr = .00138. The figure indicates that the

error term is significant for small angles. For example, if

the correct value of 9 is 0.80 the induced error is 5.60.

Further calculations using equation (5.13) show that if

rotation angles on the order of 10 are to be measured to

within 10.50, the required accuracy in the Trace is 1.0003,

or eDM must be less than .00018.

Note that eTr for Figure 5-1 is .00138 indicating only
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three significant figures are available. The number of

significant figures which can be used in calculations has an

effect on the accuracy of<9. Table 5-1 illustrates the

effect of significant figures when 0 is small.

Table 5—1 was computed in the following manner. If

cos 9 has two signficant figures that means the value is be-

tween .9949 and .985. The inverse cosine of .9949 is 5.73°.

The inverse cosine of .985 is 9.94°. The resolution is

9.940 -5.73°, or 4.210.

TABLE 5-1

Effect of Significant Figures on Small Angles

 

  

Significant

Figures Cos¢ Resolution

2 .99 4.21

3 .999 1.33

4 .9999 0.42

5 .99999 0.13

6 .999999 0.04

7 .9999999 0.01

 

Because at small angles, sine is less affected by an

error than cosine, the possibility of using the sine to find¢

was investigated. Two different methods exist for using the

sine, but neither is more accurate than using the cosine.

The first method investigated involves substituting l - sin2¢

for c0320, and the second method utilizes the off diagonal

elements of RM. Changing the names of variables does not

avoid the basic cause of the error propagation. To

measure small rotation angles on the order of 1° accurate
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measurements of rigid body positions are needed, and as many

significant figures as possible should be retained. To find¢

to 1.13° when the rotation angle is 1° requires that five

significant figures be available for computations.

Once ¢is known the components of B, the unit vector

in the direction of the screw axis, are computed using

equations (3.18-3.20). Consider the computation of ux

_a32 ‘ 8‘23
u = --

To find the effect of an error, take the partial derivatives

{2}, one with respect to¢?, and one with respect to

(932 - a23)

cos 0 d( - ) d(a - )

dux = .332 a23 + —3-2—:2—3- (5.14)

25fin?¢ 2 sum)

 

It may be argued that a32 and a23 are functions of ¢

(see equation 3.2 for the proof of this) and should have

been differentiated with respect to ¢. An error in 0 arises

from errors defined in equation (5.13) which is independent

of a32 and a23. The values of a32 and a23 arise from the

computation of DM, and an error in the calculated value of¢

will not effect a32 and a23.

Equation (5.14) reveals that even if 9 is known

exactly, i.e. d 0: 0, error in DM may still prOpogate into
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the value of B. Error in (a32 - a23) is related to the

1

error in DM, and that error is multiplied by -f-§;- . If

sun

¢ is small, .l¢ is large, independent of d0. In addi-

Sln

tion to measurement error in DM, when ¢ is small RM

approaches an identity matrix causing off diagonal elements

such as a32 and a23 to be effected by round off error.

An error in (a32 - a23) is defined by finding the

square root of the sum of the individual errors squared {2}.

 

d(a32 - a23) = “48322 + e232 (5.15)

As an example of the error progation in finding ux,

assume

¢ = 1° (.0174 rad):

d 0 = 0.250 (.004 rad)

(a32 - a23) = .001

e32 = 623 = .0008

By equation (5.15)

d(a32 - a23) = .0008 ‘d2 = .0011

To find the error in ux use equation (5.14)

(.999) (.004) (.0010) + .0011
 

dux =

2(.0174)2 2(.0174)

.038
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The error in ux will be increased compared to the

error in DM when 9 is small, even though 9 may be known

exactly. As with the determination of<b, small angles

require accuracy and precision to determine B.

The final step in the screw axis algorithm is to solve

for the translation 5, and a piercing point A1.

finding DM this is a matrix operation.

