

| LIBRARY
Michigan Sta®

This is to certify that the

thesis entitled

ASSEMBLY LINE MOLD SCHEDULING

presented by

KEVIN DELAND MARKLE

has been accepted towards fulfillment
of the requirements for

M.S. COMPUTER SCIENCE

degree in

A C X L
Mo oo, e

Major professor

Date L;/I;/’/%

0-7639

- —— .- T e | I o e e — e — gy = . gl o

ASSEMBLY LINE MOLD SCHEDULING

by

Kevin D. Markle

A Thesis

submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Computer Science
1977

Thesis Advisor: ©Dr. Anil Jain

ABSTRACT
ASSEMBLY LINE MOLD SCHEDULING
BY

KEVIN D. MARKLE

Assembly Line Mold Scheduling is a mathematical
model which will generate an efficient production schedule
of molds assigned to a specific foam assembly line. The
objective of this model is to minimize product costs
(mainly mold set-up charges), minimize inventory holding
costs, and to eliminate back-order production costs.

The model will generate a new mold configuration each
week. More than the minimum number of set-ups necessary
to meet demand may be needed to generate a feasible
sequence of molds on the foam line. If excess capacity
is available, the model should look forward to following
weeks' demands and load molds that tend to minimize
future problems or bottlenecks. The model should also
insure that demand is met for each mold at the end of each
shipping day. The model must tell how many of each mold
type to have mounted on the assembly line, and the exact
position of each mold on the 181 fixed carriers so that

the plant's assembly line sequencing rules are obeyed.

ACKNOWLEDGEMENTS

After completing my class requirements in the Computer
Science curriculum at Michigan State University, I returned
from an educational leave of absence to General Motors
Manufacturing Development. There I was assigned to the
Manufacturing Operations Systems Department on a project
entitled: Assembly Line Mold Scheduling. This investigation
and thesis is being submitted as part of the requirements
for obtaining a Master of Science degree in Computer Science
from Michigan State University.

I would like to extend my appreciation to the following
people: Mr. James Caie Jr., Senior Project Engineer and
Plant Advisor and Mr. Robert Harder, Staff Development
Engineer, Manufacturing Operations Systems of Manufacturing
Development, for their suggestions and advice concerning the
success of this project. I would also 1like to thank Dr.
Philip Carter, Professor of Management, School of Business
and Dr. Anil Jain, Assistant Professor of Computer Science,
School of Engineering, for their assistance as Faculty
Advisors at Michigan State University.

IT.

III.

Iv.

ASSEMBLY LINE MOLD SCHEDULING

TABLE OF CONTENTS

INTRODUCTION . ¢ ¢ o o o o o o o o o o o &
DEFINITION OF THE PROBLEM « .« =«

2.1 Assembly Line Operations
2.2 Sequencing Rules and Costs

2.3 Current Operating Procedures and
Problems . . « ¢ « « o« o o o o o o &

2.4 SUMMAYY « « ¢ o o o « o o o o s o @
ASSEMBLY LINE SCHEDULING MODEL

3.1 Mixed Integer Programming Model . .
3.1.1 Objective Function

3.1.2 Constraints

3.2 Scheduling and Sequencing Algorithm
3.3 SUMMAXY =« « « « o o o o o o o o o &
SCHEDULING SYSTEM OVERVIEW « « « &

4.1 Main Program - MAIN
4.2 Input Processor - INPUT

4.3 Assembly Line Picture Subroutine -
L INEUP L] L[] L] . L] . L] L] L] L] L] L] L] L] L]

4.4 Generate Constraints Subroutine -
GENER L] [] [] . . L] L] . L] L] L] L] L] L] .

4.5 Mixed Integer Programming Subroutine
MIP (] L] L] L] L . . . L] . L] L] . . L] L]

4.6 Scheduling & Sequencing Subroutine
SCHED L] L] L] L] L] L] . L] L] L] L] L] L] L] L]

4.7 SUMMAXY =« « o o o o o o o o o o o

v] EXP ERIMENTS 3

VI . CONCLUSIONS . . L] L3 . .

ii

13
17

18

19
21
26
36
39
40

43
44

47

51

54

64
72
73

89

ASSEMBLY LINE MOLD SCHEDULING

TABLE OF CONTENTS (Cont'd)

LIST OF REFERENCES

APPENDIX A - SOURCE PROGRAMS

FOAM Execution Program
MAIN Program

INPUT Subroutine
LINEUP Subroutine
GENER Subroutine

MIP Subroutine

SCHED Subroutine

iii

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure

4.
5.
6.
7.
8.
9.
10.
11.
1l2.
13.
14.
15.
16.

LIST OF ILLUSTRATIONS

Assembly Line Model Costs

Assembly Line Mold Constraint
Definitions L] L] L] L] L] . L[] L] L] L] * * L]

Mixed Integer Programming Model
Objective Function . . . «

Assembly Line Mold Constraints . . .
System Subroutine Overview
Input Processor Summary . « « « « o
Mold Line-up Summary . . « « « o

Forecasting - Production Information
Mixed Integer Programming Flowchart .
MIP Standard Format "SOLUTION". . . .
Intermediate Scheduling Results . . .
Final Mold Line-up Summary
Sample - Mold Line-up Summary
Production Information . . .
MIP Row Solution
MIP Column Solution

Sample

Sample

Sample

17 (a). Sample - Intermediate Results

(LWD 28) « ¢ ¢ o o o ¢ o o o o o o

17(b). Sample - Intermediate Results

(LWD 29) « ¢ ¢ ¢ o o o o o o o o

17(c). Sample - Intermediate Results

(LWD 30) ¢ ¢ ¢ ¢ ¢ o o o o o o &

17(d). Sample - Intermediate Results

(LWD 31) ¢« ¢ o ¢ o o o o o o o o«

17 (e). Sample - Intermediate Results

18.

(LWD 32) . . . 3 . . . 3
Sample - Final Mold Line-up Summary

iv

24

25
34
42
46
50
53
59
66
69
71
76
77
78
81

83

84

85

86

87
88

I. INTRODUCTION

General Motors Corporation is interested in creating
a mathematical model which will generate an efficient
production schedule of molds assigned to a specific foam
assembly line. The objective of this model is to
minimize production costs (mainly mold set-up charges),
minimize inventory holding costs, and to eliminate
back-order production costs. The foam line in question
consgsists of 181 fixed carriers connected together to
form a large circular chain which rotates past operation
points. Carriers are defined as the portion of the
assembly line where a mold can be attached. A mold must
be mounted in a frame prior to attacﬁing it to a carrier.
Setup, therefore, involves framing a mold if it is not
currently framed and bolting this mold-frame assembly
to the carrier on the assembly line. Since all frames
are mounted on molds, the model must decide which mold
to unframe to make a frame available for mounting on
another mold.

The normal operation of the foam line is 120 hours per
week (i.e., 8 hours/shift * 3 shifts/day * 5 days/week).
Saturday operation will occur only if it is absolutely
necessary to meet shipping requirements. Since the whole
line must be stopped to change a mold, major set-up

activities for the week will occur on Saturday if

production is not scheduled, or on Sunday otherwise. It
should be noted that management has indicated that carrier
positions on the assembly line must not remain empty

when the line is running. Therefore, it may be necessary
to produce parts on the foam line that are not currently
needed.

There are twenty-five different mold types currently
assigned to the foam line. A mold type is identified by
a two character code, and is categorized as either a
"large" or a "small" mold. Most mold types have more
than one physical mold available for production at any
specific time. A mold type consisting of a double
cavity will produce two pieces at a time. Finally,
since scrap rates vary by mold type, each mold type has
a unique production rate (i.e., pieces/time/carrier
location).

The scheduling project was undertaken to
investigate, analyze, design, evaluate and implement an
efficient production schedule of molds assigned to a foam
assembly line. It is essential that the model minimize
production costs and inventory holding cost, and
eliminate back-order production costs. The model must
tell how many of each mold type should be mounted on the
assembly line, and the exact position of each mold on the
181 fixed carriers so that the plant's assembly line

sequencing rules are obeyed. It must also determine how

many production shifts are necessary while staying within
the plant's warehouse limitations and production shipping
requirements. This report summarizes the results and
findings of this investigation.

After the introduction, Chapter 2 discusses the
background of the mold scheduling problem. It briefly
explains the assembly line operations required to produce
the foam seats. Finally, it examines the sequencing
rules and costs of the model, and describes the current
operating procedures and problems of the plant.

Chapter 3 discusses the structure and ideas behind the
assembly line scheduling model. It describes in great
detail the objectives and constraints of the mixed
integer program, relating the plant's problems to the
mathematical model. Finally, the scheduling and
sequencing algorithm is explained, in effect, satisfying
the plant's scheduling objectives.

The next chapter discusses the scheduling system
overview, which describes the various subroutines of the
foam model. Each of the various subroutines are examined
in greater detail. Chapter 4 also examines a typical
assembly line scheduling example. It explains the
required inputs and flow of the model through the final
sequencing line-up and mold changes.

Chapter 5 discusses an experimental run made by the

plant to determine the assembly line sequence of molds.

It is easy to see from these results that an assembly
line is more difficult to schedule than one would believe.
The final chapter examines the conclusions of the foam
model with respect to the various advantages and
disadvantages of an optimization model. It discusses the
constraints which were satisfied versus the total set-up

and inventory costs of the solution.

II. DEFINITION OF THE PROBLEM

Few people really understand how difficult it is to
consistently schedule any type of assembly line. There
are rules and constraints which must be followed in the
manufacturing plant. The assembly line also consists
of people working in a plant environment. There are
labor problems, material shortages, machine break downs
and production to ship, and little time to produce the
required parts. In short, for an outsider, pure chaos
reigns in the plant.

This chapter discusses the operations and background
of the foam assembly line. It briefly describes the
assembly line operations required to produce foam seats.
It assumes that the workers know their specific job
requirements, and that the material is always available.
However, this is not always true in the plant situation.

The definition of the problem also considers the
plant's constraints, the sequencing rules which "must" and
"should" be obeyed. The plant has assigned labor costs
to the various functions, such as changing a mold
(set-up costs), storing a part in inventory (inventory
holding costs), and a cost associated with framing a
required mold (framing costs). Each of these costs will
be considered in the mixed integer program to determine

the optimal assembly line configuration.

Finally, there is a discussion of the current
operating procedures and problems which the plant faces
every day. There is an example of how the assembly line
is currently scheduled and the difficulties that occur in

changing any mold on the assembly line.

2.1 ASSEMBLY LINE OPERATIONS

The following operations summarize the foam assembly
line production procedures:

1. Loading bolster wires and bordef wires into the
mold. Wire loading work on some mold types requires that
operators work on a special platform. It should also
be noted that each mold type has a specific wire loading
difficulty factor associated with it.

2. Pour foam into the mold with an automatic "gun".

3. Bake the foam in an oven.

4. Cure foam. Several mold types require taping
after post cure.

5. Pack the foam parts.in 5491 standarized (identical)
containers. The packing area consists of thirty upender
container locations, fourteen on one side of a moving
conveyor and sixteen on the other side. A specific
container stores only one mold type, but certain mold
types can have more than one container location
associated with it. The assignment of mold types to
specific container locations is normally made at the
same time as a major set-up takes place. A packing
operator is responsible for a group of adjacent container
locations co-located on one side of the moving conveyor.
Normally, there are five or six packers working at the

same time.

6. When two containers (called a 1lift) are full,
they are both taken and stored in the warehouse. The
warehouse can hold a maximum of 900 containers at one
time. If the warehouse is filled, containers may be
routed immediately into rail cars for storage. Ten
containers fit into one rail car, and the plant expects
to ship thirty-six rail cars of foam parts five days a
week. There are no rail shipments made on Saturday or

Sunday.

2.2 SEQUENCING RULES AND COSTS

There are several sequencing constraints that must be
adhered to for a schedule to be feasible.

1. A "large" frame mold MUST have a "small" frame
mold before and after it.

2. Carrier #1 MUST be the same as carrier #180, and
carrier #2 MUST be the same as carrier #18l1. This
insures that the "gun" is cleaned out at least once per
cycle.

3. Molds with letter codes "AN" and "MM" should be
lined up in a group because they require platform work
and the wire loading operator should only move to the
platform once per cycle.

4. The platform is only 40 feet long allowing
limited room for float. Therefore, any "AN" or "MM" molds
should have some other style before and after it.

5. The biggest problem on the foam line is the wire
loading difficulty. The total number of wire loading
points for any three consecutive molds should not exceed
27.

6. Parts requiring tape after post cure should be
spread out so that one operator can handle the work.

7. The mold container sequence in the packing area
should be consistent with the mold sequence on the foam

line to insure that a particular packing operator does

10

not get overloaded. For instance, if a packing operator
is responsible for packing several different mold types,
and if these mold types are all sequenced together,

then the packing operator will probably be overloaded at
certain times of the day.

Given the current assignment of molds to carriers
on the foam line, the model to be developed must generate
a new configuration of molds on carriers so that:

1. All the next week's demand is satisfied.

2. Set-up and inventory holding costs are
minimized.

3. Mold sequencing rules #1 and #2 MUST be obeyed
while rules #3-#7 should be obeyed if at all possible.

4. Warehousing constraints MUST be obeyed.

The model will generate a new mold configuration
each week. It should be noted that more than the minimum
number of set-ups necessary to meet demand may be needed
to generate a feasible sequence of molds on the foam line.
If excess capacity is available, the model should look
forward to following weeks demands and load molds that
tend to minimize future problems or bottlenecks. The
model should also insure that demand is met for each mold
at the end of each shipping day. We can assume that a
shipping day's demand for a mold is one-fifth its week's
demand. Figure 1 on the following page, gives a summary

of the assembly line costs assigned by the plant. These

11

are by no means all the costs associated with the
production of foam parts, they are valuable in describing

the major costs of a simplified mathematical model.

12

Figqure 1. ASSEMBLY LINE MODEL COSTS

Cost of framing amold . ¢« « « ¢ « « « « « « « .« +$875.00

Cost of removing a mold from a carrier
and setting up a new framed mold on the
SAME CAYXTIi@r. + « o o o o o o o o o o o o o o« o o« 915,00

Inventory holding costs 10% of part value

Cost of having one upender
assigned to a part. « « « « ¢ o o o o o s o s « « +$1.00

2.3 CURRENT OPERATING PROCEDURES AND PROBLEMS

The molds required for each part are currently
determined by the following proportion:

Total schedule for each part ,
Total schedule for the line

181 = molds required
These proportions are usually calculated once a month;
the drawback here is that the proportions overstate molds
required for high volume parts and under-estimate molds
required for low volume parts. Production Control tries
to perform the following calculations on a regular basis:

l. On Thursday, use the current mold line-up to
estimate production for the next seven days.

2. Take Thursday's initial inventory plus the
estimated production for seven days minus seven days of
shipping requirements to get the forecasted inventory at
the end of next week.

FORECASTED INVENTORY = INITIAL INVENTORY + ESTIMATED
PRODUCTION - SHIPMENT

3. Add the Forecasted Inventory for each part on a
line to get a Total Inventory. Divide by the Average
Daily Production for that line to get an approximate
number of days bank (safety stock) in the warehouse. If
there is less than two days bank for the line, a decision
is usually made to work overtime. If the Forecasted
Inventory for any part number is negative or a very low

figure, production staff is told to add molds. An equal

13

14

number of molds, however, must be removed. To make this
decision, Production Control finds the parts with the
highest inventory and removes molds of those part
numbers.

It should be noted that the above calculations are
tedious and time consuming. All information must be
copied from four different sources and then the
calculations performed. It takes between 4 to 6 hours
per week to do this and sometimes it is not done each
week as it should be. Also, it is easy to make a mistake
in these calculations. Another major disadvantage is that
seven days may not be enough lead time to prevent back
orders on the seventh day. If major changes must be made
or not enough molds are mounted, production staff may not
be able to make the changes until the following week and
back orders will result.

There are certainly other considerations which must
be taken into account before a mold on the assembly line
can be changed.

1. The whole line must be stopped to change one
mold.

2. Due to the bulkiness of foam and fire hazards
associated with it, both assembly plants and
manufacturing plants are restricted from holding large
inventories. (Tvpically a two day safety bank is held in

foam parts.)

15

3. Fire laws prevent foam from being stacked more
than three baskets high. This limits effective space
utilization.

4. Fork lift trucks can only carry two baskets at
one time so movement, labelling and storage has always
been done on the basis of two baskets (called a 1lift).

In other words, baskets are seldom stacked three high in
the warehouse.

S. Four baskets may be stacked on top of each other
in the inventory storage system because it has an
intermediate sprinkling system.

6. If the schedule for one line is slightly greater
than machine capaéity, the warehouse may be overloaded if
Saturday overtime is worked, because no shipments are
made on weekends. Therefore, it is often necessary to
accept shortages.

7. The line cannot run empty, so to prevent
shortages on some parts it is possible to overload the
warehouse with parts that are not needed.

8. Components are involved. Some foam parts
require border and bolster wires, which are made in
another division of the plant.

9. When production staff is told how many of each
mold type to put on the line, they cannot always make the
required changes. This often results because the molds

needed may not be mounted in frames, or serious

16

sequencing constraints might be violated.

10. The mere addition of one mold may force the
whole line to be rearranged. Hence, it may be cheaper
to accept shortages than to rearrange the whole line.

11. It takes between 15 to 20 minutes to change a
mold. The plant very seldom stops the line to perform
this change; instead, they try to do it during breaks
and lunch time. If more than 25 molds have to be changed,
production control schedules these changes to be made on
a weekend.

12. Wwhen molds are first put on the assembly line,
they have to warm up for approximately three hours. If
any foam is shot into the mold before it warms up, scrap
is generated.

13. Scrap and downtime are irregular. Sometimes
a line can run for several weeks with little downtime,
and then in one week be plagued with a major breakdown

lasting 8 to 10 hours.

2.4 SUMMARY

It is very hard to visualize or totally understand
the operatiog of a foam manufacturing plant, without
actually observing the assembly line. There are many
problems which exist in the plant, and the past sections
have explained the assembly line operations, the
sequencing rules and costs, and the current operating
procedures and problems.

There is certainly a need to create a computerized
model, to remove the "trial and error" scheduling and
mold sequencing procedures which now exist. The future
chapters will consider and examine the assembly line
scheduling model which was developed and implemented for

the plant.

17

III. ASSEMBLY LINE SCHEDULING MODEL

The assembly line scheduling model discusses the
structure and ideas behind the foam scheduling project.
It describes in great detail the objectives and
constraints of the mixed integer program, relating the
plant's problems to the mathematical model. It begins by
discussing linear and mixed integer programming, and
gives some of the reasons why an optimization model can
be used to solve a scheduling problem. This chapter also
covers the mathematical model itself, and explains
briefly how the objective function and constraints were
translated from the plant's description into the model.

The final section of the chapter deals with the
scheduling and sequencing algorithm. It briefly describes
where to place the molds on the assembly line, once the
model knows how many molds are necessary to satisfy
production shipping requirements. The section then
discusses the heuristic algorithm that was implemented
in the mathematical model. Finally, the sequencing and
scheduling method will be used to explain how the
objectives, minimizing set-up costs and inventory

storage charges, were obtained.

18

3.1 MIXED INTEGER PROGRAMMING MODEL

Linear programming is a mathematical technique for
determining the solution to a system of linear con-
straints that maximizes or minimizes a linear
objective function. An example of a typical solution is
an optimum allocation of resources to achieve a
particular objective when there are alternative uses for
the resources (1,2).

Mixed integer programming is a mathematical technique
that permits one to solve linear programming problems in
which certain variables must take integer values. This
possibility allows the study of a large class of
important applications that cannot be handled by classical
linear programming techniques (7).

1. Continuous variables, which can have any value
(classical programming problems have only continuous
variables).

2. Integer variables, which are limited to integer
values (...,-2,-1,0,1,2,...).

Both types must, of course, satisfy the constraints
of the problem.

The ability to introduce integer variables into the
linear programming model provides a means for
efficiently handling certain problems that otherwise

could not be studied, could be studied only

19

20

approximately, or could be studied only through a long
sequence of linear programming runs for which a great deal
of preparation is demanded.

The Assembly Line Mold Scheduling Mixed Integer
Programming Model utilizes the MPSX Extended Control
Language (ECL) written in PL/1 (3). The model contains
132 linear programming rows and 125 integer variables.

The mixed integer programming (MIP) objecti&e function
and constraints will be covered in greater detail in the

following sections.

3.1.1 Objective Function

The aim of any linear or mixed integer programming
model is to maximize or minimize some objective function.
Figure 2, the Assembly Line Mold Constraint Definitions,
and Figure 3, the Mixed Integer Programming Model
Objective Function, will describe the model's objective
function. Let us consider the four types of costs which
the assembly line scheduling model is seeking to minimize.
The costs of producing foam parts are as follows:

l. inventory storage costs

2. mold set-up costs

3. mold framing costs

4. wupender availability costs

The inventory holding costs represent the average
inventory storage costs per 2 week period. It is
calculated by taking the production rate for two weeks,
multiplied by the number of molds currently on the line
and 10% of the value of the part, then is divided by 52
weeks per year. It is not a true indication, however, of
the actual inventory storage costs. Since the
inventory levels are low, typically less than a two day
bank, the parts which are produced early in the week are
shipped that same week. This means that all the foam
parts which are produced are not automatically stored in

inventory. 1In fact, many of the parts produced are

21

22

loaded into boxcars for immediate rail shipment.

The mold set-up costs are really the key to the
success of the model. The foam model seeks first to
satisfy production demand, then to ﬁinimize set-up costs.
The‘two ideas are very closely linked together, for set-up
costs would be non-existent if demand for a particular
foam part remained constant. These costs are calculated
by multiplying the number of molds added and removed from
the assembly by the constant (say $7.50/mold set-up).

For each mold added, there must be one mold removed, for
a total set-up replacement cost of $15.00. This cost,
like all others, must be kept in balance, for it takes
much longer to frame a mold than to make a mold replace-
ment on the assembly line. The framing costs are very
similar to the mold set-up costs. The mold framing costs
represent the time and labor involved in first unbolting
a previously framed mold package, and then constructing

a new mold-frame assembly. Since a mold-frame agsembly
is heavy, there is a need for a forklift truck and driver
and two workers to accomplish the task. The higher cost
is reflected in the amount the plant has assigned

(see Figure 1. Assembly Line Model Costs). The framing
cost is calculated by multiplying the number of molds to
be framed by a constant (say $75.00). The first three
conditions, the inventory, set-up and framing costs,
represent the main objective function costs cf the foam

model.

23

The final objective function cost is the upender
availability costs. A cost of §1.00 is given to each
upender that is assigned to a particular mold. This
objective function cost tends to reduce to a minimum,
the number of upenders required to handle and pack the
foam parts for each type. This upender constraint will

be examined in more detail in the next section.

24

Figure 2. ASSEMBLY LINE MOLD CONSTRAINT
DEFINITIONS

N = total number of different mold types

WARE =

M(1i)

A(i)

R(1i)

F(i)
D(1i)

P(1i)

total number of storage positions available in warehouse
total number of molds REQUIRED for the ith part

number of molds for the ith part to be ADDED to
the assembly line

number of molds for the ith part to be REMOVED from
the assembly line

number of molds for the ith part to be MOUNTED on frames
wire load difficulty associated with the ith part

production rate per week associated with the ith part
(currently based on 3 shifts/day - 6 days/week)

PK(i) = standard pack for the ith part

(number of pieces which fit into one basket)

SH1(i) = number of pieces shipped the lst week for the ith part

SH2(i) = number of pieces shipped the 2nd week for the ith part

INV(i) = initial inventory for the ith part

SAFETY (i) = safety stock required for the ith part

SC(i) =
IC(i) =

FC(i) =

UP(i) =

set-up costs associated with the ith part

inventory storage costs associated with the ith part
(value of the ith part/268.)

cost to mount a mold on a frame associated with
the ith part

cost associated with having an upender (basket)
assigned to the ith part

M-tape = molds that require tape after post cure

M-large = large molds

Mp = mold position

25

Figure 3. MIXED INTEGER PROGRAMMING MODEL
OBJECTIVE FUNCTION

N

MINIMIZE COST = %, (M(i)*P(i))*IC(i) +
i=1

inventory holding costs

N
L (SC(i)*A(i)+SC(i)*R(i)) +
i=1

mold set-up costs

N
T, (FC(i)*F(i) +
i=1

framing costs

N
3, UP(i)
i=1
upender availability costs

3.1.2 Constraints

This section deals with the mixed integer programming
constraints of the assembly line mold sequencing model.
Each of the various constraints will be discussed, and
the questions of how the constraints were implemented
should be answered. One must remember, in a mixed integer
program, that if the constraints are not general enough
or do not have enough flexibility, the problem will become
infeasible. If the problem is too general, however,
valuable time will be spent in calculating answers.
Therefore, careful attention was given to allow the problem
a greater degree of freedom while minimizing the objective
function. The Assembly Line Mold Constraints are available
in Figure 4, and can quickly aid in understanding the mixed
integer programming model.

The mixed integer programming model currently
contains 132 constraints and 125 integer variables. The
integer variables can be broken down into the following
five categories for each mold type:

1. total number of molds required

2, total number of upenders required

3. number of molds to be ADDED

4. number of molds to be REMOVED

5. number of molds to be FRAMED

26

27

The first constraint considered here is that of
LINE CAPACITY. As previously stated, it is unacceptable
to leave a vacant position on the assembly line.
Therefore, any feasible MIP solution must f£ill the 181
mold positions with an available mold. This is done even
at the expense of producing foam parts which are
currently not necessary for the production shipping
requirements.

ADDING and REMOVING MOLDS from the assembly line
are the next constraints to be considered. Since the
model is trying to determine the total number of molds
required for the ith part, M(i), and at the start of the
model we know how many molds are currently on the line,
M(i) current, the number of molds to add for the ith part,
A(i), represents the difference between the required
number of molds and the current number on the line. 1In
the line, R(i), represents the difference between the
current number of molds and the required number on the
line. For every mold that is added on the assembly line,
there is another mold which is removed. An empty
position on the line is never created.

The FRAMING MOLDS constraints is handled slightly
differently than the two previous constraints. The model,
at some starting point, knows how many molds are

currently framed. The number of molds to be framed, F(i),

28

represents the difference between the number of
currently framed molds and the number of molds required.
Typically, however, there usually seems to be enough
extra molds framed to meet the future production require-
ments. That is why there is seldom any need to frame
more molds. To speed up the MIP subroutine, a limited
number of molds can be framed, for any particular part.
Two molds of each type can be framed, except for mold
codes: "BN" or "BR", in which case the model allows four
framing changes. This is due to the fact that the mold
codes "BN" and "BR" are high production volume parts
which account for half of the total assembly line
production.

The WIRE LOAD DIFFICULTY constraints were included
in the model to make future mold scheduling and sequencing
easier. The idea behind this constraint was that the
total wire load difficulty of the assembly line should be
maintained at some constant level of wire load
difficulty. This implies that before a series of molds
are added or removed from the assembly line, the sum of
the wire load difficulties be almost equal. One must
remember to maintain some flexibility in the model, in
order to insure a feasible solution. If no molds are
added or subtracted from the assembly line, the wire load
difficulty of the line remains constant and the constraint

is not binding. In an attempt to maintain this balance,

29

the MIP model allows the user to specify a range of
difficulty values (i.e. range from -5 to +5). By
examining the row constraint: "WIRE", one can see how the
solution affected the total wire load difficulty of the
assembly line. The wire load difficulty constraint was
not necessary to satisfy the plant requirements, but it
greatly aided in the scheduling and sequencing algorithm.

The LARGE and SMALL MOLD constraint was also really
not necessary from the plant's standpoint. Generally,
these constraints helped limit the types of mold changes
which can occur on the assembly line. Whenever a large
or small mold is removed from the line, it -should be
replaced by a mold of the same size. Again, some
flexibility in the model must be maintained for
feasibility and, therefore, both totals should have a
range of values (i.e. range from -5 to +5). By
examining the row constraints: "LARGE" and "SMALL"
constraints shouid sum to zero. This makes sense if
one considers adding for an example, say a total of two
extra small molds. The molds which are removed must ke
large molds to compensate for the small molds which were
added. One must remember, however, that we are
considering just the total numbers of large and small
molds on the assembly line.

The MAXIMUM MOLD AVAILABILITY constraint represents

the upper limit of the total number of molds required.

30

Clearly, the plant cannot mount more molds on the
assembly line than ére currently available or physically
present. If M(i) equalled M(i) available for several
parts, serious problems in framing costs would result.
Typically, the solution to the MIP problem would be in-
feasible to implement.

