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ABSTRACT

TESTING OF AND ESTIMATION SUBJECT TO

INEQUALITY RESTRICTIONS USING A

MINIMUM DISTANCE ESTIMATOR

BY

Lawrence Capron Marsh

Economic theory and empirical evidence from previous

research may suggest that certain inequality restrictions

may be appropriate for particular parameters in an econo-

metric model. This dissertation develops a test for the

appropriateness of restrictions that constrain parameters

to finite intervals. In addition, it considers the use of

a minimum distance estimator that incorporates inequality

restrictions into the estimation procedure itself.

By definition the minimum distance estimator selects

that point in the constrained space which is nearest to the

unconstrained maximum likelihood estimate. The distribu-

tional properties of the minimum distance estimator are com-

pared to those of the unconstrained maximum likelihood es—

timator and the constrained maximum likelihood estimator in

extensive Monte Carlo sampling experiments. It is shown

that the minimum distance estimator is greatly superior to

the unconstrained maximum likelihood estimator in terms of

various definitions of mean squared error.

The equivalence of the constrained maximum likelihood

estimator and the minimum distance estimator in a number of

circumstances is demonstrated by noting that in general

there is not a substantial difference between the estimated
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distributional prOperties of the minimum distance estimator

and those of the constrained maximum likelihood estimator.

A single sample approximation of the variance, absolute

bias,»and mean squared error of the minimum distance esti-

mator is develOped and many examples of applying the mini-

mum distance estimator in regression analysis are presented

indicating the effect of increasingly stringent inequality

restrictions as imposed by the minimum distance estimator.

Thus, in general, the usefulness and effectiveness of the

minimum distance estimator are demonstrated.
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CHAPTER I

INTRODUCTION

1.1 Statement of the Problem
 

In order to understand fully how to utilize the behav-

ioral and predictive capabilities of an econometric model,

all available information, both a priori and empirical, must

be used effectively in the estimation process. Such informa-

tion could be in the form of inequality restrictions. Fail-

ure to use all available information results in models that

tend to be less reliable and tend to have larger variances

than necessary and are therefore inefficient. On the other

hand, imposing restrictions that are invalid leads to estima-

tors which may not only be biased but may be inconsistent as

well. The need for testing for the appropriateness of re-

strictions is clear, especially in the case of inequality re-

strictions since they have been ignored most often both

theoretically and practically. In particular, a test proce-

dure for restrictions which constrains regression coeffi-

cients to finite intervals needs to be developed.

Research economists occasionally wish to restrict the

values of one or more regression coefficients by inequality

constraints. A coefficient might be desired which is posi-

tive, negative, or restricted to lie within a particular

range such as zero to one. For example, the slope of a sup-

ply curve could be required to be positive while that of a

demand curve could be required to be negative. A coefficient

representing the marginal propensity to consume could be re-

quired to lid between zero and one.

1
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A common §d_hgg approach to this problem is first to

run an unrestricted regression. If all the coefficients of

interest have the right signs or lie within the right range,

then the initial regression results are accepted. However,

if any of the coefficients have the wrong sign or lie out-

side the restricted range, then a new combination of explana-

tory variables is tried or the form of the regression equa—

tion is altered. This procedure is continued until the

desired results are obtained.

The above ad_hgg_procedure does not take into account

the effect of such a procedure on the properties of the re-

sulting estimators themselves. A more straightforward

approach is to impose the desired restrictions on the estima-

tion procedure itself. Such a one-step procedure simplifies

the derivation of the properties of the resulting estimators.

Inequality restrictions may be incorporated into the

estimation procedure by use of a minimum distance estimator

such as that proposed by Ramsey (30, p.8). Ramsey's minimum

distance estimator, ém’ selects that point in the con-

strained set which is nearest to the unconstrained maximum

likelihood estimator, éu' Ramsey defines his minimum dis-

tance estimator, Em, by the expression

llz _min

He -e —e€C|l_9_u-9_|I2
—-u—-m

which indicates that gm is defined as the point in the con-

strained space, C, which gives the minimum value for the
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square of the Euclidean norm of the vector representing the

difference between the unconstrained point, Eu, and every pos-

sible point, 0 e C, in the constrained space.

Obviously, by definition, the minimum distance estimator

(MDE),will be at least as close to the unconstrained maxi-

mum likelihood estimator (UMLE) as the constrained maximum

likelihood estimator (CMLE) will be. In some cases it may be

possible for the MDE to be closer to the UMLE than the CMLE

is. As will be demonstrated in a later chapter, this will

often be the case for multivariate situations.

1.2 Outline of the Thesis
 

The next section of this chapter will briefly review

some of the literature dealing with inequality restrictions

which is appropriate for regression analysis. Chapter II

will deve10p and explain a test procedure for deciding if in-

equality restrictions are appropriate for a particular situa-

tion where such restrictions limit the parameter of interest

to a finite interval. Chapter III will discuss the minimum

distance estimator as a particular method of dealing with

inequality restrictions with reference to some of the work of

Ramsey and Penneck. Chapter IV will determine estimates of

small sample properties of the minimum distance estimator as

compared to the constrained and unconstrained maximum likeli-

hood estimators by means of Monte Carlo sampling experiments

and present a method of obtaining an estimate of the variance

of the minimum distance estimator given a particular sample.
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Finally, Chapter V will provide some examples of using the

minimum distance estimator and will demonstrate under what

circumstances and to what extent in these examples use of

the minimum distance estimator can result in a reduction in

the estimated variance of the regression coefficients and

how this reduction in estimated variance is not substan-

tially offset by an increase in estimated bias in the calcu-

lation of estimated mean squared error.

1.3 Review of the Literature
 

Methods of testing for and incorporating exact linear

restrictions in regression analysis have been well developed

by Chow (6, p.591), Chipman and Rao (5, p.198), Toro and

Wallace (37, p.558), Fisher (10, p.361), Wallace and

Anderson (39, p.l), Wallace (38, p.689), and others. How-

ever, these techniques cannot be directly applied in the

case of inequality restrictions. Dealing with inequality re-

strictions has proven to be a more difficult problem. Con—

sequently, the literature on inequality restrictions has

been much more limited and less productive.

Theil and Goldberger (35, p.65) proposed a method for

approximating inequalities on coefficients so as to incor-

porate indirectly inequality restrictions into the estima-

tion procedure. They combine a priori and sample informa-

tion in the equation:

X

l
"
<
2

[
C

II

[
C
7

+

R

[
'
1

[
<
1
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where the a priori information is given by the expression

5’: Rb_+ g, b_is the vector of coefficients; R is a matrix

of weights; r is the resulting vector of values set by the

restrictions except for a disturbance term vector, g, which

is assumed to have a zero mean and a nonsingular variance-

covariance matrix. This a priori information tends to re-

strict the posterior coefficients to be within desired
 

ranges where the a priori coefficients, b, represent the

midpoints of the desired ranges and the variance-covariance

matrix of !.is used to restrict the end points of the ranges

to be a set number of standard deviations away from the mid-

point so that the probability of a sample observation

falling outside of a desired range is very small. The sam-

ple information is represented‘by the usual regression equa-

tion y = Xb_+ E! where y is a vector of observations on the

dependent variable, X is a matrix of observations on the ex-

planatory variables, and u_is a disturbance term vector with

zero mean and nonsingular variance-covariance matrix. The

restricted parameter estimates can be represented by

g = (X*'U*-1X*)—1X*'U*-1Y*

[I X 1.123 E
where y? = , X* = , and U* =

a R 32' 22'

However, their Bayesian method of mixing a_priori and

sample information does not guarantee that the inequality re-

strictions will hold. By adding a point estimate from near
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the midpoint of the restricted range to the original sample

data before estimating the coefficients and by setting a

small standard deviation for the selected point estimate, a

coefficient can be derived which has a high probability of

beingrwithin the restricted range. Thus, it becomes highly

likely using this method that an income elasticity will lie

between zero and one. However, it cannot guarantee an esti-

mate between zero and one. The smaller the standard devia-

tion, the more concentrated the probability becomes around

one point. In reducing the probability of getting an esti—

mate outside the restricted range, the probability of get—

ting an estimate near either of the end points of the range

is substantially reduced. Furthermore, the larger the sam-

ple size, the more weight is given to the sample observations

and the harder it is to guarantee an estimate within the re-

stricted range. Also, the method is only relevant for inter-

val inequality restrictions and is generally not very useful

in cases of single one-sided inequality restrictions unless

they are arbitrarily truncated at some point. Consequently,

their approach leaves the way open for a technique that would

constrain a coefficient by the desired inequality restric-

tions and at the same time would not result in excessive con-

centration of probability about a single point.

Judge and Takayama (19, p.166) combine prior and sample

information in a regression model such that inequality re-

straints are placed on individual coefficients or combina—

tions of coefficients by minimizing the quadratic form given



by the sum of squared residuals subject to the inequality

constraints. The analysis is based on the standard regres-

sion model

Xb + 2! Eu = 0, Egg' = 021

l
‘
< II

where y is a vector of observations on the dependent varia-

ble, X is the regressor matrix, 2 is the vector of regression

coefficients, and u.is the disturbance vector which has zero

mean and a diagonal covariance matrix equal to the constant

variance 02 times the identity matrix I. The estimator bf*

is defined by that value of b which minimizes ufu_=

(y—X§)'(y-Xb) subject to inequality restrictions such as

1 u
< < <

l) 0_£1_121_:—:1

1 u

2) 5.21112152 :0

3) r1 < b < r and r < O < ru
-3 _ _3 _ 3 _3 _ _._3

1 u
< <

4) Er_§2r_£z.

where r: and r; for i = l, . . a 4, are known vectors of up—

per and lower bound constraints for the unknown coefficients

in the iEE-set bi and 5 is a row vector of weights with one

s. for each b..

3 J

This non-linear programming problem is solved by use of



the Kuhn-Tucker equivalence theorem. Their discussion of

the sampling properties of the restricted estimators refers

to Zellner (41, p.l). Zellner assumed a multivariate nor-

mally distributed disturbance term with zero means and known

homogeneous variances. The inequality restricted estimators

were indicated to be distributed as truncated normal. Pro-

perties such as bias, variance, and mean squared error can

be determined for the single explanatory variable situation,

but become quite difficult to evaluate for models with two

or more explanatory variables. The latter situation must be

dealt with by numerical integration procedures or simulation

techniques. Zellner's work suggests that the mean squared

error of the inequality restricted estimator is smaller than

the mean squared error of the corresponding unrestricted es-

timator. However, the work in this area is incomplete since

small sample prOperties of the inequality restricted estima-

tor have not been comprehensively evaluated fer a multiparam-

eter situation. Moreover, neither Zellner nor Judge and

Takayama have dealt with the problem of hypothesis testing.

Lovell and Prescott (25, p.913) presented an analysis

of a related hypothesis testing problem with inequality con-

straints for a two-step procedure which is quite similar to

a special case of the minimum distance estimator. Their

two-step procedure involves imposing a single one-sided in-

equality constraint on one coefficient in a regression equa-

tion. In the example, the coefficient of the first explana-

tory variable is restricted to be non-negative. If in the
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initial regression that coefficient is non-negative, then

the initial results are accepted. Otherwise, that coeffici-

ent is set equal to zero and the regression is rerun without

the first explanatory variable. Minimum distance estimation

would also set the first coefficient equal to zero in this

event, but would accept the other coefficients as initially

estimated without rerunning the regression. Lovell and

Prescott indicate that the two-step procedure results in

parameter estimates that are biased and inefficient. The

main thrust of the article, however, is to show that the fi-

nal student-t statistics are upward biased in absolute value

and in effect exaggerate the significance levels of the cor-

responding t-tests. This result follows from the work of

Bancroft (l, p.190) and others. Lovell and Prescott do not,

however, deal with the problem of testing for the inequality

constraint in the beginning to decide if it is a valid re-

striction. Nor is the problem of testing within the restric—

tion dealt with because the concern is with testing the un-

restricted coefficients after the first coefficient has been

restricted (i.e., dropped from the equation in this case)

and the regression has been rerun on the remaining variables.

However, Lovell and Prescott demonstrate that the two-step

procedure results in parameter estimates with smaller mean

squared error than the initial parameter estimates if the

disturbance term is normally distributed. It is noted that

both the exaggeration of significance levels and the reduc-

tion in mean squared error are directly related to the
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10

absolute value of the degree of correlation between the re-

stricted parameter variable and the other explanatory varia-

bles in the model. Thus, the Lovell and Prescott analysis

is most appropriate for highly ill-conditioned data as is

often found in economic time series.

Since Zellner's (41, p.l) analysis was performed for

only one explanatory variable and one inequality constraint

under the classical normal linear regression model assump-

tions, Hussain (1?, p.1) extended his analysis to simultane-

ous equation models and in particular to two-stage least

squares constrained and unconstrained estimators by means of

Monte Carlo simulated sampling. Hussain used mean absolute

error and root mean squared error to compare the estimators.

His results indicated that constrained two-stage least

squares was superior to unrestricted two-stage least squares

by these criteria. Where appropriate, two-stage least

squares was preferable to constrained ordinary least squares,

and constrained ordinary least squares was preferable to un-

restricted ordinary least squares.

A more general approach which deals with finitely

bounded compact sets of which an inequality constrained pa-

rameter space may be viewed as a special case has been de-

veloped by Ramsey (30, p.l) who suggested his minimum dis-

tance estimator as an alternative to the maximum likelihood

approach. Ramsey has shown the consistency of the minimum

distance estimator and its superiority over the unconstrained

maximum likelihood estimator in terms of mean squared error
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ll

analytically and in limited sampling experiments under vari-

ous circumstances. In particular, he has shown that the MDE

has a mean squared error smaller than, or at most equal to,

the mean squared error of the UMLE in the single parameter

case when the constrained parameter space is either a convex

set or consists of a finite number of points. Also in the

single parameter case Ramsey has shown that the CMLE is equi-

valent to the MDE when the rate of change of the logarithm

of the likelihood function with respect to the parameter,

is a nowhere increasing and somewhere decreasing function

6. This result implies that 6c = 6m and that the mean

squared errors of the CMLE and the MDE are equal and less

than or equal to that of the UMLE:

MSE éc = MSE e < MSE 6 .

Under more general conditions specified by Ramsey for the

single parameter case, he has shown that the above results

hold at least asymptotically. In the multiparameter case

9,

of

Ramsey found that the MDE has a mean squared error at least

as small as that of the UMLE in the sense that

A_ !A_ < A_ IA-

mam 90> <2“ 90> M91190) (21.6.0)

under the assumption that the constrained parameter space

consists of a finite number of points or contains a non-

countably infinite number of points and is a convex set.
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12

In addition to offering a substantial reduction in mean

squared error, the MDE is particularly useful because it is

considerably easier to calculate than the CMLE for regression

coefficients restricted by inequality constraints. Since the

distribution of the MDE can easily be derived from the dis-

tribution of the UMLE, the analytical form of the finite

sample distribution of the MDE is at least known whenever the

probability density function of the UMLE is known. Further-

more, although the CMLE has the same asymptotic distribution

as the MDE, the derivation of the CMLE from the UMLE, as well

as the proof of CMLE induced reduction in mean squared error

over the UMLE, requires a number of conditions that may be

more or less demanding and difficult to satisfy as indicated

by Ramsey (31, p.8). Consequently, these advantages of the

MDE suggest that it may be preferred to the CMLE.

The literature as reviewed in this chapter has led to

the conclusion that a more extensive examination of the MDE

and its distributional properties as compared with the CMLE

and the UMLE would be useful and interesting for the purpose

of deciding how best to incorporate inequality restrictions

into estimation procedures.

However, before proceeding with a more detailed analy-

sis of the minimum distance estimator, testing procedures

need to be deve10ped to determine if inequality restrictions

are appropriate or not in a given situation in the first

place. Such procedures will be develOped in Chapter II.
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CHAPTER I I

TESTING FOR INEQUALITY RESTRICTIONS

Although test procedures for equality restrictions are

well-known and extensively used, such procedures for inequal—

ity restrictions that limit a parameter to a finite interval

have not been adequately developed, in particular where the

variance is unknown (20, p.213) except in very general ab-

stract terms for the exponential family (24, p.315). This

chapter will develop the needed test procedures related to

the normal distribution before proceeding to an analysis of

the incorporation of such inequality restrictions into the

estimation process by means of the MDE in Chapter III. In

particular, this chapter will deal with a composite null hy—

pothesis where the mean, 6, of a normally distributed random

variable, x, is restricted to values in a closed interval.

At first it will be assumed that the variance of x, 02, is a

known constant. Later this assumption will be changed in

order to deal with the case where the variance is unknown but

takes on the same constant value under both the null and al-

ternative hypotheses. This analysis will then be applied to

a regression problem under the classical normal linear re-

gression model assumptions.

The null hypothesis consists of an interval in that any

point in the interval is an acceptable value for the true

population mean under the null hypothesis. Chernoff and

Moses (4, p.257) have referred to such an interval in hypo-

thesis testing as an indifference zone. The null hypothesis

l3
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may be specified as:

H391<6<82 (l)

The corresponding alternative hypothesis is:

H - e < 61 or e > 62 (2)a.

as shown in Figure l.

f(X)

      

 

4-—“ l —1==;;

C1 61 61:92 92 C2 X,6

Figure 1

Normal Distribution with Mean

Restricted to Finite Interval

Note: Graph of normal distribution with mean between or at

points 61 and 62. H0: 61< 6 < 82. Ha: 6 < 61 or 6 > 62.

6: mean of normally distributed random variable, X.

f(X): probability density function of X.

C}: critical point for left-hand critical region.

c2: critical point for right-hand critical region.
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Before proceeding, it is desirable to establish agree-

ment on the following selected definitions. A critical re-

gion, C, will be defined as a subset of the sample space, S,

such that if an observed value of a statistic, t, falls in

the critical region C the null hypothesis will be rejected.

If the observed statistic does not fall in the critical re-

gion, the alternative hypothesis will be rejected in favor

of the null hypothesis.

A statistic is a real-valued function of the observed

sample values alone and is not dependent on any unknown pa—

rameter values. In this initial case, the mean of the ob—

served sample values will serve as the statistic.

The power of a test is the probability for a given pa-

rameter value that the sample point will fall in the critical

region of the test, i.e., Pr {t e CIB}. The power function

expresses power as a function of the admissible parameter

values, which have been defined by Cramer (7, p.528) as all

parametric points which are regarded as a priori possible

under an admissible hypothesis. The parameter space is de-

noted by Q where 6 s 9, while the acceptance region is de-

noted 90 and the rejection region is denoted 01 such that

Q = 90 U Q1.

The significance level of a test is the supremum of the

power function of the test when the null hypothesis is true,

sup

Geflo

Rao (33, p.375).) As Rao indicates, although under a simple

i.e., « = Pr {t e cle} (see Hogg and Craig (16, p.269) or

null hypothesis the power function yields a single value for
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the significance level, under a composite null hypothesis

the power function yields a set of values and the signifi-

cance level is taken to be the supremum of that set. In the

case of an interval null hypothesis with a single completely

specified nuisance parameter, the supremum of the power

function under the null hypothesis is the maximum value of

the power function under the null hypothesis. A typical

power curve drawn for values of the power function under the

null hypothesis is shown in Figure 2

 
  
 

Power Power
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I : '
I : :

.020 1 I I ».020

0 .5 l 6

Figure 2

Power Curve Under Null Hypothesis

HO: 0 i 6 i l m = .05

 

Ferguson (9, p.224) defines an unbiased test as a test

which has a power function which takes on values less than or

equal to the significance level under the null hypothesis and
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values greater than or equal to the significance level under

the alternative hypothesis. Given a particular level of

significance, «, a uniformly most powerful unbiased test of

size a is defined by Ferguson to be a test of size a which

has power equal to or greater than the power of any other

unbiased test of size a for all admissible parameter values

under the alternative hypothesis. In other words, it is an

unbiased test which has maximum power under the alternative

hypothesis.

The following testing procedure may be used for testing

the interval hypothesis (1) against the alternative hypothe-

sis (2) when the parameter of interest is the mean of a

normally distributed random variable with a known constant

variance. The proposed test statistic is the mean of the ob-

served sample values, which is distributed as N(6, oz/n),

where n is the sample size. Select two critical points c1

where c < 6 and cand c 1 12, 2 > 62, such that the signifi-

cance level is equal to some desired value, a, that is

a = sup Pr {i e C}, where C = {(-®, c1), (c2, CD)}. For rea-

sons shortly to become apparent, the critical points must be

located symmetrically relative to the interval hypothesized

in (l) in order to have an unbiased test. This symmetry may

be expressed by the condition:

61-C1=C2-e2 (3)

This condition may be rewritten as:

(C1 + C2) = (61+ 62) (4)
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Equivalently, c1 and c2 may be thought of as symmetrical

6 +0

about the midpoint of the interval, ——7—1 . The power func-

tion of this test in terms of standardized units is:

-6

Power = A) + (l - ¢( ://H)) (5)
(://H

where ¢(-) refers to the standard normal cumulative distribu-

tion function, and n is the number of observed sample values.

If x is greater than c2 or less than c1, reject the null hy-

pothesis (1). If i is contained in the interval [c1, c2],

reject the alternative hypothesis (2) in favor of the null

hypothesis (1).

It is important to keep in mind that although all of the

points in the indifference zone are acceptable under the null

hypothesis, only one point is actually the true value of the

population mean 60. For example, if the parameter of interest

is the mean of the distribution generating the observations,

only one point in the indifference zone is actually the true

mean. However, the interval hypothesis may be accepted re—

gardless of which particular point in the indifference zone

is the mean of the generating distribution.

For example, suppose that 61 = 0, 62 = l, 02 = 10,

n = 10 and the desired significance level is .05. The appro-

priate critical points are 01 = -1.68 and c2 = 2.68. The

power function for this example is:

Power = ¢(-l.68 -'6) + (l - ¢(2.68 6)) (6)
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The power function has been graphed in Figure 3.

