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ABSTRACT 

THREE ESSAYS ON MIXED STRATEGIES 

By 

Christian Diego Alcocer Argüello 

I focus on the theoretical and empirical consequences of different types of bounded rationality 

assumptions and varying levels of economic rationality. The basic nature of mixed equilibria is intuitively 

plausible since it is often easy to recognize the advantages of being unpredictable: in sports, a pitcher 

tries to randomize his throws while the batter tries to outguess him; in crime and terrorism prevention, 

the time and place of attack are generally uncertain. And yet, we are sometimes at a loss of finding 

intuitive explanations for the specific probabilities in the prescribed equilibrium.  

I start by postulating a new behavioral bias by exploring what happens when some players use 

simple rules of thumb to choose among pure strategies that they perceive to lead to the highest payoff. 

Naïve players were conceived as the simplest possible players that did not directly contradict the 

fundamental assumption of utility maximization. Then I find experimental evidence that some players 

are indeed affected by this proposed behavioral bias. Finally, I find evidence that there exist experimental 

conditions that increase this bias at the individual level. These findings contribute to our general 

understanding of the determinants of economic choices and the (actual) nature of economic rationality. 

To illustrate the theory, one can imagine choosing between left or right when expected utility is 

constant. NE forecasts the choice depends on the payoffs of the other players. I relax typical assumptions 

on rationality and propose some players will flip a coin when indifferent. They can see payoffs, but they 

lack any strategic depth. I then prove that if their proportion is small enough, any NE of a game with no 

naïve players corresponds to an equilibrium of the generalized game with some naïve players where 

payoffs for all players are the same. The intuition is that the rest of the population compensates in the 

opposite direction of the distortion. Thus naïve mixers are not disadvantaged by using a behavioral rule 

of thumb. Nor are rational players in a position that allows them to increase their payoffs: there is no rent 

to be gained by this strategy restriction and no welfare loss to be fixed by a social planner. 



 

In my second dissertation chapter, I experimentally confirm the existence of some players who 

consistently mix close to 50% in different settings. I first sort participants into naïve and non-naïve by 

letting them play variations of asymmetric matching pennies. Two weeks later, each group plays against 

varying proportions of automated computer players (bots) that follow changing off-equilibrium strategies, 

and I observe several measures of how they react to the distortions. Besides identification of naïve players, 

I show that the probability of being naïve can be modeled by a quantitative test: smart players today, play 

smart tomorrow, and smart players don't always mix uniformly. I also find evidence that the non-naïve 

population reacts better to off-equilibrium behavior, plays closer to NE and adjusts their behavior in the 

correct direction but not with the magnitude required to restore equilibria. I then employ this last result 

to design simple mechanisms to obtain above-equilibrium payoffs by taking advantage of naïve players. 

In my final paper, I test the determinants that make an individual more (or less) naïve under 

different conditions related to game complexity and game stakes. I find evidence that players sometimes 

behave relatively close to coin flipping under a distractor which consists of adding weakly dominated 

strategies to matching pennies games. When they face a focuser which consists of monotonically 

increasing payoffs, players behave relatively close to the NE. This is further evidence of methods that 

enable players to attain above-equilibrium payoffs by taking advantage of this behavioral bias. 

Some results from the first experimental paper were especially puzzling, and it was conjectured 

that altruistic components might be distorting the results. Using computer bots, I isolate philanthropic 

components of players' strategies. Adding a proportion of transparent bots that do not incentive any 

change in behavior but imply that surplus is wasted if they get any payoff, behavior gets closer to NE. 

When there is some chance players are matched against a bot, altruistic effects (utility gained by total 

surplus maximizing, even if it is another player who gets it) decrease and behavior moves towards what 

is predicted by utility maximization. This implies that, as a researcher, one way to verify if altruism is 

preventing players from reaching the NE is to compare behavior with and without bots that play the NE.
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Chapter 1, Using Rules-of-Thumb:

A Note on Sophisticated vs. Simple Mixing in Two-Player

Randomly Matched Games

Christian Diego Alcocer Argüello∗

August 15, 2016

Abstract

We postulate a new behavioral bias in how people play mixed strategies by proposing the existence

of simple players who lack strategic depth. We define them as those who, when indifferent between

choices, follow a simple rule-of-thumb and assign a predetermined probability to each. We show that if

they play 2×2 games, an equilibrium generally fails to exist.

However, under random matching within populations with some proportion of simple players, equi-

librium is restored and is indistinguishable from Nash equilibria in games with unrestricted strategy

choices, as long as the percentage of simple mixers is small enough. As such, players are unable to

take advantage of the presence of simple mixers, and simple mixers do no worse than more sophisticated

players.

Keywords:

JEL: C72, D03, D83

1 Introduction

Many games require that players mix among pure strategies in order to attain an equilibrium. Frequently

such mixed strategy equilibrium configurations are intuitively plausible: children recognize the advantage of

being unpredictable when playing games such rock-paper-scissors, and some descriptions of the ‘matching

∗Department of Economics, Michigan State University, East Lansing, MI 48824, alcocer@msu.edu.
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pennies’ game actually have players flip pennies (rather than choosing heads or tails) in order to determine

payouts.

The logic of wanting to be unpredictable and wanting to keep one’s rival(s) guessing about what to

expect readily extends to more complex games. And yet, in games in which equilibrium requires players to

mix, we are sometimes at a loss of finding intuitive explanations for the prescribed equilibrium; particularly

since it may be difficult to determine the optimal mixing distribution. This task is complicated by the fact

that, in equilibrium, the player is ex definitione indifferent between choosing any particular pure strategy

that would be played with positive probability.

Our analysis is motivated by the apparent need for modeling of off-equilibrium behavior. In most of

the experimental literature, players’ behavior is significantly different than the strategies predicted by game

theory; in real-life scenarios (Misirlisoy and Haggard, 2014) and particularly in normal-form games in

experiments (Nyarko and Schotter, 2002; Stahl, 1995). Masiliunas et al. (2004) find that only 7% of choices

are consistent with Nash equilibrium and cannot reject the hypothesis that in complex games, players’

choices are uniformly distributed. Failure of NE holds even when the experimenters privately recommend

optimal strategies (Cason and Sharma, 2007) or when participants are allowed to explicitly input mixed-

strategy probabilities that are automatically implemented instead of having to go through the extra cognitive

step of executing them manually (Bloomfield, 1994). Relatedly, Parkhurst et al. (2015) find that when

individuals face information overload, they tend to use simplifying heuristics.

The characterization of behind totally-mixed Nash equilibria can be approached heuristically as a two-

step decision process. First, a player maximizes his utility and determines, given his beliefs regarding

his opponents’ strategies, that he has no unique best response. He then proceeds to a more strategically

sophisticated deliberation that determines what sort of mixing ensures the other players are indifferent as

well and prevents them from having a unique best response.

In this paper, we explore what happens when some players, rather than ascertaining equilibrium mixing

distributions, neglect the second step described above and shoot from the hip by using simple rules of thumb

to choose among the pure strategies that lead to the highest payoff. We refer to such players as simple mixers.

In contrast, a sophisticated mixer is a player who can freely determine and employ any mixed strategies.

We show that in 2× 2 games, unless the rule of thumb that simple mixers are guided by happens to

coincide with the equilibrium mixed strategy used by sophisticated players (so that their play is indistin-

guishable), an equilibrium fails to exist. However, under anonymous random matching within populations

2



with simple and sophisticated mixers, when only the fraction of each population is common knowledge,

then equilibrium is restored if the probability that a given player is a simple mixer is below an upper bound.

This equilibrium is attained by sophisticated mixers adjusting their strategies to account for the distor-

tions induced by the presence and behavior of simple mixers in the population. As a result, all players—

sophisticated and simple alike—obtain the same payoffs that prevail in the equilibrium of the standard game

in which there are no simple mixers. An implication of this is that sophisticated players are unable to take

advantage of the presence of simple mixers who do no worse. In a sense, simple mixers free-ride off the

sophistication of the other players.

2 Literature Review

The issue of complexity in the determination of equilibria has been extensively analyzed in the compu-

tational literature. Lipton et al. (2003) discuss how for two-player games, the known algorithms have

polynomial or worse (exponential) running time in the number pure strategies. This keeps them in some

class between P and NP since it is easy (i.e. in polynomial time) to verify if a given strategy profile is an

equilibrium. Moreover, the complexity of solving a game can increase considerably, depending on the form

in which it is represented (Koller et al., 1994) since the relation of the number of strategies to the size of the

tree form is exponential. Furthermore, “the increase in size of transforming a game described by a set of

rules into a matrix-form game is not even bounded in general, which often forces analysts to find solution

techniques tailored to specific games” (Koller et al., 1994). Because of this, Lipton et al. (2003), for in-

stance, consider normal simple strategies, strategies which are uniform on a small generic support set. They

justify this way of thinking by considering pure strategies as resources. As such, an equilibrium is called

“impractical” if a player has to randomize over an extensive set of resources.

Ever since Nash (1951), there have been attempts to extend the notion of Nash equilibrium (NE) to

deal better with empirical data. Purification theory1 (Harsanyi, 1973) and the concept of a quantal response

equilibrium (QRE)2 describe how mixed-strategy equilibria can be interpreted as the limit of pure-strategy

1Formally, in the most general terms, if player i’s payoff given the (pure) strategy profile s is ui(s), then what he actually

observes is Ui(s;θ i) := ui(s)+εs
i θ

s
i where εs

i θ
s
i is the Gaussian i.i.d. perturbation scaled by his type and E(εs

i ) = 0 (see Fudenberg

and Tirole, 1991). The vector θ i can be interpreted as related to levels of rationality: if all its components are zero, the player

(perfectly) observes an unperturbed game. If Var
(
εs

i

)
→ ∞ or θ

s
i → ∞, he observes only noise and mixes uniformly across all–

including dominated–strategies.
2In this case, if player i’s payoff given the (pure) strategy profile s is ui(s), then what he actually observes is Ui(s) := ui(s)+ εs

i

where εs
i is the i.i.d. perturbation E(εs

i ) = 0, (McKelvey and Palfrey, 1995; McKelvey and Palfrey, 1998; Goeree, Holt and Palfrey,

3



equilibria in games when perturbations to all payoffs are assumed. Ex-ante, all pure strategies receive a

positive probability and probabilities are greater for those strategies that yield greater expected payoffs. A

QRE can be approximated and estimated as a logit equilibrium (McFadden, 1973) . 3

Experimental evidence suggests QRE is sometimes a better predictor than NE and purification (Erlei

and Schenk-Mathes, 2012). Under a given set of assumptions, a QRE can be approximated and estimated as

a logit equilibrium (McFadden, 1973). Cognitive hierarchy theory or level-k thinking (Camerer et al., 2004;

Van Damme, 1991) assumes that there are multiple levels of players with varying degrees of rationality.

There are non-strategic level-0 players who always mix uniformly among all their pure strategies.4 Level-k

players best-respond to level-(k-1) populations.

As such, this paper attempts to enhance the literature on off-equilibrium play. The model below is

conceptually different from purification and QRE where if the variances of the perturbations tend to zero,

all strategies tend to the NE whereas a simple player will never mix with a non-degenerate probability

different than σ̌ρ nor will he play a strongly-dominated strategy. Also, in equilibrium the relative likelihood

of outcomes under purification coincide with the relative likelihoods in the NE. Finally, a level-0 is distinct

from a naïve player since the later only mixes uniformly amongst a subset of pure strategies.

3 Model

We establish the main findings by modifying a simple 2×2 game, but it will be readily apparent that the

insights carry over to complex multi-player games straightforwardly. Consider a generic 2×2 payoff

structure Γ such as that depicted in Figure 1. Superscripts denote players and subscripts denote pure

strategies, with ui
j,k giving Player i’s payoff when Player 1 plays s1

j and Player 2 plays s2
k . We let σ i

1 := σ i

indicate the probability with which Player i chooses si
1, so the probability of picking si

2 is σ i
2 :=

(
1−σ i

)
.

While maintaining the structure of the game regarding pure strategies
(
si

m

)
, we extend the analysis to

include behavioral players–namely simple mixers that are restricted in their choice of mixing among their

2002).

3For a given λ i ≥ 0, the logistic quantal response is defined as σ
j
i (s

j
i | σ−i) = exp

{
λ iU

j
i,−i

}
/

K

∑
κ=1

exp

{
λ iU

κ
i,−i

}
which is the

probability that i assigns to action s
j
i (from some finite action set of cardinality K) given the other players’ strategies, and U

j
i,−i is

the perturbed payoff he gets after s
j
i and σ−i. The parameter λ i can be interpreted as a measure of i’s rationality. As λ → ∞, if

there exists a unique NE (σ∗) , as is the case throughout the games described below, then (σ1, ...,σN) converges to σ∗. As λ → 0,
players become blind and mix uniformly across all strategies such that the probabilities tend to 1

K
.

4This is one of the simplest possible behaviors in terms of computational complexity (Koller and Megiddo, 1996; Koller,

Megiddo and Von Stengel, 1994; Lipton et al., 2003).
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Player 2

s2
1 s2

2

s1
1 u1

1,1,u
2
1,1 u1

1,2,u
2
1,2 σ1Player 1

s1
2 u1

2,1,u
2
2,1 u1

2,2,u
2
2,2 1−σ1

σ2 1−σ2

Figure I.1: Generic 2 ×2 Game Γ

pure strategies. Instead of being allowed to assign any probability σ i
m to any pure strategy si

m (as long as

σ i
m ∈ [0,1] and ∑

m∈M

σ i
m ≡ 1 where M is the set of available pure strategies), simple mixers can only utilize

some predetermined mix
(
σ̌ρ

)
or pure strategies. We index such “rule-of-thumb” players by ρ and denote

their behavior by σρ∈
{

0, σ̌ρ ,1
}
.

4 Analysis of Simple Play

Assume that it is common knowledge that either is a simple mixer and that Γ has a unique equilibrium.

Lemma 1 Let ξ :=
(
σ1∗,σ2∗) denote an equilibrium in the generic 2× 2 game with no simple players.

Then,

1. the presence of a simple mixer i does not affect equilibrium behavior, if σ i∗∈
{

0, σ̌ρ ,1
}

;

2. and if the equilibrium ξ is unique and σ i∗ /∈
{

0, σ̌ρ ,1
}

, then no equilibrium exists.

Lemma 1 follows directly from the definitions of equilibria and simple mixing. First, if σ i∗∈
{

0, σ̌ρ ,1
}
,

the presence of a simple mixer does not affect equilibrium behavior since no player has any incentive to

deviate from
(
σ1∗,σ2∗) as expected payoffs are unchanged.

Second, to see why equilibria can be lost, suppose that Player i is a simple mixer where i ∈ {1,2} and(
σ̃

1, σ̃2
)

is an equilibrium such that σ̃
i /∈
{

0, σ̌ρ ,1
}
. Since the equilibrium is unique and Player i is not

allowed to play it given the definition of which mixed strategies are available to simple mixers, the game has

no equilibrium.

