
...
.....

III

I‘IIII
IIIII

m

w

c
_
~
—

A
-
—
.
«
—

-
.
~
.
~
.
‘
_
.
_
—
.
—
-
w

—
-
-
—

'
:
_
.
:
.
x
:
x
_
.
-
'
fi
=
‘

—
—
'
V

J
n
'
R
M
—
T
H
—

’
.
.
.
_

-
.

_
_

.
4

.
_
_
-
.
_
.
.
-

(
-
2
.
.

0
%
”
.

.
-
«
.

.
4

"
2
.
.
.
.
“

.
,
.
L
”

—
r
-

«
.
4

.
1
.
.
.

.
3
:

.
.
.
«

W
.

 .
‘

'
C
r
'

‘
b
.
4

.
1

.
.
-

-.
4
.

5
,

A
'

.
~
.
.
-

.
.
:
:

.
:
:
:
r
-
I
-

.
-

-
'

.
.
.
h
,

-
.

,
-
,

-
-

-
_

-
-

-
-

A
w
-

T
:

*
—

V
.

_,
‘
1
'
-

_
-
.
'
;
—
:
-
-
fi
—

“
-
5
-

_
W
.
.
.

I'll!

I

I In ' I- I "'I I 1

IIIII
II

I

I III

’
.
_
.
.
.
_
.
:
_
v

w
-

-
—
—

~
.
_
_
.
~
.

II II II‘ IIIIII -
I. I In'II' '\ "'I 3.. I

II IIII'IIII . III . . IIIIIII..I.II
IIIIIIIIIIII I . . . I ._

I... .IIIIII» »-I ., - - ' I I.I;
j I IIIIIIIII I . I I .' . ' ”IIII? 3...; ",1,

.‘I: II I'IIIIIIIII'Iw ‘, .3 ‘ II ' . - ‘I‘IIII‘IIIIIu—J“

ISIII I IIII IIIIIIIII .3.» .II .-.» . . 5‘ IIHHIIIIII {IL-I7 .

II IIIIIIIII‘IIIII ' .' " " 1‘

I‘ I’I'III‘IIIIII’IIIIIIIII In . 1 ..IIITIIII»:
I I.- III.IIIIIII'II III. .. ».~ _.“II"':?»;-;»;I:II

. IIIIIIIIIIIIIIIIIIII' . . WC . IIIWI‘IV‘II‘

I IIII.II . .~ . . III.
,5? {HI I I .’ I 1: ”If. L '54:

IIIIIIIIIIIIIIIIIII?» ~ - I I

IIIWIIIIIIIIIIII;II”III "I. I”? i . . »' ”I' if IIII‘II‘QJI

I I III'II. ‘ . ‘ 'I‘
I"IIIIII"IIIIIIIIIIIIIIII’I“III.IIIIIIIIIIIIIIIIIIIIIIIII . ' It: ’. I

II.:IIIII ‘IIIIII ,1I»'.I,IIIIII ‘IIIIII‘ _' '. I-.f‘.I:»-III‘.»~‘
III»IIIleIIIIII‘III'III',IIIII!.IIII-IIIIIII'IIII‘I: I.IIIIIIIIIIIIIIII'III'IIIIII. . : III-"III“:IIIII: I . L

III III.III‘I'I'IIIIII'I‘III‘I’IIIIIIIIIIIII; -.iI:I:'IIIIII I’IIIIIIIII‘IIII' -. I’IT'I‘II'I. I: III X! I:

VIII III}: I. II II I I . I'IL. IIIWJ”II23’

III‘IIJIII!I‘IIIIIIIIIIIIIII‘I .»II’ I I I ‘ .. .' ‘III:-IIII».II
‘"VI"II’TIIIsI‘..‘I'II'IIIIII‘IIIII'IIII III 'II' 'II " I I ' ’ I III“II {II

' II‘II‘‘IIII'II.III‘I IIIIII '. ' . 1": 'II'IIIILIW'III.III‘III‘IIII

I IIIIIII I II II I I'IIIIIII

IIII M
W

—
a
c
z
£
~

IIII
I IIIIIIIIII.I I

IIIIIIII'I'IIIIII’II

IIIIIIII'Im _
_
—
—
—
.
_
-

;
;
—
u
—

_
;
:
-
.
—
_
_
.
_

_

-
~
—
_
4
—
:
-

_
_
_
.
_
,
_
‘

“
#
:
_
_
—
1
“
.

‘
-
-
_

.
_
.
—
.
:
—
-
_

{
5
.
.
.

M

 —
.
—
'
—
—

‘ LIBRARY,

Michigan Sub.

This is to certify that the

thesis entitled

ASSEMBLY LINE MOLD SCHEDULING

presented by

KEV I N DE LAN D MARKLE

has been accepted towards fulfillment

of the requirements for

M.S. COMPUTER SCIENCE
degree in

.. " . (‘1 ,_

{\mk uué/

Major professor

Date L} fill/7%

0-7639

s
|
.
|
1
|
l
l

0
.

‘
l
l
.
i
t
!
i
.
‘
!
'
:

‘
l
-
‘
I
I
I
V
‘
I
I
I

I
I
l
l
-
I
I
.
"
.
‘
I
.

ASSEMBLY LINE MOLD SCHEDULING

by

Kevin D. Markle

A Thesis

submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science

1977

Thesis Advisor: Dr. Anil Jain

ABSTRACT

ASSEMBLY LINE MOLD SCHEDULING

BY

KEVIN D. MARKLE

Assembly Line Mold Scheduling is a mathematical

model which will generate an efficient production schedule

of molds assigned to a specific foam assembly line. 'The

objective of this model is to minimize product costs

(mainly mold set-up charges), minimize inventory holding

costs, and to eliminate back-order production costs.

The model will generate a new mold configuration each

week. More than the minimum number of set-ups necessary

to meet demand may be needed to generate a feasible

sequence of molds on the foam line. If excess capacity

is available, the model should look forward to following

weeks' demands and load molds that tend to minimize

future problems or bottlenecks. The model should also

insure that demand is met for each mold at the end of each

shipping day. The model must tell how many of each mold

type to have mounted on the assembly line, and the exact

position of each mold on the 181 fixed carriers so that

the plant's assembly line sequencing rules are obeyed.

ACKNOWLEDGEMENTS

After completing my class requirements in the Computer

Science curriculum at Michigan State University, I returned

from an educational leave of absence to General Motors

Manufacturing Development. There I was assigned to the

Manufacturing Operations Systems Department on a project

entitled: Assembly Line Mold Scheduling. This investigation

and thesis is being submitted as part of the requirements

for obtaining a Master of Science degree in Computer Science

from Michigan State University.

I would like to extend my appreciation to the following

peeple: Mr. James Caie Jr., Senior Project Engineer and

Plant Advisor and Mr; Robert Harder, Staff Deve10pment

Engineer, Manufacturing Operations Systems of Manufacturing

Development, for their suggestions and advice concerning the

success of this project. I would also like to thank Dr.

Philip Carter, Professor of Management, School of Business

and Dr. Anil Jain, Assistant Professor of Computer Science,

School of Engineering, for their assistance as Faculty

Advisors at Michigan State University.

ASSEMBLY LINE MOLD SCHEDULING

TABLE 9;: CONTENTS

I. INTRODUCTION

II. DEFINITION OF THE PROBLEM

2.1 Assembly Line Operations

2.2 Sequencing Rules and Costs

2.3 Current Operating Procedures and

Problems

2.4 Summary

III. ASSEMBLY LINE SCHEDULING MODEL

3.1 Mixed Integer Programming Model

3.1.1 Objective Function . .

3.1.2 Constraints

3.2 Scheduling and Sequencing Algorithm

3.3 Summary

IV. SCHEDULING SYSTEM OVERVIEW

4.1 Main Program - MAIN

4.2 Input Processor - INPUT

4.3 Assembly Line Picture Subroutine

LINEUP I O O O O O O I O O O O O

4.4 Generate Constraints Subroutine -

V.

VI.

GENER

4.5 Mixed Integer Programming Subroutine

MIP .

4.6 Scheduling & Sequencing Subroutine -

SCHED

4.7 Summary

EXPERIMENTS

CONCLUSIONS

ii

51

54

64

72

73

89

ASSEMBLY LINE MOLD SCHEDULING

TABLE 9; CONTENTS (Cont'd)

LIST OF REFERENCES

APPENDIX A - SOURCE PROGRAMS

FOAM Execution Program

MAIN Program

INPUT Subroutine

LINEUP Subroutine

GENER Subroutine

MIP Subroutine

SCHED Subroutine

iii

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

\
o
m
u
m
m
b

10.

11.

12.

13.

14.

15.

16.

LIST OF ILLUSTRATIONS

Assembly Line Model Costs

Assembly Line Mold Constraint

Definitions 0 O O I I O O O O O O O 0

Mixed Integer Programming Model

Objective Function

Assembly Line Mold Constraints . . .

System Subroutine Overview

Input Processor Summary

Mold Line-up Summary

Forecasting - Production Information

Mixed Integer Programming Flowchart .

MIP Standard Format "SOLUTION". . . .

Intermediate Scheduling Results . . .

Final Mold Line-up Summary

Sample - Mold Line-up Summary

Sample - Production Information . . .

Sample - MIP Row Solution

Sample - MIP Column Solution

17(a). Sample - Intermediate Results

(LWD 28)

17(b). Sample - Intermediate Results

(LWD29).............

17(e). Sample - Intermediate Results

(LWD 30)

17(d). Sample - Intermediate Results

(LWD 31)

17(e). Sample - Intermediate Results

18.

(LWD 32) o o o o o o o o o o o o 0

Sample - Final Mold Line-up Summary

iv

25

34

42

46

50

53

59

66

69

71

76

77

78

81

I 83

84

85

86

87

88

I. INTRODUCTION

General Motors Corporation is interested in creating

a mathematical model which will generate an efficient

production schedule Of molds assigned to a specific foam

assembly line. The Objective Of this model is to

minimize production costs (mainly mold set-up charges),

minimize inventory holding costs, and to eliminate

back-order production costs. The foam line in question

consists Of 181 fixed carriers connected together to

form a large circular chain which rotates past Operation

points. Carriers are defined as the portion of the

assembly line where a mold can be attached. A mold must

be mounted in a frame prior to attaching it tO a carrier.

Setup, therefore, involves framing a mold if it is not

currently framed and bolting this mold-frame assembly

to the carrier on the assembly line. Since all frames

are mounted on molds, the model must decide which mold

to unframe to make a frame available for mounting on

another mold.

The normal Operation Of the foam line is 120 hours per

week (i.e., 8 hours/shift * 3 shifts/’day * 5 days/week).

Saturday Operation will occur only if it is absolutely

necessary to meet shipping requirements. Since the whole

line must be stopped to change a mold, major set-up

activities for the week will occur on Saturday if

production is not scheduled, or on Sunday otherwise. It

should be noted that management has indicated that carrier

positions on the assembly line must not remain empty

when the line is running. Therefore, it may be necessary

to produce parts on the foam line that are not currently

needed.

There are twenty-five different mold types currently

assigned to the foam line. A mold type is identified by

a two character code, and is categorized as either a

"large" or a "small" mold. Most mold types have more

than one physical mold available for production at any

specific time. A mold type consisting of a double

cavity will produce two pieces at a time. Finally,

since scrap rates vary by mold type, each mold type has

a unique production rate (i.e., pieces/time/carrier

location).

The scheduling project was undertaken to

investigate, analyze, design, evaluate and implement an

efficient production schedule Of molds assigned to a foam

assembly line. It is essential that the model minimize

production costs and inventory holding cost, and

eliminate back-order production costs. The model must

tell how many of each mold type should be mounted on the

assembly line, and the exact position of each mold on the

181 fixed carriers so that the plant's assembly line

sequencing rules are obeyed. It must also determine how

many production shifts are necessary while staying within

the plant's warehouse limitations and production shipping

requirements. This report summarizes the results and

findings Of this investigation.

After the introduction, Chapter 2 discusses the

background Of the mold scheduling problem. It briefly

explains the assembly line Operations required to produce

the foam seats. Finally, it examines the sequencing

rules and costs Of the model, and describes the current

Operating procedures and problems of the plant.

Chapter 3 discusses the structure and ideas behind the

assembly line scheduling model. It describes in great

detail the Objectives and constraints of the mixed

integer program, relating the plant's problems to the

mathematical model. Finally, the scheduling and

sequencing algorithm is explained, in effect, satisfying

the plant's scheduling Objectives.

The next chapter discusses the scheduling system

overview, which describes the various subroutines of the

foam model. Each Of the various subroutines are examined

in greater detail. Chapter 4 also examines a typical

assembly line scheduling example. It explains the

required inputs and flow of the model through the final

sequencing line-up and mold changes.

Chapter 5 discusses an experimental run made by the

plant to determine the assembly line sequence Of molds.

It is easy to see from these results that an assembly

line is more difficult to schedule than one would believe.

The final chapter examines the conclusions Of the foam

model with respect to the various advantages and

disadvantages Of an Optimization model. It discusses the

constraints which were satisfied versus the total set-up

and inventory costs Of the solution.

I_I_. DEFINITION (3 THE PROBLEM

Few peOple really understand how difficult it is to

consistently schedule any type of assembly line. There

are rules and constraints which must be followed in the

manufacturing plant. The assembly line also consists

of people working in a plant environment. There are

labor problems, material shortages, machine break downs

and production to ship, and little time to produce the

required parts. In short, for an outsider, pure chaos

reigns in the plant.

This chapter discusses the Operations and background

Of the foam assembly line. It briefly describes the

assembly line Operations required to produce foam seats.

It assumes that the workers know their specific job

requirements, and that the material is always available.

However, this is not always true in the plant situation.

The definition of the problem also considers the

plant's constraints, the sequencing rules which "must" and

"should" be obeyed. The plant has assigned labor costs

to the various functions, such as changing a mold

(set-up costs), storing a part in inventory (inventory

holding costs), and a cost associated with framing a

required mold (framing costs). Each Of these costs will

be considered in the mixed integer program to determine

the Optimal assembly line configuration.

Finally, there is a discussion of the current

Operating procedures and problems which the plant faces

every day. There is an example Of how the assembly line

is currently scheduled and the difficulties that occur in

changing any mold on the assembly line.

2.1 ASSEMBLY LINE OPERATIONS

The following operations summarize the foam assembly

line production procedures:

1. Loading bolster wires and border wires into the

mold. Wire loading work on some mold types requires that

Operators work on a special platform. It should also

be noted that each mold type has a specific wire loading

difficulty factor associated with it.

2. Pour foam into the mold with an automatic "gun".

3. Bake the foam in an oven.

4. Cure foam. Several mold types require taping

after post cure.

5. Pack the foam parts in 5491 standarized (identical)

containers. The packing area consists Of thirty upender

container locations, fourteen on one side Of a moving

conveyor and sixteen on the other side. A specific

container stores only one mold type, but certain mold

types can have more than one container location

associated with it. The assignment Of mold types to

specific container locations is normally made at the

same time as a major set-up takes place. A packing

Operator is responsible for a group of adjacent container

locations co-located on one side Of the moving conveyor.

Normally, there are five or six packers working at the

same time.

6. When two containers (called a lift) are full,

they are both taken and stored in the warehouse. The

warehouse can hold a maximum Of 900 containers at one

time. If the warehouse is filled, containers may be

routed immediately into rail cars for storage. Ten

containers fit into one rail car, and the plant expects

to ship thirty-six rail cars of foam parts five days a

week. There are no rail shipments made on Saturday or

Sunday.

2.2 SEQUENCING RULES AND COSTS

There are several sequencing constraints that must be

adhered to for a schedule tO-be feasible.

1. A "large" frame mold MUST have a "small" frame

mold before and after it.

2. Carrier #1 MUST be the same as carrier #180, and

carrier #2 MUST be the same as carrier #181. This

insures that the "gun" is cleaned out at least once per

cycle.

3. Molds with letter codes "AN" and "MM" should be

lined up in a group because they require platform work

and the wire loading Operator should only move to the

platform once per cycle.

4. The platform is only 40 feet long allowing

limited room for float. Therefore, any "AN" or "MM" molds

should have some other style before and after it.

5. The biggest problem on the foam line is the wire

loading difficulty. The total number Of wire loading

points for any three consecutive molds should not exceed

27.

6. Parts requiring tape after post cure should be

spread out so that one Operator can handle the work.

7. The mold container sequence in the packing area

should be consistent with the mold sequence on the foam

line to insure that a particular packing Operator does

10

not get overloaded. For instance, if a packing Operator

is responsible for packing several different mold types,

and if these mold types are all sequenced together,

then the packing Operator will probably be overloaded at

certain times Of the day.

Given the current assignment Of molds to carriers

on the foam line, the model tO be developed must generate

a new configuration of molds on carriers so that:

1. All the next week's demand is satisfied.

2. Set-up and inventory holding costs are

minimized.

3. Mold sequencing rules #1 and #2 MUST be obeyed

while rules #3-#7 should be obeyed if at all possible.

4. Warehousing constraints MUST be obeyed.

The model will generate a new mold configuration

each week. It should be noted that more than the minimum

number of set-ups necessary to meet demand may be needed

to generate a feasible sequence Of molds on the foam line.

If excess capacity is available, the model should look

forward tO following weeks demands and load molds that

tend to minimize future problems or bottlenecks. The

model should also insure that demand is met for each mold

at the end Of each shipping day. We can assume that a

shipping day's demand for a mold is one-fifth its week's

demand. Figure 1 on the following page, gives a summary

of the assembly line costs assigned by the plant. These

11

are by no means all the costs associated with the

production Of foam parts, they are valuable in describing

the major costs Of a simplified mathematical model.

12

FigEEe 1, ASSEMBLY LINE MODEL COSTS

Cost of framing a mold$75.00

Cost Of removing a mold from a carrier

and setting up a new framed mold on the

same carrier.$15.00

Inventory holding costs 10% Of part value

Cost of having one upender

assigned to a part.$ 1.00

2.3 CURRENT OPERATING PROCEDURES AND PROBLEMS

The molds required for each part are currently

determined by the following proportion:

Total schedule for each part *

Total schedule for the line 181 = molds required

These proportions are usually calculated once a month;

the drawback here is that the proportions overstate molds

required for high volume parts and under-estimate molds

required for low volume parts. Production Control tries

to perform the following calculations on a regular basis:

1. On Thursday, use the current mold line-up to

estimate production for the next seven days.

2. Take Thursday's initial inventory plus the

estimated production for seven days minus seven days Of

shipping requirements to get the forecasted inventory at

the end Of next week.

FORECASTED INVENTORY = INITIAL INVENTORY + ESTIMATED

PRODUCTION - SHIPMENT

3. Add the Forecasted Inventory for each part on a

line to get a Total Inventory. Divide by the Average

Daily Production for that line tO get an approximate

number Of days bank (safety stock) in the warehouse. If

there is less than two days bank for the line, a decision

is usually made to work overtime. If the Forecasted

Inventory for any part number is negative or a very low

figure, production staff is told to add molds. An equal

13

14

number of molds, however, must be removed. To make this

decision, Production Control finds the parts with the

highest inventory and removes molds Of those part

numbers.

It should be noted that the above calculations are

tedious and time consuming. All information must be

copied from four different sources and then the

calculations performed. It takes between 4 to 6 hours

per week to do this and sometimes it is not done each

week as it should be. Also, it is easy to make a mistake

in these calculations. Another major disadvantage is that

seven days may not be enough lead time to prevent back

orders on the seventh day. If major changes must be made

or not enough molds are mounted, production staff may not

be able to make the changes until the following week and

back orders will result.

There are certainly other considerations which must

be taken into account before a mold on the assembly line

can be changed.

1. The whole line must be stopped to change one

mold.

2. Due to the bulkiness Of foam and fire hazards

associated with it, both assembly plants and

manufacturing plants are restricted from holding large

inventories. (Typically a two day safety bank is held in

foam parts.)

15

3. Fire laws prevent foam from being stacked more

than three baskets high. This limits effective space

utilization.

4. Fork lift trucks can only carry two baskets at

one time so movement, labelling and storage has always

been done on the basis Of two baskets (called a lift).

In other words, baskets are seldom stacked three high in

the warehouse.

5. Four baskets may be stacked on top Of each other

in the inventory storage system because it has an

intermediate sprinkling system.

6. If the schedule for one line is slightly greater

than machine capacity, the warehouse may be overloaded if

Saturday overtime is worked, because no shipments are

made on weekends. Therefore, it is Often necessary to

accept shortages.

7. The line cannot run empty, so to prevent

shortages on some parts it is possible to overload the

warehouse with parts that are not needed.

8. Components are involved. Some foam parts

require border and bolster wires, which are made in

another division Of the plant.

9. When production staff is told how many Of each

mold type to put on the line, they cannot always make the

required changes. This Often results because the molds

needed may not be mounted in frames, or serious

16

sequencing constraints might be violated.

10. The mere addition Of one mold may force the

whole line to be rearranged. Hence, it may be cheaper

to accept shortages than to rearrange the whole line.

11. It takes between 15 to 20 minutes to change a

mold. The plant very seldom stops the line to perform

this change; instead, they try to do it during breaks

and lunch time. If more than 25 molds have to be changed,

production control schedules these changes to be made on

a weekend.

12. When molds are first put on the assembly line,

they have to warm up for approximately three hours. If

any foam is shot into the mold before it warms up, scrap

is generated.

13. Scrap and downtime are irregular. Sometimes

a line can run for several weeks with little downtime,

and then in one week be plagued with a major breakdown

lasting 8 to 10 hours.

2.4 SUMMARY

It is very hard to visualize or totally understand

the Operation Of a foam manufacturing plant, without

actually Observing the assembly line. There are many

problems which exist in the plant, and the past sections

have explained the assembly line Operations, the

sequencing rules and costs, and the current Operating

procedures and problems.

There is certainly a need to create a computerized

model, to remove the "trial and-error" scheduling and

mold sequencing procedures which now exist. The future

chapters will consider and examine the assembly line

scheduling model which was developed and implemented for

the plant.

17

III. ASSEMBLY LINE SCHEDULING MODEL

The assembly line scheduling model discusses the

structure and ideas behind the foam scheduling project.

It describes in great detail the Objectives and

constraints Of the mixed integer program, relating the

plant's problems to the mathematical model. It begins by

discussing linear and mixed integer programming, and

gives some Of the reasons why an Optimization model can

be used to solve a scheduling problem. This chapter also

covers the mathematical model itself, and explains

briefly how the Objective function and constraints were

translated from the plant's description into the model.

The final section of the chapter deals with the

scheduling and sequencing algorithm. It briefly describes

where to place the molds on the assembly line, once the

model knows how many molds are necessary to satisfy

production shipping requirements. The section then

discusses the heuristic algorithm that was implemented

in the mathematical model. Finally, the sequencing and

scheduling method will be used to explain how the

Objectives, minimizing set-up costs and inventory

storage charges, were Obtained.

18

3 .1 MIXED INTEGER PROGRAMMING MODEL

Linear programming is a mathematical technique for

determining the solution to a system Of linear con-

straints that maximizes or minimizes a linear

Objective function. An example Of a typical solution is

an Optimum allocation Of resources to achieve a

particular Objective when there are alternative uses for

the resources (1,2).

Mixed integer programming is a mathematical technique

that permits one to solve linear programming problems in

which certain variables must take integer values. This

possibility allows the study Of a large class of

important applications that cannot be handled by classical

linear programming techniques (7).

1. Continuous variables, which can have any value

(classical programming problems have only continuous

variables).

2. Integer variables, which are limited to integer

values (...,-2,-l,0,1,2,...).

Both types must, of course, satisfy the constraints

Of the problem.

The ability to introduce integer variables into the

linear programming model provides a means for

efficiently handling certain problems that otherwise

could not be studied, could be studied only

19

20

approximately, or could be studied only through a long

sequence of linear programming runs for which a great deal

Of preparation is demanded.

The Assembly Line Mold Scheduling Mixed Integer

Programming Model utilizes the MPSX Extended Control

Language (ECL) written in PL/l (3). The model contains

132 linear programming rows and 125 integer variables.

The mixed integer programming (MIP) Objective function

and constraints will be covered in greater detail in the

following sections.

3.1.1 Objective Function

The aim Of any linear or mixed integer programming

model is to maximize or minimize some Objective function.

Figure 2, the Assembly Line Mold Constraint Definitions,

and Figure 3, the Mixed Integer Programming Model

Objective Function, will describe the model's Objective

function. Let us consider the four types Of costs which

the assembly line scheduling model is seeking to minimize.

The costs Of producing foam parts are as follows:

1. inventory storage costs

2. mold set-up costs

3. mold framing costs

4. upender availability costs

The inventory holding costs represent the average

inventory storage costs per 2 week period. It is

calculated by taking the production rate for two weeks,

multiplied by the number Of molds currently on the line

and 10% Of the value of the part, then is divided by 52

weeks per year. It is not a true indication, however, Of

the actual inventory storage costs. Since the

inventory levels are low, typically less than a two day

bank, the parts which are produced early in the week are

shipped that same week. This means that all the foam

parts which are produced are not automatically stored in

inventory. In fact, many Of the parts produced are

21

22

loaded into boxcars for immediate rail shipment.

The mold set-up costs are really the key to the

success Of the model. The foam model seeks first tO

satisfy production demand, then tO minimize set-up costs.

The two ideas are very closely linked together, for set-up

costs would be non-existent if demand for a particular

foam part remained constant. These costs are calculated

by multiplying the number Of molds added and removed from

the assembly by the constant (say $7.50/mold set-up).

For each mold added, there must be one mold removed, for

a total set-up replacement cost of $15.00. This cost,

like all others, must be kept in balance, for it takes

much longer to frame a mold than to make a mold replace-

ment on the assembly line. The framing costs are very

similar to the mold set-up costs. The mold framing costs

represent the time and labor involved in first unbolting

a previously framed mold package, and then constructing

a new mold-frame assembly. Since a mold-frame assembly

is heavy, there is a need for a forklift truck and driver

and two workers to accomplish the task. The higher cost

is reflected in the amount the plant has assigned

(see Figure 1. Assembly Line Model Costs). The framing

cost is calculated by multiplying the number Of molds to

be framed by a constant (say $75.00). The first three

conditions, the inventory, set-up and framing costs,

represent the main Objective function costs Of the foam

model.

23

The final Objective function cost is the upender

availability costs. A cost Of $1.00 is given tO each

upender that is assigned to a particular mold. This

Objective function cost tends to reduce to a minimum,

the number Of upenders required tO handle and pack the

foam parts for each type. This upender constraint will

be examined in more detail in the next section.

24

Figure 2. ASSEMBLY LINE MOLD CONSTRAINT

DEFINITIONS

N = total number Of different mold types

WARE

M(i)

A(i)

R(i)

F(i)

D(i)

P(i)

PK(i)

total number of storage positions available in warehouse

total number of molds REQUIRED for the ith part

number Of molds for the ith part to be ADDED to

the assembly line

number Of molds for the ith part tO be REMOVED from

the assembly line

number Of molds for the ith part to be MOUNTED on frames

wire load difficulty associated with the ith part

production rate per week associated with the ith part

(currently based on 3 shifts/day - 6 days/week)

standard pack for the ith part

(number Of pieces which fit into one basket)

SHl(i) = number Of pieces shipped the lst week for the ith part

SHZ(i) - number Of pieces shipped the 2nd week for the ith part

INV(i) = initial inventory for the ith part

SAFETY(i) 8 safety stock required for the ith part

SC(i) 8

IC(i)

FC(i)

UP(i)

set-up costs associated with the ith part

inventory storage costs associated with the ith part

(value Of the ith part/260.)

cost to mount a mold on a frame associated with

the ith part

cost associated with having an upender (basket)

assigned to the ith part

M-tape a molds that require tape after post cure

M-large = large molds

Mp a mold position

25

Figure 2. MIXED INTEGER PROGRAMMING MODEL

OBJECTIVE FUNCTION

N

MINIMIZE COST 8 Z,(M(i)*P(i))*IC(i) +

i=1

inventory holding costs

N

Z,(SC(i)*A(i)+SC(i)*R(i)) +

181

mold set-up costs

N

z.(FC(i)*F(i) +

i=1

framing costs

N

Z,UP(i)

i=1

upender availability costs

3.1.2 Constraints

This section deals with the mixed integer programming

constraints of the assembly line mold sequencing model.

Each Of the various constraints will be discussed, and

the questions Of how the constraints were implemented

should be answered. One must remember, in a mixed integer

program, that if the constraints are not general enough

or do not have enough flexibility, the problem will become

infeasible. If the problem is tOO general, however,

valuable time will be spent in calculating answers.

Therefore, careful attention was given to allow the problem

a greater degree Of freedom while minimizing the Objective

function. The Assembly Line Mold Constraints are available

in Figure 4, and can quickly aid in understanding the mixed

integer programming model.

The mixed integer programming model currently

contains 132 constraints and 125 integer variables. The

integer variables can be broken down into the following

five categories for each mold type:

1. total number Of molds required

2. total number of upenders required

3. number Of molds to be ADDED

4. number Of molds to be REMOVED

5. number Of molds to be FRAMED

26

27

The first constraint considered here is that of

LINE CAPACITY. As previously stated, it is unacceptable

to leave a vacant position on the assembly line.

Therefore, any feasible MIP solution must fill the 181

mold positions with an available mold. This is done even

at the expense Of producing foam parts which are

currently not necessary for the production shipping

requirements.

ADDING and REMOVING MOLDS from the assembly line

are the next constraints to be considered. Since the

model is trying tO determine the total number Of molds

required for the ith part, M(i), and at the start Of the

model we know how many molds are currently on the line,

M(i) current, the number Of molds to add for the ith part,

A(i), represents the difference between the required

number Of molds and the current number on the line. In

the line, R(i), represents the difference between the

current number Of molds and the required number on the

line. For every mold that is added on the assembly line,

there is another mold which is removed. An empty

position on the line is never created.

The FRAMING MOLDS constraints is handled slightly

differently than the two previous constraints. The model,

at some starting point, knows how many molds are

currently framed. The number Of molds to be framed, F(i),

28

represents the difference between the number Of

currently framed molds and the number Of molds required.

Typically, however, there usually seems to be enough

extra molds framed to meet the future production require-

ments. That is why there is seldom any need to frame

more molds. TO speed up the MIP subroutine, a limited

number Of molds can be framed, for any particular part.

Two molds Of each type can be framed, except for mold

codes: "EN” or "ER", in which case the model allows four

framing changes. This is due to the fact that the mold

codes "BN" and "ER" are high production volume parts

which account for half Of the total assembly line

production.

The WIRE LOAD DIFFICULTY constraints were included

in the model to make future mold scheduling and sequencing

easier. The idea behind this constraint was that the

total wire load difficulty Of the assembly line should be

maintained at some constant level Of wire load

difficulty. This implies that before a series Of molds

are added or removed from the assembly line, the sum Of

the wire load difficulties be almost equal. One must

remember to maintain some flexibility in the model, in

order to insure a feasible solution. If nO molds are

added or subtracted from the assembly line, the wire load

difficulty Of the line remains constant and the constraint

is not binding. In an attempt to maintain this balance,

29

the MIP model allows the user to specify a range Of

difficulty values (i.e. range from -5 tO +5). By

examining the row constraint: "WIRE", one can see how the

solution affected the total wire load difficulty Of the

assembly line. The wire load difficulty constraint was

not necessary to satisfy the plant requirements, but it

greatly aided in the scheduling and sequencing algorithm.