(3.27)

a14

a24

a34 

Assume Alz = 0.0,

plane

a14

a24

a34

 

Set b =

 

—‘

 _—

 

 

 

a14

a24

a34

  

(1'911) ~a12

-321

'331

(l-azzi-a23

(1-633)‘332

”313

—1

 —

 

Alx

Aly

A1z

 

As in

Recall equation

(3.27)

i.e., the piercing point lies in the XY

(1'811) a12

a21 (1-322)

a31 a32

ux (1-a11)

= uy ~a21

uz ‘331

 

  

“312

(l-azz)

-a32

 

  L. .1:

(5.16)

Alx

A1y
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A and b are known to within a certain error. The error in

x is bounded by equation (5.8)

e

llexll = leII cond(A) U—Ll-l— + M (5.8)

llAll llbll

5.3 Conclusion

In this theoretical error analysis the difficult

question of error propogation through matrix operations has

been evaluated using methods from numerical analysis.

Within a given accuracy in DM the screw axis analysis is

particularly sensitive to small rotation angles. This sen-

sitivity cannot be reduced by using sind>instead of cos¢.

The limit of accuracy in determining B is the size of<p. To

find values of 0 on the order of 1° to within 1 .5° requires

that the accuracy of DM be better than 1.0002, and that all

four significant figures be retained. The next chapter

shows how the addition of error to “perfect data” actually

changes the screw axis parameters.



CHAPTER 6

EVALUATION OF THE ACTUAL EFFECT OF ADDING ERRORS

6.1 Introduction and Description of Procedure

The results of Chapter 5 indicate that screw axis

analysis is inaccurate for small rotation angles. To

gain insight into how an actual error in the position data

effects the entire screw axis algorithm, including coordinate

system determination and computation of DM, "perfect“

error free position measurements were computed.

Selected errors were then added to the measurements and

the effect on the screw axis was evaluated. The data

were created with a set of points in a geometrical

arrangement, and at distances (in cm) typical of

targets on a human femur. The "perfect" data is created

by specifying:

1) The number of significant digits in the position

measurements

2) A point in space which fixes the screw axis

3) Three components of a unit vector in the direction

of the screw axis

4) A rotation around the screw axis

5) A translation parallel to the screw axis

The data points created are then used in a computer

41
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program which preforms a screw axis analysis, prints out the

results, and then adds an error of +.10 cm to a single data

coordinate. The analysis then starts over again, including

the creation of the coordinate system at each position.

This is followed by removing the error added in the previous

step, and then adding an error of +.10 cm to another data

coordinate. This process is repeated until all 18 coordin-

ates specifying two rigid body positions have been perturbed.

To simulate the effect of random error, it is also

possible to add different random errors to each coordinate

of the ”perfect” position measurements. This is

accomplished by specifying:

1) The number of significant digits

2) A scale factor bounding the random error. If a

digitizer accurate to 1.01 cm is to be

modeled, the scale factor would be .01

The results of this error adding routine are then passed to

the screw axis analysis program. In this manner the effect

of random errors in position data is evaluated.

6.2 Results

In view of the sensitivity of screw axis analysis to

small rotation angles¢ , a number of different rotation

angles were analyzed. The rotations were varied from 1° to

60°. In each case the screw axis was the same, both in

location and direction. The translation 5 was specified as

0.0 in order to see how 5 varied positively and negatively.
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Tables 6-1 through 6-5 display the results. In addition to

perturbing each coordinate by +.10 cm, three random error

cases were analyzed. The digitizer used in SAL is

accurate to 1.013 cm, thus the first random error

case was 1.01. The second and third random cases are of

1.05 cm and 1 .10 cm. Table 6-6 summarizes the five

Tables preceeding it, but the random error cases are not

included. The inputs and the maximum and minimum values

of the screw axis parameters are detailed in Table 6-6.

6.3 Discussion

Tables 6-1 and 6-2 show that small angles were com-

puted more accurately than Chapter 5 would have indicated.

For rotations as small as 1° the range of calculated values

for was 1.41°, -.ll°. It is interesting to note that

increasing the number of significant digits did not decrease

the affect of an error. It should be kept in mind however,

that the error added was .10 cm. With that large of an

error it is doubtful that 5 significant figures could be

claimed.