The MINIMUM PRODUCTION constraint is the direct
opposite of the MAXIMUM MOLD AVAILABILITY constraint. It
represents the lower limit of the total number of molds
required. 1In other words, this constraint determines the
minimum number of molds to meet the current production
shipping requirements. The MINIMUM PRODUCTION constraint
uses a weighted average of shipping requirements for a 4
week period, minus the initial inventory plus the
guaranteed safety banks. The weighted average is
composed of 70% first week shipped, 20% second week
shipped, and 5% the third and fourth week shipped. These
percentages seem to reflect the true shipping forecasts
and with the safety banks, guarantees that the first
week shipping requirements are met. This quantity is
then divided by the production rate per week to give
the required minimum number of molds. Since this
quantity generates a real number with a fractional
component, the MIP model truncates the answer to an
integer value. In examining the solution to the MIP

problem, the plant can look to see if any of the required

31

molds for any part are at their lower limit. Typically,
this condition rarely exists in the program unless the
upper and lower limit values are fixed.

The INVENTORY CONSIDERATIONS constraint is perhaps
the most important of the plant objectives. The space
requirements in the warehouse are a constant headache to
the plant management. The imbalance between production
and inventory control often forces the production of too
many foam parts. The warehouse becomes full of foam parts
and with no co-ordination between the different sections
of the plant, shipping requirements are not met.
Therefore, there must be some inventory overflow
constraint which takes into account the limited inventory
storage space available in the plant. The INVENTORY
CONSIDERATIONS constraint is calculated for each
individual foam part. Two weeks production in terms of
the number of baskets, must be less than or equal to the
available positions in the warehouse plus the number of
baskets shipped and available to store in the warehouse.
The total inventory and number of parts shipped in one
week is calculated and given in the row constraint:
"INVEN". If inventory becomes a problem in the solution
of the MIP problem, and if surplus production is
available, the model will tend to select smaller foam
parts. The idea here is that more small foam parts can

be packed into a basket, and less storage space required

32

for equivalent production. Therefore, this constraint
tends to keep the warehouse from becoming filled to
capacity, and a stable production and inventory policy
will result.

The UPENDER AVAILABILITY constraint represents the
total number of upenders or baskets available in the
loading area for the packing of foam parts. The plant
would like to see the total number of upenders kept in the
plant to be less than or equal to 30. In the plant
environment, however, there is actually room for as many
as 32 positions if the scrap area size is reduced. Again,
this constraint is necessary because of the limited floor
space which exists in the plant. The optimal solution to
any MIP problem must try to keep the total number of
upenders to a minimum. This is one of the reasons why
a $1.00 per upender cost was assigned to each upender
required for production packing.

The UPENDER ASSIGNMENTS represent the last set of
constraints which the mixed integer program considers.
These two constraints indicate the upper and lower
limits of the number of upenders associated with a
particular part. The upper limit was set at 6 upenders
per mold code since in the plant environment, there are
rarely more than 5 upenders actually assigned. The
lower limit, however, is the real key to the assignment

of upenders by the MIP model. We knew that the production

33

cycle to produce one piece takes about 15 minutes or
roughly 4 pieces per hour. The UPENDER ASSIGNMENTS

are then calculated by taking 4 parts per hour and
multiplying it by the number of molds required. The
result is divided by the standard pack which is the
number of foam parts per basket. This lower limit
assumes that the baskets can be moved into the inventory/
shipping area at least once per hour. On high volume
parts, however, such as mold codes "BN" or "BR", the
assumption is made that these baskets can be replaced
every half hour. High volume parts always require
dedicated truck drivers because of the high production
turnover rate. Another interesting point is that if one
mold is assigned to the assembly line, there must be one
basket allocated for that foam part. If there is a
questionable mold which is a low volume part, the MIP
model will try to eliminate this mold from the new mold
line-up. Since the mold is eliminated, there is no longer
a need to allocate an upender for that particular part.
Upenders are in such short supply that better use of

these limited resources can be determined by the model.

34

Figure 4. ASSEMBLY LINE MOLD CONSTRAINTS

Description Constraint

N
LINE CAPACITY 3. M(i) = 181
i=1

ADDING MOLDS for i=l1l..N M(i)=-A (i) <= M(i)current
REMOVING MOLDS for i=1..N M(i)+R(i) => M(i)current

FRAMING MOLDS for i=1..N M(i)-F(i) = M(i)framed

F(i) <= 2
if mold = 'BN' or 'BR' F(i) <= 4

N
WIRE LOAD 2 (D(i)A(i)-D(i)R(i)) <= 5
DIFFICULTY i=1

N
Z (D(DA()-D()IR()) => -5
i=

N
LARGE MOLD %, (A(i)large-R(i)large) <= 5
i=1

N
2. (A(i)large-R(i)large) => -5
i=1

N
SMALL MOLD % (A(i)small-R(i)small) <= 5
i=1

N
2 (A(i)small-R(i)small) => =5
i=1

MAXIMUM MOLD for i=1l..N M(i) <= M(i)available
AVAILABILITY

35

MINIMUM for i=1..N
PRODUCTION
.7B*SH1(i)+.28*SH2 (i) +.B5*SH3 (i)+.05*SH4 (i) - INV(1)+SAFETY(1)
M{i) B> = e e e e s e—eses———————
P(i)
INVENTORY CONSIDERATIONS
2. G*P(l)*M(l) SH2 (i) +SH1(i)-INV(i)+SAFETY (i)
------------- <= WARE + ==—eeec—eeccemcc—eececc————————
PK (i) PK(i)
N
UPENDER AVAILABILITY . UP(i) <= 33
i=1l
UPENDER for i=1..N 4.0%M (1)
ASSIGNMENTS UP(i) => =—=ee—e—-
PK(i)
2.0*M (i)
if mold = 'BN' or ‘'BR' UP(1) =) wececeee-
PK(1)
for i=1l..N UP(i) <= 6
PLATFORM LOADING for i=2..(N-1)
RESTRICTIONS Mp (i-1)="AN'#Mp (i)="MM'4Mp (i+l)="'AN"

Mp(i-1)="MM'#Mp(i)='AN"'#Mp(i+l)="MM’

"GUN" RESTRICTION Mp (1) =Mp (188)
Mp (2)=Mp (181)

TAPE AFTER POST for i=2..(N-1)
CURE RESTRICTION Mp(i-1)=M-tape#Mp(i)=M-tape#Mp (i+l)=M-tape

MOLD SIZE for i=2..(N-1)
RESTRICTION Mp(i-l)=M-large#Mp(i)=M-large#¥Mp(i+l)=M-large

Figure 4. (continued)

3.2 SCHEDULING AND SEQUENCING ALGORITHM

Once the model knows what molds to add, remove, or
frame, it is necessary to determine where on the assembly
these molds belong. Briefly, this is the purpose of
the scheduling and sequencing subroutine. At this point
in the program, the model is attempting to eliminate past
problem areas, satisfy the sequencing rules, and minimize
the number of mold changes. The problem now exists in
trying to determine the minimum set of possible mold
substitution points which satisfy the MIP solution and
the sequencing constraints. First, however, we should
discuss the plant constraints that could not be satisfied
in the MIP problem. They deal exclusively with the
positioning relationships of the molds on the assembly
line.

The PLATFORM LOADING RESTRICTIONS is a constraint
which attempts to equalize the workload on the operator
who must load wires into the upper sections of particular
molds. A special 40 foot platform has been designed to
handle these complicated foam parts. It is critical that
only one man handle the task, and the work be spread
out. This is required, simply so as not to overload or
overwork one operator. The constraint states that when
mclds are added to the line, careful consideration should
be given to not to place "AN" or "MM" molds next to each

other.
36

37

Both molds together are difficult as far as wire load
difficulty is concerned, and to have one man perform the
wire loading carries him off the platform. All one

could do would be to let one mold go by empty, thus
producing a bad part. This is a totally unacceptable
solution to the problem, so the scheduling and sequencing
algorithm should never let this condition happen.

The "GUN" RESTRICTION constraint is perhaps one of
the most interesting constraints to see on the assembly
line. It states that mold positions #1 and #180, and
#2 and #181 be the same mold type. The reason for this
constraint is that at the end of the assembly line cycle,
the "gun" must be cleaned. Cleaning is accomplished by
sending a burst of high pressure air through the line,
to remove any excess foam plastic that may have collected
in the "gun". There are physically more than 181 mold
positions on the line, but only 181 positions are
capable of accepting molds. Timing is a very important
consideration, for the assembly line must be maintained
at a constant speed even though cleaning is required.
Four positions are necessary, and the mold spacing
between positions #180-2 are slightly different than the
remainder of the line.

The TAPE AFTER POST CURE RESTRICTION is another
constraint which attempts to solve a sequencing problem on

the assembly line. There are several rparts which require

E:-.-“"n

38

stapling a cloth piece to the foam part after it has gone

through the curing oven. Mold codes: "MM", "AJ", "AH"

and "KL" must be spread out so that one operator can

perform the work. Recall, however, that mold code "MM"

was one of the molds which required platform wire loading.
The PLATFORM LOADING RESTRICTION and the TAPE AFTER POST
CURE RESTRICTION then are in direct conflict with each

other on this particular mold. One constraint forces

the molds together while the other requires that they be

separated. In any case, some balance and compromise

between constraints is often the solution.

The MOLD SIZE RESTRICTION is the last scheduling
and sequencing constraint to be considered. It simply
states that when scheduling molds on the assembly line,
two large molds cannot be placed next to each other.
Besides being physically impossible to install, the
large molds typically have a higher wire load difficulty

which makes them tougher to sequence. This is one of the

few constraints which MUST be obeyed at all times for a

feasible scheduling and sequencing solution.

3.3 SUMMARY

The past two sections have described the assembly
line scheduling model constraints which were implemented
in the mixed integer programming subroutine and the
scheduling and sequencing subroutine. The mixed integer
programming objective function and optimization
constraints were explained in respect to the plant's
production plans and problems. The following chapters
deal with how these constraints were actually implemented,
and describe the output which resulted from each of the

subroutines.

39

IV. SCHEDULING SYSTEM OVERVIEW

This chapter describes the scheduling system
overview which represents a detailed analysis of the foam
scheduling model. The main program and the five assorted
subroutines will be briefly described in this section to
acquaint the reader with the flow of the program model.
The objective of this chapter is to explain the computer
programs from the input through to the final scheduling
and sequencing section. A structured programming,
modular design approach was used in the model to help
reduce the possibility of errors, to make the code
understandable to others, and to break up the various
program functions (l1).

The assembly line mold scheduling model is composed
of a main program and five subroutines as follows:

l. main program - MAIN

2, input processor - INPUT

3. assembly line pictorial subroutine - LINEUP

4. generate constraints subroutine - GENER

5. mixed integer programming subroutine - MIP

6. scheduling and sequencing subroutine - SCHED

The computer programs written for Assembly Line Mold

Scheduling are presently operating on an IBM 370/145

VM/VSl (virtual storage) computer at General Motors

Manufacturing Development. It could, however, run on

40

41

any computer system which makes use of the Programming
Language One (PL/l) Optimizing Compiler (8,9,10), and
IBM's MPSX/MIP Mixed Integer Programming package
(2,3,4,5,6,7).

The mold scheduling subroutines were specifically
designed to run in less than 768K (due to MPSX/MIP) of
virtual core memory. The five mold scheduling
subroutines and main program were compiled and stored in
an object module library for increased speed and easy
access. Typical execution times averaged about one
minute (CPU) with 40-50 seconds of execution time spent

in the mixed integer programming subroutine.

42

SYSTEM SUBROUTIHE OVERVIEW

~

program Flow [NPUT

H MAIN H

\L MIP /]\
~ | o
,/;>7 __,//’/J

Figure 5. System Subroutine Overview

4.1 MAIN PROGRAM - MAIN

The MAIN program of the foam scheduling model follows
many of the structured programming conventions. It
merely represents a calling program to tie together the
various subroutines. MAIN gives a'thorough listing of
the static external (i.e. similar to common in FORTRAN)
references and explains the meaning of each of the
various arrays and variables. Before the program calls
a subroutine, however, a message is displayed at the
operator's console, so that the user can determine what
subroutine is presently being executed. This helps in
debugging the model, especially when the mixed integer
programming subroutine is found to be infeasible and
terminates abnormally. In any case, it represents an
easy method of determining the time and position of
execution during the flow of the program. MAIN rarely
has to be changed since the control of the program

remains fairly constant.

43

4.2 INPUT PROCESSOR - INPUT

The input processor subroutine, INPUT, represents
the first working program of the foam scheduling model.
Its purpose is to initialize the static external
variables and arrays, and to read the various input
parameters and current mold information. The program
begins by reading the mold line-up title card, which is
an 80 character description of the problem to be solved.

The parameter input card follows the mold title
card. It has variables necessary for the problem, such
as the total number of mold types (NUM), the number of
shifts (SHIFT), the total number of molds on the assembly
line (IPOS), the number of currently available positions
in the warehouse (WARE), and the average wire load
difficulty for three consecutive positions on the line
(LWD) .

The following NUM (typically 25) cards are now read
into their respective arrays. This group of cards is
often referred to as the "static" section, because the
values of the parameters rarely change. Variables such
as mold codes (CODE), part numbers (PART), mold size
(SIZE), wire load difficulty (LOAD), number of part per
cavity (NUMPRT), platform loading (PLAT), total molds
available (MOLDS), total molds framed (FRAME), tape

after post cure (TAPE), standard pack per basket (PACKX),

44

. s

45

production rates per week (RATE), value of the
parts (VALUE), and safety stock (SAFETY) are read into
the program. These variables are required in creating
the mixed integer programming constraints, and for
future scheduling considerations.

The final section of the input processor deals with
the mold line-up information. This group is known as
the "mold line-up" section because the current assembly
line configuration must be known to the foam scheduling
model. It consists of reading the 181 assembly line mold
codes as they appear on the line in their current
sequence and position. The subroutine then returns to
the MAIN program before being transferred to the LINEUP

subroutine.

46

A2 2]

960 60°0
hhit 96°€
h98 LT A
8Sth 6Z°1
8821 6S°E
96€C hL°L
8C1T €6°1
8eiCc €671
oneT 68°1L
o6t ¢s°¢
st 08”1
hote 08°1L
9Ll BE“E
90LT 1S°L
08ZT tiL-¢
osct 08°4
o8zl 08°L
848 SL°h
854 w6°t
9tt f€°h
oZL 66°h
ozZL 20°S
ZnoE 68°1
Znoe 68°1L
Sttt ss°t

NOJLVUHO4NI dN-4dS ANIT UTONW

oLh 6
oLy ¢
08€ 62
0tEg we
Sih 82
008 ¢9
06L 96
08L 9S
oL8 09
0Z68 86
olL ®9
059 n9
SLn 8
o8 99
0€8 T¢L
06l h9
06L t9
son 2
SLE T2
sZe 62
ohE 0T
S8E 0C
0Zy 6L
0Z8 8¢
SLh SS

EZEFICNEZEEEZEEZEDEERENNENEIESR

- Ty AN11T

€L 6l
v o6l
LT h

8¢

HON34

Na Dy

Lt

NOTO~OMm
~N -

o ™= -
- -

- e -

EERERENEEEZIRERERETEEZERERERERNEERE
L ol

S NN eErmeNNANNTANNNNNNNSTNE - -

Yol
TOCONANMReY™=~ YO

(=4

**ed s

VrNeEdLdNannrnnlkrirninNniadnNnaantnan

90910002
Lss10002
CH09€L6
€196L96
Z196L96
92Z0€90¢
6nLZ90€
80h0290€
gzeLetLt
Lizeedt
sueeErLl
LhoteLl
60LNh691
€8hnoot
Z8hh69l
£950691
7950691
£ss0091
1650691
6C61491
06CLLIL
98I LLYL
L010991
9010991
696L5991
18l t

Figure 6. Input Processor Summary

4.3 ASSEMBLY LINE PICTURE SUBROUTINE - LINEUP

The assembly line picture subroutine, LINEUP, is
perhaps the most important subroutine in the foam
scheduling model. It conveys a picture of the current
assembly line mold configuration and does a great amount
of error checking. A mold group is composed of a mold
position (1-181), a wire load difficulty for that
particular mold (0-22), the mold code (i.e. AC,BN,BR),
and a space for the problem area or special assembly
line functions.

The lower left side of Figure 7 summarizes, by mold
type, the number of various molds on the line. The 181
mold positions, at a glance can then be examined to
determine where the problem areas exist. These are
denoted by a character string of '*****' ypder the molds
in question. A problem area results when the sum of
wire load difficulties for any three consecutive molds
exceeds some wire load difficulty average (say 27).

The symbolic characters "@€" and "$$" denote tape
after post cure and platform loading work, respectively.
This can give the user valuable information about the
sequencing rules to determine whether certain mold types
are bunched too closely together or spread out too far.
These symbols also appear along with the problem area

field, under the mold codes. In several instances, one

47

48

mold type (i.e. MM) may have both functions, and appears
on the computer printout as an over printed character
string.

In the lower right hand corner of Figure 7, a
summary of the problem areas is given. It states the
mold positions which exceed the wire load difficulty
average and also gives its total. If no problem areas
exist, a comment about platform loading and tape after
post cure will appear. This implies to the user that
the run was successful, and that no major problem areas
exist on the proposed future line-up.

Finally, after the mixed integer program and the
scheduling and sequencing subroutine has been completed,
the LINEUP subroutine once again is printed. This time,
however, there are several distinct changes. 1In the
lower center of the page, there are three columns
(i.e. Mold Position, Add Mold, Remove Mold) which
summarize the line position and mold changes that have
to be made. This in effect, is the solution of the foam
scheduling problem, and quickly aids the user in making
his weekly mold decisions and changes. If no
modifications have been made to the assembly line, this
section will then be empty. The final scheduling sheet
then, refers to the assembly line as it would be if all
the changes had already been made. It is the only output

which is necessary for Production Control personnel to

49

use in making their weekly mold decisions on the

assembly line.

50

[L 1)
I =W
v =11
L =Aa
LYY 1
0 a1y
b=
) =y
S =94
& =ru
[/] =0y
[} =
S AV
(o o=xv
Y =AY
[
. L =1y
of 6y 1 =uv
ot uL FET 1
ot L] 0 ey
ot ' +ooery
ot 54 [
X 9 9 =0
e 0y s aui
a(0al W =¥
5410054410 ANIA TVLOL NOILIs0d W no
SY4NY wdlYoNd SAI0M 40 HdUKhN TVIOL
.
i wa ya ov B8 we ¥ ov @ o0 ax Xy xv D¢ wd OV wn BT ww Wd we
6 6 9 0 B 9 & 9 @ 4L ¢ 0 0 0 4 o6 WO oy B
161 061 G40 V2N L) 9LE SLY bLL A LL ZLL LLL OLU 691 WYL LY 991 SYL W9t 1YL Tl 19l
0 wy Wi wu U ww AT wu BT ww WA w9 FU wd BA ww BT ww Y@ we WA we U we BT wu W ww Wi wa WA e
L S I N S - O A S A SO - SO N S N ¥ S Y SO S ¥ SO A Y B A O S T N I Y A I T Y
091 %1 BSE LS 950 Ssb 8Ll 1S1 Zut 1S1 0L) ONE Wel Lol 9NE SNL NeL ENL Eh) LuL OWE bEE BEL LEL 9E1 SEL WEL LEL ZED L6L OLL G0
ce
TN T I L TR 1) IV o mw KT 10 av av T@ av xv av T av AV aa AV as zv oaa BV Ov wx v BV xv v v
0 10 3 o 1 2 e 0o 0o 22 06 o0 o0 ¥ e 5 ¢ ¥ ¢ v e 5 0o ¢ 0 H o o0
BEL LTV 9CE SCH WTL LTI ZTL bEd 0T 611 UEL L00 YUL SEL SBL €30 ZHL ML OLL 60 ROL LOL 901 SOL 801 EUl Zul LUl OUL L6 WE Lo
ee XY [IR Y [IY) [{] ve ce ¢
P o W8 we xv wd xv wd xv wd xv e F0 e yv @3 wa W OOV OV W MU TA WM N8 UM AA KM AM WV W
5 6 07 1 0o 11t v 1t 0o 4t 0 4t 8 o & v B 0o o 9 s 6 & 99 & ¢ & ¢ ¥ s
9 % b Z6 6 06 6 HW LV Y6 SU NG LY ZU LV OU 6L WL L 9L SL WL €L L KL OL 69 WY 1Y Y)Y
. ss0s0488 o sel0ee [{4 (1] 38 se e s €8 _
AA A WU T we oaa M an ww TU oxv ww A Wk A W ww aa W NV ww Bd we BT wa BT e BT a8 T e
\ € s s ot € s Wo s o€ s v I s ¢ ¢ B 0 o0 w8 o0 o0 ou
v T9 19 09 6% U L% YL 5L WS kL TS 4% 0% 6% U8 (® Y8 SA &% (W Ze bu On 60 MU L€ 9 St NE otk
144 seveee
L T R VR T T wd BT wo WA we B0 wm Wi owe Ov B Ov me Ov w12 Ov o ov B OOV 4 2 Wik oW oma
[T S T T 167 e e 7 0 10 W oo it 06 ¢t 0 o ¥ 0 6 & & & 6
2N TS L R P S P A P4 2 W KT ¢ 4e O 6F B UL YL sE oM € 1 L1 8L 6 ¥ L Y L w & T

LL/%0/n0 o NOLIVHYOLNT dN-438 FNTT QION - To dnET HONER o

Figure 7. Mold Line-up Summary

4.4 CONSTRAINT GENERATION SUBROUTINE - GENER

The purpose of the GENER subroutine is to construct
a set of card image constraints to be used as input
for the mixed integer programming subroutine. GENER
begins by reading the "dynamic" forecasting information;
the name referring to variables which change value
after every program run. This section in fact, summarizes
the current inventory levels and the future plant
shipping requirements. Variables such as initial inventory
balance (INVBAL), production required for 1lst week
shipped (SHIPl), 2nd week shipped (SHIP2), 3rd week
shipped (SHIP3), and 4th week shipped (SHIP4) are
included for each mold type. The model checks to see
whether any information is missing or mispelled, and
totals the initial inventory and parts to be shipped in
the first two weeks. A summary of the forecasted
production information follows the initial line-up
computer printout, and aids the user in finding errors
in the input data.

At this point, the model has enough information to
start generating the input constraints. The card images
must appear in certain columns and must be sorted in the

proper order. The input consists of five major sections:

51

52

l. row cards

2. column cards

3. right hand sides

4. mold range cards

5. bounds section

It is important to note that a file, called "CARD"
is created within the subroutine, and that all the card
images are stored there for future use by the mixed
integer subroutine.

Figure 8 on the following page, represents a
summary of the inventory and shipping requirements at
the start of the model. These values are necessary to
determine the future weeks production demands and mixed

integer programming constraints.

53

960t
hhit
Hh9y

gsih
4821
95t
8Z1Z
8zie
ontc
0ol
st
hoge
9Lt
90
08ce
08clL
06Z1
8s8

858

9L

0L

0z

Zhot
hoe
ShiZ

¥J0LS
ALdd NS

129te
heeLe
o8h
ozetlt
hhes
0

(49 %4
0onee
0h0S
Z66%
8zl
89¢L
9180
0848
96h8
PIR Y4
9€si
964 ¢
9cel
0

0o8h
089
919¢
o9ns
06Zh

a3dd1Hs
NdAA HLY

SS1Lt9 = AHOLNJANI TVILINT TIVJOL
enzesl = SNd3K OAL NI QaddIHS S1lHUVd IVLOL
zenel #9s¢Ll . 96hsl 9IshLL 000C-
988s1 L 24} 9L€E!L 88951 ZLee-
el one one o6t oSt -
oL68 80L6 oLé8 9Ini h9(.8
9tSH ounk 9LSHh 9502 oune
0 0 0 Leee LeLe-
9269 (434} 14248 hne 88bL
haL hnet octi €L LOY
ozZit ouye 009 wL6d hte -
891 € ZLoe 96nl L99 (741
0 143 :X4} e 6ulL ~
9%¢ hee 9s¢ 66 1
hhte 0Zse 9LS5¢ $9¢L- inte
ZLhs (1] 34 082S 6t 18 6582 -
hetLs hols 09Ls - Shi 51 0S
o9 (1748 968 969 00¢
s neot ony hesl LLr4 B
088 hotl 896 6Lnt Loh-
896 88t gul i 689 6bh
9s il 0 oLt oll-
0ee ohe 08 Lee LS~
00h 09¢ 0ce 8t (41}
006¢€ HHSE 9LZ¢E heLl Zenl
cent LA TR LL'TAS 8LGL 9cel
ostLe osee 0Lel 8LLe 6l
(3daIns Q3addins GaddINs AHOLNEANT v

¥ddA QUE ¥dam anNe ¥3aa 1St INILINI adb4d

ROILVWUOANT NOILONQOUd - ONILSVDANOI

19

ny
‘1A
Uk
N

. Figure 8. Forecasting - Producticn Information

4.5 MIXED INTEGER PROGRAMMING SUBROUTINE - MIP

The Mathematical Programming System Extended

(MPSX/MIP) package is composed of a set of procedures,

a subset of which deals only with linear programming.

The strategy for solving an linear programming problem
is the ordered execution of a series of these procedures.
The user conveys the proposed strategy to MPSX via the
MPSX extended control language (ECL) written in PL/1l.

The procedure call statement of the control language
calls the linear programming procedures and transfers
arguments to them.

The 1linear programming procedures of MPSX use the
bounded variable/product form of the inverse/revised
simplex method. The simplex method is based upon the
fact that if there are m constraints (or rows) in the
constraint matrix and these are linearly independent,
then there is a set of m columns (variables or vectors)
which are also linearly independent. Hence, any right-
hand side (RHS) can be expressed in terms of these m
columns (called a basis). The simplex method uses these
basic solutions, stepping from one to another
(by exchanging one column with one column not in the
basis on each step or iteration), until a solution
(called a basic feasible solution) is obtained that meets

all the criteria, including the requirement that all the

54

55

column values be non-negative.

Problems for which this last condition does not hold
are automatically subjected by MPSX to an internal
linear transformation to bring them to this form. The
bounded variable feature allows the user to specify
limits on the activities levels for any or all of the
variables. Either upper or lower bounds, or both, may
be specified. Since the bounds would otherwise have to
be represented by explicit constraints, use of this
feature leads to economies in the number of constraints
and in computing time.

After a basic feasible solution is found, the
simplex method steps along, examining a series of basic
feasible solutions, to find one that satisfies the
requirement that the vélue of the functional (or objective)
row be a maximum or minimum; this is called the optimal
solution. Not all linear programming problems have an
optimal solution. If there is no solution at all in
non-negative variables, or none that keeps the variables
within their specified bounds, the linear programming
problem is said to be infeasible. If a feasible
solution is found, but the constraint rows do not confine
the value of the functional row to finite values, the
linear programming problem is said to be unbounded.

If it is assumed that the nonbasis variables all have

zero value, then there are m basis variables left whose

56

values have to be chosen to satisfy m constraints. The
solution of these constraints for the values of the

m basis variables requires the inverse of the m*m matrix
of the coefficients of the basis variables in the
constraints. The recognition of the role of this
inverse leads to the revised (as opposed to the original)
simplex method. The product form of the inverse is a
representation that leads to economies in computing time
and storage requirements and to increased numerical
accuracy.

In the product form, the inverse is represented by
the product of a sequence of m*m matrices, only one
column of each matrix differing from a column of the unit
matrix. It is necessary only to record which column, and
the nonzero elements in that column, to have a full
description of one matrix in the sequence. (This column
is termed the "eta" vector.)

There is one matrix in the sequence (and, therefore,
one eta vector) for each iteration that has been carried
out. Clearly, as the sequence lengthens, the
computational advantages decrease. However, the product
form can be consolidated by "reinversion", which, in
effect, replaces the existing product form of the current
inverse by a minimal (in regard . to the number of eta

vectors and number of nonzero coefficients) product form.

57

The purpose of Mixed Integer Programming (MIP) is to
meaningfully increase the scope of MPSX by providing the
capability for studying mixed integer linear programming
problems. A mixed integer linear programming problem
is a linear programming problem with two kinds of
variables: integer variables and continuous variables.
Integer variables can take only integer values, that is,
cese,—-2,-1,0,1,2, etc. Continuous variables can take any
real number as a value (classical linear programming
problems have continuous variables exclusively).