The LARGE and SMALL MOLD constraint was also really

not necessary from the plant's standpoint. Generally,

these constraints helped limit the types Of mold changes

which can occur on the assembly line. Whenever a large

or small mold is removed from the line, it'should be

replaced by a mold Of the same size. Again, some

flexibility in the model must be maintained for

feasibility and, therefore, both totals should have a

range Of values (i.e. range from -5 tO +5). By

examining the row constraints: "LARGE" and "SMALL"

constraints should sum to zero. This makes sense if

one considers adding for an example, say a total Of two

extra small molds. The molds which are removed must be

large molds to compensate for the small molds which were

added. One must remember, however, that we are

considering just the total numbers Of large and small

molds on the assembly line.

The MAXIMUM MOLD AVAILABILITY constraint represents

the upper limit Of the total number Of molds required.

30

Clearly, the plant cannot mount more molds on the

assembly line than are currently available or physically

present. If M(i) equalled M(i) available for several

parts, serious problems in framing costs would result.

Typically, the solution to the MIP problem would be in-

feasible tO implement.

The MINIMUM PRODUCTION constraint is the direct

Opposite Of the MAXIMUM MOLD AVAILABILITY constraint. It

represents the lower limit Of the total number Of molds

required. In other words, this constraint determines the

minimum number Of molds to meet the current production

shipping requirements. The MINIMUM PRODUCTION constraint

uses a weighted average of shipping requirements for a 4

week period, minus the initial inventory plus the

guaranteed safety banks. The weighted average is

composed of 70% first week shipped, 20% second week

shipped, and 5% the third and fourth week shipped. These

percentages seem to reflect the true shipping forecasts

and with the safety banks, guarantees that the first

week shipping requirements are met. This quantity is

then divided by the production rate per week to give

the required minimum number Of molds. Since this

quantity generates a real number with a fractional

component, the MIP model truncates the answer to an

integer value. In examining the solution to the MIP

problem, the plant can look to see if any of the required

31

molds for any part are at their lower limit. Typically,

this condition rarely exists in the program unless the

upper and lower limit values are fixed.

The INVENTORY CONSIDERATIONS constraint is perhaps

the most important Of the plant Objectives. The space

requirements in the warehouse are a constant headache tO

the plant management. The imbalance between production

and inventory control Often forces the production of too

many foam parts. The warehouse becomes full Of foam parts

and with no co-Ordination between the different sections

Of the plant, shipping requirements are not met.

Therefore, there must be some inventory overflow

constraint which takes into account the limited inventory

storage space available in the plant. The INVENTORY

CONSIDERATIONS constraint is calculated for each

individual foam part. Two weeks production in terms of

the number Of baskets, must be less than or equal to the

available positions in the warehouse plus the number of

baskets shipped and available to store in the warehouse.

The total inventory and number Of parts shipped in one

week is calculated and given in the row constraint:

"INVEN". If inventory becomes a problem in the solution

Of the MIP problem, and if surplus production is

available, the model will tend to select smaller foam

parts. The idea here is that more small foam parts can

be packed into a basket, and less storage space required

32

for equivalent production. Therefore, this constraint

tends to keep the warehouse from becoming filled to

capacity, and a stable production and inventory policy

will result.

The UPENDER AVAILABILITY constraint represents the

total number Of upenders or baskets available in the

loading area for the packing Of foam parts. The plant

would like to see the total number Of upenders kept in the

plant to be less than or equal tO 30. In the plant

environment, however, there is actually room for as many

as 32 positions if the scrap area size is reduced. Again,

this constraint is necessary because of the limited floor

space which exists in the plant. The Optimal solution to

any MIP problem must try to keep the total number Of

upenders to a minimum. This is one of the reasons why

a $1.00 per upender cost was assigned to each upender

required for production packing.

The UPENDER ASSIGNMENTS represent the last set of

constraints which the mixed integer program considers.

These two constraints indicate the upper and lower

limits of the number Of upenders associated with a

particular part. The upper limit was set at 6 upenders

per mold code since in the plant environment, there are

rarely more than 5 upenders actually assigned. The

lower limit, however, is the real key to the assignment

Of upenders by the MIP model. We knew that the production

33

cycle tO produce one piece takes about 15 minutes or

roughly 4 pieces per hour. The UPENDER ASSIGNMENTS

are then calculated by taking 4 parts per hour and

multiplying it by the number Of molds required. The

result is divided by the standard pack which is the

number Of foam parts per basket. This lower limit

assumes that the baskets can be moved into the inventory/

shipping area at least once per hour. On high volume

parts, however, such as mold codes "BN" or ”BR", the

assumption is made that these baskets can be replaced

every half hour. High volume parts always require

dedicated truck drivers because of the high production

turnover rate. Another interesting point is that if one

mold is assigned to the assembly line, there must be one

basket allocated for that foam part. If there is a

questionable mold which is a low volume part, the MIP

model will try tO eliminate this mold from the new mold

line-up. Since the mold is eliminated, there is no longer

a need to allocate an upender for that particular part.

Upenders are in such short supply that better use Of

these limited resources can be determined by the model.

34

Figure 2. ASSEMBLY LINE MOLD CONSTRAINTS

Description Constraint

N

LINE CAPACITY Z.M(i) = 181

i=1

ADDING MOLDS for i=1..N M(i)-A(i) <= M(i)current

REMOVING MOLDS for i=1..N M(i)+R(i) => M(i)current

FRAMING MOLDS for i=1..N M(i)-F(i) = M(i)framed

F(i) <8 2

if mold = 'BN' or 'BR' F(i) <= 4

N

WIRE LOAD Z,(D(i)A(i)-D(i)R(i)) <= 5

DIFFICULTY i=1

N

.2&(D(1)A(i)-D(1)R(i))
=> -5

1::

N

LARGE MOLD 2. (A(i)large-R(i)large) <= 5

i=1

N

Z.(A(i)large-R(i)large) => -5

i=1

N

SMALL MOLD ‘2,(A(i)small-R(i)small) <= 5

i=1

N

21(A(i)small-R(i)small) => -5

i=1

MAXIMUM MOLD for i=1..N M(i) <= M(i)available

AVAILABILITY

35

MINIMUM for i=1..N

PRODUCTION

.70*SH1(i)+.20*SH2(i)+.05*SHB(i)+.05*SH4(i)-INV(i)+SAFETY(i)

M(i) => --

P(i)

INVENTORY CONSIDERATIONS

2.0*P(i)*M(i) 5H2(i)+SHl(i)-INV(i)+SAFETY(i)

------------- <= WARE + ------------------------------

PK(1) PK(1)

_ N‘

UPENDER AVAILABILITY Z. UP(i) <= 33

i=1

UPENDER for i=1..N 4.0¥M(1)

ASSIGNMENTS UP(i) => ---~----

PK(i)

2.0*M(i)

if mold = 'BN' or 'BR' UP(i) => --------

PK(1)

for i=1..N UP(i) <= 6

PLATFORM LOADING for i=2..(N-l)

RESTRICTIONS Mp(i-1)='AN'¢Mp(i)=‘MM'#Mp(i+l)='AN'

Mp(i-l)='MM'#Mp(i)=‘AN'#Mp(i+l)='MM'

"GUN" RESTRICTION Mp(l)=Mp(180)

MP(2)=MP(181)

TAPE AFTER POST for i=2..(N-1)

CURE RESTRICTION Mp(i-l)=M-tape#Mp(i)=M-tapetMp(i+l)=M-tape

MOLD SIZE for i=2..(N-l)

RESTRICTION Mp(i-l)=M-large#Mp(i)=M-largetMp(i+1)=M-large

Figure 4. (continued)

3.2 SCHEDULING AND SEQUENCING ALGORITHM

Once the model knows what molds to add, remove, or

frame, it is necessary to determine where on the assembly

these molds belong. Briefly, this is the purpose Of

the scheduling and sequencing subroutine. At this point

in the program, the model is attempting to eliminate past

problem areas, satisfy the sequencing rules, and minimize

the number Of mold changes. The problem now exists in

trying tO determine the minimum set Of possible mold

substitution points which satisfy the MIP solution and

the sequencing constraints. First, however, we should

discuss the plant constraints that could not be satisfied

in the MIP problem. They deal exclusively with the

positioning relationships Of the molds on the assembly

line.

The PLATFORM LOADING RESTRICTIONS is a constraint

which attempts to equalize the workload on the operator

who must load wires into the upper sections Of particular

molds. A special 40 foot platform has been designed to

handle these complicated foam parts. It is critical that

only one man handle the task, and the work be spread

out. This is required, simply so as not to overload or

overwork one Operator. The constraint states that when

molds are added to the line, careful consideration should

be given to not to place "AN" or "MM" molds next to each

other.

36

37

Both molds together are difficult as far as wire load

difficulty is concerned, and to have one man perform the

wire loading carries him Off the platform. All one

could do would be to let one mold go by empty, thus

producing a bad part. This is a totally unacceptable

solution to the problem, so the scheduling and sequencing

algorithm should never let this condition happen.

The "GUN" RESTRICTION constraint is perhaps one Of

the most interesting constraints tO see on the assembly

line. It states that mold positions #1 and #180, and

#2 and #181 be the same mold type. The reason for this

constraint is that at the end Of the assembly line cycle,

the "gun" must be cleaned. Cleaning is accomplished by

sending a burst Of high pressure air through the line,

to remove any excess foam plastic that may have collected

in the "gun". There are physically more than 181 mold

positions on the line, but only 181 positions are

capable Of accepting molds. Timing is a very important

consideration, for the assembly line must be maintained

at a constant speed even though cleaning is required.

Four positions are necessary, and the mold spacing

between positions #180-2 are slightly different than the

remainder of the line.

The TAPE AFTER POST CURE RESTRICTION is another

constraint which attempts to solve a sequencing problem on

the assembly line. There are several parts which require

38

stapling a cloth piece to the foam part after it has gone

through the curing oven. Mold codes: "MM", "AJ", "AH"

and "KL" must be spread out so that one operator can

perform the work. Recall, however, that mold code "MM"

was one of the molds which required platform wire loading.

The PLATFORM LOADING RESTRICTION and the TAPE AFTER POST

CURE RESTRICTION then are in direct conflict with each

other on this particular mold. One constraint forces

the molds together while the other requires that they be

separated. In any case, some balance and compromise
between constraints is Often the solution.

l The MOLD SIZE RESTRICTION is the last scheduling

 and sequencing constraint to be considered. It simply

states that when scheduling molds on the assembly line,

two large molds cannot be placed next to each other.

Besides being physically impossible to install, the

large molds typically have a higher wire load difficulty

which makes them tougher to sequence. This is one Of the

few constraints which MUST be obeyed at all times fOr a

feasible scheduling and sequencing solution.

3.3 SUMMARY

The past two sections have described the assembly

line scheduling model constraints which were implemented

in the mixed integer programming subroutine and the

scheduling and sequencing subroutine. The mixed integer

programming Objective function and Optimization

constraints were explained in respect to the plant's

production plans and problems. The following chapters

deal with how these constraints were actually implemented,

and describe the output which resulted from each Of the

subroutines.

39

IV. SCHEDULING SYSTEM OVERVIEW

This chapter describes the scheduling system

overview which represents a detailed analysis Of the foam

scheduling model. The main program and the five assorted

subroutines will be briefly described in this section to

acquaint the reader with the flow Of the program model.

The Objective Of this chapter is to explain the computer

programs from the input through to the final scheduling

and sequencing section. A structured programming,

modular design approach was used in the model to help

reduce the possibility Of errors, to make the code

understandable to others, and to break up the various

program functions (11).

The assembly line mold scheduling model is composed

Of a main program and five subroutines as follows:

1. main program - MAIN

2. input processor - INPUT

3. assembly line pictorial subroutine - LINEUP

4. generate constraints subroutine - GENER

5. mixed integer programming subroutine - MIP

6. scheduling and sequencing subroutine - SCHED

The computer programs written for Assembly Line Mold

Scheduling are presently Operating on an IBM 370/145

VM/VSl (virtual storage) computer at General Motors

Manufacturing Development. It could, however, run on

40

41

any computer system which makes use Of the Programming

Language One (PL/l) Optimizing Compiler (8,9,10), and

IBM's MPSX/MIP Mixed Integer Programming package

(2,3,4,5,6,7).

The mold scheduling subroutines were specifically

designed tO run in less than 768K (due to MPSX/MIP) Of

virtual core memory. The five mold scheduling

subroutines and main program were compiled and stored in

an Object module library for increased speed and easy

access. Typical execution times averaged about one

minute (CPU) with 40-50 seconds Of execution time spent

in the mixed integer programming subroutine.

42

SYSTEl’l SUBRDUTINE OVERVIEW

/
Program Flow INPUT

H MAIN H

T

\L MIP $ Ly

* %

to
Figure 5. System Subroutine Overview

4.1 MAIN PROGRAM - MAIN

The MAIN program Of the foam scheduling model follows

many Of the structured programming conventions. It

merely represents a calling program to tie together the

various subroutines. MAIN gives a thorough listing of

the static external (i.e. similar to common in FORTRAN)

references and explains the meaning of each Of the

various arrays and variables. Before the prOgram calls

a subroutine, however, a message is displayed at the

Operator's console, so that the user can determine what

subroutine is presently being executed. This helps in

debugging the model, especially when the mixed integer

programming subroutine is found to be infeasible and

terminates abnormally. In any case, it represents an

easy method Of determining the time and position Of

execution during the flow Of the program. MAIN rarely

has to be changed since the control Of the program

remains fairly constant.

43

4.2 INPUT PROCESSOR - INPUT

The input processor subroutine, INPUT, represents

the first working program Of the foam scheduling model.

Its purpose is to initialize the static external

variables and arrays, and to read the various input

parameters and current mold information. The program

begins by reading the mold line-up title card, which is

an 80 character description Of the problem to be solved.

The parameter input card follows the mold title

card. It has variables necessary for the problem, such

as the total number Of mold types (NUM), the number Of

shifts (SHIFT), the total number of molds on the assembly

line (IPOS), the number of currently available positions

in the warehouse (WARE), and the average wire load

difficulty for three consecutive positions on the line

(LWD).

The following NUM (typically 25) cards are now read

into their respective arrays. This group of cards is

Often referred to as the "static" section, because the

values Of the parameters rarely change. Variables such

as mold codes (CODE), part numbers (PART), mold size

(SIZE), wire load difficulty (LOAD), number Of part per

cavity (NUMPRT), platform loading (PLAT), total molds

available (MOLDS), total molds framed (FRAME), tape

after post cure (TAPE), standard pack per basket (PACK),

44

45

production rates per week (RATE), value Of the

parts (VALUE), and safety stock (SAFETY) are read into

the program. These variables are required in creating

the mixed integer programming constraints, and for

future scheduling considerations.

The final section Of the input processor deals with

the mold line-up information. This group is known as

the "mold line-up" section because the current assembly

line configuration must be known to the foam scheduling

model. It consists Of reading the 181 assembly line mold

codes as they appear on the line in their current

sequence and position. The subroutine then returns to

the MAIN program before being transferred to the LINEUP

subroutine.

46

9
9
0
C

6
0
’
"

b
u
t
!

9
6
'
E

n
9
8

h
Z
'
h

B
S
l
h

B
Z
’
I

B
B
Z
I

S
S
'
C

9
S
[
Z

h
L
'
l

B
Z
l
Z

(
b
’
l

B
Z
I
Z

(
b
‘
l

o
u
t
:

6
8
'
l

0
2
6
l

Z
S
‘
Z

Z
S
l
l

0
8
°
l

N
O
I
Z

0
8
'
l

9
L
l
l

H
C
'
E

9
0
L
Z

I
S
’
l

O
B
Z
Z

L
l
'
Z

O
B
Z
l

0
9
’
!

0
8
2
!

O
fl
’
t

8
5
8

S
l
‘
u

8
9
8

U
G
'
E

9
E
1

t
t
'
n

O
Z
L

6
6
'
”

O
Z
L

Z
O
'
S

(
n
o
:

6
8
'
!

z
u
o
z

6
8
‘
l

S
h
l
z

S
B
'
l

O
t
t
o
.

I
O
I
L
V
U
U
O
J
N
I

d
fl
-
i
fl
S

Z
N
I
T

0
1
0
R

If

F

8'

Q

N

ZZIHHHZIBZZZZ-IZID'D-ZNIZII

Z
.

3
N
1
1

N
D
N
Q
U

646905609589

N‘- .-

pp

IDO-ppp

an.28"IBIIIQIB3..II~ISII

o-p

C’NN—PP’PNNNNPNNNNNNNPNPPF

u“

'OODNNF'W“F@°G

O

t
i
t
.
‘

mama—Imammmammmmammm—smmm—Im

9
0
9
l
0
0
0
Z

L
S
S
I
O
O
O
Z

Z
8
0
9
C
L
6

£
l
9
6
£
9
b

Z
l
9
6
L
9
6

9
Z
O
E
9
0
L

t
h
Z
9
O
E

9
0
L
Z
9
O
E

[
Z
Z
L
E
L
I

l
l
Z
L
l
L
l

3
0
6
E
F
L
I

L
h
O
L
E
L
l

b
O
L
h
6
9
l

(
U
h
h
b
9
l

2
8
0
0
6
9
!

{
9
5
0
6
9
1

{
9
9
0
6
9
1

[
9
5
0
6
9
1

l
5
5
0
6
9
|

b
C
6
|
8
9
l

O
b
Z
L
L
9
l

9
8
(
L
t
9
l

L
0
l
0
9
9
l

9
0
|
0
9
9
l

6
9
5
L
5
9
1

l
fl
l

E

H
“

Figure 6. Input Processor Summary

4.3 ASSEMBLY LINE PICTURE SUBROUTINE - LINEUP

The assembly line picture subroutine, LINEUP, is

perhaps the most important subroutine in the foam

scheduling model. It conveys a picture of the current

assembly line mold configuration and does a great amount

Of error checking. A mold group is composed Of a mold

position (1-181), a wire load difficulty for that

particular mold (0-22), the mold code (i.e. AC,BN,BR),

and a space for the problem area or special assembly

line functions.

The lower left side of Figure 7 summarizes, by mold

type, the number Of various molds on the line. The 181

mold positions, at a glance can then be examined tO

determine where the problem areas exist. These are

denoted by a character string Of_'*****' under the molds

in question. A problem area results when the sum Of

wire load difficulties for any three consecutive molds

exceeds some wire load difficulty average (say 27).

The symbolic characters "@G" and "$$" denote tape

after post cure and platform loading work, respectively.

This can give the user valuable information about the

sequencing rules tO determine whether certain mold types

are bunched tOO closely together or spread out tOO far.

These symbols also appear along with the problem area

field, under the mold codes. In several instances, one

47

48

mold type (i.e. MM) may have both functions, and appears

on the computer printout as an over printed character

string.

In the lower right hand corner of Figure 7, a

summary Of the problem areas is given. It states the

mold positions which exceed the wire load difficulty

average and also gives its total. If no problem areas

exist, a comment about platform loading and tape after

post cure will appear. This implies to the user that

the run was successful, and that no major problem areas

exist on the prOposed future line-up.

Finally, after the mixed integer program and the

scheduling and sequencing subroutine has been completed,

the LINEUP subroutine once again is printed. This time,

however, there are several distinct changes. In the

lower center of the page, there are three columns

(i.e. Mold Position, Add Mold, Remove Mold) which

summarize the line position and mold changes that have

to be made. This in effect, is the solution Of the foam

scheduling problem, and quickly aids the user in making

his weekly mold decisions and changes. If no

modifications have been made to the assembly line, this

section will then be empty. The final scheduling sheet

then, refers to the assembly line as it would be if all

the changes had already been made. It is the only output

which is necessary for Production Control personnel to

49

use in making their weekly mold decisions on the

assembly line.

Figure 7. Mold Line-up Summary

I
I
I

3
|

I
I

”
N

6
5

I
'
I
'
I

I
!

q
,

A
l

l
i
q

I
G
I

I
l
l
.

.
0
0
0
0

”
R
I
C
"

L
I
M
E

0
2

s
1

a
9

1
0

I
I

o
g
;

o
o

T
9

r
e

9
;

A
C

A
C

I
L

I
L

.
9
0
.
.
.

2
I

5

‘
I

'
I

'
I

9

I
l
l
!

I
I
.

I
I
.

:
5

n
o

)
1

I
n

I
?

n
o

I
I

.
2

a
)

I
I

,
9

I
I

_
9

I
I

_
9

I
I

_
9

s

a
s

p
g

a
n

9
!

a
n

p
g

a
n

o
n

a
n

C
I

D can

H (56
o

‘

6
7

a
n

6
9

T
o

7
!

1
2

1
)

1
t

1
5

I
S

1
6

5
9

s
1
6

v
!

a
n

I
I

a
n

a
x

n
o

I
t

n
u

a
n

a
n

0
0

0
0
0
0
0
0

0
0
0
0
0
0

If

a»

3 NIQIQ

’I‘IQ

9

F

t
9

I
0
0

I
O
I

I
0
2

I
“
)

I
0
!

I
0
5

I
0
6

I
0
1

9
o

-
9

l
:
1

3

a
c

I
:

A
C

5
!

v
v

I
!

v
v

3
:

e

a,

I‘

e:-

4

III-

-¢

:
1
0

1
:
1

:
1
2

I
l
l

I
)
!

1
1
5

I
1
6

I
)
?

9
I
I

-
9

I
I

_
9

i
n

g
n
n

9
!

n
u

9
!

B
l

alt-2!

. OBI

.
.

I
6
2

1
6
!

I
6
”

I
h
S

I
6
6

I
6
7

I
6
0

I
6
9

I
7
0

I
1
I

0
I
I

0
I
I

0
I
I

0
0

0
I

"
I

[
C

B
l

A
C

I
!

A
!

I
I

B

6

‘

Z

III

Ian!

T
U
T
I
I
.

”
"
5
0
!
”

"
P

N
U
L
P
S

0
'

L
I
N
E

A
C
’

I
I

I
fl
"

I
L
!

A
H
=

I
J
’

\
I
.
‘

A
I
'

A
G
I
'

A
!
”

l
l
!

8
9
’

I
I
:

I
"
?

"
1
:
"
:

Y
I
I
I
“

“
0
'
.

0
K
=

K
R
"

“
L
!

6
"

H
"
?

'
V
'

I
I
=

F
N
=

"
'
3

u~e--=nu---¢A-u--carv-—-:.r-e--
-- .8

'
-

M
)
I
.
D

L
I
I
!

I
2

I
)

I
!

0
I
I

0

I
C

B
I

I
C

I
l
5

.
6

1
s

I

g
n
n

v
v

3
I
.

1
6

1
7

I
n

0
o

_
9

A
C

A
C

a
!

t
o
o

1
0
9

I
t
o

I
!

v
v

5
?

S
E
T
-

I
I
I
’

I
I
H
I
N
I
I
I
Y
‘
I
n
n

0
0
0
0
0

I
5

3
1

A
!

a
;

.
7 5

a
n

I
!

1
9

I
6

B
K

I
I
I

I
I

"
I

I
1
5

2
!

{ESL}

-‘

i
n
-

i
i

I
1
6

I
6

B
l

I
)

I
t

«
I

‘
9 3

I
I

H
I 0

I
I

I
I
I

I
0
5

I
I

”
I

I
7
1

P
!

H
"

0
’

8
2

I
I

”
I

I
I
!

I
0
6

—
-

9
3

I
1
0

A
C

I
9

I
I

I
I

S
I 3

I
I

I
I
?

I
I

l
l

I
7
9

I
6

B
I

2
0

-
9

D
B

5
1 5

N
H

’
0

I
I

D
I

I
I
6

I

-
9

D
!

I
8
0

I

9

I
I

.
0
0
.
.
.

2
I

I
I

l
l

I
1

0
0

I
I

O
I

H
I 9

I
I P
O
T
I
T
I
U
I
I

)
2

-
9

I
!

5
!

2
2

h
e
0
0
.
.
.
.

0
6

I
I

D
!

1
8
0

s
o 6

a
s

6
:

I
I

I
n

s
o

0
h
/
0
Q
/
I
T

2
|

2
!

2
5

1
|

,
9

I
I

o
n

y
a

«
I

a
s

a
n

s
3

a
n

v
v

RIPI:I

r 1:.

N
7

8
0

0
Q

0
I
I

0

A
!

E
l

A
!

I
I
?

I
2
0

I
l
l

9
I
I

I
L

I
N

an In

H‘l

I
S
I

I
I

I
I
I

&.

-

-

p

N ¢I=I

I
S
I

9:!

I

I
!

9
0

I
I

B
I

I
2
2

I
5
0

l
!

7
7

I
I

B
I

a
s '
I

3 O"I

A l=| 6
0

2
3

D
J

9
“

I
I

n
u

A
I 5

A

b

-

9! SI

23‘ 6
2

I

I
I

0
0
.
3
0
0
.
0
0
0
.
3
0
0

I

P
R
(
!
I
\
I
.
E
N
A
R
E
A
S

I
!

)
2

I
I

I
0

I
0

)
0

I
"

J
I
I

Q
I 0

l
l

2
|

-
9

5
5

I
I

"
I

9
2

I
I

I
I

I
2
0

I
I

“
I

I
5
6

B
E

fleas!

9 1:!

I
2
5 6|

I c:

'
5
1

I
!

a
n

T
U
T
A
L

H
I
R
E

n
l
'
F
I
C
U
L
T
I

9
. 9

I
t

l
l

I
2
6 0

A
C

I
I 5":-

I
2
1

V
'

"
6 61‘!

1‘.

I
)
"

u
a
o

I
5
0

9
!

55(3

4.4 CONSTRAINT GENERATION SUBROUTINE - GENER

The purpose of the GENER subroutine is to construct

a set of card image constraints to be used as input

for the mixed integer programming subroutine. GENER

begins by reading the "dynamic" forecasting information;

the name referring to variables which change value

after every program run. This section in fact, summarizes

the current inventory levels and the future plant

shipping requirements. Variables such as initial inventory

balance (INVBAL), production required for lst week

shipped (SHIPl), 2nd week shipped (SHIPZ), 3rd week

shipped (SHIPB), and 4th week shipped (SHIP4) are

included for each mold type. The model checks to see

whether any information is missing or mispelled, and

totals the initial inventory and parts to be shipped in

the first two weeks. A summary of the forecasted

production information follows the initial line-up

computer printout, and aids the user in finding errors

in the input data.

At this point, the model has enough information to

start generating the input constraints. The card images

must appear in certain columns and must be sorted in the

proper order. The input consists of five major sections:

51

52

1. row cards

2. column cards

3. right hand sides

4. mold range cards

5. bounds section

It is important to note that a file, called "CARD"

is created within the subroutine, and that all the card

images are stored there for future use by the mixed

integer subroutine.

Figure 8 on the following page, represents a

summary of the inventory and shipping requirements at

the start of the model. These values are necessary to

determine the future weeks production demands and mixed

integer programming constraints.

. Figure 8. Forecasting - Production Information

G
I

F
C
D

H
A
L

1
9
2

2
2
2
6

1
a
9
2

1
8
2

~
5
1

-
a
n
o

«
9
9

-
u
5
1

~
1
2
u
n

2
0
0

5
0
1
5

—
2
3
5
9

3
3
a
: 1

~
1
3
9

1
9
2
0

-
3
3
u

n
o
w

9
8
8

-
2
1
7
1

z
a
n
o

e
v
e
n

-
1
5
0

~
2
3
1
2

-
2
o
o
o

F
O
R
E
C
A
S
T
I
N
G

-

I
N
I
T
I
A

I
N
V
I
N
T
O

2
7
7
8

1
5
1
8

I
7
8
0

1
3
8

3
3
7

1
1
0

6
8
9

1
0
1
9

1
8
8
0

6
9
6

7
0
5

8
1
3
9

-
7
6
5

2
5
5

3
1
7

6
6
7

2
9
7
0

7
1
3

2
0
0

2
7
7
7

2
0
5
6

1
0
6

3
9
0

1
5
6
8
8

1
7
0
5
6

L R
I

T
O
T
A
L

P
A
R
T
S

S
H
I
P
P
E
D

I
N
T
H
O

N
B
B
K
S

=

T
O
T
A
L

I
N
I
T
I
A
L

I
N
V
E
N
T
O
R
Y

6
3
1
5
5

1
5
?

8
8
8
K

S
H
I
P
P
E
D

2
9
7
0

3
7
0
0

3
2
7
6

3
2
0

2
8
0 0

1
1
8
8

9
6
8

6
0
0

8
9
6

5
7
6
0

5
2
8
0

2
5
7
6

2
5
6

1
2
8

2
0
9
6

2
6
0
0

1
1
2
0

1
2
3
2 0

0
5
3
6

8
9
1
0

2
0
0

1
3
3
7
6

1
5
0
5
6

1
6
3
2
0
2

P
R
O
D
U
C
T
I
O
N

I
N
F
O
R
N
A
T
I
O
N

2
N
D

8
8
8
K

S
H
I
P
P
E
D

2
7
5
0

3
7
0
0

3
5
8
8

3
6
0

2
0
0

1
1
2

1
1
8
8

1
3
6
0

1
0
2
0

1
2
8
0

5
1
8
0

5
9
0
0

2
5
2
0

3
8
0

1
2
8

3
0
7
2

2
8
8
0

1
3
0
0

1
2
3
2 0

0
0
8
0

9
1
0
8

2
0
0

1
5
2
2
0

1
7
5
6
8

3
8
0

"
E
E
K

S
H
I
P
P
E
D

2
7
5
0

3
0
3
2

3
9
0
0

0
0
0

2
8
0

5
6

9
6
8

8
8
0

5
1
2

6
0
0

5
1
8
0

5
0
1
2

2
7
0
0

2
5
6 0

3
1
6
8

3
1
2
0

7
8
0

8
9
6 0

0
5
3
6

8
9
1
0

1
9
2

1
5
8
8
6

1
8
0
3
2

0
T
H

8
8
8
K

S
H
I
P
P
E
D

0
2
9
0

5
0
6
0

5
6
1
6

6
8
0

0
8
0 0

1
9
3
6

2
1
5
6

1
5
3
6

2
1
7
6

8
0
9
6

8
5
8
0

0
8
1
6

7
6
8

1
2
8

0
9
9
2

5
0
0
0

2
2
0
0

2
3
5
2 0

8
3
0
0

1
7
8
2
0

0
8
0

2
7
2
2
0

3
2
6
2
1

S
A
F
E
T
Y

S
T
O
C
K

2
1
0
5

3
0
0
2

3
0
0
2

7
2
0

7
2
0

3
3
6

8
5
8

8
5
8

1
2
8
0

1
2
8
0

2
2
8
0

2
7
0
6

1
1
7
6

2
3
0
0

1
1
5
2

1
9
2
0

2
3
0
0

2
1
2
8

2
1
2
8

2
3
5
6

1
2
8
8

0
1
5
8

8
6
0

3
1
0
0

3
0
5
6

53

4.5 MIXED INTEGER PROGRAMMING SUBROUTINE - MIP

The Mathematical Programming System Extended

(MPSX/MIP) package is composed of a set of procedures,

a subset of which deals only with linear programming.

The strategy for solving an linear programming problem

is the ordered execution of a series of these procedures.

The user conveys the proposed strategy to MPSX via the

MPSX extended control language (ECL) written in PL/l.

The procedure call statement of the control language

calls the linear programming procedures and transfers

arguments to them.

The linear programming procedures of MPSX use the

bounded variable/product form of the inverse/revised

simplex method. The simplex method is based upon the

fact that if there are m constraints (or rows) in the

constraint matrix and these are linearly independent,

then there is a set of m columns (variables or vectors)

which are also linearly independent. Hence, any right-

hand side (RHS) can be expressed in terms of these m

columns (called a basis). The simplex method uses these

basic solutions, stepping from one to another

(by exchanging one column with one column not in the

basis on each step or iteration), until a solution

(called a basic feasible solution) is obtained that meets

all the criteria, including the requirement that all the

54

55

column values be non-negative.