As an illustration, consider the asymmetric matching pennies example, with u1
1,1 > 1. The unique NE is

σ1∗ = 1/2 and σ2∗ = 1

1+u1
1,1
. If Player 2 is a simple mixer that follows the rule of thumb σ̌ρ = 1/2,5 then

5It will be readily apparent that, in more complex games, the main results hold with any predetermined mixing distribution, as

long as it is public knowledge. Furthermore, behavioral, experimental and insufficient-reason arguments can be made to justify

why uniform mixing (σ̌ρ =
1
2 in the 2×2 case) is a good starting point.

5



Player 2

s2
1 s2

2

s1
1 u1

1,1,0 0,1 σ1

Player 1
s1

2 0,1 1,0 1−σ1

σ2 1−σ2

Figure I.2: Asymmetric Matching Pennies

the game has no equilibrium, as depicted in Figure 3 that depicts the loss of convexity in i’s strategy space.

Figure I.3: Non-Existence of Equilibrium

5 Randomly Matched Play

Previously we assumed that all players were simple mixers. We now generalize the game by allowing

proportions of both simple and sophisticated players. This reconvexifies strategy spaces. We will use inverted

hats to distinguish the generalized game that includes simple and sophisticated mixers from the generic game

that only includes sophisticated players (Γ) so ǔi∗ and σ̌
i∗ will denote the equilibrium payoff and mixing of

Player i in the generalized game.

Consider a large population of players who are randomly matched. For ease of exposition, we will

focus on the case where the equilibrium is unique, Player 2 can be either simple or sophisticated, and

6



Player 1 is sophisticated with probability one. Below, we discuss how the multiple-equilibria analysis is not

fundamentally different. Also, the case where Player 1 can be simple is symmetric to the proposition below.

Let λ ∈ [0,1] denote the fraction of simple mixers in the Player 2 population, and assume that this fraction

is common knowledge. A simple player’s mixing is restricted to the probabilities in {0, σ̌ρ ,1}.

Proposition 2 Stability Theorem: For every equilibrium E of the generic 2× 2 game Γ, there exists λ̄ Γ

∈ (0,1] such that whenever λ ∈
[
0, λ̄ Γ

]
:

1. There exists at least one equilibrium in the generalized game with simple and sophisticated play-

ers that is outcome-equivalent to the equilibrium ξ in that

(a) Player 1 and Player 2, regardless of type, obtain the same payoffs as in ξ

(b) The frequency in which pure strategies are chosen is the same.

2. Whenever σ2∗ /∈ {0, σ̌ρ ,1}, sophisticated Player 2’s equilibrium strategy
(

σ̌
2∗
−ρ

)
diverges from

his strategy in E
(
σ2∗) in the opposite direction of the distortion

(
σ̌ρ

)
:

if σ̌ρ< σ
2∗→ σ̌

2∗
−ρ > σ

2∗ and

if σ̌ρ> σ
2∗→ σ̌

2∗
−ρ < σ

2∗.

Proof. The proposition states that given any arbitrary 2×2 game,

∃λ Γ > 0 | ∀λ ∈ [0,λ Γ] :

u1∗ = ǔ1∗,u2∗ = ǔ2∗,

σ1∗ = σ̌
1∗,σ2∗ = σ̌

2∗.

We proceed by proposing an equilibrium
(
Ě
)

that is in line with the restrictions imposed on simple play-

ers. Note that if the populations’ expected strategies implied by Ě coincide with those of E , then payoff-

equivalence follows directly. That is, for i= 1,2 : σ i∗ = σ̌
i∗ implies ui∗ = ǔi∗ as ǔi∗ is just an expected value

that depends on the probabilities σ̌
i∗ and the payoffs ui

j,k.

First, suppose σ2∗ = σ̌
2∗. If Player 1 is playing a pure strategy in E such that σ1∗ ∈ {0,1} , then he will

have no incentive to deviate. Similarly, if his equilibrium strategy is mixed, Player 1’s equilibrium strategy

σ̌
1∗ is determined by solving σ̌

1∗u2
1,1+

(
1− σ̌

1∗
)

u2
2,1 = σ̌

1∗u2
1,2+

(
1− σ̌

1∗
)

u2
2,2, a function of u2

j,k which

7



is the same condition for σ1∗. Thus, whether Player 1 was playing a pure or a mixed strategy, σ̌
1∗ = σ1∗

holds as long as σ2∗ = σ̌
2∗.

Now, suppose σ1∗ = σ̌
1∗. If in the equilibrium ξ , Player 2 is playing a pure strategy then, as noted in

the previous section, the presence of simple mixers does not affect his equilibrium behavior. Now suppose

σ2∗∈ (0,1) . The simple Player 2, being indifferent between his two actions (s2
1,s

2
2), has σ̌

2∗
ρ = σ̌ρ as a best

response. Finally, the convolution that defines average (expected) equilibrium mixing in the restricted game

of the sophisticated Player 2 (σ̌2∗
−ρ ) is determined by solving

[
σ̌ρλ +(1−λ ) σ̌2∗

−ρ

]
u1

1,1+
[
1− σ̌ρλ − (1−λ ) σ̌2∗

−ρ

]
u1

1,2 =[
σ̌ρλ +(1−λ ) σ̌2∗

−ρ

]
u1

2,1+
[
1− σ̌ρλ − (1− λ ) σ̌2∗

−ρ

]
u1

2,2

with solution

σ̌
2∗
−ρ =

σ̌ρλu1
1,1+u1

1,2− σ̌ρλu1
1,2− σ̌ρλu1

2,1−u1
2,2+ σ̌ρλu1

2,2

λu1
1,1−u1

1,1+u1
1,2−λu1

1,2+u1
2,1−λu1

2,1−u1
2,2+λu1

2,2

=
1

1−λ

(
u1

2,2−u1
1,2

u1
1,1−u1

1,2−u1
2,1+u1

2,2

−λσ̌ρ

)

which is decreasing in σ̌ρ . Note that u1
1,1−u1

2,1 6= u1
1,2−u1

2,2 since σ2∗∈ (0,1) is unique by assumption.6

The outcome-equivalence stated by the Stability Theorem is verified by calculating the weighted average

of the mixing of both populations, which coincides with Player 2’s mixing in E :

σ̌
2∗ =

λσ̌
2∗
ρ +(1−λ )σ̌2∗

−ρ =

u1
2,2−u1

1,2

u1
1,1−u1

1,2−u1
2,1+u1

2,2

= σ
2∗.

Since σ̌
1∗ = σ1∗ and σ̌

2∗ = σ2∗, then u1∗ = ǔ1∗ and u2∗ = ǔ2∗ (for both the simple and sophisticated Player

2 populations).

6If u1
1,1− u1

2,1 = u1
1,2− u1

2,2, Player 1 would have a strictly dominant strategy. If, for instance, both sides of the equation are

positive, then s1
1 strictly dominates s1

2. In turn, this would imply that if σ2∗∈ (0,1) , then u2
1,1 = u2

1,2 so σ2∗ is not unique. We

assumed uniqueness, but it is clear that payoff invariance holds if uniqueness fails as in the case when u2
1,1 = u2

1,2. The frequency

in which pure strategies are chosen is also the same since, as in the rest of this analysis, the sophisticated Player 2 has no incentive

to deviate from σ̌
2∗
−ρ =

σ 2∗−λσ̌
2∗
ρ

1−λ
.
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The value of the threshold λ Γ will depend on whether σ2∗ ≷ σ̌ρ . Since probabilities are bounded (in

particular σ̌
2∗
−ρ ∈ [0,1]), the compensation done by the sophisticated Player 2’s when σ2∗ < σ̌ρ can work up

to the point where σ̌
2∗
−ρ = 0 so in this case λ Γ is the value of λ such that σ̌

2∗
−ρ = 0 : λ Γ =

1
σ̌ρ

u1
2,2−u1

1,2

u1
1,1−u1

1,2−u1
2,1+u1

2,2
.

If σ2∗ > σ̌ρ , then the sophisticated Player 2 has to compensate in the opposite direction and λ Γ is the

solution for λ such that σ̌
2∗
−ρ = 1 : λ Γ =

1
σ̌ρ

u1
1,1−u1

2,1

u1
1,1−u1

1,2−u1
2,1+u1

2,2
. Finally, if σ2∗ = σ̌ρ , to have an equilibrium

there is no need to have sophisticated players at all, and λ Γ= 1. Therefore in the restricted game one has:

λ ≤λ Γ =min
{

1−σ2∗

1−σ̌ρ
, σ2∗

σ̌ρ

}
.

The intuition is that since σ2∗ = λσ̌
2∗
ρ +(1−λ )σ̌2∗

−ρ , a sophisticated Player 2 has no incentive to deviate

from

σ̌
2∗
−ρ =

σ2∗−λσ̌
2∗
ρ

1−λ
=

σ2∗−Pr(Player 2 is Simple)σ̌2∗
ρ

Pr(Player 2 is Sophisticated)

where the denominator is a measure of how much he compensates for the behavior of his simple counterpart.

At the same time, the sophisticated Player 1, since he has no simple counterpart and expects no equilibrium

deviation, has no incentive to deviate either.

Let ∆ := σ2∗−λσ̌
2∗
ρ , the numerator above. If ∆< 0 or ∆> 1−λ , then σ̌

2∗
−ρ /∈ [0,1] , implying there is

no equilibrium. If ∆ ∈ [0,1−λ ] , then

λ Γ =


σ2∗

σ̌ρ
, if σ2∗ < σ̌ρ (the solution to σ̌

2∗
−ρ = 0)

1, if σ2∗ = σ̌ρ (no need to compensate)

1−σ2∗

1−σ̌ρ
, if σ2∗ > σ̌ρ (the solution to σ̌

2∗
−ρ = 1)

thus λ Γ ∈
{

1, 1−σ2∗

1−σ̌ρ
, σ2∗

σ̌ρ

}
. If the simple population is greater than this threshold (if λ >λ Γ), then there is

nothing the sophisticated population can do to restore any equilibrium and the theory is at a loss when trying

to predict the outcome of this static game.

Note that the equilibrium

(σ̌1∗, σ̌2∗
−ρ , σ̌

2∗
ρ ) =

(σ1∗,
σ2∗−λσ̌ρ

1−λ
, σ̌ρ) := Ě

is not unique. The strategies in Ě are best-responses but, following our original motivation, the bounded

rationality of a simple player could imply that he only plays pure strategies. (Alternatively, this could be

9



seen as the special case where σ̌ρ ∈{0,1} .) In this case, the analysis does not fundamentally change. If E

is purely mixed and it is common knowledge that Player 2 will always play σ̌ρ = 0, then

σ̌
2∗
−ρ =

σ2∗

1−λ

and λ Γ = 1−σ2∗. Likewise, if Player 2 will always play σ̌ρ = 1, then

σ̌
2∗
−ρ =

σ2∗−λ

1−λ

and λ Γ =σ2∗. These are the two cases where the distortion induced by simple players is at its maximum.

To illustrate, Figure 4 depicts how the Stability Theorem first states that for any parametrization
(

ui
j,k

)
,the

game is stable in the sense that all final payoffs are unchanged if the rule-of-thumb population changes, as

long as its prevalence is small enough and common knowledge.

Figure I.4: Restoration of Equilibrium

Following the previous example, as shown in Figure 4, the theorem also predicts a compensating be-

havior by the sophisticated population. Since σ2∗ <1/2, then σ̌
2∗
−ρ <σ2∗. When λ = λ Γ, the sophisticated

Player 2 can compensate no more since we are at the point where σ̌
2
−ρ = 0 and if the simple population was

any larger (λ > λ Γ) , there would exist no equilibrium.
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6 Extensions

From an evolutionary perspective, in a symmetric 2× 2 game (for s, t ∈ {1,2} : ut
s,s = u−t

s,s and ut
s,−s =

u−t
−s,s), pure strategy si

1 risk-dominates si
2 if, and only if, E(ui | si

2,σ
−i = 1

2
)≤ E(ui | si

1,σ
−i = 1

2
). It strictly-

dominates it if the inequality is strict. In this case, this holds if u1
1,1+u1

1,2 ≤ u1
2,1+u1

2,2.[?]

It can be shown that the best response to uniform simple mixing coincides with playing a risk dominant

strategy. As such, in the special case of σ̌ρ =
1
2
, a risk-minimizing agent will have the same behavior as a

simple player and no simple population will be able to invade a NE-mixing population successfully. Note

that if both players are risk minimizers (instead of utility maximizers), even if they are simple mixers, then

an equilibrium exists if, and only if λ is below some upper bound λ Γ.

Player 2

s2
1 s2

2

s1
1 u1

1,1,u
1
1,1 u1

1,2,u
1
2,1 σ1

Player 1
s1

2 u1
2,1,u

1
1,2 u1

2,2,u
1
2,2 1−σ1

σ2 1−σ2

Figure I.5: Generic 2 ×2 Symmetric Game

We can analyze learning in repeated games with simple players. Suppose two agents repeatedly play

the asymmetric matching pennies game of Figure 2 as stable pairs with no rematching. Define λ as the

(prior) probability that Player 2 is a simple mixer that follows σ̌ρ = 1/2. Now let λ
T

:= Pr(Player 2 is

Simple| s2
T ,s

2
T−1, ...,s

2
1) be the posterior probability where s2

T := (Player 2’s action at time T ). Assume no

discounting and perfect myopia (no strategic behavior across time periods).

If the game is repeated T times, there is a decreasing limit λ
T+1
Γ < λ

T
Γ that converges to zero as T → ∞

where , λ
T
Γ is an upper bound such that if λ > λ

T
Γ , the repeated game has no equilibrium. If λ ≤ λ

T
Γ , the

repeated game is stable in that all players get the same expected utility in the generalized game as in the

generic game with no simple mixers: u1∗
T = ǔ1∗

T and u2∗
T = ǔ2∗

T .

The inequality λ
T+1
Γ < λ

T
Γ implies that as the game is repeated, agents update their priors based on

observed outcomes. This requires a tighter limit on the simple mixer prevalence to preserve the equilibrium.

Some initial proportion λ that allows for a stable equilibrium if the game is repeated T times might be too

high if it is repeated T+1 times. Learning makes it harder to ensure the existence of a NE, but if it exists, it is

payoff-equivalent to the equilibrium of the restricted generic game. Finally, since in this example σ i∗ < σ̌ρ
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(the opposite case is symmetric) learning about the rationality of one’s rival pushes posterior probabilities

in the expected directions:

λ
T+1
Γ =

 > λ
T
Γ , if s2

T−1 = 1

< λ
T
Γ , if s2

T−1 = 0.

7 Conclusion

We postulate a new behavioral bias in how people play mixed strategies by proposing the existence of simple

players who lack any strategic depth. We define them as those who, when indifferent between payoff-

maximizing choices, follow a simple rule-of-thumb by assigning a predetermined probability to each.