The study of a mixed integer linear programming
problem is performed in two distinct stages. First, the
problem is optimized by considering all integer
variables as being continuous. It is, therefore, an
ordinary linear m@ogramming problem whose optimization is
performed by the linear programming module of MPSX. The
optimal solution obtained is called an optimal continuous
solution. Then the problem is searched for integer
solutions, that is, feasible solutions satisfying the
constraints and giving integral values to integer
variables.

The search for integer solutions is aimed at finding
an optimal integer solution. A straightforward strategy
leads to a series of integer solutions tending towards
the optimal integer solution (in other words, the values

that these integer solutions give to the objective

58

function become better and better). When an integer
solution is found, it is not immediately known whether
it is optimal. The search must, therefore, continue
until either a better solution is found or it is proven
that no better solution exists. Occasionally,
particularly for problems with many integer variables and
relatively loose constraints, good solutions are
quickly found, but a long computation is necessary either
to improve them slightly or to prove their optimality.
The MPSX/MIP control program is composed of a set
of procedures which perform various linear programming
functions. Figure 9, the Mixed Integer Programming
Flowchart, summarizes the basic building blocks of this
linear programming package. These procedures start with
the LP constraints, obtain a continuous solution, and

finally determine an optimal integer solution.

59

Figure 9. Mixed Integer Programming Flowchart

CONVERT
- PICTURE Problem Input - CONVERT, PICTURE
SETUP Initiate a Problem Solution - SETUP
i’_RIM:TL Oobtain a Continuous Solution - PRIMAL
NVE INVERT
'MIXSTART
MIXFLOW Search For Integer Solutions - MIXSTART
MIXFLOW

[SOLUTION Print Solution - SOLUTION

60

CONVERT is the basic means of problem input. The
procedure reads the input data, converts it into packed
binary format, and writes it on the PROBFILE. Not only
does the PROBFILE built by CONVERT contain all the
problem data, but it may also be augmented by bases
which are saved during a run.

SETUP is the basic means of initiating a solution
of this problem. It has three main purposes:

1. Storage allocation and I/0 initialization.

2. Creation of the work matrix.

3. Determination of an initial solution.

PRIMAL, the main optimization procedure, optimizes
the problem contained at present on the work matrix.
PRIMAL usually termiﬁates in one of three states:

1. the optimal solution

2. the infeasible solution

3. the unbounded solution

This procedure initially requies a complete starting
basis; this is accomplished by SETUP, which supplies an
all-logical basis. The user may modify this basis or
supply a complete basis on his own. PRIMAL exists with
the present basis stored internally (this basis may or
may not be optimal). It uses a composite algorithm and
the revised simplex method. It progresses from the

initial basis to the optimal basis by a series of vector

61

interchanges; one vector is introduced into the basis
and one is removed. Each of these interchanges is known
as an iteration.

INVERT is the procedure that takes a current basis
and produces its inverse in terms of eta vectors. At
each iteration in the optimizing process, the inverse of
the current basis is not computed but is represented by
a set of eta vectors. Each iteration produces a new eta
vector. At certain times, it is profitable to do a
complete basis inversion, both for time considerations
and for the removal of possible accuracy troubles.

PICTURE creates a "picture" of the current matrix
in condensed format; it contains 45 rows and up to 55
columns per output page, and the pages are numbered in
matrix notation for easy identification. PICTURE must
be called after SETUP. The magnitude of the nonzero
coefficients is indicated by an alphabetic code or an
asterisk. A summary of magnitude classes, together with
the meaning of the alphabetic code, is given at the end
of the output. The RHS ranges, and the bounds on
variables will be indicated, if they exist.

SOLUTION tabulates the current solution of the linear
programming (LP) problem. Normally, this tabulation is
printed (that is, written on the system device SYSPRINT),

but, by using the keyword parameter FILE, the user can

62

direct that it be filed in Communications or Standard
Format on some other designated file. The status of the
solution can either be:

a. FEASIBLE

b. NONOPTIMAL (feasible by implication)

C. OPTIMAL (feasible by implication)

MIXSTART is the basic means for preparing the
search for integer solutions. It has three distinct
uses:

1. 1Initializations to begin the search for integer
solutions from the optimal continuous solution.

2. Restoration of a tree and the associated search
status previously saved by MIXSAVE in the problem file.
The MIXSTART parameter for this option is RESTORE. It is
possible to forbid certain nodes which are presently
waiting in the restored tree from being chosen as
branching nodes during the new part of the search. Nodes
and prenodes are not distinguished here because they have
gimilar processing.

3. Continuation of the search initiated by MIXSTART
in this run in certain special cases. One such case is
when the search has been interrupted at an integer node
and MIXFIX has been called. In this case, MIXSTART has
created a mixed phase, destroyed later on by MIXFIX.

This mixed phase is now to be restored in the same run.

63

MIXFLOW searches for integer solutions using the
'branch and bound' method. A MIP/370 tree is scanned
by two main processes:

1. Node analysis: choice of a branching variable
and determination of its new bounds, creation of new
nodes, and choice of a branching node.

2. Branching: optimization of a subproblem.

The search for integer solutions must be initialized
by MIXSTART, which initializes the beginning of a search,
restores a tree previously saved by MIXSAVE, or
continues a search already initiated. The primary
elements of the problem, XOBJ (name of the objective
function) and SRHS (name of the right-hand side), must
not have changed since MIXSTART was called.

When MIXSTART is used to initiate the beginning
of the search, the current solution need not be an
optimal continuous one. When MIXFLOW begins the search,
the current solution must be an optimal continuous one
and PRIMAL should have checked its optimality-feasibility
in the run.

MIXFLOW normal exit is taken when the last integer
solution found is proved to be optimal. This solution
is automatically restored and becomes the current

solution.

4.6 SCHEDULING AND SEQUENCING SUBROUTINE - SCHED

The scheduling and sequencing subroutine brings to
a conclusion the work begun by the asséembly line mold
scheduling model. At this point in time, several
important questions have been resolved by the mixed
integer programming subroutine. They involve what molds
should be added. removed, or framed to meet the production
shipping and inventory requirements of the plant. The
problem for the scheduling and sequencing subroutine to
solve is what mold positions should be chosen to:

1. minimize the mold set-up changes

2. eliminate past problem areas

3. obey the assembly line sequencing rules

4. insure that the proper number of each mold type
is placed on the assembly line

5. minimize the average wire load difficulty for
all positions on the assembly line

The assembly line scheduling and sequencing
subroutine analyzes this problem and heuristically
solves this problem. The subroutine begins by reading
the optimal or best integer solution obtained from the
mixed integer programming subroutine. The output,
stored in a file named "OUT", is the MIP solution
written in a standard format file. The solution is

printed for inspection by the user and appears in

64

65

Figure 10 on the following page.

In this figure, the name and activity columns are
perhaps the keys to understanding the solution to the MIP
problem. They combine a two letter mold code with a
three letter section identification. 1In the ROW
SECTION, there are only several values which are
important to the reader. The objective function: "OBJ",
assembly line capacity: "LINCAP", inventory production
level: "INVEN", and the total number of upenders
required: "UPENDER", represent the key elements of the
model. At a glance, one can see the total cost of
changing the production level and whether or not the
imposed constraints were met. The solution of the
COLUMN SECTION, however, gives the detailed analysis
of the solution of the model. The naming convention of
the column section is slightly different than in the
row section. The name column combines a two letter mold
code with a two letter section identification and a
mold size.

The two letter section identification can be
described as follows:

1. II - integer number of molds required for a mold

2., UP - ;ggﬁer of upenders assigned to a mold type

3. AA number of molds to be added to a mold type

4., SS - number of molds to be subtracted from a

mold type
5. FF - number of molds to be framed for a mold type

ACTLIVITY

14,0009
6.0000
A.0000
2.3000
1.9000
3.0000
1.0000
1.n000
2.0000
R.9000
131.0900
11,0000
1.1000
1.0000
$.0000
$.nn00
3.0000
3.0009
15.0000
15.0000
1.0000
32.0000
32.0000

2.0000
1.0000
1.0000
1.0000
1.0100
1.0000
1.0000
1.0900
1.0000
1.n000
1.0000
2.0000
1.0900
1.0000
1.9000
1.0000
1.0000
1.0009
3.0000
1.0009
1.0000
3.0000
J.0000

1.0000
1.7900
1.0000
1.7099
2.0000
6§.0000
1.92010
2.0009
2.0010
?2.9200
1.3009

3.9009
11.0000

1.0000
1.233200

1€0ST

2.9700
5.8700
5.3700
7.3700
6.5000
5.6200
6.3700
5.3700
$.13700
6.3700
8.7500
$.3700
8.3700
8.3700
7.8700
5.7500
5.7500
$.7500
5.6290
8.0000
5.1200
6.1200
6.3700

1.0000
1.0100
1.0000
1.0000
1.3000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0009
1.0C0n
1.0700
1.0000
1.0000
1.3009
1.0200
1.0900
1.0900
1.00090
1.0000
1.0000
1.2000

7.5390
7.5000
7.5390
7.5001
7.$700
7.5900
7.5000
7.5000
7.%000
7.5n09
7.50%0

7.5000
7.5000

75.9000
75.9200

Figure 10. MIP Standard Format "SOLUTION"

SOLITION OF TH2Z COLUYSN S2CTION

Lrat?

5.0000
6.0000
5.0000
2.0000
1.0000
3J.0000
1.0000
0.0000
2.0000
8.0000
0.0000
11.0000
1.0000
1.0000
4.9000
2.0000
3.09n0
3.0000
9.0000
15.0000
1.0090
4.0000
6.0000

0.0000
0.0000
0.0000
0.0090
0.0000
0.9000
0.0000
0.0200
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.2000
0.0000
0.0000
0.0000
0.3000
0.0000
0.0000

0.0000
0.2099
0.3000
0.0900
9.0000
9.01700
0.60G0
0.0000
3.C000
2.3239
3.2000

0.9%00
3.2000

0.0000
2.20170

66

ULINIT

41.0000
19.0009
19.0090
2.2000
4.0000
9.cn00
9.0000
$.0000
83,0700
21.0009
21.0000
21.0000
1.0000
2.0000
6.0000
6.0000
6.0000
5.0000
23.0000
22.0000
5.0000
50.0000
63.0020

6§.0000
6.0000
6§.0000
§.929%00
6.0000
6.G6000
65.0000
6.0000
6.0000
6.0000
6§.00170
6.0900
§.0000
§.0000
5.0000
5.0000
5.9209
6$.0000
4.0000
6.2000
5.3000
5.2000
6.9000

20.0000
20.999
20.3990
20,7000
20,9900
29.9009
29,0000
20.0300
20.0900
20.0019
20.2000

40.0000
40.0290

2.9009
2.9900

RCOST

0.0000
13.5000
0.0009
91.0000
7.6300
13.2%900
0.0000
0.2090
14.0000
15.5090
0.2000
16.2000
73.0000
86.5009
1.5000
0.0020
89,3800
89.3800
0.0000
12.6300
1m,.7500
0.2000
0.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0600
1.0000
1.0000
1.0979
1.9000
1.0000
1.0000
1.0000
1.0900
1.0000
1.9000
1.9990
1.2029
1.0009
1.0200
1.2000

0.9000
Q.9009
9.30C0
0.0790
0.3000
0.3029
2.0C00
0.0909
0.00M
2.2090
2.0000

0.2500
2.9900

23.30979
9.7030

NURBER

133.0000
138.0000
135.0900
136.0000
137.2000
139.0000
180.01000
161.0900
132.0000
133.0900
14a8.0000
145.0000
186.0009
147.0000
188,000
139.0000
150.0000
151.0000
153.2000
154.0000
155.0000
156.0000
157.0000

158.0000
159.0000
160.0000
161.0000
162.0900
164.2900
165.0090
186.09200
167.0000
164.0000
163.0100
170.0090
171.0000
172.0000
173.0700
174.0000

7%.0000
176.0090Q
178.9C00
179.0000
180.000¢
131.72000
182.0000

134.,0022
196.0000
189,.9900
112.0200
191.99790
195.9079
197.3000
220.9¢72
291.2900
274.0000
205.0032

231.0000
232.C990

247.0009
250.00920

STATHS

v
19
144
14)
|44
v
Iv
Iv
17
17
17
Iv
7
14 4
1v
144
1v
7
1v
v
18
Iy
v

iy
1Y
1y
14/
v
w
™
14
v
[
v
1v
144
v
144
17
v
14/
b4 4
™
17
T
17

Ly
1y
T
7
7
1&)
19
I?
1%
7
17

1y
v

v
17

NRIE

ACTLS
121TS
YLIIS
ARIIL
AJIIL
ANTTL
AOLIS
AIILS
A2IIS
ASTIL
AXILS
AVIIS
8GIIS
BMIIS
BJIIL
BKIIS
KRIIS
KLIIS
HALIS
¥yvLIS
TILIS
BRIIL
BNIIS

ACIPS
YRUPS
LIPS
AHOPL
AJUPL
atuet
AOUPS
Arues
Az02s
A¥IPL
AXN2s
AVYPS
3GUPS
AHUPS
B.J"PL
317Ps
K2UP3
LLues
181PS
T77IPS
rives
BaUPL
RANUPS

TIAAS
AHAAL
AvaaL
AZAAS
AdaAL
ATAAS
24AARS

TRAAS
XLAAS
TINAS
[rass

BLEL S
BASSS

AHPrS
x3°rs

67

For the example in Figure 10, the name: "BNIIS"
tells the plant that 32.0 small "BN" molds are required
to satisfy the production inventory and shipping
requirements. "ACUPS" implies that 2.0~upenders MUST be
assigned to mold type “AC". Finally, "BHAAS" states
that 1 small "BH" mold must be added to the current
assembly line configuration.

The scheduling and sequencing subroutine tries to
determine the problem mold in the specific problem area
on the assembly line. the model would remove this mold
and replace it with the largest wire load difficulty
mold which staisfies the sequencing constraints from the
set of ADD molds. At all times, the intent of the model
is not to exceed some specified wire load difficulty
average (say 27 as a first attempt). There will be
molds, however, which cannot be added or removed from the
set of problem areas on the assembly line. Therefore,
the model arbitrarily starts at some mold position
(typically position 60), and hunts on either side of
this mold position until the set of SUBTRACTED molds is
satisfied.

At this point, we have solved many of the problem
areas, and at least know the set of mold positions which
must be changed. This strategy insures that the
minimum number of mold changes occur, and that these mold

changes are as close as possible to one another. We also

68

know the set of molds which have to be added to the
assembly line at this point. The model systematically
places the required ADD molds into positions, keeping

in mind the assembly line constraints. If the assembly
line cannot be satisfied at the stated wire load
difficulty, the model increases the difficulty and tries
to solve the sequencing problem again.

Figure 11, shows the intermediate results of the
scheduling and sequencing algorithm. The four columns
represent the position of the mold changes, the molds to
be added, subtracted, and the wire load difficulty needed
to satisfy that particular mold position. For example,
if the model was unable to schedule a particular mold
type, this sheet would explain which molds caused the
trouble, and what mold positions could not be filled.

It represents temporary output, but also an alternative
schedule if the plant can tolerate the scheduling
violations.

The assembly line scheduling model and in particular
the scheduling subroutine, tries to take into account
the human factors of the assembly line. Up to this
point, it has been told that an average wire load
difficulty of 27 is acceptable at the plant. So the
question arises during the scheduling program; what is
the upper limit of wire load difficulty that an average

assembly line worker can handle without falling behind?

4 ICNT= 0 AVAIL SDIFFP

4 POS ADD SO0OB REZD

59 AV nn 1
61 yv nn 3
55 vy L1 3
M II BK 14
75 BH - BK 14
42 AZ BR 12
a1 TR BR 12
40 AW BR 8
39 KR BN 13
38 Av BR 8
82 BK BN 17
83 AV BR 3
37 KR BN 13
36 1. | BR 8
84 KL BN 12
35 KL BN 14
34 ny BR 8
86 BK BN 17
33 1L BN 14
32 L BR 8
88 AR) § 12
31 AV BN 14
30 BK BR 17
90 AN BN 16
28 AV BR 1

5 AV 1L 6
179 AV BK 10

THE SCHEDULING & SRQUENCING ALGORITHAR WAS SOLVED WITH

AN AVERAGE WIRE LOAD DIPFICOLTY OF 28

Figure 1ll. Intermediate Scheduling Results

70

This is an important consideration, since a person must
perform the work. An average wire load difficulty of

33 might be acceptable for one or two positions on the
assembly line, but is cannot be maintained for any long
period of time. The model considers this fact, and even
though there are problem areas, the model tends to help
spread out the difficult positions. 1In other words, the
assembly line model considers the human aspects of
producing foam parts, and tries not to overload the
amount of work the wire load team can accomplish.
Previous models have just considered the wire load
difficulty average as a number, and although answers
were obtained, they were far from being feasible to
implement.

Figure 12, on the following page shows the final
mold line-up summary sheet. It summarizes the positions
and the molds to be added or removed from the assembly
line. It also describes the problem areas which resulted
after implementing the new line-up and shows the new
configuration of molds in their proper positions. 1In
other words, this figure represents the final mold
scheduling solution and future mold change line-up of the

foam assembly line.

71

¥ av (74}

(L] [} 0L
LT'] ny 1'1"] € =Nd
nu b ('} 94 ¢ -uN
(1] an (1)] =11
Ha AY tu st =AA
[1) w td'] ul -y
nG (] LY 0 ~19
b 1) 11 1Y)] =7y
wu AL "9 t any
(1] 1] s 4 =44
w [Y) s [Y
LT') v (4] [} -y
(1) ui i] =9l
(L] 1] (0] L =AV
n ux ot (X} =XV
L] av "1] Ay
" u o 4 =2V
L] 1] 9t [} = AV
LL} i st] 0V
u (1) (11 1 =NV
(1] u o 0 il
we i L 1Y) Wy L4] =y
ue ty (1] (1] (13 < =nv
(‘14 L 4} L) 1) (1 9 iy
(‘24 [R] [T} . av we 9 =4l
['14 v " [} Y M =0V
ALINIO1440Q dUIA IvViIOL NOMLISOd a0 a’ltou HOIL1S04 AN1T RO
LYANY W4 TA0Nd 340U aav u0u LUTON 4U YIUWON IViIOL

L ML Av OV W@ we HH oy W o4 aA XY XY DY WU DV Wy Hil W u
6 6 0 0 3 v B 9 0 4t 0 0 0 41 0 At O N "

Al OUl G6LE BLL LLL LN SEL SLL CLL 248 0Lh 011 691 W91 191 991 S91 a9l 191 491 1YL

cixl
=y

T I T R TU R TR T | st 0BG oy Uil we 00 ea B0 wa N0 wd N0 we U0 M ¥d ww B@ ww UG wd HT wu

[YR R T (3 T S - SO N SO Y SO A I SN A TN SN ' VO IO SO AN O T 1 R Y B ¥

091 651 6.1 Lel 96l 150 Ol Chi UNL LWL 9NL SNL NNL LML ZhL IWE Onl 660 HEL L€ 9L SEL NEL (Rl Ze8 6L 01 20
00c0e ee

e owe Ov W@ we U@ xv o we AV 14 av av 3 aw xv oav T3 av A¥ aa AV aa zv aa AV Ov ww DV BV xv v av

7 0 60 07 e B0 w5 e 0 o I o 0o e o % € ¥ ¢ € 3 0 6 0§ o o0

WL LT 9k SCU GZL LCL €Ch B20 020 oL BEE £0L 900 SAL UL LEN 200 060 OV, GOL O £01 Y0L SOL HOL LUL 20 100 001 66 He L6

ve 1 ee (1] (1] (L e e¢
Ry av 12 Wi owe v BY v BT v ye xv o av we e B3 an @ Ov Ov md WM LGN J) MU A WM AA BV W
8 0 o 07 it 0o T 0 W o 9w 0 6 0 9 0 B 9 0T 0 o0 4t & 6 s W s ¢ s v ¥

Y0 6 WL 16 T6 16 O LU WU UM 98 SU WU Y (B IV 0¥ bl WL 4L 9L SL ML EL TL ML 0L 6y 8Y 1Y 99 &Y

4 seveee ee o0 (1] $s se s 35 eo e te g0 ce o6

AN ME o AA an TT av aa we aa aa PO xv wu aa ww oaa BT ww aa w @V ww zv o AV wy AV wy w1y we o
S T S < S T R Y S WY < J S S W S N ¥ WS S S N A T S SR Y S S S A N N ¥

VYUY €Y 19 09 tS ¥s s 9% ws ws (5 TH IS 0% LN He L8 9N Sh o We (8 2¥ Im Gh LU B 4L YL S WLt
1) ee

WAV wu wu AY Wt HE Nw Wd we W o we B0 wa B we DY BV DY mw OV U W o Fd ov av 4 wa wak om
L T O S o N O X O S T L S T I I 0 T o 0 6 6 & 6

T S TR S T T AR 7Y S 7O ¥ S22 ¥ S T2 Y SO VTS § S T R S TS Y S 4 S N S 1 I S T T S |

Li/w0/n0 eesee NOLIVUHOING dN-U4dS 4AN1°1 UTO0H - ¢ 4N1T HONAD sseee

Figure 12. Final Mold Line-up Summary

4.7 SUMMARY

This chapter has tried to examine the various
subroutines which comprise the assembly line mold
scheduling model. We examined each subroutine's function
and objective, trying to relate each piece to the overall
model. The mixed integer programming subroutine and the
scheduling and sequencing subroutine described here
determine the proper number of molds, and the placement
of these molds on the assembly line. Now that the
model has solved the assembly line scheduling problem,

let us examine what conclusions can be drawn from this.

72

V. EXPERIMENTS

This chapter will examine an experimental run made
by the plant to determine the assembly line sequence of
molds. It summarizes in pictorial form the input and
output as it actually appears in a production run. The
keypoints in the following pages are denoted by a series
of numbered circles which can now be described:

l. assembly line header - 80 character title card

(Figure 13).

2. parameter input card - includes the total

number of mold types, the number of shifts, total number
of molds on assembly line, number of currently_available
positions in warehouse, average starting wire load
difficulty (Figure 13).

3. static mold information card ~ includes the mold

code, part number, mold size, wire load difficulty,

number of parts per cavity, platform loading, total

molds available, total molds framed, tape after post cure,
standard pack per basket, production rate per week,

value of the part, safety stock (Figure 13).

4. assembly line input mold position summary - the

molds are listed in the order they actually appear on the
assembly line before re-scheduling (Figure 13).
5. constraint solution - denotes the name and

activity of a row, represents the answer of the value
indicated (Figure 15).
73

74

6. required molds section - denoted by an "II" in

the name, this group represents the required number of
molds necessary to satisfy the production requirements
(Figure 16).

7. required upender section - denoted by an "UP"

in the name, this group represents the required number of
upenders or baskets needed to pack the foam parts for
each mold type (Figure 16).

8. added molds section - denoted by an "AA" in the

name, this group represents the number of molds to be
added to the assembly line for each mold type (Figure 16).

9. subtracted molds section - denoted by an "SS"

in the name, this group represents the number of molds
to be removed from the assembly line for each mold type
(Figure 16).

10. available molds array - this section represents

a summary of the mold types and their particular wire
load difficulties that are available for scheduling at
some assembly line wire load difficulty average
(Figure 17(a)).

1ll. current scheduled solution - this section

represents the mold position, molds added and subtracted,
and the highest wire load difficulty which can be fitted

into this slot on the assembly line (Figure 17(a)).

75

12. solution statement - this temporary printout

states that the model has solved the problem with a
particular wire load difficulty average (Figure 17 (e)).

13. final mold line-up - a summary by mold position

showing the line-up of molds on the assembly line once
they have been sequenced and scheduled (Figure 18).

14. mold position summary - a listing by mold

position of the molds added and subtracted to establish

the new line-up (Figure 18).

76

sesese NOILVHWUOAN]I dN-208S ANIT GTON

EE N EEEEEZTZRBRE2EERERN>NENEZEXZ

<8 ANTTT

96 19
6h 6h

6l 7¢
8l e

HONZG

-

- O e -

w——_pooTmmaAaoCOo~NMTO -
- -

EXEREREZENEZEZTZZTIZZTEEEENZTEZE
SrEraNNTmEmEEe NANNNANNNNNNN™ N - -

<
v
-

(A RXE

MNMENE (At AN NNNNINTNRENLan

4l NU Ad
dd N9 Nd
XV rd AY
XY AV Hu
NG AA 4R
19 KWW NV
NV N4 N8
AA uH Nd
AV 1R MY

909L000¢
L561L000¢
cB09t L6
€L96L90
2196496
920€90¢
6nLCI90tL
8hLeIoL
[XXX YA}
tieLedt
ghottLl
Lheet Ll
60LNn691
teh o9l
cuhhoyl
€9S50691
7950691t
£5$500691
14500691
6l6L891
062LL91
9o LLYL
LOLOYYL
9010991
694L691

L8l €

Figure 13. Sample - Mold Line-up Summary

77

cyeEnun = AHOLNZANT ‘IVILINL TVIOL

L5691 = SYJJA OAlL NJ (Q3d4ddINS SdLuvd TVLOL
9Isnt 9s8Ll geeesl 480L1L 9LL6lL LTt - 00s81
099¢ 09nLi 0si8il 26691 6EL6L €eee 90nLL
Hh98 L1} Zel ol 0 sZe SeZ-
gest oselt ozLe ooLLL 09SL 86zt 20eh
el 8265 089h 0665 TENE <06h OLhL -
95t e 0Z9 91l nhe Lt aLe
|4 ¥4 8001, ozt et ocit 9L52 9Isnl -
8Z1¢ 8001 (149 [A%4) eoot hone 96l -
onez 0zZte onee 0oo0¢ osnt * 080t 00ne
0col hylte H91¢e Lot 9ot teet 9t
(419} T4 8 0 0 0 0 0
hoe? L1y hue Wyt 0 891 891 -
9Lt 9452 h9ne 9152 zLoe 080€ 8001 -
806l ce6h uotn 0hZ9 950N LIAT:] 99460~
082 0ceEn helLs 09LS HeetL LRTR 998 -
08etL 89L oont ot st het 89¢L
osZi 434 "ot 4YL hzot 962 89L
846 anL g6nl 9501 9Lzl 8ot 88
648 osb eant 896 4% 1% eLe hes
9t t 0 94 0 96 ont he-
0ZL ozt 091 o9t one ozt ozt
0lL 002 04z (1] 14 oce 09¢€ Oh-
chot <601 h96¢ ohez 111 %4 9Ll 89
Znoe 629 Zent neie onee noht 9t 6
L1 1¥4 oun 0n9e (121173 .09t 066 0Le
AD0LS UdddIns U3 ddIHS a3dd1Hds QdddIHS A8OLNIANT e
kLadvs ¥4dM Hdh N3An ant N3IAR aNC ¥ddn 1Lsi IVILINI aod

NOILYHYOINI NOILONUOHd - ONILSVYDIHOJI

Figure 14. Sample - Production Information

78

yusny
(U]
CIGR.})
unsoHY
[T L1
nuvuy
COR AN
aqvaa
Javuu
auvin
aavy
qaavey
anvan
aaveu
aavue
auyn
auvay
auvay
aayny
aoviy
aavay
yuavov
davNyY
aavy
anvey
aavuy
anvil
aavuel
auvow
LEETT
Canng
[T RN
[XTTY)
LEFTTY
03u19
Davy
Canuy
OCauny
03ury
[T
[P TR
Odany
0anxy
[PTTY]
Oaney
OAuAV
Gadov
Oduny
Dauy
duey
haune
Cauid
Cdduld
tannw

[N

auvu

sy
s
L4
S
m
ui
am
am

‘h

sn

Y]
L
LA
€
Su
k)
s
sy
Sy
su
o
L

s“ndvey

VLouT sy 0000°0

000U NS voo°o
[T A KA woov-o
0000°24 [T TR
ounoes 000y L
000" 0% [LTTT)
0LV hN [T I]
00LL° Bl ['11Y4 It 4
Vonote unoo "o
0000 Yy G00s L
LI AN 0000°0
0000° W 00000
0000°Cw . vous L
00N0°Tw vouno-o
ool e 000s ¢
00V0° 0N 0004 ¢
0VOL0 "6t 00sL°0
0000 ¥t ooeet
0v0o° et 00000
0000 ° 9§ 0u00°0
0000°%¢ 0000°0
0000wl 000o°0
onho-tLe 00000
0000° ¢t 0000°0
ovoo“tt 0008 °L
0000° 0t 0os L
vouo-e? 0004 °¢L
0000 " ue 0ous L
Govv et ovos L
0000 °Y2 0000°0
0000°4 0000°0
[T 'Y 4 00000
[T ¥ 4 0000°0
0000°22 0000°0
0000t 00000
0000°0¢ 0000°0
0000° 61 00000
0000l 0ovo-o
[JOHTA N 00600°0
0ULo° 91 000070
0000° %t 0000°0
0000°nt 0000°0
0000t e 00000
ooon-zi vuuo°o
VoL It LV0o00°0
0000° 08 0000°0
0000°6 0000°0
0000y ovuo-o
0000 ¢ 62066° Y-
Hwooo-y onoo°o
[ITILTT1 R 00o0°0
0000°w 0000°0
0000t 0000°0
0000°2 ovvo e
woo0n 0000°s
LRUTIT] ESl MR 1]