Problems for which this last condition does not hold

are automatically subjected by MPSX to an internal

linear transformation to bring them to this form. The

bounded variable feature allows the user to specify

limits on the activities levels for any or all of the

variables. Either upper or lower bounds, or both, may

be specified. Since the bounds would otherwise have to

be represented by explicit constraints, use of this

feature leads to economies in the number of constraints

and in computing time.

After a basic feasible solution is found, the

simplex method steps along, examining a series of basic

feasible solutions, to find one that satisfies the

requirement that the value of the functional (or objective)

row be a maximum or minimum; this is called the optimal

solution. Not all linear programming problems have an

optimal solution. If there is no solution at all in

non-negative variables, or none that keeps the variables

within their specified bounds, the linear programming

problem is said to be infeasible. If a feasible

solution is found, but the constraint rows do not confine

the value of the functional row to finite values, the

linear programming problem is said to be unbounded.

If it is assumed that the nonbasis variables all have

zero value, then there are m basis variables left whose

56

values have to be chosen to satisfy m constraints. The

solution of these constraints for the values of the

m basis variables requires the inverse of the m*m matrix

of the coefficients of the basis variables in the

constraints. The recognition of the role of this

inverse leads to the revised (as opposed to the original)

simplex method. The product form of the inverse is a

representation that leads to economies in computing time

and storage requirements and to increased numerical

accuracy.

In the product form, the inverse is represented by

the product of a sequence of m*m matrices, only one

column of each matrix differing from a column of the unit

matrix. It is necessary only to record which column, and

the nonzero elements in that column, to have a full

description of one matrix in the sequence. (This column

is termed the "eta" vector.)

There is one matrix in the sequence (and, therefore,

one eta vector) for each iteration that has been carried

out. Clearly, as the sequence lengthens, the

computational advantages decrease. However, the product

form can be consolidated by “reinversion”, which, in

effect, replaces the existing product form of the current

inverse by a minimal (in regard to the number of eta

vectors and number of nonzero coefficients) product form.

S7

The purpose of MixedInteger Programming (MIP) is to

meaningfully increase the scope of MPSX by providing the

capability for studying mixed integer linear programming

problems. A mixed integer linear programming problem

is a linear programming problem with two kinds of

variables: integer variables and continuous variables.

Integer variables can take only integer values, that is,

...,-2,-l,0,l,2, etc. Continuous variables can take any

real number as a value (classical linear programming

problems have continuous variables exclusively).

The study of a mixed integer linear programming

problem is performed in two distinct stages. First, the

problem is optimized by considering all integer

variables as being continuous. It is, therefore, an

ordinary linear programming problem whose optimization is

performed by the linear programming module of MPSX. The

Optimal solution obtained is called an optimal continuous

solution. Then the problem is searched for integer

solutions, that is, feasible solutions satisfying the

constraints and giving integral values to integer

variables.

The search for integer solutions is aimed at finding

an optimal integer solution. A straightforward strategy

leads to a series of integer solutions tending towards

the optimal integer solution (in other words, the values

that these integer solutions give to the objective

58

function become better and better). When an integer

solution is found, it is not immediately known whether

it is optimal. The search must, therefore, continue

until either a better solution is found or it is proven

that no better solution exists. Occasionally,

particularly for problems with many integer variables and

relatively loose constraints, good solutions are

quickly found, but a long computation is necessary either

to improve them slightly or to prove their optimality.

The MPSX/MIP control program is composed of a set

of procedures which perform various linear programming

functions. Figure 9, the Mixed Integer Programming

Flowchart, summarizes the basic building blocks of this

linear programming package. These procedures start with

the LP constraints, obtain a continuous solution, and

finally determine an optimal integer solution.

59

Figure 2. Mixed Integer Programming Flowchart

I
CONVERT

PICTURE

SETUP

PRIMAL

INVERT

‘ MIXSTART

MIXFLOW

SOLUTION

Problem Input - CONVERT, PICTURE

Initiate a Problem Solution — SETUP

Obtain a Continuous Solution - PRIMAL

INVERT

Search For Integer Solutions - MIXSTART

MIXFLOW

Print Solution - SOLUTION

60

CONVERT is the basic means Of problem input. The

procedure reads the input data, converts it into packed

binary format, and writes it on the PROBFILE. Not only

does the PROBFILE built by CONVERT contain all the

problem data, but it may also be augmented by bases

which are saved during a run.

SETUP is the basic means of initiating a solution

Of this problem. It has three main purposes:

1. Storage allocation and I/O initialization.

2. Creation Of the work matrix.

3. Determination of an initial solution.

PRIMAL, the main Optimization procedure, Optimizes

the problem contained at present on the work matrix.

PRIMAL usually terminates in one of three states:

1. the Optimal solution

2. the infeasible solution

3. the unbounded solution

This procedure initially requies a complete starting

basis; this is accomplished by SETUP, which supplies an

all-logical basis. The user may modify this basis or

supply a complete basis on his own. PRIMAL exists with

the present basis stored internally (this basis may or

may not be optimal). It uses a composite algorithm and

the revised simplex method. It progresses from the

initial basis to the optimal basis by a series of vector

61

interchanges; one vector is introduced into the basis

and one is removed. Each of these interchanges is known

as an iteration.

INVERT is the procedure that takes a current basis

and produces its inverse in terms Of eta vectors. At

each iteration in the Optimizing process, the inverse Of

the current basis is not computed but is represented by

a set Of eta vectors.Each iteration produces a new eta

vector. At certain times, it is profitable to do a

complete basis inversion, both for time considerations

and for the removal of possible accuracy troubles.

PICTURE creates a "picture" of the current matrix

in condensed format; it contains 45 rows and up to 55

columns per output page, and the pages are numbered in

matrix notation for easy identification. PICTURE must

be called after SETUP. The magnitude of the nonzero

coefficients is indicated by an alphabetic code or an

asterisk. A summary Of magnitude classes, together with

the meaning Of the alphabetic code, is given at the end

of the output. The RHS ranges, and the bounds on

variables will be indicated, if they exist.

SOLUTION tabulates the current solution of the linear

programming (LP) problem. Normally, this tabulation is

printed (that is, written on the system device SYSPRINT),

but, by using the keyword parameter FILE, the user can

62

direct that it be filed in Communications or Standard

Format on some other designated file. The status Of the

solution can either be:

a. FEASIBLE

b. NONOPTIMAL (feasible by implication)

c. OPTIMAL (feasible by implication)

MIXSTART is the basic means for preparing the

search for integer solutions. It has three distinct

uses:

1. Initializations to begin the search for integer

solutions from the Optimal continuous solution.

2. Restoration Of a tree and the associated search

status previously saved by MIXSAVE in the problem file.

The MIXSTART parameter for this option is RESTORE. It is

possible to forbid certain nodes which are presently

waiting in the restored tree from being chosen as

branching nodes during the new part Of the search. Nodes

and prenodes are not distinguished here because they have

similar processing.

3. Continuation of the search initiated by MIXSTART

in this run in certain special cases. One such case is

when the search has been interrupted at an integer node

and MIXFIX has been called. In this case, MIXSTART has

created a mixed phase, destroyed later on by MIXFIX.

This mixed phase is now to be restored in the same run.

63

MIXFLOW searches for integer solutions using the

'branch and bound' method. A MIP/370 tree is scanned

by two main processes:

1. Node analysis: choice of a branching variable

and determination of its new bounds, creation of new

nodes, and choice Of a branching node.

2. Branching: Optimization of a subproblem.

The search for integer solutions must be initialized

by MIXSTART, which initializes the beginning Of a search,

restores a tree previously saved by MIXSAVE, or

continues a search already initiated. The primary

elements Of the problem, XOBJ (name Of the Objective

function) and SRHS (name Of the right-hand side), must

not have changed since MIXSTART was called.

When MIXSTART is used to initiate the beginning

of the search, the current solution need not be an

Optimal continuous one. When MIXFLOW begins the search,

the current solution must be an Optimal continuous one

and PRIMAL should have checked its optimality-feasibility

in the run.

MIXFLOW normal exit is taken when the last integer

solution found is proved to be optimal. This solution

is automatically restored and becomes the current

solution.

4.6 SCHEDULING AND SEQUENCING SUBROUTINE - SCHED

The scheduling and sequencing subroutine brings to

a conclusion the work begun by the assembly line mold

scheduling model. At this point in time, several

important questions have been resolved by the mixed

integer programming subroutine. They involve what molds

should be added. removed, or framed to meet the production

shipping and inventory requirements Of the plant. The

problem for the scheduling and sequencing subroutine to

solve is what mold positions should be chosen to:

l. minimize the mold set-up changes

2. eliminate past problem areas.

3. Obey the assembly line sequencing rules

4. insure that the proper number Of each mold type

is placed on the assembly line

5. minimize the average wire load difficulty for

all positions on the assembly line

The assembly line scheduling and sequencing

subroutine analyzes this problem and heuristically

solves this problem. The subroutine begins by reading

the Optimal or best integer solution Obtained from the

mixed integer programming subroutine. The output,

stored inla file named "OUT", is the MIP solution

written in a standard format file. The solution is

printed for inspection by the user and appears in

64

65

Figure 10 on the following page.

In this figure, the name and activity columns are

perhaps the keys to understanding the solution to the MIP

problem. They combine a two letter mold code with a

three letter section identification. In the ROW

SECTION, there are only several values which are

important to the reader. The objective function: "OBJ",

assembly line capacity: "LINCAP", inventory production

level: "INVEN", and the total number Of upenders

required: "UPENDER", represent the key elements of the

model. At a glance, one can see the total cost of

changing the production level and whether or not the

imposed constraints were met. The solution of the

COLUMN SECTION, however, gives the detailed analysis

of the solution Of the model. The naming convention of

the column section is slightly different than in the

row section. The name column combines a two letter mold

code with a two letter section identification and a

mold size.

The two letter section identification can be

described as follows:

1. II - integer number of molds required for a mold

. UP Eggser Of upenders assigned to a mold type

3. AA - number of molds to be added to a mold type

. SS number of molds to be subtracted from a

mold type

5. FF - number Of molds to be framed for a mold type

ACT171TY

10.0000

6.0000

6.0000

2.0000

1.0000

3.0000

1.0000

1.0000

2.0000

0.0000

13.0000

11.0000

1.0000

1.0000

6.0000

5.0000

3.0000

3.0000

15.0000

15.0000

1.0000

32.0000

32.0000

2.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

2.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

3.0000

1.0000

1.0000

3.0000

3.0000

1.0000

1.0000

1.0000

1.3000

2.0000

6.0000

1.0000

2.0000

2.0000

7.0300

1.3000

5.0000

11.0000

1.0000

1.0300

ICOST

2.9700

5.8700

5.3700

7.3700

6.5000

5.6200

6.3700

5.3700

5.3700

6.3700

0.7500

5.3700

0.3700

0.3700

7.0700

5.7500

5.7500

5.7500

5.6200

0.0000

6.1200

6.1200

6.3700

1.0000

1.0000

1.0000

1.0000

1.3000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.3000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.3000

7.5000

7.5000

7.5300

7.5000

7.5100

7.5000

7.5000

7.5000

7.5000

7.5000

7.5000

7.5000

75.0000

75.0000

SOLUTION 0? TH! CGLUSI SECTION

11101?

5.0000

6.0000

5.0000

2.0000

1.0000

3.0000

1.0000

0.0000

2.0000

8.0000

0.0000

11.0000

1.0000

1.0000

0.0000

2.0000

3.0000

3.0000

9.0000

15.0000

1.0000

0.0000

6.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3000

0.0000

0.0000

0.0000

0.0000

0.3000

0.0000

0.0000

0.0000

0.0000

0.0000

3.0000

0.3000

0.0000

0.0000

0.3000

0.0000

0.0000

66

ULIHIT

01.0000

19.0000

19.0000

2.0000

0.0000

9.0000

9.0000

5.0000

0.0000

21.0000

21.0000

21.0000

1.0000

2.0000

6.0000

6.0000

6.0000

6.0000

23.0000

22.0000

6.0000

50.0000

63.0030

6.0000

6.0000

6.0000

5.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

6.0000

20.0000

20.0000

20.0000

20.0000

20.0000

20.0000

20.0000

20.0000

20.0000

20.0010

20.0000

u0.0000

00.0000

2.0000

2.0000

RCCST

0.0000

10.5000

0.0000

91.0000

7.6300

13.2500

0.0000

0.0000

10.0000

15.5000

0.0000

10.0000

73.0000

86.5000

1.5000

0.0000

39.3800

09.3800

0.0000

10.7500

0.0000

0.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0030

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.3000

0.0000

0.0000

0.00C0

0.0000

0.0000

0.0090

0.0000

0.0000

0.0000

0.0000

0.0000

0.2500

0.0000

0.3000

0.3000

NUHBER

133.0000

130.0000

135.0000

136.0000

137.0000

139.0000

100.0000

101.0000

102.0000

103.0000

100.0000

105.0000

106.0000

107.0000

108.0000

109.0000

150.0000

151.0000

153.0000

150.0000

155.0000

156.0000

157.0000

150.0000

159.0000

160.0000

161.0000

162.0000

160.0000

165.0000

166.0000

167.0000

168.0000

169.0000

170.0000

171.0000

172.0000

173.0000

170.0000

175.0000

176.0000

170.0000

179.0000

160.0000

161.0000

102.0000

130.0000

106.0000

100.0300

172.0000

193.0300

195.0000

137.3000

200.0033

201.0000

203.0000

205.0030

231.0000

232.0000

207.0000

250.0000

Figure 10. MIP Standard Format "SOLUTION"

511103

[V

17

17

1'

17

1?

IV

IV

17

17

17

IV

17

1?

11

17

11

17

IV

17

11

1'

IV

1'

1'

11

17

17

17

1'

11

17

1'

1'

IV

17

17

1?

17

1V

1'

IV

1?

I7

17

17

1'

1V

17

11

17

11

11

17

17

{7

11

17

IV

17

17

lkflfi

ACIIS

19115

71115

ARIZL

30111

Al11L

A0115

11115

02115

IIIIL

A1115

37115

56115

88115

BJ11L

BKIIS

10115

KLIIS

00115

11115

11115

BRIIL

85113

ICUPS

13095

1L1PS

AHUPL

AJUPL

ARUPL

AOUPS

AYUPS

IZOPS

AIUPL

11095

IVUPS

BGUPS

0HUPS

BJ"?L

31395

K?UPS

KLUP?

SHUPS

77UPS

11095

BRUPL

HSUPS

Yaaas

AHAAL

INAAL

azaas

IaAAL

uvnas

50315

23115

xiaas

71115

[£115

3 33L

80533

0H???

K3??3

67

For the example in Figure 10, the name: "BNIIS"

tells the plant that 32.0 small "BN" molds are required

to satisfy the production inventory and shipping

requirements. "ACUPS" implies that 2.0 upenders MUST be

assigned to mold type "AC". Finally, "BHAAS" states

that 1 small "EH" mold must be added to the current

assembly line configuration.

The scheduling and sequencing subroutine tries to

determine the problem mold in the specific problem area

on the assembly line. the model would remove this mold

and replace it with the largest wire load difficulty

mold which staisfies the sequencing constraints from the

set of ADD molds. At all times, the intent of the model

is not to exceed some specified wire load difficulty

average (say 27 as a first attempt). There will be

molds, however, which cannot be added or removed from the

set of problem areas on the assembly line. Therefore,

the model arbitrarily starts at some mold position

(typically position 60), and hunts on either side of

this mold position until the set of SUBTRACTED molds is

satisfied.

At this point, we have solved many of the problem

areas, and at least know the set of mold positions which

must be changed. This strategy insures that the

minimum number of mold changes occur, and that these mold

changes are as close as possible to one another. We also

68

know the set of molds which have to be added to the

assembly line at this point. The model systematically

places the required ADD molds into positions, keeping

in mind the assembly line constraints. If the assembly

line cannot be satisfied at the stated wire load

difficulty, the model increases the difficulty and tries

to solve the sequencing problem again.

Figure 11, shows the intermediate results of the

scheduling and sequencing algorithm. The four columns

represent the position of the mold changes, the molds to

be added, subtracted, and the wire load difficulty needed

to satisfy that particular mold position. For example,

if the model was unable to schedule a particular mold

type, this sheet would explain which molds caused the

trouble, and what mold positions could not be filled.

It represents temporary output, but also an alternative

schedule if the plant can tolerate the scheduling

violations.

The assembly line scheduling model and in particular

the scheduling subroutine, tries to take into account

the human factors of the assembly line. Up to this

point, it has been told that an average wire load

difficulty of 27 is acceptable at the plant. So the

question arises during the scheduling program; what is

the upper limit of wire load difficulty that an average

assembly line worker can handle without falling behind?

Q ICNT= O AVAIL 501??

a POS ADD SUB NEED

99 AV an 1

61 vv an 3

SS VV an 3

71 II BK 1a

75 BH‘ BK 1a

uz AZ an 12

"1 YR BI 12

“0 AH BR 8

39 KR BM 13

38 A! an 8

82 BK BI 17

83 AV an 3

37 K3 an 13

36 an BR 3

8a KL as 12

3S KL BR 1a

3“ an BR 8

86 BK an 17

33 IL 8! 1a

32 an BR 8

89 AH BB 12

31 AV BN 1”

30 BK BR 17

90 AN DU 16

28 AV BR 1

8 AV IL 5

179 AV BK 10

THE SCHEDULING 5 SBQUEHCING ALGORITHH HAS SOLVED WITH

,i_____.._-..-.———-....i ..-_-

is- ...v._. _.__-.....

AN AVERAGE WIRE LOAD DIPFICULTY O? 28

‘Figure 11. Intermediate Scheduling Results

70

This is an important consideration, since a person must

perform the work. An average wire load difficulty of

33 might be acceptable for one or two positions on the

assembly line, but is cannot be maintained for any long

period of time. The model considers this fact, and even

though there are problem areas, the model tends to help

spread out the difficult positions. In other words, the

assembly line model considers the human aspects of

producing foam parts, and tries not to overload the

amount of work the wire load team can accomplish.

Previous models have just considered the wire load

difficulty average as a number, and although answers

were obtained, they were far from being feasible to

implement.

Figure 12, on the following page shows the final

mold line-up summary sheet. It summarizes the positions

and the molds to be added or removed from the assembly

line. It also describes the problem areas which resulted

after implementing the new line-up and shows the new

configuration of molds in their proper positions. In

other words, this figure represents the final mold

scheduling solution and future mold change line-up of the

foam assembly line.

Figure 12. Final Mold Line-up Summary

I
I
I

I
I
.

6
5

I
I
I
I

3
!

Q
"

A
!

I
2
'
I

m
l I
I

I
I
I

I
I
O
I

I
I
I
)

I

CIKI

lac

T
U
T
A
I
.

I
I
I

I
5

I
I
.

a
.
)

6
7

'
I

«
m

I

I
I

I

I
I

I
I
I

6
|

I

I
I

"
I
I

I
6 '

I
I
H

O
.

1;!

.CNzI

i t=7

I
I

I
I

0
0

6
Q

V
I

I
I
I
I

A
C

I
I
I

I
I

I
I
I

I
6
5

I
I

I
I
I

I
I
I
I
I
I
I
I
E
I
I

I
)
?

o
n

L
I
N
8

I
I
.
"

I
I
I
:

I
I
.
"

I
I
I
?

I
J
=

A
L
:

A
I
I
’

A
0
!

A
I
:

A
2
3

8
'
3

A
l
“

A
V
=

l
l
fl
z

I
I
I
I
‘

I
”
!

I
I
I
:

I
I
I
'

A
I
.
’

G
I
”

H
H
“

1
‘
!

l
l
'
A
"
r

I
I
I
I
'

I
I
I
?

I
“ can-e--—N¢.----mr--c

1.—

I
0
2 9

0
.
.

h I'm-m

Nail I
I

I
.

l
l

I
O
I I
I

A
C

I
I
S

I
I

I
I
I

I
I
I
]

I
I
H
L
D
'
I

"
D
R
I
I
C
I
I

I
I

1
2

'
I
I

‘
5

9

M
I

I
I
.

0
0
.
.
.
.

I
0
.

I
0
5

6
J

u
H

I
1
7

I
I

I
I
I

I
6
9

I
)

0

A
C

A
!

L
I
N
K

I
)

I
0 ‘
I

I
I
.

‘
2

I
I

A
!

I
I '
3

I
I
I

I
0
6

I
I

A
Z CI :1

. :3!

I
1
0 0

I
!

I
I
U
L
I
I

P
O
S
I
T
I
O
N

«
- I

2
0

m 1
1

n n M 1
5

w
.

n m m «
0

n o
z

5
5

5
0

m n r
s

a
)
.

I
”

a
n

m
.

M ’
I
O

1
m

C
I

7
'
)

I
I

I
I
I
I

I
0
1

I
!

I
I
I
)

I
I

I
I
I

I
I
I

-
H
O
L
D

L
I
I
!

I
I 0

A
C "-”NH IEOIJ

C -N‘Hfl F' ¢

CASH”

ICI

I
1
2

I
I

I
I
I
;

I
I

I
I

I
I
I

I
I
S 5

I
I
I
I

I
I

7
7 0

A
C

I
I
I
'
I I

I
I

I
I
I

I
I

I
I
I

I
?
)

-
9

M

A
I
I
I
!

M
I
L
D

A
V

“
K

I
I

I
I
I
I

I
I
.

I
I
I
I

K
I
.

M
I

I
I
I

I
I
I

K
R

A
U

I
I
I

A
Z

I
V

I
!

I
I

I
I

“
I
I

I
. I
I

I
I
:

I
I
.

I
?
!

‘
I
I

S
E
T
-
I
I
?

I
N
f
I
I
I
I
I
I
A
I
'
I
I
I
I

.
°
'
°
.

5“ “VI-36G

F'fium. I
? 5

M
I

0
.

7
0

I
6

B
K

I
I
I 0

I
!

I
6 0

A
C

I
I
I

2
!

M
0
0
.
.
.
.

I
I
I

I
I

D
I

I
" -
9

9
!

n
o I
I
.

M

I

I
I

I
I

I
I
I

Q
'
I .
I

V
?

I
I

.
5

8
2

I
6

I
I
K

A
!

I
I
I
;

5
!
!

I
7
0

A
C

I
?

I
I

I
I
I
I

S
I I

H I
” 0

A
!

I
Q
?

I
I

I
'
I
‘
I

A
V

OCN-l

NIGI D
B

"
‘
0

2
|

I
I

I
I
I

S
I

‘
I
S

I
I
I

I
I

“
V
I

I
I

"
I
I I
’
I
I
S
I
I
'
I
I
I
I
I

macgu

h :3!
I
'
m

9
'
! ‘
5
'
)

“
'

O
Q
/
I
I
fl
/
I
I

2
]

)
I
I

I
I

I
)

I
'
n
I

M
33
E

2
"

I
I

I
I
I

5
7

I
I
I
I

3
.

I
0

I
I
I

I
I

0
|

)
0

-
9

I
!
!
!

'
5
6

e

cant“.

"I‘IH h

P
I
I
I
I
I
I
.
P
H
I

A
I
I
T
A
'
I m 2
3

2
»

2
n

2
“

H I
I

I
‘
I
l

2
|
! I
I

I
I

6
0

R 9
-
!

9
2

I
I

I
I
I 0¢N=Y

or l=¢

‘

2
'
!

I
I

"
I
I

6
|

I

H

1
'
5
7

I
I

I
I
I

1
0
1
'
“
.

“
I
I
I
!

I
I
I
r
l
'
l
r
'
u
l
.
1
'
l

I
I
!

I
I
I

6
7
. I

I
V

0
.
0
.
.
.

'
I
Q ‘
I

F
I
.

u

I
’
6 0

A
C

I
S
'
I

I
I

I
I
I

"
I
I
I :33

IC-

71

4' . 7' SUMMARY

This chapter has tried to examine the various

subroutines which comprise the assembly line mold

scheduling model. We examined each subroutine's function

and objective, trying to relate each piece to the overall

model. The mixed integer programming subroutine and the

scheduling and sequencing subroutine described here

determine the proper number of molds, and the placement

of these molds on the assembly line. Now that the

model has solved the assembly line scheduling problem,

let us examine what conclusions can be drawn from this.

72

2. EXPERIMENTS

This chapter will examine an experimental run made

by the plant to determine the assembly line sequence of

molds. It summarizes in pictorial form the input and

output as it actually appears in a production run. The

keypoints in the following pages are denoted by a series

of numbered circles which can now be described:

1. assembly line header - 80 character title card

(Figure 13).

2. parameter input card - includes the total

number of mold types, the number of shifts, total number

of molds on assembly line, number of currently available

positions in warehouse, average starting wire load

difficulty (Figure 13).

3. static mold information card - includes the mold

code, part number, mold size, wire load difficulty,

number of parts per cavity, platform loading, total

molds available, total molds framed, tape after post cure,

standard pack per basket, production rate per week,

value of the part, safety stock (Figure 13).

4. assembly line input mold position summary - the

molds are listed in the order they actually appear on the

assembly line before re-scheduling (Figure 13).

5. constraint solution - denotes the name and

activity of a row, represents the answer of the value

indicated (Figure 15).

73

74

6. required molds section - denoted by an "II" in

the name, this group represents the required number of

molds necessary to satisfy the production requirements

(Figure 16).

7. required upender section - denoted by an "UP"

in the name, this group represents the required number of

upenders or baskets needed to pack the foam parts for

each mold type (Figure 16).

8. added molds section - denoted by an "AA" in the

name, this group represents the number of molds to be

added to the assembly line for each mold type (Figure 16).

9. subtracted molds section - denoted by an "SS"

in the name, this group represents the number of molds

to be removed from the assembly line for each mold type

(Figure 16).

10. available molds array - this section represents

a summary of the mold types and their particular wire

load difficulties that are available for scheduling at

some assembly line wire load difficulty average

(Figure 17(a)).

11. current scheduled solution - this section

represents the mold position, molds added and subtracted,

and the highest wire load difficulty which can be fitted

into this slot on the assembly line (Figure 17(a)).

75

12. solution statement - this temporary printout

states that the model has solved the problem with a

particular wire load difficulty average (Figure l7(e)).

13. final mold line-up - a summary by mold position

showing the line-up of molds on the assembly line once

they have been sequenced and scheduled (Figure 18).

14. mold position summary - a listing by mold

position of the molds added and subtracted to establish

the new line-up (Figure 18).

Figure 13. Sample - Mold Line-up Summary

"
*
“

B
E
N
C
H

L
I
N
E

.
2

-
fl
O
L
D

L
I
N
E

S
E
T
-
U
P

I
N
F
O
R
H
A
T
I
O
N
*
“
’
*

2
%

3
1
8
1

A
C

1
6
5
7
5
6
9

I
R

I
6
6
0
1
0
6

I
L

1
6
6
0
1
0
7

A
M

1
6
7
7
2
0
6

A
J

1
6
7
7
2
9
0

A
L

1
6
8
1
9
2
9

A
N

1
6
9
0
5
5
1

A
0

I
6
9
0
5
5
3

A
!

1
6
9
0
5
6
2

A
Z

1
6
0
0
5
6
3

A
"

1
6
0
0
0
0
2

A
X

1
6
9
0
0
0
3

A
V

1
6
9
0
7
0
9

8
6

1
7
1
3
9
0
7

B
”

1
7
1
3
9
0
8

D
J

1
7
1
7
2
1
1

B
K

1
7
3
7
2
2
1

K
R

I
0
6
2
7
0
8

K
L

1
0
6
2
7
0
9

G
I

3
0
6
3
0
2
6

0
"

9
6
7
9
6
1
2

I
V

0
6
7
9
6
1
3

I
I

9
7
1
6
0
0
2

0
8

2
0
0
0
1
5
5
7

B
R

2
0
0
0
1
6
0
6

A

-

2
8

p.-

\DP'IDCOFFNOOC‘FU‘F‘ac—

v-o-Nw-

OPNNPPFP—NNNNPNNNNNNNPN—P'

P

22””N22.22223222fi%2¥2222

—

N

N

N

22:22:FIZZZZZZZZZZZIFZZZZ

mum—3.4m..acstnmammmmammcnammmgm

'

I
L

B
R

I
L

A
I

A
0

A
C

D
J

A
C

D
R

A
C

A
I

I
R

B
R

I
R

A
C

E
R

“
R

I
V

D
R

8
"

B
R

K
L

8
"

I
I

D
H

8
8

B
R

8
8

A
I

B
N

0
"

A
N

A
0

D
R

K
L

8
"

I
V

fl
fl

D
J

"
H

I
I

A
Z

0
0

A
N

H
M

G
I

H
fl

K
R

H
H

A
0

A
N

0
H

U
K

"
H

A
"

fl
fl

R
N

U
R

I
V

0
N

B
R

I
V

a
n

R
N

B
R

R
H

A
"

B
”

B
"

V
I

B
N

H
R

A
I

B
K

A
X

R
R

I
V

A
“

I
I

D
R

A
X

B
J

A
!

I
I

B
R

A
I

D
J

A
X

B
N

B
R

B
fl

B
R

I
I

B
R

A
I

B
l

B
R

I
I

E
H

H
N

"
N

B
R

B
N

D
H

8
"

B
R

D
H

B
R

U
N

B
R

B
l

D
R

B
N

B
R

0
"

B
R

D
H

B
R

H
N

B
R

8
"

B
R

E
N

D
E

D
H

A
0

B
R

76

77

2
8
1
0
0

=
A
U
O
A
N
Z
A
R
I

1
I
I
L
I
N
1

1
v
m
0
1

£
0
9
6
9
1

t
5
8
3
3
8

0
3
1

8
]
O
d
e
I
H
S

S
l
fl
V
d

1
V
J
O
L

9
5
0
6

9
5
8
2
1

9
6
6
8
1

8
8
0
1
1

9
L
L
6
1

9
L
2
1

'
0
0
5
8
1

N
8

0
9
9
2

0
9
0
L
1

0
8
1
8
1

2
6
6
9
1

6
(
L
6
1

(
[
6
2

9
0
0
L
1

a
n

0
9
8

0
0
1

2
6
1

2
6
1

0
$
2
2

9
2
2
*

I
I

8
2
5
6

0
8
8
1
1

0
2
L
6

0
0
L
1
1

0
9
S
L

8
9
2
6

2
0
f
0

A
A

9
6
1
1

8
2
6
5

0
8
9
0

0
8
6
$

2
6
0
6

2
0
6
0

0
L
O
I
-

N
H

9
9
1
2

2
1
6

0
2
9

9
1
1
1

0
0
2

2
L
1

Z
L
E

1
9

8
2
1
2

8
0
0
1
‘

0
2
1
1

2
E
2
1

0
2
1
1

9
L
9
2

9
9
0
1
-

1
!