 
 

    

Power
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-7 0 l 8

Figure 3

Power Function

In order to illustrate that these critical points cor-

respond to a significance level of .05, it is necessary to

determine the supremum of the power function under the null

hypothesis. As already noted, the significance level of a

test is equal to the supremum of the power function under

the null hypothesis, and in this case the supremum of the

power function under the null hypothesis is the maximum of

the power function under the null hypothesis.

Figure 4 shows what happens if the true value of the pa-

rameter of interest is assumed to be at the lower end, i.e.,

00 = 0, of the hypothesized interval. The value of the power

function at this end point is .046 + .004 = .05. This value

has been plotted in Figure 2 which showed the values of the
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f(e)

‘.046

\J
:[llme

-1.68 0 .5 1 2.68

8
O

P(0 : -1.68 00=0) = .046 P(e Z 2.68 00:0) = .004

Figure 4 - Population Mean at 01

16(8)

.014

.014

I'lml: ' 8

-1.68 0 .5 1 2.68

8
O

P(0 : -l.68 00=.5) = .014 P(0 : 2.68 00=.5) = .014

Figure 5 - Population Mean at .51

 

1. Graph of normal distribution with mean between points

0 and l inclusive. Ho: 0 i 0 i 1. Ha: 0 < 0 or 0 > 1.

c1 = -l.68 and c2 = 2.68
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power function under the null hypothesis. Figure 5 indicates

the situation under the assumption that the true parameter

value lies at the midpoint of the range, i.e., 00 = .05.

In this case, the value of the power function is

.014 + .014 = .028. As seen in Figure 2, this point turns

out to be the minimum point of the power function. Reversed,

Figure 4 would show the end point solution 00 = l yielding a

value for the power function of .004 + .046 = .05.

Consequently, the supremum of the power function under

the null hypothesis, which in this case is the maximum of the

power function under the null hypothesis, occurs at either

end point, 0 or 1, and is equal to .05. Since .05 is smaller

than any of the values that the power function takes on under

the alternative hypothesis, this test is an unbiased test as

defined by Ferguson (9, p.224).

By examining Figure 3 it becomes intuitively clear that

the symmetry of the critical points about the hypothesized

interval is essential in order for the test to be unbiased.

If the critical points were not placed symmetrically about

the interval and, therefore, one side of the interval was

favored over the other, the power curve would enter the in-

difference zone in Figure 3 at a lower power value on one

side than on the other. Such a situation would result in

the power function having at least one point under the al-

ternative hypothesis with a smaller value than at least one

point under the null hypothesis. Consequently, by defini-

tion such a test would be biased.
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In addition to designating a test statistic, a testing

procedure must indicate how the appropriate critical points

are derived given a particular desired significance level.

The four equations numbered (8) through (11) which will be

discussed below can be solved simultaneously to obtain the

required critical points, c1 and c2, given a desired signi-

ficance level, a. i

The likelihood function for the set of n observations,

x1, . . ., Xn’ given the mean, 0, of a normal distribution

with variance, 02, is:

-n

male) = (2662)? exp (xi-0)2 (7)

:
3
]
!

I

Q
I
A

H
0
2
5

Define m1 as the probability of being in the left—hand

critical region of the test under the normal distribution

with mean, 01. Since the test is symmetrical and the normal

distribution is also symmetrical, this is equivalent to the

probability of being in the right-hand critical region when

the true mean is 02.

c1 m

1: f L<§|91)d§ or f L(§_I92)d§ (8)
CI

Next define «2 as the probability of being in the right-

hand critical region of the test under the normal distribu-

tion with mean 01. Again, since the test is symmetrical,

this is equivalent to the probability of being in the left-

hand critical region when the true mean is 02.
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00 C1

0:2 = f L(x|01)dx or f L()_<_|02)d§ (9)

C2 “m

Recall the symmetry condition:

C1 + C2 = 61 + 62 (10)

Since under the null hypothesis the power of this symmetrical

test is maximized at 01, or, equivalently, 02, the signifi-

cance level, a, of this test may be expressed as:

a = «1 + a2 (11)

Given a particular desired significance level a, the

above four equations (8) to (11) may be solved for the four

unknowns: «1, «2, c1 and c2.

The above test of size a for a normal distribution with

unknown mean, 00, but known variance, 02, which has the test

statistic, x, and critical points c1 and c2 is a special case

of the one-parameter exponential family and provides a test

‘of the hypothesis HO: 01 i 0 3.52 against the alternative

Ha: 0 < 01 or 0 > 02 and is therefore a uniformly most power-

ful unbiased test as indicated by Lehmann (24, p.126) and

Fisz (11, p.581).

Next consider the case where the variance, 02, is un-

known. The usual student-t statistic may be used in this

case where the normally distributed statistic, x, is centered
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about either of the end points of the interval (01 or 02)

1,

and divided by the estimated standard deviation of x, s/n2

where n is the sample size and

1 n -

S = 621' i (Xi'X)-

Thus,

The density function of the student-t distribution is

n

f(t) = 1(4) 1 (it -00 < t < oo

2n
- 2 .

VIn-lSN F(E§l) (1+ —§T)
1'1

 

a-l

where F(a) = f y e"y dy for a > 0 is the well-known gamma

0

function. Define a; as the probability of being in the left—

hand critical region of the test under the student-t distri—

bution with n-l degrees of freedom. This may be written as

01'
“i = f f(t) dt

(12)

where cf is the left-hand critical point. Define «5 as the

probability of being in the right-hand critical region of the

test under the same student-t distribution. Thus,

.5 = f f(t) dt ‘ (13)

CE

The symmetry condition for the critical points of the

student-t distribution test may be derived as follows:



6 -6
U I

c2 - 2 1 — - c1 where c2

s/né

9 '6
"2

c+c= /
1 2 s/n'2

The level of significance,

25

(14)

, is

(15)

Given a particular level of significance a', the above

four equations (12) to (15) may be solved for the four un-

knowns: a' a'

I l

1, 2, c1, and c2.

The student-t test described above for the case of un-

known variance, 02, is not a uniformly most powerful unbiased

test, but instead is a uniformly most powerful unbiased scale

invariant test as follows from general results for the ex-

ponential family by Hodges and Lehmann (14, p.261).

The testing procedures described above may be applied

to a linear regression problem when the dependent variable is

normally distributed.

A

interest, bk' in the vector of coefficients (k is 0, . . .

An estimated regression coefficient of

I

or K) g' = 80, £31, . . ., BK defined by I§_= (X'X)-1X'y_ for

the regression model y = Xb_+ E.is normally distributed when

the dependent variable, y, is normally distributed given a

fixed regressor matrix, X, and an error term, E:
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Given the usual regression situation where the variance

of the dependent variable 02 is unknown, the restriction

01k 3. k4: 62k may be tested by solving simultaneously the

four equations

CI

«ik = flkf(tgk) dtgk (16)

“5k = { f(tgk) dtfik (17)

2k

e2k-61kI I =

Clk + C2k “"""‘"‘sb
(18)

k

“' = “1k + “2k (19)

where f(-) is the probability density function of the

student-t distribution which for a linear regression with K-l

explanatory variables will have n-K degrees of freedom. The

statistic tgk is equal to (bk-01k)/sf5k where sgk is the kth

diagonal element of the variance-covariance matrix 52(X'X)‘1

and $2 = efe/(n-K) based on the vector of residuals, e.

Having thus determined Clk and 02k for the significance

level a', the null hypothesis HO: 01k < b < 0 is rejected
— k — 2k

' A ' I I
if tbk is less than c1k or greater than C2k’

To illustrate this finite interval test consider a con-

sumption function of the form C. = b +b Y.+e. where C. is
1 o 1 1 1 1

aggregate consumption of goods and services, Yi is aggregate

personal disposable income, and Si is the disturbance term.

A test of the hypothesis that the marginal propensity to



27

consume lies between zero and one may be formulated as a

test of the null hypothesis HO: 0 < b1 i 1. If 581 = 1,
~

A

b1 = 1.1, and 20 annual observations provide 18 degrees of

freedom, the critical points obtained by solving equations

(16) through (19) at the 5% level of significance are -l.802

and 2.802. In this case the test statistic tgl is equal to

1.1 and the null hypothesis is not rejected.

In the multiparameter case, the hypothesis QJ :.b.fi_92

may be tested by obtaining the solution to the following

equations:

B'x'xa /(K-l)
* _ _L ._l

61 _ e'e/(n-K) (20)

 

05X'X02/(K-l)

 

62 = — e'e7(n-K) (21)

* *

CI - 9T = 93 ' c2 (22)

C?
«T = g h(Fg)dF8

(23)

83 = f* h(F6)ng
(24)

C _. _.

2

1 + 2 (25)

where h(-) is the probability density function of the

Snedecor's F distribution with (K-l) and (n-K) degrees of

b'X'Xb/(K-l)

freedom. The statistic Fb is equal to — —

_ e'e/(n-K)

CT and c; obtained for significance level a*, reject the

. With 



null hypothesis H0: ‘21 2.2.1.92 if F8 is less than cf or

greater than c*.

To demonstrate this test procedure the following

standard linear multiple regression equation is used:

Yi = b0 + b1Xli + bZXZi + Si where Yi IS the dependent varia—

ble, X and X2i are the explanatory variables, and 8i is the

11

error term. The coefficients b1 and b2 might be restricted

to non-negative values such that b1 and b2 are no greater

than one. These restrictions and an X'X matrix based on 20

hypothetical observations result in a two-sided F-test with

critical values c: = .05 and c3 = 62.37 at the 5% level of

significance. The estimated regression coefficients bl = .89

and 82 = .44 yield a test statistic Fb = 50.38 which lies

within the critical values and, therefore, indicates that

the null hypothesis of restricting the coefficients to the

finite intervals should not be rejected.

This chapter has developed a test procedure for de—

ciding if inequality restrictions are appropriate for a

particular situation where such restrictions limit the

parameter of interest to a finite interval where the parame-

ter may be a regression coefficient. Having determined the

appropriateness of such a proposed inequality restriction,

one may wish to proceed with the incorporation of such an

inequality restriction into the estimation process by means

of the minimum distance estimator whose distribution will now

be discussed in Chapter III.



CHAPTER III

THE MINIMUM DISTANCE ESTIMATOR

AND ITS DISTRIBUTION

Once an inequality restriction has been deemed appro-

priate as by the testing procedures developed in Chapter II,

alternative means of dealing with the inequality restriction

in estimation need be considered. In order to compare such

estimators in terms of their distributional properties, it

is first of all necessary to have some idea of the nature of

their distributional characteristics. Since the minimum dis-

tance estimator is a new estimator in relation to the well-

known constrained maximum likelihood and unconstrained

maximum likelihood estimators, the distribution of the mini-

mum distance estimator will be discussed in this chapter

relatiVe to those of the maximum likelihood estimators to

serve as a basis for understanding the comparison of the es-

timated distributional properties by means of Monte Carlo

experiment in Chapter IV.

As already noted, the minimum distance estimator is de-

fined in terms of the unconstrained maximum likelihood esti-

mator. Intuitively, this relationship is best expressed

graphically. Figure 6 gives an example of a constrained

space with an unconstrained maximum likelihood estimate Eu

lying outside of the constrained region.

The point labeled EC is the constrained maximum likeli-

hood point which represents the point in the constrained set

with the greatest likelihood. When the constrained space is

A

defined by inequality restrictions on 2, 9C can be obtained

29
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Figure 6

Likelihood Ellipse Contours

and the Constrained Space

by the constrained likelihood function by use of a Lagrangian

function subject to the Kuhn-Tucker conditions which require

the solution to lie in the constrained space. The point in

the constrained space that is closest to the unconstrained

maximum likelihood estimate is the minimum distance estimate

which is labeled §m in Figure 6.

Figure 6 emphasizes the importance of requiring that the

constrained parameter space be convex in order to obtain

unique minimum distance estimates gm since multiple solutions

might occur for estimates in non-convex regions. In addition

to the convexity assumption, and in order to relate the dis-

cussion more easily to classical normal linear regression

analysis, the underlying random variable y is assumed to be

normally distributed with mean 90 and variance-covariance
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matrix 021 where I is an appropriately dimensioned identity

matrix.

 

3.1 Distributional Characteristics

'In the single parameter case, an lies in a one dimen-

sional parameter Space. The dependent variable y takes on

values yi with the error term E defined to be the difference

between the y and the population parameter 00 such that

e. = yi - 00. In this case, 00 is assumed to be the ex-

pected value of yi and therefore the expected value of 8i is

zero. The variance of yi is given by 02, and since 00 is a

constant, the variance of Ei is also given by 02. Conse-

quently, the probability density function of yi is

-(Yi-eo)2

f(yi) = (26)-%(62)-% exp 202 (26)

A

The unconstrained maximum likelihood estimator, Bu, is

n

equal to the arithmetic mean of the sample § = Z yi where n

i=1

is the sample size. Therefore, Bu is distributed as normal

2
. . 0' . .

With mean 00 and variance H—u This may be summarized as

follows:

 

A 02

6u m N(eo'H—) . (27)

f A _% 02 _% -n(0u—00)2

(9n) — (2“) (3-0 EXP 2029* (28)



32

A

The constrained maximum likelihood estimators 0C and 6:,

are derived by maximizing the likelihood function, L(0|x),

subject to the general inequality constraints, 9(0), where

gj(0) :_0 for j = 1,2, . . ., r. The natural logarithm of

the likelihood function 1(0lx) = 1n L(0|x) may be substituted

into the Lagrangian expression:

L = 1(9|§) - X 9(9) (29)

subject to the following Kuhn-Tucker conditions:

3L/30 - A 3g(0)/30 = 0 (30)

(BL/30 - A 8g(0)/30) 0 = 0 (31)

0 3 0 (32)

9(6) f_ 0 (33)

A 9(6) = 0 (34)

A _>_ 0 (35)

Note that solving the Kuhn—Tucker conditions for the desired

estimates is a considerably more difficult problem than

solving the usual Lagrangian partial derivatives based on

equality restrictions.
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The minimum distance estimator, gm! is specified in the

single parameter case by finding the 0 that minimizes the

squared distances such that

min
A -A 2 =

(an em) 96C

(éu-e)2 (36)

Given a lower boundary Constraint 01 and an upper boundary

A

constraint 02, am is restricted to take on values as follows:

em = 02, if an 3 02

6n, otherwise (i.e., 01 < éu < 02) (37)

Thus, a regression coefficient that falls outside of a re-

stricted interval is set at the nearest boundary end-point

of the restricted interval.

The probability density function of the minimum dis-

tance estimator is of the mixed discrete and continuous type:

p1 for em = 01

9(6m) = P2 for 6m = 62

A A 38f(Bu) for 61 < am < 62 ( )

where

p1 = A f f(e Ida and p2 = A f f(é )dé .
0 <6 u u 0 >0 u u

u 1 u 2
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The probability density function of the minimum distance

estimator can be graphed as shown in Figure 7.

 
 

C
D
)

01 8 02

Figure 7

p.d.f. of MDE

Ramsey (30, p.11) shows that the minimum distance esti-

mator is a consistent estimator of 00. Referring to Wald's

1949 proof of the consistency of the unconstrained maximum

likelihood estimator, 6U, Ramsey points out that the defini-

tion of the minimum distance estimator given in equation (36)

implies that:

(Bu 6m) i (an Go) (39)

The consistency of the minimum distance estimator then fol-

lows from the consistency of the maximum likelihood estima-

A

tor, since the consistency of Bu implies that:

lim Pr (léu-e = 0) e 1 (40)Ol

Thus, 6m is also a consistent estimator of 00.
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The expected value of the minimum distance estimator in

this case can be expressed as follows:

62
= , . A . “ . “ 41E61“ p161+ £32 62 "I" él Bu f(Gu) deu ( )

’ .

A

Although the unconstrained maximum likelihood estimator,0u,

is an unbiased estimator of 00, the minimum distance estima-

tor, Sm, is biased except in the Special case where 01 and

02 are equi-distant from 00 to form a symmetrical distribu-

tion as was shown by Penneck (29, p.15). However, 01 and 02

are determined by economic theory, and in general, 00 cannot

be expected to fall midway between them. In the case of

single one-sided inequality constraints, the minimum distance

estimator will generally be biased. In that event the direc-

tion of the bias will be in the unconstrained direction.

Since 6m is generally a biased estimator of 00, it

would not be apprOpriate to compare its efficiency relative

to 0n in terms of variance alone. Mean squared error offers

a better basis for comparison in this case. The mean squared

error of the minimum distance estimator may be written in

this case as:

MSE 5 = E (0 -e )2 (42)
m m o .

This expression may be restated algebraically as the sum of

the variance plus the bias squared:
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A = A-A 2 A- 2 43

MSE em E (em Eem) + (Eem 00) ( )

Similarly, the mean squared error of the unconstrained maxi-

mum likelihood estimator is:

MSE 6 = E (8 -8 )2 (44)
u u 0

Since in this case the unconstrained maximum likelihood es-

timator is unbiased, its mean squared error is equal to its

variance:

MSE 0 = E (0 -E0 )2 = O ' (45)
u u u

Clearly, when calculating the mean squared error under

the assumption that the inequality restrictions are valid,

i.e., that 01 :_00 i 02, the squared distances will be less

for the minimum distance estimator than for the uncon-

strained maximum likelihood estimator for those points that

fall outside the restricted range. For points within the re-

stricted range, the squared distances will be the same. Con-

sequently, the minimum distance estimator will have a mean

squared error as small or smaller than that of the uncon-

strained maximum likelihood estimator when the inequality re-

strictions hold true.
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Having discussed the distributional characteristics of

the MDE, the distributional properties of the MDE will now

be compared by means of a Monte Carlo experiment in Chapter

IV to those of the UMLE and the CMLE.



CHAPTER IV

MONTE CARLO EXPERIMENTS

In this chapter the bias, variance, and mean squared

error of the UMLE, CMLE, and MDE will be compared for small

samples to determine which estimator is preferable for fi-

nitely bounded compact sets of which inequality restrictions

serve as a special case.

In his recent paper, Ramsey (30, p.36) has shown that

under certain assumptions the constrained maximum likeli-

hood estimator has the same asymptotic distribution as the

minimum distance estimator. His preliminary sampling ex-

periments have indicated that both estimators lead to a con-

siderable reduction in mean squared error.

However, a more extensive empirical analysis is needed

to compare the small sample characteristics of the uncon-

strained maximum likelihood (UML) estimator, the constrained

maximum likelihood (CML) estimator, and the minimum distance

(MD) estimator.

4.1 Criteria for Comparing

the UML, CML, and MD Estimators

 

 

The following criteria will be used for comparing and

evaluating the UML, CML, and MD estimators.

Estimated Expected Value
 

The estimated expected value of the jEE-parameter may

be expressed by:

(46)C
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where L is the number of replications of the Monte Carlo

sampling experiment.

Estimated Variance
 

The estimated variance can be calculated for the jEE

parameter by the estimated expected value of the square of

an estimator minus the square of its estimated expected

value:

Est. Var 0. = 0. - (8.)2 (47)

where

Although this estimator of the variance is appropriate

for Monte Carlo sampling experiments, it cannot be used to

estimate the variance of the minimum distance estimator in

the usual single sample situation since one sample only

yields one minimum distance estimate and thus the variation

of the MDE cannot be observed in this manner when only one

sample is available. However, an estimate of the variance

of the minimum distance estimator can be obtained for the

one sample case by first considering the true population

variance of the minimum distance estimator.

The true population variance of the minimum distance

estimator may be expressed as:

A

Var 0m — E(0m E0m) E0 (E0 ) (48)
2

m m

where



40

62A A A

E6 = p1-01 + p2-02 + f 0u-f(0u|00) °d0u

m 61

and

A2 _ 92 02 $202 f 0 I0 0Eem - P1 1 + p2 2 + 01 u ( u 0) d u

Therefore,

Var em = Pl‘el + P2'92 + 12 ‘ (P1'91+Pz'92+11)2

where a (49)

62" A A

11 = f 0 -f(0 I0 )od0

91 u u o u

and

62A2 A A

I2 = f 0 -f(0 l6 )°d6

61 u u 0 11

p1 and p2 may be calculated from the cumulative distribution

A

function of an as:

   

0 -0

P1 = F( 1 O)

u

and

0 -0 0 -0

p2 = F( 00 2) = 1 - F( 2 O)

u Cu

2 A

where Cu is the variance of 0u and F(-) is the cumulative

distribution function of a standardized normally distributed

random variable with mean zero and variance one. I1 is then

determined as in Penneck (29, p.14) by:

(e -60)2 _(02—00)2
0' ..

I) = (l-pI-p2)-60+ ———3e [exp { 1 2 } -exp {
(IZTTY2 ZOu 20$

}]
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Penneck (29, p.19) also derives 12 as:

I = (02-02)-(1-p -p ) + 2-0 -1
2 u 0 1 2 o 1

For a one—sided left-hand constraint 0m 3.01 the above

two-sided expressions reduce to:

 

E0m = p101 + I?