0Nno -0
uove o
0000°0
0u0o*o
0uno "0y
0000 LN
LT
0000 ° 9
sonnce
00004
0000°2
Govo ¢
0000°Y
0000°y
00000
VLo -0
Vo002
0000°S
00069
00002
LLUT ¢
0000w
0000°n
0000°0
0000°4
0000°4
00oo-“t
0000°¢
0000°
0000°1Y
0000 he
0000°%
[TUTRE X4
0000 °(T
0ove*
0OV Y
0oLy
0000°9
0o0o -y
00009
o0V Yy
0o TT
[T A ¥ 4
060012
aono "9
0000y
00006
0000 b
00002
0000°n
00002
00006t
0000 ht
0060t e
00000

ISR

00001
oot
0000°€
0000w
6oov-o
0u0o°-o
0n0oo-°o
00V0 "0
ouno-o
00ov°0
0000°0
V0000
00000
0000°0
00ve 0
0000°0
0000°0
000No0°0
0000°0
0000°0
0000°0
[T)
Voo o
oovo-o
0ovL-0
o0000°0
00000
0000°0
0000°0
[T]
0000°0
vuon-o
LT
vopo-o
0000°0
0000°0
oowvo°o
0000°0
oovo°o
oo o
0vvo o
00000
0000°0
VoL 0
0000°0
oovu-o
000070
vooo0°0
0000°0
[TTT]
0000°0
wuoo-o
0oovo-o
0000°0
0oVo -0

418111

NOTLID4E AOH QNE 40 NOLLNTUS

0V0v0°0
[TTHU R
0000 -
000§ -
00000
00u0 "
00000
[T
0000°¢
L0000
LTTYTT R 4
oo
ouvo-o
onoo-t
Vuno-0
oo
aono o
00000
Oouo°e
0000°0
00000
0000
0000°L
0000°0
00000
QoL
[TITR]
00000
0000°0
Lovo 0L
00004
0000w
00009
000014
[T
000079
0000°Y
000Ut
0000
0000°s
0000 -¢
0000°02
0ouo0 "9y
000L0 ol
oobou-°w
0000 €
0000°¢
V0V0 Y
ouno°t
0000°2
vuoo-t
0000°518
hovo-ut
0000 " »f
0OST "aHZY -

WIS

0ooo-“
(LT
ouvo*
0000 "L
00000y
0000 "uh
0o o
0WO0o "9t
woov -2t
[TDTIAY
0000°0
0000V
0000y
000N
0000°0
wgou-o
00uo0*Z
[TV
©000°2
0000°2
0000 ¢
000v 2
0ooo -t
[TU TR 1]
[T}
0000
(TIOR8
0000 °¢
woun”
GOy
0000 “ue
0000y
(TTTIRLTY
Qoo ¢t
0000 °¢
00000
0u06 0
[T AR Y
(T A]
ULV Y
[T}
[T
0e0o "y
0nuo "¢
vove -
0000t
0000°7
oooo-t
[T A
0000°2
0ooo 4
0uuo "y
0oL
0000°¢

[T AT}

Ad1ABLOV

Figure 15. Sample - MIP Row Solution

79

audne
uulav
aNiay
aniny
[(L}F ¥4)
UN3AY
L FIN
auiny
undy
aniry
quany
ana‘s
andu i
aNdaN
LLELL
LLPYT
LTFRR]
LIFIYY
TR
LLER N
Wyt
L 2PLE]
ba iy
wudare
'TFLI
LRI
WU day
NudRy
wadny
LTRYA |
CLERY)
waiov
HHiny
iy
[T FIN
wadny
LLENPY
Hudul
vy aov
L GNY
dusag
yauslt
UOLAA
Unsun
HnsS1y
HnsIy
upnLu
U TN}
fHnsey
waLvug

HnsIv
nisay
HOLLY
UnuaY
gasov
Hnsny
sy
wuLey

su
w
s

1
i3l
sSu

0wnovo st
vooo-eil
wnootel
000 Tt
[T A NN
ovon ol
Voo ent
hooou-uol
0000°L0}
0000° 901
0eu0°sot
V00080l
oo Lol
0woooZue
000010t
[T IR TYi] }
0u00 ue
0000 "By
0000 L6
€000 " Y6
0000° 4t
0000° ke
[T ¥ Y
LTINS 48
ovuo°tL e
00O 06
0000° Gy
0000° Hy
000018
0000 Yy
LT AN
0000° 8w
000" LY
0000° 2y
0000" 1Y
0000°0Y
00006t
0000wt
[T AN ¥
00u0° 9
0000 8¢
0000° 8¢
onoo e
000"
0000°4 ¢
0000°0¢
0000°6Yy
[T)
0000ty
VO00°99
0000 %9
0000° 8y
0000ty
06000°79
0n6ocLy
0000°09
G000 bY
[T TN
0000° 1S
V000" Ys

GOVo°0
ouono°o
ooonp
0000°0
oo
0v0o°0
0000°0
000070
vooo“-
00Vo°0
woo-u
ovoo‘o
00000
oLLo o
©0000°0
Q000
00000
wooo°o
ooov-o0
00000
00u0°0
0000°0
0000°0
6000°0
0000°0
0000°0
voun-o
[T
0huo-o
voov-o
0000°0
wouo0°9
0000°0
0000°0
ouvoh°0
0000°0
0000°0
uou -0
©@000°0
woou°e
000% *L-
0000°0
000s L~
wono L~
LO00O°0
soze-
aMozeL-
w000
Wos -
wuooto
LLoo°0
boos -
0004 °¢ -
0nos L -
[T O 1)
0oL 9~
0008 ° L~
0ouo-t -
oo o
0000°0

0one-u
ounuo
wouu -0
00000
[T)
0u00°0
0000°0
0o00u°0
00000
0Gvou°o
ovon-o
00000
00u0-e
00000
0U0U 9%
0000 6N
D A4
LT A
0000 UL
0000
Q000
[T
vouo-e
00009
ooen*
0000°S
[T ¥4
00006t
0000t
VOLD "N
ovoe-°s
[JU TR
0000w
00001t
[LITH] O 4
0ovo°2
0ono g
[T 1Y
000092
0veo°0
uLove
00v0°0
00v0°0
000070
ouvvo-o
0000°0
00000
0000°0
00000
0000°0
oono-o
Qo000
0000°0
00000
0000°0
onne -0
00000
0n0n 0
wouo "o
ouhu°o

Qo00"0
auootoe
[JUTIA]
0000°0
W00
veoov
0000°0
[THTT)
0000°0
0000
0vao-o
0000°0
00000
0000°0
ooueo0
0000°0
0000°0
00000
0noo-o
0000°0
000" 0
0000°0
00000
0000°0
0000
00000
00060
00on "0
ovuo0-0
00000
00000
[TY11i 0
00000
LI A)
000070
0000
00000
00000
wooo-o
0U00 0%
0O00" 6N
wuoo-e
0VLOO "9
000
[TITiT A}
0000
0000
0000°%
0o0o°s
o000
[TT O]
wono-e
0000°S
0nau-°y
ouno -t
0000°¢
0000°N
0000 N
00000
voou -

LZiuTo-
Znls°0-
SLML 0
WHEH0-
0Ly -
T4 i
N9E9°0-
YNLH 0~
00000
000y "0~
00060 -
Hhet “0-
wue "0~
[XXA B R
0000°Y
0000°4
0000t
€060t
0000°Y
vuoo-t
0000°¢
0000°¢
0000°¢
wooo-7
voov-e
LTI 4
[T MY
0000° 8}
LT TV REA)
vovo -2
0nooo -t
wouo-§
(LTI A ¥
voovo-t
00000
0000°1
000eo e
0oou-ot
000061
[ILTTV R
00000
0000 -
[T)
vouwo-o
0000°2-
0u00°"0
0000°0
00000
0000°0
00ov°y -
[T A
woeo o
00000
Qoo
00ueto
[TU TV
0000°0
0000°0
0000°0
0ouo i -

LY4 X"
bl n
SN0
bUHE "V
(RN]
Y4 'R
u9t9°0
LT T Y]
0wouo o
000y "0
0noK "0
LLCTTY A}
[T]
tien°o
0000ty
LRI AT)
vouo°
00009t
voou Tt
00ove -y
ouvunto
00060
0000y
[T)
oot
[}
000 "¢
[T 1AEA
00no ¢
ooy
0Yo0 "t
wonn i
aouo
w0000
0000 "¢
(YT}
Voo
0000 n
0000t
[T R KA
0Loo LN
[T A}
0Ho0 "9t
ocnucet
0000 "¢
woon-z
ovoo g
0no0u"Yy
Voo Y
00001
[|
0ot
0n0e Yy
0006y
[T (A4
VOnn "t
0000 "
[TV e
(TN
[TUU T4

(continued)

Figure 15.

Hdudan
[FILR
auin
PHIL D]
TNy
A¥ON1T
LRI
wuanu
und i
anaan
anawu
angnn
ANl
'LPLD]
UNA N
LLEIR]
anang

80

00oV"2(
ovoo°i(
[T T
00007671
000062}
0ouo e
0000°971
0000°471
0000° w21t
0000°¢ 71
0000°221
00001 T1
0000° 078
00000t
0000 i 1
0000°L V1
0000° 91

0000°0
000V°0
0000°0
0000°0
0000°0
(LI
0vooo-o
0000°0
00000
0000°0
0000°0
0000°0
00001 -
00001 -
wouo-o
000070
wno-o

Q000 "Lt
(U WITTY
LTI TREN
0000°Y
00V0°Y
0Ho0 1 el
0000 "0
0000°0
000L "0
0000°0
0000 "o
0ovo -
o000 -0
00000
00000
0ooo "o
0uoo ‘o

0o00°0
00000
00000
ovuo-0
0000°0
avoo-tel
Vo000
woovo°o
0000°0
0000°0
0000
0o o
0000°0
000" 0
unoco- o
0000°0
0ouo o

/

Voot
UTTS AR T
0000°Z
000h°e
0000
00V0°0
(1s2°0-
21990~
ttiw’0-
Wtz o-
58T "0~
4900 "0~
0000°0
wouo°o
$999°0-
¥999°0-
SLt6"0-

[TTITITRE 4§
[T R AN AN
0000°¢
0000°w
0000 “
0000 "L ue
(ARl
“L99°o
ttie’o
i Z°0
¢suey
SS90 °0
oovo-o
ovva-o
$999°0
HY99°0
“eLe "o

(continued)

Figure 15.

81l

a0

-

Lvva Al 0000° Lue 00000 [T 1Y 00000 0uvus L ()
(A1 1)) At 00o0°S0Z ©woLo-o IR T4 0000°0 000s L wouo
ATTH al V0oV Cn¢ 00000 [TIILL A 174 0000°0 0oL L 0000t
svvnq A 0000t LY 0n0o"0 0000°02 0000°0 0uos L 00001
___— Lvvae al 0000° 9Lt 0060 LLLOo "0 oovo-o 0oes L 0U00 "t
ey At 0000 Lwl €000 [T T4 00000 0008 "L [T]
4 A kY T VVOL 4 b i~ DOV 0 vouacng 00000 000s "¢ ovoo-i
cvval [} [T T woov°o T ovooecne 0000°0 0005 °T [T}
SYVDV [} 0000t 8l 0V00"0 [T A 114 00vo°0 000s "L vovu L
SdaINy Al 0000°Zul 0000°8 [T) LTI 0000°8 0000°y
Tanue Al 0000°8 61 [T M) 0000°9 00000 0000t 0000y
S0l Al 0000°0Wt 0o00°8 00009 00ov°o 0000y [T
[TTY) At [T Y] LI} 0000°9 0000°0 000014 ool
Sk Al 0000° 6Ll 00004 00009 00000 (TN V0N "¢
101 Al 0000 2Ll Q00" 0000°9 0000°0 00001 0000t
sdnie Al 0000 wLl 00008 0000°9 000070 V000" 0000y
1q0re Al oono-cel V000°8 LT A] 0000°0 0oV -1 Voo
LA Al LU Ay ¥3) (D] 0000 °9 0000°0 onoo-t 00004
(A TTHT] Y] 000074 (4 [T 0000°Y 0000°0 V0004 —— 06008
SaNAv Al 0000041 00v0°1t 0000°9 000020 —— V00O "4 0000t
sanKy Al 0000°691 0000°8 — 11T} 9" 00000 0ooo-i vuou-t
adOnv Al 0000 UYL ____— 0000t " 0000°9 0000°0 0ouo g [TTYTR
sanzw Al 0000191 voou-y 0000y 0000°0 0000°1 00001
Il\.\\lh.:.: 0000°998 0000°8 0000°Y 0000°0 oovo-t 00001
Sdanuy Al 0000°591 [T 0000°9 00o0°0 LD [LIUOM]
Tdnuy [[T A 2T 0000”8 0000°Y 0000°0 [T MY ooou -t
Taney a1 0000 TYL 0000t 0000°Y 0000°0 0000°4 vono-" i
qanny At 0000°1 98 0000°4 0000 °9 0000°0 IR} 0000°4
sdnik Al 000009t 0000°¢ 0009 0000°0 [TV 0000°4
sanni [y 0000° 641 0000°) 0000°9Y 0006°0 0000°1 0uuo -
SdNOV [} 0000 °6S1 Voot 0000°Y 0000°0 [T} uoo L
S1INM [} 0000°2%4 0042 "8t 0000°19 00001 [TT{R] 0L00" 1Y
IR EL (Y] 0000° 951 0000°0 [DT 0000°9e worey 0000 " ¥
sty Al 0000°5518 0000"St 0000°S ouou-i oozl -y woon-t
[FETY) Al 0000° 848 0o e 0000°27 vuuo-oL ouo0°-w [TTTRETY
ISR Al 0000°€S) 0000°0 voou - Le 000070 00¢9°S Voo -2t
I A 0000°2%1 [T 11 00Vl "W w00t 00sZ°S (IO Y
Sy (Y] 0000 bWl 00yl 0000°¥ 0000°% 008"y 0000°s
1110 [Y} [TTTNCTYY [Ty B} [T) 0000w 008"t 0000 "N
s1lng Al NoOV LN 00se *€l 0000°Y ovoo°s VoL w [TTUVRNY
— _ §112¢ Al [THRET Y 0052 €L 0000°9 0000°¢€ 0Nl "n V000" ¢
SIIAV % b——_____ 00ue-sel 0000°0 0000°¢¢ 0000°0 0OLE"S [T
StIxy eaaa-:Z:F.o/".Eo.: onov°o 00sL "» 0000 s
1INy [T WYY o0sLL"0 0ve4E—___ 0000°Z 00169 [TUTN
s112v 0000 2wt vusLy 00009 00007 ————iila oouou'?
SIIAY 00008 8l 0u00°0 0000°9 0000° 0oL s 0000°¢
2318] 0000 0Nt 00820 00006 0wouo-t [T TAS] 0000 "¢
THINY 00007601 0000°0 0000°s 0000°€ 0029°% ovuut
R IRIN] 0060 Ll [T Y [T 0000°? 000% °9 [TUTAE 4
RRRL] 0000 Yt L 0042 "9t 0L00-¢ [T} 0oL 00008
s 000u°SEL 0052 “Nt 0000° 00u0* e 00e8°S 0000w
IRRLTY 0000°wt L [TV 1} [T A} 0000°¢ vuee s [T)
St 0uoo i €1 [TEYA4 XY 0LLO "IN 0000°¢t [LKA LTS
FULT] S0avLS dausne 15004 416170 114111 FERINT] IFYRYFRI]

#O14D4dS wUOTVD

dNL 40 NOLANTOS

Sample - MIP Column Solution

Figure 16.

82

Issud
LLUGNM
L5818
$854%
Issed
TJUSAY
L0
TLLNY

Al
Al
Al
al
Al
Al
[}
Al

[TON AT ¥4
0000822
0000°9e
0000°$22
0000 gLz
0000° 6t 7
[T A4
0000° 8L

o0u0o v
000%°0
wee'o
LT]
0000°0
0000°0
00000
00UL"°0

0000 0N
00000
000002
0000°0?
0000°0C
0000°02
000007
LOVo "0L

0000°0
0uvo-0
00000
0000°0
0000°¢
0000°0
000VL0
00000

voons L
[T
0oos L
000S°L
00os "L
00us "L
vous L
wous L

[T
w000
0000°2
00002
0000°14
0000 %
[TV 4
00008

(continued)

Figure 16.

83

i 62 0L L4S ONI4H MON ST UM
EZ 40 AL'IND1441Q GVOT FHIA IHVHIAY NV HLIA GZA10S 34 JONNYD W3THOHd SNITNQIHIS FHL

9 NY Znl
9 NY 174
] v 19 [}
L nv cy [{]}
[]8 LB] ot 46
ni 1% g 8¢
9 nv (¥
9 NY 6L
9 Ng n
rd b1 ou “eL
9 v oV Gh
t ug v 9h
i kR 11 Ln
L av 19 te
L WU OV 0s
L NV 69
L ov 4y
9yl -9] b1 99
[4} [} NH L1AY)
L rd NG 09
gdaN €g0S dav sS0d n
6 vl
6 1R
L NU
it LT]
it na
(N1 NY
(4} ry

441408 TIVAVY (L =lNIO1 &

Sample - Intermediate Results (LWD 28)

17(a).

igure

F

84

0t

6Z 40 A1lTIND144I1I0 AVOT SUIN FOVHAAV NV HLIM GAAT0S 3d LONAVD WITUHONd

o~~

0d 1d4S I9N1A8 AON SI dm1

Nd
NG
ry
AN
uy
e
4}
NV
N
g
(1] §
ud
T
ny
L]
NV
ov
ux
ny
ra
addn

4410$

S
rv
R
od

10
040
el |
el |
11

IV

4ns

TIVAN

aav

9

ONTINA3ARDS dHL

nl
Y4
[
001
96
He
(X2
6L
Zh
SL
QN
9h
Lh

=IND1 &

Figure 17(b). Sample - Intermediate Results (LWD 29)

85

ot

40 XL10101331IU AVOT FYIA

LE Ol 1JdS 9YNIAE KON SI an1l
dOVHIAV RV HLINM QIATOS HE LORNVD H3TE0¥d SNIT1003IBIS 3HL

Ng

NG

cy uk
ny rv
UM od
™ od
[

NV v
Nd 19
nd oud
ov N
ud 19
13 NG
ny 1A
LL] o] |
NY

ov

'3] 1]
ny Ng
rd 11
dddnN ans

4dd104S 11VAN

aav

S

Zni
YA
Sl
[11}]
96
ye
L6

NY
Nfl
He
NV
ry
=LlNIDI h

Figure 17(c). Sample - Intermediate Results (LWD 30)

86

Ie

40

Z€ 01 13S
ALINDIAAIG AVOT dUIR ADVEAAVY NV HLIM A3ATOS 39 JONNYD HATUONd
6 NH
6 Ry
L ry
02 nv
L uy
L TN
6 ny
6 NV
6 Nd
St ng
6 oy
6 a4d
€l N
ot NV
h WH
ol NY
ot ov
6l -8]
4! ny
St ra
UddN

ON13G KON S1 anl

NY
cy
od

ans

44108 1IVaAv

ENIINQENCS 3

nt
1'Y4 !
ul
(d7)
96
e
te
bL
h
L
oh
9n

SOd
N
na

oy
=lNOI 0

Figure 17(d). Sample - Intermediate Results (LWD 31)

87

t

40 110014410 QY01 3AY¥1IA

JOVHAAY NV ULTIA G3AT0S

SVA WHIINOYTIV ONIDNSNOIS 3

ol
ot
(4
1z
Rl

NG
L1t}
cy
nv

adan

44140s

N
cv
rv
HY
od
o) §
19

ans

TINVAV

aav

(1)
3

SRI'INAAHIS aNL

Znt
1'Y4}
Gt
001t
96

$0d

Ny
=LNDOT 1

Figure 17(e). Sample - Intermediate Results (LWD 32)

88

iy

')
'
]
e
(T4 1e ua Ny 1] L
(74] [T o (94 [
w wy n] oot 0
2 oy Y (1] Yo Y
ve ol v av 16 M
e ut ny 1 Y '
ue [an vy ut t
¥ - Av n o 4
e n / 1] N 69 s
] 29 ov (1] T} ~
ot IT) [T 99 ¢
1] "y ru 09 1
1" i ny us 4
11 (1]} ue 04 3
(4} L43 n “o (]
[ot Ui ' ¢
7 1y ov [i
14} 6y N N L]
H] 9 kb wl]
[i v o [}
1210004 4418 WLO0L nol21%0d avow nofLISUd AN N0
KYINY WaIHONd FYYITET] 1N LUTTOM 40 HAMNON CTVLOL
W ov we @i we ET me WD we W0 ww WT we Wi wa
L T ¥ S S ¥ O R 3 WO T O SO R S AN ¥ S TR 1}
SLE SLL WY S0 T4V BLL OZL 691 HYL L9V 991 S91 ®YL €91 291 1yl
selBee
g e Bl e di ww » WY ey W0 oww BT wu BE me Aa WD W av Wi aa
[T I W S ¥} (O Y O Y S S Y SO O SO Y W N S I ¥ SO ¥ S R
U9 KLL HSE 141 96 50 el Lol Zep INL OND BET MEL LED 98 SCL NLL (b0 Z08 LS 011 6T
re
Wi Wy Wl ov v ThH v Wil oaa AV aa 40 av wu av W@ ww TV BY Nw aa
7 w0 0 o 2 o O ¢ §F ¢ B e w o 8 T oo o«
WOl LTE 921 L mZy L2y UL LEL OIL 601 WOL L0V 901 SO1 0L EOL 701 LOL OOl &6 U6 (o
0000000000000 (] [][] Y [I YY I Y] e
wuo BH A WM WM LI T T VST T VRS T TR T IS O I A T T T BT R T R T TR TR VIV I "
[N Y B T} L N T R N T A ¥ T N T S ¥ S ¥ S S Y WO S Y S T S SR ¥ N T I TR
Y Su wb b (4 6V Gb (¥ 99 LU b LV T8 A8 08 oL BL 4L 9L SL N EL ITL ML OL 69 BY UY Y uY
08 £30:8000 o [1] (1] .o sec00000e
15 ww @¥ un we N TV MM 2V AA WM TH DV A N % 1A W wu B0 we @1 w0 W we
i s 0T s [Y S " WY W S & 2 T SR ¥ T N 3 [Y T I Y S R W TR Y
Wy Y 29 Ly 0y LS 9% SL 8% 1S 7S 1S 05 6N Wk L6 9n O 6L Bt L€ 9t LE W M0
[XXYYYY {1) LYY YY)
LTI Y S TTR UV 1 S 1/ N VS (RS T | B) Y T I I) wA BU #2 av OV W@ Ov F@ OV ov AV 1 B A
[% Y Y S ¥ T R I WY A SRR R TN I 2 BN S W I 6 6 ¢ M v b0 0o & o 9 § & 0 e
FATR TS TSR SN (7 ST T SRR SN YARNN RN € S Y SN T2 Y R B L LTS VT 4 S X 77 G S N A N SR R SR SR {

LL/n0/00 scvse NOIIVWNOIND dN-14S ANl AIOM - (0 NI HONAU eeees

Figure 18. Sample - Final Mold Line-up Surmary

VI. CONCLUSIONS

This final chapter examines the performance of the
foam assembly line scheduling model. An optimization
model has the advantage of determining the optimal set
of molds which should be placed on the assembly line for
any particular shipping and inventory requirements. It
has the capability of minimizing some cost objective
function, and yet provide the best possible combination
of molds. The assembly line scheduling model has
satisfied all of the plant's constraints as follows:

1. Placed the proper molds on the assembly line to

meet the weekly shipping demand.

2. Assigned upenders to each particular mold type.

3. Minimized set-up and inventory costs.

4. Obeyed all of the mold sequencing rules.

5. Kept the average wire load difficulty to a

minimum.

6. Obeyed the warehousing constraints.

7. Considered the human aspects of assembly line

work.

8. Kept the distance between mold changes to a

minimum.

The model generates a new mold configuration each
week. It looks into future weeks demand, adds and removes

molds which tend to minimize future problems and

89

90

bottlenecks. Finally, the assembly line mold scheduling
model generates a simple summary report to help
Production Control solve the plant's foam scheduling
problems.

There are several assumptions and problems, however,
that could not be put into the assembly line model in its
first version. The model assumes that the production
requirements and number of shifts are known. The
assembly line is currently scheduled for 3 shifts, but
economically this is not always a feasible solution.

Due to the economy, car sales, transportation problems,
and even weather conditions, the plant may be forced to
limit the number of shifts. Future versions of this
program must account for a changing number of shifts and
whether or not Saturday overtime should be scheduled to
eliminate backorder production.

Ideally, if the production forecasting information
could be relied on, the model should schedule the
assembly line for a two week period. This would give the
plant more information to help solve future problems or
bottlenecks which could occur the following week. The
production shipping requirements would have to become
better estimates of the actual production. The linear
programming algorithm of the model, however, would become
much more complicated and would require more computer

execution time.

91

Finally, something must be said about the
performance of the model as it compares to the actual
production of the plant. The assembly line mold scheduling
model, in trial runs, has compared very favorably with a
solution which is as good or better than the plant's
actual mold assignments. Production activities very
closely model the changes which are actually taking place
on the assembly line. One of the reasons for the model's
success is that a great deal of time and effort was
spent defining the problem and analyzing the steps needed
to determine an optimal solution. Differences in the
mold scheduling line-up were due to past scheduling
weeks. The assembly line, however, closely approximates
the manual scheduling activities which have occurred in
the past. In conclusion, the model has recently been
implemented in the plant environment, and is responsible

for the plant's assembly line mold scheduling functions.

1.

10.

LIST OF REFERENCES

Hillier, Frederick S. & Lieberman, Gerald J.,

Operations Research, Holden-Day, Inc., San
Francisco, 1967.

IBM Mathematical Programming System Extended/370
(MPSX/370) Basic Reference Manual, IBM Corp.,
SH19-1127-0, April 1976.

IBM Mathematical Programming System Extended/370
(MPSX/370) Control Languages, IBM Corp.,
SH19-1094-1, April 1975.

IBM Mathematical Programming System Extended/370
(MPSX/370) Messages, IBM Corp., SH19-16096-0,
October 1976.

IBM Mathematical Programming System Extended/378
(MPSX/370) Mixed Integer Programming/370 (MIP/370)
Program Reference Manual, IBM Corp., SH19-1094-1,
April 1975.

IBM Mathematical Programming System Extended/370
(MPSX/370) Operations Guide (0S/VS), IBM Corp.,
SH19-1697-1, October 1976.

IBM Mathematical Programming System Extended/370

(MPSX/378) Program Reference Manual, IBM Corp.,
SH19-1099-1, October 1976.

0S PL/I Checkout & Optimizing Compilers: Language
Reference Manual, IBM Corp., GC33-8009-3, July
1974.

0s PL/I Optimizing Compiler: Programmer's Guide, IBM

“Corp., SC33-09@86-3, March 1976.

OS PL/I Optimizing Compiler: Messages, IBM Corp.,

TSC33-0627-3, July 1975.

11. Wirth, Niklaus, Algorithms + Data Structures =

Programs, Prentice-Hall, Inc., New Jersey, 1976.