We show that simple mixers are not at a disadvantage by using a behavioral rule of thumb; indeed, by

simplifying their behavior, they free-ride off the computational complexity added to the problem of their

sophisticated counterparts without any loss in rents. Nor are sophisticated players at an advantage that

allows them to increase their payoffs: there is no rent to be gained by this strategy restriction and no welfare

loss to be fixed by a social planner. Whenever they are indistinguishable from simple mixers, sophisticated

players account for this and compensate for their behavior by including in their equilibrium calculation this

added complexity.

Compensation holds because, under random matching, games are stable to the inclusion of simple play-

ers, up to a limit. We show that in 2×2 games, for any NE and any rule-of-thumb, if some proportion of the

players is simple then the equilibrium is stable in the sense that all final payoffs are unchanged. The only

assumptions are the percentage of simple players is below some endogenous threshold (otherwise equilibria

do not generally exist) and common knowledge.

In real-world settings where individual behavior cannot be tracked, from any given sequence of player

actions, the generalized game with simple and sophisticated players is, therefore, indistinguishable from

the game where all players are sophisticated and follow the NE. In experimental settings where individual

behavior can be observed under varying controls, simple and sophisticated mixers can perhaps be identified.

The empirical hypothesis is that in 2×2 games with a unique and totally mixed NE, if estimated behavior

is statistically close to the NE, some players will be mixing statistically close to σ̌ρ =
1
2

while the rest will

compensate by playing in the opposite direction of the bias. Furthermore, this identification of simple

and sophisticated players should be consistent throughout different experimental sessions, variations of the

games and different experimental conditions.
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Chapter 2, Naïve versus Sophisticated Mixing:

Experimental Evidence
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Abstract

We identify a new bias in how people behave when playing games with purely mixed equilibria.

Previous research by Alcocer and Jeitschko (2014) define naïve players as those who, when indifferent

between optimal choices, use a rule-of-thumb and assign an equal probability to each one of them. Based

on their equilibrium results, we design an experiment to test for the existence of naïve players. In a first

session, we sort participants into two groups: naïve and their sophisticated counterparts. In a second

session, played two weeks later, each group plays against varying proportions of automated players

(bots) that follow varying off-equilibrium mixed strategies. We find evidence of the existence of players

that are relatively naïve and of the reaction by sophisticated players. This compensation is in the correct

direction but smaller than what equilibrium restoration would require. This implies that when playing

non-trivial games with a mixed equilibrium, there are predictable methods to attain above-equilibrium

payoffs. Lastly, the analysis suggests that the probability of being naïve can be partially predicted by a

simple quantitative test.

1 Introduction

Mixed strategy Nash equilibria (NE) in non-cooperative games can be approached heuristically as a two-

step decision process. First, a player determines, given his beliefs regarding his opponents’ strategies, that

∗Keywords and terms: Experimental, Behavioral, Bounded Rationality, Compensated Equilibrium, Computer Bots, Heuris-

tics, Mixed Equilibria, Modeling Cognitive Heterogeneity, Nonlinear Diff-in-Diff, Naïve and Sophisticated Players, Two-Stage

Experiment. JEL: C72, C91, D03, D83.
†We wish to thank Jon X. Eguia, Thomas D. Jeitschko, Arijit Mukherjee, Jeffrey M. Wooldridge and Mitchell Strahlman for

helpful comments.
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he has no unique best response but rather has several optimal actions. Given that he is indifferent between

these several optimal actions, he proceeds to the second step and determines what sort of mixing among

these strategies prevents his opponents from seeking and attaining rents. In equilibrium, these beliefs about

his opponents’ strategies are confirmed. In other words, one can separate the decision process into two

parts: the computation behind utility maximization and the more strategically sophisticated deliberation that

ensures the opponent is indifferent as well. In this paper, we find evidence that some individuals appear to

deliberate imperfectly during the first step, and others completely neglect the second one and instead shoot

from the hip. This leaves the door open for other players to compensate for these missteps and potentially

gain rents. We find evidence of the existence of this type of sophisticated players – that is, ones who appear

to compensate for that type of off-equilibrium behavior.

The results in this paper confirm the assumptions and results of Alcocer and Jeitschko (2014) (AJ) who

explore the implications of relaxing the typical rationality assumptions on players’ decision processes and

propose the existence of naïve players (or rule-of-thumb mixers). In their work, these naïve players correctly

determine their own expected payoffs and will, if there exists a unique best option, select it, as the standard

theory predicts. However, naïve players have a rationality bound such that – when they are indifferent

between two or more maximum payoffs – mix according to some (off-equilibrium) distribution instead of

going through the levels of deliberation required to find a NE. The principle of indifference (e.g., Keynes

(1921); it is also called principle of insufficient reason in probability theory) suggests that such players will

assign the same weight to each best response. As such, in the case of 2×2 games, indifferent players would

flip a coin, even when this mixing is not part of a NE.

Alcocer and Jeitschko’s main result is that, in finite games, for any totally-mixed NE and any rule-

of-thumb, if some proportion of the players is naïve then, as long as this proportion is small enough and

common knowledge, the equilibrium is rule-of-thumb-stable. This means the generalized game is an iso-

morphic setting to the NE since the convolution resulting from the linear combination of the mixing of naïve

and sophisticated players coincides with the mixing distribution of the standard perfect-rationality case. This

implies that the expected final payoffs for all players are the same as in the standard perfect rationality case.

The only necessary assumptions are that players cannot recognize the rationality level of their rivals (such

that all they know about their opponent is the probability that he is naïve) and that the proportion of naïve

players is publicly known; otherwise equilibria do not generally exist.

One important implication of AJ’s equilibrium results is that sophisticated players and external agents,
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such as policy makers, are unable to take advantage of the presence of simple mixers, who, in a sense, free-

ride off the cognitive complexity of their sophisticated counterparts. As such, if it is publicly known that a

small proportion of the players of a population are rationality-bound in the fashion described above, then

there is no justification for the intervention of a regulator (or some other third agent) to enter the market and

restore equilibrium, or coordinate a welfare improvement. This holds true even if it is possible to influence

the naïve population and determine their off-equilibrium strategy. Additionally, AJ’s results regarding naïve

mixing may contribute to the theoretical explanation of why, on average, populations may play a NE while

few, if any, individuals actually do (Harsanyi, 1973; McKelvey and Palfrey, 1995).

On the other hand, in line with the stylized fact that populations generally do not play according to

NE in experimental settings, our understanding and forecasting power of behavior can be enhanced by

combining the concepts of imperfect naïve mixing and compensation rather than relying on NE alone. The

empirical questions of whether equilibrium is restored and whether some players correctly compensate for

the off-equilibrium behavior of other players emerge and are the basis of this experimental investigation. We

also inquire if this compensation is robust to changes in the game’s payoffs, the fashion in which the naïve

population (simulated by computer bots) mixes and the prevalence of the naïve population. Relatedly, we test

if there exist any theoretically and empirically sound methods for identifying all players of a population as

either naïve or sophisticated based on their behavior while playing simple games, and whether this cognitive

heterogeneity can be modeled conditional on observable demographic and academic characteristics.

Specifically, we utilized an experiment with two sessions. In the first session, players participate in

multiple rounds of mixed strategy games and are identified as either naïve or sophisticated according to

their behavior. The second session incorporates computer-simulated players (bots) that play various known

off-equilibrium strategies designed to isolate and measure the relative abilities of sophisticated and naive

players to react to the presence of different proportions of these naïve-like automated players. We find

evidence of the existence of a relatively naïve population that tends to mix uniformly and that the relatively

more sophisticated players react better, but still imperfectly, to off-equilibrium behavior. This confirms that

populations generally do not play the NE and, as will be discussed in the Main Results subsection, this also

reveals a general potential method to take advantage of the off-equilibrium mixing consistently observed in

typical experimental settings with non-trivial, random-matching games. Using the results from a pre-play

demographic survey and cognitive test, we show that the probability of being sophisticated can be predicted

based on observable characteristics.

18



2 Literature Review

2.1 Purification

Ever since Nash (1951), there have been attempts to extend the concept of NE to deal better with mixed

strategy games. In this section, we briefly describe some of the best known theoretical extensions and

review several results regarding mixed strategy games from the experimental economics literature.

Purification theory (Harsanyi, 1973) describes how mixed-strategy equilibria can be interpreted as the

limit of pure-strategy equilibria in games when perturbations to all payoffs are assumed.1 Each player

chooses their best response (unique with probability one) given the probability distribution over the other

players’ actions. Ex-ante, all pure strategies receive a positive probability which is increasing in expected

payoffs.

This is conceptually different from AJ’s naïve mixing. Under purification if the variances of the pertur-

bations tend to zero, all strategies tend to the NE while a naïve player will never play an equilibrium with a

non-uniform mixing strategy. In addition, consider the game in Figure 2.1: using the purification method,

the strongly-dominated strategy C is played with some strictly positive probability whereas this does not

occur among naïve (as defined by AJ) players. Finally, in equilibrium the relative likelihood of outcomes A

and B under purification coincide with the relative likelihoods in the NE (1 : 3), while the relative likelihood

by a naïve player (at the individual level) will be 1 : 1.

A B C (NE)

A’ 3,0 0,3 −1,−1 (1
4
)

B’ 0,1 1,0 −1,−1 (3
4
)

C’ −1,−1 −1,−1 −2,−2 (0)

Figure II.2.1: Bordered Asymmetric Matching Pennies

2.2 Quantal Responses and Logit Equilibrium

The concept of a quantal response equilibrium (QRE), like purification, is introduced by adding pertur-

bations to a game (McKelvey and Palfrey, 1995; McKelvey and Palfrey, 1998; Goeree, Holt and Palfrey,

1Formally, in the most general terms, if player i’s payoff given the (pure) strategy profile s is ui(s), then what he actually

observes is Ui(s;θ i) := ui(s)+ εs
i θ

s
i where εs

i θ
s
i is the gaussian i.i.d. perturbation scaled by his type and E(εs

i ) = 0 (see Fudenberg

and Tirole, 1991). The vector θ i can be interpreted as related to levels of rationality: if all its components are zero, the player

(perfectly) observes an unperturbed game. If Var
(
εs

i

)
→ ∞ or θ

s
i → ∞, he observes only noise and mixes uniformly across all–

including dominated–strategies.
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2002).2 Experimental evidence suggests QRE is sometimes a better predictor than NE and purification

(Erlei and Schenk-Mathes, 2012).

Under a given set of assumptions,3 a QRE can be approximated and estimated as a logit equilibrium

(McFadden, 1973) . In a logit equilibrium, for a given λ i ≥ 0, the logistic quantal response is defined as

σ
j
i (s

j
i | σ−i) = exp

{
λ iU

j
i,−i

}
/

K

∑
κ=1

exp
{

λ iU
κ
i,−i

}
which is the probability that i assigns to action s

j
i (from

some finite action set of cardinality K) given the other players’ strategies, and U
j

i,−i is the perturbed payoff

he gets after s
j
i and σ−i.

The parameter λ i can be interpreted as a measure of i’s rationality. As λ →∞, if there exists a unique NE

(σ∗) , as is the case throughout the games described below, then (σ1, ...,σN) converges to σ∗. As λ → 0,

players become completely blind and mix uniformly across all strategies such that the probabilities tend

to 1
K

. Again, note that this differs from AJ’s naïve mixing which only yields uniform mixing across pure

strategies if they all yield the same maximum utility.

2.3 Level-K Thinking

An alternative family of theories often used to model off-equilibrium behavior is level-k thinking or cogni-

tive hierarchy theory (Camerer, Ho and Chong, 2004; Van Damme, 1991). This class of theories generally

assumes that there are multiple levels of players with varying levels of sophistication. Most begin by assum-

ing that there are non-strategic level-0 players who always mix uniformly among all their pure strategies.4

The next level (level-1) players best-respond to this anchor. Iteratively, level-k players best-respond to

level-(k-1) populations.5

Using the game in Figure 1 as an example, a level-0 player would play Pr(A) = Pr (B) = Pr (C) = 1
3
,

which, while similar, is distinct from what a naïve player would do: Pr (C)= 0 and Pr(A),Pr (B)∈
{

0, 1
2
,1
}

.

Note that no distribution of levels exists to replicate the strategy of the naïve mixer.

2In this case, if player i’s payoff given the (pure) strategy profile s is ui(s), then what he actually observes is Ui(s) := ui(s)+ εs
i

where εs
i is the i.i.d. perturbation E(εs

i ) = 0.
3Independence of irrelevant alternatives, irrelevance of alternative set effects and with little loss o f generality positivity (agents

always assign a strictly positive probability to all strategies).
4Using the terms of strategy purification, we can think of them as players who face perturbations with infinite variance or players

of type infinity. This is one of the simplest possible behaviors in terms of computational complexity (Koller and Megiddo, 1996;

Koller, Megiddo and Von Stengel, 1994; Lipton, Markakis and Mehta, 2003).
5The empirical challenge is usually to determine the number of levels that best fits the data. Camerer (2004), for instance finds

that an average of 1.5 steps fits data from many games. See also Stahl and Wilson (1994) who assume players’ types include level-0,

level-1, level-2, NE, worldly (who best-responds to the previous ones) and rational, who best-responds to all. They use numeric

methods to estimate best responses in 3×3 games and then estimate the prevalence of each population to show their models yield

better log-likelihoods than an estimation that imposes all players are rational.
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2.4 Mixed Nash Equilibria in Experimental Economics

Many experiments have explored play in mixed strategy games. One conclusion of this literature is the

stylized fact that when facing games with a unique, totally-mixed NE, players’ behavior is significantly

different than the strategies predicted by game theory. This is especially so when dealing with complex

games but also holds for games with a unique pure-strategy NE. In fact, this general finding has been one of

the primary motivations for the theoretical literature on extensions to the NE (like those above) that allow

for all pure strategies to have positive probabilities.

There is some experimental evidence of learning in that behavior gets closer to the NE in later periods

but, generally, it shows no convergence to the NE (Erlei and Schenk-Mathes, 2012; Misirlisoy and Haggard,

2014; Ochs, 1995). Moving away from normal form games, there is also empirical evidence that confirms

departures from NE in principal-agent and moral hazard (Erlei and Schenk-Mathes, 2012) games, even those

with a (unique) subgame perfect NE (Haptonstahl, 2009).

Masiliunas et al. (2014) show that reduced game complexity in the context of experimental contests

and auctions (induced with bots6 that disclose their future actions) correlates with less behavioral variation

and closeness to the NE. Relatedly, Parkhurst, Koford and Grijalva (2015) find that when individuals face

information overload, they tend to use simplifying heuristics and in some cases, like Masiliunas et al. (2014)

cannot reject the hypothesis that in complex games, players’ choices are uniformly distributed.7

Models and experiments involving belief estimation and elicitation (Nyarko and Schotter, 2002; McK-

elvey and Page, 1990; Offerman, Sonnemans and Schram, 1996) have also attempted to address the lack of

NE play in mixed strategy games. Although belief estimation can help explain some of the variation and

belief elicitation tends to drive behavior closer to equilibria, these techniques leave the question of what

motivates strategy choice by individuals and populations unanswered. Finally, distinct types of rationality

models have been tested to account for these deviations from NE, including Stahl (1995) and others.8 This

present investigation tests whether the bounded rationality assumptions underlying AJ’s naïve mixing, might

be able to shed some light on these issues while having explanatory power.