E0; = plef + I;

Var 6m = 9161 + I; ‘ (9191+I*)2

where
,

If = I 6 -f(0 l0 )-d0 = (1-p1)0 + .32_r (exp{'(el':°)2}]
01 u u o u o (2n)é 20u

and ‘

8

* _ A2. A . A = 2- 2 - . *

I2 — f eu f(euleo) d0u (cu 80)(1 p1)+ 200 11

61

For application to classical regression analysis, the

appropriate diagonal element of 52(X'X)“1 serves as a con-

sistent estimator of the variance, 03, of an ordinary least

squares coefficient as indicated by Kendall and Stuart (20,

p.82). In addition the unconstrained maximum likelihood

estimator, §u' seryes as a consistent estimator of 00 as

follows frOm Theil (34, p.392) in obtaining’an estimator of

the variance of the minimum distance estimator by substitu-

2
u and 00 in the above equations.ting in for o
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In support of these results ten Monte Carlo sampling

experiments based on a sample size of ten and an experiment

size of 500 replications compared the true population

variance, 0;, of the minimum distance estimator to its sam-

ple estimator, 3;. The unconstrained population variance

was set at 1.0 while the corresponding minimum distance popu-

lation variance was .341 based on the constraint that the

estimates be positive with population mean at zero. The re-

sults indicate that the estimator, 3;, of the variance of

the minimum distance estimator did almost as well in esti-

mating the true population variance, o; = .341, of the mini-

mum distance estimator as the standard unbiased estimator,

2

u' of the variance of the unconstrained estimator did in8

2

estimating its true pOpulation value, cu = 1.0. These re-

sults appear to support the use of a; as a reasonably good

. . 2

approx1mation of Om“

Estimated Bias
 

The estimated bias of each of the three estimators for

the jEE parameter can be calculated as the estimated ex-

pected value minus the true population parameter value:

Estimated Bias of 0. = 6.43 . 50
J . J 03 ( )

where 0oj is the true population parameter value.

In the one sample situation the bias of the minimum

distance estimator can be expressed for a single constraint
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as 01p1 + I? - 00 where

the maximum bias occurs when the true population parameter

is at the boundary of the constrained region such that

00 = 01. With 01 substituted for 00 the bias becomes

81p1 + If - 01 where p1 = mil-59$) = F(0) = .5 so that the

. . f u 0u 0u
max1mum bias is 01(.5) + (l-.5)01 + ————r - 01 = ———~;-.

(2")? (2“)2

Estimated Mean Squared Error
 

Although estimated bias and estimated variance are of

interest separately their joint importance might be con-

sidered by different possible measures of estimated mean

squared error. Each different definition of mean squared

error reflects a loss function for the trade-off between

the larger bias but smaller variance of the minimum distance

estimator. Although a multitude of arbitrary definitions

may be conceived of to reflect the trade-off between bias

and variance, the following definitions are multiparameter

extensions of the usual univariate definition of mean

squared error and, therefore, seem to be more likely to be

generally acceptable than many possible alternatives.

Estimated MSE A
 

The standard definition of mean squared error is equiva—

lent to variance plus squared bias for each parameter sepa-

rately in the multiparameter situation. The estimated mean

squared error (MSE A) for the jEE-parameter could then be

calculated by the estimated variance plus squared estimated
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bias:

A l L A

Est. MSE A of ej E z (0..-0 .)2

= Est. Var 0j + (Est. Bias of 0j)2

(51)

for the jEE parameter where j = l, . . ., J for the J pa-

rameters.

Estimated MSE B
 

A summary measure of mean squared error (MSE B) in the

multiparameter situation might be obtained by summing MSE A

over all parameters for each estimator and dividing by the

number of parameters. Estimated MSE B summarizes the im—

portance of estimated variance and estimated bias for all

parameters simultaneously just as estimated MSE A does for

each parameter individually. Since MSE B is defined by

Ramsey (30, p.20) by E(§f00)'(§f00), estimated MSE B may be

defined by:

Est. MSE B of Q = (0..—0 .)2 (52)

Estimated MSE Dl
 

Another formulation of mean squared error (MSE D) con-

siders the mean cross-product of errors between parameters.

 

1. Since MSE C is defined by Ramsey (30, p.20) for all

positive semi-definite matrices A in the expression

.E(0-0O)'A(0-0O) nothing conclusive can be shown by consider-

ing only one such matrix or even a limited number of such

matrices in a sampling experiment. Moreover, Ramsey has

indicated that MSE C and MSE D are equivalent (30, p.20).
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This cross-product concept is similar to that of a covariance

in a variance-covariance matrix. The estimated mean cross-

product is calculated as the average value of the product of

the difference of one estimator from its true population

parameter value times the difference of another estimator

from its true pOpulation parameter value. The diagonal

elements in the matrix of estimated mean error squares and

cross-products are the estimated mean squared error (MSE A)

terms themselves for each parameter. The off-diagonal ele—

ments in this matrix are the estimated mean cross-product

errors between parameters. Ramsey (30, p.20) expresses

MSE D algebraically by E(§700)(§70b)'.

A

Est. MSE D of (a: =

l

t
fl
H

I
I
t
h

8 -g )(_6_ -_e_)' (53)
O Ol l

A matrix of estimated mean error squares and cross—products

is then calculated for each estimator. If the estimated

mean error matrix of one estimator is subtracted from the

estimated mean error matrix of another estimator and the

difference is a positive semi-definite matrix, then the

first estimator is said to have a smaller estimated mean

squared error than the second estimator in the sense of

this definition of estimated MSE D.

Estimated MSE E
 

A final definition of estimated mean squared error

(MSE E) might be considered which also uses the estimated
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mean error matrix described above. Ramsey (30, p.20) de-

A

fines MSE E algebraically by |E(§700)(0703)'| where [M]

represents the determinant of any square matrix M. Esti-

mated MSE E may be expressed:

Est. MSE E of 0 = |%

”
M
t
"

(0-0 )(0—0 )'| <54)
‘1 ‘b '1 ‘0

i 1

Under this definition of estimated MSE E, if the deter-

minant of the estimated mean error matrix of one estimator

is smaller than the determinant of the estimated mean error

matrix of another estimator, then the first estimator is

said to have a smaller mean squared error.

4.2 Three Monte Carlo Models
 

Monte Carlo experiments will be performed on the fol-

lowing three models: (1) a discrete points model where the

constrained space consists of a set of nine discrete points

as shown in Figure 8;

(4,4)

Figure 8

Discrete Points Model
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(2) a square model where the constrained space is a square

as shown in Figure 9;

 

   
(4,4)

Figure 9

Square Model

(3) an elliptical model where the constrained space is an

ellipse with center at (5,5) as shown in Figure 10.

Figure 10

Elliptical Model

Samples of size 30, 60, and 100 will be used for each

of the three models. Unconstrained maximum likelihood (UML),

minimum distance (MD), and constrained maximum likelihood

(CML) estimates will be calculated for each sample and a

Monte Carlo sampling experiment size of 1,000 replications

will be used.
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UML Estimator
 

Since the three models are the same except for the na-

ture of their constrained space, the unconstrained maximum

likelihood estimator is calculated in the same manner for

each model. Various specifications of the variance-

covariance matrix are tried in order to examine the effect

of altering the shape and direction of the major axis of the

set of ellipses representing the likelihood function. In

the sampling experiments, this set of likelihood ellipses

is centered at the unconstrained maximum likelihood esti—

mate point (i, y) where for the bivariate pair of random

variables (X, Y), the sample means are defined by

1n 1“
2 = — X x. and y = — Z yi where (Xi' yi) represents an in-

n i=1 1 n 1:1

dividual sample observation and n is the number of observa—

tions in the sample. Thus, the unconstrained maximum likeli-

hood estimator is given as 0' = (0 , 0 ) = (§, §) for the
—u 111 112

first three models. Since calculation of the MD and CML es—

timates depends upon the nature of the constrained space,

their calculations will be discussed separately as each

model is examined.

Population Mean Specification
 

The mean of the bivariate normal distribution will

initially be set at the point (5,5) which represents the

center point of the constrained space for all three models.

Penneck (29, p.15) has indicated that the minimum distance

estimator is an unbiased estimator of the population mean
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in the special case where the population mean happens to lie

at the center of the constrained space. In order to compare

this situation with the other extreme possibility of having

the mean as far away from the center point as possible, the

entire set of sampling experiments will be repeated with the

mean at the corner point of the constrained space which is

at the point (4,4) for both the discrete points model and

the square model. Penneck (29, p.17) indicates that the

largest values for bias for the MD and CML estimators occur

when the true population mean is as far away from the center

point as possible. Consequently, the sampling experiment

for the elliptical model will be rerun with the mean at the

bottom point of the constrained space ellipse which happens

to be the point (5,5-/3) for the particular ellipse chosen

for this experiment and is as far away from the center point

as possible.

Before proceeding with the analysis of the individual

models it might be worth noting at this point that in order

to get a different estimate for constrained maximum likeli-

hood than for the minimum distance approach, it is necessary

that the two variances, o: and 0;, on the diagonal of the

variance-covariance matrix be significantly different from

one another. If the variances are the same, the likelihood

"ellipse" will approximate a circle and the CML and MD esti-

mates will tend to be the same.

In addition, in the case of the square, the covariance,

0 should be nonzero or the CML and MD estimators will

xy'
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tend to be the same even when the variances, o: and o; ,

ldiffer significantly from one another. This tendency occurs

because the square was constructed with sides parallel to

the horizontal and vertical axes.‘ Since zero covariance

implies that the major axis of the likelihood ellipse is

also parallel to one of these axes, the majOr or minor axis

of the likelihood ellipse will tend to form a 90° angle with

the side of the square and thus result in equal MD and CML

estimates. Also note that the correlation coefficient, 0,

o

for the likelihood function is defined by p = 5~¥%L-, or in

x

other words, the covariance divided by the square :oot of

the variances. Maximum difference between the MD and CML

estimates might be expected when in addition to unequal

variances, the correlation coefficient is set at .5 or -.5.

This corresponds to Ramsey's contention (30, p.8) that "in

two-dimenSional space the values taken by the two estimators

will differ most markedly when the angle between the major

'axes' of the likelihood contour and of the parameter space

TI II
153-.

Variance-Covariance Specifications
 

The square roots of the variances and covariance of the

bivariate normal random number generator will be designated

V1, V2, and CV, respectively, and the correlation coefficient

will be expressed as p. The experimental design for the

sampling experiments for each model and each of the three

sample sizes consists of four different specifications for



VARIANCE AND COVARIANCE SPECIFICATIONS

~.....

a. Unequal Variances and Nonzero Covariance

51

TABLE 1

 

 

 

 

 

 

 

 

 

 

 

V1 V2 CV p

5 20 -7.07 -.5

10 15 +8.66 +.5

15 10 -8.66 -.5

20 5 +7.07 +.5

b. Equal Variances and Nonzero Covariance

V1 V2 CV O

5 5 —3.54 —.5

10 10 +7.07 +.5

15 15 -10.61 -.5

20 20 +14.l4 +.5

c. Unequal Variances and Zero Covariance

V1 V2 CV p

S 20 0.00 .0

10 15 0.00 .0

15 10 0.00 .0

20 5 0.00 .0

d. Equal Variances and Zero Covariance

V1 V2 CV p

5 5 0.00 .0

10 10 0.00 .0

15 15 0.00 .0

20 20 0.00 .0
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the variances and covariances each of which was run at four

different settings with the results combined. The variance—

covariance specifications are given in Table 1.

In order to summarize the resulting estimates of bias,

variance, and the various definitions of mean squared error,

two sets of tables are presented. One set of tables is de-

signed to indicate how often one estimator is better than

another in terms of smaller bias, variance and mean squared

error. The three estimators were ranked one, two, or three

with a rank of one corresponding to the smallest value for

bias, variance or mean squared error. These ranks were then

averaged for each of the variance-covariance specifications.

A second set of tables shows the average values of bias,

variance, and mean squared error for each of the three esti-

mators under the various variance-covariance specifications.

This set of tables is designed to give some idea as to the

(size of the bias, variance, and mean squared error of each

of the estimators.

4.3 Discrete Points Model
 

The first model to be considered will be the discrete

points model in which the constrained space consists of a

set of discrete points. The rationale behind this model is

that it is designed to fill the gap cited by Ramsey (30,

p.25) for multiparameter situations that "with respect to

the situation in which 0 contains only a finite number of

points, no finite sample size results have yet been obtained
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on mean squared error prOperties." This model will consider

not only the mean squared errors, but also the other charac-

teristics of the estimators which were discussed in detail

above.

‘More specifically, the following nine points have been

chosen to represent the constrained space for the discrete

points model: (4,4), (4,5), (4,6), (5,4), (5,5), (5,6),

(6,4), (6,5), and (6,6). The midpoint (5,5) serves as the

true population mean of the bivariate normal distribution.

MD Estimator
 

The minimum distance estimator, 8&1: (0 can be
m1' 6m2)’

calculated for the discrete points model by substituting the

. . A ' = A A . -

nine pOSSible values for gm (0m1, 0m2), into the expres

sion D2 = (01111-2)2 + (0m2-Y)2 where D2 represents the square

and the MD esti-of the distance between the UML estimate Eu

mate 0m, and by choosing the value for 0$ = (0ml, 0m2) that

corresponds to the smallest value for D2.

CML Estimator
 

The constrained maximum likelihood estimator,

= (0C1, 0c2), is calculated as follows. The paired ran-

dom variables (X, Y) have the joint bivariate normal proba-

g.

_C

bility density function given by

(1- 2)“‘2 -1
f(x y) =_.____9___._._exp o

' Znoxoy 2(l-pz)

x-B x- -0 '-0
[}__32192 -2p(__%nlq(Z_3229+({_3221€]

X X y y
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T 2 2 fl 0 I c

wnere p,_0x, and 0y are the known correlation coeffic1ent

. . I _

and variances as described above and where 00 — (001, 002)

is the unknown mean of the bivariate normal distribution

which will be estimated in the constrained case by the con-

strained maximum likelihood estimator 0' = (0 , 0 ).

—c c1 c2

The product of n values of the above probability density

function where (x,y) is replaced by each of the n sample

. . = o .

values (xi,yi) and wnere go (0 2) is replaced by eacn

01'

of nine possible values, (001, 002), for the constrained

maximum likelihood estimator E; = (0 ) forms the appro-
c1' 8c2

priate likelihood function which may be maximized by mini-

mizing its exponent as follows:

Minimize,

n

C = z (_i_23112_2p(_i__c_1(.ia_c_) + (_i%_c_)2

' xi=1

by trying each of the nine possible values, (0 0 ), and
cl’ c2

cl’ 0C2), which corresponds to

the smallest C value for the nine points. The point thus

picking the CML value, EC = (0

chosen will be the constrained maximum likelihood estimate

for the discrete points case.

Sampling Results
 

Estimated Bias
 

The sampling results corresponding to the three sample

sizes, two means, and various general specifications of the

variances and covariance are summarized in Table 2 and
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TABLE 2

AVERAGE RANKS

OF SMALLER ABSOLUTE ESTIMATED BIAS

FOR POINTS MODEL

Mean at (5,5) Mean at (4,4)

 

 
 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 2.75 1.63 1.63 a. 1.00 2.50 2.50

N-30 b. ‘2.75 1.63 1.63 b. 1.00 2.50 2.50

_ c. 2.63 1.75 1.63 c. 1.00 2.50 2.50

c. 2.75 1.81 1.44 d. 1.00 2.63 2.38

Total 2.72 1.70 1.58 1.00 2.53 2.47

a. 2.63 1.50 1.88 a. 1.00 2.38 2.63

N=60 b. 2.50 1.81 1.69 b. 1.00 2.50 2.50

c. 2.75 1.63 1.63 c. 1.00 2.81 2.19

d. 2.75 1.63 1.63 d. 1.00 2.75 2.25

Total 2.65 1.70 1.71 1.00 2.61 2.39

a. 2.75 1.50 1.75 a. 1.00 2.38 2.63

N=100 b. 2.13 2.25 1.63 b. 1.00 2.50 2.50

c. 2.63 2.00 1.38 c. 1.00 2.25 2.75

d. 2.88 1.75 1.38 d. 1.00 2.25 2.75

Total 2.60 1.87 1.53 1.00 2.34 2.66

TOTAL 2.66 1.74 1.60 1.00 2.49 2.51

Table 3. The notations a,b,c, and d refer to the variance-

covariance specifications previously referred to in Table 1.

As expected when the true population mean happens to be

at the center point (5,5) of the constrained space, Table 3

shows that the estimated bias is quite small for all three

estimators which tends to support the hypothesis that they

may be unbiased estimators in this circumstance. In addi-

tion to being small, the estimated bias for the three esti-

mators tends to be positive almost as often as negative and
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TABLE 3

AVERAGE VALUES OF ESTIMATED BIAS

FOR POINTS MODEL

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. -.006 -.008 .001 a. -.006 .283 .340

N=30 b. -.031 -.021 .000 b. -.031 .568 .740

c. -.187 -.057 -.043 c. -.l87 .766 .759

d. -.075 -.046 -.044 d. —.075 .571 .575

a. .030 .028 .032 a. .030 .217 .262

N=60 b. .006 -.004 .002 b. .006 .497 .668

c. -.019 .002 .002 c. -.019 .718 .712

d. -.034 -.027 -.027 d. -.034 .467 .461

a. .006 .001 -.004 a. .006 .128 .161

N=100 b. -.058 -.034 -.021 b. -.058 .390 .576

c. .079 .018 .016 c. .079 .653 .658

d. -.015 .000 .000 d. -.015 .354 .357

 

since estimated skewness in this case is approximately zero

for all three estimators, this further suggests that the

true value of the bias for all three estimators in this spe-

cial situation is zero. It is interesting to note that while

the estimated bias is quite small for all three estimators

when the mean is at the center point, the UMLE tends to have

a larger average estimated bias in Table 3 than the other two

estimators. Furthermore, Tabel 2 indicates that the UMLE

tends to have a larger estimated bias more frequently in

addition to having a larger average value. This is particu-

larly interesting because the UMLE is known to be unbiased

even for small samples.

At the center point, the MDE tends to have a slightly

smaller average estimated bias than the CMLE as can be seen
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in Table 3. Table 2 indicates that the MDE has the smallest

estimated bias more frequently than the CMLE when the mean

is at (5,5).

The estimated bias of the CMLE is almost equal to that

of the~MDE for variance-covariance specifications c and d

which suggests that the MDE and the CMLE may be giving

nearly equal estimates when the covariance is zero. In-

creasing the sample size when the population mean is at the

(5,5) center point does not appear to influence the size of

the estimated bias of any of the three estimators which is

to be expected because it is essentially zero initially and

therefore not subject to further reduction.

When the true population mean of the random number

generator is shifted to the (4,4) corner point, the average

estimated bias of the CMLE and MDE becomes larger than that

of the UMLE and strictly positive as it tends toward the

center point of the constrained space as predicted by Penneck

(29, p.17). Table 2 indicates that the UMLE has the smallest

bias every time for all sample sizes and specifications when

the mean is at the (4,4) corner point. The average estimated

bias of the MDE tends to be slightly larger than that of the

CMLE especially for specifications a and b which require non-

zero covariances. However, the estimated bias of the MDE

is smaller than that of the CMLE more frequently for small

sample sizes as shown in Table 2. For sample size 100 the

CMLE tends to have a smaller estimated bias more frequently

than the MDE. The relative performance of the CML and MD
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estimators in this situation is primarily dependent upon the

slope of the major axis of the likelihood ellipse. The CMLE

does better than the MDE when the slope of the major axis of

the likelihood ellipse is negative in the (4,4) case. A

negative slope means that the CMLE is more likely to select

the (4,4) corner point or the nearest side points when the

(4,4) corner point is the true population mean.

Table 3 indicates that the estimated bias for the MDE

and the CMLE decreases for all cases as sample size increases

when the mean is at the (4,4) corner point. The UMLE gives

the same values for estimated bias at the (4,4) corner point

as it gave for the (5,5) center point since it is not in-

fluenced in any way by the constrained space. Sample size

does not appear to influence the estimated bias of the UMLE

which is shown in Table 3 to be practically zero anyway.

Estimated Variance
 

In all cases the average estimated variance of the UMLE

is substantially larger than that of either the CMLE or the

MDE as shown in Table 5. When the mean is at the (5,5) cen-

ter point the estimated variance of the UMLE is almost always

larger than that of the other estimators as indicated in

Table 4. For sample size 30 the UMLE's estimated variance is

always the largest, but as the sample size increases a few

exceptions occur but the UMLE still has the largest estimated

variance in most cases. This result seems intuitively

plausible since the UMLE can choose points anywhere in
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TABLE 4

AVERAGE RANKS

OF SMALLER ESTIMATED VARIANCE

FOR POINTS MODEL

 

 

 

 

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.13 1.88

N=30 b. 3.00 1.00 2.00 b. 3.00 1.38 1.63

c. 3.00 1.50 1.50 c. 3.00 1.75 1.25

d. 3.00 1.50 1.50 d. 3.00 1.75 1.25

Total 3.00 1.25 1.75 3.00 1.50 1.50

a. 3.00 1.13 1.88 a. 3.00 1.25 1.75

N-6O b. 3.00 1.13 1.88 b. 3.00 1.50 1.50

c. 2.88 1.88 1.25 c. 3.00 1.75 1.25

d. 2.75 1.94 1.31 d. 3.00 1.75 1.25

Total 2.90 1.52 1.58 3.00 1.56 1.44

a. 2.75 1.25 2.00 a. 3.00 1.25 1.75

N=100 b. 2.50 1.38 2.13 b. 3.00 1.38 1.63

c. 2.50 1.50 2.00 c. 3.00 1.25 1.75

d. 2.50 1.88 1.63 d. 3.00 1.25 1.75

Total 2.56 1.50 1.94 3.00 1.28 1.72

TOTAL 2.82 1.42 1.76 3.00 1.45 1.55

 

two-dimensional space whereas the constrained estimators are

limited to choosing from among nine particular points. How-

ever, as sample size increases the variation of the uncon-

strained sample estimates should be expected to decrease.

If this decrease is substantial enough, most if not all of

this variation may take place within the grid of the nine

constrained space points.