The real effect of adding significant figures is seen

in comparing Tables 6-1 and 6-2 for the case of no error

added (first line). In Table 6-1, which is the case of

9=1° and 4 significant figures, there is considerable error

in 9, and particularly B, even though there is 39 error in

the input data. Increasing the accuracy of DM to 5 signifi-

cant figures, as in Table 6-2, results in no error in the
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screw axis parameters when no error is added to the ”perfect

data.”

Table 6-6 shows that while 9 could be determined with

some accuracy, the determination of the components of B was

not possible for a rotation angle of 1°. This is consistent

with the findings of Chapter 5. The problem is that the

sine of a small angle is a small number, and dividing by

that small number will magnify an error.

As would be expected, Table 6-6 reveals that as the

rotation angle 9 increases so does the accuracy of the screw

axis parameters. Interestingly enough, errors in the

translation, 5, do not change as the rotation angle

increases. In Table 6-6 it is seen that s is determined to

within 1.10 cm.

Examining Tables 6-1 through 6-5 reveals that the

worst errors occurred when point 2 was perturbed. This is

not surprising since point 2 is the closest of the three

position data points to the origin of the created axis

system. Recall that Chapter 4 indicated that the further a

data point is from the origin of the axis system created

based on the data points, the less effect an error in the

data point has on the created axis system. The first data

point is 38.9 cm from the origin, the second data point is

0.72 cm from the origin, and the third is 8.47 cm. Since

point 2 is so close to the origin, an error in one of its

coordinates will have a much greater effect on the coor-

dinate system, thus on DM and the resulting screw axis



51

parameters.

The piercing point selected for this test was an

arbitrary point. The screw axis direction was selected so

that there would be equal components in all three

dimensions. If a different screw axis orientation or loca-

tion was selected the error effects might be different.

This chapter is mainly to illustrate the effects of

error, and give some idea of their magnitude. It should

not be used as an indication of the maximum errors for a par-

ticular value ofcp.

6.4 Evaluating Cond (P1)

The first point of interest is that cond(Pl) changes

very little as error is added. It also does not change as

the rotation angle is increased, for increasing the rotation

angle does not effect the initial position, only the second

position. Adding significant figures to the data does not

change cond(Pl). It would seem on this basis that cond(Pl)

is a function of the geometry of the targets. Using

Table 6-1 and equation (5.9) it is now possible to evaluate

the effects of an error in P1 on the error in DM. Since

there are four significant figures (2 beyond the decimal

point) assume

epl = 6P2 = .005 per element
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From equation (5.10)

||eP1|| = llepzll = .005 '112 = .0173

From equation (5.9)

r

IIeDM || = IIDM ll cond(Pl) .0173 + .0173 ‘

76781 77.04 1

i
= IlDM Il 4080 x .00045 = 1.835 ‘

In this particular example ||DM|| = 2

SO

lleDMiI = (1.835) (2) = 3.67

If it is assumed that 9DM is evenly distributed over all 16

elements of DM then the error in DM per element is

3'67 = .9175 or a 91.75% error (6.1)

 

Obviously, DM is known better than .9175. The assump-

tion that the error is evenly distributed among all of the

elements of DM may be unrealistic. It should also be kept

in mind that Forsythe and Moler {11}, who developed the

equations which equation (5.9) is based on, were not trying
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to define the error prOpogation, only to put an upper bound'

on the resulting error in a solution to a set of equations.

In view of the answer in equation (6.1), does equation (5.9)

have any real use in this error analvsis? This question

will be addressed in the final chapter.

 



CHAPTER 7

EXAMPLE OF SCREW AXIS ANALYSIS USING ANTOMICAL DATA

7.1 Introduction

This Chapter presents the results of a screw axis ana-

lysis performed using data collected from a cadaver in SAL.

The joints analyzed are the hip, and the sacro-iliac joint.

The bone movements analyzed are the femur moving relative to

the left inominate for hip motion, and the sacrum moving

relative to the inominate for the sacro—iliac joint.

The cadaver used was a Caucasian male who was 80 years

old. The primary cause of death was a brain tumor and

diagnositic radiographs revealed no abnormalties in the

lumbar/pelvis/femur linkage system. During the studied

motions the cadaver was supported by an overhead assembly

which held the subject upright in a standing position.