6See Cason and Sharma (2006), and Houser and Houser and Kruzban (2002) for further examples of computer bots used to

generate experimental evidence in games where the NE is shown to not be the best forecasting tool.
7Their observed percentage of choices that coincide with the NE is close to the percentage that a uniform mixer would get.
8Including, but not restricted to research on, fairness, framing effects, hyperbolic discounting, inequity aversion, reference points

and welfare (social) preferences. See Rubinstein (1998).
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3 Experimental Design and Procedures

The experiment presented here is designed to test if relatively naïve and sophisticated players can be con-

sistently identified through a sorting of their observed behavior and whether they behave differently when

playing against computer simulated off-equilibrium strategy players. As noted earlier, we implement an

experiment consisting of two sessions where we use the first session to sort players into either a naïve or

a sophisticated category. There are then two follow-up sessions; one for the naïve category players and

another for the sophisticated. Participants were unaware of the function of the sorting session or that they

had been categorized for the follow-up session. It should be noted that our paper focuses on a relatively

small population – undergraduate students. As such, the effects of differences in educational experiences on

the determination of cognitive ability are diminished.

All sessions involved the same basic setting. Specifically, after arriving and logging on to the computer,

half the players were randomly assigned as P1 (“row” players) and half as P2 (“column” players). While we

differentiate row and column players for discussion in the paper, all players viewed the game as a row player

on the computer. Players maintained their type throughout a session and played multiple rounds of the

following matching pennies game where either a= 1 (the symmetric case, denoted as Γ̃) or a= 3, denoted

as Γ. Players were anonymous and were randomly re-matched after each round. Each session included a

tutorial and practice round.

P2

Left Right

P1 Up a, 0 0, a (1−β )

Down 0, 1 1, 0 (β )

(1− γ) (γ)

Figure II.3: Base Game

a ∈ {1,3} , NE: β
∗ = γ∗ = a

a+1

3.1 Sorting Session

The primary purpose of the sorting session was to provide a mechanism to sort players into naïve and

sophisticated categories. Each participant played the following games: 10 rounds of Γ̃ and 50 rounds of Γ in

a random order. In the symmetric version of the matching pennies game (Γ̃), the (unique, totally mixed) NE
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is β
∗
1 = γ∗1 =

1
2
. Although Γ is not symmetric, it was chosen such that the unique NE was the same for both

types of players: β
∗
3 = γ∗3 =

3
4
. After the completion of all 60 rounds of play, the participants completed a

short questionnaire that included standard socioeconomic variables, then answered a short multiple-choice

quantitative test.

3.2 Bots Session

After participating in the sorting session, players were sorted and invited to one of the two follow-up bot

sessions which were otherwise identical. As in the sorting session, participants were randomly assigned to

be either P1 (row player) or P2 (column player): Participants played the same games (Γ and Γ̃) as described

above, but bots were included as players in varying percentages and were played in the order shown in

Table 3.2. The bots in these sessions played with some probability γ̄Nor β̄
N

as described in column 5.9 All

percentages and probabilities were common knowledge.

Stage Rounds Game
Bot Prevalence (λ ) Bot Randomization

If P
1

If P2

1) Γ̃_25_50 10 Γ̃ 25% β̄
N
= 1

2
γ̄N = 1

2

2) Γ_25_50 30 Γ 25% β̄
N
= 1

2
γ̄N = 1

2

3) Γ_50_50 30 Γ 50% β̄
N
= 1

2
γ̄N = 1

2

4) Γ_50_0 10 Γ 50% β̄
N
= 0 γ̄N = 0

Table II.3.2: Stages during the Bots Session

In stage one (denoted as Γ̃_25_50) participants played 10 rounds of Γ̃ while knowing that 25% of the

total population consisted of bots that played either Up or Down (Left or Right) with a 50/50 chance. This

was the only stage where the bots were programmed to play the NE strategy. This stage was designed to test

if the inclusion of NE-playing bots in a simple game had any effect on players’ behavior.

During the last three stages (Γ_25_50,Γ_50_50 and Γ_50_0) participants played Γ with the knowledge

that they would face a computer bot playing some known strategy with some probability. During stages two

and three, the bots were coin-flipping (β̄
N
= γ̄N = 1

2
) and their prevalence varied: in the second stage the bots

made up 25% of the population, whereas in the third they made up 50% of the population. Similarly, in stages

three and four, bots made up 50% of the population; and their behavior was either coin-flipping (β̄
N
= γ̄N =

9β and γ are the strategies played by P1 and P2, and γ̄N or β̄
N

are their arbitrarily-selected strategies.
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1
2
) or always playing down/right (β̄

N
= γ̄N = 0) Note that from the participants’ perspective, these stages

are, in principle, not qualitatively distinct but just a series of games that include stronger distortions from

the NE of Γ. As such, these stages are where we expect to see compensating behavior to the bots’ play

(as described in the next section) and predict that the sophisticated group compensates more accurately or

completely than the naïve group.

3.2.1 Compensated Equilibrium Predictions

Following AJ, Table 3.2.1 shows the ‘Compensated Nash Equilibrium’ (CNE) for all stages. The CNE is, in

essence, the Nash equilibrium after taking into account the presence of players that are following publicly

known off-equilibrium strategies. During most of the treatments of the bots session, it consists of unique

and interior (purely mixed) strategies, implying that any deviation collapses the opponent’s best-response

relation into a degenerate distribution.

Stage
Player 1

(β ∗)

Player 2

(γ∗)

1) Γ̃_25_50 0.50 0.50

2) Γ_25_50 0.83 0.83

3) Γ_50_50 0.00∗ 1.00

4) Γ_50_0 0.00 1.00

∗ Denotes Trembling-Hand Perfect Equilibrium

Table II.3.2.1: Compensated Nash Equilibrium (CNE)

As mentioned above, for stage 1 in which the participants are playing game Γ̃, the presence of the bots

should have no impact on the CNE since the bots are just playing the NE. As such, the CNE is the same as

the NE in Stage 1. For the rest of the stages (2-4), the participants are playing game Γ where the CNE has

player type P1 playing up with probability 1
4

(and, thus, down with probability 3
4
) while player type P2 plays

left with probability 1
4

(right with probability 3
4
): β

∗ = γ∗ = 3
4
. If the population of coin-flipping bots (i.e.,

they play β̄
N
= γ̄N = 1

2
) is 25% as in stage 2, the unique CNE is to play β

S∗ = γS∗ = 0.83. The CNE has

the characteristic that the predicted equilibrium behavior compensates by moving in the opposite direction.

That is, since β̄
N
< β

∗, then β
S∗ > β

∗, where β
S∗

represents the CNE strategy and the same holds for P2.
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When we increase the prevalence of bots to 50% as in stage 3, then both player types are indifferent

(and, thus, reach an equilibrium) if they play β
S∗ = γS∗ = 1. This is not, however, the only equilibrium

since if γ = 1, then any β ∈ [0,1] is a best response and γ = 1 is always a best response. Additionally,

any expected perturbation by P2 would make P1 have a unique best response: if P1 believes γ < 1, then his

profit-maximizing action is β = 0. This is important since, typically, experimental populations do not play

the NE and thus it would often be optimal to play β = 0 if P1 or γ = 1 if P2.

In stage 4, the bot behavior moves even further away from the NE. In this stage, players’ compensation

is expected to be greater than in the previous two stages. Specifically, the bots play β̄
N
= γ̄N = 0 while

their prevalence relative to the previous stage is unchanged (50%). In a sense, this is the easiest stage to

play. With or without perturbations, the game is no longer strategic in that now each player has a strongly

dominant strategy. In this case, players are no longer expected to mix, and their best responses are β = 0

and γ = 1.

4 Results

A total of forty-four undergraduate students from Michigan State University enrolled in the experiment.10

All participants attended one of the two sorting sessions.11 Participants were then divided into two groups

(naïve and sophisticated) consisting of 20 and 24 participants, respectively. Despite efforts to ensure that

participants could and would come to the follow-up or bots sessions (including making sure all participants

indicated they could attend either of the follow-up sessions, and delaying payment of the first session show-

up fee until the second session), only 16 of the naïve participants and 20 of the sophisticated participants

attended the follow-up bots sessions.12

10Participants earned on average $24.17 in the sorting sessions and $28.89 in the bot sessions. In an effort to maximize the

cognitive effort of the participants and to remove potential wealth effects, 3 (4) rounds were randomly selected at the end of the

session for payment in the sorting (bots) sessions. Participants earned tokens (0, 1 or 3) worth $5 so the maximum they could earn

in a round was $15.
11It was verified that players who self-selected into both sessions (by choosing the date they wished to participate) were not

systematically different. Simple statistical tests found no evidence for apparent differences on behavior (means), cognitive levels

(test scores) or observable characteristics (questionnaire) between both groups.
12By comparing earnings, test scores, and estimated behavior, it was verified that attrition was not systematic.
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4.1 Sorting Session

For the Γ̃ games in the sorting sessions we fail to reject the null that participants on average played the

NE (the NE is 1
2
, the average mixing was 0.533 and the p-value related to the test for equality is 0.851).13

As such, during these rounds, it would not have been profitable for players to deviate.14 Both populations

seemed to understand the standard symmetric matching pennies game and play it, on average, as the theory

in its simplest form would forecast. On the other hand and consistent with the experimental literature, both

player types (P1 and P2) do not appear to have understood the more complex game Γ as clearly. In fact,

every P2 would have benefited by deviating to a pure strategy in response to P1’s play. Specifically, both

populations played a mixed strategy estimated to be less than the NE (P1 played β̂ = 0.601,15 P2 played

γ̂ = 0.707, NE = 0.75), but only the P1 population’s play was statistically different (p-value = 0.003) than

the NE.16

4.1.1 Sorting Process

The P1 and P2 populations were divided in half; those relatively naïve and those relatively sophisticated.

Within each population, each player was classified as sophisticated if their behavior while playing Γ was

relatively close to the NE, or as naïve if it was relatively close to uniform mixing. Since Γ is not symmetric,

it was necessary to perform the sorting separately within each player type population. The approach taken

was to generate a dummy (si) equal to one if each individual i’s mixing was above the median amongst its

type, so that half of each population was defined as naïve (si = 0) and the other half as sophisticated (si = 1).

The median mixing for P1 was playing Down with probability 0.588. The median mixing for P2 was playing

right with a probability of 0.725.

13Each choice is a Bernoulli trial and we focus on its parameter p. As such, our analysis is essentially non-parametric and our

results coincide numerically with those from the Mann-Whitney U test. This is because the relevant estimators (i.e. differences

between averages) are exactly the same in both cases. Furthermore, when doing hypothesis testing, their assumed distribution

(normal) is also the same since both tests invoke the central limit theorem.
14More specifically, when using OLS to estimate the model M̂1,i = δ 0+δ 1Typei+ δ 2Mixing1,i+δ 3Typei ∗Mixing1,i+ui where

M1,i is individual i’s average experimental payoffs in all Γ̃ games of the sorting session, Typei is a dummy equal to one if i is

type P1 and Mixing1,i is his average behavior throughout all the Γ1 games, no evidence was found to reject the null hypothesis

H0 : δ 2 = δ 3 = 0. For details on this model, estimates and p-values of the Wald tests, contact the authors.
15This observed mixing was thus in the interval between the NE and the level-0 or purely naïve mixing that coincides with the

simplest uniform distribution that assigns a probability of 0.50 to each available action or pure strategy. For P1 and P2 it was also

verified that the average mixing was statistically greater than 0.50 (the p-values are, respectively, 0.033 and 0.000).
16Throughout all the experiments and treatments, one of the robustness checks that was done was to ignore the first five (also,

where applicable, the first ten) game rounds to verify if taking learning into consideration fundamentally changed the results. It

never did: if only the behavior during the last iterations of the games is measured, it is still the case that players’ strategies coincided

with the Nash equilibrium in Γ1 but was statistically lower than the Nash equilibrium in Γ3.
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We chose to use the relatively simple method described above because it is intuitive and quite robust

when compared to many alternative methods.17 Under these alternative sorting methods, the division of

participants did not change considerably, and the correlation between si and the dummies generated by

alternative sorting methods was never statistically negative. Likewise, where applicable, in the regression

modeling the probability of being identified as sophisticated (described below), the estimated partial effect

of test scores was never negative. Also, the differences in behavior between sophisticated and naïve players

during the bots session were qualitatively very similar when distinguishing them by the alternative sorting

methods. Overall, we cannot reject the hypothesis that the labeling was consistent: players sorted as either

sophisticated or naïve seemed to behave as such throughout.

4.2 Bots Session, Main Results

As described above, the experiment finds evidence of the existence of stable sets of relatively naïve and

sophisticated players.18 Naïve players’ mixing is often closer to uniform mixing than the sophisticated

players’ mixing; not only during the sorting session (true by construction) but, as hypothesized, also in the

bots sessions under different bot prevalence levels and off-equilibrium bot behaviors. Sophisticated players’

mixing is also often closer to the CNE.19 Furthermore, sophisticated players frequently react “better” to

varying off-equilibrium distortions induced by the bots.

Table 4.2 presents the main results. It includes the mean strategy (average choices are β for P1 and γ for

P2) for each of the four stages, for each of the four player types: NP1,SP1,NP2 and SP2. In Stage Γ̃_25_50

behavior is not statistically different than the NE of 1/2.20 Introducing NE-playing bots does not seem to,

in itself, cause players to change their behavior.

During the last three stages, mixing is always statistically different than the CNE for all player types21

17The full list of alternative sorting mechanisms investigated included sorting based on: questionnaire results, payoffs earned

during the screening session, payoffs won during the second half of the screening session, behavior during the screening session

(ignoring the first 10 or 20 iterations of Γ3 to account for learning), behavior during the screening session (pooling P1 and P2 players

together), behavior compared to their best response (as opposed to the NE) given their opponent’s behavior during either the whole

or the last 40 iterations of the screening session, and dropping from the dataset all but the most sophisticated and the most naïve

(according to the original screening criterium) players.
18That is, evidence of a continum of sophistication (or naiveté) levels. We found no purely naïve nor purely sophisticated players.