UMLE to have a smaller variance than either of the con-

This situation might cause the

strained estimators in some cases especially when the sample
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TABLE 5

AVERAGE VALUES OF ESTIMATED VARIANCE

FOR POINTS MODEL

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 10.415 .879 .880 a. 10.415 .859 .820

N-30 b. 10.693 .851 .868 b. 10.693 .691 .804

_ c. 14.342 .890 .897 c. 14.342 .847 .840

d. 14.267 .885 .881 d. 14.267 .855 .846

a. 5.454 .812 .829 a. 5.454 .781 .750

N-6O b. 5.526 .802 .832 b. 5.526 .592 .724

_ c. 6.752 .852 .854 c. 6.752 .779 .777

d. 6.470 .838 .836 d. 6.470 .777 .774

a. 2.967 .754 .782 a. 2.967 .655 .636

N-lOO b. 3.278 .771 .799 b. 3.278 .468 .618

_ c. 4.093 .804 .806 c. 4.093 .710 .698

d. 4.051 .789 .788 d. 4.051 .678 .671

 

size is large. The average estimated variance of the MDE in

Table 5 is slightly larger than that of the CMLE when the

mean is at the (5,5) center point except for specification d

which requires equal variances with zero covariance. There

the MDE's estimated variance is slightly smaller than that

of the CMLE. The table of ranks indicates that the MDE's

estimated variance is often larger than that of the CMLE al-

though specification d is again an exception. Since the

average estimated sample correlation coefficient was approxi-

mately -.003, the CMLE may have had a slight tendency to

select the upper left-hand and lower right-hand corner points

when the MDE chose the left or right-hand side points, re-

spectively. The ranks of the CMLE and the MDE are equal for
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specification c at N=30 and the MDE has a smaller rank than

the CMLE at N-60 for specification c. Since specification c

requires zero covariance, it is likely that this results in

CML and MD estimates that are nearly identical. In any

event the estimated variances of the MDE and the CMLE are

very close to one another. As sample size increases when the

mean is at the (5,5) center point, the estimated variances

of all three estimators decrease with that of the UMLE de—

creasing most substantially as indicated in Table 5.

When the population mean is at the (4,4) corner point

the estimated variance of the UMLE is always larger than that

of the CMLE or the MDE as can be seen in Table 4. The aver-

age value of the estimated variance of the MDE is smaller

than that of the CMLE when the population mean is at the

(4,4) corner point except for specification b. The average

estimated sample correlation coefficient for specification b

was substantially negative resulting in a negative slope for

the major axis of the likelihood ellipse. The unequal

variances may have accentuated the elongation of the like—

lihood ellipse in this case. These developments would tend

to cause the CMLE to be more likely to choose the (4,4) cor—

ner point or a nearby side point than it otherwise would.

The ranks of the estimated variance of the MDE are

smaller than those of the CMLE when the sample size is 60,

equal when the sample size is 30, and larger when the sam-

ple size is 100. In general the estimated variance of the

MDE and that of the CMLE are so close to one another, no
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clear cut pattern emerges. However, the estimated variances

of both of the constrained estimators are clearly smaller for

the (4,4) corner point case than for the (5,5) center point

case. This reduction in estimated variance may help offset

the increase in estimated bias that occurs when shifting

from the (5,5) center point to the (4,4) corner point. The

average estimated variances of all three estimators substan-

tially decrease as sample size increases as shown in Table 5

for both the (5,5) center point case and the (4,4) corner

point case.

14.814.

The sampling results for estimated mean squared error A

are summarized in Table 6. In the case where the constrained

space consists of a finite number of points Ramsey (30, p.17)

has indicated that "it appears that nothing can be said in

general about the mean squared error gain for the minimum

distance estimator. A similar tentative conclusion holds for

the constrained maximum likelihood estimator for finite sam-

ple sizes." In the absence of an analytical proof of mean

squared error gain for the MDE or the CMLE, sampling experi-

ments provide a means of determining the relative values of

mean squared error for the alternative estimators. In this

instance the sampling experiments indicate that in almost

all cases the estimated MSE A of the UMLE is larger than

that of either the CMLE or the MDE. In particular, Table 7

reveals that when the mean is at the (5,5) center point, the
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TABLE 6

AVERAGE RANKS

OF SMALLER ESTIMATED MSE A FOR POINTS MODEL

 

Mean at (5,5) Mean at (4,4)

 

 

 
 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.50 1.50

N_30 b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

7 c. 3.00 1.50 1.50 c. 3.00 1.75 1.25

d. 3.00 1.50 1.50 d. 3.00 1.75 1.25

Total 3.00 \11.25 1.75 3.00 1.62 1.38

a. 3.00 1.13 1.88 a. 3.00 1.38 1.63

4—60 b. 3.00 1.13 1.88 b. 3.00 1.50 1.50

1‘ c. 2.63 2.00 1.38 c. 3.00 1.75 1.25

d. 2.75 2.00 ' 1.25 d. 3.00 1.75 1.25

Total 2.84 1.56 1.60 3.00 1.59 1.41

a. 2.75 1.25 2.00 a. 3.00 1.38 1.63

N_100 b. 2.50 1.38 2.13 b. 3.00 1.50 1.50

7 c. 2.50 1.50 2.00 c. 3.00 1.38 1.63

d. 2.50 1.81 1.69 d. 3.00 1.38 1.63

Total 2.56 1.48‘ 1.96 3.00 1.41 1.59

TOTAL '2.80 1.43 1.77 3.00. 1.54 1.46
 

UMLE's average estimate of MSE A is larger than that of either

the CMLE or the MDE. As sample size increases the UML esti-

mate of the MSE A decreases substantially while the estimates

of the CMLE and MDE decrease moderately. This decrease is

due entirely to the decrease in variance as sample size in-

creases since the bias remains essentially unchanged.

Table 6 shows that the UMLE estimate of MSE A is almost al-

ways larger than the CMLE and MDE estimates. The frequency

with which the UMLE is larger decreases as sample size in—

creases o
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TABLE 7

AVERAGE VALUES OF ESTIMATED MSE A

FOR POINTS MODEL

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 10.415 .879 .880 a. 10.415 1.639 1.386

N=30 b. 10.694 .851 .868 b. 10.694 1.014 1.352

c. 14.401 .892 .900 c. 14.401 1.404 1.402

d. 14.269 .885 .881 d.’ 14.269 1.471 1.465

a. 5.457 .812 .830 a. 5.457 1.386 1.187

N=60 b. 5.526 .802 .832 b. 5.526 .839 1.170

c. 6.758 .854 .856 c. 6.758 1.324 1.329

d. 6.485 .840 .838 d. 6.485 1.316 1.303

a. 2.969 .754 .783 . 2.969 1.080 .968

N=lOO b. 3.281 .772 .799 . 3.281 .620 .950

4.094 1.140 1.117

a

b

c. 4.094 .805 .806 c.

d. 4.058 1.037 1.026d. 4.058 .790 .789

 

When the mean is at the (4,4) corner point, the average

value of the UMLE estimate of the MSE A is still larger than

that of either of the other estimators. Table 6 indicates

that with the mean at (4,4) the UMLE estimate is always the

largest. However, the CMLE and MDE average estimates are

larger than they were in the (5,5) case. All the average

estimates decrease as the sample size increases but again

the UMLE estimate of MSE A decreases faster than that of

either the CMLE or the MDE. Ramsey (30, p.25) has indicated

that for the situation where the constrained Space consists

of only a finite number of points mean squared error gains

can be Shown to hold asymptotically under suitable regular—

ity conditions in the multivariate case. However, the above

sampling results suggest that for small samples the mean

squared error gain is even greater than for large samples.
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In comparing the CML and MD average values of the esti-

mates of MSE A, Table 7 shows very little difference between

their average values in the (5,5) case. When the mean is

shifted to the (4,4) point there is only slightly more dif-

ference. When comparing the average ranks of the CML and MD

estimates, Table 6 shows a difference between the (5,5) and

the (4,4) case. When the mean is at the center point, the

CMLE rank is more frequently smaller than the MDE, while the

reverse is true at the corner point at least most of the

time for specifications a, c, and d. Since the estimated

variance is dominant over the estimated bias in the calcula-

tion of estimated MSE A even in the (4,4) case, the explana-

tion relating to the negative estimated sample correlation

coefficient for the estimated variance would also apply to

estimated MSE A. In particular the CMLE may have a greater

tendency to select the (4,4) corner point or near by points

than the MDE does in this special circumstance.

MSE B
 

The sampling results for estimated mean squared error B

are summarized in Table 8 and Table 9. When the mean is at

the (5,5) center point the UMLE almost always gives the

largest estimate of MSE B, but doing so less frequently as

sample size increases as can be seen in Table 8. Table 9

shows that the average value of the estimated MSE B of the

UMLE is considerably larger than those of the CMLE and MDE.

As the sample size increases the average values given by all
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TABLE 8

AVERAGE RANKS

OF SMALLER ESTIMATED MSE B FOR POINTS MODEL

 

Mean at (5,5) Mean at (4.4)

 

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.50 1.50

N—3O b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

_ C. 3.00 1.63 1.38 C. 3.00 1.75 1.25

d. 3.00 1.50 1.50 d. 3.00 1.63 1.38

Total 3.00 1.28 1.72 3.00 1.59 1.41

a. 3.00 1.00 2.00 a. 3.00 1.50 1.50

N—60 b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

- C. 3.00 1.88 1.13 C. 3.00 2.00 1.00

d. 2.50 2.13 1.38 d. 3.00 1.75 1.25

Total 2.87 1.50 1.63 3.00 1.69 1.31

a. 3.00 1.00 2.00 a. 3.00 1.50 1.50

N-lOO b. 2.50 1.50 2.00 b. 3.00 1.50 1.50

_ C. 3.00 1.25 1.75 C. 3.00 1.25 1.75

d. 2.50 1.88 1.63 d. 3.00 1.25 1.75

Total 2.75 1.41 1.84 3.00 1.37 1.63

TOTAL 2.87 1.40 1.73 1.55 1.45

 

three estimators decrease, with the average value of the UMLE

estimate decreasing most substantially. When the mean is

moved to the (4,4) corner point the UMLE always has the

largest estimate of MSE B. Table 9 shows that the average

values of estimated variance for the CMLE and MDE have in-

creased overall, but continue to decrease as sample size

increases.

When the average ranks of the CMLE and MDE estimates of

the MSE B are compared in Table 8 it can be seen that the

CMLE on the average gives smaller estimates more frequently
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TABLE 9

FOR POINTS MODEL

 

Mean at (5,5) Mean at (4,4)

 

CML

 

 

 

UML CML MD UML MD

a. 6.901 .821 .838 a. 6.901 1.321 1.180

N—30 b. 9.555 .840 .862 b. 9.555 .967 1.289

— C. 7.615 .743 .742 C. 7.615 .927 .918

d. 13.889 .897 .892 d. 13.889 1.457 1.441

a. 3.566 .728 .768 a. 3.566 1.072 .946

N=60 b. 4.696 .778 .822 b. 4.696 .784 1.151

C. 3.608 .657 .657 C. 3.608 .815 .813

d. .6.884 .850 .847 d. 6.884 1.294 1.291

a. 1.962 .655 .696 a. 1.962 .793 .716

N=100 b. 2.773 .742 .772 b. 2.773 .572 .908

C. 2.174 .565 .566 C. 2.174 .649 .639

d. 3.952. .805 .803 d. 3.952 1.090 1.084

 

when the mean is at (5.5). However closer examination re-

veals that when the covariance is zero the MDE more fre-

quently gives a smaller estimate of MSE B. When the mean is

shifted to the (4,4) point, the average rank of the MDE is

smaller than that of the CMLE. Table 8 also shows that when

the covariance is nonzero (specifications a and b) the CMLE

and MDE have the smallest estimate of MSE B equally often.

Table 9 shows that the average values of the CMLE and MDE

estimates of MSE B are very close, particularly when the co-

variance is zero. When the mean is shifted to (4,4) the dif-

ference between the CMLE and MDE estimates increases, but is

still small. In particular, the MDE has a slightly smaller

estimated MSE B when the variances are equal while the CMLE

has a slightly smaller MSE B when the variances are unequal.
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Thus the MDE tends to have a slight edge over the CMLE when

the likelihood ellipse approximates a circle. Only speci-

fication b in the (4,4) case showed the estimated MSE B of

the CMLE to be slightly smaller than that of the MDE. Since

the average estimated sample correlation coefficient tended

to be negative in this case, the slope of the major axis of

the likelihood ellipse tended to be negative which tended to

keep the CML estimates closer to the (4,4) point than those

of the MDE. The opposite result would be expected if the

slope had been positive.

MSE D

The sampling results for estimated mean squared error D

are summarized in Table 10 and Table 11. Since estimated

MSE D is a matrix, an estimator is said to have a smaller

estimated MSE D when the difference matrix is positive semi-

definite. The difference matrix is obtained by subtracting

the MSE D matrix of that first estimator from the MSE D ma-

trix of a second estimator. The average values given in

Table 11 are the values of the determinants of the MSE D dif-

ference matrices.

Table 10 shows in the (5,5) center point case and the

(4,4) corner point case that the CMLE frequently has the

smallest estimated MSE D, followed by the MDE, and then by

the UMLE with the largest estimate. As sample size in-

creases the prominence of this pattern diminishes. Table 11

shows a large range in the size of the determinants of the
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TABLE 10

AVERAGE RANKS

OF SMALLER ESTIMATED MSE D FOR POINTS MODEL

  

Mean at (5,5) Mean at (4,4)

 

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.00 2.00

1_30 b. 3.00 1.00 2.00 b. 2.75 1.00 2.25

“ c. 3.00 1.00 2.00 c. 3.00 1.75 1.25

d. 3.00 1.00 2.00 d. 3.00 1.50 1.50

Total 3.00 1.00 2.00 2.94 1.31 1.75

a. 2.00 1.50 2.50 a. 2.75 1.25 2.00

1_60 b. 2.50 1.25 2.25 b. 2.75 1.25 2.00

1‘ c. 2.25 1.75 2.00 c. 3.00 1.25 1.75

d. 2.50 1.50 2.00 d. 3.00 1.50 1.50

Total 2.31 1.50 2.19 2.88 1.31 1.81

a. 2.00 1.50 2.50 a. 2.75 1.25 2.00

N=100 b. 2.50 1.25 2.25 b. 2.75 1.25 2.00

c. 2.00 1.50 2.50 c. 3.00 1.00 2.00

d. 2.50 1.50 2.00 d. 3.00 1.00 2.00

Total 2.25 1.44 2.31 2.88 1.12 2.00

TOTAL 2.52 1.31 2.17 2.90 1.25 1.85

 

MSE D difference matrix for U-C and U-M. When one of the con-

strained estimators has a larger MSE D matrix than the UMLE

it is only slightly larger. As sample size increases the

average values of the determinants decrease for U-C and U-M

in both the (5,5) and (4,4) case. These two columns also

show that the determinants are usually smaller when the

variances are unequal (specifications a and c) than when they

are equal (specifications b and d). The values of specifica-

tion c are especially small. The values of bias and variance
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TABLE 11

AVERAGE VALUES OF ESTIMATED MSE D

FOR POINTS MODEL

 

Mean at (5,5)

J>~H

Mean at (4,4)

 

 

 

 

U-C U-M C-M U-C U-M C-M

a. 16.549 18.132 -.120 a. 15.277 17.084 -.O36

N-30 b. 38.466 42.530 -.187 b. 33.351 30.105 .075

— C. 3.186 3.305 -.000 C. 4.864 5.071 .000

d. 168.535 168.662 -.000 d. 153.552 153.945 .000

a. 2.684 3.009 -.055 a. 2.555 3.121 .004

N=60 b. 7.253 8.765 -.134 b. 29.919 34.323 -.080

C. -.011 .001 -.000 C. .779 .833 -.000

d. 36.253 36.281 -.000 d. 30.704 30.731 -.000

a. .332 .390 -.018 a. .553 .737 .003

N=1OO b. 1.697 2.208 -.053 b. 1.643 .344 .112

C. -.231 -.234 -.000 C. .281 .275 -.000

d. 9.872 9.888 .000 d. 7.861 7.090 -.000

 

in this case are small and very nearly equal for all three

estimators. The second variate has a considerably larger

average estimated variance than the first variate in this in-

stance and since the covariance is zero, the MDE and the

CMLE may have an unusually strong tendency to choose the

points immediately above and below the (5,5) center point as

well as the center point itself when the mean is at (5,5).

As the sample size increases, the variance of the second

variate declines sufficiently to allow a sufficient propor-

tion of the UML estimates to fall between the (5,4) and (5,6)

points so that the estimated MSE D of the UMLE actually be-

came smaller than that of the constrained estimators. While

the CML MSE D matrix is almost always smaller than the MD

MSE D matrix in the (5,5) case, it is by only a small amount.
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When the mean is at (4,4) each of the two constrained esti-

mators has the smallest MSE D matrix half of the time.

5.83.33.

The sampling results for the estimated mean squared

error E are summarized in Table 12 and Table 13. As in the

other mean squared error cases, the UMLE usually gives the

largest estimated MSE B when compared to the CMLE and MDE.

Table 12 shows that when the mean is at the (5,5) center

point, the UMLE almost always has the largest estimated MSE,

although the frequency of this decreases as the sample size

increases. When the mean is moved to the (4,4) corner point,

the UMLE always has the largest estimated MSE B. Table 13

shows that the average values of estimated MSE E given by all

three estimators decrease as sample size increases for both

the (5,5) and (4,4) cases. Again, as in previous measures

of mean squared error, the estimated values given by the UMLE

decrease much more rapidly than do those of the CMLE and MDE.

It can also be seen in Table 13 that each estimator usually

gives smaller average estimates of MSE B when the variances

are not equal (specifications a and c) than when the

variances are equal (specifications b and d). This is not

the case, however, for the CMLE when the mean is at (4,4).

The larger estimated MSE E for the equal variance cases may

be explained by noting that the sum of squares of the

variances listed in Table 1 is greater than the sum of their

cross-products. The exception for the CMLE in the (4,4)
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TABLE 12

AVERAGE RANKS

Mean at (5,5)

SMALLER ESTIMATED MSE E FOR POINTS MODEL

Mean at (4,4)

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.75 1.25 a. 3.00 1.50 1.50

_ b. 3.00 1.75 1.25 b. 3.00 1.50 1.50

N“30 c. 3.00 1.50 1.50 c. 3.00 1.75 1.25

d. 3.00 1.50 1.50 d. 3.00 2.00 1.00

Total 3.00 1.62 1.38 3.00 1.69 1.31

a. 3.00 1.75 1.25 a. 3.00 1.50 1.50

_ b. 3.00 1.75 1.25 b. 3.00 1.50 1.50

N“60 c. 3.00 2.00 1.00 c. 3.00 2.00 1.00

d. 2.50 2.25 1.25 d. 3.00 1.75 1.25

Total 2.87 1.94 1.19 3.00 1.69 1.31

a. 3.00 1.25 1.75 a. 3.00 1.50 1.50

_ b. 2.50 2.00 1.50 b. 3.00 1.50 1.50

N‘loo c. 3.00 1.25 1.75 c. 3.00 1.25 1.75

d. 2.50 2.00 1.50 d. 3.00 1.25 1.75

Total 2.75 1.625 1.625 3.00 1.37 1.63

TOTAL 2.87 1.73 1.40 3.00. 1.58 1.42

 

case is again due to a negative average estimated correlation

coefficient. In all cases the average value of the UML esti-

mated MSE E is considerably larger than the estimates of the

other two estimators.

When the performance of the CMLE and MDE are compared in

Table 12, it can be seen that the MDE more frequently gives

the smallest estimate of MSE in both the (5,5) and the (4,4)

case, especially for smaller sample sizes. However Table 13

shows that there is little actual difference between the size

of the CML and MD estimates of MSE B. When the mean is
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TABLE 13

AVERAGE VALUES OF ESTIMATED MSE E

FOR POINTS MODEL

 

H 1

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 26.919 .670 .594 a. 26.919 1.379 .830

N=30 b. 53.723 .699 .616 b. 53.723 .792 1.615

c. 11.950 .530 .526 c. 11.950 .567 .542

d. 192.630 .803 .794 d. 192.630 1.792 1.746

a. 6.699 .510 .465 a. 6.699 .824 .532

N=60 b. 13.617 .602 .497 b. 13.617 .568 1.300

c. 3.097 .393 .392 c. 3.097 .367 .356

d. 47.219 .722 .717 d. 47.219 1.428 1.408

a. 2.055 .399 .399 a. 2.055 .431 .299

N=100 b. 4.775 .528 .452 b. 4.775 .315 .817

c. 1.043 .262 .263 c. 1.043 .170 .170

d. 15.585 .647 .643 d. 15.585 1.028 1.025

 

shifted to (4,4) both the CML and MD average estimates

usually increase in size, but still remain much smaller than

the UMLE average estimate.

Summary of Discrete Points Model Sampling Results
 

In summarizing the discrete points model, all three

estimators appeared to be unbiased when the mean was at the

(5,5) center point. The CMLE and the MDE had small to moder-

ate estimated positive bias when the mean was shifted to the

(4,4) corner point and the size of their biases was nearly

the same. Also at the (4,4) point, the estimated biases of

the CMLE and MDE decreased as sample size increased, but re-

mained unchanged at close to 0 in the (5,5) case.



74

Calculations of the average estimated variance of each

of the three estimators showed it to be much larger for the

UMLE than for either the CMLE or the MDE in both the (5,5)

and the (4,4) situations. As in the case of bias, the two

constrained estimators had average estimated variances of

nearly the same size. As sample size increased, the esti-

mated variances of all three estimators decreased. Although

that of the UMLE declined most dramatically, it still re-

mained the largest.