APPENDIX A

SOURCE PROGRAMS

FFFFFFFFFFFF
FFFFFFFFFFFF
FF

FF

FF

FFFFFFFF
FFFFFFFF

FF

FF

FF

FF

FF

000000000000
000000000303
00 00
an (4]0
00 oo
oo a0
(4]0 00
00 0N
00 09
ao 00
000N00000000

000000000000

AAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AAAAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AA AA
AA AA

MM MM
MMM MMM
MMMM MMMM
MM MM MM MM
MM MMMM MM
MM MM MM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM

//7FIAM JOB (60011909 1) yMAIKLE yMSGLEVEL=1,CLASS=L,PRTY=38

/753 EXEC PGM=LINK

//STEPLIB DD DSN=FOAM.LOADLIS DI SP=SHR

/7 D0 NSN=DPL ,MPSX37J,DISP=SHR,VIL=SER=SYSPAG,UNIT=3330
//SYSPRINT DOD SYSOUT=A,0C8 -(RECFM:FBA-LRECL=133,BLKS11581330)
//CARD DD UNIT=3330,SPACE={(CYL,(2+2)),

/77 DISP=(CLNyKEEP) yVOL=SER=EEFEEE,DSN=P6II 11 MARKLE.CARD,

/7 PC3=(LIECL=8JsALKSIZE=12960,ECFM=FB)

//0UT DO UNIT=3330,SPACE={CYL+(5+43)),0SN=P169999.4ARKLE . IJUT,

’7/ DCR=(RECFM=VB,LRECL=204,BLKSIZE=1024),01 SP=(0OLD,KEEP),
// VOL=SER=EEEEEE

//7€TAL DD UNIT=3330,SPACE=(CYLy(341),4,CCNTIG)

//7ETA2 DD UNIT=3330,SPACE=(CYL,y(3¢1),,CONTIG)

//MATRIX1 D3 UNIT=3330,SPACE=(CYL,(10)4+,CONTIG)
//MATRIX2 CO UNIT=3330,SPACE=(CYL,(10)yCINTIS)
//MIXAWCEK DO UNIT=3339,SPACE=(CYLy(34+3))
//PRTBFILE DD UNIT=3330,SPACE=(CYL,(5,3))
//7SCRATCHL DD UNIT=3330,SPACE=(CYL,(5),,CONTIG)
//SCRATCH2 DO UNIT=3330,SPACE=(CYL(5),yCONTIG)
//G.STATIC 0O = .
*#wax GENCH LINE #2 = MOLD LINE SET-UP INFORMAT [ON *4x%x
25 3 181 1539 27

AC 1657569 S 0 1 N 41 27 N 55 415 1.85 2145
YR 1660106 S 9 2 N 19 14 N 78 820 1.89 3042
YL 1660107 S 9 2 N 19 13 N 78 820 1.89 3042
AW 1677246 L 12 1N 2 2 Y 20 385 5.02 720
AJ 1677290 L 12 1 N 4 2 Y 20 340 4.99 720
AL 1681929 S 7 1 N 2 1 Y 28 325 4.33 336
AN 16930551 L 11 1Y 9 4 N 22 375 3.94 8§58
AD 1690553 S 6 1 N 9 S5 N 22 405 4.15 858
AY 1690562 S 11 2N 5 5N 64 790 1.80 12380
AZ 1690563 S 11 2 N & 4 N 64 790 1.80 1230
Ad 1694482 L 6 2 N 21 18 N T2 835 2.17 2280
AX 1654483 S 0 2 N 21 19 N 66 830 1.51 2706
AV 1694709 S 0 1 N 21 20 N 28 415 3.38 1176
BG 1733947 S 11 2N 1 1N 64 650 1.80 23Ce
BH 1733948 S 11 2N 2 ON 64 710 1.30 1152
8J 1737211 L 22 2 N 6 T N 48 820 2.52 1920
AK 1737223 S 16 2 N &6 6 N 60 810 1.89 2340
KR 3062748 S 9 2N 6 2 Y 56 780 1.93 2128
KL 3)62749 S 9 2 N 6 3 Y 56 790 1.93 2128
G 3063026 L T 2 N 4 4 M 62 800 1.7+ 2356
MM 9679012 S 5 1 Y 23 15 Y 28 415 3.55 1236
VYV 6579613 S 3 2 N 22 18 N 384 830 1.28 +4l58
Il 9730082 S 14 1 N 5 2 N 24 380 4.24 864
AR 20001557 L J 1 N 50 49 N 22 410 3.95 3144
BN 20001606 S 11 1 N 63 47T N 24 410 4.99 3456

//G.MOLD DO =

YR YR YR YL YL AC BJ AC AC YL YL AC BN AT AJ AC BN BR 3N 3R
BN Er 3N BR 3N BR BN BR BN BR BN BR AN BR BN BR BN BR BN B8R
BN BR MM AN MM VYV MM AN VV MM VV MM AX BJ MM VV MM VV MM B}
MM VV MM VYV MM AH VYV MM VY MM BK MM YL v BK AC AC BR BK 3R
AX BN B8R BN AX BN AX BN AX BN AX BN 3R KL AX AW AX AY AX AW
AC KR AC AW VV AZ VV Ad VV AW AV RJ AY AX AV BJ AV AV YL AW
BN AX B8R BN ER AC AN AR &N AR 3N BR B8M BR 3N Bk BN RR 8N BR
3N FR 8N BR 3N RR 3N BR BN RR BN BR BN B8R BN 8R BN BR 3N @R
3N FR 3M BR 3N AC 3N AC AX AX VV ARG BR A0 BR BAK BR AC BK YR

//G.DYNAM DO *

AC 2778 2970 2750 2750 4290
YR 1518 3744 3744 3432 5460
YL 1784 3276 3588 3900 5616
AH 138 320 360 400 680
AJ 337 280 240 280 480
AL 110 0 112 56 0
AN 639 1188 1188 968 1936
AQ 1419 968 1364 880 2156
AY " 1884 640 1024 512 1536
A2 696 896 1280 640 2176
Aw 745 5760 5184 5184 8496
AX 8139 5280 5940 5412 8580
AV =765 2576 2520 2744 4816
836G 255 256 384 256 768
3H 317 128 128 0 128
8J 667 2496 3072 3168 4992
8K 2974 2640 2880 3120 5040
KR 713 1120 1344 784 2240
KL 244 1232 1232 896 2352
Gl 2717 0 0 0 0
MM 2056 4536 4480 4536 8344
vv 1406 8910 9108 8910 17820
I 390 240 240 192 «80
B8R 15688 13376 15224 15886 27224
3N 17456 15456 17568 18432 32621
» %

/754 EXEC PGM=TEBGENER,COND=(1000¢NE,S3)

//SYSPRINT DD SYSOUT=A

//SYSUTL DD DSN=P169999 .MARKLE.OUT UNIT=3330,VOL=SER=EESEEE,DISP=0LD,
/77 DCB=(RECFMaVBA ,LRECL=204+BLKSIZE=1024)

//SYSUT2 DO SYSOUT=A

//SYSIN DD *

/%

MM MM
MMM MMM -
MMMM MMMM
MM MM MM MM
MM MMMM MM
MM MM MM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM

AAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AAAAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AA AA
AA AA

ITITIILILI
IIITIIIITI
Il
Il
Il
Il
I
I
I1
IT
IIITINIINI
ITIIINIILI

NN NN
NNN NN
NNNN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NNNN
NN NNN
NN NN
NN N

PL/I OPTIMIZING COMPILER MAIN: PROC OPTIONS (MAIN) REORDER:

STHT

1

SOUBRCE LISTING

MAIN: PROC OPTIONS(MAIN) REORDER;

et it I TR P P R T R e e P e s
/ss2sesssse NOLD LINE-UP TITLE CARD S#35555$SX0sSS5X4S8EEEESREEEEES)
Pl I LR Ty e I P T P R PR S R D I L e e P PP R T2

/*%s TITLE MOLD LINE-UP TITLE CARD s/

Pl T e P R e P Py P P P Py T e Y
/**ssssnxss DPARANETER CARD INPORMATION SES8SRSSS8EEASXR4SEEESEEEEEE)
/SEERREIESAISEEEEAL BB AL BERAIREASEREXEXEEEEXXEE SRR A S XS R A RRRARE S/

/%%s NONM TOTAL NUNBER OF DIFPPERENT MOLD TYPES s/
/%%% SHIPFT NUMBER OF SHIPTS WORKED s/
/*** 1POS NUMBER OF MOLD POSITIONS s/
/%%% JARE TOTAL NUMBER OF BASKET POSITIONS IN WAREBHOUSE s/

Vas AR LA 2 A2 2 22 R R 2 2t 22t I A4 R 2 il Rttt ittt 2l il i d it it it ls Vg

/%***sxssxs¢ STATIC INPORMATION OF THE MOLDS IN THR SYSTEM #*séssssssxs/
J/EERREERERERLEXRERRERSE ARSI RESRRRENBEENEXEREEERNEXLESEEEABRR R BA KRR R/

/%*%* CODE (50) MOLD LETTER CODES s/
/%%% PART(50) PART NUMBERS st/
/*** SIZE(50) MOLD SIZE (L-LARGE/S-SMALL) s/
/*¥%* LOAD (50) WIRE LOAD DIPPICOULTY ey
/%%% NOUMPRT (50) NUMBER OF PARTS IN CAVITY (1/2) sy
/*¢* PLAT(50) PLATFORN WORK (Y-YES/N-NO) Ll V4
/*** MOLDS (S0) TOTAL NUNMBER OP MOLDS AVAILABLE ssx/
/*** FRAME(50) CURRENT NUMBER OF MOLDS IN PRAMES ss/
/%%* TAPE(50) TAPE APTER POST CURE (Y-YES/N-NO) sy
/*** PACK (50) NUMBER OF PARTS IN STANDARD PACK (BASKET) ey
/*** RATE(50) PRODUCTION RATE PER SHIFT s/
/**% VALOE(5S0) VALUE OF THE PART s/
/*** SAPETY (50) SAPETY STOCK REQUIRED IN INVENTORY *x/

/#"““t#t’t#‘“‘“tt‘t‘#’t“##‘t#t*’t#“tOt.‘##‘t*‘#tt‘t#t‘..tt‘t‘tt/

/**ssesxses DYNANIC INPORMATION OP THE MOLDS IN THE SYSTEM *xssxsssxy
JEEERERRARTRERE LN ERRBEEERES SRR SRR KB ARR SRS RAERE RS SR XEXEKERRRA RS/

/%%% INVBAL (50) INITIAL INVENTORY PFOR EACH PART ssx/
/**% SAIP1(50) PARTS SHIPPED IN 1ST WEEK s/
/%%* SHIP3(50) PARTS SHIPPED IN 3RD WEEK s/
/%*% SHIPU4 (50) PARTS SHIPPED IN 4TH WEEK *5xy

/*%* PCD(50) INITIAL INVENTORY - 1ST WEEK SHIPPED =®x/

PL/I OPTIMIZING COMPILZER MAIN: PROC OPTIONS (MAIN) REORDER;

STMT

14
15

16

Vadia t A2 I 2 A2 24 R i A Rt it 2ottt Rl d et t it i it ittt it ittt ittt L L Vg

/¥*%&sxsssx NISC. VARIABLES FROM THE LINE-UP PROGRAN $ssssssssssssss/
/ESEERRARREEREEEARAABIREE ISR XS REREE XSRS AEFESSEXERBE XS EX SR SXT SRR/

V21
Velll
el l.
/e

CLINE (200) CARRIER LETTER CODE ON SCHEDULED LINE-UP s/
LPOS (50) MOLD POSITIONS WHERE PROBLEM AREAS EXIST s/
LDIPP (50) TOTAL WIRE LOAD DIFFICULTY POR PROBLEN AREA s/
MTOT (50) TOTAL NOMBER OF MOLDS ON LINE POR EACH PART s/

JEPEERRERRE R LSS LT ERREEBEE XL LA RL SRS LA X XL LA L SR RE L EE LS L RS TS LRSS/

DCL
DCL
DCL
DCL
DCL

DCL
DCL
DCL
DCL
DCL
DCL
DCL

DCL
DCL

DCL

INPUT ENTRY EXTERNAL;
LINEUP ENTRY EXTERNAL;
GENER ENTRY EXTERMNAL;
MIP ENTRY EXTERNAL;
SCHED ENTRY EXTERNAL;

(NUN,SHIPT,IPOS,LHUN,ISIM) PIXED BIN(15) STATIC EXTERNAL;
WARE PIXED BIN(31) STATIC EXTERNAL;
{SIZE (50) ,PLAT (50) ,TAPE(50)) CHAR(1) STATIC EXTERNAL;
(CODE(50) ,CLINE(200)) CHAR(2) STATIC EXTERNAL;
VALOUB(S0) PIXED DEC(7,2) STATIC EXTERNAL;
PART (50) CHAR(9) STATIC EXTERNAL;
(LOAD(50) , NUMPRT (50) , HOLDS (50) , PRARE (50) ,PACK (50) ,RATE (50) ,
SHIP1(S0) ,SHIP3(50) ,SHIPU (S0) ,INVBAL (50) ,SAPETY (50),
FCD (S0) ,SHIP2(50) ,LPOS (50) ,LDIPF (S0) ,ATOT (50) ,L¥DIFP (200))
PIXED BIN(15) STATIC EXTERNAL;
TITLE CHAR(80) STATIC EXTERNAL;
1 CHANGE (100) STATIC EXTERNAL,
2 (POS,NEED) PIXED BIN(1S),
2 (ADD,SUB) CHAR(2);
ICOUNT PIXED BIN(15) STATIC EXTERNAL;

PL/I OPTIBIZING COMPILER BAIN: PROC OPTIONS (MAIN) REORDER;

STMT
JEEEREELRSABIERERRLEEBREREIARESSEE SRS E SRR XS/
/%%% START THE MOLD SCHEDULING SIMULATION #*=x/
/SRS ERRARRSEREERSARESSEERESESEBES S SER AR BREE R/
17 DISPLAY (*+ ENTERING STATIC INPUT PROGRAN');
18 CALL INPOT;
19 DISPLAY (*+ ENTERING PROGRAM LINE-UP');
20 CALL LINEOP;
21 DISPLAY (*+ ENTERING THE DATA GENERATION PROGRAN');
22 CALL GENER;
23 DISPLAY (*+ ENTERING THE MIXED INTEGER PROGRAMMING PROBLEN');
24 CALL MIP;
25 DISPLAY('+ ENTERING THE SCHEDULING PROGRAN');
26 CALL SCHED;
27 DISPLAY('+ ENTERING PINAL PROGRAM LINE-UP');
28 CALL LINEOP;
29 © DISPLAY('+ END OF THE PROGRAN');

30 PINISH:
END MAIN;

ITITIIIINLI
ITIRINTNNII
I
Il
Il
I
I
I
Il
Il
ITITNLITNII
ITITITINLI

NN
NNN
NNNN
NN N
NN
NN

-NN

NN
NN
NN
NN
NN

NN
NN

NN

N NN
NN NN
NN NN
NN NN
NN NN
NNNN

NNN

NN

N

PPPPPPPPPPP
PPPPPPPPPPPP
PP PP
PP PP
PP PP
PPPPPPPPPPPP
PPPPPPPPPPP
PP

PP

PP

PP

PP

uu uu
uv uu
uu uu
uu uu
uv uu
(V) uu
uu uu
uu uu
uu uu
uu uu
(VIVVVVIVIVIVIVIVIVIY)
(UUVVIVIVVTVIY

TYTYTVITTITYTY
IRARARRREARARI
TT
1T
7
TT
TT
LR
7
T7
TT
TT

PL/I OPTIMIZING COMPILER INPUT: PROC REORDER;

SOURCE LISTING

STHT
1 INPUT: PROC REORDER;
2 DCL (NUM,SHIPT,IPOS,LNUM,ISIN) PIXED BIN(15) STATIC EXTERNAL;
3 DCL WARE PIXED BIN(31) STATIC EXTERNAL;
4 DCL (SIZE(S0) ,PLAT(50) ,TAPE(50)) CHAR(1) STATIC EXTERNAL;
5 DCL (CODE (50) ,CLINE(200)) CHAR(2) STATIC EXTERNAL;
6 DCL VALUEB(S0) PIXED DEC(7,2) STATIC EXTERNAL;
7 DCL PART (50) CHAR(9) STATIC EXTERNAL;
8 DCL (LOAD (50) , NUNPRT (SO) , MOLDS (50) , FRANE (50) ,PACK (50) ,RATE (50),
SHIP1(50) ,SHIP3 (50) ,SHIP4 (50) , INVBAL (50) , SAPETY (S0),
PCD (50) ,SHIP2(50) ,LPOS (S0) ,LDIPF (S0) , ATOT (50) ,LRDIFP (200))
PIXED BIN (15) STATIC EXTERNAL;
9 DCL TITLE CHAR(80) STATIC EXTERNAL;
10 DCL 1 CHANGE(100) STATIC EXTERNAL,
2 (POS,NBED) PIXED BIN(15),
2 (ADD,SUB) CHAR(2);
1 DCL ICOUNT FIXED BIN(15) STATIC EXTERNAL;
12 DCL LWD PIXED BIN(15) STATIC BXTERNAL;
/‘.tt.tt#‘tttt‘“t‘“-‘.#‘3‘..‘t‘..‘.“"“t““.“t/
s*s%ss INITIALIZE STATIC EXTERNAL VARIABLES ##*ss/
/‘#t#t‘t‘t‘t“t“‘t‘t*tt‘.tt"t‘.““.‘#‘t‘t.“‘.“/
13 STIZE(#)=' 7; PLAT (#)=' *;
15 TAPE(%)=' *; CODE (%) =¢ 1
17 CLINE(#*)=' *; PART (¥)='
19 VALOE(#)=0.0; TITLE=' ';
21 LOAD (%) =0; BRATE (*) =03
23 NUMPRT (%) =0; MOLDS (*)=0;
25 PRANME(*)=0; PACK (%) =0;
2 SRAIP1(*)=0; SHIP2 (%) =0;
29 SHIP3(*)=0; SHIPU (*)=0;
3 INVBAL (%) =0; SAPETY (%) =0;
33 LDIFP (*)=0; LPOS (%) =0;
35 NTOT (*)=0; LWDIFF (%) =0;

37 PCD (*)=0;

PL/I OPTINMIZING COMPILER INPUT: PROC REORDER;
STHT

/"##‘*‘tttt.***t#‘tt‘*tttt%ﬁth.ttt“.t/

/%%% READ MOLD LINE-UP TITLE CARD *%*%/
JESEREEAREEERREESERAEEEREREEXE R SRR SRS AL)

38 ISIN=0;

39 GET PILE(STATIC) EDIT(TITLE) (A (80));
40 PUT SXIP EDIT(TITLE) (X(1),A(80)):

41 PUT SKIP(2):

JEEBEERREEREE LR REERELERERESS RSB EER RS/

/%**%* READ PARAMETER CARD INFORMATION #*#x/
/RESEAREERERB RS EEBEEEREEEREEXXERRX B ERER XS/

42 GET SKIP PILE(STATIC) EDIT (NOM,SHIPT,IPOS,WARZ,LWD)
(2(P(3)) ,2(P()),E(5));

u3 PUT SKIP EDIT(NUM,SHIFT,IPOS,7ARE,LUD)
(2(P(3)),2(P(7)),P(5));

/SRR RN RBBXEE LR REBRLERAEEX RS RER B EX LR AXL LSRR RRE SRS RSN ER S/

/*** READ STATIC INFORMATION OF THE MOLDS IN THE SYSTEM ¢s¢/
/EPERRREARESIEEFXER LR ER XX EE R XS LR ERERR SRR ARE R LR SRR R RS R RS/

uy DO I=1 TO NUNM;
45 GET PILE(STATIC) EDIT(CODE(I),PABRT(I),SIZE(I),LOAD(I),NO8PRT(I),
PLAT (I) ,MOLDS (I) ,PRAME(I),TAPE(I),PACK(I),RATE(I),VALOB(I),
SAPETY(I))
(COL (1) ,A(2) \A(9) ,X (1) ,A (1) 2(3),F(2),X(1),A(N),2(FP(I),.X(N),
A(M),2(P(4)),P(6,2),P(6));
46 PUT BEDIT(CODE(I),PART(I),SIZE (I),LOAD(I),NUMPRT(I),
PLAT (I) ,MOLDS(I) ,FRAME(I),TAPE(I),PACK(I),RATE(I),VALOE(I),
SAPETY (I))
(COL(2) ,A(2) 4A(9) ,X (1), A(1),F(3),P(2),X(1),A(1),2(P(3)).,X(Y),
47 2ND A(1),2(F(8)) ,FP(6,2),F(6));

PL/TI OPTIMIZING COMPILER INPUT: PROC REORDER;

STHT

/t tt#‘#“#“..“tt#.t“t““‘.“t““.*./
/%#%% READ MOLD LINE-UP INPORMATION #%%/
/tt‘t.tt‘.‘.t..t“..#“.“““‘..“’.t#‘/

48 IST=1;

49 IEND=20;

50 IPLAG=0;

51 PUT SKIP(2);

52 LINE_OP_INPO:
GET SKIP PILE(MOLD) EDIT((CLINE(J) DO J=IST TO IEND))
(20 (X(1) ,A(2)));

53 PUT SKIP EDIT((CLINE(J) DO J=IST TO IERD)) (20 (X(1),A(2)));
sy IP IPLAG=1 THEN GO TO FINISH;

55 IST=IST+20;

56 IEND=IEND+20;

57 IP IEND>=IPOS THEN IPLAG=1;

58 IP IEND > IPOS THEN IEND=IPOS;

59 GO TO LINE_UP_INPO;

60 PINISH:
END INPUT;

LL
LL
LL
LL
Le
LL
LL
LL
LL
LL
LLeeeeeeeetet
Leeeeeeeeetet

ITTIIININI
ITLITITNIR
Il
Il
Il
It
Il
Il
Il
Il
ITTINLIINII

ITTIDININI

NN NN
NNN NN
NNNN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NNNN
NN NNN
NN NN
NN N

EEEEEEEEEEEE
EEEEEEEEEEEE
EE

EE

EE

EEEEEEEE
EEEEEEEE

EE

EE

EE
EEEEEEEEEEEE
EEEEEEEEEEEE

uu uu
uu Ju
V]V uu
Ju uu
uu uv
UV uu
(V]V) uu
(V) uu
Ju uu
uu uu
(UVIVIOVIVEAVIVIVV LY
(VVVUVSIVVIU

PPPPPPPPPPP

PPPPPPPPPPPP
PP PP
PP PP
PP PP
PPPPPPPPPPPP
PPPPPPPPPPP
PP
PP
PP
PP
PP

PL/I OPTINIZING COMPILER LINEOP: PROC REORDER;

SOTRCE LISTING

STHT
1 LINEUP: PROC REORDER;
2 DCL (NUM,SHIFT,IPOS,LNUM,ISIN) PIXED BIN(15) STATIC EXTERNAL;
3 DCL WARE FIXED BIN(31) STATIC EXTERNAL;
a DCL (SIZE(S0),PLAT (50) ,TAPE(S0)) CHAR(1) STATIC EXTERNAL;
5 DCL (CODE(50) ,CLINE(200)) CHAR(2) STATIC EXTERNAL;
6 DCL VALTE(50) FIXED DEC(7,2) STATIC EXTERNAL;
7 DCL PART (S0) CHAR(9) STATIC EXTERNAL;
8 DCL (LOAD (50), NUMPRT {50) ,MOLDS (50) , PRAME (50) ,PACK (50) ,RATE(50),
SHIP1(50) ,SHIP3 (50), SHIPY (S50) ,INVBAL (50) ,SAPETY (50),
FCD(50) ,SHIP2(50) ,LPOS (50) ,LDIPF (50) ,MTOT (50) ,LWDIPP (200))
FIXED BIN(15) STATIC EXTERNAL;
9 DCL TITLE CHAR (80) STATIC EXTERNAL:
10 DCL 1 CHANGE(100) STATIC EXTERNAL,
2 (POS,NEED) FIXED BIN(15),
2 (ADD,SUB) CHAR(2);
1 DCL ICOUNT PIXED BIN(15) STATIC EXTERNAL;
12 DCL L&D PIXED SIN(15) STATIC EXTERNAL;
13 DCL VIOLAT (200) CHAR (4);
14 DCL (TMOLD (200) ,PMOLD (200) ,SMOLD (200)) CHAR (2) ;
15 DCL ITOT (200) PIXED BIN(15);
16 DCL UNDER CHAR(2) INIT('__');
17 DCL STAR CHAR(U) INIT('®®ssv);
18 DCL STAR1 CHAR(2) INIT('***);
19 DCL BQ CHAR(2) INIT('= ')
20 DCL XL CHAR(1) INIT('L');
21 DCL T¥% CHAR(21) INIT('TOTAL NUMBZR OF MOLDS');
22 DCL DATE1 CHAR (6);
23 DCL DATE BUILTIN;
24 DCL 1 TDATE,
2 MONTH CHAR(2),
2 FILLY CHAR(1) INIT('/"),
2 DAY CHAR(2),
2 PILL2 CHAR(1) INIT('/"),
2 YEAR CHAR(2);
25 DATE1=DATE;
26 MONTH=SUBSTR (DATE1,3,2);
27 DAY=SUBSTR (DATE1,5,2) ;
28 YEAR=SUBSTR (DATEZ1,1,2) ;
29 DCL TDATE1 CHAR(3) BASED (P1);

30 P1=ADDR (TDATE) ;

PL/I OPTIMIZING COMPILER LINEOP: PROC REORDER;

STNT
/.t‘.‘it“‘.t“.‘t“"t.‘ ““.““““t“tt/
/%¢¢ INITIALIZE THE PROGRANM VARIABLES #$3s/
/ﬁt#.t‘..#““.‘*i‘t‘.t‘tt‘ “.3““““““/

31 ITOT (%) =0;

32 LWUDIPP (*)=0;

33 LPOS (*) =0;

38 SHOLD (*)=' *;

35 VIOLAT (%)=* ';

38 THOLD (%) =" ';

37 PMOLD (%) ="' *;

38 NTOT (%) =0;
/‘".“.‘.“‘.““"..."t".t‘."“.’.‘t“...*“““‘t‘/
/%%+ DETERMINE WIRE LOAD DIPPICULTY POR EACH MOLD $ss/
/lt‘.t..‘O““"“‘..‘t.t‘t"t'.t‘tt't.‘.t.‘“.“‘.‘t.‘/

39 DO I=1 TO IPOS;

40 DO J=1 TO NUA;

u1 IP CLINE(I)=CODE(J) THEN GO TO POUND;

42 END;

43 PUT SKIP EDIT ('¢**ERROR - MOLD CODE ',CLINE(I),

* DOES NOT BXIST IN LINE-OP**#') (X(3),A,A(2),A);
4y GO TO PINISH;

45 FPOUND:

IF TAPE(J)='Y' THEN TMOLD(I)='33';

3 IP PLAT(J)='Y' THEN PNOLD(I)='$$';

47 LYDIPP (I)=LOAD (J) ;

u8 IP SIZE(J)=XL THEN SNOLD (I)=0NDER;

49 NTOT (J) =MTOT (J) +1;

S0 END;

PL/I OPTIMIZING COMPILER LINEOP: PROC REORDER;

STHT

/EEEBEEALEELSEELAEAEEEE LR EL LRSS I SRS XSRS XSS R/
/%%% DETERMINE VIOLATIONS IN THE SCHEDULED LINE-(UP &%/
/EEPEEEAERISANSEEEEESERERRAXE SRS ESETELFAE LIV ERELE LS4 S)

S1 LuON=1;

52 DO J=1 TO IPOS;

53 I=3-1;

54 IP I=0 THEN I=IPOS-1;

55 K=J+1;

56 IP K=IPOS+1 THEN K=1;

57 ITOT (J)=LWDIPP (I)+LEDIPP (J)+LUDIPP (K);

58 IP ITOT(J)<= LWD THEX GO TO APPROVE;

59 VIOLAT (J) =STAR;

60 VIOLAT (J+1)=STAR1;

61 LPOS (LNDN) =J;

62 LDIPP (LNUNM)=ITOT (J) ;

63 LNUR=LNOM®1;

64 APPROVE:
END;
65 LNUN=LNUN-1;

PL/I OPTIMIZING COMPILER LINEUP: PROC REORDER;

STMT

86

87
38

89
91
92
93
94
95

96

JESEEREEEEERLEES LSRR EERRE RN ERERELES R ERRES/

/%%* PRODUCE A LINE-OP SCHEDULE PICTURE *%*¢/
/BB EBEEEREIBEB SRR ESALEBESLRS ISR SRR SEAREERE/

1ST=1;

IEND=32;

IPLAG=0;

PUT PAGE EDIT(TITLE,TDATE1) (X (10),A,A(8));
PUT SKIP(2);

PICTURE:
PUT SKIP EDIT((J DO J=IST TO IEND)) (32(X(V),P(3)));
POT SKIP EDIT((LWNDIFF(J) DO J=IST TO IEND)) (32(X(V),P(3)));
PUT SKIP(0) EDIT((SMOLD(J) DO J=IST TO IEND)) (32(X(2),A(2))):
PUT SKIP EDIT((CLINE(J) DO J=IST TO IEND)) (32(X(2).,A(2))):
PUT SKIP(0) EDIT({(SMOLD(J) DO J=IST TO IEND)) (32(X(2),A(2)));
PUT SKIP EDIT((VIOLAT(J) DO J=IST TO IEND)) (32(A(4)));
PUT SKIP(0) EDIT ((THOLD(J) DO J=IST TO IEND)) (32(X(2),A(2))):
PUT SKIP(0) EDIT((PMOLD(J) DO J=IST TO IEND)) (32(X(2),A(2)));
POUT SKIP;
IP IPLAG=1 THEN GO TO WIRE_LOAD;
IST=15T+32;
IEND=IEND+32;
IP IEND>IPOS THEN IPLAG=1;
IP IEND>IPOS THEH IEND=IPOS;
GO TO PICTURE;

Vadid ittt tl Al d b a2t Ll t ot it il il i ad il il il il Vg

/%%% SORT THE WIRE LOAD DIPPICOULTY QUEUE ss*/
JEERBEEEARLESRERELEREFSEE S SR BRRRREBESENRRAR SR/

VIRE_LOAD:
DO I=1 TO LNON-1;
DO J=I+1 TO LNUN;
IP LDIPP(I) >= LDIFP (J) THEN GO TO SORT;

ITENP1=LDIFF (I);
ITENP2=LPOS (I)
LDIFF(I)=LDIFF (J);
LPOS (I) =LPOS (J) ;
LDIFF(J)=ITEYP1;
LPOS (J) =ITENP2;

SORT:
END;
END;

GGGGGGGGGG
GGGGGGGGGGGH
GG GG
GG
GG
GG
GG GGGGG
GG GGGGG6
GG GG
GG GG
GGGGGGGGGGG6

GGGGGGGGGG

EEEEEEEEEEEE
EEEEEEEEEEEE
EF .