For practical purposes, though, we will refer to the whole population as consisting of only two distinct sets with no intersection

even though subtle distinctions were observed on the data (and this could be the basis of further research). The results were robust

to relaxing the implied assumptions.
19This distinction compares behavior to equilibria, not to the best responses that correspond to actual play. Best responses are

described in Appendix 4.
20P-values: 0.266,0.551,0.374,0.426.
21The p-values are 0.000 in all cases except NP2 in stage Γ_50_0, where p-value= 0.013.
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Player 1 (β ) Player 2 (γ)

Stage
T HP

CNE

Naïve

(NP1)
Sophisticated

(SP1)
T HP

CNE

Naïve

(NP2)
Sophisticated

(SP2)
1) Γ̃_25_50 0.50 0.56† 0.53† 0.50 0.55† 0.54†

2) Γ_25_50 0.83 0.57 0.62 0.83 0.67∗ 0.76∗

3) Γ_50_50 0.00 0.43 0.43 1.00 0.75∗ 0.82∗

4) Γ_50_0 0.00 0.23∗ 0.11∗ 1.00 0.93∗ 1.00∗†
∗ Denotes Naïve and Sophisticated Mixing are Different at the 5% Significance Level

† Denotes Mixing Equal to CNE at the 5% Significance Level

# Naïve Players: 16; # Sophisticated Players: 20

Table II.4.2: Main Results, Estimated Mixed Strategies

with the exception of the SP2 players who play exactly the CNE in stage Γ_50_0. Every one of the SP2

players played right in all 10 rounds of this last stage. From a behavioral perspective, it could be argued that

it is harder for P1 to compensate to β = 1 than for P2 to compensate to γ = 1: Γ1’s asymmetry implies it is P1

who has the responsibility of determining the size of the cake (so surplus maximization goes in the opposite

way of compensation) whereas P2 only determines who gets the cake. Pursuing this question is beyond the

scope of this analysis, but the data suggests the strength of the effects of being naïve do not completely

overpower other effects like altruistic preferences, surplus maximization or loss aversion.

The data, therefore, suggests that in games that are complex enough such as stages 2 and 3 (i.e., those

games where the NE is different that 1/2 and without a strongly dominant strategy), the sophisticated play-

ers do not compensate enough to restore the equilibrium given the off-equilibrium behavior of bots. This

is, in some ways, not inconsistent with the stylized fact that participant populations do not play the NE

even without bots. This further implies the existence of a unique best response and it is remarkable that

the evidence suggests this best response might be predictable. If what we find here is confirmed, then

when complex-enough games as described above, the optimal strategy is to assume simply that you will be

matched against a perfectly naïve player. That is, in every variations of Γ above, any player could obtain

above-equilibrium payoffs by playing the mixed strategy derived from assuming the opponent population

will be mixing uniformly. In a sense, due to the naïve component of their mixing, experimental populations

can be taken advantage of.

With the exception of the P1 players during stage 3 (Γ_50_50) where NP1 and SP1 effectively behaved

the same,22 the mixing of the sophisticated players in the more complex stages (2 and 3) is statistically

22β̂ NP1 = 0.4267, β̂ SP1 = 0.433 and the p-value of H0 : β̂ NP1 = β̂ NP1 is 0.877.
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closer to the CNE (and further from 50/50 mixing) than the respective play of their naïve counterparts.2324

Figures 1 and 2 below illustrate this for both player types (P1 in Figure 1 and P2 in Figure 2) across stages 2

and 3 (bot prevalence 0.25 and 0.5) and include the data from the sorting sessions (bot prevalence of 0) as

a reference. Note that, overall, sophisticated players play closer to the CNE and naïve players always mix

closer to 1/2 (although not statistically so for player 1 types . The consistency with which the naïve players

in the more complex games in our experiment mix closer to 1/2 – both across the different stages and the

two-week separated sorting and bots sessions – supports the hypothesis of the existence of a stable set of

relatively naïve players in the population. Furthermore, as will be discussed in the next subsection, this set

of players may be able to be identified through lower scores on quantitative tests. The effects of interacting

with bots and the distinction between naïve and sophisticated players is illustrated in Figures 1-4.

Figure II.4.1: CNE and P1’s Behavior (Naïve and Sophisticated) 

as the Prevalence of the Bot Population Increases

23P-values: 0.028,0.021 and 0.036.
24To test for learning, these two stages were separated into halves and analyzed separately. Although there were certainly strong

dynamic interactions (see serial correlation, below), the evidence for learning is inconclusive: there appeared no consistent or

systematic adjustment of the populations’ behavior when compared the first to the second half of the stages. The adjustments, if

any, were sometimes done in opposite directions.
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Figure II.4.2: CNE and P2’s Behavior (Naïve and 

Sophisticated) as the Prevalence of the Bot Population

Increases

Figure II.4.3: Best Responses and P1’s Behavior (Naïve and 

Sophisticated) as the Play of the Bot Population Deviates from the

Equilibrium
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Figure II.4.4: Best Responses and P2’s Behavior (Naïve and 

Sophisticated) as the Play of the Bot Population Deviates from the

Equilibrium

We now formally compare the impact of varying bot distortions on the naïve versus the impact on the

sophisticated players. First, focusing on the Γ games with coin-flipping bots, we can contrast the effect of an

increase of their population from 25% to 50% (we call this treatment T1) by comparing naïve P1’s behavior

in stage 2 (β̂ = 0.57) with stage 3 (β̂ = 0.43). The difference is 0.14 and the same calculation with the

sophisticated population yields a difference of 0.19. The difference-in-differences (DiD) estimate for the

treatment effect is thus −0.05, implying the sophisticated population reacted more to treatment T1.

As seen in Table 4.2b, doing the same derivations for P2 yields an estimated effect with the same sign.

Yet, the interpretation is the opposite since the expected compensation went up: the CNE is 0.83 in stage 2

and 1.00 in stage 3. The evidence suggests that the P2 naïve population reacted more to T1. However, all

DiD point estimates are insignificant at 10% or higher levels. Only P1 after treatment T2 (comparing stages

3 and 4: games with 50% bots that go from coin-flipping to playing β = γ = 0), with an estimated partial

effect of −0.108, has a relatively low p-value of 0.127. The sign of this effect is negative which implies the

sophisticated population reacted more to T2.
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P1 P2

Treatment DiD
Nonlinear

DiD
DiD

Nonlinear

DiD

T 1
−0.052

(0.386)
−0.053

(0.384)
−0.016

(0.766)
−0.003

(0.948)

T 2
−0.108

(0.127)
−0.111

(0.088)
−0.001

(0.986)
0

NA

Table II.4.2b: Treatment Effects

There is a caveat to this analysis and its intuition is analogous to the case of dependent binary variables:

a desirable feature of probit and logit models versus linear regressions is diminishing marginal magnitudes

of the partial effects. To illustrate, consider P2’s reaction to T1: the average adjustment of NP2 (0.08) is of

larger size than the change by SP2, 0.06. However, when adjusting away from uniform mixing it is probably

behaviorally easier if one’s mixing starts close to uniformity and harder when mixing is already close to

either bound: zero or one. This is another way of saying that any variable that has an effect on players’

choices will likely have diminishing marginal effects.

As such, a positive adjustment from β = 0.67 (NP2’s behavior in stage 2) would be easier than the same

modification from γ = 0.76 (SP2) . This explains why the nonlinear DiD estimation for the treatment effect

of T1 on P2 shown in Table 4.2b is much closer to zero than the linear DiD.25 Under a different specification

instead of Φ, with locally faster diminishing marginal effects, this coefficient would turn positive, in line

with previous results that seem to show sophisticated players understand the games better than the naïve.

The coefficients for P1 after treatments T1 and T2 are also slightly enhanced by the nonlinear estimation,

and the effect of T2 on P2 cannot be estimated with this method due to colinearity. The estimation of the

rate at which these marginal effects decrease is, however, beyond the scope of this analysis.

4.3 Modeling Cognitive Heterogeneity

Next, we investigate if there is a link between general analytic abilities and being a naïve player. Our

measure of intellectual skills is a ten-question test that participants answered immediately after first session

25With a linear model, we would have

choice= α+β s+ γTk+δ s ·Tk+u

where si := 0[i sophisticated]+1[i is naïve] and Tk := 0[Stage (k+1)]+1[Stage (k+2)]. (Note the estimation of δ is numerically

equivalent whether we define s or Tk as the treatment variable.) We now specify

Pr(choice= 1 | s,Tk) =Φ(α+β s+ γTk+δ s ·Tk) .

These are all dummy variables and Puhani (2012) shows the treatment effect is Φ(α+β + γ+δ )−Φ(α+β + γ) and standard

errors can be consistently estimated.
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(two weeks before the bots session; see Appendix 2). Our results find that high scores relate to playing

relatively close to the CNE. We interpret this as further evidence that the proposed concepts of naiveté and

sophistication are empirically grounded: relatively naïve players do exist. This also suggests, first, that the

cognitive levels determined in the sorting phase can be partially captured by the proposed analytical test.

Second, by conditioning on one’s test score, there is no statistically significant impact on the probability of

being naïve of other characteristics such as income, demographics or academics.

The hypothesis is that the probability of being sophisticated depends non-linearly but positively on every

individual i’s cognitive ability (ci). That is, ∀i : Pr(si = 1 | ci,xi) = f (δ cci+ xiδ x) , where xi is a vector of

observables, and f (•) is an increasing function. The variables in xi were gathered in a survey filled after the

test. We discuss the test and the questionnaire in Appendix 2.

We report these results in Tables 4.2.3a, 4.2.3b and 4.2.3c. Let ci be the total score on the test. The

simplest probit regression, with f (z) = Φ(z) (the standard normal c.d.f.) and with no other covariates,

estimates δ̂ c = 0.25 (p-value of 0.042). The related marginal effect is 0.090 suggesting that a one point

increase on the ten-question test is associated with a 9 percentage point increase in the probability that the

player is sophisticated. These results are robust to several other specifications: logit and linear regressions,

defining ci as some subset of the questionnaire, or adding a different set of controls in xi.

Model Probit Logit Linear

Response Variable s s s

Test Score 0.253 0.419 0.092

[Marginal Effect] [0.090] [0.091] [0.092]

(p-value) (0.042) (0.051) (0.040)

(Robust) (0.053) (0.060) (0.029)

Table II.4.2.3a: Regressions of s on Test Score

33



Model Probit Probit Probit Probit Probit Probit Probit

Response Variable s s s s s s s

Test Score 0.253 0.347 0.296 0.263 0.227 0.254 0.296

(p-value) (0.042) (0.018) (0.025) (0.037) (0.095) (0.049) (0.027)

Gender – 1.064 – – – – –

(0.034)

Race – – −0.146 – – – –

(0.300)

Age – – – −0.161 – – –

(0.524)

GPA – – – – 0.259 – –

(0.618)

Reported Income – – – – – 0.271 –

(0.288)

Weekly Expenditures – – – – – – 0.370

(0.213)

Table II.4.2.3b: Regressions of s including different sets of regressors

Model Probit Probit Probit Model Probit

Response Variable s s_All s_L_40 Response Variable s

Test Score 0.253 0.232 0.172 GRE Questions 0.222

(p-value) (0.042) (0.056) (0.150) (p-value) (0.214)

Table II.4.2.3c: Regressions of s including different sets of regressors (2)

We interpret this as evidence that high cognitive abilities (and none of the other tested observables)

are indeed positively correlated with being sophisticated. A simple way to visualize these correlations

without the aid of modeling is to compare the histograms of the test scores for the si = 0 (naïve) and si = 1

(sophisticated) populations; these graphs provide evidence for the positive relationship between (s) and test

scores, as shown in the figure below.
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Figure 5: Naïve and Sophisticated Players Quantitative Test Results

4.4 Serial Correlation

All players’ choices exhibit positive serial correlation from one round to the next, measured across the 80

rounds they played in the second session. Table 4.2.4 shows the serial correlation estimations for each player

and stage (p-values in parenthesis). Even though the game is asymmetric, as discussed before, no obvious

distinction can be made between the P1 and P2 populations in this regard; none exhibited systematically

different measures of serial correlation. Interestingly, naïve players (si = 1) played with a serial correlation

closer to zero. This is perhaps more clearly seen by looking at the regression results below, and could be

interpreted as an indication that sophisticated players’ understood the game better and played closer to the

corner solutions that maximized their payoffs. Also, since a negative serial correlation can be interpreted as

an effect of trying to prevent being predictable, a positive serial correlation is probably related to playing

against a population with bots, when being unpredictable is not considered as important.
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Stage P1 P2

1) Γ̃_25_50
0.204

(0.006)

0.283

(0.000)

2) Γ_25_50
0.378

(0.000)

0.360

(0.000)

3) Γ_50_50
0.392

(0.000)

0.476

(0.000)

4) Γ_50_0
0.309

(0.000)

0.310

(0.000)

Table II.4.2.4: Serial Correlation

Ĉhoicei = 0.409 + 0.302 L.Choicei − 0.098 si + 0.194 L.Choicei · si

(0.000) (0.000) (0.000) (0.000)

5 Conclusions

In this article, we describe the design and results of a two-session experiment that included computer-

controlled bots. We test and confirm the existence of players whose strategy mixing is persistently closer

to uniform mixing than to pure or mixed NE (i.e. those relatively naïve), and those relatively sophisticated.

Consistent methods to identify both types of players were developed and tested. Moreover, the probability

of being naïve can be partially predicted by the score on a quantitative test, taken two weeks before the main

games.

We also found evidence that the sophisticated population reacts better to off-equilibrium behavior in the

theoretically-predicted direction but not with the magnitude required to restore equilibria. This confirms

the stylized fact that NE are not played in complex games and, benefiting from the naïve component of

populations’ mixing, the direction of the deviations can thus be predicted. We employed this to design

simple mechanisms to obtain above-equilibrium payoffs under these experimental conditions.

These results open up several research possibilities. From a theoretical perspective, we can foresee ap-

plied models where naïve players can be taken advantage of by players with a more moderate rationality
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bound. This way, a policy maker can potentially generate a Pareto-improvement in games with our pos-

tulated assumptions on rationality. Empirically, we can test the determinants that make a player be naïve

relative to him/herself (as opposed to relative to the rest of the population) under different experimental con-

ditions including varying game complexity and time constraints, belief elucidation, access to randomization

devices, white noise, and information overload. Lastly, we conjecture that the methods described above to

obtain above-equilibrium payoffs can be generalized to other normal and extensive form games.
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APPENDIX A, Instructions

Hello, and thank you for participating!

By coming here, you already earned $10 (ten US dollars). In a few moments, you will be given the opportunity to

add to these earnings. The money you win will be paid to you at the end of the experiment. Every token you earn will

earn you $5.00 (five US dollars). You will be playing simple games with a randomly chosen player from this room.

This session will last an estimated 60 minutes. It will consist of 60 iterations of simple games and THREE of these

will be randomly chosen to determine your total earnings.

Example: suppose you earn 1, 3 and 0 tokens in the three randomly chosen games. In this case, your total earnings

will be $30 ($10 plus four times $5). Irrespective of your results, you will be invited to participate in a similar session

in two weeks.

This will be the screen you and the rest of the participants will be seeing. You have two options: choose A or B.

Likewise, the player you were paired with can pick either C or D. Your decision will be made before you know what

the other player did. Suppose you press B and then it is revealed that the other player chose D. In this case you will

earn 1 token and the other player will receive 0 tokens for this game. Note your payoff is represented in red and is the

first number in each cell, and the other player’s payoff is the second number, in green.

Further instructions will appear here. Please keep your attention on your own computer screen and stay silent

throughout this experiment. If you have any questions, please raise your hand and ask the experiment administrators.