8
2
1
2

8
0
0
1

0
2
1
1

2
1
2
1

8
0
0
1

-
0
9
0
2

9
9
0
1
-

8
A

0
0
1
2

0
2
1
2

0
0
2
C

0
0
0
2

0
8
0
6
'

0
8
0
1

0
0
0
2

N
U

0
2
6
1

0
9
2
C

8
9
1
6

Z
L
O
C

9
5
0
6

0
6
8
1

2
2
9
1

P
8

2
9
1
1

8
2
1

0
0

0
0

0
n
u

0
0
1
2

0
8
6

0
8
1

0
8
6

0
8
9
1

8
9
1
-

“
U

9
L
1
1

9
2
9
2

0
9
0
2

9
L
S
Z

2
1
0
2

0
8
0
E

8
0
0
1
-

A
I

8
0
8
2

2
6
6
0

8
9
1
0

0
0
2
9

9
9
0
0

0
2
9
8

8
9
9
0
-

X
I

0
8
2
2

0
2
6
0

0
8
1
5

0
9
L
S

8
8
8
C

0
S
L
O

9
9
8
-

H
I

0
8
2
1

8
9
L

0
0
0
1

2
5
1
1

2
9
1
1

0
8
6

8
9
L

Z
I

0
8
2
1

2
1
5

0
2
0
1

8
9
L

0
2
0
1

9
9
2

8
9
L

A
V

8
8
8

8
0
L

9
6
0
1

9
5
0
1

9
L
2
1

8
8
1
1

8
8

O
I

8
5
8

0
8
8

2
9
0
1

8
9
6

2
9
0
1

8
L
8

0
2
$

N
V

9
6
1

0
9
S

0
9
9

0
0
1

0
8
°

1
V

0
2
L

0
2
1

0
9
1

0
9
1

0
0
2

0
2
1

0
2
1

V
I

0
2
L

0
0
2

0
8
2

0
0
2

0
2
6

0
9
2

0
0
-

H
I

2
0
0
1

2
6
0
1

0
9
6
2

0
0
6
2

0
8
1
2

9
1
L
1

8
9
0

1
1

2
0
0
E

0
2
9

2
1
0
$

0
8
1
2

0
0
(
2

0
0
0
1

9
1
6

0
1

S
0
1
2

0
0
0

0
0
9
2

0
8
6
1

.
0
9
L
1

0
6
6

O
L
L

3
V

9
3
0
1
5

0
3
d
d
I
H
S

U
fl
d
d
I
H
S

O
E
d
J
I
H
S

C
a
d
d
I
H
S

A
I
O
J
N
S
A
N
I

1
V
8

A
l
J
J
V
S

N
8
8
0

8
1
0

9
3
3
0

0
8
1

3
3
3
0

0
8
2

8
3
3
0

1
5
1

1
I
I
l
I
N
I

0
3
4

N
O
I
L
I
H
H
O
J
N
I

I
O
I
A
D
H
U
O
B
d

—
O
N
I
J
S
I
D
H
U
O
J

Figure 14. Sample - Production Information

Figure 15. Sample - MIP Row Solution

A
C
T
I
I
I
T
I

1
2
0
0
.
2
5
0
0

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

9
.
0
0
0
0

2
.
I
H
1
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

5
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
2
.
0
0
0
0

I
n
.
0
0
0
0

I
.
0
0
0
0

I
I
I
.
0
0
0
0

fi
l
.
l
)
0
0
l
v

0
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

I
.
0
I
N
I
O

1
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

1
.
1
1
0
1
1
0

2
.
0
0
0
0

2
.
0
0
0
0

5
.
0
0
0
0

2
.
0
0
0
»

0
.
0
1
H
n
1

o
.
0
0
0
0

0
.
0
0
0
0

6
.
0
0
0
0

0
.
0
0
0
0

0
.
0
m
m

I
.
(
H
1
0
I
I

1
2
.
0
0
0
0

I
h
.
o
u
n
u

0
.
0
0
0
0

0
0
.
0
0
0
0

'
0
“
.
0
0
0
0

7
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

I
.
0
0
0
0

S
L
A
C
K

~
1
2
0
0
.
2
5
0
0

1
0
.
0
0
0
0

1
6
.
0
0
0
0

1
8
.
0
0
0
0

3
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

6
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

1
9
.
0
0
0
0

1
6
.
0
0
0
0

2
0
.
0
0
0
0

I
.
(
H
)
0
0

5
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

1
.
0
0
0
0

1
1
.
0
0
0
0

6
.
0
0
0
0

0
.
0
0
0
0

I
.
0
0
0
0

1
0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

n
.
0
n
n
o

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

-
I
.
0
0
0
0

-
I
.
0
0
0
0

-
I
.
0
0
0
0

0
.
0
0
0
0

S
O
A
U
T
I
O
I

0
'

I
"
!

0
0
8

S
E
C
T
I
H
I

L
L
I
H
I
I

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
n
o
u

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
"
“

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
m
m

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
I
H
I
O

u
L
l
fl
I
T

0
.
0
0
0
0

I
I
.
0
0
0
0

1
9
.
0
0
0
0

I
9
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

9
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

2
!
.
0
0
0
0

2
1
.
0
0
0
0

2
2
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

0
.
0
0
0
0

2
1
.
0
0
0
0

2
2
.
0
0
0
0

5
.
0
0
0
0

0
9
.
0
0
0
0

6
1
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

6
.
0
0
0
0

5
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

5
.
0
0
0
0

5
.
0
0
0
0

7
.
0
0
0
0

2
.
0
0
0
0

I
.
n
n
u
o

I
I
.
u
n
n
o

I
6
.
0
0
0
0

0
.
0
0
0
0

I
N
.
0
0
0
0

5
0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

D
H
A
L
A
C
T

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

-
6
.
0
9
2
9

-
0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

7
.
5
0
0
0

7
.
5
0
0
0

1
.
6
0
0
0

1
.
5
0
0
0

1
.
5
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
1
7
0
0

0
.
7
5
0
0

7
.
5
0
0
0

1
.
5
0
0
0

0
.
0
0
0
0

1
.
5
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

7
.
5
0
0
0

0
.
0
0
0
0

2
.
I
)
o
o

1
.
5
0
0
0

0
.
0
0
0
0

1
.
6
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

"
"
0
0
0
"

1
.
0
0
0
0

2
.
0
0
0
0

,
I
.
0
4
q
u

0
.
0
0
0
0

5
.
0
1
1
1
1
0

6
.
0
0
0
0

7
.
1
1
0
(
1
0

0
.
0
0
0
0

9
.
0
0
0
0

1
0
.
0
0
0
0

1
1
.
0
0
0
0

I
2
.
u
u
u
n

I
l
.
0
0
0
0

I
I
.
0
0
0
0

1
6
.
0
0
0
0

I
6
.
o
n
n
o

1
1
.
0
0
0
0

1
0
.
0
0
0
0

1
9
.
0
0
0
0

2
0
.
0
0
0
0

2
I
.
0
0
0
0

2
2
.
0
0
0
0

2
I
.
0
m
m

2
0
.
0
0
0
0

2
5
.
0
0
0
0

2
6
.
0
0
0
0

2
1
.
0
0
0
0

2
0
.
0
0
0
0

2
1
.
0
0
0
0

1
0
.
0
0
0
0

1
1
.
0
0
0
0

1
2
.
0
0
0
0

1
1
.
0
0
0
0

1
0
.
0
0
0
0

1
6
.
0
0
0
0

1
6
.
0
0
0
0

1
1
.
0
0
0
0

I
u
.
0
0
0
0

1
9
.
0
0
0
0

0
0
.
0
0
0
0

0
1
.
0
0
0
0

0
2
.
0
0
0
0

0
1
.
0
0
0
0

0
0
.
0
0
0
0

0
6
.
0
0
0
0

0
6
.
0
0
0
0

0
1
.
0
0
0
0

0
6
.
0
0
0
0

0
9
.
0
0
0
0

5
0
.
0
0
0
0

5
1
.
0
0
0
0

9
2
.
0
0
0
0

5
1
.
0
0
0
0

5
0
.
0
0
0
0

5
6
.
0
0
0
0

.
‘
B
T
A
T
I
I
I
I

0
9

“
5

"
9

0
9

0
5

"
9

L
L

“
1

I
I

I
.

“
L

u
s

"
1

"
S

a
n

u
s

0
3

"
A
1
1
8

n
n
J

A
c
u
fi
q

I
n
n
n
u

I
L
R
H
Q

l
u
u
fi
u

I
J
I
R
Q

A
L
R
B
Q

l
u
n
fi
o

A
n
n
e
.
)

A
l
fl
fi
o

A
Z
N
E
U

l
u
n
n
q

n
x
n
z
o

I
v
n
n
u

0
6
0
0
9

n
u
n
r
u

a
n
z
u

n
n
fl
fi
u

A
0
0
0
0

K
L
l
fi
u

u
l
u
fi
o

u
n
n
z
u

I
I
I
B
O

l
l
n
c
u

”
a
u
t
o

"
0
0
8
0

I
v
a
n
»

I
R
A
N
"

I
L
A

I
I
I
)

n
u
a
n
o

A
J
A
n
D

A
L
I
D
D

1
0
1
0
0

1
0
1
6
0

A
l
a
n
»

A
l
A
n
D

l
u
a
u
»

A
I
I
D
D

I
v
a
n
"

“
c
a
n
"
:

”
H
A
O
"

n
d
n
u
o

”
K
I
D
"

M
u
m
.

A
1
1
0
0

G
I
A
H
D

H
H
A
H
D

V
V
I
D
D

I
l
l
h
n

I
I
fl
A
I
I
U

«
w
h
o
»

l
u
fi
u
u

[
R
a
u
l

l
t
s
n
n

A
I
I
S
I
I
"

78

Figure 15. (continued)

2
.
1
1
1
1
1
1
1
1

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
1
0
1
0

2
.
0
0
0
0

(
1
.
1
1
1
7
1
7
0

5
.
0
0
0
0

2
.
0
0
0
0

1
.
0
1
0
1
0

1
.
0
0
0
0

'
1
.
0
0
0
0

5
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

1
1
.
0
1
H
1
0

1
6
.
0
0
0
0

1
.
0
1
0
1
0

0
0
.
0
0
0
0

5
1
.
1
0
1
0
0

1
.
0
0
0
0

0
.
0
0
0
0

0
.
1
1
1
1
0
0

1
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

1
.
0
1
0
1
0

2
.
1
1
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

5
.
0
0
0
0

2
.
0
0
0
0

1
.
0
1
1
0
0

1
.
0
0
0
0

0
.
0
1
0
1
0

'
1
.

1
1
1
1
1
1
1
1

0
.
1
0
1
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
2
.
0
0
0
0

1
6
.
0
0
0
0

1
.
0
0
0
0

«
1
1
.
1
1
0
1
1
0

5
1
.
0
0
0
0

0
.
0
0
1
1

0
.

1
0
1
1
0

0
.
1
0
0
0

0
.
1
1
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
5
0
0

0
.
(
.
1
0
0

0
.
0
1
2
5

0
.
0
1
5
0

0
.
0
0
0
0

0
.
1
0
1
5

0
.
1
1
0
2

0
.
0
1
2
5

-
1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

-
1
.
0
0
0
0

—
1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

-
2
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
1
1
0

-
1
.
0
0
0
0

0
.
0
0
0
0

~
1
.
0
0
0
0

1
0
.
0
0
0
0

1
0
.
0
0
0
0

9
.
0
1
1
0
0

1
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
1
1
0

1
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

1
7
.
0
0
0
0

1
0
.
0
0
0
0

1
5
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
.
0
1
H
1
0

1
.
0
0
0
0

5
.
1
H
1
0
0

«
0
.
0
1
1
1

—
0
.
1
0
0
0

-
0
.
1
0
0
0

~
0
.
0
0
0
0

-
0
.
6
0
0
0

0
.
0
0
0
0

—
0
.
0
5
0
5

—
0
.
6
1
6
0

-
0
.
0
1
2
5

-
0
.
0
1
5
0

—
0
.
0
0
0
0

~
0
.
1
0
1
5

-
0
.
1
1
0
2

~
0
.
0
1
2
5

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

6
.
0
0
0
0

5
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

5
.
1
N
1
0
0

5
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

1
1
.
0
0
0
0

1
0
.
0
0
0
0

0
.
0
0
0
0

0
9
.
0
0
0
0

5
0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
1
0
1
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
1
1
1
1
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
1
M
1
0
0

0
.
0
1
1
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
1
1
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

(
1
.

1
1
1
1
1
1
1
1

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
1
1
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

2
6
.
0
0
0
0

1
0
.
0
0
0
0

1
1
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

5
.
1
1
0
1
1
0

5
.
0
0
0
0

0
.
0
0
0
0

1
1
.
0
0
0
0

1
0
.
0
0
0
0

2
1
.
0
0
0
0

5
.
0
0
0
0

0
.
0
1
1
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
1
1

0
.
0
0
0
0

1
0
.
0
0
0
0

1
0
.
0
0
0
0

2
.
0
0
0
0

0
0
.
0
0
0
0

5
6
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
1
1
0

0
.
0
0
0
1
1

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
1
.
0
0
0
0

1
1
.

1
1
1
1
1
1
1
1

0
.
0
0
0
0

0
.
0
0
0
0

1
1
.

1
1
1
1
1
1
1
1

0
.
0
0
0
0

0
.
0
0
0
0

-
1
.
0
0
0
0

-
1
.
5
0
0
0

-
6
.
1
5
0
0

0
.
0
0
0
0

-
1
.
5
0
0
0

-
1
.
5
0
0
0

—
1
.
5
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

-
1
.
5
0
0
0

0
.
0
0
0
0

-
1
.
2
0
1
0

-
1
.
2
0
1
0

0
.
0
0
0
0

-
7
.
0
0
0
0

-
1
.
5
0
0
0

0
.
0
0
0
0

-
1
.
5
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
1
1

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
1
.
0
0
0
0

0
.
0
0
0
0

-
1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
1
1
1
1
0
0

0
.
0
0
0
0

0
.
0
0
0
0

5
0
.
0
0
0
0

5
1
.
0
0
0
0

5
0
.
0
0
0
0

5
0
.
0
0
0
0

6
0
.
0
0
0
0

0
1
.
0
0
0
0

6
2
.
0
0
0
0

0
1
.
0
0
0
0

0
0
.
0
0
0
0

6
5
.
0
0
0
0

0
6
.
0
0
0
0

0
1
.
0
0
0
0

0
0
.
0
0
0
0

6
0
.
0
0
0
0

1
0
.
0
0
0
0

1
1
.
0
0
0
0

1
2
.
0
0
0
0

7
1
.
0
0
0
0

1
0
.
0
0
0
0

1
5
.
0
0
0
0

1
6
.
0
0
0
0

7
7
.
0
0
0
0

1
0
.
0
0
0
0

1
0
.
0
0
0
0

0
0
.
0
0
0
0

0
1
.
0
0
0
0

0
2
.
0
0
0
0

0
1
.
0
0
0
0

0
0
.
0
0
0
0

0
5
.
0
0
0
0

0
0
.
0
0
0
0

0
1
.
0
0
0
0

0
0
.
0
0
0
0

0
0
.
0
0
0
0

0
0
.
0
0
0
0

9
1
.
0
0
0
0

'
1
2
.
1
u
1
0
0

9
1
.
0
0
0
0

0
0
.
0
0
0
0

0
5
.
0
0
0
0

0
0
.
0
0
0
0

9
1
.
0
0
0
0

0
0
.
0
0
0
0

9
0
.
0
0
0
0

1
0
1
1
.
0
1
0
1
0

1
0
1
.
0
0
0
0

1
0
2
.
0
0
0
0

1
0
1
.
0
0
0
0

1
0
0
.
0
0
0
0

1
0
5
.
0
0
0
0

1
0
0
.
0
0
0
0

1
0
1
.
0
0
0
0

1
0
0
.
0
0
0
0

1
0
1
.
0
0
0
0

1
1
0
.
0
0
0
0

1
1

1
.
1
1
1
1
1
1
1
1

1
1
2
.
0
0
0
0

1
1
1
.
1
1
1
1
1
1
1
1

1
1
0
.
0
0
0
0

1
1
5
.
0
0
0
0

V..

5

0
.
1
0
1
1
0

A
L
5
0
0

1
0
0
0
0

0
1
1
5
1
1
0

0
1
5
1
1
1
1

0
2
5
0
0

0
0
5
0
0

0
1
3
0
0

0
1
0
0
0

0
0
0
0
0

0
1
1
.
5
0
0

0
J
0
0
0

1
0
1
3
1
1
1
1
1

0
0
0
0
0

1
1
1
.
5
0
0

1
1
1
0
1
0
1

0
0
5
0
0

1
1
5
0
0

1
1
5
0
0

0
8
5
0
0

0
0
5
0
0

a
c
r
n
n

1
0
1
0
0

I
L
F
N
N

0
0
7
0
0

0
0
7
0
0

A
L
F
R
H

A
I
F
N
H

1
1
1
F
1
1
0

A
l
f
n
n

a
z
r
n
n

a
u
r
n
n

0
1
1
0
0

0
1
1
0
0

"
0
1
0
0

u
n
r
n
n

n
J
r
n
n

0
0
1
0
0

l
u
r
n
n

K
L
f
fl
fl

1
1
1
1
9
0

0
0
1
0
0

1
1
1
0
0

1
1
1
0
0

u
n
r
n
n

0
0
1
0
0

0
1
'
5
0
1
1

1
0
0
0
0

1
L
£
0
0

0
0
0
0
0

1
0
8
0
0

0
L
8
0
0

0
3
0
0
0

0
0
1
1
1
0

0
1
8
0
0

1
2
3
0
0

0
0
8
0
0

0
1
0
0
0

0
1
1
0
1
1
1

0
0
0
0
0

79

Figure 15. (continued)

0
.
0
1
7
%

0
.
6
6
0
0

0
.
5
6
6
5

0
.
0
0
0
0

0
.
0
0
0
0

0
.
"
0
0
5

0
.
7
0
5
)

0
.
2
1
1
1
0

0
.
0
1
1
1

0
.
0
6
1
2

0
.
1
5
1
1

1
0
1
.
0
0
0
0

0
.
0
0
0
0

“
0
.
0
0
0
0

1
.
0
0
0
0

'
1
'
1
'
1
'
.
.
'
1
’
0
0

1
2
.
0
0
1
1
0

—
0
.
?
1
7
5

~
0
.
0
6
6
0

-
0
.
6
0
0
5

0
.
0
0
0
0

0
.
0
0
0
0

-
0
.
0
0
0
0

-
0
.
2
0
5
2

-
0
.
2
|
0
0

—
0
.
0
1
1
1

'
0
.
'
1
'
1
’
l

'
0
.
7
5
1
7

0
.
0
0
0
0

1
.
0
0
0
0

9
.
1
0
1
0
0

2
.
0
0
0
0

1
0
0

I
.
0
"
1
0

1
.
0
0
0
0

fi
“
“
‘
-
‘
\
“
‘
~
\
~

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
0
1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
-
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
0
1
.
0
0
0
0

5
.
0
0
0
0

'
1
.
0
1
1
0
0

'
1
.
0
0
0
0

7
0
0
1
,
0
0
0
0

H
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

-
1
.
0
0
0
0

'
1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
1
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
1
6
.
0
0
0
0

1
1
1
.
0
0
0
0

1
1
0
.
0
0
0
0

1
1
0
.
0
0
0
0

1
2
0
.
0
0
0
0

1
1
1
.
0
0
0
0

1
2
2
.
0
0
0
0

1
2
1
.
0
0
0
0

1
2
0
.
0
0
0
0

1
2
0
.
0
0
0
0

1
1
6
.
0
0
0
0

1
2
1
.
0
0
0
0

1
2
0
.
0
0
0
0

1
2
9
.
0
0
0
0

1
1
0
.
0
0
0
0

1
1
1
.
0
0
0
0

1
1
2
.
0
0
0
0

0
1
1
1
2
1
1
0

“
J
E
N
"

"
K
E
N
"

[
0
8
0
0

K
L
E
N
D

1
}

l
8
1
1
0

0
0
8
0
0

V
'
E
fl
”

I
I
I
N
D

"
M
E
N
"

“
N
E
H
"

L
I
U
C
I
P

S
H
I
L
L

l
l
fl
G
R

I
I
I
!

I
'
V
E
.

"
P
fi
l
fl
fl
fl

80

Figure 16. Sample - MIP Column Solution

R
F
T
I
V
I
T
I

[
C
O
S
T

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

1
.
1
1
0
0
0

2
.
1
0
1
0
0

1
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

5
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

5
.
0
0
0
0

1
.
0
0
0
0

1
2
.
0
0
0
0

1
6
.
0
0
0
0

1
.
1
H
1
0
0

0
1
1
.
0
0
0
0

5
1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
1
H
1
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
1
0
1
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
1
N
1
0
1
1

1
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

6
.
0
0
0
0

5
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

1
.
0
0
0
0

1
.
0
«
0
1
0

2
.
0
1
0
0

5
.
6
1
0
0

5
.
8
1
0
0

1
.
1
1
0
0

6
.
5
0
0
0

5
.
6
2
0
0

6
.
1
1
0
0

5
.
1
1
0
0

S
O
L
I
I
T
I
O
I

1
1
7

T
"

P
.

L
L
I
H
I
T

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

2
.
0
0
0
0

3
.
0
0
0
0

2
.
0
0
0
0

2
.
0
0
0
0

M
N
Q
Q
Q
O

2
.
n
o
o
fi
‘
k
fl
h
o
m
o
.
_
_
_
_
_
_
_
_
g
.
1
fi
o
o

2
1
.
0
0
0
0

7
0
0
0
0
‘
“
“
‘
~
—
~
4
I
l
.
fl
0
9
9

6
.
5
1
0
0

0
.
1
5
0
0

5
.
1
1
0
0

I
.
1
1
0
0

0
.
0
1
0
0

1
.
8
1
0
0

5
.
1
5
0
0

5
.
2
5
0
0

5
.
6
2
0
0

0
.
0
0
0
0

6
.
1
2
0
0

6
.
1
2
0
0

6
.
1
1
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

5
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

1
0
.
0
0
0
0

1
.
0
0
0
0

0
6
.
0
0
0
0

5
1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
w
o
w
s
:

o
o
o
a

1
.
9
0
0
.
0
_
.
_
.
—
—
-
—
—
-
"
0
:
0
0
7
5
0

—
—
-
“
"
‘
T
T
b
o
o
o

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
5
0
0
0

1
.

'
1
0
1
1
0

1
.
5
0
0
0

1
.
5
0
0
0

1
.
5
0
0
0

1
.
5
0
0
0

1
.
5
0
0
0

1
.
5
0
0
0

1
.
5
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

"
7
0
0
0
"

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

C
O
L
H
H
I

S
E
C
T
I
O
N

"
L
1
0
1
?

0
1
.
0
0
0
0

1
9
.
0
0
0
0

1
5
.
0
0
0
0

2
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

2
7
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

0
.
0
0
0
0

1
1
.
0
0
0
0

0
.
0
0
0
0

2
1
.
0
0
0
0

2
2
.
0
0
0
0

5
.
0
0
0
0

0
5
.
0
0
0
0

6
1
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

.
_
_
_
~

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

6
.
0
0
0
0

2
0
.
0
0
0
0

2
0
.
0
0
0
0

1
.
1
1
.
0
1
1
0
"

2
0
.
0
0
0
0

2
0
.
0
0
0
0

2
0
.
0
0
0
0

7
0
.
0
0
0
0

2
0
.
0
0
0
0

'
1
0
.
0
0
0
1
1

R
C
U
S
T

1
1
.
1
5
0
0

1
6
.
1
5
0
0

1
0
.
1
5
0
0

1
6
.
2
5
0
0

1
5
.
1
0
0
0

0
.
0
0
0
0

0
.
2
5
0
0

0
.
0
0
0
0

6
.
1
5
0
0

0
.
0
0
0
0

1
1
.
2
5
0
0

1
1
.
1
5
0
0

1
.
1
5
0
0

1
5
.
6
1
0
0

1
0
.
1
1
0
0

0
.
0
0
0
0

0
.
0
0
0
0

1
5
.
0
0
0
0

0
.
0
0
0
0

1
5
.
2
5
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

r
_
_
-
1
o
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

1
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
1
1
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

0
.
0
0
0
0

.
.
—
.
-
a
”

1
1
1
.
0
0
0
0

1
1
1
.
0
0
0
0

1
1
5
.
0
0
0
0

1
1
6
.
0
0
0
0

1
1
1
.
0
0
0
0

1
1
9
.
0
0
0
0

1
0
0
.
0
0
0
0

1
0
1
.
0
0
0
0

1
0
2
.
0
0
0
0

1
0
1
.
0
0
0
0 m
‘
.

1
0
5
.
0
0
0
0

1
0
6
.
0
0
0
0

1
0
1
.
0
0
0
0

1
0
0
.
0
0
0
0

1
0
1
.
0
0
0
0

1
5
2
.
0
0
0
0

1
5
1
.
0
0
0
0

1
5
0
.
0
0
0
0

1
5
5
.
0
0
0
0

1
5
6
.
0
0
0
0

1
5
1
.
0
0
0
0

1
5
0
.
0
0
0
0

1
5
1
.
0
0
0
0

1
6
0
.
0
0
0
0

1
6
1
.
0
0
0
0

1
6
2
.
0
0
0
0

1
6
6
.
0
0
0
0

1
6
5
.
0
0
0
0

1
6
6
.
0
0
0
0

1
6
1
-
0
0
0
0
<

1
0
0

.
0
0
0
0

1
6
9
.
0
0
0
0

1
1
0
.
0
0
0
0

1
1
1
.
0
0
0
0

1
1
2
.
0
0
0
0

1
1
1
.
0
0
0
0

1
1
0
.
0
0
0
0

1
1
1
.
0
0
0
0

1
1
0
.
0
0
0
0

1
1
9
.
0
0
0
0

1
0
0
.
0
0
0
0

1
0
1
.
0
0
0
0

1
0
2
.
0
0
0
0

1
0
1
.
0
0
0
0

1
0
0
.
0
0
0
0

1‘
!
:
0
1
1
1
1
1
1
‘
.
“
'
—
'
-
-
1
‘
1
5
.
9
9
“
“

1
6
1
.
0
0
0
0

1
0
6
.
0
0
0
0

1
0
1
.
0
0
0
0

2
0
2
.
0
0
0
0

2
0
5
.
0
0
0
0

2
0
1
.
0
0
0
0

5
1
1
1
0
5

1
1

1
1

1
1

1
1

1
'

I
V

[
I

1
1

1
V

1
'

I
!

0
1
1
1
1
!

1
0
1
1
5

1
0
1
1
3

I
L
I
I
S

I
M
I
I
L

A
J
I
I
L

I
I
I
I
L

1
0
1
1
5

1
1
1
1
5

1
2
1
1
5

6
0
1
1
6

1
1
1
1
5

‘
“
*
“
‘
—
-
1
v
—
—
_
_
l
_
_
_
~
;
v
l
l
s

1
1

1
1

1
1

I
V

1
1

1
1

1
'

l
1

1
'

1
1

I
V

1
1

1
1

I
V

1
1

1
1

1
1

1
1

1
1

I
V

1
'

1
'

1
'

1
'

1
1

I
I

1
'

1
'

1
1

1
'

1
1

I
v

1
1

l
l

1
1

I
v

1
1

1
1

1
1

1
1

0
5
1
1
§
“
“
‘
-
—
~

0
0
1
1
5

1
1
.
1
1
1
1
.

0
6
1
1
8

0
1
1
1
1

0
0
1
1
3

1
1
1
1
5

1
1
1
1
5

”
N
1
1
L

0
.
1
1
5

I
C
H
P
S

1
0
0
0
5

1
L
0
0
3

0
1
1
1
1
0
1
.

6
.
1
0
0
1
.

A
I
H
P
L

6
1
1
1
1
0
3
: .
.
1

1
2
0
0
5

“
H
I
“
.

6
1
0
0
5

1
1
0
0
3

0
0
0
0
3

0
0
0
P
3

0
.
1
0
0
1
.

0
6
0
0
3

G
I
U
P
L

0
0
0
0
5

1
1
0
0
5

1
1
0
0
5

1
1
1
1
0
0
1
.

1
1
1
1
1
1
1
1
5

1
0
1
1
5

1
0
1
1
5

I
L
A
A
S

I
J
A
I
L

0
0
1
1
4
—
*
”
"
"

”
M
A
R
S

u
l
a
n
L

1
1
1
1
3

0
0
1
1
0

81

82

l
l

A
l

I
I

I
I

I
I

I
I

0
|

R
I

u
o
u
o
'
l
t
z

0
0
0
0
‘
9
1
1

0
0
0
0
‘
9
2
2

0
0
0
0
’
S
Z
Z

u
n
n
o
‘
t
z
z

o
u
o
u
'
U
I
?

u
o
u
o
‘
S
I
t

0
0
0
0
’
h
t
z

0
0
0
0
'
0

0
0
0
5
’
0

9
0
6
2
'
0

9
u
m
l
'
0

0
0
0
0
'
0

0
0
0
0
'
0

0
0
0
0
’
0

0
0
0
5
’
0

n
o
u
o
‘
o
n

0
0
0
0
’
0
1

0
0
0
0
'
0
1

0
0
0
0
’
0
1

o
u
o
o
‘
o
z

0
0
0
0
'
0
2

U
h
U
D
'
O
l

o
u
u
u
'
o
t

0
0
0
0
'
0

0
0
0
0
'
0

o
o
o
u
'
o

0
0
0
0
‘
0

0
0
0
0
'
0

0
0
0
0
'
0

0
0
0
0
'
0

n
o
o
o
’
D

0
0
0
5

'
l
.

0
0
0
5
“

0
0
0
5
.
1

O
O
O
S
'
L

0
0
0
9
'
1

0
0
0
5
°
L

0
0
0
5
'
1

0
0
0
9
'
1

0
0
0
0
‘
!

“
0
0
0
'
!

(
“
y
o
u
'
z

0
0
0
0
'
2

0
0
0
0
'
l

n
u
n
o
’
h

0
0
0
0

‘
Z

0
0
0
0
'
I

(continued)Figure 16.

Figure 17(e). Sample - Intermediate Results (LWD 28)

u
I
C
N
T
=

A
J

A
N

8
"

R
N

O
N

Y
L

Y
R

a
[
‘
0
3 a
n

a
n

6
6

a
n

n
u

s
o

7
3

u
?

a
s

a
s

7
5

u
z

7
9

9
1

2
9

9
6

1
0
0

1
5

n
5

1
u
2

T
H
E

S
C
H
E
D
U
L
I
N
G

P
R
O
B
L
E
N

C
A
N
N
O
T

N
B

S
O
L
V
B
D

Q
I
T
H

A
N

A
V
E
R
A
G
E

H
I
R
E

L
O
A
D

D
I
P
F
I
C
U
L
T
Y

O
F

7

A
D
D

A
V
A
I
L

S
I
I
B

B
N

"
N

N
K

0
6

B
6

A
J

G
I

S
D
I
?
!

N
E
E
D

B
J

A
N

K
R

L
N
D

I
S

N
O
N

“
R
I
N
G

S
E
T

T
O

2
9

2
8

83

Figure l7(b) . Sample - Intermediate Results (LWD 29)

‘
8
I
C
N
T
=

A
J

A
N

H
H

”
N

“
N

Y
R

1
0
0

1
5

1
2
5

1
‘
4
2

T
H
E

S
C
H
E
D
U
L
I
N
G

P
R
O
B
L
E
H

C
A
N
N
O
T

B
E

S
O
L
V
E
D

N
I
T
N

A
N

A
V
E
R
A
G
E

N
I
N
E

L
O
A
D

D
I
P
P
I
C
U
L
T
Y

0
P

6

A
D
D

A
V
A
I
L

S
U
N

E
N

E
N

B
K

M
?

a
t

I
t

A
C

A
C

0
6

C
I

m
:

8
6

A
J

Y
L

5
0
1
?
?

N
E
E
D

B
J

A
N

K
R

A
0

A
N

N
H

A
N

K
L

B
"

A
n

B
K

B
N

A
N

A
N

K
I
.

