w A -—’l’:~r&f.\u:\i >1. 1 .fi . w LIBRARY This is to certify that the thesis entitled Development of a Predictive Systems Model for Course Research and Improvement presented by Richard Kenneth Brandenburg has been accepted towards fulfillment ‘ of the requirements for i Ph.D. degree in Secondary Education \ and Curriculum 1 aw i. M Major professor Date November 14, 1980 0-7639 . I: 5' ‘ J trig ‘Nhs‘ 3., ‘9‘"! OVERDUE FINES: 25¢ per day per item RETURNING LIBRARY MATERIALS: Place in book return to remove charge from circulation records T—— a FOR COURSE RESEARCH AND IMPROVEMENT By Richard Kenneth Brandenburg A DISSERTATION Submitted to Michigan State University for the degree of DOCTOR OF PHILOSOPHY Department of Secondary Education and 1980 DEVELOPMENT OF A PREDICTIVE SYSTEMS MODEL in partial fulfillment of the requirements Curriculum Kt//é 3.4 7 ABSTRACT DEVELOPMENT OF A PREDICTIVE SYSTEMS MODEL FOR COURSE RESEARCH AND IMPROVEMENT BY Richard Kenneth Brandenburg In this study, the systems modeling approach is applied to the investigation of the learning process in a college biology course. The course is examined in systems terms, dissected and reconstructed ab— stractly as a mathematical systems model. The model relates students' background, prior knowledge and instructional behavior to concept mas— tery based on data collected in the course during a term. Student per- formance is then predicted using the model during a second or validation term. The practical value of the model is also assessed by using it to group students for special instructional treatment. The model is examined for what it reveals about the instructional interactions occur— ring in the course and also to provide hypotheses for future study. This is a feasibility study and is intended as an experimental ap— plication of the modeling technique to an educational process. The ex— pectation was that this application could develop into a research tool which would provide the educational researcher with the ability to dis— sect and analyze highly complex instructional settings and processes. This tool would provide a conceptual organization and analytically func— tional framework to enhance the understanding of complexly interacting entities and processes. The major biological concept of Ecology was used as the base for analysis and student performance evaluation. Two levels of Ecology content analysis were performed. The first level provided a reference Richard Kenneth Brandenburg frame of disciplinary content and the second, from the actual con— tent selected for the course, provided structure for the modeling pro— cess. A variety of background variables were collected for the students in the course during the experimental term (n = 105) and the validation term (n = 75). Variables describing the students' instructional be— havior and attendance were also collected. Variables describing the students' performance on forty—four (44) ecology concepts were calcu— lated from testing data. The model,which is the functional relation— ships between background, instructional and ecology concept mastery variables, was developed using a series of multiple regression com— puter runs. The findings of the study indicate that the systems modeling pro— cess appears to be useful in relating learning performance to back— ground, prior knowledge and instructional behavior. Model variables accounted for a significant percentage of the variation in the origi— nal data and the power of the model is demonstrated by its ability to predict student performance during a second (validation) term. The practical utility of the model is also demonstrated using a student grouping analysis based on the model components. The student groups identified by this analysis have different academic and learning pro— files. Also identified are a variety of hypotheses for improving course instruction. ACKNOWLEDGEMENTS Many thanks are due the individuals who helped with this project: Edward Smith for his guidance and support; Jean Enochs, James Gallagher and William Schmidt for their participation; Margaret Lorimer for her support and encouragement; Francis Fenn, Susan Anderson, Julie Courser, Tena French, Barbara Stuart and many others for their typing and pre— paration. Special thanks are due to my wife, Susan, and son, John Paul, for their patience and support. ii 2.1 2.2 2.3 2.4 TABLE OF CONTENTS The Problem Introduction Theory and Background Theory Background Theoretical Model Development The Instructional Session; A Simple Model Possibilities The Course and Content Analysis The Course Content Analysis Quiz Content and Concept Mastery Assessment Course Concepts Summary The Model Background Data Instructional Data Outcomes: the K Matrix Viewing the Course as a System Data Preparation, Data Analysis,and Limitations on this Modeling Process Data Preparation Regression Analysis 1 Regression Analysis 2 iii TABLE OF CONTENTS 5.3 Regression Analysis 3 5.4 Limitations 6 Results and Analysis 6.0 Introduction 6.1 Week 6.2 Week 6.3 Week 6.4 Week 6.5 Week 6.6 Week 6.7 Week 6.8 Week 6.9 Week 6.10 Week 6.11 Final 6.12 Summary 6.13 Synopsis 1 2 10 7 Applications - An Example 8 Summary, Evaluation, Recommendations and Conclusions APPENDIX A Course Description APPENDIX B Background Variables APPENDIX C Instructional Variables ' APPENDIX D Factor Analyses APPENDIX E Model Coefficients iv 3.3 3.4 3.5 3.8 3.9 3.10 3.11 LIST OF TABLES Phase One Concept Definitions Ecosystems Concepts Presented in Lecture BS 202 Ecosystem Concept Definitions Ecosystem Concepts Covered in the Small Assembly Sessions Ecosystem Concepts Presented in the Tape Laboratory Ecosystem Concepts Contained in the Weekly Textbook Readings Ecosystem Concepts Covered in the Weekly Practice Quizzes Quiz Items with Ecosystem Concepts Test Item Coverage of Ecosystem Concepts Ecosystem Concept Coverage Summary Ecosystem Content Matric C Background Variables Instructional Variables Weekly Additions and Updates of the K Matrix Phase One Regression Summary Tables for a Sample Test Item Phase Two Summary Table for a Sample Test Item Residual Error Rate for Three Sample Test Items K Matrix Elements and Definitions for Fall Term, 1977 Phase Three Regression for a Sample Test Item Tested Ecosystem Concept Coverage Week 1 Regression Equations Goodness of Fit and Extrapolation Week 2 Regression Equations Goodness of Fit and Extrapolation Week 3 Regression Equations Goodness of Fit and Extrapolation V 1- 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 LIST OF TABLES Week 4 Regression Equations Goodness of Fit and Extrapolation Week 5 Regression Equations Goodness of Fit and Extrapolation Week 6 Regression Equations Goodness of Fit and Extrapolation Week 7 Regression Equations Goodness of Fit and Extrapolation Week 9 Regression Equations Goodness of Fit and Extrapolation Week 10 Regression Equations Goodness of Fit and Extrapolation Final Regression Equations Goodness of Fit and Extrapolation Goodness of Fit and Extrapolation Summary Frequency of Correlational Occurrences: Background Variables, (B) vs. Concept Knowledge Indices (K) Frequency of Correlational Occurrences: Instructional Variables (I) vs. Concept Knowledge Indices (K) Frequency of Correlational Occurrences: Concept Performance (K') vs. Prior Performance (K) Grouping Variables Hierarchical Grouping Analysis Output Values of Grouping Variables B18 through I70 by Group Numbers Values of Grouping Variables B3, B6’ 1101 Groups Pretest Factor Analysis Affective Questionnaire Factor Analysis Background Questionnaire Factor Analysis Model Coefficients for Week 1 Model Coefficients for Week 2 Model Coefficients for Week 3 Model Coefficients for Week 4 Model Coefficients for Week 5 vi LIST OF TABLES E.6 Model Coefficients for Week 6 12.7 Model Coefficients for Week 7 E.8 Model Coefficients for Week 9 E.9. Model Coefficients for Week 10 12.10 Model Coefficents for Week-Final LIST OF FIGURES Instructional Session Instructional Sessions Ecology Concept Relationships BS 202 Systems Diagram Data Processing and Course Modeling Sample Phase Three Regression Residuals for Fall Term Data Base Sample Phase Three Regression Residuals for Validation (Winter Term) Data Base viii CHAPTER 1 THE PROBLEM 1.0 Introduction A basic assumption of modern education_is that as a student experiences instruction something happens to change the student. The student learns, that is acquires additional knowledge, develops skills or masters processes. This conception of cause and effect through instruction and learning serves as a primitive Kuhnian (1975) paradigm of educational researchers. Given a simple learn— ing experience or set of experiences, it is not too difficult to investigate the effects. Such laboratory studies, complete with control groups, are conducted by researchers in great profusion. However, once the researcher moves from the lab to complex, real classroom instruction, the investigation of learning phenomena be- comes considerably more complicated and difficult. Unfortunately the classroom is the arena of most concern to educators. One form that such instruction takes is the college course; a costly, sometimes effective and little studied instructional mode. Large college courses usually require that the instructor and assistants spend most of their time with material preparation and presentation. The counseling and tutoring of individual students account for the remainder of their efforts. The economics of such a venture preclude any detailed research into the deep structure of the course content or the development of analytical devices for monitoring the student progress or what might be called the "quali- ty control" of the course. In courses some initial effort usually has been directed at defining the objectives, but the actual con- tent of the course and methods of presentation are more often based on previous experience and professional intuition. The common testing routine is usually applied to assess the degree to which each student has fulfilled the course objectives. Periodic course revisions are made on the basis of the instructor's intuition and experience, often from his or her personal and students! biased feedback. Even in the unusual circumstances where the situation permits a rigorous examination of course objectives, further de— tailed study of actual student performance and understanding of the concepts composing the subject matter is rarely possible. What is needed is a research tool which will provide the edu— cational researcher with the ability to dissect and analyze highly complex instructional settings and processes such as those found in the college course. Such a tool would provide a conceptual organi— zation and analytically functional framework to enhance the under— standing of complexly interacting entities and processes. This study presents and examines a tool which may fit these requirements. Here the system's approach and modeling techniques are applied to a college course. The course is examined in systems lJterms, dissected, and reconstructed abstractly as an artificial sys— tems model. This model is examined for what it tells us about the instructional interactions taking place in the real c0urse. The model is also used to provide hypotheses for future study. CHAPTER 2 THEORY AND BACKGROUND 2.0 Theory Investigations of the empirical world are based on two basic or primary presumptions: l. The world exists, and 2. The world is, at least in some respects intelligibly ordered, and is open to rational inquiry. (Laszlo, 1972) Such rational inquiry of the real, empirical phenomena of the world involve human conceptualizations which organize and lead to under— standing. One such conceptual tool which has proven to be very useful in the organization and study of events and processes is the systems approach. The systems approach may be defined as the logical analysis and breakdown of a system, whereby the connections, interrelation— ships, and organization of the constituent parts of the system are made explicit. A system in the sense used here is a ”set of inter— connected elements organized toward a goal or set of goals" (Manetsch and Park, 1974a). The set of interconnected elements which are the object of the systems analysis or approach may be as large or as small as is necessary to understand the phenomena under study. That is, the systems analyst chooses the relevant elements of study and assigns everything else to the system's environment, 4 outside its boundaries. Interactions may Still occur between the system and its environment across these boundaries, but the exter— nal factors involved are considered to be completely independent of the system itself. Within the system, the analysis is more than a disection of parts, but rather leads to an understanding of how a system may often be more than the sum of those parts. The systems approach has been applied in many fields or disci- plines where there arose a need to understand, and often control, complex, multifeatured, interacting systems. This approach funda- mentally allows a conceptual organizing scheme to be laid over what otherwise would be considered a chaotic jumble of interacting enti- ties and processes, the result being the orderly organization of a complex system with definable characteristics, traceable processes and predictable responses to external stimuli. It must be remembered, however, that the structure imposed on the system by the analyst repre— sents a subjective expression of opinion on its structure and behavior. Although the manifestation of this expression may be a sophisticated model, any model represents only one of many views of reality. 2.1 Background This approach may be applied to existing systems or to the planning and construction of new systems. The latter of the two, systems planning, has enjoyed a wide popularity in educational develop— ment and administration (Tanner, 1971; Silvern, 1965; Haefele, 1971; LeBaron, 1969; Thompson, 1971), where enormous systems need to be _ developed for things as diverse as state wide curricula and school district food services. The systems planning approach usually devel— Ops the system graphically, so that interactions and feedback loops may be identified, but rarely goes into the mathematical or computer modeling stage. The application of systems analysis to existing systems, on the other hand, usually includes the development and testing of a mathe— matical computer model as well as experimentation with that model (Manetsch and Park, 1974 a, b). Such analysis and modeling has been applied to many seemingly unrelated areas including economics (Ellis, 1965; Abkin, 1965), the dynamics of world populations (Forrester, a, b; Meadows, 1972), and ecosystem analysis, control and prediction (Levine, 1975; May, 1974; Patten, 1972; Arnold and deWitt, 1976; etc.). Silvern (1967) successfully applied systems methodology to an educa— tional system in order to develop a model describing feedback signal paths from outside the school or school district to an occupational teacher. Although he did not develop a computer model, he concluded that "models can be developed which have an immediate, practical application (to education)." In addition he suggests, ". . . consider a number of mathematical techniques, select promising mathematical techniques and synthesize a set of expressions, using both flowchart/ mathematical model combinations similate to test the model. Using problems from real—life simulate to solve problems on the model, apply the problem solutions to real—life, improve the model based on real-life experiences, and extend this technique of systems analysis and synthesis (anasynthesis) to other problem areas." In a paper unrelated to systems analysis, Carrol (1963) when discussing his proposed model of school learning, states; "What is J needed is a schematic design or conceptual model of factors affecting success in school learning and of the way they interact." He then goes on to propose his five component model of school learning; aptitude, ability to understand instruction, quality of instruction, learning opportunity (time related) and perseverance, and suggests several mathematical or functional relationships between the variables. In his conclusions he adds; ". . . it should be possible in principle to describe the pupil's success in learning a series of tasks by bummafing the results of applying the model successively to each component task." Carrol and Silvern have both implicitly suggested that a learning experience may be simulated using a quantitative model, and that such a simultation might provide useful insights into the learning process. Additionally, such modeling might lead to mathematically predictable learning performance. It is the purpose of this study to follow the leads given by Silvern and Carrol and investigate the application of some of the techniques of systems analysis and modeling to a series of learning experiences, and explore what the resultant quantitative model tells us about such experiences. 2.2 Theoretical Model Development Although any experience may be, and probably is, a learning experience only formal or structured learning experiences such as the lecture, laboratory and group discussion will be considered in this study. A student begins Such a learning experience with a certain level of knowledge and understanding. During the experience something is J transmitted so that the student emerges with a slightly altered state of knowledge and understanding. The purpose of the experience was to transmit or teach a certain amount of subject content, manual and 7 Although all are of importance to the mental skills, and processes. learner, the transmittal of subject content will serve as the chief focus of the model building. The learning experience may then, for the purpose here, be defined as a process of finite length through which a student (or learner) may be said to "pass", and during that passage is exposed to a certain amount of content knowledge, all or a fraction of which is learned or added to the previous knowledge base of the student. The first step in this modeling process is to examine the sub? ject content of the hypothetical learning experience. The subject content of any intentionally designed learning experience is usually a reflection of what might be called the "base" content of the relevant disciplinary field. The subject content presented to the learner is a simpler, less complex version of what is known by the experts in the field. The more complex, underlying content will be referred to as Phase I content, as compared with the Phase II or simpler content pre— pared for the student digestion during the learning experience. The Phase I content serves as a "reference frame" for the Phase II content to be taught. Suppose that the Phase I content consists of five concepts (A, B, C»D, and E) which are related in several ways. The relation— ships may be schematically illustrated as shown below: 8 Here concept C is defined in part by concept A (i.e., A is included in the definition of C), concept B affects concept A (perhaps a direct empirical relationship), B defines D, and E is a parameter of D (D could be a physical low and E a physical constant). The simpler Phase II or selected content for the learning exper- ience analogous to the above Phase I could be concepts A, B, C, and D; concept E being deemed by the teachers or curriculum developers to be unnecessarily complex or otherwise unsuited for the student audience. The phase II concepts may also receive simpler definitions or expla— nations for presentation to the students. Once the Phase II subject content has been determined it is necessary to examine the match between it and the content actually tested or evaluated for at some time after the learning experience. This tested content, usually the only measure of student learning is generally a subset of the Phase II content. Thus, in our modeling of a learning experience the absolute or Phase 1 content, (all the subject content which could be taught), the Phase II content (which is actually presented) and the tested content must be examined and compared. In the modeling of a system where entities pass through a series of transformation processes it is necessary to describe those entities with a collection of state variables reflecting the changes imparted on them by the processes. Here the learning experiences is the process and learners or students are the entities passing through the process. To develop the necessary state variables the general method of variable or information classification suggested by Tamir (1976) may be used. Relevant information on student learners is classified according to this method into one of three categories: antecedents, transactions, or outcomes. This corresponds to the data describing the individual 9 student upon beginning the learning experience (antecedents), what the student learner does and what happens to him or her during the course of instruction (transactions), and the effects of that instruc- tion upon the student learner (outcomes). Thus, each student complet- ing the learning experience is described by a set of background data (antecedents), a set of data describing the instruction (transactions) and a set of data describing the knowledge obtained during the instruc- tion (outcomes). These variables describing each set of data are the students‘ state variables. The partitioning of student state variables into antecedents, transactions, and outcomes is based on Tamir's (1977) practical adaptation of Bloom's Theory of school learning (1977). Bloom re— lates learning outcome as a variable to student characteristics and quality of instruction. Student characteristics may be divided into either cognitive entry behaviors or affective entry behaviors. The effect of the quality of instruction combined with the student's cognitive and affective behaviors determine learning outcomes. Out- comes are classed as affective level and type of achievement and rate of learning. BloomhsTheory, based on extensive research review, claims that up to 50% of the variation in school achievement may be accounted for by cognitive entry behaviors, 25% by affective entry characteristics, and up to 25% by quality of instruction. Taken together he claims that cognitive entry behaviors and affective entry Characteristics account for up to 65% of achievement variation. Adding quality of instruction raises the limit up to 90% of the variation (Bloom, 1977). As quality of instruction is difficult to measure, this study is concerned with the students' cognitive and affective behaviors 10 and measurable learning outcomes with existing levels of instructional quality. Variations of Carrol's Time—on-Task Theme (1963) are also reflected in the transactions variables. For the purposes of this study all antecedent information on each student is assigned to a "Background" data set or matrix B ; —1 3. . . Bn , B = lBl, 32, B where n = the number of antecedent or background variables describing each student learner. The only transactional state variables which can meaningfully be measured for this type of study are attendance, methods of study, and time-on-task. Such measured variables are assigned to the Instructional Matrix I ; -l I - Ill, 12, I3. . .Im where m = the number of such transactional variables. After an instructional session a student learner may be evaluated for knowledge or understanding of each of the concepts presented in the instruction. Following the example introduced earlier, suppose the concepts A, B, C, and D are presented in an instructional session. These concepts may be arranged in an array' C such as; C = I A, B, c, D ['1 Testing after the learning experience may allow a value to be assigned to each variable in an analogous array. = —1 Ks lKA’KB’ KC’KDis where KA through KD are quantitative measures (such as test scores) 0f the knowledge or understanding of students of each of concepts A, B, C, and D, respectively. ll Expanding this notion, all the (Phase II) concepts presented in a learning experience may be represented in an array C , -l C _ |Cl, C2, C3, C4. Cp ‘ and measurements of the mastery of the p concepts represented in an analogous K matrix, Thus each student "passing through“ a learning experience may be described by three arrays of state variables, B) I: and K ; representing antecedents, transactions and outcomes, respectively. 2.3 The Instructional Session; A Simple Model Consider a student learner passing through a learning experience or instructional session. As a result of this experience changes occur in the student's knowledge and understanding of the material presented and discussed. In the model these changes are indicated as changes in the state variables describing the student. Specifically, after an instructional session, changes have occurred in the student's version of C. These changes are influenced by the student's background Variables, B , by previous instruction I , by previous learning ( Cimaged as K ), by unknown student idiosyncrasies, and by the nature 0f the instructional session itself. This is shown in the diagram of of Figure 2.1 below: Instructional si( Bi’Ii’ Ki) Session Si(Bi’I i, K£) I == 1__€_J K’=f€(B.,Il, i) ’ I;=11+I,c;oci<; Figure 2.1 Student Si described by the state variables of Bi’ Ii (previous instruc- tion) and Ki (reflecting entry level knowledge Ci) undergoes an instruc— tional session represented by I As a result of this session the 5' student's state variables are transformed; the student has new understand— ing or mastery of particular concepts, described as alternations to Ci reSulting in (:5 which are reflected as measurable alterations to Ki’ resulting in la. In addition, new instructional bookkeeping data is added to Ii' Bi is unaffected by the instruction. The changes iIICi reflected inlEH )ILIIE ' ~IKE~E5L1>5 uIUHIhlh / urn- \ Aflmwfi .EDOOV mmflflmGOHumHmm uQmUdOD %wOHOUm H.m MMDUHM _u=s—>:E.— Ewan one: ZOHHDAOE ) yo mucosa—w — .«o 39:33 a mo ocuun.n< mEmfigoum mmzauv :quuom mussecsn mom> mucccm two: mop—yumwa‘ cozufizeoe 3 E m _ mauve.¢.* .«o mammawuomum; 9 mus—332w; " >3. 7:wa mmwzuqh w>quuat0nnam . mmwcw>woncz< . m:ov.:3ua.:..;u 13:3 mouuqmzm. _ d.& :oamaauxm u>_oauoasnu ~.m wfiiz amudwofiou mmmmmuo; o>uuusv0nnwm muauuaeom 3.39.... :3 53:33 a.” ~m< m5: snatches... 20 35.5.: amusumz .«o 33. 355.55 saamtu>ss 33:3 :oumoao; vacuuming amucmscongzu g \ 2.52:... 3.55 J a \ “cusses TEN awed—am. ( unas:o~—>cm smuueu;u . sutuzm ozwecooq>cu «uuaamae nauseo.«>:u 21 it serves no purpose here to break these concepts down further. Rather, a definition of each is presented in Table 3.1. In addition to the definitions provided many of the concepts in Figure 3.1 include a reference to a particular section of Odum's book (1971) which more fully explains the principles and expands the rela— tionships involved. For instance, in the relationships among the con— cepts in Figure 3.1 the Ecological Niche describes an organism as detailed in Odum, section 8.1: "The ecological niche...is a term that includes not only the physical space occupied by an organism, but also its functional role in the community and its position in environ— mental gradients of temperature, moisture, pH, soil and other conditions of existence.“ The Competitive Exclusion Principle further details the complexity of the concepts; (from Odum, section 7.17) "Interspecific competition is any interaction between two or more species populations which adversely affects their growth and Survival...The tendency for competition to bring about an ecological separation of closely related, or otherwise similar, species is known as the competitive exclusion - principle." Thus, the bridges shown attempt to represent the more complex definitional linkages. Phase II Content Analysis Using the set of concepts detailed in the previous section, the content of the BS 202 course was searched for Ecosystem concepts. The ten lectures were first analyzed in detail for ecosystem concepts. Then, each small assembly session, tape lab, textbook reading, and practice quiz was thoroughly examined for references to these concepts and catalogued by the nature of concept coverage. The weekly quizzes and the final exam were similarly analyzed for concept coverage. 22 TABLE 3.1 PHASE ONE CONCEPT DEFINITIONS Concept Abiotic Abiotic Materials (Substances) Allee's Principle Antibiosis Age Distribution Area Behavior Biogeochemical Cycles Biotic Cycling Rates Biotic Environment Biological Control Biotic (from Odum, 1971) Definition Not biological; not involving organisms or that produced by organisms. Basic inorganic and organic compounds, such as water, carbon dioxide, oxygen, calcium, nitrogrn and phosphorus salt, amino and humic acids, etc., generally found outside of living organisms. Abiotic materials comprise one of the basic units of ecosystem. For some populations the degree of aggrega— tion and overall density which results in optimum population growth and survival varies with conditions. Undercrowding as well as overcrowding may be limiting factors. An interaction between two populations in which one population produces a substance harmful to the competing population. The age structure of individuals within a population. The unit in which ecological interaction takes place. The response of an organism to its biotic and physical environment. The chore or less circular paths by which the chemical elements, including all the essential elements of protoplasm, tend to circulate in the biosphere, from environ- ment to organisms and back to the environ— ment. The rate of transfer of organic compounds through the ecosystem. The organisms and organic materials within an organism‘s environment. The use of biological factors to control a population; the introduction of predators, parasites, etc., into a particular ecosystem to induce a population reduction of the controlled organisms, causing an equilib— rium condition with a smaller population size. Biological, pertaining to organisms and their products. Concept Biotic P< Carrying Chemical Climax 3‘ Coevolut c°mPetit Princi Confinensa Commit C"invent C“upled Trails: Crowdin1 23 TABLE 3.1 (Continued) Concept Biotic Potential Carrying Capacity Chemical Environment Climax State Coevolution Competitive Exclusion Principle Commensalism Community (Biotic) Competition Protocooperation COupled Metabolic Transformations Crowding Definition "The inherent property of an organism to reproduce, to survive, i.e., to increase in numbers." Maximum reproductive power. The maximum population growth rate under ideal conditions. The maximum population that a given environ— ment can support indefinitely. The chemical elements, compounds, and conditions within the ecosystem. A relatively stable stage reached in some ecological successions. A type of community evolution (i.e., evolu- lutionary interactions among organisms in which exchange of genetic information among the kinds is minimal or absent) involving reciprocal selective interaction between two major groups of organisms with a close relationship, such as plants and herbivores, large organisms and their microorganism symbionts, or parasites and their hosts. The tendency for competition to bring about an ecological separation of closely related, or otherwise similar species. An interaction between populations of two species in which one population is bene— fited but the other is not affected. Any assemblage of populations living in a prescribed area or physical habitat. In ecology, utilization by two or more individuals, or by two or more populations, of the same limited resource; an interaction where both parties are harmed or limited. Type of interaction between two species in which both populations benefit by the association but relations are not obligatory. Coupled energy flows and matter cycles within a community; where the organic compounds produced by one segment are necessary metab- olic inputs for another. The situation arising when a large number of organisms of the same species inhabit a confined area; occurs in areas of high population density. Concept Cycling 1 (Populat: Detritus Detritus Diversit Dominant Ecologic Edge in Ecology Ecosyst‘ 24 TABLE 3.1 (Continued) Concept Cycling Rates (Population) Density Detritus Detritus (food chain) Diversity Dominants Ecological Equivalent Edge Effects Ecological Niche Ecosystem Ecotone Emigration Energy Conversion Definition The rate of process within the ecosystem; the rate of a complete cycle of trans— formations. Population size in relation to some unit of space-—generally assayed and expressed as the number of individuals, or the population biomass, per unit area or volume. All the particulate organic matter involved in the decomposition of dead organisms. One of the two basic types of food chain, which goes from dead organic matter into microorganisms and then to detritus- feeding organisms (detritivores) and their predators. The condition of being different. The multiplicity of differences among organisms. The organisms which exert the chief control or influence over an ecological community. Organism that occupy the same or similar ecological niches in different geographical regions. The tendency for increased variety and dens— ity at community junctions or areas of interaction. The physical space occupied by an organism, its functional role in the community, and its position in environmental gradients of temperature, moisture, pH, soil, and other conditions of existence. Any unit that includes all of the organisms (i.e., the "community") in a given area interacting with the physical environment so that a flow of energy leads to clearly defined trophic structure, biotic diversity, and material cycles within the system. A transition between two or more diverse communities as, for example, between forest and grassland or between a soft bottom and hard bottom marine community. A form of population dispersal with one-way outward movement. The transformation of one form of energy to another; usually involving heat loss. can Energy Energy Energy Entrop Enviro Equfli Evolut Extinc lst L: Fluct' Food Food Genet Gran Grow- Gm“ 25 TABLE3 .1 (Continued) Concept Energy Environment Energy Input Energy (Heat) Sink Entropy Environmental Resistance Equilibrium Evolution Extinction lst Law of Thermodynamics Fluctuations Food Chain Food web Genetic Characteristics Grazing (food chain) Growth Group Selection Definition The forms and amounts of energy within an ecosystem. A source and amount of energy entering a process. 'An element or area which collects unusable, usually heat, energy. A measure of the unavailable energy in a closed thermodynamic system. The sum total of the environmental limit- ing factors acting on a population. A state of balance between opposing forces. The change in the genetic make-up of a population with time. The process or state of no longer existing pertaining to a population or species. For a closed thermodynamic system the total amount of energy present remains constant regardless of the transformations it undergoes. The uncertain shiftings about some point. The transfer of food energy and organic matter from the source in plants through a series of organisms with repeated eating and being eaten, through a final decomposi— tion to inorganic materials. The interlocking pattern by which food chains are interconnected with one another. Characteristics of an organism or popula— tion caused by gene activity. One of the two basic types of food chains which, starting from a green plant base, goes to grazing herbivores and on to carnivores. The increase or expansion of a population or community. The natural selection between groups of organisms not necessarily closely linked by mutualistic associations, leading to the maintenance of traits favorable to popula— tions and communities, but selectively dis— advantageous to genetic carriers within populations. Concept Growth For Habitat Honeostasi Hman lnte Innigratic Intrinsic Natural Isolation Law of th. Limiting Macrocons MetabOIip Microcom “gratin; Concept Growth Form Habitat Homeostasis Human Interference Immigration Intrinsic Rate of Natural Increase Isolation Law of the Minimum Limiting Factors Macroconsumers Metabolism Microconsumers Migration TABLE 3.1 (Continued) Definition 26 The shape of the arithmetic plots of the population growth curves. May be J or S-shaped. The place where an organism normally lives. The term generally applied to the tendency for biological systems to resist change and to remain in a state of equilibrium. Human meddling and disruption of ecosystems. One-way inward movement form of population dispersal. The growth rate of a population under ideal or unlimited conditions. Complete geographical separation from other individuals or populations. Liebigs law of the minimum: Under steady state conditions the materials essential for organism growth and reproduction avail— able in amounts most closely approaching the critical minimum needed will tend to limit the organism. Factor retarding the natural growth rate of a population. Phagotrophs (phago=to eat) heterotrophic .erwv organisms, chiefly animals, which ingest other organisms or particulate organic matter. The sum of the chemical reactions within a cell or organism including the energy~ releasing breakdown of molecules and the synthesis of complex molecules and new protoplasm. Saprotrophs osmotrophs, heterotrophic organisms, chiefly fungi and bacteria, which break down the complex compounds of dead protoplasms, absorb some of the decomposition products, and release by the producers together with organic substances, which may provide energy sources or which may be inhibitory or stimulatory to other biotic components of the ecosystem. The periodic departure and return of indi— vidual organisms from an area. A form of population dispersal. ma. Modife Mortal Multid Mutual Natal: Natur Nutri Nutri 0rgan Paras Parts 1’hys: I’hya .,. 