PRESS OK TO START A SAMPLE ROUND.
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APPENDIX B, Questionnaire and Test

Below is the questionnaire and the test that the participants answered after the sorting session. There was

an emphasis on confidentiality. Players were identified through login names they created. The demographic

variables (1-9) follow standard literature. One example is Fryer and Levitt (2005). The socioeconomic

variables (10-13) were meant to be a proxy for income.

Questions (1,2) from the test are the Linda Paradox and the Wason Selection Task, standard in the liter-

ature, used for instance in Charness and Sutter (2013).26 Questions (3,4) are the CNE mixing (last equation

of the solution) in Γ and Γ̃ respectively. Questions (5,10) are basically the same, and the answer is trivial;

some of the information they provide is to be disregarded, given how the setup is worded. The purpose

was to measure if there is a contradictory behavior in these two answers (answering correctly when play-

ing against “bots” in videogames but incorrectly when facing a real opponent with strategic thinking) that

reflected similar behavior when playing against computer bots. (No evidence for this kind of contradictory

behavior was found.)

Finally, questions (6−9) were taken from the Practice Book for the Paper-based GRE Revised General

Test, Second Edition, by ETS (2012), available online. From the two Quantitative Reasoning sample exams,

the questions with the highest percentage of examinees who answered correctly, not counting questions in-

volving graphs, were chosen. High-percentage (their range was in 82% – 88%) questions were preferred

since the population tested to get these percentages was mostly students trying to get into graduate school

who have practiced specifically for the exam, whereas the participants of these experiments were students

who had not yet finished their undergraduate education. Moreover, the aim was to choose GRE-type ques-

tions that would be correctly answered about 50% of the time (to maximize the score variance). Graph

questions were disregarded because they are probably less related than other types of questions to the abili-

ties we wanted to measure and, more importantly, these sections typically involve five questions on the same

graph(s).

Questionnaire:

Thank you for participating!

26Other similar options include the Cognitive Reflection Test (CRT) by Frederick (2005).
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Please fill out this survey and answer the test at the back of this page. As it has already been explained, the cash

you have already earned depended only on your game results. Also, irrespective of these, you will be invited to a

follow-up session one or two weeks from today with a higher expected payoff. You will have 20 minutes.

Please remember that all the information you provide will remain confidential. You do not need to write your

name. These questions follow standard labor, education, development and health economics literature and are meant

to identify your socioeconomic and demographic characteristics.

1) Gender: �Male � Female

2) Race (select one or more):

� American Indian or Alaskan Native � Asian

� Black or African American � Hispanic or Latino

� Native Hawaiian �White

� Other

3) Age: _______ 4) Education (GPA): _______

5) Education (Major): _________ 6) Education (Current Semester): _______

7) Education Level (Father): _____ 8) Education Level (Mother): _________

9) Citizenship: � U.S. Citizen � Other (Specify): ________________

10) How would you classify your parents regarding income (lower, lower-middle, middle,

upper-middle, or upper class)?

� Lower � Lower Middle �Middle � Upper Middle � Upper

11) Do you own a car? � Yes � No

12) Do you live alone or share? � Alone � Share

13) Have you traveled out of Michigan in the last six months?

� Yes � No

14) How much money do you usually spend every week? US$_______

Write any name, word, number or combination of characters that will allow us to anonymously identify you in the

next session (please don’t forget it!). Examples: “Gandalf” , “789” , “GreenSpartan” , etc. _________________________________________

Test
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You have 20 minutes to finish this test. Please select or write the best answer.

1) Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was

deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?

a. Linda is a bank teller.

b. Linda is a bank teller and is active in the feminist movement.

2) You are shown a set of four cards placed on a table, each of which has a number on one side and a colored patch

on the other side. The visible faces of the cards show 3, 8, red and green. Which card(s) must you turn over to test the

truth of the following proposition? If a card shows an even number on one face, then its opposite face is red.

a. To be certain, you only need to turn over the 3 card.

b. To be certain, you only need to turn over the 8 card.

c. To be certain, you only need to turn over the red card.

d. To be certain, you only need to turn over the green card.

e. To be certain, you only need to turn over the 8 and 3 cards.

f. To be certain, you only need to turn over the 8 and red cards.

g. To be certain, you only need to turn over the 8 and green cards.

h. To be certain, you need to turn over all cards.

3) The solution for P in the equation 3P = 1 – P is:

P = __0.25__

4) If x = Q, and x = 1 – Q, then:

Q = __0.5__

5) You are going to shoot a penalty kick, and if the goalie does not guess the direction, you are going to score for

sure. You have three options, shooting to the left, center or right of the goalie. He is a lefty, and you are sure he will

jump to his left with a 35% probability, stay at the center with a 35% probability and jump to the right with a 30%
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probability. You cannot shoot with your left foot so it is well known you shoot penalty kicks to the left of goalkeepers

only 5% of the time, 5% to the center and 90% to their right. In what direction should you shoot?

a. To the left of the goalie

b. To the center

c. To the right of the goalie

6) At Company Y, the ratio of the number of female employees to the number of male employees is 3 to 2. If there

are 150 female employees at the company, how many male employees are there at the company?

______100_____ male employees.

7) The floor space in a certain market is rented for $15 per 30 square feet for one day. In the market, Alice rented

a rectangular floor space that measured 8 feet by 15 feet, and Betty rented a rectangular floor space that measured 15

feet by 20 feet. If each woman rented her floor space for one day, how much more did Betty pay than Alice?

a. $27

b. $36

c. $54

d. $90

e. $180

8) A business owner obtained a $6,000 loan at a simple annual interest rate of r percent to purchase a computer.

After one year, the owner made a single payment of $6,840 to repay the loan, including the interest. What is the value

of r?

a. 7.0

b. 8.4

c. 12.3

d. 14.0

e. 16.8

9) Working at their respective constant rates, machine I makes 240 copies in 8 minutes and machine II makes 240

copies in 5 minutes. At these rates, how many more copies does machine II make in 4 minutes than machine I makes

in 6 minutes?

a. 10

43



b. 12

c. 15

d. 20

e. 24

10) In the final battle of a videogame you really want to beat, when Frankenstein attacks, you can parry, block

or dodge. Damage is only prevented by picking the right defense, but he is so fast you have to choose without that

information. The order of his attacks is random, but you know that parrying is correct slightly more often than blocking

and that blocking is correct a little more often than dodging. So far you have been parrying more often than blocking

and dodging, but only because you liked how it looked. What should you do next to try to beat him?

a. Parry.

b. Block.

c. Dodge.
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APPENDIX C, Interface

Care was taken to diminish framing and other external effects. Apart from the inclusion of bots that publicly

announced their prevalence and behavior, and game-order randomization as described above, the games

were coded in zTree (Fischbacher, 2007) and had the following characteristics.

• Before the first (sorting) session, the players were presented with a brief tutorial describing the games.

After the tutorial, a practice round was played. The second (bots) session included a new tutorial

featuring examples which introduced the computer bots and another practice round. At the end of

each session, all players were shown a table with their results.

• Regardless of whether they were P1 or P2, players always saw the games as a row player playing

against a column player: P2 type players saw a transposed version of the games. During each round,

the players pressed one of two buttons labeled A and B to select their action. An OK confirmation

button press was required. After each round, the results were showed using colors to highlight the

players’ and their opponents’ actions, including a verbal description of the payoffs. The figure below

shows a screen capture of the interface developed for this paper.

• During the invitations, tutorials and rounds, care was taken to use neutral and simple language like

other player or playing with instead of opponent or playing against. Care was also taken to avoid

technical terms.
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Figure II.A: Interface with Bots
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APPENDIX D, Best Responses

Table A6 shows the best response of each population to the strategy of the respective opponent population

(the naïve players from the P1 population, NP1 only played against NP2, for instance). It refers to the best

response of this population to the reported behavior of its relevant opponents. We consider it a corner

solution in {0,1} only if the opponent population played a strategy that was statistically different than the

compensated NE (if the opponent’s mixing was outside the 99% confidence interval).

Player 1 (β ) Player 2 (γ)

Stage
Naïve

(NP1)

Sophisticated

(SP1)

Naïve

(NP2)

Sophisticated

(SP2)

1) Γ̃_25_50 Any Any Any Any

2) Γ_25_50 0 0 1 1

3) Γ_50_50 0 0 1 1

4) Γ_50_0 0 0 1 1

Table II.A6: Best Responses
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Chapter 3, Determinants of Naïve versus Sophisticated Mixing
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Abstract

Alcocer and Jeitschko (2014) postulate a behavioral bias in how individuals play mixed strategies.

They define naïve players as those who, when indifferent, assign an off-equilibrium predetermined prob-

ability to each action. Alcocer and Shupp (2016) find evidence of the existence of these players: those

whose strategy mixing is consistently closer to uniform mixing than the observed behavior of the rest of

the population.

We now focus on individual responses to changing experimental conditions. We find evidence that

there exist distractors (and focusers) that push players’ towards (away) naïve mixing in matching pennies

games. This allows for methods to take advantage of this bias and attain above-equilibrium payoffs.

Using computer bots, we also isolate altruistic components of players’ strategies. We look at games

where we previously found evidence of surplus-maximizing behavior that is different from equilibrium

mixing. Adding a proportion of transparent bots that (ex-ante) do not incentivize any change in behavior

but imply that surplus is wasted if they get any payoff, behavior gets closer to Nash equilibria.

1 Introduction

We investigate experimental conditions–distractors and focusers–that push players’ behavior towards and

away what Alcocer and Jeitschko (AJ, 2016) identify as either relatively naïve or sophisticated mixing.

Our main analysis focuses on observing measures of how players’ strategies respond to these controls and

move away or closer to Nash equilibria (NE). This allows us to forecast the direction of this deviation in

∗Keywords: Experimental, Behavioral, Bounded Rationality, Compensated Equilibrium, Computer Bots, Heuristics, Mixed

Equilibria, Naïve and Sophisticated Players. JEL: C72, C91, D03, D83.
†We wish to thank Jon X. Eguia, Thomas D. Jeitschko, Arijit Mukherjee and Jeffrey M. Wooldridge for helpful comments.
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games with totally-mixed equilibria. Doing so can allow one to design and test simple mechanisms that take

advantage of this off-equilibrium mixing behavioral bias, and earn above-equilibrium payoffs. The evidence

suggests that best-responding to naïve mixing yields above-equilibrium rents and that these rents increase

(decrease) if the populations are distracted (focused).

Relatedly, we also isolate altruistic components of players’ strategies by having populations randomly

play against varying prevalences of computer players (bots) with varying publicly-announced strategies. We

show that when bots’ behavior does not directly incentive any particular response, it still pushes players

towards equilibrium in cases where we have evidence of behavior that has altruistic components in that it

maximizes total-surplus. We argue that like the identification of distractors and focusers, identification of

altruism biases allows for the existence of mechanisms to take advantage of some predicted off-equilibrium

mixing. Also, we discuss how these findings help explain some puzzling results from Alcocer and Shupp

(AS, 2016).

Our results are consistent with the stylized fact that behavior is increasingly different than NE when

dealing with increasingly complex games, in particular in those with unique, totally-mixed NE. This stylized

fact has been one of the primary motivations for the theoretical literature on equilibrium extensions that allow

non-NE strategies to have positive probabilities. However, the question of which mixed or pure strategies

individuals actually follow remains open.

AJ postulate a behavioral bias or rationality bound in how people play mixed strategies. As an illus-

tration, one can imagine an agent that can choose between two actions, left or right, knowing that given

other the players’ strategies, his expected payoff is the same in either case. According to neoclassical NE

theory, the probability with which they will choose either of the two options depends on what they know

about the other players’ payoffs. Their paper relaxes the typical assumptions on rationality and proposes

the theoretical existence of naïve players who lack any strategic depth and thus, following the principle of

indifference (e.g., Keynes (1921); it is also called principle of insufficient reason in probability theory), will

always flip a coin when indifferent.

The main result of AJ’s paper is that, in finite games, if some proportion of the players is naïve (and

follow some off-equilibrium mixing when indifferent), then expected final payoffs for all players are the

same as in the standard perfect rationality case. The only assumption is that the percentage of naïve players

is small enough otherwise equilibria do not generally exist. The sophisticated players essentially play off-

equilibrium in response to the naïve players and the combined result is to bring us back to payoffs equivalent
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to the NE payoffs on average. This compensation is in the opposite direction of the distortion induced by

the naïve mixing bias. This means the generalized game is an isomorphic setting to the NE since the

convolution resulting from the linear combination of the mixing of naïve and the responding sophisticated

players coincides with the mixing distribution of the standard perfect-rationality case.

AS use a set of laboratory experiments to test (and confirm) the existence of some naïve like players

who consistently flip a coin, or mix close to 50%, in different settings. They develop consistent models to

identify them within a population and also show that the probability of being naïve can be partially predicted

by a simple quantitative test. They first sort participants (without their knowledge) into two groups based

on behavior in a set of simple normal form 2× 2 games with a unique and totally mixed NE (asymmetric

matching pennies games): naïve and their sophisticated counterparts. They then have each group separately

play against changing proportions of automated players (bots) that follow varying off-equilibrium mixed

strategies. Overall, they find evidence of the existence of players that are relatively naïve and that the

sophisticated players react in the direction predicted by AJ. Also, their analysis suggests that the probability

of being naïve can be partially predicted by a simple quantitative test.

This paper builds on AS’ initial work and uses similar experiments to determine; 1) if given experimental

conditions can make individuals more or less naïve relative to themselves (analogous to within-estimation,

we investigate what makes players more or less naïve relative to themselves; as opposed to analysis between

populations, as in AS, who investigate how to identify players who are naïve relative to a population), and

2) if there is a social component in utilities that can be identified with the aid of bots. The hypothesis behind

(1) is that players sometimes behave relatively close to coin flipping under an experimental control we label

distractor and consists of adding weakly dominated strategies to matching pennies games, than when they

face a different control we denominate focuser which consists of monotonically increasing payoffs such that

equilibria are not modified. The hypothesis behind (2) is that when there is some chance players are matched

against a bot, altruistic effects (utility gained by total surplus maximizing, even if it is another player who

gets it) decrease and behavior moves towards what is predicted by utility maximization.

2 Literature Review

Mixed strategies are prevalent in everyday life. An illustrative example from sports occurs when in baseball a

batter tries to outguess what will the pitcher throw next. They are also relevant in crime prevention situations
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where the location of an attack cannot be perfectly predicted because agents are mixing their strategies. In

an epistemic game theory approach about NE with mixed strategies, players have unobservable prior beliefs

about their own strategies, about players’ beliefs, and so on (hierarchies of beliefs).1 In two seminal papers,

Aumann (1987) and Aumann and Brandenburger (1995), show that mutual belief in rationality and common

knowledge of the game’s mixed strategies and payoff functions are sufficient conditions for NE. Mixed

strategies are not conscious randomizations, but self-fulfilling conjectures as to what other players will do.

Consequently, if a NE fails to be observed, one of these assumptions failed too.