K
R

A
H

A
d

E
N

E
N

L
H
D

[
3

N
O
V

B
E
I
N
G

S
E
T

1
'
0

3
0

2
‘
)

84

Figure l7(c). Sample - Intermediate Results (LWD 30)

u
I
C
N
T
=

A
J

A
N

8
"

E
N

H
N

u
9
0
5 6
0

5
8

6
6

6
8

6
9

$
0

1
2
5

1
0
2

T
H
E

S
C
H
E
D
D
L
I
N
G

P
N
O
B
L
E
N

C
A
N
N
O
T

B
E

S
O
L
V
E
D

W
I
T
H

A
N

A
V
E
R
A
G
E

N
I
N
E

L
O
A
D

D
I
F
F
I
C
H
L
T
Y

0
?

5

A
D
D

A
V
A
I
L

S
D
I
E
P

S
H
B

N
E
E
D

I
I

D
N

B
K

A
C

V
L

D
N

G
I

A
C

“
6

G
I

A
C

B
G

8
6

A
J

I
R

B
J

A
N

K
R

A
0

A
N

F F

L
N
D

I
S

N
O
N

B
E
I
N
G

S
E
T

T
O

3
1

3
0

85

Figure l7(d). Sample - Intermediate Results (LWD 31)

U
I
C
N
T
=

A
"

D
U

D
N

H
N

N
[
’
0
5 6
0

‘
3
9

6
6

D
H

6
‘
)

5
0

7
3

U
7

“
6

N
5

7
'
)

"
2

7
9

9
1

2
9

9
6

1
0
0

1
'
5

1
2
"
)

1
‘
4
2

A
D
D

A
V
A
I
L

S
U
B

I
I

D
N

B
K

A
C

I
L

I
N

A
C

H
G

G
I

G
I

A
C

D
G

B
l
;

A
.
)

A
N

T
H
E

S
C
H
E
D
U
L
I
N
G

L
N
D

I
S

N
O
N

B
E
I
N
G

S
E
T

T
O

5
0
1
?
?

N
E
E
D

0
"

A
N

K
R

P
H
O
N
L
E
N

C
A
N
N
O
T

B
E

S
O
L
V
E
D

N
I
T
U

A
N

A
V
E
R
A
G
E

N
I
N
E

L
O
A
D

D
I
F
P
I
C
U
L
T
V

3
2

0
!
"

3
|

86

Figure 17(e). Sample - Intermediate Results (LWD 32)

a
I
C
N
T
=

A
N

‘
l

[
‘
0
5 6
0

S
H

6
6

6
8

6
9

5
D

7
.
)

Q
7

2
8

9
6

1
0
0

1
'
)

1
2
5

1
"
2

1 1
1

A
D
D

A
V
A
I
L

S
D
I
P
F

S
U
B

U
K

T
U
E

S
C
H
E
D
U
L
I
N
G

N
E
E
D

H
J

1
6

A
H

H

K
R

2
0

A
0

1
'
!

A
N

1
1

N
H

'
5

M
t

H

K
l
.

1
2

B
R

1
0

A
0

1
0

U
K

1
6

B
M

1
0

A
N

1
0

A
H

1
0

K
L

1
8

K
R

1
8

A
H

2
1

A
J

1
2

D
H

1
0

U
N

1
0

E
S
E
Q
U
E
N
C
I
N
G

A
L
G
O
R
I
T
H
N

N
A
S

S
O
L
V
E
D

N
I
T
U

A
N

A
V
E
R
A
G
E

N
I
N
E

L
O
A
D

D
I
P
F
I
C
U
L
T
V

O
P

)
2

87

Figure 18. Sample - Final Mold Line-up Summary

I
I

I
I

I
I
I

I
n
"
! :
-

I
I
I
I

C
a
l

I
I
I

V
V

'
6
'

a
a
s

9
I
I

E

1‘1

.4

n-

. ma!

n
u

y
!

(
.
6

6
I

I
;
I
I

I
.

S

0
0
.
.
.
.

9
0

O
N

I

I
I

0

H
I

A
l

I
I
D

I
I
I

I

0
I
I

D
"

A
I

2 9
I
I

a
n
u

I
I
I
)

.
0
0
0
0

"
B
I
C
"

L
I
N
E

I
I
I 0

A
C

ocmzu

La

U
‘

I
?

I
I
I

P
)

n
o

N
I

N
?

I
I

_
9

I
I

_
3

a
n

n
!

I
t

9
1

I
)

I
I

I
I

A
l

“
I

I
I

E
N

-
“
O
L
D

L
I
N
E

S
E
T
-
U
P

I
N
F
O
N
I
I
A
I
'
I
O
N

.
0
.
.
.

I
2 9

I
I

Q
!

I
!

I
!

' eIGI

- I‘I N
5 9

I
N

I
N

I
S

I
6

I
I

‘
I

I
)

I
I

'
I

I
n

5
4

n
l

I
I

0
.
3
.
0
.
0
0
0
0

A
6

I
I

I
I

I
9

9
I
I

I
I

3

I
L

o
n

a
n

I
V

O
O
O
O
o
o
o
o
o
o
c
c
o
o
0
0
0
0
0
0
0
0
0
0
0
0

6
9

7
0

I
I

1
2

1
]

7
!

I
I

S
I
6

5
I
I

S

0
0
.
.
.
.

0
0
.
.
.
.

.
.

I
U
I

I
D
)

I
D
]

I
0
.

I
0
5

I
0
6

I
I

_
2

0
I
6

0
_
g

"
I

g
!

A
I

o
n

A
!

Q
;

I
I
I
I

1
1
5

I
I
6

I
I
I

I

9
I

I
I

_
9

I
I

5
I
!

a
n

a
n

a
n

C cum

.- I‘I

I
6
1

I
6
0

I
6
9

I
I
O

I
I

_
I
I

o
n

9
a
n

anal

IE.

0 OISI

It!

"' I

v =

T
I
I
T
A
I
.

N
I
I
I
I
I
I
E
N

O
I
’

H
U
L
I
I
'
I

I
I
I
I
L
I
'
I

O
N

L
I
N
E

a
c
:

I
n
:

I
L
r

u
u
=

A
J
=

I
L
:

a
n
:

A
I
)

i

a
v
:

A
Z
-

A
l
l

-

a
x
:

n
v
w

I
I
I
3
=

“
H
'
—

I
I
.
I

T

I
O
N

7

E
I
I
=

N
L
-
f

c
l
-

I
I
I
!
“

I
V
!

I
l
=

a
n
:

n
u
:

983'“! :-'~-n-~u'~--au'::=P

P
O
S
I
T
I
O
N

I
5

7
3

N
2

N
5

N
6

.
1

s
o

5
"

I
!
"

I
)
"

(
I
I
I

(
H
I

V
I

7
"

I
"

‘
I
I

I
"
.

I
0
0

'
2
'
}

I
0
7

7
5

I
I

M
:

I
0
7

I

N
V

7
6 r
.

”
I

.
.

I
O
N

-
fi

A
!

I
N
D

-
9

u
!

I
7
2

-
1

9
!

T
I

I
I

I
I
I

1
0

1
»

n
o

O
I

I
I

1
I
I

I
I

n
u

a
;

a
n

a
n

0
0
0
9
0
0
3
0
0
0
0
0
0
0

I
0
9

I

I
V

I
N
I

I
I

N
I

I
I
I

I
I

H
I

A
I
I
I
)

N
H
L

A
.
)

G
I

I
I
I

I
I
.

0
!
;

A
l
.
‘

"
N

I
I
I

I
I

I
I
I

I
I
I

“
I
I

I
I
I
:

G
I

D
I
I

A
J

A
C

A
N

I
I
U

I
I
I

I
I
I

-
9

0
2
2

u
!

A
l

Q
J

A
X

I
1
2

1
0
1

I
a
n

I
n
s

3
3

I
I

a
I
I

5
!

a
s

a
t

a
n

0
0
.
.
.
.

I
I
I

I
1
5

I
7
fl

I
1
1

6
_
g

I
I
I

A
0

9
!

I
!

a
n

N
E
N
O
V
E

D
I
I
U
L
D

1
1

2
0

7
!

1
2

1
g

0
I
6

o
n

I
!

I
t

a
n

3
3
0
0
0
0
0
0

'

'

e 90:!

- ICI

S
I

S
I

5
!

S
I

I
I

I
I
I
I
H

A
l

0
0
.
.
.
.

0- NF?!

f NI SI

0
2

A
I

a
n

a
s

a
s

o
I

I
I

_
I

9
5

I
I

o
n

9
V
I

I
n
s

I
I
6

1
1
1

I
n
»

3
I
I

_
9

I

I
I
I
I
/
I
I
I
I
/
I
I

2
n

-
9

Q
!

5
5 5

'
I
I
I

.
.

a
1

-
9

H
!

I
I
?

P
O
S
I
T
I
O
N

I
0
2

I
6

«
9

S
I

1
0

1
2

I
5

«
I

«
u

S
I

8
2

“
w

a
s

I
n

1
“

n
o

7
. I

V
V

'
3
‘
»

I
I

A
2

0
0

I
I

N
N

I
7
0

I
I

P
N
O
I
I
L
E
I
I

A
N
C
A
A

2
6

I
I

8
N

If bIKI

N I6: 5
7

'
I
I
I

5
I
I

I
I
I
I

”
I
.

N
“

O
"

0
I
I

B
e

a
n

I
2
2

‘
I
‘
O
T
A
I
.

I
I

5
1 s

I
I
I
I

I
I
I

I
I

I
I
I
‘
.

“
0

I
I
I

I
I
K

N
I I
I

A
C

I
I
I

2
2

9
!

I
5
5

I
I

I
I
N

R
E

I
)

9
)

I
I

U
N

I
)
“ 0

A
l

I
5
6

U
N

-
0
-

1
n

I
I

I
I
I

I
I
I

0
0
.
.
.
.

‘
I
I

I
I

I
I
I

I
S
I

I
I
N

I
I
C
U
I
J
I

I
I
I

I
I

I
I

N
I

I
I
I

I
I
I

I
I

I
I
I

I
'
S
'
I

I
I

0
N

N Clxl

"’ I22

I‘ ,‘I-

It "JO «
6

I
I

n
u

I
)
"

fi
é

1
5
0

In
:

8i3

17;. CONCLUSIONS

This final chapter examines the performance of the

foam assembly line scheduling model. An optimization

model has the advantage of determining the optimal set

of molds which should be placed on the assembly line for

any particular shipping and inventory requirements. It

has the capability of minimizing some cost objective

function, and yet provide the best possible combination

of molds. The assembly line scheduling model has

satisfied all of the plant's constraints as follows:

1. Placed the proper molds on the assembly line to

meet the weekly shipping demand.

2. Assigned upenders to each particular mold type.

3. Minimized set-up and inventory costs.

4. Obeyed all of the mold sequencing rules.

5. Kept the average wire load difficulty to a

minimum.

6. Obeyed the warehousing constraints.

7. Considered the human aspects of assembly line

work.

8. Kept the distance between mold changes to a

minimum.

The model generates a new mold configuration each

week. It looks into future weeks demand, adds and removes

molds which tend to minimize future problems and

89

9O

bottlenecks. Finally, the assembly line mold scheduling

model generates a simple summary report to help

Production Control solve the plant's foam scheduling

problems.

There are several assumptions and problems, however,

that could not be put into the assembly line model in its

first version. The model assumes that the production

requirements and number of shifts are known. The

assembly line is currently scheduled for 3 shifts, but

economically this is not always a feasible solution.

Due to the economy, car sales, transportation problems,

and even weather conditions, the plant may be forced to

limit the number of shifts. Future versions of this

program must account for a changing number of shifts and

whether or not Saturday overtime should be scheduled to

eliminate backorder production.

Ideally, if the production forecasting information

could be relied on, the model should schedule the

assembly line for a two week period. This would give the

plant more information to help solve future problems or

bottlenecks which could occur the following week. The

production shipping requirements would have to become

better estimates of the actual production. The linear

programming algorithm of the model, however, would become

much more complicated and would require more computer

execution time.

91

Finally, something must be said about the

performance of the model as it compares to the actual

production of the plant. The assembly line mold scheduling

model, in trial runs, has compared very favorably with a

solution which is as good or better than the plant's

actual mold assignments. Production activities very

closely model the changes which are actually taking place

on the assembly line. One of the reasons for the model's

success is that a great deal of time and effort was

spent defining the problem and analyzing the steps needed

to determine an Optimal solution. Differences in the

mold scheduling line-up were due to past scheduling

weeks. The assembly line, however, closely approximates

the manual scheduling activities which have occurred in

the past. In conclusion, the model has recently been

implemented in the plant environment, and is responsible

for the plant's assembly line mold scheduling functions.

LIST OF REFERENCES

l. Hillier, Frederick S. & Lieberman, Gerald J.,

Operations Research, Holden-Day, Inc., San

Francisco, 1967.

2. IBM Mathematical Programming System Extended/379

(MPSX/37J) Basic Reference Manual, IBM Corp.,

SHl9-1127-0, April 1976.

3. IBM Mathematical Programming System Extended/370

(MPSX/379) Control Languages, IBM Corp.,

SH19-1094-l, April 1975.

4. IBM Mathematical Programming System Extended/379

(MPSX/370) Messages, IBM Corp., 8319-1696--0,

October 1976.

5. IBM Mathematical Programming System Extended/37J

(MPSX/370) Mixed Integer Programming7379 (MIP/37J)

Program Reference Manual, IBM Corp., SHl9-1T94-1,

April 1975.

6. IBM Mathematical Programming System Extended/376

(MPSX/379) Operations Guide (OS/ES), IBM Corp.,

5319-1997-1, October 1976.

7. IBM Mathematical Programming System Extended/370

(MPSX/370) Program Reference Manual, IBM Corp.,

8319-1099--1, October 1976.

8. OS PE/I Checkout & Optimizing Compilers: Language

Reference Manual, IBM Corp., GC33-Iflfl9-3, July

1974.

9. OS PL/I Optimizing Compiler: Programmer' 3 Guide, IBM

Corp., SC33- 9096--3, March 1976.

19. OS PL/I Optimizing Compiler: Messages, IBM Corp.,

SC33-9627-3, July 1975.

ll. Wirth, Niklaus, Algorithms + Data Structures =

Programs, Prentice-Hall, Inc., New Jersey, 1976.

APPENDIX A

SOURCE PROGRAMS

F
F
F
F
F
F
F
F
F
F
F
F

F
F
F
F
F
F
F
F
F
F
F
F

F
F

F
F

F
F

F
F
F
F
F
F
F
F

F
F
F
F
F
F
F
F

F
F

F
F

F
F

F
F

F
F

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

M
M

M
M

M
M
M

M
M
M

M
M
M
M

M
M
M
M

M
M

M
M

M
M

M
M

M
M

M
M
M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

IIFOAM J08 (600119091).HAQKLE1MSGLEVEL=19CLASS=LoPRTY=8

//S3 EXEC PGH=LINK

l/STEPLIB 09 DSN=F01M.LOADLIB.DISP=SHR

// OD OSN=D°L.NPSX370.DISP=SHR. VOL= SER= S‘YSPAfivUNIT=3330

I/SYSPRINT DD SYSOUT= A. DC =1RECFMaFBAoLRECL=133o8LKSIlE= 1330)

IICARD DD UNIT=3330. SPACE= (CYL:(2.2)I¢

// DISP=10LD. KE‘PI.VOL= SER=EEEEEE. DSN: 96J311. MARKLE.CAR09

// DC8=ILREC1= 80.8LKSIZE112960. RECFH=I=8)

IIOUT 00 UNIT=3330.SPACE=ICYL.(5931I.DSN=PI69999.NARKLE.3U19

// DCRSIRECFNIVBoLRECL=204yBLKSIZE=1024I.01SP‘I0L0.KEEPI.

// VOL=SER=EEEEEE

//ETA1 00 UNITS333095PACE=ICYL913911ooCCNTIG)

//ETA2 09 UNIT!3330.SPACE'ICYL913.1I..C0NTIGI

l/MATRIXI 00 UNIT83330.SPACE=1CYL9110)ooCONTIGI

l/MATRIXZ CD UNIT=3330.SPACE'(CYL.(10).:C3NTISI

l/MIXHCRK DD UNIT=3330.SPACE'(CYL9(3.311

I’PROBFILE 00 UNIT=3330.SPACE=ICYLoI593)I

l/SCRATCHl OD UNIT=333OvSPACE3ICYLo‘SIvoCDNTIGI

I/SCRATCHZ 00 UNITS333095PACE31CYLoISI9vC3NTIGI

//G.STATIC DD * .

‘*'** SENCH LINE #2 - MOLD LINE SET-UP INFORMATION tits:

25 3 181 1500 27

AC 1657569 S 0 1 N 41 27 N 55 415 1.85 2145

YR 1660106 S 9 2 N 19 14 N 78 820 1.89 3042

YL 1660107 S 9 2 N 19 13 N 78 820 1.89 3042

AH 1677286 L 12 1 N 2 2 Y 20 385 5.02 720

AJ 1677290 L 12 1 N 4 2 Y 20 340 4.99 720

AL 1681929 S 7 1 N 2 1 Y 28 325 4.33 336

AN 1690551 L 11 1 Y 9 4 N 22 375 3.94 858

AD 1690553 S 6 1 N 9 5 N 22 405 4.15 858

AY 1690562 5 11 2 N 5 5 N 64 790 1.80 1280

AZ 1690563 5 11 2 N 4 4 N 64 790 1.80 1280

AM 1694482 L 6 2 N 21 18 N 72 830 2.17 2280

AX 1694483 S 0 2 N 21 19 N 66 830 1.51 2706

AV 1694709 S 0 1 N 21 20 N 28 415 3.38 1176

86 1733947 S 11 2 N 1 1 N 64 650 1.80 2304

SH 1733948 S 11 2 N 2 O N 64 710 1.80 1152

BJ 1737211 L 22 2 N 6 7 N 48 820 2.52 1920

9K 1737223 S 16 2 N 6 6 N 60 810 1.89 2340

KR 3062748 S 9 2 N 6 2 Y 56 780 1.93 2128

KL 3362749 S 9 2 N 6 3 Y 56 790 1.93 2128

GI 3063026 L 7 2 N 4 4 N 62 800 1.74 2356

MM 9679612 S 5 1 Y 23 15 Y 28 415 3.55 1288

VV 9679613 5 3 2 N 22 18 N 64 830 1.28 4158

II 9736082 S 14 1 N 5 2 N 24 380 4.24 864

RR 20001557 L 0 1 N 50 49 N 22 410 3.96 3144

8N 20001606 S 11 1 N 63 47 N 24 410 4.09 3456

//G.NOLD DO ‘

YR YR YR YL YL AC BJ AC AC YL YL AC 8N AC AJ AC 8N BR 8N 3R

8N ER 3N 8R 8N BR 8N 8R 8N 8R 8N 8R 8N BR 8N BR 8N 8R 8N 8R

8N BR “N AN MN VV “M AN VV HM VV MM AX BJ MN VV MN VV MN 8J

NM VV NW VV NH AH VV HM VV NM 8K MM YL NM BK AC AC 88 BK 8R

AX 8N 8R 8N AX 8N AX 8N AX 8N AX BN 8R KL AX AH AX AY AX AH

AC (R AC AH VV AZ VV Ad VV AH AV BJ AV AX AV BJ AV AV YL Ah

8N AX 89 BN 8R AC 8N 8R EN 88 3N 8R 8N BR 8N 6R 8N 8R 8N BR

EN FR 8N 8R 3N 8R 8N BR EN FR 8N BR BN 8R SN 88 BN 8R SN BR

8N FR 8N 89 SN AC 3N AC AX AX VV 86 BR A0 8R 8K 8R AC 8K YR

YR

l/G.DYNAM DD *

AC 2778 2970 2750 2750 4290

YR 1518 3744 3744 3432 5460

YL 1784 3276 3588 3900 5616

AH 138 320 360 400 680

AJ 337 280 240 280 480

AL 110 0 112 56 0

AN 689 1188 1188 968 1936

A0 1419 968 1364 880 2156

AY ' 1884 640 1024 512 1536

AZ 696 896 1280 640 2176

AH 745 5760 5184 5184 8496

AX 8139 5280 5940 5412 8580

AV -765 2576 2520 2744 4816

80 255 256 384 256 768

SH 317 128 128 0 128

BJ 667 2496 3072 3168 4992

BK 2974 2640 2880 3120 5040

KR 713 1120 1344 784 2240

KL' 244 1232 1232 896 2352

GI 2777 0 0 0 0

MM 2056 4536 4480 4536 8344

VV 146 8910 9108 8910 17820

11 390 240 240 192 480

BR 15688 13376 15224 15886 27224

8N 17456 15456 17568 18432 32621

wt

//S4 EXEC 96M*IEBGENER9C0ND=(1000vNEvs31

l/SYSPRINT 00 SYSOUTaA

IISYSUTl DD 05N=P169999.MARKLE.0UTOUNIT333309VOL=SER=EEEEEEyolSP=QL00

// DC8=1RECFH8V8A.LRECL=204.8LKSIZE'10241

//SYSUTZ DD SYSOUT=A

l/SYSIN DD *

[It

3
3

3
3

3
3
3

3
3
3
.

3
3
3
3

3
3
3
3

3
3

3
3

3
3

3
3

3
3

3
3
3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

>
>
>
>
>
>
p
>
>
>

>
>
>
>
»
>
>
>
»
>
>
>

>
>

>
»

»
>

>
>

>
>

>
>

>
>
>
>
>
>
>
>
»
>
>
>

>
>
y
>
>
>
>
>
>
>
>
>

>
»

>
>

>
>

>
>

>
>

>
>

>
>

p
p

>
>

>
>

m
-
n
-
-
-

-
-
-
-
-

~
—

m
g

—
—

~
—

~
—

~
—

~
—

m
m

-
-
-
-
-

n
n
n
n
n
n
u
u
n
n

2
2

2
2
2

2
2
2
2

2
2

2
2

2
2

2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2
2
2

2
2
2

2
2

PL/I OPTISIZING COHPILER RAIN: PROC OPTIONS(HAIN) RBORDER:

STHT

1

SOURCE LISTING

RAIN: PROC OPTIONS(HAIN) REORDBR;

/#titttttttfittttttttttttt¥ttttttttttttttttttttttltttttOttttttttttttitt/

/tt#ttt#t¢t HOLD LIng-np 111;; CARD ‘ttttttttttttttttttttttltttttttt/

/t¥#¢#¢tttttttttitttttttttitttttttttttttttttt##tttttttittttttttttttttt/

/""I TITLE HOLD LIBS-UP TITLE CARD ttt/

/ttttttttttttt!tittit‘tttttttttttt##6##!tittit’tttttttlttttttttttttt/

/tttsttttt* pgggggrga c330 Iapoaagrron ttttttttttttttttttttttttttttt/

/ttttttt¢ttttt:tt¢$t¢cttttattttttt¢t¢¢tt¢:tttttttttttt¢:¢tttttt¢t::ttt/

/’*’ HUB TOTAL RUBBER OP DIPPEREUT HOLD TYPES "‘/

/tt¢ SHIFT 306838 0? SHIFTS WORKED ttt/

/"’ IPOS RUBBER OP HOLD POSITIONS ttt/

/“* BARB TOTAL HUHBER OP BASKET POSITIORS II WAREHOUSE *‘*/

/t#$*$tt¥tttittittttttttt88fitllttttttfittttfitt.8.88.8..tttfilfiitOttttttfi/

/***“‘#**# STATIC IIPORHATION OF THE HOLDS I! THE SYSTBH **‘***’***/

/tttttttttttttttttttttttttttt##6###ttttttttttttttttttttttttttttitttttt/

/... CODE(50) HOLD LDTTDP cones .../

/... PAaT(so) PART RUBBERS .../

/... 5122(50) ADLD sxzn (L-LARGE/S-SHALL) .../

/... LOAD(SO) 3:33 LDAD DIPrIcuLTT ¢*¢/

/... NOHPRT(50) nausea or PAPTs In CAVITT (1/2) .../

/"* PLAT(50) PLATPonA coax (I-YES/fl-NO) .../

/... AOLDS(50) TOTAL uuuaza 0P ADLDs AVAILABLE *’*/

/... PRAUB(SO) cuaazAT nausea or ADLDs In PRAuzs .../

/... TAPB(SO) TAPE AFTER POST can: (Y-YBS/N-NO) .../

/... PAcx(so) snnaza 0P PARTS Is STANDARD PACK (BASKET) .../

/... BATE(SO) PRODUCTIOI RATE PER SHIFT .../

/... VALDz(50) VALUE 0P THE PART .../

/... SAPET!(50) SAPDTT srocx REQUIRED IN INVDATDRT .../

/#$.‘tt‘ttttttttt###ttttttttt8¥ttttittfit...ttfiifiititfitttfittitt.tttfittt/

/.......... DTuAnIc INPDDAATION 0P THE HOLDS IN THE SYSTzu/

/‘.$t¢#fi$t$¥$*¥Ottttttttttt0*tittitttttfiitttt.#tttfifitttitttfitfitittfittt/

/t#t INVBAL(50) INITIAL INVENTORY FOR EACH PART 9**/

/‘** SHIP1(50) PARTS SHIPPED IN TST 838K 9“/

/*‘* SHIP3(50) PARTS SHIPPED IN 3RD WEEK ttt/

/ttt SHIP4(SO) PARTS SHIPPED IN 4TH PEEK *‘*/

/**‘ PCD(50) INITIAL INVENTORY - 1ST WEEK SHIPPED “*/

PL/I OPTIHIZING COHPILER HAIR: PROC OPTIOUS(HAIU) REORDER;

STHT

O
‘
U
'
I
G
W
N

1U

15

16

/ttttt¥ttttttttt¥#tttttti#tt$itt#t**$#*#ttt.‘t¥#$tt*tt¥¥$fi¥tt$8.3.0030]

/********“ HISC. VARIABLES 2305 THE LINE-UP PROGRAH lfl“**"""'"“""""""‘"‘l

/tSSSCSSSSSSSSSSSTSSSTSDSSSSSSSSSSSSSSSSSSTSSStttttttttttStttttatttttt/

/t$¥

/t#¥

/t$t

/¢t*

CLINE(200) CARRIER LETTER CODE ON SCHEDULED LIlE-UP *‘*/

LPOS(50) HOLD POSITIONS URERE PROBLEH AREAS EXIST 1399/

LDIPP(SO) TOTAL HIRE LOAD DIPPICULTY FOR PROBLEH AREA "‘/

HTOT(50) TOTAL RUBBER OP HOLDS ON LINE FOR EACH PART 999/

/tfitfit‘t‘fi‘ttttttfiittttfittfi8$tlttt#ttfifitttttttttfifitttttttt$tfittlttttfit/

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

INPUT ENTRY EXTERNAL:

LINEUP ENTRY EXTERNAL:

GENER ENTRY EXTERNAL:

HIP ENTRY EXTERNAL:

SCRED ENTRY EXTERNAL:

(N05,SHIPT,IPOS,LHUB,ISIH) PIxzD 313(15) STATIC EXTERNAL;

BARE PIIED BIN(31) STATIC EXTERNAL;

(SIZE(SO),PLAT(SO),TAPE(SO)) CRAR(1) STATIC EXTERNAL:

(CODE(SO),CLINE(200)) CHAR(2) STATIC EXTERNAL;

VALUE(SO) PIIED DEC(7,2) STATIC EXTERNAL:

PART(SO) CHAR(9) STATIC EXTERAAL;

(LOAD(50),NUHPRP(SO),HOLDS(SO).PRAHB(SO),PACK(SO),RATE(50),

SKIPI(SO),SHIPB(SO),SHIPU(SO).INVBAL(SO),SAPBTY(SO),

PCD(50).SHIP2(50),LPoS(50),LDIPP(50),uToT(50),LwDIPP(200))

PIXBD BIN(1S) STATIC EXTERNAL:

TITLz CHAA(80) STATIC EXTERNAL;

1 caAuGz(100) STATIC EXTERNAL,

2 (POS,NEED) PIXED DIA(15),

2 (ADD,SDD) CHAR(2);

ICOUNT PIXPD aIu(15) STATIC EXTERNAL;

PL/I OPTIBIZIUG COHPILER

STHT

17

18

19

20

21

22

23

24

25

26

27

28

29

30

HAIR: PROC OPTIOHS(UAIN) REORDER;

/**0ttttfittttttttitttttt$88888¥ttt$8.38ttttittt/

START THE BOLD SCHEDULING SIHULATION “*/

DISPLAT('+

CALL IAPUT;

DISPLAI(°+

CALL LINEUP;

DISPLAY(‘+

CALL GENER;

DISPLAY('*

CALL HIP;

DISPLAT('+

CALL SCHED;

DISPLAY(‘+

CALL LINEUP:

DISPLAY(’+

PIUISR:

END AAIA;

/*#t#‘#*tttOtttttttfiifittttt$t#tttt#ttttfittifltt0/

EUTEEIAG STATIC INPUT PROGBAH'):

ENTERIBG PEUCEAS LINE-UP');

EUTERIUG THE DATA GENERATION PROGRAR');

ENTERING TUE HIXED INTEGER PROGRAHUING PROBLEU');

ENTERING TRE SCHEDULING PROGRAU');

EUTERIRG FINAL PROGRAB LIRE-UP'):

END OF THE PROGRAH'):

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

N
N

N
N
N

N
N
N
N

N
N

N

N
N

N
N

~
N
N

N
N

N
N

N
N

N
N

N
N

N
N

'
N
N

N
N

N
N
M

N
M

N
N

N
N
,

‘
N
N

N
N

N
N

N
N

N
N

N
N
N
N

N
N
N

N
NN

P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P
P

P
P

P
P

P
P

'
P
P

P
P

P
P

P
P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P

P
P

P
P

P
P

P
P

P
P

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U
U
U
U
U
U
U
U
U
U
U

U
U
U
U
U
U
U
U
U
U

T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

PL/I OPTIUIZING COHPILER INPUT: PROC REORDER;

STHT

d
Q
~
J
O
H
fi
€
=
W
P
Q

11

12

INPUT:

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

SOURCE LISTING

PROC REORDER;

(NUA.SEIPT,IPDS,LAUU,ISIS) PIIED BIN(1S) STATIC EXTERNAL;

UAEE TIIED DIA(31) STATIC EXTERNAL:

(SIZE(50).PLAT(50),TAPE(50)) CRAR(1) STATIC EITERUAL;

(CODE(SO),CLINE(200)) C8AR(2) STATIC EITERUAL;

VALUE(50) FIXED DEC(7,2) STATIC EITEPUAL;

PART(SO) CHAR(9) STATIC EITEEUAL:

(L0AD(50),AUSPET(50),uoLDS(so),PaAuE(So),PACK(50),RATE(50),

SHIP1(SO),SRIP3(SO),SHIPA(SO),INVBAL(SO),SAFETY(SO),

PCD(50),SHIP2(50),LPoS(so),LDIEP(50),SToT(50),LUDIPP(200))

PIIED 313(15) STATIC EITERAAL;

TITLE C8AR(80) STATIC EXTEEAAL;

1 CRANGE(100) STATIC EXTERNAL,

2 (POS,NEED) PIIED EIU(1S),

2 (ADD.SUD) CHAR(2):

ICOUNT FIXED BIN(15) STATIC EXTERNAL;

LHD PIXED 313(15) STATIC EITEEUAL;

/tt#¢$tt#ttt¥#tfittttt¥0tttttittttttttt¥##tttttfiittt/

/*t*t# INITIALIZE STATIC EXTERNAL VARIABLES *‘***/

/fi$ttttt¥tt$800.0.tfittttttt*Ottttt.0.‘Ot$*#$ttt*fitt/

SIZE(*)=' '; PLAT(*)=' ';

TAPE(*)=' '; CODE(*)=' ';

CLIIE(*)=' ’; PART(*)8' ';

VALOE(*)=0.0; TITL2=' ';

LOAD(’)=O; RATE(*)=O:

UUHPRT(*)=O; HOLDS(*)=0;

PRAHE(')=O; PACK(*)=O;

SHIP1(*)=O; SHIP2(*)=O;

SHIP3(t)=o; SHIPQ(*)=O:

INVBAL(*)=0: SAPETY(¢)=0;

LDIFP(*)=O: LPUS(#)=0;

HTOT(*)=O; LUDIPP(#)=0;

PCD(*)=O:

PL/I OPTIHIZING COHPILEB INPUT: PROC BEORDER;

STHT

“2

“3

H“

a5

“6

Q7

/tfittt’titttfitttitttt‘tttttiit‘.#$tfi#tt/

/'*t READ HOLD LINE-UP TITLE CARD ttt/

/ti.#*ttttttttltttttfittfitfittfifi¥ltfit’ttfl/

ISIH=O;

GET PILB(STATIC) EDIT(TITLB) (1(80));

PUT SKIP EDIT(TITLE) (X(1).A(80)):

PUT SKIP(2);

/¢.‘titfitfittttttttfitttttttttfitittttttttitt/

/**‘ READ PARAHBTER CARD IIFORHATION ***/

/tttttttttttitttttttttttttttt#tttttttttttt/

GET SKIP EILE(STATIC) EDIT(HDA.SHIPT,IDOS,HARE,LED)

(2(P(3))o2(P(7))o?(5))8

PDT SKIP EDIT(NDA,SEITT,IDDS.EARE,LED)

(2(P(3))p2(P(7))oP(5)):

/fi$$fl..*‘$#$#ttttttttfittttittttfit$##ttttfit‘tittttitttttfifilttt/

/¢tt READ STATIC INPORHATION OF THE HOLDS IN THE SYSTEB *’*/

/tt*¢tttttt#ttttttttttttttttttttttttttttttt#ttttttttttttttttt/

DO 131 TO RUN:

GET PILE(STLTIC) EDIT(CODE(I) ,PlRT(I) ,SIZE(I) ,LOAD(I) ,NUUPRT(I) ,

PLAT(I).UOLDS(I),PRAHE(I),TAPE(I),PICK(I),RlTE(I),VlLUE(I),

SA?ETY(I))

(COL(1)01(2)vl(9)01(1)ol(1)or(3):P(2)ox(1)o‘(1)12(7(3))ax(1)o

1(1),2(P(Q)),P(6,2),P(6)) 3

PUT EDIT(CODE (I) ,PART(I) .5123 (I) ,LOAD(I) ,NUHPRT (I) ,

PLAT (I) ,HOLDS (I) ,PEAHE(I) ,TIPE(I) pPlCK (I) ,RLTE(I) ,VILUE (I) ,

SAFETY (I))

(C0L(2)11(2)ol(9)rx(1)ol(1)or(3)o?(2)ox(1)13(1)02(P(3))ox(1)'

D 1(1)02(?(u))07(5c2)or(5));

EN ;

PL/I OPTIHIZING COflPILER INPUT: PROC REORDER;

STHT

/ttittttttttttttttttttttttttittttttt#ttt/

/*tt READ HOLD LINE-UP IuroaaATIou ttt/

/**###¥#¢ttttttttttttttttttttttttt tttttt/

a8 IST31:

u9 IEND=20;

SO IPLAG=O;

S1 PUT SKIP(2);

52 LINE_DP_IST0:

GET SKIP PIL3(HOLD) EDIT((CLIAE(J) DO J=IST To IBND))

(20(X(1)J(2))):

53 PUT SKIP EDIT((CLIEE(J) Do J=IST To IBRD)) (20(I(1),A(2)));

su IP ITLAC=1 THEN so To FINISH;

55 IST=IST+20;

56 IEADsIEAD+2o:

57 I? IZND>=IPOS T828 IPLAG=1;

58 IP IEND > IPOS THEN IBND=IPOS;

59 GO To LIEE_DP_IEE0;

60 FINISH:

END INPUT;

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I

I
I

I
!