For all four of the mean squared errors which were

examined, the UMLE gave substantially larger average esti-

mates than did the CMLE or the MDE. The estimates of MSE A,

B and E always decreased as sample size increased for all

three estimators. Because MSE D was presented in matrix form,

it was not determined if the estimates were also decreasing

there. In particular, the MSE A average estimate of all

three estimators was dominated by the effect of the variance,

especially in the (5,5) case. In the (4,4) case, the bias

affected the CMLE and the MDE about equally. For both the

MSE A and MSE B situations, the CMLE tended to give smaller

estimates than the MDE when the mean was at (5,5), and the

MDE tended to give smaller estimates when the mean was at

(4,4). In the case of estimated MSE D the CMLE performed

slightly better than the MDE in many cases. In the case of

estimated MSE E the MDE usually did slightly better than the

CMLE.
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In the discrete points case, the estimated skewness of

all three estimators was nearly always equal and very small

relative to the standard deviation when the mean was at

(5,5). There was also about an equal number of positive and

negative values. This suggests that all three estimators

had symmetric distributions in the (5,5) case. In the (4,4)

corner point case, the small estimated skewness of the UMLE

remained unchanged. The average estimated skewness of the

CMLE and the MDE increased, but remained close to one an-

other. The ratio of average estimated skewness to standard

deviation for the constrained estimators ranged from about

0.2 to 2.0. While the UMLE had about an equal number of

negative and positive estimates of skewness, the constrained

estimators always gave positive estimates in the (4,4) case.

In both the (5,5) and (4,4) cases, the estimated kurto-

sis of the UMLE, which was standardized relative to the

normal distribution, was quite small and fluctuated between

negative and positive values. The estimated kurtosis of the

CMLE and MDE was almost always negative, and the ratio of

their kurtosis to the standard deviations ranged from about

-.04 to -1.4.

Also in the discrete points case, all four estimated

moments of the CMLE and the MDE were close to one another.

The first moments of all three estimators tended to be very

close in the (5,5) case, while the CMLE and MDE estimated

first moments were slightly smaller than that of the UMLE

in the (4,4) case. The second estimated moment of the UMLE
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was somewhat larger than those of the constrained estimators

in many cases. The third estimated moment of the UMLE was

usually larger than the estimated third moments of the con-

strained estimators in the (5,5) case. However, the re-

versevwas true in the (4,4) case. The fourth estimated

moment of the UMLE was considerably larger than those of the

constrained estimators in almost all caSes when the mean was

at (5,5) and was often larger in the (4,4) case.

4.4 Square Model
 

In the second model the constrained space is defined as

the points in and on a square which is located with corner

points at (4,4), (4,6), (6,4), and (6,6). As in the first

model, the midpoint of the constrained space is at (5,5).

The constrained space defined as a square effectively re-

stricts both variates of the bivariate normal distribution

to finite intervals. Such restrictions may oCcur in regres-

sion analysis as double inequality restrictions on each of

two regression coefficients. As in the previous case, the

characteristics of the estimators and their distributions

will be analyzed. As before, the UML estimate for this

model is g; = (6M, 8 ) = (52,17).
u2

MD and CML Estimates
 

The minimum distance estimate and the constrained maxi-

mum likelihood estimate may be calculated as follows. If the

UML estimate lies within the square or on its edge, then the
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UML estimate, the CML estimate, and the MD estimate are all

equal.

If the UML estimate lies outside the square, then the

8 ), can be cal-calculation of the MD estimate, 8' = (8 ,

—m. m1 m2

culated by projecting directly onto the nearest side of the

square in a horizontal or vertical direction as appropriate.

If the UML estimate lies in one of the corner quadrants

formed by extending the sides of the square outward from the

corner points, then the corner point itself corresponds to

the MD estimate.

8The CML estimate, 8é = (8 is calculated by a

c1' c2)'

search routine that involves minimizing the exponent of the

likelihood function which in this case is equivalent to

maximizing the likelihood function itself. If the UML es-

timate lies directly to one side of the square, then that

side is searched for the point that corresponds to the maxi-

mum of the likelihood function. If the UML eStimate lies

in one of the corner quadrants, then the two nearest sides

of the square are searched. Therefore, as in the discrete

points model, the CML estimate, 8C, is obtained by minimiz-

ing the exponent:

 

-_- 0x 0y

n '-e 2 x’-6 --e --e 2C = Z [BXl cl) -2p( 10 C1)(Y10 CZ)+(Y1 c2) ]

1 X' Y

subject to the condition that the solution lies on the appro-

priate boundary of the constrained space.
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TABLE 14

AVERAGE RANKS

OF SMALLER ABSOLUTE ESTIMATED BIAS

FOR SQUARE MODEL

 

 

 

 

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 2.63 1.63 1.75 a. 1.00 2.50 2.50

N=3O b. 3.00 1.50 1.50 b. 1.00 2.50 2.50

c. 3.00 1.63 1.38 c. 1.00 2.50 2.50

d. 3.00 1.63 1.38 d. 1.00 2.63 2.38

Total 2.91 1.59 1.50 1.00 2.53 2.47

a. 2.88 1.88 1.25 a. 1.00 2.38 2.63

sto b. 2.88 1.63 1.50 b. 1.00 2.50 2.50

c. 3.00 1.63 1.38 c. 1.00 3.00 2.00

d. 3.00 1.50 1.50 d. 1.00 2.75 2.25

Total 2.94 1.66 1.40 1.00 2.66 2.34

a. 2.50 2.00 1.50 a. 1.00 2.50 2.50

N_ 0 b. 2.63 1.88 1.50 b. 1.00 2.50 2.50

'1 0 c. 2.50 1.63 1.88 c. 1.00 2.38 2.63

d. 2.50 1.63 1.88 d. 1.00 2.38 2.63

Total 2.53 1.78 1.69 1.00 2.44 2.56

TOTAL 2.79 1.68 1.53 1.00 2.54 2.46

 

Sampling Results
 

Bias

 

The sampling results for estimated bias for the square

model are summarized in Table 14 and Table 15.

when the true population mean happens to be at the (5,5)

As expected

center point of the constrained space, the estimated bias is

quite small for all three estimators which tends to support

the hypothesis that they may be unbiased estimators in this

circumstance. In addition to being small, the estimated
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TABLE 15

AVERAGE VALUES OF ESTIMATED BIAS

FOR SQUARE MODEL

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. -.006 -.006 .001 a. -.006 .299 .352

N=3O b. -.031 -.018 -.003 b. -.031 .573 .742

c. -.187 -.049 -.041 c. -.l87 .762 .759

d. -.075 -.044 -.045 d. -.075 .572 .574

a. .030 .030 .029 a. .030 .244 .281

N=60 b. .006 .001 .005 b. .006 .494 .672

c. -.019 .005 .005 c. -.019 .717 .716

d. -.034 -.023 -.023 d. -.034 .478 .474

a. .006 .006 .007 a. .006 .171 .205

N=100 b. -.058 -.025 -.020 b. -.058 .379 .578

. .079 .011 .011 c. .079 .655 .655

d. -.015 -.010 -.010 d. -.015 .369 .371

 

bias in the (5,5) case tends to be positive almost as much

as negative at least for sample sizes 60 and 100. Since the

estimated skewness for these three estimators is quite small

and therefore suggests that their distributions are symmetric,

the frequency of positive and negative values further sug-

gests that the true value of bias for all three estimators in

this special situation is zero. While the estimated bias is

quite small for all three estimators, the UMLE tends to have

a larger estimated bias than the other two estimators. The

estimated bias of the CMLE is almost identical to that of

the MDE in the (5,5) case. The table of ranks indicates

that the MDE had a smaller estimated bias slightly more fre-

quently than the CMLE although both of these constrained

estimators did somewhat better than the UMLE in terms of
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frequency of smaller bias. The estimated bias of all three

estimators remains essentially unchanged as sample size in-

creases in the (5,5) case.

When the true population mean of the random number gen-

eratorwis shifted to the corner point (4,4), the estimated

bias of the CMLE and MDE becomes larger than that of the

UMLE and strictly positive so that it tends toward the cen-

ter point of the constrained space. The rank table indi—

cates that the UMLE always has the smallest estimated bias

in the (4,4) case. The estimated bias of the CMLE and the

MDE is essentially the same except for specification b.

Since specification b requires equal variances with nonzero

covariance, the likelihood ellipse should approximate a cir-

cle. .However, in this case the average estimated standard

deviations are approximately 15 and 18 with a substantially

negative estimated correlation coefficient. Consequently,

the CMLE is able to choose points closer to the (4,4) corner

point than those points chosen by the MDE on the average un-

der specification b. When sample size increases in the (4,4)

case, the estimated bias of the UMLE remains virtually un-

changed. However, the estimated bias of the CMLE and the

MDE declines in all cases as sample size increases when the

mean is at the (4,4) corner point. Overall there is not

much difference between the MDE's estimated bias and that of

the CMLE although both constrained estimators do have a

larger estimated bias than the UMLE in the (4,4) case.
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TABLE 16

AVERAGE RANKS

OF SMALLER ESTIMATED VARIANCE

FOR SQUARE MODEL

 

 

 

 

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.25 1.75

N=30 b. 3.00 1.00 2.00 b. 3.00 1.38 1.63

c. 3.00 1.63 1.38 c. 3.00 1.88 1.13

d. 3.00 1.50 1.50 d. 3.00 1.75 1.25

Total 3.00 1.28 1.72 3.00 1.56 1.44

a. 3.00 1.13 1.88 a. 3.00 1.13 1.88

N=60 b. 3.00 1.00 2.00 b. 3.00 1.38 1.63

c. 3.00 1.88 1.13 c. 3.00 2.00 1.00

d. 3.00 2.00 1.00 d. 3.00 2.00 1.00

Total 3.00 1.50 1.50 3.00 1.62 1.38

a. 3.00 1.00 2.00 a. 3.00 1.25 1.75

N—lOO b. 3.00 1.00 2.00 b. 3.00 1.25 1.75

_ c. 3.00 1.38 1.63 c. 3.00 1.75 1.25

d. 3.00 1.63 1.38 d. 3.00 1.63 1.38

Total 3.00 1.25 1.75 3.00 1.47 1.53

TOTAL 3.00 1.34 1.66 3.00 1.55 1.45

 

Estimated Variance
 

The sampling results for estimated variance for the

square model are summarized in Table 16 and Table 17. The

UMLE always gives the largest estimate of variance both when

the mean is at the (5,5) center point and at the (4,4) corner

point. The estimated variance Of the UMLE must necessarily

be equal to or greater than that of the constrained estima—

tors because the constrained space square is a convex set.

Table 17 of the average values of the estimates shows that
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TABLE 17

AVERAGE VALUES OF ESTIMATED VARIANCE

FOR SQUARE MODEL

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 10.415 .829 .835 a. 10.415 .811 .783

N=3O b. 10.693 .804 .825 b. 10.693 .654 .773

c. 14.342 .863 .862 0. 14.342 .817 .809

d. 14.267 .853 .851 d. 14.267 .823 .808

a. 5.454 .751 .775 . a. 5.454 .717 .691

N=6O b. 5.526 .737 .766 b. 5.526 .542 .682

c. 6.752 .804 .805 c. 6.752 .741 .738

d. 6.470 .794 .793 d. 6.470 .731 .727

a. 2.967 .693 .710 a. 2.967 .605 .572

N=100 b. 3.278 .664 .725 b. 3.278 .396 .564

c. 4.093 .743 .743 c. 4.093 .643 .646

d. 4.051 .727 .726 d. 4.051 .620 .619

 

the UML estimate of variance is much larger than either of

the two constrained estimates in both the (5,5) and (4,4)

case. This difference is greatest when the true population

mean is on the boundary but it is also very large when the

mean is in the center of the constrained space. All of the

estimates decrease as sample size increases, with the UML

estimate showing the most substantial reduction. Conse-

quently, the advantage in terms of smaller estimated vari-

ance of the MDE and CMLE over the UMLE is especially appar-

ent in small samples but was substantial even for the larg-

est sample size.

A comparison of the CML and MD estimates in Table 16 in-

dicates that the CMLE more frequently gives the smallest es-

timate when the mean is at (5,5). The situation is reversed
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in the (4,4) case, but the difference between the average

ranks is not as great. Table 17 shows that the average

values of the two constrained estimates are very close to

one another particularly when the covariance is zero (speci—

fications c and d). A zero covariance implies that the

major axis of the likelihood ellipse tends to be either ver-

tical or horizontal and therefore its point of tangency with

the square (which has sides that are also either vertical or

horizontal) represents not only the CML estimate, but the MD

estimate as well. When the mean is moved from the center to

the corner point, both of the constrained estimators give

smaller average estimates of variance as expected.

Estimated MSE A
 

The sampling results for estimated MSE A for the square

model are summarized in Table 18 and Table 19. As in the

case of estimated variance, the UMLE always gives the

largest estimate of MSE A in both the case where the mean

is at the (5,5) center point and when it is at the (4,4)

corner point. The similarities between the estimated

variance and the estimated MSE A are also evident in Table 19

where the average values of the estimates of MSE A of all

three estimators are nearly the same as their estimates of

variance, particularly in the (5,5) case where the bias is

essentially zero and for the UMLE in the (4,4) case. In

terms of MSE A which considers each parameter separately,

Ramsey (30, p.12) has proven analytically that the mean
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TABLE 18

AVERAGE RANKS

OF SMALLER ESTIMATED MSE A FOR SQUARE MODEL

 

Mean at (5,5) Mean at (4,4)

 

 

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.38 1.63

b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

N=30 c. 3.00 1.63 1.38 c. 3.00 1.88 1.13

d. 3.00 1.50 1.50 d. 3.00 1.63 1.38

Total 3.00 1.28 1.72 3.00 1.59 1.41

a. 3.00 1.13 1.88 a. 3.00 1.38 1.63

_ b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

“-60 c. 3.00 1.88 1.13 c. 3.00 2.00 1.00

d. 3.00 2.00 1.00 d. 3.00 2.00 1.00

Total 3.00 1.50 1.50 3.00 1.72 1.28

a. 3.00 1.00 2.00 a. 3.00 1.38 1.63

N_100 b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

‘ c. 3.00 1.38 1.63 c. 3.00 1.75 1.25

d. 3.00 1.63 1.38 d. 3.00 1.63 1.38

Total 3.00 1.25 1.75 3.00 1.56 1.44

TOTAL 3.00 1.34 1.66 3.08 1.62 1.38

squared error of the MDE is less than that of the UMLE. The

sampling experiments for the square model completely support

Ramsey's theorem since in all cases the estimated MSE A Of

the UMLE is larger than that Of either the CMLE or the MDE.

This held true for the experiments performed with the true

population mean at the (5,5) center point as well as for

those carried out with the mean at the (4,4) corner point.

As sample size increases, the UMLE, CMLE, and MDE all give

smaller estimates of MSE A, with those of the UMLE decreasing

most rapidly. This result suggests that all three estimators
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FOR SQUARE MODEL
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TABLE 19

M-“

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 10.415 .829 .835 a. 10.415 1.607 1.346

N=30 b. 10.694 .804 .825 b. 10.694 .983 1.324

c. 14.401 .866 .865 c. 14.401 1.375 1.368

d. 14.269 .853 .851 d. 14.269 1.452 1.424

a. 5.457 .751 .776 a. 5.457 1.317 1.132

N=60 b. 5.526 .737 .766 b. 5.526 .785 1.133

c. 6.758 .806 .806 c. 6.758 1.293 1.289

d. 6.485 .795 .795 d. 6.485 1.268 1.266

a. 2.969 .693 .710 a. 2.969 1.052 .901

N=100 b. 3.281 .665 .726 b. 3.281 .540 .898

c. 4.094 .743 .744 c. 4.094 1.064 1.070

d. 4.058 .728 .727 d. 4.058 .981 .978

 

may be consistent estimators and that they may converge in

terms of MSE A as sample size increases.

While the size of the average estimates of the CMLE

and MDE are very close to one another in all cases, the CMLE

more frequently has the smallest estimate when the mean is

at (5,5).

estimate when the mean is (4,4).

However the MDE most frequently has the smallest

The average values table

shows a departure from the similarities with the variance

estimates. Instead of decreasing, the CML and MD estimates

of MSE increase when the mean is shifted to the (4,4) corner

point. This is due entirely to the increase in estimated

bias since estimated variance decreased slightly when the

mean shifted to (4,4). This result differs from the mean
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TABLE 20

AVERAGE RANKS

OF SMALLER ESTIMATED MSE B FOR SQUARE MODEL

 

Mean at (5,5) Mean at (4,4)

 

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.50 1.50

N=30 b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

C. 3.00 1.50 1.50 C. 3.00 1.75 1.25

d. 3.00 1.50 1.50 d. 3.00 1.75 1.25

Total 3.00 1.25 1.75 3.00 1.62 1.38

a. 3.00 1.00 2.00 a. 3.00 1.50 1.50

N=60 b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

C. 3.00 2.00 1.00 C. 3.00 2.00 1.00

d. 3.00 2.00 1.00 d. 3.00 2.00 1.00

Total 3.00 1.50 1.50 3.00 1.75 1.25

a. 3.00 1.00 2.00 a. 3.00 1.50 1.50

N=100 b. 3.00 1.00 2.00 b. 3.00 1.50 1.50

C. 3.00 1.50 1.50 C. 3.00 1.75 1.25

d. 3.00 1.00 2.00 d. 3.00 1.75 1.25

Total 3.00 1.12 1.88 3.00 1.62 1.38

TOTAL 3.00 1.29 1.71 3.00 1.66 1.34

 

squared error graph drawn by Penneck (29, p.22) which shows

the maximum mean squared error of the MDE at the midpoint of

the restricted interval at least in the univariate case.

The CML estimate usually increases more than the MD estimate

except for Specification b where the variances are equal and

the covariance is nonzero. Here the CML average estimate

remains smaller than the MD average estimate.

Estimated MSE B
 

The sampling results for estimated MSE B are summarized

in Table 20 and Table 21.
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TABLE 21

AVERAGE VALUES OF ESTIMATED MSE B

FOR SQUARE MODEL

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 6.901 .756 .780 a. 6.901 1.286 1.131

N=30 b. 9.555 .784 .813 b. 9.555 .930 1.255

c. 7.615 .669 .667 c. 7.615 .882 .874

d. 13.889 .865 .861 d. 13.889 1.425 1.402

a. 3.566 .655 .700 a. 3.566 1.007 .895

N=60 b. 4.696 .709 .757 b. 4.696 .742 1.106

c. 3.608 .576 .575 c. 3.608 .768 .765

d. 6.884 .800 .799 d. 6.884 1.256 1.255

a. 1.962 .577 .608 a. 1.962 .760 .660

N=100 b. 2.773 .644 .697 b. 2.773 .513 .860

c. 2.174 .490 .491 c. 2.174 .596 .599

d. 3.952 .741 .741 d. 3.952 1.032 1.030

 

Ramsey (30, p.22) has proven in his theorem 3 that even

in the multiparameter Situation mean squared error B of the

UMLE is larger than that of the MDE when the parameter space

is a convex set. Ramsey's analytical proof is further veri-

fied by the sampling experiments for the square model in

that the estimated MSE B of the UMLE was always larger than

that of the MDE for all sample sizes and for both the (5,5)

centered population mean and the (4,4) corner mean. 'Table 21

shows that the average estimated MSE B of the UMLE is consid-

erably larger than either of the constrained estimates. AS

sample Size increases, the estimates of MSE B of all of the

estimators decrease in both the (5,5) and (4,4) case. AS

with variance and MSE A, the UML estimates decrease most

rapidly, but remain larger than the constrained estimates.
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Table 21 also Shows that almost all the average estimates

are smaller when the variances are unequal (specifications a

and c) than when the variances are equal (specifications b

and d). Here again this is probably due to the fact that

the sum of the squares of the variances is greater than the

sum of their cross-products as given in Table 1.

The average ranks table for the CML and MD estimates of

MSE B Shows that the CML estimate is more frequently smaller

when the mean is at (5,5) while the MD estimate is more fre-

quently smaller when the mean is at (4,4). Table 21 indi-

cates that the CML and MD average estimates of MSE B are

very close to one another, especially when the covariance is

zero (specifications c and d). This result relates to the

previous explanation concerning the major (and minor) axis

of the likelihood ellipse being parallel to a side of the

square. Shifting the mean to (4,4) almost always increases

the size of the CML and MD average estimates which again is

a result of the increased estimated bias of the constrained

estimators as the true population mean moves toward the

boundary of the constrained space.

Estimated MSE D
 

The sampling results of estimated MSE D for the square

model are summarized in Table 22 and Table 23. AS in the

points model, MSE D is a matrix and the average values given

in Table 23 are the values of the determinants Of the MSE D

difference matrices.
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TABLE 22

AVERAGE RANKS

OF SMALLER ESTIMATED MSE D FOR SQUARE MODEL

 

Mean at (5,5) Mean at (4,4)

 

 

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.00 2.00 a. 3.00 1.00 2.00

N=30 b. 3.00 1.00 2.00 b- 2.75 1.00 2.25

c. 3.00 1.00 2.00 c. 3.00 1.50 1.50

d. 3.00 1.25 1.75 d. 3.00 1.50 1.50

Total 3.00 1.06 1.94 2.94 1.25 1.81

a. 3.00 1.00 2.00 a. 3.00 1.00 2.00

N=60 b. 3.00 1.00 2.00. b. 2.75 1.25 2.00

c. 3.00 1.50 1.50 c. 3.00 2.00 1.00

d. 3.00 1.50 1.50 d. 3.00 1.75 1.25

Total 3.00 1.25 1.75 2.94 1.50 1.56

a. 3.00 1.00 2.00 a. 2.75 1.25 2.00

N=100 b. 3.00 1.00 2.00 b. 2.75 1.25 2.00

c. 3.00 1.00 2.00 c. 3.00 1.00 2.00

d. 3.00 1.00 2.00 d. 3.00 1.25 1.75

Total 3.00 1.00 2.00 2.87 1.19 1.94

TOTAL 3.00 1.10 1.90 2.92 1.31 1.77

Table 22 Shows that the UMLE always gives the largest

estimate of MSE D when the mean is at (5,5). When the mean

is moved to the (4,4) corner point, it still gives the

largest estimate most frequently, but not as often as the

sample size increases. The CMLE gives a smaller estimate of

MSE D more frequently than does the MDE in both the (5,5)

and (4,4) cases.