Table 7-1 summarizes the screw axis analysis for the

hip, and Table 7-2 summarizes the analysis for the sacro-

iliac joint. In all cases the motion was from the same ini-

tial position of a supported erect posture with both feet

on the floor. The motions analyzed were abduction, abducto-

flexion (approximately equal amounts of abduction and

flexion), and flexion. The final position was the extreme

position of the indicated movement.
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The motions studied were to the extreme positions.

Since no intermediate positions were analyzed it is not

possible to see the motion of the piercing point and/or

screw axis. When joint mobility is studied, motions must be

broken up into a number of small displacements. In this

manner the motion of the screw axis may be studied.

 

 

7.2 Discussion F.

A summary of the screw axis analysis for hip motion is

presented in Table 7-1. Note the large amount of transla- 3

tion which occurs. As much as 1.4 cm is seen in flexion. i

L
The analysis of Chapter 6 would indicate that these values

are accurate to within 1.10 cm. Since these motions were to

the extreme positions, the movements of the femur were

large, and the accuracy should be good. The classic model

of the hip is a ball and socket joint. If the hip is a true

ball and socket no translation should be observed. Note

also that the range of values of cond(Pl) is 7800 to 2800.

This Chapter reveals that anatomical motions, such as

those of the sacro-iliac joint, occur in the range where

screw axis analysis is most sensitive to error. Table 7-2

presents the screw axis analysis for displacements between

the extreme positions, yet the rotation angle is between

1° and 2°, and the translation is less than 1.15 cm.

Chapters 5 and 6 showed that the requirements for accuracy

and the retention of significant digits, are most stringent

for motions of the magnitide in Table 7-2.
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Though these motions are small, they are important.

Common engineering practice when modelling the human body,

as with an anthropometric dummy, is to treat the pelvis as a

rigid body and assume there is no motion in the sacro-iliac

joint. The anatomical screw axis analysis presented in this

Chapter indicates that motion occurred in the pelvis at the

sacro-iliac joint.

 



 

CHAPTER 8

SUMMARY, REVIEW, AND RECOMMENDATIONS

8.1 Summary and Review
 

 

3.

Present models of the human body generally make some .i

simplifying assumptions to reduce the DOF present in a

joint. However, human joints have a full six DOF, and any

assumption which reduces these DOF artificially constrains Bi

the joint model or analysis.

The Displacement Matrix fully describes a three-

dimensional displacement. DM maps a rigid body from one

position to another. Screw axis analysis is a technique of

making DM more easily understood. By specifying a vector B

which is the screw axis, a translation, 3, parallel to the

'screw axis, and a rotation, 9 ,around the screw axis, any

three-dimensional six DOF displacement can be described.

Chapter 4 discussed the data used to compute DM. In

SAL the data consist of position coordinates of three points

on a bone at two different positions P1 and P2. A

coordinate system is set up based on the data points,

and four new points on this coordinate system are used to

compute DM. A coordinate system approach is used in order

to insure an orthogonal RM. The coordinate system approach

is effected by error, leading to the coordinate axes being

59
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in the wrong location, or having the wrong orientation.

The errors in the coordinate system are minimized by

locating the data points used as equidistant from each other

as possible, and by making the angle formed at the intersec-

tion of the relative position vectors as large as possible.

Given that there will be some error in the coordinate

system, how does this error affect DM? And how does an

error in DM effect the screw axis parameters? These

questions were dealt with in Chapter 5. The problem of

error propagation through matrix operations was discussed

first. This is a complicated question, and a detailed

analysis is outside the scope of this thesis. However,

Chapter 5 developed a method for bounding the error propoga-

tion based on the condition number of a matrix.

An error in DM effects the screw axis analysis most

when the rotation angle is small. While the determination

of the rotation angle is sensitive to errors in DM, it is

the determination of the components of B, the unit vector in

the direction of the screw axis, which is most sensitive to

error.

Chapter 6 illustrates the theoretical error analysis

of Chapter 5. By creating and then perturbing "perfect"

position measurements it was possible to see how the screw

axis parameters were effected. As expected the error for

small rotation angles was large, and the error for large

rotation angles was small. In general, rotation angles were

determined with greater accuracy than Chapter 5 had
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indicated, but the determination of B was not possible at

small angles. For small rotation angles, on the order of

1°, a minimum of four significant figures are needed to find

9 to within an uncertainty of 10.410.