EE

EE

EEEEEEEE
EEEEEEEE

EE

EE

EE
EFEEEEEEEEEE
EEEEEEEEEEEF

NN NN
NNN NN
NNNN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NNNN
NN NNN
NN NN
NN N

EEEEEEEEEEEE
EEEEEEEEEEEE
EE

EE

EE

EEEEEEEE
EEEEEEEE

EE

EE

EE
EEEEEEEEEEEE
EEEEEEEEEEEE

RRRRRRRRRRR

RRRRRRRRRRRR
RR RR
RR RR
RR RR
RRRRRRRRRRRR
RRRRRRRRRRR
RR RR

RR RR

RR RR
RR RR
RR RR

PL/I OPTIMIZING CONPILER GENEBR: PROC REORDER;

SOURCE LISTING

STHT

1 GENER: PROC REORDER;

2 DCL (NOM,SHIPT,IPOS,LNUM,ISIN) PIXED BIN(15) STATIC EXTERNAL:

3 DCL WARE PIXED BIN(31) STATIC EXTERNAL;

4 DCL (SIZE(50),PLAT (SO),TAPE(50)) CHAR(1) STATIC EXTERNAL;

5 DCL (CODE(50) ,CLINE(200)) CHAR(2) STATIC EXTERNAL;

6 DCL VALUE(50) PIXED DEC(7,2) STATIC EXTERNAL;

7 DCL PART (50) CHAR(9) STATIC EXTERNAL;

8 DCL (LOAD(S0),NUSPRT (50) ,MOLDS (50) ,PRANME(50) ,PACK(50) ,RATE(50),
SHIP1(50) ,SHIP3(50) ,SHIPU (S0) ,INVBAL (50) ,SAFETY (50),
PCD (50) ,SHIP2 (50) ,LPOS (50) ,LDIFF (50) ,MTOT (50) ,LdDIPF (200))
PIXED BIN(15) STATIC EXTERNAL;

9 DCL TITLE CHAR (80) STATIC EXTERNAL;

10 DCL 1 CHANGE(100) STATIC EXTERNAL,
2 (POS,NEED) PIXED BIN(15),
2 (ADD,SUB) CHAR(2);

1" DCL ICOUNT PIXED BIN(15) STATIC EXTERNAL;

12 DCL BUP CHAR (80):

13 DCL (INVEN(50),0BJ(50)) PIXED DEC(7,2);

14 DCL (VIRE,MTOTAL,NOLD,PRN,IPROD,UPTOTAL) CHAR(7);

15 DCL TOTAL CHAR (10);

16 DCL (ITOTAL,TINV,TSHIP,LPROD) FIXED BIN(31);

17 DCL (PROD,UPEND,UPPER) FLOAT DEC(10,3);

18 DCL (INVEN1,0BJ1) CHAR(7);

19 DCL (BAL,SH1,SH2,SH3,SH4) PIXED BIN(15);

20 DCL XCODE CHAR(2);

21 DCL STAR2 CHAR(2) INIT('s*');

22 DCL XL CHAR(1) INIT('L');

PL/I OPTIMIZING COMPILER GZNER: PROC REORDER;

STAT

23
24
25
26

27
28

29

30
n
32
33
34
35
36
37
38

39

a0
41

42
43

Vaddt Al A A At A ht R At Al i il Al A i R d it Rttt d it i il l Vg

/%*%* READ DYNARIC PORECASTING INFORMATION *¢s/
JEEESEREEISRBEEREREEXAEASE XS ESESL XSS SRS SRS EE S/

L=1;

PUT PAGE EDIT ('PORECASTING - PRODUCTION INFORMATION') (X(3S),Ad);

PUT SKIP(2);
PUT EDIT('PCD',' INITIAL *,'1ST WEBK','2ND WEEK','3RD WEEK',
'4TH WEEK','SAPETY','BAL','INVENTORY','SHIPPED','SHIPPED',
*SHIPPED','SHIPPZD','STOCK')
(X(22) ,A,6(X(8),4),SKIP(1) ,X(22) ,4,6(X(9),A));
PUT SKIP(1):

PORECAST:
GEZT PILE(DYNAN) EDIT(XCODE,BAL,SH1,SH2,SH3,SHY)
(COL (1) ,A(2),5(P(10))) 3
IP XCODE=STAR2 THEN GO TO START;

DO J=L TO NOM;
IF XCODB~=CODE(J) THEN GO TO NEXT_CODE;
PCD (J) =SH1-BAL;

INVBAL (J) =BAL;

SHIP1(J)=SH1;

SHIP2(J) =SH2;

SHIP3(J) =SH3;

SHIPY (J) aSHU;

PUT SKIP EDIT(XCODE,PCD(J),INVBAL(J),SHIP1(J),SHIP2(J),SHIP3(J),

SHIPUY (J) ,SAPETY (J)) (X(T),A(2),7(X(9),.P(7))):
L=L+1;
GO TO PORBCAST;
NEXT_CODE:
END;

/*%* ERROR SECTION OF INPUT **%/
POT SKIP EDIT('¢**ERROR - CODE *,XCODE,*' NOT IN STATIC FILE',

BAL,SH1,SH2,SH3,SH4) (A,A(2),A,8(P(10)));
STOP;

PL/I OPTIMIZING COMPILER GENER: PROC REORDER;

STMT

/EREREEER SRS RERRNEREN)/

/*** PRINT ROV CARDS %*%/

/OSSR EEAEBEREEEBREBREEEE)/
44 START:

ITOTAL=0;
45 TINV=0.0;
46 TSHIP=0.0;
47 DO I=1 TO NUAM:
48 TINV=TINV+INVBAL(I):
49 ITOTALSITOTAL#SHIP2(I) #SHIP1(I);
50 TSHIP=TSHIP+ (SHIP2(I) +FCD (I) +SAPETY(I)) /PACK(I);
51 END;
52 PUT SKIP(2) EDIT(*TOTAL PARTS SHIPPED IN TWO WEEKS = °*,
ITOTAL) (X(10) ,A,P(10));

53 PUT SKIP EDIT(*TOTAL INITIAL INVENTORY = ',TINV) (X(10),A,P(10));
S4 BOP=* ¢
55 SUBSTR (BOP,1,U) =" NANE';
56 SUBSTR (BUF, 15,4) = POAN®;
S7 WRITE FILE(CARD) FPRON(BUP):; BOP=' *;
59 BOP='ROWS';
60 WRITE PILE(CARD) FROM(BOF): B0P="' ¢;
62 BOP=' N OBJ';
63 4BITE PILE(CARD) PROM(BUP); BUP=' !,
65 DO I=1 TO NOSN;
66 BUP=* L * || CODE(I) || 'REQ';
67 WRITE PILE(CABD) PROM(BUPF); BUOF="' ';
69 END;
70 DO I=1 TO NUN;
71 BOP=' L * || CODE(I) || *ADD*;
72 WRITE PFILE (CARD) FRON(BJF); BOP=? ';
74 END;
75 DO I=1 TO NOUNM;
76 BUP=' G ' |) CODE(I) || °'SuUB';
77 WRITE FILE(CARD) FROM(BUP); BUP="' ¢,
79 END;
30 DO I=1 TO NUN;
81 BUP=* L * || CODB(I))| '"PRN‘';
82 WRITE PILE(CARD) FPRONM(BUPF); BIP='

84 END;

PL/I OPTINIZING COMPILER GENER: PROC REORDER;

STHNT
85 DO I=1 TO ¥NON;
86 BUP=' G ' |) CODE(I) || 'END';
87 WRITE PILE(CARD) FRON(BUPF); BOF=' ¢;
89 END;
90 BUP=* B LINCAP';
91 WRITE PILE(CARD) PROM (BUP); BIP=? '
93 BUP=' L SMALL';
94 WRITE PILE(CARD) PROM(BOP); BOP=' ¢,
96 BOP=' L LARGE';
97 WRITE FILE(CARD) FROMN(BUP); BOP="' ';
99 BUP=' L WIRE';
100 RRITE PILE(CARD) PROM(BUP); BOP=' '
102 BUOP=' L INVEN';
103 WRITE PILE (CARD) PROM(BUP); BOP=?
105 BUP=' L UPENDER';

106 WRITE FILE(CARD) PROM(BUF); BOP=' !;

PL/I OPTINIZING COMPILER GENER: PROC REOBRDER;

STHNT
/tttt‘t‘tttt‘t‘i“‘tttt#ttt/
/%*%% PRINT COLUMN CARDS *3%/
/ttt‘t‘tt‘t“ttttttt“ttttt/

108 BUP='COLUMNS';

109 WRITE PILE(CARD) FROM(BOP); BUP=' ¢,

AR R BUFP=" DEBE Y MARKER'

112 SUBSTR (BOF,40,8)=*'**INTORG''"';

113 WRITE PILE(CARD) FROM(BUP); BOP=' *';

115 DO I=1 TO NUN;

116 INVEN(I)=2.0*RATE(I) /PACK(I);

117 PUT STRING(INVEN1) ZDIT(INVEN(I)) (P(7,2)):
/*s*%x% TY9E 03J(I) REPRESENTS THE AVERAGE INVENTORY STORAGE COSTS #%sts/
/e*s%% PER 2 WEEK PZ2RIOD. 10% VALUZ OP PART OVER 1/26TH YEAR. kxss3s/

118 OBJ (I)=RATE(I) *VALUE (I)/260.0;

119 PUT STRING (0BJ1) EDIT(0BJ(I)) (P(7,2)):

120 DO J=1 TO u;

121 SYRSTR (BUPF,5,5)=CODE(I) |} *II'] SIZE(I):

122 IP J=1 THEN DO:

123 SUBSTR (BOP,15,5)=CODEB(I) || °*REQ';

124 SUBSTR (BUF,33,3)=*1.0¢%;

125 SUBSTR (BUP,40,5)=CODE(I) }| 'ADD';

126 SUBSTR (BUP,53,3)='1.0*;

127 #RITE PILE(CARD) PROM(BUPF): BOF=* ' ;

129 END;

130 IP J=2 THEN DO;

131 SUBSTR(BNF,15,5)=CODE(I) || *SUB';

132 SJBSTR(BUP,33,3)='1.0";

133 SUBSTR (BUP,40,6)="LINCAP';

134 SUBSTR(BUP,58,3)='1.0"';

135 WRITE PILE(CARD) FRON(BUF); 8OF=' ',

137 END;

138 IF J=3 THEN DO;

139 SUBSTR (BUF,15,5) =' INVEN?';

140 SUBSTR (BUF,29,7)=INVEN1;

141 SUBSTR(BUP,u40,3)='0BJ*';

1462 SUBSTR (BUP,54,7)=08J1;

143 A4RITE FILZ(CARD) FROM(BUF); BUP=' ¢

145 END;

146 IP J=4 THEN DO;

147 SUBSTR (BUP,15,5) =CODE (I) || 'PRM';

148 SUBSTR(BUP,33,3)=%1.0";

149 UPEND=4.0/PACK (I);

PL/I OPTINMIZING COMPILER GENER: PROC REORDER;:

STMT
150 IP CODE(I)="BN*' | CODE(I)='BR' THEN UPEND=UPEND/2.0;
151 SOBSTR(BUP,40,5)=CODE(I) {| 'END';
152 PUT STRING (OPTOTAL) EDIT (-UPEND) (P(7,8)):
153 SUBSTR (BUP,S54,7) =UPTOTAL;
154 WRITE PILE(CARD) PROA (BUP); BUP=* ¢
156 END;
157 END;
158 END;
159 DO I=1 TO NUAN;
160 DO J=1 TO 2;
161 SUBSTR (BUP,5,5)=CODE(I) || 'OP' |} SIZE(I);
162 IP J=1 THEN DO;
163 SUBSTR (BOP,15,7) = *UPENDER';
164 SUBSTR(BUP,33,3)='1.0*;
165 SUBSTR (BUOP,40,5)=CODE(I) || 'END';
166 SUBSTR (BUOP,58,3)='1.0"';
167 WRITE PILB(CARD) PROBM(BUP); BUF=' ¢;
169 END;
170 IP J=2 THEN DO;
171 SUBSTR (BOP,15,3)='0BJ"';
172 SUBSTR (BUP,33,3)='1.0";
173 WRITE PILE(CARD) PROM(BOPF); BOFP="* ';
175 END;
176 END;
177 END;
178 DO I=1 TO KOAN;
179 PUT STRING (JIRE) EDIT(LOAD(I)) (F(7,1));
180 DO J=1 TO 2;
181 SUBSTR (BUP,S5,5)=CODE (I) || 'AA')| SIZE(I);
182 IP J=1 THEN DO;
183 SUBSTR (BUP,15,3)='0BJ"';
184 SUBSTR(BUP,33,3)='7.5';
185 SUBSTR(BUP,U40,5)=*SHALL';
186 SUBSTR (BOP,58,3)="1.0"';
187 IP SIZE(1)=XL THEN DO;
188 SUBSTR(BUP,40,5)=*LARGE"';
189 SUBSTR (BUP,57,4)=* 1.0°;
190 END;
191 WRITE PILE (CARD) FROB(BOF); BOF=' ';
193 END;
134 IF J=2 THEN DO;
195 SUBSTR (BOF,15,5)=CODE(I) || 'ADD';

196 : SJIBSTR (BUP,32,4)='-1.0";

PL/I OPTINMIZING COMPILER GENER: PROC REORDER;

STNT

197 SUBSTR (BUP,40,4) =*WIRE';

198 SUBSTR(BUF,54,7)sWIRR;

199 WRITE PILE(CARD) PROM(BUP); BOFP=' !
201 END;

202 END;

203 END;

2048 DO I=1 TO NON;

205 POT STRING (WIRE) EDIT(-LOAD(I)) (P(7,1));
206 IP LOAD(I)=0.0 THEN PUT STRING(WIRE) EDIT (LOAD(I)) (P(7,1)):
207 DO J=1 TO 23

208 SUBSTR (BUP,5,5)=CODE(I))| *SS' |} SIZE(I);
209 IP J=1 THEN DO; .

210 SUBSTR (BUPF,15,3)='0BJ"';

21 SOUBSTR(BUP,33,3)=*7.,5¢;

212 SUBSTR (BUP,40,5)=*SHALL"';

213 SUBSTR (BUP,57,4)='-1.0";

214 IF SIZB(I)=XL THES DO;

215 SUBSTR (BUF,40,5)='LARGE"';

216 SUBSTR(BOP,57,4)='-1.0";

217 END;

218 VRITE FILE(CARD) PFRON(BOP); BUP="'
220 END;

221 IF J=2 THEN DO

222 SUBSTR (BOP®,15,5)=CODE (I) |} *'SOUB';

223 SUBSTR (BUP,33,3)=01,0";

224 SUBSTR (BUP,40,4) =*WVIRE';

225 SUBSTR(BUP,54,7)=WIRE;

226 WRITE PILE(CARD) FRON(BUPF); BOP=' ',
228 END;

229 END;

230 END;

231 DO I=1 TO RUA;

232 SUBSTR (BUF,5,5)=CODE(I) || *EP') SIZE(I):
233 SUBSTR (30F, 15,5)=CODE(I) || °*PRN';

234 SUBSTR (BUFP,32,4)='-1.0";

235 SUBSTR (BOF,40,3)='0BJ"';

236 SUBSTR (BOF,57,4)='75.0";

237 WRITE PILEB(CARD) PRON(BOP); BUP=" ¢;

239 END;

240 BOP=? PINE 'S MARKER''?;

241 SUBSTPR (BUF,40,8) ="' * INTEND' ' ;

242 4RITE PILE(CARD) FROAM(BUPF): BNF=' ',

PL/T OPTIMIZING COMPILER GENER: PROC REOBDER;

STAT
/‘“‘ttt.t*#.tt;‘tt.t‘.“t‘.l“.‘t‘/
/%%% PRINT THZ RIGHT HAND SIDES sss/
/.l.“t‘““‘l‘t“#‘*“.““.“‘..‘/
244 BUP='RHS';
245 WRITE FILE(CARD) PROM(BUP); BOP=' ';
247 DO I=1 TO NUM;
2u8 PUT STRING (NOLD) EDIT (MOLDS(I)) (F(7,1));
249 SUBSTR (BUP,5,3) ='RHS*;
250 SUBSTR (BUF, 15,5) =CODE(I) §) 'REQ‘;
251 SUBSTR (BOP,29,7) =MOLD;
252 WRITE PILE(CARD) PROM(BUP); BUP=' *;
254 END;
255 DO I=1 TO NUA;
256 PUT STRING (ATOTAL) EDIT(MTOT(I)) (P(7,1));
257 SUBSTR (BUF,S,3) ='RHS';
258 SUBSTR (BUP,15,5)=CODE(I) || *ADD';
259 SUBSTR (BUP,29,7) =MTOTAL;
260 WRITE PILE(CARD) FROM(BUF); BUP=' *;
262 BND;
263 DO I=1 TO NOUYN;
264 PUT STRING (NTOTAL) EDIT (NTOT(I)) (P(7,1)):
265 SUBSTR (BUF,S5,3)="RAS*;
266 SUBSTR (BUP, 15,5) =CODE(I) || 'SUB';
267 SUBSTR (BUP,29,7) =MTOTAL;
263 WRITE PILE(CARD) PROM(BUP); BUP=' !;
270 END;
271 DO I=1 TO NOM;
272 PUT STRING (PRH) EDIT (PRAME(I)) (P(7,1));
273 SUBSTR (BUP,S, 3) ='RHS*;
274 SUBSTR(BUP,15,5)=CODE(I) || 'FRN?;
275 SUBSTR (BUP,29,7) =PRN;
276 WRITE FILE(CARD) PROA(BUF); BUP=' *;
278 END;
279 SUBSTR (BUP,S5,3) ='RHS?;
280 SUBSTR (BOF, 15,6) =*LINCAP';
291 SUBSTR(BUP,30,6)=*181.00%;
282 WRITE FILE(CARD) FPROM(BUF); BUP=* ';
284 SUBSTR (BUP,S,3) ='RHS';
285 SUBSTR (BJP,15,5) = SHALLY;
286 SUBSTR (BUP,32,4)="5.00";

287 WRITE FILE(CARD) PROM(BUP); BOF=' *;

PL/TI OPTIMIZING COMPILER GENER: PROC REORDER;

STHT

289 SUBSTR (BUP,5,3) ='RHAS";

290 SUBSTR(BUF, 15,5) ='LARGE"';

291 SUBSTR (BUP,32,4)=5.00";

292 WRITE PILE(CARD) PRONM(BUP); BOP=' ';
294 SUBSTR (BUP,S,3) =*RHS';

295 SUBSTR (BUP, 15,5)='WIRE";

296 SUBSTR (BUP,32,4)="5.00';

297 WRITE PILE(CARD) PROM(BOP); BOUP=' °;
299 WARE=WARE+TSHIP;

300 PUT STRING (TOTAL) BDIT(WARE) (P(10,1));
301 SUBSTR (BUP,5,3) ='RHS";

302 SOUBSTR (3UF, 15,5) = INVEN';

303 SUBSTR (BUP,26, 10) =TOTAL;

304 URITE PILE(CARD) PROM(BUF); BUP=' *;
306 SUBSTR (BOF,S,3)=*RAS';

307 SUBSTR (BUP, 15,7) =* UPENDER" ;

308 SUBSTR (BUP,32,4)='33.0";

309 WRITE PILE(CARD) FPROM(BUF); BOP=' ';

PL/I OPTIMIZING COMPILER GENER: PROC REORDER;

STAT
JEFEEELEXEREREXRERELEN SR SRR ERSR KN/
/**¢ PRINT THE MOLD RANGE VALUES #$*s/
Vadd Al i il LA i 2 2 2222 2122 22 22 22 2 2 2 22 4
311 BUP='RANGES';
312 4RITE FILE(CARD) FRON(BOP); BOP=* *;
314 DO I=1 TO uOAm;
315 POT STRING (NOLD) EDIT (MOLDS(I)) (P(7,1)):
316 SUBSTR (BUP,5,5) =" RANGE';
317 SUBSTR (BUP,15,5)=CODB(TI) 1| *REQ';
318 SJBSTR (BUP,29,7) =MOLD;
319 WRITE PILE(CARD) FROM(BUP); BUF=' *;
EPA) END;
322 SUBSTR (BUP,S5,5)="RANGE';
323 SUBSTR(BUP, 15,4) ='WIRE';
324 SUBSTR(BOP,32,4)='10.0";
325 WRITE FILE(CARD) PRONM(BUP); BOP=' *;
327 SUBSTR (BUP,5,5) ='RANGE';
328 SUBSTR (80P, 15,5) ='SNALL';
329 SUBSTR (BUP,32,4)='10.0";
330 WRITE PILE(CARD) FRON (BUF); BUF=' °';
332 SUBSTR (BOP,5,5) =" RANGE*;
333 SOUBSTR (BUP, 15,5)='LARG2';
334 SUBSTR (BUP,32,4)='10.0";

335 4RITE PILE(CARD) FROM(BOP); BOP=' !;

PL/I OPTIMIZING COMPILER GENER: PROC REORDER;

STAT
/‘““.‘t".““‘t.t.“ti‘t‘!..‘./
/%%% PRINT THE BOUNDS SECTION %%/
/“..‘.‘.“‘t."“‘.““.“t.“‘./
337 BUP='BOUNDS';
338 WRITE FILE(CARD) PROM(BOUP); BUP=' *;
340 DO I=1 TO NOM;
341 PUT STRING (MOLD) EDIT(HOLDS(I)) (P(7,1));
342 SUBSTR (BUP,2,8) = UP BOUND’;
343 SUBSTR (BUP, 15,5)=CODE(I) || °*II' || SIZE(I);
384 SUBSTR (BUF,29,7) =MOLD;
345 WRITE FILE(CARD) PROM(BUP); BUP=' *;
347 END;
48 DO I=1 TO NUHN;
349 SUBSTR (BUP,2,8)= 'UP BOUND';
350 SUBSTR (BUF, 15,5)=CODE(I) |] *OP* || SIZE(I);
351 SUBSTR (BUP,33,3)='6.0';
352 WRITE PILE(CARD) PROM(BUP); BUP=' *;
354 END;
355 DO I=1 TO NUN;
356 SUBSTR (BUP,2,8)= 'UP BOUND';
357 SUBSTR (BUP,15,5)=CODE(I) || *AA' j} SIZE(I);
358 SUBSTR (BUP,32,4)=120.0°;
359 I? CODE(I)=*BN' | CODE(I)='BR' THEN SUBSTR (BUP,32,8)='40.0";
360 WRITE PILE(CARD) PROM(BUF); BOP=' I;
362 BND;
363 DO I=1 TO NOUN;
364 SUBSTR (BUF,2,8)= 'OP BOUND';
365 SUBSTR (BNF,15,5)=CODE(I) |] *SS' || SIZE(I);
366 SUBSTR (BUP,32,4)='20.0";
367 IF CODE(I)='BN' | CODE(I)='BR' THER SUBSTR (BUF,32,8)='40.0";
363 WRITE PILE(CARD) FROM(BOP); BUF=' I
370 END;
371 DO I=1 TO RUN;
372 SUBSTR (BUP,2,3)= 'UP BOUND';
373 SUBSTR (BUP, 15,5)=CODE(I) |] *'PP* || SIZE(I);
374 SUBSTR (BUP,32,4)='2.00";
375 IP CODE(T)='BN' | CODE(I)='BR' THEN SUBSTR(BUP,32,8)='4.00";
376 ¥RITE PILE(CARD) PROM(BUP); BUP=' ¢;

378 END;

PL/I OPTIMIZING COMPILER GENER: PROC REORDER;

STAT
/tt‘...“.“...‘t.‘l‘.““t‘t.“‘#‘tt““.t‘..t“..‘.“.tt/
379 DO I=1 TO NOAM;
330 PROD= (. 70%SHIP1(I) +.20%SHIP2 (T) +.05%SHIP3 (I)+.05%SHIPY (I) -
INVBAL (I) +SAPETY (I)) /RATE(I) ;
381 LPROD=PROD;
382 IF LPROD < 0 THEN LPROD=0;
383 IP LPROD > ®OLDS(I) THEN LPROD=MOLDS (I);
384 PUT STRING(IPROD) EDIT (LPROD) (F(7,1)):;
385 SUBSTR (BUF,2,8) ='LO BOUND';
386 SUBSTR (BUP,15,5)=CODE(I) || *II' || SIZE(I);
387 SUBSTR (BOF,29,7) =IPROD;
388 WRITE PILE(CARD) PROM(BUF); BOUP=' *;
390 END;
391 BUP="ENDATA';
392 WRITE PILE(CARD) PROM(BUP); BUP=' *;
394 CLOSE PILE (CABD);

395 PINISH:
END GENER;

MM MM
MMM MMM
MMMM MMMM
MM MM MM MM
MM MMMM MM
MM MM MM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM

ITITININNI
ITITININII
I
Il
I
Il
It
It
I
11
ITITIILINI
ITIIIIIINII

PPPPPPPPPPP
PPPPPPPPPPPP
PP PP
PP PP
PP PP
PPPPPPPPPPPP
PPPPPPPPPPP
PP

PP

PP

PP

PP

PL/I OPTIMIZING COMPILER BIP: PROC REORDER;

STAT

Nownm &

SOURCE LISTING

8aIP: PROC REORDER;

JEFERERBEEXS LR LR B SR SR LR R XX ST EREREBEE R R/

/%**s& HPSY 370 - MIP DECLABRATIONS #*&*xssx/
J/EESRRER SR REREREEPREEEERNRRSLNRAEEXEEE N8/

DCL (ANALYZE,ASSIGN,BCD,BCDOUT,CHECK,CLOSEP,CONMON,
CONVERT,COPY ,COPYOLD,CRASH,DPLBOOT,DPLUSER,

DUAL,BPXIT,EXPORT,PLAGS,FORCE, PREEORE, INPORT, INQUIRE, INSERT,

INVALUE,INVERT ,MIXBUND, MIXPIX,MIXPLOW,MIXSAVE,HIXSART,
MIXSATS,MODIPY,MGRW,PARACOL,PARAOBJ,PARARAS,
PARARIN,PARAROW, PICTURE,PRIMAL,PROBENS,PUNCH,RANGE,
RECBRATE,REDUCB,REPORT,RESTORE,RETREVE,REVISE,SAVE,
SAVERHS,SCALE,SELECT,SELIST,SETREP,SETUP,SOLUION,STATUS,
TIME, TRACE, TRANCOL, TRANROW) ENTRY EXTERRAL;

/%¥*%%x ALGORITHMIC TOOLS EXTERNAL ENTRIES ***%%/

DCL (PRICEP?,PRICED1,PRENUL,POSTNUL,INVCTL1,GETVECH,
PTRANU1, PTRANL1,PIXVECT,2LINN1,CHOZR1,BTRANU1,BTRANLY)
ENTRY EXTERNAL;