[
I

I
I

I
I

I
!

[
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

N
N

N
N

N
N
N

N
N

N
N
N
N

N
N

N
N

N
N

N
N

N
M

N
M

N
N

N
N

N
N

N
M

N
V

N
N

N
N

N
N

N
M

N
M

N
N

N
N
N
N

N
N

N
N
N

N
N

N
M

N
“

N

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
E

E
E

E
E

E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E

E
E

E
E

E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E

U
U

U
U

U
U

U
U

U
U

U
U

J
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

J
U

U
U

U
U

U
U

U
U
U
U
U
U
J
U
U
U
U
U

U
U
U
U
U
J
U
U
J
U

P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P

P
P

P
P

P
P

P
P

P
P

PL/I OPTISIZIHG COSPILER LINEUP: PROC REORDBR;

SOURCE LISTING

STHT

1 LINEUP: PROC 3803088;

2 DCL (RUN.SEIFT.IPOS,LNDN,ISIN) FIXED EIN(15) STATIC EXTERNAL:

3 DCL RARE FIXED EIN(31) STATIC EXTERNAL;

u DCL (SIZE(50).PLAT(50),TAFE(50)) CHAR(1) STATIC EXTERNAL;

5 DCL (CODE(50),CLIRE(200)) CEAR(2) STATIC EXTERNAL;

6 DCL VALDE(50) FIXED DEC(7.2) STATIC EXTERNAL;

7 DCL PART(50) CEAR(9) STATIC EXTERNAL;

8 DCL (LOAD(50),NUHPRT(SO),HOLDS(SO),FRAHB(SO),PACK(SO),RATB(SO),

SEIP1¢50),SNIFJ(SD),SRIFu(501,INVEAL(SD),SAFET!(50),

FCD(50),SNIFZ(50),LFOS(50),LDIFF(50),NTDT(50),LRDIFF(200))

FIXED EIN(15) STATIC EXTERNAL;

9 DCL TITLE CEAR(80) STATIC EXTERNAL;

1o DCL 1 CNANGE(100) STATIC EXTERNAL,

2 (Fos,NEED) FIXED EIN(15),

2 (ADD,SDE) CRAR(2);

11 DCL ICDDNT FIXED BIN(15) STATIC EXTERNAL;

12 DCL LED FIXED EIN(15) STATIC EXTERNAL;

13 DCL VIOLAT(200) CEAR(u);

1a DCL (TNOLD(200),PNOLD(200),SnoLD(zoo)) CRAR(2);

15 DCL ITDT(200) FIXED EIN(1S);

16 DCL UNDER CEAR(2) INIT('__');

17 DCL STAR CEAR(u) INIT("*“'):

18 DCL STAR1 CHAR(2) INIT('**');

19 DCL Eo CNAR(2) INIT('= ');

20 DCL XL CEAR(1) INIT('L');

21 DCL TNS CEAR(21) INIT('T0TAL NDNEER 0F NDLDS');

22 DCL DATE1 CRAR(6);

23 DCL DATE EDILTIN;

2a DCL 1 TDATE,

2 EONTN CNAR(2),

2 FILL1 CHAR(1) INIT(’/'),

2 DAX CEAR(2),

2 FILL2 CRAR(1) INIT('/'),

2 YEAR CNAR(2);

25 DATE1=DATE;

26 ADNTNzSDESTR(DATE1,3,2);

27 DAT=SDRSTR(DATE1,5,2);

28 YEAR=SUBSTR(DAT31,1,2):

29 DCL TDATE1 CRAR(S) EASED(R1);

3o P1=ADDR(TDATE);

PL/I OPTIHIZING COHPILER LIUEUP: PROC REORDER;

STHT

flttttttfittttt‘t$tittttfi$fitt¥.##tttl¥#ttttt/

/ttt INITIALIzE TEE FROCRAN VARIABLES ttt/

/#**Ottfilfiltfitttttfifififitltfitfit..#¥t#ttt¥tt¥t/

31 ITOT(*)=O;

32 LIDIPP(*)=O:

33 LPOS(*)=O;

3a SHOLD(*)=' 1;

35 VIOLAT(*)=' 1;

36 TNOLD(t)=' 1;

37 PNOLD(t)=' ';

38 NTOT(#)=0;

[t t*¥$.¥#.$*fi$#t$¢tttttfit##1##.fitt‘tttfiifitttttt3¥¥tittt/

/... DETERNINE RIRE LOAD DIFFICULTT FOR EACH NOLD ttt/

/*Mlfitfififi#.¥$*‘*$.O.tttifitttt##ttfittttttfitttttfitttttt../

39 DO 121 To IP05;

no DO 321 TO RUN;

u1 IF CLINE(I)=CODE(J) TEEN GO TO FOUND;

a2 END;

u3 PUT SKIP EDIT("'*EBROR - NOLD CODE ',CLIRE(I),

' DOES NOT EXIST IN LINE-UP***') (X(3),A,A(2),A);

nu GO TO FINISH;

as FOUND:

IF TAFE(J)s'T' THEN TAOLD(I)='33';

as IF PLAT(J)='Y' TEEN FNOLD(I)='SS';

u? LRDIFF(I)=LOAD(J);

as IT SIzE(J)=XL TEEN SNOLD(I)=UNDER;

u9 ETOT(J)=NTOT(J)+1;

SO END:

PL/I OPTIHIZING COMPILER LINEUP: PROC REORDER:

STHT

/Otit.fittt¥¥fittttttfit!’.t#*¥*.ttttfitfit.tOttttttttttttttt/

DETERHINE VIOLATIONS IN THE SCHEDULED LINE-UP "’/

/O#.$tttti‘ttiOfifittl$#$.‘¥.ttOttfiOt$$tttttfitfifi.fitfiOtttfit/

LNUHsI:

DO J81 T0 IPOS;

I=J-1:

I? I=0 THEN I=IPOS-1;

K=J+1;

IP K=IPOSO1 THEN K=1;

ITOT(J)=LUDIPP(I)TLUDIPP(J)+LIDIPP(K);

IF ITOT(J)<= LRD TEEN GO To APPROVE;

VIOLAT(J)=STAR;

VIOLAT(J+1)=STAR1;

LPOS(LNUN)aJ;

LDIPF(LNUN)=ITOT(J);

LNUHsLNUHOI;

APPROVE:

END:

LNUH=LNUH-1;

PL/I OPTIHIZING CONPILER LINEUP: PROC REORDER;

STHT -

/tttttttttttttttttttttttttttitttttttttttttttt/

/*** PRODUCE l LINE-UP SCHEDULE PICTURE 1"'MV

[Ittttttttttttttttttttttttttttttfitttttttttitt/

66 IST21;

67 IEIDs32;

68 IPLAG=0;

69 PUT PAGE BDIT(TITLE.TDATB1) (X(10),A.A(8));

70 PUT SKIP(2);

71 PICTURE:

PUT SKIP EDIT((J DO J8IST TO IEND)) (32(X(1),P(3))):

72 PUT SKIP EDIT((LRDIFF(J) DO J=IST TO IEND)) (32(X(1),F(3)));

73 PUT SKIP(O) EDIT((SHOLD(J) DO J=IST TO IEND)) (32(X(2),A(2)));

7a PUT SKIP EDIT((CLINE(J) Do J=IST TO IBND)) (32(x(2).A(2)));

75 PUT SKIP(O) EDIT((SAOLD(J) DO JaIST To IEND)) (32(X(2),A(2)));

76 PUT SKIP BDIT((VIOLAT(J) DO J=IST TO IEND)) (32(A(u)));

77 PUT SKIP(0) EDIT((TUOLD(J) DO JsIST To IBND)) (32(I(2),A(2)));

78 PUT SKIP(O) EDIT((PEOLD(J) Do J=IST To IBID)) (32(X(2).A(2)));

79 PUT SKIP:

80 IF IFLAC=1 THEN GO To RIRE_LOAD;

e1 IST=IST+32;

82 IBND=IENDP32;

83 IF IEND>IPOS TEEN IFLAC=1;

an IF IEND>IPOS TEEN IEND=IPOS;

85 GO TO PICTURE;

/lttfit.‘tt.tttt¥t$$.t¥tt$it..tttttttttt‘¥¥.$#*/

/*’* SORT TH! HIRE LOAD DIPPICULT! 00802 I”"'/

/tttttttttttttttttttttt¥ttttttttttttttttt¢tttt/

86 RIRE_LOAD:

DO I=1 TO LNUN-1;

87 D0 J=I+1 TO L803:

88 IP LDIPP(I) >= LDIPP(J) THE! GO TO SORT;

89 ITEHP1=LDIPP(I):

90 ITENP2=LPOS(I);

91 LDIPP(I)=LDIPP(J);

92 LPOS(I)=LPOS(J);

93 LDIPP(J)=ITRSP1;

9Q LPOS(J)=IT2HP2:

9S SORT:

END;

96 END:

G
G
G
G
G
G
G
G
G
G

6
6
6
6
6
6
6
6
6
6
6
6

C
G

C
G

C
G

C
G

C
G

6
6

6
6
6
6
6

C
O

6
6
6
6
0

6
6

G
S

C
G

C
G

G
G
G
G
G
G
G
G
G
G
G
G

G
G
G
G
G
G
G
G
G
G

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
E

'

E
E

E
E

E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E

E
E

E
E

E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E

N
N

N
N

N
N
N

N
N

N
N
N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
M

N
M

N
N

N
M

N
M

N
N

N
N

N
M

N
M

N
N
N
N

N
N

N
N
N

N
M

N
M

N
M

N

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
E

E
E

E
E

E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E

E
E

E
E

E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E

R
R
R
R
R
R
R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R
R
R
R
R
R
R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

PL/I OPTIBIZING COHPILER GENER: PROC REORDER;

SOURCE LISTING

STNT

1 GENER: PROC REORDER;

2 DCL (NUN, SHIFT. IPOS. LNUN, ISIN) FIXED BIN(15) STATIC EXTERNAL;

3 DCL RARE FIXED BIN(31) STATIC EXTERNAL;

a DCL (SI2E(501,PLAT(SO) ,TAPE(501) CNAR(1) STATIC EXTERNAL;

5 DCL (CODE(SO) ,CLINE(2oo)) CRAR(2) STATIC EXTERNAL;

6 DCL VALUE(SO) FIXED DEC(7,2) STATIC EXTERNAL;

7 DCL PART(SO1 CRAR(9) STATIC EXTERNAL;

a DCL (LOAD(50),NUEPRT(SD),NOLDS(So),FRANE(50),PACX(50),RATE(50),

SNIP1(SO),SRIP3(SO),SRIPu(501,INVRAL(SO),SAFETX(SO),

FCD(SO),SRIP2(50),LPOS(SO),LDIFF(SD),NTOT(50),LNDIFF(2OD))

FIXED RIN(15) STATIC EXTERNAL;

9 DCL TITLE CRAR(RO) STATIC EXTERNAL;

1o DCL 1 CRANCE(1OO) STATIC EXTERNAL,

2 (POS.NEED) FIXED BIN(1S),

2 (ADD,SUE1 CRAR(2);

11 DCL ICOUNT FIXED RIN(15) STATIC EXTERNAL;

12 DCL RUF CNAR(80);

13 DCL (INVEN(50).ORJ(50)) FIXED DEC(7,2);

1n DCL (NINE,NTOTAL,NOLD,FRN.IPROD,UPTOTAL) CRAR(7);

15 DCL TOTAL CRAR(10);

16 DCL (ITOTAL.TINV,TSRIP.LPROD) FIXED EIN(31);

17 DCL (PROD,UPEND,UPPER1 FLOAT DEC(1o.3);

18 DCL (INVEN1,ORJ1) CHAR(7);

19 DCL (RAL,SR1,532.SN3,SEU) FIXED RIN(15);

20 DCL XCODE CRAR(21;

21 DCL STAR2 CRAR(2) INIT(°tt');

22 DCL XL CHAR(1) INIT('L'13

PL/I OPTIHIZING CONPILER GENER: PROC REORDER:

STHT

23

2a

26

27

28

29

30

32

33

30

35

36

37

38

39

00

“1

Q2

Q3

/.**$ltiti¥t###*$#ttttttttttt‘fittt#ttttfittttttt/

/ttt
READ DINABIC FORECASTING INPORNATION 1""“/

/*$#tt‘tttttfitltttfitttfitfififitittfit$littttt¥$*#tt/

L81;

PUT PAGE EDIT('PORECASTIEG - PRODUCTION INPORHATION') (X(35),A);

PUT SKIP(2);

PUT EDIT('PCD',' INITIAL ','1ST WEEK','2ND HEEK','BRD HEEK',

'uTH PEEK',‘SAFETY','BAL','INVENTOR!','SHIPPED',‘SHIPPED',

'SHIPPED','SRIPPED',‘STOCK')

(1(22).|.6(X(8).B)oSKIP(1)oX(22).A.6(X(9)oA)):

PUT SKIP(1):

FORECAST:

GET FILE(DXNAN) EDIT(XCODE.EAL,SN1.SR2,SR3,SRU)

(COL(1).A(2).5(P(10))):

IF XCODEaSTARz TEEN GO TO START;

DO J=L To NOR;

I? XCODE~=CODE(J) THE! GO To NEXT_CODE;

FCD(J)=SN1-RAL;

INVBAL(J)=BAL;

SHIP1(J)=SHI:

SEIP2(J)=SRZ:

SRIP3(J)=SR3;

SHIPQ(J)=SHQ;

PUT SKIP EDIT(XCODE,YCD(J),IHVBAL(J),SHIP1(J),SHIP2(J),SHIP3(J),

5319111.!) .snzrum 1:171 .1112) .711191J17111 :

L=L+1;

GO To PORECAST;

NEXT_CODE:

/fl*$

END:

ERROR SECTION 0? INPUT ##1/

PUT SKIP EDIT('PT*ERROR - CODE ',ICODE,' NOT IN STATIC FILE',

BAL.SH1,SEZ,SH3,SHH) (1,1(2),A,H(P(10))):

STOP;

PL/I OPTINIZING COHPILER GENER: PROC REORDER;

STHT

/ttttttttOttttttttttttt¢/

/*** PRINT Eon CARDS Fti/

/tt¥$ttttttttttttttttttt/

nu START:

ITOTAL20;

us TINv=0.o;

Q6 TSHIP=0.0:

U7 00 1:1 TO RUN;

a8 TINV=TINV+INVBAL(I);

Q9 ITOTALSITOTALPSRIP2(I)PSRIP1(I):

SO TSHIP=TSHIP+(SHIP2(I)+PCD(I)RSAPETI(I))/PACK(I);

S1 END;

52 PUT SKIP(2) EDIT('TOTAL PARTS SHIPPED IN THO REEKS = ',

ITOTAL) |X|10).A.F(10)):

s3 PUT SKIP EDIT('TOTAL INITIAL INVENTORT s ',TINT) (X(10),A,F|1O)|;

Sn BUFr' ';

SS SUBSTR|BUP,1,Q)='NASE';

56 SUBSTR|BUF,1S,U)='FOAN';

S7 RRITE PILB(CARD) FRON|RUF); EUF=' ';

59 RUFz'RONs';

60 UNIT: FILE(CARD) FRON|EUF); BUP=' ';

62 EUF=' N OBJ';

63 iBITE FILE|CARD| PROH(BUP); BUP=' ';

65 Do I=1 To N08;

66 80P8' L ' || CODE(I) || 'REQ';

67 NRITE FILE(CARD) FRON|EUF); BUP=' ';

69 END;

70 DO I=1 To NUH;

71 BUF=' L ' II CODE(I) || 'ADD';

72 UNITE PILE(CARD) FRON|BUF); BUP=’ ';

7a END;

75 DO I81 TO EUR:

76 BUP=' G ' || CODE(I) || 'SUB':

77 NRITE FILE(CARD) FRON(BUF); EUF=' ':

79 END:

30 DO I=1 To NUH;

31 BUP=' L ' 1| CODE(I) ll 'PRH’:

82 UNITE FILE|CARD) FRON|EUF); BUP=' ';

8a END;

PL/I OPTIEIZING COHPILER GENER: PROC REORDER;

STHT

85 DO I=1 TO EUR:

86 BUP=' G ' ll CODB(I) II 'END';

87 URITE PILE(CARD) PRON(BUP); BUF=' ';

89 END;

90 BUP=' E LINCAP':

91 WRITE PILE(CARD) PROH(BUP); BOP=' ':

93 BUP=' L SHALL':

9a URITE FILE(CARD) PBOB(BUP); BUP=' ';

96 BUP=' L LARGE':

97 BRITE FILE(CARD) 9803(803); BUP=' ’;

99 BUP=' L 3188';

100 URITE PILE(CARD) PROH(BUP); BUP=' ':

102 BUP=' L IRVEN';

103 ERITE PILE(CARD) PRON(BUP); BUP=' ';

105 BUP=' L UPENDER';

106 WRITE FILE(CARD) PROB(BUP); BUP=' ';

PL/I OPTIHIZING COUPILER GENER: PROC REORDER;

STHT

/##¥tittttttttttttttttttttt/

/*t* PRINT COLUHN CARDS "F/

/t*tt#ttt¢ttttttttt$#tttt#*/

108 BUP='COLUENS';

109 WRITE PILE|CARD) PROH(BUP); BUP=' ';

111 8UP=' DEBE "UARKER"':

112 SUBSTR(BUF,Q0.8)="'INTORG'":

113 WRITE PILE(CARD) PROH(BUP): BUP=' ';

115 D0 I=1 TO HUB;

116 IRVEN(I)=2.0*RATE(I)/PACK(I);

117 PUT STRING(INVEN1) EDIT|INVEN(I)) (P(7,2)):

lttfitt TSE 03J(I) REPRESENTS THE AVERAGE INVENTORY STORAGE COSTS ****‘/

/Pt*tt PER 2 PEEK PERIOD. 10$ VALUE 0? PART OVER 1/26TR YEAR. **‘**/

118 OBJ(I)=RATE(I)*VALUE(I)/260.0;

119 PUT STRING|OBJ1) EDIT(OBJ(I)) (P(7,21);

120 D0 J=1 To a;

121 SUBSTR(BUP,S,S)=CODE(I) II 'II' II SIZE(I):

122 IR 321 THEN DO:

123 SUBSTR(BUP,1S,S)=CODE(I) || 'REQ';

12“ SUBSTR(BUF,33,3)='1.0';

125 SUBSTR|BUP,Q0,S)=CODE(I) 1| 'ADD';

126 SUBSTR|BUP,53,3)='1.0':

127 WRITE PILE(CARD) PROH(BUF); BUP=' ';

129 END;

130 IF J=2 THEN DO;

131 SUBSTR(BUP,15,S)=CODE(I) || 'SUB';

132 SUBSTR|BUP,33,3)='1.0';

133 SUBSTR(BUF,UO,6)='LINCAP';

13a SUBSTR(BUP,58,3)='1.0':

13% WHITE PILE(CARD) PROH(BUP); BUF=' ';

137 END;

138 I? J=3 THEN DO;

139 SUBSTR(BUP,15,S)='INVEN';

1u0 SUBSTR(BUP,29,7)=INVEN1;

1H1 SUBSTR|BUP,uO,3)='OBJ';

102 SUBSTR|BUP,SU,7)=OBJ1;

103 FRITE FILE|CARD| FRON|EUF); 8UP=' 1;

1&5 END;

1&6 IP J=u TEEN DO;

107 SUBSTR|BUP,1S,S)=CODE(I) || 'PRH';

148 SUBSTR(BUF.33,3)='1.0';

1N9 UPEND=Q.0/PACK(I);

PL/I OPTIUIZING COUPILER GENER: PROC REORDER:

STHT

150 I? CODE(I)='BN' | CODE(I)='BR' THEN UPEUD=UPEUD/2.0;

151 SUBSTR|BUP.u0,S)=CODE(I) 1| 'END';

152 PUT STRING(UPTOTAL) EDIT(-UPEND) (P(7,fl));

153 SUBSTR|8UP,SU,7)=UPTOTAL;

154 BRITE PILE(CARD) PROU|BUP): BUP=' ';

156 END;

157 END;

158 END:

159 00 I81 TO RUB;

160 DO J81 TO 2;

161 SUBSTR(BUP,S,S)=CODE(I) || 'UP' || 5123(1);

162 I? J21 THEN DO;

163 SUBSTR(BUP.15,7)= 'UPENDEE';

160 SUBSTR(BUP,33,3)='1.0';

165 SUBSTR(BUP,&0,5)=CODE(I) || 'END';

166 SUBSTR(BUP,58,3)='1.0';

167 HRITE PILE(CAED) PROE(BUP): BUF=' ';

169 END;

170 I? J=2 THEN DO;

171 SUBSTR(BUP,15,3)='OBJ';

172 SUBSTR(BUP,33,3)8'1.O';

173 ERITE PILE(CARD) PROH(BUP); BUP=' ';

175 END:

176 END:

177 END;

178 DO 131 TO RUN;

179 PUT STRING(BIRE) EDIT(LOAD(I)) (P(7,1));

180 DO J=1 To 2:

181 SUBSTR(BUP,5,S)=CODE(I) ll 'AA' || 5122(1);

182 I? J=1 TEEN D0;

183 SUBSTR(BUP,1S,3)='OBJ';

180 SUBSTR|BUP,33,3)='7.S':

185 SUBSTR(BUP,a0,S)='SHALL';

186 SUBSTR(BUP,58,3)='1.0';

187 IP SIZE(I)=XL TREE DO;

188 SUBSTR|BUP,90,5)='LARGE';

189 SUBSTR|BUP,S7,U)=' 1.0';

190 END;

191 BRIT! PILE|CARD1 PROB(BUP); BUF=' ';

193 BED;

19a I? Js2 THEN DO;

195 SURSTR|RUF,15,5)=CODE(I) || 'ADD';

196 ' SUBSTR(BU?,32,3)='-1.0';

PL/I OPTIHIZING COHPILER GENER: PROC REORDER;

STRT

197 SUBSTR(BUP,HO,U)='HIRE':

198 SUBSTR(EUP,SH,7)=UIRE:

199 HRITE PILE|CARD| PROE|BUP); BUP=' ';

201 END:

202 END:

203 END;

209 DO 121 TO BUB:

205 PUT STRING|HIRE) EDIT(-LOAD(I)) (P(7,1));

206 I? LOAD(I)=0.0 TEEN PUT STRING|UIRE) EDIT (LOAD(I)) (P(7,1));

207 00 321 TO 2;

208 SUBSTRtBUP,5.S)=CODE(I) 1] 'SS' || SIZE(I):

209 I? J21 TREK Do;

210 SUBSTR|BUP,15,3)='OBJ';

211 SUBSTR(BUP.33,3)='7.5':

212 SUESTR|EUF,uo,5|='SNALL';

213 SUBSTR(BUP,S7,u)8'-1.0';

21a I? SIZE(I)=XL TREE DO:

215 SUBSTR(BUP,“O.S)='LARGE'z

216 SUESTR|RUF,S7,u|='-1.o';

217 END:

218 VRITE PILE(CARD) PROH(BUP); BUP=' ';

220 EUD;

221 I? 3:2 TREE DO:

222 SUESTR|BUP,1S,5)=CODE(I) || 'SUB';

223 SUBSTR(BUP,33.3)='1.0':

22b SURSTR(EUF,uo,u1='NIRE';

225 SUBSTR|BUP,5Q,7)=BIRE;

226 HRITE FILE(CARD) FRON(RUF); BUF=' 1;

228 END;

229 END:

230 END:

231 D0 I31 TO RUN;

232 SURSTR|RUF,5,5)=CODE|I) || 'PF' || SIZE(I);

233 SUBSTR(SUP,1S,S)=CODE(I) || 'PRH':

23a SUBSTP(BUP.32,Q)='-1.0';

23S SUBSTR(RUF,u0,3)='ORJ';

236 SUBSTR(BUP,57,Q)='7S.0':

237 WRITE PILE(CARD) PROU(BUP); BUP=' ';

239 END;

2u0 BUP=' TIRE "HARKER"';

291 SUBSTP(BUP,QO,8)="'INTEND"';

2&2 UNITE FILE|CARO) FRON|EUF11 8UF=' 1;

PL/I OPTIHIZING COHPILER GENER: PROC REORDER;

STNT

/t¢tttt¢tttcUOOLOOOORROOOUCOOOOUOOO/

/**‘ PRINT THE RIGHT HAND SIDES PPEI

/ttttttttitttttttttlttttttttttttttt/

2uu BUP='RHS':

2&5 WRITE PILE(CARD) PRON(BUP); BUP=' ';

207 DO I=1 TO RUN:

2&8 PUT STRING(UOLD) EDIT(HOLDS(I)) (P(7,1));

2u9 SUBSTR|BUP,S,3)='RHS';

250 SUESTR(BUP,15,5)=CODE(I) || 'REQ‘;

251 SUBSTR(BUP,29,7)SUOLD;

252 WRITE PILE(CARD) PROH(BUP): BUP=' ';

253 END;

255 DO 1:1 TO N08:

256 PUT STRING(HTOTAL) EDIT(UTOT(I)) (P(7,1));

257 SUBSTR(BUP,5,3)='RRS';

258 SUBSTR(EUP,1S,S)=CODE(I) ll 'ADD':

259 SUBSTR(BUP,29,7)=HTOTAL;

260 RRITE PILE(CARD) PROH(BUP); BUP=' ’;

262 END;

263 DO I=1 TO NUS;

26H PUT STRING(UTOTAL) EDIT(UTOT(I)) (P(7,1));

265 SUBSTR(8UF,5,3)='RRS';

266 SUBSTR|BUP,15,5)=CODE(I) ll ‘SUB';

267 SUBSTR(BUP,29,7)=HTOTAL:

268 HRITE PILE(CARD) PROH(BUP); BUP=' ';

270 END:

271 DO I=1 TO RUN;

272 PUT STRING(PRU) EDIT(?RAHE(I)) (P(7,1));

273 SUBSTR|BUP,5,3)8'RHS';

27h SUBSTR(BUP,15,5)=CODE(I) ll 'PRH';

275 SURSTR|RUF,29,7)=FRN;

276 WRITE PILE|CARD) PROU|BUP); BUP=' ';

278 END;

279 SUBSTR|8UP,5,3)='RHS';

280 SUBSTR(BUF,1S,6)='LIRCAP';

291 SUBSTR(BUP,30,6)='181.00';

282 "RITE PILE(CARD) FROH(BUP); BUP=' ':

289 SUBSTR(BUP,5,3)='RHS';

285 SUBSTR(BU?,15,5)='SUALL';

286 SUBSTR|BUP,32,9)='5.00';

287 RRITE FILE|CARD| FRON|EUF|; BUF=' 1;

PL/I OPTIHIZING COHPILER GENER: PROC REORDER;

STHT

289 SUBSTR(BUP,S,3)='RHS';

290 SUBSTR(BUP,15.5)='LARGE';

291 SURSTR(RUF,32,u)s'5.00';

292 RRITE PILE(CARD) FRON(RUF); BUP=' 1;

29a SURSTR(BUP.5,3)=°RHS':

295 SUBSTR|RUF,1S,S)='NIRE';

296 SURSTR(RUF,32,u)=-S.00';

297 RRITE FILE|CARD| FRON|EUF); BUP=' 1;

299 RAREsRARonSRIP;

300 PUT STRING(TOTAL) EDIT|UARE| (F(10,1|);

301 SUBSTR(BUP,5,3)='RRS';

302 SUBSTR(SUP,15,5)=’INVEN':

303 SURSTR|RUF,26,10|=TOTAL;

3ou RRITE FILE|CARD| FRON|EUF1; BUP=' 1;

306 SUESTR(BUP,5.3)='RRS’;

307 SUBSTR(BUP,15,7)='UPENDER';

308 SUBSTR(8UP,32,U)='33.0':

309 NRITE PILE(CAED) PROB(BUE): BU?=' ':

PL/I OPTIEIZING COHPILER GENER: PROC REORDER;

