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O
%?\ ABSTRACT

0<?7 CONTINUUM THEORY OF TRANSPORT
{\ THROUGH CAPILLARY MEMBRANES
By
Ping I Lee

Trangport of fluids through membranes is treated
in the theoretical framework of continuum, nonequilibrium
thermodynamics. Analysis of theories in which the mem-
brane is regarded as a discontinuity shows that such ap-
proach cannot provide insight into phenomena within the
membrane and can be misleading when misapplied. Both one-
dimensional transport through capillary membranes with
charged capillary walls and two dimensional transport
through capillary membranes with semi-permeable walls are
treated in detail.

Comparison of the discontinuous approach of the
Kedem-Katchalsky type and the continuum approach shows that
(1) Kedem-Katchalsky theory is strictly applicable only to
homogeneous membranes for thermodynamically ideal binary
nonelectrolyte solutions; (2) For porous membranes, Kedem-

Katchalsky theory can be used only when the barycentric
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velocity is linearly related to the external forces; (3) For
porous membranes in isothermal binary solutions, reciprocity
of the local phenomenological coefficients is the natural
outcome of the linear dependence of the fluxes; and (4) For
homogeneous membranes and for porous membranes satisfying
(2) , the Kedem-Katchalsky reciprocal relation LpD = LDp is
valid only when the solution is thermodynamically ideal

and the partial molar volumes of solute and solvent are
equal. Moreover, the phenomenological coefficients in
Kedem-Katchalsky theory in general depend on the driving
forces.

The continuum approach is then employed to analyze
the transport of electrolyte solution through a charged
capillary with radius larger than the thickness of the dif-
fuse double layer formed inside the capillary. Gradients
of pressure, electrical potential and concentration are in-
cluded in the analysis, along with the concentration polariza-
tion of the electrical double layer. The Navier-Stokes and
Poisson-Boltzmann equations are solved for the velocity of
the center of mass of the flowing liquid mixture. The final
expression contains a concentration gradient term which
represents capillary osmosis and which has usually been
ignored. The general analytical expression for capillary
osmosis in circular capillaries reduces, for large ratios
of radius to Debye length, to that obtained by Derjaguin

for flat surfaces from thermodynamic consideration.
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The result for capillary osmosis is included in de-
veloping the theory of anomalous osmosis for capillary mem-
branes. For KCl solutions, which have nearly equal dif-
fusivities and mobilities, our equation predicts the same
direction, similar shapes and similar magnitudes of the
volume flow through both positively and negatively charged
membranes. This agrees with Grim and Sollner's data on
anomalous osmosis for KCl. Previous theories have not
achieved this agreement.

The continuum approach is also used to determine
two-dimensional concentration distributions and mass trans-
fer rates in tubular membranes with finite wall permeabili-
ties. Convective laminar flow and both axial and radial
diffusion are included. The partial differential equation
is solved in terms of Confluent Hypergeometric Functions.

A numerical scheme called the "Overdetermined Collocation"
method is used to overcome the difficulties of non-
orthogonality. Eigenvalues up to the 10th and linear
combination coefficients accurate to 9 significant figures
are reported for various Peclet and wall Sherwood numbers.
Radial concentration and local bulk concentration dis-
tributions and overall Sherwood number are also obtained

for various values of Pe and N .
shw
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CHAPTER I

INTRODUCTION

Transport processes through membranes are the sub-
ject of rather extensive research in various fields ranging
from industrial desalination to biological nerve excitation.
Membrane research has occupied physical chemists, bio-
physicists, biologists, physiologists, biochemists and
engineers since the 19th century. Teorell (1967) used
the name "Membranology" to describe the achievements,
problems and perspectives of these more or less isolated
group of researchers. Diverisifed as the individual
achievements may appear, it is yet possible to discexn a
common, ultimate objective in the strivings of all mem-
branologists; viz., transport phenomena.

The most intriguing transport phenomenon is the
coupling between various processes. For example, living
cells maintain a continuous exchange of matter with their
surroundings, and at the same time they preserve concentra-
tion differences between intracellular and extracellular
spaces. The membrane, which can be defined as a thin
phase of material different from that on either side of

it, generally exercises a complicated regulating function.



It allows material to pass through according to metabolic
requirements, and it is able to distinguish sharply between
similar compounds. It is often necessary for the cell mem-
brane to extend chemical energy in order to transport sub-
stances against their chemical potential gradient. Thus,

biological membranes act as both "barriers" and "pumps."

Coupled phenomena are also prevalent in transport
through artificial, porous, charged membranes. A pressure
gradient generates not only bulk flow of electrgplyte solu-
tion through the membrane but also an electrical potential
gradient across the membrane (streaming potential). A con-
centration gradient across the membrane produces flow be-
havior different from that described by Van't Hoff's
Theory. The flow does not vary linearly with concentration
but instead has maxima and minima. Moreover it is some-
times toward the more dilute solution (anomalous osmosis).
These conversions of mechanical energy into electrical
energy and of chemical energy into mechanical energy sug-
gest consideration of artificial membrane as an energy
converter.

It was not until recently that the rational de-
scription of these coupled phenomena was made possible by
the theory of nonequilibrium thermodynamics. Kedem and
Katchalsky (1958) formulated a membrane transport theory

with the inclusion of coupling by a discontinuous



nonequilibrium thermodynamic approach. This theory has
been very popular among biologists. Spiegler (1958)
pioneered a friction coefficient model, which afforded
greater insight into the interactions inside the membrane.
However, these "black box" type theories tend to rely
heavily on lumped experimental parameters which conceal

our ignorance of the exact physical nature of the processes
inside the membrane. Kobatake and Fujita (1964) employed a
continuous nonequilibrium thermodynamic approach but were
only partially successful in predicting the results of Grim
and Sollner (1957) on anomalous osmosis. They failed to
predict the observation that KCl solutions flow in only

one direction and to about the same extent in both posi-
tively and negatively charged membranes. Since then,
various other continuum theories (cf. Toyoshima, et al.,
1967; Fujita and Kobatake, 1968; Gross and Osterle, 1968;
Fair and Osterle, 1971) have been developed. However,

they are all unsatisfactory in one way or another. This
will be discussed in more detail in Chapters VI and V.

The purpose of this Thesis is to present a systematic
continuous, nonequilibrium thermodynamic theory of transport
processes through capillary membranes. In addition to the
utility of the final equations for describing actual pro-
cesses, the systematic treatement affords greater insight

into the internal mechanisms involved.



Previous inconsistencies, such as the application of electro-
kinetic equations for uniform solution concentrations to
systems in which concentration variations dominate, are
avoided.

The general hydrodynamic and nonequilibrium thermo-
dynamic equations for transport processes in multicomponent
system are presented in Chapter II. Chapter III deals with
membrane transport phenomena in general. Particular em-
phasis is placed on the relationship between the type of
membrane (porous, semipermeable, etc.) and the method and
result of flows. The mechanism of ordinary osmosis is dis-
cussed in detail. We also clarify the difference between
various reference frames in membrane transport. Finally,
we compare the Kedem-Katchalsky theory with the more rig-
orous continuous nonequilibrium thermodynamic theory and
show that the Kedem-Katchalsky theory is strictly valid only
for homogeneous membranes at infinite dilution.

Chapters IV and V are concerned with flow through
charged circular capillaries in the presence of a concen-
tration gradient. Capillary osmosis, which occurs when
there is a diffuse double layer along a wall to which a
concentration gradient is tangential, is itself analyzed
in Chapter IV and is included in the analysis of anomalous
osmosis in Chapter V. In Chapter IV we consider the con-

cen tration polarization of the electric double layer and



derive, from the Navier-Stokes equation and the Poisson-
Boltzmann equation, a general analytical expression for
the capillary osmotic velocity distribution in a charged
cylinder. 1In the limit of zero concentration gradient,
our barycentric velocity equation reduces to the equation
for ordinary electrokinetic flow in capillary tubes. In
the limit of large ratios of radius to Debye length, our
equation reduces to that obtained by Derjaguin, et al.
(1969) for flat surfaces by classical thermodynamics. In
Chapter V we develop a theory which successfully describes
anomalous osmosis as observed in charged porous membranes.
We use the capillary membrane model described in Chapter 1V,
and take into account capillary osmosis. The capillary
osmosis term is of the same order of magnitude as the
electroosmosis term under the experimental conditions of
anomalous osmosis. The results agree with Grim and Soll-
ner's data on anomalous osmosis of KCl solutions through
both positively charged and negatively charged membranes.
Finally, in Chapter VI we solve a general problem
of laminar flow convective diffusion, including axial dif-
fusion, through tubular membranes of finite wall per-
meabilities. The partial differential equation is solved
in terms of Confluent Hypergeometric Functions. A numeri-
cal scheme called the "Overdetermined Collocation" method

is used to overcome the difficulties of nonorthogonality.



Eigenvalues (up to the 10th) and linear combination coef-
ficients to 9 significant figures for various Peclet number
(Pe) and wall Sherwood number (N, ) values are reported.
Radial concentration and local bulﬁ concentration distri-
butions and overall Sherwood number are obtained for

various values of Pe and NSh .
W



CHAPTER II

EQUATIONS OF TRANSPORT

A. Introduction

In this chapter we lay the foundation for the dis-
cussion of transport phenomena in multicomponent systems.
We consider only continuous, isothermal, isotropic fluids
in which no chemical reactions occur and which are subject
to a variety of driving forces (gradients of concentration,
pressure, electric potential), but not to a magnetic field.
We begin by presenting the necessary conservation equations
in their most general form and then the general set of phe-
nomenological equations of nonequilibrium thermodynamics.
Specialized equations used in the study of membrane trans-
port processes are deduced along with appropriate boundary
conditions. For a more detailed discussion of the trans-
port equations see, for example, Kirkwood and Crawford
(1952), Bird, Stewart and Lightfoot (1960), de Groot and
Mazur (1962), Fitts (1962), Horne (1966), Hasse (1969) and,
particularly for transport in living systems, Lightfoot

(1974).

B. Equations of Hydrodynamics

The behavior of a flowing liquid in which heat

and mass transfer occur is described by the conservation



equations, along with general thermodynamic equations of
state. The conservation equations are partial differential
equations which describe the change in macroscopic proper-
ties of the fluid (for example, the local density, center
of mass velocity and temperature) in terms of the mass
flux, momentum flux and energy flux. The basic equations
of continuity, motion and energy balance correspond re-
spectively to the fundamental principles of conservation
of mass, momentum and energy. These equations have been
derived for very general conditions both in classical and

quantum theory.

Equation of Continuity

In the absence of chemical reactions, for a fluid
mixture containing v chemical species, the v independent

equations of continuity of mass are

(dp/dt) + o ¥ + u =0 (2.1)
and p(dw /dt) + ¥ +Jy=10, o=l,...,v, (2.2)

(2.1) is for the fluid as a whole and (2.2) is for com-

ponent a. Equivalent expressions for (2.2) are

(Bpa/at) + V+*p u =0 (2.3)

or (3c /3t) + 7 + N =0, (2.4)



where p is total mass density, W, is mass fraction, Py

w p , uis the center of

is partial mass density with Py o

mass, or barycentric, velocity, g, is the velocity of com-

ponent a with respect to a laboratory reference frame, <,
is the molar concentration and ja and Na are respectively
the mass diffusion flux and total molar flux of component

a. The barycentric velocity u is defined by
Vv
u = ) w_u_ . (2.5)

The diffusion flux ja is defined by

3, = P, u, - w) , a=l, ...,V . (2.6)

j,=0. (2.7)
The total molar flux is defined by

=c u = (pa/Ma) v, - (2.8)
which is related to the mass diffusional flux ja by

N, =c,u+ (3,/M), (2.9)

where M, is the molecular weight of component a. Sub-
stantial time derivatives d/dt are related to local time

derivatives 3/3t by
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(d/dt) = (3/3t) +u » V , (2.10)

which represents the time rate of change following a fluid
element which is moving with a velocity u. The operator

"y" is defined by

~

V=4 (3/3x) + 3 (3/3y) + k (3/3z) , (2.11)

where i, j and k are the unit vectors of the three dimen-
sional Cartesian coordinate system. For more detailed
analysis in other coordinate systems, see, for example,

Bird, Stewart and Lightfoot (1960).

Equation of Motion

The general equation describing the isothermal flow
of a Newtonian fluid is the Navier-Stokes equation. It is
based on Newton's Second Law of Motion, supplemented by
Newton's hypothesis of fluid friction that the shearing
stress is directly proportional to the rate of strain. It

may be written as (Horne, 1966)

p(dus/dt) - V « g = p¥ , (2.12)

QQ

where p¥ is the net external force and where ¢ is the stress

=~
=

tensor. The net external force is related to the external

forces acting on component a by

V
pPX= ) p_ X (2.13)
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where the bar indicates that it is a specific quantity.
When there are only gravitational and electric fields
p X =-M VI - z_ FY¢ , (2.14)

where z, is the ianic charge per mole of a , F is Faraday's
constant, I' is the gravitational potential and ¢ is the
electrostatic potential. The stress tensor g is given
approximately by the Newtonian linear phenomenological

relation
g =-[p+ (%ﬂ -¢) (Y*w)] I + 2n sym 7 u, (2.15)

where I is the unit tensor, p is the pressure, sym YVu is
the symmetric part of the tensor Vu , and n and y are the
coefficients of shear viscosity and bulk viscosity, re-
spectively. Combination of (2.12) and (2.15) yields the

Navier-Stokes equation:
o(du/dt) + Vin - @) Yrul - 27+n sym Ty

Another form of the Navier-Stokes equation can be obtained

by introducing (2.10) into (2.16) and rearranging,
o(3u/3t) + pu-Yu = p§ - ¥p + n¥°y
1
+ (gn + @)V (Vew) , (2.17)

where we take n and p to be constants.
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Bearman and Kirkwood (1958) have derived macro-
scopic equations of motion for each component of a multi-
component system by the use of statistical mechanics;
similar results have also been obtained from the considera-
tion of rational (or continuum) mechanics (Bartelt, 1968;

Bartelt and Horne, 1970; Ingle, 1971). Their equations are

Spaga/at + v (pagg) =n,  Vou + (%na +5pa)§7(&7°g)—cayua
’ a=l’oo.,\) ’ (2.18)

where My is the isothermal chemical potential of component
a in molar units (not including the external potential),
Fy is the total frictional and thermal force in molar
units which arises from intermolecular forces, c X is the
external force acting on component a, with caga = paga
and Ny and ¢, are the partial coefficients of shear vis-
cosity and bulk wviscosity, respectively. These qguantities

have the properties that

) )
n = n ’ p = ’
a=1 o a=1 Vh
)
c F* =0
am1 O
V
c Vu = Vp . (2.19)
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When (2.18) is summed over all components with the help of
(2.19), the macroscopic Navier-Stokes equation (2.17) is
obtained.

Since the general solution of the complete time
dependent Navier-Stokes equation is not possible, various
approximation schemes must be invoked. If the system con-
sidered is at steady state, which implies (3u/3t) = 0,

then

2

Yp - X = nvu + (3n +¢)V(T-w) - pu Yu . (2.20)

In addition, most fluids except very dense ones and very
dilute ones are essentially incompressible. For an in-
compressible fluid, the density p is constant in time and

position. Thus according to (2.1),
Veu=20

The Navier-Stokes equation for an incompressible fluid in

a steady state is, then, for constant n ,
z 2
Yp - pX = nV7u - pu -+ Vu . (2.21)

Furthermore, for slow flow characterized by small Reynolds
number (of, say, the order of 1), the inertial term pu-Vu
is very small in order of magnitude compared with the
viscous term nvzg . Omission of inertial terms results

in the so-called creeping motion or Stokes equation,
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Vp - pX = nvzg (2.22)

The Reynolds number is defined as
Re = fup/n . (2.23)

This dimensionless parameter describes in a general way
the ratio of inertial to viscous forces, where £ and u are
characteristic linear dimension and velocity, respectively.
Thus, the smaller the Reynolds number, the better the ne-
glect of the inertial term. (2.22) is quite satisfactory
in most membrane systems, where the flows are slow and the
Reynolds numbers are smaller than one. For more detailed
discussion of low Reynolds number flow, see Happel and

Brenner (1965).

Equation of Energy Transport

The general equation of Conservation of energy is

(3pEp/3t) + ¥V » J, =0, (2.24)
T

is the total energy flux and where E_ is the

where J T

Ep

total specific energy,

Ep = E + 1/2 ' (2.25)

where E is the specific internal energy not including ex-
ternal potentials and u2/2 is the local kinetic energy of

the center of mass. Note also that
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u2 =4 - u. (2.26)

It is possible, however, to obtain the kinetic energy by
summing over the kinetic energies of the components (Bar-
telt and Horne, 1970; and Ingle, 1971). We assume that
the difference between the two definitions is negligible
for the present purpose (Horne, 1966).

The energy transport equation can be expressed as

’ (2.27)

nQ
g
e
+

Il <
J

p(dE/dt) = - Vi +

where jE is the internal energy flux not due to the bulk
flow. The first term on the right represents the change
of internal energy due to internal energy flux (this in-
cludes, in an isothermal system, energy flux due to a con-
centration gradient and energy transport by molecular dif-
fusion); the second term includes both the internal energy
change due to the PV-work, and that due to viscous dissi-
pation; and the third term describes the change due to
the work done by diffusing molecules to overcome the ex-
ternal forces. The internal energy flux is related to the

total energy flux by

=
0Q
+
Il o~
©
{=
e
N
N
o

YojE = Vo[g - DEB +
T o
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The internal energy flux can further be related to the second

law heat flux g by

ig

[[ Kk
HER
Q
o]
2

where ﬁa is the partial specific enthalpy of component a.

C. Equations of Nonequilibrium Thermodynamics

The previous sections are all based on conservation
equations. In order to relate the mass, momentum and energy
fluxes to concentration, pressure, electrostatic potential,
velocity and temperature gradients as required by most
physical problems, one has to introduce a set of con-
stitutive equations from nonequilibrium thermodynamics
and reduce them with the aid of a fourth fundamental prin-
ciple, the entropy inequality. We could start from the
rational, fundamental approach of Truesdell (1969), Miller
(1968), Bartelt (1968), Bartelt and Horne (1970), Gyarmati
(1970) and Ingle (1971). However, for simplicity, we adopt
the conventional approach represented by de Groot and Mazur
(1962), Fitts (1962), and Hasse (1969). It has to be em-
phasized that the more fundamental approach gives the same
results for the simple systems investigated here (Bartelt
and Horne, 1970).

We now introduce two fundamental assumptions of
conventional nonequilibrium thermodynamics for the system

under consideration. The first assumption is:
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Postulate I: The principle of local state

For a system in which irreversible processes are
taking place, all thermodynamic functions of state exist
for each element of the system. These thermodynamic quan-
tities for the nonequilibrium system are the same functions
of the local state variables as the corresponding equilib-
rium thermodynamic quantities.

The second assumption is

Postulate II: The assumption of locally linear fluxes
The fluxesja are linear, homogeneous functions of the

forces ¥ . That is
v
Jo = L Ly ¥g - (2.30)

The forces XB are "driving forces" for the fluxes; for
example, VA4nT is the driving force for heat flux d. The
phenomenological coefficient LaB are independent of the
forces. The diagonal coefficients Laa relate conjugate
fluxes and forces, while the off-diagonal elements
Las(a#B) characterize cross phenomena. As in the case
of postulate I, postulate II is presumably most nearly
valid when the system is close to equilibrium. Thus,
both postulates apply to systems with small spacial and
time nonuniformities of the local thermodynamic variables.
By postulate I, we may use the Gibbsian equation

for dE
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dE = TdS - pdV +

. Fa aw (2.31)

e~

1

where S and V are respectively the Epecific entropy and

the specific volume, and E& is the chemical potential of
component o in mass units,

- e

(

Mu =1u = Hy

oHa a T,p) + RT 2&n a, (2.32)

where Hy is the chemical potential of component o in molar
units, Ma is molecular weight of a , T is absolute tempera-
ture, p is pressure, R is the gas constant, a is the

activity of component ,
a =x_f (2.33)

with X, the mole fraction of component o and where p:

and the activity coefficnet fa are defined relative to an
appropriate standard state in which there are no effective
external fields. Note that fa is a function of temperature,
pressure and composition. Since we treat only agqueous
solutions here, the appropriate standard state is the pure

solvent (denoted by the running index 1),

My = 2im [ua - RT ana] (2.34)
Xx,>1
1
whence
£im fa =1 .

x1+1
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Rearranging (2.31) and differentiating with respect

to time, the rate of entropy production,

p(dS/dt) = p/T(AE/dt) - (p/pT) (dp/dt)

<

- (p/T) azl u, (dw /dt) . (2.35)

Substitution of (2.1), (2.2) and (2.27) into (2.35) yields

for entropy production equation,

p(dS/dt) = ¢YT - V 'is , (2.36)

with the internal entropy production ¢YT written as the

sum of two terms (again for an isothermal system)

OYT = ¢,+0,/T , (2.37)
¢; = (g*+pI):lu
\) —
0, == 1 34 ° W (2.38)
a=1
\) —
where j_ = q/T + y 3,5,
a=1
Vo = Yu, - X, . (2.39)

Although it would seem that from postulate II we

should relate all the conjugate driving forces and fluxes,
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one does not have to consider all the interactions indi-
cated by (2.20). It can be shown on the basis of symmetry
(Curie's theorem) that, for isotropic systems, coupling
can occur only between driving forces and fluxes of the
same order or between those which differ in tensorial
characters by even integers. This implies that only

YF& is related to j, . By postulate II, the linear
phenomenological equations are

T

L B a=l,...,v , (2.40)

g 7

1
"
Q
]
o~ <

8

where the {i's are the phenomenological, or Onsager co-
efficients. These coefficients are not all independent

since, by (2.22),

L QaB =0, B=l,...,Vv . (2.41)

Il &~

o

Furhter, due to the requirement of positive entropy pro-

duction, it has been shown (Bartelt and Horne, 1969) that

Q =0,

af l,...,v . (2.42)

Q
I

I o>

B=1

Thus, for the v-1 independent fluxes jl""’jv’ the linear

phenomenological equations are

) a=l,oo¢,\)-l . (2.43)
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If the fluxes and forces of (2.43) satisfy Onsager's
(1931) condition, then the matrix of Onsager coefficients

is symmetric; i.e. QaB = QBa for «ao,B=1l,...v-1 .

However, since total experimental verification of the
Onsager Reciprocal Relations (ORR) is still an open ques-
tion (Miller, 1960, 1969), we only accept them as postu-
lates. We discuss applicability of the ORR in membrane
transport systems in the next chapter. For most purposes
it is more convenient to use (2.40) and consider the
phenomenological coefficients as conductance coefficients.
However, sometimes it is useful to invert (2.43) so that
the forces can be expressed as linear functions of the

fluxes. The result is
-y(-u) =] R ig (2.44)

with the resistance coefficient

R,g = 9] 712l - oa,B8=1,...,v-1 , (2.45)

where |Q| is the determinant of only those phenomenological
coefficients which appear in (2.43) and |Q|a8 is the appro-
priate cofagtor. If the matrix of QaB is symmetric, then
the matrix of RaB is also symmetric.

The friction coefficient description of Bearman
and Kirkwood (1958) and Bearman (1959) is equivalent to

this resistance coefficient formulation.
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The expression for the chemical potential gradient,
which appears in (2.40), (2.43) and (2.44) has the form

(Horne, 1966)
—' - - oo
MQYua = Yua = vaYp + RTYQnaa + Mayr + zaFY¢ . (2.46)

The Gibbs-Duhem equation including the external forces can

be expressed as

p . Vu

1 Pa & . (2.47)

Il >~

Vp - oX =
(0

~

In (2.46), v: is the partial molar volume at infinite dilu-
tion and is related to the partial molar volume of component
a by

v: = 2im v_ , (2.48)

x1+l

this implies the equality of v: and v, at thermodynamic
ideality.

Due to the arbitrariness of choosing the fluxes
and forces in (2.38), one can define the fluxes and forces
differently in order to suit particular purposes. Scatter-
good and Lightfoot (1965, 1968) and Lightfoot (1974) have
chosen, instead of all the diffusional fluxes summed to
zero, all the forces summed to zero. They end up with a

set of Stefan-Maxwell equations and a set of Stefan-Maxwell
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diffusivities show a smaller composition dependence than

the usual phenomenological coefficients and they reduce

to the more familiar Fickian diffusion coefficient for

ideal binary solutions. For the purpose of this Thesis

we use only the conventional linear phenomenological

equations (2.43) and (2.44). In fact it can be shown

that the Stefan-Maxwell equations are equivalent to (2.44).
For more general discussion about the physical

implication of various phenomenological coefficients, see

Fitts (1962), de Groot and Mazur (1962), Haase (1969),

Horne (1966) and Lightfoot (1974).