/*¢*%* DPLPLICR MACRO = MPSY/370 CONMUNICATION REGION *s¢te¢/

DCL DPLSTR(768) DEC PLOAT(16) EXTERNAL INIT (0.0);
DCL DPLPTR PTR EXTERNAL ;

DPLPTR = ADDR (DPLSTR);

DCL 1 DPL ALIGNED BASED(DPLPTR),

2 IDUM1 CHAR(16), 2 XCORE BIN PIXED (31), 2 XDUN2 CHAR(16),

2 (XTITLE,XSUBTITL) PTR, 2 XDUM3 CHAR(16), 2 IVERSMOD CHAR(S),

2 XENVIRON UNALIGHNED,
3 (XPLI,XTSO,XCONT,XDOS,XREPORT,XATTN,INPSX,XCHS)BIT(1),

2 XDUM4 CHAR(5), 2 XMTRDSW BIT (8), 2 IDUM4C CHAR(16),

2 (XINP,XLUCTRL) DEC PLOAT(6),

2 (XMXPCITX,INXWOVP,XPORMSOS,XSEPTERM,XTR{PIV,XTRYPIVS,XTRYPIVX,

ICHSXT)BIN PIXED(31),

2 (YPBNANE,XOLDNAME,XOBJ,XCHROW,XRO9) CHAR (8),

2 (XRAS,XCHCOL,XCOLUMN,XDATA,XSAVERHS,XBOUND,XRANGE) CHAR(S),

2 XDUN6 CHAR(28),

2 XPSSTATS,
3 (XM,XuM,X8%,XJ,XELEN, XLMINI,XLMAXI,XNPACVEC) BIN PIXED(31),
3 (YBIGBAS,XSGR0WS,XGUBTYPE,X¥XJ,XMXSOS) BIN PIXED(31),

2 XDUM7 CHAR(8),

2 (XPARAN,XPHI,XTHETA,YXSI,XZETA) DEC PLOAT(16),

2 (XTAU,¥SIG,XT) BIN PIXED(31),

2

IDUM8 CHAR(68),

PL/I OPTIMIZING COMPILER HIP: PROC BEORDER;

STAT

(XPARPRT, XPARDELT,XSCALE, XEPS, XPARNAX) DEC FLOAT(6),
XPROCNAM CHAR(8), 2 (XPONCT,XSIP) DEC FLOAT (16),
(XNIP,XSEGDJ,XITERNO,XMAJIT, XERROR) BIN PIXED(31),
(XXJINC,XKJOUT) BIN PIXED(31), 2 XINCDJ DEC FLOAT (6),
YTRANTIN BIN PIXED(31),
YINVNO,

3 (XINVERNO,XTRANNO,XTINORG) BIN FIXED(31),
YPARSW BIT (8), 2 XDUM10 CHAR(7),
XALGSW UNALIGNED,

3 XDOM11 CHAR(3), 3 XDUM12 BIT(3),

3 (XMIXPHAS,XDUM13,XILU,XNIP,XSEP) BIT (1),
(XPRICE,XP,XINTYAL, XPREQINV) BIN PIXED(31),
(XCLOCKRSW,XOLDINV,XLOGCAPT, XCHECKSW,XTRANSY) BIN FIXED(31),
(XDZPCT, XDININ,XDJPCT,XSCLERR,XTRUSCL) DEC PLOAT(S6),
(XDISCALE, XCIRCLE, XDEGENSW,XSCYCLE) BIN PIXED (31),
(XRECTIPY,XBECTNO,XNOPREE) BIN FIXED(31),

XDUM14 CHAR(12),

(XFREQ3,XFREQ2, XPREQ1,XDELTN,XLASTIN) BIN PIXED(31),

(XPREQLGO, XPREQLGA, XNOPRINT,XTISES) BIN PIXED (31),

XDUN15 CHAR(92),

(XTOLPIVS,XDUM15C(18) ,XSSCALE) DEC PLOAT (6),

(XDUN1SP (8) , XMNO,XNSIZE, XCOLRC, XRHSRC, XDUM 154 (8) , XCYCLESN)
BIN PIXED(31),

XDUN1SL CHAR(118),

YETASW UNALIGNED,

3 (XETAPOLL,XETAPART,XETALU,XETATN,XETAACCU) BIT(1),

3 XDUM1SN BIT(3), 3 (XINVPOULL,XINVLU) BIT (1),

XINVDENS DEC PLOAT(6), 2 (XPARTINV,XINVCORE) BIN PIXED(31),
XDUM16 CHAR (76),
XNXPTR,
3 (XH,XKd,XNXLUDY,XMXPRAC,XMICNE) PTR,
(XV,XG) PTR,
XPIO BIN PIXED(31), 2 YPI(3) PTR,
XALPHAO BIN PIXED(31), 2 XALPHA(S5) PTR,
IVREGO BIN PIXED(31), 2 XVREG(S) PTR,
(XUPLINIT, XSUPLNT,XSCLORG,XCOL,XUSTK, XTN) PTR,
WO,

3 (XWNO,XWNONAX) BIN PIXED(1S),

3 XW(12) PTR,

(XDUM168,XDJ0) BIN FIXED(31), 2 XDJ(5) DEC PLOAT(16),
IDON16D CHAR(176),

(XLN,XPREE, XPROC, XETACORE) BIN FIXED(31),

{XJCORE, XBXHCORE,XWREG, XNODES) BIN PIXZD(31),

IDON17 CHAR (36),

XSETLB BIN FPIXED(31),
(XTOLZE,XTOLREL,XTOLYV,XTOLDJ,XTOLPIV,XTOLERR) DEC PLOAT(5),
(XTOLCHK ,XROWCHK, XTOLINV,XTOLI1,XTOLI2) DEC PLOAT(S6),
(XYTOLELEM, XKAPPA, XTRANCHK, XRHO,XZI,XPRICHK) DEC FLOAT(6),
(XVECNORN,XDELTADJ, XTOLWRIT, XDJREL) DEC FLOAT (6),

NN NNNNNNNNNNON NN NNNNNN

NNNNDNN NNN

NNNNNNNNNN

PL/I OPTIMIZING COMPILER HMIP: PBOC REORDER;

STHT

XDUM18 CHAR(12),

(X0BJSC, XCHROWSC,XDUN18B(6)) DEC PLOAT(16),

XSCALNAT BIN PIXED(31), 2 XTOLDJS DEC PLOAT(6),

(XR1C2,XR2C2) CHAR(8), 2 (XRI1C1,XR2C1) DEC PLOAT(6),

XBRRCNT BIN FIXED(31), 2 ITRANCHS DEC PLOAT(6),

YRBALO1(10) DEC PLOAT(S),

XINTO1(10) BIN PIXED(31),

XCHARO1(10) CHAR(8),

(XREDUCE,XSORTA, XSTART,XVECTOR, XENDSY,XSXERBRT) BIN PIXED (31),
IDON19 CHAR(288),

(XPIV,XZERO,XD1,XDN1) DEC PLOAT (16),

(XDUM20 (3) ,XITERINV,XMAJINYV,XHAJNO,XDUM20B (7)) BIN FIXED(31),
(XTOLVREL,XTOLZREL,XKPMAX, IKPERR, XDEPS,XNXHUTDJ) DEC PLOAT (6) ,
(XBXTDJ,XSIGMA2,XTOLI3) DEC PLOAT (6), 2 XOPDEGN BIN PIXED (31),
IDOM21 CHAR(36),

NNNONNNNONNNMNNNNNNNON

/%*%sx NIXED INTEGER CELLS ###*%x/

YMXSTRAT CHAR(Y4),
(XMXRATIO, XMXDROP,XMXBESTF, XNXBESTE, INXSTEP,XNXSCAN,XNXSCF,

IMXSCE,XdXQI1,XNXQI2,XNXQI3,XMXTOLI,XNXST?,

IMXST2) DEC PLOAT(6),

(XMXSTIT,XNXPCIT) BIN PIXED(31),

(XBXPCPAR,XNIPCDUA, XNXTOLZE) DEC PLOAT (6),
(XSXFRN,XMXNNO,XMXJ1,XNXJ2,XNASWT, XNXSSHT) BIN PIXED(31),
(XMXOVPLC,XMYBIN,XNXPNLOG) BIN FIXED(31),

XNXERBR BIN FIXED(31), 2 XMXBIP DEC PLOAT(16),

(XMXCAPT, XMXLOG) BIN PIXED(31),

(XDOM22 CHAR(16) ,XMXPOE DEC PLOAT (6) ,XDUM22D CHAR({188)) ,
IDUM23 CHAR(302),

XSPIE BIN FPIXED(31),

(XDUM24 CHAR (88),XSXMAXNO BIN PIXED(31)),

(XMXSTART, IMXSOSWT, XOPSTART, XOPRESTR, XOPSAVE,

YOPSET, TRBOUND, XRRESTA, XRNODEL, XBNEWPR) CHAR(S8),
(XOPPREQS, XINVCT,XERRNO,XMAXCT) BIN PIXED(31),
(XMINODE,XMXPCCNT) BIN FIXED (31), 2 XTOLDJY DEC FLOAT (6),
XMXOPTMC BIN PIXED(31), 2 XMISMAX CHAR(S8),

XUSER (S0) BIN PIXED (31);

NN

NN NNNNNNNNNNON

PL/L OPTINIZING COMPILER MIP: PROC REORDER;

STNT

JEEECEERELEEEBESES LS AR EERLEEREEEL SRR EREETE)/

/es%xs INITIALIZATION TITLE & SUBTITL2 *s*%sx/
J/EEBERBERBSLSARAEEESRSEBREEEE KL ERRRXSEEBREREES /

DCL 1 STIT EXTERNAL STATIC,

2 $DUMO CHAR (20) INIT(* '),

2 STITLE CHAR(80) INIT(® BECL EXECUTION'),
2 SDUNM1 CHAR(6) INIT(' PAGE'),

2 SPAGE PIC '222229' INIT(O),

2 $DUM2 CHAR(8) INIT(' '),

SDATE CHAR(6) ;

DCL DPLPRNT FPILE VARIABLE EXTERNAL;

N

JEERRERLRREREEEESRE LRSS EER LSRR AL XBETEXREEE XL E RN RSS2/

/%%**x ATTRIB MACRO = REMPLACEMENT ECL ATTRIBUTES #%¢ss/
/EEEARRAESEEREBREREERAEEARR SR SR AL ARTERE SRR S KSR XSS SRR ES)/

PL/I OPTIMIZING COMPILER MIP: PROC REORDER;

STAT

/USSR RERREEARBEREEEREE TSI EBARRAAEESSEXEIAS SRS R SRE)
/%¢%%% DPLINIPR MACRO = INITIALIZE SYSPRINT #ss:s/
/OSSR EREESEIEEFBEEARRREERREISRAE SRS E SRS ER RSN/
10 DCL 1 $SSUBTITL BASED(XSUBTITL),
2 $NSUB BIN PIXED(31),
2 SASUB (MSUBTL REPER ($NSUB)) PTR;
11 DCL $8SG CHAR(132) VARYING BASED($PSUB),
SHEAD CHAR(126) BASED (XTITLE),
$PSUB PTR;

12 XTITLE = ADDR(STIT):
13 SDATE = DATE;
14 XSUBTITL = NOLL; '

15 DOCL (MULL,DATE) BUILTIN;
16 DCL DPLINSZ BIX PIXEBD(1S5) INIT(132);

17 DPLPRNT = SYSPRINT;
18 OPEN PILEB(SYSPRINT) PAGESIZE(S7) LINEBSIZE(DPLINSZ)
19 ON ENDPAGE (DPLPRNT)
BEGIN
20 DCL $I BIN PIXED(15,0)
21 SPAGE = SPAGE + 1 ;
22 IP XTITLE=NULL | (XTSO=*1'B & DPLPBNT=SYSPRINT) THZN
PUT PAGE PILE(DPLPRNT)

23 BLSE

DO ;
24 PUT LIST(SHEAD) PAGE FILE (DPLPRNT) ;
25 PUOT SKIP FILE(DPLPRNT) ;
26 END
27 IP XSUBTITL -~= NULL THEN

DO

28 DO $I= 1 TO $NSUB ;
29 $PSUB = $ASUB(SI) ;
30 PUT SKIP EDIT($M4SG) (A) PILE(DPLPRNT) ;
31 END
32 PUT SKIP FILE (DPLPRNT):
33 END ;

34 END ;

PL/I OPTIMIZING COMPILER MIP: PROC REORDER;

STHAT

~

/““.t..‘.‘t#tt‘ttt‘.‘t““t“‘t“l*t‘tt.tttt‘t.*tt!ltt‘t.tt‘ e/

DPLTOL MACRO = DPLPLICR CELLS TOLERANCES INITIALIZATIONS #¢%/
/EEEERRES AR R RRRAESRARRSERETF R LR REERRARE RS SREAERERRT RN ER SRR NN/

ICLOCXSW , XPREQLGO , XINVCORE , XPARTINV = 1 ;
XSCALYAT=-1 ;

XCHECXSW=20;XOLDINV = 10 H

ISEPTERN= ~ 20;XIPREE=20480; XCORE=16711630;

XDJPCT =0.001; XTOLI2=0.01 ;s XTOLZE = 1.0B-30;
ITOLREL, XTOLELEN = 1.0B-10;

XTOLWYRIT , ITOLERR = 1.0E-6 ;

XTRANCHK = 1.0E-9 ;

XTOLPIV , XTOLINV = 1.0E-6 ;

XTOLDJ = 1.0E-8 ;

XTOLDJ1 = 1.0E-5 ;

XDJREL , XTOLI?1 = 1E-11 ; XTOLZREL=1E-13 ;
XTOLY=1B-5 ; XTOLI3= 0.01 ;

XKPERR=1E+8 ; XDE?S=0.1 ;

XTOLCHK=1E-8 ; XKPMAX =1B+6 ; XTOLVREL =
XRECTIPY=100;XINVDENS=1. ;s XLOCTRL=1.1
XMXTOLZE=1.0E-5; XMAXCT=S ;
XMXPNLOG=1;XMXRATIO=0.15; XNXSCP=1.2; XMXSCFE=0.5 ;
XMXQI1=0. 1;XMXQI2=0.05;XNMXQI3=0.5;
XMXTOLI=0.1;XMXST1,XMXST2=2.;

XHXSTIT,XMXPCIT=3 ;

XMXPCPAR=0.33 ; XMXPCDUA=0.66 ;

XBRBOURD, XRRESTA, XRNODEL,XOPRESTR, XOPSAVE=" ‘s
XRNEWPR='NEWPROB® ; XOPSTART="'BEGIN';

XOPFREQS=10;

XNXSTART='STANDARD'; XMXSOSWT=' 4
XINP,XMXDROP=1E7S;

XMXPCITX=9;

INXERBRT=50; XMXTDJ=100.;

XTOLPIVS=1E~4 ;XTRYPIVX=2;

ISPIE=1;

1E-9 ;
H

PL/I OPTIMIZING COMPILER nIp: PROC REORDER:

STHT

90

91
92

93

94
95
96
97
98
99
100
101
102

103
104
105
106

107
108
109
110
111

112

113
114
115
116
117

118
119
120
121

122
123

Vad it i il 2l T il i a il Al i o gt il i i d il Al il S il il d it ittt i st lll Ve

/%*** DPLONCD BACRO = DEPINITION ON-UNITS FOR POSSIBLE DEMANDS #*%/
/EEEBEREREEEABEERERRERAAE BRI ERRBRE SRR R R SRS AXRAXEE RS SR ARENRRSE S XS/

ON CONDITION (XCOMERR)
BEGIN ;
DCL TOLI2 DEC PLOAT(6) INIT(XTOLI2) ;
IP XTOLI2 >=0.1 & XTRANCHK >= 1B-6 & XITERNO=XINVERNO THEN
DO;
IP XMIXPHAS THEN
DO;
CALL MIXSAVE;
CALL MIXSATS;
END;
STOP;
END;
XTOLI2=0.1 ;
IF XERRNO >= 3 THEN

DO
XTOLPIV,XTOLINV=1E-4 ;
IP XERRNO >=S THEN
DO ;
XTRANCHK=1E-6 ;
XINVDENS=0. ;
END ;
ELSE
XTRANCHK=1E-8 ;
END ;

CALL INVERT;
XINVDENS=1.0
XTOLI2=MIN (0. 16,TOLI2+4TOLI2) ;
IP XINVCT >=0 THERN
XERRNO=XERRNO+1 ;
ELSE
DO;
XINVCT = XMAXCT ;
XEERNO = 1 ;
END;
XCONT = "1'B; ~
ERD;

ON CONDITION (XDODLTHM)
BEGIN;

IP XMIXPHAS THEN
DO;

CALL MIXSAVE;

CALL MIXSATS;
END;
STOP;

PL/I OPTIMIZING CONMPILER HIP: PBOC REORDER;

STAT
124 END;
125 ON CONDITION (XDODUAL)
BEGIN;
126 CALL DUAL;
127 XCONT = '1'B;
128 ERD;
129 ON CONDITION (XDOFPEAS)
XCONT = ' 1'B;
130 ON CONDITION (XDOINV)
BEGIN;
131 DCL TOLI2 DEC PLOAT(6) INIT(XTOLI2) ;
132 IP XERROR ~= 0 THEN
XTOLI2= MAX (XTOLI2,0.1) ;
133 CALL INRVERT;
134 IP XINVCT<O & XERROR = 0 THEN
DO;
135 XERRNO=0;
136 XTOLPIV,XTOLINV=1E-6 ;
137 XTRANCHK=1E-9 ;
138 ITOLI2=%AX (0.5*TOLI2,XTOLI3) ;
139 END;
140 ELSE
XTOLI2=TOLI2 ;
141 XCONT = "1'B;
142 BRD;
143 ON CONDITION (XDOLPS)
BEGIN;
144 IP XITERNO -~= XINVERNO | XRHO*XZI > 1B+4 THEN
DO ;
145 XERROR=4
146 SIGNAL CONDITIONR(XDOINV)
147 END ;
148 XCONT = *1'B ;
149 END;
150 ON CONDITION (XDONPFS)
BEGIN;
151 IP XMIXPHAS THEN
DO;
152 CALL MIXSAVE;
153 CALL MIXSATS;
154 STOP;
155 END;
156 IF (BEPS=0.0 THEN

DO

PL/T OPTINIZING COMPILER NIP: PROC REORDER;

STHT
157 CALL STATUS;
1538 CALL SOLUION;
159 STOP;
160 END;
161 IEPS=0.0;
162 XOPDEGN=0;
163 XCONT = '1'B;
164 END;
165 ON CONDITION (XDONMX)
166 ON CONDITION (XDOOPT) H
167 ON CONDITION (XDOPEHMX) ;
168 ON CONDITION (XDOPRIN)
BEGIN;
169 IF X8IXPHAS THEN
DO;
170 ON CONDITION(XDONPS) ;
171 ON CONDITION (XDOOPT) ;)
172 ON CONDITION (XDOFEAS) XCONT = "1'B;
173 END;
174 CALL PRIMAL;
175 XCONT = ' 1'B;
176 END;
177 ON CONDITION (XDOPINT)
BEGIN;
178 CALL SOLOION;
179 IP XMIXPHAS THEN
DO;
180 IFP XMXMAXNO=0 THEN XCONT = '1'B;
181 ELSE
DO;
182 XNYMAXNO=XMNXMAXKRO-1;
183 IP XMXMAXNO-~=0 THEN XCONT = '1'B;
184 ELSE XMXOPTHMC=1;
185 END;
186 END;
187 ELSE XCCNT = *1'B;
188 END;
189 ON CONDITION (XDOUNB)
BEGIN;
190 IFP XBEPS=0.0 THEN
DO;
191 CALL STATUS;

192 CALL SOLUICN;

PL/I OPTINMIZING COMPILER 4IP: PROC REORDER;

STAT

193 STOP;

194 END;

195 XEPS=0.0;

196 XOPDEGN=0;

197 XCONT = ' 1'B;

198 END;

199 ON CONDITION (XMAJERR)
BEGIN;

200 CALL STATUS;

201 STOP;

202 END;

203 ON CONDITION (XIOERR)
BEGIN;

204 ON CONDITION(XIOERR) STOP ;

205 IP XMIXPHAS THEN

DO;

206 CALL MIXSAVE;

207 CALL MIXSATS;

208 END;

209 ELSE

DO;

210 CALL STATUS;

211 IDATA=' SRS eRnaxt o

212 : CALL PUNCH;

213 END;

218 STOP;

215 END;

216 ON CONDITION (XMINERR) ;

217 ON CONDITION (XMXOVPL)
BEGIN;

218 CALL MIXSAVE;

219 CALL MIXSATS;

220 STOP;

221 END;

222 ON CONDITION (XSINULR)

CALL RETREVE;

223 ON FINISH CALL EXIT;

PL/T OPTINIZING COMPILER MIP: PROC REORDER;

STNT
/. .tt‘.‘“"t“.“#““““““tt‘t"‘ttt“t/
/#*s%+ USER DEFINED MPSX/MIP PROGRAN #ssse/
/#“tt‘t“#‘.“‘t‘it“t““t“‘...#“"t“t‘/
224 DCL XPOUNCT1 CHAR(12) ;
225 DCL XMXNNO1 CHAR(S) ;
226 DCL INODES BIN PIXED(31);
227 ON CONDITION (XMXDPRN) BEGIN;
228 CALL NIXSAQT (*RESTORE','NODE',XMYBIN);
229 CALL SOLUION (*PILE','OUT');
230 END;
2 ON CONDITION (XDOPINT) BEGIN;
232 CALL MIXSAVE('SAME','TREE');
233 END;
234 DPLPRNT=0UT;
235 OPEN PILE(OUT) PRINT PAGESIZE(66) LINESIZE(132);
236 XOBJ=10BJ"';
237 XFREE=50000;
238 XRHS='RHS';
239 XPREQ1=1000;
240 XDATA='FOAN';
2u1 XPBNAME='POAN' ;
242 CALL CONVERT ('PILE','CARD');
243 INODES=1000;
244 CALL SETUP (*BOUND®,'BOUND’,'RANGE',*RANGE','NODES',INODES) ;
2u5 PUT PILE (OUT) PAGE;
2u6 PUT PILE (OUT) PAGE;
/'tt#t.t‘t!t“‘#‘.‘*tt"‘t“t‘i
CALL PICTURE;
ti‘.ttttt“‘l*t‘t.‘#“‘t““tt/
2u7 CALL PRIMAL;
243 XPREQ1=0;
249 XMXFRN=0;
250 CALL SOLUION;
251 PUT STRING (XPUNCT1) EDIT(XPUNCT) (P(12,2));
252 PUT STRING (XMXANNO1) EDIT (XMXNNO) (P (6));
253 DISPLAY(' CONTINUOUS SOLUTION: 38J = '|| XFUNCT1 ||
' AT NODE '] XNXENOT);
254 CALL MIXSART;
255 XMXNNO=300;
256 YMXPRN=300;
257 CALL MIXFLOW;
253 CALL SOLOIAN (*PILE','00T");

259 PUT STRING (XFUNCT1) ZDIT (XPUNCT) (P(12,2));

PL/I OPTIMIZING COMPILER MIP: PROC REORDER;

STMT
260 POT STRING (XMXNNO1) EDIT (XMXNNO) (P(6)):
261 DISPLAY (' INTEGER SOLUTION: OBJ = *'|{| XFUNCT1 ||
' AT NODE '|| XMXNNO1):
262 CLOSE PILE (CARD);
263 CLOSE PILE (OOT);

264 PINISH:
END MIP;

SSSSSSSSSS
SSSSSSSSSSSS
SS SS
SS
SSS

$SSSSSSSS

SSSSSSSSS

SSS

SS
SS SS
SSSSSSSSSSSS
SSSSSSSSSS

cccccceccce
cccceccccececc
ccC cc
cc
cc
cc
cc
cc
cc
ccC cc
cccccececcecceccce
cccccececccce

HH

HH

HH HH
HH HH
HH HH
HH HH
HHHHHHHHHHHH
HHHHHHHHHHHH
HH HH
HH HH
HH HH
HH HH
HH HH

EEEEEEEEEEEE
EEEEEEEEEEEE
EE

- EE

EE

EEEEEEEE
EEEEEEEE

EE

EE

EE
EEEEEEEEEEEE
EEEEEEEEEFFE

DDNDODOONDD
DDDDODDDDDD
DD D
nD
DD
0D
DD
0D
DD
0D D
DDODDODDDDD
DoDDODDDDOD

D

DO
0D
DD
DD
00
0D
D

PL/I OPTIMIZING COMPILER SCHED: PROC REORDER;

SOURCE LISTING

STAT
1 SCHED: PROC REORDER;
2 DCL (NOM,SHIFT,IPOS,LNUM,ISIN) PIXED BIN(15) STATIC EXTERNAL;
3 DCL WARE FIXED BIN(31) STATIC BXTERNAL;
4 DCL (SIZE(50),PLAT (50) ,TAPE(50)) CHAR(1) STATIC EXTERNAL;
s DCL (CODE(S50) ,CLINE(200)) CHAR(2) STATIC EXTERNAL;
6 DCL VALUE(50) FIXZD DEC(7,2) STATIC EXTERNAL;
7 DCL PART (S0) CHAR(9) STATIC EXTERNAL;
8 DCL (LOAD(50),NONPRT (50) ,MOLDS (50) , PRAME(S0) ,PACK (50) ,RATE(50),
SHIP1(50) ,SAIP3(50) ,SHIP4 (50) ,INVBAL (50) ,SAFETY (50),
PCD (50) ,SHIP2 (50) ,LPOS (50) ,LDIPF(50) ,NTOT (50) ,LaDIPF (200))
PIXED BIN (15) STATIC EXTERNAL;
9 DCL TITLE CHAR(80) STATIC EXTERNAL;
10 DCL 1 CHANGE(100) STATIC EXTERNAL,
2 (POS,NEZD) FIXED BIN(15),
2 (ADD,S7B) CHAR(2);
11 DCL ICOUNT PIXED BIN(15) STATIC EXTERNAL;
12 DCL LWD PIXED BIN(15) STATIC EXTEBNAL;
13 DCL AVAIL (100) CHAR(2);
14 DCL SDIPP(100) PIXED BIN(1S);
15 DCL (ITENP,ITENP1) CHAR(2):
16 DCL (SIZE1,SIZE2) PIXED BIN(15);
17 DCL (ITEMP2,ITEMP3) PIXED BIN(15);
18 DCL PROBLEM (100) PIXED BIN(15);
19 DCL REMOVE (100) CHAR(2);
20 DCL 1 CARD,
2 NAME CHAR(S),
2 NOCOL PIXED BIN(31) INIT(O),
2 DUNMY CHAR(4);
2 DCL COLUMY (250) CHAR (8);
22 DCL ROW (250) CHAR(S) ;
23 DCL TYPE (500) FIXED BIN(31);
24 DCL ENDSEC CHAR(3) INIT('SENDSECS'):
25 DCL ENDATA CHAR(8) INIT('ENDATA');
26 DCL VALUES (500) PLOAT DEC (6):
27 DCL VALUESS (250) PLOAT DEC(16) DSPINED (VALUES) ;
28 DCL VALALF8(500) CHAR(8) DEPINED (VALUES);
29 DCL LAST CHAR(2) INIT('II');
30 DCL ACTIVE (250) FIXED BIN(31);
31 DCL CNAME (250) CHAR(S);

32 DCL (IMAX,ISUB,ISUN,CPOS,ICNT,A1,12,33,44) PIXED 3IN(15);

PL/I OPTIMIZING COMPILER SCHED: PROC REORDER;

STAT
33 DCL (ISTART,IEND,MSIZE,NSIZE,A(3)) PIXED BIN(15);
34 LS#=0;

Vet i 2 EA A2 22 2 2 2 22 R i d b i ittt et il g

/%%¢ INITIALIZE THE VARIABLES #s%s/
JEESEBBERELEEEEEREXARERASREERREERE R/

35 BEGIN_PGN:

ADD(*)=' '
36 SOB(#) =" ¢
37 POS (%) =0;
38 NEED(*)=0;
39 AVAIL(*)=? ¢,
40 SDIPP (#)=0;
41 ACTIVE (%) =0;
42 CNAME(®)=" ¢;
43 TYPE (*)=0;
44 REMOVE (*)='
45 PROBLEM (%) =0;