STHT

/ttttttttttttttttt$ttttttttttttttttt/

/*’¢ PRINT THE GOLD RANGE VALUES *‘P/

[ttitttttttttttttttttttt##$#§tttltt#/

311 BUP='RANGES':

312 WRITE PILE(CARD) PROB(BUP1: BUP=' ';

319 D0 I31 TO N08:

315 PUT STRING(NOLD) EDIT(BOLDS(I)) (P(7,1)):

316 SUBSTR(BUP,S,5)='RANGE':

317 SUBSTR(BUP,15,5)=CODE(I) ll 'REQ':

318 SUBSTR(BUP,29,7)8HOLD:

319 WRITE PILE(CARD) PRON(BUE): BUP=' ';

321 END:

322 SUBSTR(EUP,5,5)='RANGE':

323 SUBSTR|BUP,15.Q)='BIRE';

32a SUESTR|RUF,32.U|='10.0';

325 WRITE PILE(CARD) PRON(BUP); BUP=' ';

327 SUBSTR(BUP,S,S)='RANGE';

328 SUBSTR|8UP.15,5)='SHALL';

329 SUBSTR(BUP,32,9)='10.0';

330 WRITE PILE(CARD) PROH(BUP); BUP=' ':

332 SUBSTR(BUP,5,5)='RANGE';

333 SUBSTR(BUP,1S,S)='LARGE';

339 SUBSTR(BUP.32.H)='10.0';

33S UNITE PILE(CARD) PROH(BUP); BUP=‘ ';

PL/I OPTIUIZING CONPILER GENER: PROC REORDER;

STET

/tttttttttttttttttttttttttttttttt/

/*‘t PRINT THE BOUNDS SECTION 9“/

/¢tttt6:68:OOOUUOOOOOOOUOOOOOOOOO/

337 BUPs'BOUHDS':

338 WRITE PILE|CARD) PROR(BUP); BUP=' ';

390 DO I=1 TO RUE:

391 PUT STRING|HOLD1 EDIT|EOLDS(I)) (P(7,1));

392 SUBSTR(BUP.2,8)='UP BOUHD':

393 SUBSTR(BUP,15,5)=CODE(I) II 'II' I] SIZE(I);

399 SUBSTR(8U?,29,7):HOLD:

395 WRITE PILE(CARD) PROH|BUP); BUP=' ';

397 BED;

398 DO I=1 TO HUB;

399 SUBSTR|BUP,2,8)= 'UP BOURD';

350 SUBSTR(BUP.15,5)=CODE(I1 || 'UP' || SIZE(I):

351 SUBSTR|8UP,33,3)=‘6.0';

352 WRITE PILE|CARD) PROH|8UP); BUP:' ';

359 END;

355 DO I=1 TO NUH:

356 SUBSTR(BUP.2,8)= 'UP BOUND';

357 SUBSTR|BUP,1S,5)=CODE(I) ll 'AA' 11 SIZE(I);

358 SUBSTR(BUP,32,9)='20.0':

359 I? CODE|I1='BR' | CODE(I)=‘BR' THEE SUBSTR(BUP,32,9)='90.0'

360 WRITE PILE|CARD) PROH(BUF); BUP=' ';

362 END:

363 D0 I=1 TO RUE:

369 SUBSTR(BUP,2,8)= 'UP BOURD';

365 SUBSTR(BUF,15,5)=CODE(I) || 'SS' || 5128(1):

366 SUBSTR(BUP,32,9)='20.0';

367 I? CODE(I)='BR' | CODE(I)='BR' THEN SUBSTR|BUP,32,9)='90.0'

368 WRITE PILE(CARD) PROH(BUP); BUF=' ';

370 END;

371 00 I=1 TO NUH;

372 SUBSTR(8UP,2,9)= 'UP BOUND';

373 SUBSTR(BUP,1S,5)=CODE(I| || 'PP' || SIZE|I);

379 SUBSTR(BUP,32,9)='2.00';

375 IP CODE(I)='BR' | CODE(I)='BR' THEN SUBSTR(BUP,32,9)='9.00'

376 WRITE PILE(CARD) PROE(BUP); BUP=' ';

378 END;

PL/I OPTIHIZING CONPILER GENER: PROC REORDER;

STNT

/¢##tfiOOQOOOtfitittttfitttfitttfittttttttttttttttttttfi.$###t#t/

379 DO I=1 TO N08;

380 PROD=(.70*SHIP1(I)+.20*SHIP2(I)+.05*SHIP3(I)+.05‘SHIP9(I)-

INVEAL|I1oSAFETX|I1)/RATE|I);

381 LPROD=PROD;

382 IF LPROD < 0 TEEN LPROD=0;

383 IF LPROD > NOLDS(I) THEN LPROD=NOLDS(I);

389 PUT STRING(IPROD) EDIT(LPROD) (F(7,1));

385 SURSTR(RUF,2,8|='LO BOUND':

386 SURSTR|EUF.15,5)=CODE(I| 1| ’II' 11 SIZE(I):

387 SURSTR|RUF,29,7|sIPROD;

388 WRITE FILE|CARD| PROH(BUP): BUP=' 1;

39o END;

391 BUP=’ENDATA':

392 WRITE FILE|CARD| PROH(BUP); BUP=' -;

399 CLOSE FILE|CARD);

395 FINISH:

END GENER;

M
M

M
M

M
M
M

M
M
M

M
M
M
M

M
M
M
M

M
M

M
M

M
M

M
M

M
M

M
M
M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

[
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P

P
P

P
P

P
P

P
P

P
P

PL/I OPTIHIZING COHPILER HIP: PROC REORDER;

STET

Q
C
h
U
‘
c

NIP:

SOURCE LISTING

PROC REORDER:

/*.$#.$$ttt¥.tt¢¥tfittttfit$tttttttttttttt##/

/‘¢*‘* HPSI 370 - HIP DECLARATIONS l”'"*/

/¢ttttttttitttttttttttttttttttttttfittttttt/

/tt¥.¥

/tt#tt

DCL (ANALYZE,ASSIGN,BCD,BCDOUT,CHECK,CLOSEP,CORHUN,

CONVERT,COPY ,COPYOLD,CRASH,DPLBOOT,DPLUSER,

DUAL,EXIT,EXPORT,PLAGS,PORCE,PREEORE.IHPORT,INQUIRE,INSERT,

INVALUE,INVERT,BIXBUND,HIXEIX,NIXPLOW,HIXSAVE,HIXSART,

HIXSATS.HODIPY,HGRW,PARACOL.PARAOBJ,PARARHS,

PARARIH,PARAROU,PICTURE.PRIHAL,PROBEHS,PUNCH,RANGE,

RECRATE,REDUCE,REPORT,RESTORE,RETREVE,REVISE,SAVE,

SAVERRS,SCALE,SELECT,SELIST,SETREP,SETUP,SOLUION,STATUS,

TINE,TRACE,TRANCOL,TRANROW) ENTRY EXTERNAL;

ALGORITHNIC TOOLS EXTERNAL ENTRIES *"‘*/

DCL (PRICEP1,PRICED1,PREHUL,POSTHUL,INVCTL1,GETVEC1,

PTRANU1.PTRANL1.PIXVEC1,ELINN1.CHUZR1,BTRANU1,BTRANL1)

ENTRY EXTERNAL:

DPLPLICR NACRO : HPSX/370 COHHUNICATION REGION ‘9"'/

DCL DPLSTR(768) DEC FLOAT|16| EXTERNAL INIT(0.0);

DCL DPLPTR PTR EXTERNAL ;

DPLPTR a ADDR(DPLSTR):

DCL 1

N
I
U
B
D
N

h
J
N
P
U

N
B
U
N
)

N
B
O
h
J
N

DPL ALICNED EASED|DPLPTR),

XDUR1 CHAR(16), 2 XCORE BIN FIXED|31|, 2 XDUHZ CHAR(16),

(XTITLE,XSURTITL) PTR, 2 XDUN3 CRAR|16). 2 XVERSNOD CRAR|5|,

XENVIRON UNALIGNED,

3 (XPLI,XTSO,XCONT,XDOS,XREPORT,XATTN,XEPSX,XCES)EIT|1),

XDUH9 CRAR(S|, 2 XNTRDSN RIT|8), 2 XDUU9C CRAR|16|,

|XINF,XLUCTRL| DEC FLOAT(6|.

(XNXPCITX,XNXNOVF,XFORNSOS,XSEPTERE,XTRXPIV,XTRXPITR,XTRXPIVX,

XCHSIT)BIN FIXED|31|,

(XPBNANE,XOLDNANE,XOBJ,XCHROW,IROW) CHAR(8),

(XRRS,XCNCOL.XCOLUNN,XDATA,XSATERNS,X800ND,XRANCE) CRAR|8|,

XDUN6 CSAR|28),

XPRSTATS,

3 (XH,X9H,XBH,IJ,XELEN,XLHIRI,XLUAXI,XHPACVEC) BIN PIXED(31|,

3 (XRIGEAS,XSGRONS,XCUETXPE.XNXJ,XNXSOS) RIN FIXED|31),

XDUN7 CNAR(8),

(XPARAN,XPRI,XTNETA,XXSI,XZETA1 DEC FLOAT(16|,

(XTAU,XSIC,XT) BIN FIXED|31),

XDUHB CRAR|68|,

PL/I OPTIHIZING COHPILER DIP: PROC REORDER;

STST

(XPARPRT,XPARDELT,XSCALE,XEPS.XPARNAX| DEC FLOAT|6|,

XPROCNAN CNAR(8), 2 (XFUNCT,XSIF) DEC FLOAT(16),

|XNIF,XNEGDJ,XITERNO,XNAJIT,XERROR) RIN FIXED|31),

(XKJINC.XKJOUT) RIN FIXED|31), 2 XINCDJ DEC FLOAT|6|,

XTRANTIN RIN FIXED|31),

XINVNO,

3 (XINVERNO,XTRANNO,XTIHORG) RIN PIXED(31),

IPARSW RIT(8), 2 XDUN1O CRAR(7),

XALGSW UNALIGNED,

3 XDUN11 CRAR|3|, 3 XDUN12 RIT(3).

3 (XNIXPRAS,XDUN13,XLU,XEIP,XSEP) RIT(1|,

(XPRICE,XP,XINTVAL,XFREQINV| BIN FIXED|31|,

(XCLOCKSW,XOLDINV,XLOGCAPT,XCBECKSW,ITRANSW) RIN FIXED|31),

(XDzPCT,XDJNIN,XDJPCT,XSCLERR,XTRUSCL) DEC FLOAT|6|,

(XDJSCALE.XCIRCLE,XDEGENSR,XSCXCLE) RIN FIXED|31),

(XRECTIFX,XRECTNO,XNOFREE| BIN FIXED|31|,

100819 CRAR(12),

(XFRE03,XFREOZ.XFRE01,XDELTN,XLASTIN) BIN PIXED(31),

(IPREQLGO,XPREQLGA,INOPRINT,XTIUES) RIN FIXED|31),

XDUN15 CRAR|92),

(XTOLPIVS,XDUN15C|18),XSSCALE) DEC FLOAT(6).

(XDUR1SF|8),XNNO,XNSIzE,XCOLRC.XRRSRC,2008158(N),XCXCLESR|

RIN FIXED|31|,

XDUN1SL CHAR(118),

XETASW UNALICNED,

3 (XETAFULL,XETAPART,XETALU,XETATN,XETAACCU) RIT|1|,

3 XDUN1SN RIT(3), 3 (IINVPULL,XINVLU1 RIT|1),

XINVDENS DEC FLOAT|6|, 2 (XPARTIRV,XINVCORE) RIN PIXED(31),

X00316 CNAR(76),

XNXPTR,

3 (XR,XXN,XNXLUDX,XNXFRAC,XUXCNE) PTR,

(XV,XG) PTR,

XPIo EIN FIXED|31), 2 XPI|3| PTR,

XALPNAD RIN FIXED|31), 2 XALPHA(5) PTR,

XVRECo RIN FIXED|31|, 2 XVREG(5) PTR,

(XUPLINIT,XSUPLNT.XSCL0RC,XCOL,XUSTN,XTN) PTR,

XWO,

3 |XNNO,XRNONAX1 RIN FIXED|15),

3 XW(12) PTR,

(XDUN168,XDJO) RIN FIXED|31), 2 XDJ|5| DEC FLOAT|16).

XDUN16D CRAR|176|,

(XLN,XFREE,XPROC,XETACORE) RIN FIXED|31|,

(XJCORE,XEXRCORE,XNREC,XNODES) BIN FIXED|31),

XDUN17 CHAR(36),

XSETLR EIN FIXED|31|,

(XTOLZE,XTOLREL,XTOLV,XTOLDJ,ATOLPIV,XTOLERR) DEC PLOAT(6),

(XTOLCRK,XROWCHK,XTOLINV,XTOLI1,XTOLIZ) DEC FLOAT|6),

(XTOLELEN,XXAPPA,XTRANCRR,XRNO,XZI,XPRICRX) DEC FLOAT|6|,

(XVECNORN,XDELTADJ,XTOLNRIT,XDJREL) DEC FLOAT|6),

N
M

N
N
N
N
N
N

N
M

N
N
N
N
N
N
N
N
N
N
N

N
N
N
N
N
N

N
N
N

N
N
N
N
N
N
N
N
N
N

PL/I OPTIUIZIRG COHPILBR HIP: PROC RBORDER;

STHT

XDUE18 CHAR‘12),

(xoaasc,xcanowsc,xouu183(6)) DEC PLOAT(16),

XSClLalT BIN PIXED(31), 2 XTOLDJS DEC PLOAT(6).

(XR1C2.XR2C2) CHAR(8), 2 (XR1C1,XRZC1) DEC PLOIT(6),

XBBRCHT Exu FIXED(31). 2 xraaucas DEC PLOAT(6),

XRBAL01(10) DEC YLOITtG),

XINT01(10) BIN EIXED(31),

XCEAEOI(10) CEAR(8),

(XRBDUCB,XSORTA.xsrART,XVECTOR,XEIDSU,XHXERBBT) DID PIXED(31),

xnuu19 CHAR(288),

(xprv,szEo,xD1,XDa1) DEC PLOAT(16),

(XDUH20(3),XITBRIHV.XHAJINV,XEAJNO,XDUUZOB(7))BIB EIXED(31),

(ITOLVREL.XTOLZREL,XKPHAX,XKPERR,XDBPS,XHXHUTDJ)DEC PLO|T(6),

(XBXTDJ,XSIGBAZ,XTOLIJ) DEC PLOAT(6), 2 XOPDBGI BIN PIXBD(31),

XDUHZI CHAR(36),N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

/‘*‘*‘ HIXED INTEGER CELLS “***/

XUXSTRAT CHAR(u),

(XEXRLTIO,XHXDROP,XHXBESTP,XHXBBSTB.XRISTBP,XHXSCAH,XBXSCP,

XHXSCB,XHXQI1,IHXQIZ.XHXQIJ,IHXTOLI.XHXST1,

xaxsr2) DEC PLOAT(6),

(xnxerr,xnxpcxr) DIE PIXBD(31),

(XBXPCPAR,XHXPCDUA,XHXTOLZE) DEC ELOAT(6),

(xaxran,xnxnuo,XEXJ1.xuxaz,xnxswr,xuxsswr) BIN EIXED(31),

(XHXOVPLC.XEXBIN,XBXPNLOG) BIN FIXBD(31),

XHXBBBR DID EIXED(31), 2 Enter! DEC PLOAT(16),

(xEXCAPr,xu1EoC) BIN EIXED(31),

(XDDn22 CHAR(16) .XEXPOE DEC YLOAT(6),XDUH220 CHAR(188)) ,

XDUHZB CHAR(302),

xspIE DIE EIXED(31),

(XDuazn CHAR(88),XBXHAXHO BI! PIXED(31)),

(XHXSTART,XHXSOSWT,XOPSTART,XOPBESTR,XOPSAYE,

IOPSET,xaeoouD,xaEEsrn,EREODEL,XEEEEPE) CHAR{8),

(XOPPREQS,XI!VCT,XBRBNO,XHAXCT) DIE PIXED(31),

(xaxuoDE.xnxpccxr) DIE EIXED(31). 2 XTOLDJI DEC PLOAT(6),

xuxoprnc BIN PIXED(31), 2 xnIsqu CHAR(8),

XUSER(SO) BIN PIXED(31):

N
N
N
N
N
N
N
N
N
N
N

N
N

N
N
N
N

PL/I OPTIHIZISG COHPILER HIP: PROC RBORDER;

STHT

/itt.#¥#¥$tti’t$.titt‘t3‘ttfitfit*ttCfiltttfittfiifi/

/“**‘ INITIALIZATION TITLE 8 SUBTITLE *‘**‘/

[ttittttittttttttttttttttttt¢$$ttttttt¥ttttttt/

DCL 1 err EXTERNAL STATIC,

2 $0050 CHAB(20) INIT(' '),

2 STITLE CHAR(80) INIT(' ECL EXECUTIOH‘),

2 sDDul CHAR(6) INIT(' PAGE'),

2 SPACE PIC 'zzzzz9' INIT(O),

2 xDuaz cuaa(a) IEIT(' '),

SDATB CHAR(6);

DCL DPLPRNT FILE VARIABLE EXTERNAL:

N

/O*#$t##t#¢ttfifiltttttittttttt*I#t##tttttttttfittt’tttttttt/

/'**** ATTBIB HACRO 8 REHPLACEflBNT ECL ATTRIBUTES “**‘/

/ttttitttttttttttttttttttttittttltttttttttttttttttttitttt/

PL/I OPTIHIZING COHPILBR HIP: PROC REORDER:

STST

1O

18

19

20

21

22

/#ttttttttttttttttttfitttt..‘ttt‘ttttttttitttttttttt/

/“**t DPLIHIPR HACRO = INITIALIZE SYSPRINT *‘***/

/tttttttttttttttttttttttttttitttttttttttttttttttttt/

DCL 1 SSOBTITL BASBD(XSUBTITL).

2 $8508 BI! PIXED(31),

2 SASUB (HSUBTL REPER(SNSUB)) PTR;

DCL SHSG CHAR(132) VARYIHG BASED(SPSUB).

SHEAD CBAR(126) BASBD(ITITLB).

SPSUB PTR:

XTITLB t ADDR($TIT):

SDATE 8 DATE;

XSUBTITL 8 NULL:‘

DCL (HULL.DATE) BUILTIN:

DCL DPLINSZ BI! PIXBD(1S) INIT(132);

DPLPRNT 8 SYSPRINT:

OPEN PILB(SYSPRINT) PAGBSIZE(S7) LINBSIZB(DPLINSZ) ;

OB BHOPAGB(DPLPRNT)

BEGIH :

DCL SI BIN PIIED(1S,O) :

SPAGB 8 SPACE + 1 ;

I! ITITLB=NULL I(XTSO='1'B 8 DPLPBNT=SYSPBINT) THEN

PUT PAGE PILB(DPLPRNT) ;

ELSE

DO ;

PUT LIST($HBAD) PAGE FILE(DPLPRNT) ;

PUT SKIP PILE(DPLPRNT) ;

END :

I! XSOBTITL ~= NULL THEN

DO ;

DO SIg 1 TO SNSUB ;

SPSUB 8 SASUB($I) :

PUT SKIP EDIT($MSG) (A) PILE(DPLPRNT) ;

END ;

PUT SKIP PILB(DPLPRNT);

END :

EBD ;

PL/I OPTIHIZING COHPILBR HIP: PROC REOBDEB;

STHT

/#t‘$fittt¥¥fi.*Stitttttitt##fitttlttfifitttfifitttttttfitttttfitttfitttttttt/

/ttt DPLTOL EACEo = DPLPLICR CELLS TOLERANCES IBIIIALIZATIONS ttt/

/t¥¥*$fii¥*“itttt.ttttttfitti$$tttt¥tittittttttttfitt*ttttttttttttttt/

3s ICLocxsw , XPRBQLGO , XINVCOBB . XPARTINV = 1 ;

36 XSCALSATa-1 ;

37 xcazcxsa=20;x0LDInv s 10 ;

39 XSEPTEBH= ’ 20;:EREE=20u80;xcoRE=16711630;

u2 XDJPCT 80.001; XTOLIZ=0.01 ; XTOLZE = 1.03-30;

us IIOLEEL, XTOLBLBB = 1.02-10;

as XTOLBRIT , XTOLBRB = 1.0E-6 ;

D7 XTRAUCHK = 1.0E-9 ;

as XTOLPIV , XTOLINV s 1.0E-6 ;

D9 ITOLDJ = 1.0E-8 ;

so XTOLDJ1 a 1.0E-5 ;

51 XDJREL , XTOLI1 2 1E-11 ; XTOLZREL=1E-13 ;

S3 XTOLV=1B-5 ; XTOLI3= 0.01 ;

55 xxPEEE=1E+8 ; XDSPS=O.1 ;

$7 XTOLCHK=1E-8 ; xxvaax =1E+6 ; XTOLVREL = 1E-9 ;

60 XRBCTIPY=100:XINVOBNS=1. ; XLUCTRL=1.1 ;

63 XHXTOLZE=1.0B-S: xuaxcrzs ;

6S XHXPHLOG=1:XHXRATIO=O.1S;XHXSCP=1.2; IEXSCE=0.S ;

69 xaon1so.1;xnon2=o.os;xnxor3=o.5;

72 IHXTOLI=0.1;XHXST1,XHXST2=2.;

7a XHXSTIT.XHXPCIT=3 :

7s XEXPCPAR=O.33 ; XEXPCDDA=0.66 ;

77 XRBOUND,XBRESTA,XRNODEL,XOPRBSTR,IOPSAVB=' 1;

78 IEuEwpax'uEwPan':xopsrAET='EEGIN';

80 XOPEEEQS=10;

81 xnxsraar='srauonao';xuxsosur=' ';

83 XINP,XHXDROP=1B75;

an XBXPCITX=9;

85 xaxEREanso;xax2DJ=1oo.;

87 IIDLPIvs=1E-u;XIEYPva=2;

89 XSPIE=1;

PL/I OPTIBIZING COEPILER HIP: PROC RBORDER;

STHT

90

91

92

93

9Q

95

96

97

98

99

100

101

102

103

10“

105

106

107

108

109

110

111

112

113

11a

115

116

117

120

121

122

123

/$#ttttt#$$¥tittttttittttitfitttt.fitttttttttttttfitttttttttttfittttttt/

/'*‘ DPLONCD EACRO 3 DEFINITION ON-UUITS E08 POSSIBLE DEEANDS ‘PP/

/tttttittttttttttttttttttit.tfitttttttttttttttttttittttttttttttttttt/

OB CONDITION(XCOBERB)

BEGIN ;

DCL TOLIZ DEC PLOAT(6) INIT(XTOL12) ;

I! ITOLIZ >=0.1 8 XTRANCHK >= 13-6 5 XITERNO=XINVERNO THEN

DO:

I? XflIXPBAS THEN

DO;

CALL HIXSAVE;

CALL BIXSATS;

END:

STOP:

END:

XTOLI2=O.1 :

I? XERBNO >3 3 IBEI

DO :

XTOLPIV,XTOLINV=1E-u ;

I! XEBRUO >=S TEE!

D0 ;

XTRANCHKs1E-6 ;

XIHVDEHS=O. ;

END :

ELSE

XTRANCHK=1E-8 ;

END ;

CALL INVERT:

XINVDENS=1.0 :

XTOL12=HIN(O.16.?OL12+TOL12) ;

IP XIRVCT >80 THEN

IEBRNO=XERRHO+1 :

ELSE

DO;

XIIVCT 2 IHAXCT

XEERNO = 1 ;

END;

XCONT 8 '1'3; \

END;

ON COUDITIOI(XDODLTU)

BEGIN;

IP XSIXPBAS THEN

DO:

CALL BIXSAVE;

CALL HIXSATS;

END:

STOP;

PL/I OPTIHIZING COHPILER HIP: PROC RBORDER;

STHT

12“

125

126

127

128

129

130

131

132

133

13“

135

136

137

138

139

190

101

192

193

1uu

1u5

1&6

1a?

1u8

1u9

150

151

152

153

15“

155

156

END;

ON CONDITION(XDODUAL)

BEGIN:

CALL DUAL:

XCOHT = '1'3;

END;

ON CONDITION(XDOPEAS)

ICON! 8 '1'3:

ON CONDITION(XDOINV)

BEGIN:

DCL TOLIZ DEC PLOAT(6) INIT(XTOL12) ;

I? XERROR .s 0 THEN

ITOLI2= BAX(XTOLIZ,0.1) :

CALL INVERT;

I! XINVCT<O 8 123808 8 0 THEN

DO:

XERRNO=O;

XTOLPIV,XTOLINV=1E-6 ;

ITRANCHK=1E-9 :

XTOLI2=5AX(O.5*TOLIZ,XTOLI3) ;

END;

ELSE

XIOLIZ=TOLIZ ;

XCONT 8 '1'8;

END;

ON CONDITION(XDOLPS)

BEGIN;

IP XITERNO 8: XINVERNO | XRHO'XZI > 18+“ THEN

DO :

XERBOBzu :

SIGNAL CONDITION(XDOINV) ;

END ;

XCONT 8 '1'8 ;

END;

ON CONDITION(XDONFS)

BEGIN;

I? XHIXPHAS THEN

DO;

CALL HIXSAVE;

CALL HIXSATS;

STOP:

END:

IF XEPS=0.0 THEN

DO;

PL/I OPTIHIZING COHPILBR HIP: PROC REORDER;

STHT

157

158

159

160

161

162

163

16%

165

166

167

168

169

170

171

172

173

170

175

176

177

178

179

180

181

182

183

180

185

186

187

188

189

190

191

192

CALL STATUS;

CALL SOLUION;

STOP;

END;

IEPS=0.0;

XOPDEGNzo:

XCONT 8 '1'8;

END;

0N CONDITIOH(XDONHX) :

ON CONDITIOU(XDOOPT)

0N CONDITION(XDOPEHX)

0N CONDITION(XDOPBIH)

BEGIN;

I? XHIXPHAS TEEN

DO:

ON CONDITION(XDONPS);

ON CONDITION(XDOOPT): ,

ON CONDITION(XDOFEAS) XCONT = '1'B;

END:

CALL PRIHAL;

XCONT 8 '1'8;

END;

ON CONDITION(XDOPINT)

BEGIN:

CALL SOLUIOH;

I? XHIXPHAS THEN

DO;

I? XNXHAXNO=O THEN XCONT = '1'B;

ELSE

DO:

IHXHAXNO=XEXEAINO-1;

I? XHXHAXNO~=O THEN XCONT = '1'8;

ELSE XNXOPTNC81;

END:

END;

ELSE ICONT = '1'8:

END:

ON CONDITION(XDOUNB)

BEGIN:

IP XEPS=0.0 THEN

DO:

CALL STATUS;

CALL SOLUION;

PL/I OPTIHIZING COHPILBR HIP: PROC REORDER;

STHT

193

19a

195

196

197

198

199

200

201

202

203

206

205

206

207

208

209

210

211

212

213

21a

215

216

217

218

219

220

221

222

223

STOP;

END;

XEPS=0.0;

XOPDEGN80;

XCONT 8 '1'B;

END;

ON CONDITION(XNAJERR)

BEGIN;

CALL STATUS;

STOP:

END;

ON CONDITION(XIOEBB)

BEGIN:

ON CONDITION(XIOEBR) STOP ;

I? XNIXPHAS THEN

D0;

CALL NIXSAVE;

CALL NIXSATS;

END:

ELSE

DO:

CALL STATUS:

xpgynsvttttttttu;

CALL PUNCH:

END;

STOP:

END;

OH CONDITION(XHINERR) ;

ON CONDITION(XNXOVPL)

BEGIN;

CALL NIXSAVE;

CALL NIXSATS;

STOP:

END;

ON COHDITION(XSINULB)

CALL RETRBVE;

ON FINISH CALL 311?:

PL/I OPTIHIZING COHPILER HIP: PROC REORDER;

STHT

ZZQ

225

226

227

228

229

230

231

232

233

23a

235

236

237

238

239

230

2u1

232

293

2d“

2&5

2H6

207

/¥itittiit.tttttfifitttttfitfiltflfit*.*¥$*#tttt*t/

/**8** USER DEFINED NPSX/EIP PROGBAH *****/

/t¢tt#tttttttttttttttttttttttt¢ttttttttttttt/

DCL XFUNCI1 CHAR(12):

DCL XHXNNO1 CHAR(6);

DCL INODBS BIN FIXED(31);

ON CONDITION(XNXDPRN) BEGIN;

CALL NIXSART('RESTORE','NODE',XNXBIN);

CALL SOLUION('PILE','OUT');

END;

ON CONDITION(XDOPINT) BEGIN;

CALL NIXSAVE('NAHE','TREE'):

END;

DPLPRNT=OUT;

OPEN PILB(OUT) PRINT PAGBSIZE(66) LINESIZE(132);

XOBJ8'OBJ';

XFREE=50000;

XRHS='RHS';

XPREQ1=1000;

XDATA='FOAH';

XPBNAHE8'POAH';

CALL CONVERT('PILE','CARD');

INODES=1000;

CALL SETUP('BOUND','BOUND',‘RANGE',‘RANGE','NODES',INODES);

PUT PILE(OUT) PAGE;

PUT PILE(OUT) PAGE:

/$#¥ttttt3$tt$¥t¥$tt$tttt$#ttfit

CALL PICTURE;

*‘tttitttt$ttfitttt##fittttttttt/

CALL PBIHAL:

XPREQ180:

xnxpaazo;

CALL SOLUION;

PUT STRING(XPUNCT1) EDIT(XPUNCT) (P(12,2));

PUT STRING(XHINNO1) EDIT(XNXNNO) (P(6));

DISPLAY(' CONTINUOUS SOLUTION: JBJ = '11 XFUNCT1 I!