CHAPTER III

CONTINUOUS AND DISCONTINUOUS APPROACHES

OF MEMBRANE TRANSPORT PROCESS

A. Introduction

The system used in most passive membrane transport
experiments consists essentially of two large reservoirs
(regions I & II) containing an isotropic, v component
solution, connected by a small capillary, porous wall or
another homogeneous phase as a membrane (region III). 1In
general the reservoirs may differ in pressure, solute con-
centration and electrical potential (we consider only
isothermal systems in this thesis). The membrane may be
itself charged or uncharged. However, no chemiéal reac-
tions occur in the three regions.

There are two types of treatment of passive mem-
brane transport processes. If one considers the region
III as so small that it can be almost disregarded, then
in passing from region I to II the state variables (or
the thermodynamic properties) suffer discontinuous jumps

and the system is usually referred to as a disgcontinuous

system. In this case the membrane is treated as a black
box, and no detailed knowledge of the structure or func-

tion is required. All flows and driving forces refer to

24
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regions I and II, while the membrane merely appears as a
barrier which sustains finite differences in pressure,
concentration and electrical potential. The transport
equations are in finite difference form, and the phenome-
nological coefficients appearing in them can be used to
characterize the membrane.

In some cases it is possible to analyze the flow
inside the membrane in terms of the differential transport
equation obtained in Chapter II where the state variables
(or thermodynamic properties) are continuous functions of
space coordinates and of time. This is usually referred

to as a continuous system. In order to be applicable ex-

perimentally, the differential transport equations for the
cantinuous system have to be integrated across the membrane
for some model membrane structure. The final working
equations are expressed in terms of the differences in

state variables (or thermodynamic properties) of regions

I and II. These are the same as those for the discontinuous
systems. However, by going from a continuous to a discon-
tinuous formulation, one can obtain an explicit knowledge

of the empirical phenomenological coefficients in terms of
more fundamental properties of the solution and the mem-
brane, such as diffusion coefficients, viscosity coeffi-
cient, charge density, pore radius, concentration, dielectric

constant, etc. More importantly, one can also gain a better
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understanding of the mechanism of various membrane processes.
This point will be emphasized in the next few chapters.
There are generally three classes of membranes.
de Groot and Mazur (1962) distinguish only two classes,
while Mears, et al. (1967) classify four types. However,
three classes are enough for the present purpose: (a)
Macroporous membranes--relatively large capillaries or
pores compared to the mean free path of the molecules
(say greater than 25°A radius). Species are transported
through these pores primarily by convective flow. (b)
Microporous membranes--the dimension of the pores is
smaller than the mean free path of the molecules (very
small pores). Species are transported through these pores
by convection as well as by diffusion. (c) Homogeneous
membranes--a separate homogeneous phase, sometimes con-
sidered as a solvent through which permeants are trans-
ported by diffusion. 1In cases (a) and (c), the fluid may
be treated as a continuum and the flow in the membrane may
be described by local macroscopic transport equations.
From these the phenomenological equations describing trans-
port between regions I and II as a discontinuous system can
be derived by integration with the inclusion of appropriate
boundary conditions at the membrane/solution interfaces.
Relevant boundary conditions include equilibrium distribu-
tion coefficients and pressure and concentration discon-

tinuities. These boundary conditions are generally due to
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membrane structural and chemical factors and cannot be
accounted for by an inert continuous membrane model which
is open to both the solute and solvent (g;g;, one dimen-
sional models or capillary models). Many authors (Kobatake
and Fujita, 1964; Gross and Osterle, 1968; Fair and Osterle,
1971; Chen, 1971) have attempted to derive discontinuous
membrane egquations from continuous local transport equations.
However, they fail to include these structural boundary con-
ditions, which give rise to the ordinary osmotic phenomenon.

In case (b), the mean free path of the molecules js
larger than the pore dimension, and the collisions between
fluid molecules and bounding surfaces become more important.
There are fewer molecules in the flow cross section, and
the continuum description of the transport becomes less
precise. It seems reasonable to suppose that, even then,
the continuum description should retain some validity in
a statistical sense. In fact, Levitt (1973), who has done
molecular dynamics calculations on kinetics of diffusions
and convection in small pores, has shown that the continuum
hydrodynamic theory can be extrapolated, at least gqualita-
tively, to pores 3.2 g in radius! Therefore, the discon-
tinuous membrane equation can still be obtained from local
transport equations although they have to be used with
caution for membranes of class (b).

In the following sections, we illustrate the

mechanism of ordinary osmosis and the boundary conditions
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that describe this. We then discuss transport equations
and reference frames for these three different types of
membrane. We also derive the discontinuous membrane trans-
port equations from the local equations and compare them

with the widely used Kedem-Katchalsky formulation.

B. Mechanism of Ordinary Osmosis

The passage of water through semi-permeable porous
membranes is of great interest in many fields. Two mecha-
nisms of osmotic flow have been considered. These are (1)
diffusion of solvent down a gradient of chemical potential
and (2) bulk flow through pores under a hydrostatic pressure
gradient.

Discussions of semi-~permeability have usually been
concerned with non-ionic solutes whose molecules are suf-
ficiently large to be excluded from the pores by mechanical
sieving. Two kinds of experiments are common: (i) experi-
ments with an osmotically induced volume flow and (ii)
self-diffusion experiments with isotopically labelled
water. Some conceptual difficulties have resulted from
the following experimental observations: (a) A hydrostatic
pressure difference and an equal osmotic pressure differ-
ence produce the same flow through a semi-permeable mem-
brane (Mauro, 1957, 1960). (b) The volume flow produced

by a difference in total chemical potential may differ
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from (and can be much greater than) the self-diffusive
transfer produced by an equal potential difference arising
from an isotopic concentration difference (Durbin, Frank
and Solomon, 1956).

Chinard (1952) gave a careful and detailed account
of the case in favor of diffusion as the main mechanism of
solvent transport. This is consistent with the homogeneous
membrane discussed in the last section, which is capable of
water transport due to the chemical potential gradient.
However, Chinard's viewpoint cannot explain the result (b)
above observed for porous membranes. On the other hand,
the result (b) is consistent with the viewpoint (Pappen-
heimer, 1953; Koefoed-Johnson and Ussing, 1953) that
osmotic transfer takes the form of a pressure induced
bulk flow.

A thorough, but less fundamental comparison of
the two theories as applied to plant membranes has been
given by Ray (1960) and later on improved by Dianty (1963).
However, they all consider rapid water diffusion at the
pore exit. This notion of joint diffusion-viscous flow
has been criticized by Philip (1969).

It is not obvious how the concentration difference
across a semi-permeable porous membrane could induce bulk
flow when there is no measurable pressure difference across

it. However, there is ample experimental evidence that



30

this is so, and the mechanism of the phenomenon has been

proposed by Mauro (1957, 1960), who acknowledged his debt
to Onsager and by Longsworth (1960), who acknowledged his
debt to Kirkwood.

Thermodynamically, the total chemical potential
across a semi-permeable membrane separating pure water
and a solution at the same hydrostatic pressure also at
steady state, and in the absence of external fields must
vary continuously across the membrane (Fig. 3.1). At
each point in the pore the total chemical potential con-
tains contributions due to the water concentration (or
activity) and the hydrostatic pressure. If the mechanism
of semi-permeability is the total exclusion of solute from
the pores of the membrane, the steep change (or discon-
tinuity) of the water concentration in the interfacial
layer at the pore opening between the pure water phase
and the solution phase must be accompanied by a steep
change in the hydrostatic pressure. The pressure change
in the interfacial layer is sustained by the interface.
The pressure change along the pore will cause a flow of
water through it; i.e., the osmotic flow. Hence, an
osmotic pressure difference (or concentration difference)
across the semi-permeable membrane produces water flow by
exactly the same kind of mechanism as a hydrostatic pres-

sure difference.
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Molecularly, the total reflection of the solute
molecules and the partial transmission of the solvent
molecules at the membrane/solution interface causes an
asymmetry in the momentum transfer by the thermal motions
of the molecules. Since the average momentum transfer is
prescribed by the hydrostatic pressure of the phase, the
asymmetry (or deficiency) in momentum due to the finite
size of the pore gives rise to a sharp change in the pres-
sure sustained by the interface in the interfacial layer
and a pressure gradient within the pore. Sincé the pore
is filled with water this pressure gradient inside it
causes a flow in exactly the same way as a directly ap-
plied hydrostatic pressure gradient.

In the self-diffusion of water through porous
membranes no asymmetry in momentum transfer accompanies
the gradient of labelled water, therefore no bulk flow
occurs. This is the explanation of the result (b) men-
tioned in this section.

The pressure and concentration profiles in a semi-
permeable membrane at osmotic equilibrium are shown in
Fig. 3.2. In comparison with the profiles for steady-
state osmotic flow in Fig. 3.1l. We see that the sharp
changes in pressure and concentration in the interfacial

layer between the pure water phase and the solution phase

are always sustained by the interface, and it is only the
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gradient of pressure or concentration inside the pore that
gets equilibrated. It must be emphasized that the inter-
facial layer, across which the sharp changes of pressure
and concentration occur, is not a diffusion layer which
could be removed by effective stirring; its thickness is
determined by the membrane pore and surface structure and
by the dimensions and mean free path of the molecules.

It is now widely accepted that osmotic flow of
water through a membrane which contains pores is a pres-
sure induced bulk flow. The mechanism given here can be
generalized to membranes which separate solutions of dif-
ferent concentrations and to cases of incomplete solute
exclusion. Renkin (1954) has considered the case of in-
complete solute exclusion and has calculated the perme-
ability of pores to molecules of various sizes. By using
this treatment and assuming that flow in the pores could
be described by Poiseville's law, Durbin, Frank and
Solomon (1956) have shown that the study of the permeation
of non-ionic solutes of graded sizes in molecular diameters
permits an estimation of effective total area and radii of
the pores in a membrane. For membranes with adsorption of
solute and solvent in the pores, the adsorption force
field affects the steady state pressure distribution
during osmosis because the adsorption force also contri-

butes to the total chemical potential (Banin and Low,
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1971). 1In the case of charged porous membranes, ordinary
osmosis is still effective, but additional phenomena due

to the charge occur simultaneously. This is discussed in
detail in the next chapter. For more detailed discussion
of the mechanism of ordinary osmosis see Mauro (1957, 1960),

Longsworth (1960), Mears (1966) and Philip (1969).

C. Mechanical Restraints and

Reference Frames

In the nonequilibrium thermodynamic study of
transport processes in free solution, the local center of
mass is the usual reference frame for diffusional flows
(de Groot and Mazur, 1962). Other available reference
frames are the local center of volume or any of the in-
dividual components of the system, particularly the sol-
vent. In membrane transport, the most convenient refer-
ence frame, both experimentally and theoretically is the
one fixed on the membrane itself because the membrane
does not move. Therefore it is advantageous to transform
the reference frame from the local center of mass, upon
which almost all the transportsequations are based, to
the membrane framework. In doing so, it is necessary to
ascertain whether or not such changes of reference frame
preserve Onsager Reciprocal Relations in the local phe-
nomenological equations. Coleman and Truesdell (1960)

have shown that the transformations of fluxes and forces



35

have to follow certain transformational properties in
order to preserve the reciprocal relations. Kirkwood,

et al. (1960) gave a detailed discussion on the importance
of reference frames in testing the Onsager Reciprocal Re-
lations for isothermal diffusion in liquids. We demon-
strate in the next section the effect of changing refer-
ence frames on the Onsager Reciprocal Relations in a mem-
brane transport system. For the time being we consider
the effect of mechanical restraints and reference frames
on the total entropy production and the phenomenological
equations.

It is a common practice, without justification, to
consider the membrane system to be in a state of mechanical
equilibrium (Katchalsky and Curran, 1965; Hanley, 1967,
1969) such that, according to Prigogine's theorem (Prigo-
gine, 1955), in the entropy production ¢, of Eq. (2.38)
the barycentric velocity u occurring in the definition of
the diffusion flux ja can be replaced arbitrarily by
another velocity. In this case the membrane velocity is
a natural choice because it is essentially zero. Accord-
ing to de Groot and Mazur (1962), the mechanical equilib-
rium state is the state in which both the acceleration
du/dt and the velocity gradient Yy vanish and therefore

also the stress tensor may be neglected. Bartelt and
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Horne (1970) derive necessary and sufficient conditions
for mechanical equilibrium. At mechanical equilibrium,

the Navier-Stokes equation (2.16) has the form
pX - Vp = 0 . (3.1)

The Gibbs-Duhem equation (2.47), for the mechanical

equilibrium state, becomes

Il o~

= _
pa2ua 0 . (3.2)

a=1

Based on (3.2), Prigogine's theorem follows immediately

from (2.38):
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a=1 a=1
V a _
= - z o (u - ‘.:,1 ) . Yu& (3.3)
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where ga is an arbitrary reference velocity. When the
membrane is taken as the reference frame, 92 =u =0
with u the membrane component velocity. Eg. (3.3) re-

duces to

' (3.4)

©
N
|}
1
Il o>
P
L]
g
=|

where J = p u . (3.5)

Eq. (3.4) and its integrated form are used in a
large number of membrane transport literatures (see, for
example Katchalsky and Curran, 1965) without questioning
the validity of the mechanical equilibrium assumption.
Generally, in macroporous membranes (class a) and some-
times in microporous membranes (class b) where viscous
flow dominates, mechanical equilibrium does not hold.

In order to demonstrate this, we distinguish between the
cases when the membrane can be taken as a component and
when it cannot be.

Mikulecky and Caplan (1966) and Mikulecky (1969)
have considered the membrane as a component for macro-
porous membranes, but the entropy production they ob-
tained for the membrane system is the same as the one
which excludes the membrane as a component. This is be-
cause they make the trivial assumption that the partial

mass density of the membrane, P ¢ is zero.
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Besides, although they intended to derive the entropy pro-
duction for stationary situations in which mechanical
equilibrium does not necessarily hold, they implicitly
adopt the requirement of mechanical equilibrium (see their
equations (5) and (6)). Therefore the validity of their
final results is questionable. Hanley (1967, 1969) later
discussed the cases in which the membrane may or may not
be taken as a component. He also reconciled the continuous
and discontinuous approach for the case that the membrane
is treated as a component. However, he and most other
authors have failed to recognize that in either case the
membrane component is fixed in space by an external con-
straint which is generally not accounted for in the trans-
port equations.

More than a decade ago, in dealing with diffusion
in porous media, Vink (1961) and Evans, Watson and Mason
(1962) simultaneously, but independently, introduced the
idea of an external constraint on the lattice component
of the porous media. The external constraint acts only
on the lattice and arises simply from whatever clamping
system the experimenter uses to keep his porous diaphragm
from being moved along just like any other diffusing
species. This is described mathematically as if a sepa-
rate body force acted on each constituent of the lattice

to keep it stationary. Aranow (1963), Scattergood and
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Lightfoot (1968) and Lightfoot (1974) later applied this
to membrane transport systems.

Based on this we shall derive, from the equation
of motion for each component, criteria for the applica-

bility of mechanical equilibrium.

(i) Membrane as A Separate Phase

Membrane and solution are considered as separate
phases. This is suitable for macroporous membranes (class
a) and with some reservation for microporous membranes
(class b). The membrane merely behaves as a stationary
boundary and the entropy production occurs only in the
fluid phase. This system allows viscous bulk flow.

For stationary incompressible fluid and slow flow,
the component equation of motion (in this case the Stokes
equation) can be obtained from (2.18). For simplicity we
assume the membrane is uncharged and the gravitational

force can be neglected. Of course it is still isothermal.

Membrane phase:

The equation of motion is

2 -
nmv w - chum + CmE; + cmgm =0 , (3.6)

where the subscript m stands for the membrane.
The body force exerted by the clamping support

on the membrane is transmitted to the membrane matrix



40

and can be considered as uniformly distributed. We may

then write this body force locally (Lightfoot, 1974)

¥ = %, Yp- (3.7)

c Yu_ = Vp . (3.8)

Since this phase only has one component, the total fric-
tional and thermal force g; = 0 . Therefore (3.6) reduces

to

nvViu =0 . (3.9)

By the requirement of no acceleration across the membrane
and the physical boundary condition of no movement, the

solution of (3.9) is simply

u =0 . (3.10)

For this membrane phase alone, (3.7) fulfills the

requirement of mechanical equilibrium (3.1).

Solution phase:

The equation of motion for each species is

2 - * - —
naV u caYua+ caga + caga =0, a=1,...,v . (3.11)
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Summing over all components and using the previously ob-

tained relations

AV
] e %u = Y9p, (2.19)

we obtain

nVZQ - Vp +

(¢}

X =0 . (3.12)

o<
Q
R

1

Therefore, unless the external forces exactly balance the
pressure gradient, mechanical equilibrium generally does
not exist due to the presence of appreciable viscous flow
and velocity gradients. In the case of no external forces,
mechanical equilibrium is impossible in the solution phase
with the presence of pressure gradient. This has a very
important bearing on the entropy production.

For the system as a whole, the entropy production
occurs only in the solution phase. Due to the general non-
existence of mechanical equilibrium in the solution phase,
Prigogine's theorem cannot be applied. The entropy pro-

duction for this membrane system is given by (2.38)
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(2.38)

where the diffusion flux ja is still referred to the

barycentric velocity. Since at steady state only J, = P Y

a~a

is constant, the integration of (2.38) over the membrane
volume is not so easy as the integration of (3.4). This
is discussed in more detail in the reconcilation of the

continuous and discontinuous approaches in the next section.

(ii) Membrane as A Component

Membrane and solution are considered as a homo-
geneous phase. This is suitable for homogeneous membranes
(class ¢) and for some very fine microporous membranes
(class b). The membrane component is interspersed among
the components of the permeating fluid in the molecular
level. The system approximates a thermodynamic mixture
or solution, and the entropy production occurs in this
single phase. This is essentially a diffusion system and
contains no mechanism for viscous flow other than a simple
diffusion mechanism.

The equation of motion for the membrane component

is the same as (3.6)

2 - * —
an u chum + cmgm + mem =0 . (3.6)
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Again, we assume an uncharged membrane and neglect the
gravitational force for simplicity. Since the membrane
component partakes in the transport processes by fric-
tional and other interactions, the body force on the mem-

brane component is still

X = (1/c)%p . (3.7)

The equation of motion for the solution is the

same as (3.11)

2
naV u - caYua + c¢cF* +cX =0, oa=1l,...,v . (3.11)
where ga , in this case, contains only the electrical
force.
Summing over all components including the membrane

component and using (2.19), we obtain

nvly =0 , (3.14)

where we use the relation | c X 0 for electroneutrality

of the whole system.
By the requirement of no acceleration across the

membrane, the solution of (3.14) is
u = constant , (3.15)

in agreement with the outcome of the diffusion mechanism.

Eq. (3.14) implies the validity of (3.1) for this
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homogeneous membrane-solution phase, hence the mechanical

equilibrium requirement is fulfilled.

The entropy production for this system reduces to

one similar to (3.4) due to the mechanical equilibrium

condition

’ (3.16)

where the membrane component is also included. However,
the membrane component is fixed in space by the external
mechanical restraint, and . = 0. This implies

= Py = 0 , and eqg. (3.16) reduces to

Jd
~m m

. (3.4)

It has to be emphasized here that although the membrane
component also contributes to the entropy production

through frictional and other interactions with the solu-

tion components, it does not appear in the final entropy
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production equation due to the mechanical equilibrium
condition. At steady state, Jo = P4, is constant by the
continuity equation. The integration of (3.4) across the
membrane gives the form of the entropy production which is
widely used in discontinuous membrane transport theory.
However, the previous analysis indicates that it is
strictly applicable in homogeneous membranes. For very

fine microporous membranes, it can only be used as a good

approximation.

D. Reconciliation of Continuous and

Discontinuous Treatments--Comments

on Kedem-Katchalsky Theory

More than a decade ago Kedem and Katchalsky (1958,
1961) derived the "practical" integrated flow equations for
describing solute and water transport across uncharged
membranes from nonequilibrium thermodynamic considerations.

These equations have since become very popular alongside
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the Nernst-Planck equation and the Goldman equation as
standard working models for physiologists and biophysicists.
Nevertheless, there remain several aspects of the Kedem-
Katchalsky equations which are a source of confusion and
should be clarified. 1In particular, it is necessary to

point out: (a) These equations are one dimensional and
are strictly applicable only to homogeneous membranes
with thermodynamically ideal binary solutions; (b) For
porous membranes, the Kedem-Katchalsky equations can be
used only when the barycentric velocity is linearly re-
lated to the external forces; and (c) The reciprocal re-
lation in Kedem-Katchalsky's theory is strictly valid only
when the system is thermodynamjically ideal and the partial
molar volumes of solute and solvent are equal. For a
porous membrane in a binary solution, the reciprocity of
the local coefficients is the natural outcome of the de-
pendence of fluxes and cannot be tested by independent
experiments.

First, we outline Kedem-Katchalsky theory briefly.

They started from the entropy production

Vv
¢ =- 1 N, - W (3.17)

]
a=1l o
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which is essentially the same as (3.4), since

<

.:‘
]
o]

R

e
<

=
[

. '
Pa® l/Ma Y“a

Q

At steady state, (2.4) gives

or, for the one dimensional case considered here,
Na = constant (3.18)

at any point in the system. Integrating (3.17) across the
membrane from surface A to surface B and evaluating the
entropy production per unit area of the membrane as a whole,
we obtain

B

Vv
- ! _ B _ A
o, = p ¢,dx = ale“(u“ i)

or ¢2

%
azl NaAua ’ (3.19)

~

where the x component of Na is denoted by N, and x is the

direction of flow across the membrane.

This rearranges, for a binary nonelectrolyte solution, to
_ 2

= ' =
%, azl N, Aul J,0p + JpAm (3.20)
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where 1 stands for the solvent and 2 for the solute, and
where the total volume flow JV and the exchange flow Jd

are defined by

Jy = VlNl + v,N, (3.21)

Iy = (NZ/EZ) - (Nl/El) . (3.22)

The quantities vy and v, are partial molar volumes in the

external phase and

— A B A, B
cy = (ca - ca)/zn (ca/ca) ' a=0,1 . (3.23)

In (3.20), Ap is the change in pressure and Am is the

change in osmotic pressure across the membrane, where

A B, _
Am = RT (c2 -c,) = RTAc2 . (3.24)
The phenomenological equations are
= A
Iy . LpAp + LpD U
= A
Ip LDpAp + L, AT (3.25)
with
Lpp = Ipp

where the L's are phenomenological coefficients. Two other
transport coefficients defined from these four phenome-

nological coefficients have appears in membrane transport
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literature frequently. These are the reflection coeffi-

cient 0 introduced by Staverman (1952) and defined by

g = - 1L L 3.27
pD/p ( )

and the solute permeability coefficient w defined by

o -3 3

The set of coefficients Lp, o and w is more con-
venient for description of membrane systems than the set
L , L and L

P pD D’
more easily be related to the transport characteristics of

because the former set of coefficients can

greatest interest:

(1) Lp measures the mechanical filtration capacity
or the hydraulic permeability of the membrane.

(ii) The reflection coefficient 0 can be considered
as a measure of the membrane permselectivity.
When o=1 all the solute is "reflected" from the
membrane; this is a semipermeable membrane.

0<1l means that part of the solute penetrates,
and we therefore have a leaky membrane. It

is also possible that 0<0, which would mean that
the transfer of the solute is more rapid than
that of the solvent. Such cases are known and
are called negative anomalous osmosis.

(iii) w can be considered as a measure of the membrane
diffusional permeability for the solute.
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Nex&, we demonstrate the remarks made at the be-
ginning of this section. In order to compare with Kedem-
Katchalsky's "practical" flow equations, we start from the
local entroPy production and the local phenomenological
equations for which the reciprocity of the Onsager coef-
ficients has been established. Integration of the local
phenomenological equations then has the advantage of
tracing the reciprocity to compare with Kedem-Katchalsky's
lumped phenomenological coefficients.

We consider isotropic, non-reacting aqueous solu-
tions of single nonelectrolytes at different concentrations,
separated by a rigid simple membrane which acts as a per-
meability barrier for the solute molecules. We also assume
that each compartment is well stirred and the unstirred
layer effect is minimized and can be neglected. There are
pressure and concentration gradients maintained across the
rigid membrane. Furthermore, the whole system is isothermal
and subject to no external forces. The basic transport
equations are those described in previous chapters.