JEEERREREB XSRS RRLERLRB LRSS SRS RE XN ES)/

/%%*%ss READ AND WRITE FILE OUT #*s:x/
/EEESEEEXEEEEREREEE XA EEELEEREXEREE RS/

46 READ PILE(OUT) IGNORE(1);
87 BEAD PILE(OUT) INTO(CARD);
48 READ PILE(OUT) INTO (ROW);
49 READ PILE(OUT) INTO(TYPE);
50 READ PILE(OUT) INTO(VALUES);

51 READ PILE(OUT) IGNORE(1);

PL/TI OPTINIZING COSPILER SCHED: PROC REORDER;

STHT
/‘tt‘tttt‘#‘ttl‘#tttttttttttt‘tttttttttt‘ttt/
/¢%*sss GET AND PRINT THE ROW SECTION #s%%xsa/
/‘t‘ttttttttOttttttt*tttt#‘tt‘ttttt‘ttt#tttt/
52 LAB1:
READ PILE(OUT) INTO(CARD);
53 IP NAME=ENDATA THEN GO TO LABS;
sS4 IP LSR=0 THEN
PUT EDIT('SOLUTION OPF THE ROW SECTION') (PAGE,X(35),1):
55 READ PILE (OUT) INTO (ROW);
56 READ PILE(OUT) IGNORE(1);
57 IP LSW=0 THEN

PUT EDIT((RO#(X) DO K=1 TO NOCOL))
(SKIP(3) ,X(6), (NOCOL) (A (8),X(7)));
58 IP LSW=0 THEN
POT SKIP(1);

S9 LAB2:
READ PILZ(OUT) INTO(VALUBS);
60 IF VALALPS (1) =ENDSEC THEN DO;
61 ICOUNT=1;
62 GO TO LAB3;
63 END;
64 DO K=3 TO 4;
65 1P VALUESS (K)< 1.E-6 THEN VALUBSS8 (K)=0.0;
66 IP VALUES8 (K) > 1.E10 THEN VALUES8 (K)=0.0;
67 END;
68 IP LSW=0 THEN

PUT EDIT ((VALUES8 (K) DO K=1 TO (NOCOL-2)),VALALPS(NOCOL-1),
VALALPS (NOCOL))
(SKIP (1), (NOCOL-2) (F(12,4) ,X(3)) ,X(8),A(2),X(9),A(8));
69 GO TO LAB2;

PL/TI OPTIMIZING COMPILER SCHED: PROC REORDER;

STAT
/..tt"t““‘t"““‘tttt#.‘t“t“‘t..t“‘tt#“/
/%es%s GET AND PRINT THE COLUMN SECTION sssss/
/‘ttt‘.t"i‘t.tt‘.‘.*“‘#"##“"‘“"tt‘t“.“/
70 LAB3:
READ PILE(OUT) INTO(CARD);
71 IP NAME=ENDATA THEN GO TO LABS;
72 IP LSW=0 THEN
POT EDIT('SOLUTION OP THE COLUNN SECTION') (PAGE,X(35),A);
73 READ FILE (OUT) INTO(COLUMN) ;
74 READ PILE (OUT) IGNORE(1);
75 IF LSW=0 THEN

POT EDIT((COLIMN(K) DO K=1 TO NOCOL))
(SKIP (3) ,X(6), (NOCOL) (A(8),X(7)));
76 IP LSW4=0 THEN
PUT SKIP(1):

77 LABY:
READ PILE (OUT) INTO(VALJES);
78 IP VALALPS (1) =ENDSEC THEN GO TO LAB3;
79 IF VALUES8(1)=0.0 THEN GO TO LABY4;
80 ACTIVE (ICOONT)=VALUES3 (1) +0.01;
31 CNAME(ICOUNT) =VALALF8 (NOCOL) ;
82 ICOUNT=ICOUNT+1;
83 IP SUBSTR(VALALPS (NOCOL),3,2)~= LAST THEN PUT SKIP(1);
84 DO K=3 TO 4;
85 IF VALUESB8(K)< 1.E-6 THEN VALOUES8(K)=0.0;
86 IP VALUESB(X) > 1.E10 THEN VALUESS (K)=0.0;
87 END;
38 IF LSW=0 THEN

PUT ZDIT((VALIZS3 (K) DO K=1 TO (NOCOL-2)),VALALFS(NOCOL-1),
VALALF8 (NOCOL))
(SKIP (1), (NOCOL-2) (P(12,8),X(3)),X(8),A(2),X(9),A(8)):

8a LAST=SUBSTR(VALALPS8 (NOCOL),3,2);
90 GO TO LABY;
91 LABS:

ICOUNT=ICOUNT=-1;
92 CLOSE PILE (OUT);

PL/I OPTIMIZING COMPILER SCHED: PROC REORDER:

STHT

/“‘.ﬁt“t““#“i.i“““‘#‘t‘#“.““/
/%%+ SORT THE PROBLEN AREA ARRAYS *ss/
/ﬁ“t*..‘t#..“"t‘t‘t‘t“t‘tt‘.“t“tt/

93 DO I=1 TO LNON-1;

94 DO J=I TO LNUN;

95 IP LPOS(I) <= LPOS(J) THEN GO TO SORTP;

96 ITENP2=LPOS (I) ;

97 ITEMP3=LDIFP (I);

98 LPOS (I) =LPOS (J) ;

99 LDIPP (I)=LDIPP (J);

100 LPOS (J) =ITENP2;

101 LDIFP(I)=ITEAP3;

102 SORTP:

END;
103 END;

PL/I OPTINIZING COMPILER SCHED: PROC REORDER;

STMT

/t‘..‘tt.“.‘t#.t.t“‘.t.t“ttt‘tttttttttttt/
/*** ELIMINATE REDUNDANT PROBLEM AREAS ##3/
/‘.“‘.“i‘#“.“““t“ttttt.‘#ttt“t‘t.“t/

104 INDEX=1;

105 I=1;

106 DO WHILE(I <= LNON):

107 IP LPOS(I)+1=LPOS(I+1) & LPOS(I)+2=LPOS(I+2) & I<K=LNUN-2 THEN DOJ;

108 PROBLEN (INDEX) =LPOS (I+1);

109 INDEX=INDEX+1;

110 I=1+3;

1M END;

112 ELSE IP LPOS(I)+1=LPOS(I+1) & I <= LNUM-1 THEN DO;

113 PROBLEN (INDEX) =LPOS (I) ;

114 INDEX=INDEX+1;

115 I=1+2;

116 END;

117 BLSE DO;

118 PROBLEN (INDEX) =LPOS(I) ;

119 INDEX=INDEX+1;

120 I=I+1;

121 END;

122 END;

123 INDEX=INDEX-1;

PL/T OPTIMIZING CONPTLER SCHED: PROC REOBRDER;

STHT

/.““3“..#t‘.“.‘*“t“t“t.*"““*t.‘t“t*‘/
/%*s%% DUTTING THE RESULTS OF THE MIP xaany
/%sse% SUBTRACT SECTION IN REMOVE ARRAY *%sxs/
/t“‘.““#‘.“.“t“““““*“““t*“*."t’t/

124 ICOUNT=1;

125 DO ISUB=1 TO 250;

126 IP SUBSTR (CNAME(ISUB),3,2)='SS' THEN 30 TO FND_SUB;

127 END;

128 PUT SKIP EDIT(' THE PROGRAM STOPS HERE') (A);

129 STOP;

130 END_SUB:
DO I=1 TO NUM WHILE (SUBSTR(CNAME(ISUB),3,2)="SS');

131 DO J=1 TO ACTIVE(ISOUB) ;

132 REMOVE (ICOUNT) =SUBSTR(CNAME (ISUB),1,2);
133 ICOUNT=ICOUNT+1;

134 END;

135 CHK_NEXT_SS:
ISUB=ISUB+1;
136 END;

137 ICOUNT=ICOUNT-1;

PL/I OPTIMIZING COMPILER SCHED: PROC BREORDER;

STHMT

138
139

140
141

142
U3
144
145
146

147
148
149
150
151
152
153
154
155
156
157
153
159

160

161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176

/S EBEBEESRREEERESLERSSEEEEXEAN RS AEREXRE RS S/
/%¢sss PUTTING THE BRESULTS OF THE PROBLEM #s¢3%/

/*¢%s+ SECTION IN THE CHANGE ARRAY b4
S LT PRSP LI PRI PRI PRSI RIS PESIS LTSI T L 94

ICNT=1;
ISW=0;

DO J=1 TO INDEX;
L=1;

DO I=-=1 TO 1;
DO K=1 TO BUM;
IP CLINE (PROBLEN(J)+1)=CODE(K) THEN GO TO FOUMD;
END;
POUND:
DO LL=1 TO ICOONT;
IP CODE(K)=RENMOVE(LL) THEN DO;
POS (J) =PROBLEN (J) +I;
SUB (J) =CODE (K) ;
DO K=LL TO ICOUNT-1;
RENMOVE (X) =RENMOVE (K#+ 1) ;
END;
ICOUONT=ICOUNT-1;
GO TO CONTINUE;
END;
END;
A(L)=LOAD(K) ;
L=L+1;
END;

IMAX=MAX (A (1) ,A(2) ,2(3)):

IP INAX=22 THEN DO;
I? A(1)=22 THEN IMAX=MAX (A (2),A(3));
IF A(2)=22 THEN DO;
POS (J)=PROBLEN (J)-1;
SUB(J)=CLINE (PROBLEN(J)-1);
AVAIL (ICNT)=S3JIB(J);
ICNT=ICNT+1;
POS (INDEX+ISd+ 1) =PROBLEN(J) +1;
SUB(INDEX+ISW+1)=CLINE(PROBLEN(J)+1):
AVAIL (ICNT)=SUB(INDEX+ISW+1);
ICNT=ICNT+1;
ISWN=1ISW+1;
GO TO CONTINDE;
END;
IP A(3)=22 THEN IMAX=MAX(A(1),A(2));
END;

PL/I OPTINMIZING COMPILER SCHED: PROC REORDER;

STAT

177
178
179
130
131
192
183

184
185
186
187
188
189
190

191
192
193
194
195
196

197

198

199
200
201

202
203

204

211

212
213
214
215
216

IP INAX=A(2) THEN DO;
POS (J)=PROBLEN (J) ;
SUB (J) =CLINE(PROBLEN(J)) :
AVAIL (ICNT)=SUB(J);
ICNT=ICNT+;
GO TO CONTINUE;
END;

IP IMAX=A (1) THEN DO;
POS (J) =PROBLEM (J) -1;
SUB (J)=CLINE (PROBLEM(J)-1) ;
AVAIL (ICNT) =SUB(J);
ICNT=ICNT+1;
GO TO CONTINDE;
END;

IP IMAX=A(3) THEN DO;
POS (J) =PROBLEM (J) +1;
SUB(J) =CLINEB(PROBLEM(J)+1);
AVAIL (ICNT)=SUB(J);
ICNT=ICNT+1;
END;

CONTINUDE:

NX:

END;
INDEX=INDEX+1Sd;

INDEX=INDEX+1;
ISTART=1;
CP0S=60;

DO L=1 TO ICOUNT;
DO J=ISTART TO 100;

DO KK=1 TO 2;

IP KX=1 THEN X=CP0OS-J;
BLSE K=CPOS+J;

IP K < 1 THEN GO TO §X;

IP RENOVE(L)=CLINE(K) THEN GO TO PND_LETTER;

END;
GO TN RX_CHK;

FPND_LETTER:

POS (INDBX) =K

STB (INDEX) =CLINE (K) ;
INDEX=INDEX+1;
ISTART=J+1;

IP L < ICONNT £ REMOVE(L)~=REMOVE(L+1)

GO TO NX_REMOVE;

THEN ISTART=1;

PL/I OPTINMIZING COMPILER SCHED: PROC REORDER;

STAT

217 NX_CHK:

END;
218 NX_REMOVE:
END;
219 INDEX=INDEX-1;

220 ICOUNT=INDEX;

PL/I OPTIMIZING COMPILER SCHED: PROC REORDER;

STNT
P2 L R P PP e L T s
/s*s%s DUTTING THE RESULTS OF THE MIP seees/
/®ss*sx ADDITION SECTION IN AVAIL ABRAY ¢ssss/
P2l R e P P e L PP P R P 2 Y2
221 DO IADD=1 TO 250;
222 IP SUBSTR(CNAME(IADD),3,2)='AA' THEN GO TO PND_ADD;
223 END;

224 PND_ADD:
DO I=1 TO NUM VHILE (SUBSTR(CNAME(IADD),3,2)='AA');

225 DO J=1 TO ACTIVE(IADD);

226 AVAIL (ICNT)=SUBSTR (CNAME(IADD),1,2);
227 ICNT=ICNT+1;

228 END;

229 CHK_NEXT_AA:
IADD=IADD+1;

230 END;

231 ICNT=ICNT-1;

232 DO I=1 TO ICNT;

233 DO K=1 TO NUJ:

234 IP AVAIL (I)=CODE(K) THEN GO TO PND_KEY;
235 END;

236 PND_KEI:
SDIPP (I)=LOAD(K);
237 END;

PL/I OPTIMIZING COMPILER SCHED: PROC REORDER;

STHT
J/EESRREEEERERARALEARRASARESREEEREEES RS/
/*ss8% SORTING THE AVAIL ARRAY #»ssz/
J/SEBREESBEAELEAESEAEERSERREEENEREREBER)/
238 DO I=1 TO ICNT-1;
239 DO _J=I+1 TO ICNT;
240 IP SDIPP(I) > SDIPF(J) THEN GO TO SORTA;
2641 IP SDIFP(I) = SDIPF(J) THEN DO;
242 SIZE1=0;
243 SIZE2=0;
244 DO K=1 TO NOM;
245 IP AVAIL(I)=CODE(K) THEN GO TO S1;
246 END;
247 S1: IP SIZE(K)='L* THEN SIZE1=1;
248 DO XK=1 TO NKUN;
249 IP AVAIL (J)=CODE(K) THEN GO TO S2;
250 END;
251 52: IP SIZB(K)='L* THEN SIZE2=1;
252 IP SIZB2 <= SIZE1 THEN GO TO SORTA;
253 END;
254 ITEMP=AVAIL (I);
255 ITENP2=SDIPF (I);
256 AVAIL (I)=AVAIL (J);
257 SDIPP(I)=SDIPP(J);
258 AVAIL (J)=ITENP;
259 SDIFP(J)=ITENP2;

260 SORTA:
END;
261 END;

PL/I OPTINIZING COMPILER SCHED: PROC REORDER;

STHT
/‘tt.“.t..““.““t“"‘t‘**“‘.’.““*“‘t"“..‘/
/%%%%% SORT THE CHANGE STRUCTURE BY POSITION #*ss%s/
/“‘.“.‘*“O'.‘t.t‘.‘.‘#‘lt..““‘t‘t‘...‘ttttttttt/
262 DO I=1 TO ICOONT-1;
263 DO J=I+1 TO ICOUNT;
264 IP ABS (POS (I)-CPOS) <= ABS (POS(J)-CPOS) THEN GO TO SORTB;
265 ITEMP=ADD(I) ;
266 ITENP1=SUB(I);
267 ITENMP2=POS (I) ;
268 ADD (I)=ADD (J) ;
269 SUB(T)=SUB(J) :
270 POS (I)=POS (J) ;
271 ADD (J) =ITENP;
272 SUB (J) =ITENP1;
273 POS (J) =ITENP2;

274 SORTB:
END;
275 END;

PL/I OPTINMIZING COMPILER SCHED: PROC REORDER;

STET

JESREERE LB LEE SRR EEERRE R LR SEBEE SR BE0ES/

/*%%%s PINAL MOLD SEQUENCING STATEGY *ssss/
J/EESREEEEBEESS A S SR EEREREISE LR SR SEE SRR/

276 PINAL_SCHED:
DO I=1 TO ICNT;

277 DO J=1 TO ICOUNT;

278 IF ADD(J)~=' ' THEN GO TO BOMATCH1;
279 MSIZE=0;

280 NSIZE=0:

/**% STRAIGHT SUBSTITUTIOY OF AVAILABLE MOLDS **%x/

281 IP POS (J+1)~=P0S(J)+1 & POS (J+2)~=POS(J)+2 THEN DO;
2732 IP J > 1 & POS(J-1)=POS(J)-1 THEN GO TO CHANGE_H0LD;
283 IP J > 2 & POS (J-2)=P0S(J)-2 THEN GO TO CHANGE_NOLD;
284 A1=LEDIPP (POS (J)-2) ¢+LEDIPP (POS (J)=1);

285 A2=LYDIPP (POS (J) +2) +LWDIPF (POS (J) +1) ;

286 A3=LWDIPP (POS(J)~-1) +LYDIPP (POS (J) +1) ;

287 ITENP2=MAX(A1,A2,103);

288 NEED (J) =LWD-ITENP2;

289 DO K==1 TO 1 BY 2;

290 DO #=1 TO NON;

291 I? CLINE(POS(J)#K)= CODE(M) THEN GO TO R3;

292 END;

293 R3: IP SIZE(4)='L' THEN MSIZE=1;

294 IP TAPE(M)='Y' THEN NSIZE=1;

295 END;

296 DO K=1 TO ICNT;

297 IF SDIPP(K) > NEED(J) THEN GO TO RS;

298 DO MN=-1 TO 1 BY 2;

299 IP CLINE(POS(J)+M8)='AN' & AVAIL(K)='M4* THEN GO TO RS;
300 IP CLINE(POS(J)+NM)='NA' & AVAIL (K)='AN' THEN GO TO 25;
301 END;

302 DO NM=1 TO NUYN;

303 IP AVAIL(K)= CODE(M) THEN GO TO Ru;

3C4 END;

305 Ru4: IP SIZE(M)='L* & MSIZE=1 THEN GO TO RS:

306 IP TAPE(M)='Y' & NSIZE=1 THEN GO TO 25;

367 LWDIPP (POS (J)) =LOAD () ;

308 ADD (J) =AVAIL(K) ;

309 DO L=K TO ICNT-1 WHILZ(ICHT>1);

310 AVAIL (L) =AVAIL (L+1);

PL/I OPTIMIZING CONPILER SCHED: PROC REORDER;

STAT

3N SDIPP (L) =SDIFP (L+1);

312 END;

313 ICNT=ICNT-1;

314 GO TO PINAL_SCHED;

315 RS: END;

316 END;

/**¢ SUBSTITUTION WHERE MANY MOLDS ARE CHANGING =¢s/

317 ELSE DO;

318 CHANGE_MOLD:
A1=LUDIPP (POS(J)~-2) +LUDIPF(POS(J)-1);

319 IFP J > 2 & ADD(J-2)="' * & POS(J-2)=POS (J)-2
THEN A1=LUDIPF (POS (J)-1);
320 IPJ > 1 & ADD(J-1)=' ' § POS(J=-1)=POS (J) -1
THEN A1=LWDIPP (POS (J)~2);
321 IP J > 2 & ADD(J=1)=' ¢ E ADD(J-2)=' * §
POS (J-1) =POS (J) -1 & POS (J-2) =POS (J) -2 THEN A1=0;
322 A2=LUDIFP (POS (J) +2) +LEDIPY (POS (J)+1);
323 IP ADD(J+2)=' * & POS(J+2)=P0S (J)+2
THEN A2=LWDIPP (POS (J) +1);
324 IP ADD(J+1)=' ' E POS(J+1)=POS (J)+1
THEN A2=LWDIPP (POS (J) +2) 3
325 IP ADD(J+1)=* * & ADD(J+2)=' * &
POS (J+1)=POS(J) ¢1 & POS (J+2) =POS(J) +2 THEN A2=0;
326 A3=LUDIFF (POS(J)~-1) +LEDIPF (POS (J) +1) ;
327 IPJ > 1€ ADD(J-1)=' ¢ & POS (J=1)=P0OS (J)-1
THEN A3=LWDIPP (POS(J)+1);
328 IP ADD(J+1)=' ¢ & POS(J+1)=POS (J)+1
THEN A3=L@DIPF (POS(J)=1);
329 IPJ > 1 & ADD(J-1)=' ' & POS(J-1)=POS(J)~1 &
ADD(J+1)=' * £ POS({J+1)=POS(J)+1 THEN A3=0;
330 ITEMP2=MAX (A1,A2,A3);
3131 NEED (J) =L¥D~-ITENP2;
332 IP SDIFP(I) > NEED(J) THEN GO TO NOMATCH1;
333 DO MN=-1 TO 1 BY 2;
334 IP CLINE(POS (J)+4M) ='AN®' £ AVAIL (T)='NN*
THEN GO TO NOMATCH1;
335 IP CLINE(POS(J) +MM)='Ma? & AVAIL (I)='AN?
THEN GO TO NOMATCH1;
3136 END;
337 DO K==1 TO 1 BY 2;
138 IP CLINE(POS (J)+K)=CLINE (POS (J*+K)) & ADD (J¢K)=' !
THEN GO TO B110;
339 DO M=1 TO NOUM:

3u0 IP CLINE(POS (J)+K)= CODE(M) THEN GO TO R11;

PL/I OPTIMIZING COMPILER SCHED: PROC REORDER;

STHT

3m
382
343
344

345
346
347
348
349

350
351

352
353
354
355
356
357
358

359
360

361
362
363
364

365
366
367

368

369
370
N
372
373

374
375

376

R11:

END;
IP SIZE(M)='"L' THEN MSIZE=1;
IP TAPE(M)='Y' THEN NSIZE=1;

R110: END;

R12:

DO #8=1 TO NUN;

IP AVAIL (I)= CODE(N) THEN GO TO R12;

END;

IP SIZE(M)='L* & MSIZE=1 THEN GO TO ROBATCHI1;
IF TAPE(M)='Y* & NSIZE=1 THEN GO TO NOMATCH1;

LUDIFP (POS (J)) =LOAD (M) ;
ADD (J) =AVAIL(I);

DO L=I TO ICNT-1 WHILE(ICNT>1);
AVAIL (L)=AVAIL (L+1);
SDIPP (L) =SDIFF(L+1);
END;
ICNT=ICNT-1;
GO TO PINAL_SCHED;
END;

NOMATCH1:

END;

NEXT_SCHED1:

END;

PUT PAGE EDIT(' 4 ICNT= !, ICNT,' AVAIL SDIFFP') (A,P(3),A);
DO I=1 TO ICNT;

POT SKIP EDIT (AVAIL(I),SDIFP(I)) (X(5).,A,X{(3),P(3)):

END;

PUT SKIP(2) EDIT('4 POS ADD SUB NEED') (X(2),4);
DO I=1 TO ICOUNT;

POT SKIP EDIT(POS(I) ,ADD(I),SUB(I),NEED(I))
BND(!(S).P(J).X(S).A.X(S).A.X(S)'P(3)):

IF (LWD<=29 & ICNT<=5) | (LWD<=30 & ICNT<=4) | ICNT<=3 THEN DO;
DO I=1 TO ICNT;
DO J=1 TO ICOUNT;
IP ADD(J)~=' ¢ THEN GO TO NX_LOOK;
IP LWD < 34 & LRD+SDIFP(I)-NEED(J) > 34 THEN GO TO BESIN_PGH;

ADD (J) =AVAIL(I):
GO TO NX_CNT;

NX_LOOK:
END;

PL/I OPTIMIZING COMPILER SCHED: PROC REORDER;

STHT

377 NX_CNT:
END;

378 ICNT=0;

379 END;

PL/I OPTIMIZING COMPILER SCRED: PROC REORDER;

STHT
/‘tt““‘*‘.‘.‘"““..““.“‘t““.‘.“/
/**s%%x CHECK FOR PROBLEM SOLUTION $#%*:%/
/¢¢s%s THEN UPDATE MOLD POSITIONS ®sssx/
/.‘.‘."“.."‘“.““‘.‘““‘.‘*‘“““./
380 IP LSW=0 THEN DO;
381 LSu=1;
382 PUT PAGE;
383 END;
384 IP ICNT > 0 & LWD < 33 THEN DO;
385 PUT SKIP(2) EDIT(* THE SCHEDULING PROBLEM CANNOT BB SOLVED °*,
'WITH AN AVERAGE WIRE LOAD DIFPICOLTY OF *,LWD) (A,A,FP(3)):
386 LWD=LWD+1;
387 PUT SXIP EDIT(®* LWD IS NOW BEING SET TO *',LWD) (A,F(3));
388 GO TO BEGIN_PGHN;
389 END;
390 DO I=1 TO ICOURT;
391 CLINE (POS(I))=ADD(I);
392 END;
393 POT SKIP(2) EDIT(' THE SCHEDULING & SEQUENCING ALGORITHM WAS °*,
*SOLVED WITH AN AVERAGE WIRE LOAD DIPPICULTY OFP ',LWD)
(A,A,F(3)):
394 LWD=27;

PL/I OPTINIZING COMPILER SCHED: PROC REORDER;

STNT
J/EEERERRSERERBRERRRRAIERTERRREEL R RS KA S XA SRS REER S/
/*%%ss SORT THE CHANGE STRUCTURE BY POSITION ****xs/
JESEBREESERERERERRREEREEB AT EERASERERR RSN RE SRR 4SS/
395 DO I=1 TO ICOONT-1;
396 DO J=I+1 TO ICOUNT;
397 IF POS(I) <= POS(J) THEN GO TO SORTC;
398 ITEMP=ADD (I) ¢
399 ITEMP1=S0UB (1) ;
400 ITEMP2=POS(I) ;
401 ITENP3=NEED(I) ;
402 ADD (I)=ADD(J) ;
403 SUB(I)=SUB(J);
4oy POS (I)=P0OS (J) ;
405 NEED (I)=NBED(J) ;
406 ADD(J) =ITEMP;
407 SUB(J)=ITENP1;
408 POS (J) =ITENP2;
409 NEED(J)=ITEMP3;
410 SORTC:
BND;
411 END;

412 PINISH:
END SCHED;

PL/I OPTIMIZING COMPILER LINEUOP: PROC REORDER;

STHT

97
98

99
100

101
102

103
104

105

106
107

108
109

110

112

13
114
115
116
17

118

Vad il i Al 2 A 2 AL S22 22 22t 22 2 222 2 222 2 2 22222 R R 22 22 R 22 2222222 R 222222 2 L2 V4

/%*¢ PRINT THE TOTAL NUMBER OP MOLDS ON LINE & MOLDS AVAILABLE s/
J/EESEREREELEESEIREEEIERAN ST EL RS S SRR EERABEES ISR SLSS R LSS E S S SRS/

PUT SKIP EDIT (*TOTAL NUMBER OF MOLDS') (X(5),A):
IP ISIN > O & ICOUNT > O THEN PUT EDIT('MOLD','ADD','RENOVE’)
(COL (36) ,A,2(X(10),A)):
IP LNUN=0 THEN PUT EDIT ('TAPE APTER POST CURE - 23') (COL(90),A);
IP LNUM ~= 0 THEN
PUT EDIT ('PROBLEM AREAS') (COL(93),A);
PUT SKIP EDIT('ON LINE') (X(11),A);
IP ISIN > O & ICOUNT > 0 THEN POT EDIT (*POSITION',*HOLD','MOLD’)
(COL (34) ,A,X(8) ,A,X(10),1);
IP LNUN=0 THEN POT EDIT ('PLATPORM WORK - $$') (COL(94),1);
IP LNUM ~= 0 THEN
PUT EDIT ('POSITION','TOTAL WIRE DIFPPICULTY')
(COL(84) ,A,X(5),A);

NEXT:

DO I=1 TO %UNM;

IP IDLNUN THEN GO TO NEXT1;

POT SKIP EDIT (CODE(I),EQ,NTOT(I),LPOS(I),LDIFF(I))
(X(11) ,A(2) ,A,P(3),X(67),F(4),X(13),P(4));

IP ICOUNT >= I THEN PJT SKIP(0) EDIT(POS(I) ,ADD(I),SUB(I))
(COL (37) ,F(3) ,X(11),A(2),X(12),A(2));

GO TO LIST; -

NEXT1:
PUT SKIP EDIT(CODE(I),EQ,ATOT (I))
(X (V1) ,A(2) ,A,P(3)):
IF ICOUNT >= I THEN POT SKIP(0) EDIT(POS(I),ADD(I),SIB(I))
{COL (37) ,F(3) ,X(11) ,A(2) ,X(12),A(2));

LIST:
END;

DO I=NOM+1 TO ICOUNT WHILE(ISIN >0);

IP ICOUNT < NJ% THEN GO TO PINISH;

PUT EDIT(POS(I),ADD(I),SUB(I))

. D(COL(37).F(3).X(11).1(2)'l(12),l(2));
ND;

PINISH:
ISIN=ISIN+1;
END LINBUP;