In Chapter 6 an example indicating how the condition

number could be related to expected errors in DM resulted in

an exceedingly high error bound. The use of condition num-

bers is discussed in the next section.

This thesis describes a method of analyzing anatomical

joint motion, and evaluates the limits of this method.

As an illustration of what these anatomical studies might

produce for screw axis parameters, Chapter 7 contains

some analysis of joint mobility for a cadaver studied

in SAL. The need for being able to accurately model small

rotations was illustrated by the small rotations which ocucr

in the sacro-iliac joint.

8.2 Is the Condition Number of a Matrix of Any Use?

From Chapter 6 it appeared that equation (5.9) produ-

ces an error bound which is too high to be useful. DM is

known better than the 192% computed using equation (5.9).

Does this indicate the method is of no use? The interplay

between measurement error and condition numbers is an area

worthy of further study. This section presents some ideas

which might serve as an introduction to such study, but for

now equation (5.9) is not useful.

This thesis has used Euclidean norms in computing the

condition number. This is in line with what Forsythe and
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Moler {11} use, however, other norms can be used and are

discussed by Forsythe and Moler. They also discuss methods

of reducing the condition number, though they unfortunately

conclude, '...it is quite unclear to us how to program a

reasonable scaling of a general matrix.” Scaling is a

method of reducing the condition number. Two methods of

scaling are discussed in Forsythe and Moler, the first

involving pre-and post- multiplying by two different scaling

matricies. The second method attempts to equilibrate the

matrix in question.

The point of both scaling and equilibrating is to make

the norms of the columns and rows of a matrix as close in

value as possible. The closer the norms, the smaller the

condition number, and the more accurately a solution is

determined. The norms of the rows of one of the position

matricies from Chapter 6 are given below.

Row 1 norm = 15.82

Row 2 norm = 3.45

Row 3 norm = 75.23

Row 4 norm = 2.0

Because the norm of the third row is so much larger

than the other rows the condition number is large. The

third row is composed of the z coordinates of the four

points used to compute DM (refer to equation 3.4). The

coordinates of the points are related to the location of the
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origin of the coordinate system set up based on the anatomi-

cal data. While the x and y coordinates, in the inertial

axis system, of the four points are close to the origin of

the inertial system, the z coordinate is much further away.

By relocating the origin of the anatomical axis system so

that the z coordinate is closer in value to the x and y

coordinate values, the condition number is reduced. This

indicates that the condition number is a function of the

geometry of the data used (the anatomical axis system) to

solve for DM.

8.3 Recommendations for Future Work
 

Screw axis analysis is sensitive to errors at small

rotation angles. It would seem then that whenever possible

large rotation angles should be used.‘ This is not a prac-

tical restriction for two reasons. First of all, as was

seen in Chapter 7 much of the desired data are at small

rotation angels.

The second reason might be termed the paradox of screw

axis analysis. While small rotations and translations are

prone to error, large rotations and translations yield a less

than accurate description of the motion. If an air traveler

catches a plane in New York, and is later seen in Los

Angeles, the motion description would be from New York to

Los Angeles. But what if the traveler went to Florida

first, then London, then Chicago, and finally Los Angeles.

His motion would be much different in this second case, but
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if all that was available was a beginning and ending point,

the path in between is not well known. It seems that the

only way to use screw axis analysis is to acquire accurate

data for small motions and retain five significant figures.

In Chapter 5 it was observed that even with no error

in the data, when only four significant figures are

available, a rotation angle of 1° can only be found to

within 10.4°. Chapter 6 showed that for this same case the

components of‘B were adversely affected when only four

significant figures were available, even when there was no

error in the data. Increasing to five significant figures

removed the error in the determination of the screw axis

parameters. Chapter 7 pointed out that rotation angles on

the order of 1° are to be expected in anatomical studies.