For homogeneous membranes, it is easy, according

to the last section, to write down the local entropy pro-

duction

and the phenomenological equations



- = ) ' ] ]
Ny = Lj; Yuy + Ly, Yuy
- - ) ] ] ' .
Ng = Lgp THp + L3y Tup (3.29)

Since the fluxes are independent of each other and the
gradients are independent of each other, the Onsager
Reciprocal Relation (Onsager, 1931) can be assumed for

the phenomenological coefficients
Liz =L, * (3.30)

In the case of porous membranes, the analysis in

the last section shows that the local entropy production

takes the form

and the phenomenological equation can be written according

to the usual procedures of nonequilibrium thermodynamics,

- 9 = N I
3; = 97 Yuy + Q5 Tuy
- 2 = T T
j, = Ry TH] + 2,, YUY . (3.31)

If the fluxes were independent of each other and if the
gradients were independent of each other, then the next

step would be to assume the Onsager Reciprocal Relation

le = 921 . (3.32)
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However, the fluxes are not independent since, by (2.7),
iyt 3, =0. (3.33)

Thus, by (3.31)

911 + 921 =0 = le + 922 . (3.34)

Moreover, Bartelt and Horne (1969) showed that the posi-
tive definiteness of ¢2 (i.e., the Second Law of Thermo-

dynamics) requires for fluxes obeying (3.33)

Qll + le =0 = 921 + 922 . (3.35)
Consequently,
Qll = - le = - 921 = 922 . (3.36)

Hence, the validity of (3.32) in this case is due to the
dependence of the fluxes and to the Second Law; it need

not be taken as an extra assumption and it cannot be tested
by independent experiments. By (3.31), (3.33) and (3.36),

the only independent diffusion flux equation is

5) . (3.37)

_j=Q uz

[ ]
3 11 Yy

This formula could also have been obtained directly from

the correct entropy production formula

¢2 = - jl ¢ Y(Ei - :é) ’ (3.38)

~
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which results from substitution of (3.33) into the entropy
productions equations. However, (3.35) is required to show
that the Qll resulting from (3.38) is identical to the one
of (3.31). Note that (3.36) allows us to use either (3.31)
or (3.37). Although (3.31) is the usual choice, it must
be remembered that only one diffusion process occurs in a
binary isothermal system.

In order to generalize the treatment to include
both homogeneous and porous membranes, we rearrange (3.31)

into the form of (3.29). From (2.6) and (2.8),

Na = (ga/Ma) + c v a=1,2 . (3.39)

It is important to note that N, depends explicitly upon
the reference velocity u and therefore is not, a priori,
a diffusion flux for which an Onsager equation can be
written.

By (3.31) and (3.39),
(QaB/MaMB) Yué - c 48 o=1,2 . (3.40)
The x component of (3.40) is

- N = s£1 (QaB/MaMB)(Bué/ax) - cu, , a=l,2 . (3.41)
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where the x component of u is denoted by U, s and the x

component of N, is denoted by N,

. The x component of the

barycentric velocity u for this porous membrane system can

be obtained by solving the Navier-Stokes equation provided

that suitable geometry and boundary conditions are given.

For systems of slow and steady laminar flow, with no ex-

ternal forces, the resulting u,

u, = o(dp/ax)

generally has the form

where o is usually a function of the viscosity of the

(3.42)

solution in the membrane and of the geometry of a cross-

section of the passages through

the membrane. However,

in some cases, the short range surface crystalline forces

in the membrane lattice.can cause a considerable non-

linear behavior of u  at low pressure gradient range

(Klausner and Kraft, 1965, 1966). When this nonlinear

behavior of u, occurs, the reciprocal relation in Kedem-

Katchalsky theory is definitely
being we continue the treatment
linear function of the pressure
model is assumed for the porous

used,

o= - (4n) "t

where a is the capillary radius

ordinate.

not valid. For the time

for the case that u, is

a

gradient. When a capillary

membrane and (2.22) is

and r is the radial co-

(3.43)
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Since there are no external forces, the Gibbs-
Duhem equation (2.47), in molar units for one dimensional
case, reduces to
2

(3p/9x) = ) cg (Bug/ox) . (3.44)
B=1

Combination of (3.41) (3.42) and (3.44) yields

|
2z
n
I ~00
|

LaB(aué/Bx) a=1,2 , (3.45)

where L = (QuB/MaMB) + acac

aB a,B=1l,2 . (3.46)

B

Schlogl (1956) obtained equations similar to (3.45) and
(3.46) , but he did not pursue them further. By (3.32), we

obtain from (3.46)

L = L

12 (3.47)

21 °

However, the LaB are not Onsager coefficients since the
fluxes of (3.45) are not defined relative to an internal

reference velocity. Moreover, the LaB are not independent.

By (3.36),
Lll = - (M2/Ml) le + a(clM/le)
Lia = Lpy

Ly, = - (Ml/MZ) Ly, + a(czﬁ/sz) (3.48)
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where, with mole fraction X, = Cc.v,

M= lel + sz2 (3.49)

v =X v, + X Vo (3.50)

where v is the total molar volume and - is the partial
molar volume of component a. It has to be emphasized here
that the linear behavior of uxin (3.42) leads to (3.46)
and, hence, the reciprocal relation (3.47). For systems
with nonlinear behavior of u,, as mentioned before, the
reciprocal relation (3.47) does not hold.

The next step is the integration of (3.45) from
one side of the membrane to the other and subsequent re-
arrangement into a form that can be compared with the
Kedem-Katchalsky theory. Since (3.45) for the porous
membrane and (3.29) for the homogeneous membranes have
the same form and the same reciprocal properties, the
general result we obtain from (3.45) is good for both
cases.

By (3.18), Na is constant in the x-direction, and

therefore

I ' -
L A LaB (aps/ax)dx , o=1l,2 . (3.51)

Without knowledge of the concentration dependence of the

phenomenological coefficients LaB , there is no way to
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evaluate the integrals. The goal, however, is to obtain
equations for the Na in terms of the solute concentration
difference Ac2 and the pressure difference Ap , both across
the membrane; i.e.,
B A
5 Ap = p - pB . (3.52)

To this end, we employ a trick due originally to
Kirkwood (1954). Using Cramer's rule, we solve (3.45) for
the chemical potential gradients,

2

(dug/3x) = - ] R

a=1

BaNa ’ g=1,2 , (3.53)

with
Rgy = ILIBa/|L| (3.54)

where |L| is the determinant of the matrix of the L,g and
lLIBa is the appropriate minor. Unlike the corresponding

matrix of the QaB , the matrix of the LaB is non-singular.

By (3.48),

L - L L = a(ﬁz/VMle)(ac

L] =1, Iy, 12 U271

c, - 1) (3.55)

172

Since the N are constants, integration of (3.53) yields

Ay} g=1,2 , (3.56)

with B

B A RBadx , a,R=1,2 . (3.57)
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Inversion of (3.56) yields

N =

a QQBAué a=1l,2 , (3.58)

e

B=1

2up = |rla8/|r| , a,8=1,2 . (3.59)

Since le = L21 ’ R12 = R Likewise, r

21 ° 12 © *21 and
therefore 212 = 221 . However, to emphasize again, this
is not an Onsager Reciprocal Relation. Rather, it follows
from (3.36), (3.42), and (3.48). Just as we can express
all the LaB in terms of le (and a), so we expect to be

in terms of 2

able to express all the 2 12 (and o).

12
Derivation of an explicit formula for the ZaB in terms of
QaB requires detailed knowledge of the concentration de-
pendence of QaB . Without such knowledge, the integrals
of (3.57) cannot be performed.

In order to proceed further, we write the flux
equations not in terms of differences of chemical potentials,
but in terms of differences of pressure and concentration.

For isothermal ideal solutions the chemical potential dif-

ferentials can be expressed, from (2.46), as
du& = vadp + Rlenxa R a=1,2 . (3.60)

Some authors (Kedem and Katchalsky, 1958; Mason et al.,

1972) have used a different expression.
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du& = vadp + RTdcha ’ o=1,2 ,

but this equation is correct only when the total molar
volume v is constant. However, for membrane transport,
the concentration and therefore the total molar volume
changes across the membrane. Hence it is necessary to
use the more general (3.60).

To convert from mole fraction to molar concentra-

tion, we use x, = c,v and therefore
dx = c dv + vdc_ . (3.61)
o o o
For isothermal system v = v(p,xz) ,

dv = - vRdp + (v2 - vl)dx2 , (3.62)

where B is the isothermal compressibility. Solving (3.61)

and (3.62) for dlnxa , we find

1

dlnxa = [1 - ca(va - VB)] [dlnca - Bdpl,

o,8=1,2,0%8 . (3.62a)

For convenience, we express (3.62a) in terms of the solute
concentration ¢, , with neglect of the compressibility

term,

-1
dﬂ.nx2 = [1 - c2(v2 - vl)] d¢nc, (3.63)
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dlnxl = - (xz/xl)dlnx2

(cz/cl)dznx

2
= - v, {(1 = c,v,)[1 - ey (vy=v )1} de, , (3.64)
where we have used the relation
c vy + cyv, = 1. (3.65)

Substitution of (3.63) and (3.64) into (3.60) yields, for

the solvent,

_ _ _ -1 _ _ -1
dpi = vldp leT(l c2v2) (1 c2(v2 vl)] dc2 , (3.66)
and for the solute,
= _ - -1
dui = vzdp + RT[1 c2(v2 vl)] d!an2 . (3.67)

Integrating across the membrane with v constant, we find

Api = lep + RTAln{(l—czvz)/[l-c (vz— vl)]} , (3.68)

2

and
Au, = v,Ap + RTAln{cz/[l-cz(vz- vl)]} . (3.69)

Following Kedem and Katchalsky, we define the total

volume flow

JV = lel + v2N2 , (3.70)
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and the exchange flow
with the logrithmic average concentration Ea defined by

- _ ,A_ B A, B, _ _
c, = (ca ca)/ln(ca/ca) = Aca/Alnc , a=1,2 , (3.72)

which reduces to

G, = (cz + cg)/2 (3.73)

when the concentration difference is small, i.e.,

A, B
(ca/ca) ~ 1.

Substituting (3.68), (3.69) and (3.58) into (3.70) and

(3.71) we obtain

JV = LpAp + LPDAn (3.74)

JD = LDpAp + LDAw (3.75)
with

AT = RTAc2 ’ (3.76)

% %
L ov.v, ,
P g=1 =1 *F B

[
]

(3.77)
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2
_ -1
LPD = (azllalva)(Acz) Azn{cz/[l- c2(v2-vl)]}
2 -1
+ (azlzazva)(Acz) Aln{(l—czvz)/[l-cz(vz-vl)]} , (3.78)
2 -1
LDp = (a£1 RleB)(Acz) Afnc,
2 -1
+ (azl QZBVB)(VI/VZ)(Acz) An(l - czvz) , (3.79)
L, = ( % (-l)a_ll Afnc_/Ac ) (A )—lAQ {e,/[1l-c,(v,~v,) ]}
D ael a2 €/ 2% ) nic, €WV
+ ( f (-1) %L _asnc /ac ) (bc,) " agnl(l-c,v.) /[1-c, (v,-v.) 1}
k1 al® G/ 8CT 15C nEiETCe2Y2 2tV27V
(3.80)
For small solute concentration difference (small
Ac2 or cg/c§-l) , we have
Aznc2 = ln(cg/cg) = - Rn[l-(cg—cg)/cgl = - Rn(l-Acz/c?)

A 1l A, 2 1 A 3
(Acz/c2)+ 3 (Acz/cz) + 3 (Acz/cz) + ee.

- 1
pney/bey = (7ML ¢ F A,/ + F (a4 L1, (3.1

Al[l-cz(vz-vl)]/Ac2 = - (v, - vl)[1+52(v2—vl) + ...] (3.82)

with 62 described by (3.73),
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An(l - c2v2)/Ac2 = - vz(l + C,V, + ...) (3.83)

and from (3.65)

AR,ncl/Acl =-(Vl/v2)AQn(l - CZVZ)/ACZ . (3.84)
Substitution of (3.81)--(3.84) into (3.78)--(3.80) yields

-1

(o
[
~~
I~

2 v ){(cg)

1 A 1 A, 2
L a1Vs (1+ 5 (Acz/c2)+ 3 (c2/cz) + ...]

pD
+ (vz-vl)[1+Ez(v2-vl) + ...]}

2

+ () Eazva){(vz-vl)[l+52(v2—vl)+...]—V2(1+32v2+...) , (3.85)
a=1

A -1 1 A 1 A2
( £1£a2va){(c ) T+ 3 (bcy/c) 3 (Be, /e + L]

LDp

2
- (lelzevs)vl(l+czvz TN (3.86)

_ - _(A -1
L = vl(l+c2v2+..)212 (02)

1 1
5 [1+ 5-(Ac2/c§)+ 5-(Ac2/c§)+..]

%22

- 1 1
M-l g 5-(Ac2/c§)+ §-(Ac2/cg)2+..]

+ (vz-vl)(1+32(v2—v1)+..)}+{vl(l+'ézv2+..)£ll

- (cg)_l[l+ %’(Acz/c§)+ %-(Acz/c§)2+..]221}

vot..)] (3.87)

x {(vz—vl)[1+Ez(v2-vl)+..]—v2(1+2:‘2 )

and by & o = &,
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2
LpD - LDp = (azllalva)(vz-vl)[1+c2(v2-vl)+..]
2
* 1T 2yp%) (V)
x [(1+Ez(v2-v1)+..) - (1+62v2+..)] . (3.88)

oD’ LDp and LD have

the same experimental significance as in Kedem-Katchalsky

The phenomenological coefficients Lp, L

theory.
Since as mentioned before, the integrated phenome-

nological coefficients Qa are symmetric, it is obvious

B
from (3.78), (3.79) and (3.88) that only when vy =V, (i.e.,
when the partial molar volumes of the solvent and solute
equal to each other), will the relation LpD = LDp be valid.

However, it is rarely the case that vy =V Thus, in

2°
general Lop + LDp.

It can be seen from (3.85) to (3.87) that these
lumped transport coefficients depend upon the concentration
and pressure distribution within the membrane through QaB ’
and therefore also depend on the nature of the transport
processes taking place and the membrane structure as well
as the boundary conditions. 1In other words Lp, LpD' LDp
and LD also depend on the applied forces, Ac2 . The Kedem-
Katchalsky equations are thus only apparently linear with
respect to the forces. They are ambiguous except in the

limit of very small fractional changes in pressure and
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composition; this is the fundamental weakness of their dis-
continuous approach.

We now proceed to estimate the difference between
LpD and LDp for a typical membrane transport experiment.
Instead of integrating the local phenomenological coef-
ficients and calculating LpD and LDp from (3.78) and
(3.79) or (3.85) and (3.86), which requires explicit but
generally unavailable knowledge of the composition and
pressure dependence of the local phenomenological coef-
ficients, we solve for the laB from (3.77), (3.78) and
(3.80). With the aid of experimental data on Lp, LpD
and LD , we then calculate LDp from (3.79). The validity
of LpD = LDp can then be checked. There are very few
direct experimental tests of the reciprocal relation in
membrane transport (Miller, 1960; Lakshminaraianaiah,
1969), and none for LpD and LDp. Moreover, there are even
fewer complete sets of data on Lp, LD and L

pD’

Kaufmann and Leonard (1968) made a careful study
of nonelectrolytes transport through cellophane membranes
0.00754 cm thick. The thickness of the unstirred layer
was carefully reduced by effective stirring and the deter-
minations were made with 0.1 molar solution op one side
and 0.005 molar solution on the other side. Their results
are shown in Table 3.1.

In order to find the partial molar volumes for the

solutes, we fit the data for concentration dependence of






Table 3.l--Phenomenological coefficients of a cellophane
membrane 0.00754 cm thick with 0.1 molar solu-
tion on one side and 0.005 molar on the other
side. The relation Lpp = Lpp was pre-assumed.
(Kaufmann and Leonard, 1968).

LD><105, pr105, LprloG,

Solute Temp.,°C  cp/atm.sec cm/atm. sec cm/atm. sec
Glucose 27 11.90 2.00 1.77

37 15.30 2.44 1.93

47 17.30 3.05 2.17
Sucrose 27 7.49 1.90 2.00

37 9.54 2.35 2.28

47 10.96 3.03 2.72
Raffinose 37 6.56 2.30 2.89

density of various solutes from Timmermans (1960) into
polynomials of various degrees, assuming constant amount of
solvent--1000 gm of water is used. Somewhat surprisingly,
it turns out that a linear fit is the best for the concen-
tration ranges considered here. For Sucrose, at 27°C with

molaity from 0 to 0.118,

V = 1003.01 + 207.2 m, (3.89)
and at 47°C with molality from 0 to 0.148,

V =1012.14 + 208.91 m, . (3.90)
For Glucose, at 27°C with molality from 0 to 0.26,

V = 1003.04 + 110.6 m (3.91)

2 ’
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and at 47°C with molality 0 to 0.78,

V = 1009.93 + 115.17 my (3.92)

where V is the total volume (in m&) of the solution based
on 1000 gm of water and m, is the molality of the solute.
After the explicit expression for the concentration de-
pendence of the volume of the solution is obtained, we
calculate, following Klotz (1964), the partial molar

volume of the solute and solvent by

v, = (8V/8m2)ml (3.93)

with the molality of solvent, m . fixed. The partial molar
volume of the solute and solvent obtained (in this case,
the data for Raffinose are not available, and the molar
volume of water is used in both temperatures) are indeed
constant in the concentration range of Kaufmann and
Leonard's experiments (but of course vy e vz). The re-
sults are shown in Table 3.2. Because of lack of exten-
sive temperature data, we have used data at 25°C for 27°C
and data at 45°C or 50°C for 47°C.

Table 3.2--Partial molar volumes for different solutes,

where we have used the molar volume for the
solvent water.

Solute va'27oc'm£/mol va’47oclm2/mol
Sucrose 207.20 208.91
Glucose 110.60 115.17

Water (solvent) 18.01 18.01




68

After obtaining the partial molar volumes, we
solve the simultaneous equation for QaB , and then calcu-

late LDp from (3.79). The results are shown in Table 3.3.

For the present case, the differences between LpD

and LDp are small. For biological membranes, the experi-

mental uncertainty sometimes might exceed the difference

between LpD

in Kedem-Katchalsky theory can be considered approximately

and LDp' Therefore, the reciprocal relation

valid in membrane transport experiments where quantitative
accuracy is of secondary importance. It has to be noted
that the difference between LpD and LDp depends on the
nature of the solute as well as on temperature and con-
centration. The difference increases as the difference

in partial molar volumes increases. For large solute

molecules such as antibiotics and biopolymers the differ-

ence between L

oD and LDp might be large.

E. Discussion

There has been an attack on the discontinuous
nonequilibrium thermodynamic membrane theory of Kedem and
Katchalsky by Bresler and Wendt (1969). However, their
approach is misleading, as pointed out by Smit and Staver-
man (1970). The main problem considered by Bresler and
Wendt (1969) was the Onsager Reciprocal Relation used in

the Kedem-Katchalsky theory. They used an example of an
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open membrane with rapid bulk flow and claimed that the
diffusive flow will vanish, and hence LpD = 0. However,
they retained LDp‘ Therefore, they concluded LDp + LpD'
This is patently incorrect, since we will see in the final
chapter, that even in rapid bulk flow across the membrane,
the diffusion process is still effective, yet may be small,
as long as there is a concentration variation across the
membrane. A term can be small compared to another in
(3.74) without being small in comparison to other terms
in (3.75). Therefore LpDAn may be small compared to LpAp
for rapid bulk flow, but may have similar magnitude to
LDpAp. Thus the setting of LpD = 0 by them is unjustified
and the break down of the Onsager Reciprocal Relation by
their reasoning is incorrect.

In fact we have obtained a general criteria for

the validity of L We have shown that (1) Kedem-

pD = LDp'
Katchalsky theory is strictly applicable only to homo-
geneous membranes for thermodynamically ideal binary non-
electrolyte solutions; (2) for porous membranes, Kedem-
Katchalsky theory can be used only when the barycentric
velocity is linearly related to the external forces; (3)
for porous membranes in isothermal binary solutions, the
reciprocal relation of the local phenomenological coeffi-

cients is the natural outcome of the dependence of fluxes;

and (4) for homogeneous membranes and for porous membranes
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satisfying (2), the reciprocal relation LpD = LDp is
strictly valid only when the solution is thermodynamically
ideal and the partial molar volumes of solute and solvent
are equal. Moreover LpD’ LDp and LD are independent of

the sizes of the gradient Ac2 only for very small gradjents.

Considering again the open membrane with rapid bulk
flow described by Bresler and Wendt (1969), the possibili-
ties that LpD = LDp might break down are the following,

(1) nonlinear velocity behavior; (2) local equilibrium
assumption break down due to the rapid bulk flow; (3)
partial molar volumes of the §olute and solvent are dif-
ferent; and (4) thermodynamic nonideality.

Mason, Wendt and Bresler (1972) tested the recip-
rocal relation LpD = LDp for ideal gas transport in
graphite membranes. Their results show that it is ap-
proximately valid only for a limited range and in general
the phenomenoclogical coefficients in Kedem-Katchalsky
theory depend on the forces. This coincides with our
point of view in the last section that the explicit ex-
pressions (3.78)--(3.80) and (3.85)--(3.87) have indicated
their dependence on the applied forces, on the nature of
the transport processes, and on the membrane structure.

As pointed out by Lightfoot (1974), through Stefan-

Maxwell equations, the Kedem-Katchalsky theory is only an

approximation. This "black box" type theory offers only
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lumped experimental parameters which cqnceal our ignorance
of the exact physical nature of the précesses. In order

to get more insight into the mechanisms involved in trans-
port processes through membranes, it is necessary to employ

a continuous approach. We do this in the following chapters.



CHAPTER IV

HYDRODYNAMIC THEORY OF CAPILLARY

OSMOSIS OF ELECTROLYTE SOLUTIONS

A. Introduction

In this and the next chaptef the continuous approach
is utilized in order to examine the mechanisms involved in
the transport of electrolyte solutions through charged
porous membranes.

One expects that the motion of fluid through porous
membranes could be described by a suitable solution of the
Navier-Stokes equation. This could be done if one could
formulate correctly the boundary conditions at the highly
irregular boundaries. Since it is impossible to define
the complicated geometry of the solid surface of the porous
membrane matrix, one cannot treat the problem at hand, and
in fact also the general problem of flow through porous
media, in any mathematically exact manner. This difficulty
can be circumvented, as in many other physical problems, by
replacing the porous membrane with some simplified model.

A model will suit this purpose if it (a) explains the phe-
nomena in question; (b) involves parameters which can be

measured and related to corresponding properties of the

73
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porous membrane; and (c) can be treated by available
mathematical tools to yield a macroscopic description of
the phenomena with discrepancies which may be neglected
for practical purposes.

Among commonly employed models for the porous mem-
brane are: a bundle of circular capillaries; a bundle of
parallel plate capillaries; an array of cells (e.g.,
Kobatake and Fujita, 1964; Kobatake, Toyoshima and
Takeguchi, 1966; Philip, 1969). Experimentation is the
only way to test the models and to determine the various
coefficients which appear in the equations derived from
these models; there is no way to obtain numerical values
of the coefficients from the mathematical analysis itself.

We use the capillary model here for the discussion
of charged porous membranes. The membrane is considered
to be composed of bundles of circular capillaries with
equal radii and uniform fixed charges on the capillary
walls. It is sufficient, therefore, to consider the be-
havior of only a single charged circular capillary in an
electrolyte solution subject to pressure, electrical po-
tential, and concentration variations across the capillary.

The phenomena resulting from externally applied
gradients of pressure and electrical potential across a
charged capillary are well known, the electrokinetic

relationships involved having been discussed by Helmholtz
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(1879) and later on reformulated by Smoluchowski (1914).
However, the effect due to an externally applied gradient
of concentration across a charged capillary has attracted
little attention. All refined theories of electrokinetic
flow in fine capillaries (e.g., Dresner, 1963; Morrison
and Osterle, 1965; Burgreen and Nakache, 1964; Rice and
Whitehead, 1965; Hildreth, 1970; Sorensen and Koefoed,
1974) consider only solutions of uniform concentration.
Even in the capillary model for charged porous membranes
(Kobatake and Fujita, 1964; Kobatake, Toyoshima and
Takeguchi, 1966) , where an externally applied concentra-
tion gradient does exist, only ordinary electrokinetic
equations for systems of uniform concentrations are used
to obtain the barycentric velocity in the capillary.
Gross and Osterle (1968) and Fair and Osterle (1971) have
considered the concentration effect on the barycentric
velocity in their description of electrodialysis and energy
conversion efficiencies in a capillary-model membrane; how-
ever, their formulation is valid only for extreme dilution.
Moreover, their solution is entirely numerical, so that
the explicit significance of the concentration gradient
effect is concealed.