Table 23 indicates that the difference matrices for U—C

and U-M are much larger than the matrix of C—M in both the

(5,5) and (4,4) cases. Since the determinants of U-C and
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TABLE 23

AVERAGE VALUES OF ESTIMATED MSE D

FOR SQUARE MODEL

 

 

 

 

 

Mean at (5,5) Mean at (4,4)

U-C U-M C-M U-C U-M C-M

a. 17.353 18.852 -.121 a. 15.695 17.643 -.023

N=30 b. 39.251 43.089 -.193 b. 33.842 30.537 .077

c. 4.829 4.866 -.000 c. 5.673 5.794 -.000

d. 169.349 169.460 .000 d. 154.337 154.337 .001

a. 3.056 3.410 -.061 a. 2.823 3.388 -.004

N=60 b. 7.696 9.161 -.132 b. 6.009 3.610 .128

c. .665 .682 -.000 c. 1.116 1.131 .000

d. 36.854 36.862 .000 d. 31.115 31.126 —.000

a. .537 .642 -.024 a. .628 .857 .005

N=100 b. 1.959 2.475 -.065 b. 1.828 .469 .120

c. .057 .058 -.000 c. .376 .376 -.000

d. 10.277 10.275 -.000 d. 8.197 8.211 -.000

 

U-M are strictly positive here as are the diagonal elements

of the corresponding difference matrices, the MSE D of the

UMLE is clearly larger than that of the MDE and the CMLE.

Also in both the (5,5) and (4,4) cases the U-C and U-M de-

terminants always decrease as sample size increases which

suggests the possible convergence of the unconstrained and

constrained estimators in terms of MSE D as sample size in-

creases. When the mean is shifted from (5,5) to (4,4) the

U-C and U-M determinants almost always decrease which proba-

bly reflects the increased estimated bias Of the CMLE and

the MDE in the (4,4) case since the UMLE is not affected by

the constraints. When the mean is at (5,5), the C-M deter-

minant is almost always negative, while in the (4,4) situa-

tion there is an equal number of positive and negative
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TABLE 24

AVERAGE RANKS

OF SMALLER ESTIMATED MSE E FOR SQUARE MODEL

 

Mean at (5,5) Mean at (4,4)

 

 

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.75 1.25 a. 3.00 1.50 1.50

V=3O b. 3.00 2.00 1.00 b. 3.00 1.50 1.50

‘ c. 3.00 1.50 1.50 c. 3.00 1.75 1.25

d. 3.00 1.50 1.50 d. 3.00 1.75 1.25

Total 3.00 1.69 1.31 3.00 1.62 1.38

a. 3.00 2.00 1.00 a. 3.00 1.50 1.50

N=6O b. 3.00 2.00 1.00 b. 3.00 2.00 1.00

c. 3.00 2.00 1.00 c. 3.00 2.00 1.00

d. 3.00 2.00 1.00 d. 3.00 2.00 1.00

Total 3.00 2.00 1.00 3.00 1.87 1.13

a. 3.00 1.75 1.25 a. 3.00 1.50 1.50

N=100 b. 3.00 2.00 1.00 b. 3.00 1.50 1.50

c. 3.00 1.25 1.75 c. 3.00 1.50 1.50

d. 3.00 1.25 1.75 d. 3.00 1.75 1.25

Total 3.00 1.56 1.44 3.00 1.56 1.44

TOTAL 3.00 1.75 1.25 3.00 1.68 1.32

values. Table 23 also shows the C-M determinant is almost

zero whenever the covariance is zero. This reflects the

closeness of the CMLE to the MDE in terms of MSE D.

Estimated MSE E
 

The sampling results for estimated MSE E for the square

model are summarized in Table 24 and 25. The average ranks

table indicates that the UMLE always gives the largest esti-

mate of MSE E in both the (5,5) and (4,4) cases. Table 25

also shows its estimates to be considerably larger than
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TABLE 25

AVERAGE VALUES OF ESTIMATED MSE E

FOR SQUARE MODEL

 

 

 

 

Mean at (5,5) Mean at (4,4)

UML CML MD UML CML MD

a. 26.919 .564 .508 a. 26.919 1.284 .733

N=3O b. 53.723 .605 .540 b. 53.723 .711 1.523

c. 11.950 .409 .407 c. 11.950 .465 .454

d. 192.630 .748 .741 d. 192.630 1.691 1.626

a. 6.699 .414 .373 a. 6.699 .711 .435

M=60 b. 13.617 .500 .413 b. 13.617 .501 1.198

‘ c. 3.097 .279 .277 c. 3.097 .272 .268

d. 47.219 .639 .638 d. 47.219 1.320 1.309

a. 2.055 .306 .285 a. 2.055 .383 .231

N=100 b. 4.775 .404 .353 b. 4.775 .249 .730

c. 1.043 .177 .177 c. 1.043 .119 .120

d. 15.585 .549 .549 d. 15.585 .906 .905

 

those of the CMLE and MDE. As sample size increases, the

average estimates of all three estimators decrease with

those of the UMLE decreasing most rapidly. This result sug-

gests the possible consistency and convergence of the three

estimators.

Comparing the CML and MD estimate average ranks, Table

24 Shows that the MDE most frequently gave the smallest

estimate Of MSE E, regardless of the location of themean.

The average values of the CML and MD estimates are very

close to one another, particularly when the covariance is

zero (Specifications c and d). Zero covariance implies the

parallel relationship between the likelihood ellipse and the

square that often results in equal estimates for the CMLE

and the MDE as previously discussed. When the mean is
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shifted from (5,5) to (4,4) almost all of the constrained

estimates of MSE E increase, especially for small sample

Sizes which probably reflects the increased estimated bias

observed as the true mean Shifts to the boundary of the con-

strained Space.

Summary of Square Model Sampling Results

All three estimators appeared to be unbiased when the

population mean was in the center of the constrained space.

When the true population mean shifted to the boundary of the

constrained Space, the UMLE appeared to remain unbiased but

the CMLE and the MDE appeared to have small to moderate es-

timated biases which were nearly the same Size. The esti-

mated bias of the constrained estimators when the mean was

at the boundary decreased as sample size increased.

The estimated variances of the constrained estimators

were considerably smaller than that of the UMLE at both the

center and on the boundary of the constrained Space. The

estimated variances of all the estimators tended to decline

as sample size increased.

The UMLE always had the largest estimated mean squared

error for MSE A, B, and E, and almost always for MSE D. The

estimated MSE A, B, and E of all three estimators always de-

creased as sample size increased. It was not determined if

the estimated MSE D was decreasing for all the estimators

because it was in matrix form. For the estimates of MSE A

and B the CMLE tended to do slightly better than the MDE when
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the true population mean was in the center of the constrained

space, but the reverse was true when the mean was at the

boundary of the constrained space. For MSE D the CML esti-

mate was generally slightly smaller than the MD estimate.

For MSE E the MD estimate was generally slightly smaller than

the CML estimate.

When the true population mean was at the center of the

constrained Space, the estimates of the skewness of the UMLE,

the CMLE, and the MDE were very small relative to their

standard deviations and the estimates were nearly always

equlal. There were about an equal number of positive and

neg’ative values which suggests that these estimators have

asymmetric distributions when the population mean is at the

center of the constrained space. The UMLE continued to have

small estimated skewness when the mean shifted to the bound-

ary of the constrained space, however the estimates of the

Skewness of the CMLE and the MDE, while remaining nearly

enzual to one another, increased. The ratio of the average

«estimated skewness to the standard deviations for the con-

strained estimators ranged from about 0.5 to 6.5 when the

Ixzpulation mean was at the boundary, while the ratio for the

UMLE remained essentially zero.

The estimated kurtosis of the UMLE was quite small in

alhuost all cases and fluctuated between positive and nega-

tiAna'values. The estimates of the kurtosis of both of the

constrained estimators were nearly the same and were almost

always negative. When the mean was at the center point,
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the ratio of the average estimates of the kurtosis of the

constrained estimators to their standard deviations ranged

from about -1 to -2. When the mean was at the boundary, the

average ratio of the estimated kurtosis of the constrained

estimators to their standard deviations ranged from about

-.5 to -7.0.

The CML and MD estimates of the four moments were quite

close to one another in each case. When the mean was in the

center of the constrained Space, the estimated first moments

of all three estimators were nearly the same. When the mean

Shifted to the boundary of the constrained space the esti-

mated first moments of the CMLE and the MDE remained close

to one another but were somewhat larger than that of the

UMLE. The estimated second moment of the UMLE was somewhat

larger than those of the constrained estimators when the

mean was in the center of the constrained space, but the es-

timated second moments of all three estimators were about

the same when the mean shifted to the boundary of the con-

strained space. The estimated third moment of the UMLE was

greater than that of the constrained estimators when the

mean was in the center of the constrained space, but became

about equal to those of the constrained estimators when the

mean was Shifted to the boundary. The estimated fourth

moment of the UMLE was considerably larger than that of the

constrained estimators when the mean was at the center point

of the constrained space, and was about equal to the con-

strained estimates when the mean was at the boundary. The
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estimated third and fourth moments of the UMLE exhibited

considerably greater variation than those of the constrained

estimators when the mean was at the boundary of the con-

strained space.

4.5 Elliptical Model
 

An alternative formulation of the constrained Space in

the continuous case is an ellipse. As in the case of the

discrete points and the continuous square, the ellipse may

also be centered around the point (5,5). In particular, the

ellipse may be given by the equation:

(y-S)2 (x-S)2 _ -
3 + 2 l (35)  

The UML estimate is the average of the observed sample

values, and is designated for this bivariate normal situa-

tion as E6 = (8u1,8u2) = (2,?) as described above. If the

UML estimate is in or on the ellipse then the CML and MD

estimates are equal to the UML estimate. Otherwise the MD

estimate can be obtained by finding the values of 81 and 82

that minimize the expression D2 = (81-36)2 + (82-?)2 where D2

represents the square of the distance between the UML esti-

mate and the MD estimate subject to the condition that the

solution be on the ellipse. A boundary search procedure is

used to obtain the MD estimates. If the UML estimate falls

outside of the ellipse, the CML estimate is obtained by maxi-

mizing the likelihood function (or minimizing the exponent of
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the likelihood function) subject to the condition that the

solution be a point on the constrained space ellipse. The

CML estimates are also obtained by a boundary search proce-

dure.

Sampling Results
 

Since in the discrete points model and in the square

model the Shift from the (5,5) center point to the (4,4)

corner point was accomplished by shifting both coordinates

of the mean of the bivariate normal in the same direction

and by the same amount, the two variates of the bivariate

normal were considered together in the presentation of tables

and exposition for the discrete points model and the square

model. However, in the elliptical model the shift from the

(5,5) center point to the (5,5-/3) bottom point on the

ellipse is accomplished by changing only the second coordi-

nate of the true population mean. Consequently the two

variates of the bivariate normal will be treated separately

in the tables and exposition for the elliptical model.

Estimated Bias
 

The sampling results for estimated bias for the ellipti-

cal model are summarized in Table 26 and Table 27. When the

true population mean is at the (5,5) center point both

variates of the UMLE give the largest estimates of bias most

frequently. When the mean is moved to the (5,5-/3) bottom

point on the ellipse, however, the first variate of the UMLE
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gives the largest estimate of bias less often than the CMLE.

Meanwhile the second variate always gives the smallest es-

timate of bias. The average values table shows that the es—

timated bias of all three estimators is quite small and

aboutfequal for all three estimators when the mean is at the

center of the constrained space and also for the first

variate when the mean is shifted to the bottom point on the

constrained space ellipse. This result suggests that all

TABLE 26

AVERAGE RANKS

OF SMALLER ABSOLUTE ESTIMATED BIAS

FOR ELLIPTICAL MODEL

 

Mean at (5,5)

 

 

 

 

 

 

 

 

V1 V2

UML CML MD UML CML MD

a. 2.75 1.75 1.50 a. 2.50 1.75 1.75

N=30 b. 2.50 1.50 2.00 b. 3.00 1.25 1.75

C. 3.00 1.00 2.00 C. 2.75 1.25 2.00

d. 3.00 1.00 2.00 d. 3.00 1.25 1.75

Total 2.81 1.31 1.88 2.81 1.38 1.81

a. 3.00 1.50 1.50 a. 2.00 1.75 2.25

N=60 b. 3.00 1.75 1.25 b. 3.00 1.50 1.50

C. 3.00 1.50 1.50 C. 3.00 1.50 1.50

d. 3.00 1.75 1.25 d. 2.75 1.75 1.50

Total 3.00 1.62 1.38 2.69 1.62 1.69

a. 2.75 1.75 1.50 a. 2.50 2.00 1.50

N=100 b. 2.50 2.00 1.50 b. 2.00 2.00 2.00

C. 2.25 1.50 2.25 C. 2.50 2.00 1.50

d. 2.25 2.00 1.75 d. 2.50 1.75 1.75

Total 2.44 1.81 1.75 2.37 1.94 1.69

TOTAL 2.75 1.58 1.67 2.62 1.65 1.73
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TABLE 26 — Continued

Mean at (5,5-/3)

 

 

 

 

 

 

 

 

 

V1 V2

UML CML MD UML CML MD

a. 1.50 3.00 1.50 a. 1.00 2.50 2.50

N=30 b. 1.75 2.75 1.50 b. 1.00 2.50 2.50

C. 3.00 1.25 1.75 C. 1.00 2.50 2.50

d. 3.00 1.25 1.75 d. 1.00 2.50 2.50

Total 2.31 2.06 1.63 1.00 2.50 2.50

a. 1.25 3.00 1.75 a. 1.00 2.50 2.50

N=60 b. 1.00 3.00 2.00 b. 1.00 2.25 2.75

C. 3.00 1.75 1.25 C. 1.00 2.50 2.50

d. 3.00 1.75 1.25 d. 1.00 3.00 2.00

Total 2.06 2.38 1.56 1.00 2.56 2.44

a. 1.00 3.00 2.00 a. 1.00 2.50 2.50

N=100 b. 1.00 3.00 2.00 b. 1.00 2.50 2.50

C. 2.75 2.00 1.25 C. 1.00 2.50 2.50

d. 2.50 2.00 1.50 d. 1.00 3.00 2.00

Total 1.81 2.50 1.69 1.00 2.62 2.38

TOTAL 2.06 2.31 1.63 1.00 2.56 2.44

 

three estimators may be unbiased in this special circum-

stance. The exception is when the mean is Shifted to

(5,5-/3). While this obviously does not affect the UMLE, it

greatly increases the average estimated bias of the second

‘variates of the constrained estimators which become strictly

positive. For both variates and for both means, the esti-

mates of the UMLE are about equally negative and positive.

Increasing the sample size does not appear to affect the

size of the estimated bias of the UMLE which is practically

zero anyway .
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TABLE 27

AVERAGE VALUES OF ESTIMATED BIAS

FOR ELLIPTICAL MODEL

 

Mean at (5,5)

 

 

 

 

 

 

 

 

 

 

 

v1 v2

UML CML MD UML CML MD

a. -.006 -.009 -.006 a. -.234 -.072 -.090

N=30 b. -.045 -.025 -.018 b. -.031 -.029 —.022

c. -.006 -.000 .001 c. -.243 -.066 -.085

d. -.075 -.051 -.056 d. .035 .028 .028

a. .030 .029 .018 a. .032 .015 .020

N=60 b. .052 .033 .029 b. .006 .003 -.002

c. .030 .025 .011 c. .076 .040 .044

d. -.034 -.019 -.021 d. -.018 -.015 -.015

a. .006 .006 .008 a. .005 .005 .004

N=100 b. .034 .013 .009 b. -.058 -.027 -.032

c. .006 .007 .007 c. .014 .021 .021

d. -.015 -.014 -.015 d. -.016 -.013 -.012

Mean at (5,5-/3)

v1 v2

UML CML MD UML CML MD

a. -.006 -.083 -.035 a. -.234 1.177 1.100

‘_ b. -.045 -.190 -.094 b. -.031 1.079 1.097

“-30 c. -.006 .001 .002 c. —.243 1.167 1.084

d. —.075 -.048 -.050 d. .035 .863 .863

a. .030 -.045 -.020 a. .032 1.055 1.012

_ b. .052 -.l73 -.087 b. .006 .927 .937

N-50 c. .030 .028 .012 c. .076 1.042 .992

d. -.034 -.006 -.009 d. -.018 .632 .630

a. 0006 -0058 -0033 a. .005 .854 .824

_ b. .034 -.195 —.105 b. -.058 .744 .752

N-loo c. .006 .007 .005- c. .014 .828 .795

d. -.015 -.007 -.008 d. -.016 .474 .473
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When the CMLE and MDE average ranks are compared it can

be seen that the two estimators give the smallest estimates

almost equally often in the (5,5) case with the CMLE doing

slightly better for both variates. However when the mean is

movedwto the bottom point at (5,5-/3), the variates perform

differently. The first variate of the CMLE more frequently

gives the largest estimate while that of the MDE more often

gives the smallest. The second variate of the CMLE also

gives the largest estimate most often, with the MDE average

rank not far behind. Table 27 Shows that the average esti-

mates of bias of both estimators are usually fairly close to

one another. Also, the average estimates do not usually seem

to be affected by sample size. The exception to this state-

ment is the case of the second variate when the mean is at

(5,5-/3). Increasing the sample size here reduced the

average estimates of the CMLE and the MDE. This suggests the

possibility that both constrained estimators may be asympto-

tically unbiased. The second variate here is also the only

place where all of the estimates of bias of the constrained

estimators are positive. Elsewhere the number of positive

and negative values are about equal.

Estimated Variance
 

The sampling results for estimated variance for the

elliptical model are summarized in Table 28 and Table 29.

The UMLE always gives the largest estimate of variance re—

gardless of which variate or which mean is being examined.
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Table 29 Shows that the UMLE's average estimate of variance

is usually considerably larger than the CML and MD estimates

except for the first variate under Specification c where in

this case the average estimated variance of the first vari-

ate itself was quite small relative to its value for Speci-

fications a, b, and d in this instance. AS a result all

three estimators had smaller estimates for variance. The

UMLE estimated variance is closer to that of the constrained

TABLE 28

AVERAGE RANKS

OF SMALLER ESTIMATED VARIANCE

FOR ELLIPTICAL MODEL

——~.— ”*1“... -~

Mean at (5,5)

 

 

 

 

 

 

 

 

v1 v2

UML CML MD UML CML MD

a. 3.00 1.50 1.50 a. 3.00 1.50 1.50

1_30 b. 3.00 2.00 1.00 b. 3.00 1.00 2.00

*‘ c. 3.00 1.50 1.50 c. 3.00 1.50 1.50

d. 3.00 1.50 1.50 d. 3.00 1.50 1.50

Total 3.00 1.62 1.38 3.00 1.37 1.63

a. 3.00 1.50 1.50 a. 3.00 1.50 1.50

fl-60 b. 3.00 2.00 1.00 b. 3.00 1.00 2.00

“ c. 3.00 1.50 1.50 c. 3.00 1.50 1.50

d. 3.00 1.50 1.50 d. 3.00 1.50 1.50

Total 3.00 1.63 1.37 3.00 1.37 1.63

a. 3.00 1.75 1.25 a. 3.00 1.25 1.75

N_100 b. 3.00 2.00 1.00 , b. 3.00 1.00 2.00

‘ c. 3.00 1.50 1.50 c. 3.00 1.50 1.50

d. 3.00 2.00 1.00 d. 3.00 1.00 2.00

Total 3.00 1.81 1.19 3.00 1.19 1.81

 

TOTAI. 3.00 1.69 1.31 3.00 1.31 1.69
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TABLE 28 - Continued

Mean at (5,5-/3)

 

 

 

 

 

 

 

 

 

V1 V2

UML CML MD UML CML MD

a. 3.00 1.50 1.50 a. 3.00 1.00 2.00

N=3O b. 3.00 1.75 1.25 b. 3.00 1.00 2.00

C. 3.00 1.50 1.50 C. 3.00 1.50 1.50

d. 3.00 1.75 1.25 d. 3.00 1.50 1.50

Total 3.00 1.62 1.38 3.00 1.25 1.75

a. 3.00 1.50 1.50 a. 3.00 1.00 2.00

N=6O b. 3.00 1.75 1.25 b. 3.00 1.00 2.00

C. 3.00 1.50 1.50 C. 3.00 1.25 1.75

d. 3.00 1.75 1.25 d. 3.00 1.50 1.50

Total 3.00 1.62 1.38 3.00 1.19 1.81

a. 3.00 1.50 1.50 a. 3.00 1.00 2.00

N=100 b. 3.00 11.50 1.50 b. 3.00 1.00 2.00

C. 3.00 1.50 1.50 C. 3.00 1.25 1.75

d. 3.00 2.00 1.00 d. 3.00 1.50 1.50

Total 3.00 1.62 1.38 3.00 1.19 1.81

TOTAL 3.00 1.62 1.38 3.00 1.21 1.79

 

estimators were small to begin with since they were re-

stricted to lie in the constrained Space, while that of the

UMLE tends to decrease rapidly as a larger and larger pro-

portion of its estimates fall within the constrained space.

AS sample size increases the UMLE average estimate always de-

creases fairly substantially.