The algorithm for creating an axis system based on

anatomical data does so without regard for the most accurate

resulting coordinate system. It would be useful to create

an algorithm which would compromise between placing the

three data points as far from each other as possible, and

making the included angle between the relative position vec-

tors as close to 90° as possible. An appropriately selected

coordinate system might reduce the effect of measurement

error present in the position data.

There has been considerable discussion in this thesis

of evaluating the error propogation through matrix

operations. The ideas presented are only a beginning. The

relationship between the condition number and the coordinate
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system may lead to a method of reducing the error propogation

through the matrix operations used to find DM. An optimiza-

tion study where the function to be minimized is the con-

dition number, might provide the optimum anatomical

coordinate system for reducing error propogation. The inde-

pendent variables would be the coordinates of the origin of

'the anatomical axis system, and two scaling matricies.

Another mathmatical technique for reducing error pro-

pagation involves the use of surfaces. There should be much

interest in screw axis surfaces. By passing a surface

through all of the screw axes produced by a series of

displacements the beginning of a joint model is created.

Two surfaces are needed, one for the fixed object (the ino—

minate in the analysis of Chapter 7) moving relative to the

moving object (the femur in the analysis of Chapter 7). The

second surface results from the motion of the moving object

relative to the fixed object. The two surfaces produced

would appear to roll in the direction normal to the axis

common to the two surfaces, and to slide along the common

axis {13,27}. If the geometry and location of the two sur-

faces is known, along with a definition of the amount of

sliding, the spatial motion is uniquely defined {l3,2fl-.

The second and initially more useful feature of screw

axis surfaces is that a surface smoothes data. An outlier

from a screw axis surface could be in error, though actual

slippage in the joint may also appear as an outlier. It

would be interesting to select a screw axis from a smoothed
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screw axis surface, and then recontruct DM.

In a similar manner it would be useful to construct a

surface based on all of the anatomical position data for one

target. This surface would then represent a surface in

space that is the locus of motion of a target on a bone.

The smoothing effect of the surface should be an aid in

dealing with measurement error, and the possibility of r

selecting positions not measured exists. The shape of the I

surface would also be of interest. If the hip is a ball and 4

socket joint, all points of the femur should move on a

 
sphere around the hip. It would be interesting to locate I

the center of such a sphere. If, as is more likely, the hip

is not a perfect ball and socket, the shape of the surface

would contain interesting and useful information.

If three points are the minimum needed to specify

rigid body position could not many points be used? The

points would be put into a position matrix and an

overdetermined set of equations would result, allowing the

use of a least squares analysis. Lennox and Cuzzi {16}

report that this method does not improve the accuracy of

screw axis analysis, but this question is still worth exa-

mining because of possible different measurement techniques

used in SAL. Lennox and Cuzzi do report on a method of

improving position data for use in screw axis analysis.

Their method relies on photographic centers and might be

worthwhile exploring for use in SAL. The author feels that

an improved coordinate system algorithm would incorporate
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some of Lennox and Cuzzi's ideas.

8.4 Conclusions
 

1)

2)

3)

4)

5)

In order to contain measurement error to position data

an anatomical axis system approach for computing DM

should be used.

The origin of an anatomical axis system should be

equidistant from all of the data points used to compute

the anatomical axis system.

The bound on the error propagation due to the matrix

Operations used to find DM as developed in equation

(5.9) is too high to be useful. Study of the propaga-

tion of measurement errors through matrix Operations is

an area worthy of future investigation.

If small rotation angles are to be analyzed, five signi-

ficant figures are needed in the data.

As the rotation angle decreases the error propagation

increases. This is not a linear function. If rotation

angles on the order of 1° are to be studied, the ele-

ments of DM must be accurate to within 1.0002 for an

error in 9 of less than 10.5°.

 



6)

7)

68

Screw axis analysis requires accurate data. Either

saphisticated measurement techniques must be used, or

mathmatical techniques must be developed to reduce the

uncertainty in DM to less than 1.0002.

Of the two methods suggested in Conclusion 6, it is

recommended that mathmatical techniques be used in the

near future. Specifically, improved selection of an

anatomical axis system for use in computing DM, and the

use of surfaces are the most fruitful areas to explore.
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