It has been predicted theoretically and demonstrated
experimentally by Derjaguin, et al. (1947, 1961, 1965, 1969,

1971, 1972, 1974), Milekhina (1961) and Dukhin and Derjaguin
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that when the adsorption layer on a solid surface in contact
with either an ionic or a non-ionic solution is mobile, then
the tangential concentration gradient of the solution along
the solid surface causes "capillary osmotic slip" in addi-
tion to diffusional flow of the liquid. In the case of a
porous diaphram separating solutions of different concen-
tration, slip along the pore walls causes convective trans-
fer of the solution--this is named capillary osmosis by
Derjaguin, et al. The movement of suspended particles

under the effect of an externally imposed solution concen-

tration gradient is called diffusiophoresis. In this thesis

we restrict attention to electrolyte solutions, but non-
electrolyte solutions also exhibit capillary osmosis and
diffusiophoresis (Derjaguin, et al., 1947; Derjaguin and
Dukhin, 1974).

The mechanism suggested by Derjaguin, et al. (1947,
1961, 1965, 1969, 1971, 1972, 1974), Milekhina (1961) and
Dukhin and Derjaguin (1964) for diffusiophoresis in elec-
trolyte solutions should also be applicable to capillary
osmosis. Both phenomena are caused by the polarization of
the electrical double layer under the influence of a macro-
gradient of concentration. A macrogradient of concentra-
tion applied from outside causes an uneven concentration
distribution of ions in the region adjacent to the outer

boundary of the electrical double layer. Since there is
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equilibrium between ions because there is no flow perpen-
dicular to the solid wall, the double layer rearranges it-
self to a different thickness according to the given dis-
tribution of ion concentration along its outer boundary,
and the double layer is polarized. This double layer
polarization gives rise both to an additional tangential
component of the electric field, and to an additional
pressure gradient along the solid surface. The latter is
caused by the interaction of the normal electric field and
its additional tangential component with the charges in
the diffuse double layer. These factors, which are also
effective during electroosmosis (the movement of solution
in a charged capillary due to the interaction of an ex-
ternal electric potential gradient and the diffuse double

layer) and electrophoresis (the movement of suspended

colloidal particles under the action of an external elec-
tric potential gradient), set in motion either the solution
with the mobile part of the double layer or the solid with
the immobile part of the double layer, depending on whether
the solution phase or the solid phase is mobile. Thus,
either the solution moves (capillary osmosis), or the
solid particles move (diffusiophoresis).

The relationship between capillary osmosis and
diffusiophoresis is the same as that between electro-

osmosis and electrophoresis. Qualitatively, therefore,
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capillary osmosis and diffusiophoresis can be characterized
respectively as electroosmosis and electrophoresis caused
by a microgradient of electrical potential induced by the
macrogradient of concentration. This also implies that

the theories of capillary osmosis and of electroosmosis

(or the theories of diffusiophoresis and of electrophoresis)
must be based on the same system of equations and similar
boundary conditions. Hence, as pointed out by Derjaguin
and Dukhin (1974), the arbitrary inclusion of concentra-
tion gradient as an external force term in the equation of
motion by Pickard (1961) in the description of the effect
of diffusion on electrophoresis is redundant since the
concentration influence is already accounted for by the
inclusion of the electrical potential and pressure gradient
terms in the equation of motion.

Since only capillary osmosis is relevant to the mem-
brane transport in addition to the fact that there have
already been extensive investigation on diffusiophoretic
mobility and its relation with electrophoretic mobility
(see Derjaguin and Dukhin, 1974), we consider only capillary
osmosis in this thesis. Derjaguin, et al. (1969), have
shown semi-quantitatively that in general the rate of
capillary osmosis and of electroosmosis due to diffusion

potential are of the same order of magnitude.

Derjaguin, et al. (1947, 1961, 1965, 1969, 1971,

1972, 1974), Milekhina (1961) and Dukhin and Derjaguin



79

(1964) derived equations for capillary osmotic slip from
classical thermodynamic and discontinuous nonequilibrium
thermodynamic considerations under various simplifying
assumptions. Two such assumptions were (a) the external
force field depends only on the coordinate normal to the
solid wall; (b) the double layer is very thin compared to
other geometric lengths so that a flat geometry can be
used for the capillary. Like Smoluchowski's equation for
electroosmosis, Derjaguin's formulation is valid strictly
only in the limit that the capillary radius or capillary
slit width is much greater than the thickness of the
electrical double layer. However, in many of the most
interesting cases the capillary radius or capillary slit
width is comparable to the double layer thickness. This
is the case for transport of dilute electrolyte solutions
through charged porous membranes.

It is the purpose of this chapter to demonstrate
that a general analytical expression for the capillary
osmotic velocity due to an axial concentration gradient
in a fine charged circular capillary with steady laminar
flow of a Newtonian dilute electrolyte solution is a
natural outcome of inclusion of the effect of concentra-
tion polarization in the simultaneous solution of the set
of differential equations which includes the Navier-Stokes

equation and the Poisson-Boltzmann equation. In the limit
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of zero concentration gradient, our barycentric velocity
equation reduces to the equation for ordinary electro-
kinetic flow in capillary tubes (Rice and Whitehead, 1965;
Newman, 1973). In the limit of very large ratio of capil-
lary radius to Debye length, our equation for capillary
osmotic slip velocity becomes identical to that given by
Derjaguin, et al. (1969) and Dukhin and Derjaguin (1964).
In the next chapter we develop a theory which successfully

describes anomalous osmosis in charged porous membranes.

This successful theory requires the theory of the capillary
osmotic slip phenomenon presented here.

The system considered here is a dilute, isothermal
electrolyte solution contained in a single, long, non-
electrically conducting circular capillary with radius a
which is large enough to permit a diffuse double layer on
the capillary walls but small compared to the length 2
of the capillary. The capillary connects two compartments
which contain well-stirred electrolyte solution maintained
at constant but different concentrations. In addition to
the fixed concentration gradient, fixed gradients of pres-
sure and electrical potential are imposed across the capil-
lary. We assume that the capillary wall carries a fixed
charge density, and that the capillary is readily entered
by both solute and solvent. We assume further that there

is steady, slow flow. These assumptions are repeated, and
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further assumptions are stated and used, in their appro-
priate place below.

In Section B, we use the Navier-Stokes equation
and the equation of continuity of total mass density to
obtain an integral expression for u the axial component
of the barycentric velocity u. In order to obtain the
integrated expression for u, . which is the important re-
sult of this chapter, we solve the Poisson-Boltzmann
equation for the distribution of electric potential in
Section D. Section C contains a discussion and derivation
of the Boltzmann equation for the concentration distribu-

tion of ions in an electric potential field.

B. Equation of Motion

Under the assumptions (1) constant viscosity co-
efficients; (2) steady, slow flow that the inertial term
pu * Vy is negligible compared to the viscous term nvzg;
and (3) negligible density gradient (equivalent to the in-
compressibility assumption ¥ * u = 0), the Navier-Stokes
equation (2.17) reduces to the so-called creeping motion
or Stokes equation, (2.22). For this charged capillary
system with only the electric potential gradient, (2.22)

has the form

nV°u = ¥p + F( ) c.z)Y¢ (4.1)
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where all the parameters have been defined in Chapter II.
It should be noted that chemical interactions are included
explicitly in (4.1), and it is therefore incorrect to add,
as Pickard (1961l) did, a further concentration gradient
to (4.1) as an additional external force term.

For steady laminar flow; we have, by symmetry, no
azimuthal flow; i.e., ug = 0. Further, since no transport
occurs radially, u, = 0. The incompressibility result,

V * u= 0, then becomes
(Bux/ax) =0, (4.2)

and therefore the axial velocity u, is independent of x.
It still depends on the radial coordinate r, however, and

the radial and axial components of (4.1) become

V
0 = (3p/3r) + F( ] ¢ z ) (3¢/3r) (4.3)
oa=1

v
(n/r) (3/3r)r(du /3r) = (3p/3x) + F ( y C,2,) (96/0x).(4.4)
a=1
In order to take account of both (1) applied gra-
dients of pressure and electric potential and (2) induced
gradients of pressure and electric potential, we separate

p and ¢ according to

p(x,r) = P(x) + P'(x,r) , (4.5)
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and

¢(x,r) = ¢(x) + v(x,r) , (4.6)

where P(x) is the externally applied pressure and (d¢/dx)
is the externally measurable electric potential gradient
between the ends of the capillary. This gradient includes
both any applied gradient and any gradient due to diffu-
sion. P'(x,r) and y(x,r) are, respectively, the additional
pressure and electrical potential due to the fixed wall
charge and the concentration polarization of the electrical
double layer in the capillary. As the concentration varia-
tion vanishes, ¢(x) is only the externally applied poten-
tial and y(x,r) and P'(x,r) reduces to Y(r) and P'(r):;
which include only the potential and pressure distribution
due to the fixed wall charges.
The radial component of the Navier-Stokes equation,
(4.3), then becomes
Vv
O = (3P'/3r) + F( ) caza)(aw/ar) , (4.7)
a=1
Using (4.5) and (4.6) and integrating (4.4) twice, we ob-

tain

=u_+u__ +u
Uy o) eo co '’

(4n) "L (r%-a?) (ap/dx)

(]
]
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Ir -1 x v
U, = (F/n) (a%/ax) . r “ar § (a£1 c, z,)rdr
ENES STLES S S,
Uy = n at dr 0 [(3P'/0x)
)
+ F( ) c,z,) (3y/8x)]rdr , (4.8)
o=1

where the boundary conditions are such that u, vanishes
at the wall (r = a) and is finite at the center (r = 0).
The double integrals can be evaluated only after y(x,r)
and ca(x,r) are obtained. The up term is the axial
velocity due to an externally applied pressure gradient,
the u term is the electroosmotic flow velocity, and the

eo

Usg term is the capillary osmotic flow veloctiy. We show

in Section D that Uso is proportional to the axial con-

centration gradient.

C. Boltzmann Egquation

We now assume that there is no radial flow of any
component within the capillary. This is equivalent to
assuming that, for each value of x, the system is in
equilibrium in the radial direction. Mechanical equilib-
rium in the radial direction is represented by (4.3) or
(4.7). For equilibrium with respect to movement of com-
ponent o, it is necessary and sufficient that its chemical

potential u& be constant. Thus,
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(auu/ar) =0 , o=1l,...,v . (4.9)

In order to exploit this assumption, we use the explicit
formula for the chemical potential by combining (2.32),

(2.33), (2.34) and (2.39)

My = ua(T,p) + RT &n x £ + 2z F¢ (4.10)

where the pure solvent standard state is used. We have
neglected any polarization effects in the expression for
u& because such effects are very small for the application
we envisage. Elaboration of this point may be found in
Sanfield (1968) and Horne and Chen (1973).

If we now further assume that the activity coef-
ficients are constants in the radial direction, then (4.9)

and (4.10) yield, after some algebra (Horne and Chen, 1973),

gal

x, = X0 (x)/x0) lexp(- 2,¥)], a=2,...,v (4.11)

where Y = FY/RT , (4.12)

and the ratio 951 is defined by
oo oo
o1 = va/vl ' 0=2,¢00¢,V , (4.13)

with v: the limiting partial molar volume of o at ipfinite
dilution defined by (2.48), and where xg is the mole frac-
tion of a when Yy is zero. We shall show in the next sec-

tion that this corresponds to zero surface charge density.
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For the application at hand, therefore, xg is the mole frac-
tion of o in the compartments on either side of the capillary.
When there is a composition difference between the compart-
ments, then xg is a function of the axial variable x.

Horne and Chen (1973) have eliminated x, from (4.11)

1
by defining a correction parameter { by

-0 (1o
X, = %) (1-¢) (4.14)
v
and using the fact that ) x, = 1. The found, essentially,
a=1
L0 2
£ = ) x_ [exp(-z ¥) - 1] + 0 (I%) , (4.15)
o2 O a

where I is the ionic strength,

Vv
I= (1/2) 22 cdz2 (4.16)
a:

0

with ca the molar concentration of o when Y is zero. For

the case that z, Yy <1,

£ = -V:Iwz i (4.17)
For sufficiently dilute solutions, § << 1 , and we have

the usual Boltzmann equation,

X, = xg [exp (- zaW)] ’ 0=1,...,V , (4.18)

or, for constant molar volume,

c, = cg lexp(- z ¥)2 , a=l,.., . (4.19)
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The net change per unit volume at any point is

then

cgza[exp(— 2 ¥)1 (4.20)

e c<
Q
N
Q
[}
(A ke

2 ¢ o=2

which, for zaW << 1, becomes

Vv
z c z, = -2IY . (4.21)

a=2

For a symmetric binary electrolyte with

z_=|z_| =z, and cg = cg = ¢, (4.20) becomes
v
} ¢ .z = - 2cz[sinh (z¥)] , (4.22)
a=2 a a

) ¢z = - 2cz°Y (4.23)

for |z¥| < 0.245.

D. Electrical Potential Distribution:

Poisson-Boltzmann Equation

The classical treatment of the diffuse double
layer relies on the Poisson-Boltzmann equation, which in

turn gives rise to the Gouy-Chapman type double layer.



88

Alhtough this is a relatively simple model, most rigorous
quantitative theories are based on it. There are several
simplifying physical assumptions involved: (1) the di-
electric constant is independent of position; (2) the ions
are point charges that interact coulombically with the
charged wall; (3) the charges on the capillary wall are
uniformly distributed on its surface; and (4) the expo-
nential term in the Boltzmann distribution contains the
average potential Y (x,r) instead of the potential of the
mean force.

A number of corrections to these simplifications
in the Poisson-Boltzmann equation have been proposed, in-
cluding corrections for ionic volume, dielectric satura-
tion, ion polarization, self-atmosphere effect of the
counterion and the discreteness of surface charge. Haydon
(1964) and Overbeek and Wiersema (1967), however, have sug-
gested that these corrections at least partially compensate
each other and that it is therefore not advisable to con-
sider one or two corrections and to leave out others.
They suggest use of the Poisson-Boltzmann equation inas-
much as refinements in double layer theory are still under
development. We follow this suggestion here. Consequently,
any experimental test of our final equation is to some ex-
tent a test of the Poisson-Boltzmann equation, along with

our other assumptions.



89

For a circular capillary with fixed wall charge
density and fixed end concentrations in an electrolyte
solution, the potential distribution inside the capillary
is governed by Poisson's equation,

2 2 -1 S
(3%¢/3x%) + r “(3/8r)r(3¢/3r) = - (F/e) } c z, . (4.24)
a=2
where € is the dielectric permitivity of the medium. By
(4.6) and (4.20), the Poisson-Boltzmann equation is
v
(a2v/3x%) + r™1(3/3m)r (3¥/0x) = - (FP/ert) | clz_lexp(-z ¥)] ,
a=2

(4.25)
where we have required ¢ of (4.6) to be linear in x , thus,
(d¢/dx) = constant . (4.26)

The Poisson-Boltzmann equation in the form of (4.25)
is quite insoluble. In order to render it tractable, we
make two further simplifications. First, we neglect
(82W/8x2)--the effect of this can be accessed after an
explicit formula for Y(x,r) is obtained since the Ea are
functions of x. Second, we linearize according to (4.21).

Then we find the linearized Poisson-Boltzmann equation,

r Y/ 0r) (0¥ /5r) = k¥ (4.27)

where the parameter x , defined by
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«= F(2I/erT) /2 , (4.28)

is the reciprocal of the Debye length. The ionic strength
I is defined by (4.16).

The boundary conditions for (4.27) are

(83¥/31) _,

]
o
-~

(3?/3r)r=a (cF/eRT) , (4.29)

where o is the surface charge density on the wall. 1In
order to simplify the analysis of flow in charged capil-
laries, consideration of surface phenomena is minimized

by assuming that the surface charge density o is the charge
density of the fluid at some distance from the wall. At
this distance from the wall, which is of the order of
molecular dimensions, the fluid is assumed to be stationary.
The effective capillary radius, a, is then measured from
the center up to this stationary layer. The solution of

(4.27) is, with (4.29),
¥ = (OF/KERT)[Io(Kr)]/[Il(Ka)] (4.30)

where Io and Il are modified Bessel functions of the first
kind of, respectively, order zero and order one.

Much has been written on the validity of (4.27)
as the correct form of the Poisson-Boltzmann equation

rather than (4.25). We present here a brief analysis of
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the physical conditions in which (4.25) reduces to (4.27)
for a symmetric, binary electrolyte. As our starting
point, we note from (4.23) that sinh z¥ = zY¥ to better
than 1% accuracy as long as |z¥| < 0.245. This condition

is met for all values of ka such that

[Io(xa)]/[Il(Ka)]s 0.245 z(2eRT)1/2(cl/2/c) ,

where we have used (4.30) and (4.28). For T = 298°K,

R=8.314Tmol k™, z=1, anae = 7 x 1070 cy"In71 ,

the condition becomes

[1,(ca)]/[I; (xa)] § 0.456 x 1073(c1/2/5) , with both

4 -2

c and 0 in SI units. For o = 10 'Cm , the condition is

met for all concentrations c greater than 5 x 10-3 molar =

5x 1002 molm=. Foro =10°2¢C m 2 , the condition is

met for all concnetrafions c greater than 5 x 10-'3 molar. .

-2 c m-2

For 0 = 10 , the condition is met only for concen-
trations c¢ greater than 0.5 molar. For a wide range of
surface charge densities and concentrations, then, (4.27)
is valid regardless of theoretical doubts concerning
(4.25). Moreover, for values of ka large enough for (4.21)

to hold, the x-derivative term of (4.25) is approximately,

1]

(3%¥/3x%) = - xa¥ (dnI/dx)?® . (4.31)
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Even for large gradients of the ionic strength I, the x-

derivative term is very small compared to KZW because «

is very large, 107 to 10° 71 .

E. Pressure, Electroosmotic and

Capillary Osmotic Flows

In this section we combine the results obtained
from previous sections to formulate an analytical expression
for the capillary osmosic flow in a charged circular capil-
lary.

Since the presence of the tangential concentration
gradient together with the ion distribution (non-
electroneutrality) result in the axial polarization of
y(x,r) and P'(x,r), the following physical conditions
should be satisfied:

whenever ¢ = 0 or I = constant,
(0P' (x,r)/ox) = 0 and (dy(x,r)/ox) = 0 . (4.32)

This implies that whenever the wall charge density is zero
or the ionic strength is the same in the compartments on
either side of the capillary, the axial polarization ef-
fect vanishes.

Combining equations (4.7), (4.19) and (4.20), we
find

Vv
-RT(d ] ¢, /3r) + (3P'/3r) =0 , (4.33)
a=2
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this implies

V
P'(x,r) - RT ] c (x,x) = £(x) , (4.34)
a=2
where f(x) is an unknown function of axial coordinates.
Introduction of (4.19) into (4.34) and expansion of the

exponential yields

2

\Y;
P'(x,r) - RT ] cJ(x) - RTI¥? + o(¥’) = £(x) . (4.35)

o=2
In (4.5) and (4.6) we have tacitly assumed that
the polarization terms P'(x,r) and y(x,r) are complicated
functions of x and r . They are not further separable in
the form of (4.5) and (4.6). This is clearly the case in

(4.30). Hence f(x) can be identified from (4.35) as

Yoo
£(x) =-RT | c_(x) (4.36)
0=2

and (4.34) becomes

V V
P'(x,r) ~RT [ c_(x,x) +RT ]| co(x) =0 . (4.37)
a=2 © o=2

Differentiating (4.37) with respect to x and

utilizing (4.12) and (4.20), we obtain

(3P'/3x) = (F2y2/RT) (dI/dx) + (2IF2Y/RT) (3y/3x) , (4.38)
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where on the right hand side we retain only up to the
square term in VY.

(4.38) satisfies the physical restriction in (4.32),
which further confirms the choice of £(x) in (4.36).

Gross and Osterle (1968) and Fair and Osterle (1971)
set f£(x) = 0 arbitrarily. Therefore their formulation does
not satisfy the physical restrictions in (4.32). Instead,

- v
they have an extra term containing 2RTc, (or RT ) cg

a=2

)

which they denote as m, the solute partial pressure given
by the Van't Hoff equation for equilibrium osmotic pressure.
In fact their results are erroneous since whenever there
exists only a concentration variation across an uncharged
capillary, their equation predicts a center of mass move-
ment caused by the solute partial pressure gradient (or
rather ordinary osmotic pressure gradient from the Van't
Hoff equation). This seemingly correct prediction is in
fact wrong. For a circular capillary open to both solute
and solvent, there can be no ordinary osmotic flow. The
only mechanism that can give rise to an osmotic pressure
is a momentum deficiency due to a sharp change of solute
concentrations at the capillary openings (Mauro, 1957;
Longsworth, 1960; Meares, 1966; Philip, 1969). This can-
not be taken into account structurally in a continuous
theory like this, but it can be taken care of mathematically

by a boundary condition as discussed in Chapter III.
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For the discussions in this chapter, we stick to our
original assumption in Section B that the capillary is
open to both solute and solvent so that no ordinary os-
motic effect will occur.

(4.38) and (4.21), together with the last of (4.8),
gives

r

r
(F2/2nRT) (dI/dx) ! qan) "

1

! (dr) ry? . (4.39)

u
co

Substituting (4.21) and (4.30) into (4.8) and

(4.39), and performing the integration we obtain

U, o= Ut u o u

u, = (am) "1 (r%-a?) (ap/ax)

Ugo = [o/nKll(Ka)][Io(Ka) - Io(Kr)](dQ/dx)

U, = [02/4HK2€Ii(Ka)]{(Kr)z[Ig(Kr)-Ii(Kr)]-(Kr)IO(Kr)Il(Kr)

- (Ka)z[Ig(Ka)-Ii(Ka)] + (ca)Iy(ca)I, (ca)}(dtnI/dx) .
(4.40)

For the first time the general analytical expression
of barycentric flow in a charged circular capillary is
written down including capillary osmosis. The first term,
up, represents the well known Poiseville flow due to ex-

ternal pressure gradient. The second term, u , repre-

eo
sents the capillary osmotic flow caused by the double layer
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polarization due to an external concentration gradient.
It has been shown by Derjaguin, et al. (1969), that in
general the rate of capillary osmosis and of electro-
osmosis due to diffusion potential are of the same order
of magnitude.

We observe that whenever there is no concentration
variation, (4.40) reduces to the ordinary electrokinetic
flow equation for circular capillaries (Newman, 1973;
Sorensen and Koefoed, 1974). Furthermore, if o = 0 (zero
wall charge) we get the usual pressure flow equation.

The velocity profiles in the capillary for the
above mentioned three different cases are shown in Fig. 4.1
to Fig. 4.3. Fig. 4.1 shows the familiar parabolic velocity
profile in the capillary due to external pressure gradient.
Fig. 4.2 shows the electroosmotic velocity profile due to
the external electric field as a function of ka, the ratio
of capillary radius to Debye length. Fig. 4.3 shows the
capillary osmotic velocity profile due to the electrolyte
concentration gradient across the capillary as a function
of ka. In the presence of an electrolyte concentration
gradient, a diffusion potential will occur, so the capil-
lary osmosis must be accompanied by electroosmosis.
Therefore the capillary osmotic velocity can only be
measured by short circuiting two reversible electrodes

placed at both ends of the capillary. 1In the most general
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Fig. 4.1--Poiseuille Flow
¥, = - 4n up(r2 - a%) " Lapsax) "t
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Fig. 4.2--Electroosmotic Flow
Y., = nku c-l(dd>/dx)—l

2 eo
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Fig. 4.3--Capillary Osmotic Flow

2

2 - -1
Y3 = 4nk“eo Uio (d4nI/dx)



102

r/a
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case the barycentric velocity is a mixture of these three
aforementioned flows.

For large values of ka, the diffuse double layer
is relatively thin, and the velocity variation occurs near
the wall where the cylindrical geometry is not important.
In this case there tends to be a velocity discontinuity
at the wall (see Fig. 4.2 and Fig. 4.3), these are the
so called electroosmotic slip and capillary osmotic slip
respectively.