Healy (2011) links these epistemic foundations with the experimental evidence that populations tend

not to play NE. By eliciting subjects’ beliefs, he identifies the sources of failure to play the NE in five

classic 2×2 games: asymmetric matching pennies, dominance solvable game (where the NE is not Pareto-

dominated), prisoners’ dilemma, symmetric coordination (battle of the sexes) and asymmetric coordination.

He finds that the Aumann and Brandenburger (1995) assumption that generally fails is that players have

imperfect beliefs about others’ payoffs, even when the game clearly specifies them.

This result is close to the fundamental assumptions of purification theory (Harsanyi, 1973), quantal

response equilibrium (McKelvey and Palfrey, 1995; McKelvey and Palfrey, 1998; Goeree, Holt and Palfrey,

2002) and logit equilibrium (McFadden, 1973) where mixed-strategy equilibria can be interpreted as the

limit of pure-strategy equilibria in games when perturbations are added to payoffs.2 Goeree, Holt and

Palfrey (2003) and Selten and Chmura (2008) show that quantal response equilibrium is a better predictor

than NE in several variants of 2× 2 games with unique, mixed NE that they call asymmetric matching

pennies.

In most of the experimental literature, players’ behavior is significantly different than the strategies

predicted by game theory (Selten and Chmura, 2008). Experimental evidence suggests that information

increases are correlated to decision variance (Schram and Sonnemans, 2011). The impact of excessive

information and cognitive loads varies across individuals (Swanson et al., 2011) and, for asset choices,

is greater for those with less background in finances (Agnew and Szykman, 2005). Relatedly, Camerer

and Lovallo (1999) run experiments of a game of simultaneous firm entry with congestion where the NE

1The problem behind belief formation of other players’ strategies in mixed equilibria (let alone other players’ beliefs) is known

to be non-trivial. Feldman (1959) ran a series of experiments where individuals were shown sequences of zeros and ones. Even

though the sequences were random, agents would try to come up with theories and heuristics to predict them; actually seeing

patterns where they do not exist.
2An alternate family of theories often used to model off-equilibrium behavior is level-k thinking or cognitive hierarchy theory

(Camerer, Ho and Chong, 2004; Van Damme, 1991).
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is to enter with a non degenerate probability (i. e., it is a mixed-strategy NE). They find evidence on

overconfidence: excess entry compared to the NE.

Asymmetric or generalized matching pennies, or, more generally, 2× 2 games with unique, mixed NE

are extensively analyzed in the literature. A well-known example that is very relevant to the discussion in the

next sections is Goeree and Holt (2001). They confirm that populations do not play the NE but, interestingly

and opposed to the theory (but perhaps not surprisingly), they find that changes in one player’s payoffs in

one outcome increase the probability that the related strategy is played. (Whereas in a mixed NE a change

in one’s payoffs only affects the other player’s equilibrium strategy.) Shachat and Swarthout (2004) have

individuals play asymmetric matching pennies games against computer bots and while it is confirmed that

individuals generally detect deviations from Nash equilibrium and have an intuition of how to exploit them,

consistently with the rest of the literature, players do not perfectly follow the resulting best responses.

Gill and Prowse (2014) also find a correlation between cognitive ability (measured by a Raven test), and

economic rationality (measured in level-k terms). Parkhurst et al. (2015) find that when individuals face

information overload, they tend to use simplifying heuristics (Grether and Wilde, 1983). When players have

two options and are overloaded with information, they tend to mix uniformly mixing in an experimental

setting. Similarly, Duffya and Smith (2014) find that when playing a prisoner’s dilemma, players who are

heavily distracted by having to memorize a 7 digit number play worse than those facing the smaller cognitive

load of remembering a 2 digit number.

3 Experimental Design and Procedures

We implement an experiment consisting of three treatments designed to test if players’ behavior varies pre-

dictably when playing in games that include what we denominate distractors (Treatment 1) and focusers

(Treatment 2), and against computer-simulated players (bots) with varying behavior and prevalence (Treat-

ment 3). At the end of each session, participants answer a simple quantitative test identical to that used in

AS.3 Each treatment involved two sessions (see Table 3 for details).

3The test and its discussion is included in an appendix.
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Treatment Name Rounds Show Up $ Per Token Paying Rounds

1

Focuser:

Monotonic

Increase

50 10 5 2

2

Distractor:

Bordered

Game

50 10 3 2

3

Bots:

Altruism

Measure

75 10 5 3

Table III.3: Experimental Treatments

Across the three treatments, all sessions involve the same basic setting. After arriving and logging on

to the computer, half the players are randomly assigned as P1 (“row” players) and half were designated as

P2 (“column” players). While we differentiate row and column players in our discussion and although the

game is designed such that the NE is numerically the same for both, the asymmetric distinction between

both is fundamental for the analysis below. That said, all players viewed the game as a row player on the

computer whether they were a row player or not.

Players maintained their type throughout a session and played multiple rounds of the following matching

pennies game along with the 25 to 50 rounds of the game variants described below. Note that, following AS

(2016), in the context of this game naïve mixing is defined as occurring when players assign a probability

statistically close to 50% to each available action. Similarly, sophisticated or non-naïve mixing is defined

as occurring if play is closer to the NE: β
∗ = γ∗ = 3/4. Players were anonymous and were randomly

re-matched after each round. Each session included a tutorial and practice round.
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P2

Left Right

P1 Up 3, 0 0, 3 (1−β )

Down 0, 1 1, 0 (β )

(1− γ) (γ)

NE: β
∗ = γ∗ = 3/4

Figure III.3: Base Game

3.1 Treatment Descriptions

3.1.1 Focuser: Monotonic Increase

The Focuser Treatment sessions include 25 rounds of the base game and 25 rounds of the monotonically

increased game (see below) in random order. Note that under this control, payoffs are multiplied by three

such that the NE remains the same
(
β
∗ = γ∗ = 3

4

)
.

The hypothesis is that players will consistently play closer to the NE (and away from simple 50-50

mixing) when they face a monotonically expanded game. The idea is straightforward: when there is more

at stake, players concentrate more on their choices and their behavior gets closer to the one predicted by

neoclassical theory (which assumes high rationality levels) than to naïve mixing or random noise.4

Left Right

Up 9, 0 0, 3 (1−β )

Down 0, 9 3, 0 (β )

(1− γ) (γ)

NE: β
∗ = γ∗ = 3

4

Figure III.3.1.1: Monotonically Increased Game

3.1.2 Distractor: Bordered Game

As in the Focuser Treatment, the Distractor Treatment sessions include 25 rounds of the base game and 25

rounds of a modified bordered game in random order. The bordered game adds a weakly-dominated pure

4Note that in a Bernoulli trial, variance is maximized when p= 1/2.
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strategy to the base game such that the NE of this new game coincides with the NE of the base game.

As in previous research this strategy addition, while dominated, is expected to add a layer of complexity

to the choice and thus potentially this cognitive load will push behavior away from the NE. The hypothesis

is that when playing a bordered version of the base game, behavior will move towards naïve (coin-flipping)

mixing. To be clear, our hypotheses do not only imply that distractors push mixing away from the NE.

Throughout all experiments, we also cannot statistically reject the hypothesis that the direction of this dis-

tortion is predictable by AJ’s results.

Left Right z’

Up 3,0 0,3 0,0 (1−α−β )

Down 0,1 1,0 0,0 (β )

z 0,0 0,0 0,0 (α)

(1− γ−δ ) (γ) (δ )

NE: β
∗ = γ∗ = 3/4,α∗ = δ

∗ = 0

Figure III.3.1.2: Bordered Game

3.2 Bots Treatment

During the two sessions of the Bots Treatment, participants play the base game during 75 rounds. Twenty

five of these rounds include no bots while 50 rounds do. In the 50 rounds with bots, the bots played the NE

during 25 rounds and were coin-flippers (simulating perfectly naïve) for the other 25 rounds. Note that the

order in which the 75 rounds were played was random and that the bot strategies and their prevalence (each

player had a 25% probability of being matched against a bot during the bot rounds) were announced before

each round and were public information.

Game Type
Number Bot Bot Randomization NE or CNE

of Rounds Prevalence If P
1

If P2 If P
1

If P2

Base 25 0% NA NA β
∗ = 0.75 γ∗ = 0.75

2 25 25% β
B = 0.75 γB = 0.75 β

∗ = 0.75 γ∗ = 0.75

3 25 25% β
B = 0.50 γB = 0.50 β

∗ = 0.83 γ∗ = 0.83

Table III.3.2: Bots Treatment
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The off-equilibrium strategy the bots used during the 25 coin-flipping rounds imply a distortion allowing

us to observe several measures of how different players react to it. Specifically, these bots help us to isolate

a potential social component of utilities that may impact play. The intuition behind this is that the base game

is asymmetric so, from a behavioral perspective, it is harder for P1 to compensate and react to the distortions

created than for P2. This is because it is P1 who has the responsibility of determining the size of the cake,

whereas P2 only determines who gets the cake. In this case, for P1, surplus maximization and loss aversion

(playing Up often) go in the opposite way of compensation (playing Down often).

3.2.1 Compensated Nash Equilibrium Predictions

Following AJ, Table 3.2 also shows the ‘Compensated Nash Equilibrium’ (CNE) for the rounds with off-

equilibrium bots. The CNE is, in essence, the Nash equilibrium after taking into account the presence of

players that are following publicly known off-equilibrium strategies. During all stages, it consists of unique

and interior (purely mixed) strategies, implying that any deviation can be taken advantage of and collapses

the opponent’s best-response relation into a degenerate distribution.

For type 2 games in which the bots are playing the NE, their presence should have no impact on the CNE.

As such, the CNE for type 2 games coincides with the NE of the base game. For the type 3 game, the bot

population is coin-flipping (i.e., they play β̃ = γ̃ = 1/2). Since their prevalence is 25%, the unique CNE is to

play β
S∗ = γS∗ = 0.83. The CNE has the characteristic that it predicts behavior that compensates by moving

in the opposite direction of the distortion. That is, since human players know some automated players

will mix with a probability that is less than the equilibrium probability (β̃ < β
NE), then the equilibrium

prediction is that human players compensate (β
NE < β

CNE).

4 Results

A total of one hundred and eight undergraduate students from Michigan State University participated in the

experiment.5 In an effort to maximize the cognitive effort of the participants and to remove potential wealth

effects, two rounds (three in the longer bots sessions) were randomly selected at the end of the session for

payment. Participants earned tokens (0 or 3) worth $5 in the bots and distractor sessions, or (0, 3 or 9) worth

5The analysis is on a relatively narrow population. As such, the effects of differences in educational experiences on the deter-

mination of cognitive ability are diminished.
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$3 in the focuser sessions. All participants attended exactly one session.6

Treatment Name Participants Avg. Earn Avg. Tokens

1 Focuser 38 $23.16 2.19

2 Distractor 34 $18.40 0.84

3 Bots 36 $21.38 0.76

Total 108 $20.98 1.26

Table III.4: Three Experimental Treatments, Main Statistics

4.1 Focuser: Monotonic Increase Game Results

As noted above, the Focuser Treatment tests if multiplying payoffs by three (a monotonic expansion that

maintains the NE configuration of the base game: β
∗ = γ∗ = 3/4), compels players to pay more attention to

choices and thus play closer to the NE. The intuition is that when wins (or loses, if players think of earning

zero as an opportunity cost) are greater, the incentives to take advantage of opponents’ mistakes and to try

and reduce their own increase too (we can consider off-equilibrium behavior as a mistake in that it allows

opponents to extract rents). If this is true, then both player types (P1 and P2) should get closer to the NE.

Moreover, the forecast is that this approach will be from below when comparing the base to the expanded

game.7 That is ∀Ω ∈ {β ,γ} : ΩM <ΩE , where ΩM and ΩE are each population’s strategies in the base and

expanded games.

Table 4.1 and Graph 4.1 summarize the results. First, we confirm one of AS’ primary results: observed

behavior is consistently between the NE and uniform (or naïve) mixing. While the results listed in Table

4.1 seem to confirm our hypotheses that ΩM < ΩE , we should proceed with caution because of the large

standard errors which are probably related to the small sample size, relative to the weak effect we are

measuring. As such, hypothesis testing results, are weak: the p-values of the one-side t-tests of the null

hypotheses β
M < β

E
and γM < γE are respectively 0.121 and 0.120.8 And we cannot yet reject the null

6It was verified that players who self-selected into each session (by choosing the date they wished to participate) were not

systematically different. Simple statistical tests found no evidence for obvious differences on behavior (means) or cognitive levels

(test scores) between the three groups.
7Alcocer and Shupp (2016) confirm the stylized fact that players do not play the NE and show there is evidence of a bias such

that players behavior in this kind of games is on average between 50% and the NE. Also, as will be discussed in the subsection on

the results from the bots sessions, the observation that in all stages β̄ < γ̄ is consistent with previous experimental results as well as

being forecasted by our conjectures.
8Each choice is a Bernoulli trial and we focus on its parameter p. As such, our analysis is essentially non-parametric and our

results coincide numerically with those from the Mann-Whitney U test. This is because the relevant estimators (i.e. differences

between averages) are exactly the same in both cases. Furthermore, when doing hypothesis testing, their assumed distribution

(normal) is also the same since both tests invoke the central limit theorem.
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hypotheses that ΩM = ΩE . However, we can do better since the NE is the same for both player types. By

pooling, we can almost reject at the 5% significance level (p-value = 0.051) the null that behavior is the

same in both stages.

P1 Mixing P2 Mixing Pooled

Treatment* (β̄ ) (γ̄)
(
β̄ + γ̄

)
/2

Base 0.497 0.655 0.576

(Std. Err.) (0.023) (0.022) (0.016)

Expanded 0.535 0.690 0.613

(Std. Err.) (0.023) (0.021) (0.016)

Difference 0.038 0.035 0.037

(Std. Err.) (0.016) (0.015) (0.011)

*NE is 0.750

Table III.4.1: Focuser Treatment Results

The weakness of these results may indicate that other factors such as endowment effects, loss aversion,

tendency to avoid loses, and other kinds of behavior might be involved that are not taken into account in

simple utility maximization calculations. This, however, would not necessarily contradict our initial inter-

pretation that different stakes are correlated with varying naiveté levels and that when players focus more on

their actions, their behavior corresponds better to NE predictions. More generally, this is experimental evi-

dence that there are simple experimental controls, that push players’ behavior away from NE in the direction

of naïve mixing.
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Figure III.4.1: Focuser Stage Results

4.2 Distractor: Bordered Game Results

While the focuser treatment is designed to investigate experimental conditions that may make players play

closer to the NE, the distractor treatment aims to investigate experimental conditions, distractors, that can

push players’ behavior closer to uniform (or naïve) mixing. Specifically we hypothesize that if players

are overloaded with unnecessary information, then they will tend to default to the simpler naïve mixing

strategy. To test this, we randomly add a dominated action to the base game (what we call the bordered

game) that acts as a distractor. While this addition leaves the NE effectively unchanged, we hypothesize that

∀Ω∈ {β ,γ} : ΩM >ΩE , where ΩM and ΩB are each population’s strategies in the base and bordered games.