The average ranks of the two constrained estimators Show

that the first variate of the MDE most frequently gives the

smallest estimate of variance while the second variate of the

(HTLE most often gives the smallest estimate, regardless of
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TABLE 29

AVERAGE VALUES OF ESTIMATED VARIANCE

FOR ELLIPTICAL MODEL

Mean at (5,5)

 

 

 

 

 

 

 

 

 

 

 

v1 v2

UML CML MD UML CML MD

a. 3.382 .836 .635 a.' 10.415 1.431 1.731

d=30 b. 7.415 .918 .814 b. 10.693 1.355 1.512

c. .830 .535 .271 c. 14.342 1.750 2.142

d. 13.474 .957 .956 d. 14.267 1.442 1.444

a. 1.674 .682 .555 a. 5.454 1.399 1.589

N=60 b. 3.863 .873 .805 b. 5.526 1.266 1.368

c. .457 .375 .239 c. 6.752 1.700 1.904

d. 7.283 .960 .962 d. 6.470 1.291 1.286

a. .954 .538 .468 a. 2.967 1.265 1.370

N=100 b. 2.264 .793 .731 b. 3.278 1.128 1.221

c. .255 .237 .181 c. 4.093 1.610 1.696

. 3.840 .918 .916 d. 4.051 1.231 1.233

Mean at (5,5—/3)

v1 v2

UML CML MD UML - CML MD

a. 3.382 .788 .580 a. 10.415 1.174 1.443

N=30 b. 7.415 .822 .746 b. 10.693 1.102 1.281

c. .830 .520 .244 c. 14.342 1.501 1.814

d. 13.474 .907 .903 d. 14.267 1.286 1.283

a. 1.674 .606 .489 a. 5.454 .997 1.147

N=60 b. 3.863 .744 .698 b. 5.526 .902 1.020

c. .457 .368 .223 c. 6.752 1.364 1.511

d. 7.283 .871 .873 d. 6.470 1.069 1.062

a. .954 .443 .371 a. 2.967 .737 .811

N=100 b. 2.264 .611 .587. b. 3.278 .674 .766

c. .255 .226 .141 c. 4.093 1.024 1.089

d. 3.840 .765 .763 d. 4.051 .830 .831
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the location of the mean. The average values table shows

that the average estimates of the CMLE and MDE are rela-

tively close to one another compared to the much larger Size

of the UMLE. In addition the constrained average estimates

always decrease as sample Size increases. The estimated

variance of the constrained estimators for the second vari-

ate is always larger than that for the first variate because

the major axis of the constrained space ellipse is parallel

to the axis of the second variate which allows a greater

range for variation for the second variate than for the

first variate.

Estimated MSE A
 

The sampling results for estimated MSE A for the ellip-

tical model are summarized in Table 30 and Table 31. The

UMLE always gives the largest estimate of MSE A when the mean

iS at the (5,5) center point. When the mean is moved to the

(5,5-/3) bottom point the UMLE still always gives the larg-

est estimate for the first variate, however it occasionally

does not give the largest estimate for the second variate.

The estimated MSE A of the UMLE is occasionally smaller than

that of the constrained estimators for the second variate

partly because the estimated variance of the UMLE is gener-

ally smaller than usual in this Case and partly because the

estimated bias of the constrained estimators is considerably

larger for the second variate when the population mean is set

at the bottom point on the ellipse. Table 31 Shows that the
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UMLE average estimate of MSE A is usually considerably

larger than the average estimates of the CMLE and MDE. All

Of the UMLE average estimates decrease as sample Size in-

creases.

.Comparing the CMLE and the MDE in the average ranks

table Shows that the MD estimate of the first variate is

most frequently the smallest in both the center point and

bottom point mean situations. On the other hand, the CML

TABLE 30

AVERAGE RANKS

OF SMALLER ESTIMATED MSE A

FOR ELLIPTICAL MODEL

 

Mean at (5,5)

 

 

 

 

 

 

 

 

 

V1 V2

UML CML MD UML CML MD

a. 3.00 1.50 1.50 a. 3.00 1.50 1.50

N=30 b. 3.00 2.00 1.00 b. 3.00 1.00 2.00

C. 3.00 1.50 1.50 C. 3.00 1.50 1.50

d. 3.00 1.50 1.50 d. 3.00 1.50 1.50

Total 3.00 1.62 1.38 3.00 1.38 1.62

a. 3.00 1.50 1.50 a. 3.00 1.50 1.50

N=60 b. 3.00 2.00 1.00 b. 3.00 1.00 2.00

C. 3.00 1.50 1.50 C. 3.00 1.50 1.50

d. 3.00 1.50 1.50 d. 3.00 1.50 1.50

Total 3.00 1.62 1.38 3.00 1.38 1.62

a. 3.00 1.75 1.25' a. 3.00 1.25 1.75

N=100 b. 3.00 2.00 1.00 b. 3.00 1.00 2.00

C. 3.00 1.50 1.50 C. 3.00 1.50 1.50

d. 3.00 2.00 1.00 d. 3.00 1.00 2.00

Total 3.00 1.81 1.19 3.00 1.19 1.81

TOTAL 3.00 1.68 1.32 3.00 1.32 1.68
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TABLE 30 - Continued

1W

Mean at (5,5-/3)

 

 

 

 
 

 

 

 

 

 

V1 V2

UML CML MD UML CML MD

a. 3.00 1.50 1.50 a. 3.00 1.00 2.00

N—3O b. 3.00 2.00 1.00 b. 3.00 1.00 2.00

_ C. 3.00 1.50 1.50 C. 2.75 1.00 2.25

d. 3.00 1.75 1.25 d. 3.00 1.50 1.50

Total 3.00 1.69 1.31 2.94 1.12 1.94

a. 3.00 1.50 1.50 a. 3.00 1.00 2.00

N=60 b. 3.00 2.00 1.00 b. 3.00 1.00 2.00

C. 3.00 1.50 1.50 C. 2.75 1.25 2.00

d. 3.00 1.75 1.25 d. 3.00 2.00 1.00

Total 3.00 1.69 1.31 2.94 1.31 1.75

a. 3.00 1.50 1.50 a. 3.00 1.00 2.00

N=100 b. 3.00 2.00 1.00 b. 3.00 1.25 1.75

C. 3.00 1.50 1.50 C. 2.75 1.25 2.00

d. 3.00 2.00 1.00 d. 3.00 1.75 1.25

Total 3.00 1.75 1.25 2.94 1.31 1.75

TOTAL 3.00 1.71 1.29 2.94 1.25 1.81

 

estimate for the second variate is most frequently the

smallest regardless of where the mean is. Table 31 Shows

that the average MSE A estimates of the CMLE and the MDE are

relatively close to one another. The average constrained

estimates for the second variate are larger than those for

the first variate. Shifting the mean to the (5,5-/3) bottom

point of the ellipse slightly reduces the Size of the aver-

age constrainted estimates for the first variate but in-

creases the average estimates for the second variate which re-

flects the positive bias for the second variate at the bottom
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TABLE 31

AVERAGE VALUES OF ESTIMATED MSE A

FOR ELLIPTICAL MODEL

Mean at (5,5)

 

 

 

 

 

 

 

 

 

 

 

V1 V2

UML CML MD UML CML MD

a. 3.387 .839 .639 a. 10.415 1.431 1.731

N=30 b. 7.417 .919 .814 b. 10.694 1.356 1.513

C. .830 .535 .271 C. 14.401 1.755 2.149

d. 13.509 '.959 .958 d. 14.269 1.442 1.444

a. 1.675 .683 .556 a. 5.457 1.400 1.590

N=60 b. 3.866 .874 .806 b. 5.526 1.266 1.368

C. .458 .376 .239 C. 6.758 1.701 1.906

d. 7.283 .960 .962 d. 6.485 1.293 1.289

a. .954 .539 .469 a. 2.969 1.266 1.371

N=100 b. 2.265 .793 .731 b. 3.281 1.129 1.222

C. .255 .237 .181 C. 4.094 1.611 1.696

d. 3.846 .918 .916 d. 4.058 1.232 1.234

Mean at (5,5-/3)

V1 V2

UML CML MD UML CML MD

a. 3.387 .798 .580 a. 10.415 2.455 2.622

N=30 b. 7.417 .859 .754 b. 10.694 2.267 2.485

C. .830 .520 .244 C. 14.401 2.862 2.989

d. 13.509 .910 .906 d. 14.269 2.793 2.769

a. 1.675 .632 .495 a. 5.457 1.844 1.934

N=60 b. 3.866 .774 .705 b. 5.526 1.762 1.897

C. .458 .368 .224 C. 6.758 2.449 2.495

d. 7.283 .871 .873 d. 6.485 2.251 2.243

a. .954 .468 .378 a. 2.969 1.274 1.306

N=100 b. 2.265 .649 .599 b. 3.281 1.228 1.333

C. .255 .226 .141 C. 4.094 1.710 1.721

d. 3.846 .765 .763 d. 4.058 1.582 1.583
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TABLE 32

AVERAGE RANKS

OF SMALLER ESTIMATED MSE B

FOR ELLIPTICAL MODEL

Mean at (5,5) Mean at (5,5-/3)

 

 

 
 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 1.50 1.50 a. 3.00 1.50 1.50

N=30 b. 3.00 1.00 2.00 b. 3.00 l.25 1.75

c. 3.00 1.25 1.75 C. 3.00 l.50 1.50

d. 3.00 1.50 1.50 d. 3.00 1.50 1.50

Total 3.00 1.31 1.69 3.00 1.44 1.56

a. 3.00 1.75 1.25 a. 3.00 l.50 1.50

N=60 b. 3.00 1.00 2.00 b. 3.00 1.25 1.75

C. 3.00 1.50 1.50 C. 3.00 1.50 1.50

d. 3.00 1.50 1.50 d. 3.00 2.00 1.00

Total 3.00 1.44 1.56 3.00 l.56 1.44

a. 3.00 1.25 1.75 a. 3.00 1.50 1.50

N=lOO b. 3.00 1.00 2.00 b. 3.00 1.25 1.75

C. 3.00 l.50 1.50 C. 3.00 1.50 1.50

d. 3.00 1.00 2.00 d. 3.00 2.00 1.00

Total 3.00 1.19 1.81 3.00 1.56 1.44

TOTAL 3.00 1.31 1.69 3.00 1.52 1.48

 

point on the constrained space ellipse. In all cases the

average constrained estimate of MSE A almost always declines

as sample size increases which suggests that the CMLE and

the MDE may be consistent estimators of the population mean.

Estimated MSE B
 

The sampling results for estimated MSE B for the ellip-

tical model are summarized in Table 32 and Table 33.

variates are combined under the definition of estimated

The
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TABLE 33

AVERAGE VALUES OF ESTIMATED MSE B

FOR ELLIPTICAL MODEL

 

Mean at (5,5) Mean at (5,5-/3)

 

 

 

 

 

UML CML MD UML CML MD

a. 6.901 1.135 1.185 a. 6.901 1.627 1.601

N=30 b. 9.555 1.137 1.164 b. 9.555 1.563 1.620

c. 7.615 1.145 1.210 c. 7.615 1.691 1.617

d. 13.889 1.201 1.201 d. 13.889 1.851 1.837

a. 3.566 1.041 1.073 a. 3.566 1.238 1.215

N=60 b. 4.696 1.070 1.087 b. 4.696 1.268 1.301

c. 3.608 1.038 1.073 c. 3.608 1.409 1.359

d. 6.884 1.127 1.126 d. 6.884 1.561 1.558

a. 1.962 .902 .920 a. 1.962 .871 .842

N=100 b. 2.773 .961 .976 b. 2.773 .938 .966

c. 2.174 .924 .938 c. 2.174 .968 .931

d. 3.952 1.075 1.075 d. 3.952 1.174 1.173

MSE B. The UMLE always gives the largest estimate of MSE B

regardless of the location of the mean. Table 33 shows that

the average UML estimate is always considerably larger than

those of the CMLE and the MDE, which as in the case of the

square tends to reconfirm Ramsey's theorem (30, p.22) for

convex sets indicating that the MSE B of the UMLE should be

larger than that of the MDE.

UML average estimates decline.

As sample size increases, the

The average ranks table shows that the CML estimate of

MSE B is most frequently smallest when the mean is at (5,5).

The MDE gives smaller estimates slightly more often than the

CMLE when the mean is moved to (5,S-/3). Table 33 shows that

the CML and MD average estimates are relatively close to one

another particularly when the variances are equal and the
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‘TABLE 34

AVERAGE RANKS

OF SMALLER ESTIMATED MSE D

FOR ELLIPTICAL MODEL

 

 

 

 

 

 

 

 

Mean at (5,5) Mean at (5,5-/3)

UML CML MD UML CML MD

a. 3.00 1.00 2.00 2.75 1.00 2.25

N=30 b. 3.00 1.00 2.00 3,00 1.00 2.00

C. 3.00 1.00 2.00 2.75 1.00 2.25

d. 3.00 1.00 2.00 3.00 1.50 1.50

Total 3.00 1.00 2.00 2.87 1.13 2.00

a. 3.00 1.00 2.00 2.75 1.00 2.25

N'6O b. 3.00 1.00 2.00 3.00 1.00 2.00

— C. 3.00 1.00 2.00 2.75 1.25 2.00

d. 3.00 1.00 2.00 3.00 1.50 1.50

Total 3.00 1.00 2.00 2.87 1.19 1.94

a. 3.00 1.00 2.00 a 2.75 1.00 2.25

N‘lOO b. 3.00 1.00 2.00 b. 3.00 1.00 2.00

_ C. 3.00 1.00 2.00 C. 2.75 1.25 2.00

d. 3.00 1.00 2.00 d. 3.00 1.50 1.50

Total 3.00 1.00 2.00 2.87 l.l9 1.94

TOTAL 3.00 1.00 2.00 2.87 1.17 1.96

 

covariance is nonzero. Shifting the mean to (5,5-/3)

usually increases the size of the average estimates as a re-

sult of the increase in bias.

ple size the smaller the increase.

increased,

estimators decline.

Estimated MSE D
 

However, the larger the sam-

As the sample size is

all of the average estimates of the constrained

The sampling results of estimated MSE D for the ellip-

tical model are summarized in Table 34 and Table 35. As for
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TABLE 35

AVERAGE VALUES OF ESTIMATED MSE D

FOR ELLIPTICAL MODEL

 

 

 

 

 

Mean at (5,5) Mean at (5,5-/3)

U-C U-M C-M U-C U-M C-M

a. 15.048 17.103 -.100 a. 13.529 15.300 -.046

N=3O b. 35.476 38.466 -.115 b.. 32.244 33.514 -.061

C. 3.734 6.841 -.104 C. 3.571 6.681 -.035

d. 160.863 160.854 -.000 d. 144.515 144.868 .000

a. 2.226 2.816 -.037 a. 2.232 2.699 -.013

N=60 b. 6.077 7.096 -.051 b. 5.623 6.010 -.023

C. .418 1.064 -.028 C. .383 .998 -.007

d. 32.819 32.830 -.000 d. 27.140 27.185 -.000

a. .297 .423 -.010 a. .468 .604 -.003

N=100 b. 1.285 1.618 -.023 b. 1.629 1.710 -.009

C. .043 .178 -.005 C. .068 .269 -.001

d. 8.254 8.252 -.000 d. 7.595 7.599 -.000

 

the two previous models, MSE D is a matrix and the average

values given in Table 35 are the values of the determinants

of the MSE D difference matrices.

Table 34 shows that when the mean is at (5,5) the CMLE

always gives the smallest estimate of MSE D, the MDE gives

the second smallest estimate, and the UMLE always gives the

largest estimate. When the mean is moved to (5,5-/§)there

are a few exceptions, but the general pattern remains the

same. The average values table shows that the estimated

MSE D matrices of the CMLE and the MDE are always smaller

that that of the UMLE. Table 35 also shows that shifting

the mean to (S,5-/§) usually decreases the average difference

between the UMLE and the constrained estimators' MSE D



matrices, but less so as sample size increases. It can also

be seen that the CML average estimate of the MSE D matrix is

always slightly smaller or the same as the average MD esti-

mate. The difference is always zero when the variances are

equa1»and the covariance is zero (specification d) where

the likelihood "ellipse" approximates a circle. Shifting

the mean to (5,5-/3) decreases the difference between the

CML and MD estimated MSE D matrices. Increasing the sample

size also decreases the difference which suggests that the

constrained estimators may converge asymptotically.

Estimated MSE E
 

The sampling results for estimated MSE E for the ellip-

tical model are summarized in Table 36 and Table 37. The

UMLE always gives the largest estimate of MSE E regardless

of the location of the mean. Table 37 shows that its average

estimates are considerably larger than those of the CMLE and

the MDE. As sample size increases, the estimates of all

three estimators decrease, with the UMLE estimate declining

most rapidly suggesting its convergence asymptotically to

the constrained estimators.

The MDE more frequently gives the smallest estimate of

MSE than does the CMLE. This is true in both the (5,5) and

the (5,5-/3) cases. Table 37 shows that the constrained

average estimates are relatively close to one another par-

ticularly when the variances are equal and the covariance is

zero (specification d). Shifting the mean to (5,5-f3) tends
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TABLE 36

AVERAGE RANKS

OF SMALLER ESTIMATED MSE E

FOR ELLIPTICAL MODEL

 

Mean at (5,5) Mean at (5,5-/3)

 

 

 

 

 

 

 

UML CML MD UML CML MD

a. 3.00 2.00 1.00 a. 3.00 1.50 1.50

N=30 b. 3.00 2.00 1.00 b. 3.00 2.00 1.00

c. 3.00 2.00 1.00 c. 3.00 1.50 1.50

d. 3.00 1.50 1.50 d. 3.00 1.50 1.50

Total 3.00 1.87 1.13 3.00 1.62 1.38

a. 3.00 2.00 1.00 a. 3.00 1.50 1.50

“:60 b. 3.00 2.00 1.00 b. 3.00 2.00 1.00

* c. 3.00 2.00 1.00 c. 3.00 1.50 1.50

d. 3.00 1.50 1.50 d. 3.00 2.00 1.00

Total 3.00 1.87 1.13 3.00 1.75 1.25

a. 3.00 2.00 1.00 a. 3.00 1.50 1.50

N=100 b. 3.00 2.00 1.00 b. 3.00 1.75 1.25

. 3.00 2.00 1.00 c. 3.00 1.50 1.50

d. 3.00 1.00 2.00 d. 3.00 2.00 1.00

Total 3.00 1.75 1.25 3.00 1.69 1.31

TOTAL 3.00 1.83 1.17 3.00 1.69 1.31

 

to increase the average estimates of the CMLE and the MDE,

especially for small sample sizes which reflects the in-

creased estimated bias for the constrained estimators. When

the sample size is 100, the estimates are actually decreased

in some cases which results from the compensating decrease in

estimated variance especially for the second variate.
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TABLE 37

AVERAGE VALUES OF ESTIMATED MSE E

FOR ELLIPTICAL MODEL

 

Mean at (5,5) Mean at (5,5-/3)

 

 

 

 

UML CML MD UML CML MD

a. 26.919 1.192 1.021 a. 26.919 1.907 1.414

N—30 b. 53.723 1.245 1.108 b. 53.723 1.878 1.666

_ C. 11.950 .938 .583 C. 11.950 1.489 .730

d. 192.630 1.383 1.383 d. 192.630 2.532 2.500

a. 6.699 .907 .773 a. 6.699 1.061 .831

N=60 b. 13.617 1.066 .934 b. 13.617 1.254 1.139

C. 3.097 .639 .455 C. 3.097 .901 .557

d. 47.219 1.241 1.241 d. 47.219 1.960 1.958

a. 2.055 .623 .559 a. 2.055 .514 .411

N—lOO b. 4.775 .829 .742 b. 4.775 .688 .645

— C. 1.043 .382 .306 C. 1.043 .387 .243

d. 15.585 1.130 1.131 d. 15.585 1.209 1.207

Summary of Elliptical Model Sampling Results
 

In the elliptical model the estimated bias was essen-

tially zero for both variates of all three estimators when

the mean was in the center of the constrained space and for

the first variate when the mean was at the bottom of the con-

strained space ellipse. For the second variate when the mean

was at the bottom of the ellipse, the UML estimate continued

to appear to be unbiased but both of the constrained esti-

mators had moderate positive estimated bias that declined as

sample size increased.

than that of the constrained estimators. However,

The estimated variance of the UMLE was always greater

the esti-

mated variance of the UMLE tended to converge toward that of
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the constrained estimators as sample size increased. The

estimated variance of the CMLE was quite close to that of the

MDE in most cases. The estimated variance of each of the

three estimators always decreased as sample size increased.

The UMLE always had the largest estimated mean squared

error for MSE A, B, and E. It also always had the largest

estimate of MSE D when the mean was at the center of the

constrained space, and almost always had the largest estimate

of MSE D when the mean was at the bottom of the ellipse. The

MDE tended to have the smallest estimate of MSE A for the

first variate while the CMLE tended to have the smallest es—

timate of MSE A for the second variate. For estimated MSE

B, the CMLE tended to have the smallest estimate when the

mean was at the center of the ellipse, while the MDE tended

to have the smallest estimate when the mean was at the bottom

of the ellipse. The CMLE always had the smallest estimate of

MSE D when the mean was in the center of the Constrained

space and almost always had the smallest estimate when the

mean was at the bottom. The MDE almost always had the

smallest estimate of MSE E when the mean was at the center of

the constrained space and usually had the smallest estimate

when the mean was at the bottom. In all of the estimates of

mean squared error as variously defined, the CMLE's estimate

of MSE was quite close to that of the MDE.

When the true population mean was at the center of the

constrained space, the estimates of the skewness of the UMLE,

the CMLE, and the MDE were very small relative to their
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standard deviations, and the estimates were nearly always

equal. There were about an equal number of positive and

negative values which suggests that these estimators have

symmetric distributions when the population mean is at the

center of the constrained space. The UMLE as well as the

first variate of the constrained estimators continued to

have small estimated skewness when the mean was shifted to

the bottom of the elliptical constrained space. However for

the second variate the estimates of skewness of the CMLE and

the MDE increased and were almost always positive when the

mean shifted to the boundary. The ratio of the average es—

timates of skewness to the standard deviations for the

second variates of the constrained estimators when the mean

was at the boundary ranged from about 0.5 to 5.0.