Asymptotic expansions for ka >> 1 show that
Io(mr)/Io(Ka) ’ Io(Kr)/Il(Ka) and Il(nr)/Il(Ka) are
negligible, except in the double layer region very close

to the wall. Asymptotic expansion also yields

[I,(ka) /I, (ka)] = 1 + (1/2ca) + (3/8¢%a%) + ... , (4.41)

Hence, in the limit of large ka, the electroosmotic

velocity in (4.40) reduces to

Ugo = (o/nk) (de/dx) , (4.42)

which is the same as the classical electroosmotic slip
velocity given by Helmholtz (1879) and Smoluchowski (1914).
The capillary osmotic velocity in (4.40) reduces to, in

the limit of large «a,

u, = - (02/8nk%¢e) (d2nI/dx) (4.43)
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which is consistent with the capillary osmotic slip ve-
locity for flat double layers given by Derjaguin, et al.
(1947, 1961, 1965, 1969, 1971, 1972, 1974). This last
statement will be justified in the next section.

One thing we like to stress here is that the
capillary osmotic velocity contains charge density square
term [see (4.40) and (4.43)], which implies that as long
as the axial concentration gradient is fixed, the capillary
osmotic flow will be in one direction only no matter what
the sign of the fixed charges on the capillary wall is.
This is also consistent with the results given by Der-

jaguin, et al. (1969).

F. Comparison with Derjaguin's Formulation

Derjaguin, et al. (1961, 1969) and Dukhin and
Derjaguin (1964) derived, by the method of discontinuous
nonequilibrium thermodynamics, the formula for capillary
osmosis of dilute electrolyte solutions along a flat sur-
face. Their capillary osmotic velocity is expressed as,

for a binary electrolyte,

Uy, = - wret+v e (%) RT (d&nc/dx) (4.44)

where v' and v are the number of cations and anions per

molecule with ¢ = (c2/v+) = (cg/v-), where cg and cg are

the ion concnetrations in the bulk. Also
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g% = (27t e, (h,x) - ¢ (x)1nan , (4.45)

where ci(h,x) are the ion concentrations at a distance h
from the slip plane and cg(x)gt are the moments of ad-
sorption of ions relative to the slip plane with x the
coordinate along the flat surface. Combining (4.44) and
(4.45), their capillary osmotic velocity on a flat sur-

face becomes

-1 - 0
Ueo = = N "RT(dtnc/dx) [ [ ] c (h,x) - ] c, (x)1hdh . (4.46)
a=+ a=+
In fact, in our previous derivation, if we use (4.37)
and the Boltzmann distribution from (4.19) without ex-
panding the exponentials, we obtain, instead of (4.38),
Vv

v
(8P"' (x,xr) /ox) = [ Z c (x,r) - Z co(x)]RT(dQnI/dx)
a=2 & a=2 2

A%
-F) c.z (3y(x,r)/3x) . (4.47)
a=2 a o

Substituting (4.47) into (4.8), the general form of the
capillary osmotic velocity in a circular capillary is
obtained

r r v

v
uc°==n_lRT(dlnI/dx) ; (dr)r-l 6 (dr)r[az2 ca(x,r)—az2 c, (x)] .

(4.48)
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This is similar to Derjaguin's formula for flat surface,
(4.45). But (4.48) results from the Boltzmann distribu-
tion and a hychodynamic approach.
The point we wish to demonstrate here is that when
a Boltzmann distribution is assumed and linearization is
applied as we did in previous sections, (4.46) due to
Derjaguin, et al. (1961, 1969) becomes identical with
our limiting equation (4.43). |
Similar to (4.19), the Boltzmann distribution for

a flat surface is
c (h,x) = c° exp{- z ¥} (4.49)
a ! a a ‘

with h the distance from the shear plane. According to
Overbeek (1952), when linearization is applicable, the
potential distribution near a flat surface obtained from
solving Poisson-Boltzmann equation with boundary conditions

similar to (4.29) reads

¥(h,x) = (oF/keRT) exp{- kh} , (4.50)

where Kk is still defined by (4.28). Substitution of
(4.49) and (4.50) into (4.46) yields the capillary osmotic

slip velocity

u = - (02 /8nk2€) (denI /dx) , (4.51)

where we have used, for this binary electrolyte case
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(denI/dx) = (dinlc(v, z?+v_z21/dx)/2 = (dfnc/dx).  (4.52)

+%+

(4.51) is exactly the same as our limiting equation (4.43).
This implies that our equation is consistent with that
given by Derjaguin, et al. (1961, 1969) and it serves as

a check of the validity of our more general expressions
(4.40) and (4.48) for the multicomponent electrolytes

capillary osmosis in circular charged capillaries.

G. Conclusion

A general analytical expression for the capillary
osmotic velocity of multicomponent electrolyte solution in
a charged circular capillary has been derived from hydro-
dynamic consideration by taking into account the concentra-
tion polarization of the electrical double layer near the
capillary wall. In the limit of very large radius to
Debye length ratio our equation reduces to one which is
consistent with that obtained by Derjaguin, et al. (1961,
1969) for flat surfaces from thermodynamic considerations.

It is possible to obtain a similar expression for
nonelectrolyte systems by taking into account the concen-
tration polarization of the mobile adsorption layer near
the wall, as long as the distribution of surface molecular
force field can be formulated. Some experimental evidence
of capillary osmosis for nonelectrolytes has been observed

by Cleland (1966).
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Capillary Osmosis is a general phenomenon whenever
there are a mobile ionic or molecular adsorption layer and
a tangential concentration gradient present. Study of
this process can be valuable for analysis of the structure
of ionic double layers and of adsorbed molecular layers at
solid and solution interface.

For diffusion through porous media, it is necessary
to take into account this capillary osmotic process. It
can be very important in cases of transport of electrolyte
solutions through porour charged membranes generated only
by concentration gradients. A detailed account of its
relation with anomalous osmosis in porous charged membrane

will be presented in the next chapter.



CHAPTER V

ANOMALOUS OSMOSIS THROUGH

CHARGED POROUS MEMBRANES

A. Introduction

Osmotic transport of a nonelectrolyte solution
through a membrane or of an electrolyte solution through
an uncharged membrane occurs if the membrane acts to some
extent as a barrier to the solute (see Chapter III) and
if there is a difference of concentration across the mem-
brane. The rate of transport is, in those cases, propor-
tional to the difference in the chemical potential of the
solvent; i.e., the rate is roughly proportional to the
concentration difference of solute on thé two sides of
the membrane. Moreover, the direction of transport is
toward the more concentrated solution. However, for a
charged porous membrane which allows convective transfer
of the solution and which separates electrolyte solutions
of different concentrations, the rate of osmotic transport
appears to be greater and exhibits anomalous behavior.

When the concentration ratio of the two solutions
(both maintained at atmospheric pressure) is fixed and

flow rate is measured for different mean concentrations,

109
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the plot of flow rate against the logarithm of concentra-
tion is an N-shaped curve (see Figs. 5.1 and 5.2). The
flow rate for medium concentrations is higher than for
more concentrated solutions (anomalous positive osmosis).
In some cases, the flow occurs toward the less concentrated
solution (anomalous negative osmosis). These phenomena,
now known collectively as "anomalous osmosis" do not occur
in strictly semipermeable membranes.

Anomalous osmosis was first described by Dutrochet
(1835) and later by Graham (1854). Since then various
transport theories have been developed (cf. Loeb, 1922;
Sollner, 1930; Grim and Sollner, 1957; Schlogl, 1955;
Kobatake and Fujita, 1964; Toyoshima, Kobatake and Fujita,
1967; Fujita and Kobatake, 1968; Tusaka, et al., 1969;
Kedem and Katchalsky, 1961; Dorst, et al., 1964) to de-
scribe the mechanism of anomalous osmosis. They are
generally of three types:

(a) Loeb (1922), Sollner (1930), Grim and Sollner
(1957) , and Kobatake and Fujita (1964) recognized
the electrochemical nature of this phenomenon.
Their theories are based on the idea that electro-
osmosis, caused by the diffusion potential across
the membrane, is superposed on ordinary osmotic
flow which is due to the difference in solute

concentration. Grim and Sollner (1957) carried
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out careful and exact measurements of anomalous
osmosis of various electrolyte solutions across
oxyhemoglobin-coated collodion membranes, which
have clearly defined isocelectric points. By ad-
justing the PH of the electrolyte solution, the
membrane can be negatively or positively charged.
The total osmotic flow is composed of a normal
component and an abnormal component. The normal
flow due to ordinary osmosis was estimated by using
the electrolyte as its own reference under condi-
tions of zero net charge on the membrane. Kobatake
and Fujita formulated a more quantitative theory
by considering a charged capillary model for the
porous membrane. They obtained an explicit con-
centration dependence of the elctroosmotic coef-
ficient. Their theory is successful in predicting
the shape of the curve for the anomalous osmosis
data obtained by Grim and Sollner (1957). However,
their theory cannot cope with the experimental ob-
servation that, for KCl solutions, the osmotic

flow is in only one direction (toward the more con-
centrated solution) for both positively and nega-
tively charged membranes. That is they predict
(incorrectly) that the direction of flow is de-

termined by the sign of the charge.
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(b) schlégl (1955) and Toyoshima, Kobatake and Fujita
(1967) used a one-dimensional treatment and ig-
nored the interactions between ions and solvent.
They also made arbitrary assumptions on activity
and mobility of ions in the membrane. They assumed
that the pressure gradient set up inside the mem-
brane together with the electrostatic potential
gradient combine to produce observed flow.
Toyoshima, Kobatake and Fujita (1967) succeeded
in predicting some experimental observations, but
they did not resolve the discrepancy mentioned

in (a).

(b) Kedem and Katchalsky (1961), Dorst, et al. (1964)
and Tasaka, et al. (1969) used the discontinuous non-
equilibrium thermodynamic approach. Anomalous
osmosis was attributed to cross terms in the one
dimensional phenomenological equations. The ob-
served flow behavior was attributed to frictional
interaction between solvent and ions. This "black
box" type of theory suffers the same difficulties

mentioned in Chapter III.

Although these three types of theories are satis-
factory in some respects, they are all inadequate in one
way or another. Moreover, the conditions of the numerous

experiments so far reported are usually not well defined.
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All previous authors have omitted the capillary osmotic
contribution described in the last Chapter. The concentra-
tion gradient imposed across the membrane in general causes
concentration polarization of the electrical double layer
along the pore wall and sets up an additional center of
mass movement by capillary osmosis. In the absence of
externally applied gradients of pressure and electric po-
tential (in fact this is the usual experimental conditions
for studying anomalous osmosis), the rate of capillary
osmosis is of the same order of magnitude as the rate of
electroosmosis due to the diffusion potential. The possible
contribution of electroosmosis to the mechanism of anomalous
osmosis was realized long ago (Loeb, 1922; Sollner, 1930;
Grim and Sollner, 1957; Kobatake and Fujita, 1964), but
this is the first time that capillary osmotic contribution
has been considered.

In this chapter, we use the continuous approach
and the capillary osmosis results of Chapter IV and derive,
without recourse to most of the restrictive simplifications
required by previous workers, a phenomenological theory for
the capillary membrane model which correctly predicts the
direction and magnitude of flow for KCl solutions through
positively and negatively charged porous membranes.

The system consists of a moderately charged mem-

brane which separates two aqueous uni-univalent electrolyte
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solutions of different concentrations (with B > cA) at
the same temperature and in the absence of an external
hydrostatic pressure difference. The membrane is assumed
to contain a bundle of charged capillaries of equal radius
a which is large enough to permit a diffuse double layer
on the capillary walls but small compared to the thickness
2 of the membrane. We assume the unstirred layer thick-
ness on the two sides of the membrane has been minimized

by effective stirring and can be ignored here.

B. Phenomenological Equations of

Anomalous Osmosis

We confine our discussion to the system which
separates two aqueous solutions containing the solvent
molecules and the same single uni-univalent electrolyte.
Positive ions and negative ions are denoted by + and -,
respectively. The solvent (water) is denoted by w.

The one dimensional modified Nernst-Planck equation

is, from Appendix A,

4

N = - zawacaF(3¢/8x) - Da(aca/ax) - Ba(ap/ax) + c u

o X

o=+,- . (5.1)

As shown in the appendix, this equation is valid only for
dilute solutions. The absolute mobility W, is related to

the ionic conductance A by w, = (Aa/lza|F2). By (A.19),
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D, the diffusion coefficient of a is related to the binary

Fickian diffusion coefficient D and to the mobilities by

1

D, = D+z w RT(w -v)(z, —z_w_) T, a=+,- . (5.2)

o +

The pressure term coefficnet is defined by (A.23) as

-v_w_)(z w —z_oo_)_l

B, = v, (e v ,tc_v_ ) (D/VRT) + c z w (Vv O .

o +%+

(5.3)
The electric current and the solute flux of the

electrolyte component both relative to the capillary wall

are defined by

i=F) zN , (5.4)

N_= ] N_ . (5.5)

The volume flow rate of the liquid which permeates

through unit area of the membrane is defined by

J.,, = N+v

v + N v_ + N, V., (5.6)

+

where v _, v_ and v, are the partial molar volumes. With

the help of (2.7) and (2.9), (5.6) can be rearranged to

Jy = (v+-M+vw/Mw)(N+-c+ux)+ (v_—M_vw/Mw)(N_-c_ux) +u  (5.7)



116

By (5.4) and (5.1), for the uni-univalent case,

i=- (w,c+u_c )F2(36/3x) - FD, (3c,/3x)+FD_(3c_/dx)

- F(B_-B_) (dp/9x) + F(c -c_)u_ , (5.8)
with

B, - B_ = (c,u,~c_w_) (v,u,-v_u_) (w+w_) 1 . (5.9)
Likewise,
Ng = - (c,w,-c_w_)F(3¢/9x) - D _(3c, /3x) - D_(dc_/3x)

- (B +B_) (3p/3x) + (c +c_)u, , (5.10)
with
B,+B_ = (c,v,+c_v_) (D/RT) + (c,w,+c_u_) (v, ~v_w_) (w +u_) T .

(5.11)

Substitution of the Boltzmann equation (4.19) for the ion
concentration with the exponential expanded up to the linear
term, separation of the electric potential and pressure
according to (4.5) and (4.6) and use of (4.30) and (4.38)
for the electrical potential and pressure distribution in

the charged capillary transforms (5.8) and (5.10) into



117

i=-c Fz{(w++w_)-(w+-w_)w}(d¢/dx)
+ {-F?[(w,+u_)- (D, +D_) /RT] [rI (k) /I, (xa)

- an(Kr)Io(Ka)/Ii(Ka)](0/25)-F(D+-D_)

2

+ F(D,+D_) ¥ ~FRTC [(u,-u_) (u,+u_) " T=¥] (v u, -v_u_)¥

+
- (F2c o/e) [lu,mw_) (w +w_) "L-¥] (v,o,~v_u_) ¥IrI (kx) /1, (xa)
- an(Kr)Io(Ka)/Ii(Ka)]}(dc /dx)

- Fe [(w,-w_) (u,+u_) "2-¥] (v 0, -v_u_) (dP/dx)-2c F¥u_ ,

(5.12)
N, =-c F{(w+—w_)_(w¥+w_)W}(d¢/dX)
+ {[(w +w_)-(D +D_) /RT] (0¥/2¢) [rI, (xx) /I, (xa)
- an(Kr)Io(Ka)/Ii(Ka)]-(D++D_)+(D+-D_)W
- [Dc (v +v_)-Dc (v _-v_)¥+RTc[(w +w_)-(w -w_)¥]
X (V+w+-v_w_)(w++w_)-l]?2
- (Fc o/e) [({v +v_) = (v -v_)¥)D/RT+ (0w +tw_)-(w, -
w_) ¥ (v, 0, ~v_w_) (w +w_) 1Y
X [rIl(Kr)/Il(Ka)—an(Kr)IO(Ka)/Ii(Ka)]}(dc /dx)
- {bc (v +v_)-Dc (v _-v_)¥+RTc [(w +w_)
- (w,mw_) ¥1 (v, 0, -v_u_) (w,+w_) "1} (ap/dx)
+ 2c uy (5.13)
with
« = (2F%c /erm) /2 (5.14)
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and

¥ = FY/RT = GIO(Kr)/KEIl(Ka) ’ (5.15)
where we have used

(3y/3%) = (0/2€) [rI(kr) /I, (xa) - an(Kr)IO(Ka)/Ii(Ka)](dﬂnc /dx) .

(5.16)

For this uni-univalent electrolyte, the center of mass

velocity u, is given by (4.40)

u, = (4n)-l(r2-a2)(dP/dx)+[o/nKIl(Ka)][IO(Ka)-IO(Kr)](d@/dx)

2

+ [02/4nk eIi(Ka)]{(Kr)z[Ig(Kr)-Ii(Kr)]

- (Kr)Io(Kr)Il(Kr)-(Ka)2[Ig(Ka)—Ii(Ka)]

+ (Ka)IO(Ka)Il(Ka)}(dlnc /dx) . (5.17)

The use of (4.30) for the electric potential tacitly im-
plies that ka, the ratio of capillary radius to Debye
length, is larger than unity. Equations (5.12), (5.13)

and (5.17) constitute the phenomenological description of
local membrane-referenced fluxes along a particular stream-
line in the capillary tube. It is important to note that
after the substitution of (5.14) and (5.15), the coeffi-
cient matrix of (5.12), (5.13) and (5.17) is not symmetric
simply because the sum of product of the fluxes and forces
are chosen in this way only for experimental convenience.
One must not forget, however, that the local phenomenological

coefficient matrix of (A.7) is still symmetric.
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C. Practical Equation for the Volume Flow

In this section, we average the steady state
fluxes over the capillary cross section, combine the
phenomenological equations of the last section, solve the
resulting equations subject to the appropriate boundary
conditions and derive a practical equation for the volume
flow across charged capillary membranes.

The fluxes are averaged over the capillary cross

section by means of the relations

Gg = 6a2nruxdr/ 6a2nrdr , (5.18)
a a
i= 5 2nridr/ 6 2nrdr , (5.19)
a a
ﬁs = 6 2mrN_dr/ 6 2nrdr , (5.20)
a a
3& = 6 2mrJ,dr/ 6 2rrdr . (5.21)

Introduction of (5.17) into (5.18) leads to

u, = All(dP/dx) + Alz(d¢/dx) + Al3(d£nc /dax) , (5.22)

where the coefficients are

A, = - aZ/8n ,
A, = G(Kn)-l{[Io(Ka)/Il(Ka)]-ZKa} ,
A = 02(l2n€K2)-l{(Ka)[Io(Ka)/Il(Ka)]

- (ca)?11f(ca) /13 (ka)] + (xa)?-11 (5.23)
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and where we have used integration formulas from the

literature (Hildebrand, 1962)

X

6 XI,y(x)dx = xI,(x) ,

™ g1 (xyax = L w2112 (%) -12 (x) ]

0o XIp 2 0 1 '

X

; Q%muﬁmu=%x%?m, (5.24)

and some previously unpublished formulas derived by us

(see Appendix B)

(X3

0 X Ii(x)dx 3

(/3 (gxt i o -2 1+ o 1 o -x*12 a0 b,

(5.25)

X 3.2

6 x~I7 (x)dx 2

(1/3){2x3Io(x)Il(x)-2x Ii(x)—%x4[13(x)-1§(x)]} i

(5.26)

It is interesting to note that the electroosmotic coeffi-
cient A12 and the capillary osmotic coefficient A13 are
complicated functions of salt concentration through the
concentration dependence of k. Among existing theories
only Kobatake and Fujita (1964) take the concentration
dependence of the electroosmotic coefficient into account.
None consider the capillary osmotic coefficient, which
might have the same order of magnitude as the electro-
osmotic coefficient. As we see later, both effects are
essential to describe anomalous osmotic flow behavior

obgserved in charged porous membranes.
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Subgtitution of (5.12) into (5.19) and utilization

of (5.22) yields

1= A21(dP/dx) + A,,(d%/dx) + A,,(dinc /dx), (5.27)

with the coefficients

A, = c(Kn)-l[(Io(Ka)/Il(Ka))-2Ka]-(Fc°a2/2)(w+—m)(v+w —v_w_) (w *w_)

+

+ oa(v+w -v_w_)/2 ,

+

Ay, = (w,-u_) (0F/a) - Fic (u +u_)+o?n"t112 (ca) /13 (xka)]

n-l[l+2Ka(Io(Ka)/Il(Ka))] ,

A,y = [Fz(w++w_)-F2(D++D_)/RT](c/Fa)-Fc (D, -D_)+(D_+D_) (¢/a)

c (oRTaz/ZKe)(v+w+ 1

~v_w_) {117 (ka) /15 (ca) 1-1} (w,-u_) (0, +u_) "

3.2.3 (k2

+ [F203c /a’rrede 13(xa)] § ng(x)dx

(Folc /26) (w,-w_) (u,+e_) "L u,v,~w_v_) {1-calI] (ca) /13 (ca)

(IO(Ka)/Il(Ka))]}

Ka
+[Fea3c /azRTK3€21i(Ka)][ ; szg(x)Il(x)dx

Ka 4
(kaIlj(ka) /I, (ka)) 6 Iy (x) dx]

[2nexI3 (ka) 1™ (ka) "2 [ (ka) 21 (ka) 1 (xa)

(Ka)3Io(Ka)Il(Ka) + (2/3)(Ka)31i(ra)

|<a33 _|<a22
5 x"Ig(x)ax 5 x“I5(x) I (x)dx , (5.28)
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where in addition to (5.24) - (5.26) we have used the

additional integration formulas derived by us (see Ap-

pendix B)
% 21 (x)dx = x2I.(x) - 2xI. (x) (5.29)
0 1 0 1 ' .
1 312 (x) 1. (x) dx = ix313(x)1/3 (5.30)
0 1) I, = 1 ' .
X

i 3 _ L3 _ 2
0 X Io(x)dx = X Il(x) + 4xIl(x) 2x Io(x) , (5.31)

X
{ x4Io(x)Il(x)dx = x4Ig(x)/6 + x4Ii(x)/3

3 2.2
-2x Il(x)Io(x)/34-2x Il(x)/3 .
(5.32)
Successful calculation of the remaining definite integrals
in (5.28) has so far eluded us, except for large «a..

The averaged solute flux is obtained by substituting

(5.13) into (5.20)

ﬁs = A31(dP/dx) + A32(d¢/dx) + A33(§£nc /dx) , (5.33)

where the coefficients are

Ay, = Dc (RT)-l(v++v_)+c (v+m+-v_m_)+[(v_"-v__)D(RT)_l
- ( w+-w_)(w++w_)-l(v+w+-v_w_)](o/Fa)—c a2/4n '
A32 = (c/a)(w+-w_)-FC(w++w_)-2c (nK)-lc[ZKa-Io(Ka)/Il(Ka)] R
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Ajy = iFozc /4e)[(w++w_)-(D++D_)/RT]{l-Ka[Ig(Ka)/Ii(Ka)

(I,(ka)/I;(ka))]}-c (D +D_)+(D _-D_)o/Fa

- (oRTc /4Fa) [D(v +V_)+RT (v w -V_w_)]

+ [D(V+-v_)/RT-(w+-w_)(w+v+-w_v_)(w+

Ka
+ w_) 1y (ro3c /RT€2K3a2Ii(Ka))6 ng(x)dx

- (c c /2€)[D(v +v_) /RT+(v_ w -v_w_)]{l-Ka[Ig(Ka)/Ii(Ka)

+94+

- (I, (xa) /T, (xa))]1}

+ (Fo /RTK3€213(Ka)a )[(v -v_)D/RT
Ka
+ (w+—w_)(w++w_)-l(v+ w, =v_w_) ]I 6 x°1 gIldx
Ka
- (kaI,(xa)/I, (ka)) 6 xIg(x)dx] . (5.34)

Once again, the coefficient matrix of AaB is not symmetric
because the fluxes and forces do not preserve the entropy
production. They are defined instead for experimental
convenience.

At the steady state, the conservation of mass and
electricity and the incompressibility of the fluid yield,
for the one-dimensional flow considered here, the con-

ditions:

dpux/dx =0, di/dx = 0 , st/dx =0 .
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These imply that u, i and Ng & and hence the averaged
flows u_ , I and ﬁs , are constant in the x direction
across the membrane. In addition if there is no external
electric field applied across the membrane, then condition
on the electric current 1 = 0 must also be applied.

At this point we note that there are no externally
applied electrical potential and pressure gradients in the
anomalous osmosis experiment. However, the (dP/dx) and
(d®/dx) terms do not disappear from (5.22), (5.27) and
(5.33). The pressure gradient term in these equations
now should be the pressure gradient generated by the sharp
concentration change at the membrane solution interface.
This osmotic pressure gradient drives the solution through
the membrane even when there is no hydrostatic pressure
difference across the membrane. The fluid inside the mem-
brane pores cannot distinguish between the osmotic pressure
gradient and the external hydrostatic pressure gradient,
because these two appear together as a single hydrodynamic
pressure gradient. Therefore, in the case of anomalous
osmosis, (dP/dx) includes only the osmotic pressure
gradient. The elctrical potential term includes a dif-
fusion potential caused by the concentration gradient in
the membrane. Moreover, Donnan potentials occur at the
two membrane-solution interfaces due to the partial

impermeability of ions (Helfferich, 1962). As stated in
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Section B of Chapter III, the continuous capillary membrane
model cannot describe the osmotic effect and the Donnan
potential which arise from the concentration discontinuity
at the interface (the end of the capillary). However, one
can take these effects into account as boundary conditions
at the ends of the capillary. We do this in the next
section for KCl solution transport through the oxyhemoglobin
collodion membrane. If the distribution coefficients, which
define the relation between the solute concentrations just
inside and outside the membrane boundaries, are the same
on both sides of the membrane (This implies constant dis-
tribution coefficients.), then the Donnan potential con-
tribution cancel each other, and the electric potential
gradient can be approximated by the diffusion potential
alone. We assume this.

Accordingly, the appropriate boundary conditions

are

+ -

c = at x = 0 and ¢ = cé at x = 2 (5.35)

]
°a
where 0° and &~ indicate the locations just inside the ends

of the capillary. The distribution coefficients due to

the presence of charge on the capillary are defined by

Lo
W=

(5.36)

0' Q
>

]
OI 0
w

]

<
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where y is the distribution coefficient and Ca and cy are
the concentrations just outside the ends of the capillary.

The osmotic pressure is defined by

AT = P(x=2") - P(x=0") = SRT(cy-c,) (5.37)

°a
where 0 is the reflection coefficient defined in Chapter
III, which is an experimental parameter measured for an
uncharged membrane. As we mentioned in Chapter III, or-
dinary osmosis is still effective in charged membranes,
and the charge produces effects superimposed on it.
Utilizing the asymptotic expansion formula (4.41)

together with (cf. Abramowitz and Stegun, 1964)

I,(xa) = (21n<a)ml/zexp(ma){:l.-l»(81<a)"]'-0-9(21)"]‘(8a<a)"2 +o.0}
I,(ka) = (21ca) "1/ %exp (ca) {1-3 (8ca) “1-15(21) " (8ka) "%+...}
(5.38)

for large ka values, expanding those definite integrals in
(5.28) which do not have explicit forms, by the mean value
theorem, and retaining leading terms, we find that (5.27)

reduces to, with the condition i = 0 ,

de/dx = [a*(D,+D_)o- (D -D_)Fc -(0RTac /2x°e) (v, u, -

v_w_)(w+-w_)(w++w_)-l
-(ZneK)—l(Ka)Z][(w++w_)F2c

- (w,-w_)oF/a + o%(nca) !l (dtnc /ax) , (5.39)
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where we neglect the small pressure contribution.
Eliminating (d%$/dx) from (5.22) by (5.39) and using

(4.41) and (5.38) again, we obtain

ﬁ# = All(dP/dx) + Bl(dznc /dax) , (5.40)

where Ay is given by (5.23) and where

1 2

B, = o (kn) " [1-3(2¢a) "t+3(8ra)” ][a-l(D++D_) -(D,-D_)Fc

- (oRTac /2ce?)(v 0, -v_u_) (u,~w_) (w +u_) "1

- (2ne) " ka) 21 [(w 4w ) FPe - (uw, -w_) oF/a+o? (nka) "1 7L

1

+ o (8nex?)Lca) "-1] . (5.41)

(5.41) can be integrated across the capillary subject to
boundary conditions (5.35), (5.36) and (5.37). This gives

uL = - (8n)'1a2

1

+ (2c57) TI5187 -1 +E (cpy) P2 163/2-11 /3

+ (F/2£) anl(fcgy-g) / (fcgyB-g) 1+a}

1.2

(4anea)‘1(cBy)‘3/202K3[3’3/2-11-(snech)' o?k? s

+

-1)

(5.42)
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Q==F(-fg)'1/2[tan_1[-/-cByfg g-l]-tan_l[-/-cByfg g_ll g<o0

Q= (G/2/E9) anl(/EcgY -/q) (VEcYE

+ /9) / (VEcgY+/g) (VEGLYE -/g)1 g > 0 (5.43)
where K = "¢ K‘; r B = cA/cB
b = (D++D_)c—(2nev<)'l(n<a)2 '
d = (D,-D_)Fa+(oRTa?/2¢%¢) (v, u, -v_u_) (w -w_) (w +u_) "L,
f = (w++w_)F2a '
g = (w+—w_)cF-02(nK)-l ,
A = -(3K/2ag)l(bf/g)-4d] ,
B = -(3k%/8a%g) [ (bf/g)-al-b/f ,
D = 3Kb/2af ,
E = - 3K2b/8azg ’
F = - 3Kb/2ag[(bf/g)-d] ,
G = - d+(3K%b/8a%g) [ (bf/g)-dl+bEf/g . (5.44)

For the case of KCl1 , D, -D_ = RT(w,-w_) = 0, and the above

procedure yields
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1.2

2= - (81) "a A‘rr+(2cKRT/n){b(3f)'l(cBY)-3/2(B-3/2_l)

]|

X

2

- (3Kb/8af) (cgy)~ (8'2—1)+(3K2b/40af)(cBy)‘5/2(3‘5/2-1)}

1

+ (a7k/48nea) (cpv) 372 (873/2-1) - (6%k%/8ne) (g 7Li871-1) .

(5.45)

The volume flow rate through the capillary can be
calculated by combining (5.6), (5.7) and (5.21) and then
integrating across the capillary from 0 to £ , there fol-

lows

1

3&2 = {bj'(chY)- (B_l-l)+£k'f_lan}-j"an-k"cBY(1-8)+E¥2 ,

(5.46)
where
j' = [w+(v+-M+vw/Mw)-w_(v_-M_vw/Mw)](o/a) ,
k" = Flu (v, -M v /M )+w_(v_-M_v /M )] ,
j* = [D, (v, -M v /M )-D_(v_-M_v /M )] (d/aF) ,
k" =D (v -M v /M )+D_(v_-M_v_ /M) , (5.47)

and where we have neglected the pressure term from (5.1)
because of its smallness compared to the pressure con-
tribution from ﬁ#. The true volume folw rate 30 across

membrane of unit area is then given by
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J. =E3V (5.48)

where € is the porosity of the membrane.

It is interesting to note that for equal or nearly
equal cation and anion diffusivities and mobilities, the
averaged center of mass velocity depends on 02 , the charge
density squared, as shown in (5.45) (the parameter b is
proportion to o). This implies that for uni-univalent
electrolytes of equal ion diffusivities, the averaged
center of mass velocity is independent of the sign of the
charge on the wall. This has an important bearing on tﬁe
concentration dependence of the volume flow rate of KC1l
solution through charged porous membranes.

Before considering the experimental data of Grim
and Sollner (1957) we remark that they determined osmotic
flow rates from the volume changes of liquid transported
through the membrane in an intervals of time in which the
solution concentrations on the two sides of the membrane
were maintained effectively constant. There has been some
misuse of the averaged center of mass movement as the
volume flow (Gross and Osterle, 1968; Fair and Osterle,
1971) ; however, only the volume flux defined by (5.46)

and (5.48) is experimentally measurable.
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D. Comparison with Grim and Sollner's

Experimental Data

Grim and Sollner (1957) made careful measurements
of anomalous osmosis of various electrolyte solutions across
oxyhemoglobin~-coated, highly porous, collodion membranes
which had clearly defined isocelectric points. By adjusting
the pH of the electrolyte solution, the membrane can be
put into a negatively or a positively charged state. The
total osmotic flow is composed of a normal component and
an abnormal component. The normal flow due to ordinary
osmosis was estimated by the use of the electrolyte as
its own reference under conditions of zero net charge on
the membrane. We are interested in interpreting their
observations on KCl solutions. Their data on KCl show
that the volume flow is in the positive direction only
(toward the more concentrated solution) for both positively
and negatively charged membranes. This was not explainable
by previous theories.

According to their study for 25°C, the measured
volume flow rates were of the order of 10 to 100 microliters/

cm?-hr. The membranes were about 10”2

cm thick, the water
content was 60 to 75 volume percent and the porosity of
the membrane was approximately 0.6 to 0.75. The average
pore radius was not given; instead, they did filtration

rate gstudies. With 10 cm of water pressure head, the
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average rate of filtration was 12.3 microliters/cmz-hr.
Both the Poiseville volume flow formula for straight

capillaries

3, = Talap/snt (5. 49)

and the Konzey-Carman law for porous media (Carman, 1948)

1
a = 7 /{803, n2/chp) (5.50)

yield values for the pore radius of the order of 10"8 m,

or 100 g (generally, the Konzey-Carman law gives value
lower than those given by Poiseville's law). The data ob-
tained for ordinary osmosis of KCl through uncharged mem-
branes is used together with (5.37) to determine the
reflection coefficient 0. From the plot of the observed
volume flow JV vs. the osmotic gradient for a single capil-
lary, azRT(cB—cA)/4n£ , the reflection coefficient is

T = .08 x 1073, The smallness of this reflection coeffi-
cient indicates that only a small amount of solute molecules
is rejected by the uncharged membrane. This is due to the
presence of relatively large pores. The diffusion coeffi-
cients of K' ion and Cl” ion in agueous solution and
similarly their mobilities are almost equal (Miller, 1966;

9 mz/s. However, there

Haase, 1969), Dyg+ = Dy - =2.01 x 10~
is ample evidence that the values of diffusion coefficients

in membranes are 1/5 to 1/20 lower than the corresponding
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coefficients in water (Lakshiminarayanaiah, 1969; Beck

and Schultz, 1972). For purposes of estimation, we as-
sume that they are 10 times smaller than the diffusion
coefficients in free solution. We also assume that

D, + D_ = RT(w _+w_) for estimation. Since the membrane
charge comes from the coated oxyhemoglobin, we approximate
its value from the electrokinetic charge of the human
blood cell (Cook, et al., 1961); it ranges from 10™° to

-2

10 c/mz. The viscosity coefficient of the KCl solution

and its absolute permitivity are approximated by the values

-3

of water at 25°C. They are n = 10 N - s/mz and

1

€ =7 x 10 0 C/V * m respectively. In summary, the values

of the parameters used in the present calculation are:

D, = D_=2.01x 20 %%/, o= 2.2x 1077 c/m?,
B = c,/c, = 0.5 n = 1073 n - s/m2
A’"B 2 '
-10
F = 96500 C/mol , e = 7 x 10 C/V +m
g =104 m , a=10%n ,
- _ -3 _ 0 _ 0 _
o =0.8 x 10 ’ Y = CA/CA"CB/CB = 0.25 ,
-1 -1 ° = =

The distribution coefficient has been chosen so
that the shift on the abscissa will make the maximum data

point coincide with that of the theoretical curve. We do
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this because there are no available data to estimate y in
this system. These values together with (5.45) - (5.48)
yield the true volume flow through charged porous oxyhemo-
globin collodion membranes, both negatively and positively
charged. They are plotted in Fig. 5.1 and Fig. 5.2 as a
function of the KCl concentration on the higher concentra-
tion side. The true volume flow is positive, which means
that the flow is toward the more concentrated solution.
It can be seen from these two figures that the

experimental data of Grim and Sollner agree well with the
theoretical values calculated from (5.45) - (5.48). The

values of 39 below 2c, = 0.0125 mol/% are not shown be-

B
cause in that region, when ka ~ 1 , the asymptotic expan-
sions of Bessel function used in obtaining (5.39) - (5.48)
fail. The use of (5.45) - (5.48) in this region therefore
gives incorrect values. The larger deviation in the middle
range of the concentration [about 0(10_1)] might be attri-
buted to the approximate nature of the electric potential
distribution (4.30) obtained for a Gouy-Chapman type

double layer. It has been shown by Krylov and Levich

(1963) by a statistical mechanical derivation allowing for
the short-range interaction between ions in the diffuse
part of the double layer in a concentrated solution and

also allowing for the discrete structure of the charge of

specifically adsorbed ionic layers that in a moderate
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Fig. 5.1--Volume flow of solution across an Oxyhemoglobin
‘coated collodion membrane as a function of con-
centration, with a concentration ratio of 1l:2.
Points are Grim and Sollner's experimental data,
solid curve is the present theoretical result.
Charge of membrane: negative.
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Fig. 5.2--Volume flow rate of solution across an Oxyhemo-
globin coated collodion membrane as a function
of concentration with a concnetration ratio of
1l:2. Points are Grim and Sollner's experimental
data, solid curve is the present theoretical
result. Charge of membrane: positive.
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bulk concentration (0.1 ~ 0.75) the potential in the diffuse
part of the double layer decreases in the bulk of the solu-
tion more rapidly than predicted by Guoy-Chapman theory.
They have shown that for a solution of 0.75 molar the de-
creases in the potential in the diffuse part of the double
layer occurs over a distance of the order of two ionic
diameters. There may also be other factors contributing

to the deviation in this concentration range, such as the
neglect of the nonideality at higher concentrations, the
concentration dependence of parameters, and the real pore
size distribution. The good fit at very high concentra-
tions is due to the dimunition of the abnormal component and
the domination of ordinary osmotic flow. Nevertheless,
considering the approximations and assumptions introduced

in our derivation together with the lack of precise values
of parameters from independent measurements, this agree-
ment between theory and experiment is quite satisfactory.
The most important fact we have demonstrated is that for
ions with almost equal diffusivities the volume flows

across a negatively or a positively charged porous mem-
branes not only have the same direction but also similar
magnitudes and composition dependence due to the fact that
the center of mass velocities are the same for both charges.
We have also shown that with the inclusion of the capilliary

osmotic contribution, which was ignored by other authors,
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and with suitable values of parameters it is possible to
achieve a quantitative description of the anomalous osmotic

phenomena.

E. Conclusion

We have derived, with the inclusion of the capil-
lary osmotic contribution which is usually in effective
and was ignored by other authors, a general analytical
formula for anomalous osmosis through charged capillary
membranes. The formula applies to any uni-univalent
electrolyte. In particular, for KCl solutions, the volume
flows through the membrane are in the same direction (toward
the concentrate solution) and are of almost the same magni-
tude and composition dependence. This is due to the facts
that (a) cation and anion mobilities are nearly equal and
(b) the averaged center of mass velocity depends on the
charge density squared. This is demonstrated by the good
agreement between our thebretical and Grim and Sollner's
experimental results for KCl solution, as shown in Fig. 5.1
and Fig. 5.2. For uni-univalent electrolytes with different
ion diffusivities our equation (5.42) describes the negative
anomalous behavior. For other binary electrolytes, similar
expressions can be derived. However, before satisfactory
quantitative double layer theory for concentrated solutions
is developed, we expect the present theory to be a good

approximation in the high concentration range.
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Furthermore, until precise values of membrane and solution
parameters are determined by independent experiments, a

rigorous test of the present theory cannot be performed.



CHAPTER VI

CONVECTIVE-DIFFUSIVE FLOW IN A TUBULAR
MEMBRANE WITH AXIAL DIFFUSION AND

NONUNIFORM VELOCITY PROFILE

A. Introduction

The solution for the capillary membrane model dis-
cussed in the previous chapters did not require explicit
knowledge of the concentration distribution inside the
capillary. However, it is advantageous, especially for
understanding the concnetration dependence of phenome-
nological coefficients, to acquire such knowledge in order
to develop further membrane transport theory. We investi-
gate in this chapter a capillary with not only axial trans-
port of solution (by diffusion and convection) but also
radial transport (by diffusion) through the capillary
wall. The wall is at least partially permeable to both
the solvent and the solute. When the wall permeability
vanishes, the capillary membrane model of the previous
chap%er is recovered.

Membranes of tubular geometry and different per-
meabilities with both laminar and fully developed liquid

flow have various applications in various fields.

142
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Among these are: (a) electrolysis with flowing solution
in a porous or tubular electrode (e.g., Sioda, 1968;
Wroblowa and Razumney, 1974; Flanagan and Marcoux, 1974;
Newman, 1973); (b) artificial kidneys (Stewart, et al.,
1966; Cooney, Kim and Davis, 1974); (c) vascular flow in
plants (Eschrich, et al., 1972); (d) microtubules (Olmsted
and Borisy, 1973); and (e) gas separation (Bird, Stewart
and Lightfoot, 1960). Because of the similarity of the
heat transport equations to the mass transport equations,
the formalism for convective diffusion in tubular mem-
branes is also applicable to convective heat transfer by
laminar flow in tubes. In fact most previous analyses
were restricted to heat transfer problems.

A major assumption usually made in the analysis
of both problems is the neglect of axial diffusion or
axial heat conduction. With such an assumption and the
boundary condition of uniform wall temperature, the heat
transfer problem is the well-known classical Graetz prob-
lem (Graetz, 1883, 1885). Neglect of axial diffusion or
heat transfer leads to a parabolic partial differential
equation whose radial eigenfunctions are orthogonal.
Graetz calculated only the first two eigenvalues. Since
then a great deal of effort has been spent on calculating
more accurate eigenvalues and eigenfunctions, and improv-

ing the convergence of the eigenfunction expansion by
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various orthogonal trial functions. The Graetz problem
with the boundary condition of constant wall temperature
or constant concentration has been treated by, e.g.,
Sellars, Tribus and Klein (1956), Singh (1958), Bodnarescu
(1955) , Brown (1960), Sparraw and Siegel (1960), Sideman,
Luss and Peck (1965), Worsge-Schmidt (1967), and Davis

and Parkinson (1970). The most exact computation per-
formed to date are those of Brown (1960), who, by using

a computer capable of manipulating 50 digits, computed

the first ten eigenvalues and other constants. The Graetz
problem with the boundary condition of constant wall heat
flux or constant wall mass flux has been treated by
Sellars, Tribus and Klein (1956), Siegel, Sparraw and
Hallmant (1958), and Worsge-Schmidt (1967). For the
boundary condition of constant wall resistance or per-
meability, the Graetz problem has been investigated by
Schenk.(1954), Schenk and Dumore (1954), Sideman, Luss

and Peck (1965), Davis and Parkinson (1970), and Cooney,
Kim and Davis (1974).

The assumption of negligible axial diffusion or
heat conduction, however, is not always valid. It can
lead to significant errors for fluids of high diffusivi-
ties (e.g., gases) or high termal conductivities (e.g.,
liquid metals). Using the simplifying assumption of a

flat velocity profile, Schneider (1957) analyzed the
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effect of axial conduction on entrance region heat trans-
fer and concluded that it is appreciable if the Peclet
number (which describes the ratio of convective to dif-
fusive effects) is smaller than 100. This was confirmed

by Hsu (1967) through a refined analysis. It is necessary
on both theoretical and practical grounds to have a general
treatment which takes into account the effects of both non-
uniform velocity profiles and axial diffusion or axial heat
conduction.

Inclusion of axial diffusion or axial heat con-
duction causes the partial differential equation for the
problem to become elliptic and the eigensolutions are no
longer orthogonal. This has been one of the reasons for
the neglect of axial diffusion or axial heat conduction
in the traditional Graetz problem since non-orthogonality
inhibits mathematical manipulations. It is customary to
solve the partial differential equation as accurate as
possible by numerical methods and subsequently to use
tabulated results in similar problems. For the constant
wall temperature boundary condition, Singh (1958) pro-
posed a Bessel function expansion method. However, his
method does not readily yield higher eigenvalues and
eigenfunctions. Jones (1971) considered this problem,
still with a constant wall temperature boundary condition,

by a Laplace Transform method followed by a Frobenius
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approach. Rapid convergence of his final result is not
assured, and errors in the linear combination coefficients
tend to build up rapidly due to the use of a recurrence
relation which relates the higher coefficient to previous
coefficients. Tamir and Taitel (1973) and Taitel, Bent-
wich and Tamir (1973) considered the effect of upstream
and downstream boundary conditions on heat or mass trans-
fer with axial conduction or diffusion, but they used a
simplified flat velocity profile. Hsu (1967) and Tan and
Hsu (1970) treated this problem (with constant wall heat
flux) carefully and determined the first 20 eigenvalues
and the corresponding eigenfunctions by a Runge-Kutta
numerical scheme. Hsu (1971) extended this to an in-
finite tube half insulated and half at a constant tempera-
ture. The nonorthogonal eigenfunctions were expanded in
sets of orthogonal functions by a Gram-Schmidt ortho-
gonalization procedure. This numerical scheme is un-
necessarily complicated, especially since no increase in
accuracy is obtained by use orthogonal eigenfunctions.
Michelsen and Villadsen (1974) use a method of orthogonal
collocation and matrix diagonalization to solve the Graetz
problem with axial heat conduction. The partial differ-
ential equation is changed to 2N algebraic equations by
collocating it to zero residure at N points; these N

points are chosen as the zeros of an Nth degree
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orthogonal polynomial (they use Legendre polynomial).
This method has the advantage of accuracy in the entrance
region, but the higher eigenvalues deviates enormously
(e.g., for the classical Graetz problem the 7th eigen-
value is 15% larger than its accurate value and the 10th
eigenvalue is almost ten times bigger than its accurate
value). Moreover, the partial differential equation is
solved only numerically.

In this chapter we analyze a mass transfer syétem

in a tubular membrane with axial diffusion. The result

can easily be applied to heat transfer systems. We solve
this problem in terms of confluent hypergeometric functions
(CHF). The eigenvalues are obtained as the zeros of a
transcendental equation expressed in terms of the CHF,

and asymptotic forms of the CHF are used to obtain ex-
pressions for higher eigenvalues. Concentration dis-
tributions are calculated for various values of the Peclet
number and wall permeability. The linear combination co-
efficients in the solution are found by an "Overdetermined
Collocation" numerical scheme which involves a least-squares-
type collocation of the boundary condition equations and a
matrix inversion to solve for the coefficients. The most
obvious advantage in expressing solutions in terms of well-
known tabulated functions is that the properties of the

functions (e.g., derivatives, recurrence relations,
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convergence properties) are known and the asymptotic
solutions are available. In addition, explicit expressions
in tabulated functions obviates the need for a totally
numerical scheme to obtain eigenvalues from the differ-
ential equation and the boundary conditions. Application
of the CHF to the Graetz problem without axial diffusion

or heat conduction was reviewed by Davis (1973) and ex-
tended by Cooney, Kim and Davis (1974) to the case of

the hemodialyzer. However, this is the first time that

the "Overdeterined Collocation" method and CHF have been
applied to Graetz problem with axial diffusion. 1In the
case of no axial diffusion, the overdetermined colloca-
tion method reduces to the usual method of finding the
linear combination coefficients in an orthogonal system.
Althaugh our method is simpler, it has the same accuracy

as more sophisticated ones. To our knowledge, no results
corresponding to the boundary condition considered here
(finite wall permeability) are avilable in the literature.
We also demonstrate that the solution obtained by neglecting
axial diffusion may be regarded as a special case of a more
general solution in which the axial diffusion is included.
The methods given here are also applicable to parallel

plate membrane systems with axial diffusion.
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B. Basic Equations and Boundary Conditions

For economy of language, we use the terminology
for the artificial kidney system, which consists of hollow
fiber membranes. The results can of course be used for
analogous heat or mass transfer processes as well.

We consider mass transfer between two flowing
fluids (solution, dialysate) separated by a membrane which
is permeable to the species being exchanged but is im-
permeable to all other species. The permeability of the
tubular membrane is constant however can have different
values. The dialyzer system (artificial kidney) consists
of solvent with an evenly distributed solute flowing from
left to right in the tubular membrane. At a certain point
in the tubular membrane system, the fluid contacts a
portion of the wall that is permeable to the solute, The
length of the impermeable portion is assumed to be long
enough that the flow is laminar and fully developed before
the fluid contacts the section of the wall that is per-
meable, and the dimensions of the tubular membrane are
such that it can be considered to be semi-infinite. The
dialysate flow is turbulent, with flow rate high enough
that mass transfer resistance on the dialysate side can
be neglected. The dialysate is assumed to have a con-
stant bulk concentration at all axial positions in the
dialyzer. This is shown schematically in Fig. 6.1l. We

also assume:
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(1) The solution is Newtonian, homogeneous and has

constant physical properties.

(2) Only purely diffusive transport occurs across the
membrane. Convection across the membrane and hence
the hydrostatic and osmotic pressure differences

between the fluids are considered to be negligible.
(3) Steady state has been reached.

(4) The solute distribution coefficients for both
solution-membrane and dialysate-membrane interface

are equal.

(5) Axial diffusion in the tubular membrane is not

negligible.

Impermeable Dialysate o

/ N N Permeable -
__1-_,. } A \ X c, | ux(r)
~-/ r =

Fig. 6.l1--Schematic diagram of tubular membrane.

For a binary nonelectrolyte solution without

pressure gradients, the flux equation (5.2) becomes

N, = -D,Vc, + cu. (6.1)
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This is also applicable to electrolyte solutions contain-
ing enough supporting electrolyte that the contribution

of ionic migration may be neglected. Substitution of

(6.1) into the continuity equation, with the understanding
from assumption (3) that the steady state has been reached,

yields

DaV c =u-* Ve, (6.2)

where we have used the constant physical properties as-
sumption. This is the so called convective diffusion
equation (Bird, Stewart and Lightfoot, 1960; Levich, 1962;
Kays, 1966; Newman, 1973). For the tubular membrane con-
sidered here, the solution of the Navier-Stokes equation

under the condition of steady laminar flow has the form

u = 2ul[1-(r/a)?] , (6.3)

where the average velocity over the tube cross section is

0 a a 2 -1
u’ = 6 u, rdr/ § rdr) = a“(4n)” " (dp/3x) . (6.4)

The equation of convective diffusion then becomes

2u°[1-(r/a)2](3ca/3x) = Da[r-l(a/ar)r(aca/ar) + (Bzca/axz)] i

(6.5)
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The boundary conditions are

BCI C, = S at x =0 for 0 < r<a, (6.6)
BCII ¢, = ¢, when x » = for 0 < r <a, (6.7)
BCIII (Bca/ar) =0 atr =0 for x > 0, (6.8)

BCIV -Da(aca/ar) = Pm(ca—co) at r = 0 for x > 0, (6.9)

where p is the inlet concentration, o is the dialysate

concentration, P_ is the permeability coefficient of the

m
tubular membrane, and where the derivative is zero at the
center of the tube by symmetry. BCII indicates that for
downstream the concentration of the solution approaches

the dialysate concentration and BCIV serves as a defini-

tion of the permeability coefficient. The dimensionless

variables
c = (ca-co)/(cb—co) ' (6.10)
; =1r/a, (6.11)
z = xX/aPe where Pe = 2u0a/Da ’ (6.12)
"sh =P a/m_, (6.13)

transform the convective diffusion equation (6.5) and the

boundary conditions (6.6)-(6.8) to

(1-22) (3c/92) = ¢ L(d/0z) L (3c/ag) + Pa2(dc/az?) , (6.14)
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BCI c=11latz=0for 0<gzg<1l, (6.15)
BCII c¢c=0whenz +»» for 0 <g <1, (6.16)
BCIII (9c/9z) = 0 at z =0 for z > 0 , (6.17)
BCIV -(3c/9g) = Nshwc at z =1 for z > 0 , (6.18)

where the Peclet number is a measure of convective to dif-
fusive effects and the wall Sherwood number Nsh describes

the transport conductance of the membrane.

C. The Graetz Problem and Its Extension

On the assumption that the Peclet number is large,
which implies that axial convection dominates over axial
diffﬁsion since the Peclet number is the ratio of convective
to diffusive effects, the second derivative with respect
to z in (6.14) is usually neglected. This neglect is
equivalent to the neglect of the contribution of axial

diffusion. (6.14) then reduces to

(1-22) (3c/9z) = ¢ Y(a/0z) (3c/az) . (6.19)

Neglect of axial diffusion changes the problem considerably.
Firstly, there are no dimensionless parameters in the prob-
lem. Secondly, the original partial differential equation
is elliptic, while without axial diffusion the equation
becomes parabolic. In the elliptic problem, all boundary

conditions including the one at x - = have to be specified.
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In the parabolic problem, there is no upstream propagation
of effects, and the boundary condition (6.16) is not neces-
sary. Furthermore, if constant wall concentration obtains,

then the Sherwood number Ns + « , and the boundary con-

hy
ditions reduce to
BCI c=1at z =0 for 0 < g <1 (6.20)
BCII (o9c/oz) = 0 at ¢z =0 for z > 0 (6.21)
BCIII c=0at gz =1 for z > 0 . (6.22)

(6.19)-(6.22) constitute the classical Graetz problem.
Graetz (1883, 1885) treated this problem by the

method of separation of variables:
c(z,z) = R(g)z(2) . (6.23)
Subsgtitution of (6.23) into (6.19) gives
(1-z®)R(dz/dz) = (2/1) (d/d7) ¢ (dR/dE)

or

271 (dz/dz) = [(1-2%)zr] ™Y (d/dg) g (ar/dg) = - A° (6.24)

where A are the eigenvalues.

The function 2(z) can be determined from

(dz/dz) = - A%z (6.25)

with the solution (apart from a multiplicative constant)



155

2 = exp(-°z) (6.26)

The function R(Z) can be determined from

" azan) tiar/ag) + A% (1-c®)R = 0 (6.27)
and the boundary conditions

(dr/dz) = 0 atz =0,

R=20 atz =1. (6.28)

(6.27) and (6.28) constitute a Sturm-Liouville problem be-
cause the linear, second-order, ordinary differential
equation (6.27) is self-adjoint with homogeneous boundary
conditions (6.28). The eigenfunctions of the Sturm-

Liouville problem are orthogonal,

I1 2 { 0 n+m
z(1-z)R_(Z)R (C)dg = (6.29)
0 n m 1 n=m,

where Rn and R.m are eigenfunctions corresponding to eigen-

values An and Am. The general solution is then

_ 5 52
c = n£1 A [exp(-Afz) IR () . (6.30)
This is known as the Graetz series, with An the linear
combination coefficient corresponding to the nth eigen-

value and eigenfunction.






156

Only two boundary conditions have been used. The

remaining one, (6.20), together with (6.30), gives

1= ngl AR (7). (6.31)
With the use of the orthogonality property (6.29), the
coefficients can be obtained by

1 1

- f _,2 g _,2y 52
A =4 c(l-g9)R (g)dz/  z(1-¢")R _(Z)dg . (6.32)

This completes the solution of the classical

Graetz problem. PFrom this solution one can calculate
other related quantities for the problems of interest.

Inspection of the solution (6.30) shows that fewer
terms are needed for large z and more terms for small z in
order to obtain proper convergence. Léveﬁue”(1928) used
a boundary layer treatment (which is equivalent to singular
perturbation) to obtain a simple equation valid for small
z. For more detailed discussion of the Lévedue solution
and its extension see Newman (1973). Other extensions of
the Graetz problem involve constant mass flux or finite
wall permeability boundary conditions, which require extra
mathematical manipulations. However, the forms of the
solution are still the same as (6.30). The references for

these extensions have been given in Section A. The most
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important extension of the Graetz problem, however, is
the inclusion of axial diffusion. This is the topic of

the next section.

D, Exact Solution with Axial Diffusion

As pointed out in Section A, it is not always
justifiable to neglect the axial diffusion. Schneider
(1957) analyzed the effect of axial conduction on entrance-
heat transfer and concluded that it is appreciable if the
Peclet number Pe < 100. This was confirmed later by Singh
(1958) and Hsu (1967). The axial diffusion effect can be
very important in gases, for which the diffusion coeffi-

. cmz/sec and the

cients are usually of the order of 10
Peclet number may well be much smaller than 100. This
can make the last term on the right hand side of (6.14)
comparable to or greater than the other terms. Conse-
quently, the axial diffusion contribution cannot be
neglected. Tan and Hsu (1970) recognized the necessity
of including axial diffusion for gas flow problems, but
they solved the differential equation by a Runge-Kutta
numerical scheme for a constant wall concentration bound-
ary condition.

The starting equations are (6.14)-(6.18). With

the inclusion of the axial diffusion term, the method

of separation of variables no longer works.
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Nevertheless, we can seek a solution of the same form as

in the case of no axial diffusion, i.e.

clz,z) = zl Bn[exp(-Biz)] Y (D) , (6.33)
n=

where Bn and Yn(;) are the eigenvalues and eigenfunctions

of
" Hazan) glay,zan) + 821122 + (8_sre)?l v_ = 0 (6.34)
with boundary conditions

(SYn/BC) =0at z =0

-(0Y/03z) = Nsthn atz =1. (6.35)
By the transformation

£=81c" anda W (6) =Y (1) exp (8.¢%/2) ,  (6.36)

we obtain the CHF equation (or Kummer's equation)

2 2 1 2 _
£(a%w_sag) + (1-§) (aW_/ag)-{3-(8_/4) [1+(8 /Pe)“1}W =0 .
(6.37)

This has the solution (apart from a multiplcation constant),

under the boundary condition (6.17),

| 2 2
W, o= M(z-(8,/4) [1+(8 /Pe)?] , 1, B2 (6.38)
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where M is Kummer's function, defined by (see, e.g.,

Abramowitz and Stegun, 1964)

ay (a)zy2 (a)nyn

M(a,b,y) =1 + b""m‘"...'fw'f... (6.39)

with

(a)n = a(a+l) (a+2)...(a+n-1) , (a)0

(b)n = b(b+1l) (b+2)... (b+n-1) , (b)o =

n
()

|
=

Instead of M(a,b,y), the notation ,F, (a,b,y) is also

widely used.

The advantages of expressing the solution to this

problem in terms of Kummer function are

(1)

(2)

(3)

(4)

The properties of the functions (e.g., derivatives,
recurrence relations, convergence properties) are
well known, and the numerical values of the function

are tabulated.
The asymptotic forms of the function are available.

Direct power series solutions obtained by the Fro-
benius method suffer from rapid error build-up due
to recurrence relations which evaluate coefficients
from previous coefficients. Moreover, fast con-
vergence is not guaranteed. (Both these remarks
apply only in the case that the general term cannot

be found).

The Kummer function can be evaluated quickly, and

its convergence properties are known.

. (6.40)
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When the eigenvalue Bn is sufficiently large, the
following asymptotic form can be used instead of the series

from

M(a,b,y) = T(b)sin(ar)expl (b-2a) (%"sinh2e— cosh?9) ]

-1/2 -1

x [ (b-2a) cosh8] * P [n(Ib-a) sinh26] 1/ % [1+0(|3p-2| 1))

(6.41)

where cosh26 = y/(2b-4a) .

Combination of (6.36) and (6.38) gives

¥ = exp(-8_t2/2) M(3-8 /4) [1+(8_/pe)®], 1,8 1% . (6.42)

Applying the boundary conditions (6.35) to (6.42), we ob-

tain the transcendental equation

(1+38, [1-(8_/Pe) *1-N_, }M(F-(8_/4) [1+(B_/Pe)?], 1,8)
w
= {1-%Bn[l+(8n/}?e)2]}M(%-(Bn/‘” [1+(en/pe)2], 1,8n) . (6.43)

The eigenvalues are those values of Bn which satisfy this
equation. We have solved this equation by a half-interval
method (Carnahan, et al., 1969) for various values of Pe
and Nshw' Eigenvalues up to the 10th have been calculated
to an accuracy of at least 9 significant figures on a

CDC 6500 computer. In the range of parameters considered

here, computer calculations show that function converges
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to the 9th decimal place in less than 50 terms, and for
some parameters convergence is achieved in less than ten
terms. In order to assure convergence, we used 100 terms
for every Kummer function calculated. Sideman, Luss and
Peck (1965), who used a Frobenius method for the no

axial diffusion case, had to calculate 300 terms in o;der
to assure convergence. It has not been necessary in our
work to use the asymptotic formula (6.41l) because the
computation time needed for evaluating the more general
expression is reasonably short. Eigenvalues calculated

for different values of Pe and Nshw are tabulated in

Table 6.1. For the case of Pe = » (no axial diffusion)

and Nshw = 0 (constant wall concentration), our eigen-
values are exactly the same as the most accurate ones
reported by Brown (1960). This serves as a check on
the accuracy of our calculations and the solution of
the transcendental equation (6.43).

The solution to this problem is, then

Q
]

I Bexp(-872)exp(-8,0%/2)M (7 (8, /4) (14 (8, /P P1,1,8,2%)

(6.43)

Application of boundary condition (6.15) leads to the re-

quirement that
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TABLE 6.1 (CONTINUED)

PE = 10» NSHW = 5
EIGENVALUE L+C.COEFFICIENT
.227689655E+01 «146653127E+01
-510707389E+01 -.796814137E+00
2720686024E+01 2568¢ 7E+00
2892995832E+01 -4 7070E +00
<104 446E+02 o2 2E+00
S117740015E 202 -2 2E+00
$129972248E+02 2171344366E+00
1141253452E+02 -2131867503E+00
©151762335E+02 2107874478E+00
2161630572E+02 -<736508076E-01
PE = 10s NSHW = 20
ETGENVALUE L+C.COEFFICIENT
+194469705E401 +134716874E+01
2480500760E+01 -e548532172E+00
$697747135E+01 $326716618E+00
*8768547BBE+01 -2206942774E+00
-]93164082€ 02 £139238737E+00
«116899962E+02 -e973835464E-01
$129329049E+02 <750617002E=01
$140743695E +02 -2539480010E~01
s13)34e84ze 02 +48008) 130€-0}
2161284238E+02 -2265724011F-
PE = 10s NSHW =
EIGENVALUE L+C.COEFFICIENT
+259693069E+01 +154482887E+01
c65468B364E+01 -2992091824E +00
~771384879E+01 +834827499E +00
2945921 128E+01 =e743207154E +00
2109532010E+02 -66478B758E+00
$122780443E+02 -<610516342E+00
2134795640E+02 +550461083E 400
$145862171E+02 -.519711963E+00
S156170643E+02 +423382882€+00
+165855906E+02 -434381778E+00




166

(CONTINUED)

TABLE 6.1

Se NSHW

PE

LeC.COEFFICIENT

EIGENVALUE

4

=N LT TONOMNO™
OCO00O0O0O000O
LU U I N )
Wb wig
CITITAU~ON~D
CSOOM NI I™

OIMOINO IO
OONOLO=~O VLM
O ONON TN
O m=NUNIFCD O N~
o=t =t (D st et (\I S O
o 0 06 006 06 0 0 00

it gt gt gt et ot (\J (\J (\)
OCOO0O0O0O0O00O
LK 2K 2K 2K 2K 2K 2N 2N J
WwilJwiiiw
SNV TN
OOV 0O NNOLN
OO O =\
Q@ =M\ OO DN
OMIONOI~NN
@ 3 M ONILNDO (S
X~ MONOMN
AN & Omtom
O MIUNOM C O st oy
o0 00000000

~“NMTOO+DOO
v

Se NSHW

PE

LeC.COEFFICIENT

EIGENVALUE

=t © © rut gt gt gt et ot (\)
COOOOOOOO00
L R O N I I N
Ll L i Lo L Wl s
PN O N e
=ML =N SO S
VO 0DDO~O
LN O O O e I~
OO OO O =S
(o o )T Tal. of —To YT RVo(\] ]
=ML O MDD =
NOPSS~SOMS OSSN
=)@ O & Y IO
00000000 o0
L I D R

et g gt gt gt gt et (\J (\J (\J
OO0O0O0O0O0O0O0O00
L 2K 2K 2K 2R K X B 3 2R 4
WiluWw it it Wit
SLTONCOVOSNN~SNS
[TalVol o Toa P To V[ ¥]e Y. o] 0
ONIT=OMAN X Om
N OO O™
IO OSNGONO
O e e O\ NN
NTONONONOM
IO OU O
= NNCPS QO sttt
o000 00 000

~“NALNOT*O
ol

Se NSHwW 3

PE

LeC.COEFFICIENT

EIGENVALUE
« 19682598
26271

3
7
6
4

e TalTale ol o
DL OO L3O
NI NDOM=OLN
MM OTNNM
ocoNTMMON~

40
54
67
77
86
¢
11
11

~“NMTNODS O
-



l66

(CONTINUED)

TABLE 6.1

Sy NSHW

PE

LeC.COEFFICIENT

EIGENVALUE

-4

~NITITLTOMONOM
O0O0O0O0O0OOOO
+06t800 DR
Wi Wwluilsbs Wit Wi
CITITN=ONN~D
SO NI I™
O FNOOC mismi~D0
oMUNMOC I CMT
oI~ OITNO T
OONCOV=COUM
OO ONON SOt
O NN CX DNt
o=t L =t OO et ot (I F O

=t gt gt et et ot (\J (\J (\)
COO0O0O0O0O0O0O
L 2K 2% 2R 2K 3% BN X 2 J
WwwilJwiwliwug
ONVMTLITON
VO DO NNON
OO = O =0
@ = M\O\O O UL
OMITOMI~NN
@ ML OLNDO NI
T~ MONNOMN
ANLNOWO & Ot
O MUNOM (C O et ome
o0 00000000

~“NNTOODO O
o=y

Se NSHW

PE

LeC.COEFFICIENT

EIGENVALUE

ot ©© © ot gt et gung gt et O\
COOOOOO0O000
+45 000000
Wil bl W W Wil
PO UN e
=ML = N 3O S
OO DD DO~O
OINNO ri O © e I~
0™ O © =3
oo ooNVNO
=M OMD eI~
NOMNMMMSE OSSN
Mm@ O & M NN
® 00 0006 0 0 0 o
..

ot gt gt ot gt gt et (\J O\ O\J
(~1-1-1-T-Y~-T~T-7-7-]
LK 2K 2K 2K 2% 2K K 3 2K J
Wil bl
STONCOOMSNSNS
VO~ UN OO~
ONIT =~OMN DO
OONOONON O™
IO~ OSNGONO
Ot et NN
NSO NONONOMS
MO O O
= IN O O mtomtomt
R EEEEXX)

M LNOMDOO
-

NSHW 3
EIGENVALUE

Se

PE

LeC.COEFFICIENT

46
98
88
81
99
51

~NNMMS

«412792
-¢258459

S

5

S

4

fa

S

=t gt gt gt et ot gt (\J (\J (\J
COoOO0O0O0O0O0OOC

=M OTNNM
oo MMOM~
I ON Ot
O O it
0 0000 00

«19682598
4026271
S8
46
59
86
36
11
gé
6

= NMTDO~DOO
-



l67

(CONTINUED)

TABLE 6.1

NSHW

Soe

PE

LeC.COEFFICIENT

EIGENVALUE

~OOCOOOOOO™
(-Y-Y-Y-T-Y-T1-1-1-1-]
IR EE R
Wil
CIONNN~ON
O et GOSN
=0 e D OO NN
MmE~conooR S
~ONXOIOT I~
MOV~ DOIL=OD
©Q @O A LN et ol
OSSOSO
ot QC LN (™) (\J ot ot gt gt P
e © 00 06 006 06 0 0

oty gt gt gt gt gmmt (\ (\J O\
CCOOOCOOOO0
L 2K 2K K 3K 3K B¥ 2K 3% 2 4
Wil
OMNUVNKNNSSMON
IS IO~NIMO
[ X loniV ol £ d¥elV ol Ve
LI NN S
MONILNDONND O
=00 OMUN T OLN
=NUOONOMOM
o=t et LA QO = LN O ot o
N TUNO PO mtomtomt
o 0000000000

—“ANMINO~DOO
-

NSHW = 20

Se

PE

LeC.COEFFICIENT

EIGENVALUE

et © © © © rut gt gt gt gt
(- -T-Y-1-T—1—1—1—1—)
LI IR N 2 N ]

ot gt gt et gt gt gt O\ (\J (\J
(- -¥-1-1-T-Y-T-Y—T-)
L 3 B K IR 2K 3K NK 2K N J
Wil
o=t (\J =t LN CC LN NN S e
VOO MIMIONN
OO OmS ™
NelVol LT JBX o Y Togl
=t O\ et O et F (N © e D
MUN=ND O =3I N
NANMO NS NMON
WO T OMOUNCOmtmm
=4 (V) O ™~ Q0 O st ot et
e 000000000

~“~OMTNOMDOO
-

Sy NSHW

PE

LeC.COEFFICIENT

«157994866
-+.104878236

EIGENVALVE

-mtO000COO0O

MO =0~

086389647
9
8
6
8
9
S

-e75
6
-eb
5
-5
4
3

[-Y-1-1-7-7-1_1-1_ 1)
IR R
WWWliwwwiwi
@ (\msomp~ DO X NS
@ =0\ =3 O ON
MOU™MI O~ SO
O IFNmO IO MNMO
MONOMOONOLN
NOOVSITMON~T
@ =t N--OLC MO
MNO e OO Ol
NI OO0 O setomtom
® 0606 00 06 00 0 0

M SNOr-DOONO
-



167

(CONTINUED)

TABLE 6.1

Sy NSHW

PE

L.C.COEFFICIENT

EIGENVALUE

~mOOOOOO0OOm™
(Y -Y-T-T-Y-T-1-Y—1—)
R EE R KRR
WlwisWwiwwiiwieg
C=tITONNN~ON
O mma G N
=L e O © =0 NI
(a5 A - s Y NI T 1. X 4
- NDDVITOIT I~
MOV DF=\OD
© @ O LN et el
nOn~SOINNGOCS
o=t @ LN ™) (\J oot st gt ot P
e © 00 06 060 0 00

et gt gt gt gt gt gt (\! O\J O\J
O0COO0OO0OO00
L 3 2 3K 2K BN BF 3K % 2 4
wwwlwiwwwiii
(=T Vala ¥ o X J oo . o] 4 V]
IS IO~NITMNO
[ Xaaland A & B Lo
Lot I NN~ S~
MONIINONNDO
OO OMINITON
~NOUOVONOMOM™
ot et LN QO N LN © ot ot
N TUNOP T O mtomiomt
® ® 66 060 0 0 0 O

~“NMITNO~-DO0O
o

NSHW 20
EIGENVALUE

Se

PE

LeC.COEFFICIENT

-t © © © © ot put st gt g
(~X-J-T-T-1~T1~T—~1—T—)

o gt gt gy ot gumt gt O\ (\J (\J
(- -Y-1-1-T-Y_-1-7—71-]
L 2K BE 2K BE 2K N 3K 3K X J
Wwwwwwwwiiw
o= (et (NN OMUN T e

OO0 OmS M)
VOO0 OMO
=t O\ ;s ON =4 $ (\I © e D
MOUN=NDOL~IN
NNAMO NS NMONS
OO LSO NOrdtom
=4 7 N O I G0 O ot ot et
o © 06006 0 0 0 00

N SFNODOO
-

Se NSHW

PE

LeC.COEFFICIENT

15799486
-.10487823

EIGENVALVE

O 000COO0Q
CO0O0O0OO0OOSO
LRI IR K IR I R Y
Wbl
WV OMNINEC OSVDINN

7
37
82
52
37

2
79
34

«8630964
0
9
a
6
8
9
S

-e75
o6
S
S
4
3

ot gt et e gt gt ot O\ (\J (\J
(-X-1-1-T-1-1_T-T1—1-]
IR R R XY

M) SOV
o=l



168

TABLE 6.1 (CONTINUED)

2y NSHW

PE

L+C.COEFFICIENT

EIGENVALUE

=NI2TIOOONO
occoccocoocooe

L<C.COEFFICIENT

O Ot ot et et et O

NSO O == NS
~M =DM MNNS
esecscccene
LI ] ) ' ]

e e et et et et et et et

©cocococooococo ccococoocococco
IR ~ L +44seses e
Wi D Wi
ovIonMToe < NN O IO
N INMDON T = qO SIS OO0 =O
M- ve H D> M OMe IO
~ONO~NMNY Z M~INOMINOO~N
CIUNMOMOO — W OO~ DND
OV IONFDC NN 2 O MNANOVOOVON~O
OO SO w U VN~ N MO~
WM \\D D! O =i
ONMINNO O z ~OUMTNNDCONN
R A essecsocee

-

N

"

w

a
~NMSNO~DOO Z ~umInoroeo
- -

NSHW

2

PE

LeC.COEFFICIENT

EIGENVALUE

~OAMINONDO O
-



169

(CONTINUED)

TABLE 6.1

29 NSHW

PE

LeC.COEFFICIENT

EIGENVALUE

OOOOOOOm~

=T LN (ot ot ot OV
cesecscscse
LI B I B )

et e et et e et gt gt et ks
coococooccooo

~“UMSNONDO O
-

20

NSHW =

2y

PE

L+C.COEFFICIENT

ETGENVALUE

OO OOttt ot mt

et et et et ot et et et et et
©cococooocooo

~ UM JNNOO N
PR

UM INO~DO O
-

NSHW =

2y

PE

L«C.COEFFICIENT

EIGENVALUE

~—OO0000000
LA dddddadod

VOLINO OIS
-

-l
-7
.6
-5
-1
-5
o4
-3

~-UMSOO~DSO
-



170

I B_exp(-8_t%/2)M(3-(8_/4)1+(8_/pe)?],1,8 £?) = 1 . (6.44)
n=

do not constitute a Sturm-Liouville system, and the eigen-
functions (6.42) are therefore not orthogonal. The usual
way of finding the linear combination coefficients Bn fails.
We demonstrate in the next section that by employing an
"Overdetermined Collocation" method the values of B can
easily be calculated. The advantages of this "Overdeter-

mined Collocation" have been described in Section A.

E. Overdetermined Collocat}on Method--
Least Square Scheme

In this section we utilize an approximate but
direct method to evaluate the linear combination coeffi-
cients in (6.44) where the eigenfunctions are not ortho-
gonal. Of several different methods for obtaining approxi-
mate solutions, the "Overdetermined Collocation" (Lee, 1966)
is applied here, not only because of its simplicity but
also because it is formulated in such a way that the
boundary conditions pertinent to the problem are satisfied
particularly well on the boundaries. This is similar to
the least-squares method often used in solving integral
equations (Hildebrand, 1965).

The usual method of collocation consists in using

a truncated series solution of the differential equation
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to satisfy the boundary conditions at a selected finite
set of boundary points. It is hoped that the solution
thus found will also meet the boundary conditions at
boundary points between those of the selected set. The
accuracy of the solution found in this way depends on
how well the boundary conditions are met at the inter-
mediate boundary points. Usually, the solution satisfies
only the selected collocation points and oscillates be-
tween them. It is therefore desirable to have a solution
which minimizes the difference between the real and the
mathced boundary values. The method of Overdetermined
Collocation is an extension of the usual method of collo-
cation. It involves writing more boundary equations than
there are unknown éoefficients and solving the overdeter-
mined system of equations by a least-squares scheme. We
illustrate this method by solving (6.44) for B,

After truncation of the infinite series at the
Nth term and division of the dimensionless radial co-

ordinate into m-1 divisions such that

0 <5y <8y <eee < <1 withm>N, (6.45)

m

(6.44) reduces to

If B_exp(-8_z2/2)M(2-(B_/4) [1+(8_/Pe) %], 1,8.2%) =1
nel B P n’i 2 n n/*¢€ rose nci - ’

i=l,2,..o'm (6046)
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or

Y. B =1,

where

(6.47)

Y, = exp(-Bnci/2)M(%-(Bn/4)[l+(8n/Pe)2], 1, 8.52) . (6.48)

Define the residue as

and also define the residue squares by

m
g(BysBy,...sby) = i£1 §;S; -

Minimizing g by
(3g/SBk) =0 ’

we obtain

N m
! I Y,v¥, B = -E Y, . , k=1,2,...,N

(6.49)

(6.50)

(6.51)

(6.52)

This is similar to the Galerkin method used in elasticity

problems (Sokolinkoff, 1956). The difference is that the

weighting functions in (6.52) are the Yin themselves.

(6.52)

is the required system of N equations for determining the N
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unknowns Bn' The final result is in a form which is very
convenient for computer calculations. The solutions Bn
obtained minimize the residues in the least-square sense.
(6.52) was solved on a CDC 6500 computer for
various values of Pe and Nsh with a Gauss-Jordan reduc-
tion algorithm to invert thewmatrix. We have used N = 10

and m = 8., All the Bn are calculated to nine significant

figures. They appear in Table 6.1.

F. Physical Analysis

From the results of Sections D and E, particularly
(6.43), the local radial concentration distributions at
certain fixed axial coordinates are calculable. These
are shown in Fig. 6.2 to Fig. 6.3.

The local bulk concentration is defined as

1 1
clz,z) = | u.clg,2)zdg/  u,zdc . (6.53)

Substitution of (6.3) into (6.53) yields

1 1
Slz,2) = § (-zde(z,z)zaz/ § -t?)zag (6.54)

which can be further simplified by the use of (6.43) with

truncation

- N 2 1 2 2

c(z,z) = 21 B exp(-B 2z) § £(1-t%)exp (-8 z"/2)
n=

x M(3-(8_/4) [1+(8_/pe)?], 1, 8 zP)a . (6.55)
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Fig. 6.2--Radial concentration distribution for NSh
W
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Fig. 6.3--Radial concentration distribution for Nsh = 5.
\'4
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The local bulk concentrations have also been calculated.
The integrals in (6.55) were computed by the use of a
15-point Gauss-Legendre quadrature formula (Carnahan,
1969). The results are shown in Fig. 6.4 to Fig. 6.6.
As expected the local bulk concentrations decrease with
axial distance and with increasing Peclect number. We
observe that if axial diffusion is neglected for smail
Peclect number, the local bulk concentration may have up
to 400% error near the netrance region (i.e., small z).
In general neglect of axial diffusion usually lends to
underestimation of the local bulk concentration.

One can also define an overall Sherwood number by

use of a total mass transport coefficient:

N, = (hpa/D) = - (3c/3;)c=1/5 (6.56)

where the total mass transfer coefficient is defined as

hy = N./(€-0) = - D(3e/3L) _ /3T (6.57)

with Ncw the radial diffusional flux at the wall. Again,
the overall Sherwood number is a dimensionless mass trans-
fer coefficient which characterizes the rate of mass trans-
port for the whole system. Substitution of (6.43) into

(6.56) gives
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Fig. 6.4--Local bulk concentration as a function of re-
duced axial distance from the entrance for
Nsh =1, Pe = 2, 5, and =,
W
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Fig. 6.5--Local bulk concentration as a function of re-
duced axial distance from the entrance for
Nsh =5, Pe = 2, 5, and «,
w



182

A

ol 80 90 14Y AV 0
— p———y T T T o
z ¢ 0
0
90
¢ =3d¢
G=9d’
o=9d L 80
G = "HSN

0l

10



Fig.

183

6.6--Local bulk concentration as a function of re-
duced axial distance from the entrance for
Nsh = o, P@ = 2, 5, and =,
W
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N
- Py - -
N, = nzl Bexp (-8 z)exp(-B_/2) [2kM(k+1,1,8 )-(2k+B )M(k,1,8)1/
N 2 1 2 2 2
2 n£l Bexp(-8-2) | z(1-z%)exp(-8 c“/2)M(k,1,8 c%)dg
(6.58)
with
k = % - (8_/4) [1+(8./Pe)?] (6.59)
2 n n ’ *

where we have truncated the infinite series to N terms for
the numerical calculation. The overall Sherwood numbers
are calculated for various Pe and Nshw values and are shown
in Fig. 6.7 to Fig. 6.9. It is seen that the Sherwood num-
ber increases with increasing Peclect number for a fixed
wall Sherwood number and, not surprisingly, increases with
increasing wall Sherwood number for fixed Peclet number.
The figures also indicate that the mass transfer rate is
highest near the entrance region and generally decreases
to a constant value.
The overall picture can be summarized qualitatively:
(1) Whenever the membrane permeability increases (in-
creasing Nshw) the total mass tansfer rate through

the membrane also increases (increasing overall

Sherwood number Nsh)‘

(2) The local bulk concentration decreases with axial

coordinates due to the fact that solutes are
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6.7--Overall Sherwood number as a functiqon of re-
duced axial distance from the entrance for
Pe = 2, N =1, 5, =,
shw
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6.8--Overall Sherwood number as a function of re-
duced axial distance from the entrance for
Pe = 10, N =1, 5, =,
shw
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Fig. 6.8--Overall Sherwood number as a function of re-
duced axial distance from the entrance for
Pe = 10, Ns =1, 5, =,

By
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Fig. 6.9--Overall Sherwood number as a function of re-
duced axial distance from the entrance for

Pe = «, N =1, 5, =,
shw
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diffusing through the membrane into the dialysate

along the membrane wall.

(3) The presence of axial diffusion (small Pe) tends
to decrease the overall mass transfer rate (de-
creasing Nsh) along the tabular membrane and also
tends to reduce the size of local concentration

gradients.

G. Discussion

In this chapter we have treated tubular membrane
transport with axial diffusion and with a boundary con-
dition of finite wall permeabilities. The solutions are
expressed terms of Kummer functions, and numerical values
are obtained by the use of an "Overdetermined Collocation"
method.

In addition we have used a boundary condition of
finite wall permeability which is more general than the
constant wall concentration and the constant wall mass
flux conditions. In fact these are the limiting cases of
our boundary condition. We have also used the boundary
condition that the entrance concentration is uniform over
the cross section of the tubular membrane. Rigorously,
the axial diffusion effect, which tends to propagate up-

stream, will change the entrance concentration profile.

Nevertheless under some experimental conditions (e.g.,
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in hollow-fiber artificial kidney), the uniform entrance
concentration condition can be considered as a very good
approximation.

Although only selected results for only a few
values of Pe and Nshw are presented here, they suffice to

demonstrate the general trends. For other values of Pe

and N , one can use the method developed here systemat-

shw
ically.
From the results in previous sections it is clear
that axial diffusion is important for small Peclet numbers.
This effect is significant for the prediction of performance
in artificial kidney systems operated at low blood flow rate
or in gas separation through tubular glass membranes.
Further extensions of this approach can be made by
taking into consideration of chemical reactions at the mem-
brane surface. This should be a good model for the hollow-
fiber membrane/enzyme reactor operated at low flow rate
such that Pe < 100 (Waterland, et al., 1974; Lewis and
Middleman, 1974). Further improvement in the results can
be attained by considering non-uniform entrance concentra-
tions and extending the problem to an infinite domain in-
stead of the semi-infinite one considered here. One can
also extend the approach to non-Newtonian flows (which
do not have parabolic velocity profile) such as polymer

solutions. Moreover, one could take into account osmotic
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pressure and convection across the membrane in the radial
direction. In either case the neglect of axial diffusion

can only be justified when the Peclet number is very large.
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APPENDIX A
THE MODIFIED NERNST-PLANCK EQUATION
Equation (5.1) repeated here,

Ny = = 249G, F¥¢ - D ¥e, - B Ip + c.u

is useful, but it is correct only for extreme dilution.
Our use of it in Chapter V is justifiable because our
chief purpose there was to obtain the form (particularly
the sign) of the concentration gradient contribution to
anomalous osmosis. Better numerical estimates of the
contribution can be obtained by starting with the more
exact equation of this Appendix.

Most common transport properties for electrolyte
solutions (mobility, transference number, conductance)
are defined and measured in the Hittorf frame of refer-
ence, where the diffusion fluxes are defined by

.J:I; = ca(ga - Bw) ’ (A.2)

where u, is the velocity of the solvent, water. The

absolute molar fluxes,

(A.1)

= cu_ , (A.3)
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are related to the Hittorf fluxes by

H _owol ooy
N, = c, 4 + 3, - (x /M) Z MBQB , o=1l,...,w-1
B=1 N

N, = ¢4 - (x,/M 2 MBB , (A.4)
where M is the mean molecular weight,

M = 2 XMy (A.5)
and the velocity u of the center of mass is given by

W
u = (vHM) [ MNg, (A.6)

g=1 P

where v is the molar volume of the solution.
For an isothermal single strong electrolyte, the
linear flux equations in the Hittorf frame are (Haase,

1969; Katchalsky and Curran, 1965)

.
+ =

.
| =
|
|
<
x:
|
1]

__vu! (A.7)

where the a,p are Onsager coefficients and the u& include
external potentials. For an ideal solution (or for a

sufficiently dilute solution),



206

Yu& = VaYP + RTYlnxa + zaFy¢ . (a.8)
Moreover,
Vinx, = V&nx_ ~ {l+vc[vwr-(z_v+-z+v_)(z_-z+)—l]}—122nc+ /
(A.9)

where, for an electrolyte of molarity c¢ which contains v,

moles of cation and v_ moles of anion per mole of electro-

lyte,
c, = Vv,c, c_=v_c,
V=V, +vVv_ ., 2z v +2zVv =0. (A.10)
In terms of more accessible experimental quantities,
the Onsager coefficients are, when a _ = a__ ,
a,, = (c,2%/z,F%\) + (v c,D/VRT)
++ +74+7 %+ + +
_ _ 2
a,_ =a_, = (c A x_/z_ F"A) + (v_c D/VRT)
_ 2
= (c_A A_/z F°A) + (v c_D/VRT)
_ 2 2
a_=- (c_A_/z_F°A) + (v_c_D/VRT) . (A.11)

The Aa in these formulas are the single ionic conductances,

which are related to the Hittorf transference number ta

by



i wnﬂ.lle




where A

and the
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A=At , a=+,- (A.12)

A=2Xx + 2 (A.13)
transference numbers sum to one,

b, +t_=1. v (A.14)

The diffusion coefficient D in (A.1ll) is the Fickian mutual

diffusion coefficient for the binary system. Instead of

conductances, earlier workers used mobilities W, defined

by

Thus,

and

= 2 _ 2
w, = A, /2 F w_=- X_/z_F
w_ = clv_A_+ v A uw . (A.15)
Z,Ww, - 2w = A/F2 (A.16)
+°+ -r-
W, - w = [(A/z,) + (A /z )/F>
+ - +/ %+ -4

[(t,/z,) + (t_/z)1(z,0, - z_w) . (A.17)
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Combining (A.7) through (A.l17), we find

33 = - {l+vc[vw-(z_v+-z+v_)(z_-z+)-l]}_1
X [D++z+RTw+(w+-w_)(z+w+—z_w_)_l]Yc+
- ¢,z wFV
- [cz,w (V.o-vw)(zw -2z w y~1
+947+ VT TS A A
+ v, (c v +c_v_) (D/VRT)]Vp
% = - (a+velv,~tz_v, -z v ) (z_-z,) "1} (D
-1
+ z_RTw_(w, -w ) (z w -2z w ) "]¥c
- c_z_w_FV¢
- [cz w (vw~-vw)(z,w -z w )_l
e et et L bt St et
+ v_(c v +c_v_) (D/VRT)]Vp . (a.18)
Now define D, by
. -1 ~
D, =D+ zawaRT(w+-w_)(z+w+-z_w_) , a=+,- . (A.19)

In order to make contact with the Nernst-Planck equation

rearrange the middle two parts of (A.1ll)

2
D (vRTa+_/y+c_) + (VRTA_A_/v_ 2z F7A)

(VRTa__/v_c ) - (vRTA+X_/v_z_F2A)

(vRT/v+c_)a+_ + (\)RTt_/v+)w+

(VRT/v_c )a __ + (VRTt /v_Jw_ . (A.20)
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(A.20) and (A.19) yield

Thus, the Einstein Relation RTwa = D, is valid only when
a =0 . Katchalsky and Curran (1965) have calculated

a,, » a__ and a,__ for Nacl Solutions. They find that for

0.01 M solutions, a,_ is about 4% of a, . and about 3% of

a__ ; for 0.1 M solutions, a __ is about 11% of a __, and

about 7% of a__ ; for 1.0 M solution a _ is about 21% of

a_, and about 14% of a__ . For greatest accuracy, the

a,_ term should be retained in (A.21). However, for

estimating effects, it is satisfactory to use Einstein

Relation.

wWith (A.19) and the further definitions

RTwa = D& ’ a=+,- (A.22)
and
B =czuw (vw-vow)lzw-2zow )_l
a alqPo VeV W le By me W
+ va(c+v++c_v_)(D/vRT) ’ (A.23)
and
D€ = {1l+vclv -(z v.-z.v ) (z -2 )-l}-lD (A.24)
o w -+ ST 0 %y a ' :
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The Hittorf diffusion fluxes become

+

c
- D/ V¢, - c,z wFV¢ - B Vp

.

1=

- D°Vc_ - c z w FV¢ - B_Yp . (A.25)

.

Note that Dg = Da for dilute solutions,

Substitution of these into (A.4) yields

_ - [nC_ = c c
N, = cu-{p -(x /M) [M,D +(v_/v )M D ]1}Vc,

- le,z v -(x /M) (M c z w +M c_z w )]FVo

- [B - (x /M) (M B _+M_B_)]Vp

2
]

c_u-{DZ- (x_/M) M,D] (v, /v_)+M_DT]}¥c_

- le_z_w_-(x_/M) (M, c .z w +M_c_z_w_)F7¢

- [B_-(x_/M) (M_B_-M_B_)]Vp . (A.26)

For high dilution x, << 1 and x_ << 1 and we have

+

N, = c,u - D Ve, = ©,2,9,FV¢ - B Vp , (A.27)

the modified Nernst-Planck Equation.



(5.29),

APPENDIX B

DERIVATION OF SOME INTEGRALS INVOLVING

MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

In the following we drive equations (5.25), (5.26),

(5.30), (5.31) and (5.32) which are not available

in published tables. We utilize the known relations

and

X
It -
0 xIO(x)dx = xIl(x) ’

X 2
0 on(x)dx

2-1201/2 , (5.24)

X
: szo(x)Il(x)dx = lei(x)/z ,

(dIo(x)/dx) = Il(x) ’

(dI, (x) /dx) = I,(x) - (I,(x)/2) . (B.1)

We also employ integration by parts,

b b b
é udv = uv|; - é vdu . (B.2)
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(1)

Let u = x2[I§(x) - Ii(x)]/Z and AV = 2xdx .

Integration by parts yields

X X X
! x3Ig(x)dx - x31§(x)dx =1 2x{x2[I§(x)—Ii(x)]/2}dx
X
= x4[Ig(x)—I§(x)]/2 - 6 x3Ig(x)dx
or
2 U312 () ax - 1 %312 (x)ax = 12 (x)-1%(x)1/2 (B.3)
0 ¥ 1p 0o ¥ 1 0 1 . -

Similarly, letting u = x3Il(x) and dV = Il(x)dx and inte-

grating, by parts, we obtain

(X032 3 X2 (X032

o X Il(x)dx = X Il(x)IO(x) - 2 0 X Io(x)Il(x)dx =0 ¥ Io(x)dx
or

(X.3.2 (X .32 3 2.2

0 ¥ Io(x)dx + o X Il(x)dx = X Il(x)IO(x)- X Il(x) (B.4)

where we have used (5.24). Solving (B.3) and (B.4) to-

gether, we find

3.2

Pl oax = (1/3){x4[1§(x)-1§(x)1/2 + x3Il(x)I0(x)—x21i(x)} (5.25)

and
X
! x3Ii(x)dx = (1/3){2x3Il(x)Io(x)—2x2Ii(x)-x4[Ig(x)

- Ii(x)]/2} X (5.26)
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(2)
Integration by parts with u = x2 and dv = Il(x)dx yields

Ix 2 2 Ix
0 X Il(x)dx X Io(x) - 2 0 xIO(x)dx

leo(x) - 2xI (%) , (5.29)

where we have used (5.24).

(3)

Letting u = lei(x) and 4dv = xIO(x)dx and integrating by

parts we obtain

X X
6 x3Ii(x)Io(x)dx = x3Ii(x) - 2 6 x3Ii(x)I0(x)dx
or
p'e
17 .312 =33
0 X Il(x)Io(x)dx X Il(x)/3 . (5.30)

(4)

Integration by parts with u = x2 and dv = xIO(x)dx yields
X x
17L3 _ .3 _ 1.2
o X Io(x)dx = X Il(x) 2 0 X Il(x)dx

x3Il(x) = axI (x) - 2x210(x) . (5.31)

where (5.29) has been used.

(5)
Let u = x4Io(x) and dv = Il(x)dx. Integration by parts

yields
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Ixx41 (x)I,( )dx—x412(x)- 4 Ixx312( ) dx - Ixx41 (x)I.(x)dx
0 0 pi¥lax=x 14 0 0¥ 0 1 0

or

X
Cxtrpeor max = 2 ze) + (1 /3) - @2 01,0 /3)

+ 2x’12x)/3) , (5.32)

where (5.25) has been used.



APPENDIX C

COMPUTER PROGRAMS

The three primary computer programs used in
Chapter VI are listed in this appendix. Program ROOTS
uses the half-interval method to calculate eigenwvalues
from (6.43). Program OCM utilizes the "Overdetermined

Collocation" method to evaluate linear combination co-

efficients for non-orthogonal functions. Program BULCON

calculates local axial bulk concentrations and overall
Sherwood numbers according to (6.55) and (6.58). A
15-point Gauss-Legendre quadrature formula is included

in BULCON to evaluate integrals.
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PROGRAM ROOTS
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PROGRAM OCM

PROGRAM 8CM (INPUT:OETPUT.BAPESS=I PUTQTAPE65=0UTP ToP NCH)
THIS PRS RAM USES THE OVERDETERMINED COLLOCATION M T0 FIND
THE LINEAR COMBINATION COEFFICIENTS OF AN EIGENVALUE PROBLEM wWITH
NON-ORTHOGONAL EIGENFUNCTIONS, SUCH THAT THE SOLUTIONS SATIFY THE
BOUNDARY CONDITIONS IN THE LEAST SQUARE ?ENSE
DIMENSION A(214+13)4,E(21413)9RBT(13)sSUM(2])
DO 34 J=146
AJ=J
XR=0s1%(AJ=1,)
PRINT 32
NO 33 M=1,11
AM=M
ZR=0.5% (AM=1,)
CALCULATE THE EIGENFUNCTION MATRIX
READ (SSe30) (RT(1)eI=)1,413)
NN R K=1+21
AK =K
R=0,05# (AK=1,)
DO A L=1,13
F(KoL)=C(BT (L) s XR4R)
CONTINUE
CONSTRUCT THE ORIGINAL EIGEN FN, MATRIX FOR DIFFERENT DISCRETE
INTERVALS
JTER=10
N=JTER+]
START TO MINIMIZE THE MEAN SNOUARE ERROR AND T0O OBTAIN THE
NORMAL EQUATIONS
2? lg)L:loJTER
[] =0
83%6S{MTSgT#S RULF TO EVALUATE THE INTFGRAL
=]y
Al=ISHI=1/2%HAI=AT1/2. $Q-0 0S# (Al-1,
IF (HY JEQe HAI) A(Lo )'(2.“9*(1.-(R¢R)01 #XR#XR#BT(L)®BT(L))IHE (T,
1L)Y+A(LWN)
IF (I JEQe 1 «ORe I +EN, 21) GO TO §
lli(éHL).NE. HAT) A(LIN)=(R#(]1,=(R#R) +]  #XR#XRE#BT(L)#BT(LII*E(TI L))
¢+ [
60 T0.6
A(LoN)=(0o5*R“(l.-(R*R)01.*XQ*XR*BT(L)“BT(L))*E(IoL))*A(LoN)
CONT INUE
NO 15 K=LsJTER
Al +K)=0.
USE SIMPSON#S RULE
DO 18 I=1,21
Al=ISHI=1/283HAI=A1/2.5R=0.05%#(AT-1,)
IF (L oNEe K) GO TO 4
IF (HI +EQe HAI) A(LoK)=2,#R# (] ,=(R#R)+]1+#XREXR#BT (L) #BT(LI)FE(ToL
1)2E(I4L) *A(LsK)
IF (I ,FQe 1 ,0R, I +EN, 21) GO TO 3
IF (H1 .Né. HAI) A(LsK)=R#(l.,=(R#R)+1, “XR*XR*BT(L)*BT(L))*F(IoL)“F
1(TtoL)+A(LoK)
60O T70.18
ééL%g)Tg oS#R# (1 o= (R¥RT+]1 ¢ #XR#XR#BT (L) #*RT(L)IFE(ToL)IRE(IsL) ¢+A(LWK)
léf (HT <EQe HAI) A(LoK)==2,#XR#XR#BT (K)#BT(K)#*R*E(TsLIRE(ToK)*A (Ll
IF (1 EQe 1 O0R, I «EQ. 21) GO TO 1
ég 4311.NE. HAT) A(LyK)--XR*XQ“BT(K)*RT(K)*R“E(IoL)*E(IvK)oA(LcK)
ééh;?&ﬁgﬂ «SH#XR#XREBT(KY#BT(K)#RHE(ToLIHE(I oK) +A(L oK)
IF (& eNEe K) A(KeL)=A(LIKIHRT(L)®BT(L) 7 (BT(K)®#BT(K))
CONT INUE
CONT INUE
BEGIN ELIMINATION PROCEDURE
DETER=IO
DO 23 I=14JTER
UPNDATF THE DETERMINANT
DETER=DETER#®A (I, 1)
CHECK FOR PlIvOT ELEMENT T00 SM/LL
IF (ABRS(A(IsI)) ,GTe 1.0E=15) GN TO 14
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