Table 4.2 shows the results. These are not as clear-cut as those from the Focuser Treatment. Focusing

first on columns 2 and 3, a straightforward t-test yields no statistical difference in behavior between bordered

and not-bordered games. For both P1 and P2, estimated strategies are essentially the same when comparing

the base and the bordered games. The respective p-values are 0.502 and 0.431.9

9Pooling the data from both the row and the column players did not help: p-value= 0.306.
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P1 Mixing P2 Mixing P̃1 Mixing P̃2 Mixing

Stage (β̄ ) (γ̄) (β̃ ) (γ̃)

Base 0.595 0.704 0.602 0.741

(Std. Err.) (0.024) (0.022) (0.024) (0.023)

Bordered 0.619 0.729 0.607 0.693

(Std. Err.) (0.026) (0.024) (0.025) (0.025)

Difference 0.024 0.026 0.005 -0.048

(Std. Err.) (0.017) (0.016) (0.016) (0.015)

Table III.4.2: Distractor Game Results

However, looking at the data more closely, we find that there are two outlier players (out of 34) that

either did not understand the game or were not trying to maximize their payoffs. The behavior of these two

outliers did not show any apparent pattern. One of them played the dominated action six times (out of 25)

whereas the other played it five times. One of them was type P1 and the other P2. If we remove the two

outliers, behavior for P1 does not change (p-value= 0.8875) but for P2 we have some evidence that it does,

and in the right direction (p-value= 0.0789).

This provides some evidence that players get distracted when weakly dominated strategies are added to

a game and that this distraction pushes their behavior towards uniform mixing. As we do with the results

of the Focuser Treatment, we interpret this as confirmation (albeit weak) that under a distractor control,

behavior can be pushed away from the NE. This is to be expected and coincides with the experimental

literature. Our contribution is evidence that without these controls, behavior is distorted in the direction of

naïve mixing (uniform mixing amongst all pure strategies included in the NE).

This treatment also tests whether naïve mixing can better forecast behavior than the equilibrium concepts

of purification, quantal response equilibria, and level-k thinking which all place positive probability even

on dominated strategies. As such, these concepts predict that the pure strategies z and z’ will be played

with some strictly positive probability whereas a naïve player is assumed to be able to (always) avoid a

(conspicuously) dominated action and play either z or z’ with zero probability.

The evidence is inconclusive. We want to verify if weakly dominated strategies are played with any

strictly positive probability as this never happens under naïve mixing. After the removal of the two out-
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liers, the estimated probability that the dominated action is played is 1.33%.10 This is evidence against the

behavioral concept of naïve mixing at the population level.

Still, it must be noted that it was 7 (out of 34) players that played (z) or (z’) once (five of them) or twice

(two players). This implies 79.4% of the players have an estimated behavior of exactly ᾱ = 0 (if P1) or

δ̄ = 0 (if P2). So, after looking at them individually, we cannot reject that these are partially naïve players

even though the other 20.6% of the population are not.

4.3 Bots Treatment Results

When facing the base game, AS find that, even though the NE mixing is mathematically the same for both

player types (β
∗ = γ∗ = 3/4), P2 type players’ actual estimated behavior (γ̄) is close to the NE whereas P1

type players mixed closer to naïve mixing (1/2). They also find that this behavioral distinction holds when

playing games that include off-equilibrium bots. Why do the two player types’ behavior differ?

We conjecture that when playing the base game, P1 faces a problem that is behaviorally harder since,

in a sense, he has the conflicting responsibility of keeping his opponent indifferent (heuristically, this is the

condition to calculate totally-mixed equilibria) and maximizing total surplus. If he chooses Up, total surplus

is three times greater than if he plays Down so, irrespective of what his opponent does, he might have an

extra behavioral incentive to play Up or β = 0. On the other hand, P2 types action only determines who gets

this surplus.

If for any given round there is a publicly-known probability that one is matched with a bot–who gains no

utility (i.e., will not earn any money)–then any altruistic and surplus-maximizing incentives are reduced in

favor of straightforward utility maximization (i.e., keeping his opponent indifferent). That is, the expected

altruistic utility diminishes if the probability of being matched with a human is reduced. Moreover, if these

bots are playing the NE, they are transparent in that their presence does not imply a distortion that needs

to be compensated if an equilibrium is to be restored. On the other hand, AJ show that coin-flipping bots

like those included in Treatment 3 are expected to induce a compensation and the unique CNE is to play

β
S∗ = γS∗ = 0.83.

If altruistic/total surplus maximizing incentives play a role in the difference between P1 and P2 behavior,

then one should expect when comparing treatments 1 (no-bots) and 2 (transparent-bots) to find that P1’s

behavior moves closer to the NE and our results support this. Denoting β̄
k

as P1’s estimated behavior when

10No statistical test is needed since the null is that the mixing is exactly zero.
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playing Stage k as described in Table 2, we get: β̄
1
= 0.57, β̄

2
= 0.64 and β̄

3
= 0.52.11 The crucial relation

is that β̄
1
< β̄

2
and that they are statistically different. The p-value of the one-sided t-test that compares

behavior with no bots and with NE bots is : 0.030 allowing the rejection of the null hypothesis β
1 = β

2.

If we restrict ourselves to game-theoretical tools like equilibrium concepts or utility-maximization cri-

teria, the magnitude of the difference (β̄
2− β̄

1
> 0) is not as easy to interpret as its sign. This is because,

in these games, players’ mixing is only expected to adjust to their opponents’ payoffs, not to their own

payoffs since in an internal equilibrium they are indifferent amongst their pure strategies. We still interpret

the finding of β
1 < β

2
as evidence that playing against NE-bots makes P1 care less about the surplus impact

and thus move closer to the NE. When he faces bots that play the NE, this altruistic/surplus-maximizing be-

havior diminishes and his strategy gets closer to the NE. Heuristically, P1’s incentive to play Up is reduced,

and thus he simply plays it less. As such, (β̄
2− β̄

1
) is a positive measure of his surplus-maximizing, social

or altruistic preferences.

Consistent with AS and in general with the experimental literature on mixed strategies, no population’s

mixing is statistically equal to the equilibrium in any treatment reported here. Additionally, in all but one

case (γ1 = 0.79)12 this bias is in the direction of naïve mixing (1/2). Since P1 was overplaying Up, every P2

would have benefited by best-responding to playing Left with a probability of one (γ = 0). Likewise, in all

but Treatment 1, P1’s best-response was β = 0. This result, that it is optimal to assume one is matched with a

naïve player in these games with unique and totally-mixed NE, is consistent throughout all the experiments.

5 Conclusions

Analyzing the behavioral bias of naïve mixing at the individual level and using computer players (bots)

during experiments allows us to generate two sets of conclusions:

1. As a player, when facing games with a mixed equilibrium, one can follow two rules to maximize

earnings. First, distract other players (or, equivalently, prevent them from focusing). Second, best-

respond to naïve equilibrium mixing (i.e. to uniform mixing amongst all pure strategies included in

11About β̄
3
, it is worth noting that it is very similar to Alcocer and Shupp’s (2016) findings. In their case, the equivalent

calculation yielded β̄
3
= 0.59. In general, our results were comparable to Alcocer and Shupp’s (2016) and, when not related to our

analysis, are not reported.
12The p-value related to the test for γ1 = γ1∗ is 0.027.
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the NE).13 In this paper, we confirm that, in some kinds of games, populations’ behavior is generally

between the NE and naïve mixing, and we provide evidence that this distortion can be exacerbated by

distractors and diminished by focusers.

2. As a researcher, one way to verify if altruism is preventing players from reaching the NE is to compare

behavior with and without bots that play the NE. We find evidence that since bots that play the NE

reduce surplus-maximization incentives (if there is some probability that one is matched with a bot and

the bot gets all the utility in a round, then with some probability this utility is lost), these transparent

bots function as focusers.

13When playing the base game from this paper, the best responses are the corner solutions β = γ = 0. Laboratory distractors

could include switching the lights off or poking other players, but we cannot generally recommend that.
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APPENDIX A, Game Instructions

Hello, and thank you for participating!

By coming here, you already earned $10 (ten US dollars). In a few moments, you will be given the opportunity to

add to these earnings. The money you win will be paid to you at the end of the experiment. Every token you earn will

earn you $5.00 (five US dollars). You will be playing simple games with a randomly chosen player from this room.

This session will last an estimated 60 minutes. It will consist of 50 rounds of simple games and THREE of these will

be randomly chosen to determine your total earnings.

Example: suppose you earn 1, 3 and 0 tokens in the three randomly chosen games. In this case, your total earnings

will be $30 ($10 plus four times $5).14

This will be the screen you and the rest of the participants will be seeing. You have two options: choose A or B.

Likewise, the player you were paired with can pick either C or D. Your decision will be made before you know what

the other player did. Suppose you press B and then it is revealed that the other player chose D. In this case you will

earn 1 token and the other player will receive 0 tokens for this game. Note your payoff is represented in red and is the

first number in each cell, and the other player’s payoff is the second number, in green.

Further instructions will appear here. Please keep your attention on your own computer screen and stay silent

throughout this experiment. If you have any questions, please raise your hand and ask the experiment administrators.

PRESS OK TO START A SAMPLE ROUND.

14The number of rounds, dollars per token and number of paying rounds vary from treatment to treatment, as detailed in Section

3. This example was edited accordingly.
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APPENDIX B, Questionnaire and Test

Below is the questionnaire and the test that the participants answered after each session. There was emphasis

on confidentiality.

Questions (1,2) are the Linda Paradox and the Wason Selection Task, standard in the literature, used

for instance in Charness and Sutter (2013).15 Questions (3,4) are the CNE mixing (last equation of the

solution) in the base game. Questions (5,10) are basically the same and the answer is trivial; some of the

information they provide is to be disregarded, given how the setup is worded. The purpose was to measure

if there is a contradictory behavior in these two answers (answering correctly when playing against “bots”

in videogames but incorrectly when facing a real opponent with strategic thinking) that reflected analogous

behavior when playing against computer bots. (No evidence for this kind of contradictory behavior was

found.)

Finally, questions (6−9) were taken from the Practice Book for the Paper-based GRE Revised General

Test, Second Edition, by ETS (2012), available online. From the two Quantitative Reasoning sample exams,

the questions with the highest percentage of examinees who answered correctly, not counting questions in-

volving graphs, were chosen. High-percentage (their range was in 82% – 88%) questions were preferred

since the population tested to get these percentages was mostly students trying to get into graduate school

who have practiced specifically for the exam, whereas the participants of these experiments were students

who had not yet finished their undergraduate education. Moreover, the aim was to choose GRE-type ques-

tions that would be correctly answered about 50% of the time (to maximize the score variance). Graph

questions were disregarded because they are probably less related than other types of questions to the abili-

ties we wanted to measure and, more importantly, these sections typically involve five related questions.

Questionnaire:

Thank you for participating!

You have 20 minutes to finish this test. Please select or write the best answer.

1) Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was

15Other similar options include the Cognitive Reflection Test (CRT) by Frederick (2005).
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deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?

a. Linda is a bank teller.

b. Linda is a bank teller and is active in the feminist movement.

2) You are shown a set of four cards placed on a table, each of which has a number on one side and a colored patch

on the other side. The visible faces of the cards show 3, 8, red and green. Which card(s) must you turn over to test the

truth of the following proposition? If a card shows an even number on one face, then its opposite face is red.

a. To be certain, you only need to turn over the 3 card.

b. To be certain, you only need to turn over the 8 card.

c. To be certain, you only need to turn over the red card.

d. To be certain, you only need to turn over the green card.

e. To be certain, you only need to turn over the 8 and 3 cards.

f. To be certain, you only need to turn over the 8 and red cards.

g. To be certain, you only need to turn over the 8 and green cards.

h. To be certain, you need to turn over all cards.

3) The solution for P in the equation 3P = 1 – P is:

P = __0.25__

4) If x = Q, and x = 1 – Q, then:

Q = __0.5__

5) You are going to shoot a penalty kick, and if the goalie does not guess the direction, you are going to score for

sure. You have three options, shooting to the left, center or right of the goalie. He is a lefty, and you are sure he will

jump to his left with a 35% probability, stay at the center with a 35% probability and jump to the right with a 30%

probability. You cannot shoot with your left foot so it is well known you shoot penalty kicks to the left of goalkeepers

only 5% of the time, 5% to the center and 90% to their right. In what direction should you shoot?

a. To the left of the goalie
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b. To the center

c. To the right of the goalie

6) At Company Y, the ratio of the number of female employees to the number of male employees is 3 to 2. If there

are 150 female employees at the company, how many male employees are there at the company?

______100_____ male employees.

7) The floor space in a certain market is rented for $15 per 30 square feet for one day. In the market, Alice rented

a rectangular floor space that measured 8 feet by 15 feet, and Betty rented a rectangular floor space that measured 15

feet by 20 feet. If each woman rented her floor space for one day, how much more did Betty pay than Alice?

a. $27

b. $36

c. $54

d. $90

e. $180

8) A business owner obtained a $6,000 loan at a simple annual interest rate of r percent to purchase a computer.

After one year, the owner made a single payment of $6,840 to repay the loan, including the interest. What is the value

of r?

a. 7.0

b. 8.4

c. 12.3

d. 14.0

e. 16.8

9) Working at their respective constant rates, machine I makes 240 copies in 8 minutes and machine II makes 240

copies in 5 minutes. At these rates, how many more copies does machine II make in 4 minutes than machine I makes

in 6 minutes?

a. 10

b. 12

c. 15

d. 20
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e. 24

10) In the final battle of a videogame you really want to beat, when Frankenstein attacks, you can parry, block

or dodge. Damage is only prevented by picking the right defense, but he is so fast you have to choose without that

information. The order of his attacks is random, but you know that parrying is correct slightly more often than blocking

and that blocking is correct a little more often than dodging. So far you have been parrying more often than blocking

and dodging, but only because you liked how it looked. What should you do next to try to beat him?

a. Parry.

b. Block.

c. Dodge.
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APPENDIX C, Interface

Figure III.A: Interface with Bots

Care was taken to diminish framing and other external effects. Apart from the inclusion of bots that

publicly announced their prevalence and behavior, and game-order randomization as described above, the

games were coded in zTree (Fischbacher, 2007) and had the following characteristics.

• Players were presented with a brief tutorial describing the games. The bots sessions included another

tutorial featuring examples which introduced the computer bots. After the tutorial, a practice round

was played. At the end of each session, all players were shown a table with their results.

• Regardless of whether they were P1 or P2, players always saw the games as a row player playing

against a column player: P2 type players saw a transposed version of the games. During each round,

the players pressed one of two buttons labeled A and B to select their action. An OK confirmation

button press was required. After each round, the results were showed using colors to highlight the

players’ and their opponents’ actions, including a verbal description of the payoffs. The figure below

shows a screen capture of the interface developed for this paper.

• During the invitations, tutorials and rounds, care was taken to use neutral and simple language like

other player or playing with instead of opponent or playing against. Care was also taken to avoid

technical terms.
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