The estimated kurtosis of the UMLE was quite small in

almost all cases and fluctuated between positive and nega-

tive values. When the mean was at the center point the es—

timates of kurtosis of both the constrained estimators were

nearly the same and were usually negative. The ratio of

kurtosis to their standard deviations ranged from about -0.1

to -1.0. When the mean was shifted to the boundary of the

constrained space the ratios of kurtosis to the standard

deViations for the first variates ranged from -0.5 to -1.5

While the ratios of the second variate ranged from -l.0 to

+6.0.

The CML and MD estimates of the four moments were quite

(Hinge to one another in each case. When the mean was in the
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center of the constrained space, the estimated first moments

of all three estimators were nearly the same. When the mean

shifted to the boundary the first moments for the first

variate of the three estimators were about the same, but the

UMLE's.first moment for the second variate tended to be

smaller than those of the constrained estimators. The esti-

mated second moment of the UMLE was somewhat larger than

those of the constrained estimators when the mean was in the

center of the constrained space. When the mean was at the

bottom of the ellipse, the second moments of the three esti-

mators for the first variate were about the same, but the

second moment of the UMLE for the second variate tended to

be smaller than those of the constrained estimators. The

estimated third moment of the UMLE was greater than those of

the constrained estimators when the mean was in the center

of the constrained space and was greater for the first vari-

ate when the mean was at the boundary. The estimated third

moment of the UMLE for the second variate was often smaller

but occasionally somewhat larger than those of the con-

strained estimators, and in general exhibited greater varia-

tion than those of the constrained estimators. The estimated

fourth moment of the UMLE was generally quite a bit larger

than those of the constrained estimators, although occasion-

ally its estimated fourth moment for the second variate was

smaller than those of the constrained estimators when the

mean was at the boundary.
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4.6 ‘Conclusion
 

The above Monte Carlo sampling experiments have clearly

demonstrated the superiority of the MDE and the CMLE over

the UMLE in terms of the various definitions of mean squared

errorvunder different specifications and conditions as sug—

gested by Ramsey (30, p.20). In addition, the virtual equi-

valence of the MDE and the CMLE in a number of situations

has been demonstrated. In general, there has not been a

great deal of difference between the results obtained for the

MDE and those obtained for the CMLE. In those circumstances

where the CMLE gave a smaller mean squared error than the

MDE, the MDE may be preferred because of its ease of calcu-

lation relative to the difficulties encountered in calcula-

ting the CMLE for situations involving finitely bounded

compact sets.

Now that the MDE has been shown to lead to considerable

reduction in mean squared error, examples of its use in

single sample situations will be presented in Chapter V.
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CHAPTER V

APPLYING THE MINIMUM DISTANCE ESTIMATOR

Having discussed the testing procedures of Chapter II

and the minimum distance estimating procedures of Chapters

III and IV, Chapter V will now demonstrate the use of the

tests and the minimum distance estimator in single sample

situations where restrictions are imposed on various produc-

tion functions. This chapter will demonstrate under what

circumstances and to what extent in these particular examples

use of the minimum distance estimator can result in a reduc-

tion in the estimated variance of the regression coefficients

and how this reduction in estimated variance is not substan-

tially offset by an increase in estimated bias in the calcu-

lation of estimated mean squared error.

Restrictions may be imposed for any number of reasons

including a_priori theoretical considerations, restrictions

suggested by previous research and published studies, or by

testing procedures such as those described in Chapter III.

In the heuristic examples given below of applying the mini-

mum distance estimator, no attempt has been made to justify

each restriction demonstrated although some such reasons may

occur to the reader for these or for additional restrictions

in these or in other examples of interest.

This technique may be applied to data from Kendrick

(21, p.192) using a log-linear representation of a CBS pro-

duction function derived from a truncated Taylor series ex-

pansion of the form:
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logQ = b0 + bllogK + bzlogL + b3(logK-logL)2 + e (56)

where Q = output, K = capital, L = labor, and e - error term.

ho is the constant intercept term, b1 may be referred to as

the capital coefficient, b2 may be referred to as the labor

coefficient, and b3 is the coefficient of the substitution

term. The above equation may be estimated by ordinary least

squares. Tests may then be performed on various proposed

restrictions which might be incorporated by use of the mini-

mum distance estimator. Tests of these inequality restric-

tions are performed as special cases of the test procedures

discussed in Chapter III and are in terms of the student-t

distribution. Table 39 lists some possible restrictions on

the coefficients of labor and capital where the test statis-

tic derived from the regression for each proposed restric-

tion must be greater than the critical value of -l.7 for the

restriction to be accepted at the 5% level of significance.

None of the coefficients violated the restriction that the

coefficients be greater than zero. Consequently, this re-

striction was accepted at the 5% level for the coefficients

of capital and labor at each of the three sample sizes. The

restriction that the coefficients by greater than one-half

was violated for the labor coefficient in both the sample

size 60 and sample size 78 cases. However, these violations

were not substantial enough to cause the one-half restric-

tion to be rejected in any of the tests of these coeffici-

ents. All of the labor coefficients but none of the capital
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coefficients violated the restriction requiring the coeffi—

cients to be greater than one, but this restriction was re-

jected only for the labor coefficient in the sample size 78

case. All of the coefficients violated the.restriction that

the coefficients be greater than two. Moreover, the restric-

tion was rejected at the 5% level in every case except for

the capital coefficient for sample size 60 where the esti-

mated variance was noticeably larger than for the other two

sample sizes. This larger variance might explain why the

test statistic was not sufficiently large enough to result

in the rejection of the restriction at the 5% level in this

one case.

The estimated variance of the minimum distance estima-

tor, the estimated absolute value of the bias of the minimum

distance estimator, and the estimated mean squared error of

the minimum distance estimator are also given in Table 38

along with the percent reduction in mean squared error re-

sulting from the use of the minimum distance estimator in-

stead of the unconstrained estimator. The maximum absolute

bias was also calculated and happens to correspond to the

estimated absolute bias under the restrictionz% 3.2 in each

case. The reduction in estimated variance was generally not

substantially different although usually slightly larger

than that of the estimated mean squared error. The reduc-

tion in estimated variance tended to increase as progres-

sively more stringent restrictions were placed on the regres-

sion coefficients. Thus in this sense the efficiency of the
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TABLE 38

ESTIMATED VARIANCE, ABSOLUTE BIAS

AND MEAN SQUARED ERROR OF THE MDE

FOR THE KENDRICK REGRESSIONS

 

 

 

 

 

 

6 Est. Test 6m Est. Est. Est. MSE

u Var Stat. > Var |Bias| MSE Reduc—

0 — 0 8 6 tion

u m m m

N=30

Labor .655 .108 2.0 0 .106 .001 .106 3%

.5 L .059 .068 .063 42%

1.0 1 .001 .131 .017 85%

4.1 2 .000 .131 .000 100%

Capital 1.246 .036 6.5 0 .036 .000 .036 %

3.9 8 .036 .000 .036 0%

1.3 1 .031 .007 .031 16%

4.0 2 .000 .076 .000 100%

N=60

Labor .282 .382 .5 0 .204 .130 .221 42%

.4 8 .078 .247 .139 64%

1.2 1 .000 .247 .048 87%

2.8 2 .000 .247 .001 99%

Capital 1.658 .482 2.4 0 .479 .001 .479 1%

1.7 k .445 .010 .445 8%

.9 1 .353 .063 .357 26%

.5 2 .074 .277 .150 69%

N=78

Laxn: .428 .059 1.8 0 .055 .003 .055 6%

.3 b .013 .096 .023 62%

2.4 1 .000 .097 .001 99%

6.5 2 .000 .097 .000 100%

Capital 1.549 .053 6.7 0 .053 .000 .053 0%

4.6 8 .053 .000 .053 0%

2.4 1 .052 .000 .052 %

2.0 2 .000 .092 .001 97%
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estimates of the coefficients of labor and capital for this

production function tended to improve substantially when the

minimum distance estimator was used to impose effective a_

prior} restrictions in the estimation process. The contri-

bution of the minimum distance estimator to production func-

tion theory consists of the extent to which this improvement

in efficiency is important to the production function theo-

rist which in turn may depend upon the nature and stringency

of the restrictions that such a theorist deems reasonable to

impose.

In another example, this approach may be applied to the

production functions estimated by Ramsey and Zarembka

(32, p.5) in their study of alternative function forms of

the aggregate production function. The stochastic formula-

tions of the five functional forms used were the Cobb-

Douglas (CD) production function:

1n y1 = 1n «0 + «1 1n ki + «2 1n Li + ui;

the constant elasticity of substitution (CES) production

function:

a

' I

.p/v _ p p
j. — élki + ézLi + u21
l

the variable elasticity of substitution (VES) production

function:
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1n yi = 1n y + ¢(l-6p) 1n ki + 0C(Spln(Li+(p-l)ki) + u .;

31

the generalized production function (GPF):

ln-yi + yyi = ln «0 + «1 1n ki + «2 ln Li + uni;

and the quadratic production function (QP):

_ 2

y. _ «0 + alLi + azki + a3Li + «uki + asLiki + uSi

where yi is the value added of aggregate output of manufac-

turing industry in each state in 1957, k1 is the value of

capital services, and Li is the labor input in terms of em-

ployment in each state in 1957. The CD and QP production

functions were estimated by ordinary least squares while the

other three were estimated by maximum likelihood.

Table 39 indicates the reduction in mean squared error

which is achieved by using the minimum distance estimator

for the capital and labor coefficients. A percent reduction

approaching 100% implies an estimated variance approaching

zero and suggests that fewer and fewer observations fall in

the constrained region. The sensitivity of the reduction in

estimated variance to the restriction appears to depend upon

the size of the unconstrained estimate relative to its esti—

mated variance. In this case slightly tighter restrictions

resulted in substantial reductions in estimated variance.

The degrees of freedom for the Ramsey-Zarembka regressions
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TABLE 39

ESTIMATED VARIANCE, ABSOLUTE BIAS

AND MEAN SQUARED ERROR OF THE MDE

FOR THE RAMSEY-ZAREMBKA REGRESSIONS

 

 

 

 

 

 

 

8n Est. Test 0 Est. Est. Est. MSE

Var. Stat. Var |Bias| MSE Reduc-

0 > 8 0 0 tion

u —- m m m

I. C-D

Labor .689 .003 13.2 0 .003 .000 .003 %

3.6 2 .003 .000 .003 0%

6.0 l .000 .021 .000 100%

-25.2 2 .000 .021 .000 100%

Capital .313 .003 5.7 0 .003 .000 .003 0%

3.4 t .000 .022 .000 100%

-12.4 1 .000 .022 .000 100%

-30.6 2 .000 .022 .000 100%

II. CES

Labor .096 .000 16.0 0 .000 .000 .000 0%

-150.7 1 .000 .002 .000 100%

-317.3 2 .000 .002 .000 100%

Capital .657 .986 .7 O .613 .150 .635 36%

.2 8 .400 .323 ' .504 49%

.3 1 .204 .396 .361 63%

1.4 2 .067 .396 .090 91%

III. VES

Labor 1.152 .007 13.6 0 .007 .000 .007 0%

7.7 8 .007 .000 .007 %

1.8 l .007 .001 .007 6%

10.0 2 .001 .034 .000 100%

Capital -.138 .007 1.6 0 .003 .034 .004 50%

' 7.4 k .001 .034 .000 100%

-13.2 1 .001 .034 .000 100%

-24.9 2 .001 .034 .000 100%
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TABLE 39 - Continued

 
 

 

 

 

 

8n Est. Test 8 Est. Est. Est. MSE

Var. Stat. > Var IBiasI MSE Reduc-

8 — e 8 8 tion
11 m m III

IV. GPE

Labor .678 .002 13.8 0 .002 .000 .002 0%

3.6 8 .002 .000 .002 0%

- 6.6 1 .000 .020 .000 100%

-27.0 2 .000 .020 .000 100%

Capital .300 .003 5.8 0 .003 .000 .003 0%

- 3.8 k .000 .021 .000 100%

—13.5 1 .000 .021 .000 100%

—32.7 2 .000 .021 .000 100%

v. QP

Labor .004 .000 6.7 0 .000 .000 .000 0%

- 826.7 8 .000 .000 .000 100%

-l660.0 l .000 .000 .000 100%

-3326.7 2 .000 .000 .000 100%

Capital 3.318 .687 4.0 0 .687 .000 .687 0%

3.4 8 .687 .001 .687 0%

2.8 1 .687 .002 .687 0%

1.6 2 .626 .015 .627 8%

 

range from 43 for the quadratic production function to 47 for

the constant elasticity of substitution production function

resulting in a critical value of approximately -1.7 for the

tests of the restrictions at the 5% level of significance.

The results range from almost all of the proposed restric-

tions being rejected for the capital coefficient of the

variable elasticity of substitution production function to

all of the proposed restrictions being accepted for the

capital coefficient of the quadratic production function.

The coefficients whose test statistics showed the greatest
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sensitivity to the ever more stringent restrictions had the

smallest estimated variances. In particular, the estimated

variances of the coefficients of labor in both the CBS and

QP models were very small resulting in test statistics that

went from positive to quite large negative values. On the

other hand, the estimated variances of the coefficients of

capital in both the CBS and QP models were quite large re-

sulting in test statistics that did not change radically as

more stringent restrictions were imposed. Just as in the

Monte Carlo experiments of Chapter IV, the estimated vari-

ance tended to dominate the estimated bias in the calcula-

tion of estimated mean squared error. The maximum absolute

bias again happens to correSpond to the estimated absolute

bias under the restriction 0m :.2 in each case except for

that relating to the capital coefficient for the quadratic

production function where the maximum absolute bias is .331.

In general, tighter restrictions result in a considerable

reduction in variance especially where the minimum distance

estimate is at the boundary of the constrained space.

Ferguson's (8, p.135) time-series study of a CBS pro-

duction function provides a convenient example of the effect

of the minimum distance estimator on the estimated variance

of the regression coefficient representing the estimated

elasticity of substitution. The elasticity of substitution

between labor and capital was estimated in the lumber, fur-

niture, paper, chemicals, petroleum, metal 1, and machinery

industries with the equation:
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TABLE 40

ESTIMATED VARIANCE, ABSOLUTE BIAS

AND MEAN SQUARED ERROR OF THE MDE

FOR THE FERGUSON REGRESSIONS

 
—~

8

 

 

 

 

 

 

 

 

Industry u Est. Test 8m Est. Est. Est. MSE

Var. Stat. > Var lBiasl MSE Reduc-

0 — 0 0 tion
u m m m

Food .241 .040 1.2 0 .033 .008 .033 18%

- 1.3 8 .001 .080 .004 89%

- 3.8 1 .000 .080 .000 99%

- 8.8 2 .000 .080 .000 100%

Tobacco 1.183 .212 2.6 0 .212 .010 .212 0%

1.5 8 .191 .003 .191 10%

.4 1 .107 .106 .118 44%

- 1.8 2 .000 .184 .011 95%

Apparel 1.084 .026 6.8 0 .026 .000 .026 %

3.7 8 .026 .001 .026 0%

.5 1 .014 .030 .015 40%

- 5.7 2 .000 .064 .000 100%

Lumber .905 .004 13.5 0 .004 .000 .004 0%

6.0 8 .004 .000 .004 0%

- 1.4 1 .000 .027 .000 91%

-16.3 2 .000 .027 .000 100%

Furniture 1.123 .002 25.0 0 .002 .000 .002 0%

13.8 8 .002 .000 .002 0%

2.7 l .002 .001 .002 0%

-19.5 2 .000 .018 .000 100%

Paper 1.016 .004 16.9 0 .004 .000 .004 0%

8.6 8 .004 .000 .004 0%

.3 1 .002 .017 .002 47%

-16.4 2 .000 .024 .000 100%

Printing 1.147 .096 3.7 0 .096 .002 .096 0%

2.1 8 .096 .006 .096 0%

.5 1 .052 .063 .056 42%

- 2.8 2 .000 .124 .001 99%

Chemicals 1.248 .005 17.3 0 .005 .000 .005 0%

10.4 8 .005 .000 .005 0%

3.4 1 .005 .001 .005 0%

-10.4 2 .000 .029 .000 100%
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Industry Bu Est. Test 0m Est. Est. Est. MSE

Var. Stat. > Var lBias| MSE Reduc-

0 '— 0 tion
u m m m

Petroleum 1.300 .022 8.7 0 .022 .000 .022 0%

7 5.4 8 .022 .000 .022 0%

2.0 1 .022 .003 .022 0%

- 4.7 2 .000 .059 .000 100%

Rubber .759 .314 1.4 0 .274 .007 .274 12%

.5 8 .167 .116 .181 42%

- .4 1 .057 .223 .107 66%

- 2.2 2 .000 .223 .010 97%

Leather .865 .020 6.2 0 .020 .000 .020 0%

2.6 8 .020 .003 .020 0%

- 1.0 1 .000 .056 .004 82%

- 8.1 2 .000 .056 .000 100%

Glass .666 .221 1.4 O .197 .002 .197 11%

.4 8 .107 .115 .120 45%

- .7 1 .020 .188 .055 75%

- 2.8 2 .000 .188 .003 99%

Metal 1 1.200 .011 11.4 0 .011 .000 .011 0%

6.7 8 .011 .000 .011 0%

1.9 l .011 .003 .011 0%

- 7.6 2 .000 .042 .000 100%

Metal 2 .926 .068 3.6 0 .068 .002 .068 0%

1.6 8 .064 .001 .064 6%

- .3 1 .016 .104 .026 61%

- 4.1 2 .000 .104 .000 100%

Machinery 1.041 .002 25.4 0 .002 .000 .002 0%

13.2 8 .002 .000 .002 0%

1.0 1 .001 .003 .001 24%

-23.4 2 .000 .016 .000 100%

Electrical .643 .130 1.8 0 .126 .004 .126 0%

.4 8 .066 .083 .072 44%

- 1.0 1 .002 .144 .022 83%

- 3.8 2 .000 .144 .000 100%

Transport .237 .314 .4 0 .162 .124 .178 43%

- .5 8 .052 .223 .102 68%

- 1.4 1 .000 .223 .032 90%

- 3.1 2 .000 .223 .002 99%

 



l
r
—
T
!

(
I
)

Vile

r81

tic



131

TABLE 40 - Continued

—_

—~ 

 

 

Industry 8n Est. Test 8m Est. Est. Est. MSE

Var. Stat. > Var. [Biasl MSE Reduc-

0 — 0 0 0 tion

u m m m.

Instruments .763 .084 2.6 0 .084 .006 .084 0%

. .9 8 .060 .026 .061 27%

.8 1 .005 .116 .018 78%

4.3 2 .000 .116 .000 100%

Textiles 1.104 .194 2.5 0 .194 .010 .194 0%

1.4 8 .169 .008 .169 13%

.2 1 .085 .128 .101 48%

2.0 2 .000 .176 .007 97%

 

log v = a + b1 log w + u

where v is value added per man-year, w is the real wage

rate, and b1 is an estimate of the elasticity of substitu-

tion between labor and capital. The other 12 industries had

estimates based on the equation:

log v = a + b1 log w + bzt + u

where t is an index of time. The observations were for the

years 1949 through 1961 except for rubber, glass, and metal

1 which only covered up through 1958 because of material

changes in industry designations for those three industries.

The equations for all 19 industries were estimated by ordi-

nary least squares. The rubber, glass, and metal 1 equa-

tions have about seven degrees of freedom with a critical

value for the tests of approximately -1.9 at the 5% level.
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All the other equations have about ten degrees of freedom

with a critical value of about -1.8. None of the coeffi-

cients in the Ferguson regressions violated the restriction

that the coefficients be greater than zero. Consequently,

this restriction was accepted at the 5% level in the tests

for every industry. The restriction that the coefficients

be greater than one-half was violated only by the food and

transport industries but not by a sufficient amount for the

restriction to be rejected. Nine industries had coefficients

that violated the restriction that they be greater than one

although only in the case of the food industry was this vio-

lation substantial enough to cause the restriction to be re-

jected at the 5% level. The coefficients of all 19 indus-

tries violated the restriction that they be greater than two

and the restriction was rejected by all 19 industries at the

5% level although the rejection was marginal for the tobacco

industry. Consequently, it is not surprising that the per-

centage reduction in mean squared error approached 100% for

the restriction that the coefficients be greater than two.

The estimated absolute bias under the restriction 8m 1 2 is

the same as the maximum absolute bias in each case. In vir-

tually every case the estimated bias was offset by the sub-

stantial reduction in estimated variance brought about by

using the minimum distance estimation technique.

The above examples demonstrate that the minimum dis-

tance estimator can be used to impose a priori inequality

restrictions that result in a substantial reduction in
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estimated variance although, as expected, this effect is

greatest when the restrictions are violated by the unre-

stricted estimates. This result confirms the usefulness

and effectiveness of the minimum distance estimator in

incorporating inequality restrictions in the estimation

procedures as demonstrated by the Monte Carlo experiment

in Chapter IV.



Conclusion
 

This dissertation has emphasized the importance of using

all information both a priori and empirical in the estimation

process, in particular when the a priori information is in

the form of inequality restrictions. Procedures for testing

for the appropriateness of inequality restrictions have been

developed. The distributional properties of the minimum dis-

tance estimator have been compared to those of the uncon-

strained maximum likelihood estimator and the constrained

maximum likelihood estimator in extensive Monte Carlo sam—

pling experiments. It has been shown that the minimum dis—

tance estimator is greatly superior to the unconstrained

maximum likelihood estimator in terms of various definitions

of mean squared error. The equivalence of the constrained

maximum likelihood estimator and the minimum distance esti-

mator in a number of circumstances has been indicated by

noting that in general there has not been a substantial dif—

ference between the distributional properties of the minimum

distance estimator and those of the constrained maximum

likelihood estimator. A single sample approximation of the

variance, absolute bias, and mean squared error of the mini-

mum distance estimator has been developed and many examples

of applying the minimum distance estimator in regression

analysis have been presented indicating the effect of in-

creasingly stringent inequality restrictions. Thus, in

general, the usefulness and effectiveness of the minimum dis-

tance estimator have been demonstrated.
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