1(Jill’s I)‘iiiu ' Piiu 27 TABLE 3.1 (Continued) Concept Modifers Mortality Multidimensional Niche Mutualism Natality Natural Balance Nutrients Nutrient Recycling Organism Parasitism Pattern Physical Control Physical Environment Physical Limiting Factors Population Population Dispersal Definition Factors limiting or restricting a process. Equivalent to the "death rate" in human demography. Refers to the death of indi— viduals in the population more or less the antithesis of natality. A multidimensional space or hyper volume within which the environment permits an individual or species to survive indefinitely. A type of two-species population interac- tion, in which growth, and survival of both populations is benefited and neither can p survive under natural conditions without the other. The inherent ability of a population to increase. Natality is equivalent to the "birth rate" in the terminology of human population study. It is simply a broader term covering the production of new indi— viduals of any organism. The dynamic equilibrium between the compo— nents of an ecosystem with no external, man made influences. A substance usable in metabolism. v"'“‘“" The continual passage and transformation of nutrients through an ecosystem. An individual living thing. A symbiosis in which one organism benefits at the expense of the other. The structure that results from the distri- bution of organisms in, and their inter— action with, their environment. The use of physical, non-biological means to control a population. The abiotic surroundings of an organism. Factors of the physical environment which limit a population's growth. A collective group of organisms of the same species occupying a particular space. The movement of individuals or their dis— seminules or propagules (seeds, spores, larvae, etc.) into or out of the popula— tion or population area. um Predat Produc (Print Popul: Pepul; Repro. 2nd L Sedin SElec Self Seraj .. SOci Span Spec ,4. 28 TABLE 3.1 (Continued) Concept Predation Producers (Primary) Produc tivi ty Population Density Population Structure Reproductive Processes 2nd Law of Thermodynamics Sedimentary Recycling Selection Pressure Self Regulation Seral Stages Social Attraction Special Niche Species Definition The feeding of freeliving organisms on other organisms. Autotrophic organisms, largely green plants, which are able to manufacture food or organic compounds from simple inorganic substances. The rate at which radiant energy is stored by photosynthetic and chemosynthetic activ- ity of producer organisms, in the form of organic substances which can be used as food materials. Population size in relation to some unit of space. Generally assayed and expressed as the number of individuals, or the popu- lation biomass, per unit area or volume. The age distribution, stages and other parameters which describe a population. The processes involved in the replication of organisms. A natural process within a system that begins in one state of equilibrium and ends in another will go in the direction that results in the largest entropy increase for the system and environment. The cycle of matter in which erosion, sedi— mentation, mountain building, volcanic activity, and biological transport are the primary processes. Factors within the environment which influ— ence the natural selection of traits within a population. The control and regulation of a system through feedback to maintain some equilib- rium condition. Each of the transitory communities or developmental stages in the ecological succession of an area. Behavior resulting in the aggregation or clumping of social populations. An organisms microhabitat. The largest unit of population within which effective gene flow occurs or could occur. Concept Species Success Stabili Standir Survive Territc Total 1 Tmphi. Tr0phi Tmphi Concept Species Diversity Succession Stability Standing States Survival Territoriality Total Members Trophic Levels Trophic Niche Trophic Structure 29 TABLE 3.1 (Continued) Definition The multiplicity of differences among organisms. The progressive change in the plant and animal life of an area. Resistance to change; the ability of a system to restore equilibrium after being disturbed. Reserves of elements of compounds. The continuation of existance, the process of maintaining existance against environmental pressures. Any active mechanism that spaces individuals or groups apart from one another. The total number of individual organisms within a population. A nutritional level within the food chain. The nutritional of food chain role and position of an organism in the ecosystem. The structure of the food web in an ecosystem. pc_ru_r “I concer cancer tions 3.2 cc defini lectu‘ conce befor tions previ Table in t1 were 30 Lecture Content Table 3.2 presents a summary of the lecture coverage of the concepts subsumed under Ecosystem. For each of the ten lectures the concepts covered, the method of treatment, examples, and the connec— tions made between concepts are detailed. The first column in Table 3.2 contains the concepts presented in lecture. These concepts are defined in Table 3.3 as they were used in the course. The set of lecture Ecosystem concepts listed in Table 3.3 contains many of the concepts defined in the Phase I content and several not presented before. These new Ecosystem concepts are amalgamations or simplifica— tions of the basic set of concepts. The relationship of these and previously introduced concepts are contained in the definitions of Table 3.3. A discussion of the method of concept presentation is contained in the second column of Table 3.2. The following presentation methods were commonly used in lecture: 1) Definition; a concept definition was presented and several examples provided. 2) Expanded Definition; a concept definition was presented and discussed at length, with many examples provided. 3) Definition by example; a concept was defined by providing a number of common examples——"water and silicon dioxide (sand) molecules are common examples of inorganic molecules." 4) Review definition; definition restated often with restatement of examples and addition of new examples. 5) Implicit definition; concept definition implicit in discussion --the sun produces energy (therefore it acts as an energy source). the t COME able lectn in ti 31 6) Undefined; concept is undefined and is understanding presumed—— i.e., "energy flows into the ecosystem...," (without previously providing a definition of energy). 7) Mentioned——a previously defined concept is referred to without elaboration. Examples mentioned in connection with the concepts are listed in the third column of Table 3.2. Connections and interrelations between concepts cited in lecture are contained in the fourth column. The lectures were tape recorded and these tapes were made avail— able for student use on the day after the lecture was presented. These lecture tapes are, of course, identical in content to those presented in the live lecture. MHMHDHHUMWH ZH QNHZMHWVHMNnH “Hmmozoo WEHWMWOUMH N c m. MH‘Hmudflhu mmfisooaoz \/ a 235.30 m Mn N memospoum mhm.n n. mamfinmmuoouofiz cowuficwmoa wovammxm mammOQEooom .s «on a m mamfiamwuo nus m mHmEHe< mumusvoum n.w W .msoo .wamssm cowuwmflmmm wmvcmmxm mhmfismaoo T.1 . o 8 mmasomaoa .mfiwflomwuo mwA musmam comma soauficflmon vopdmmxm mumoswoum mmHmmemlmom Ammfiwfluo whosv Eoum%moom mamfimxw mswfiab QOHufinHmom ouosmwOHm Homomaooow .Hmfismaoo .uooswoua .huflssssoo mmwommw .GOHumasmom mnoumasz "uHoHHmEH woeswm< aOfluflsHmoQ Smfismwuo uOHUooz "uHUflHmEH possmw< coaufisflwmm mmu< .oum .mmHsE madfimxofioa H .momuom 2 mamfiamwho .HmHHHDVm .wmmssm wEOfluflsfime 039 ofioomm 3 mowummm .mEmfiswmuo .mou4 Avowammxmv uoawooz coauwuflmmm hufludsfioo mono .mmfioomm .meHaowho Eoou am museum SOfiUflanmQ coaumasmom mHNWONEOUwV .mHmESmaoo .mmmosvonm .mmwoomm mono .uaosaon Awoumhosscov mamwuouma ....mo womoasou. |fi>am wsfi>HHIaoz .mamfiammuo wafi>fialcoz mam mofiomnm :OHuHGHmoQ uuosm .3mw>om amum%moom mZOHHomzzou mmqmzmooo "quHHaEH .muoadwcoo .muoonvoum Amwumam .umm: Hmuasmao .usmaa "unuafleanv hwumcm mo scam cam mamsmxm kn woafiwmn mousom hwuoam Emumhmoom voESwm< cowufinfimmn nauseoufi>sm mZOHHUMZZOo mmqmznou %whmam unwfiq voaflmmvcb mahH >wumsm 30am hmuosm .hwumdm Suumm mo manuoumaamH woaflwowcb ounuouomsoH modem HmoflEoso .mfimmsucxwouosm .ouo coauoufiammm Amousom hwumsmv mumm Acupudoov AGOHmHm>ooo xwuonmv moumuwhsonpmo mamamxm hp coauficfimmn owmuoum >wuonm Amuowomsoooo .mumESmcouv muoosuoum :Amumwoafioomnv was cowumufimwom mamasmaoo mp mm: mwponm: Esaunfiafisum :muoonwoum :owomso zwuocm: .mmOH umm: .mocmfioflwmm kn monummo kwumam: ononm %n defiuwafimmn sowmuo>aoo kmuodm nuumm Asmumhwoomv mo ooanmn kwumcm :moamamm: ou wmumsvo sueuaonmmm . . :uso amaziea uswaa: vagueness asaunamasem mwumcm .mummomaooon .mumfismaoo .mnmoswoum 30Hm zwumcm II: wmcfiwmvcb hummfiofiwwm moanooaoz unammso .asaunaaasem “seesaw ammom zodowowmwm .3oam hwnmam ummm mamemxm ma nOHuflawwmo hwuoam Enflunflaasvm .mumoswonm .mfimofiu Iahmouonm .mvcom HmofiEoso .moadooaoz owsowuo .Eoummmoom Aufiwfiav Beam hwumcm cam mHmmem kn Gowuficfimmn monsom hwnmcm monHUMZZOo mmumzfialaom EOHMV wmasooaoz oflsmwuo .monm .on coauficfimon mucoEon ofiaowuocH Asoam zwuoamv mousom .mwwuoum swumcm .mumfinwaoo .muooswoum .mfimmnunhmouosm .mmaso . . so Ioaoz ofinmwuonH .oflsmwno moamfimxm oHafiuHDZ noeuficwwon mwcom Hmofismfio 3 mEmHaowno .oum .mafimuoum mvuom Hmofiamno .mumm .moumuwhnopumo mumsnmcoo .muoonwoum “moaaaoxm maneuasz wmuammxm coaufiaflmom mmasooaoz aflcmwuo ESEEEVE 5833mm .aOHmHm>aoo %wumam moasooaoz :uso poo: oadmwuo .oousom hwumfim .aw ustH "nuumm: muomomaoomo .mumaswnoo .mHmUDVOHm :ummn mm umoa: vcom Hmofifimso :mHuho uocz coauflcfiwmn Boa>mm Beam hwumam monHomzzoo mmqmzom Auuuumzv macho Hmwumumz Auaoamonfi>cm waH>HHIaozv :uHHQ: Goauaaflwmn onmnmmowwmm Emuwhmoom AucmEdoufi>cm waw>fiaicozv :umuwz: cowuficfimmn muonmwonufiq Auaoeaoufi>cm waw>fiaicozv :Hw<: defiufisfiwon ononmmofium Ampsuamov cowm lum>cou mwuonm .mumoswonm .Boam hwnoem .maomo Hammond: II. mowuficfimmm Bmw>mm mumwomfiooom Amusummov scam |Ho>aoo hmumam .muoosvoum .Boam kwumum .maoko Hmwuoumz II. :Ofiuwcflmma 3mH>mm muofidmaoo macho mumuuoz .mousom Acsmv %wuoam .masomaoz oflammuo .masooHoE aflaowuocH .Boam hwuoam .mHoho Hoflumumz Amusuamov mommuo>soo amuoam II coauflawwon Bmfl>om mumoavoum Beam hmumam .maomu Hmwumumz muonamosufia .muosmmouw>m AGOfluossm . .mumsmmoeu< .mummonaooma II. was ousuosuumv wmnfimmpmm muoESmaoo .muoosuoum 3oH>om aoumxmoom mZOHHomzzoo magmzficuwonllll ABmH>mmv Emuwmwn mwuoem anew ‘II unmam: .voaofiummz aefluflaflmon Beam mwnmam Aeneas eoom ImHuHUfiHmfifiv mumoewoum mammnuammouosm .mwumem .ll Eoummfio mH> vchHusez macho Hmuumz 335: mflmonusmmouenm .muooevoum ...meo< ocflE< .umwnm vmeefiueoz moaeomaoz owcmwuo meHeueHez oflaewuo .mwmonuemmOuosm .muouewoum anemone: AEMummmeomv ll: weaewuaoz ofidmwueaH wmmmH mwumcm .BeHm mwumam .Hmuumz we mHomo .muueom mwumem .mumueweum .mmadooaoz aflamwuo .oflamwueaH .HmmomEequ .umoawoum .uosemceo II. Emuwmfim mH> veafimowom Emummwoum mueumuomaom AofinmeuueusmeaenoV aOHmHm>Geo mwumam AUHzmouueuemeuesmv Ammeeo .Beam mwuosmv muemam somuu Aumuumz afiamwueaH .oflamwuov aefiumaflafieomm mwuoem .mpmoswonm .oouu woemem eefiuficwmen uwuwamfim Rowan: amnesm .BeHm mwuofim .moaeomaoz oHemwuo moaeomaoz omemwuoaH .eeflumeflnEooom sound: ii. woawmmm wfiwmauemmouonm Amuoaemeeo .mnmoeweumv mmeH ummm Beam mwumcm mHmEHG< mwuoum mucmfim conflmmwcb musumuomEmH Aaowmum>aoo mwumcmu .mmmuoum mmumemv :ouoBfiCmu‘l Aa0flueea uuosmv mwuocm .Bon mwnocm nuom‘luemam: eflmsu mwnmsm mm woeflmen damno weem mango weom seamum>soo seem . % .ooueem mwumem .weem Hooflfimso Amwmuoum mmuoeov meow Awmwumso coauo>wuomlv maumo Hmuumz use: "xHoB ow ou mufloommo: anew mwumem usmfla mm woefimma mamafim mwuoem waem Hoowsenu mm< mwnmsm mH< meaafimxm whooevoum cam ma maufioflamefl wmaflmoo condom mwuocm mueumummmmm Aaamfimmueafiov mfimonuammeuefim .BeHm mwumcm whenevoum muflm .eefiuoewouemm vmmwmmwep eeHmHeBGOU mwuoem .weom Hoofiaoso .nuBeHw Hoofismfiu .cewmmeomfiw ou uHoHHmEH mmuoam mwumam .Bon mwuoam whooeuoum mZOHHUMZZOU NN\nH\OH "mumn .ouo uwmumuwmnenumo .eoom .msa manage Aeusaauaoov N.m mamsm deflumeuflm .m wefiwemno m GH ensue II. we nocfimunwoz mm um>wq memeum: "aefiuwefimem wfimmumeoaom Sammy 38“sz Awumuewonmv OD wmfisumaez whoseweoo emwouufiz woeowucmz owaowueam ...awouonm Amumosvoumv umm .mumnvmaepumo Ammuumzv muessmsoo mwflo< ecfls< wmeefluemz mofieoeaoz aflamwuo Aamummwoom mmEOHuama mumfiemeoo .mumuevoumv Hound: oflaowuo mHuomuflw uesluwofiamam Beam mwumam .mnmsemeoo .wnoespoum .Ii woeewuaez mmumam AEeum moomv ueoseoufi>em kuumz Aoflumsmeumow .eHeNoHomv oHemwuosH .mmaeomaoz oHcmeo ..meEHe< .mmeem I moneuoum A:mpoo=veum wumoewonm "Hmamsmxm onHuasz so monmweemowzv woefiwen unseemeou Aanom Hoemv Asouwmmoomv unmaaouw>em .mwuoam ...wuemam wemeBOHm .weumm .oneomHoz omemwueem .ofieowho .mmwa< .muemfim eoouo venwumsasm coauoesm mumoewoum monHQMZZOU mmqmzeoo mmumem noes .uLwHHsem mmaeomaez ofiemwuo mn< .mm< oufienomem .vmeflmmweb mwumnm Asmumsmmumv cam .maa .ma< someomao modem HoowEmno omouosm .wmaeooaoz poem mauflowamam woousom mmuocm wveom amoesmfio .maeomaoz oflemwueem newcomao coaumuammmm .vwo< oafiE< .mmeueem mousom mwuoam muofihaoeumnmfieaez mononmmmm wmaeooaez eHemwuo A oaoflofiwmmv aeflmum>ceo “mam meadow mwumem .mwuoem moaeumaoz oflemwueem .oflnmwuo ll. scammeemfia wmwcmdxm coaumufimmem moueom Roam seam aefiumufimmom .eowmxo .:v00m: Aamummmeomv unoEeoHHBGM .moasumaoz ofidmwuoeH .uwemwuo mamswem Hmaeaaoofluaez uncommon: sesameeo mZOHHomzzoo mmamzumn .mBHuoewoummn umcfiwmwab AEmHemnuoEV monsoon somnwomm .voeowueoz xomnwmem mEeummm HmeoEuom AmEmHemwuov mam wDOBHoZImHmEHe< woswmmwep mamfiemzomz . .mEeuwmm Hmeoauom “muemam .wmeewuaoz owumumomSem lame .ueoEseuwBEm .eowuuewoummm wmnowueoz EmHHonmumE .uemanuH>cm .Emwaonmumz wmeefiucmz coauosvoumom l .4 monHomzzoo mmqmzem omaa .Asmflemmuov mammflup benefiuemz ueofieeufi>em ueoaeeuHBem omHH .Afimflamwuov mawmwun woaefiueoz Emflaonmumz i3 .GOHuoeweummu mo names sowmmeomflw Annapomaozv Asmfleowuov Hmofiseno mo em: wowemmxm .eOHuHeHmmw vowemmxm defiuonpoumom mZOHHumzzoo mmqmzemv Emwem no Hana wefiuuom vmefimmn muoufiuuom amass no mmeo mom Aamaflemv .wsaeafium .uemaeoufi>em muoefiumem .wmcnmoq woeflmma ueeanom gallant: mDHDEHum .ufimficeHHBGM Amwncmmnv Emflemwpo .xmammm .mHNmH wmcflmoo endomwmm Asmaamae uomusuv mmmammflw efismuseoo mmeommmm oawuoom .Hmoflsono AHmuamEeeHH>emv .Emwsmmuo .useEeeuH>em .Hmewfi> .muouflwem wmefimoo msasawum mDHDEwum .Hefl>m£mm lilmmmmMwWmmI4Wwmmflwmwmlllllllmmwmmmmmwmm 9. iIIlilillmwmmmmmmiummmmmmwm A. .Emflemwno .Eoummmoom mamowun woeowuemz Homemfiooom some seven umoeweum .Emwamwuo .Emummmoom mammwun pedoauemz “masmeoo Home Eooom Hessmeoo .Ewwemwuo .Emummmoom mammfiun wmaefiueoz Hoosweum xooaeHxUfium mefimm m .woum .nmsoumo Hoummo .pumm emoemamu woeenmmmu usezufis soBHw .HHSU wafinnom .MHnsme mofimsmxm .mfimmflnn wonfiuemz Ewfiemwno mummomsoomo .muosewaoo .mnoeemeou .mnmeeveum .mfiwfidmwuo mamefiun woaefiuemz Emummmeom monHomzzOo mmqmzmxm HzmzmmmMH mmmmozou nm\HN\HH. “mumn w mueuumg “ZOHmmMm AHeuoo .mouo>wnumm Bmfi>mm muossmeou Nmmwfiowmmm .Hmuumz mo oHomo .mmfisomaea owcmwuoew mam eflcmwue .moueem mwumao mummam ammuw mwmonuammouonm .Emummmoom .mvom mafia .mowH< woeflmmo mumoevoum nt poem .BeHm mwuomm .aefiumuwmmou .ueoEeoufl>so Hmoflmmzm .muowomfioomw .muoEDmaoo .muooeveum odomo cemenufiz .mfiumo .mEmflamwuo .measueaoz Gennmo .maomo cowmxo Bofi>mm ofinmwuenw mam uaeomuo . . macho momma .weem wonBHeoz Houumz mo maumo moamfioflmmm .udmecoufi>cm Hmowwmnm .meueem mmumem .mumnmwefin .Emummmeum Emummmeom mmafimmm Beam mmumum souumz mo oaomu .nt poem Beam mmuoem .mwumam mwmuoum Hmoflaeao voawmen .Eouwmmoom .muooewoum Gem venefludoz moueem mwuoem mnemommmoon .wHoEemeoo .muoosveum .oaomo umuumz .uemE Iaeufl>em Hmowmmsm .umuumz we maumo .BeHm mmuedm aefiufiafimmw popcmaxm euofimmefim .ouusem mwumfim wdem BoH>mm Emuwmmeem mZOHHomzzOo mmgmzmxm Hzmzmem mfimosuammeuefim wmaeomaoz omen Ream was ownmwuo .muowomfieomn moueBfieumoafili woBeHBmm .muooeveum .mquDmeoo mmuo>flnuo:.lii muemam veeflmmn neg woom wueme Eooon defiumufl mom HeBoH ownmouu .EmHHonmumz .Lmz poem suHB mwumam we mwoq . muofismcoo . mHmmzuemmeuonm meet/«c.2341. mueoecoum wouoBHnuo:.AI\ muemfim :ewuwcflmom ufloHHmEH mesoHUHmmm IIIIIIIIIIIIIIIIImmmmNmmwm umwflm mueosvoum HooHEenu moaOfluemz mwuoam :eflumufimmom .Hmuumz me maomo Nz . moz mefieooaez muouewoum Nov undefiueez ofiemmuoem g , mg a g mm\wm\HH "mama “unassuaoov N .m mmmfi m musuomq ”ZOmemm Amu .cewuficflmmn wGOHumHsmem mZOHHomzzOo mmqmzem meme eHo>oQ emaum Hoonmfim .seHuoeweHmmm .wueoemeum unmEmeHoBmQ HoEHe< mH a ¢H\HH .uaoacepH>em Hmonmnm .mmnmcm acme eHmBmQ .eOHuoeveumom .muomemaoomn .muooswoum can nuBouo uemHm OH a m\HH o . mnemmHQ HmHsHHoo NH mmm moHeomHoZ oHcmwuo .COHumusz pew oHuoemo .m£mm .GeHumuHmmmm wfimummm Heummem H\HH a HM\OH m mmmmmHQ was Eeuwam Hmfieweou RN w oN\OH mommmHQ mam fieumfi< EmHamwuo .eeHumHHmwmm .uefismsoo Emflfifl HO fiOHUNHH mQM Hwaflwfloo HQEDmCOU mN w VN\OH GOHuoewou om aoHomo e N m:m HmonmLm .EwHomwuo moomumeoo woo muommem ON a aH\OH m o mOO mHmmozoo EHHmNmoom ¢.m.MHmem Hmonmnm .muouomm UHHOHm .eeHmmeoosm .GOHuoeHmHumHuw .Eouwmwoom mmeHeom H\NH a OM\HH m NH mem Hmonmfim .ueHBmsom .muooeweum u0H>m£mm HmEHa< NN a HN\HH m mH mWOUN I I “MOM—wgoaq Hugh... ”in... ZH hum—”Hzmmmmm WHmMHHUh/HOO EHWMWOUH n I M; uihmdwhu A. 5 NmeHHo .eEOHm .mwneem .mHmmsuemmouenm .Hm>mq oHsmoum .mHomo Hound: .eeHmmeeoem .GOHueHOBm .mummomEooom .mumfiemeoo .mumoswoum .aoHuoHemom .muHasEEoo .oEOHm .EwHumnmonmwm .EmHu IHmonm .eOHumweum .EmHHMmemsEoo .GOHuHummEoo .amHHmeueE .BeHm mwuodm .mmoEOHm .suBouw .ucmE:0HH>em Hmonmfim .mosmHemem .nmz use chno weom .mnon .uManmm .Emummmoom H swoaoom m 3 mg eeHummmmmmwM .muooevoum muemHm weHuoBeHm a mH mmcm HMUHmmnm .eeHuoewoummm .umanmm .mumfismaeo .wumeeweum N EOHuonmowmmm m «H mmmm a .398 83 .amumsmoom .umfigoum H 353 a S. as; GOHumHH mom moueom “mam mHmoumomEom EmHHonmuoz .suBouu .mnoasmeoo .muooewoom .coHuoemoummm .oHomo mmHg H eOHuosmoumem o NH mmmm uamseeuH>am Hmonmcm .moHeomHez QHemeeaH new oHammuo .suBouo .mummomfieooo wuomomsoomn 0 HH mmm£om .mHomu umuumz .BeHm mwumem .ueeseouH>em Hoonmsm .GOHumHHmmom UHnoyemn< N muessmeou m OH mmem Hmonmnm .oHumnmonmmm .oHnmequHom .oHuHmoumm .muoEDmeou museumcou q w mmem Hoonmnm .muoosweum mueoscoum m o mmem Hmonmnm .mHomu mmHH .mumanom .EmHamwuo .muoeemcoo mwomomzuu< m m mmem .HdHueouem oHuon N mw0Hoom OH NH mmem EmHemwuo OH mH Mmoo mumooaoo eoHumHHomma Moez eonmmm Eoummmeom HoueHuosuumcH Gazaaunoov mam . magmas EUUQPWOUW MENU-uh. C‘Eitfiihfi iihnxiin WUZFCAVIL.“ MEN-“B hHuflyH. ZH CkZFAVrFV-CL WHHHMNUZOU Erflmhfimoom win HNQ¢H iiillillliiliiiiliiiiiii mumoewowm .wuoaemmoo .eHomu mmHH .¢0Huoeweummm .mHmHocHHm GOHwnHoxm e>HuHueumEoo .uouHQmm .mnon .EmHHmsusz .EmHHmmeoEEeo .mHmOHnEmm .mousom mwuoem .muHHmHHouHHHmH .HOH>m:om .GOHuHummEoo .sowummoum 0H .EmHuHmmHom .muHommwu meHmHumu .muouomm wsHuHEHH ucewemmoo ommlwwm muHmemo mam ueovcemowemlmuHmemn .moemumHmmm HouamEeeuH>am mlq mHINH lNoq .HMHuemuom oHuOHm .muom Summo\nuHHm .muHmceo .cOHuoHemom qu nOmeoooem uHmHe>Hn ueoEGoHH>nm Hmon Lm .muamHUHmwm .Hw>oH oHsmouH .QOHuoeweHmmm .oEeHm .meHHo .GOHumo IHnmeHuem .muomemfieuen .mumEchoo .mpmeswenm .Hmz weem .eHmso m weom .mwumsm .oHomo Hmuuoz .BOHm mwnmem .mumammOHm .meHeooHoE mHHIoOH quleq oHemeoeH mew oHemwwo .muHaSEEoo .deHumHeeem .Emummmoom molom NoqtNmm mHoo m eoHunHo>m meHsomHeS oHem no can oHem HoeH .Il .EmHsmwno .uceeeouHBam Hmonmnm .H0H>m:om .muosemeoo 1!. quleN w mumoswoum .ueoeeouHBsm mOHIHOH oQMIqu N Hmonmam .mwumem .mouzom mmnmem .mmESmeou .50Huosvoumom ll. mmlmq omHHmmHlllllll EmHHmnusz .mHmOHnEmm .wuomeNEMWoQ .mHsooHoz mmHimoH oHemeoaH .uamEGoHH>em Hoonmsm .muueom mmumsm .oHeooHoZ II. quwN HQMINNm o UHGNwHo .mHoEDmeou .mumosvonm .mwueam .EmHammuo .GOHuoemeueom mlemmN 5 no: poem .COHusHo>m oNINw II. HMNIoNN m .uemEGoHHBGm Hmonmsm .HeH>w:em .mnosewaeo .muooewoum wONiooN ueeaaouH>em Hmonmnm «pom woom .Hooewoum .Hefiemeoo NfioHumHHm ll HoHlmmH.oNHiaHH q loom .mmuoem .BOHm mwuoem .oneuoHoz UHemeo was oHemmHoeH Hwimo mHHINOH.¢miHm BOHmrwmeem .oHomo Houumz .mmHeo NmHINNH IoHoz UHnmeeeH .Hosemeeo .nmeauonmuom .smouuou:< .uemHHuez II. mHHIwHH.HOHImm m .mwououm mwuoem .muuaom mwumdm .mHmoauemmouefim .muoonuOHm colmq qwin.NoImm mueaswaeo .meesusmwOuOSm .muooeweum .II ooINo.om|cq N .mwuoem .owmueum mwuoem .moHeooHoz oHcmeo new oHcmmuoam qqtoq welmm.Hm|MH unmeaeuH>um Hmonmsm .muomomfieomo .muofiemeoo .wnooewoum .oHuHmmHmm .wHoso 83 .33 fiamfififim .coEoseoEom .fiHmSa mmuem 2in $13 :TH H .meHHMHemom .oHommm .EmHemwuo .GOHuomHom Housumz .eeHusHo>m pmueBou mumwwsoo wudAddM1IiJwmwwdflllllllllldflflflflMfllMMMfli Emuwmmeom "mmwmm nemEewwa< wememm mUZHQ mvwo¢ muumm 30am Mummzm mwwo< oaHE< mqowo mmHHcm memew :m wcfimamuwm .UQH3 .wom AHnuwm :Oflufidfiwww m mcH>HQQ¢ .wHameo am wafiHHmowm HwamocmmMHo mmon NNO comeCHva m wafihammd nowum>wam MSOHm ammEoE memew cm wnflaamuwm .uw oooH ZOHmmmooDm HNo ummuom msosvflumw MEOHm 83233 m @3183 .mfifiuwoomm 33353 283825 0.8 mmz Doom wozmHUHmmm Gowuwcwwov m wcwhfimm< 30am wwmmzm mHo Goaufiafimww w wafihamm¢{l‘ ©m0H ZOHHHmm< HZMZZOMH>ZM UHHOHm wamamxm aw mafiaamuwm HzmzzomH>Zm qflcwmo .COHHNUflwHG Immz .:Ofluwwwwm onHmnmm coauwdwwww m wnwhHaa< coaufluwmaoo mMOHuuau wHHQHm\ .memew am wcfiuwcwoowm wozmHonmm Hoo ...m&3mm ...wcfi£oub mwm . . . mwxmfim ...mxumnm ...mH0ummHHH< .maoHUHafiowo mo Hamomm wusumngEwa HZmzzomH>Zm qumum WHHA mmB Doom mac mufiwEEoo xtimwwmmmmwli\‘ \k1mmmwwmmm11IAmmflWlJflunfin 0H HHHmUOHnH MHAHBMHQOE UHZdVMVNHQ N00 MUAHUEOU mWHNHWunMH WUNQUCOU . EWUH EMMA“. Human—“LN. Auum—JHHJHUFHOUV m y n mqmdvflrfl 66 mMS Doom macauficfiwmo wafimfiamm wan wawaamowm ZOHmmmooDm mNo MUZMHonmm coaufinfimmv m mnfihama< mmB 000m .wfimfimxm am wcHHHmumm 304m wommzm «No defiufiaflwoo m wawhaam¢ mm3 ooom Scam wummzm mmo N N manomqoz 0Hzzm A<0Hm~mm coauficfiwmo m waflaamuwm wwmum xmaflao onmmmouam moo mmmmmmmwwmmmwm .mEoum conumo mqbumqoz 0HzHaumo N Nm om wan.¢ MN Hummmmmwoo o wN N.H w.¢ “maswaoo m o.w «N mN N .o.m.q MN.m Hoosooum w No S N Tm oéa 2 296 Show: m w HN.oN .o.q.H wN.wH Eoumwmoum N HN cN m.o.H Ewfiamwuo H Hmnfim an oaHz am>mm me 0>Hm usom omusw 038 moo umwumum umwocoo Hmnfisz mEouH uon unwocoo \\hn_l HHHHDJ. 4.4.“.4. 3.1 4:)pd\r> 1411.!11)>\r1t HNfifih man—Hz NHNKVQW “Hum mKVHhH MEMUH HDOHH 00kg .0be u QUE AuvflnuuhflUnHOnvv m q n MH‘HMHdVH ”no umwuwkm 70 HN flewbwcwwwg qq wN ma Eswunwawsvm m¢ macauumuwuuH NH ma NH aowumadaom Nc muouuwm .HH «Ha ea .mwm huwmamn He .wm.nm .wH.oa mufiafi£mum uoq.~m mm ma \auzouu mm HH OH n o coaumfismom ow wm.~m aH NUHummmo .nm.NH .m.m NH wsfihuumo on doaudn : 123,8 a? mm mm wJ mumm numwn mm wN N 8% figs 8 J“ huoufiuuwa mm HH «H.a 0H hufimfiwn é” wN ammuwmmfln mm ma .¢H.NH om.na NH.HH .q.N.H q“ .0H.¢ fiowumasmom Nm ma m“ muwcsfifioo Hm N.“ NNNNN QUE om om HN.O¢ ma mfiowm mu NH cu Coaumwmum mm mm 3. cm NN6N «N .mN.m .mH.NH .ma.m cowmmwouam mm unwacoufl>cm 3 333m 0N zufiHwHHOufiuumH msmm mm .II N Ba 1111‘ CO' ma CE ch of 0D 71 1 of the concepts tested for in the course has been assigned a Jer and is listed in the left hand column of this table. Each :ept is then cross referenced with the relevant test items. This :ix of concepts versus test items serves as a basis for the con— : mastery or performance indices discussed in the next several )ters. Not all of the ecosystem concepts presented in the course a covered in the Weekly tests, thus any assessment on the degree mastery or understanding of the total Ecosystem concept is based >nly a subset of the subsumed concepts. Course Concepts Summary The Ecosystem concepts treated in the course have been presented fables 3.2 through 3.9. Table 3.10 summarizes the concept coverage )ughout the various instructional sessions of the course. Of this a1 set of concepts, student mastery or learning indices could only leveloped for those concepts that were included in the questions :he weekly quizzes and the final exam. Although students must have sly mastered other concepts, no evidence was collected to measure extent of that learning. Thus, for the purposes of this study the ent's mastery or performance on those quiz items testing Ecosystem epts provides the only measure of the students' understanding of total Ecosystem concept. These measured concepts were arranged in a matrix format follow— the convention developed in section 2.2; _ —1 c -|cl c2 03.....c44 é.each element, Ci’ is.defined in Table 3.11. C contains the 72 OH . m MAME. 73 $953.58 3. m 35:. 74 $253.88 3 .m HEB; Nutrient Behavior 75 TABLE 3.11 ECOSYSTEM CONTENT MATRIX C C Density conten for, a Matrix outcou 76 ent which was both taught in the course and effectively tested and will be referred to as the Content Matrix. The Content ix will serve as a central basis for the discussion of the ome components of the course model. 4.0 info info info deve one 1113‘ desl beg hap and bat til in -' 'eE CHAPTER 4 THE MODEL Student Information In order to efficiently gather, compile, organize, and analyze ormation on students in BS 202 the general method of variable or ormation classification suggested by Tamir (1976) was used. This ormation scheme is discussed in section 2.2, the theoretical model elopment. Relevant information on students was classified into of three categories: antecedents or background, transactions or tructional outcomes or performance. This corresponds to the data :ribing the individual student upon entering the course at the inning of the term (antecedents), what the student does and what )ens to him or her during the course of instruction (transactions), the effects of that instruction upon the student (outcomes). :, each student after completing BS 202 is described by a set of :ground data, the B matrix, a set of data describing the instruc— t, the I matrix, and a set of data describing the knowledge ob— ,ed during the instruction, the K matrix. The variables describ— each set of data are referred to as the students' state variables. Background Data For the purposes of this study all antecedent information on Student was assigned to a Background Matrix, B , where: 33......13 '"1, 236 236 background variables are listed and defined in Table 4.1. B == Bl’ B2, 77 The in standa variab 4.2 l B Each 5 sessic expec1 lab 1: the S' and s Sessi tape expos mEthc were Matt: Stat ,. hi and How. 78 instruments used to collect this information and the means, ndard deviations and other statistical information for these iables are given in Appendix B. Instructional Data (Transactions) Biological Science 202 has a fairly rigid instructional routine. 1 student must attend one lecture session and two small assembly sions each week for approximately ten weeks. Each student is also acted to spend some additional hours in the individual instructional listening and working with 17 prerecorded lessons. In addition to structured class time, the student also spends some time reading studying. Attendance data was recorded for each lecture and Small Assembly ion. Time spent in the instructional lab was also recorded by number for each student to give an indication of the individual's sure to taped instruction. Data on the number of hours spent and od used for reading and studying the textbook and practice quizzes also solicited on each student's weekly exam. This attendance and study data were assigned to the Instructional _ —1 I-I,I,I,.....I l 2 3 108 The 108 instructional variables are listed and defined in Table 4.2. ,stical information for these variables is given in Appendix C. Random student discussions or tutoring sessions with the instruc— re difficult to accommodate within the framework of this model, uch data was not to be entered into I for reasons of economy. Er, each instructor was encouraged to keep a log of such interactions, mmHn—NHHNKV Hv§0hnwv~omvm~ m. In..- oV MH‘HMHo saw I vmcumm musHom 3m: mHmsz H mm hwsum mo EnoH ou m30H>wum vacuum munouo sz zmmmU H mm hwsuw mo EuoH ou msow>oum voHHHmo wunouo sz mmH mmmHu pm: mm shcouo< unoEme )iislll. O H UUfiMHOUfluH «H H @MCOQQGM UUNHHOU «OH. EwuH UWUUUHAH OHONMHN “ (Cm o nuojhunfiukfimmnn ”HQWHHWKP gnuOcHUdV . U finmEmvHNN ”HANNHHIHNKP .m UHHINU SN AHMHDh/HHHZOU IF] I q MHAQ C) C> C) O C> O C) O C> C> C> O C) O C) O C H H H H uuwuuooaH quHHOUCH uomuuoocH uowuuouaH uowwuoodH uoohuoosH nowuwooaH uoouuoosH uowuuooaH uumuuoocH uuwuuoufiH wowuuoodH uuwuuoocH uuwHHoosH uumupoudH uomuuouaH uowupouaH uoousoofiH uowuuoofiH uuwuuoocH uowuuouGH uomnuoodH a a a A a A a a a a 0 II I A h F I F4 F: F: F: r: F4 F1 H H Hi F4 F1 F4 Pi H H Fl H H Fl H H a H wmcoemmm wmdommom uncommon owdoamom uncommom wmsoamom wmsonmwm wmcoamwm wmaoammm mwaommwm omaoamwm wmaoamwm omsomwwm wmdoawmm wmaommwm omdoammm omsoamom wmdoammm uncommom uncommon wmsoawwm wwaoamwm uuouuoo uuwnuoo uuouuou uowyuou UUOMMOU uomuuoo uowhwoo uowuuoo uowpuoo uowuuou powhuoo uowuuoo uowuuou uuwuuop uomuuoo uumuuoo uuouuoo uomuuoo uomuuoo uuwuuoo uowkuoo uowhuoo EwUH EmuH EmuH EouH EmuH EwuH EouH EwuH EwUH EwuH EwuH EwuH EwuH EmuH EwuH EwuH SouH EwuH EouH EwuH EwuH EOHH umwuwum umouohm amououm umoumum uwoumpm “mououm umouwnm umwuwsm umwuopm uwouwum umwuosm ummuoum umwumum umoumum umouowm umouopm amouwum umoumum umwuopm amouwsm amouwum uwmuwun Hmommm omomMm mNommm wNOMMm NNOMMA oNOMMm mNommm «NOMMm MNOMMm NNommm HNOMMm ONommm mHOMMm wHOMMA NHomMm oHommm mHOMMM «HomMm MHQMMm NHOHMm HHommm Dn-INIJIi 1. a) O\ C) F4 W) F) Q"d m m o H N r) <- m ‘o n :3 $3 2} «a «a w» «u r) «w a) r F4 Ci F) <3 V) \D . N filfiflflfqflflflfilm m m m m m m m m m m m m C) C“ l m m “OHUHHNHMQQ NHDNMHNKV fiflOHHUAV @HDWHh—nqb QMDZHMFZOHV HteV mqm<fi UGQEMV Hum mm unflh U use 81 Hm.mN.mN.NN.HN.wH.NH mN.NN.sH.OH.e.m.N «N.NN.wH.NH.mH.m.N mm.wN.NN.HN.wH.sH.e.m.N NN.0N.NN.NH.NH.w.o em.Hm.NN.oN.NH.NH.N om.sN.mN NN.HN.wH.eH.NH.w.o.m.e am.om .mN.oN.aN.mN.NH.m.m em.Hm.eN.sN.wH.NH.m Nm.om.qN.HN.ON.NH.N mm.0m .NN.eN.sN.HN.NH.m.N.H NN.HN.¢H.N.m.N.H om.wH.NH.m.m.N.H sm.mN.Hm.eN.sN.mN.HN wEwuH meuH meuH mEouH meuH mEmuH wEmuH mEouH meuH wamuH mEouH wEmuH mEouH mEmuH umoumum umwuoum amououm umwuoum uwouwum umwuoum umouwum umwuwum umouwum umouwum umwuoum umwuwum umouonm amouosm o u uoouuousH O H UUUHHOUGH MO “HO MO W0 MO MO mo mo mo W0 HO NO NO a A H H o n uowupoosH .H IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII[ vmeQEoo vwmoafioo pmmoafiou meomfioo wwwoaaoo vmmoaaoo cwmoafiou pwmoafioo wowoaaoo meoafioo wwmomEoo wwwoafiou cwwoafiov vwmomEou ouoom whoom ouoow ououm ouoom whoom muoom whoom whoom ouoom whoom ouoom wuoum ouoom umououm oau neuomm scuomm pouumm uouomm pouomm Heuomm Mouomm uouomm Houumm Houomm Houomm uouumm Heuomm uouumm ummuwum umwuoum umououm uwououm ammuoum uwouwum umwuwum amouwum amouwum umouwum umouwum amououm uwououm uwououm do ououm Houoy owdoamom uuouuoo .qm EouH amououm omaoammm uowunoo .mm EwuH umwuwum mwcommwm uuwuuoo .Nm EouH umououm qummm MHOMMm NHommm HHommm OHommm mOOMMA woommm BCOMMm ooom¢m mOOMMm qoommm moommm NOOMMA Hoommm HOHMmm «mommm mmommm Nmommm mm mm um mm «m :fi m m m m m H mm Nm Hm om no me wq he mq me «Q mq Nq commences-1mm CCFLYruranC. UHDNflHNNV HHkflEOHUAV UENEWHR HHn—NNHme , m HHNUH: QMHEHHZOU 1H I V thmdfiun ON mH wH RH U10 HH OHqu HHHHH 82 HNmHuommw< 0>Huuwwm< 0>Huowwm< 0>Huuwmw< 0>Huummw< w>Huowwm< w>Huowmm< w>Huomwm< w>Huuwmw¢ w>Huommm< 0>Huumwm< 0>Huommm< w>Huowww¢ w>Huowwm< m>Huowwm< m>Huuwww¢ m>Huowmm¢ w>Huowmw< 0>Huowmw< m>Huuwmw< MN.mH.~H.HH.0H.n.o.m mEouH umwuwum mo wwmoafioo .mH muoom Houomm umouwum f ONohm< mHOMh< wHomm< mHomm¢ wHomm< mHomm< «Homm< MHomm< NHomm< HHomm< OHomm< moomm< woomm¢ moomm< woomm< moomm< «oomm< moommm Noomm¢ Hoomm< mHommm hoooxo mmmmmmm \‘f‘ m HNM H N m \‘1’ In 0 r\ 00 Ch 0 '\ l\ l\ 00000005 moment: CO CD a: no {1'1 CC on PO an ‘13 O 0 m fiOfiUflCHNHQ UHflNrLKKP hum—DZHHZOU H- .V MAHAVH lllllll < HHQNMHHKV N UAHNUWIVM 83 Hq oq mm mm mm mm mm qm mm Nm Hm om oN wN NN 0N mN qN MN NN HN EouH EwuH EmuH EouH EouH EwuH EouH 53H EwuH EouH EmuH EwuH EouH EouH EouH EwuH EouH EouH EwuH EwuH EmuH muHmcGOHumoDO o>Huowww< ouHm::0Huww=o wHHMGCOHumwSO muHmccOHuwoso muHNGGOHumwso mHHNGGOHumwso muHMCGOHumoso oHHmsGOHumwso mHHmGEOHummDO OMHNGGOHumoSO muHMCSOHumwSO muHm:COHumw=o mHHNEEOHummDO wuHmc:0Huwwao wHHNGGOHumoDO oHHmaCOHuwwso mHHmacOHuwwDO wHHmsaOHumwso wHHMGGOHumMSO wHHMSCOHummDO wHHmcGOHumwso w>auumow< m>aouwmo< o>auowuma w>HoomoN< m>auomoo< m>aoowmo< w>Huuwwo¢ w>auommo< m>auuoma< m>auowwm< m>auowao< u>auumaoa m>auuwwo< m>auuwou< o>Nuoon< w>auomau< w>auoomm< w>aoomum< w>Nouwmu< w>Nouwmu< qumm< oqomm< mmomm< wmomm< nmomm< omomw< mmomm< «momm< mmomm< Nmomm< Hmomm< omomm< mNomm< wNomm< RNomm¢ oNomm< mN0hm< «Nomm< MNomm¢ NNomm< HNomm< mm II on ONON some: II In OK In H \T ON m 0") ON I eI W) q- n ¢> E; g g g g! g m xI w w m) m m m m H H (I) mmmmmmmmm ice... rErLQC @Hr—fithxr QMFHZHLHZOO IFII QV MHHEthu .II < m HQNNIN WK? Ham-EH...“ . m ufifihug 84 os.es Ne.oe.Nm.mm.mm.Hm.wN .mN.eN.mN.NN.qH.OH.m.N oq.mq.Nm.em.mm.mN mN.mN.mN.oN.oH.w.m.N ma.os .mm.om.em.mm.qN.m.N.N we as.Nm.em.qH.mH.oH.m.H Na.oq am.Nm.sm.mN.mN.a.q.H as.ma.He mm.Nm.mN.mH.oH.m.s.N eq.mq.Nq.em mm.Hm.mN.NN.ON.OH Hq.mm.Nm .om.mN.N.o.m.m.N meuH mEouH mEouH meuH meuH meuH mEmuH mEmuH .wwDO mm< .mwdo mm< .moso mm< .mmso mm< .wwso mm< .mmso mm< .mwlo hm< .mwdo mm< m w m m m 0 O O O O momoafioo . womomfiov . a 0 wwmoafioo wwmanoo . wwmomEoo . vwmanoo . wowanou . bomomaoo wq EouH me EmuH we EouH we EmuH «q EouH me EouH Ne EouH [\ Ln <3 (‘0 N GHOUW HOHUNW whoom uouomm wuoom HouUMh whoom uouomm wuoum Houomm whoow Houomm ouoom Mouomm .H whoom Houomm oHHmccOHummso wuHms:0Humoso oHHMGEOHumeO myHmaGOHumwso wHHmGCOHumodo mHHmGEOHumwso wuHmaaOHumwdo w>aouwom< m>auomum< m>aoumum< m>auuwmu< w>Huuomm¢ m>aoomom< w>auomNN< w>aoumom< m>aoomou< m>aoomma< m>auuoom< w>NuomNN< o>aoommma w>aoomom< m>auowmm< woomm< BOOMM< roommm moomm< woomm< moomm< Noommfi Hoomm< wqomm< nqomm< oqomm¢ mqomm< #qomm< mqomh< Nqomm< m m m m m m m fl GOHUHEHNQQ UHQNHHN> QWDZHHZOU HIT HAQ QMHAHZHHZOMV IF. c ¢ mqdepH. 86 ea awUH mH awua «H amoH NH smuH EouH HN HH EouH O H EwuH EouH EouH SmuH EwuH EmuH EwuH EwuH EmuH HNMQ'LO0NOOON EmuH wq.Nq.oq wHHmncowumwdo ouHmEfiOHumeO wHHmuSOHummso wuHm:GOHumeo wHHm¢GOHumw=O wMHmcSOHumwso wuHMCGOHumeO wuHmccOHuwwDO wHHMGGOHumoDO oHHmcsOHumwso ouHma:OHumwso wHHmc¢0Huwwso mHHmCGOHumwSO muHNCSOHumeO wHHm¢GOHumwso muHmdaOHumoso baaoumxomm vasoumemm waaouwamm wusouwxomm vssopwxomm wssouwxumm wasouwxomm wasouwxumm ccsoumxomm wasouwxomm vcsouwxomm vasopwxumm vasouwxomm vdsoumxomm unsouwxomm vnsouwxumm mm.mm.mH.qH.NH.m.N mEmUH .mwdo mm< mo wwmanoo .HH whoom Houumm o>Huowww< oq.qm.mm.mN.mN oH.wH.NH.oH.mH.w.m meuH .mwso mm< mo wwmomEoo .OH whoom acuomm m>Huowww< oq.m¢ .N¢.Hq.oq.mN.MN.NN.m.m meuH .mwdo mm< mo wwmomEoo .m whoom nouomm m>Huuoww< oHooxm mHOUMm «HOUMm MHooMm NHOGMm HHOUMm OHooMm moouxm wOOUMm noooxm woooxm moooMm «OOUMm moouMm Noome Hooomm HHomm< 0Homm< moomm< ImmH usma "NNH uNmN INMH ONH INNN uwNH "NNH ueNH I H I I In CG CG m m g; m m m In N H m \‘f N ,_I umNH N N H H N H l O S mmmmmm CCflL .rr. mute: UHQNHHNka DMHNHZHHZOU .HIQ MHIHMHAVH. CKWCOH 04V H HAHN—PH Nb 87 wm mm mm mm «m mm Nm Hm mq wq we we me He me Nq Hq ow mm mm EmuH EwuH EwuH EouH EwuH EouH EouH EouH EwuH EmuH EwuH EouH EouH EmuH EmuH EwuH EmuH EwuH EwuH EouH 53H oHHmsa0Humw=o mHHmssOHumond wHHmEEOHumoDO wHHmSSOHumeO wHHmEGOHumwwo wuHmcsOHumoso wHHmaHOHumeO wMHmSSOHumwSO wHHNCGOHumwno wHHMSGOHumoSO wuHmGGOHumoSO wuHmafiOHumoso wHHmnCOHuwwso wuHmCGOHumeo wuHmGGOHuwwso wunaaOHumwao ouHmssOHumwso wRHm:COHumwso mHHmcsowumwso mHHmdaOHummno wHHmsGOHummso manouwxomm vsbouwxomm wnsouwxomm vasouwxomm wusouwxomm vssouwxomm wasouwxomm panouwxumm vcsouwxomm unsouwxomm vasouwxomm mssouwxomm caaouwxomm wnzoumxumm wssouwHUMm vcsouwxumm vcsouwxumm wcsouwxomm vasouwxomm wasouwxomm pcaouwxomm wmoosm Nmooam omooam mmooam «modem mmooam Nmooam Hmooam omouam mqooam maooam Nqooam osooam mqouam «sooam Nqouam Neooam Hsooam osowam mmooam amooam uNNH ueNH umNH ueNH umNH "NNH "HNH uoNN "sea "weH m m m m m m m m m mcH uwma INmH when... rfiranC QHQNHH—wxw CNCOHUAV UWQEHHMH mHamflhfib .m Kuhn—N: DHDZHIHZOU HIM MN‘HMHJVIH 88 ee.am.em.mm.wa .eq.mm.em.mN.QN.mH.N mm.nm.wm.mm .Hm.mm.qm.mm.om.wN.N.N mo.mm.am.Na.sq .mm.sm.mm.Nm.Hm.mN.e Ne.Nm.Hm.om.wq.Ne.eq .ms.oq.wm.Hm.om.NN.s N©.He.om.mm.am we.Ns.em.mm.mN.wN.e N©.Hm.Na.me.qq Ha.mm.mm.eN.NN.N.m No.Nm.em.Hm.om.Nq Nm.Hm.om.sN.NN.N mfiouH meUH wEouH mEouH mEmuH wEouH mEouH .mwso UMm wo vwmoafioo . .mwsc uMm mo vmmomaoo .modo UMm mo vmmomEoo .woso UMm mo vmmoafiou . .wodo QMm mo wmwomaoo . .mwso oMm mo wmmomfioo . .mwso me mo vwmomfioo we no we mo «0 me No Ho 00 mm EmuH EouH EmuH EwuH EmuH EouH EmuH EwuH EouH EouH I\ <1- M N macaw wuoum muoum whoom wuoum mwoom .H ououm Houumm wouomm Heuomm Houumm Houumm Houomm Heuomm upHmaEOHummso mHHmGCOHumeO wHHmGCOHumwSO wuHmdaowuwwsc oHHmaGOHumwso mHHmGGOHumoDo wuHms:OHumwso oHHmGGOHumoDO wuHmGsOHumoso oHHNCCOHumeO vascuwxumm vascuwxomm vasowwxomm cadopmxumm ccsouwxomm wssoswxomm wasouwxomm unsopwxumm vcsoumxumm wdsouwxumm vssonwxomm wssouwxumm masonmxumm vssoumxumm Unsoumxomm wssouwxumm vasouwxomm noomMm mochMm mOOhMm woomMm MOOMMM Noommm Hoommm woowxm moome coowmm moooMm qoooMm mooomm Noowxm Hoooxm oooomm amouxm HmH "NNH "Nma \0 w H mmmmmmmmmm Imma \‘f (13 H “NNH "NwH H (X) H O 00 H "NNH "NNH DJ GOHUHCHNNQ WHKHHHHNKV HHNrHuOIHUHV “Cmufinwhwn HHAHHHMS. . mm unfihuuw: QMHHHZHHZOU 4... § mqmdfifi 89 qe.mo.mm.oq.am om.qN.NN.aH.NH.N.m oo.wm.Nm.om.mm am.am.ms.sa.as.am.mm sN.Nm.NN.oN.aN.NH.N.m I No ma.Ho.Nm.mm.Hm.wq.Ns .mm.om.sm.Hm.qN.m.s.N No.mc .Nm.mm.am.wq.Ns.mq .os.qm.HN.wN.mN.qN.N me.¢m.aq Nq.aq.mm.Hm.aN.wN.NN Nm.ws.Ne.Ns .oe.em.am.om.NN.wN.q He.oe.wm.Nm.mm.me.qq .oe.em.mm.Nm.mN.wN .mN.qN.NN.NH.NH.e.m ow.mm.am.Ne ma.me.aq.oa.am.Hm NN.¢N.NN.¢H.N.N.¢ maouH meuH wEwuH wEwuH mEouH mfiouH mEouH mEmuH .mmso mam .mmso can .wwso can .mmso cam .mwso can .mwso cam .mwso cam .mmso cam W0 HO HO M0 M0 MO NO NO wuoom HouOH ume wnH>Hom EmHnoum ououm N umouQSm wfiH>Hom EmHnoum whoom H wwmoafioo vwmomfiou womoefioo wwmanou womanoo womomaoo wwmanou wmmoafioo umounsw wGH>Hom Eanoum ouoow whoom ouoom whoom whoum whoom ouoom ouoom Houomm uouumm nouomm Heuomm scuomm uouomm Houomm Houuwm wnsoswxomm wasouwxomm vasosmxomm vasouwxumm vssouwxomm pasouwxowm wsaouwxomm vnsoumxomm HOmmmm NmmmMm Hmmmmm H wodHnfiou quEwumHmIGOHuMusoHpo oHHucoonm wuoom umoH smHdem ufioEmomHmIsOHumusoHuo wuouw umoH hHmHnfimoo> udoEwomHmIGOHumuaoHuo ouoom ume anHwnm uswfioomHmIGOHuMucoHuo mHHucwoumm SOHmGwswuano wavaom ucoEoUMHmI¢OHuMuGoHHO wuoum uon COHmEoJoMQEoo wusmom uGoEoUMHmIGOHumucoHuo oHHusoonm uwwH moHumeJuMZIoHuosbuHu< woanEoo unoamomHmIGOHumusoHuo oHHuaoouom ouoom uwwH moHumaosumS unwamomHmIGOHumusoHuo MHHuSmouom muoom umoH oHquLuHu< unoEoUMHmIcOHumusoHHo ouoom uon moHumEofiumz ufiofioomHmICOHumuuoHuo whoom ume UHuoEnun< unwEoomHmICOHumucoHuo HU¢ HU< DmE sz sz HHmHH sz ouoom msoanHuuoo wfiH>HwoMmmecprDh wwwHHMImuwhz wuoom wnosfiHucoo wcHHmwMIwaHstJH wwwHumImuo%: whoom mDODcHucoo wchsomIm>HuH5uCH wwwHumImum%Z whoom msosafluaoo uuo>ouusHquo>muuxm wwwHHmImum%2 umoH couuHHB mmHanum> msHHHouunou anwHwoz so whoom mmZHU< mmeU< B9HD< mo>bm£ mumpmz 900ng Emupwz OO>DmZ uzmbmz mMDmZ Mbmz mE HH < UHQNHINWKV . m UWHIHUNVA DHEHEOU IHloN MQQAVIH 91 wcchmm oHHuawupwm Hoonom anm MHHmmm noMNm mmmum>< ucHom wwmuo Hoofiom ame cmcouo< newsman WMHHMHAVHNH<> HQZO HHUDMHMZH N‘ V MHJHNdVH. .H m SOHmmom thEwmm< HHmEm um ouampswuu< moom EVZOMU< Hzmzmqm MHH xHMH H zNzomo< azmzmHm mHm meH zwzomo< HzmzmHm Jziudvddd n RHO- UfinOUV N I 0V MHRQHANH HH mama OmH some unmesum maHH Ho HowamH HHOH NOH OH mama an OwwO “seesaw waHH Ho HumawH OHOH HOH O mams OmH sows unwenum oaHH Ho euwcoH OOH OOH O mums an comp unassum weHH Ho HowaoH OOH OmH N odes an New: namesum maHH Ho nowamH NOH NNH O mama an Ohm: ucmvsum waHH Ho suwamH OOH NNH m wama pmH some unmesum maHH Ho numcwH NON ONH « mama an some ucmcsum maHa Ho nuwawH «OH mNH N mama OmH OmmO oawesum maHH Ho cowaoH NON «mH mu m H mama an wow: uamesum oEHs Ho nuwamH HON NNH HNH ou.N«H Ho saw .mmO NHso moHuowHH Hausa NONNOH NNH Namxm HmcHHO OH NHso moHuomHH H0 mm: namesum OOONOH HNH m NHDO wUHuomHm mo mmD ucowsum woowom omH N NHsO onuumHH Ho «NO namesum NOONOH O«H O NHso moHuumHH Ho mm: unmesum OOONOH O«H i m NHso moHuomHH Ho om: unwesum NOONOH N«H W onHHzHHHO HHN zNzomo< HzmzmHm mHm NHHH<2 H I??? fizz—23:15 a; 7' AHU. nun—00v N .6 WINNAVH. hr hflna<>11 A—V. UEOUV N: {N "Hugh-u 97 0H NHDO owHuumum mo mm: mo menus: wmuuomou ucowsum Hoosz «mH a NHDO How oEHH GOHumHmmoum was >w5um wwuuomou umovsum mmosz mmH m NHSO How wonuoz HOHumHmmon was hwaum wouuomou usowsum Nmosz NmH m NHso ooHuomHm mo own mo venue: wouuoamu unowSum Hmosz HmH N NHDO new wEHH HOHumHmmoum was hvsum wouuomou uawwsum mmoz>m omH N NHDO How vosuoz GOHumHmamum was NApaum wouuomou unocnum Nmoz>m me N NHDO ooHuomHm mo omD mo wonumz uwuuonwn ucowsum Hmoz>m wwH o NHSO How oEHH COHumHmmem was >v5um kuuomou udovdum mmome NwH o NHDO Mom wonuwz GOHumHmmmHm vfim hwsum wmuuomwu ucovsum NmoNHm owH o NHao.oUHuomum mo omb mo VOSuoE wouuomwu udopdum Hmowa me m NHSU How wEHH SOHumHmaon was musum wmuuoaou ucowsum mmom>m «wH m NHDO new venue: SOHumummem can zwsum wouwommu usmwsum Nmom>h me m NHso ooHuomum mo mm: mo voauoz wouuomou uswwsum Hmom>m NwH q NHso How wEHH GOHumquoum was hwdum wwuuommu unobsum mmomom HwH q NHDO How coaumz :OHumemon paw kcsum wouuommu unmv=um Nmomom owH q NHSO ooHuumHm mo mm: mo posuoz wouuommu uaowsum Hmomom mNH onHHszma mHm zwzomu< HzmzmHm 34113444.!“ > 411’! .1414 .1 Avun-FHOUV NuoN ”Hahn OH NHno >ono3 do opoom 0H0 wOHH m NHSO thwwz do muoom mo NOHH N NHDO Nonmz so muoom No 00HH 0 NHSO szowB no muoom mo mOHH m NHDO meme co ouoom no qOHH q NHSO %onm3 Go wuoom <0 mOHH 8 m NHDO thwoB so muoom mo NOHH o. N NHDO szwoS no whoom No HOHH H NHDO %me03 do mHoom Ho OOHH mem HmsHm Mom oEHH GOHumHmawum pom zwsum wwupoaou unopsum moosz mmH mem Hmch How wOSuoz COHumemwum van wwSHm wouuomou unopnum moosz me mem HmsHm moHuumHm mo mmb mo wozuoz wwuuoawm ucmwSum «oosz NmH 0H NHDO How mEHH COHumummem use thHm wouuomwu uswwsum moosz mmH 0H NH30 How wosuoz COHumHmame was mpnum kuuomou uGQUSum Noosz mmH onHHszmQ MHm szomu< record length inatiI 4.3 _I on a' (orga spons Respc Respc Vectc Each item racc ent: Eat C0! :1- - H1 ’5 99 Irding the student(s) name, topic of discussion, and approximate ;th of the session. Such information may be useful in future exam— .ions of the data. Outcomes: The K Matrix During the course of the Fall 1977 term each student was tested , number of items related to the concepts subsumed under Ecosystem .anized within C ). For each test item the student chose a re— se which he or she considered to be the correct answer. This Item onse, IRi for item i, ranged between 1 and 5. The set of all Item onses for an individual student is the student's Item Response or: -—- -l = . . . . . IR IR 1R1, IR2 p p = total number of test items related to C . .student's IR vector serves as a record of that student's test .choices. The Item Performance vector, IE, is designed to serve as the rd of the individual student's performance on each of the items or ies in IR. __. * IP is defined: IPi = 1 when IRi = correct response IPi = 0 when IRi = any other response 1 = l. p element of IT, IP,, is an indicator variable, indicating the 1 actness of choice of the corresponding entry in IR, IRi' example; suppose 3 is the correct choice for item 14, then; IP14 = 1, when IR14 = 13 = = 4, 5 1P14 0, when IRl4 l, 2, each student. repr pria unde stan deg: and stuI Wh 100 As indicated previously the Matrix _ -l C — CICZ . . . . .C asents all the concepts associated with Ecosystem at the appro— te level of instructional difficulty. The student's mastery or rstanding of each element of C contributes to his or her under— ding of the total, complex concept. The concern here is with the ee of understanding or mastery of C by each student in the course the only method available for assessing this mastery is through the .ent‘s response and performance on each of the test items related to 'ecorded in IR and IE, respectively. The understanding or mastery of each Ci is theoretically measured )ne or more test items, recorded in IR and TB. Each test item may sure the understanding of more than one concept, however, and in 7 instances if a test item is answered incorrectly it is difficult ascertain whether it is because the student has not mastered all the :epts present, or has mastered all but one. The student's mastery ;nowledge of a particular concept, Ci’ is defined as: “e q = numbers of items related to Ci’ and n = number of such items. j This yields a Ki’ such that 0 j-Ki-i l. 1probability that the student has mastered concept Ci increase as hPProaches 1.0. Conversely, as Ki approaches 0.2 (the probability of Hsing the correct answer) the student may be assumed not to have ‘ered Ci' The certainty of separating mastery from guessing increases ‘increasing n. Init: on s. set . item VioI Val new for fiI 101 The computation of a series of Kis based on IE, produces a matrix _ —1 K— K11<2.....K44 r each student, Ki corresponding to the student's mastery of an element, , of the concept matrix. C. l4 \‘r N M m N M N N M O‘Dr-I v-INN MMM _ _ _ I mowm I I I I I I I mm OHNN NONNIII II I I NN OHON NOONITIII II I I ON NONN I I I I I I I NN OH«N NO«N I I I I I I OO«N «N NONNIIIIII I NN OHNN NONN OONN .I I I I I I I OONN NN NOHN NOHNIIIIII I HN I OOONIIIIII I OOON ON OHNN I NONN I I I I I OONN NN I NONNIIIIII I OOON ON OHNN II. NONN T I I I I I I OONN NN I NOON I I I I I ON OHNN NONN OONN j I I TI I I NN NO«N I I I I I «N OHNN NONN OONN NONN I I I OONN NN OHNN I I OONN I I I NN I I I I I II I I HN OHON I I I I NOON I I OOON ON OHNH I OONH II NONH I I OONH NH OH N O N O E « N H O / HO _ I mez ummuwum mummocoo deafiucoov m. w mania AnUQDuHHUfl-OUV m - ON "NJ—ugh... 104 no 0H NOOH v_ n OHV_ .N x33 H0O < < H "ZOHHZHOZ VH3: O NO«« ILILI I I «« oamq mom.« I mq 3% momq II I oomq «q 23 mo: I co: 1» oaoq mooq oq OHNN NONN .I II I OONN NN OH N N N O N « N N H O H HO I mes uwwuwhm mummonoo _ _ N St!“ St! the 105 structured college biology course, BS 202. To do this, a system structure analogous to that shown in Figure 2.2 was imposed upon I the course. In reality the course exists only as a difuse group , of students passing with time through a series of instructional activities organized in some manner. The system structure, defined 'as "the set of interactions of elements, and related variables that intervene in the causal chain that links system outputs to system inputs" (Manetsch and Park, 1974a), is the abstract analogue to the physical entities and processes of an automated assembly—line. The mathematical model of the system developed is in effect a catalog of the mathematical or statistical relationships between the ele— ments of the system through action on the students state variables. Although the mathematical computer model developed for this study is an important tool in itself, most notably through its use in identifying "weak spots" in instruction, its chief contribution to educational research is as an organizational framework for stu— dent information and data on instructional processes. Such organiza— tion places the rigorous definition and analytical usefulness of Systems methodology on the somewhat nebulous variables suggested by Bloom's Theory. 1 A student enrolled in BS 202, may be viewed as undergoing a .sequential instructional process. As a result of the student's Ldaily or weekly "processing" through various instructional sessions ~and activities changes occur in the students knowledge and understand- ing of the material presented and discussed. These changes are indi— ,cated as changes in the state variables describing the student; Specifically, after each instructional session (lecture, SAS, LAB, outs f ( nat dla ab] um Stl Es 106 outside study, etc.) changes have occurred in the student's version of C . These changes are influenced by the student's background variables, B , by previous instruction I , by previous learning ( C imaged as K ), by unknown student idiosyncrasies, and by the nature of the instructional session itself. This is shown in the diagram of Figure 2.1 where student Si described by the state vari— : ables of B i’ Ii and K1 (reflecting entry level knowledge Ci) 'undergoes an instructional session. As a result of this session the student's state variables are transformed; the student has new under— standing or mastery of particular concepts, described as alternations to C1 resulting in Ci which are reflected as measurable alterations to K,, resulting in K i. In addition, new instructional bookkeeping data is added to I i' B1 is unaffected by the instruction. The changes in C i (reflected in Ki) are influenced by Bi} Ii and previous concept knowledge Ci (meaSured in K i). The instructional session may be described analytically by the transfer function, f . The process may then be described by K; = fg ( Bi} Ii’ Ki)' This development is discussed in more detail in Chapter 2. Following the archetypal system's model introduced in Figure 2.2 a model was developed for BS 202. Figure 4.2 illustrates a ‘systems :model‘ describing the BS 202 instructional plan based on the fundamental instructional session unit. The students were formally exposed to ‘approximately 10 lectures and 19 small assembly sessions (SAS), as ‘described in Appendix A. Each student was also urged to spend an ,undetermined amount of time listening to 17 tapes and working in the ‘individual instruction lab. In addition, each student spent some time Loutside of class reading and studying. The model allows one to UZ _ DOD|PW mun . WFDO «stnmNuhnvww 107 Emuwmflm mEQumhm NON .m.m 2 neonaum .3“— _ N .NN ounmfim 0 :0 330...”. 05 no occur—o ciao—:53 on» do 0.5305 05 \l\ 7” v: u . 5;: s 3;: : OZONE . I n q o. O N ONE. 3 £3 E EN :53 I'ly . , .III'I O O , 1 NOW... 2.. N4xum3 . . ._.mH+:u_. M .wa; Ha .wmv—m _. a: _. N .N .N 1. v j >maoocmu35m N N N MnfiNv— . H+.Hn.NM A.v_ .H .m “v.1. v. A. _ . N 3305 25 293:: mmmn 2.. . .1 I I . Ir mu¢0taum Nu acuvflum . N. H 5. 3H .3 v. _ SN .39. 35332 3 Ozsfix . :80 . ._ N _ O N NE: N :55 N N NE: N visu‘ simu The assc anal sim the onl 108 visualize and comprehend the process of a large number of students simultaneously passing through distinct seduential instructional units. The change of each student's state variables by the transfer functions associated with each instructional session provides a mathematical analogue to the learning process inherent in a course of this type. This model is a theoretical construct designed to mimic and simulate the function and processes of the BS 202 course. In many ways the model does not resemble the "reality" of the course — but it is only a construct meant to simplify reality and aid in our understanding of a complex process. Condensing the Model In the BS 202 course the students were tested only once each week. Thus, the performance variables were updated once each week and not after each instructional session. For any individual student perform— ance on a particular concept Ci’ measured in Ki’ reflects the aggregate effect of the week's instruction and study. For a typical week, student performance on any Ci is related to previous background and knowledge, the lecture, two small assembly sessions, two tape lab sessions, outside study and reading and work with the practice test. For the purposes of this study the effects of each week's instruc— tion and study were aggregated as a series of transfer functions relating the performance meaSures taken from the weekly quiz ( K ’) to the per— . - . formance measures taken the week before ( K ), the week 5 instruction ( I ’), previous instruction ( I ) and background ( B ). 109 The "weekly” transfer functions are represented in the following matrix equation: K’ = F (B. I” K) = BB+AI’+uK+ oz ' K1 ' K2 821 - 441 31 8L1 B12 ' Ikll AIZ ' B1.236 I31 I . B2 + ° ° B4¢23JI3323§ v - K ' I108 I11 ”1-1 “12 ° ‘ ' “1:44 I1 ' I2 . , K2 + . ' 0 U MAI-10% I10% u41.1. . . . . .“44-44 J K44 Where K'j is the performance related to con— cept Cj shown in Table 3.11; 8 ij is the coeffici— ent of Bj shown in Table 4.1; I’ is the update in— structional vector reflecting the student's in- structional behavior during the week; Aij is the coefficient Ij shown in Table 4 perform additiv A 110 Table 4.2; Aij is the coefficient of Kj reflecting the previous performance on concept Cj defined in Table 3.11, and “j is an additive constant. A sample equation that could be expreSsed with this notation is K1 = f1 (31’ B18’ I14’ K2 K22) = BllBl+Bl.18318+Al717+A114Il4+ul.2K2+“122K22+“1 Although for any individual student the effects of each model component are blurred together, using multiple regression techniques to find coefficients 8, 1:11 and a for the student population (N = 105) produces relative weights of each component. By expressing the relationship of antecedents, transactions and outcomes in this manner it is possible to examine the relationships and relative contributions of each component of the model. 5.0 y W Scienc deal w necess ysis, This f are u: cant analy numbe Pessi anal) Small ence howe labo CHAPTER 5 DATA PREPARATION, DATA ANALYSIS, AND LIMITATIONS ON THIS MODELING PROCESS 5.0 Data Preparation When dealing with large and varied amounts of data in the Social Sciences the most important initial analytical steps are those that deal with correctness and error. Too often it is assumed that it is necessary to move as quickly as possible from data collection to anal— ysis, without the important intermediate steps of data preparation. This is especially true when computer scored and coded instruments are used for information collection. Very often the lack of signifi— cant findings in a study is not due to inappropriate instruments or analyses, but rather to sloppy data. Thus, this study incorporates a number of inspections and checks to keep the data base as "clean" as possible. Figure 5.1 illustrates schematically the data preparation and analysis used in this study. This type of analysis also requires a Ismall amount of intuition, adding a touch of practical art to the sci— ience, which is not representable on a diagram. Figure 5.1 does, ‘however, give a true picture of the steps, although not the amount of Vlabor involved. All the data analyses detailed in this chapter were done on the IMichigan State University CDC 6500 computer using standard SPSS I(Statistical Package for the Social Sciences, Nie et al, 1975; MSU 111 Que‘ 1m . :vm. : aw. : :P mil W—[M DATA 1 COU‘ Background Questionnaire 112 Problem Solving Test Springs Test Pretest Affective Questionnaire —_____._————-——— I I Data From University Files Myers-Briggs Test Data h——-———‘—_—— Enter Raw Data Computer File Scoring and Variable Manipulation ?IGURE 5.1 PROCESSING AND JRSE MODELING Visual Check Yes- _4_‘ l Scoring Office Summary Inspection Data OK Yes Card DeCk Sorted In Case Order Enter Raw Data Computer File I } Add To SPSS Master File «I» Data Validity Check Correct Case Sequence Check Sequence OK ? Correction; Delete Incorrect Variables Delete Incorrect Variables hLO F. uh in II n I 113 FIGURE 5.1 CONTINUED l = Correct PRETEST CODING O = Incorrect Of Pretest Background Affective Questionnaire Items Factor Analysis Output Factor File Addition of Factors To SPSS Master File I Factor I,t. Lab Tape Check Out & In Times Hand Transcrp. Card Deck & Coding — Keypunching Sorted In Vicnal Phnh flrflnv Lecture Attendance Small Assembly Session Attendance II Enter Raw Data File SPSS Variable I Lecture Tape Use Practice Quiz Use Weekly Quizzes and Final Exam Hand'Transcription and Codinq Keypunching Card Deck Sorted In Case Order Enter Raw Data Computer File Scoring Office Corrections Summary Inspection 114 Data Validity Check Correct Case Sequence Check Sequence OK ? NO Delete ®4—-— Incorrect Variables Delete Incorrect 1 Variables FIGURE 5.1 CONTINUED Total LEC, SAS PQZ Use Variables I Coll Unusable Test Items l Code Test Items 1 = Correct = Incorrect Final Inspection And Verification Of SPSS Master File Master Data File Test Item = First Test Item Test Item = Item * Dependent Variable = Test Item Aggregate Tenta— tive Performance Variables For Previous Weeks Variables Regression: Dependent VS Independent Variables Next Test l—-\ 115 FIGURE 5.1 CONTINUED Master File Structure Test Creation Of Concept Performance Variables I Addition To Master File of Winter Term Data Imaged To Fall Data Structure Final Data Completeness Check Select To Rele— vant Independent Substitution Of Mean Values For All Missing Case Variables Select Most Significant Independent Vari ah'l no. Add To Significant Variables List IR] Indgpghggnt Variables Variable Against _ 70 Most Significant Winter Term Data File Construction & Variable Manipulation Refine » Significant Variables Group Roundoff Predicted Value To 0 or 1 — Compare To Actual Regress Dependent. Independent Variables Output Actual And Predicted Dependent Variable ................ El I K eeeeee K [FIILFIDLFEBLFNILFDIILE 116 FIGURE 5.1 CONTINUED I) Select First K Matrix Element END KOlOl Dependent Next Variable = Performance Performance Variable Variable ‘ 5 I e ec es ' Items From Quiz = Week Which Compose 1 Dependent Variable Week = pTfiifif—‘fig—rom ac es Week + l tem' 5 Group Of ignificant Va Se ect Varia les From This Group Of Variables Select MOdel The 70 With The Complete Largest F's e ress The Depen ent Variable Against This Group Of Variables Yes No Week 10 ? i utput Goodness Of Fit Measures And Predictions Of inter Term Data Reexamine Independent Variables gression Satisfactory Add Coefficients Yes To Model Re- Do um ' maining c entation Pe “forman e No Varigbles ee Con de\ the (u 116 Computer Lab Supplement, 1978) routines and several Fortran programs developed by the author. The Pretest, the Background Questionnaire, the Affective Questionnaire, the Problem Solving Test, and the Springs' (controlling variables) Test were all administered to the student pop— ulation within the first several weeks of the term. All of these instru— ments except the last, consist of multiple choice items. The students answered each item by selecting and marking a number choice on a comput— er answer sheet. Responses to the Springs' Test were transcribed to the same type of answer sheet by research assistants. It was necessary to first visually check and correct these answer sheets before submission for computer coding. Often students would neglect to fill in their names and student numbers, or fail to adequately darken the answer boxes. The answer sheets were then submitted to the MSU scoring office which provided a computer card deck containing the test information and a sum— mary. The summary provided a variety of information which was checked for data anomalies such as unexpected or meaningless responses. If no problems were found with the test data, the card deck was manually sorted into the proper order for the 105 Fall term cases ()5 for Winter). Data from the University's records (ACT scoeres, High School GPA and Percentile Rank, MSU Orientation Test Scoeres, MSU class level, MSU credits earned and transferred, MSU points and points below 2.0 and MSU GPA on computer cards and cards with Myers—Briggs Test scores (which had been administered early in the term but was scored by the MSU Counseling Center) were also sorted into the proper case order. Each card deck was then entered as a raw data file into the Computer (MSU's CDC 6500). The Problem Solving and Springs‘ Tests raw data were then processed using a series of SPSS programs. The raw data for EI' fi fi 1| 117 each of the other instruments were entered and added sequentially to a SPSS Master file created to hold the term data. Problem Solving and Springs' Test processed variables were also added to the Master file. After each set of data was added, the new variables were checked for errors. The mean, standard deviation and range of each variable was examined for any anomalies which might suggest data error or incorrect file entry. When errors were found the variables were purged from the file, the errors corrected, the data reentered into the Master file and the variables reexamined. The case sequencing was also checked after each set of variables was added to the file, and the data purged and correctly reentered if any individual case was out of sequence. At this stage of file construction the thirty four Pretest items represented all that was known about the students' entry level know? ledge of biology and ecology. Here the student responses to the Pre— test items were recorded in the IR vector format; a series of choices of one of five possible answers. The next step was to convert IR to IP by assigning a correct or incorrect code to each item. If a student chose the correct answer for Pretest item 1, then IPi was set equal to 1. If the incorrect response was chosen, 1?1 was set equal to 0. (If data was missing for any student case the SPSS "missing value" designation was retained for IPi). After the Pretest items were recoded and checked for errors, the values of the elements of the Pretest IP vector were assigned to ele— ‘ments Bll through B of the Background Matrix, B . The total score 44 ,on the Pretest was assigned to 345. The forty—eight item responses on the Affective Questionnaire were assigned to elements B61 through B108’ and the sixty-eight item responses on the Background Questionnaire WEI WEI abc anc' D3 re: Pr 118 were assigned to elements Bl through (see Table 4.1) 20 B187‘ At this point in the data preparation a series of Factor Analysis were performed on the three sets of Background variables discussed above. It was hoped that by rearranging these sets of variables, new and useful background indices might be generated. Tables D1, D2, and D3 in Appendix D summarize these Factor analyses for the Pretest, Affective Questionnaire, and Background Questionnaire variables, respectively. Each of the three analyses performed applied the techniques of Principal Factoring with Iteration and Varimax Orthogonal Rotation, (Nie et al, 1975). This is the most commonly used method of reducing a data set to a smaller set of factors which account for the variance within the larger set and point of some underlying regularities within that data set. Table D1 presents the results of the factor analysis on the thirty—four Pretest variables. This data set was reduced to 15 factors after 21 iterations of the factoring procedure. The contributions to the explanation of the variance of each of the 15 factors is shown in ,the top right section of the table. Commonalities, the total variance Lof each variable accounted for by the combination of all common fac— tors (Nie et a1, 1975) are shown in the top left portion of the Table. Below, the major component Pretest items are shown with the mean, range and standard deviations of each of the 15 factors. The major component variables are those which significantly contribute to the computation .Of the factor. Part of the outprint from a SPSS Factor analysis is a :Factor score coefficient matrix, listing the component coefficients 0f each standardized variable (in this case for the Pretest variables) for vari devi ere POD ele dex SCI t0 na f0 119 for each factOr. Since the coefficients are computed for standardized variable values (the variable minus its mean, divided by its standard deviation), the relative magnitude of each coefficient is a measure of its contribution to the total factor score. Thus, if three of thirty-four factor score coefficients for a particular factor are great— er than 0.1 and the remaining thirty—one are less than 0.01, the three variables corresponding to the three large coefficients may be consid— ered the major component variables of the factor. The 15 Pretest factor scores were prepared using the major com- ponent variable questions for additibn to the Master file or B matrix elements B46 through B60. Tables D2 and D3 show the results of the Factor analyses for the Affective and Background Questionnaire variables. Eleven factors were developed for the Affective variables (B61 through B108) and factor scores were prepared for addition to the Master file as elements B 109 to B111. Fifteen factors were developed for the Background Question— naire variables (B120 through B187) and factor scores were prepared for addition to the Master file as elements B188 through 3202. Sev— eral Background variables were omitted from the factor analysis (3120’ 3122’ 3127’ 3129’ 3132’ B142’ B187 of O. ) because they had a variance These factor analyses were done in the hope that the factors would reduce the number of variables entered into the regression anal— yses described in sections 5.1, 5.2, and 5.3. This was not the case, .however. The Factors developed did not contribute to a reduction in variables. Individual variables played an important part in describ— ‘ing student characteristics; the factors scores did not. fi ab th 120 After each of the three Factor analyses were completed, an output file containing values for each of the eleven to fifteen factor vari— ables for each student case in the correct case order was generated. These three files were visually checked for bad data, then added to the SPSS Master file. Data validity and correct case sequence checks were performed again and bad or improperly sequenced data purged, corrected, reentered, and reexamined until the Master file was in order. Throughout the term data on the instructional variables, listed in Table 4.2, were collected. Lecture and Small Assembly Session at— tendance data, information on the use of tape recorded elctures and the practice quizzes, and the length of time each student spent using the lab tapes in the carrel session were recorded by hand. After the course was completed this data was transcribed and coded manually from the term records, and then keypunched onto computer cards. Lecture (Il through 110) and SAS attendance (112 through I30) variables were coded 1 if the student attended, 0 if he or she did not. Similarly, Lecture Tape use (I32 through 141) and Practice Quiz Use (I through 43 151) variables were coded 1 if the tape or Quiz was used by the stu- dent, 0 if it was not. Total Lecture attendance (Ill), total SAS attendance (I31), total Lecture tape use (142) and total Practice Quiz LUse (152), variables represent the sum of the respective components. Missing values were again maintained in standard SPSS convention. The Lab tape—time variables, 153 through 168’ representing the amount of time each student spent using each Lab tape were computed ’frOm Carrel Laboratory records. To use a Lab tape each student would Check a tape out through a lab attendant. When finished, the student would check the tape back in. The Lab attendant would note the times Of tape check-out and check—in. Often students would use the same tap and alt the enl abI hm ta] val as an in C0 121 tape on several occasions. When the Lab tape records were transcribed and coded at the end of the course check—out and check-in times were altered to reflect any multiple tape uses by students. The data was then key punched, sorted in case order, visually inspected for errors, entered into a raw data computer file, and processed with a SPSS vari— able generating program. This program produced Lab tape times, in hours and fractions of hours, for each student and Lab tape. This tape time data was then entered into the SPSS Master file with the usual validity and case order checks. The weekly Quizzes and Final Exam were processed in the same manner as the Pretest. Each computer answer sheet was checked and corrected and submitted to the MSU Scoring Office, the test summaries were exam- ined for anomalous data and the tests rescored if necessary. The computer card decks were sorted in case order, with blank cards inserted for those students who missed the test, and entered as a raw data com— puter file. The test data was then entered into the SPSS Master file with validity and case order checks. Bad or improperly sequenced data was purged, corrected and reentered. The last three items on each quiz (usually questions 31, 32, and 33) and on the final exam, requested information on the methods and manner of study for that test. The values of these variables were assigned to elements 170 through I99 of the I matrix. Likewise, total scores on each of the quizzes were assigned to elements 1100 t0‘1108. At this point the Master file contained about 900 variables. All the test items from the nine quizzes and the final exam which were not related to the Ecosystem concepts delineated in the content analysis liscussed in Chapter 3 (see Table 3.8) were purged from the Master fill the 63C 385 den ref dal ste th th 85 122 file (excluding I70 through 199). The remaining test items constituted the IR vector for each student, and as was done with the Pretest items, each test item was then transformed to the IP vector format; 1 was Iassigned to IPi for a correct response, 0 for an incorrect. Each stu— dent's IP consisted of 97 variables each having a value of 0 or 1, reflecting the performance on Ecosystem related test items. The Master file now contained a relatively error free, fundamental data set describing each student with variables suitable for the first step in the regression analysis. 5.1 Regression Analysis 1 The main hypothesis of this modeling process maintains that every— thing a student experiences prior to answering a question influences that answer. Most of the student‘s previous experiences other than the instructional ones must be assumed to be insignificant in order to model the learning experience. The variables developed for the study are assumed to have at least a potential effect on the outcomes of instruc— tion, as measured in the performance variables. The intention of this process is to search for those variables that Play a large role in reflecting student performance, incorporate them in the model and test the model for accurate predictions using another set (winter term) of data. In the first stage of analysis each Ecology related test item (represented as a variable with a value of 0 or 1 in IP) Was regressed against all variables representing possible effects as hypothesized in the model. Using the SPSS Multiple Regression routine (Nie et a1, 1975) ”each test item (IPi) was regressed against the entire B lhtrix, those Velements of the I Matrix which represented instructional events or act: SCO' WOU 6C0 Mat 83C V31 reg 811E are of WE p1 th 123 actions which had occurred previous to the test including the item (a test item from Quiz 5 would not be regressed against the total score on Quiz 7 or the length of time Lab Tape 17, as it would not be used until the eighth or ninth week), and all other K ecology concept related test items aggregated to tentative Matrix elements, from previous quizzes in the course. Due to the large amount of core storage necessary for the Multiple Regression routine each test item was regressed against the relevant set of independent variables divided into groups of about 70. This required six or more regression runs for each element of the IP Matrix at this stage of the analysis. The limitations introduced into the model by this necessity are discussed in the last section of this chapter. From the output of the six or more initial regression runs a set of up to 70 significant independent variables was developed. These were the variables which contributed the greatest amounts to the ex— plained variance of the dependent variable, the test item, on each of the initial regressions. It was also required that the "overall F" value of the regression at the point of the significant variables ad— dition be at least 1.0. Table 5.4 shows a set of Regression Summary l The test items from the previous quizzes which were related to ecology concepts, as shown in Table 3.9, were aggregated using the following formula; Ki = 2 1P5 6 N ,aé defined in section 4.2. This was a tentative aggregation because missing data was scattered throughout the variable set. 124 TABLE 5.4 PHASE ONE REGRESSION SUMMARY TABLES FOR A SAMPLE TEST ITEM "‘.IS'XOI Cotonou-llflaonoOIttooot louelllDeon-ohoIod-Iul;:I nul'xcgg l VIILI Run I U I I I I V uaurxcuu IILYFLI R Q IOU“! R PHASE ’1‘?“ I "DIM I'DII“ uuun“ "Ellncuct OIKIILL 7 “NF I‘ IV llT‘l 0 um: "I, [ll‘lIlfi‘x‘ugfiD €55 2 =5 55! i S; 2 I . ‘11} 2‘ .. :, o"ab I" l .556} :EIIII‘I 'zmu _ll0lllll.. IOU-ooooooao-ooooooaooo o 155’ -c 23.52;: :Ii ’1 .‘cnuooleoollouooloolfieo gutyxyggl VIII-l Run 2 SUIIIIV A V ‘0': 8101!”: I“ ILTXPL! '. l "mu I egg! 8!.“ . [I'll 0 '0“! Km"! III! In!” Slfllfltla ”um. I I untfdu‘lgam m 9. it! loszllterlsslltigol.’ Qui-LlfiflIN57OIN7tNON9§IIJ|N03s91~3 iiixllksslii‘iii no... .aou:.o:o.N.....N:...:~o.: INBiOSZ’I-NnAOXIllifliilitoillhsi INYI YYZIINDNI N5: 1562.: 76151;}..69‘1 tibglrs‘iu‘ .52. 31617372. Ollihbbl Itfi53Y§919579hIIIZGSi 30‘ 0.00.9 N NSSIIII’sniE wife-56.91.57.555. a o ........... can-ouco-ucnco inlet-.1111; Lissaoiu‘o’N21035l’611001tloozoil lrnluolubsuunnxflunhsa ”I21“ enillsu I n I E. I n... "v N A Vlvurefivlliau 353:6..3 520‘ N “52». Illxdl‘lllllslogxivxllllilltl NONN-o...-.-..:::::N....a::... N... .N .-.No.—N N N 11.635551997131072! 1...!!!» EhralsaYN I (L 99.,its-FL.....£!7¢?ze-.L5252.N.§313 I: CITE-.509:NNLESSZISIlIEDDIflcCE .332llzil: NIC’.EBIG.N:E&B.I: 50°09an i‘i'gltifllltll' N . N o...-loo...-NONNNNO-noa-no-Nuonug 32572311505. A’blssbllu: .9906 N91 509 60355 55!.» ~606§1i05ntl¥67395371I251 IN, A1“... Izrrblaithrilz: N Nibevrl.‘ leg! #01:!!! N stlossrrvvry 1777 71 :IIIIIEIE-fitgif u...o....on.onooonon¢uuo.o..oNN-NI-o h810§l§¥l609ts°a12§1TSUN‘OJ9.I ODSAZNKYVSJN'fias 0,-79EIIN9N051N01 15-...oexau-‘o‘2716592N¢l01v§-§i6777| glgul’lilfio-AIIIIZSIIIZI SiNtoethh N~§Szl§§li§i ouOa....no-ooo-nnuoueo-auu..oooc-Nu. INNfiu‘szn’lasvvloxzizallllu .7055; 2n ngdbg.§§N¢-zgiflllx$znsiu7l IO‘EIStht-N‘sglutullli ..-.o.....:o:.o...:.o. ..... o...... V.‘ ifQINO’Iwizz-U r- :.Z:’N,N . 0...». 515.72.. nullifabacQJhNBVHHQanuuvu IsN awuhhfisu‘duunuuhr‘n it... 51%.»...15 5.9.2:. N as .. at”. . . .zbnt'uSnN,Ns‘!rt,!1.-§I'eoull status“:................c..:.. 1r}. .29.~.~I-I.1”Iv3‘-’ELQI‘ 7 II . l 565...... .4 . "IlfivioauliununnMannililalhih Firigfiesiihnunhrhbc "flu?nnnuunufiununflnnnafinfinfi I 9157 Ital Ella. r-rrr. nun run“. ....................... an”... “nu“... .. Run 3 “WWI-1 "HAIL!” VOILE “unfit!“ mun: l C mum I W‘BE I!" R .UIIIIV 1‘"! '7" “mugs-us... “mucus! "mu. !' KIWI [ITII'D‘ livisnsnrzsssezsev: \viuottvwb’zlg all i~lit11111t0000§90c=e¢rl|12>§32.5.1159 9...“! Isiesuceouvloaooolsgvnlllhhiot .N..........:. ............... u... ....... N..... 77701561‘5235571339NE.‘ N 162 N b gnlt‘gzlioil N I ll..- .Nv 5 . N\...711§L(.Nv 9! ESPN... 7oz...) IZIIIZQJVIIO lubt’li‘lsvotvvs .JSJ‘V :31 N7157XSIN 1.1))0057'ctl IN £29026! 1 abhsfinNrsN-illsl’l‘ Nfihog N ‘51,) XI Near-7 653556;; Nbllalxlb.! (11‘s.... N tail!!! . n... ..................................... ihg'glii‘tii' l 0 ¢ . 2!!!!26‘7267’II56N02091‘. u.- .. Nil-66 \tabvrl Ns‘IO OXDCOOIuLSEYSlIIZLZZIEGJ-i ’TIJsSJIr-NDINIB 9519:! 11.1.2: .sISVa-ivi‘ZiNecr .lsubficiissiu‘ lul5lnl‘.0563§511£7|52\ PEIvelaNcuI-xq.‘ ill a... . 1|!!!III!!!UUC§IIIIEO|I§OOCOII|OIOOD ouoooaooN..-.o-.- ........ O .............. eon...- NN NNN N. NN. N. NO... N TIYG-Ntl-‘NIOOZOIIO133%560011 N90355:: 3967361 :5 «(it‘ll NIOII‘iNiitr e... .N (9627 01:92.. I 195 . .11).; ll! 6651!!!!0222115 00607 85553212~231111§221000tl Striat1czrlllllllt....ccr .19. .n!?.!n.5§.lax.naflhl iQIIIIIIFIlII‘UI|In-IOIIUIEIIIOOSIIIIIIII s...¢ao..u.. ........ N ...... .o.....o.~..~c.o..-N 791:5!!!1732 N hghzew’lllslxgrfln 9335.. N9295Ni5 66!;921631 N79295!0.§9§§5l960075l9512 2.7: a... 7 ”zllélgv NYHZsllzlbvatchbaZL-i 5579a)?! ‘05:... N7eal§sr759nblittftvi§l S BIIIIS‘JIIJSSS .N. 5. Nb th e h o 3 5:35.... .- b .N soon-ooeoo-uou.o...-.u-~.un.~cc-o Nut; N N ANNhN hb~s nN-NOouo-no- 2,."VifiazSLQBO',5‘.2‘§$£~399'°~I°5&‘ .Iszoz-2...§#Z3.€I§i.375-2 N 31.521.5335.l..--..3€d:l.u.nuly 2.53.1323: 3-1.2.3: s 3“ it, 1 I .Oh‘fii’gzOEDOOOOJJz !‘ cos-cos....oN-NINo-o-c-NN-o NONo-uooNNoONNNooo I 05.097559‘gifiln‘13015 3307235.: ect-5‘50 6h” NII’ANISIBIYI N1¢§ILZSDINS 0N7 N57)! Oftlliigghi’oiegz on-N.¢.Noo. .............. N ....... .N.........- :anst.~l.’u31:$§9~iss!cs297’; Ilia 3360...! ’1‘EEEIIIIJSUA‘1 Nl‘195btsalxllyho... In! .5!“lz$1l:9oéo ~55069ifaba9 N (uz.-511stze sun 81 N! ~1‘Jfl97:631.ieln 9‘15. Nlhl .790... if): I ogholltlhs «rail‘bbgitllflui N .oo...o.....:.:..-:o 7 ...................... III-.11 I \LIIIJQ 5v!!! .llaaN623927711!7. Iiitalsiixslunl Phi‘fifiuflllnaN .N x~3Nsh3alch°ntlitlu that: N IN... 3u5€.5c:1«5:vl.nl«x.271}.)01ul.l!l..3~5..7)nl1u nrrrvrrvrrrrrrtv: r 7.. turret... S»: 7...»: ”are r rrnnrr rirrrrvrrlrrrrrtr rrrrrvrrvrcir .. rvrrr VIM AAllat“L151LAAAJA‘:AILIAAtAAJJAAIIILAlAIJID It . *"Significant" Variables for Phase No Regression Analysis. 125 TABLE 5.4 cont'd. '(ls-luson N-NNNNNN-NNN-NNNNNNNNN. ~~~~o~ ulLvi'oLI ~a0-ouoo-obuoonQN Run 4 S 9 i I I D V ”alumna: WL‘I‘I'LK l l nun! t flag: 8]“! C M"! KEN In In Int“... 71.5! 81"! "cl-Cl DWQILL I' I P [IVER D '1:an ' “” rug-{Smlkfiom Ilslallnrsilitbzll I‘IIECSN-61uzl'53li 03123Nsfivi‘iin‘lt‘5’ItlI .01N7n1N567!az IIIINleIQOIIltlullNS-N‘NS§VVVIIAOQ:QOOQIO NNNNoNNNooNNNooooNN.oNNNNoN-NNNN.N.N:.NNNN ills}? N13513:! n1!!!» n1 3 3 2173119 I925. 3792;131:3911 N N NiantuN “has“; S6183»... 157913365757]!!! Sine. .. liszvxxzsasu,s N3! (In Ilasnelzp1-i ! N 93!... 1739922319638I631u1l I .55. NZ..O!1|§NN~h!l|xIOOQOQ-i.7tv1tesliit N. ............... .N oNNNNNNN-NNNNN1.....0... ‘liiitia {Iiiltlllbl‘lllti Ziblufitzzz uhizlnaifi? IZXSQQBIOJINIQNYJIN NJN 631‘!th07293‘ 7.9.?!- 31615 N. lira! v 3.1.32? |...7.|...a397 IN. V 9“)“ VibrainniifiaNOI NfifiaNilNzll .ilelNci3N33:N 3 11113108390... Itilvtillolnlfllllt oNoooNoN-ooNnNNNNN-NnacN ..... Nu. NNNNNNNN n.- NNNN N N NN N. N N. N NNN N N... N ¢M3I {561.213.}. N3L§EE Stir: iglxx’tnill N’nglixa-liis N7 N3 NNNZ’NZIlgl3llltIEXOII N 3N3 1111111 323:3:th03394333033993nfll0030Bil 'Ofllliti "Oll'll'iillli - N ..... Nun-NuoN-NN.N.NNoo-NNNNNNNNNNNNNNN-NN v.1 ilh‘OiINOVQZISI Gilt NVYTSIIGIi 0 1101993263.. Nitllzgzvi nougIZS-Ssllla N NOSGAIN’GNitulftxnl NatirNunla .11351567313 3 ‘SSNEIZNI. .‘NllchvoscszatstuS No.3!» 7090 1.... 3'! NsevsiGIZIJIN 22.89! 777 .3!- was. 993.33. I "lib‘lilgigg‘glggi a.no.vow-nNooeuutuovuoeuaccount-ao-nIcon... ' .I ‘ glslzabul’lzltll NafiN NN NlNgtzltu: 7 2v N351... eilaovgxou. .733..1N.N3711..551fp N“! 6 "2 D’Nv‘N7' h,"‘olhlvl.sh’9l .73, 15,-3527' 7,257’9gl‘.l$’l.‘|“‘llv‘££ll!llh ~§hbib I n I III-i § .i A '5 ‘5. .O‘ h h‘l‘lgiigign .-N...N..NN:N::NNNNNNN ......... :NN..N:I 1223;3323353361‘1t “Engage: u AKRON!!!” 933919355le II. 3‘ 31...: 25h Zilégflhhbpltl‘lfiiZT," N.co-NNuNNoNNNo-No-aNNNNNNNNN... .NNNNNNNNN. 15 N \1I5333‘51253ND NII£15N3A 17 3.35.72 0131?, ‘N‘choésssllbDISIJDECQNIX’INOU9IIZ..NISZL .1.5Sn.322 NJNSSQNN... 3.79: .Néib726677ufirb .7 N3 29016823331 {032:1 352.3... 55033095932L1323 OOilhtlfl, 63,-; 22!!£§§i a. NNNNNN NNNNN-NN-NNosoc-vounooooco-NoooNo-N M! N 3!: N‘Z‘Iii”llthNlNN 3962s....1512N1i 3.1.2281}!!!.........-........i...........z......!.. 8.335333] Biz... .3352. .2515... r... E 3.... 5.5.... ..i.:.. . 9:... is. in. s: alufiK'rl'VllK llullllrl v. VIIUK‘VI ’(VKIINilIK :I:§§.’ I'E£E§PIES 9‘ 11:11 I 1 I I l >NNNNNN-oco-NNoaooNo-NN IULVXDtt I’D’Dn' Illllfl. I.- Run 5 I I O I. I: cannula ULTX'LI I I [MK I “IMF: I1“! I SUIllkV VIII! its-menu mm». |‘ I“! NC I '0 [ml DR 'IRWE "mus... DIVE": S"? i Se.iysi.y§..i$.i..23§:§ 2.. znuniziiilcit .33113... .32.ls§..§xis!txszttlll. ...... ..... .. hzlzhnani33335755fi52'636393957i‘9l1180 3 {335.7 92961525§ 1:53.. $35.33 N6 .79.;IZN5 Q. 16761116|N 5 :3! .N 11665953317 I‘lfizb‘NgllDDz 39155556..“2369290N31 29 N07296:! N I! no? .N ill 96 .332222110- 5166.....5 N33N¢llltldivlll11Y63 NNNNNNNNNNNNNNNNNNNNNN .NNNNNN .Nooco-uoNo- gilllilfillllillt’ul VIISN32l>Ntlf92N07IOIISIIOUDSGQII;I7.N6§” US!(NIM7§3§N3}DJ‘NJAZ$3 713755.551-iN \1‘333 19:.ZN3535N5..317 lZlleu .932735391NI 7 52.523.10.15 .v- beIN NlNclannzliNNld Illa...ltllittl‘iflllltlllliiizliblll .oNNNNN-NNNNNNNNNN.o....oo ..... NNNNNNNNNNN N N. N N N N. NNN NNN N N NNN. N .N1Sgls‘NE7519216t356N’fiizzgYNiSENébl 25!...{352 971:1 .N 1.. (I... N .51.. Entitrz‘iaN 5332: 0A QIZVQLLINENrr 7b.?iN155oN 2636223333’ulctn... 31111131211. ......:3N«t_t4€_ .IDE.-§.NN5993n3:flfll Inlllllllllliil’ulfllloiii Ns..NNNNNNNNNNNNNN-N-NNN.NNooN-N-NNNNNNNNN N 1333378305315939.,31309573l55103; 365x. ll? N66953:}, 36297;...Nil ~539§ll3929|9 I I“ .Nxszlizibv ..... 53:52753’319‘Nb70hn63fll 3 7.113.271.3323N N9m677£q,!u1|¢22333313 3 N I lgllllilssgliliiil‘!!! a.NNNNN-NNNNNNNNNNNNNNNNNNNNNNNNoNoNNNNNoo :- I I 1.32.2.0.33.23523026500757195irbiE3NN227 0.2131037355N661ni INSN..»52! N 1.336.132.5635? 1- INIlKN sznliilsi31uo 3573th ‘IQ‘IIJIJSI 1375N61‘N $743933)?! N Illiotrv7711-iiuiitl I 121333.; N N NN ~N nggfiil‘ii NNNNNNNNNN-No NNNNNNNNN uuNNNNoNooNN-Nuoaoou I3... NYIISQ. N5 .N lfiSSN .N 9x97 5:73.356}... N‘VIY N 565 9251316~366111703N901 lbdlltlllt‘ltlvNZiYIl Illalllx‘v‘SSSNNNlb-a Nba6h§fiivzllxI ..... 0......-¢.N...NNNNNNNNNNNN-NNNNNNNNNN 27932.59 .51.}. 3726759....957399 153836.951. usgssNurlNlazxizou‘. . 1913.2.N7957N22..)N.29:3 1139.. N9715S7.71N4.043(31N§73.Dto. 223.55? N .5 3x015N0t266e:990..911093919 Ohtvtl’ici N22,... ihilviu‘lrzn‘vrvlSYNYbsb c... lIIIIOONiI . o N NNNNNNNNNNNNNNNNNN c c... oNNoN-oNoNNNN-NNNNNN 3.1.3.27 leiufir..§2e!17:rN-. 51...!!1 .N, .. 32! N606..§.NN 55555 NS9N101N.l.353u3.t.Nlnih.Nuln6ntu 73U231:3..I))..0))I)7333333131~§N.IJDI....9333 up... a: grin Ericnozr r rot 5957:: 6.1.... 67.. car...- ervxllir y .5... 5? 7.. (v.2. (1.3;: 7-: [5.5.5:- lenl reg-i: Fir-.- Erooh PDP’QEIKIiiGOII . 0|.O'IDIIDOOOOUICIID‘I. uuLIIDLl I'll-1n Ins-up. [Elli IIULE ’"Illl' stunned-N: I’L‘N’Ll R l "Milt l gulls II“! l '1“! 'l :1“ OVERALL I nvu‘z’fiwlflom ”ISM. E5. I'll! Ant. I '2 SITE! ll “HOV! ! I J. 126 TABLE 5.4 cont'd. IIIIIISXOI .ltobhOIDOOIOQCOCDODDI. uI‘ouoootangno|.oo.cu;ouo “uLy‘OL‘ ' uvgunu "mun“ 'IIL! “5“".th M71“! I l nun! I wgi "fill I Run 7 IIIIAQ' unu'ol'um: 3!“! nun: “Ian I V‘lX l‘blnno I‘VEIEQ "I! AJ‘IL91V2650366I3155 1‘85150.O7\.;ILOIA6!90 Illiifinl;“9i - . . a o n a o n ...... u n o ooooo . .ll' Nihvi‘ilil 350!) Sn .913500 tl359h§1$l671I|622I319l n-Ytés‘zsll‘l uliuzlh shit 52-35193. 155.13.71.97?!“ ilbllnllhoai (I! 56:53 A :- ............. . . u u . n n u a u o tuOH“ Igiflz'?ighir:! ‘l‘sl‘gr‘hsulu' IORQO‘b‘S-IIVHLI unnflfiuavué liner.uz..s..292.nnoa iti‘szili:g' ...........~.....n.~....... ..... vz’llfilblfifllli’...» SIS...‘ 8390...?- llflt?!.~$..§2 .-A6¢~Ll~!ub IODDJGXIAK.’llltl9ths313x111£t0G ICE-2.31.51!=3I|cn.93..n:uall..lnfli liulilulllllnlflglill . . c uuuuuuuuuuuu a .............. u . YOXQESOISJGOIa;QQZI~I7IIIIh89 Inhil.fll609al.9-9~661930~I!§nt16 ll12565¢fiI!~S§JIII§G)69.\;§AISI 00.13:). Idau|3~§~§bbeéirl~17711 OOI!...ZZ§IE§I§I§§)J onus-co... ...... ogoo‘oo-a-octonu izz§lzh§bg§l?§b“ll§0 13541251.; xii 63% .-Y $011221; 1!): EC] litissvlihttiln; ~136g>090lvvlu§$ It) urflbllrllslblliivflnllt 111111 OI: ~§k;2§i5§§!fi|tbtlt:0‘ con-ouoc.co-.o-¢.unnoo-uc.-.coo ‘30!!! .Oladll’lu’u .9. 3,26h90 lltosblhsitbfixu‘) nl ~0‘51257 II I’D; Yt’l’ib‘tzl": o o ~ - a n a o ooooooo n . ....... a n u ..... lailivr‘l ~55]!’556.\.55I%1~b72 l b‘OI-u’fiitbrlflz.’ ~93, 1560:. Isilhzfilszuafx :5 71273775 h 33.5.: ‘3’:?’97:151!0‘936th. 5.»)le tl‘hlz nilfllflblh .lltlilltllll: .uoououuugnon-onuauuo.-acog...uc u u. I O O O V 25:51:!!!)11...‘ nu 16 c .. Ilagxflllallflzkpvcou 0! ti .SDBA g..a1.32.l5..ol:vt 1.5:... (1A2i151vp rxu’ 1535953....3.‘ - ultsvuuuYsuuvv u.- lvraAu an n .. I. Llllgrxti.g.cvs:g.m nii'sigottruniin urnlsnvllu 1 s:-&1:0‘$‘~5 F I!1Lv‘h§§7$5|ih3l§)"fl~§§r| W i! 18 ficant" Variables for Phase Three Regression Analys igni HS are thl im I E 129 TABLE 5.6 RESIDUAL ERROR RATE FOR THREE SAMPLE TEST ITEMS Below the actual and the rounded regression estimated responses are shown as 0 or 1, 0 = incorrect responses to the test item; 1 = correct. The error is computed by subtracting the estimate from the actual; the number +15 and -1s in the error summaries, indicate the number of incorrect estimates TEST ITEM ACCURACY OF ESTIMATION Two 5 RELATIVE ADJUSTED CUM ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT) Actual 0 9 8.6 9.2 9.2 Response 1.0000000 89 84.8 90.8 100.0 -9.0000000 7 8.7 Missing Total 105 100.0 100.0 RELATIVE ADJUSTED CUM ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT.) 0 9 8.6 9.2 9.2 Reg’Eessmn 1.0000000 89 84.8 90.8 100.0 Estimate —9.0000000 7 6.7 Missing Total 105 100.0 100.0 RELATIVE ADJUSTED CUM ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT.) * 0 98 93.3 100.0 100.0 Ermr‘ —9. 7 6. 7 Missing Total 105 100.0 100.0 Based on: Valid Cases 98 Missing Cases 7 * 0 Estimation Errors = 0% I?! Q 130 TABLE 5.6 (Continued) RESIDUAL ERROR RATE FOR THREE SAMPLE TEST ITEMS TEST ITEM ACCURACY OF ESTIMATION Two 4 RELATIVE ADJUSTED CUM. ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT.) 0 29 27.8 29.9 29.9 Actual 1.0000000 68 64.8 70.1 100.0 ResP°nse -9.ooooooo 8 7.6 Missing Total 105 100.0 100.0 RELATIVE ADJUSTED CUM. ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT.) 0 25 23.8 25.8 25.8 Estimate 1.0000000 72 68.6 74.2 100.0 RegrSSIOH -9.0000000 8 7.6 Missing Total 105 100.0 100.0 RELATIVE ADJUSTED CUM ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT.) -1, 4 3.8 4.1 4.1 Error * 0 93 88.6 95.9 100.0 —9 8 7.6 Missing Total 105 100.0 100.0 Based on: Valid Cases 97 Missing Cases g * 4 Estimation Errors = 4.1% TES'] My; Ac 131 TABLE 5.6 (Continued) RESIDUAL ERROR RATE FOR THREE SAMPLE TEST ITEMS TEST ITEM ACCURACY OF ESTIMATION 1 1Five 4 RELATIVE ADJUSTED CUM. ABSOLUTE FREQ . FREQ . FREQ . CODE FREQ. (PCT.) (PCT.) (PCT.) 0 43 41.0 46.2 46.2 Actual 1.0000000 50 47.5 53.8 100.0 Restse -9 . 0000000 12 11.4 Missing Total 105 100.0 100.0 RELATIVE ADJUSTED CUM. ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT.) 0 41 39.0 44.1 44.1 Regression 1.0000000 52 49.5 55.9 100.0 Estimate —9.0000000 12 11.4 Missing Total 105 100.0 100.0 RELATIVE ADJUSTED CUM. ABSOLUTE FREQ. FREQ. FREQ. CODE FREQ. (PCT.) (PCT.) (PCT.) —l. 5 4.8 5.4 5.4 Error:* 0 85 81.0 91.4 96.8 1. 3 2.9 3.2 100.0 -9. 12 11.4 Missing Total 105 100.0 100.0 Based on: Valid Cases 93 Missing Cases 12 * 8 Estimation Errors = 8.6% produc secom K M as de Maste in OI cases variz Regn vari case Matr the cont 132 roduce an error rate of ten percent or less. This second phase of the regression analysis was repeated for each f the items in the IP vector. .3 Regression Analysis 3 After each test item had been successfully processed through the ecOnd regression analysis phase, the test items were aggregated into Matrix elements using the following equation: 3 defined in section 4.3. Before this was done, however, the SPSS aster file was altered somewhat to aid computation. Up to this point, 1 order to use as much of the available information as possible, any Ises with missing values for a variable had had the mean value of that triable substituted for the missing value (using Option 20 of the SPSS :gression routine). Before summing and normalizing the IP vector Lriables using the above expression, the mean values of any missing Lse variables were substituted throughout the entire file. The .trix elements were then generated2 using the above expression and 1e concept—test item relationships outlined in Chapter 3. Table 5.7 ‘ntains the mean, standard deviation and rage of each Ki° n the two previous phases of regression analysis the K elements had een updated on a ”weekly" basis, and test items regressed, in part, gainst prior K elements. This was a tentative arrangement used to educe the total number of variables stored in the SPSS Master file. ecause of the large number of variables necessary for analysis the aster file was maintained as a SPSS Archive file. The reduction in he number of variables necessary for analysis in the third phase of egression, allowed the Master file to be stored as a "regular? SPSS ile with about 490 variables, which made the computer analysis onsiderably easier. .lnlt r nllll h in MAMHQH. 133 woN.o ooo Hao.o omm.o HoNHM NoNHM NH mNN.o ooo Nuo.o Hmo.o aoNHs NoNHM Ha ooN.o ooo.H omN.o sos.o m .o .H ose sane N+ Nooas Nooas oH NoN.o ooo Nuo.o oos.o o ooo Mano + Hooos Nooos o m mmmmo ooo.N mmmwo mmmwo m .o .N .N oss saao w+ Hbmmu Nowox o m. .o.z a mMN.o ooo.Nno.o NNo.o Hooos Nooos o m mNN.o ooo.Huo.o Hmo.o Nomos Nomos m noa.o ooo o-o.o mmm.o Hooos Noaos a NoN.o soo.o-o.o osN.o Homos Nomos m moa.o oms.ouo.o omm.o HoNoM NoNos N oNN.o ooo.Huo.o woa.o HoHoM NoHoM a mwmwmdouu EouH umouwum ou Hmswm uwm «Olmwwoucu «H .o.z ma woN.o ooo HIo.o omm.o oa .wa ooo sano N NoNHM NH mNN.o ooo Huo.o Hmn.o ma .o ooo nano N Hoaam NH mom.o ooo Huo.o ooo.o o oso naao N Hooax oa msm.o ooo Huo.o on.o o ono saao N Hooos o m ooN.o ooo Huo.o Noo.o ma .o .s .m ooo saao N Hooos o m. .o.z a o mMN.o ooo H-o.o NNa.o o .N .a ooo sane w Hooos o w mNN.o ooo Huo.o Hmn.o w .a ooo nano N Homos m soa.o ooo ouo.o mom.o o .o .o .m .4 ago saao N Hoaox a NoN.o moo o-o.o NAN.o o .o .m ooo Mano N Homos m mwN.o omN o-o.o omm.o o .o .n .H ooo naao N HoNos N oNN.o ooo Huo.o woa.o HN .o .o .H ooo naao N Hoaos a onsaHomo moz H ADUDEHUCOUV hum. WHQH 135 II II II I: .o.z NH woN.o ooo.Hlo.o 0mm.o wooHM mooHM oH mwN.o ooo.Hlo.o mHm.o 0H w>Hm NHSO womHM momHM mH DNWMO ooo.HIDMWDo Nwwho NH .m o>Hm NHDO w qquM mOQHM «H .Q.z MH woN.o ooo.Hlo.o qmm.o OONHM mONHM NH M mNN.o ooo.Hlo.o qu.o «OHHM mOHHM HH % OON.o ooo.H|mmm.o HHn.o OH.q o>Hm NHSO w+ OOOHM mOOHM OH H nuH.O ooo.HlnoH.o wom.o N o>Hm NHSO + qomoM momoM a H NMHMO ooo.HINMMMo OHWWO q .N o>Hm NHDO w+ qubM mowoM w m .Q.Z N mMN.o ooo.Hlo.o NNq.o ooooM mooom o OON.o ooo.Hlo.o OHo.o qomom momoM m an.o mmw.0|moH.o nmm.0 qoqom moqoM c NmH.o mmw.oto.o qmq.o oomoM momoM m mmH.o omH.OIo.o wmm.o «0NOM mONoM N mNN.o ooo.Hto.o wmq.o «OHoM mOHoM H w aHmDouo EmuH umwuwum ou Hummm uom q¢1flflioy£u aH Nmm.o ooo.Hlo.o wan.o mbmHM wowHM wH III III. .III .Q.z NH moN.o ooo.HIo.o omw.o mN usom NHDO + mooHM comHM 0H m omm.o ooo.Hlo.o wow.o momHM nomHM mH m. OMMMO ooo.HHbMo mMMWo mbNHM oquM «H J .92 HH m woN.o ooo.Hlo.o qmm.o MONHM «ONHM NH 1 mNN.o ooo.Hlo.o qu.o mOHHM «OHHM HH oON.o ooo.H|omN.o mwn.o MOOHM «OOHM 0H ©ON.o ooo.HIOON.o an.o N udom NHSO + comoM «ooox m MHH.o ooo.H|mnm.o Nmm.o mowoM qowom m ZOHHMQ muz E ADUUEHUGOOV h.fi MHIHMHQH. 136 omN'o ooo.Hko oIomMo oN EH... :3 I ooNNvH NN .Q.z HN NQN.O OOO.HImmm.O MOm.O mOONM OOONM ON NON.O OOO.HIO.O mHn.O mOOHM OOOHM OH Nomo ooo.HEo ooho SE 8st NH .Q.Z RH OON.O OOO.HIO.O Omw.O mOOHM OOOHM OH MON.O OOO.HIO.O mHn.O mOmHM OOmHM MH ooN.o ooo.HIoRo NNIoIo 3E oooHoH oH I .o.z NH OON.O OOO.HIO.O cmm.O mONHM OONHM NH W mNN.O OOO.HIO.O Hm¢.O mOHHM OOHHM HH W OON.O OOO.HImmm.O HHn.O mOOHM OOOHM OH S an.O OOO.HIBOH.O wOm.O mOOOM OOOOM O H Nfio ooo.Hunho oFo 8% 8on w .Q.z m NOH.O OOO.HIO.O mqm.o Om me NHSG moooM OOOOM O OON.O OOO.HIO.O OH0.0 momOM OOmOM m qu.O hmw.Olm¢H.O OO0.0 ON me NHDO + mOOOM OOOOM q NOH.O mmw.OIO.O qmq.O mOmOM OOmOM m me.O Omn.OIO.O wmm.O mONOM OONOm N OwH.O OOO.HIOwH.O mum.o ON me NHSO + mOHOM OOHOM H 433 3 Hang Com. 3 dwfloufi NN NON.O OOO.HImmm.O mon.O OH .q .N NHSGN MOONM ON E M NON.O OOO.HIO.O mHn.O m .H NHSON mOOHM OH M.% Nmm.O OOO.HIO.O OON.O «OOHM mOOHM OH 9 X onaaHEHH mag 23% u HVH onsfiHoz H 2953 mZmHH Emma ezmzomzoo mqm AHUNUEMUCOUV him. NAM—”din“ 137 mwchsoso umouosm ou Hmavm umm qq nwsounu mN qu.O ONn.O O O H O O RN Gm>wm NHDU anNM «N OON.O OOO.HIO.O mN0.0 «N Gw>ww NHSO HOMNM MN ofio ooo.Hfio oofio ooNlNM BNNOH NN .D.z HN NON.O OOO.HImmm.O MON.O OOONM NOONM ON NON.O OOO.HIO.O mHn.O OOOHM NOOHM OH melo ooo.HHRo Poho oomHloH BNHVH oH .D.Z NH OOH.O OOO.HImmm.O mow.o mN Gw>om NHDO + OOOHM KOOHM OH MON.O OOO.HIO.O QHN.O oomHM nOmHM mH om o ooo .Huole. o NF o 8E Bog EH .Q.Z MH M OON.O OOO.HIO.O. cmm.O OONHM NONHM NH % mNN.O OOO.HIO.O qu.O OOHHM nOHHM HH 3 OON.O OOO.Hlmmm.O HHN.O OOOHM HOOHM OH % NNH.O OOO.HINOH.O OON.O OOOOM nOmOM m % NMHI. o ooo.HLoR. o Sh o 8% Boos o u .D.z m NOH.O OOO.HIO.O mqm.O OOOOM 5000M O OON.O OOO.HIO.O OH0.0 oomOM nOMOM m NMH.O mnw.OImNH.O mqo.o ON Gm>mm NHDO + OOQOM anOm q NmH.O mmm.OIO.O qu.o OOMOM mOmOM m me.O Omn.OIO.O wmm.O OONOM HONOM N OOH.O OOO.HIOOH.O wmm.O OOHOM mOHOM H m CH Soho umoumsm ou Hm: m uoWImwlmwmmmnu MN onsfismo mug is: n HM onafioz H QM . ADUDCfiUr—OUV htmn Eda...“ 138 oNN.o ooo.Hno.o Noo.o NH onHz NHao oooNs NN mN.HN ooN.o ooo.HuooN.o moo.o oN.mH.NH oon NHao N ooNNs NN mon.o ooo.Huo.o moo.o oH onHz NHao wooNM oN moN.o ooo.Huo.o «Ho.o N oaHz NHao oomNM mN oNo.o ooo.Huo.o oNN.o NooNM wooNs 4N mN.oN.oH oHH.o ooo.HnmNm.o Nmo.o .NH.oH.mH.sH ost sHao N + NomNM oomNN NN ommwo ooo.Hnwwo ommwo Nommm. ooNNM NN .o.z HN NoN.o ooo.HnmNm.o ooN.o NooNM oooNs oN oNN.o ooo.Hno.o ooN.o oH ost NHao + NooHs oooHM oH ommwo ooo.Hnmwo mommo Nomwm wooHM NH .o.z NH HNH.o ooo.H-omN.o mHo.o oH ocHz sHao + NooHM wooHs oH oNN.o ooo.H:o.o oNo.o oH .o onHz NHao N + NomHM oomHM NH owmwo ooo.Huommwo Nmmmo Nowmm. moaHs aH M . .o.z NH m woN.o ooo.H-o.o oNN.o NoNHM woNHM NH E mNN.o ooo.H-o.o Hmo.o NoHHM onHm HH m ooN.o ooo.HumNm.l HHN.o NooHM wooHH oH NW NnH.o ooo.HnmNm.o oNN.o oH .oH onoz sHso + N Nooos oooos o 2 Hmmwo ooo.H-mmmuo obmmo o onHz NHno + Nombm oooos o .o.z N NoH.o ooo.H-o.o mom.o Nooom oooos o moH.o ooo.Hno.o omo.o wN oon NHao + Nomos momos m NmH.o mNo.onmNH.o ooo.o Nonom wosos o moH.o Nmo.ouo.o ow4.o oH onHz NHno + Nomos oomos m moH.o oNN.o-o.o wmm.o NoNos ooNos N oNH.o ooo.H-ooH.o oNN.o NoHoM NoHoM H onNmo NozmQ moz ADUDEHUCOUV h.“ EQNAVH. 140 NNH.o ooo.H-o.o oNN.o oomos onos N m NNH.o NNN.o-NNH.o ooo.o oooos oHoos a m NNH.o NNN.ono.o NHN.o NN Hoan + ooNoM oHNos N I NNH.o NNN.ouo.o mon.o NoNoM oHNos N m oNH.o ooo.H-oNH.o NNN.o ooHos oHHos H NNo.o ooo.H-o.o NoN.o HN nos NHno moons on ooN.o ooo.Hao.o ooN.o NH nos NHno ooNos No ooN.o ooo.H-o.o ooN.o NH nos ano ooNqs NH oNN.o ooo.H-o.o Hoo.o HH nos NHao ooHos Ho NNH.o ooo.H-HNN.o oNN.o NH.oH.NH .HH.oH.N.o nos NHno N moons oo NHN.o ooo.H-o.o oNN.o oH .o .N nos NHno N oooNs NN Noa.o ooo.H-o.o oNN.o 8 nos NHno ooNNM NN Noo.o ooo.H-o.o Noo.o NH nos NHao ooNNs NN noa.o ooo.H-o.o ooN.o N nos sHao oooNM oN M NNH.o ooo.H-o.o omo.o nos ano NoNNM NN m oNH.o ooo.H:ooN.o Hoo.o oH .H nos NHoo N ooqNs nN M NNN.o ooo.H-o.o NNN.o NoNNs ooNNs NN m oH u NoH.o ooo.H-ooN.o NoN.o .oH.NH.o.N.H nos NHno N + NoNNN ooNNM NN a oNN.o ooo.H-o.o oNN.o oH nos sHao + NoHNs ooHNs HN oNa.o ooo.H-o.o ooN.o NooNs oooNs oN ooN.o ooo.H-o.o ooN.o NooNs oooNs NN NNN.o ooo.H-o.o Noo.o NoNNM ooNNs NN ooN.o ooo.H:ooN.o Noo.o NoNNs NoNNs NN Nan.o ooo.H-o.o Noo.o NooNs oooNM oN NNH.o ooo.H-NNN.o NNN.o EH .NH nos NHao N + NoNNs ooNNs NN oNo.o ooo.H-o.o oNN.o NooNs oonNs «N zosansso moznm znsz u HM onsnsoz H omnozosm stss smms szmzo BLOC MHMHHNHMHHS ADUUEHUCOUV h . M MmaHm—HVH 141 1.1411111111111111 \1‘1111111 HNH.o ooo.HINNN.o NoN.o HH Hoan + oooNs oHNNN HN .o ooo.H-o.o NNN.o NoNNN oHNNN NN NNN. . I . N.o NH.HH Hoan N + $me 3me NN HoH o ooo H non o NN N oHHNN HN oNN.o ooo.H|o.o oNN.o NoHN oN oNN.o ooo.H-o.o ooN.o oooNN oHoNN HnN.o ooo.H-o.o NoN.o oN Hoan + NoNNN oHNNN oN NNN.o ooo.H-o.o NoN.o ooNNN oHNNN NN NNH.o ooo.H:NNN.o NoN.o on.oN.NN.o Hoan N + ooNNN oHNNN NN NoN.o ooo.H|o.o NoN.o ooNNN oHoNN oN NNH.o ooo.H|NNN.o NNN.o oomNN oHNNN NN HNN.o ooo.H|o.o oNN.o ooNNN oHoNN «N NN.¢N oHH.o ooo.Huoon.o NNN.o .NN.NH.NH Hoan N + NoNNN oHNNN NN NNH.o ooo.H-o.o NoN.o No Hans + ooNNN oHNNN NN .o.z HN NHN.o ooo.HnooN.o NNN.o Nn.NN Hoan N + oooNN oHoNs oN M NNN.o ooo.H-o.o NoN.o «N Hoan + oooHN oHoHs NH % Nmmwo ooo.Hnwwo. mmwwo NoNHN OHNHN NH 8 .o.z NH n NoH.o ooo.H-NNN.o NNN.o No.o Hoan N + NooHN oHNHN NH u NHN.o ooo.H-ooN.o NNN.o on Hoan + ooNHN oHNHN NH mmwwo ooo.H-Nwao Nmmwo NN.NH.H Hoan N + Nowmm. oHoHs HH . . . . .o.z NH NoN.o ooo.Huo.o oNN.o ooNHN oHNHN NH NNN.o ooo Hno.o HNN.o ooHHN oHHHN HH NoN.o ooo HINNN o NHN o NN Hoan + oooHs oHoHs oH NNH o ooo.H-NNN.o HNN.o oN.NN.NH Honas N + NHH.o ooo.HnoNN. . . . . . oooos oHooN o III. Iu.o NoN o NN NH o N Hoan N + ooNoN oHNoN N . . I . . .o.z N NNH o ooo H o o NNN o NN Hoan + ooooVH oHooN o onsNo Noznm H omnoznsm z E . AHuvafifiUCOUV k. m. mHJHmndVH. M11111...“ 1... 11. .92 8432 no 1.. ..1 ll .92 ooNoN Na . mgwsm OONSN No oNN.o ooo.H1o.o NNN.o m woooonn ooHHN Ho NNNIo ooo.HubMo NNN.o .92 oooss on . oooon ooNNoH NN oNlolo ooo.Hnbwo NNN.o NH o o.“ ooNNoH NN 1| 1.. 11. .92 8:2 NN 1.. II 11 .22 oooNoH 8 ll ...1 II 2.2 ooNNN NN . . 1 . . NH umouoss 033 «N NNHIo ooo H.b.o Nwolo 2.2 ooNNN NN . . 1 . . 0N.NH.NH:N smouoss 8me NN 1m NNN.o ooo Hlp1o NFo .o.2 ooHNN HN m m. oNN.o ooo.H-o.o _ NNH.o NN.NN noooonn oooNos 8 0 1 NHN.o ooo.H-o.o aCmoo NH ooooons ooNNVH NN ooN.o ooo.H-o.o oNN.o NN ooooonn ooNNN NN NNN.o ooo.H-o.o NNN.o lCN.NH.N Hoonoss ooNNoH NN l1 ..1. '1 2.2 oooNvH NN .1 1|l1 H .92 ooNNN NN .1 2.2 ooaNN HN Nleo NNN.o-NWHbo HEB oN.NN.HN.oN.NH.NH.N.N noonoss ooNNN NN I. 1.. 1| .o‘2. ooNNoH NN .92 HN NHN.o ooo.H-o.o NNN.o NN ooonons 8on 8 nfio ooo.HhPo HolNlo oN.oN Hoooons ooNHoH NH 22 ooNHN NH 2oHsNn 82,2 239 . H2 2oHs45!’.‘L.b7|VIA.I-1P$azlwlo Alzgglrag‘ith 301725 42 e753- vol-V. 71532158L11IS767511915701217764 .01557611 8459...! v1.11.- 1467. 11.51. 31281571731891.473191417. 1247711761111 6.. 61474141498349.47111167194117995155.2901}... 5124411....» .. .. 45.3145974121.664813612561.19576v35yotlrsa7 57.1..r74117113..Cc£4!b7.2§71(56484602.... 283720:19510717~£r446111.11.04.1154176614007121 5171zo2rtru<1614117 , 1gzzi‘o.t’ EUEVV319~6HP§L$FV1°7LVA£DB—I .65V ‘95:7.fl9|‘ut“J-l"t::°l9l' filo-Z; nglfiVS'V . ...................................................l...l................ .. .................n...t......... . ll'lll'l K10 _ . attach0000900069290000000000oocbooaéocoooooooooo09800L00D0to oabouccooownvcoootoothaccoobn OOOJCODIODODOODQOODDOLLOO vuocoooccaoaoccgi 0 030603000: Connect... .00: vocoOKctbéobtbo:657.0300 u . 7.002.759»: (CL.....L..GO s... OOOKDOZCLDELSOL .1. 6.109.574; v oco0000006CDC-00:DcoaocoocooLoootfl.u(o.u.l 005000000:.ucrzncoooaataoooocevo“36006695..no&.~00:..co..50coc c.4026 900011.. €5.79: 3....0 u. 72.6.uCDLN5LPDA ..C: 3001390100300916 009.71.001.05 free. .CCSOOQ....L:...C..O\: .ceto 11559.3..(1‘5733100559 .5..913°:(...:¢f..c!.v$....7:._£112.65. .17.: gbfcy§.ronzc Shoe-SL3..572£[>..<:51.93515. 1.755.371),’.’17.’7’§lrr7.&’;l§’76..’711.27.51. ..975‘7’77’5’77’ .K... 1..l....o....“1..611..s....-....l-l.l..‘.-ooll..lv1|...11‘11l.l-.I io.'.'...1.1.1..:‘.lulcl.‘8 couccoobfihu LMDOLOODODOOOODQ vaccoooooco..¢.agoc 6054000009050... .0... LL 6091.. ucrngww Actual Ill“! E ....................................................................~.......2.......................... K1002 n 111114 '0...- 0051111110- U“ ' “"“I .2112; ""00an +25D +.27O 149 FIGURE 5.3 SAMPLE PHASE THREE REGRESSION RESIDUALS FOR VALIDATION (WINTER TERM) DATA BASE -25D K 10 K10 Value Estimate Residual —.270 Actual _ “ 11 I I l I . I . I I I I I I I I I l I I .000 I1 11 1‘ 11 19.5.12111 111311 0 0 0° ° 00°C 306000 mam .... 4. .. .4..:_.~ .. E 3! 1 3 0 30 G . . . I. I E... l E I. I. E "E... r. E 9 “on E" EIDVEMSMGUIN0039N . 03,"? g55,z£76‘l§5‘££l§0!69‘1 05727I£ 3 39 6.7. ‘ NHN“I9§L1"1C?Z¢Y>L<’1OEI 9500251523 05!).0L9Zr 21056620516737 39.2316557h145757 57 2513611106352316552033.21153566232527.3161%....16‘2321Lg;590:6;1322010‘3‘151 A. .....-..o..c......................o....-.........-...........-.....-.....- .. . .. ......... . . . . . . ... .. . ... ...... . .. .. ._. . : A 310611.076’022275 ..6555572‘6072330 §§§3059750L39560201715L405.01700 $922202:L17107$09£917t92607£1745527 09119001171056}... 0f1571,7911$560164!£202 9.7-5. .9 EL311552.».20L257571575603i5621 06 OOISGOC 375928.. £7.05. 5515.1;176916‘3761 5131.56712L 855.751 . _L.~5.121230505:01 05652 6251735751671572.27.22.59...£«BLIflIfiSSEA13 , . Z?» 03‘... 01.722.c671 NJZG CI} I733}! :1 #:1021557 (L11?€e!€2!1721.2n £57150 173LK§GI6LOPIEAAOI7 L6é$2666£gt 3‘ 07‘09 77H576 .l .9917570.» $k¢2177955>§17u3777 7137H§755I781.6 $55.51. .ISI....6.)..I:2>..’M5 l .11..“1 ..u...11.1lu 11!- ...u‘ .1- '.1..‘o ..lu..1. 1...]‘1..“.o'-o A .l D Z I l 3 E Z only th‘ dependa "signif As be regr restric Under r indeper such c: ticall the ph ableS‘ possib Sent a howeve ables large] Althm and n that 1 inter the v sien "Sig: fabrj more deVe 150 only those few variables accounting for the largest share of the dependent variable's variance are identified and sorted into the "significant" set. Arbitrary group selection and regression runs As mentioned earlier the largest group of variables which could be regressed against a dependent variable was about 70. This is a restriction imposed by the size and capabilities of the computer used. Under normal circumstances with an N of about one hundred, seventy independent variables would be a reasonable and adequate number. Under such circumstances the investigator. would be searching for a statis— tically significant set of variables which best describe and reflect the phenomenon measured in the dependent variable. This set of vari— ables would have the smallest intercorrelation within itself of all the possible groups of variables, thereby allowing each variable to repre— sent as much independent information as possible. In this study, Iowever, it was not the intention to find such an optimal set of vari— lbles but rather to identify a useful set of variables within a much .arger set of variables potentially related to the learning process. Jthough background variables were grouped together in sets of seventy, nd instructional variables were grouped the same, it is recognized hat many variables in different groups were interrelated, and those nterrelationships were never exposed by this method. Obviously, if he variables were grouped differently and passed through the regres— ion routine We would have gotten different "answers" in terms of the aignificant" variables. However, the method used does allow us to Lbricate a crude model which can be tested and further refined through >re standard and statistically acceptable methods. If the variables veloped for the model in this crude procedure allow predictions to be made that a potenti It cases v or depex small : missin number study' larges the va more t appare indeps more ( Varim ues d Ships deter the e be mc Ld disc} a Va base 151 be made which approach reality (even if distantly), then we may assume that a refined version will produce even more useful results, and the potential usefulness of this type of modeling will have been demonstrated. Substituting mean values for missing values. It is standard practice in regression computations to delete any cases where there is one or more missing value for any of the independent »r dependent variables. In a large data set each case may have a small fraction of the variable inventory missing, deleting cases with missing values from the regression analysis would quickly shrink the number of cases and limit the usefulness of such a regression. In this study means were substituted for missing values in order to include the largest possible N in each regression analysis. This slightly reduces the variance of each independent or dependent variable and each appears nore tightly clustered around its mean value. This tends to reduce the apparent variation in the dependent variable accounted for through the independent variables and thus the resultant analySis may be said to be more conservative. Although missing data was not widespread in the Variables used in this study, the use of means in place of missing val— xes does not noticably affect our search for the "strong" relation— hips among variables. Again, if it was the intention of this study to etermine the statistical significance of the relations among variables, he effect of substituting the mean for missing values would have to 2 more carefully considered. rédicting dichotomous variables. In section 5.2, the second phase of the regression analysis was Lscussed. Here regression equations were essentially used to predict value of 0 or 1 (incorrect or correct response, for each test item sed on the independent variables respectively). The proper use of the regres continuous variable. would null and relat ever, in statistic possible nous varj relations 152 ,e regression equation assumes that the variables involved are >ntinuous, but here the equation was used to predict a dichotomous .riable. This practice violating a basic regression assumption luld nullify any conclusions concerning the statistical significance .d relationships of the dependent and independent variables. How— ’er, in this study no conclusions were being drawn concerning the atistical significance of the relationships between variables, only ssible relationships were being sought. The prediction of dichoto— us variables was used only as a crude tool to search for variable lationships. ure de in the and u ground knowle fit 01 tion ‘ Appen coeff iable Varia in pa "beta here the H ”dard is a the ated CHAPTER 6 RESULTS AND ANALYSIS u.0 Introduction The results of the regression modeling and validation proced— lre described previously are presented in this chapter. For each element .n the K matrix generated during the weekly testing routine the 8 , 1 , .nd u coefficients (and the a constants) relating the K1 to the back- .round variables ( B), the instruction variables ( I), and previous nowledge ( K), are presented. Statistics describing the goodness of it of the model to both the base (Fall '77) term data and the valida— ion (Winter '78) term data are also provided. The coefficients 8, A,11 and a are tabulated in the tables in ppendix E in two forms. Each is presented first as an untransformed oefficient which is to be multiplied directly by the appropriate var— able in the model. Secondly, the coefficient computed on standardized ariable values rather than on original unstandardized values is given 1 parenthesis. The second coefficient is usually referred to as a teta weight" (Nie et al., 1975) but this convention will be dropped :re in favor of the term 'coefficient weight' to avoid confusion with e 8 coefficients. Since the coefficient weights are based on stan— rdized variable values, the relative size of each coefficient weight a measure of the relative effect of each independent variable on a dependent variable (Nie et a1, 1975). The constants ( a's) associ- ed with the coefficient weights are all equal to zero. 153 T: viousl table an ind the co 6.1 W were i readir ing tr tion and K model is nu Whicl digit to t1 tWO for m the Eco: Prm det: 154 Table 6.1 summarizes the tested ecosystem concept coverage pre— viously presented in Table 3.10. An inspection of this coverage table and the coefficient weights of each of the variables provides an indication of the relative correlational importance of each of the course components modeled. 6.1 Week One During the first week of class the basic concepts of Ecosystems were introduced in the lecture and reinforced in the SAS and textbook readings. The practice quiz also contained a number of items pertain— ing to Ecosystems concepts. The first quiz contained enough informa— tion to construct the mastery or performance variables Kl through K6, and K8 through K The coefficients relating these indices to other 12' model components are contained in Table E.l. In Table E.l each coefficient is referenced by a B , A , or u (or a for the constants), the acronym of the independent variable it is multiplied by in the model, and the dependent or Ki variable to which it contributes. The Ki variables are referenced with a four digit code, K030l for example, where the first two digits (03) refer to the element of K matrix and C matrix represented, and the second two digits (01) to the week represented (for the example K0301, K3 for week 1 is represented). Week One Instructional Variables From Table E.l it appears that student attendance at lecture and the second SAS are major contributors to the successful mastery of the Ecosystem concepts Cl through C6’ and C8 through C12. Use of the practice quiz did not generally improve performance and may have detracted. 155 H5 mags EmuammcwEEoo. 50:33:60 .mfimOHe—Sw .Emgfimmumm ”95:0:qu coaumuznom 156 .ucoo . H5 Hugh ace also sequ Fres and ment they take cla: The imp the tm th 157 BACKGROUND AND PRIOR KNOWLEDGE A prior understanding of the concept of population (C32) may also have benefited students, as well as the knowledge of food chain sequence (B19), and the definition of an ecosystem (328). Those Freshmen and Sophomore students (B5) with a few transfer credits (B3) and good previous course performance (B6) did better on these K ele- ments than did others in the course. The students that performed well on these K indices also tended to do poorly in High School Biology if they took it, tended to take more College Chemistry, were required to take MSU remedial Math course 081 but not 082, were not repeating BS 202, and reported to find lab work helpful but not the studying of class notes. (B123, B135, B139, B156’ B161’ and B171, respectively). The successful student also reported a tendency not to "freeze" on important exams (B63), a confidence that it is not necessary to know the type of exam questions beforehand (B80), that it was not necessary to work with others on course work (B100), that it is generally unwise to follow the majority (B107, B108) and that it best to answer a ques— tion based on how you feel it should be answered (B94). These students may be characterized as prepared, methodical, unimaginative, conserva— tive and conscious of the opinions of others (B116). GOODNESS OF FIT AND EXTRAPOLATION Table 6.2 contains a Summary describing the goodness of fit of the model's regression—based equations to the base term (Fall '77) and the validation term data. The following parameters are included to prOvide an indication of the goodness of fit: Multiple R — the multiple regression coefficient between the set of independent variables and the dependent variable. “”1 to ex: model term' ,t.nific fit x.- we‘Eks tfirm. c°mm 158 R2 - proportion of the total variation in the depend— ent variable explained by the combined linear influence of the independent variables. Sig. — an approximate significance level for the resulting multiple regression equation. Adjust. R2 - adjusted R2, a more conservative estimate of the fraction of variance of the dependent variable explained; based on the equation Adjust. R2 = R2 —-§E% (I—Rz) where N = number of cases and, K = number of coefficients + constants in the regression equation. R2* & Sig. - will be explained under week 2. Number of Variables — number of independent variables in the regression equation, not including the constant. Std. Dev. Resid. Standard Deviation of the residual, where the residual is equal to the difference between the actual value of the dependent variable and the re— gression estimate. For the K elements generated within the first quiz it was possible to explain 51 to 64 percent of the variance using 18 to 29 independent model variables. When these equations were applied to the validation term's data only one dependent variable, K1’ was estimated with a sig— _nificance level equal to or less than 0.10. The reason for this poor fit was the lack of any close similarity during the first few class weeks between the validation (Winter '78) term and the base (Fall '77) term. However, the two versions of the course converge toward a common ground as the weeks proceed. N.W Mud—”QB 159 mHnmoHHmmm uoz I <2 22222222222 202 I 22 22 <2 <2 <2 <2 <2 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 <2 <2 <2 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22 22 22 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22 22 22 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22 22 22 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22 22 22 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22 22 22 <2 <2 222. 22<. 222. 222. 222. 22222 III2m11IIIIAmw1llnmmw|11nwmnz1lmmmlllll 22 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22 22 22 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22 22 22 <2 <2 222. 222. 222. 222. 222. 22222 22 <2 <2 22. 222. 222. <2 <2 222. 222. 222. 222. 222. 22222 mo .222 222222 22 u 2 222 n 2 2222 222222 . 2222<222<2222 2222 22<2 ZOHHon umMn 0222225: 222252 .32 2< 2222 222.223 I 2222422222222 2222. 22222 ZOHHEOEHMAH Qz< HHM ho mmmznooo monH1bé the result of the permutation in weeks three and four of the winter term. m It, M22230“ "I I I I I I I I 22222 22 22 22 22 22 22 . . . . . I 222 222 222 222 222 222. 222. 22222 I I I I I I I I I 22222 I I I I I I I 22222 I I I I I I I I 22222 I I I I I I I I 22222 I I I I I I I I I 22222 22 22 22 222. 222. 222. 222. 222. 222. 222. 222. 222. 222. 22222 I I I I I I I I I I I I I 22222 w I I I I . .I I I I I I I I I 22222 1 22 22. 222. 222. 222. 222. 222. 222. 222. 222. 222. 222. 222. 22222 22 22 22 222. 222. 222. 222. 222. 222. 222. 222. 222. 222. 22222 22 22 22 222. 222. 222. 222. 222. 222. 222. 222. 222. 222. 22222 I I I I I I I I I I I I I 22222 I I I I I I I I I I I I I 22222 $2222 .222 2 .222 2 2 .222 2 .2282 2 .222 2 2 20 y. «2 2 22222222 22 <62 2222223 2 22222222 2022252 .mum . 22 u 2 222 I 2 2222 22.2222 I 2222322222222 2222 222.2 ZOHH mo Honaaz mz mz .wfim m « 22 wow. N mm I 2 Emma MMHZH3 I ZOHHon .wuw wqm. m N 22:222. 200. .222 0mm. mm MOH I 2 Emma AA .222 2 .222 22 « 203532 ZMWH “MHZHZ 2 2 02222252 mm I z I ZOHH22 2 22 .32 mo2 u z 2222 22<2 ZOHHoQ . afimfiuHSZ 22.232 Honaaz .Vum 22 u z 222 I z 2222 22.222: I 2222522322222 2222. 2.22 ZOHHmn umsnw< waafiuHDX mu n z vum 2222 222222 I 2222<222<22 222 u 2 NM Emma 22ma sum“ N 22228222 m2 I 2 .eum 2< 2222 222222 I onagy (B51). Throughout the term these students also demonstrated a mas- :ery of the concepts of organism (K0106), matter cycle (K0308), organic mlecule (K0808), inorganic molecule (K1005), photosynthesis (K1508), ood chain or web (K2309), predation (K2808) and population growth/ tability (K4009). lCKGROUND In terms of background the successful student may have been a ansfer student (B155) but transferred few credits to MSU (B3), tended have a positive attitude toward science (B149) and, had little or no 194 previous college biology courses (B125). These students also indicated that they felt that the study of class notes was very helpful in a science course (B ) but that studying and discussing course material 171 was not helpful. Both positive and negative correlations were found between K elements and the expectation of a high grade in the course. From the Affective Questionnaire, the successful students tended to report that they become confused on tests or with intense study (B68), that students should think how they are answering questions on a test (B85) and look for helpful ideas for answering some questions on a test in other questions (B93), that every word in a test question is import— ant and, that it was not necessary to look over the entire test before starting (B89). These students also reported that they enjoyed working with students who get good grades in class (B99), but didn't need the encouragement of friends when they met with failure (B101). These students may be characterized overall as fearing exams, somewhat depend— ent on friends and family for support, with a tendency to work well with. ). others and very conservative (3117 INSTRUCTIONAL VARIABLES It appears that the most successful of these students tended to attend the eighth lecture (18) (a week when attendance was low because of a holiday), and the second and ninth SASS (113, I20). They used the fifth practice quiz (I47) but not the first lecture tape (I32), and tended to have retaken each of the nine practice quizzes in preparation for the final (197). These students also scored high on the second quiz (I ). 101 GOODNESS OF FIT AND EXTRAPOLATION Table 6.11 contains the parameters describing the goodness of fit and extrapolation of the model equations developed using the data from 02 22 22 200. 022. 022. 200. 0<2. 020. 222. 200. 220. 002. 02022 22 20. 2<2. 200. 002. 222. 200. 00<. N20. 202. 200. 200. 0<0. 02022 I I I I I I I I I I I I I 02222 <2 22 22 200. 2<0. 202. 200. 002. 0<0. 202. 200. 0<2. 022. 02022 02 22 22 200. 0<<. 200. 200. 002. 220. 222. 200. 020. 220. 02222 _ 22 N. <<0. 200. 000. 022. 200. 0<0. N00. 002. 200. 220. 202. 02<22 I I I I I I I I I I I I I 02222 I I I I I I I I I I I I I 02222 22 200. 022. 200. 222. 202. 200. 022. 2<0. 002. 200. 022. 202. 02022 02 <0. 202. 200. 022. 022. 200. 220. 220. 222. 200. 220. 222. 02002 02 200. N2<. 200. 222. 022. 200. 2<2. 220. 222. 200. 200. <22. 02202 22 H0. 222. 200. 220. 022. 200. 22<. 220. 220. 200. <<2. ~20. 02002 I I I I I I I I I I I I I 02202 I I I I I I I I I I I I I 02<02 22 22. 220. 200. 022. 022. 200. 22<. 220. 022. 200. 220. 220. 02202 i I I I I I I I I I I I I I 02202 I I I I I I I I I I I I I 02202 , 2222222> .222 2 .222 2 2 wwww 2 .02222 2 .222 2 2 2 2o 2 IN N 02220202 22 .>22 22m20< N 02222222 1 Monsaz .mum . l 02 I 2 202 I 2 , 2222 222222 I 2022<202<2222 2222 22<2 ZOHH22 2 2 22222222 umpezz .vum umsflu< 22 I 2 202 I 2 Emma MMHZHB t ZOHH .wfim Nm .me m m .me m .vwwmm m .me m m we 2 2 N wamfiuasz «N .>wQ mmh N waafiuaaz 229892 .vum u v< mu u z MOH u z 2mmh MMHZHZ l ZOHH @552 no anneaz mu I z mOH I z 2229 22H2H3I20HHonw3 02u mo wucouusouo ume och .umwuoum wsu wcuuaHoxw .udeun 2 may we wcowumHDUHmuwu Aquu: we 2055:: u:H~ 2 <2 . <2. 2. .. <2 <2 <2 <2 <2 oS. 22. So. mom. 9:. o 2 .32 2 <2 <2 <2 <2 <2 S. mom. go. So. So. now. So. 2 N 32 NN <2 <2 <2 <2 <2 So. 23. 2:. one. So. 22. So. . S N No“ mN <2 <2 <2 <2 <2 So. <9... 22. 22. So. NS. ooo. o2 N 32 S mo. ooo. So. Rm. 2:. So. So. So. So. So. oS. <2. 8 N of. 2N 22 22 So. Non. N2. So. mom. ooo. N2. So. So. ooo. S N 222 3 <2 <2 <2 <2 <2 <2 <2 «No. o3. So. Non. o2. o 2 of. NN <2 <2 <2 <2 <2 S. 222. ooo. 22. So. ooo. Nmo. o2 N R2 2N <2 <2 <2 <2 <2 2o. oNo. moo. <5. So. ooo. omo . S N 82 <2 <2 <2 <2 <2 <2 <2 <2 22. So. So. 23. as. o 2 was. 2N 22 22 So. 2<2. 2N2... So. Nom. o8. So. So. N22. 9:... o2 N <22 2 <2 <2 <2 <2 <2 <2 <2 Non umsn 0H HuH 2 ummq mo Mm£E32 5 3322:; .23 :3. we nuns—.2 m“ I z mofi n z 2222 22223-2oifiofi25 2222 22: 22<=22w ZOHH QC 6.235.252 vcaopmxuom ”muucwuusouo «Hm—202228.200 mo 225269222 bananwn 206 +2+2 +2+2 W“ i luv +2 -2 +2 +2 I222 I2 I2 I2I2 I2 +2 I2 +2 +2 +2 -2 I2 -2 +2 +2 +2 -2 I2 I2 +2 _ +2 __.+2 I2 -2 +2 +2 I2 +2 I2 +2 +2 +2 I2 -2 -2 +2 +2+2-2 +2 I2 +2 I2 -2 -2 +2 +2 +2 +2 +2 +2+2 +2 +2 +2 +2 -2 .2 3+2 I2 I2 I2 I2 I2 -2 -2 +2 +2 I2I2 I2 I2I2I2I2 I2I2I2 +2 +2 I2 -2 +2 -2 +2 I2 I2 I2 I2 I2 +2 -2 -2 +2 +2+2 +2 +2 +2 I2 -2 I2 +2 +2 I2 I2+2 I2I2 I2 I2 +2 +2 I2 +2 I2 +2 +2 +2 +2 +2 +2 +2 +2 -2 22 I2 -.2 .399533338R5nnfiSommuwmhwwwnwflmwfi2N8...— 23222 :— 22 :92 m m h w m .— n N2 .. .11... x 2.u=00v m2.o m2m<8 207 +2 H2 I2 +2 -2 +2 I2 I2 +2 Ii -2 -2 -2 _ ._. -2-2 I2 +2 +2 +2 +2 +2 +2 I2 I2 +2 +2+2 +2 +2 +2-2 +3 -2-2 +2-2 +2 +2 +2+2 I2 I2 +2 I2 I2 +2 I2 -2 +2 , +2 I2 I2 -2 .2 +2 I2 I2 +72 +2+2I2 +2-2-2 I2 +2 + +2+2+2 I2 +2 I2 I2 I2-2 +2 I2 I2 . +2 +2 +2 I2I2 I2 I2 +2 +2 +2 +2 +2+2 I2 I2 I2 I2 +2 +2 I2 +2 +2+2 +2 I2 I2I2 I2 +2 +2 . +2 +2 +2 -2 +2 I2 I2 +2 +2 +2 5992:3mnanbmwnmninm“2nonmucwr~w~ns~fluuflown-.2 252925522222 m c \- w m : m N 2 .2 2.u=oov o2.o m22<2 208 .2 I2 22 -I2 +2 +2+2 +2 +2 +2 +2 I.— IH IT.— . I2 _ _ I2 -2 +2 I2+2 2 +2 I2+2 [2 +2 IHIAIH l2...— +2 +~ +2 +2 +2 +2 I2|2|2 I2 I2I2 I2 M2 +2 I2 I2 +2 I2 I2 I2 I2 I 2 l.— + 2 +2 +2 +2+N I." IH I2 +2 +2 +2 +2 +2 I2 I2 +2 I2 I2 I2 +2 IH . .n +.— If“ I I2 I . +2 +2+2 +2 2 +2 +2 +2 + -2 +2 +2 +2 HM +2 :3 ii iii +2 +2 2 I2-2 . I2 +2 +N +2 IT..— +~ +2 I2+2 +2 +2+2 .+2 imagggmmamhmgmnfimm“2momwuouh~owa§2NN~ NONE 23222.22 22 222: a w . 1...: x 2.22.82 2 .o 2:22: nwm:mN2 209 +2 I2 +2 I2 +2 I2 -2 I2 I2 I2 I2 I2 +2 . +2. +2 +2 I2 I2 +2 I2 I2 +2 +2 +2I2+2 +2 +2 +2 +2 +2 I2 I2 I2 +2 H2 +2 +2 I2 +2+2 +2 +2 I2 +2 +2 +2 I2 I2 +2 +2 I2 +2 +2+2+2 5n:§2:3wmamhn$mmfinm“SommwowstNquNnNNNNONE 922-2225222292 m m h w m a m ~— v. 2.22282 2 .o 222252. 210 +2 I2 +2 +2 +2 +2 I2 +2 +2 +2 +2 +2 +2 . I2 I2 I2I2 I2 I2 I2 I.— I2 +2 +2+2 +2 +2 I2 I2 +2 +2 +2 -2 I2 +2 I2 +2 I2 +2 +2 I2 I2 +2 . +2 +2 +2 +2+2 +2 +2 +2 +2+2+2+2 +2 +2 IN IN I2 I2 I2 +2 I2-2 +2 +22 I2 I2 I2 I2I2 I2 I2I2 +2 +2 +2 . I2I2 I2 I2 -2 +2 +2 +2+2+2 +.2 52.236223233858963“ Bonmumunwfimwawflfi N82 222$ :2 2222222 m o 2. m m .2 m N2 v2 32v $202252 wwuw23052 uawuaou m> 22v 322223-252 22220302223222 umwocuuuauuo 2w=02umawpuou mo hucmsuwum <2 .9 2.22322. 211 +2 +2+2 +2 +2+2 +22 +2 +2 +2 +2 22 +2 +2__,_.+2L +2I2 I2 +2 +2 +2 +2 +2 +2 +2 +2 +2 I2 +2 I2 +2 I2 I2 I2 +2 +2 I2 +2 +2 +2 +N +2 I2 +2 I2 +2 +2 +2 -2 I2 I2 I2 I2 +2 . I2 I2 I2 I2 I2 I2 I2 +2 I2 I2 +2 I2 I2 +2 +2 I2 . . +2 I2I2 I2 +2 +22: +2 I2+2 I2 5m:~:2:3@memhmgmninmfi2momw~ewh~wNmN§mNNmNONE m2n2w2m2:2m2~222c2 m m 2. w m .2 m N 2 v2 2.2:o02 22.0 m2m ADC wag-“2222022292 unwocoo "muocwuusuoo Hacc2um2uuuoo mo 232202225222 2 ..w 22.-22222.2. 2N'memxov\ooc\ rm 214 +2 . . . +N +2 +2 I2+2...... I2 +2 snag—:3wnwnhmgmmfimn“fianmwathNfifinNNn2N8202h2w2m2 .22 22222.2 m m 2. w m a m N 2 x - 2.22282. 2.0 2.2.2225 CHAPTER 7 APPLICATIONS -AN EXAMPLE There are a number of situations in which a course model of the type developed in this study might be applied. If a course was offered and taught regularly by the same instructor in a manner and with a syl— labus unvarying from term to term a model of this type could be developed and implemented as a quality control monitor and feedback mechanism. Regular processing of the information collected on the students through the model would produce predictions on probable student performance in the course, much in the same manner as the model "predicted" student per- formance in the Winter term for the current study{- The instructor on a regular basis throughout the term could suggest possible corrective remed- iation for those students which were predicted to have difficulty with certain aspects of the course. The model in this situation would serve as an instrument to improve course efficiency and productivity. Another possible use of a model of this type is in the formulation and investigation of research questions. The model provides a concept? ual structure which will fit any type of complex, sequential instruction. Given that a large number of variables are involved in the processes and phenomena in question, the modeling methodology provides a method for ’isolating those variables strongly related to the dependent variables under study. Once these "strong" components are isolated, the more subtle interactions may be investigated and isolated with further exper— imentation and standard statistical techniques. 215 216 To demonstrate the usefulness of the modeling scheme, a combina— tion of the two previous suggestions was undertaken using the BS 202 course model developed in this study. This demonstration employs the model both in a variation of the "quality control" feedback mechanism and as a "first stage" investigatory tool. As mentioned earlier, one of the perennial problems in BS 202 is the large number of students in the course who do not achieve the level of mastery of biological science desirable for elementary teachers, although they do receive a passing grade. Many components have been added to the course over the years it has been taught to improve stu— dent performance. Still there are students that perform at a level inad— equate for their intended profession. A possible new approach to this problem would be to divide the in— coming student class into groups based on specific individual academic inadequacies or instructional behaviors and modify or supplement the instruction given each group to improve student performance. It might be possible to isolate members of the class that are poor readers, for instance, and provide the group with instruction which minimizes the effect of reading on performance in the course. Another group might be found which has poor study skills. These individuals might be provided with supplemental instruction to improve their study of biological sci— ence. Unfortunately, previous attempts at the identification of such groups have met with little success. The BS 202 course model is based on a large amount of information on ,student behavior and background. If definite and meaningful student groups exist within the class, it is probable that this information con— tains parameters useful in identifying those groups. It is also possible that those variables which consistently appear as the "strong" correlates 217 in the regression model detailed in Chapter 6 and Appendix E are related to the grouping parameters. If such was the case, then by using these variables groups within the class could be identified and characterized. Furthermore, if these variables were all meaSured within the first week or two of the term, then the groups could be identified in time to apply modified, supplemental, or remedial instruc— tion for the remainder of the term and perhaps improve student performance. What was done here to illustrate an application of the model was to search through those variables which appeared as strong correlates with the dependent performance variables and choose from among them those which were collected early in the time schedule of the course. Using this sub— set of variables strongly related to performance students were sorted into several groups based on similarities in the values of the variables used. The students assigned to each group were then very similar to one another on many of these characteristics measured by variables available early in the term. Dissimilarities on these characteristics were apparent be— tween groups. At that point, the complete variable profiles of the stu— dents in each group were analyzed for similarities. While the variables used to initially group students reflected characteristics measured early in the course, this analysis of the entire profile provided more informa- tion on and insight into the nature of each group. Thus students were first groupedaccording to characteristics measurable early in the learn- ing process, then student information reflecting characteristics meaSured throughout the entire course process were examined and analyzed. This analysis of the total information available on each student produced broad group profiles and suggestions or hypotheses on how the learning performance of each group could be improved or supplemented. 218 An inspection of the tables containing the model coefficients in Appendix E confirms that there are indeed a number of variables which appear as strong correlates with the performance indices throughout the term. There are at least forty—two such strong variables which are available within the first two weeks of the term. These forty-two vari— ables are listed in Table 7.1 with a description of the general grouping parameters to which each contributes. These variables reflect previous academic performance, prior knowledge of biology, testwiseness, test anxiety, attitudes, expectations, and learning preferences. The last three variables indicate instructional behavior and performance. To locate the meaningful student groups the forty—two variables were used as grouping variables in the Veldman (1967) Hierarchial Grouping Analysis computer program (HGROUP) located on the University of Michigan computer and available through the MERIT Network. This pro- gram groups N cases in N-l to 2 groups through an algorithm which assigns cases to groups in an attempt to maximize the average intergroup distance while minimizing the average intragroup distance. The HGROUP program deals with profile similarity and groups cases based on a minimal increase .1 in within—group variation at each step. Table 7.2 contains the HGROUP clustering of 94 students from the Fall term, beginning with the forma— tion of twelve groups from thirteen. Eleven students were not included in the grouping analysis because of the unusually large amount of missing data in these students' profiles, thereby decreasing N from 105 to 94. Student cases in Table 7.2 are represented by a one to three digit code «followed by a "C". Table 7.2 does not provide any information on the first eighty grouping steps; from 93 groups to 13 groups. Starting with the twelfth grouping, the most similar groups are combined forming ll, 10, 9, etc., groups. Each absorption of one group by another increases TABLE 7.1 GROUPING VARIABLES VARIABLE ACRONYM GENERAL GROUPING PARAMETER B3 TRCR Transfer Credits 1 B6 MSUPTS Previous Academic Performance 1 B18 PRE008 General Knowledge, Ecology B19 PREOO9 4§Lecific Knowledge, Ecolflgy i BZ3 PRE013 Knowledge and Application, Biology 1 B28 PRE018 General Knowledgg, Ecology I B35 PREOZS Specific Knowledge, Ecology B41 PRE031 General Knowledge, Ecology B42 PRE032 General KnowledgeJ Biology :63 AFFOO3 Test Anxiety I. 67 AFFOO7 Test Anxiety B68 AFFOO8 Test Anxiety B71 AFFOll Test Anxiety B74 AFF014 Test Anxiety B81 AFFOZl Test Wiseness B85 AFF025 Test Wiseness ‘ B87 AFF027 Test Wiseness W” B89 AFF029 Test Wiseness B9O AFFO3O Test Wiseness B92 AFFO32 Test Wiseness B93 AFFO33 Test Wiseness B94 AFFO34 Test Wiseness B98 AFFO38 Peer Orientation B107 AFFO47 Peer Orientation Bl08 AFFO48 Peer Orientation - 3123 BKGOO4 Biology Background B125 BKGOO6 Biology Background B126 BKGOO7 Attitude Toward Biolggy B131 BKGOlZ Science Background :135 BKG016 Science Background 138 BKGOlQ Mathematics Background TABLE 7.1 (Continued) VARIABLE ACRONYM GENERAL GROUPING PARAMETER B149 BKGO30 Attitude Toward Science B151 BKG032 Egpectations in Course B152 BKGO33 Egpectations in Course B153 BKGO34 Previous Academic Performance 2 B161 BKGO42 Learning Profile h B168 BKG049 Learning Profile B171 BKGOSZ Learniflg Profile B175 BKG056 Learnincr Profile 1 Il LECOOl Lecture Attendance I70 0NE03l Practice Quiz Usage I101 Q2 Performance on Quiz Two 221 TABLE 7.2 HIERARCHICAL GROUPING ANALYSIS OUTPUT (VELDMAN'S H GROUP) 12 GFfIUPS AVYER C HBINING S 6 (“I 1‘) AND S ‘2 (“I 3). Elflflk I 75.5000 1 (I A) 1 53‘ ‘76 NH 1 c 2 («u 25) 2 '1 c 11¢ 15c 30¢ 11¢ 13¢ 11c 15¢ 60¢ 62¢ 66 71¢ 76¢ 77¢ 76¢ l‘t 91¢ 91c 1uoc 102¢ 1¢3¢ 1o1¢ c 1 (u: 3) 5 27¢ 96¢ c 6 (u- 17) 7 16¢ 23¢ 21¢ 25¢ 31¢ 36¢ SEC 1¢c 11¢ 50¢ 52c 55¢ 71 92¢ 93¢ 1¢5¢ 1 7 11: 16) E zzc 31¢ 12¢ 59¢ 61¢ 6!: 66¢ 91¢ 1o1c c e (NI 5) 9 Inc 29¢ 56¢ 96¢ 1 9 1h: 11) 1o 11¢ 26¢ 27¢ 26¢ 69¢ 75¢ 03¢ 61¢ 97¢ 99¢ (SE 1 11 (1- 1) 12 37¢ 57¢ 70¢ » c 16 (u: 1) 19 0?: 65¢ 91¢ 1 17 (u- 5) 20 19¢ 73¢ 79¢ 32¢ c 16 1". 1) 21 32¢ 61¢ 65¢ c 31 o.- 2) 35 56c 6.6 11 caouvs 117¢n c nexuxuc c 9 (n- 11) nun c 17 (I- 5). 59901 - 62.3716 1 1 1 - 1) 1 53¢ 6 1 2 1»: 25) 2 3¢ 6c 11¢ 15¢ 50¢ 11¢ 13¢ ‘11c 15¢ 16¢ 60¢ 62¢ 66 71c 76¢ 77¢ 76¢ 61¢ 90¢ 91¢ 100¢ 1021 105¢ 101¢ 1 1 (n- 5) 5 67¢ 96¢ ¢ 6 (n: 17) 7 16¢ 23¢ 21¢ 25c 51¢ . 36c 36¢ 1¢¢ 16¢ 50¢ 52c 55¢ 71 92¢ 93¢ .105¢ 1 7 (~- 16) 1 22¢ 31¢ 1:: 59¢ 61c 66¢ 06c ‘91¢ 1o1¢ 1 6 (u- 9 16¢ 79¢ 56¢ 60¢ . ' 1 9 (u- 16) 10 11¢ 20¢ 26¢ :7: 26¢ 19¢ 69¢ 73¢ 75¢ . 79¢ 62¢ 03¢ 61 97¢ 99¢ ‘ c 11 (n: 1) 12 37¢ 57c 70¢ a 1 16 (u- 1) 19 63¢ 65¢ sec 5 ;! (u- 1) :1 37¢ 61¢ 65¢ . 1 1 (n- 2) -5 56¢ 2.0 ‘. 10 690095 1112: c nuxuxus 1 2 tue 25) AND 1 7 (a: 10). Elana - 61.3652 ' 1 (N: 1) 1 5}: 67¢ a c z (u- 35) 3c 6c 11¢ 15¢ 22¢ 30¢ 31¢ 11¢ 12¢ 13¢ 11¢ V 5 16c 59c 60¢ 62¢ 61¢ 66c 66¢ 71¢ 76c 77¢ 70¢ 61¢ 9c¢ 91¢ 91¢ 1009 101c 10?: 105¢ 101: c 1 (u- 3) 5 67¢ 96¢ c 6 (v- 17) 7 16¢ 23¢ 21¢ 25¢ 31¢ 36¢ 35¢ 10¢ 16¢ 50¢ 52¢ 55¢ 71 92¢ 93¢ 105¢ 0 r (n- 5) 9 16¢ 29c 56¢ 60¢ - c 9 (u- 16) 10 11¢ 20¢ 26¢ 27¢ 26¢ 19¢ 69¢ 73¢ 75¢ 79¢ 62¢ 03¢ 1 97¢ 99 _ c 11 (NI 1) 12 37¢ 57¢ 70¢ c 16 (n: 1) 19 63¢ 65¢ 61c , 1 15 (u- 1) 21 32¢ 61¢ 65¢ c 31 19- 2) 35 56¢ 0'6 9 110095 111:: COHFXNING 1 9 (u: 16) auo c 11 (us 1). 59909 - 65.0161 1 (u: 1) 1 53¢ 67¢ 09¢ 1 2 (u: 35) 2 3c 6: 6c 11¢ 15¢ 22¢ 30¢ 31¢ 11¢ 12¢ 13¢ 11¢ 15 16¢ 59¢ 60¢ 62¢ 61¢ 66¢ 61¢ 71¢ 76¢ 77c 76¢ 61¢ 66 96¢ 91¢ 91¢ 1001 101c 102c 103c 101¢ 1 1 (n- 3) 5 67¢ 96¢ 1 6 (n- 17) . 7 16¢ 23¢ 21¢ 25¢ 31¢ 36¢ 33¢ 10c 16¢ 50¢ 52¢ 55¢ 71 92¢ 93¢ 105c *~ 0 r (u- 5) 9 15¢ 79¢ 56¢ 6¢¢ I 1 9 (n- 20) 1: 11¢ 12¢ 20c 26¢ 27¢ 22¢ 37¢ 19¢ 57¢ 69¢ 70¢ 73¢ .s' 75 79¢ 72¢ 13¢ 61¢ 97¢ 99¢ ' 5 16 (n- 1) 19 63¢ 65: 62¢ , ‘ 1' (N- 1) 21¢ 32c 61 , C 31 (N: 2) 35C 5“ C 65C 8 3 . c 3:\nuurs 111:9 (Dnnlnluc 6 1 (~- 1) AND 1 1 (u: 3). sauna - 93.3100 ‘ 2 ::' 1;; 5: 5c 53¢ 67¢ 67¢ 59c 96 - . c 3c 6c 6c 11¢ 1 .5. I... 5.. m .2. .35 if: 22$ #5 9:: $2 "3‘ “t ‘ a ‘N_ ‘7) 6;: ::: 91c 91¢ 100¢ 1o1¢ 102¢ 103¢ 1o1¢ 75‘ "“ 7“ 92¢ 3g: 1::: 25¢ 31¢ 56¢ 33¢ 10¢ 16c 50¢ 52¢ 55¢ : 9 :3: 2;; 12¢ 16¢ 79¢ 56¢ 90¢ c 11¢ 12¢. 20¢ 2 75¢ 79¢ 12¢ 83¢ 9:: 5;: 2" 57¢ ‘9‘ 57‘ °°c 7°‘ 73‘ g ,6 ( _ 99¢ ‘ 10 1: 2; :3: 63¢ 15¢ 23¢ ' 32¢ 61 c 31 (n. 2, ”c s" 5 65¢ 14.6 7 100093 111:9 (OlBlNlu‘ c-“z 19- 35) 110 1 6 (u- 5 . ‘ A ::: ‘3; g: 3‘ 53: ‘7‘ '7‘ )i9gnnaa 9. 107.6966 . ¢ 6c 6c 9c .1, ,3. 1“ :2: :2: 2:: s: :2: :2: 2:: :1: ‘ 6 10“ c a: so: 01¢ 66c 90¢ 91¢ 91¢ 100¢ 101¢ 162; 103; (N' 17) 7c 16¢ 2 1 ‘ 6 (9. 20) ¢ 92‘ 9;: 15;: 25¢ .1¢ 36¢ 36¢ 10¢ 16¢ 50: 52¢ 55¢ 10¢ 11c 12¢ 20¢ - 75c 79c 32¢ 13c :2: 2;: 3;: 37‘ ‘9‘ 57¢ °°t 70¢ 73‘ ‘ 16 ‘~- 1) 19¢ 63¢ 05¢ 63¢ ‘ 15 (~- 1) 21¢ 32¢ ‘1: 65¢ ‘ 3“ 0'- 2) 35¢ 56¢ 8 5 . 6 SROUPS AVIEI COMBININ- 6 2 (N- 7 1¢ 51¢ 6 G 2 1:: 57) 2¢ 5 6C 25¢ 23 3¢¢ 46¢ A 50¢ 71¢ 7 77¢ 101¢ 10 103¢ C 9 (k- 20) 10¢ 1 12¢ 75¢ 7 IZC C 16 (N- 6) 19¢ 6 85¢ 6 18 (“I 6) 21¢ 3 61¢ 6 31 (N- 2) 35¢ 5 C S 6|0UPS AFTER ¢OIBXIXN S 9 (N- 6 1 (NO 7) 1C 53¢ 6 2 (ll 57) 2¢ ¢¢ 25¢ 2’ 30¢ 66¢ 6 50¢ 7 77¢ 101¢ 10 1¢3¢ 6 9 ("I 2‘) 1°C 1 12¢ 65¢ 6 70¢ 6 16 (H- A) 19¢ 61¢ 85¢ 6 31 (N- 2) 35¢ 5 A GROUPS A'IER ¢DIBIN1NS G 2 (N. G 1 (N 7) 1C S¢ 53¢ G 2 (N: 61) 2¢ 3¢ 6 26¢ 25¢ 29¢ l5¢ 60¢ 63¢ 68¢ 71¢ 75C 92¢ 93¢ 94¢ G 9 (ll 2‘) 10¢ 11¢ 12¢ 65¢ 69¢ 73¢ G 31 (“I 2) 35¢ 52¢ 31GRDUPS AV!!! ¢0HBINXN6 6 2 (N- 7 1¢ .¢ 53¢ 6 2 1:: 63) ?¢ ¢ 2A¢ 25¢ 29¢ LAC 55¢ 66¢ 65¢ 66¢ 65¢ 91¢ 92¢ 9 9 (l- 2‘) 10¢ 11¢ 12¢ 69¢ 70¢ 2 SROUPS AFYEI ¢OIBINING 6 1 (NB 6 1 (MI 73) 1C 2 22¢ 23¢ 24¢ 62¢ 63¢ ALC "60¢ 62¢ 63¢ 81¢ 55¢ I6¢ 101C 102C 163¢ 6 9 (II 2‘) 10¢ 11¢ 12¢ " ' 65¢ 69¢ 70¢ 222 TABLE 7.2 cont'd. ‘0) AND G 6 (N: 17). EDRUR I 116.5689 67¢ 57¢ 9 89¢ A 9¢ 15¢ 31¢ NC “t Ht 52¢ 55¢ 56¢ 59¢ 78¢ 80¢ 81¢ 86¢ 1¢4¢ 1b5¢ 20¢ 26¢ 27¢ 2P¢ 83¢ 86¢ 97¢ 99C 28¢ 65¢ '20) AND 6 18 (NI 5). ERROR I 122.3687 67¢ 87¢ 89¢ 96 7C 15¢ 63¢ 60¢ 90¢ 37¢ 6c 9¢ 11¢ 15¢ 31¢ 31¢ 36¢ _ 36¢ 10¢ 52¢ 55¢ 56¢ 59¢ 60¢ , 70¢ 10¢ Ht 66c 90¢ um um 20¢ 21¢ . 26¢ ' 27¢ 21c 73¢ 75¢ _ 79¢ 22c 63¢ 66¢ 57) AND 6 16 (N- A). 9ERR09 I 126.3512 67¢ 27¢ 96¢ 7C ¢ E9¢ 1£¢ 30¢ 31¢ 35¢ 36¢ 50¢ 52¢ 55¢ 56¢ 6¢ 77¢ 78¢ Ft 13°C 131¢ 1’2¢ 163C 20¢ 21¢ 26¢ 27¢ 73¢ 75¢ 79¢ E2¢ 61) AND G 31 (N! 2). ERROR I 130.9125 67¢ 87¢ 89¢ 96 7¢ 8C 9¢ 15¢ 33¢ 31¢ 34¢ 35¢ 58¢ 50¢ 52¢ 55¢ 71¢ 75¢ 76¢ 77c 93¢ 95¢ 1¢0¢ 101¢ 20¢ 21¢ 26¢ 27¢ 73¢ 75¢ 79¢ 82¢ 7) AND G 2 (NF 63). ERPOR I 111.9151 5¢ Rt 9C 25¢ 29¢ 30¢ 31¢ A5¢ 66¢ 65¢ 50¢ 66¢ 66¢ 67¢ 68¢ 87¢ 88¢ 89¢ 90¢ 10£¢ 1”S¢ 20¢ 21¢ 26¢ 27¢ 73¢ 75¢ 79¢ 82¢ END 0' 91L! 0" IISUUR¢EI CAUSES A IEIUIN 70 ITS. EIECUIIDN TERMINAYED 8516 21: 17: 04 II1. 623 Ic-o ¢.97 36¢ 52¢ 71¢ 91¢ ZF¢ 83¢ 11.0 223 the total within—group error. Notice that the largest absolute in~ crease in error (A E) for these grouping steps occurs when 8 groups are combined to form 7 groups. For the purposes here, it is assumed that the 8 groups represent an "optimal” aggregation of individuals on the forty-two grouping variables. Thus, the grouping analysis has prodiced eitht groups of students with maximized intragroup similarities. Tables 7.3 and 7.4 contain the group profiles across the forty—two grouping variables. After the development of the eight distinct groups the entire array of background, instructional and performance data contained within the B, I, and K matrices was examined for within—group similarities and between—group differences. A number of similarities within each group was found as well as many between—group differences. The fact that students within each group are similar not only on the grouping variables but also on many other variables as well indicates that the groupings are in some sense legitimate, and may provide a clue to improved instruc— tion in the course. The next section contains a profile of each group based on the examination of the entire store of model information. The group profiles are presented as general descriptors or characteristics of the group as a whole which are based on the tendencies of the students in the group on a large number of variables. The suggestions for group performance improvement presented at the end of each profile discussion are based both on group tendencies and a comparison of the more successful students in each group with the less ‘successful ones. Such suggestions are of course hypotheses in need 0f testing through future studies. i‘x TABLE 7.3 VALUES OF GROUPING VARIABLES B18 THROUGH I7O BY GROUB NUMBERS GROUP G1 0002010 1111111 9’ I1 v9 G2 G6 '0". 0231!!- ,3 332002 .5 lellb 1!. 0 ~13 5203321..th 72¢ a a s Viv v v v V} v} VIQ} E .0 b m m \JZBZZZh v «V. . . \Q% N. 0000110 $1 . 8 0100011 I . A l°vu.naw1°' 3 goon-at“ I . 2 I’LCAU-Uo .3! I 0 l9J100101 . ”.010011 I . 7 030.... 0100 I . u I [-0- ".5000 1 81110111 I . ‘ 071111.110 . l n I I . 3629.111... . 7 51130000 I . 010000 _ --u-c-nco a. . 111.. n.- .C 1 50001101100 . . L I. . .5..C1I.11L..11C1 \111 13°1- 5.016701001001235 |703050 11111 15 3 2316006025 07. 39 12223335 A 555799“ 9 G gww002011zwa20001 11111011111111.1111 11 ZhlbflZJZZzthUJng-c £13W33233332Z§3332 2212422 1332352332223 302%33323331231‘302 511W§22z12222111°1 02142221322229.2233 000W0220200200¢0201 :10333222211333 2’.— - . 000000100 100000000 00000011010001.0110. . 31.310333112223333)! ,. 21110010102301.1112. . 1§°°1°"&o%:'1 “11111111111111.1111! 4.0001041000000000 11.101001111111100: 1.0000000000000000 \- DDDDDDDDDDDDDD 9009010 1ncnua‘naooxu-: 100000 1001000100000 1100001010-00333 1‘ 11.000011000000000 01111111111113.1111 . . ”1.1111110010010111 «.0 L100m-10010111r7-1100 “‘01. 7.111111141311011 r0010 0010100001100 an \111011101011900101 00011000000011 10101011000100.1011 00000 10101111000011 0; .1100111 110110120 01 9.0031000010011110 11111111010114.1111... 11111111111114.1111... 012367 07 97 901. 592507., 11122223.- 56777700099 G31 fits?bltflaiti‘uélSIBltllEJlilillliliifiszil 225 TABLE 7.4 VALUES 0F GROUPING VARIABLES B 3’ 36’ I101 ‘ l l i TABLE 7 .4 (Continued) 1 Group Profiles and Hypotheses for Instructional Improvement Group G1 Group G1 was composed of seven individuals Fall term 1977. They appear to have entered the University with the intention of pursuing a scientific or technical major, but for some reason, probably the lack of quantitative skills, changed major to a curriculum requiring BS 202. Generally, they had a neutral or positive attitude toward science, aimed at a high grade in the course but expected to be satisfied with an average grade. They had taken some college physics or chemistry, received an A or B in high school biology, found lab work and class notes helpful in their studies and considered memorization important. Initially most knew some superficial aspects of biology, but little of the details. They tended to be anxious about test taking and having enough time to complete the tests, and generally not testwise or clever at playing the testing game. The individuals in this group tended to be somewhat conscious of and dependent on peer opinions and decisions. The students with the higher GPAs in the group were more conservative than those students in the group with low GPAs. They attended nearly all the SAS sessions, and usually used the lecture tapes to make up for missed lectures. On the continuum of dull to bright students, this group as a whole tends toward the dull end. There are a number of possibilities for improving the performance of those students characteristic of this group: 1. Encourage the use of the lecture tapes to make up for missed lectures. 2. Encourage the use of the practice quiz in preparation" for the weekly quiz. 3. Attention and remediation needs to be directed toward the poor study and critical reading skills character- istic of this group. 4. Some effort should be expended to Correct the tendency of individuals in this group to try to memorize every— thing taught in the course. 5. These individuals need to be actively kept involved in the course and encouraged to spend considerable time and effort in preparation. 6. Some of the individuals in this group do not benefit much from anything they try to improve their performance. Perhaps those individuals in this group with low GPAs need individual tutoring. (It should be remembered that each of the above suggestions is a hypothesis in need of testing. Each hypothesis is suggested through the data collected and analyzed, but not proven. Additional studies are needed to pursue these and all of the following suggestions or hypotheses.) Groups G2 and G31 Group G31 appears to be an irregular artifact, and so was merged with Group G2 for the purpose of analysis. Group G2 was composed of thirty-seven individuals, roughly one—third of the students in the course Fall term. Into this group falls the conscientious and the bored, the easily discouraged and the undaunted. It is a group with little regularity Ibeyond a tendency to be irregular in study habits and instructional be— havior. In general, the group was rather deficient in background know- ledge of biology although most took High School Biology with a grade of La 229 A, B, or C. They tended to be non-science oriented with almost no background of college biology, physics, or chemistry. Although most reported a neutral or mildly positive attitude toward biology, many indicated a negative attitude toward science in general. The group was generally not test anxious, but was moderately testwise and fairly independent of group pressure; although the worst performace was given by the most conservative of the group. The group has a GPA range of mid 2.03 to mid 3.05, with the grade in the course related proportion- ately to GPA. Most aimed for a high_course grade but indicated they would be satisfied with a 3.0 to 4.0. The poorer students in the group tended to be the worst judges of their own potential. Resource maga— zines and books were viewed as helpful in a science course, but not as much as lab, classnotes and memorization. The score these students received on the problem solving test (PRBSOL) may indicate the potential performance in the course. The Myers—Briggs test scores for this group indicated that most of the GZ students had profiles characteristic of elementary teachers, and would be expected to have little interest in technical things or abstract thinking. Several areas for performance improvement are suggested (or hypothe- sized) by the information collected on these students: 1. The one, single area of major improvement for this group may be each individual's need to develop a regular, consistent, disciplined mode or habit of study. They need to spend time each week regularly reading, studying course materials, and using the practice quiz. They should avoid any tendency toward irregular study and then try to catch up before the quiz. 230 2. This group would also benefit from instruction in critical reading and test taking skills. Group G6 This group was composed of seventeen individuals Fall term, mostly freshmen, sophomores, and transfer students. They tend to be a self—confident, although not overachieving, group of hardworkers who quickly adapted to the course. With one exception all the members of this group received a course grade in the 3.0 to 4.0 range. The group had a somewhat mixed background in biology, most having taken high school biology and received an A, B, or C, and over half having taken one term or more of college biology. Many may have transferred biology credit to Michigan State. The group had a generally positive attitude toward all science, including biology and intended to aim for a 4.0 in the course, but would be satisfied with a 3.0. The group had a good attitude toward lab, registering nearly perfect attendance in the small assembly sessions. They tended to use the lecture tapes to make up for missed labs, used the practice quizzes from midterm to final, spent considerable time in the tape labs and spent between 4 and 6 hours in outside study regularly each week. The impression from this group is that they need little in the way of extra help in the course. Some possible areas of improvement are: l. Lectures. Missed lectures tend to lower final grade. Lecture tapes should be used to make up for any lectures missed. 2. These students should try to use the practice quiz each week regularly throughout the term. They should _ take the practice quiz like a real test, then correct their mistakes. 231 3. Some of these students, especially the younger ones, need some coaching to improve their testwiseness, and confi— dence in their ability to take exams. Group G8 The five individuals in this group tended to have an average GPA and little or no background in college chemistry or physics. They received an A or B in high school biology and reported a neutral or mildly positive attitude toward both biology and science in general. They tended to initially know something about the basics of biology and ecology but little about specific biological or ecological proces— ses. They aimed high in the course, but indicated that they would be satisfied with an average grade. The group was generally mixed on test anxiety and self-confidence, and can only be considered partially test— wise. They generally reported themselves to be independent and not affected by peer pressures, but the results of their Myers-Briggs assessment is contradictory, indicating that the need for encouragement and praise. They generally registered a preference for memorizing facts over other modes of study. There is also some evidence that these indi- viduals become discouraged, and perhaps self destructively defiant, very easily and quickly. The following are areas where an increased instructor effort might result in increased performance and better attitude in the part of these individuals: 1. These students need continual attention, encouragement, and praise throughout the term. 2. These students should be encouraged to attend the lecture and SAS regularly. 3. They should use the practice quiz each week, looking up the answer to each question as they go through it. kg 4.14.2 in; fish’L-A$-_Q:. ‘ .5 4. Use of the tape labs should be enc0uraged. Perhaps the j instructor could provide more attention to these students C in the individualized sessions. 5. These students need help in critical reading and with the improvement of their study skills. Many of these students try very hard, but the lack of study skills causes them to waste a great deal of time, and eventually they become discouraged and give up. . Group G9 . Group G9 was composed of twenty students Fall term. This may be the group that the BS 202 instructors most clearly perceive as fail— ures in preparation for biology teaching. This group is composed of mainly transfer students (75%) and freshmen. Although they come to the 8 course with a GPA between 2.5 and 3.5, about one—half receive a grade of 2.0 or less; one—quarter of the group receiving a 1.5 or 1.0. No member of this group received a course grade above a 3.0. The group had a mixed background in biology. Those that took biology in high school reported a grade of B, C, or D. Although some reported taking W another college biology course, performance on the pretest was mixed; most knew simple definitions, but missed the more sophisticated questions. The group reported mixed apprehension about tests, and most of the stu- dents were not particularly testwise. Many lacked self confidence, but did not tend to rely on their peers for support. The group had little science background and indicated negative to slightly positive attitudes « toward biology. Over half were neutral or negative towards science in general. They all indicated that they intended to aim for a 3.0 or 4.0 in the course and would be satisfied with nothing less than a 3.0. Many were disappointed. 233 This might be a group to separate into a separate section where extra attention and encouragement could be provided. In addition, the following suggestions for performance improvement are provided: 1. Lecture attendance and/or use of the lecture tapes should be mandatory. . 2. Use of the practice quiz should be encouraged. Perhaps the practice quiz could be administered in a "dry run"‘ fashion in SAS, followed by discussion. 3. Minimum amounts of time spent in the tape lab should be set and mandatory. 4. Instruction in the improvement of study efficiency and critical reading should be provided to reduce wasted student effort and prevent discouragement. Included here should be the effective use of memorization. Many of the G9 students appear to have potential, but unfortunately most of it goes unfulfilled because of poor study habits and attitude. Group G16 There were four individuals in this group Fall term. These individuals tend to be intelligent, self confident, testwise, and inde— pendent. They had some high school biology, but little or no college science. They tended to have a neutral or positive attitude toward biology and science in general, and had high expectations for their own performance in the course. Although they had little previous knowledge of biology they were confident in their ability, and their self assess— ment was essentially accurate. They were clever thinkers and reasoners; INFJ or INTJs in the Myers-Briggs classification. l “.414. “:32” 234 $5.1..— Although this is a high performing group, the following suggestions as a; could possibly improve their performance: 1 1. These individuals should be given the opportunity to improve their test taking skills and reduce their test anxiety. 2. Increased usage of the practice quiz should be encouraged. 3. These students should be given some help to improve their use of the tape lab and prevent wasted effort. 4. The use of the straight memorization of fact should be discouraged. 5. These areas should be corrected early in the course to prevent discouragement. Group G18 1 This last group was composed of four students Fall term. These individuals tended to have about an average GPA on entering the course. They took high school biology, no college biology, but took several college physics and chemistry courses. With this science background they generally had a neutral or positive attitude toward biology and W science in general. They tended to know something about ecology, were able to generalize about the relationships of matter and energy, but apparently had forgotten many biology facts. They aimed for a high grade in the course but were willing to settle for an average grade. They were moderately confident in their abilities to take tests and were generally independent. ¢ Concentration in the following areas for these students would prob— ably improve their performance in the course: 1. They should attempt to attend all of the lectures. 2. Use of the practice quiz as a "dry run" before the real quiz may improve their performance. 235 3. They should study six or more hours outside class regularly each week. 4. Some effort should be made to help.decrease these students' test anxiety, improve their study skills, including the deemphasis of memorization, and improve their test taking skills. This will help decrease their frustration with the course. Summary This is as far as the grouping analysis can be taken with the infor— mation and procedures of this study. The next step is to administer the instruments containing the forty—two grouping variables to a new, fresh BS 202 class and divide the class into tentative groups based on the responses. Table 7.5 contains the operational1 variable values on which to base such groupings. The experimenter may also wish to add additional items or instruments, such as the Myers Briggs or the Cognitive Style Mapping, to further aid in student differentiation and group assignment. One possible research design would then have the groups each split randomly into experimental and control groups. The control groups would then be merged and received the standard BS 202 instructional package. The experimental groups would receive various treatments based on the hypotheses proposed earlier in this chapter to improve instructional performance. Such instructional treatments would include, but not necessarily be limited to; instruction in the improvement of study skills, 1These are the operational values of variable; for the pretest items an "0" indicates an incorrect response, a "l" a correct response. For the Affective and Background Questionnaire items (B 3 to B 7 ) the responses are shown as a number from 0 through 4, indicating a sfudent response of 1 through 5. The 0—4 is an artifact of machine scoring. o o «meg qmm o o o H o o o mmomg m mm o o mmomg Nam o o o o o o omomg com o o mmomrflw mwm o o ANDRE» nmm o o o o o o mmomaw mwm H H H H H H H HNOEE Hmm H H «HOE: qmm HHOE Hum H H woof? mom noomg new moon“?. mom 0 o o Nmommm qu HmomMm Ham 0 o o mNomMm mmm o wHomMm mum o o o MHommm mum o H H H H @0055 mHm o o H H H H H woommm me ooqmlo oomqlo ooowlo oowmlo ooomlo OOHmloom ooquOON 9?sz mm o o OOHIO mnlo mwlo oHlo oqlo MOMS. mm wHU 0H0 aw mu $0 No Ho Ehfiouo< anmHHm> mmbomo mK MHQH omINH nNIHN MNIO mNInH wNImH NNIHH omlom NO HOH H.o Hmomzo . cam o H H H H H H HooomH HH «.m.N.H s.m.~ m.N.H s.m.~ omouxm msHm s.m.~.H s.m.~.H m.~ s.m.~ s.m.m «.m.N m.~ Hmoomm H:MH s.m.~.H s.m.~.H m.N.H «.mHN.H m.N.H.o mqoosm onm s.m.~.H m.~.H s.m.~ s.m.m.H s.m.~ Nqoumm SHm ~.H H.o N.H N.H N.H.o N.H.o m.N.H smooxm mmHm m.~ N.H.o m.N m.~ N.H s.m.N mmooMm NmHm N.H.o N.H.o N.H.o H.o H.o N.H.o H.o Nmousm HmHm m.N .m.N.H m.~.H s.m.~ s.m.~.H omooem msHm H.on H H.o- H.o- H.o- H.o- H.o mHouMm mMHm H.o o o o o H.o oHouMm mMHm H.o o o H.o o o NHouMm HMHm m.~ m.N.H m.~ s.m m.~ s.m.~ sooomm GNHH o o H.o o H.o sooumm mNHm N.H.o m.N.H.ou H.o N.H.o N.H.o H.o accuse mNHm o o o o o o wqomfi mOHm H o H H H H ssosm< sOHm o o wmomm< mam wHo oHo so we so we Ho asaouo< mHanums mesomu mesaHucouv m.H mHm o :05 9.0... .m .omtaou mwcu cu towed HmmHmwm ome..ou $0 cmu> a .a o . . . .>m0_o_n ome—.00 .0 33330 0.5 .m Mm. 600 O HNM O OOH GMN 0 00¢ O $3.033? corona 0:0 .~ . 609500 260.032? .>m0_00~ {€303 30—03 Maui—lam 0c .— 3033 05; . .w . OOOGMQ . .3020“. cm 09500 >mopoou c< .n . . . . ..oofim :3: c_ 09500 30.03 c< .N ..Vm OQN. 0 CNN 0 OOH OHN 0 0mm O .3500 >mo.00u oz .— ncuxou 2,0... . .m mOOUMm a“ om .o :4 cu 0M 1 O O O O on 0N He «on o mom H Hm 005 0 0mm 0 .< ; “>mo_o_m c_ uc0E0>o_£0o wo _0>0_ c30> moAHEUmou anon uosu 000cm 05 38:2,: ..oocom :3: c_ 30.03 5 773300 0.03 30> m. ..H .VOOUMM .AomtaoU ucooum mummy mucoemconxu new «not. 50 cowuuotouc_ .m . .033 33 .4. .302“; name .m .0095 33 .N Om mflfiofl OON.O $0 ©NHoH 0&0 O .>m0_0_n Eovo: .— .Apoma xoofixou one. 05 00003:. 53:00 0:0 :22 9.06 «.80 30> u: MOOUVHQ ”mm: pom: xoonuxuo or» ..oozum Lam: c_ omtsou >mo.0_m m x000 30> u. .m .HOOLOm Law; a. >mo_o_n $0 mtoo> 03a cozy 0.05 .m ._0050m 3mm; c_ >m0_oma e0 meno> 030 .a . . 00 on m. c. >mo 0. 0 cm0> 0 . . . r H s c .... . H .a a. co m .Vm mom O 500 H OOH mON 0 06m H ..0030m 5mm: 5 30.03 mo 50> 0:0 :05 mau— .u .Hoozum cm”; c_ A>m0_0.m>za .>m0.00n .>couoav >m0_0_n 0c .. "coo—3 05... . .N NOOGMM .cozuo .m .comuouavo _o_00am .4 . . . _ 55.30.32. 220 .m an is H 8m 0 8H 3H H Sea 2 .23. .N £033.60 33550—0 .. um. 50.3... >: .— :HOOUMM z .>ma.nfim zmQ.nHm 24m: ZHHH Ehdouo< OHDQfiHfl> man awn. “EH3 . ..a I » BZHZDMHmZH mmH0E00 $0 _0>0_ L30> . 300:2... .93 m1.” :05 L050 33300 mu_m>:n_ 000200 coxmu 0>mz 30> w. .m. . MHOUMm . . .mON m1; :9: .050 000.500 3320 0m0200 030 :05 0.5:. .m _ m w¢m O OOO O OH O O .mON wt... :05 00:00 33300 35:0 0m0200 030 .N .mON £3 :05 ..050 00.500 mu_m>:a 030200 < .— 3033 02...; _ .N. NHOUMM .mON 00:03.0. .0032; E 002020 30:97:30 .m 50230233“ 03300 >n mow 00:0_0m .0035; 00303 0>mz .: Hm HON .H Noooo GO «NooH Nm¢.O 505055003 >0 mow 00:0.0m 30.0%.:— 00302 0>mz .m .moa 00:33 .0033: c0030 03: .~ .mo~ 00:0_0m .0032: 9.00.00 00: ._ HHOUMm H0>o£ _ an: ad .: , .o.~ 30—09 .m . . .m.~ ..0 o.~ .: HH 3m H 2N H Hm SNH OHNH “MUM “M o J _ 080va . “mm: 003000.. _ umsu 003m 05 50> w. .0— .02 .N .00» .— mm HON O @fiw O OOH OO.‘ O OmN O 503?: 30:00 :3: :_ 00.500 0 :00?» 30> 0>0= .m OOOUMm .03300 00:0_0m .3300: 0: .m 00:03.03 00:0..0m .3302 05 mo Acomusfiuwnam 03300 >3 L030; 0 .J . . . . 0053000 00:03”... .5302 05 90 Acoszfimé >5 L030: 0 .m mm mom H oom H OOH wmm H own H .355 .23.: 3...; 25 .H .00:0_0w .3302 00 ..m0> 0:0 :05 0.00. .— 95 2:00.00 02.0: _ :m: u< .m WOOU 030300 >L0> .m 031000 ..4 #0530: .m 03030: .N . o . . .0>.ummo > 0 . mm N80 $HN 8H ommo 8...... _ .._ ~00:0_0m 20030—03 0:033 0030.30 50> 003.5000 3000:3000 009.. 053028 05 mo :02: .n OOGMm z .>mn.nam E z. .595...“ g ENHH E90003 0HA¢HH¢> whmH Emma «Hm—Hz; wan Emma HASH .. , .ufiH 1523440.“)? .::.:.:5: .IC 0453.43.43.05... \4‘ ““2220 Hub mah— QZDOMQMUAVM. n pf!- .IVII|I|.| lww \ 251 om 000.0 omo.o Hm owq.o wqo.o dz A .3> 4 Amvum:=ou _u>o_ :w;m_; :o __ .mo. .90. :0: .- NNO©Mm Hm oom.o Nom.o >m HmN.o mom.o .02 .N .00) .. No. :h: .—N HwooMm Hm moq.o owo.o mm Hmm.o o>m.o ~00 2%: .ON omome Hm wqm.o mow.o mm Nmm.o q0m.o .02 .N .m0> .— —wo :h: .m .— mHQOMm Nm wom.o oqw.o Na Hom.o wqw.o .02 .N .m0> .— Am030_:500k 0>_umu_u:uadv :m. m. .m. “mom:300 :00: mcmzo__ou 0;: 0x00 0: 00:_300: E0 :0 :0xou 0>m: _ an: u< wHooMm Hm Hmo.H mmm.H mm owo.fi .owq.H .m3_=0_mu .m .mu_0050:ume 0m0__ou >:ouuano:u:_ :o n0_um20;ums .oocum zmw: vou:0>vm .: .>:uweo:0m_:u .00500 :m_: .m .>:00Eo0m .oozum gm”: .~ .m:n0m_a .oocom ;m_; .— umm 003_:0003 um0n m_ 00: 0>mz _ 30:0 .oozum ;o_z :_ m0.ums0zums :_ 00:300 vouco>vm umoe 0:» .s. >Houxm n wNm.H ooo.H mm>.o mwm.o .m0m:3ou >:um.50;0 0m0__ou 00:1» coca 0:05 .3 .m0m:300 >:um_E0;0 emu—.00 00:;u .m .m0m:300 >:um_Eozu 0m0__00 010 .N .0m:300 >:um_E0;0 ome—.00 0:0 .— ucuxou o>os _ .0— oHome Hm 00H.H mmo.N «mo.H ooo.~ .o.~ 30—0o .m .m.~ :o o.~ . .o.n . .m.m . .o.a . "max vo>_000: _ 00:0 000:9 0:0 .mo> w - a—NM—‘I .m— mHOUMm Nm mmq.o 000.0 mm¢.o «Hq.o .02 .N .m0> .— w>:um_Eo;0 _oozum ;m_; :m 00:300 0 coxau 30> 0>mz .: «Hoax: z .>mn.nHm zHQ.QHm z>¢H Emma AA “MHAVZZOHHWHWM 252 630.02. >:0> .m 030.00.. .3 .00 30.0 NNN.N 8 0006 «med gummy. .M .0>.0mm0: >:0> .. 20:0:0m 3. 005.00 0:033 0030.000 :3o> 000.:0000 3000:3000 000:. 9:36:00 0:0 00 £0.52 .00.. OMOOMm 6: .N N0 306 30.0 00 $0.0 £05 .3 ._ . 3.0. 0.5. 0:00 00 00:.300: 30> 0:0 :0 00.00 30> Bo .mu . ONOUVHM 6: .N mm :06 mum... mm med nmwd $2. ._ 2.0. .....< 0.00 00 00:.300: 30> 0:0 :0 00.00 30> 0.9 .m~ wNOOMm >250 00: 000: .m .02 .N .00 . mm mood 0.43.0 3 mid mood $2.538” n 00:0.00 0.. 0000:3200 3.0.00: 300550... :0 0:260 m:.v.:03 0:0.3o> 0. .2 , NOOMfl , >730 00: 000; .m mm 30.0 30H .3 «0.0.0 HmoH .mwn .N. .3 :3o> 00:0.00 0. 60:01.0:00 9:500... 33:020.... :0 v:mxoupmc§:oz 0:0 30> 0. .oN ONOOMM . .oz .0 .00> .. cm mqu 03.0 mm mend oomd .35.: 82: :0 £58...» .3530 5:8 mmooxm nn>mo.00m 50.3 $2003 00.500 03:00 0 00.00 00 :0... :0 300.00 0;... _ .mu .0 .m .c t... 0.. 30.0 804 3 205 SN; ..M ..M .. ._ . 380.0 “mm 003.5000 000a. 0. 00.006059: 00 >030 >E :. 0:0E0>0....00 00 .05. 0..» :N 3.9.0.: :o .2. .02 .02 E... .0 .3. F5. .0. .3223 2:... .m 0H :0... N9; mm 804 RTN 35%....” H. a: 0. 0.. : :0 > 30> 00:300 :00... .0>0. 000cm... 0:0 0. 00...) .0:MW3000:0H0:HWM o:w:”03n.0M0H:. .m~ MNOOMm. z .>mn.PH.m E z .5986 zfiE ZMHH shack“; . OHSNHHMNV mum.” Emma. ME; han Emma. Adm “NNHAVZZQ H“ “a: u 253 6: .N an 08.0 oooé ww ~36 0mm... .3» .. .50: 0...: ~o~ 00:0.0m .00.mo.o.o 9.30000: 20 . .nm NMOUMM 6: .N .. «m «3.0 306 mm 306 m8... .3» ._ 300:00 :0:uo:0 so: 3m... 3 00:03:05 . A? H OMOUMQ .xou: :00 0:30: o. :0>o .m - 3.003 :00 A0:30... o. u m 3.. 3.003 :00 0:30: o u m .m 3.003 :00 «:30: m n m .N .x0oz :00 0:30: N :0:0 000. .. mm mow... «004 cm qmwé 0:4 . "3.3 :o .00|.m|u|3m. 00:33 0......0 :0... m:.>03um 0.003 :00 0:30: 0:000 00 000008 . .mm mmaMm .o.~ 30.0: .m “an.“ n o..~ Hm «m 03.0 ~24 mm 02.0 mm... .Mfi H w.“ .M . no...- .I “on .— umcm: 0:0 55.: a. 0m0:0>0 2.00-0005 0m0..00 20:03 >.. .Jm ..VMOOMQ .o.~ .m . . ”MN a. qm mHO.H :oq.~ mm «No.o Hmo.N .MM .M .o.: .. ..0. 03300 0.:0 :. 0:. 30.000 0.303 00:0 0005 00.030. 0:... .mm mmowmm .QN fi H... .3 8o; 02.0 3 3:5 3.3.0 .3 .M .0... .. "0. 00.500 0.5 c. :00 5.0 2.2 _ 0003 0:... .~m NMOUMQ #:0503300: 0 00: a. 3.30.. 0:03 . 003000: 30.50 .m .>03>:0 u. 9.3 00 0:03 0.30) 03: 0:050:30: 0 2.0.3: o» .9. .0>o:0 00:03:06 :0: 0:23.300: 350:0 2.0.30 00 N.|:m .m Qm mmO.H mHm.H mm me.H NN©.H £0?e>&:9~t$§t:69_0.203000Nfla .N .0:0£0:.300: 00:0.0m 0m0..00 :0 :0.u3:.:um.0 0 ...:.3: o: Nflmm .. 00:33 2:» 9.0.3 Ea . ..m :HMOGMm z £55.95 24...: 2 .59.5m a EH 3000004 _ OHOQHHNP who... Emma. ME; :6.“ Emma. Adah 0 O o o "HZHZDMHmZH 0032233000 0200000640 E 254 Nm 65H H mwm N @m NNm 0 wow N .0505.» m:.30.>0: 0:0 6:33 [0» m:.>taum .Om omnuUMm mm 000 c 0.0 F 00 m «o 0mm.a .Bo.3c:&2:.323upso$¢ a; mqoomm mom-o Nqa.a. mm Hmm.o ome.” .nwmefler: a: wqoomm N0 084 80.0 mm ommd 20..” $8.23: .2 300%: am $06 mad am 984 Now. w .2253: .3 , $0005 00 urc w .0Ew:...xw >:0> 00:30:60 >.u:m..m 002 m J m N . ”0.000 9.30200 0:0 00... 000.500 0000;700:200 :0 00:0.00 0000 :. 0:000:00 m:_::r.0. :. 30> 00 03_0> 00. 0: 050.8000 m:.20..o~ 0:0 00 :000 000.. 3.001 0 00:0 u3OA< .m «m mq>.o 000.0 00 om>.© wm>.o .529=.025033< 4 . .E00.00 .02 .. ..000 .40030302 .0E.» .00.0.u:0 :0000030: 05030:... 005.0 HQOUMM 00:: :30> :_ 00.000 0000.0:-00:o.00 :0 0.:.0:0.00 :050 030:0 .000: 30> 00 .3 .xoux 0 00:0 239.2 .m .:u:0=. 0 00:0 0302 .w «m Hwo.o omo.o 00 000.0 >wo.o 48030.3 ._ 7000 .0023... .9520: 50:30.; .:00.:0E< 0.02:0.00. .0:o_0000 0000.00 0.0030302 .06..» 00.0.0.5 :0000030: 9:03.05. «05... 00: :30> :. 00.000 .00.m0.0.: 30:0 .00: 30> 0.. .o... UQOQMM .0: .N «0 N35 20.0 mm 80.0 0N0... .2; .. . «0.05:0 :0 3:30 5.: 0:..000 >000: 0 02?. 30> 0.. .mm UMOUMM .00:0.:00x0 00:0.00 33:95.0 >E :. 0:030 >..0.u:0000 00: 00:0.00 .m mm mmn.o «00.0 00 ooN.o won.o 62 A 00> .. 30:07.0 3.3000 0:00:00 >.000:.Eoc0:0 .0050 >:00:0E0.0 :. 30> 00 «.3300 00: :02} 005.00 05 00: .mm MOUMM z .>mn.nfim zmn.oaw z=0u0< QHDNHHQ> mhmH ZMHB muHZHB 000a zany AA:0> .m 0:300:02. ... .0:.u00:00:. >.0:0..0 .m mm 000.0 >N0.N 00 owmé 0H0.N 05.2 .N .0:.:on >:0> .. .0: ...3 00:50 0.5 00:0 0000.0.u:0 . N0 NOOMVMm 53.00:. to) .0 .1303»... .0. . . . . .000:0>0 03000 .M mm H00 0 0H0 m 00 0mm 0 00> N .33 .N >000 >:o> .. 5.30.3.0 0:0 0000.035... _ £00.00 0>0: . 000:=om0mumw00UMHMuvwwquww ..w . HSQMMH ...0x >..0:o.0000x0 E:o.+:o0 cu co.0:0u 0:0 >0. 030.2500 .m 4:20:00 >0 000000.05. 0:0 v9.0.0: ._. 60:.005. >..0:0.00000 :0\0:0 >.0:0..0 0. 00:05:83.0 >E 00:0 :030 030?.0: >.u:m..0 .m Nm Om¢oo OOO.N wm NQN..O m¢®.H 00:00:... :0000 0:0 00.0...00 >E 00:”. 03o>:0: >.u:0.u.t30 .N . . .15.: 0000 0:.5 >5 :o\0:0 0.0.0 .000 :0000 _ 00:0 00:00 00 .. >..0:0:00 Em _ 06003 0:53 0:0 0:.000.0.u:0 :05. .00 OQOWMQ Nm mww.o Om>.N 00 0.0.0 Hwo.m .3505 3 0.03 :o 0000.50 98 0:20.00: .00 mmowva 0m. och .. odd _. 00 CCA H and F .0000: :3o> 00 00:00 :0 ..0 0:.u.:30¢ .3 NM mmfié wow. ~ 00 >m0.H 0004 .0338: mm 3232. 0.: :o 6:... mm 05.2.95... ..0 >m00 Nm mOH.H mgaN mm Nam-O mqm.N 00.000 :0 0:000:00 0:00:09... 000:. 0:0 m:.~.:oE0.._ .wm omOOMm Nm NNNAV HwQ.N mm m¢w.0 0mm.N .0E0_oo:0 00>.00 :0 0000300.... >.03o.>0:0 0:.20.>0¢ .mm mmOO th _. «Rm 0. GO mom C $.03. 0. .00:0.:. 5.3 .0.:.000.: 00:300 0:0 05003003 0:0 0:.>.03um 5m QMCU m 0004 oomJ 00 000.0 000...” .38: $20 0.22:: m 9:330 .00 mmowxm Nm mmwd wand 00 000.0 0m0.N .039. $20 :6» 052.30 .0 Nmoomm Nn 9.0.0 mmqé 00 000.0 00m.~ .xooexfi 2.0 05:53. ..0 HmQuMm .330: .330: .330: 3:20: .330: >.0E.0:uxm >x0> 00:30:60 >.u:0._m 002 m a m N _ . z .Emn.n....m zfig 2 (55.30 23.... 2mm... Each“; UHQWHHQ> 000." 2mm... MEHS >00H Emma .55. .. u “2%!“ EH 256 .NON :0:0 0:0: .m .Nou a m. .0 .00. u 0. .m o o o o ..VoO- I m .N wq mmo H “OH N 00 MNw O qqq N ...:\om CMLV mmO— .— .. ”0. 00:0.00 m:.:0000 00 0:39.00 00030.0:0 . :u.:3 05.0 509000? >5 .0 0000:0300. 0:.P .50 N00 am .:035 >:0> .m .LUfiE .£ .0500 .m .0.00.. .N .0.00.. >:0> .. . . . . . ”00 000.:0000 000: 0. cu:v..:u .oo:u0 >:00:050.0 o0 wq me O mwm N Nm Ow“ O NwO m 00:0.00 056000 00 0:0 0:05>o.n:0 m:.>.:o.0 00030.0:0 _ :u.:3 00 03mm“. 0:... .00 OOOQMM .0000...0:00 m:.:0000 0 0:0300 m:.x:03 0:0 30> .. x.co 0:0.0003: m:.30..00 0:0 :030c< Nm q>q.0 >N0.0 00 000.0 000.0 .0moucou .0:o:um 000:: 0 5:00 00 00:.0500 co:0 0:0 :u.:3 .00aoucoUn30 0covcvamuc. .o :0053: 0 .o :uno m:.c:000:00:3 co mc.0m:0coucou 00:.» >0 00:0.0>00 0:0 00aoucou 0:0 u- .0:0:00 00 0.0.0000 ...0000 0:0 .:0000:: .:0amv 0o .0>0. 00:.000 0 00 00000:0v:3 0:0 00:00:00030 00 000 :0.3u.0:0q 0 ..0:: co 0000:o:0.0 :0:0 0:0 0:0 .00awucou 0000.0: :0:0o :0.3 co.00.00000 :.0:0 00 ouco:uuw: :0.3 >0..0:ocom mo .0>o. :m.: 0 00 wouano:0:. 00:.» 0:0 00auucou 0:0 n- u...uuam 00 .0:0c00 «00aoucou 00 000 :0.3o.0:0a 0 .o m:.n:000:0nc3 000: 0:0 c.0000 00 30> 0.00:0 0.303 :o.0u::00:. 00 000>0 0:.30..00 0:0 00 0:0 :u.:2 0000Mm 000.0 0HH.H 00 000.0 HON.H .:0000 0:0 ..0000 :0000:m :. 00.000 .0:0>00 00 :o.00:o.ax0 0:0 :o.00:0cou:ou .00:0 0u0m030 0.0:: 0:0 00 :o.00.o: :.0:0 00 :o.00300.0 0500 :0.3 03: .00.:00 30. 0 :o :o.00:0:uu:ou :0aouuc. :4 .00.:00 030 :0 0:0 :. :0000 0500 :0.3 03: .00.:00 >:05 .o 30.>:0>o :< ..0>0. >u>::0 0 00 00.:00 >:05 mo 30.>:0>o 000:: < H. —NN. “>03 m:.30..0» 0:0 :. 00000.00 00::00 0:0 .0 0:00:00 0:0 0>0: 00 :0.0:a 0.303 _ 0000Mm Hm m>q.0 00>.H 00 NNm.o Hmm.H ..:005 0:. 0:0.0030.0 50.00:: 00 0:0.000..aam we 00.050x0 >c05 0:0 .000:0.:0ax0 :o5500 50:0 :30:0 0:0.00:003... 0>.000..036 00 .000 000:0 0 :0.3 0000:00.0 >.:mao:o:h .0:o.03.ucou 0:0 00.0.u:.:: .0:0:00 0:0 .0 0:0.000..a5. 0:0 000:003... 00 :0>.m 00.n50x0 00:0000: ..03 300 0 :0.3 03: .0>.000.0:03a 0:0 .0u.mO0 .0woo:a :o 0:0.00>.:ov .00.0050:005 .o.:.00oa 00 :o.00:un.u .0co.0.uv0 0:0 :o.0a.:u000 0.00.. 00 :0.3 0>.000.0c030 “0. :ooa0x00 0 0o :o.0000 :o 0:3000. 0 :. 000:000:a 0.000 0 mo m:.v:000:0v:3 >5 m:.v.0 :. 000:00.u 0:0 0: 00 v:.. _ :u.:3 :o.003u0.v mo oa>0 0:» 0 0000M0. : z .>mn.nfim 24m: 050..” Emma. ME; .>mn.nfim z >.050:0x0 .0 .0.00:.0> >.0:0..0 .N hum." 2MB 4.2m .0.00:.0> .m .05.0 00 00003 0 .. 3 0.00.0 30.0 .3 000.0 000.0 .2 a... a a... 2...... 3. .NON m0 00:0 00:00:00 :0:00 50::— 0:00: 0>0: . ”00:00:00 30:00 50:0 NON m0 WOOUMM 0:000 :0.005:00:. 00:0>00 0500 0>0: 30> m. >.:0 :0.000:a m:.30..00 0:0 :030:< .00 f 0 2 .20980 200: z. .5053 :00: 20.0.0 E0800 . , 0003.50 0:: 0000.... 000.203 PUFF—tinny. 258 m> 000.0 mNm.0 00 000.0 000.0 I I‘ll. Vlt‘l'll ._mc=u 0:0.00000000 . .0000! 00003 9000. . .000:_.oe 0:0 .00000cm u_0o:aa .030c:_e . .0.¢E_cm 00.:—_00.c: 003:06 . .00cm_a :0000 0.000000002 . 0:0 000\0_ 0:0; 00003n£0000 . .0395 050 E 0000 000... 00 00.500 000.03.: 05 9533.0. 2.0 00 .m MOommm mm mmq.0 000.0 00 <>q.0 >00.0 .00_uoa0 0500 0:0 00 0.0300>_0c_ .02000>0000 030 00 0.0:0w>_0c_ .00_0_::c&ou .00o>00 .m .00_uoan .000>00 .~ .00_uoa0 0:00:00_0 00 0.0:0_>_0c_ .— 00 0.0300330 002.000” 0.. 0w notation < .00 GOOMMW mm mH0.0 w>0.0 00 000.0 H00.0 .E00mc.x .0E_c0 00_0c0 000 >_0030 cum>x0 0:0 00 000:0_00:00 .m .090000>£00000 0~_0oz0c>0 00 >000 950 0o—nuc0 .4 .0_09;0c>0 c_00000 000 0_:_0u015 :00 0:0 090msoga . .>_..._0c0 00000—9. my .0000 000 a:_>nuu 0.>000 0:0 00.000000 .. 0_ 00:0 0_ 09003 0cm 00mxo_0 c0003 00 00003.0 00 5.500.003 4:0 .0 >000 .950... 0.00 00 0.0.0.; 0020 0;... .m moommm mm 0N0.0 0mm.0 00 000.0 wm0.0 .0__03 0.00 AHU .0ocosaeos ..ou .00_0:uu> .00E000500su .mo.u:c DNM: 000 >050 0. 0..ou .mewcm 00: 0:0 00.00 0c0_a an 00_0m0co0. on >_00.c_000 0.000 >050 50000003... 0 £00005 0:00 0600 00 920.00. 0.33 00> m. .N NOOWMM mm 0N0.0 >00.0 0m >00.0 mmm.0 .5000>0 c0000 . .u_:uo_oe . .0_.0ccago . .__ou . ..00 £095 A. V ~0_ c050”) 000500 000 00 ..0 000:.uc_ :0_00~_c0000 00 0.0>0_ 0c_30._00 0:0 00 sums) .— m a m N 000000 : z .>mG.QHm z0szmma MNHZHB .>mn.0am z HMMHNMN ..HZESMHMZH 259 mm qmq.0 mm0.0 0m Nom.0 HNm.0 _..nfioao.:..0r_a ... .u..u 03:00 .m 6......0005. .N .2... :2... u 00 00:00000 m G .0 3.2.2.0.... :u 0. 00.22.02. 0.0; .30.... 00mm 050 00 00.5.: >_0:000_0:00 .00m. .0 0300.....aci0 0 00 3:0 0»; .00: 00 0.5.0.5930 m 00 0:0 .003. 00 33.0.0950 0 00 0:00 .0000... 00...: 30.000. 000:... 0.5.”... < .0. .0cuE_._yaxJ m:.3:..o.. 0:0 :5 00...... 0.0 ._ .0....r. 0. 0:0.00030 OHOWMW .00:0.au00..0>5.9.0602500 00.2-0353500 ..000 00:03:00.0 ..menun. _o>.:..r.u 0min......:..._.n.nmo..e>..n...us . . . . .00:20:03.;.n:v._nmo.o>_c.mu 20.00.3400; 0.000 00.0. mm NNm 0 000 0 0a 000 0 Now 0 ..aczczu.:27r:o .202 .09..0>.n..uz-00..o>_::c0 ..0E0:00..C>.0 . v1.0.0. 0. £05 000. .32: 0 E. 3:05.50 3:. .0 @OOmmm .u>o.._c 0:0 00 0:0: .m .0:0=.:0._.>:0 .50.... 00 0.0.0.5”. 0:0 00:0... 00 0.5.00.0. 1:: h.0 >050 0:0 .0 . 02000.. ..0 >030 00.0 . 00 0.00 0 .00 0 00 000 0 . 000.0 22; .32.. .5 .N £033.95 ..0 >030 0:0 ._ 0. >mo.000 .0 woommm .3052”. 0:0 ..0 000.0..30. >.....:..00.0..00 00...; .m 0:00.400. 9.0. 00:0.0 >.:0 :0. . .0. 50.000000; 0 c. 2.50 00.... 0:: m. .m . . . . .350 00 0.0.0. .C 30.9.... 000:0:0 .N mn NMfi 0 0m.» O HO Nom 0 MNQ O 000:0}? 000:...0 :0 0:0E:0.._>c0 05 .303 000.0000. 9 c0.0000020 0.003 c .0 3020 10:...0 0.: .n NOOEP 0000.0 ..0 ..0 .m 00.5.0. .553: ..r. ..0 0000.. 00.0 ..0 100:0... .3000 ..c 002...... .m WK HNM.O MMH.O N® mmN.O $00.0 00:0... 0:056:00. 00 0000.. 0:: :. 03> . 0.1.30.5 0:00.30 .0305... c 0:0. 00.: :0 c.5300; 0:50.... .9. 0.00.06: 0 .. >0 000.020.5063 0. .5031: 0.. 40.0.0050... ..o cozmx: .0 OOOMHMW z .>mn.nem z¢mz whaH ZMHH MHHZHS z .>NQ.QHm z=000< wanwaum> HmflHNMN ..HZEMHWZH 260 mm maq.o mam... om 010.0 mam... .0>onm osu .0 0:02 .m .0:_.0mm> .0 fi.0.00:0 0:.. >:mE 50.3 00L0>ou mm: x :05 .4 .0::050 :. 00:0:0.._0 J.ocuu_.o: o: :0.3 0m_oe >00> m0: 00m £00m .n .. .> 0:5 cos. 0::um_oe mmo. nozocm x :03 .m .> ..c... :05 0.53.08 0.5.: 0030...... x :2. G smLma ..03 0:. .c 000.:3m 0t.m:. 0:0 .0 :o.u.v:ou 0.000000 0:0 mm: 00:3 .35.. x.:. .0 2:. 0:0 0< .mLDCL w :0. 0:0..cam uzm.:n :. 0000.0 :02. ;:03 s.c_ ..0: 03. 05h .00.:00 .5: 0:03 > 00m 000:: 0:0.0 0:0 .0 0mocu 0._:3 .mguc.::x 0430. 2:: .000: 5.0: :0 0:..0m0) 30.3 000000 0.03 x :05 :00:: .:0_0 9:. .0 m0>00. 0gp .> 0:6 x .m:mm ..0: >00 03. :00:3 0000.0 0.43 .m000 :0.c0m :. .mu:¢.0 53.:0009 00.0003-..03 03h .m. maommm . . u:.» o 0:.» o 02.. o o x . H M . M .n .1 3 / H. n... ..I \>.\ m“ //, .. n4 0. mw r. m. ,_ m. 1.1.! . . m. oNN.o ooa.o om Hom.o wmm.o \\\ .. .. 2 .momccgu 050.03 m.: 30: mzo:m ms0o:m m:_3o..o. 0:0 .0 £0.52 5:303 3.0m 0: 0:0 0900.0 :00 >502 0:0 005 0550590 20:... .3000 or... NHOMMW .x..E m.:0cuoe m.: undm_s “occmu 0: 0aaouon “£0.03 momo. >00: :.ou.00 < .N. mm 2 .RmQAFw mqmé maaé 2.4m: om m2... 000.0 ..cno...u.c. .4 .00:::0. . .ouocc. ..m_00m 29..ou as any: :00 :o.>ozoa n.5h .Jua.0 uOsm 0:0 :0 va>oe >.u:0.m.n:ou m2:u~.. m::o> 0gb .mco.u.v:ou >:ouo:ona. 000:: 0030.0: 0003 m0:0~.. 0m::. 60:. muoo >coz :aaommm chm... am... MEN—.3 .PHQ.PHm >>0H 2mm... Aqua 5 2mm... anuud mangang .H MHHHMN .. HZMNDNHMZH 261 mm 13.0 000.0 00 00.0.0 wwod .0.0:0000 0.00.: .000000000 00:00m.mo0 .00:02:00.>:0 .m0nc00000 00.>0:0: .m0m000uc. :0.0.000600 @ .. .z.;uoa. m_ .: .m .~ .m0mn0_0:. >0.0c000 m:.>0000 .. 33000:. 3.200 5.00.0000 m< .0. OHOWMAH .00.000 :0>.m 0 .0 0%.. 0:0.0 0:h .m .:0.00.0000 00 0.:: .000. < . 50.00.50. 0:0.0 x0e..0 < mv mm. mwNoc @HH.O N¢ meoc -.VM0.0 .5300: ..0 000:. 00 £00.. 0.00.0000000:0 < .EJ0m>3000 0:0 :. :o.0.000 00 0.00 .0:0.00:0. 0:h .— “nc 0.5.00000 000: 0: >06 050.: < .m. MHCWMW .0:00 0:0 :. 0900» 00 00:60: .0000 0:0 000:0 m:.:0>:0 m: ..00 0.:m000 0000 m.:h . .0:00 0:0 :. 0000. 00m 00>0 0003 000:» m .0:00 0:0 :. mm000 m.. 0003 000:» .0:00 0:0 :. mmo00 RN. 0002 000:» .. o o o 0 mm 0H0 O Nam 0 mm.» C NmN o A20:00 0:0 .0. 0000» 00 00:60: 0:0 000:0 003.0:00 >.:c:00000 00.00.000 0:0 0.000 00:: .mo. 0:0 :0 «0:0: 00: 50:0 00 ~. 0:0 .mm000 Nu 0:0:00 :0:0 0: .0:00 0:0 0:0:m000:0 >_:0>0 00>.0060:0 0000.00m.0 00 00:0:0 0 mmc0. 000:0: 0:0 0>.m 00 x00: 0 000.03 0: .m00» :000 00 «mo. 0:. .0 0:0 :0 0:0: 0 000 0:0 m=00u mm 0:m:00 0: >00 0m0.. 0:» .E0:0 0:300 0:0 mm000 0:0 00 ..0 :0000 00: 0.000 0: .0:00 0 c. 00).. .300» >50: 30: 000 0:.0 00 0:06.000x0 :0 000000:00 0030.000 50 .00. :QHomM—m z {wan—Arum Em: who... Emma. NEH—.3 z. Jan—.95 shaa Emma Adm Sufi" 3000.005 0H00fi00> ,. 0 rl‘ll‘l“ . u EEMH WZH HWMHHNMHAH 262 mm @006 ommd om amio mac... .00000 ..0 00. .0000 m. 0. .0 .... .m ... .~ {0 ( \Iovs..0fi0.00..0>0 00 >m00c0 0005 0:0 0.003 0:0.0030.m m:.30..00 0:0 *0 :0.:3 :. .m. _.__ _. :0: cc: \flw: 7 7 _ 5 _ 0 _ _ 0.3.. _ .. . m0:0.0 c0000 _ 00000:. _.n- -. 0200m oo. .m0:0.0 :005 0:. >0 00025.0 >323 000 .0. 90030000 0.0.300 00:... GHOm-Hmm .msm.:0o00000.s 0:0 .m.0s.:0 .m0ca.0 .m .0.003 0:0 :. 00.0000 0:0 ..< .0 o . . . .>:0.000 .0 >000m 0:0 000 000000 0000 >.:0 0:p .m WK ..VNQ O Mum-m.- O mm omfi O HNG O .0000 00:...00 0 ..0 3:0:00500 0.00.00 0:0 0.00.0 0:... am . . .>0.:06800 0 .0 00:0:00500 0.00.0 00h » waommm “00 000.0:00 800m>000u :< .n. mm ,oom.o mmq.ot .>.0.000 0006 m:.00000000 0003 0.000.000 0:0000 . .0000m 000 0000.000E00 .nummouuzm 0005 000 00.0000 “WU .00.0000 000E 0:.000 0003 0000>00 0:0 .~ .m:.0000000 003 :o.00_:000 0000.0) 0:0 .— ”00:0 m. com. 0:0 wmm. :003000 :o.00.:000 .000.acm 0:300m 0:0 :. 03:0:0 0:0 00. :0.00:0.0x0 0000 00h .m. S a 0m :m 3 3m. $055.; ...-. . . -- .11: I}: u 3880--1-11 as .I ..u I’m...- mdésg I-.. -. mm. 3.285 . ...\A--- . )1. m...“ $.85. ..-l- -.z-1-1-‘\\ - r - Hw .8. .. .50000.0 m.:0 00 «00.00 m. :0.0m0:d :maommm z .En.nm.m ENE whmH Emma. mEHS z .BE—Amhm z 5.900.004 Hll‘lmMH-Hanfl u .HZMWSMH-HWZH 263 .0>onm 0:0 .0 0:02 . a.quo .0000. ..0... 00.0000 50.. >0..o0c 00.; .00 30. 0:.00c00 . .0000: .0000 .000.0 00; .000. 0:0 .0 0mn.0 .0:0.0000000 0.0. 0 c. .000. 0:0 .0 050.0 .mco.0000000 >.0m0 :0 c. 0/ .20 . -1~'~0: m . o . 00 000 o 000 o 00 000.0 000.0 .2-_-:ae.a.& .JN «Nommm - . . .0>cnm 0:0 .0 0:0: .m .0.~E.:0 000 20.03 .mo~000: EOum:.x 0;. .0 0003EJE 000 000000E0000 00.0.0 0000000 000.0000 000 0.mE.:< .: . .0.:0.0 mc.0.0000 0:0 000000E0000 >0 000.:V00 Aaov :0m>x0 0;. ..0 0000000 :00. c. £0.53 0.00.0 c0000 >0 000.0000 New 0:. ..c 0000000 0.00.0 0:.0.0000 0:0 000000E000: AMWV . .0uzm.0 c000m -a >0 000.0000 00:000500 :00000 X0.0600 0:0 ..0 01.>000 00000050000 0..£3 00000050000 >3 00000: cua>xc 0:. ..0 0030000 00:0.0 c0009 .N .0.0>0 c 00: .ccn.:0 .0 30.. >03 0:: c ac.0000 00;. ~00 , 00 000 0.05.:0 0..:3 New >.cc .000000 00000050001 0cm 0.00.0 :0000 .. n o o c . . MN m-Hm O dO-H O N@ Nfifi O HON 0 ”000000“. 0_0>0 con-.00 05 c. 00...: 00 00... 000 0.0.55. .m~ MNOMMAH .00000 .m .ouuomc. .: . .cvo0o0z.00 . .nca.0000m .000>.n00; mm O>N.o ooa.o cm nqm.o mma.o NNOMMm ~0000050000m 0 .0 0:0.: 0:0 0. m:.20..0. 0:0 .0 30.:: .NN mm ome-O nam.o mm wwq.o awe-o .00c0c>.C000 000 Am .c.0£0 0;. c. 0030. 000:0 :01. 0000050: 0005 00m . .c.0:0 0;. z. 0020. 000;. :05. 00..060 000 .N .c.0:0 000. 0:0 c. 0030. 000:0 :05. 00000. 00003 .. 0 :.:zu 0:3. 1 .0 0c. 0;. .c 0.cE.C< ..N .unu Hmommm mm mwN.o >HH.O m>~.o mwo.o .00050 ..0 c. 0500 0:. m. ._ .: .._ .N ._._ .m .. .. ..0000000 0:. >0 v0..0000 >m00:0 .c:.m.0o 0;. .0 xb. .0030 >.:: 0;.0000 :cE 0.003 Amv:o_.0:u.0 £0.52 0. .ON wNo000 z .>mn.nam z¢m2 w>¢H EMMB MMHZHB z .>mn.nHm z E>0000< 263 .0>on~ as» .o 0:02 A.000 .000.. ..0... 00.000m :m.. >0..000 so.; .03 30. mc.muc00 ..0003 .0000 ..00.0 mm: .010. 0:. .0 amoum .0:0.mmouu:m cum. 0 :. .0x0. 0:. .0 060.0 .mco.00000:m >..00 :0 c. 9" o o —1~‘m: m ”0m0000n 0.0>0 :03.00 on. c. 00..: 0. 00: 0.0 m.mE.:< .mw ‘ L . . . . .u>oax 0:. .0 0:0: .m .m.ms.:o 0.0 £0.33 .mo~ouoz 500m:.x 0:0 .0 0.00505 0.0 0.0m0080000 .0..um 0m0000n 00..000. 0.0 m.ms.c< .: . .m.:n.a mc...amu. 2:0 m.0mcaeouon >3 00..:00. Ame. com>x0 0:. ..c 00:00.0 :.0. :. 50.;3 m.cm.g :00.m >a no..000. N09 0:. ..c 00:00.0 mucc.a m:...am0. new 0.0m005000c .mv . .mu:0.0 coo.m \ >0 00..300. 00:300500 :02.00 x0.aE:0 0:. ..0 00.>0.Q n.000080000 0..;3 0.000050000 >3 00000: cao>x0 0:. ..0 00:00.0 mucm.0 :00.o .N .0.0>0 c 00: .con.c0 .0 30.. >03 0:0 : 00.0000 was. New , a: 0m: m.ae.:c o..:3 Nou >.cc 00:00.0 m.0merouuv can mu:0.a :00.o .— 0 O 0 O m. mam o .03 0 mm N...» 0 SN 0 mmommn. m. oNN.o code .3 0.0m... wmaé .mmm.m .m .muuomc. .nd .cvoao.:u.m . .0:0.mmo.m .0.o>.a.0; ..0aao:nnc.m c .0 050.: 0;. m. mc.20..o. 0:0 .0 30.:3 . NN NNommn. mm omqé mam... ma wwqd awed ‘ ‘ . .:.030 0;. z. .030. 000;. :03. .o..05m 0.0 .m:0.0>.c.00 0.0 . .:.1£0 0:. c. .030. unozu cog. m00.0E:: 0.05 0.0 . .~ .:.020 000. can c. .030. 000:. can“ .0umm. 000.n .. ~ 35.0 .000. 0 .00”: 0;. a... m.cE.:< ..N HNommm. .00.:u ..0 c. chm 0;. m. a. .: .._ .~ . .... .m .. .. 0 A o 0 mm 33 o 0.: 0 cm mum o 3.0 o .-_‘625... 2: E 03.33 .685 .c:.m..o 0;. .0 .xb. .009. >.:: 03000. :0... 0.303 3.0.0.300... £0.53 0. .ON ONOWMQ z ..EQAHHm 24m... mum... 2MB NEH... .3543... 24m: 26H 2mm... 13¢... ZMHH Buy—0.30. 0.30.33, .HWWr—‘Enna - Erinlunllllwl 264 mm wqm.o me.o «a wmq.o mmm.o .>..:35500 0 0. .0.m:o.. >00000 .0 >000.0...0 0:. ..m .>..:05_:00 0 0. 5a.:0m00 0:. .0 0.00 0:. AJV .>..005500 c 0. 5A.:cc00 0:. .0 0~.m :0..m.3000 0:. .n .5:.00a.0 .c:. 00. x00. 0. 00 0.003 000 0.0:: .~ ... :0.00300.0¢ .00500..>:0 .0 0:.: 0:. .. o. :.0.00 .25.00 .0 .00.: m .0 0:0.0 .mu.mo.000 0:h .mN mmommm mm mH¢.o mam.o mm 000.0 Nq¢.o .>..:35500 .m .50.m>m 00000 .0 .000:0m0.: .m .50.m>m000 WU .00..m.3000 v «53.00300 00.00m 0 m0:.00n00 .m0: m0.30..0. 0:. .0 0:0 :0.:3 .wu wmommm mm om¢.o mam.o ma mm0.o 000.0 .0m0:. .0 000: . .:.:.:305 0:. .0 00.m 000.003 0:. :0 Am .m .:.c.:305 0:. .0 000.m 0.0.»00 0:. :0 .:000: 0:. .0>0 .N .00000 0:. 00>0 .. 0.3.m.05 .r05 0:. 0m0. 0.303 0.0.0005 m mm0.0n 000 00000 :0 00>0 50.. m:.>05 ..0 .m00 0. .r03 50.. «00.3 a:...c>0.a :..3 00.0 00 0. ..N nmommm m. 0mm.o mmw.o mm NNm.o qu.o .m:.o:0>00m .m .m.m0.:5>m .0 .Em...m00ca .m . 3.0200000 new . .:0....00500 ¢.\ “.0 0.050x0 :0 0: 0.303 00:00:mmm0m m m:..00 000. < .o~ omommm mm om0.o mum.o 00 000.0 wmm.o . .m.0050.0.m 0>0:m 0:. .0 ..0 AMW. .00.m.00 0:. 500. >00000 .0 .300. .0o.m:00 0 .30:..3 o:.00..0:3. 03:..000 .0:000 50.m>m000 00 .: .:.c:0 000. 0 .0 mx:.. 0:. m:0.0 00mm00 m. .. m0 50.m>m000 0:. 50.. 000.000 >..0m0.m m. >o.000 .m .0.0>0 >00000 :0 m0 0:.:. :03m 00 m. 0.0:. .~ .m50.n>»000 ..0 .0 0..m.00.00.0:0 o m. >00000 .0 30.. 0 .. ~0.0:0m0.: 0:. 0. >0.0:0 00:..0m00 m.:050.0.m m:.30..0. 0:. .0 :0.:: .mN mNommm z .>NQ.QHm 20%: mum... 2mm... ..MHZHB .>mn.on zmo.0:0 0 Ln O-fi Nlm 0:. o. n.0u300.0 60.. 00¢n00 m. >o.0:0 000. :u.:3 :..3 xu:0.u...0 0:» .:0..0..0m:0.. .. ”.0 ..3m0. 0 00 0033.0 :0:.00 ..0 030 A3:0... :00... .«n NMOWMHAH .m.00300.a 0.0 Wm .m30.0>.:.0u 0.0 Am .:.0:0 0:. :. .030. 0mo:. :0:. m30.0&3: 0.05 0.0 o . . . . .:.0:0 0:. :. .030. 0mo:. :0:. .0..0Em 0.0 .N mm mmq O ROG O #0 hm.» O .th 0 .:.0:0 000. 0:. c. .030. 03:. :0:. .030. 000.: .. 3.2.0 .0 0.50..»0 0 .0 00. 0:. .0 m.0E.:< ..n Hmommm .m:.0000.a 0:. .0 0:0: .m .:.0:0 000. 0:. :. 30: .o .363: 0:. m:.¢.00.0:. ..xl .m.m0:.:>m0.0:a .0 0.0. 0:. o:.mm0.0:. .m .:.0:0 000. 0:. :. Am.0>0. 0.:00... «00.0 .0 .0:E3: 0:. 0:.m00.u00 AHV m8 wmqoo HMQ.O ¢¢ quoo wmo.o 0.0:. .00 0. .0>0. 3:00.. ..o. 0:. :. 0.55:0 0:. 0:...00 .. ">0 00n00.u:. 0: :00 :.0:0 000. 0 :. .0>0. 0.:ao.. 00. an omommm z .>mn.nam zNn.nHm whoa 5mm... AA ..coE..00x0 0:. 60.. ..0. ..:00 .m Nm0.0 5N0.0 Hm 000.0 0N0.0 62 ~. .m0> .0..0.00: 0:....4 :. 0>..u0..0 :3> .00.E0:0 0:. m. .mm 266 x3> 0.0.0). 43> .00Em .005w a 0 Q Q o 0.0.0>m .006m 03.0 10> 03.0 .30.0: Em.m0.0 0:. :. :30:m 0. 00000 0.02 n.0u.E0:u 0:. .0..0 0.30: 0>.03. .:0E..0ax0 0:. .0 . . m..:mu. 0:» .0.0 0.30:m 0.3..30 .0:. :. 0..0.00: 0:. .0>..00..0 0.03 0.3..00 0 0. 00000 m.00.Eo:u 0:. .0 :.c: .0 0:0 .. .0:. 00:0000. 0: ..0:.0 :000 :..3 .000. .0: 0.0 m.0u.60:u 0:. .0:. m.:0E..00x0 m30.>0.0 60.. 30:: .0000.0.0 0:» .0.:..30 :.... 0:. 0. :3) 0:0 0.0.0). .0 0.:3060 .0300 0:0 .o.3..30 :..30. 0:. 0. 0.0.0>u 0:0 .005m .0 n.:3OE0 .0300 .0.:..30 0..:. 0:. o. x3> 0:0 03.. .0 0.:3050 .0300 .0.3..3u 0:000m 0:. 0. .00Em 0:0 x3> .0 m.:30£0 .0300 .0.3..3u .a... 0:. 0. .005m 0:0 03.. .0 0.:3050 .0300 00000 :0:. .0m00.0.e 0:» 3 P. . ..Ouupwa M N — .30.0: E0.00.0 0:. :. :30:m m0 00:..0 . . m .0mm0.o.a 0:» .0..0.00: 0.0:0m30: ...00 :. m0.3..3u 0..0.u0: .00..:00. 0).. 30. . . 9...... :. 0>..00..0 0.0 3.0.0... 0:0 .:3> .005... 0:.. 100.505 30: .30. .059.) AmmomM—km 0:.E.0.00 o. .coE..0ax. :0 00.030cou ..a.mo_0.: 0 .0..0. .. .Ommu.o.. . ah0000< z .3505 2.02 z .5905 as... 0.... 3.3.5. £3 a... .0..sz A E... 5.0.. 0.2. . . 267 5:95.093 2.0 .00.. ..Ou 0.009 .n .0: ON :0... who... .3 «N06 mend .8» .. Twmommm «2.302. «:2... c. 03000.... 0.0.0.6 .00....05 a... a. .._n 4. .5 8500.004 2 .595... 240: 2 53.80 2<0.: :0 3.3.; mum... 2mm... MEHS . hnmfi Emma. Aim n HZMWSMH. MZH A 268 mm 30.0 28.0 mm 30.0 owmd 2 2 22 . 2 2 :2 22 .2 22 2 222. . “qua...“ u...” .2 80.5. mm NoN.o .35 3 3...... mg... 22.22 .0 2.. .2... 22 2 22 .2 22 22...”...ghwmw ”we... .2 80.0.. ..m 02.0 50.6 am mam... $10 .222. 22.. 2:2 .0 .22 2. .2 2.2.2.. .2 22... .222 22. _ .2 3.00.2 mm mw¢.O dom.o mm NEVA. MQN.O .402. 3%.. 030 a 9:30.. 0.0.2. .2... >325 30> 0:200. to: . .n. wHOha mm 3.; 80.0 8 $2.0 mid 2 222 .2222... .2 22 .2 .2. .222 _ .._ SEE. mm 8.; «on... .3 8.; 2m... .2 :2. 222 2.2 .2. . .22 . .2 2.22.. :2 2. .2. 22 .2 Some. 3 3.0 0:5. mm and 28.0 .22 2 2 2. 2 22 .2: .2 222 2. .22 2.2 _ .2 285. mm Hom.o 00m.o mm 590.0 RONA. .3375 00:05.33. >5 5.: 80.30:. 3.02. 9:00 .0 3330..» J... «dong mm 2.3.0 30.0 8 and 3...... 2.2 2 22.2 ..2 2 22.. {.2 . 2.. .22.... ”Lanna... ”mm...“ .2. 38.2 mm 890. 3.; mo 8.2.5 m2... 222... 2 22 22.2.2 . 2 .2 2...“... “.._..fiwfi.m....fi .2 N805. 0m o~¢2o NNN.o mo 090.0 0mm.o .9. Ba. 2.8.0 205 3:3 3:8 _ t 330 co.wwnwwnouwwEoowavmwwwmwoumtum!" .2 HHORE 0m ome... mom... mm mmqé. .moo4o .338 a E 2...; E .8 522.222 5. 9.3 :2. .8... a 3.... .90.: 28.. . .2 c—cnflq mm 23.0 08.0 mm 8.; 9.0.0 ..22. 2.... _ .2 .2 22. 22:2 .2. 2 .2 . 22 2 .2... 2 2 .2. 2 a. 88.0.. mm. 23.0 coma mm .35 3.6 ..2 . .2222 22 .2 .2 22.2. 2 ..2 . 222 2 22 . 222 2. 2 88.0. mm .35 $00 3 m3... 03.0 222 _ 22 2 .2 .2222. _ ..222H..........M....uwu 2 Boa... mm «00.0 cow... mm «N0... @050 .85583. .2 5.3 0.8.3:. 09. on 3:23. .2302.» E :3 o 9.33 as.) .0 000.95.. mm 8nd 3.; ma .35 3...... .22 .2: . 22.. 22...... 2:2. 22.. .222 2 :2 . 2 38.0.. mm we; 3.; ma 83.0 22.0 .2. .2222 . 22 222 22 22 22... . .2. 2...... . :2 . 222 .2: 2 8% 0m dom.o mHm.O mm mHm.O 0mm... .33... .9... 0:0 330 00:03:02.. 9... «9:5 :0 a: 300.. . .m moomfi mm oN<.O ©m~.O mm 500.0 mmN.O .588 3.3.2.. o 9.3 3 «>2. _ 5:: 3.0.5.. 30> .oo. 3 you _ .u Noon: mm mom... 2m... 3 8.; 50.0 .2222 .22. .o 2222 :2... .._..wMfiuhmhw an...“ a...” ._- .88.: z .>mn.nam 24m: z .>mn.nHm z 2.0..“ 2mm... mg; nnaa 2mm... A44... mm SN... m8... 3 wmm... So... .._... .._... s 2...... 2. 2... 2.... 2 2...... .2 .8. .... .2 vqommfl ..m 0.3... NNN.o 3 $3. .21... .2... 2.2 .2 2.. 2...... 2... 2...... E... . .2 58...... .mm N000 0mN.0 mm $3.0 mmN.0 .3... a... v.._... ..ofio $5 3...... :6 >5 8 :3 m.2 an wmomg Gm. «CM 0 QHM 0 mm qu O OOOWQ .3930 so.» .._—9.. .0» xmo Ga 30206... . .nm “mom: ..m .3... E0... 8 02... So... 2 2...... .._. .2. .. .2 .mmm.......... HUMEWWHLMWBMPWK .2 08...: mm mHm.O mOfioo mm QNN.O Hwouc 3.00. 0; 0.0.00 c0333. 0 ca .0330 05 .0 x55 00 >5 vmuwuhouwowuwnufl .mm mMOhm—Ra ..Nm N®¢.O OBM.O mm m®¢.0 qwm.o 330;.“ >05 300.. m... 30; Cu 9.20.0000 9.03350 9.3 .0393 BDOLWUHHMNMMW“ .am QMOWQ . {.r . :0. 0:0 cu..:u .03 c «m HMN.O ©m0.0 Gm OQNoo HQ0.0 0. $3 05 c. mcozmuaa .050 so.» v.00... 02.0.3 My 3.0.0.... 3003” U .mn mmOhg mm mhmoc ONH.O mm ¢O<.O NON.O .0mmucc>0mm_0 30:0 3 :300 0.0... m. .0320 cm @5955 .05 3:... 3.0.05.6 oco .~m NMOm: Gm Ohfioo mmm.O @@ ¢N¢.O mmm.0 5.0» m c. 0. mm: 0; 2...: 003330 05 5.3 >20 m>03—a.uu_wnzwowmvmmw.uou ..n HMOnH: mm OmN.O H®0.0 mm NNH.O OM0.0 0:00.09... m. .3232. a c. 0.03 .303 .om OMOWMAN mm HOW.O ©m¢.O mm ¢m¢.0 .mmm.0 £03330 .6... 3.3m 0; 0.0.30 :3 0.3:» 05 .95 0.00— 0.305 ucwvaun < .3 ®NOanH< mm. ¢N¢.O NNM.O @m mw¢.0 qwm.0 03m 00 mm: 0... .I :96 0...... 302300 03.30 05 .ozmpwmwrwuw ”Mann.“ .3 wNOE .319: .30» xoonu 3 we: 0:000... mm 0.3.0 mmN.0 mm mmqé mwN.0 3.. m S... .2... 3:0 .3. a .08.... o... B «53...... a. u. 5.22.3 .2. nmomg .093 05 9......0 £05 5.3 mfg...“ to 0m 0n¢.0 500.0 mm 0.3.0 mm~.0 .8... 2. 2.3 2. .32... c. 22...... m... 5.... 3.. 3.2.... 22.2.... a t .on omen: .umuu a :0 mco.umu:u 0:“ mm QON.O «No.0 mm O0N.O NmO.O 3:033: m. 0... 30: 0.55 3 >3 0.00;... a... 7.0» 0 3x3 0:00.50 0 :9.) .3 MNOhhdfl . . . c 0013.... mm. mom O mmfi 0 mm Hom.O mmm.o no; 0... 005 30:30.. 00.03320 «3000 0.5;. 0» unfucounvwwwhm ”cows: < .aw «Nonmg . . . o . :0 30.7.2.0 mm 3.. o 3.. 0 mm SN 0 8.. o 2. 2:2... .. 2 ..2 .2... 2.... 2 22...... ......H........M 2. 2 .. .. .2 28...... mm NON.O MN0.0 mm me..O HMOaO 42.30:. >03» >5 0. 30.3... ..o 915053 0:... 0a 0.00... 3:05... 3:003; .un. *NNOWE . . w. 35.304 2 Ema PH. . . zmHH m 23:... 2 BE Pam 24m: manuuumb 23 Emma. ME; :3 Emma Afla \‘j MHNNHduZZOHHWmND EHHUMNHHHHG‘ .LL llllllllll J 270 1.. o H: o 22...... .2 2...... 2:2... 2.. 2,... 2 2... 2.... .2 2 .. .2 $8.2 , C C O O 0 o O . h Wm WWW w wa+m WM NMKiG hmmw4c 00.0030 30> :03: :96 320.05 05 5.3 0:0—0 0m 0» 00.03 m. 3 0.00.0 :. 3 em .26 :36 mm wmmd 265 2 .2 .22. 2... . .2. 2: .2 22 :22 2 .2 88.2 mm OGN.O Hmooo mm HNN.o HM0.0 .0:. 00 03009.0 3 00;: 00 00 0:0 30303.35 30:00 0» 0x: . .m: MQOME .>m! C30 . €¢omrfl< Qm Qom.O HwQ.O ma Nw¢.o ®NM.O >5 0.6: 00 9.3.0 :05 05630.0 :0 .o Em: 0 mezzo: .0000... .000 . .3 N¢Ohh< m. mHm.O mwév mm $3.0 OO¢.O .m.m 0 00 0003:. 3.300 0 E m.~ 0 00m _ 0. 0:. .0500 0.5.000 u. .m: mm mm mNm.O oquo mm Nmm. «C hmwiu .05. 00 00mm: 0 2 «.0: 030.850 .3 «QCR m H . .3 00:. _ c013 ucgflmm.aouco 0.20:0...» >5 .000: 3:00 . ..J AHQOWE mm mmm..0 omw.0 mm NDMJV. 5590 0.3:... 5. 0 0 abacuud z $098.... 2%.: z .5933 240:, 20.5 023.2, 053” Emma MEHB human an“. Add.“ Name _ of pH grade you d. sheet on th can \ 271 ANALYTIC ABILITY BIOLOGICAL SCIENCE 202:PROBLEM SOLVING nme Student Number The objective of this exercise is to determine student aptitude on types i problems not often encountered. Your performance will not effect your 'ade. Please do the best you can, but DO NOT GUESS. Leave an item black if DU do not know the correct answer. Please fill in your name and student number on this sheet and on the IBM leet. narken in the appr0priate squares under your name and student number I the IBM sheet. ' The questions are all multiple choice. Answer each question that you in without guessing by marking the appropriate box on the IBM sheet. You may write or draw on the test pages if you wish. 1 PART I E ART I 272 Directions: In this part, you are to choose from five diagrams the one that illustrates the relationship among three given classes better than any of the other diagrams offered. There are three possible relationships between any two different classes: . indicates that one class is completely contained in the other, but not vice versa. indicates that neither class is completely ' contained in the other, but the two do have members in common. (:::) (:::> indicates that there are no members in common. Note: The size of the circles does not indicate relative size of the classes. Example: Birds, pets, trees. (15.0 (2) O O O The correct answer, (b), shows that one of the classes (trees) has no members in common with the other two. (No trees are either birds or pets, and no birds or pets are trees). (Q) also shows that the other two classes have some members in common, but neither is completely included in the other (some birds are pets and some pets are birds, but there are birds that are not pets and there are pets that are not birds). T l‘ I T m 273 2 The flve possible choices for questions i through 8 are given below: 0) <2) (3) @ O (1:) QED (s) l. Nuts, pecans, forks. 2. Adult women, infants, black-haired people. . Fish, minnows, things that live in the water. . Governments, democracies, dictatorships. Adult men, government officials, congrégsflen 3 l; 5 6. Students, children, parents. 7 Lizards, cats, reptiles. 8 Frozen desserts, milk products, ice cream. II. (In answering the questions below it may be useful to draw a rough diagram.) Questions 9 and lo. (A) It is assumed that a half tone is the smallest possible interval between notes. (B) Note T is a half tone higher than note V. (C) Note V is a whole tone higher than note H. (0) Note w is a half tone lower than note x. (E) Note x is a whole tone lower than note T. (F) Note Y is a whole tone lower than note w. {hich of the following represents the relative order of the notes from the lowest to the highest? (I) wivr. (2)Yuxv1. (3) vvrvx. (It) vuvrx. (S) ‘YXVVT. ihich of the following statements about an additional note, 2, could NOT be true? Z is higher than T. 2 is lower than Y. (3) I Is lower than w. 2 is between V and Y. Z is between H and X. 274 3 Questions ii and i2 (A) (B) (C) (D) (E) (F) A red ticket is required for entrance. You can get a red ticket if you have your blue form signed by the director. The director will only sign the blue form if you surrender yOur yellow pass to him. ' If you have a green slip, you can exchange it for a yellow pass, but only if the director has signed your blue form. if you have a valid driver's license, you do not have to have your blue form signed by the director in order to get a red ticket. You can get a yellow pass on request, but only if you do not already have a green slip. The above procedures fail to specify (1) whether anything besides a red ticket is required for entrance. whether you can exchange a green slip for a yellow pass. (3) the condition under which the director will sign the blue form. (A) how to get a red ticket if you have a yellow pass. (5) how to bypass the requirement of having the blue form signed. ‘ i Having which of the following makes it impossible for someone without a driver's license to enter? (A) A signed blue form. (8) An unsigned blue form. (C) A yellow pass. (D) A red ticket. (E) A green slip. Questions 13 and lh This problem is about Fish, Snail, Bean, and Bird islands. People have been traveling among these islands by boat for many years, but recently an airplane started a business. Carefully read the clues J about possible plane trips. The trips may be . ',. direct or include stops and plane changes on an island. When a trip is possible it can be made in either direction between the islands. .00 (B) People can go by plane between Bean and Fish Islands. ' People cannot go by plane between Bird and Snail Islands. (C) Pe0ple can go by plane between Bean and Bird Islands. . -Can people go by plane between Fish and Bird islands? (I) Yes. (2) No. (3) Can't tell from the clues. Can people go by plane between Snail and Fish Islands? (l) Yes. (2) No. (3) Can't tell from the clues. DIREETIONS: 1. Please N llrite y w Answer .=- Check l .' Read ti ll coml m 0‘ Be sun N - Return Answers I- ” Spring 2) Sprini 3) Cand i) Band 275 CONTROLLING VARIABLES TIONS: lease read and examine the first page carefully. rite your name and student number at the top of page 2. iswer questions i, 2, 3 and A, then week your answers with those given below. sad the t0p of page 3 carefully, then answer questions 5 through I completely. a sure to write your name and student number at the top of page 2. :turn your ”test” during your SAS. '5 l-h >ring K: Brass, Few coils, Thin wire, Big coils . >ring N is made of THIN, STEEL wire and has MANY, SMALL coils. and l are different: They have different sized coils. imw and P are the same: Same coil size, number of coils and metal. red 276 ('5 it: an 'H iGD = )h a: ir- El: )2: (:3 'U There are i6 springs and three weights shown above. Some of the springs have big coils and some have small coils. The springs with BIG coils are: A, B, C, D, F, G, K, P. Some of the springs are made of thick wire and some are made of thin wire. The ones made of THIN wire are: D, F, G, H, J, K, N. Some of the springs have many coils and some have only a few. The springs with MANY coils are: A, E, F, G, H, L, N, P. ' Some of the springs are made of steel and some are made of brass. The STEEL springs are colored black and the BRASS springs are colored red. The brass (red) springs are: A, C, E, F, H, I, K, 0. The steel (black) springs are: B, D, G, J, L, M, N, P. Weights number i and number 2 weigh the same amount. They are both heavy. Weight number 3 is lighter. (If you have any questions please raise your hand). on P.‘ on 2) 3) 1!) Please answer the following questions. Be sure to use ALL of the information Page i. Circle the words below which describe spring K: Brass or Steel. Many coils or Few coils. Thin wire or Thick wire. ’ Small coils or Big coils. Which of the following is TRUE about spring N? (Circle the correct choice). a) Spring N is made of THIN, BRASS wire and has MANY, LARGE coils. b) Spring N is made of THICK, STEEL wire and has a FEW, SMALL coils. c) Spring N is made of THIN, STEEL wire and has MANY, SMALL coils. d) Spring N is made of THIN, STEEL wire and has a FEW, SMALL coils. How are springs C and l DIFFERENT? (Circle the correct choice). a) They are made of different kinds of metal. b) They are made of wire of different thicknesses. c) They have different numbers of coils. d) They have different sized coils. How are springs G and P the SAME? (Circle the correct choice). 6) Same coll size, number of coils and wire thickness. b) Same coil size, number of coils and metal. 0) Same metal. number of coils, and wire thickness. d) Same metal, coll size and wire thickness. Suppose a diffe IIe coul wei and we and 278 3 Suppose we wanted to see whether or not the number of coils a spring has makes a difference on how far down it goes when a weight is hung on the spring. We could test this by hanging weight number i on spring A and weight number 2 on spring E, and seeing which spring goes d0wn farther: or we could test the same thing by hanging weight number 1 on spring N and weight number i on spring i, and seeing which spring goes down farther. Here are some tests for you to make. (Please raise your hand if you have any questions) 5%. Can yourmakeeafitest to see if the size of the coils makes any difference in how far a spring will go down? /Yes/ /No / If so, the test could be made by hanging weight number __ on spring __. and weight number on spring __. 6) Which spring could you compare to spring B to show whether the size of the coils changes the amount the springs go down? 'iSpring __. N0 spring / / 279 i, 7) Can you make a test to see if the thickness of the wire that the springs are made of makes any difference in how far a spring will go down? LE LE7 If so, the test could be made by hanging weight number _ on spring _. and weight number _ on spring _. 8) Which spring could you compare to Spring 9 to show whether the thickness of the wire that the springs are made of changes the amount the spring goes down? Spring _, No spring I .7. F . 280 9) Can you make a test to see if the kind of mess} a spring is made of changes the amount a spring goes down? [EEE7 [E§:7 If so, the test could be made by hanging weight number __ on spring __ and weight number ___on spring.__. l0) If you put weight number‘l on spring §.and weight number g on spring A, would this be a good test to see if the metal the springs are made of affects the amount they go down? /No / /Yes/ ll) Can you make a test to see if the weight hung on the spring changes the amount it will go down? /Yes/ lNo / if so, the test could be made by hanging weight nunber _ on spring __ and weight nunber __ on spring _. APPENDIX C Instructional Variables I Matrix Variable APPENDIX C 281 Instructional Variables ‘ FALL TERM 1977 WINTER TERM 1978 Element Acronym Mean Std.Dev. N. Mean Std.Dev. N. I1 LECOOl 0.914 0.281 105 0.767 0.381 75 I2 LECOOZ 0.876 0.331 105 0.800 0.360 75 I3 LECOO3 0.848 0.361 105 0.717 0.406 75 I4 LECOO4 0.733 0.444 105 0.733 0.398 75 I5 LECOOS 0.752 0.434 105 0.667 0.424 75 I6 LECOO6 0.733 0.444 105 0.717 0.406 75 I7 LECOO7 0.702 0.460 104 0.617 0.438 75 I8 LECOO8 0.562 0.499 105 0.683 0.284 75 I9 LECOO9 0.562 0.499 105 0.567 0.446 75 I10 LECOlO 0.648 0.480 105 0.583 0.444 75 I11 LECATD 7.356 2.516 104 6.167 2.182 75 I12 SASOOl 0.990 0.098 105 0.883 0.289 75 I13 SASOOZ 0.990 0.098 105 0.900 0.270 75 I14 SASOO3 0.933 0.251 105 0.900 0.270 75 I15 SASOO4 0.962 0.192 105 0.917 x 0.249 75 I16 SASOOS 0.962 0.192 105 0.833 0.336 75 I17 SASOO6 0.952 0.214 105 0.550 0.448 75 I18 SASOO7 0.924 0.267 105 0.800 0.360 75 I19 SASOOB 0.933 0.252 104 0.667 0.424 75 I20 SASOO9 0.893 0.310 103 0.650 0.429 75 I21 SASOlO 0.932 0.253 103 0.717 0.406 75 I22 SASOll 0.921 0.271 101 0.650 0.429 75 I23 SASOlZ 0.960 0.196 101 0.533 0.449 75 I24 SASOl3 0.950 0.218 101 0.567 0.446 75 I25 SASOl4 0.941 0.238 101 0.650 0.429 75 I26 SASOlS 0.839 0.374 31 0.600 0.282 75 I-27 SASOl6 0.891 0.313 101 0.533 0.449 75 “ I28 SASOl7 0.921 0.271 101 0.750 0.390 75 I29 SASOl8 0.901 0.300 101 0.800 0.360 75. I30 SASOl9 0.931 0.255 101 0.617 0.438 75 I31 SASATD )6.990 2.166 101 12.917 3.227 75 282 APPENDIX C Matrix Variable FALL TERM 1977 WINTER TERM 1978 Element Acronym» Mean Std.Dev. N. Mean Stdrgev. N. I32 LTPOOl 0.010 0.098 105 0. 0. 75 I33 LTPOOZ 0.010 0.098 105 0.013 0.115 75 I34 LTPOO3 0.010 0.098 105 0.067 0.251 75 I35 LTPOO4 0.029 0.167 105 0.040 0.197 75 I36 LTPOOS 0.010 0.098 105 0.040 0.197 75 I37 LTPOO6 0.019 0.137 105 0.040 0.197 75 I38 LTPOO7 0.029 0.167 105 0.013 0.115 75 I39 LTPOOB 0.029 0.167 105 0.033 0.103 75 I40 LTPOO9 0.019 0.137 105 0.040 0.197 75 I41 LTPOlO 0.010 0.098 105 0.027 0.162 75 I42 LTPTOT 0.171 0.545 105 0.280 0.831 75 I43 p02001 0.019 0.195 105 0.160 0.369 75 I44 pgzooz 0.019 0.195 105 0.227 0.421 75 I45 PQZOO3 0 0 105 0.187 0.392 75 I46 902004 0.457 0.501 105 0.227 I 0.421 75 I47 902005 0.457 0.501 105 0.293 0.458 75 I48 PQZOO6 0.410 0.494 105 0.240 0.430 75 I49 902007 0.390 0.490 105 0.320 0.470 75 I50 PQZOOB 0.371 0.486 105 0.293 0.458 75 I51 902009 0.333 0.474 105 0.347 0.479 75 I52 PQZTOT 2.457 2.442 105 2.293 2.958 75 I53 T01 1.003 0.271 76 0.836 0.357 75 I54 TC3 0.901 0.273 89 0.807 0.501 75 I55 T04 0.833 0.363 75 1.286 0.968 75 I56 T05 0.752 0.429 83 1.189 0.497 75 I57 T06 1.371 1.018 89 0.900 0.709 75 I58 T07 0.916 0.642 85 1.190 0.510 75 "I59 T08 1.353 0.642 88 0.811 0.418 75 I60 T09 0.613 0.302 81 1.222 0.465 75. I61 T010 1.320 0.445 89 0.632 0.315 75 I62 T011 0.930 0.516 89 1.275 0.915 75 283 APPENDIX C I Matrix Variable FALL TERM 1977 WINTER TERM 1978 Element Acronym Mean Std.Dev. N. Mean Std. Dev. N I63 T012 1.238 0.567 86 0.841 0.472 75 I64 T013 0.942 0.491 82 0.945 0.366 75 I65 T014 1.008 0.413 82 0.907 0.407 75 I66 T015 0.841 0.431 82 1.128 0.357 75 I67 T016 1.220 0.516 81 0.805 0.429 75 I68 T017 0.460 0.382 .68 1.276 0.584 75 I69 T018 1.395 0.657 '77 0.319 0.158 75 I70 ONE031 .527 .701 93 0.474 0.660 75 I71 ONEO32 2.362 .788 94 2.333 0.577 75 I72 ONEO33 2.064 1.086 94 2.474 0.872 75 I73 Tw0031 0.805 0.689 77 0.483 0.642 75 I74 TWOO32 2.208 0.848 77 2.207 0.712 75 I75 TWOO33 2.803 1.083 76 2.509 0.932 75 I76 TREO3l 0.671 0.602 73 0.671 0.0 75 I77 TREO32 2.164 0.834 73 2.164 0.0 75 I78 TREO33 2.800 1.044 70 2.800 0.0 75 I79 FORO3l 0.701 0.631 87 0.536 0.735 75 I80 FORO32 2.000 0.812 86 1.786 0.672 75 I81 FOR033 2.741 1.014 85 2.607 1.061 75 I82 FVEO3l 0.704 0.697 81 0.553 0.654 75 I83 FVEO32 2.198 0.900 81 1.894 0.598 75 I84 FVEO33 2.617 1.056 81 2.277 0.911 75 I85 81x031 0.789 0.754 71 0.611 0.706 75 I86 51x032 1.914 0.775 70 1.759 0.677 75 I87 51x033 2.690 0.994 71 2.151 0.860 75 I88 svu031 0.623 0.708 77 0.709 0.710 75 I89 SVNO32 1.974 0.843 77 1.907 0.758 75 1190 svm033 2.558 1.219 77 2.345 0.948 75 I91 NINO3l 0.760 0.768 75 0.706 0.703 75‘ I92 NINO32 1.716 0.973 74 1.784 0.794 75 I93 NINO33 2.493 1.132 75 2.240 0.966 75 I Matrix Variable 284 APPENDIX C FALL TERM 1977 WINTER TERM 1978 Element Acronym Mean Std. Dev. N. Mean Std. Dev. N. I94 FINO61 0.472 0.641 89 0.556 0.585 75 I95 FIN062 1.697 0.946 89 1.574 0.967 75 I96 FIN063 2.135 1.140 89 1.741 1.029 75 I97 FINO64 0.500 0.678 88 0.528 0.584 75 ‘ I98 FIN065 1.307 0.975 88 1.907 0.826 75 I99 FIN066 2.591 1.301 '88 2.745 0.919 75 I100 Q1 20.892 3.333 102 24.323 3.821 75 I101 Q2 21.224 3.798 98 26.317 3.101 75 I102 Q3 21.202 4.542 99 25.320 3.049 75 I103 Q4 22.042 3.202 95 27.397 4.206 75 I104 Q5 24.516 3.091 93 28.000 3.437 75 I105 Q6 23.056 4.060 89 22.820 4.391 75 I106 Q7 23.387 3.962 93 27.276 3.872 75 I107 Q9 22.087 3.015 92 26.283 3.852 75 I108 Q10 22.363 3.237 91 23.667 3.676 75 APPENDIX D FACTOR ANALYSES 285 TABLE D.l PRETEST FACTOR ANALYSIS B Matrix Fac- Eigen- PCTof. Elements Variable Communality tor* value VAR CUM PCT Bll = PRE001 .30445 1 2.50708 14.3 14.3 B12 = PREOOZ .74161 2 1.93106 11.0 25.3 B13. = PRE003 .42990 3 1.57459 9.0 34.3 B14 = PRE004 .34633 4 1.52678 8.7 43.0 B15 = PREOOS .49032 5 1.45112 8.3 51.3 B16 = PRE006 .38673 6 1.20621 6.9 58.1 B17 = PREOO7 .31443 ~7 1.15199 6.6 64.7 B18 = PRE008 .25685 .8 1.08548 6.2 70.9 B19 = PREOO9 .24983 9 .94324 5.4 76.3 B20 = PRE010 .65.78 10 .86626 4.9 81.2 B21 = PREOll .32335 11 .82853 4.7 85.9 B22 = PRE012 1.00227 12 .70668 4.0 90.0 B23 = PRE013 .17973 13 .63201 3.6 93.6 823 = PRE014 .61759 14 .59487 3.4 97.0 B25 = PRE015 .44553 15 .53464 3.0 100.0 B26 = PRE016 .33886 B27 = PRBOI7 '58876 Analysis: Principal Factoring** B23 = PRE018 '76886 with.33 Iterations and Varimax B29 = PRE019 “68459 Orthogonal Rotation. B30 = PRE020 .30051 B31 = PRE021 .66861 B32 = PRE022 .33987 B33 = PRE023 .38825 B34 = PRE024 .89144 B35 = PREOZS .36339 B36 = PRE026 .90180 B37 = PRE027 .89388 B38. = PRE028 .29826 286 TABLE 9.1 CONTINUED PRETEST FACTOR ANALYSIS as elements B46 through B60. B Matrix Elements Variable , Communality B39 = PRE029 .47304 840 = PRE030 .59189 B415 = PRE031 .59372 B42 = PRE032 .29020 B43 = PRE033 .58242 B44 = PRE034 .84169 Major Components Standard Factor ("Pre" test items) Mean Range Deviation 1 21,23,24,26,31,33,34 0.0 -2.16 to 1.19 0.899 2 1,2,3,5,17,18,30 0.0 -1.40 to 1.61 0.897 3 1,3,5,7,14,21,32 0.0 -1.85 to 1.37 0.827 4 1,7,9,12,21,24,26,27, , 30,33 0.0 -5.07 to 0.97 1.014 5 2,19,20,21,24,30,32 0.0 -1.70 to 1.41 0.863 3,17,18,24,26,31,34 0.0 -1.72 to 1.84 0.911 7 3,5,12,23,24,26,29,30, 34 0.0 -3.25 to 1.64 0.923 8 4,5,6,8,11,16,18,21, 22,23,24,30 0.0 —2.33 to 1.20 0.806 9 2,12,17,26,27,31,34 0.0 -1-85 to 1-63 0-864 10 698917919921926927 0.0 “1.66 to 1.51 0.933 11 2,3,6,14,18,21,27,28, 33 0-0 -l.46 to 1.76 0.820 12 2,9,15,17,18,23:24 0.0 —1.16 to 3.34 0.782 13 2.5.6.10»14,22,25 0.0 -1.61 to 1.17 0.821 14' 12,18,21,22,25,29,3l 0.0 _1.19 to 2.30 0.774 '15 5,6,7,10,11,17,18, 23,24,25,30’31,32 0.0 -2.28 to 1.40 0.795‘ *Pretest Factors are included in B **SPSS PA2 Option 287 TABLE D.2 AFFECTIVE QUESTIONNAIRE FACTOR ANALYSIS VARIABLE COMMUNALITY 851 AFFOOl .33224 B62 AFF002 .58348 B63’ AFF003 .62353 864 AFF004 .33870 865 AFF005 .49620 B66 AFF006 .29129 B67 AFF007 .33136 B68 AFF008 .27740 B69 AFF009 .42686 70 AFFOlO .34254 71 AFFOll .26843 72 AFF012 .37906 73 AFF013 .35248 74 AFF014 .54894 75 AFF015 .28740 76 AFF016 .42324 77 AFF017 .21490 78 AFF018 .51831 79 AFF019 .39920 80 AFF020 .31958 82 AFF022 .54067 83 AFF023 .58784 84 AFF024 .24068 85 AFF025 1.00699 86 AFF026 .11840 87. AFF027 .11573 88 AFF028 .44775 89 AFF029 .29973 90 AFF030 .12821 91 AFF031 .27303 AFF032 .29683 www-wwwwwwwwwwwwwwwwwww \D N FACT- EIGEN- PCT 0F 0R* VALUE VAR CUM PCT 1 3.98067 22.7 22.7 2 2.22991 12.7 35.5 3 1.83957 10.5 46.0 4 1.62837 9.3 55.3 5 1.46467 8.4 63.6 6 1.34250 7.7 71.3 7~ 1.24444 7.1 78.4 8- 1.10681 6.3 84.7 9 1.03649 5.9 90.7 10 .83154 4.7 95.4 11 .80332 4.6 100.0 ANALYSIS: PRINCIPAL FACTORING** WITH 10 ITERATIONS AND VARIMAX ORTHOGONAL ROTATION 288 TABLE D.2 (Continued) VARIABLE COMMUNALITY 393 = AFF033 .48614 B94 = AFF034 .29880 B95 = AFF035 .22451 B961: AFF036 .38471 397 = AFF037 ' .33337 B98 = AFF038 .44918 B99 = AFF039 .44896 B100= AFF04O .60531 B101= AFF041 .28223 3102= AFF042 .44650 8103= AFF043 .27658 B104= AFF044 .25514 B105= AFF045 .28700 B106: AFF046 .42460 B107= AFFO47 .25481 B108: AFFO48 .23745 (Affective Questionnaire STANDARD FACTOR MAJOR COMPONENTS Items, "AFF") MEAN RANGE DEVIATION 1 2,3,5,6,7,25,30,32,33,41 0.0 -1.61—2.08 0.907 2 10,20,22,25,31,33,36,42,45,46 0.0 -1.94-3.61 0.971 3 2,4,9,16,18,25,32,33,41,43,44 0.0 -1.75-1.63 0.838 4 1,4,9,25,28,34,37,39,40,42 0.0 -2.79-1.48 0.850 5 1,5,10,13,14,34,37,44,48 0.0 -2.42-1.42 0.821 6 2,7,9,24,33,34,36,39,40,43 0.0 -l.24-4.65 0.847 7 2,3,8,16,20,23,25,29,33,34,37,45,47 0.0 -2.33-l.84 0.829 8 2,3,10,14,22,23,24,25,28,31,33,35,37,40, 42,44,45 0.0 -1.74-2.01 0.840 9 3,5,22,23,25,40,41,42,45,46 0.0 -1.44-3.94 0.836 10 3,8,15,16,17,18,19,23,25,33,34,46 0.0 -1.97-2.45 0.818 11 2,5,12,14,19,33,38,40,42,46 0.0 -1.38-1.83 0.805 *Affective Factors are included '_,**SPSS PA2 option in B as Elements B109 to Blll TABLE D.3 BACKGROUND QUESTIONNAIRE FACTOR ANALYSIS 156 B Matrix Elements Variable Communality B121== BKGOOZ .54719 3123 = BKG004 .50201 3124 = BKGOOS .42654 B125 = BKGOO6 .37496 3126 = BKGOO6 . 75568 B1281: BKG009 .36752 B130 = BKGOll .28720 B131:= BKG012 .39482 B133== BKGOl4 .45750 B135 = BKG016 .25327 B136 = BKG017 . 34421 3137.= BKGOlS .39120 3138:: BKG019 .30725 B139 = BKG020 .27691 B140 = BKG021 .44576 B141 = BKGOZZ .40536 B143 = BKGOZ4 .59727 3144_= BKGOZ4 .30524 3145 = BKGOZ6 . 34726 B146 = BKGOZ7 .57897 B147.= BKGOZS .81401 B148 = 131(0029 .60365 B149 = BKG030 . 76220 B150 = BKG031 .69106 B151 = BKGO32 .56750 B152 = BKG033 .46199 B153 = BKG034 .55654 ”B154== BKGO35 .51077 B155== BKGO36 .57872 B = BKGO37 .67004 Fac- Eigen- PCT of torfr value VAR CUM PCT 1 4.61321 15.3 15.3 2 3.66936 12.2 27.5 3 3.01920 10.0 37.5 4 2.63990 8.8 46.3 5 2.26269 7.5 53.8 6 1.97362 6.5 60.3 '7 1.69051 5.6 65.9 ’ 8 1.59578 5.3 71.2 9 1.57649 5.2 76.4 10 1.55107 5.1 81.6 11 1.34883 4.5 86.1 12 1.23278 4.1 90.2 13 1.18913 3.9 94.1 14 .92674 3.1 97.2 15 .84963 ,2.8 100.0 Analvsis: Principal Factoring** with 21 Iterations and Varimax Orthogonal Rotation 290 TABLE '9 . 3 CONTINUED wwwwmwwwwwwwwwwwwwwwmwwwwwww B Matrix Elements Variable Communalitx 157 = BKGOB8 .36526 B158 BKGO39 .45860 159 = BKG040 .79317 160 = BKGO41 .67308 161 = BKG042 .44745 162 BKG043 .39290 163 = BKG044 .53208 164 BKG045 .59895 165 BKG046 .46947 166 = BKGO47 .78492 167 = BKG048 .64009 168 = BKGO49 .34698 169 = BKG050 .50186 170 BKGOSl .82095 171 BKGOSZ .45371 172 = BKG053 .31704 173 = BKG054 .59783 174 = BKGOSS .71381 175 BKG056 .65008 176 BKG057 .65604 177 = BKG058 .41004 178 = BKG059 .49227 179 = BKG060 .28790 180 = BKG061 .47901 181 = BKG062 .44370 182 BK0063 .63778 183 = BKGO64 .42908 184 = BKG065 .14452 185 = BKGO66 .55022 186 = BKG067 .46653 291 TABLE D.3 CONTINUED Major Components . (Background Question— ' Standard Factor naire Items ”BKG") Mean Range Deviation 1 7,22,24,30,3l,32,47, 0.0 —2.31 to 2.03 0.923 50,51,56,57,67 2 5,7,22,26,33,38,41,44 0.0 -2.67 to 1.93 0.916 45,47,51,67 3 6,28,29,35,36,47,48,I 0.0 —2.38 to 1.71 0.863 51,55,56,61,67 4 4,27,30,31,38,40,45, 0.0'-2.48t61.80 0.865 46,47,48,50,51,52,67 ‘ 5 4,25,31,32,33,34,35, 0.0 —l.77 to 2.32 0.858 44,47,51,53,63 6 2,7,28,30,33,34,39, 0.0 —2.26 to 2.63 0.879 51,55,56,57,58 7 7,19,24,28,34,35,44, 0.0 -2.12 to 2.40 0.870 48,55,56,59,60 8 4,7,9,12,22,24,27,31, 0.0 -2.43 to 1.85 0.843 34,40,41,43,45,47,51, 55,60 9 5,6,17,19,21,24,25,28 0.0 -2.70 to 1.69 0.919 29,32,33,36,40,44,45 55,57,58,60,6 10 4,28,29,30,31,34,40, 0.0 -1.68 to 2.43 0.896 41,42,48,52 ll 22,28,29,3l,34,44,47 0.0 —2.69 to 1.62 0.853 49,54,63 12 9,24,25,28,3l,34,40, 0.0 -5.23 to 1.26 0.862 43,47,48,51,54,55,57, 63,67 13 2,4,5,24,31,34,36,39, 0.0 —2.36 to 2.27 0.861 47,48,50,51,54,55,57, 61,63,67 14 5,7,17,24,26,27,32,34 0.0 -1.88 to 2.69 0.824 35,39,44,47,48,51,54, 55,56,57,58,66 15 5,7,12,19,22,24,30,34 0.0 —2.19 to 2.05 0.810 46,55,63,64 1_ *Background Factors are included **SPSS PA2 Option in B as Elements B188 through 3202. APPENDIX E Model Coefficients 292 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 DEPENDENT VARIABLE, K{1_ Independent - ’ Variable Coefficients K0101 K0201 K0301 P K0401 K0501 Acronym B .062 .046 .025 -31 (.203) (.172) (.127) CLASS B .001 —.002 ‘33 (-.193) (-.284) TRCR B -.005 —.003 —.003 «.002 -35 (-.993) (—.885) (-.359) (—.430) CRERN B .0002 .0002 .0001 70001 -36 (1.091) (1.129) (.995) (.608) MSUPTS 3. 13 .002 ’ (.067) PRE003 B_,19 .035 ’ (.059) PRE009 8 .166 "321 (.189) PRE011 8_ 22 -.23V ’ (—.196) PRE012 B .099 -324 (.189) PRE014 .083 (.268) PRE018 PRE020 PRE021 -.072 (-.159) PRE022 .039 (.117) PRE025 PRE026 —.052 (—.159) PRE028 PRF005 -.025 (-.149) PRF009 .045 (.093) AFFOOl AFFOO3 AFF004 AFF008 293 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 DEPENDENT VARIABLE, K'- Independent ’3L Variable C°effiCientS K0101 K0201 K0301 ’K0401 ’K0501 Acronym &_ .111 .119 ’69 .(.232) (.309) AFF009 B -.068 _;f’73 (-.184) AFF013 B__ .056 ’77 (-.134) AFF017 B__ -.098 -.067 ’78 (—.204) (—.218) AFF018 B .086 B -.033 —.203 -.145 7.80 (-.043) (-.241) (-.237) AFF020 B .112 ".83 (.145) AFF023 3_ .054 .86 (.163) AFF026 B__ .064 .87 (.127) 435027 B -.033 ‘391 (-.078) AFF031 8_ .059 0.072 —.043 ’94 (.127) (-.174) (-.143) AFF034 B -.089 ".100 (—.157) AFF040 d. .049 :107 (.118) AFF047 B__ .072 .086 .108 (.123) (.134) AFF048 8__ .040 ,109 (.181) AFROOl d. .017 .059 .116 (.099) (.220) AFR008 B__ .039 .047 __g .123 (.187) (.147) BKGOO4 d_ .023 ...126 (.120) BKG007 d. .070 .052 .059 __g .135 (.174) (.146) (.230) BKG016 d. .123 . .137 (.193) BKG018 B -.090 -;166 -;138 (-.142) (-.171) BKGOl9 g_. .149 .089 .197 .139 (.267) (.200) (.291) BKGOZO 294 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 DEPENDENT VARIABLE K' Independent Variable Coefficients K0101 K0201 K0301 K0401 K0501 Acronym 8 BKGO42 .1 fag-$341 . ONEO32 295 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 __1. DEPENDENT VARIABLE, Ki; Independent ' Variable Coefficients K0601 K0801 K0901 K1001 K1101 Acronym 8_ -.001 .3 (-.138) TRCR B__ -. 004 .5 (—.752) CRERN 6_ .0002 .0001 .6 (.869) (.172) ‘MSUPTS B__ .096 - .15 (.195) PRE005 3 -.112 ".16 (-.133) PRE006 d_ .097 .137 119 (.152) (.239) PRE009 8.. .179 .567 .21 (.120) (.241) PRE011 6. -.440 ..22 (-.215) PRE012 8_ —.218 .26 (-.257) PRE016 8.. .071 .168 .28 (.136) (.210) PRE018 E. -.509 “T120 .30 (—.344) (.142) PREOZO B —.112 ".32 (—.094) PRE022 Q. -.133 .34 (—.160) PRE024 5_ .100 ___ ,35 (.184) PRE025 8_ -.088 .36 (—.114) PRE026 8_ :i116 .38 (-.146) PRE028 8_ :023 __f .45 (.232) PRETOT B_ .044 - ¥;47 (.177) PRFOOZ d_ -.041 __. .48 (-.152) PRF003 'B__ -.143’ -7034 . .50 (-.314) (-.130) PRFOOS B — . 041T ".51 (-.163) PRF006 B;_ 1 .551 .57 (.192) PRF012 296 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 V DEPENDENT VARIABLE. K'. Independent 4L Variable Coefficients K0601 K0801 K0901 ' K1001 K1101 Acronym 3_. .122 "57035 .61 (.151) (-.110) AFFOOI 8__ -:040* .63 (-.092) AFFOO3 E; .078 .64 (.168) AFF004 E. —.078 .65 (-.150) AFFOOS 3 .060 .090 ".67 (.127) (.179) AFF007 8_ .074 .68 (.130) AFF008 8__ -.090 .78 (-.109) AFF018 8 -.155 ‘.80 (—.165) AFF020 8_ .048 .91 (.102) AFF031 Q. .108 .079 -92 (.185) (.129) AFF032 B__ —.105 -.107 , .94 (-.207) (-.232) AFF034 B_ —.119 .95 (-.146) AFFO35 8. .179 .288 .96 (.159) (.162) AFF036 d. .100 .98 (.195) AFF038 6_ —.112 -.338 -.133 .100 (-.116) (-.222) (-.153) AFF04O 5.. -.102 -.074 .107 (-.144) (-.115) AFFO47 E. .139 .088 _1— .108 .(.116) _(.123) AFF048 B__ .106 .116 (.236) AFR008 4. .053 _g. .117 (.188) AFR009 d_ .030 . .121 (.103) BKG002 &_ .066 .066 .070 .123 (.198) (.187)_ (.130) BKGOO4 8_ J .080 -.040 .126 (.256) (-.136) BKG007 297 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 DEPENDENT VARIABLE, K'. Independent 7:i— Variable Coefficients K0601 K0801 K0901 K1001 K1101 Acronym Q. .098 .128 (—.169) BKGOO9 8_ -.028 .134 (-.120) BKG015 B__ .128 .061 .135 (.193) (.154) BKG016 B -.143 -.262 ‘;138 (-.141) (4.161) BKGOl9 B__ .194 .218 .267 .118 .139 (.273) (.290) (.234) (.174) BKG020 3.. -.054 .144 (-.116) BKGOZS E. —.052 .150 (.234) BKGO31 B_ -.082 _.152 (-.135) BKG033 E. .449 .744 .156 (.257) (.269) _ BKG037 73_ .031 .037 .161 (.125) (.094) BKGO42 &_ -.053 -.075 .166 (—.209) (-.280) BKG047 B .065 ".169 (.152) BKGOSO 6_ -.083 -.027 .171 (-.178) (-.102) BKG052 Q. -.048 .183 (:.194) BKGO64 6_ —.O66 .188 (-.251) BKFOOI d_ .033 .076 .191 (.123) (.175) BKFOO4 B__ -.392 .196 (-.092) BKF009 8. —.104 .075 -.143 .198 (-.358) (.170) (-.311) BKFOll 'B_ -.064 __ .205 (-.174) PRBSBZ B_ .001 .208 , (.136) - E1 4. .002 .209 (.129) NS 8.. .003 .217 (.077) MSUR 298 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 1 DEPENDENT VARIABLE. K'. Independent ’ 4' Variable Coefficients K0601 K0801 K0901 P K1001 ¥ K1101 Acronym I__ .242 .389 . 1 (. 289) (. 289) LECOOl I__ .255 .663 .13 (.106) (.171) 543002 I__ .152 .32 (.063) LTP001 1_ -.041 -.107 .70 (—.115) (-.190) ONEO31 IL_ . .040 .71 (.139) ONEO32 n_ .086 .8 (.096) K0800 u__ .199 .9 (.108) K1000 1L_ .027 .23 (.020) K2300 It. .166 .27 (.163) K2700 *II_ .184 -.204 .32 (.115) (—.122) K3200 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 i:_ _— ' DEPENDENT VARIABLE, K'. Independent 4' Variable Coefficients K1201 I Acronym __— fl. .0004 ,8 (.160) GPA B_ . 108 .19 (.158) PRE009 B .285 ‘321 (.178) PRE011 B__ .121 .28 (.213) PRE018 B___ -o 047 .49 (-.178) PRF004 Q. -.063 .51 {-.212) PRFOOS, E. .036 .57 (.104) PRF012 Q. .123 .71 (.224) AFF011 B . 093 ‘173 (.175) AFF014 AFF029 AFF038 AFF047 AFR008 BKGOl6 BKGOZO BKGO34 BKGO42 _EK0052 BKG053 BKG064 BKFOll BKF012 300 TABLE E.1 MODEL COEFFICIENTS FOR WEEK 1 DEPENDENT VARIABLE. K'. Independent 0 ‘5'— Variable Coefficients K1201 F ’ Acronym 8_ .035 .202 (.107) BKFOIS d. -.020 ..205 (-.077) PRBSBZ B__ -.001 .209 (-.130) ' NS 6. .001 . .210 (.084) TF I__ .120 ,1 (.126) LECOOl u_ . 068 -8 (.1121 K0800 QQQQ‘Q \OCDNO‘Ul-L‘UJN‘H Q 010 Q g... .._- 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 u 027 -028 4 029 030 031 032 033 -0. .0095 .0331 .2110 .5500 .3237 2697 .1059 .3810 0.4617 0.2390 301 TABLE E.1 Model Constants Week-1 034 035 036 037 038 039 040 041 042 043 044 302 TABLE E.2 MODEL COEFFICIENTS FOR WEEK 2 DEFENDENT VARIABLE. K'. Independent L Variable Coefficients K0802 K0902 K1002 K1402 Acronym 8_ -.137 -.256 .18 (-.093) (—.116) PRE008 9_ .093 .194 .366 .21 (.089) (.115) (.145) pRE011 fi_ -.120 —.239 774 (-.185) -.246) PRE014 8.. -.O80 .25 (-.099) PRE015 5— .040 .27 (.109) PRE017 B_, -.035 .33 (-.083) PRE023 B_ . 022 , 34 (. 057) PRE024 8_ -.o35 -.041 . .39 (—.085) (-.082) PRE029 R. -.042 —.030 .43 (-.111) (-.067) PRE033 -.121 -.117 (-.306) (-.143) AFF003 .221 (.257) AFF007 .053 (.124) AFF009 .156 (.175). AFF010 —.104 (-.196) AFF019 .193 (.132) AFF021 .344 (.195) AFF023 -.062 (-.087) AFF025 .084 (.185) AFF027 —.037 (—.088 AFF028 -.034 (-..O81) ' AFF044 AFFO45 .045 (.197) AFROOl 303 TABLE E.2 MODEL COEFFICIENTS FOR WEEK 2 -r DEPENDENT VARIABLE, K'. Independent ‘11 Variable Coefficients K0802 K0902 Acronym B .029 -.136 (.111) BKG017 R. ~ .056 .137 (.098) BKGOl8 8_ .072 .140 .149 (.213) (.275) BKG030 &_ -.043 —.O63 .153 (-.179) (-.221) BKG034 B_. -.027 -.046 .158 (-.079) (-.113) BKG039 B__ —.035 -.068 .183 _1-.110) (—.141) BKGO64 8_ -.029 -.067 .198 (-.087) (-.136) BKFOll ,1__ .141 .15 (.156) SASOO4 . 1_ -.053 -.135 __‘ .54 (-.083) (-.179) TC3 u__ .136 .1 (.152) K0101 u__ .118 .4 (.100) K0401 u__ .481 ~ .8 .(.689) K0801 11- . 452 -9 (.604) _K0901 “_. .079 .257 .159 .10 (.109) (.4921._ (.148) K1001 B. .051 .219 .416 .11 .(.946) (.175) (.221) K1101 u__ -.064 -.097 -.219 .12 {-.098) {—.092) {—.138) K1201 {2 p a a a Q Q. Q 9' 0.3068 0.0122 0.6047 -0.0236 304 TABLE E.2 Model Constants Week-2 034 035 036 037 038 039 040 041 042 043 044 305 TABLE E.3 MODEL COEFFICIENTS FOR WEEK 3 DEPENDENT VARIABLE , K' Independent I Variable Coefficients K0303 K0803 K0903 K1403 K1503 Acronym 18 —.043 . PRE008 PREOIO -.034 -.080 —.115 ~ — 1 — 130 PRE013 PRE012 .119 PRFOIS AFF001 AFF007 306 TABLE E.3 MODEL COEFFICIENTS FOR WEEK 3 DEPENDENT VARIABLE. K'. Independent 4L.1 Variable Coefficients K0303 K0803 I K0903 ’ K1403 ‘ K1503 Acronym B__ .351. .105 (.222). AFF045 d_ 6.117: __ .117 (6.280) AFR009 8— «.099 -123 (4.2001_, BKGOO4 B__ -.039 ‘ .124 {-.129) BKGOOS '75. «.055 .130 (6.170) BKG011 B__ -.034 -.076 -.120 .131 {-.057) (-.100) (-.101) BKGOIZ B__ .110 __ .139 (.104) BKGOZO B__ .022 .093 .093 .148 (.045) (.149) (.096) BKG029 B__ .036 .155 (.080) BKGO36 B__ —.014 .177 (—.073) BK0058 s -.033 ”.178 (—.121) BKGOS9 8_ —.011 -.038 .182 (-.033) (-.088) BKGO63 8. -i043 .195 (—.167) BKF008 6_ .010 .050 ___ .197 (.050) (.127) BKFOlO B —.024 -.016 __;_,198 (—.096) (-.060) BKF011 B__ -.029 .200 (:.115) BKF013 1 -.064 -.219 _g“.13 (:.036) (-.061) SASOOZ _1 -.053 -.193 7.55 (-.086) (-.200) TC4 - )__ —.104 _ .70 (-. 208) ONE031 1__ .016 . ____.77 (.061) TRE032 —.067 .1:.199) TRE033 .020 (.215) 02_ 307 TABLE E . 3 MODEL COEFFICIENTS FOR WEEK 3 DEFENDENT VARIABLE. K'- I Independent ‘45 Variable Coefficients K0303 K0803 K0903 I K1403 K1503 Acronym __ u__ .126 .085 .1 (.133) (.086) K0102 n. .253 ___..2 (.216) K0202 R. .592 .062 .272 .3 (.551) (.055) (.157) K0302 u__ . -.158 .5 (-.102) K0502 u__ .945 .426 .8 (.938) (.211) K0802 u_. .045 .403 .9 (.058) (.505) K0902 u__ -.173 .12 (—.133) .K1202 vi. .019 .109 .615 .14 (.046) (.204) (.743) K1402 u__ .086 .27 (.092) K2702 u__ —.132 1,29 (—.130) K2902 308. TABLE E.3 MODEL COEFFICIENTS FOR WEEK13 DEPENDENT VARIABLE, K1; Independent Variable Coefficients K1603 K1803 Acronym 3 -. 099 ".20 (—.126) PRE010 e - 314 ".21 (-.134) PRE011 B .126 ‘.61 (.150) AFF001 8_ -.158 , 64 (-. 196) AFF004 3. I227 .69 (. 150) AFF009 B_ .258 .76 ( 308) AFF016 8_ .288 - 315 .81 (.108) (-.114) AFF021 8__ 110 .86 (.125) AFF026 B__ .153 ' .97 (.192) AFF037 ‘71_ -.139 .102 (- 125) AFF042 R. -.151 .104 (-.196) AFF044 3. .090 .151 (.179) BK0032 B_ —.044 .163 (-.110) BKGO44 6_ .105 ___ .174 (.237) BKGOSS 9_ -.127 BKF005 LECOOl LE0002 SASOOZ LTP003 T05 ONEOBZ TW0031 309 - TABLE E.3 MODEL COEFFICIENTS FOR WEEK 3 -: DEPENDENT VARIABLE, K' Independent Variable Coefficients K1603 K1803 Acronym 1_ .130 _i— .76 (.199) TRE031 1__ .246 .100 (.218) Q1 1__ .018 .101 (.181) Q2 14.. -. 544 .2 (-.257) K0202 E. .908 .4 (.340) K0402 “—- -.198 .12 (-.136) K1202 -0.0776 0.1471 0.5022 0.6422 0.7196 -0.9258 1.1521 310 TABLE E.3 Model Constants Week-3 034 035 036 037 038 039 040 041 042 043 044 311 TABLE E.4 MODEL COEFFICIENTS FOR WEEK 4 _. DEPENDENT VARIABLE. K'. Independent 344* Variable Coefficients K0304 K0404 K0504 K0904 K1604 Acronym 8_ .6277 .035 .037 .15 (.090) (.083) (.086) PREOOS B__ -.O68 -.067 ____.16 (-.100) (-.091) PRE006 3:. -.045 -.041 —.Q67 -.058 -.143 .23 (-.093) (7.110) .(—.133) (7.111) (-.212) PRE013 B__ -.116 .24 (—.253) PRE014 B_. —.087 .28 (-.154) PRE018 IR. —.070 .29 (3.123) PRE019 d. -.035 -.035 .37 (-.113) (—.780) PRE027 d. .035 .46 (.118) PRFOOl 8.. -.038 .50 (-.164) PRF005 5_ —.020 1 .52 (-.092) PRF007 8_ -.161 .90 (-.103) AFF030 B__ -.050 .94 (-.091) AFF034 d. .023 .020 .030 .075 ____.98 (.053). (.059) (.064) (.122) AFF038 _. -.029 ~ ___..123 (—.076) BKGOO4 8.. .127 __. .128 (.261) BKGOO9 d. .081 .072 .193 .097 .138 (.098) (.113) (.224) (.109) BKGOl9 @— .058 A .147 (-082) BKGOZS R. .009 .013 .024 .010 « .168 .I.048) (.085) (.120) (.050). ,EKGO49 3.. .018 .018 .040 .022 _ 4191 L081) 1. 104) (.174) (.093) BKFooz. 4__ .036 . .35 (.032) LTP004 I_ -.038 -46 (2.094 p020041 . I. -.017 -.027 -.026 -.026 .59 ‘ (-.056) (-.116)_ (-.085) (7.082) T08 312 TABLE E.4 MODEL COEFFICIENTS FOR WEEK 4 DEPENDENT VARIABLE, K11— Independent Variable Coefficients K0304 K0404 ’ K0504 ’ K0904 ’ K1604 . Acronym 1__ .007 .007 .023 .72 (.040) (.051) (.125) 0NE033 1__ .012 .023 .80 (.046) ' (.071) FOR032 1__ .009 .012 .016 .012 .81 (.049) (.080). 11.084). (.057) FOR033 u_ .793 . .3 (.898) K0303 u__ .027 .805 34 (. 046) (. 804) K0403 u__ .450 .5 (.5011 K0503 n__ -.074 ' ,6 (-.065) K0603 11.. . 784 .9 .8561 K0903 It. .101 .12 (.101) K1203 “—- .074 .15 (-096) K1503 “—- .027 .028 .133 .034 .520 .16 (.053) (.071) (.250) (.061) .730) K1603 u__ .050 .040 .042 .047 .18 (.103) (.106) (.083) (.089) K1803 IL .025 K2303 ' 9 99999999 komNOUI-bWN-H 010 011 012 013 014 015 016 017 018 019 020 021 -0.0471 -0.0043 -0.0735 -0.0201 0.3653 313 TABLE E.4 Model Constants Week-4 034 035 036 037 038 039 640 041 042 043 044 314 TABLE E.5 MODEL COEFFICIENTS FOR WEEK 5 DEPENDENT VARIABLE, Kt; ‘ Independent Variable Coefficients K0805 K0905 K1005 K1405 K1505 Acronym B__ -.016 -.052 .14 (-.045) (—.114) PRE004 E. -.004 .28 _(e.011) PRE018 d. -.005 .34 (:.013) PRE024 B__ -.088 .39 (-.151) PRE029 B__ .041 .101 .094 .41 _.(.094) (.198) (.157) PRE031 B__ -.015 -.031 -66 (-.039) .(+.063) AFF006 B__ .041 .094 .68 (.088) (.145) AFF008 d. .006 .69 (.016) AFF009 d. -.041 .76 (-.081): AFF016 9.. -.085 .77 (—.133) AFF017 R. .027 .062 .78 (.063) (.105) AFF018 8_ .076 .91 (.128) AFFO31 3.. .020 __ ..92 (.050) AFF032 8.. .033 .93 (.048) AFF033 R. -.056 —.080 .98 (-.118) (-.124) AFF038 __ .028 .103 (.034) AFF043 B_ -.039 _., .116 (—.136) AFR008 8_. .008 .130 11.055) BKGOll BKG012 -.113 (-.144) ‘BK0018 -.028 (-.084) BKGO33 BK0056 315 TABLE E.5 MODEL COEFFICIENTS FOR WEEK 5 -: DEFENDENT VARIABLE. Kf1___ Independent Variable Coefficients K0805 K0905 ,K1005 .Kl405 K1505. Acronym B —.001 1""""'4""" 73177 {—.009) BK0058 d_ .094 .181 (.194) BKGO62 d; .004 .188 (.021) BKFOOl B__ -.003 .194 (-.016) BKF007 3.. .018 .199 (.063) BKF012 .I__ .011 .3 (.024) LEC003 1__ .029 .055 .5 (.061) (.085) . LE0005 "1__ .028 .059 .054 .20 (.054) (.089) (.069) SASOO9 _1__ -.075 ‘ .60 (—.O80) T09 I__ —.001 .103 (—.013) 04 —.134 -.284 (r.121) (-.186)_ K0204 .144 .465 (.134) (.314) K0304 K0504 K0604 K0804 -.185 (e.135) K0904 .789 (.787) K1004 .144 (.135) K1104 -.045 .498 -.090 (-.076) (.727) (-.111) K1404 —.047 -.054 .456 . (-.080) (:.079) (.564) K1504 .130 (.145) K1604 K1804 316 TABLE E.5 MODEL COEFFICIENTS FOR WEEK 5 -; DEPENDENT VARIABLE. K'- Independent . 5* Variable CoeffiCIents K1905 K2005 Acronym 5. -.117 1.14 (7.218) PRE004 5. .101 .19 (.133) pREoog 8.. .138 .31 (.215) PRE021 8_ —.166 .36 {-.171) PRE026 8.. .071 .38 (.113) PRE028 R_ -.105 .62 (-.154) AFF002 8.. -.075 .66 (-.132) AFF006 73— .062 .68 (.111) AFF008 III- .066 .78 (.129) AFF018 8.. .124 -89 (.198) Appozg 8.. —.198 .90 (-.115) AFF030 6_ .070 .92 (.116) AFF032 B_. -.088 .98 (-.159) AFFO38 8_ .131 __4 .100 (.113) AFF040 B__ .062 .111 (.173) AFR003 B__ .056 .125 (.140) BKGOO6 B__ .043 ._; 3130 (.192) BKG011 8_ -.070 - .152 (-.180) BK0033 R. .122 .1, .153 (.295) BK0034 d_ -.031 . .175 (-.127) BK0056 ‘73.. .081 .188 (.250) BKFOOl d. .056 .189 (.174) BKF002 MODEL COEFFICIENTS FOR WEEK 5 317 TABLE E . 5 ‘? DEPENDENT VARIABLE, K'. Independent E; Variable Coefficients K1905 K2005 Acronym 8_ —.0§8—‘ ,192 (-.109) BKFOOS A_, .064 ,3 (.095) LEC003 L .056 L5 (.101) LECOOS A_. .126 ,20 (.162) SASOO9 7k. -.111 .21 (-.094) SASOlO A_, -.O67 .58 (-.145) $07 A_, .016 .012 ,103 (.175) (.152) q4 u .213 ~L3 (.161) K0304 u_ .266 __ 95 (.178) K0504 H. -.239 ,6 (-.232) K0604 “_. .276 28 (~199) K0804 H— -.251 9 9 (- . 214) K0904 R— -.113 -.O68 1315 {-.133)_ (-.02§21 K1504 I“; -.179 ,19 (-.147) K1904 {2 0.1129 0.1644 0.1326 0.1593 0.1483 0.2497 0.5722 318 TABLE E.5 Model Constants Week-5 034 035 G36 037 038 a39 040 041 G42 G43 G44 TABLE E.6 MODEL COEFFICIENTS FOR WEEK 6 F DEPENDENT VARIABLE, K'. Independent %—— Variable Coefficients K0106 K0406 K0606 P K2206 Acronym B_ -. 047 .33 (-.101) PRE023 B -.035 __;—,64 (-.088) AFF004 6_ .017 .086 168 (.039) (.135) AFF008 B_ -. 031 ,75 (-.064) AFF015 6_ -.016 -.077 ,84 (-.041) (-.138) AFF024 5_ —.023 -.110 .87 (-.055) (-.179) AFF027 0_ —.024 ,91 (-.077) AFF031 B__ -.021 ,95 (-.039) AFF035 B_ -. 017 ,110 {-.086) AFROOZ TL. .013 .064 ,119 (.055) (.185) AFR011 *B_ .019 ,121 (.098) BKG002 B__ .068 ,138 (.108) BKG019 B__ —.022 -.110 ,144 (—.058) (-.198) BKGOZS 6_ .019 .098 ,145 (.046) (.163) BKG026 a. .030 .147 ,148 (.056) . (.190) BK0029 3.. .008 _:165 (.061) BKGO46 8.. .018 .089 .4 .189 (.087) (.293) BKFOOZ 8_, -.020 - .201 (-.087) BKF014 A__ .023 .115 __ ,22 (.033) (.112) SASOll 11 .081 ,23 (.110) SASOlZ 1. -.016 -.077 .47 (-.043) (-.139) szoos A__ .013 ,81 (. 069) FOR033 320 TABLE E.6 MODEL COEFFICIENTS FOR WEEK 6 DEPENDENT VARIABLE, K'. Independent iL— Variable Coefficients K0106 K0406 K0606 K2206 Acronym 7E; .005 ,101 (.138) Q2 1__ .003 ,104 (.055) 05 H. .810 .1_ (.9271, K0105 u_. .896 ,4 (.907) K0405 u_. .786 16 _1,962) K0605 u__ .022 .110 .12 (.032) (.105) K1205 u__ -.050 .057 _,14 (-.083) (.071) K1405 u__ .060 .299 ,15 (.089) (.304) K1505 u_, -.025 -.037 -.025 —.115 ,16 (—.035) (-.069) (-.035) (-.110) K1605 .019 (.039) K1805 .023 (.048) K1905 ' 9 99999999 CWNO‘UI-l-‘wND-e 0.4817 321 TABLE E.6 Model Constants Week-6 034 035 036 037 038 039 040 041 042 043 044 322 TABLE E.7 MODEL COEFFICIENTS FOR WEEK 7 DEPENDENT VARIABLE, K'o I Independent ‘7i— Variable Coefficients K0407 K1607 K2307 K2407 Acronym B —. ‘317 (-.198) PRE007 B__ .020 .163 ,20 (.069) (.313) PRE010 iii .044 ,24 (.102) . PRE014 B__ .136 ,31 (.253) PRE021 d. -.192 ,42 (-.188) PRE032 Q. .092 _,46 (.195) PRFOOl B__ -.027 ,60 (—.112) PRF015 5. -.022 .64 (-.056) AFF004 6_, -.093 ,67 (-.184) AFF007 E .029 __",76 (.071) AFF016 Q. —.056 .260 ,83 (-.071) (.147) AFF023 B__ -.030 ,86 (-.071) AFF026 8_ .206 ,93 (.198) AFF033 &_ 5 -.025 . —.240 ,108 (-.059) (-.303) AFFO48 &_ -.007 - 058 ,125 (—.039) (-.173) BKG006 8_, .009 ,167 (.046) BKGO48 __ -.167 __1 .184 (-.250) BKGO65 fi_ —.015 .189 (-.073) BKF002 ‘B__ —.093 __ .197 (—.196) BKFOlO 8__ -.108 ,_,201 (-.209) - BKF014 L -.114 ,6 (-.119) LECOO6 X_. .015 .23 (.021) SA8012 323 TABLE E.7 MODEL COEFFICIENTS FOR WEEK 7 DEPENDENT VARIABLE, K‘- Independent + 1 Variable Coefficients K0407 K1607 K2307 K2407 Acronym _. .095 _,24 (.109) SASOI3 __ -.041 -.294 -.454 ,38 (-.050) (-.197). (-.179) LTP007 __ * .066 __ -.008 -.O73 ,65 (-.025) (-.121) TC14 __ .020 .102 (.215)_ 03 __ .040 .200 .2 51-055) (.148) K0206 _. -.058 ,3 (-.058) K0306 __ .880 ,4 (.932) K0406 ._ .026 .351 .6 (.036) (.271) K0606 _ . 407 ,8 (.156) K0806 ._ .102 ,9 (.095) K0906 __ .110 -.474 ,10 (.120) (-.230) K1006 _ . 433 ,15 (.289) K1506 _. .628 ,16 (.887) K1606 _. —.012 -.173 ,19 (-.026) (-.206) K1906 QQ \DmNChU-L‘UJN‘H Q Q Q Q Q O10 O11 O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 -.O27 . AO28 T'O29 O30 O31 O32 O33 0.0836 0.1164 0.7302 0.2944 324 TABLE E.7 Model Constants Week—7 O34 O35 O36 O37 O38 O39 O40 O41 O42 O43 O44 325 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 L DEPENDENT VARIABLE, Kl; I ndependent Variable Coefficients K0308 K0508 K0808 K0908 K1 508 Acronym 5. -.025 -20 (-.O65 PRE010 3.. —.O63 -.052 —.178 ,25 (-.069) (-.O76) (-.16O) PRE015 B :018 _,27 (.054) PRE017 8_ -.024 . ,66 (-.O55) AFF006 5_ .022 ,69 (.072) AFFOO9 B__ -.070 ,90 (-.O65) AFF030 8.. .054 .102 .93 (.067)_ (.103) AFF033 —7{_ .052 .050 .114 .106 41.069) (.088) (.124) AFFO46 8.. .050 .043 .078 ,107 (.091) (.102) . (.115) AFFO47 B__ .042 .146 (.096) BKG027 B__ —.033 ,148 (-.074) BKG029 8.. -.012 ,151 (-.056) BKG032 3_. .029 __ ,154 (.100) BKG035 8.. .019 ,161 (.100) BKGO42 771— —.020 ,167 (-.101) BKGO48 '7{; —.010 .175 (:.059) BKG056 B_. .008 __g .177 (.057) 8K0058 d. .037 ~ .179 (.117) BKGO6O , d. -.008 __ _,183 (-.052) BKGO64 B__ .015 .027 . ,197 (.089) (.102) BKFOlO A__ —.077 .24 (—.O71) SAS013 1.. .037 ___ ,28 (.068) SASOl7 326 TABLE E.8 MODEL COEFFICIENTS FOR. WEEK 9 DEPENDENT VARIABLE, K'. Independent ‘1 Variable Coefficients K0308 K0508 K0808 K0908 K1508 Acronym 4_ .255 .40 (.148) LTP009 I_ .028 ,49 (.075) PQZ007 &_ -.OO4 . 101 L. 0710 42 A__ -.009 ,102 (-.169) Q3 u__ .055 .252 ,2 (.055) (.196) K0207 H. .993 .137 .349 .3 (.984) (,178) (.281) K0307 u__ —.O95 .827 -.O76 -.331 ,5 (-.O98) (.891) (—.102) (—.278) K0507 1{_ .080 .889 .077 _,8 _(.067) (.895) (.085) K0807 .715 (.859) K0907 -.O37 .I41 (—.056) (.133) K1107 .062 (.070) K1207 -.045 —.O36 -.114 (-.058) (-.059) (-.115) K1407 .037 .583 (.065) (.694) K1507 .064 (.066) K1607 —.O46 (-.122) K1807 .055 111089) K1907 327 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 DEPENDENT VARIABLE, K{1_ Independent Variable Coefficients K1608 K1908 K2308 K2508 K2608 Acronym B__ -.023 ,15 (—.050) PREOOS B_ .088 4,18 (.077) PRE008 8_ .117 ,19 (. 1g) PRE009 8_ -.115 ,25 (-.136) PREOIS B_, -.134 ,34 (-.137) PRE024 B -.070 ",35 ¥(-.258) pRE025 8 .037 ",43 (.143) PRE033 8__ .031 ,44 (.055) PRE034 8_ .019 ,48 (.135) PRF003 B_ -.096 ,66 (-.154) AFF006 B__ -.024 .111 ,71 (-.101) (.121) AFFOll B__ .033 -.037 ,72 (.076) (—.158) AFF012 8_ .069 ,74 (.267) AFF014 B__ —.121 ___,,85 (-.133) AFF025 B_ - . O48 -. 105 ,92 (-.165) (-.160) AFF032 8_ .099 .416 ,93 (.131) (.224) AFF033 B__ .098 .321 ‘;7 ,106 (.139) (.186) AFF046 B_ . 086 . 285 , ,107 (.167) (.226) AFFO47 B__ .015 .084 .1. ,111 (.069) (.159) AFR003 B_ -. 022 ,113 (-.155) AFROOS 8_ —.041 ,116 (-.292) AFROO8 &_ .019 ,119 (.070) AFROll 328 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 DEPENDENT VARIABLE, K'o _; Independent Variable Coefficients K1608 K1908 K2308 K2508 K2608 Acronym E .046 ",126 (.297) BKGOO7 8.. .079 ___ -138, (.155) BKG019 8_ .074 -154 (.138) BKG035 B__ -.016 ,183 (-.O64) BKCO64 B__ .075 ,193 (.250) BKFOO6 3_ .016 .195 (.061) BKFOO8 B__ .015 .067 ,197 (.075) (.136) BKFOIO 8.. .024 -200 (.174) BKF013 x -.080 ‘,6 (-.134) LECOO6 1__ -.044 .9 (—.185) LECOO9 1_- —.077 .25 (-.083) SASOl4 A__ -.204 .27 (-.241) SAS016 0.. .085 .178 __ -28 (.105) (.182) SASOl7 1.. .227 .40 (.118) LTPOO9 A_ -.027 —.095 ,67 (-.O76) (-.110) TC16 4.. -.013 —.015 ,762 ,(.-069) 1,-140) NINO33 *_. .012 __1 ,106 (-181) .99 n_ .237 .133 .970 .3 ,(.251) (.217) (.418) K0307 ' n__ —.177 .245 «.649 __ 1.5 (2.195) 11.184) 114.291) K0507 n. .114 .556 .8 ,(.103) (.203) K0807 “_. —.355 ,9 (:1237) _K09O7 “_. -.O63 ‘ -.O63 .295 .11 41:.064 11:.120) (.250) K1107 329 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 DEPENDENT VARIABLE, K'i Independent Variable Coefficients K1608 K1908 K2308 K2508 K2608 Acronym u__ -.237 .12 (-.143) K1207 n__ —.066 -.128 -.280 ___1114 (-.087) (-.261) (—.151) K1407 u__ .074 .184 .15 (.178) (,197) K1507 1L. .745 .16 (.782) K1607 “_. -.O71 —.030 .046 —.301 .18 (—.154) (—.053) (.152) (-.266) K1807 n_. .683 .19 (.925) K1907 n_ .048 ,20 (.053) K2007 u__ .094 ,22 (.099) K2207 u_. .081 .23 (.171) K2307 330 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 DEPENDENT VARIABLE, K'. Independent . *;—— Variable Coefficients K2708 K2808 K2908 I K3008 k K3108 Acronym 3.. .057 __.hlL (.104) PREOOZ d. .152 ,13 (.252) PRE003 A. .135 .212 .19 (.252) _(.313) PRE009 B__ .076 ,27 (.138) PRE017 IL_ -.124 ,30 (-.157) pRE020 d. -.064 .33 (-.109) PRE023 d. -.143 ,61 (-.142) AFF001 8.. -.241 .68 (-.224) AFFOO8 A. -.116 ,72 (-.2O8) AFFO12 .271 (.255) AFF017 .249 (.259) AFF028 .094 (.097) AFFO34 .247 (.136) AFF040 —.176 (-.140) AFF041 -.073 (—.087) AFFO48 BKG014 .042 (.090) BKG016 -.100 (-.159) BKG032 -.161 (:.214) .BKCO33 -.O65 . (—.O97) BKG038 .110 .175) BKG060 BKGO65 331 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 DEPENDENT VARIABLE, K'. Independent 71. Variable Coefficients K2708 K2808 K2908 K3008 K3108 Acronym "7{_ .042 -.038 .087 ,194 (.132) (—.126) (.160) BKF007 B__ .053 ,196 (.232) BKF009 C. -.055 .202 (:.212) BKF015 A_ -.152 —.114 ,6 (-.144) («.108) LEC006 'I_ «.105 .7 (-.183)' LEC007 A -.419 “,25 (-.212) SASOl4 A .064 .112 ",27 (.096) (.133) SASOl6 1__ -.169 ____,28 (—.O98) SASOl7 A__ -.204 -.540 ,38 (-.163) (—.343) LTPOO7 A .448 .360 ‘;40 (.294) (.188) LTP009 A -.094 .382 -.219 (.395) (-.227) PQZOO9 -.065 (-.121) T013 -.219 (-.193) TC14 -.015 (—.O70) SVNO33 NIN032 -.020 (- 160) 02 .014 (.134) 03 .012 (.140) 05 .022 (.189) 96 K0107 -.406 (-.165) K0307 .578 (.169) K0407 332 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 DEPENDENT VARIABLE, K' Independent . ‘i ' Variable R. .634 .5 (.269) K0507 n.. .130 .9 (.087) K0907 “_. .204 -.172 .318 .12 (.196)_ _(—.175) (.182) K1207 u__ -.334 ,14 (-.287) ' K1407 “_. -.281 ..16 (-.191) K1607 III; .190 -.162 .18 .(.267) _(:.241) K1807 1(_ -.147 -.211 ,19 (—.166) (-.134) K1907 n.. .356 .231 .205 .311 .20 (.412) (.212) (.105) (.161) K2007 n_. .089 .281 (.297) , K2207 K2707 333 TABLE E.8 MODEL COEFFICIENTS FOR WEEK 9 _.. ” , . DEPENDENT VARIABLE, K'i Independent ' Variable Coefficients K3208 K3308 Acronym C. -.135 ,20 (-.198) PRE010 C. .063 ,49 (.300) PRF004 3:. -.112 ,66 (—.146) - AFF006 C. —.101 z ..71 (-.231) AFFOII 6.. -.336 ,90 (—.177) ‘ AFF030 C. -.146 .100 (- 176) AFFO40 B__ .033 .143 (.128) BKG024 8.. .100 .144 (.235) BKG025 B__ .093 .161 (.274) .- BKG042 8.. -.O44 - . 165 (-. 222) 131(9045 C. -.085 ,167 (-.243) BKGO48 3.. -.O49 .198 (-.195) BKFOll A .216 ..".25 (.157)_ SASOl4 ‘ I. -.339 .28 (r.281) SAS017 A. .165 .49 _(.247) p02007 .A., .049 -89 (.192) SVN032 .K__ -.023 ... .101 (-.261 02 .)__ .020 .103 (.193) Q4 ,. ‘.I_. -.009 ‘ ..._.104 (3.134) 05 F__ .298 .327 .2 (.259) (.185) K0207 n_ .287 .5 (.268) K0507 u__ -.172 .._ .9 (-.143) K0907 MODEL COEFFICIENTS FOR WEEK 9 DEPENDENT VARIABLE, K TABLE E.8 Variable Coefficients K3208 K3308 Acronym E_ .122 .11 (.129) 31107 H. .121 ,12 (.099) K1207 “— -.259 . 14 (—.190) K1407 “_. .117 ,15 (.101) K1507 u.. .237 .16 (. 138) K1607 “.— .254 419 (.231) K1907 Independent 335 TABLEiEB Model Constants Week-9 O 1 O34 o 2 o35 ‘0 3 0.0082 O36 a 4 O37 O 5 0.1277 O38 O 6 O39 O 7 _ O40 a 8 0.0910 : o41 o 9 0.0604 ‘ o42 O10 O43 all O44 O12 O13 O14 O15 0.0625 O16 0.0235 O17 O18 O19 0.1921 O20 O21 O22 O23 0.5670 O24 O25 0.5010 926 0.2058 ’ O27 0.0794 .-O28 0.8656 .1!” o29 0.0569 O30 0.4013 O31 0.5087 O32 0.9271 O33 0.5583 336 TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT VARIABLE, K' Independent Variable Coefficients K0209 K0909 K2309 K2509 K3109 Acronym — -.119 PRE006 PRE018 PRE029 337 TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT VARIABLE, K'. Independent 7*; Variable Coefficients K0209 K0909 K2309 K2509 K3109 Acronym B .— ",130 (-.148) BKG011 C. .009 .143 (.055) BKG024 B_ . 054 .145 (. 144) BKG026 C. -.023 .152 (—.083) BKG033 C. .008 ,161 (.069) BKGO42 8 —.031 ‘.163 (—.163) BKG044 s —.032 ‘,164 (-.088) BKG045 B_ . 040 ___ -168 (.223) BKG049 B_ -. 032 ,178 (—.090) BKG059 8.. .011 .._ .188 (.086) BKF001 C. .027 .191 (.135) BKF004 C. .040 ,195 (.192) BKF008 C. .021 - ,196 (.112) BKF009 8.. .070 .199 (.345) BKF012 8.. .060 __. ,201 (.173) BKF014 . I. -.024 —.027 -7 (:.054) (:.104) LEC007 A__ -.053 .. .10 (-.089) LEC010 A__ .048 .033 . .28 (.075) (.075) SASOl7 A__ -.031 .. ..29 (r.053) SAS018 A__ .021 ..30 (.041) SASOl9 A__ .108 .40 (.086)_ LTP009 I. .215 ___ ,41 (.073) LTPOlO TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT VARIABLE, K'. ‘JL Independent Variable Coefficients K0209 K0909 K2309 I K2509 ’ K3109 Acronym . A. .023 .150 (.093)’ 202009 A .016 ._;T.66 (.060) T015 A -.040 ".94 (-.090) FINO61 X.. .009 .103 L. 157) 94 I. .010 .nM (J13 05 A__ -.005 .107 0.095) Q9_ n_. .776 .188 .2 (.829) (.121) K0208 n. .064 ..3 (.105) K0308 n_. .870 ,9 (.949) : K0908 “_. -.055 __.12 (-.084) K1208 n.. .030 .084 .14 (.054) (.115) K1408 -II. .065 ,22 (.104) K2208 n. .876 .23 (.876) K2308 C. .069 .024 —.052 ____.24 (.170) (.086) (-.077) K2408 n.. .325 .130 ___ ,25 (.493) (.120) K2508 “—- -.039 -.067 .26 (-.101) (-.104) K2608 n__ -.152 ... .27 (-.111) K2708 n. .069 .28 (.110) K2808 u__ .050 .30 (.135) K3008 U.. .522 .31 (.854) K3108 n_. -.051 .32 (-.063) K3208 339 TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT K' Independent . ' Variable Coefficients K3209 K3409 K3509 K3609 K3709 Acronym ._ .065 —.070 ‘ -.115 AFF030 340 TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 J V DEPENDENT VARIABLE, K'- Independent ‘9 Variable Coefficients K3209 K3409 K3509 K3609 K3709 Acronym 8_ -.092 .145 (-.222) BKG026 B__ -.093 ___..162 (-.179) BKGO43 3.. -.020 -.035 .163 (-.129) (:.176) BKG044 8_ .112 ,164 (.198) BKG045 8.. -.061 -.049 .167 (-.304) (-.238) BKGO48 C. .054 .168 _(.285) BKG049 _. —.131 ,171 (-.248) BKG052 B__ .051 ,179 (.265) BKCO60 B__ -.082 .182 (-.223) BKG063 8_ .049 .191 (.227) BKF004 C. -.015 ,195 (—.090) BKF008 8_ .020 .048 ,199 (.121) (.223) BKF012 B_ '-.-. 039 ,200 (—.237) BKF013 A. -.056 _._ .7 (-.134) LEC007 A —.054 SASOl6 SAS019 .263 (.286) PQZ009 -.366 (—.388) PQZ010 TC18 .047 (.159) FINO61 -.036 (-.180) FIN062 Q4 341. TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 W DEPENDENT VARIABLE, K'i Independent ’ Variable Coefficients K3209 K3409 K3509 K3609 K3709 Acronym A__ .008 .031 .044 ,107 (.178) (.203) (.298) Q9 u_. .180 ,2 (.234) K0208 u__ -.099 ,5 (-.129) K0508 H. .496 ,8 (.172) K0808 u_. .244 ,11 (.123) K1108 u__ .128 -.509 .12 (.240) {-.305) K1208 u__ .135 ,14 (.174) K1408 “_. -.174 -.514 ,15 (—.291) (-.263) K1508 “_. —.345 ,16 (—.140) K1608 “_. .068 __ ,19 (.104) K1908 u__ .100 .374 ,20 (.169) (.195) K2008 n. —.088 ,25 (—.125) _._» K2508 u__ .067 ._ ,26 (.155) K2608 u__ -.070 ___ ,30 (-.171) K3008 H. .037 __. ,31 {—.171) K3108 V_. .126 ,32 (.189) K3208 u~_ .118 ,_. ,33 (.202) K3308 342. TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 W DEPENDENT VARIABLE, K‘- Independent % Variable Coefficients K3809 K3909 K4009 K4109 K4209 Acronym C. .039 -. .11 (.136) (-.224) PRE001 C. .037 ..14 (.121) FRE004 B__ .164 .19 (.144). PRE009 C. -.059 .167 ,35 (-.118) (.184) PRE025 5— .146 .38 (.176) PRE028 B—- .072 ‘ -39 (.137) PRE029 C. .076 .43 (.158) PRE033 C. .164 J 44 ( . 164) PRE034 d_ -.113 ,57 (-.316) PRF012 771— .061 .59 (.169) PRF014 8.. -.019 _. .60 (-.111) PRF015 B_. .087 .62 (.174) AFF002 B -.203 AFF010 .181 (.210) AFF014 .045 (.132) AFF015 .102 _(.175) AFF018 -.131 -.182) AFF019 .215 .548 (.222), (.196) AFF021 .062 (.220) AFF028 AFF029 AFF030 —.032 -.067 (-.116) {-.118) AFF037 343 TABLE E . 9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT VARIABLE. 3:; Independent Variable Coefficients K3809 K3909 K4009 * K4109 ! K4209 Acronym 3.. -.124 ' ...104 (-.137) AFF044 3.. -.152 .108 (-.220) AFFO48 CE; -.127 -III (-.269) AFR009 .. .026 .118 (.096) AFROlO 8— .030 .127 (.133) BKG008 8— .053 .128 (.159) BKCOO9 B__ —.060 .134 (-.144) BKG015 B .020 '_.136 (.101) BKGOI7 .025 (.155) BKGO30 BKGO44 .009 ~ (.062) BKG049 -.037 (-.229) BKG052 —.042 (-.145) BKCOS3 BKG059 BKG060 -.092 (-.148) BKCO65 .133 (.312) BKFOOI .022 (.140) BKF004 ,__ -.019 (—.129) BKFOO9 g. BKF013 -.021 (-.125) CKEDI4 .069 (.200) BKF015 . 344 TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT VARIABLE, K1i__ I ndependent Variable Coefficients K3809 K3909 K4009 ! K4109 1 K4209 Acronym 3.. :,078 -.O89 .7 (-.165 (:.146) LECOO7 A._ —.093 ___,9 (-.165) LEC009 A. .112 —.065 -.105 .10 (.121) (-.144) (-.128) LECOlO I. -.247 .094 .27 (-.175) (.105) SAS016 I. .056 . .29 (.121) SASOI8 A__ .347 .195 JO (. 200) ( . 228) SASOl9 A__ .208 .089 .196 .50 (.462) (.315) (.241) p02009 A__ -.198 -.072 .51 (-.429) (-.247) PQZOlO .A__ .151 ,66 (.165) TC15 A__ .059 .058 ,69 (.088) ( 174) TC18 I. .053 .89 (.204) SVN032 _A__ .021 .100 (.253) 01 I. .029 .011 _.102 (.298) (.366) 03 A_ .005 ,107 (.107) Q9 H__ -.108 .1 (—.149) K0108 n.. .151 -2 (.128) K0208 n.. .276 __._.3 (.135) K0308 n.. .304 - .5 (.202) K0508 u__ -.236 ,6 (-.163) K0608 n. .278 -.181 ..12 (.168) (-.353) K1208 n__ -.092 .14 .(:.102)_ K1408 n.. -.219 ,18 (-.194) K1808 345 TABLE E.'9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT VARIABLE , K'1i Independent ' Variable Coefficients K3809 K3909 K4009 K4109 K4209 Acronym u__ .178 .19 (.140) K1908 u__ -.144 -.060 . ___ .24 (-.137) (-.184) K2408 n... -.064 .198 .25 .1-3124) (.187) K2508 n. .121 ,28 ' (.086) K2808 n.. .090 .30 (.095) K3008 n__ .086 -.083 .31 (.292) (-.139) K3108 u__ .089 -.255 ,32 (.138) (-.195) K3208 n. -.080 .39 (-.175) K3908 u .051 ",41 (.081). K4108 u _. .115 .42 (.138) K4208 346 TABLE E. 9 MODEL COEFFICIENTS FOR WEEK 10 1 DEPENDENT VARIABLE. K‘. Independent '497 Variable Coefficients K4309 K4409 Acronym C. -.141 .35 (-.156) FRE025 B__ .215 -.222 .39 (.226) (-.215) FRE029 3.. .088 .67 (.101) AFF007 C. .090 .69 (.101) AFF009 C. -.216 .74 (-.232) AFF014 C_. -.210 .79 (—.191) AFF019 s_ .670 ,81 (.240) AFF021 B_ -.156 .87 (-.179) AFF027 B .100 ’,88 (.114) AFF028 AFF048 BKGOZS BKGO45 BKGOS9 BKFOO9 BKF014 LEC010 TC18 FINO61 02 05 K0208 K1408 347 TABLE E.9 MODEL COEFFICIENTS FOR WEEK 10 DEPENDENT VARIABLE, K'. Independent Variable Coefficients K4309 K4409 Acronym n_ .193 .22 (.136) K2208 p__ -.132 .144 .24 (-.142) (.143) K2408 R_ .177 -25 (.119) K2508 u__ -.137 -.186 .26 {-.155) (-.193) K2608 E_ -.193 .27 (-.103) K2708 “_. .143 .30 (.152) K3008 348 TABLE E.9 Model Constants Weekrlo O34 0.9674 -0.0115 O35 1.1872 O36 -0.6598 O37 0.4990 O38 -O.1238 O39 0.3961 O40 0.2527 O41 0.3839 0.0938 O42 -0.4269 O43 0.4179 O44 0.3664 -0.1148 0.3219 0.3012 0.0425 349 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL r DEPENDENT VARIABLE. Ki: Independent Variable Coefficients K0310 K0610 K0810 K0910 K1010 Acronym B__ .00009 .8 (.071) GPA C. —.028 .13 (—.091) FRE003 8.. .024 .14 (.057) PRE004 Ii. .029 .19 (.084) PRE009 C. .049 .22 (.064) PRE012 B__ .020 .37 (.064) PRE017 B .019 '_.35 (.060) FRE025 C. .020 .029 .031 .41 (.051) (.073) (.107) FRE031 B__ -.009< (-.058) PRF006 .022 (.081) AFF007 -.020 (-.063) AFF008 .014 (.051) AFF011 -.050 (-.089) AFF033 —.021 (-.077) AFF034 .018 (.053) AFF038 —.048 (-.071) AFF043 —.008 (-.050) AFR005 —.008 (-.052) AFR009 -.010 (:.058) BKG002 .012 . (.060) BKG005 -.031 (—..68) BKG012 -.021 (-.085) BKG024 350 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, K'i Independent Variable Coefficients K0310 K0610 K0810 K0910 K1010 Acronym C. .021 .035 -.013 .151 (.085) (.138) (:.070) BKGOBZ B__ -.019 -.029 -.017 __..153 (-.O73) (—.110) (-.060) BKGO34 C. -.020 -.031 -.021 .155 (-.052) (-.080) (-.O51) BKG036 B .014 .022 .018 ‘3167 (.071) (.109) (.084) 3K6048 B .012 7', 171 (.077) BKGOSZ B -.016 ".175 (-.107) BKG056 B .025 7.192 (.159) BKF005 VA__ .089 .12 (.064) SASOOl A__ .090 .13 (.065): SASOOZ A__ .022 .14 (.038) SASOO3 4.. .071 .102 .15 (.093) (.144) SAS004 .A-_ .030 .20 (.069) SASOO9 ,A__ -.045 —.069 —.045 . ,25 (-.057) (—.087) (-.053) SASOl4 A__ .042 .057 -.042 .042 .28 (.060). (.082) (—.085) (.056) SASOI7 .I.. —.116 —.189 .32 (-.060) (-.098) LTP001 .A__ -.017 -47 (—.058) pozoos A__ .010 ..g .71 (.060). 0NE032 A__ .014 .76 (.059) TRE031 A. .003 .005 .003 __ .101 (.066) (.104) (.057) 02 A_ .003 ,102 (.106) ' 03 n. .053 .091 .1 (.053). (.091) .1KHQ9 K0309 351 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL _. DEPENDENT VARIABLE. K'- Independent 'ei Variable Coefficients K0310 K0610 Acronym n_. .830 -6 (.848) K0609 _. _ u__ .657 ..__.8 _(.721) K0809 n..‘ .776 .9 ‘ LTD) Iggy H_ .051 .867 , ,10 (.072) (.881) K1009 “_. .075 .14 .(.123) _K1409 u__ .063 . -15 (.102) ..K1509 u__ .024 .28 (.049) K2809 n._ -.038 -.059 —.045 .29 (-.053 (:.083) -.058) K2909 11.. .016 .36 (.052) K3609 n.. .076 ,,40 (.077) K4009 n. -.027 .44 (-.O60) K4409 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, K'- Independent 4 Variable Coefficients K1410 K1510 K1610 K1910 K2010 Acronym C. .008 .1 (.043) CLASS B -.0003 -.0004 -.0007 ‘;3 (-.051) (-.068) (-.116) TRCR C. -.001 95 (-. 301) CRERN C. .00007 ,6 (.389) MSUPTS B__ —.042 .13 («.083) PRE003 B__ —.064 .18 (-.058) PRE008 B_ .067 .19 (.118) PREOO9 C. -.052 .25 (—.051) PRE015 8.. .049 .27 (.119) PRE017 ' 5.. -.029 .29 (:.O62) FRE019 B__ .049 .31 (.115) PRE021 C. .025 .33 (.072) PRE023 __ .041 .047 .35 (.090) (.094) PRE025 C. .024 __..37 (.076) FRE027 5.. .066 ,38 ( 143) FRE028 C. -.035 .040 . 40 0.080) (. 086) pREmn 8__ -.028 -.032 ’ .42 (-. 059) (—- 061) 321312032 C. -.003 . .45 {-.082) PRETOT C_. -.031 .. .51 (3.128) PRF006 8__ .037 . .55 (.158) FRF010 8.. .034 .62 (.068) AFF002 A__ .032 .64 (.106) AFFOO4 353 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE. K'. Independent ‘9 Variable Coefficients K1410 K1510 K1610 1 K1910 1 K2010 Acronym g -.038 “.66 (-.O74) AFF006 C. .025 .71 (.055) AFF011 s .045 ‘373 - (.103) AFF013 9_ -.038 -.039 .74 (-.119) (-.082) AFF014 _Ii_ .026 .014 -.055 .76 (.056) (.044) (-.117) AFF016 B__ —.030 .77 (-.O63) AFFOIZ. B_ -.041 .79 (-.074) AFF019 B__ -.032 .83 (-.053) AFF023 C. .036 -.039 .85 (.050) (-.051) AFF025 B .026 ‘387 (.056) AFF027 B__ .021 .89 (.051) AFF029 C. -.095 .90 (-.073) AFF030 B__ -.048 -.072 ...93 (e.079) (-.078) AFF033 B__ —.059 .94 (-.131) AFF034 C. .029 .98 (.064) AFF038 B__ .064 .106 (.077) AFF046._ C. .052 ..108 (.073) _AFF048 C. —.032 .115 (-.133) .AFROO] 8__ .047 __ .116 (.182) AFR008 B__ -.017 .119 (-.094) 'AFROll 8.. .018 .124 (.064) BKGOOi. C. .050 .128 (.092) BKG009 354 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL .1 DEPENDENT VARIABLE. K'. Independent ’7; Variable Coefficients K1410 K1510 K1610 1 K1910 1 K2010 Acronym B .072 ".131 (.097) BKG012 B -.014 '_.135 (—.055)- BKG016 3. .062 -IAn (.085) BKG021 3.. .017 .149 (.072) BKG030 3.. -.052 .151 (-.174) BKG032 B .014 ‘;154 (.054) BK0035 B -.026 73155 (- 060) BKG036 C. .008 -161 (.055) BKG042 3.. .012 ..173 (.050) BKG054 8 -.010 (-.058) BKGOS9 BKF002 .008 (.050) BKF003 .019 (.075) BKF004 .040 (.156) BKF005 .009 (.056) BKF006 -.022 (v.089) BKFOO7 —.031 («.120) BKF008 —.037 (—.078) LECOO7 .LECOO8 ' LECATD 339.003 SASQO4 355 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, Kt; Independent ' Variable Coefficients K1410 K1510 K1610 K1910 K2010 Acronym A . "120 (.074) SASOO9 . A_ .088 .24 (.090) SA8013 A__ -.121 .32 ..(-.O81) LTPOOl _A__ -.123 .33 (-.O83) LTp002 .A__ -.127 _ .38 (-.100) LTF007 A__ .122 .39 (.096) LTP008 A. -.225 .41 (-.103) LTPOlO A .028 .017 ' '142 (.077) (.064) LTFTOT I. .040 .47 (.138) PQZ005 4.. .012 .52 (.138) PQZTOT I.. -.012 .58 (n.051) TC7 7A. -.022 .62 (-.053) T011 3.. .032 ,65 (.066) T014 A__ .024 .66 (-.O71) TC15 A. -.019 .68 (—.050) TC17 ’A__ .0I2 .70 (.058) 0NE031 A -.014 .O3I ‘_.‘j71 (-.076) (.111) ONEO32 _A__ .015 .76 (.046) TRE031 'A__ -.011 _. .90 (-.060) SVN033 ‘A__ -.013 .96 (-.075) -FIN063 . I. .021 .011 .047 .97 (.072) (.051) (.145) FINO64 .A__ .021 .98 1 (.106) FINO65 356 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL ' C: _i DEPENDENT VARIABLE. K'i Independent ’ Variable Coefficients K1410 K1510 ' K1610 1 K1910 1 K2010 Acronym *—. c.006 . 100 4:438?) (13 i— .006 .101 ~ (.111); 02 _. .003 ' ‘ ,102 (.061) 03 4_ -.004 ,106 (-.O89) Q7 11 --.ll3 '32 (—.l34) K0209 u_ .079 .11 (.081) K1109 u_ .647 ,14 (.784) K1409 u__ .121 .789 .044 .15 (.146)_, (.884) (.072) K1509 n__ .080 .681 ,16 (.073) (.847) K1609 3.. -.054 .18 {-.095) .K1809 3_ .056 .801 .19 (.084) (.793) K1909 n. .669 ,20 (.743) K2009 u .149 .._;23 (.121) K2309 u__ -.056 .27 (:.053). K2709 u__ .088 .28 (.112) K2809 3.. .065 .31 (.129) K3109. 11.. .034 '.36 _(.110) K3609 u__ .138 ,.40 (.086) K4009 “_ . 083 .. .42 (.157) K4209 357 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, K1;— Independent ' Variable C°effieiente K2210 K2310 K2710 1 K2910 1 K3210 Acronym 3.. -.0004 . -3 (-. 115) TRCR 3.. .00001 ,6 (.107) ‘MSUPTS 3_ .0002 .0001 .8 (.115) (.105) ~ GPA B. -.029 —.034 -.057 ".13 (-.110) (—.092) (-.104) PRE003 3_ -.035 .15 (-.070) FRE005 s .037 —L18 (. 063) PRE008 773. .047 .095 -.024 .23 (.115) (.157) (-.O67) PRE013 B__ .025 .29 (.072) FRE019 e -.072 ‘,30 (-.O97) PRE020 e_ .040 .043 .33 (.147) (.126) PRE023 e_ .020 .35 (.076) PRE025 3_ .039 .36 (.061) PRE026 3_ .025 .41 (.103) PRE031 3_ -.003 .45 (—.O69) FRETOT 3. .012 .49 (.085) PRF004 3_. .026 .037 -51 (.147) (.138) FRF006_ 3.. -.030 -.069 .. .59 (-.145). (-.222) PRF014 B__ -.097 __...66 (-.171) .AEFOO6 e_ .055 -.030 -.031 ____.68 (.122) (-.116) (-.094) AFF008 B__ -.017 ,69 (-.050) ‘AFF009 B__ .017 .73 (.073) AFF013 B__ ~.052 -.063 .74 (-.146) (—.120) AFF014 358 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE. K11 Independent Variable Coefficients K2210 K2310 K2710 1 K2910 1 K3210 Acronym 3_ .029 .022 .77 (.112) (.069) AFF017 e_ -.132 .90 (-.115) AFF030 C. -.044 -.053 .93 (:.093) (-.090). AFF033 B__ -.033 —.038 .99 (-.103) (-.095) AFFO39 3.. .030 ,107 (.074) AFF047 3_. .014 .112 (.076). AFR004 3.. -.010 .123 (—.045) BKG004 3. -.017 -125 (-.O91) BKGOO6 C. .011 .126 (.070) BKGOO7 B . 024 '3128 (.087) BKGOO9 B__ -.037 .131 (—.067) BKG012 B_ .024 .139 (.055) BKGOZO e_, .022 .014 .015 ._.149 (.095) (.102) (.086) BKG030 B__ .050 .155 (.100) BKGO36 e_ .045 ,161 (.180) BKGO42 e_ -.03I .166 (-.148) BKG047 B__ .013 .020 __ 5.171 (.095)_ (.118) BKG052 e_ —.042 ..173 (—.157)_ BK0054 e_ .011 __ ,179 (.057) BKGO6O 3. —.068 , ..200 (-.244) BKF013 773.. -.031 .201 (-.108) BKF014 A_ .069 __ .1 (.121) LEC001 359 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, K'. Independent ‘1 Variable Coefficients K2210 K2310 K2710 1 K2910 1 K3210 Acronym . A__ ~-. 039 .4 (-.121) LECOO4 .i.. —.038 ,6 (n.104) LECOO6 ‘71_ .041 .8 (.179) ~ LEC008 A__ -.063 .045 ,9 (—.159) (.139) LECOO9 A -.063* -.054 I ",10 (-.185) (-.107)- LECOlO A_ -.009 .31 (-.188) LECATD A__ .176 .12 (.106) SASOOI A__ .097 .13 (.083) SAsooz A_ .035 .043 .17 (.066) (.057) SASOO6 A_ .027 .033 .20 (.075) (.073) SASOO9 .A.. -.097 -.190 .23 (7.117) (:.154) SASOI2 ,A__ .092 .30 (.119) SASOl9 A__ .011 .31 (.102) SASATD A__ -.O91 —.083 ..35 (7.094) (-.058) LTF004 1.. .039 .38 (.058) LTP007 4.. .092 .39 (. 108) LTp008 1.. -.059 c.48 (—.147) .PQZOOfi . A. .048 .53 (.092) .101 A__ -.114 __ .54 {—.157) 103 A__ .048 .59 (.156) 'TC8 A —.018 “361 .(g.053). T010 A - . 068 ‘362 w (-.179) TC11 360 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL -:_ DEPENDENT VARIABLE, Kt; Independent ’ Variable Coefficients K2210 K2310 K2710 1 K2910 1 K3210 Acronym —- -.021 ’65 (-.061) T014 .. .017 .70 (.073) 0NE031 _. .026 ,74 (.111) TWOO32 ._ —.012 .91 (—.066) NINO31 __ .003 .004 .101 (.109) (.096) 92 .002 (.053) 06 .007 (.084) .99 .012 (.164) 010 .083 (.121) K0109 K0809 -.159 {-.089) K0909 K1009 -.O64 (-.064) K1409 K1909 K2009 K2209 K2309. K2709 K2809 .711 (.778) 'K2909 .787 (.794) K3209 ~.O6O (:.115) K3609 361 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL Independent Variable Acronym DEPENDENT VARIABLE, K1; Coefficients K2210 K2310 K2710 K2910 K3210 A__ .119. .132 ~.106 .40 (.101) (.075) (—.103) K4009 362 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, K'- Independent ..i Variable Ceeffieiente K3410 K3610 K3710 1 K3910 K4010 Acronym 3_ .0002 .3 (.181) GPA B__ -.028 ....,II (-.117) PRE001 e. .139 .122 .127 .064 .18 (.100). _(.086) (.149). (.308) PRE008 3_ -.035 .23 (—.076) PRE013 5 .052 ‘,36 (.088) PRE026 B__ .085 .084 .021 .37 (.150) (.144) (.086) FRE027 A__ -.045 .42 (-.165) FRE032 3_ .024 .49 (.133) FRF004 8__ -.O2O .51 (-.102), FRFOO6 B_. .029 .032 .54 (.094) (.102) pggggg e_ .020 .018 .56 (-062) .(-054). .pnggi1 8__ -.039 -.043 ' .61 (-.103) (-.174) AFF001 3_ .024 .70 (.100) AFF010 B_ .047 __¥ .71 (.125) AFF011 e. -.022 “" .72 (-.062) AFF012 B__ -.089 -.086 .85 (-.097) (-.091) AFF025 B__ .034 __...89 (.090) AFF029 e_ -.050 -.027 ,91 (-.134) (-.113) AFF031 d. -.124 __ .93 (-.170) AFF033 e_ .022 .018 .94 (.062) (.078) 'AFFO34 B -.U28— ‘399 (—.054) AFF039 B .026 —.069 -.056 ‘;101 (.053) (-.O97) (~.076) AFF041 363 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL 1“ DEPENDENT VARIABLE. K'. Independent 4L— Variable Coefficients K3410 K3610 K3710 K3910 . K4010 Acronym 5 .113 .122 ‘,105 (.094) (.098) AFF045 C_ .063 ,107 (.126) AFF047 C_ .037 ,108 (.065) .AFF048 B -.037 —.035 ‘,113 (-.112) {-.104) AFFOOS C. -.035 .115 (-.161) .AFR007 3_ -.O30 -.057 -.010 .125 {-.084) {-.243) (-.068) BKGOO6 3. .020 .024 .126 (.058) (.066) BKGOO7 B_ -. 042 .131 (—.109) BKGOIZ 3. -.016 .136 (-.157) BKG017 *e_ -.016 .141 (-.069) BKG022 3_ .053 .149 (.254) BKGO30 B_ -. 030 ,151 (-.130) BKGO32 B -.024 ‘3153 (—.097) BKG034 B .011 “3154 (.077) BKGO35 B —.081 ‘;156 (~.101) BKCO37 3 —f019 ‘3160 (-.079) BKG041 3. -.029 -.032 *_’,166 (—.103)_ .(7.108) BKCO47 e_ .026 ..168 (.144) BKCO49 3 . 024 7.171 (.115) BKGO52 B .016 , ‘3172 (.138) BKG053 3 —.024 -.021 ‘3173 (-.080) (-.068) BKG054 6_, .023 .179 (.095) BKGO6O 364 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL - DEPENDENT VARIABLE. K1: 1 Independent Variable Coefficients K3410 K3610 K3710 K3910 K4010 Acronym 3. .062 .057 '.012 .181 (.137) (.122) _(.060) BKG062 3_ -.012 ,192 (-.O93) BKF005 3. -.O43 -.013 ,197 (-.219) (-.098) BKF01O s_, -.022 .200 (-.106) BKF013 I. .056 .053 .1 (.059) (.055) LEC001 A__ -.056 -.028 .4 (¢.137) (-.110) LECOO4 A__ .061 .5 (.147) LEC005 A__ .042 ,7 (.170) LECOO7 A .028 ":8 (.081) LECOO8 A__ —.046 .10 (—.127) LEC010 A__ .168 -.157 .13 (.091) {—.088) SASOOZ A__ .085 .17 .:‘. (.104) SASOO6 A__ .037 .20 (.064) SASOO9 A .064 .059 ":23 (.071) (.102) SASOl2 I. -.O63 -.051 ____,30 (-.O60) (-.048) SASOI9 I.. -.233 .32 (—- 130) LTpnm 1.. .118 . 35 .4 1 13) LTpnnA I_ .084 .39 (. 123) LTFDOS '“7&_ .049 .047 “ .47 (.092) (.086) PQZ005 A . 067 '253 (.100) 'TCl A__ .065 .54 (.098) TC3 A__ -.041 .61 (-.102) TC10 365 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL 7r DEPENDENT VARIABLE. K'- Independent ‘ "; Variable Coefficients K3410 K3610 K3710 K3910 K4010 Acronym . I. .015 .81 (.084) FOR033 1 A_ ‘ .019 .018 .87 (.072) (.066) SIXO33 . A_ -.024 .91 (-.103) NINO31 _A__ .021 .022 .036 .97 (.052) (.054) (.140) FINO64 . I. .006 .101 (.117) 02 .003 73102 (.100) 03 .004 * ~“.105 (.091) Q6 n_ .100 .1 (.108) K0109 n. —.102 -.207 ,2 (-.125) (-.131) K0209 K0309 .077 .117 (.060) (.140) K0409 -.081 (-.102) K1909 .131 (.136) K2309 -.068 (-.104) K2509 K3409 ..K3609 K3709 .462 (.578) K3909 .540 (.651) K4009 366 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, KL: Independent Variable Coefficients K4110 K4210 K4310 1 Acronym 3_, .136 .18 (.108) PRE008 B__ —.055 ___,23 (-.104) PRE013 3. . 140 .33 (.188) PREO23 3_ .078 .36 (.114) PRE026 3_ .082 .37 (.160) PRE027 B__ .034 .59 ~ (.165) PRF004 3_ .030 3 54 (. 106) FRF009 3.. .018 .56 (.062) PRFOll 3_ —.108 .68 (-.153) AFF008 B o 067 AFF011 AFF012 AFF013 AFF015 AFF017 -.087 {-.105) AFF025 AFF029 AFF032 AFF033 AFF037 'AFF039 -.067 (-.104) AFF041 .121 (.111) AFF045 367 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE. K'i__fi Independent Variable Coefficients K4110 K4210 K4310 1 1 Acronym B .088 ‘3107 (.101) AFF047 3 .058 71108 (.087) AFF048 B__ -.033 .113 (-£112) AFR005 B__ -.052 . 9115 (‘0204) AFROO7 C. ‘.052 .117 (.142) AFROO9 B -.032 -.030 ‘3125 (-.076) (-.093) BKGOO6 B .024 ‘3126 (.076) BKGOO7 B -.209 _;143 (-.078) BKCO24 3_ .079 .149 (.216) BKG030 ’“3. —.039 .161 (-.123) BKGO42 3. -.031 .166 (-.119) BKGO47 B__ .039 ,168 (.184) BKGO49 B__ .082 .171 (.224) BKGOSZ 3 -.023 ‘,173 (—.087) BKGOS4 B__ .036 ,179 (.126) BKG06O 3_ .059 .181 (.144) BKG062 BKF005 BKF013 LEC001 LECOO4 LEC005 LECOOS 368 TABLE E.10 MODEL COEFFICIENTS FOR WEEK - FINAL DEPENDENT VARIABLE, K'. fl Independent I Variable Coefficients K4110 K4210 K4310 Acronym ,A__ .247 _.33 (.115) 335002 p I. .059 ,20 (.087) SASOO9 . A. -.O49 .30 .(-.052) 5A5019 A__ .078 - ’42 (.139) LTPTOT .I_, .050 .47 (.104) PQZOOS .A.. .100 . 53 ( . 128) mm .I_. .101 .54 (.131) TC3 ‘ A. -.064 .61 (-.136) T010 , A. -.105 .65 (r.141) T0143? '71.. .018 .87 (.075) SIXO33 III. __.037 .91 (-.134) NINO31 . A. .020 .97 (.056 FINO64 ‘A__ .009 .101 (.156) Q2 I_. .007 .105 (.091) Q6 u -.182 _32 {—.130) K0209 3.. .081 ’3 (.065) K0309 u .255 -.7310 (~171) K1009 u__ -.088 ..38 (—.128) K3809 u__ -.189 __. .40 (-.123) K4009 u__ .486 _ .41 (.645) K4109 n. .491 .42 (.630) K4209 U_. .479 .43 (.781) K4309 9 9 o a Q Q «5 O5 x: 0‘ 01 n~ O5 hJ-ha Q O10 9 p... H O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 ' O27 -O28 ,7 O29 O30 O31 O32 O33 0.0621 0.1040 0.0166 —0.3240 0.0930 -0.0851 0.0040 0.1385 -0.3150 0.0030 0.0692 -0.2232 -0.1424 -0.0518 0.0019 369 TABLE E.10 Model Constants WeekeFinal O34 O35 O36 O37 O38 O39 O40 O41 O42 O43 O44 -0.1661 0.2098 0.1810 -0.0158 0.1127 -0.2230 -0.5041 0.2203 LIST OF REFERENCES 370 REFERENCES Abkin, M. H. Policy Making for Economic Development: A System Simulation Model of the Agricultural Economy of Southern Nigeria. Ph.D. Thesis. Michigan State University, 1965. Alexander, T. R; Burnett, R. W,; Zim. H. S. Botany, Golden Press, N.Y., 1970. Anonymous. Computer Models and Application of the Sterile — Male Technique. Proceedings of a panel organized by the Joint FAO/ IAEA Division of Atomic Energy in Food and Agriculture, Vienna, December 1971, International Atomic Energy Agency, Vienna, 1973. Arnold, G. W. and deWit, C. T. (Eds.). Critical Evaluation of Systems Analysis in Ecosystems Research and Management, Wageningen, Center for Agricultural Publishing and Documentation, 1976. Bloom, B. S. Human Characteristics and School Learning, McGraw—Hill, 1976. Brandenburg, R. A Task — Content Analysis of an Introductory Entomology Curriculum. Presented at the National Association for Research in Science Teaching, Annual Meeting, April 23-25, 1976, San Francisco, California. Burnett, R. W.; Fisher, H. I.; Zim. H.S. Zoology: An Introduction to the Animal Kingdom, Golden Press, N.Y., l973. Carrol, J. B. A Model of School Learning. Teachers College Record, 1963, 64, 723—733. Ellis, Jack B. The Description and Analysis of Socio—Economic Systems by Physical Systems Technigues. Ph.D. Thesis, Michigan State University, 1965. Enochs, N. J. "Biology Preparation for Prospective Elementary Teachers”. Proceedings of the Conference Marking the Twentieth Anniversary of the Science and Mathematics Teaching Center, SMTC, Michigan State University, 1977. (R. Brandenburg and J. J. Gallagher, Eds.) Forrester, J. W. Principles of Systems. Wright-Allen Press. Cambridge, Massachusetts (a). .Forrester, J. W. World Dynamics, Wright—Allen Press, Cambridge, Massachusetts (b). Haefele, D. Systems and Modeling: Self-Renewal Approaches to Teacher Education. The American Association of Colleges for Teacher Education, December 1971. 371 Keeton, William T. Elements of Biological Science. Second Edition. W. W. Norton and Co., Inc., 1973. Kuhn, Thomas S. The Structure of Scientific Revolutions. Second Edition (International Encyclopedia of Unified Science, Vol. 2, No. 2) University of Chicago, 1970.' Laszlo, Ervin. Introduction to Systems Philosgphy Toward a N9! Paradigm of Contemporary Thought. Harper and Row, 1972. LeBaron, W. Systems Analysis and Learning Systems in the Development of Elementary Teacher Education Models, October 1969, National Center for Educational Research and Development, U.S. Department of Health, Education, and Welfare, Office of Education, U.S. Government Printing Office (Supt. of Documents) Catalog No. FS 5.258:58035. Levin, Simon A. (Ed.) Ecosystem Analysis ppd‘Prediction. Proceedings of a SIAMFSIMS Conference, 1974, Society for Industrial and Applied Mathematics, 1975. Manetsch, T. J., Park, G.L. Systems Analysis and Simulation with Applications to Economic and Social Systems, Part I. MethOdology and Linear Systems Fundamentals. Department of Electrical Engineering and Systems Science, Michigan State University, August 1974 (a). Manetsch, T. J., Park, G.L. Systems Analysis and Simulation with Applications to Economic and Social Systems, Part II. Department of Electrical Engineering and Systems Science, Michigan State University, November 1974 (b). May, Robert M. Stability and Complexity in Model Ecosystems. Princeton, University Press, 1974. Meadows, D. L. The Limits to Growth. Universe Books, New York, 1972. Nie, Norman H.; Hull, C. Hadlai; Jenkins, Jean 0.; Steinbrenner, Karin; Bent, Dale H. SPSS Statistical Package for the Social Sciences, Second Edition, 1975, McGraw—Hill. Novick, M. R., Jackson, P.H. Statistical Methods for Educational and Psychological Research. McGraw—Hill, 1974. Odum, Eugene P. Fundamentals of Ecology, Third Edition. W. B. Saunders Company, 1971. Patten, B.C. Systems Analysis and Simulation in Ecology, Vol. II, Academic Press. Pugh, A. L. Dynamics User's Manual, 2nd Edition, The MIT Press, 1966. Silvern, L. C. Systems Analysis and Synthesis Applied Quantitatively to Create an Instructional System, Education and Training Consultants Co., Los Angeles, California, 1965. 372 Silvern, L. C. Systems Analysis and Synthesis Applied to Occupational Instruction in Secondary Schools, Education and Training Consultants Co., Los Angeles, California, 1967. Smith, Edward L. Techniques for Instructional Design, presented at American Educational Research Association Annual Meeting, April 16, 1974. Smith, Edward L. Mathods for Content Analysis, Science and Mathematics Teaching Center, Michigan State University, April 18, 1975. Tamir, P. Private Communication, 1976. Tamir, Pinchas; Gallagher, James J.; and Brandenburg, Richard. The Use of Bloom's Theory of School Learning as a Framework for Case Studies of Specific Courses. Unpublished, Science and Mathematics Teaching Center, Michigan State University, 1977. Tanner, C. K. Designs for Educational Planning. D. C. Heath and Company, 1971. ' Thompson, R. B. A Systems Approach to Instrucpion. Linnet Books. 1971. Veldman, Donald J. Fortran Programming for the BehaVioral Sciences. Holt Rinehart and Winston, 1967. Weber, W. H. Socioeconomic Methods in Educational Analysis. Teachers College Press, 1975.