' AT NODE 1:: xaxnuo1);

CALL NIISART;

xuxuuo=3oo;

xnxrau=3oo;

CALL HIIFLow;

CALL SOLUI3N('PILE','OUT'):

PUT STRING(KFUNCT1) EDIT(XPUNCT) (P(12,2));

PL/I OPTIHIZING COHPILER HIP: PROC REORDER;

STHT

260 PUT STRING(XHXNNO1) EDIT(XHXNNO) (P(6)):

261 DISPLAY(' INTEGER SOLUTION: OBJ 8 'll XFUNCT1 ll

' AT NODB 'll XHXNNO1):

262 CLOSE PILE(CARD);

263 CLOSE PILB(OUT);

26a FINISH:

END HIP:

S
S
S
S
S
S
S
S
S
S

5
5
8
5
5
5
5
5
5
8
5
5

5
5

5
5

S
S

S
S
S

5
5
5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5

S
S
S

S
S

S
S

S
S

S
S
S
S
S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
S

C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H
H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H
H
H

H
H

H
H

.
H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
C

-
E
E

E
E

E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E

E
E

E
S

E
E

E
E
E
E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E
F
E
E

D
D
D
D
D
D
D
D
D

D
D
D
D
D
D
D
D
D
D

D
D

D

D
D

D
D

D
D

D
D

0
0

D
D

0
0

D

D0
0

0
0

D
D

0
0

0
0

D
D

0

D
D
D
D
D
D
D
D
D
D

D
D
D
D
D
D
D
D
D

PL/I OPTIHIZIHG COHPILER SCHED: PROC BEORDBR;

SOURCE LISTING

STHT

1 SCHED: PROC EEOEDEE;

2 DCL (NON.SBIPT,IPOS,LNUH,ISIH) FIXED BIN(15) STATIC EXTERNAL;

3 DCL EAEE FIXED BIN(31) STATIC EXTERNAL;

u DCL (SIZE(SO),PLAT(SO),TAPE(50)) CHAR(1) STATIC EXTERNAL;

5 DCL (CODE(SO),CLINE(200)) CEAE(2) STATIC EXTERNAL;

6 DCL VALUE(50) FIXED DEC(7,2) STATIC EXTERNAL;

7 DCL PART(SO) C8AE(9) STATIC EXTERNAL:

8 DCL (LOAD(50),NUNPRT(50),HOLDS(SO),PRANE(50),PACK(SO),RATE(50),

SHIP1(50),SHIP3(SO),SBIPQ(50),INVBAL(50),SAFETY(SO),

FCD(SO),SNI82(SO),LFOS150).LDIFF(50),NTOT(SO),LiDIFF(200))

FIXED BIN(15) STATIC EXTERNAL;

9 DCL TITLE CNAB(80) STATIC EXTERNAL;

1o DCL 1 CHANGE(100) STATIC EXTERNAL,

2 (FOS.NEED) FIXED BIN(15),

2 (ADD,SDE) CBAR(2);

11 DCL ICOUNT FIXED BIN(15) STATIC EXTERNAL;

12 DCL LED FIXED BIN(1S) STATIC EXTERNAL;

13 DCL AVAIL(100) CNAE(2);

1a DCL SDIFF(100) FIXED BIN(15);

1s DCL (ITENP,ITENP1) CEAE(2);

16 DCL (SIZE1,SIZE2) FIXED BIN(1S);

17 DCL (ITEEFZ.ITENF3) FIXED BIN(15);

18 DCL FEOELEE(100) FIXED 818(15):

19 DCL REHOVE(100) CNAE(2);

20 DCL 1 CARD,

2 NAHE C8AE(8),

2 NOCOL FIXED BIN(31) INIT(0),

2 DUNN! CHAB(u);

2 DCL COLDNN(2SO) CHAR(8):

22 DCL 808(2501 CHAR(8);

23 DCL TYPE(SOO) FIXED 818(31):

24 DCL ENDSEC CEAR(8) INIT('$ENDSECS'):

25 DCL ENDATA CHAR(8) INIT('ENDATA');

26 DCL VALUES(SOO) FLOAT DEC(6):

27 DCL VALUESB(ZSO) FLOAT DEC(16) DEFINED(VALUES);

28 DCL VALALF8(500) CHAR(8) DEFINED(VALDES);

29 DCL LAST CHAR(2) INIT('II');

3O DCL ACTIVE(2SO) FIXED EIN(31);

31 DCL CNANE(250) CHAR(8);

32 DCL (IHAX,ISUB,ISUH,CPOS,ICNT,A1,A2,A3,HH) FIXED BIN(15);

PL/I OPTIHIZIHG COHPILER SCHED: PROC REORDER;

STHT

33

3Q

DCL (ISTART,IEND,HSIZE,NSIZE,A(3)) FIXED 813(15):

LSIzo:

/‘$$tifittfitttttttfifiOttttfit¥.#tfitt$1/

/‘** INITIALIZE THE VARIABLES l”"/

/¢tittttttttitttttttttttttttttttttt/

BEGIN_PGH:

IDD(‘1" ':

5081‘18' ':

POS(#)=O:

NEED(‘)=0:

AVAIL(8)=' 1;

SDIPP(‘)80:

ACTIVE(*)=0:

CNAHE(*)=' ':

TYPE(¢)=O;

RENOVE181=1 1;

PBOBLEH(‘)80;

/#tit.¥##¥t##tttfitttfitttttfitfifitttttttt/

/““. READ AND WRITE FILE OUT *“**/

/ttttttttttttttttttOttttttttattttttttt/

READ FILE(OUT) IGNORE(1):

READ FILE(OUT) INTO(CARD);

READ FILE(ODT) INTO(ROR);

READ FILE(OUT) INTO(TIFE1;

READ FILE(OOT) INTO(VALDES);

READ FILE(ODT) IGNORE(1);

PL/I OPTIHIZING COHPILER SCHED: PROC BEORDER;

STNT

/ttt$*#tt¢ttttt8#tttttttttttlttttttttttttttt/

/88888 GET AND FRINT TEE ROI SECTION 88888/

/¢¢tttttttttOtttttttittittttttt‘ttttttttit#t/

$2 LAB1:

READ FILE(OUT) INTO(CARD):

53 I? NANE=ENDATA THEN GO TO LABS:

59 I? LSR=0 THEN

PUT EDIT('SOLUTION OF THE EON SECTION') (PAGE,X(35),A):

55 READ PILE(OUT) INTO(BON);

56 READ PILE(OUT) IGNORE(1);

57 IP LSB=0 THEN

FDT EDIT((ROB(K) DO K21 TO NOCOL))

(5319(31ox(6):(30C0L)(1(3)ox(7))):

58 IF Lsu=o TEEN

POT SKIP(1);

S9 LABZ:

READ FILE(OUT) INTO(VALDES);

60 I? VALALP8(1)=ENDSEC THEN Do:

61 ICOUNT=1;

62 GO To LAB3;

63 END;

6a DO K=3 TO N;

65 I? VALUESB(K)< 1.8-6 THEN VALUESB(K)=0.0;

66 I? VALUE58(K) > 1.310 TEEN VALUESB(K)=0.0;

67 END;

68 IF LSN=0 THEN

PUT EDIT((7ALDE58(E) DO I=1 To (NOCOL-211,VALALF8(NOCOL-1),

VALALP8(NOCOL))

(SKIP(1)o(N0C0L‘2)(3(12u“).113))ox(3):l(2)ox(9)ol(3)):

69 GO To LAB2;

PL/I OPTIHIZING COHPILER SCHED: PROC REORDER;

STAT

/¥#¥*t.‘$t*¥#t¥¥$tt*tttttttttttfii.¥*#$#l#‘¥t##./

/888*t GET AND PRINT TEE COLUHN SECTION 88888/

/#*t##3tiltttifitt##tttt‘tttttltlti##itt’ttt‘fiti/

7O LA83:

READ PILE(OUT) INTO(CARD);

71 IF NAEE=ENDATA THEN GO To LABS;

72 IF LSN=0 TREN

FDT EDIT('SOLUTION OF THE COLDEN SECTION') (PAGE,X(3S),A);

73 READ FILE(OUT) INTO(COLUHN);

7a READ FILE(OUT) IGNORE(1);

75 IF LSR=0 THEN

FDT EDIT((COLDEN(E1 DO x=1 TO NOCOL))

(SKIPU) .116) , (NOCOL) (A13) .1 (7) 1) 1

76 IF st=o THEN

PUT SKIP(1):

77 LAB”:

READ PILE(OUT) INTO(VALUES);

78 IP VALALP8(1)=ENDSEC THEN GO TO LAB3:

79 I? VALUESB(1)=0.0 THEN GO TO LAB“;

80 ACTIVE(ICODNT)=VALUE38(1)+0.01;

31 CNAHE(ICOUNT)=VALALP8(NOCOL);

82 ICOUNT8ICOUNT+1;

83 IF SUBSTR(VALALF8(NOCOL),3,2)~= LAST TREN PUT SKIP(1);

8“ DO K=3 TO 0:

85 IF VALUE58(K)< 1.E-6 THEN VALUESB(K)=0.0;

86 IF VALUE58(K) > 1.E10 TEEN VALUESE(K)=0.0;

87 END:

88 IF LSN=O THEN

PUT EDIT((7AL32$8(E1 Do K21 TO (NOCOL-2)),VALALF8(NOCOL-1),

VALALF8(NOCOL))

(SKIP(1),(NOCOL-2) ”(12.9) .X(311.X(81.A(2).x19).1181):

8° LAST=SUBSTR(VALALP8(NOCOL),3,2);

90 GO TO LABQ:

91 LABS:

ICOUNT=ICOUNT-1;

92 CLOSE PILE(OUT);

PL/I OPTIHIZING COHPILER SCHED: PROC REORDER:

STNT

/fitfitt##tittfitfitfittttt‘tttttttttt$$¥¥$t/

/888 SORT THE FROELEN AREA ARRAIS 888/

/t#t¢ttttt#¥¥Ottttt¥ttttttttttttttitttfi/

93 Do I=1 TO LNUB-1;

99 DO J8I T0 LNUH:

95 IF LPOS(I) <2 LPOS(J) TEEN GO TO SOBTP;

96 ITEHP2=LPOS(I):

97 ITENFR=LDIFF(I):

98 LPOS(I)=LPOS(J):

99 LDIFF(I)=LDIFF(J);

100 LPOS(J)=ITEHPZ;

101 LDIFF(I)=ITEAF3:

102 SORTP:

END;

103 END;

PL/I OPTIHIZING COHPILER SCHED: PROC REORDER;

STNT

/ttttttttttttt¢ttttttttttttttttttttttttttttt/

IETT ELININATE EEDUNDANT PROBLEN AREAS 888/

[60.980.00.88ttttttOtttttttttOtttttttttttstt/

100 INDEX81:

105 I=1;

106 D0 BNILE(I <= LNON):

107 I! LPOS(I)+1=LPOS(I*1) 8 LPOS(I)+2=LPOS(I+2) 5 I<=LNUN-2 TEEN DO;

108 PNOBLEN(INDEX)=LPOS(I¢1);

109 INDEX=INDEX+11

110 I=I+3;

111 END:

112 ELSE I? LPOS(I)+18LPOS(I+1) 8 I <= LNUN-1 THEN DO;

113 PROBLEN(INDEX)=LPOS(I);

11a INDEX=INDEX+1;

11S I=I+2:

116 END;

117 ELSE Do:

118 PROBLEN(INDEX)=LPOS(I);

119 INDEX=INDEX+1;

120 18101;

121 END;

122 END;

123 INDEX=INDEX-1;

PL/I OPTIHIZING COHPILER SCHED: PROC REOBDEB;

STHT

12“

125

126

127

128

129

130

131

132

133

13k

135

136

137

/#t.#t#fitCittttttttttitfittttttttttttttttt*¥*#/

/tttt¢ PUTTING THE RESULTS OF TRE HIP 8****/

/t¢ttt SDRTRACT SECTION IN REAOVE ARRAY 8888*/

/t#.fi¥tt*$*tfitttttttfitttittitit'ttttttttfitfifi*‘i/

ICOUNT=1:

DO ISUB=1 TO 250:

I? SUBSTR(CNAEE(ISUB),3,2)='SS' THEN GO TO PND_SUB:

END:

PDT SKIP EDIT(' THE PROGBAN STOPS HERE') (A):

STOP:

FND_SDR:

DO I=1 TO NUH RHILE(SDRSTR(CNANE(ISDE),3,2)='SS');

DO J=1 TO ACTIVE(ISUB):

REHOVE(ICOUNT)=SUBSTR(CNAHE(ISUB),1,2);

ICOUNT=ICOUNT*1:

END:

CNK_NEXT_SS:

ISUB=ISUB+1:

END:

ICOUNT=ICOUNT‘1:

PL/I OPTIHIZING COHPILER SCHED: PROC REORDER;

STHT

/tttt#itttt*tttttttttttttitttttttttttfitttttttt#tt/

/‘*“* PUTTING THE RESULTS OF THE PROBLEH *‘**’/

[88*88 SECTION IN THE CHANGE ABBA! "*’*/

[COOOCOJOttttOOCOOOOOCOOCtttttttttttttttttttttttt/

138 ICNT81:

139 138:0:

100 DO 081 TO INDEX:

101 I=1:

102 D0 I=-1 TO 1:

183 D0 K81 TO NUH:

100 I? CLINE(PBOBLEH(J)+I)=CODE(K) THEN GO TO FOUND:

105 END:

106 FOUND:

DO LL=1 TO ICOUNT:

197 IF CODE(K)=REHOVE(LL) THEN DO:

108 POS(J)=PEOBLEH(J)+I:

109 SUB(J)=CODE(K):

150 DO K=LL TO ICOUNT-1:

151 REHOVE(K)8REHOVE(K*1):

1S2 END:

1S3 ICOUNT=ICOUNT-1:

154 GO TO CONTINUE:

155 END:

156 END:

157 A(L)=LOAD(K):

158 L=L+1:

159 END:

160 IHAI=HAX(A(1),A(2),A(3)):

161 I? IHAX822 THEN DO:

162 IF A(1)=22 THEN IHAX=HAX(A(2),A(3)):

163 I! A(2)822 THEN DO:

160 POS(J)=PROBLEH(J)-1:

165 SDB(J)=CLINE(PEOBLEH(J)-1):

166 AVAIL(ICNT)8SUB(J):

167 ICNT=ICNT+1:

168 FOS(IRDEX+ISR+1)=FROELEE(J)o1;

169 SUB(INDEX*ISN§1)=CLINE1PROBLEH(J)+1):

170 AVAIL(ICNT)=SUE(INDEX+ISR+1);

171 ICNT=ICNT§1:

172 ISH=ISH+1:

173 GO TO CONTINUE:

17a END:

175 I? A(3)822 THEN IHAX=HAX(A(1),A(2)):

176 END:

PL/I OPTIHIZING COHPILER

STHT

177

178

179

180

181

182

183

189

185

186

187

188

189

190

191

192

193

190

195

196

197

198

199

200

201

202

203

200

211

212

213

210

215

216

SCHED: PROC

I? IHAX=A(2) THEN DO:

POS(J)=PROBLES(J);

SUB(J)8CLINE(PROBLEH(J)):

AVAIL(ICNT)=SUB(J);

ICNT8ICNTT1:

GO TO CONTINUE:

END:

IF IHAX=A(1) THEN DO;

FOS(J)=RROELEN(J)-1;

SUE(J)=CLINE(FRORLEN(J)-1):

AVAIL(ICNT)=SUB(J):

ICNT=ICNT+1;

00 TO CONTINUE:

END;

IF IHAX8A(3) THEN DO:

POS(J)8PROBLEH(J)+1:

SUB(J)=CLINE1PROBLEH(J)+1):

AVAIL(ICNT)=SUB(J):

ICNT=ICNTO1:

END;

CONTINUE:

NX:

END:

INDEX=INDEX+ISN:

INDEX=INDEX¢1:

ISTART=1:

CPOS=60:

DO L=1 TO ICOUNT:

DO J=ISTART TO 100:

D0 KK=1 TO 2:

I? KK=1 THEN K=CPOS-J;

ELSE K=CPOS+J:

I? K < 1 THEN GO TO UK;

I? RENOVE(L)=CLINE(K)

END:

GO TO NI_CHK:

FND_LETTER:

POS(INDEX)=K:

SUB(INDEX)=CLINE(K);

INDEX=INDEX+1;

ISTART=J+1;

IF L < IconNT E RENOVE(L)«=REAOVE(L11)

00 TO NX_REHOVE:

HEORDER:

THEN GO TO PND_LETTER:

THEN ISTART=1:

PL/I OPTIHIZING COHPILEE SCHED: PROC REORDER;

STHT

217 NX-CHK:

END:

218 NI-RENOVE:

END:

219 INDEX=INDEI-1;

220 ICOUNT=INDEX:

PL/I OPTIHIZING COHPILER SCHED: PROC REORDER;

STHT

/t#t$¢tttttttttt###tttttt#ttttttttttttttttttOtt/

/‘***# PUTTING THE RESULTS OF THE HIP 8*8**/

/”"*I ADDITION SECTION IN AVAIL ARRAY ‘****/

/¢¢t¢ttttttttttttttOtttttttttOOtttOttttcttttttt/

221 D0 IADD=1 TO 250:

222 IF SUBSTR(CNAHE(IADD),3,2)='AA' THEN GO TO PND-ADD:

223 END:

229 FND_ADD:

DO I=1 TO NUH RRILE(SDESTR(CNANE(IADD),3,2)='AA');

225 DO J81 TO ACTIVE(IADD):

226 AVAIL(ICNT)=SUBSTH(CHAHE(IADD),1,2):

227 ICNT=ICNT+1:

228 END:

229 CRA_NEXT_AA:

IADD=IADD+1;

230 END:

231 ICNT=ICNT-1:

232 D0 I81 TO ICNT:

233 D0 KS1 TO NUH;

23“ I? AYAIL(I)=CODE(K) THE! GO TO PND_KEY;

23S END:

236 PND_KEY:

SDIFF(I)=LOAD(K):

237 END:

PL/I OPTIHIZING COHPILER SCHED: PROC REOBDER:

STHT

/tttttttttttttttttttttttttttttfittttttt/

/"*‘T SOBTING THE AVAIL ARRAY 8**‘*/

/tRtt:tttttt:tttt:tOttttttttttcttttttt/

238 D0 I=1 TO ICNT-1:

239 DO-J=I+1 TO ICNT:

2u0 IP SDIPP(I) > SDIPF(J) THEN GO TO SORTA:

201 I? SDIPP(I) 8 SDIPP(J) THEN DO:

202 5128180:

293 5122280:

200 DO K81 TO NUH:

2&5 I? AVAIL(I)=CODE(K) THEN GO TO 51:

206 END:

207 31: IP SIZE(K)8'L' THEN SIZE181:

208 D0 K81 TO NUH:

209 I? AVAIL(J)=CODE(K) THEN GO TO 52:

250 END:

251 32: I? SIZEtK)8'L' THEN 312E281:

252 I? SIZEZ <8 SIZE1 THEN GO TO SORTA:

253 END:

25“ ITEHP=AVAIL(I):

255 ITEHP28SDIPP(I):

256 AYAIL(I)=AVAIL(J):

257 SDIPP(I)8SDIPP(J):

258 AVAIL(J)8ITEHP:

259 SDITP(J)8ITEHP2:

260 SORTA:

END:

261 END:

PL/I OPTIHIZING COHPILBR SCHED: PROC RBORDER:

STHT

/¢t:t:¢ttt:¢ttt¢t:t¢ttttttttittttttc¢tttttttttttt.tt/

/*‘*** SORT THE CHANGE STRUCTURE 8! POSITION *****/

/ct:ct¢tttttttt:tttttatttttt:ttttttttttttttctttt¢ttt/

262 DO I=1 TO ICODNT—1:

263 D0 J=I+1 To ICODNT:

26a I? ABS(POS(I)-CPOS) <= ABS(POS(J)-CPOS) THEN GO to soars:

265 ITEHP=3D0(I):

266 ITEHP1=SUB(I):

267 ITENPZ=POS(I):

268 IDD(I)=ADD(J):

269 SUE(I)=SUB(J):

270 POS(I)=POS(J):

271 ADD(J)=ITEEP:

272 SUB(J)=ITE:P1:

273 POS(J)=ITEEPZ;

27H SORTB:

END:

275 END:

PL/I OPTIHIZING COIPILBR SCHED: PROC BBORDER:

STE?

/$t##ttitOtttttfittittt#*ttitttttttOttttttttt/

/*‘**‘ FINAL GOLD SEQUENCING STATEG! **¢'*/

/tttttttt$tttttttttttttttttttttttttttttttttt/

276 EINAL_SCHED:

DO I=1 TO ICNT:

277 DO J=1 to ICOUNT:

278 I? ADD(J)~=' ' THEN 60 T0 uonnrcu1;

279 asrzs=o;

280 usrze=o:

/“‘ STRAIGHT SUBSTITUTIO! 0? AVAILABLE HOLDS 1”W/

281 IE POS(J+1)«=POS(J)01 5 POS(J+2)~=POS(J)+2 TEEN DO:

282 I? J > 1 8 POS(J-1)=POS(J)-1 TEEN GO TO CHANGE_80LD:

283 I? J > 2 5 POS(J-2)=POS(J)-2 THEN GO TO CHANGE_SOLD:

28a A1=LiDIPP(POS(J)-2)oLEDIPP(POS(J)-1):

285 A2=LEDIPP(POS(J)+2)+LNDIPP(POS(J)+1):

286 A3=LNDIEP(POS(J)-1)OLEDIPE(POS(J)¢1):

287 ITENPZauAI(AI,A2,13):

288 NEED(J)=LND-ITEEP2:

289 DO K=-1 TO 1 BY 2:

290 DO 881 T0 NON:

291 I? CLINE(POS(J)*N)= CODB(H) THEN GO TO R3:

292 END:

293 R3: IE SIZE(a)='L' TEEN NSIZE=1:

29a IE TAPE(a)='!' THEN NSIZE=1:

295 END:

296 DO K=1 TO ICNT:

297 IF surrr(x) > NEED(J) 782: so TO as;

298 D0 nus-1 TO 1 B! 2:

299 I? CLINE(POS(J)+UB)='AN' 8 AVAILIK)='HH' THEN GO ro R5:

300 It CLINE(POS(J)§NH)='NN' 6 AVAIL(K)='AN' THEN so to as;

301 END:

302 D0 881 TO NUS;

303 I? AVAIL(K)8 CODE(H) THEN GO TO RH:

30“ END:

305 R“: I! SIZE(B)='L' 8 8512381 THEN GO TO RS:

306 IF TAPE(N)='!' 5 NSIZE=1 THEN GO TO 35:

307 LNDIPE(POS(J))=LOAD(H):

308 ADD(J)8AVAIL(K):

309 DO L=K TO ICNT°1 NHILE(ICNT>1):

310 AVAIL(L)=AVAIL(L+1);

PL/I OPTIHIZING COHPILER SCHED: PROC REORDEB:

STNT

311 SDIEE(L)=SDIEP(L+1):

312 END:

313 ICNTaICNT-1:

318 GO TO PINNL_SCHED:

315 R5: END:

316 END:

/“‘ SUBSTITUTION NHERE HAN! HOLDS ARE CHANGING ‘2']

317 ELSE DO:

318 CHANGE_NOLD:

A1=LEDIPP(POS(J)-2)*LNDIPP(POS(J)-1)1

319 I! J > 2 5 ADD(J-2)=' 1 5 POS(J-2)=POS(J)-2

TEEN A1=LNDIPP(POS(J)-1):

320 I? J > 1 5 105(3-1)=' 1 5 POS(J-1)=POS(J)-1

THEN L1=LNDIPP(POS(J)-2):

321 I? a > 2 5 100(3-1)=' 1 5 ADD(J-2)=' ' 5

POS(J-1)=POS(J)-1 5 POS(J-2)=POS(J)-2 THEN A1=O:

322 322L851?P(805(J)+2)+LBDIPT(POS(J)+1);

323 I? ADD(J+2)=' 1 5 POS(J92)=POS(J)+2

THEN 12=LNDIPP(POS(J)+1):

328 It ADD(J+1)=' ' 5 905(a+1)=903(a)o1

TEEN 12xLUDIPr(POS(J)+2);

325 I! ADD(J+1)=' ' 5 ADD(J+2)=' ' 5

POS(JO1)=POS(J)O1 5 POS(J02)=POS(J)+2 THEN 32:0;

326 A3=LNDIPP(POS(J)-1)OLEDIPP(POS(J)01):

327 I? J > 1 5 100(3-1121 ' 5 POS(J-1)=POS(J)-1

THEN A3=LEDIPF(POS(J)O1):

328 I? ADD(J+1)x' 1 5 POS(J+1)=POS(J)+1

TEEN A3=LIDIPT(POS(J)-1);

329 I? J > 1 5 ADD(J-1)=' 1 5 POS(J-1)=POS(J)-1 5

ADD(J+1)=' 1 5 p05(a+112905(a)+1 THEN AJ=0:

33o ITENP2=NAX(I1,AZ,A3):

331 NEED(J)=LND-ITEHP2:

332 I? SDIPP(I) > NEED(J) THEN GO TO NOHATCH1:

333 no nus-1 To 1 8! 2:

338 I? CLINE(POS(J)+NN)='AN' 5 AVAIL(I)='NN'

THEN 50 TO NONATCN1:

335 IP CLINE(POS(J)+NN)8'NN' 5 AVAIL(I)='AN'

TEEN GO To NONATCE1:

336 END: 1

337 DO xs-1 To 1 E! 2;

338 I? CLINE(POS(J}+K)=CLINE(POS(J+K)) 5 ADD(JOK)=' '

THEN so To R110:

339 no N=1 To 888;

3uo IE CLINE(POS(J)+K)= CODE(H) THEN GO TO R11:

PL/I OPTIHIZING COHPILER SCHED: PROC REORDER;

STNT

3B1 END:

382 R11: 1? SIZE(N)='L' THEN NSIZE=1:

3&3 I! TAPE(N)='Y' THEN NSIZE=1:

3uu R110: END:

3n5 DO N=1 TO NON:

3H6 I? AVAIL(I)= CODE(N) TNEN GO TO R12:

337 END:

308 R12: I? SIZE(N)='L' 5 flSIZE=1 TEEN GO TO NOBLTCB1:

309 I? TAPE(N)='Y' 5 NSIZE=1 THEN GO TO NONATCH1:

350 LNDIPY(POS(J))=LOAD(N):

351 ADD(J)=AVAIL(I):

352 DO L=I TO ICNT-1 INILE(ICNT>1):

353 AVAIL(L)=AVAIL(L+1):

35“ SDIPE(L)=SDIFP(L+1):

355 END:

356 ICNT=ICNT-1:

357 GO TO EINAL_SCHED:

358 END:

359 NOHATCH1:

END:

360 NEIT_SCRED1:

END:

361 PUT PAGE EDIT(' a ICNT= ',ICNT,' AVAIL SDIEP') (A,P(3),A):

362 DO I=1 TO ICNT:

363 PUT SKIP EDIT(AVAIL(I).SDIEP(I)) (X(S),A.X(3),P(3)):

36a END:

365 PUT SKIP(2) EDIT('N POS ADD SUB NEED') (X(2),A):

366 D0 I=1 TO ICOUNT:

367 PUT SKIP EDIT(POS(I).ADD(I),SUB(I),NEED(I))

(X(5) 0P13) 0x15) o‘cx (5) 0‘01 (5) 0,13,) 3

368 END:

369 I? (LHD<=29 5 ICNT<=5) I (LND<=3O 8 ICNT<=Q) l ICNT<=3 TEEN DO:

370 D0 I=1 TO ICNT:

371 DO J=1 TO ICOUNT:

372 I? ADD(J)~=' ' THEN GO TO NX_LOOK:

373 1? LED < 3G 8 LHD+SDIPP(I)-NEED(J))-3Q THEN GO TO BEGIN_PGN:

37a IDD(J)=AVAIL(I):

375 GO TO NX_CNT:

376 NX_LOOK:

END:

PL/I OPTIBIZING COflPILER SCHBD: PROC REORDER;

STNT

377 N!-CNT:

END:

378 ICNT=O:

379 END:

PL/I OPTIHIZING COHPILER SCEED: PROC REORDEB:

STET

FOOOOOttfit$$$$O$“t‘.t‘**¥*‘O.’*t*$.*.*$/

/“*‘* CHECK EOE PROBLEM SOLUTION .“‘*/

/“‘** THEN UPDATE HOLD POSITIONS ““*/

/#$¥.O¥¥tt¥‘$‘$.O¥¥#¥¥*.'"t“***..‘ttttfi/

380 I? LSD=O THEN DO;

381 LSD=1;

382 PUT PAGE;

383 END:

38“ I? ICNT > O 5 LED < 33 TEEN DO:

385 PUT SKIP(2) EDIT(' TEE SCHEDULING PROBLEH CLNNOT BE SOLVED ',

'WITH IN AVERAGE HIRE LOAD DIFEICULTY OP ',LUD) (A,K,P(3)):

335 LUD‘LDDO1:

387 PUT SKIP EDIT" LHD IS NOW BEING SET TO ',LWD) (A,F(3));

388 GO TO BEGIN-PGE;

389 END;

390 D0 I=1 TO ICOUNT:

391 CLINE(POS(I))=LDD(I);

392 END:

393 PUT SKIP(2) EDIT(' TEE SCHEDULING 8 SEQUENCING ALGORITHM HAS ',

'SOLVED WITH AN AVERAGE HIRE LOAD DIEPICULTY OE ',LWD)

(DIAIP13))3

39“ L9D=27;

PL/I OPTIHIZING COHPILER SCHED: PROC RBORDER:

STHT

/OttttOtttttttttttttttttttttttttttttttttittttttttttt/

/**"‘ SORT THE CHANGE STRUCTURE BY POSITION **t**/

[fittttttttttlttttttttfittttttttttttttttttttttttttttlt/

395 DO I=1 TO ICOUNT-1:

396 D0 J=IT1 TO ICOUNT:

397 IE POS(I) (8 POS(J) THEN GO TO SORTC:

398 ITENP=ADD(I):

399 ITENP1=SUB(I):

U00 ITEHPZ=POS(I):

901 ITEHP3=NEED(I):

u02 ADD(I)=ADD(J):

“03 SUB(I)=SUB(J):

uou POS(I)=POS(J):

305 NEED(I)=NEED(J):

uos ADD(J)=ITEHP:

uo7 SUB(J)=ITENP1:

uoe POS(J)=ITEHP2:

u09 NEED(J)=ITEHP3:

U10 SORTC:

END:

U11 END:

812 FINISH:

END SCHED:

PL/I OPTIHIZING COHPILER LINEUP: PROC REORDER;

STHT

97

98

99

100

101

102

103

109

105

106

107

108

109

110

112

113

11a

115

116

117

118

fitt‘ttfitfittttfifittfitttfit0fitttfittfittttt.Otttit.tttttlttttttltittttttfitf

/"* PRINT THE TOTAL NUHBER O? HOLDS ON LINE 8 HOLDS AVAILABLE "t/

/tttt¥t$#t$ttttlttttttttt#tttOOOOO##1##ttttttttttttttttfittttfittittttt/

PUT SKIP EDIT('TOTAL NUHBEE OP HOLDS') (X(5).A):

IE ISIB > O 5 ICOUNT > 0 THEN PUT EDIT('HOLD','ADD',‘REHOVE')

(C01- (35) v3v21x110) v“):

I? LIUH=0 THEN PUT EDIT('TAPE AFTER POST CURE - 33') (COL(90),A);

I? LNUH ‘8 0 THEN

PUT EDIT('PROBLEH LEEAS') (COL(93),A):

PUT SKIP EDIT('ON LINE') (E(11),A);

IE ISIH > O 5 ICOUNT) 0 THE. PUT EDIT('POSITION'.'EOLD','HOLD')

(COL(3u),I.X(8),A.X(10),1);

I? LNUH‘O THEN PUT EDIT('PLATEORH EOEK ' 53') (COL(94),I);

I? LHUH *3 0 THEN

PUT EDIT('POSITION','TOTAL WIRE DIEPICULTI')

(COL(8“).A,X(S),3);

NEXT:

DO 131 TO DUE:

I? I>LNUH THEE GO TO KEXT1;

PUT SKIP EDIT(CODE(I),EQ,HTOT(I),LPOS‘I).LDIPE(I))

(x(11)¢l(2).A'P(3)pX(67),E‘u)'X(13),P(“)):

I? ICOUNT)3 I THEN PUT SKIP(0) EDIT(POS(I),ADD(I),SUB(I))

(COL(37) 13(3) :1111) 03(2) :1 (12) ol(2))1

GO TO LIST; -

NEXT1:

PUT SKIP EDIT(CODE(I),EQ,NTOT(I))

(1(111o112)olo?(3)):

I? ICOUNT >2 I THEN PUT SKIP(0) EDIT(POS(I),ADD(I),SUB(I))

(CM-(37) .P(3).X(11) .H2) .1112) AM)):

LIST:

END:

DO I=NUHO1 TO ICOUNT NHILE(ISIH >0):

I? ICOUNT < NUH THEN GO To FINISH:

PUT EDIT(POS(I),ADD(I),SUB(I))

5 ((301437) oF(3).X (11) .112) :X (12) 'l (2));

ND:

FINISH:

ISIH=ISIHT1:

END LINEUP:

