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\fl‘ ABSTRACT

O<f7 CONTINUUM THEORY OF TRANSPORT

ffl\ THROUGH CAPILLARY MEMBRANES

BY

Ping I Lee

Transport of fluids through membranes is treated

in the theoretical framework of continuum, nonequilibrium

thermodynamics. Analysis of theories in which the mem—

brane is regarded as a discontinuity shows that such ap-

proach cannot provide insight into phenomena within the

membrane and can be misleading when misapplied. Both one-

dimensional transport through capillary membranes with

charged capillary walls and two dimensional transport

through capillary membranes with semi-permeable walls are

treated in detail.

Comparison of the discontinuous approach of the

Kedem-Katchalsky type and the continuum approach shows that

(l) Kedem-Katchalsky theory is strictly applicable only to

homogeneous membranes for thermodynamically ideal binary

nonelectrolyte solutions; (2) For porous membranes, Kedem-

Katchalsky theory can be used only when the barycentric
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velocity is linearly related to the external forces; (3) For

porous membranes in isothermal binary solutions, reciprocity

of the local phenomenological coefficients is the natural

outcome of the linear dependence of the fluxes; and (4) For

homogeneous membranes and for porous membranes satisfying

(2), the Kedem-Katchalsky reciprocal relation LpD = LDp is

valid only when the solution is thermodynamically ideal

and the partial molar volumes of solute and solvent are

equal. Moreover, the phenomenological coefficients in

Kedem-Katchalsky theory in general depend on the driving

forces.

The continuum approach is then employed to analyze

the transport of electrolyte solution through a charged

capillary with radius larger than the thickness of the dif—

fuse double layer formed inside the capillary. Gradients

Of pressure, electrical potential and concentration are in-

cluded in the analysis, along with the concentration polariza-

tion of the electrical double layer. The Navier-Stokes and

Poisson-Boltzmann equations are solved for the velocity of

the center of mass of the flowing liquid mixture. The final

eXpression contains a concentration gradient term which

represents capillary osmosis and which has usually been

ignored. The general analytical expression for capillary

osmosis in circular capillaries reduces, for large ratios

of radius to Debye length, to that obtained by Derjaguin

for flat surfaces from thermodynamic consideration.
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The result for capillary osmosis is included in de-

veloping the theory of anomalous osmosis for capillary mem—

branes. For KCl solutions, which have nearly equal dif-

fusivities and mobilities, our equation predicts the same

direction, similar shapes and similar magnitudes of the

volume flow through both positively and negatively charged

membranes. This agrees with Grim and Sollner's data on

anomalous osmosis for KCl. Previous theories have not

achieved this agreement.

The continuum approach is also used to determine

two-dimensional concentration distributions and mass trans-

fer rates in tubular membranes with finite wall permeabili-

ties. Convective laminar flow and both axial and radial

diffusion are included. The partial differential equation

is solved in terms of Confluent Hypergeometric Functions.

A numerical scheme called the "Overdetermined Collocation"

method is used to overcome the difficulties of non-

orthogonality. Eigenvalues up to the 10th and linear

combination coefficients accurate to 9 significant figures

are reported for various Peclet and wall Sherwood numbers.

Radial concentration and local bulk concentration dis-

tributions and overall Sherwood number are also Obtained

for various values of Pa and Nsh .
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CHAPTER I

INTRODUCTION

Transport processes through membranes are the sub-

ject of rather extensive research in various fields ranging

from industrial desalination to biological nerve excitation.

Membrane research has occupied physical chemists, bio- .

physicists, biologists, physiologists, biochemists and

engineers since the 19th century. Teorell (1967) used

the name "Membranology" to describe the achievements,

problems and perspectives of these more or less isolated

group of researchers. Diverisifed as the individual

achievements may appear, it is yet possible to discern a

common, ultimate objective in the strivings of all mem-

branologists; gi3., transport phenomena.

The most intriguing transport phenomenon is the

coupling between various processes. For example, living

cells maintain a continuous exchange of matter with their

surroundings, and at the same time they preserve concentra-

tion differences between intracellular and extracellular

spaces. The membrane, which can be defined as a thin

phase of material different from that on either side of

it, generally exercises a complicated regulating function.



It allows material to pass through according to metabolic

requirements, and it is able to distinguish sharply between

similar compounds. It is often necessary for the cell mem—

brane to extend chemical energy in order to transport sub-

stances against their chemical potential gradient. Thus,

biological membranes act as both "barriers" and pumps."

Coupled phenomena are also prevalent in transport

through artificial, porous, charged membranes. A pressure

gradient generates not only bulk flow of electrolyte solu—

tion through the membrane but also an electrical potential

gradient across the membrane (streaming potential). A con-

centration gradient across the membrane produces flow be-

havior different from that described by Van't Hoff's

Theory. The flow does not vary linearly with concentration

but instead has maxima and minima. Moreover it is some-

times toward the more dilute solution (anomalous osmosis).

These conversions of mechanical energy into electrical

energy and of chemical energy into mechanical energy sug-

gest consideration of artificial membrane as an energy

converter.

It was not until recently that the rational de-

scription of these coupled phenomena was made possible by

the theory of nonequilibrium thermodynamics. Kedem and

Katchalsky (1958) formulated a membrane transport theory

with the inclusion of coupling by a discontinuous



nonequilibrium thermodynamic approach. This theory has

been very pOpular among biologists. Spiegler (1958)

pioneered a friction coefficient model, which afforded

greater insight into the interactions inside the membrane.

However, these "black box" type theories tend to rely

heavily on lumped experimental parameters which conceal

our ignorance of the exact physical nature of the processes

inside the membrane. Kobatake and Fujita (1964) employed a

continuous nonequilibrium thermodynamic approach but were

only partially successful in predicting the results of Grim

and Sollner (1957) on anomalous osmosis. They failed to

predict the observation that KCl solutions flow in only

one direction and to about the same extent in both posi-

tively and negatively charged membranes. Since then,

various other continuum theories (3:. Toyoshima, et al.,

1967; Fujita and Kobatake, 1968; Gross and Osterle, 1968;

Fair and Osterle, 1971) have been develOped. However,

they are all unsatisfactory in one way or another. This

will be discussed in more detail in Chapters VI and V.

The purpose of this Thesis is to present a systematic

continuous, nonequilibrium thermodynamic theory of transport

processes through capillary membranes. In addition to the

utility of the final equations for describing actual pro-

cesses, the systematic treatement affords greater insight

into the internal mechanisms involved.



Previous inconsistencies, such as the application of electro-

kinetic equations for uniform solution concentrations to

systems in which concentration variations dominate, are

avoided.

The general hydrodynamic and nonequilibrium thermo-

dynamic equations for transport processes in multicomponent

system are presented in Chapter II. Chapter III deals with

membrane transport phenomena in general. Particular em-

phasis is placed on the relationship between the type of

membrane (porous, semipermeable, etc.) and the method and

result of flows. The mechanism of ordinary osmosis is dis—

cussed in detail. We also clarify the difference between

various reference frames in membrane transport. Finally,

we compare the Kedem-Ketchalsky theory with the more rig-

orous continuous nonequilibrium thermodynamic theory and

show that the Kedem-Katchalsky theory is strictly valid only

for homogeneous membranes at infinite dilution.

Chapters IV and V are concerned with flow through

charged circular capillaries in the presence of a concen-

‘tration gradient. Capillary osmosis, which occurs when

1:here is a diffuse double layer along a wall to which a

concentration gradient is tangential, is itself analyzed

iJ: Chapter IV and is included in the analysis of anomalous

osmosis in Chapter V. In Chapter IV we consider the con-

centration polarization of the electric double layer and



derive, from the Navier—Stokes equation and the Poisson-

Boltzmann equation, a general analytical expression for

the capillary osmotic velocity distribution in a charged

cylinder. In the limit of zero concentration gradient,

our barycentric velocity equation reduces to the equation

for ordinary electrokinetic flow in capillary tubes. In

the limit of large ratios of radius to Debye length, our

equation reduces to that obtained by Derjaguin, et a1.

(1969) for flat surfaces by classical thermodynamics. In

Chapter V we develop a theory which successfully describes

anomalous osmosis as observed in charged porous membranes.

We use the capillary membrane model described in Chapter IV,

and take into account capillary osmosis. The capillary

osmosis term is of the same order of magnitude as the

electroosmosis term under the experimental conditions of

anomalous osmosis. The results agree with Grim and 8011-

ner's data on anomalous osmosis of KCl solutions through

.both positively charged and negatively charged membranes.

Finally, in Chapter VI we solve a general problem

of'laminar flow convective diffusion, including axial dif-

fusion, through tubular membranes of finite wall per-

Imeabilities. The partial differential equation is solved

iJa terms of Confluent Hypergeometric Functions. A numeri-

<3a1.scheme called the "Overdetermined Collocation" method

is used to overcome the difficulties of nonorthogonality.



Eigenvalues (up to the 10th) and linear combination coef-

ficients to 9 significant figures for various Peclet number

(Fe) and wall Sherwood number (Nsh ) values are reported.

Radial concentration and local bul: concentration distri—

butions and overall Sherwood number are obtained for

various values of Pa and NSh .
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CHAPTER II

EQUATIONS OF TRANSPORT

A. Introduction
 

In this chapter we lay the foundation for the dis-

cussion of transport phenomena in multicomponent systems.

We cOnsider only continuous, isothermal, isotropic fluids

in which no chemical reactions occur and which are subject

to a variety of driving forces (gradients of concentration,

pressure, electric potential), but not to a magnetic field.

We begin by presenting the necessary conservation equations

in their most general form and then the general set of phe—

nomenological equations of nonequilibrium thermodynamics.

Specialized equations used in the study of membrane trans-

port processes are deduced along with appropriate boundary

conditions. For a more detailed discussion of the trans—

port equations see, for example, Kirkwood and Crawford

(1952), Bird, Stewart and Lightfoot (1960), de Groot and

.Mazur (1962), Pitts (1962), Horne (1966), Hasse (1969) and,

particularly for transport in living systems, Lightfoot

(1974).

B. Equations of Hydrodynamics

The behavior of a flowing liquid in which heat

and mass transfer occur is described by the conservation



equations, along with general thermodynamic equations of

state. The conservation equations are partial differential

equations which describe the change in macroscopic prOper-

ties of the fluid (for example, the local density, center

of mass velocity and temperature) in terms of the mass

flux, momentum flux and energy flux. The basic equations

of continuity, motion and energy balance correspond re-

spectively to the fundamental principles of conservation

of mass, momentum and energy. These equations have been

derived for very general conditions both in classical and

quantum theory.

Equation of Continuity

In the absence of chemical reactions, for a fluid

mixture containing v chemical species, the 0 independent

equations of continuity of mass are

(dp/dt) + o y - u = o (2.1)
~

II

C

‘

and p(dwa/dt) + V '2a o=l,...,v, (2.2)

(2.1) is for the fluid as a whole and (2.2) is for com-

;ponent a. Equivalent eXpressions for (2.2) are

(2.3)<

o

D

II

0(Boa/3t) + .

or' (ECG/3t) + y - N = 0 , (2.4)



where p is total mass density, wa is mass fraction, p

w p , u is the center ofis partial mass density with pa Q ~

mass, or barycentric, velocity, ga is the velocity of com-

ponent a with respect to a laboratory reference frame, Co

is the molar concentration and jo and Na are respectively

the mass diffusion flux and total molar flux of component

a. The barycentric velocity u is defined by

v

u = E w u . (2.5)

The diffusion flux ja is defined by

j = p (u — u) , o=l,...,v . (2.6)

j = o . (2.7)

The total molar flux is defined by

I30L = Co 9a = (pd/Ma) go ' (2'8)

‘which is related to the mass diffusional flux ja by

ya = ca 9 + (Ea/Ma) , (2.9)

tihere Ma is the molecular weight of component a. Sub-

stantial time derivatives d/dt are related to local time

derivatives B/at by
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(d/dt) = (a/at) + g - y , (2.10)

which represents the time rate of change following a fluid

element which is moving with a velocity u. The operator

"2" is defined by

y = i (B/ax) + j (a/ay) + k (8/82) , (2.11)

where i, j and k are the unit vectors of the three dimen-

sional Cartesian coordinate system. For more detailed

analysis in other coordinate systems, see, for example,

Bird, Stewart and Lightfoot (1960).

Equation of Motion

The general equation describing the isothermal flow

of a Newtonian fluid is the Navier-Stokes equation. It is

based on Newton's Second Law of Motion, supplemented by

Newton's hypothesis of fluid friction that the shearing

stress is directly prOportional to the rate of strain. It

Inay be written as (Horne, 1966)

p(dg/dt) - v - = p2 , (2.12)

(
I
Q

‘where 93 is the net external force and where g is the stress

tensor. The net external force is related to the external

forces acting on component a by

V

03 = 2 p Z (2.13)
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where the bar indicates that it is a specific quantity.

When there are only gravitational and electric fields

p X = - M yr - z Fyo , (2.14)

where za is the ionic charge per mole of a , F is Faraday's

constant, T is the gravitational potential and ¢ is the

electrostatic potential. The stress tensor g is given

approximately by the Newtonian linear phenomenological

relation

2
g = — [p+ ('3'” —(p) ($13)] §+ 2n smeu , (2.15)

where g is the unit tensor, p is the pressure, sym Eu is

the symmetric part of the tensor Eu , and n and w are the

coefficients of shear viscosity and bulk viscosity, re-

spectively. Combination of (2.12) and (2.15) yields the

Navier-Stokes equation:

p(dg/dt) + VI§n - ¢) E-u] - 2Y°n sym YB

= Q? — Vp . (2.16)

Another form of the Navier-Stokes equation can be obtained

by introducing (2.10) into (2.16) and rearranging,

9(39/3t) + 09°29 = OK - Yp + nyzu

+ (%—n + (NYUZ'g) , (2.17)

‘where we take n and V to be constants.
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Bearman and Kirkwood (1958) have derived macro-

scopic equations of motion for each component of a multi-

component system by the use of statistical mechanics;

similar results have also been obtained from the considera-

tion of rational (or continuum) mechanics (Bartelt, 1968;

Bartelt and Horne, 1970; Ingle, 1971). Their equations are

get/at + 2400,99) = na V g + (—na +50a)\2(‘2°g)-c £711

, a=1,...,v , (2.18)

where ”a is the isothermal chemical potential of component

a in molar units (not including the external potential),

F; is the total frictional and thermal force in molar

units which arises from intermolecular forces, caXa is the

external force acting on componentcx, with Gaga = pagd

and no and In are the partial coefficients of shear vis—

cosity and bulk viscosity, respectively. These quantities

have the pr0perties that

‘2’ ‘2’n: n I )0: I

a=1_ a a=1 Yb

‘2’ c 5* = 0
o=1 o a

0

Z CaYua = Yp - (2.19)

a=l
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When (2.18) is summed over all components with the help of

(2.19), the macroscopic Navier-Stokes equation (2.17) is

obtained.

Since the general solution of the complete time

dependent Navier-Stokes equation is not possible, various

approximation schemes must be invoked. If the system con-

sidered is at steady state, which implies (Bu/8t) = 0,

then

go - x = anu + (3” “Hwy-9) - pg :79. (2.20)

In addition, most fluids except very dense ones and very

dilute ones are essentially incompressible. For an in—

compressible fluid, the density p is constant in time and

position. Thus according to (2.1),

Y°s=0

The Navier-Stokes equation for an incompressible fluid in

a steady state is, then, for constant n ,

— 2
Yp - pX = nV g - pu.°Vg . (2.21)

Furthermore, for slow flow characterized by small Reynolds

number (of, say, the order of 1), the inertial term pu-Vu

is very small in order of magnitude compared with the

viscous term anu . Omission of inertial terms results

5J1 the so-called creeping motion or Stokes equation,
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yp - p3 = anu (2.22)

The Reynolds number is defined as

Re = zup/n . (2.23)

This dimensionless parameter describes in a general way

the ratio of inertial to viscous forces, where 2 and u are

characteristic linear dimension and velocity, respectively.

Thus, the smaller the Reynolds number, the better the ne-

glect of the inertial term. (2.22) is quite satisfactory

in most membrane systems, where the flows are slow and the

Reynolds numbers are smaller than one. For more detailed

discussion of low Reynolds number flow, see Happel and

Brenner (1965).

Equation of Energerransport
 

The general equation of Conservation of energy is

(apET/at) + y - gE = o , (2.24)

T

is the total energy flux and where E is thewhere g T

ET

total specific energy,

if = E + 1/2 u2 , (2.25)

where E is the specific internal energy not including ex—

ternal potentials and u2/2 is the local kinetic energy of

the center of mass. Note also that
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u = u - g . (2.26)

It is possible, however, to obtain the kinetic energy by

summing over the kinetic energies of the components (Bar-

telt and Horne, 1970; and Ingle, 1971). We assume that

the difference between the two definitions is negligible

for the present purpose (Horne, 1966).

The energy transport equation can be expressed as

v

0(dE/dt) = - 37,-: +3: Vu + 2 j , (2.27)

where :3 is the internal energy flux not due to the bulk

flow. The first term on the right represents the change

of internal energy due to internal energy flux (this in-

cludes, in an isothermal system, energy flux due to a con-

centration gradient and energy transport by molecular dif-

fusion); the second term includes both the internal energy

change due to the PV-work, and that due to viscous dissi—

pation; and the third term describes the change due to

the work done by diffusing molecules to overcome the ex—

'ternal forces. The internal energy flux is related to the

total energy flux by
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The internal energy flux can further be related to the second

law heat flux q by

in = 5.1 I
(2.29)

||
M
C

2
L
.
)

m
l

where Hg is the partial specific enthalpy of component a.

C. Equations of Nonequilibrium Thermodynamics

The previous sections are all based on conservation

equations. In order to relate the mass, momentum and energy

fluxes to concentration, pressure, electrostatic potential,

velocity and temperature gradients as required by most

physical problems, one has to introduce a set of con-

stitutive equations from nonequilibrium thermodynamics

and reduCe them with the aid of a fourth fundamental prin-

ciple, the entropy inequality. We could start from the

rational, fundamental approach of Truesdell (1969), Mfiller

(1968), Bartelt (1968), Bartelt and Horne (1970), Gyarmati

(1970) and Ingle (1971). However, for simplicity, we adOpt

the conventional approach represented by de Groot and Mazur

(1962), Fitts (1962), and Hasse (1969). It has to be em-

;phasized that the more fundamental approach gives the same

results for the simple systems investigated here (Bartelt

and Horne, 1970).

We now introduce two fundamental assumptions of

conventional nonequilibrium thermodynamics for the system

under consideration. The first assumption is:
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Postulate I: The principle of local state

For a system in which irreversible processes are

taking place, all thermodynamic functions of state exist

for each element of the system. These thermodynamic quan-

tities for the nonequilibrium system are the same functions

of the local state variables as the corresponding equilib-

rium thermodynamic quantities.

The second assumption is

Postulate II: The assumption of locally linear fluxes

The fluxeijxare linear, homogeneous functions of the

forces 3a . That is

v

j = X L Y . (2.30)

The forces XS are "driving forces" for the fluxes; for

example, YinT is the driving force for heat flux q. The

phenomenological coefficient LOB are independent of the

forces. The diagonal coefficients Lad relate conjugate

fluxes and forces, while the off-diagonal elements

La8(a#8) characterize cross phenomena. As in the case

of postulate I, postulate II is presumably most nearly

valid when the system is close to equilibrium. Thus,

both postulates apply to systems with small spacial and

time nonuniformities of the local thermodynamic variables.

By postulate I, we may use the Gibbsian equation

for dE
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dE = TdS — pdV +

II
M
C

“a dwa , (2.31)

a 1

where S and V are respectively the specific entropy and

the specific volume, and Ed is the chemical potential of

component a in mass units,

_ _ e
Maud — “a — ua(T,p) + RT in aa , (2.32)

where “a is the chemical potential of component a in molar

units, MO is molecular weight ofcx, T is absolute tempera—

ture, p is pressure, R is the gas constant, a is the

activity of component ,

a = x f (2.33)

with xa the mole fraction of component a and where u:

and the activity coefficnet fa are defined relative to an

apprOpriate standard state in which there are no effective

external fields. Note that fa is a function of temperature,

pressure and composition. Since we treat only aqueous

solutions here, the apprOpriate standard state is the pure

solvent (denoted by the running index 1),

“a = 21m [pa - RT inxa] (2.34)

xl+1

whence
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Rearranging (2.31) and differentiating with reSpect

to time, the rate of entrOpy production,

p(d§/dt) = p/T(dE/dt) - (p/pT)(dp/dt)

C

- (o/T) 2 Ha (dwa/dt) . (2.35)

o=l

Substitution of (2.1), (2.2) and (2.27) into (2.35) yields

for entrOpy production equation,

p(d§/dt) = oyT - v '35 , (2.36)

with the internal entrOpy production OVT written as the

sum of two terms (again for an isothermal system)

¢VT = ¢1+¢2/T I (2.37)

¢1 = <9+PI>=Y9

V —

¢2 = - 2 36 ° Y & (2.38)

o=1

v ——

where gs = q/T + 2 Ease

o=l

Yua = Qua - xa . (2.39)

Although it would seem that from postulate II we

should relate all the conjugate driving forces and fluxes,
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one does not have to consider all the interactions indi-

cated by (2.20). It can be shown on the basis of symmetry

(Curie's theorem) that, for isotrOpic systems, coupling

can occur only between driving forces and fluxes of the

same order or between those which differ in tensorial

characters by even integers. This implies that only

23; is related to ja . By postulate II, the linear

phenomenological equations are

9 XII1 GB o=1,...,v , (2.40)I

A
.
)

Q

II

u
M

C

' I

B B

where the 9's are the phenomenological, or Onsager co—

efficients. These coefficients are not all independent

9&8 = 0 , B=1,...,v . (2.41)

I
I
M
C

o 1

Furhter, due to the requirement of positive entrOpy pro-

duction, it has been shown (Bartelt and Horne, 1969) that

v

E 9&8 = o, o=1,...,v . (2.42)

Thus, for the 0-1 independent fluxes jl"'°’jv’ the linear

phenomenological equations are

n y(u' - HQ) a=1,...,v-l . (2.43)
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If the fluxes and forces of (2.43) satisfy Onsager's

(1931) condition, then the matrix of Onsager coefficients

is symmetric; i.e. QOB = 98a for o,8=l,...v-l

However, since total experimental verification of the

Onsager Reciprocal Relations (ORR) is still an Open ques-

tion (Miller, 1960, 1969), we only accept them as postu~

lates. We discuss applicability of the ORR in membrane

transport systems in the next chapter. For most purposes

it is more convenient to use (2.40) and consider the

phenomenological coefficients as conductance coefficients.

However, sometimes it is useful to invert (2.43) so that

the forces can be eXpressed as linear functions of the

fluxes. The result is

- 2(ué- u ) = E R jB (2.44)

with the resistance coefficient

ROB = [GIGS/[0| , a,B=1,...,v-l , (2.45)

where [Q] is the determinant of only those phenomenological

coefficients which appear in (2.43) and IQIQB is the appro-

priate cofactor. If the matrix of 0&8 is symmetric, then

the matrix of ROB is also symmetric.

The friction coefficient description of Bearman

and Kirkwood (1958) and Bearman (1959) is equivalent to

this resistance coefficient formulation.
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The expression for the chemical potential gradient,

which appears in (2.40),(2.43) and (2.44) has the form

(Horne, 1966)

—' g —' = on

Magua Qua vayp + RTYlnaa + Mag? + zaFYO . (2.46)

The Gibbs-Duhem equation including the external forces can

be expressed as

v

Yp — p3 = z p VLI' . (2.47)

In (2.46), v: is the partial molar volume at infinite dilu—

tion and is related to the partial molar volume of component

a by

v"" = zim v , (2.48)
C! O.

x1+1

this implies the equality of v: and Va at thermodynamic

ideality.

Due to the arbitrariness of choosing the fluxes

and forces in (2.38), one can define the fluxes and forces

differently in order to suit particular purposes. Scatter-

good and Lightfoot a965, 1968) and Lightfoot (1974) have

chosen, instead of all the diffusional fluxes summed to

zero, all the forces summed to zero. They end up with a

set of Stefan-Maxwell equations and a set of Stefan—Maxwell
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diffusivities show a smaller composition dependence than

the usual phenomenological coefficients and they reduce

to the more familiar Fickian diffusion coefficient for

ideal binary solutions. For the purpose of this Thesis

we use only the conventional linear phenomenological

equations (2.43) and (2.44). In fact it can be shown

that the Stefan-Maxwell equations are equivalent to (2.44).

For more general discussion about the physical

implication of various phenomenological coefficients, see

Pitts (1962), de Groot and Mazur (1962), Haase (1969),

Horne (1966) and Lightfoot (1974).



CHAPTER III

CONTINUOUS AND DISCONTINUOUS APPROACHES

OF MEMBRANE TRANSPORT PROCESS

A. Introduction
 

The system used in most passive membrane transport

experiments consists essentially of two large reservoirs

(regions I 8 II) containing an isotrOpic, 0 component

solution, connected by a small capillary, porous wall or

another homogeneous phase as a membrane (region III). In

general the reservoirs may differ in pressure, solute con—

centration and electrical potential (we consider only

isothermal systems in this thesis). The membrane may be

itself charged or uncharged. However, no chemical reac-

tions occur in the three regions.

There are two types of treatment of passive mem-

brane tranSport processes. If one considers the region

III as so small that it can be almost disregarded, then

in passing from region I to II the state variables (or

the thermodynamic prOperties) suffer discontinuous jumps

and the system is usually referred to as a discontinuous
 

system. In this case the membrane is treated as a black

box, and no detailed knowledge of the structure or func-

tion is required. All flows and driving forces refer to

24
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regions I and II, while the membrane merely appears as a

barrier which sustains finite differences in pressure,

concentration and electrical potential. The transport

equations are in finite difference form, and the phenome-

nological coefficients appearing in them can be used to

characterize the membrane.

In some cases it is possible to analyze the flow

inside the membrane in terms of the differential transport

equation obtained in Chapter II where the state variables

(or thermodynamic prOperties) are continuous functions of

Space coordinates and of time. This is usually referred

to as a continuous system. In order to be applicable ex-
 

perimentally, the differential transport equations for the

continuous system have to be integrated across the membrane

for some model membrane structure. The final working

equations are expressed in terms of the differences in

state variables (or thermodynamic properties) of regions

I and II. These are the same as those for the discontinuous

systems. However, by going from a continuous to a discon-

tinuous formulation, one can obtain an explicit knowledge

of the empirical phenomenological coefficients in terms of

more fundamental prOperties of the solution and the mem-

brane, such as diffusion coefficients, viscosity coeffi-

cient, charge density, pore radius, concentration, dielectric

constant, etc. More importantly, one can also gain a better
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understanding of the mechanism of various membrane processes.

This point will be emphasized in the next few chapters.

There are generally three classes of membranes.

de Groot and Mazur (1962) distinguish only two classes,

while Mears, et a1. (1967) classify four types. However,

three classes are enough for the present purpose: (a)

MacrOporous membranes-~relatively large capillaries or

pores compared to the mean free path of the molecules

(say greater than 25°A radius). Species are transported

through these pores primarily by convective flow. (b)

Microporous membranes--the dimension of the pores is

smaller than the mean free path of the molecules (very

small pores). Species are transported through these pores

by convection as well as by diffusion. (c) Homogeneous

membranes--a separate homogeneous phase, sometimes con-

sidered as a solvent through which permeants are trans-

ported by diffusion. In cases (a) and (c), the fluid may

be treated as a continuum and the flow in the membrane may

be described by local macroscopic transport equations.

From these the phenomenological equations describing trans—

port between regions I and II as a discontinuous system can

be derived by integration with the inclusion of appropriate

boundary conditions at the membrane/solution interfaces.

Relevant boundary conditions include equilibrium distribu—

tion coefficients and pressure and concentration discon-

tinuities. These boundary conditions are generally due to



27

membrane structural and chemical factors and cannot be

accounted for by an inert continuous membrane model which

is Open to both the solute and solvent (Eiiit one dimen-

sional models or capillary models). Many authors (Kobatake

and Fujita, 1964; Gross and Osterle, 1968; Fair and Osterle,

1971; Chen, 1971) have attempted to derive discontinuous

membrane equations from continuous local transport equations.

However, they fail to include these structural boundary con-

ditions, which give rise to the ordinary osmotic phenomenon.

In case (b), the mean free path of the molecules is

larger than the pore dimension, and the collisions between

fluid molecules and bounding surfaces become more important.

There are fewer molecules in the flow cross section, and

the continuum description of the transport becomes less

precise. It seems reasonable to suppose that, even then,

the continuum description should retain some validity in

a statistical sense. In fact, Levitt (1973), who has done

molecular dynamics calculations on kinetics of diffusions

and convection in small pores, has shown that the continuum

hydrodynamic theory can be extrapolated, at least qualita-

tively, to pores 3.2 A in radius! Therefore, the discon-

tinuous membrane equation can still be obtained from local

transport equations although they have to be used with

caution for membranes of class (b).

In the following sections, we illustrate the

mechanism of ordinary osmosis and the boundary conditions
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that describe this. We then discuss transport equations

and reference frames for these three different types of

membrane. We also derive the discontinuous membrane trans-

port equations from the local equations and compare them

with the widely used Kedem-Katehalsky formulation.

B. Mechanism of Ordinarnysmosis

The passage of water through semi-permeable porous

membranes is of great interest in many fields. Two mecha-

nisms of osmotic flow have been considered. These are (1)

diffusion of solvent down a gradient of chemical potential

and (2) bulk flow through pores under a hydrostatic pressure

gradient.

Discussions of semi~permeabi1ity have usually been

concerned with non-ionic solutes whose molecules are suf-

ficiently large to be excluded from the pores by mechanical

sieving. Two kinds of experiments are common: (1) eXperi-

ments with an osmotically induced volume flow and (ii)

self-diffusion experiments with isotOpically labelled

water. Some conceptual difficulties have resulted from

the following experimental observations: (a) A hydrostatic

pressure difference and an equal osmotic pressure differ-

ence produce the same flow through a semi-permeable mem-

brane (Mauro, 1957, 1960). (b) The volume flow produced

by a difference in total chemical potential may differ
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from (and can be much greater than) the self-diffusive

transfer produced by an equal potential difference arising

from an isot0pic concentration difference (Durbin, Frank

and Solomon, 1956).

Chinard (1952) gave a careful and detailed account

of the case in favor of diffusion as the main mechanism of

solvent transport. This is consistent with the homogeneous

membrane discussed in the last section, which is capable of

water transport due to the chemical potential gradient.

However, Chinard's viewpoint cannot explain the result (b)

above observed for porous membranes. On the other hand,

the result (b) is consistent with the vieWpoint (Pappen—

heimer, 1953; Koefoed-Johnson and Ussing, 1953) that

osmotic transfer takes the form of a pressure induced

bulk flow.

A thorough, but less fundamental comparison of

the two theories as applied to plant membranes has been

given by Ray (1960) and later on improved by Dianty (1963).

However, they all consider rapid water diffusion at the

pore exit. This notion of joint diffusion-viscous flow

has been criticized by Philip (1969).

It is not obvious how the concentration difference

across a semi-permeable porous membrane could induce bulk

flow when there is no measurable pressure difference across

it. However, there is ample experimental evidence that
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this is so, and the mechanism of the phenomenon has been

proposed by Mauro (1957, 1960), who acknowledged his debt

to Onsager and by Longsworth (1960), who acknowledged his

debt to Kirkwood.

Thermodynamically, the total chemical potential

across a semi-permeable membrane separating pure water

and a solution at the same hydrostatic pressure also at

steady state, and in the absence of external fields must

vary continuously across the membrane (Fig. 3.1). At

each point in the pore the total chemical potential con-

tains contributions due to the water concentration (or

activity) and the hydrostatic pressure. If the mechanism

of semi-permeability is the total exclusion of solute from

the pores of the membrane, the steep change (or discon-

tinuity) of the water concentration in the interfacial

layer at the pore opening between the pure water phase

and the solution phase must be accompanied by a steep

change in the hydrostatic pressure. The pressure change

in the interfacial layer is sustained by the interface.

The pressure change along the pore will cause a flow of

water through it; i;g;, the osmotic flow. Hence, an

osmotic pressure difference (or concentration difference)

across the semi-permeable membrane produces water flow by

exactly the same kind of mechanism as a hydrostatic pres«

sure difference.
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Molecularly, the total reflection of the solute

molecules and the partial transmission of the solvent

molecules at the membrane/solution interface causes an

asymmetry in the momentum transfer by the thermal motions

of the molecules. Since the average momentum transfer is

prescribed by the hydrostatic pressure of the phase, the

asymmetry (or deficiency) in momentum due to the finite

size of the pore gives rise to a sharp change in the pres-

sure sustained by the interface in the interfacial layer

and a pressure gradient within the pore. Since the pore

is filled with water this pressure gradient inside it

causes a flow in exactly the same way as a directly ap-

plied hydrostatic pressure gradient.

In the self-diffusion of water through porous

membranes no asymmetry in momentum transfer accompanies

the gradient of labelled water, therefore no bulk flow

occurs. This is the explanation of the result (b) men-

tioned in this section.

The pressure and concentration profiles in a semi-

permeable membrane at osmotic equilibrium are shown in

Fig. 3.2. In comparison with the profiles for steady-

state osmotic flow in Fig. 3.1. We see that the sharp

changes in pressure and concentration in the interfacial

layer between the pure water phase and the solution phase

are always sustained by the interface, and it is only the
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gradient of pressure or concentration inside the pore that

gets equilibrated. It must be emphasized that the inter-

facial layer, across which the sharp changes of pressure

and concentration occur, is not a diffusion layer which

could be removed by effective stirring; its thickness is

determined by the membrane pore and surface structure and

by the dimensions and mean free path of the molecules.

It is now widely accepted that osmotic flow of

water through a membrane which contains pores is a pres-

sure induced bulk flow. The mechanism given here can be

generalized to membranes which separate solutions of dif-

ferent concentrations and to cases of incomplete solute

exclusion. Renkin (1954) has considered the case of in-

complete solute exclusion and has calculated the perme-

ability of pores to molecules of various sizes. By using

this treatment and assuming that flow in the pores could

be described by Poiseville's law, Durbin, Frank and

Solomon (1956) have shown that the study of the permeation

of non-ionic solutes of graded sizes in molecular diameters

permits an estimation of effective total area and radii of

the pores in a membrane. For membranes with adsorption of

solute and solvent in the pores, the adsorption force

field affects the steady state pressure distribution

during osmosis because the adsorption force also contri-

butes to the total chemical potential (Banin and Low,
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1971). In the case of charged porous membranes, ordinary

osmosis is still effective, but additional phenomena due

to the charge occur simultaneously. This is discussed in

detail in the next chapter. For more detailed discussion

of the mechanism of ordinary osmosis see Mauro (1957, 1960),

Longsworth (1960), Mears (1966) and Philip (1969).

C. Mechanical Restraints and
 

Reference Frames
 

In the nonequilibrium thermodynamic study of

transport processes in free solution, the local center of

mass is the usual reference frame for diffusional flows

(de Groot and Mazur, 1962). Other available reference

frames are the local center of volume or any of the in-

dividual components of the system, particularly the sol-

vent. In membrane transport, the most convenient refer-

ence frame, both eXperimentally and theoretically is the

one fixed on the membrane itself because the membrane

does not move. Therefore it is advantageous to transform

the reference frame from the local center of mass, upon

which almost all the transport equations are based, to

the membrane framework. In doing so, it is necessary to

ascertain whether or not such changes of reference frame

preserve Onsager Reciprocal Relations in the local phe-

nomenological equations. Coleman and Truesdell (1960)

have shown that the transformations of fluxes and forces
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have to follow certain transformational prOperties in

order to preserve the reciprocal relations. Kirkwood,

et a1. (1960) gave a detailed discussion on the importance

of reference frames in testing the Onsager Reciprocal Re-

lations for isothermal diffusion in liquids. We demon-

strate in the next section the effect of changing refer-

ence frames on the Onsager Reciprocal Relations in a mem—

brane transport system. For the time being we consider

the effect of mechanical restraints and reference frames

on the total entrOpy production and the phenomenological

equations.

It is a common practice, without justification, to

consider the membrane system to be in a state of mechanical

equilibrium (Katchalsky and Curran, 1965; Hanley, 1967,

1969) such that, according to Prigogine's theorem (Prigo-

gine, 1955), in the entropy production ¢2 of Eq. (2.38)

the barycentric velocity u occurring in the definition of

the diffusion flux ja can be replaced arbitrarily by

another velocity. In this case the membrane velocity is

a natural choice because it is essentially zero. Accord-

ing to de Groot and Mazur (1962), the mechanical equilib—

rium state is the state in which both the acceleration

du/dt and the velocity gradient Vu vanish and therefore

also the stress tensor may be neglected. Bartelt and
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Horne (1970) derive necessary and sufficient conditions

for mechanical equilibrium. At mechanical equilibrium,

the Navier-Stokes equation (2.16) has the form

93 - Yp = 0 . (3.1)

The Gibbs-Duhem equation (2.47), for the mechanical

equilibrium state, becomes

= 0 . (3.2)

Based on (3.2), Prigogine's theorem follows immediately

from (2.38):

V

¢2 = - X j ° 95' (2.38)

(3.3)
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where ua is an arbitrary reference velocity. When the

membrane is taken as the reference frame, 92 = u = 0

with 9m the membrane component velocity. Eq. (3.3) re-

duces to

, (3.4)

where g (3.5)u

"
D

a
s

Eq. (3.4) and its integrated form are used in a

large number of membrane transport literatures (see, for

example Katchalsky and Curran, 1965) without questioning

the validity of the mechanical equilibrium assumption.

Generally, in macroporous membranes (class a) and some-

times in microporous membranes (class b) where viscous

flow dominates, mechanical equilibrium does not hold.

In order to demonstrate this, we distinguish between the

cases when the membrane can be taken as a component and

when it cannot be.

Mikulecky and Caplan (1966) and Mikulecky (1969)

have considered the membrane as a component for macro-

porous membranes, but the entrOpy production they ob-

tained for the membrane system is the same as the one

which excludes the membrane as a component. This is be-

cause they make the trivial assumption that the partial

mass density of the membrane, pm , is zero.
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Besides, although they intended to derive the entrOpy pro—

duction for stationary situations in which mechanical

equilibrium does not necessarily hold, they implicitly

adopt the requirement of mechanical equilibrium (see their

equations (5) and (6)). Therefore the validity of their

final results is questionable. Hanley (1967, 1969) later

discussed the cases in which the membrane may or may not

be taken as a component. He also reconciled the continuous

and discontinuous approach for the case that the membrane

is treated as a component. However, he and most other

authors have failed to recognize that in either case the

membrane component is fixed in space by an external con-

straint which is generally not accounted for in the trans-

port equations.

More than a decade ago, in dealing with diffusion

in porous media, Vink (1961) and Evans, Watson and Mason

(1962) simultaneously, but independently, introduced the

idea of an external constraint on the lattice component

of the porous media. The external constraint acts only

on the lattice and arises simply from whatever clamping

system the experimenter uses to keep his porous diaphragm

from being moved along just like any other diffusing

Species. This is described mathematically as if a sepa—

rate body force acted on each constituent of the lattice

to keep it stationary. Aranow (1963), Scattergood and



39

Lightfoot (1968) and Lightfoot (1974) later applied this

to membrane transport systems.

Based on this we shall derive, from the equation

of motion for each component, criteria for the applica—

bility of mechanical equilibrium.

(1) Membrane as A Separate Phase
 

Membrane and solution are considered as separate

phases. This is suitable for macroporous membranes (class

a) and with some reservation for microporous membranes

(class b). The membrane merely behaves as a stationary

boundary and the entropy production occurs only in the

fluid phase. This system allows viscous bulk flow.

For stationary incompressible fluid and slow flow,

the component equation of motion (in this case the Stokes

equation) can be obtained from (2.18). For simplicity we

assume the membrane is uncharged and the gravitational

force can be neglected. Of course it is still isothermal.

Membraneyphase:

The equation of motion is

an um cmyum + m~m + m~m 0 , (3 6)

where the subscript m stands for the membrane.

The body force exerted by the clamping support

on the membrane is transmitted to the membrane matrix
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and can be considered as uniformly distributed. We may

then write this body force locally (Lightfoot, 1974)

25m = cm Yp - (3.7)

0 Eu = 2p . (3.8)

Since this phase only has one component, the total fric-

tional and thermal force F5 = O . Therefore (3.6) reduces

to

n V g = 0 . (3.9)

By the requirement of no acceleration across the membrane

and the physical boundary condition of no movement, the

solution of (3.9) is simply

u = 0 . (3.10)

For this membrane phase alone, (3.7) fulfills the

requirement of mechanical equilibrium (3.1).

Solutiongphase:
 

The equation of motion for each species is

2 * _ _
naV g cayqx+ Gaga 4- caX — 0 , o—l,...,v . (3.11)
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Summing over all components and using the previously ob-

tained relations

V

Z c Vu = Yp r
(2.19)

V

nvzg - 3p + Z c x = o . (3.12)

Therefore, unless the external forces exactly balance the

pressure gradient, mechanical equilibrium generally does

not exist due to the presence of appreciable viscous flow

and velocity gradients. In the case of no external forces,

mechanical equilibrium is impossible in the solution phase

with the presence of pressure gradient. This has a very

important bearing on the entropy production.

For the system as a whole, the entropy production

occurs only in the solution phase Due to the general non-

existence of mechanical equilibrium in the solution phase,

Prigogine's theorem cannot be applied. The entrOpy pro-

duction for this membrane system is given by (2.38)
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(2.38)

where the diffusion flux ja is still referred to the

barycentric velocity. Since at steady state only ga = p g
(10.

is constant, the integration of (2.38) over the membrane

volume is not so easy as the integration of (3.4). This

is discussed in more detail in the reconcilation of the

continuous and discontinuous approaches in the next section.

(ii) Membrane as A Component

Membrane and solution are considered as a homo-

geneous phase. This is suitable for homogeneous membranes

(class c) and for some very fine micrOporous membranes

(class b). The membrane component is interspersed among

the components of the permeating fluid in the molecular

level. The system approximates a thermodynamic mixture

or solution, and the entropy production occurs in this

single phase. This is essentially a diffusion system and

contains no mechanism for viscous flow other than a simple

diffusion mechanism.

The equation of motion for the membrane component

is the same as (3.6)

2 _ * _
an u cmyum + cmEm + mem - 0 . (3.6)
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Again, we assume an uncharged membrane and neglect the

gravitational force for simplicity. Since the membrane

component partakes in the tranSport processes by fric-

tional and other interactions, the body force on the mem-

brane component is still

gm: (1/cm)yp . (3.7)

The equation of motion for the solution is the

same as (3.11)

naV u - c Vu + c F* + c X = 0 , d=1,...,v . (3.11)

where Xa , in this case, contains only the electrical

force.

Summing over all components including the membrane

component and using (2.19), we obtain

nV u = 0 , (3.14)

v

where we use the relation 2 Gaza = O for electroneutrality

o=l

of the whole system.

By the requirement of no acceleration across the

membrane, the solution of (3.14) is

g = constant , (3.15)

in agreement with the outcome of the diffusion mechanism.

Eq. (3.14) implies the validity of (3.1) for this
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homogeneous membrane-solution phase, hence the mechanical

equilibrium requirement is fulfilled.

The entrOpy production for this system reduces to

one similar to (3.4) due to the mechanical equilibrium

condition

, (3.16)

where the membrane component is also included. However,

the membrane component is fixed in space by the external

mechanical restraint, and um = 0. This implies

= p u = 0 , and eq. (3.16) reduces to

(3.4)

It has to be emphasized here that although the membrane

component also contributes to the entropy production

through frictional and other interactions with the solu—

tion components, it does not appear in the final entrOpy
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production equation due to the mechanical equilibrium

condition. At steady state, ga == papa is constant by the

continuity equation. The integration of (3.4) across the

membrane gives the form of the entropy production which is

widely used in discontinuous membrane transport theory.

However, the previous analysis indicates that it is

strictly applicable in homogeneous membranes. For very

fine microporous membranes, it can only be used as a good

approximation.

D. Reconciliation of Continuous and
 

Discontinuous Treatments-—Comments
 

on Kedem-Katchalsky Theory
 

More than a decade ago Kedem and Katchalsky (1958,

1961) derived the "practical" integrated flow equations for

describing solute and water transport across uncharged

membranes from nonequilibrium thermodynamic considerations.

These equations have since become very popular alongside
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the Nernst-Planck equation and the Goldman equation as

standard working models for physiologists and biOphysicists.

Nevertheless, there remain several aSpects of the Kedem—

Katchalsky equations which are a source of confusion and

should be clarified. In particular, it is necessary to

point out: (a) These equations are one dimensional and

are strictly applicable only to homogeneous membranes

with thermodynamically ideal binary solutions; (b) For

porous membranes, the Kedem-Katchalsky equations can be

used only when the barycentric velocity is linearly re-

lated to the external forces; and (c) The reciprocal re-

lation in Kedem-Katchalsky's theory is strictly valid only

when the system is thermodynamically ideal and the partial

molar volumes of solute and solvent are equal. For a

porous membrane in a binary solution, the reciprocity of

the local coefficients is the natural outcome of the de-

pendence of fluxes and cannot be tested by independent

experiments.

First, we outline Kedem—Katchalsky theory briefly.

They started from the entropy production

(3.17)
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which is essentially the same as (3.4), since

= 0 '

o 2. MM. We

At steady state, (2.4) gives

or, for the one dimensional case considered here,

Na = constant (3.18)

at any point in the system. Integrating (3.17) across the

membrane from surface A to surface B and evaluating the

entrOpy production per unit area of the membrane as a whole,

we obtain

B
.... I V B

4)2 = A ¢2dx = - uglNa(ua _ u

,A

a
)

V

or o2 = ail NaAué , (3.19)

where the x component of Na is denoted by Na and x is the
~

direction of flow across the membrane.

This rearranges, for a binary nonelectrolyte solution, to

2

_ = ' =o2 £1 NaAua JVAp + JDAn (3.20)
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where 1 stands for the solvent and 2 for the solute, and

where the total volume flow Jv and the exchange flow Jd

are defined by
(
.
1

II

V 1 1 2 2

The quantities v1 and v2 are partial molar volumes in the

external phase and

(c: - c:)/£n (cg/c

Q
C
D

co

In (3.20), Ap is the change in pressure and An is the

change in osmotic pressure across the membrane, where

_ A _ B _
An - RT (c2 c2) - RTAc2 .

The phenomenological equations are

= AJV- LpAp + LpD n

= AWJD LDpAp + LD (3.25)

with

LpD = LDp ,

v N + v N (3.21)

J = (NZ/6'2) - (Nl/El) . (3.22)

) , a=0,1 . (3.23)

(3.24)

where the L's are phenomenological coefficients. Two other

transport coefficients defined from these four phenome-

nological coefficients have appears in membrane transport
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literature frequently. These are the reflection coeffi-

cient 3 introduced by Staverman (1952) and defined by

6'=-L L 3.27pD/p ( )

and the solute permeability coefficient w defined by

_ _ -2 -
w - (LD 0 Lp) c2 . (3.28)

The set of coefficients Lp, 3 and w is more con-

venient for description of membrane systems than the set

L , L and L because the former set of coefficients can
p pD D'

more easily be related to the transport characteristics of

greatest interest:

(1) Lp measures the mechanical filtration capacity

or the hydraulic permeability of the membrane.

(ii) The reflection coefficient 3 can be considered

as a measure of the membrane permselectivity.

When 3&1 all the solute is "reflected" from the

membrane; this is a semipermeable membrane.

3<l means that part of the solute penetrates,

and we therefore have a leaky membrane. It

is also possible that 3<0, which would mean that

the transfer of the solute is more rapid than

that of the solvent. Such cases are known and

are called negative anomalous osmosis.

(iii) m can be considered as a measure of the membrane

diffusional permeability for the solute.
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Next, we demonstrate the remarks made at the be-

ginning of this section. In order to compare with Kedem—

Katchalsky's "practical" flow equations, we start from the

local entropy production and the local phenomenological

equations for which the reciprocity of the Onsager coef—

ficients has been established. Integration of the local

phenomenological equations then has the advantage of

tracing the reciprocity to compare with Kedem-Katchalsky's

lumped phenomenological coefficients.

We consider isotrOpic, non-reacting aqueous solu-

tions of single nonelectrolytes at different concentrations,

separated by a rigid simple membrane which acts as a per-

meability barrier for the solute molecules. We also assume

that each compartment is well stirred and the unstirred

layer effect is minimized and can be neglected. There are

pressure and concentration gradients maintained across the

rigid membrane. Furthermore, the whole system is isothermal

and subject to no external forces. The basic transport

equations are those described in previous chapters.

For homogeneous membranes, it is easy, according
 

to the last section, to write down the local entrOpy pro-

duction

and the phenomenological equations



_. = I I I I

11'1 L11 Y“1 + L12 y“2

— = ' ' 8 I .

N2 L21 Y“1 + L22 Yuz (3'29)

Since the fluxes are independent of each other and the

gradients are independent of each other, the Onsager

Reciprocal Relation (Onsager, 1931) can be assumed for

the phenomenological coefficients

I _ I

L12 - L21 . (3.30)

In the case of porous membranes, the analysis in
 

the last section shows that the local entropy production

takes the form

and the phenomenological equation can be written according

to the usual procedures of nonequilibrium thermodynamics,

_ ' = - v

21 S211 yul + Q12 Yuz

_ ° ._. “'0 "'0
22 921 Yul + 922 sz . (3.31)

If the fluxes were independent of each other and if the

gradients were independent of each other, then the next

step would be to assume the Onsager Reciprocal Relation

912 = 921 . (3.32)
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However, the fluxes are not independent since, by (2.7),

2'1 + 22 = 0 - (3.33)

Thus, by (3.31)

911 + 921 = 0 = 912 + 922 . (3.34)

Moreover, Bartelt and Horne (1969) showed that the posi-

tive definiteness of ¢2 (i.e., the Second Law of Thermo-

dynamics) requires for fluxes obeying (3.33)

911 + 912 = 0 = 921 + 922 . (3.35)

.Consequently,

911 = - 012 = - 021 = 922 . (3.36)

Hence, the validity of (3.32) in this case is due to the

dependence of the fluxes and to the Second Law; it need

not be taken as an extra assumption and it cannot be tested

by independent experiments. By (3.31), (3.33) and (3.36),

the only independent diffusion flux equation is

- jl = all Y(Ui ' é) . (3.37)
~

This formula could also have been obtained directly from

the correct entropy production formula

¢2 = - j]. . YhJi - ii) I (3.38)
~
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which results from substitution of (3.33) into the entropy

productions equations. However, (3.35) is required to show

that the 911 resulting from (3.38) is identical to the one

of (3.31). Note that (3.36) allows us to use either (3.31)

or (3.37). Although (3.31) is the usual choice, it must

be remembered that only one diffusion process occurs in a

binary isothermal system.

In order to generalize the treatment to include

both homogeneous and porous membranes, we rearrange (3.31)

into the form of (3.29). From (2.6) and (2.8),

Na = (Ea/Ma) + cau d=l,2 . (3.39)

It is important to note that Na depends eXplicitly upon

the reference velocity u and therefore is not, a priori,

a diffusion flux for which an Onsager equation can be

written.

By (3.31) and (3.39),

(Que/MQMB) yué - cap , a=l,2 . (3.40)

The x component of (3.40) is

2

- N = 8:1 (QaB/MGMB)(Bué/3x) - caux , a=l,2 . (3.41)
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where the x component of u is denoted by ux , and the x

component of Ed is denoted by Na . The x component of the

barycentric velocity u for this porous membrane system can

be obtained by solving the Navier—Stokes equation provided

that suitable geometry and boundary conditions are given.

For systems of slow and steady laminar flow, with no ex—

ternal forces, the resulting uX generally has the form

ux = a(3p/3x) (3.42)

where a is usually a function of the viscosity of the

solution in the membrane and of the geometry of a cross—

section of the passages through the membrane. However,

in some cases, the short range surface crystalline forces

in the membrane lattice.can cause a considerable non—

linear behavior of ux at low pressure gradient range

(Klausner and Kraft, 1965, 1966). When this nonlinear

behavior of ux occurs, the reciprocal relation in Kedem—

Katchalsky theory is definitely not valid. For the time

being we continue the treatment for the case that uX is a

linear function of the pressure gradient. When a capillary

model is assumed for the porous membrane and (2.22) is

used,

1
a = - (4n)’ - r ) (3.43)

where a is the capillary radius and r is the radial co-

ordinate.



55

Since there are no external forces, the Gibbs-

Duhem equation (2.47), in molar units for one dimensional

case, reduces to

2

(ap/ax) = Z CB(3ué/8x) . (3.44)

B=1

Combination of (3.41) (3.42) and (3.44) yields

I

2 ll

"
b
a
n
:

La8(3ué/8X) a=l,2 , (3.45)

B l

where LaB = (QaB/MGMB) + dcac a,B=l,2 . (3.46)

B

Schlogl (1956) obtained equations similar to (3.45) and

(3.46), but he did not pursue them further. By (3.32), we

Obtain from (3.46)

L = L12 (3.47)
21 °

However, the LdB are not Onsager coefficients since the

fluxes of (3.45) are not defined relative to an internal

reference velocity. Moreover, the Les are not independent.

By (3.36),

Lll = - (MZ/Ml) L12 + a(clM/le)

L12 = L21

1.22 = - (Ml/M2) L12 + a(c2fi/vM2) (3.48)
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where, with mole fraction xa = cav ,

M = x1Ml + sz2 (3.49)

v = x v1 + x v , (3.50)

where v is the total molar volume and Va is the partial

molar volume of component a. It has to be emphasized here

that the linear behavior ofxgcin (3.42) leads to (3.46)

and, hence, the reciprocal relation (3.47). For systems

with nonlinear behavior of uxpas mentioned before, the

reciprocal relation (3.47) does not hold.

The next step is the integration of (3.45) from

one side of the membrane to the other and subsequent re-

arrangement into a form that can be compared with the

Kedem-Katchalsky theory. Since (3.45) for the porous

membrane and (3.29) for the homogeneous membranes have

the same form and the same reciprocal prOperties, the

general result we obtain from (3.45) is good for both

cases.

By (3.18), Na is constant in the x-direction, and

therefore

B

A Las (3pé/3x)dx , a=1,2 . (3.51)I

Z O
.
-

X II

II
M
N

1

Without knowledge of the concentration dependence of the

phenomenological coefficients La , there is no way to

B
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evaluate the integrals. The goal, however, is to obtain

equations for the Na in terms of the solute concentration

difference Ac2 and the pressure difference Ap , both across

the membrane; i.e.,

B B

2 ; Ap = pA - p - (3.52)

To this end, we employ a trick due originally to

Kirkwood (1954). Using Cramer's rule, we solve (3.45) for

the chemical potential gradients,

2

(Bué/Bx) = - 4:1 RBaNa , 3:1,2 , (3.53)

with

Red = ILIBa/ILI (3.54)

where ILI is the determinant of the matrix of the Les and

ILIBG is the apprOpriate minor. Unlike the corresponding

matrix of the 0a 8 , the matrix of the LaB is non-singular.

By (3.48),

c - l) (3.55)
_ —2

IL] — L L - L L — d(M /leM2)(dc 2
ll 22 12 21 1

Since the N are constants, integration of (3.53) yields

2

Au' = 2 r N , 8:1,2 , (3.56)

B a=l Ba a

with IE

rad = A Readx , a,B=l,2 . (3.57)
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Inversion of (3.56) yields

2

_ l _

Na — E zasApB a-l,2 , (3.58)

8—1

208 = IrlaB/Irl , a,e=1,2 . (3.59)

Since L12 = L21 , R12 = R21 . L1kew1se, r12 = r21 and

therefore 212 = 221 . However, to emphasize again, this

is not an Onsager Reciprocal Relation. Rather, it follows

from (3.36), (3.42), and (3.48). Just as we can express

all the Les in terms of L (and a), so we expect to be
12

able to express all the l in terms of £12 (and a).
12

Derivation of an explicit formula for the £08 in terms of

9&8 requires detailed knowledge of the concentration de—

pendence of 0&8 . Without such knowledge, the integrals

of (3.57) cannot be performed.

In order to proceed further, we write the flux

equations not in terms of differences of chemical potentials,

but in terms of differences of pressure and concentration.

For isothermal ideal solutions the chemical potential dif-

ferentials can be eXpressed, from (2.46), as

du& = vadp + RTdana , a=l,2 . (3.60)

Some authors (Kedem and Katchalsky, 1958; Mason et al.,

1972) have used a different eXpression.
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dué = vadp + Rlenca , d=l,2 ,

but this equation is correct only when the total molar

volume v is constant. However, for membrane transport,

the concentration and therefore the total molar volume

changes across the membrane. Hence it is necessary to

use the more general (3.60).

To convert from mole fraction to molar concentra-

tion, we use xa = cav and therefore

dxa = cadv + vdca . (3.61)

For isothermal system v = v(p,x2) ,

dv = - dep + (v2 - vl)dx (3.62)
2 I

where B is the isothermal compressibility. Solving (3.61)

and (3.62) for dfinxa , we find

1
dznxa = [1 — Cd(va ~ VB)] [dfinca - de],

a,B=l,2,a+B . (3.62a)

For convenience, we express (3.62a) in terms of the solute

concentration c2 , with neglect of the compressibility

term,

-1
dinx2 = [1 - c2(v2 - Vl)] dincz (3.63)



60

dflnxl - (x2/x1)d£nx2

(oz/cl)d£nx2

- v1 {(1 - c2v2)[l — c2(v2-vl)1}'1 dc (3.64)
2 I

where we have used the relation

clvl + c2v2 = 1 . (3.65)

Substitution of (3.63) and (3.64) into (3.60) yields, for

the solvent,

' _ _ _ _l _ - -1

and for the solute,

-l
. — - -

Integrating across the membrane with v constant, we find

Au' = v (v1 Ap + RTA£n{(1-c2v2)/[1-cl 2 Z-Vl)]} I (3.68)

and

Aué = v Ap + RTA£n{c2/[l-c2(v2-vl)]} . (3.69)
2

Following Kedem and Katchalsky, we define the total

volume flow

J = v N + v N , (3.70)
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and the exchange flow

JD = (NZ/32) - (NI/El) , (3.71)

with the logrithmic average concentration Ea defined by

—_A_B AB_ _
ca - (ca ca)/£n(ca/ca) — Aca/Ainc , a—l,2 , (3.72)

which reduces to

Ea = (of; + c2)/2 (3.73)

when the concentration difference is small, i.e.,

AB~
(Ca/Ca) l .

Substituting (3.68), (3.69) and (3.58) into (3.70) and

(3.71) we obtain

JV = LpAp + LpDAfl (3.74)

JD = LDpAp + LDAn (3.75)

with

An = RTAc2 , (3.76)

2 2

LP = all 821 flasvavs , (3.77)
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2

_ -1
LpD - (uglialva)(Acz) A£n{c2/[l— c2(v2-vl)]}

2 —1
+ (a£1£“2V“)(Ac2) A£n{(l-c2v2)/[l—c2(v2—vl)]} , (3.78)

2 —1
LDP = (6:1 £18V8)(Ac2) Mnc2

2 —l
+ (all £28v8)(vl/v2)(Ac2) A£n(1 — c2v2) , (3.79)

L - ( f (—l)a_l£ A2 /A )(A )_1A£ {c /[l— (v -v )]}
D " a=1 a2 “Ca Ca C2 n 2 C2 2 1

+ ( § (-1)“‘12 A2 /A )(A )’142 {(1- v )/[1-c (v —v )1}
0:1 d1 ncd Cd C2 n c2 2 2 2 1 '

(3.80)

For small solute concentration difference (small

Ac2 or c2/c§-l) , we have

Ainc2 = £n(c§/c§) = - £n[l-(c§-c§)/c§] = - 2n(l—Ac2/c§)

- (Ac /cA)+- i (Ac /cA)2 + l (Ac /cA)3 +

7 2 2 2 2 2 3 2 2 °" '

Alncz/Ac2 = (c§)-l[l + % (Ac2/c§)+- % (Acz/C§)2 + ...], (3.81)

Aill-c2(v2-vl)]/Ac2 = - (v2 - vl)[l+c2(v2-vl) + ...] (3.82)

with 82 described by (3.73),
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Aln(l - c2v2)/Ac2 = - v2(1 + c2v2 + ...) , (3.83)

and from (3.65)

Aincl/Acl =-(vl/v2)A£n(1 - c2v2)/Ac2 , (3.84)

Substitution of (3.81)--(3.84) into (3.78)—-(3.80) yields

4 v ){(c‘;‘)‘1
1 A l A 2

1 a1 a [1+ 2 (Ac2/c2)+ 3 (c2/c2) + ...](
PD 0

L

H
M
N

+ (v2-v1)[1+52(v2-vl) + ...1}

2

+ ( Z Iazva){(v2—vl)[1+Ez(v2-vl)+...1-v2(1+62v2+...) , (3.85)

=1

A -l l A l A 2

LDp ( £1£92VG){(C ) [1+ §'(Ac2/c2)+ 3-(Ac2/c2) + ...]

- )vl(1+E v

2

( 2 2 v
8:1 28 8 2 2 + ...) , (3.86)

A -l 1 A 1 A

V +..) 2) [1+ §'(AC2/C2)+ 3-(Ac2/c2)+..]L = vl(l+c2 2 212-(c
222

x{(cA)‘1[1+ l-(Ac /cA)+ l-(Ac /cA)2+ 1
2 2 2 2 3 2 2 "

+ (Vz-Vl)(1+52(v2—v1)+..)}+{vl(l+'c2v2+..)£ll

- (c§)‘1[1+ %-(Ac2/c§)+ §-(Ac2/c§)2+..1221}

(1+6 v +..)] , (3.87)X {(vz—vl)[1+c2(v2-vl)+..]-v2 2 2

and by 2&8 = £80
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2

LpD - LDp = (allialva)(v2-vl)[1+c2(v2-vl)+..]

2

+ (aélfld2vd)(V2-vl)

x [(1+Ez(v2-vl)+..) - (1+Ezv2+..)] . (3.88)

pD' LDp and LD have

the same eXperimental significance as in Kedem-Katchalsky

The phenomenological coefficients Lp, L

theory.

Since as mentioned before, the integrated phenome-

nological coefficients £08 are symmetric, it is obvious

from (3.78), (3.79) and (3.88) that only when v1 = v2 (112;!

when the partial molar volumes of the solvent and solute

equal to each other), will the relation LpD = LDp be valid.

However, it is rarely the case that v = v1 Thus, in2.

general LpD + LDp.

It can be seen from (3.85) to (3.87) that these

lumped transport coefficients depend upon the concentration

and pressure distribution within the membrane through 288 ,

and therefore also depend on the nature of the transport

processes taking place and the membrane structure as well

as the boundary conditions. In other words L , L

p pD' LDp

and LD also depend on the applied forces, Ac2 . The Kedem-

Katchalsky equations are thus only apparently linear with

respect to the forces. They are ambiguous except in the

limit of very small fractional changes in pressure and
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composition; this is the fundamental weakness of their dis-

continuous approach.

We now proceed to estimate the difference between

LPD and LDp for a typical membrane transport experiment.

Instead of integrating the local phenomenological coef-

ficients and calculating LpD and LDp from (3.78) and

(3.79) or (3.85) and (3.86), which requires explicit but

generally unavailable knowledge of the composition and

pressure dependence of the local phenomenological coef—

ficients, we solve for the 1&8 from (3.77), (3.78) and

(3.80). With the aid of experimental data on Lp, L
pD

and LD , we then calculate LDp from (3.79). The validity

of LpD = LDp can then be checked. There are very few

direct experimental tests of the reciprocal relation in

membrane transport (Miller, 1960; Lakshminaraianaiah,

1969), and none for LpD and LDp. Moreover, there are even

fewer complete sets of data on LP' LD and L

pD'

Kaufmann and Leonard (1968) made a careful study

of nonelectrolytes transport through cellOphane membranes

0.00754 cm thick. The thickness of the unstirred layer

was carefully reduced by effective stirring and the deter—

minations were made with 0.1 molar solution on one side

and 0.005 molar solution on the other side. Their results

are shown in Table 3.1.

In order to find the partial molar volumes for the

solutes, we fit the data for concentration dependence of



 

 

  



Table 3.1--Phenomenological coefficients of a cellophane

membrane 0.00754 cm thick with 0.1 molar solu-

tion on one side and 0.005 molar on the other

side. The relation L D = LDp was pre-assumed.

(Kaufmann and Leonard, 1968).

 

 

LDX105, pr105, Lpr106,

Solute Temp.,°C cm/atm.sec cm/atm.sec cm/atm.sec

Glucose 27 11.90 2.00 1.77

37 15.30 2.44 1.93

47 17.30 3.05 2.17

Sucrose 27 7.49 1.90 2.00

37 9.54 2.35 2.28

47 10.96 3.03 2.72

Raffinose 37 6.56 2.30 2.89

 

density of various solutes from Timmermans (1960) into

polynomials of various degrees, assuming constant amount of

solvent--1000 gm of water is used. Somewhat surprisingly,

it turns out that a linear fit is the best for the concen-

tration ranges considered here. For Sucrose, at 27°C with

molaity from 0 to 0.118,

V = 1003.01 + 207.2 m2 , (3.89)

and at 47°C with molality from 0 to 0.148,

V = 1012.14 + 208.91 m2 . (3.90)

For Glucose, at 27°C with molality from 0 to 0.26,

V = 1003.04 + 110.6 m (3.91)
2 I
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and at 47°C with molality 0 to 0.78,

V = 1009.93 + 115.17 m2 , (3.92)

where V is the total volume (in mi) of the solution based

on 1000 gm of water and m2 is the molality of the solute.

After the explicit expression for the concentration de—

pendence of the volume of the solution is obtained, we

calculate, following Klotz (1964), the partial molar

volume of the solute and solvent by

v2 = (8V/3m2)ml (3.93)

with the molality of solvent, ml, fixed. The partial molar

volume of the solute and solvent obtained (in this case,

the data for Raffinose are not available, and the molar

volume of water is used in both temperatures) are indeed

constant in the concentration range of Kaufmann and

Leonard's experiments (but of course vl # v2). The re-

sults are shown in Table 3.2. Because of lack of exten-

sive temperature data, we have used data at 25°C for 27°C

and data at 45°C or 50°C for 47°C.

Table 3.2--Partial molar volumes for different solutes,

where we have used the molar volume for the

solvent water.

 f

 

Solute va'27oc’mi/mol va’470C'm1/mol

Sucrose 207.20 208.91

Glucose 110.60 115.17

Water (solvent) 18.01 18.01

 



68

After obtaining the partial molar volumes, we

solve the simultaneous equation for 2a and then calcu-
B I

late LDp from (3.79). The results are shown in Table 3.3.

For the present case, the differences between LpD

and LDP are small. For biological membranes, the experi-

mental uncertainty sometimes might exceed the difference

between LpD and LDp' Therefore, the reciprocal relation

in Kedem-Katchalsky theory can be considered approximately
 

valid in membrane transport experiments where quantitative

accuracy is of secondary importance. It has to be noted

that the difference between LpD and LDp depends on the

nature of the solute as well as on temperature and con-

centration. The difference increases as the difference

in partial molar volumes increases. For large solute

molecules such as antibiotics and biOpolymers the differ-

ence between LpD and LDp might be large.

B. Discussion
 

There has been an attack on the discontinuous

nonequilibrium thermodynamic membrane theory of Kedem and

Katchalsky by Bresler and Wendt (1969). However, their

approach is misleading, as pointed out by Smit and Staver-

man (1970). The main problem considered by Bresler and

Wendt (1969) was the Onsager Reciprocal Relation used in

the Kedem-Katchalsky theory. They used an example of an
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open membrane with rapid bulk flow and claimed that the

diffusive flow will vanish, and hence LpD = 0. However,

they retained LDp' Therefore, they concluded LDp + LpD'

This is patently incorrect, since we will see in the final

chapter, that even in rapid bulk flow across the membrane,

the diffusion process is still effective, yet may be small,

as long as there is a concentration variation across the

membrane. A term can be small compared to another in

(3.74) without being small in comparison to other terms

in (3.75). Therefore LPDAN may be small compared to LpAp

for rapid bulk flow, but may have similar magnitude to

LDpAp. Thus the setting of LpD = 0 by them is unjustified

and the break down of the Onsager Reciprocal Relation by

their reasoning is incorrect.

In fact we have obtained a general criteria for

the validity of LpD = LDp‘ We have shown that (1) Kedem-

Katchalsky theory is strictly applicable only to homo-

geneous membranes for thermodynamically ideal binary non-

electrolyte solutions; (2) for porous membranes, Kedem-

Katchalsky theory can be used only when the barycentric

velocity is linearly related to the external forces; (3)

for porous membranes in isothermal binary solutions, the

reciprocal relation of the local phenomenological coeffi-

cients is the natural outcome of the dependence of fluxes;

and (4) for homogeneous membranes and for porous membranes
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satisfying (2), the reciprocal relation LpD = LDp is

strictly valid only when the solution is thermodynamically

ideal and the partial molar volumes of solute and solvent

are equal. Moreover LpD' LDp and LD are independent of

the sizes of the gradient Ac2 only for very small gradients.

Considering again the Open membrane with rapid bulk

flow described by Bresler and Wendt (1969), the possibili-

ties that LpD = LDp might break down are the following,

(1) nonlinear velocity behavior; (2) local equilibrium

assumption break down due to the rapid bulk flow; (3)

partial molar volumes of the solute and solvent are dif-

ferent; and (4) thermodynamic nonideality.

Mason, Wendt and Bresler (1972) tested the recip-

rocal relation LpD = LDp for ideal gas transport in

graphite membranes. Their results show that it is ap—

proximately valid only for a limited range and in general

the phenomenological coefficients in Kedem-Katchalsky

theory depend on the forces. This coincides with our

point of view in the last section that the eXplicit ex-

pressions (3.78)--(3.80) and (3.85)--(3.87) have indicated

their dependence on the applied forces, on the nature of

the transport processes, and on the membrane structure.

As pointed out by Lightfoot (1974), through Stefan-

Maxwell equations, the Kedem-Katchalsky theory is only an

approximation. This "black box" type theory offers only
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lumped experimental parameters which conceal our ignorance

of the exact physical nature of the processes. In order

to get more insight into the mechanisms involved in trans-

port processes through membranes, it is necessary to employ

a continuous approach. We do this in the following chapters.



CHAPTER IV

HYDRODYNAMIC THEORY OF CAPILLARY

OSMOSIS OF ELECTROLYTE SOLUTIONS

A. Introduction
 

In this and the next chapter the continuous approach

is utilized in order to examine the mechanisms involved in

the transport of electrolyte solutions through charged

porous membranes.

One expects that the motion of fluid through porous

membranes could be described by a suitable solution of the

Navier-Stokes equation. This could be done if one could

formulate correctly the boundary conditions at the highly

irregular boundaries. Since it is impossible to define

the complicated geometry of the solid surface of the porous

membrane matrix, one cannot treat the problem at hand, and

in fact also the general problem of flow through porous

media, in any mathematically exact manner. This difficulty

can be circumvented, as in many other physical problems, by

replacing the porous membrane with some simplified model.

A model will suit this purpose if it (a) explains the phe-

nomena in question; (b) involves parameters which can be

measured and related to corresponding properties of the

73
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porous membrane; and (c) can be treated by available

mathematical tools to yield a macroscopic description of

the phenomena with discrepancies which may be neglected

for practical purposes.

Among commonly employed models for the porous mem-

brane are: a bundle of circular capillaries; a bundle of

parallel plate capillaries; an array of cells (219;!

Kobatake and Fujita, 1964; Kobatake, Toyoshima and

Takeguchi, 1966; Philip, 1969). Experimentation is the

only way to test the models and to determine the various

coefficients which appear in the equations derived from

these models; there is no way to obtain numerical values

of the coefficients from the mathematical analysis itself.

We use the capillary model here for the discussion

of charged porous membranes. The membrane is considered

to be composed of bundles of circular capillaries with

equal radii and uniform fixed charges on the capillary

walls. It is sufficient, therefore, to consider the be-

havior of only a single charged circular capillary in an

electrolyte solution subject to pressure, electrical po-

tential, and concentration variations across the capillary.

The phenomena resulting from externally applied

gradients of pressure and electrical potential across a

charged capillary are well known, the electrokinetic

relationships involved having been discussed by Helmholtz
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(1879) and later on reformulated by Smoluchowski (1914).

However, the effect due to an externally applied gradient

of concentration across a charged capillary has attracted

little attention. A11 refined theories of electrokinetic

flow in fine capillaries (212;! Dresner, 1963; Morrison

and Osterle, 1965; Burgreen and Nakache, 1964; Rice and

Whitehead, 1965; Hildreth, 1970; Sorensen and Koefoed,

1974) consider only solutions of uniform concentration.

Even in the capillary model for charged porous membranes

(Kobatake and Fujita, 1964; Kobatake, Toyoshima and

Takeguchi, 1966), where an externally applied concentra-

tion gradient does exist, only ordinary electrokinetic

equations for systems of uniform concentrations are used

to obtain the barycentric velocity in the capillary.

Gross and Osterle (1968) and Fair and Osterle (1971) have

considered the concentration effect on the barycentric

velocity in their description of electrodialysis and energy

conversion efficiencies in a capillary—model membrane; how-

ever, their formulation is valid only for extreme dilution.

Moreover, their solution is entirely numerical, so that

the explicit significance of the concentration gradient

effect is concealed.

It has been predicted theoretically and demonstrated

experimentally by Derjaguin, et a1. (1947, 1961, 1965, 1969,

1971, 1972, 1974), Milekhina (1961) and Dukhin and Derjaguin
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that when the adsorption layer on a solid surface in contact

with either an ionic or a non-ionic solution is mobile, then

the tangential concentration gradient of the solution along

the solid surface causes "capillary osmotic slip" in addi-

tion to diffusional flow of the liquid. In the case of a

porous diaphram separating solutions of different concen-

tration, slip along the pore walls causes convective trans-

fer of the solution--this is named capillary osmosis by

Derjaguin, et al. The movement of suspended particles

under the effect of an externally imposed solution concen-

tration gradient is called diffusiophoresis. In this thesis
 

we restrict attention to electrolyte solutions, but non-

electrolyte solutions also exhibit capillary osmosis and

diffusiophoresis (Derjaguin, et al., 1947; Derjaguin and

Dukhin, 1974).

The mechanism suggested by Derjaguin, et a1. (1947,

1961, 1965, 1969, 1971, 1972, 1974), Milekhina (1961) and

Dukhin and Derjaguin (1964) for diffusiophoresis in elec-

trolyte solutions should also be applicable to capillary

osmosis. Both phenomena are caused by the polarization of

the electrical double layer under the influence of a macro-

gradient of concentration. A macrogradient of concentra-

tion applied from outside causes an uneven concentration

distribution_of ions in the region adjacent to the outer

boundary of the electrical double layer. Since there is
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equilibrium between ions because there is no flow perpen-

dicular to the solid wall, the double layer rearranges it-

self to a different thickness according to the given dis-

tribution of ion concentration along its outer boundary,

and the double layer is polarized. This double layer

polarization gives rise both to an additional tangential

component of the electric field, and to an additional

pressure gradient along the solid surface. The latter is

caused by the interaction of the normal electric field and

its additional tangential component with the charges in

the diffuse double layer. These factors, which are also

effective during electroosmosis (the movement of solution

in a charged capillary due to the interaction of an ex-

ternal electric potential gradient and the diffuse double

layer) and electrophoresis (the movement of suspended
 

colloidal particles under the action of an external elec-

tric potential gradient), set in motion either the solution

with the mobile part of the double layer or the solid with

the immobile part of the double layer, depending on whether

the solution phase or the solid phase is mobile. Thus,

either the solution moves (capillary osmosis), or the

solid particles move (diffusiophoresis).

The relationship between capillary osmosis and

diffusiophoresis is the same as that between electro-

osmosis and electrophoresis. Qualitatively, therefore,
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capillary osmosis and diffusiOphoresis can be characterized

respectively as electroosmosis and electrOphoresis caused

by a microgradient of electrical potential induced by the

macrogradient of concentration. This also implies that

the theories of capillary osmosis and of electroosmosis

(or the theories of diffusiOphoresis and of electrOphoresis)

must be based on the same system of equations and similar

boundary conditions. Hence, as pointed out by Derjaguin

and Dukhin (1974), the arbitrary inclusion of concentra-

tion gradient as an external force term in the equation of

motion by Pickard (1961) in the description of the effect

of diffusion on electrophoresis is redundant since the

concentration influence is already accounted for by the

inclusion of the electrical potential and pressure gradient

terms in the equation of motion.

Since only capillary osmosis is relevant to the mem-

brane transport in addition to the fact that there have

already been extensive investigation on diffusiOphoretic

mobility and its relation with electrophoretic mobility

(see Derjaguin and Dukhin, 1974), we consider only capillary

osmosis in this thesis. Derjaguin, et a1. (1969), have

shown semi-quantitatively that in general the rate of

capillary osmosis and of electroosmosis due to diffusion

potential are of the same order of magnitude.

Derjaguin, et a1. (1947, 1961, 1965, 1969, 1971,

1972, 1974), Milekhina (1961) and Dukhin and Derjaguin
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(1964) derived equations for capillary osmotic slip from

classical thermodynamic and discontinuous nonequilibrium

thermodynamic considerations under various simplifying

assumptions. Two such assumptions were (a) the external

force field depends only on the coordinate normal to the

solid wall; (b) the double layer is very thin compared to

other geometric lengths so that a flat geometry can be

used for the capillary. Like Smoluchowski's equation for

electroosmosis, Derjaguin's formulation is valid strictly

only in the limit that the capillary radius or capillary

slit width is much greater than the thickness of the

electrical double layer. However, in many of the most

interesting cases the capillary radius or capillary slit

width is comparable to the double layer thickness. This

is the case for transport of dilute electrolyte solutions

through charged porous membranes.

It is the purpose of this chapter to demonstrate

that a general analytical expression for the capillary

osmotic velocity due to an axial concentration gradient

in a fine charged circular capillary with steady laminar

flow of a Newtonian dilute electrolyte solution is a

natural outcome of inclusion of the effect of concentra-

tion polarization in the simultaneous solution of the set

of differential equations which includes the Navier-Stokes

equation and the Poisson-Boltzmann equation. In the limit
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of zero concentration gradient, our barycentric velocity

equation reduces to the equation for ordinary electro-

kinetic flow in capillary tubes (Rice and Whitehead, 1965;

Newman, 1973). In the limit of very large ratio of capil-

lary radius to Debye length, our equation for capillary

osmotic slip velocity becomes identical to that given by

Derjaguin, et al. (1969) and Dukhin and Derjaguin (1964).

In the next chapter we develop a theory which successfully

describes anomalous osmosis in charged porous membranes.
 

This successful theory requires the theory of the capillary

osmotic slip phenomenon presented here.

The system considered here is a dilute, isothermal

electrolyte solution contained in a single, long, non-

electrically conducting circular capillary with radius a

which is large enough to permit a diffuse double layer on

the capillary walls but small compared to the length g

of the capillary. The capillary connects two compartments

which contain well-stirred electrolyte solution maintained

at constant but different concentrations. In addition to

the fixed concentration gradient, fixed gradients of pres-

sure and electrical potential are imposed across the capil-

lary. We assume that the capillary wall carries a fixed

charge density, and that the capillary is readily entered

by both solute and solvent. we assume further that there

is steady, slow flow. These assumptions are repeated, and
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further assumptions are stated and used, in their appro—

priate place below.

In Section B, we use the Navier-Stokes equation

and the equation of continuity of total mass density to

obtain an integral expression for ux, the axial component

of the barycentric velocity g. In order to obtain the

integrated expression for ux, which is the important re-

sult of this chapter, we solve the Poisson—Boltzmann

equation for the distribution of electric potential in

Section D. Section C contains a discussion and derivation

of the Boltzmann equation for the concentration distribu-

tion of ions in an electric potential field.

B. Equation of Motion
 

Under the assumptions (1) constant viscosity co-

efficients; (2) steady, slow flow that the inertial term

pg - Vu is negligible compared to the viscous term nvzu;

and (3) negligible density gradient (equivalent to the in-

compressibility assumption 2 - u = 0), the Navier-Stokes

equation (2.17) reduces to the so-called creeping motion

or Stokes equation, (2.22). For this charged capillary

system with only the electric potential gradient, (2.22)

has the form

nV g = 2p + F( 2 c z )V¢ (4.1)



82

where all the parameters have been defined in Chapter II.

It should be noted that chemical interactions are included

explicitly in (4.1), and it is therefore incorrect to add,

as Pickard (1961) did, a further concentration gradient

to (4.1) as an additional external force term.

For steady laminar flow; we have, by symmetry, no

azimuthal flow; 143;, u6 = 0. Further, since no transport

occurs radially, ur = 0. The incompressibility result,

3 - g = 0, then becomes

(aux/8X) = 0 , (402)

and therefore the axial velocity ux is independent of x.

It still depends on the radial coordinate r, however, and

the radial and axial components of (4.1) become

\)

o = (Sp/3r) + F( 2 caza)(8¢/8r) (4.3)

a=l

\)

(n/r)(8/3r)r(3uX/3r) = (ap/ax) + F ( 2 caza)(3¢/3X).(4.4)

a 1

In order to take account of both (1) applied gra-

dients of pressure and electric potential and (2) induced

gradients of pressure and electric potential, we separate

p and ¢ according to

P(x.r) = P(X) + P'(x.r) . (4.5)
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and

¢(x.r) = <I>(x) + w(x,r) , (4.6)

where P(x) is the externally applied pressure and (dd/dx)

is the externally measurable electric potential gradient

between the ends of the capillary. This gradient includes

both any applied gradient and any gradient due to diffu-

sion. P'(x,r) and w(x,r) are, respectively, the additional

pressure and electrical potential due to the fixed wall

charge and the concentration polarization of the electrical

double layer in the capillary. As the concentration varia-

tion vanishes, 4(x) is only the externally applied poten-

tial and w(x,r) and P'(x,r) reduces to 0(r) and P'(r);

which include only the potential and pressure distribution

due to the fixed wall charges.

The radial component of the Navier-Stokes equation,

(4.3), then becomes

v

o = (3P'/3r) + F( 2 caza)(3w/3r) , (4.7)

d=l

Using (4.5) and (4.6) and integrating (4.4) twice, we ob-

tain

u = u + u + u ,
x p eo co

(4n)'1(r2-a2)(dP/dx):
1 II
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Ir ‘1 Ir V

ue0 = (F/n)(d¢/dx) a r dr 0 (8:1 caza)rdr

r r

uco = n'1 ; r-ldr 5 [(3P'/3x)

\J

+ F( 2 c z )(Bw/ax)]rdr , (4.8)
(1:1 0. G.

where the boundary conditions are such that uX vanishes

at the wall (r = a) and is finite at the center (r = 0).

The double integrals can be evaluated only after w(x,r)

and ca(x,r) are obtained. The up term is the axial

velocity due to an externally applied pressure gradient,

the u term is the electroosmotic flow velocity, and the
80

uco term is the capillary osmotic flow veloctiy. We show

in Section D that uco is proportional to the axial con-

centration gradient.

C. Boltzmann Equation
 

We now assume that there is no radial flow of any

component within the capillary. This is equivalent to

assuming that, for each value of x, the system is in

equilibrium in the radial direction. Mechanical equilib-

rium in the radial direction is represented by (4.3) or

(4.7). For equilibrium with respect to movement of com-

ponent a, it is necessary and sufficient that its chemical

potential u& be constant. Thus,
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(Bud/8r) = 0 , o=1,...,v . (4.9)

In order to exploit this assumption, we use the explicit

formula for the chemical potential by combining (2.32),

(2.33), (2.34) and (2.39)

“a = ua(T,p) + RT 2n xa fa+ zaF¢ (4.10)

where the pure solvent standard state is used. We have

neglected any polarization effects in the eXpression for

u& because such effects are very small for the application

we envisage. Elaboration of this point may be found in

Sanfield (1968) and Horne and Chen (1973).

If we now further assume that the activity coef-

ficients are constants in the radial direction, then (4.9)

and (4.10) yield, after some algebra (Horne and Chen, 1973),

_ 0 0 gal
x - xa(x1/xa)a [eXp(- zaW)], a=2,...,v (4.11)

where W = Fw/RT , (4.12)

and the ratio gal is defined by

961 = VZ/v: , a=2,...,v , (4.13)

with v: the limiting partial molar volume of a at infinite

dilution defined by (2.48), and where x3 is the mole frac-

tion of a when w is zero. We shall show in the next sec-

tion that this corresponds to zero surface charge density.
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For the application at hand, therefore, x2 is the mole frac-

tion of a in the compartments on either side of the capillary.

When there is a composition difference between the compart-

ments, then x3 is a function of the axial variable x.

Horne and Chen (1973) have eliminated x from (4.11)
l

by defining a correction parameter E by

x = x0 (1—8) (4 14)
l ’ 1 °

0

and using the fact that Z xa = l. The found, essentially,

a=l

M

II

II
M
C

xg[exp(-zaw) - 1] + o (12) , (4.15)

a 2

where I is the ionic strength,

0

I = (1/2) 2 C32: (4.16)

a=2

with cg the molar concentration of a when 9 is zero. For

the case that za T < l ,

g = -V:142 , (4.17)

For sufficiently dilute solutions, 6 << 1 , and we have

the usual Boltzmann equation,

xa = x2 [exp(- saw)] , d=l,...,v , (4.18)

or, for constant molar volume,

_ 0 _ _
ca - ca [exp( zaW)2 , d—l,..., . (4.19)
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The net change per unit volume at any point is

then

cgzateXp(- zaw)) , (4.20)

"
M
C

0 N

9

ll

I
I
M
C

2 a a 2

\J

E caza = -218 . (4.21)

For a symmetric binary electrolyte with

z = |z_I = z , and c2 = C? = c , (4.20) becomes

0

Z Caz = - 2cz[sinh (29)] , (4.22)

X c z = - 2czZW (4.23)

for |zw| < 0.245.

D. Electrical Potential Distribution:
 

Poisson-Boltzmann Equation
 

The classical treatment of the diffuse double

layer relies on the Poisson-Boltzmann equation, which in

turn gives rise to the Gouy-Chapman type double layer.
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Alhtough this is a relatively simple model, most rigorous

quantitative theories are based on it. There are several

simplifying physical assumptions involved: (1) the di-

electric constant is independent of position; (2) the ions

are point charges that interact coulombically with the

charged wall; (3) the charges on the capillary wall are

uniformly distributed on its surface; and (4) the eXpo—

nential term in the Boltzmann distribution contains the

average potential w(x,r) instead of the potential of the

mean force.

A number of corrections to these simplifications

in the Poisson-Boltzmann equation have been prOposed, in-

cluding corrections for ionic volume, dielectric satura—

tion, ion polarization, self—atmosphere effect of the

counterion and the discreteness of surface charge. Haydon-

(1964) and Overbeek and Wiersema (1967), however, have sug-

gested that these corrections at least partially compensate

each other and that it is therefore not advisable to con-

sider one or two corrections and to leave out others.

They suggest use of the Poisson-Boltzmann equation inas-

much as refinements in double layer theory are still under

development. We follow this suggestion here. Consequently,

any experimental test of our final equation is to some ex-

tent a test of the Poisson-Boltzmann equation, along with

our other assumptions.
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For a circular capillary with fixed wall charge

density and fixed end concentrations in an electrolyte

solution, the potential distribution inside the capillary

is governed by Poisson's equation,

2 2 -1 v
(a ¢/ax ) + r (a/ar)r(a¢/ar) = - (F/e) 2 caza , (4.24)

d=2

where 6 is the dielectric permitivity of the medium. By

(4.6) and (4.20), the Poisson—Boltzmann equation is

v

(829/3x2)+-r l(B/Br)r(3‘P/8r) = -(F2/€RT) X chGIexp(—zaW)] ,

o=2

(4.25)

where we have required 0 of (4.6) to be linear in x , thus,

(d0/dx) = constant . (4.26)

The Poisson-Boltzmann equation in the form of (4.25)

is quite insoluble. In order to render it tractable, we

make two further simplifications. First, we neglect

(82W/8x2)--the effect of this can be accessed after an

explicit formula for W(x,r) is obtained since the Ed are

functions of x. Second, we linearize according to (4.21).

Then we find the linearized Poisson-Boltzmann equation,

r‘1(a/ar)r(aw/ar) = K24 (4.27)

where the parameter K , defined by



90

K=IF(2I/€RT)l/2 , (4.28)

is the reciprocal of the Debye length. The ionic strength

I is defined by (4.16).

The boundary conditions for (4.27) are

(aw/ar)r=o I)

O

s

(aw/8r)r=a (oF/ERT) , (4.29)

where 0 is the surface charge density on the wall. In

order to simplify the analysis of flow in charged capil-

laries, consideration of surface phenomena is minimized

by assuming that the surface charge density 0 is the charge

density of the fluid at some distance from the wall. At

this distance from the wall, which is of the order of

molecular dimensions, the fluid is assumed to be stationary.

The effective capillary radius, a, is then measured from

the center up to this stationary layer. The solution of

(4.27) is, with (4.29),

W = (OF/KCRT)[10(Kr)]/[11(Ka)] (4.30)

where I0 and Il are modified Bessel functions of the first

kind of, respectively, order zero and order one.

Much has been written on the validity of (4.27)

as the correct form of the Poisson-Boltzmann equation

rather than (4.25). We present here a brief analysis of
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the physical conditions in which (4.25) reduces to (4.27)

for a symmetric, binary electrolyte. As our starting

point, we note from (4.23) that sinh z? = 2? to better

than 1% accuracy as long as IzWI 5 0.245. This condition

is met for all values of Ka such that

[Io(xa)]/[I1(Ka)]:50.245 Z(2€RT)l/2(Cl/2/0) ,

where we have used (4.30) and (4.28). For T = 298°K,

R = 3,314J molle-1 , z = l, and s = 7 X 10-10 Clem-1 I

the condition becomes

[10(Ka)]/[Il(Ka)] 5 0.456 x 10‘3(c1/2/o) , with both

c and o in SI units. For 0 = 10-4'Cm-2 , the condition is

met for all concentrations c greater than 5 x 10.3 molar =

5 x 10.2 mol m-3 . For 0 = 10"3 C m_2 , the condition is

met for all concnetrations c greater than 5 x 10"3 molar..

For 0 = 10-2 C m-2 , the condition is met only for concen-

trations c greater than 0.5 molar. For a wide range of

surface charge densities and concentrations, then, (4.27)

is valid regardless of theoretical doubts concerning

(4.25). Moreover, for values of Ka large enough for (4.21)

to hold, the x-derivative term of (4.25) is approximately,

(BZT/BXZ) = — saw (d2nI/dx)2 . (4.31)
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Even for large gradients of the ionic strength I, the x-

derivative term is very small compared to KZW because K

is very large, 107 to 109 m-1 .

E. Pressure, Electroosmotic and

Capillarnysmotic Flows
 

In this section we combine the results obtained

from previous sections to formulate an analytical expression

for the capillary osmosic flow in a charged circular capil-

lary.

Since the presence of the tangential concentration

gradient together with the ion distribution (non-

electroneutrality) result in the axial polarization of

w(x,r) and P'(x,r), the following physical conditions

should be satisfied:

whenever o = 0 or I = constant,

(8P'(x,r)/3x) = 0 and (30(x,r)/8x) = 0 . (4.32)

This implies that whenever the wall charge density is zero

or the ionic strength is the same in the compartments on

either side of the capillary, the axial polarization ef-

fect vanishes.

Combining equations (4.7), (4.19) and (4.20), we

find

\)

-RT(3 Z ca/ar) + (8P'/8r) = 0 , (4.33)

o=2



93

this implies

v

P'(x,r) - RT 2 ca(x,r) = f(x) , (4.34)

a=2

where f(x) is an unknown function of axial coordinates.

Introduction of (4.19) into (4.34) and eXpansion of the

exponential yields

0

P'(x,r) - RT 2 cg(x) - RTIW

a=2

2 + 0(43) = f(x) . (4.35)

In (4.5) and (4.6) we have tacitly assumed that

the polarization terms P'(x,r) and ¢(x,r) are complicated

functions of x and r . They are not further separable in

the form of (4.5) and (4.6). This is clearly the case in

(4.30). Hence f(x) can be identified from (4.35) as

\)

f(x)=-RT Z co(x) (4.36)

d=2 a

and (4.34) becomes

0 v 0

P'(x,r)-RT X c (x,r)-tRT Z c (x) = 0 . (4.37)

a=2 a a=2 a

Differentiating (4.37) with respect to x and

utilizing (4.12) and (4.20), we obtain

(8P'/3x) = (szz/RT)(dI/dx) + (ZIsz/RT)(Bw/3x) , (4.38)
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where on the right hand side we retain only up to the

square term in 0.

(4.38) satisfies the physical restriction in (4.32),

which further confirms the choice of f(x) in (4.36).

Gross and Osterle (1968) and Fair and Osterle (1971)

set f(x) = 0 arbitrarily. Therefore their formulation does

not satisfy the physical restrictions in (4.32). Instead,

- 0

they have an extra term containing 2RTc, (or RT 2 c2)

d=2

which they denote as n, the solute partial pressure given

by the Van't Hoff equation for equilibrium osmotic pressure.

In fact their results are erroneous since whenever there

exists only a concentration variation across an uncharged

capillary, their equation predicts a center of mass move-

ment caused by the solute partial pressure gradient (or

rather ordinary osmotic pressure gradient from the Van't

Hoff equation). This seemingly correct prediction is in

fact wrong. For a circular capillary Open to both solute

and solvent, there can be no ordinary osmotic flow. The

only mechanism that can give rise to an osmotic pressure

is a momentum deficiency due to a sharp change of solute

concentrations at the capillary openings (Mauro, 1957;

Longsworth, 1960; Meares, 1966; Philip, 1969). This can-

not be taken into account structurally in a,continuous

theory like this, but it can be taken care of mathematically

by a boundary condition as discussed in Chapter III.
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For the discussions in this chapter, we stick to our

original assumption in Section B that the capillary is

open to both solute and solvent so that no ordinary os-

motic effect will occur.

(4.38) and (4.21), together with the last of (4.8),

gives

r r

(F2/2nRT)(dI/dx) ; (dr)r' 1 I
0 (drmp2 . (4.39)c

: II

CO

Substituting (4.21) and (4.30) into (4.8) and

(4.39), and performing the integration we obtain

x p eo co

up = (4n)-l(r2-a2)(dP/dX)

ueo = [O/fiKIl(Ka)][IO(Ka) - 10(Kr)](d¢/dx)

uco = [02/4nK281i(Ka)]{(Kr)2[Ig(Kr)-Ii(Kr)]-(Kr)Io(Kr)Il(Kr)

- (Ka)2[Ig(Ka)-Ii(Ka)] + (Ka)IO(Ka)Il(Ka))(dQnI/dx) .

(4.40)

For the first time the general analytical expression

of barycentric flow in a charged circular capillary is

written down including capillary osmosis. The first term,

up, represents the well known Poiseville flow due to ex-

ternal pressure gradient. The second term, u , repre-
eo

sents the capillary osmotic flow caused by the double layer
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polarization due to an external concentration gradient.

It has been shown by Derjaguin, et a1. (1969), that in

general the rate of capillary osmosis and of electro-

osmosis due to diffusion potential are of the same order

of magnitude.

We observe that whenever there is no concentration

variation, (4.40) reduces to the ordinary electrokinetic

flow equation for circular capillaries (Newman, 1973;

Sorensen and Koefoed, 1974). Furthermore, if 0 = 0 (zero

wall charge) we get the usual pressure flow equation.

The velocity profiles in the capillary for the

above mentioned three different cases are shown in Fig. 4.1

to Fig. 4.3. Fig. 4.1 shows the familiar parabolic velocity

profile in the capillary due to external pressure gradient.

Fig. 4.2 shows the electroosmotic velocity profile due to

the external electric field as a function of Ka, the ratio

of capillary radius to Debye length. Fig. 4.3 shows the

capillary osmotic velocity profile due to the electrolyte

concentration gradient across the capillary as a function

of Ka. In the presence of an electrolyte concentration

gradient, a diffusion potential will occur, so the capil-

lary osmosis must be accompanied by electroosmosis.

Therefore the capillary osmotic velocity can only be

measured by short circuiting two reversible electrodes

placed at both ends of the capillary. In the most general
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Fig. 4.l—-Poiseuille Flow

Y1 = - 4n up(r2 - a2)-l(dP/dx)-
1
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4.2--Electroosmotic Flow
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Fig. 4.3--Capillary Osmotic Flow
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case the barycentric velocity is a mixture of these three

aforementioned flows.

For large values of Ka, the diffuse double layer

is relatively thin, and the velocity variation occurs near

the wall where the cylindrical geometry is not important.

In this case there tends to be a velocity discontinuity

at the wall (see Fig. 4.2 and Fig. 4.3), these are the

so called electroosmotic slip and capillary osmotic slip

respectively.

Asymptotic expansions for Ka >> 1 show that

10(Kr)/I0(Ka) , IO(Kr)/Il(Ka) and I1(Kr)/Il(Ka) are

negligible, except in the double layer region very close

to the wall. Asymptotic expansion also yields

[10(Ka)/I1(Ka)] = 1 + (1/2Ka) + (3/8K2a2) + ... , (4.41)

Hence, in the limit of large Ka, the electroosmotic

velocity in (4.40) reduces to

ueo = (o/nK)(d¢/dx) , (4.42)

which is the same as the classical electroosmotic slip

velocity given by Helmholtz (1879) and Smoluchowski (1914).

The capillary osmotic velocity in (4.40) reduces to, in

the limit of large Ka,

uco = - (02/8nK2€)(d2nI/dx) , (4.43)
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which is consistent with the capillary osmotic slip ve-

locity for flat double layers given by Derjaguin, et a1.

(1947, 1961, 1965, 1969, 1971, 1972, 1974). This last

statement will be justified in the next section.

One thing we like to stress here is that the

capillary osmotic velocity contains charge density square

term [see (4.40) and (4.43)], which implies that as long

as the axial concentration gradient is fixed, the capillary

osmotic flow will be in one direction only no matter what

the sign of the fixed charges on the capillary wall is.

This is also consistent with the results given by Der-

jaguin, et.al. (1969).

F. Comparison with Derjaguin's Formulation
 

Derjaguin, et a1. (1961, 1969) and Dukhin and

Derjaguin (1964) derived, by the method of discontinuous

nonequilibrium thermodynamics, the formula for capillary

osmosis of dilute electrolyte solutions along a flat sur-

face. Their capillary osmotic velocity is expressed as,

for a binary electrolyte,

uco = - (v+€++v-E_)(%)RT(d£nc/dx) (4.44)

+ - 0 0

where v and v are the number of cations and anions per

molecule with c = (c2/v+) = (cg/v-), where c2 and c9 are

the ion concnetrations in the bulk. Also
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a: = (cg(x))’1 6m[ci(h,x) - Cg(x)]hdh , (4.45)

where ci(h,x) are the ion concentrations at a distance h

from the slip plane and cg(x)§i are the moments of ad-

sorption of ions relative to the slip plane with x the

coordinate along the flat surface. Combining (4.44) and

(4.45), their capillary osmotic velocity on a flat sur-

face becomes

_ _ -1‘ I"0 - — °uco — n RT(d£nc/dx) o [ E ca(h,x) Z ca(x)]hdh . (4.46)

a—+ a—+

In fact, in our previous derivation, if we use (4.37)

and the Boltzmann distribution from (4.19) without ex-

panding the exponentials, we obtain, instead of (4.38),

\) \)

(3P'(x,r)/3x) = [ 2 c (x,r) - 2 c0(x)]RT(d£nI/dx)

a=2 a d=2 a

V

- F 2 caza(aw(x,r)/3x) . (4.47)

o=2

Substituting (4.47) into (4.8), the general form of the

capillary osmotic velocity in a circular capillary is

obtained

-1 r _1 r \) \)

uCO==n RT(dinI/dx) ; (dr)r 5 (dr)r[a£2 cacao-a:2 ca(x)] .

(4.48)
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This is similar to Derjaguin's formula for flat surface,

(4.45). But (4.48) results from the Boltzmann distribu-

tion and a hychodynamic approach.

The point we wish to demonstrate here is that when

a Boltzmann distribution is assumed and linearization is

applied as we did in previous sections, (4.46) due to

Derjaguin, et a1. (1961, 1969) becomes identical with

our limiting equation (4.43). 4

Similar to (4.19), the Boltzmann distribution for

a flat surface is

c (h x) = c0 ex {- z W} (4 49)
a ' a ' P d '

with h the distance from the shear plane. According to

Overbeek (1952), when linearization is applicable, the

potential distribution near a flat surface obtained from

solving Poisson-Boltzmann equation with boundary conditions

similar to (4.29) reads

W(h,x) = (OF/KERT) eXp{- Kh} , (4.50)

where K is still defined by (4.28). Substitution of

(4.49) and (4.50) into (4.46) yields the capillary osmotic

slip velocity

uco = - (oz/BnK26)(d2nI/dx) , (4.51)

where we have used, for this binary electrolyte case
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2+v_zE]/dx)/2 = (dine/dx). (4.52)(dinI/dx) = (d£n[c(v+z+

(4.51) is exactly the same as our limiting equation (4.43).

This implies that our equation is consistent with that

given by Derjaguin, et a1. (1961, 1969) and it serves as

a check of the validity of our more general expressions

(4.40) and (4.48) for the multicomponent electrolytes

capillary osmosis in circular charged capillaries.

G. Conclusion
 

A general analytical expression for the capillary

osmotic velocity of multicomponent electrolyte solution in

a charged circular capillary has been derived from hydro-

dynamic consideration by taking into account the concentra-

tion polarization of the electrical double layer near the

capillary wall. In the limit of very large radius to

Debye length ratio our equation reduces to one which is

consistent with that obtained by Derjaguin, et a1. (1961,

1969) for flat surfaces from thermodynamic considerations.

It is possible to obtain a similar expression for

nonelectrolyte systems by taking into account the concen-

tration polarization of the mobile adsorption layer near

the wall, as long as the distribution of surface molecular

force field can be formulated. Some experimental evidence

of capillary osmosis for nonelectrolytes has been observed

by Cleland (1966).
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Capillary Osmosis is a general phenomenon whenever

there are a mobile ionic or molecular adsorption layer and

a tangential concentration gradient present. Study of

this process can be valuable for analysis of the structure

of ionic double layers and of adsorbed molecular layers at-

solid and solution interface.

For diffusion through porous media, it is necessary

to take into account this capillary osmotic process. It

can be very important in cases of transport of electrolyte

solutions through porour charged membranes generated only

by concentration gradients. A detailed account of its

relation with anomalous osmosis in porous charged membrane

will be presented in the next chapter.



CHAPTER V

ANOMALOUS OSMOSIS THROUGH

CHARGED POROUS MEMBRANES

A. Introduction

Osmotic transport of a nonelectrolyte solution

through a membrane or of an electrolyte solution through

an uncharged membrane occurs if the membrane acts to some

extent as a barrier to the solute (see Chapter III) and

if there is a difference of concentration across the mem-

brane. The rate of transport is, in those cases, prOpor-

tional to the difference in the chemical potential of the

solvent; 112;! the rate is roughly proportional to the

concentration difference of solute on the two sides of

the membrane. Moreover, the direction of transport is

toward the more concentrated solution. However, for a

charged porOus membrane which allows convective transfer

of the solution and which separates electrolyte solutions

of different concentrations, the rate of osmotic transport

appears to be greater and exhibits anomalous behavior.

When the concentration ratio of the two solutions

(both maintained at atmospheric pressure) is fixed and

flow rate is measured for different mean concentrations,

109
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the plot of flow rate against the logarithm of concentra-

tion is an N-shaped curve (see Figs. 5.1 and 5.2). The

flow rate for medium concentrations is higher than for

more concentrated solutions (anomalous positive osmosis).

In some cases, the flow occurs toward the less concentrated

solution (anomalous negative osmosis). These phenomena,

now known collectively as "anomalous osmosis" do not occur

in strictly semipermeable membranes.

Anomalous osmosis was first described by Dutrochet

(1835) and later by Graham (1854). Since then various

transport theories have been develOped (sf. Loeb, 1922;

Sollner, 1930; Grim and Sollner, 1957; Scthgl, 1955;

Kobatake and Fujita, 1964; Toyoshima, Kobatake and Fujita,

1967; Fujita and Kobatake, 1968; Tusaka, et al., 1969;

Kedem and Katchalsky, 1961; Dorst, et al., 1964) to de-

scribe the mechanism of anomalous osmosis. They are

generally of three types:

(a) Loeb (1922), Sollner (1930), Grim and Sollner

(1957), and Kobatake and Fujita (1964) recognized

the electrochemical nature of this phenomenon.

Their theories are based on the idea that electro-

osmosis, caused by the diffusion potential across

the membrane, is superposed on ordinary osmotic

flow which is due to the difference in solute

concentration. Grim and Sollner (1957) carried
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out careful and exact measurements of anomalous

osmosis of various electrolyte solutions across

oxyhemoglobin-coated collodion membranes, which

have clearly defined isoelectric points. By ad-

justing the PH of the electrolyte solution, the

membrane can be negatively or positively charged.

The total osmotic flow is composed of a normal

component and an abnormal component. The normal

flow due to ordinary osmosis was estimated by using

the electrolyte as its own reference under condi-

tions of zero net charge on the membrane. Kobatake

and Fujita formulated a more quantitative theory

by considering a charged capillary model for the

porous membrane. They obtained an eXplicit con-

centration dependence of the elctroosmotic coef-

ficient. Their theory is successful in predicting

the shape of the curve for the anomalous osmosis

data obtained by Grim and Sollner (1957). However,

their theory cannot OOpe with the experimental ob-

servation that, for KCl solutions, the osmotic

flow is in only one direction (toward the more con-

centrated solution) for both positively and nega-

tively charged membranes. That is they predict

(incorrectly) that the direction of flow is de-

termined by the sign of the charge.
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(b) Scthgl (1955) and Toyoshima, Kobatake and Fujita

(1967) used a one-dimensional treatment and ig-

nored the interactions between ions and solvent.

They also made arbitrary assumptions on activity

and mobility of ions in the membrane. They assumed

that the pressure gradient set up inside the mem-

brane together with the electrostatic potential

gradient combine to produce observed flow.

Toyoshima, Kobatake and Fujita (1967) succeeded

in predicting some experimental observations, but

they did not resolve the discrepancy mentioned

in (a).

(b) Kedem and Katchalsky (1961), Dorst, et a1. (1964)

and Tasaka, et a1. (1969) used the discontinuous non-

equilibrium thermodynamic approach. Anomalous

osmosis was attributed to cross terms in the one

dimensional phenomenological equations. The ob-

served flow behavior was attributed to frictional

interaction between solvent and ions. This "black

box" type of theory suffers the same difficulties

mentioned in Chapter III.

Although these three types of theories are satis-

factory in some respects, they are all inadequate in one

way or another. Moreover, the conditions of the numerous

eXperiments so far reported are usually not well defined.
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All previous authors have omitted the capillary osmotic

contribution described in the last Chapter. The concentra-

tion gradient imposed across the membrane in general causes

concentration polarization of the electrical double layer

along the pore wall and sets up an additional center of

mass movement by capillary osmosis. In the absence of

externally applied gradients of pressure and electric po-

tential (in fact this is the usual experimental conditions

for studying anomalous osmosis), the rate of capillary

osmosis is of the same order of magnitude as the rate of

electroosmosis due to the diffusion potential. The possible

contribution of electroosmosis to the mechanism of anomalous

osmosis was realized long ago (Loeb, 1922; Sollner, 1930;

Grim and Sollner, 1957; Kobatake and Fujita, 1964), but

this is the first time that capillary osmotic contribution

has been considered.

In this chapter, we use the continuous approach

and the capillary osmosis results of Chapter IV and derive,

without recourse to most of the restrictive simplifications

required by previous workers, a phenomenological theory for

the capillary membrane model which correctly predicts the

direction and magnitude of flow for KCl solutions through

positively and negatively charged porous membranes.

The system consists of a moderately charged mem-

brane which separates two aqueous uni-univalent electrolyte
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solutions of different concentrations (with CB > CA) at

the same temperature and in the absence of an external

hydrostatic pressure difference. The membrane is assumed

to contain a bundle of charged capillaries of equal radius

a which is large enough to permit a diffuse double layer

on the capillary walls but small compared to the thickness

2 of the membrane. We assume the unstirred layer thick-

ness on the two sides of the membrane has been minimized

by effective stirring and can be ignored here.

B. Phenomenological Equations of
 

Anomalous Osmosis
 

We confine our discussion to the system which

separates two aqueous solutions containing the solvent

molecules and the same single uni-univalent electrolyte.

Positive ions and negative ions are denoted by + and -,

respectively. The solvent (water) is denoted by w.

The one dimensional modified Nernst—Planck equation

is, from Appendix A,

No = - zawacaF(8¢/8x) - Da(8ca/8x) — Ba(3p/8x) + cauX ,

d=+,- . (5.1)

As shown in the appendix, this equation is valid only for

dilute solutions. The absolute mobility ma is related to

the ionic conductance Ad by ma = (Ad/IzaIFZ). By (A.19),
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Da the diffusion coefficient of a is related to the binary

Fickian diffusion coefficient D and to the mobilities by

-1

D = D+zawaRT(w+-mj(z+w -z_w_) , d=+,- . (5.2)
O. +

The pressure term coefficnet is defined by (A.23) as

—v_w_)(z w --z_00_)"l
B = Vd(c+v + + .
a +c_v_)(D/vRT) + c z wa(v+w

+ a a +

(5.3)

The electric current and the solute flux of the

electrolyte component both relative to the capillary wall

are defined by

i=FZzN, (5.4)

N=)N. (5.5)

The volume flow rate of the liquid which permeates

through unit area of the membrane is defined by

J = N+vV + N_v_ + N v (5.6)
+ w w

where v+, v_ and vw are the partial molar volumes. With

the help of (2.7) and (2.9), (5.6) can be rearranged to

JV = (v+-M+vw/Mw)(N+-c+ux)+-(v_-M_vw/Mw)(N_-c_ux) + 11x (5.7)
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By (5.4) and (5.1), for the uni-univalent case,

i = - (w+c++w_c_)F2(3¢/8x) - FD+(3c+/8x)+FD_(8c_/3x)

- F(B+-B_)(8p/8x) + F(c+-c_)uX , (5.8)

with

B+ - B_ = (c+w+-c_w_)(v+w+-v_w_)(w++w_)‘l . (5.9)

Likewise,

Ns = - (c+w+-c_w_)F(3¢/3x) - D+(3C+/3X) - D_(3c_/3x)

e (B++B_)(3p/8x) + (c++c_)ux , (5.10)

with

B++B_ = (c+v++c_v_)(D/RT) + (c+(1)++c__(1)_)(v+0)+-v__00_)(00++0)_)-l .

(5.11)

Substitution of the Boltzmann equation (4.19) for the ion

concentration with the exponential expanded up to the linear

term, separation of the electric potential and pressure

according to (4.5) and (4.6) and use of (4.30) and (4.38)

for the electrical potential and pressure distribution in

the charged capillary transforms (5.8) and (5.10) into
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c F2{(w++w_)-(w+-w_)W}(d¢/dx)

{-F2[(w++w_)-(D++D_)/RT][rIl(Kr)/Il(Ka)

an(Kr)IO(Ka)/Ii(Ka)](O/2€)-F(D+-D_)

F(D++b_)w —FRTC [(w+-s_)(w++w_)‘l-9](v+w -v_w_)92
+

(F2c o/s)[(w+-w_)(w++w_)-l-W](v+w -v_w_)W[rIl(Kr)/I1(Ka)
+

an(Kr)Io(Ka)/Ii(Ka)]}(dc /dx)

Fc [(w+-w_)(w++w_)_l-W](v w -v_w_)(dP/dx)—2c F‘i’uX ,
+ +

(5.12)

- c F{(w+-w_y_u%fw_)W}(d¢/dx)

+ {[(w++w_)-(D++D_)/RT](OW/26)[rIl(Kr)/I1(Ka)

- an(Kr)Io(Ka)/Ii(Ka)]-(D++D_)+(D+-D_)W

- [Dc (v++v_)-Dc (v+-v_)W+RTc[(w++w_)-(w+-w_)W]

X (v+w+-v_w_)(w++w_)-11\P2

- (Fc o/s)[((v++v_)-(v+—v_)W)D/RT+(w++w_)-(w+-

w_)9](v+w+-v_w_)(w++w_)’1w

x [rIl(Kr)/Il(Ka)-an(Kr)IO(Ka)/Ii(Ka)]}(dc /dx)

- {Dc (v++v_)-Dc (v+-v_)W+RTc [(w++w_)

- (w+-w_)w](v+w+-v_w_)(w++w_)‘l}(dP/dx)

+ 2c ux (5.13)

K = (2F2c /eRT)l/2 (5.14)
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and

T = Fw/RT = 0I0(Kr)/KsIl(Ka) , (5.15)

where we have used

(aw/ax) = (o/2€)[rIl(Kr)/Il(Ka) - aIO(Kr)IO(Ka)/Ii(Ka)](dinc /dx)

(5.16)

For this uni-univalent electrolyte, the center of mass

velocity ux is given by (4.40)

_ -1 2 2
ux - (4n) (r -a )(dP/dx)+[o/nKIl(Ka)][10(Ka)-I0(Kr)](d0/dx)

+ [02/4nK28Ii(Ka)]{(Kr)2[I3(Kr)-Ii(Kr)]

- (Kr)Io(Kr)Il(I<r)-(Ka)2[I3(Ka)-Ii(Ka)]

+ (Ka)Io(Ka)Il(Ka)}(d£nc /dx) . (5.17)

The use of (4.30) for the electric potential tacitly im-

plies that Ka, the ratio of capillary radius to Debye

length, is larger than unity. Equations (5.12), (5.13)

and (5.17) constitute the phenomenological description of

local membrane-referenced fluxes along a particular stream-

line in the capillary tube. It is important to note that

after the substitution of (5.14) and (5.15), the coeffi-

cient matrix of (5.12), (5.13) and (5.17) is not symmetric

simply because the sum of product of the fluxes and forces

are chosen in this way only for experimental convenience.

One must not forget, however, that the local phenomenological

coefficient matrix of (A.7) is still symmetric.
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C. Practical Equation for the Volume Flow
 

In this section, we average the steady state

fluxes over the capillary cross section, combine the

phenomenological equations of the last section, solve the

resulting equations subject to the apprOpriate boundary

conditions and derive a practical equation for the volume

flow across charged capillary membranes.

The fluxes are averaged over the capillary cross

section by means of the relations

a a

5* = 5 2wruxdr/ 5 2nrdr , (5.18)

_ a a

i = 5 2nridr/ 5 2nrdr , (5.19)

_ a a

NS = 5 2wrNsdr/ 5 2nrdr , (5.20)

_ a a

Jv = 5 anJvdr/ 5 2nrdr . (5.21)

Introduction of (5.17) into (5.18) leads to

6* = Al1(dP/dx) + A12(d0/dx) + Al3(d2nc /dx) , (5.22)

where the coefficients are

All = - a2/8n ,

A12 = C(Kn)-l{[10(Ka)/Il(Ka)]-2Ka} ,

A13 = 02(12nEK2)-1{(Ka)[I0(Ka)/I1(Ka)]

- (Ka)2[I:(Ka)/Ii(ra)] + (Ka)2-1} , (5.23)
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and where we have used integration formulas from the

literature (Hildebrand, 1962)

x

I _
0 on(x)dx — xIl(x) ,

,x 12( d _ 1 2 2 2

Ix x21 (x)I (x)dx = l x2I2(x) (5 24)
0 0 1 2 l ' '

and some previously unpublished formulas derived by us

(see Appendix B)

x

I32 3
0 x Il(x)dx (1/3){§x4[I§(x)-Ii(x)1+x Io(X)I1(X"x211(X)} .

(5.25)

x 3 2I 2 2

0 x Il(x)dx (1/3){2x3I0(x)Il(x)-2x 11 (x)-%x4trg(x)-I§(x)1} .

(5.26)

It is interesting to note that the electroosmotic coeffi-

cient A12 and the capillary osmotic coefficient Al3 are

complicated functions of salt concentration through the

concentration dependence of K. Among existing theories

only Kobatake and Fujita (1964) take the concentration

dependence of the electroosmotic coefficient into account.

None consider the capillary osmotic coefficient, which

might have the same order of magnitude as the electro-

osmotic coefficient. As we see later, both effects are

essential to describe anomalous osmotic flow behavior

observed in charged porous membranes.
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Substitution of (5.12) into (5.19) and utilization

of (5.22) yields

I = A21(dP/dx) + A22(d4/dx) + A23(d2nc /dx), (5.27)

with the coefficients

l[(I0(Ka)/I1(Ka))-2Ka]-(Fc0a2/2)(w+-b_)(v+wA21 = 0(Kn)- -v_w_)(w++w_)
+

+ oa(v+w+-v_w_)/2 ,

2 2
A22 = (w+-w_)(OF/a) - F c (w++w_)+o n-1[15(Ka)/Ii(Ka)]

- 02n-1[1+2Ka(Io(Ka)/Il(Ka))] ,

A23 == [F2(w++w_)-F2(D++D_)/RT](o/Fa)-Fc (D+-D_)+(D++D_)(o/a)

2 2 2 -1
- c (oRTa /2Ks)(v+w+-v_w_){[I0(Ka)/Il(Ka)]-l}(w+-w_)(w++w_)

Ka

+ [F203c /a2RTK382Ii(Ka)] 5 xI5(x)dx

(Fozc /28)(w+-w_)(w++w_)-l(w+v —w_v_){l-Ka[Ig(Ka)/Ii(Ka)
+

(I0(Ka)/11(Ka))]}

Ka

+[F203c /a2RTK3€2Ii(Ka)][ 5 x215(x)Il(x)dx

Ka

(Kan(Ka)/I1(Ka)) 5 xlg(x)dx]

[2nEKIi(Ka)1-1(Ka)-2[(Ka)2IO(Ka)Ii(Ka)

(Ka)3IO(Ka)Il(Ka) + (2/3)(Ka)3Ii(Ka)

IKa 3 3 _ IKa 2 2

O x Io(x)dx 0 x Io(x)Il(x)dx , (5.28)
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where in addition to (5.24) - (5.26) we have used the

additional integration formulas derived by us (see Ap—

pendix B)

Ix x21 (x)dx — x2I (x) - 2xI (x) (5 29)
o 1 ‘ o 1 ' '

Ix x312(x)I (x)dx = [x313(x)]/3 (5 30)
o 1 o 1 ' °

x 3 3 2
5 x Io(x)dx = x 11(x) + 4xIl(x) - 2x 10(x) , (5.31)

X

5 x4Io(x)Il(x)dx = x415(x)/6 + x4Ii(x)/3

2 2
-2x3Il(x)Io(x)/34-2x 11(x)/3 .

(5.32)

Successful calculation of the remaining definite integrals

in (5.28) has so far eluded us, except for large Ka..

The averaged solute flux is obtained by substituting

(5.13) into (5.20)

NS = A3l(dP/dx) + A32(d¢/dx) + A33(d£nc /dx) , (5.33)

where the coefficients are

1
A31 — Dc (RT)-1(v++v_)+c (v w -v_w_)+[(v+—v_)D(RT)-

+ +

-1 2
- ( w+-w_)(w++w_) (v+w+-v_w_)](o/Fa)-c a /4n ,

V II32 (o/a)(w+-w_)-Fc(w++w_)-2c (nK)-lo[2Ka-IO(Ka)/I1(Ka)] ,



123

A33 = (Fozc /4€)[(w++w_)-(D++D_)/RT]{l—Ka[I5(Ka)/I3(Ka)

(10(Ka)/Il(Ka))]}-C (D++D_)+(D+-D_)o/Fa

(oRTc /4Fa)[D(v++v_)+RT(v+w+-v_w_ )]

[D(v+-v_)/R‘I'-(w+-0)_)(w+v+-w_v_)(w+

Ka

+ w_)11(F03c /RT€2K 3a2I3l(Ka))5 xI5(x)dx

(02¢ /2€)[D(v++v_)/RT+(v+w+-v_w_)]{l-Ka[I5(Ka)/Ii(Ka)

(10(Ka)/Il(l<a) ) ] }

(F0 3/RTK3s2I3(Ka)a2 )[(v+-v_)D/RT

Ka“2 2

(w+-w_)(w++w_)1(v+w+-v_w_ )][ 5x IOI dx

Ka

(Kan(Ka)/Il(Ka)) 5 ng(x)dx] . (5.34)

Once again, the coefficient matrix of Ads is not symmetric

because the fluxes and forces do not preserve the entropy

production. They are defined instead for experimental

convenience.

At the steady state, the conservation of mass and

electricity and the incompressibility of the fluid yield,

for the

ditions:

one-dimensional flow considered here, the con-

dpux/dx = 0 , di/dx = 0 , st/dx = 0 .
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These imply that ux , i and Ns , and hence the averaged

flows 3* , I and NS , are constant in the x direction

across the membrane. In addition if there is no external

electric field applied across the membrane, then condition

on the electric current i = 0 must also be applied.

At this point we note that there are no externally

applied electrical potential and pressure gradients in the

anomalous osmosis experiment. However, the (dP/dx) and

(dI/dx) terms do not disappear from (5.22), (5.27) and

(5.33). The pressure gradient term in these equations

now should be the pressure gradient generated by the sharp

concentration change at the membrane solution interface.

This osmotic pressure gradient drives the solution through

the membrane even when there is no hydrostatic pressure

difference across the membrane. The fluid inside the mem-

brane pores cannot distinguish between the osmotic pressure

gradient and the external hydrostatic pressure gradient,

because these two appear together as a single hydrodynamic

pressure gradient. Therefore,in the case of anomalous

osmosis, (dP/dx) includes only the osmotic pressure

gradient. The elctrical potential term includes a dif-

fusion potential caused by the concentration gradient in

the membrane. Moreover, Donnan potentials occur at the

two membrane-solution interfaces due to the partial

impermeability of ions (Helfferich, 1962). As stated in
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Section B of Chapter III, the continuous capillary membrane

model cannot describe the osmotic effect and the Donnan

potential which arise from the concentration discontinuity

at the interface (the end of the capillary). However, one

can take these effects into account as boundary conditions

at the ends of the capillary. We do this in the next

section for KCl solution transport through the oxyhemoglobin

collodion membrane. If the distribution coefficients, which

define the relation between the solute concentrations just

inside and outside the membrane boundaries, are the same

on both sides of the membrane (This implies constant dis-

tribution coefficients.), then the Donnan potential con—

tribution cancel each other, and the electric potential

gradient can be approximated by the diffusion potential

alone. We assume this.

Accordingly, the apprOpriate boundary conditions

are

+ -

c = at.x = 0 and c = c5 at x = l (5.35)
I

c=14

where 0+ and 2- indicate the locations just inside the ends

of the capillary. The distribution coefficients due to

the presence of charge on the capillary are defined by

y
-

II

(
1
1
.
.

0
'
0

I- y (5.36)

0
'
0

? I
n
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where y is the distribution coefficient and cA and cB are

the concentrations just outside the ends of the capillary.

The osmotic pressure is defined by

An = p(x=2') - P(x=0+) = ERT(cB— ) , (5.37)
CA

where E’is the reflection coefficient defined in Chapter

III, which is an eXperimental parameter measured for an

uncharged membrane. As we mentioned in Chapter III, or-

dinary osmosis is still effective in charged membranes,

and the charge produces effects superimposed on it.

Utilizing the asymptotic expansion formula (4.41)

together with (cf. Abramowitz and Stegun, 1964)

1/2 1 2
+9(21)-l(8Ka)_ +...}I0(Ka) (2wKa)— exp(Ka){1+(8Ka)-

l/zexp(Ka){1-3(8Ka)-l-15(21)-l(8Ka)-2+...}I1(Ka) (ZflKa)-

(5.38)

for large Ka values, expanding those definite integrals in

(5.28) which do not have explicit forms, by the mean value

theorem, and retaining leading terms, we find that (5.27)

reduces to, with the condition i = 0 ,

d4/dx = [a-1(D++D_)o-(D+-D_)Fc -(oRTac /2K2€)(v+w+-

v_0)_)((1)+-()()__)((1)_._+w_)—1

-(ZnEK)-1(Ka)2][(w++w_)F2C

- (w+-w_)oF/a + 02(nKa)-l](d£nc /dx) , (5.39)
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where we neglect the small pressure contribution.

Eliminating (d¢/dx) from (5.22) by (5.39) and using

(4.41) and (5.38) again, we obtain

6* = A11(dP/dx) + 81(d2nc /dx) , (5.40)

where All is given by (5.23) and.where

1 2
s = 6(Kn)‘1[1-3(2Ka)‘ +3(8Ka)- ][a-1(D++D_) -(D+-D_)Fc
1

- (oRTac /2K82)(v+w+-v_0)_) (w+-w_) (w++w_)-1

- (ZnEK)-1(Ka)2][(w++w_)F2c -(w+-w_)oF/a+02(nKa)-l]-l

1
+ 62(8neK2)‘1((4Ka)‘ -1] . (5.41)

(5.41) can be integrated across the capillary subject to

boundary conditions (5.35), (5.36) and (5.37). This gives

3 2. = - (8)1)"la2x An+(2oKRT/n){0.5A2n8+8(cBy)’1/2(8‘1/2-1]

1

+ (2ch)‘1fite’ -11+E(ch)3/2(83/2-11/3

+ (F/2f)£n[(chY-9)/(chYB-g)1+0}

1 2
+ (48nsa)_1(cBy)_3/202K3[8-3/2-l]-(ancBY)_ o K2[8‘1—1]

(5.42)
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with

Q==F(-fg)-1/2[tan-ll-V-cByfg g-IJ-tan_l[-/-cByfg g-ll g<i0

0: (G/2/f§)2n[(/chy Mfg?) (v’fCBYB

+ /§)/(/f5;)+/§)(/IE;7§ -/§)) 9 > o (5.43)

where K = /; K‘l , B = cA/cB

b = (D++D_)g—(2nsK)-1(Ka)2 .

d = (D.._-D._)Fa+(oR'I'.-12/2K26)(v+u)+-v__uo_)(0)+--u)_)(<1)+,+m_)-l )

2
f = (w++w_)F a ,

g = (w+-w_)oF-02(nK)’l .

A = -(3K/2agfl(bf/g)-d] ,

B = -(3K2/8azg)[(bf/g)-d]-b/f .

5 = 3Kb/2af ,

E = - 3K2b/8a2g ,

f = - 3Kb/2ag[(bf/g)-d) .

G = - d+(3x?b/8azg)[(bf/g)-d]+bf/g . (5.44)

For the case of KCl , D+-D_ = RT(w+-w_) z 0, and the above

procedure yields
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1 2

z = - (8n>' a An+<2oKRT/n){b(3f>‘l(cBy)'3/2(e‘3/2-1)G
I

X

2
- (3Kb/8af)(cBy)' (8‘2-1)+<3K2b/40af>(cBY>‘5/2<s‘5/2-1)}

l
+ (o3K3/48nea)(cBy)‘3/2(6'3/2-1)—(02x2/8ne)(cérque‘ -1) .

(5.45)

The volume flow rate through the capillary can be

calculated by combining (5.6), (5.7) and (5.21) and then

integrating across the capillary from O to 2 , there fol-

lows

l
392 = {bj'(chy)—l(8— -l)+2k'f-12n8}-j"£nB-k"cBy(l-B)+E¥£ ,

(5.46)

where

j' = [w+(V+-M+Vw/Mw)-w_(V_-M_Vw/Mw)1(O/a) ,'

k" = Flw+(v+-M+vw/Mw)+w_(v_-M_vw/Mw)] ,

j" = [D+(V+-M+vw/Mw)-D_(v_-M_vw/Mw)](o/aF) ,

k" = D+(v+-M+vw/Mw)+D_(v_-M_vw/Mw) , (5.47)

and where we have neglected the pressure term from (5.1)

because of its smallness compared to the pressure con-

tribution from 3*. The true volume folw rate 36 across

membrane of unit area is then given by
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3'=E3v (14m

where E is the porosity of the membrane.

It is interesting to note that for equal or nearly

equal cation and anion diffusivities and mobilities, the

averaged center of mass velocity depends on 02 , the charge

density squared, as shown in (5.45) (the parameter b is

proportion to o). This implies that for uni-univalent

electrolytes of equal ion diffusivities, the averaged

center of mass velocity is independent of the sign of the

charge on the wall. This has an important bearing on the

concentration dependence of the volume flow rate of KCl

solution through charged porous membranes.

Before considering the experimental data of Grim

and Sollner (1957) we remark that they determined osmotic

flow rates from the volume changes of liquid transported

through the membrane in an intervals of time in which the

solution concentrations on the two sides of the membrane

were maintained effectively constant. There has been some

misuse of the averaged center of mass movement as the

volume flow (Gross and Osterle, 1968; Fair and Osterle,

1971); however, only the volume flux defined by (5.46)

and (5.48) is eXperimentally measurable.
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D. Comparison with Grim and Sollner's
 

Experimental Data
 

Grim and Sollner (1957) made careful measurements

of anomalous osmosis of various electrolyte solutions across

oxyhemoglobin—coated, highly porous, collodion membranes

which had clearly defined isoelectric points. By adjusting

the pH of the electrolyte solution, the membrane can be

put into a negatively or a positively charged state. The

total osmotic flow is composed of a normal component and

an abnormal component. The normal flow due to ordinary

osmosis was estimated by the use of the electrolyte as

its own reference under conditions of zero net charge on

the membrane. We are interested in interpreting their

observations on KCl solutions. Their data on KCl show

that the volume flow is in the positive direction only

(toward the more concentrated solution) for both positively

and negatively charged membranes. This was not explainable

by previous theories.

According to their study for 25°C, the measured

volume flow rates were of the order of 10 to 100 microliters/

2 cm thick, the watercmz-hr. The membranes were about 10-

content was 60 to 75 volume percent and the porosity of

the membrane was approximately 0.6 to 0.75. The average

pore radius was not given; instead, they did filtration

rate studies. With 10 cm of water pressure head, the
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average rate of filtration was 12.3 microliters/cmZ-hr.

Both the Poiseville volume flow formula for straight

capillaries

3v = EaZAp/8n£ (5.49)

and the Konzey-Carman law for porous media (Carman, 1948)

 

a = %- /(80Jvn2EApT (5.50)

yield values for the pore radius of the order of 10"8 m,

or 100 2 (generally, the Konzey-Carman law gives value

lower than those given by Poiseville's law). The data ob-

tained for ordinary osmosis of KCl through uncharged mem-

branes is used together with (5.37) to determine the

reflection coefficient 3. From the plot of the observed

volume flow 3v vs. the osmotic gradient for a single capil-

lary, a2RT(cB-cA)/4n£ , the reflection coefficient is

3 = .08 X 10-3. The smallness of this reflection coeffi-

cient indicates that only a small amount of solute molecules

is rejected by the uncharged membrane. This is due to the

presence of relatively large pores. The diffusion coeffi-

cients of K+ ion and Cl- ion in aqueous solution and

similarly their mobilities are almost equal (Miller, 1966;

9~

Haase, 1969), DK+ = DC1-=2.Ol X 10- mz/s. However, there

is ample evidence that the values of diffusion coefficients

in membranes are l/5 to 1/20 lower than the corresponding
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coefficients in water (Lakshiminarayanaiah, 1969; Beck

and Schultz, 1972). For purposes of estimation, we as-

sume that they are 10 times smaller than the diffusion

coefficients in free solution. We also assume that

D+ + D_ x RT(w++w_) for estimation. Since the membrane

charge comes from the coated oxyhemoglobin, we approximate

its value from the electrokinetic charge of the human

blood cell (Cook, et al., 1951); it ranges from 10‘3 to

-2 2
10 c/m . The viscosity coefficient of the KCl solution

and its absolute permitivity are approximated by the values

of water at 25°C. They are n = 10'3 N - s/m2 and

l
e = 7 X 10- 0 c/V ' m respectively. In summary, the values

of the parameters used in the present calculation are:

0+ = D_ = 2.01 x lo'lomZ/s , o = 2.2 x 10’3 C/m2 ,

8 = c /c = o 5 n = 10’3 N - s/m2
A s ' ' '

-10
F = 96500 C/mol , e = 7 X 10 C/V -m

2 = 10.4 m , a = 10.8 m ,

— _ -3 ' _ o __ o _
o - 0.8 X 10 , Y — cA/cA--cB/cB — 0.25 ,

"'1 '1 o — ..
R = 8.314 J K mol , T = 298 K , e — 0.75 .

The distribution coefficient has been chosen so

that the shift on the abscissa will make the maximum data

point coincide with that of the theoretical curve. We do
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this because there are no available data to estimate y in

this system. These values together with (5.45) - (5.48)

yield the true volumeflow through charged porous oxyhemo-

globin collodion membranes, both negatively and positively

charged. They are plotted in Fig. 5.1 and Fig. 5.2 as a

function of the KCl concentration on the higher concentra-

tion side. The true volume flow is positive, which means

that the flow is toward the more concentrated solution.

It can be seen from these two figures that the

experimental data of Grim and Sollner agree well with the

theoretical values calculated from (5.45) - (5.48). The

values of~3§ below 2c = 0.0125 mol/l are not shown be-
B

cause in that region, when Ka ~ 1 , the asymptotic expan—

sions of Bessel function used in obtaining (5.39) - (5.48)

fail. The use of (5.45) - (5.48) in this region therefore

gives incorrect values. The larger deviation in the middle

range of the concentration [about 0(10‘1)] might be attri-

buted to the approximate nature of the electric potential

dietribution (4.30) obtained for a Gouy-Chapman type

double layer. It has been shown by Krylov and Levich

(1963) by a statistical mechanical derivation allowing for

the short-range interaction between ions in the diffuse

part of the double layer in a concentrated solution and

also allowing for the discrete structure of the charge of

specifically adsorbed ionic layers that in a moderate
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Fig. 5.l--Volume flow of solution across an Oxyhemoglobin

-coated collodion membrane as a function of con-

centration, with a concentration ratio of 1:2.

Points are Grim and Sollner's eXperimental data,

solid curve is the present theoretical result.

Charge of membrane: negative.
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Fig. 5.2--Volume flow rate of solution across an Oxyhemo-

globin coated collodion membrane as a function

of concentration with a concnetration ratio of

1:2. Points are Grim and Sollner's experimental

data, solid curve is the present theoretical

result. Charge of membrane: positive.
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bulk concentration (0.1 ~ 0.75) the potential in the diffuse

part of the double layer decreases in the bulk of the solu—

tion more rapidly than predicted by Guoy—Chapman theory.

They have shown that for a solution of 0.75 molar the de-

creases in the potential in the diffuse part of the double

layer occurs over a distance of the order of two ionic

diameters. There may also be other factors contributing

to the deviation in this concentration range, such as the

neglect of the nonideality at higher concentrations, the

concentration dependence of parameters, and the real pore

size distribution. The good fit at very high concentra-

tions is due to the dimunition of the abnormal component and

the domination of ordinary osmotic flow. Nevertheless,

considering the approximations and assumptions introduced

in.our derivation together with the lack of precise values

of parameters from independent measurements, this agree-

ment between theory and experiment is quite satisfactory.

The most important fact we have demonstrated is that for

ions with almost equal diffusivities the volume flows

across a negatively or a positively charged porous mem-

branes not only have the same direction but also similar

magnitudes and composition dependence due to the fact that

the center of mass velocities are the same for both charges.

We have also shown that with the inclusion of the capilliary

osmotic contribution, which was ignored by other authors,
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and with suitable values of parameters it is possible to

achieve a quantitative description of the anomalous osmotic

phenomena.

E. Conclusion
 

We have derived, with the inclusion of the capil-

lary osmotic contribution which is usually in effective

and was ignored by other authors, a general analytical

formula for anomalous osmosis through charged capillary

membranes. The formula applies to any uni—univalent

electrolyte. In particular, for KCl solutions, the volume

flows through the membrane are in the same direction (toward

the concentrate solution) and are of almost the same magni-

tude and composition dependence. This is due to the facts

that (a) cation and anion mobilities are nearly equal and

(b) the averaged center of mass velocity depends on the

charge density squared. This is demonstrated by the good

agreement between our theoretical and Grim and Sollner's

experimental results for Kcl solution, as shown in Fig. 5.1

and Fig. 5.2. For uni-univalent electrolytes with different

ion diffusivities our equation (5.42) describes the negative

anomalous behavior. For other binary electrolytes, similar

expressions can be derived. However, before satisfactory

quantitative double layer theory for concentrated solutions

is developed, we expect the present theory to be a good

approximation in the high concentration range.
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Furthermore, until precise values of membrane and solution

parameters are determined by independent experiments, a

rigorous test of the present theory cannot be performed.



CHAPTER VI

CONVECTIVE-DIFFUSIVE FLOW IN A TUBULAR

MEMBRANE WITH AXIAL DIFFUSION AND

NONUNIFORM VELOCITY PROFILE

A. Introduction
 

The solution for the capillary membrane model dis-

cussed in the previous chapters did not require eXplicit

knowledge of the concentration distribution inside the

capillary. However, it is advantageous, especially for

understanding the concnetration dependence of phenome-

nological coefficients, to acquire such knowledge in order

to develop further membrane transport theory. We investi-

gate in this chapter a capillary with not only axial trans-

port of solution (by diffusion and convection) but also

radial transport (by diffusion) through the capillary

wall. The wall is at least partially permeable to both

the solvent and the solute. When the wall permeability

vanishes, the capillary membrane model of the previous

chapter is recovered.

Membranes of tubular geometry and different per-

meabilities with both laminar and fully developed liquid

flow have various applications in various fields.

142
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Among these are: (a) electrolysis with flowing solution

in a porous or tubular electrode (212;! Sioda, 1968;

Wroblowa and Razumney, 1974; Flanagan and Marcoux, 1974;

Newman, 1973); (b) artificial kidneys (Stewart, et al.,

1966; Cooney, Kim and Davis, 1974); (c) vascular flow in

plants (Eschrich, et al., 1972); (d) microtubules (Olmsted

and Borisy, 1973); and (e) gas separation (Bird, Stewart

and Lightfoot, 1960). Because of the similarity of the

heat transport equations to the mass transport equations,

the formalism for convective diffusion in tubular mem-

branes is also applicable to convective heat transfer by

laminar flow in tubes. In fact most previous analyses

were restricted to heat transfer problems.

A major assumption usually made in the analysis

of both problems is the neglect of axial diffusion or

axial heat conduction. With such an assumption and the

boundary condition of uniform wall temperature, the heat

transfer problem is the well-known classical Graetz prob-

lem (Graetz, 1883, 1885). Neglect of axial diffusion or

heat transfer leads to a parabolic partial differential

equation whose radial eigenfunctions are orthogonal.

Graetz calculated only the first two eigenvalues. Since

then a great deal of effort has been spent on calculating

more accurate eigenvalues and eigenfunctions, and improv-

ing the convergence of the eigenfunction expansion by
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various orthogonal trial functions. The Graetz problem

with the boundary condition of constant wall temperature

or constant concentration has been treated by, E;9;r

Sellars, Tribus and Klein (1956), Singh (1958), Bodnarescu

(1955), Brown (1960), Sparraw and Siegel (1960), Sideman,

Luss and Peck (1965), Worsoe-Schmidt (1967), and Davis

and Parkinson (1970). The most exact computation per-

formed to date are those of Brown (1960), who, by using

a computer capable of manipulating 50 digits, computed

the first ten eigenvalues and other constants. The Graetz

problem with the boundary condition of constant wall heat

flux or constant wall mass flux has been treated by

Sellars, Tribus and Klein (1956), Siegel, Sparraw and

Hallmant (1958), and Worsoe-Schmidt (1967). For the

boundary condition of constant wall resistance or per-

meability, the Graetz problem has been investigated by

Schenk (1954), Schenk and Dumore (1954), Sideman, Luss

and Peck (1965), Davis and Parkinson (1970), and Cooney,

Kim and Davis (1974).

The assumption of negligible axial diffusion or

heat conduction, however, is not always valid. It can

lead to significant errors for fluids of high diffusivi-

ties (219;! gases) or high termal conductivities (ELEL'

liquid metals). Using the simplifying assumption of a

flat velocity profile, Schneider (1957) analyzed the



145

effect of axial conduction on entrance region heat trans-

fer and concluded that it is appreciable if the Peclet

number (which describes the ratio of convective to dif-

fusive effects) is smaller than 100. This was confirmed

by Hsu (1967) through a refined analysis. It is necessary

on both theoretical and practical grounds to have a general

treatment which takes into account the effects of both non-

uniform velocity profiles and axial diffusion or axial heat

conduction.

Inclusion of axial diffusion or axial heat con-

duction causes the partial differential equation for the

problem to become elliptic and the eigensolutions are no

longer orthogonal. This has been one of the reasons for

the neglect of axial diffusion or axial heat conduction

in the traditional Graetz problem since non—orthogonality

inhibits mathematical manipulations. It is customary to

solve the partial differential equation as accurate as

possible by numerical methods and subsequently to use

tabulated results in similar problems. For the constant

wall temperature boundary condition, Singh (1958) pro-

posed a Bessel function eXpansion method. However, his

method does not readily yield higher eigenvalues and

eigenfunctions. Jones (1971) considered this problem,

still with a constant wall temperature boundary condition,

by a Laplace Transform method followed by a Frobenius
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approach. Rapid convergence of his final result is not

assured, and errors in the linear combination coefficients

tend to build up rapidly due to the use of a recurrence

relation which relates the higher coefficient to previous

coefficients. Tamir and Taitel (1973) and Taitel, Bent-

wich and Tamir (1973) considered the effect of upstream

and downstream boundary conditions on heat or mass trans-

fer with axial conduction or diffusion, but they used a

simplified flat velocity profile. Hsu (1967) and Tan and

Hsu (1970) treated this problem (with constant wall heat

flux) carefully and determined the first 20 eigenvalues

and the corresponding eigenfunctions by a Runge-Kutta

numerical scheme. Hsu (1971) extended this to an in-

finite tube half insulated and half at a constant tempera-

ture. The nonorthogonal eigenfunctions were eXpanded in

sets of orthogonal functions by a Gram-Schmidt ortho-

gonalization procedure. This numerical scheme is un-

necessarily complicated, especially since no increase in

accuracy is obtained by use orthogonal eigenfunctions.

Michelsen and Villadsen (1974) use a method of orthogonal

collocation and matrix diagonalization to solve the Graetz

problem with axial heat conduction. The partial differ-

ential equation is changed to 2N algebraic equations by

collocating it to zero residure at N points; these N

points are chosen as the zeros of an Nth degree
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orthogonal polynomial (they use Legendre polynomial).

This method has the advantage of accuracy in the entrance

region, but the higher eigenvalues deviates enormously

(249:1 for the classical Graetz problem the 7th eigen—

value is 15% larger than its accurate value and the 10th

eigenvalue is almost ten times bigger than its accurate

value). Moreover, the partial differential equation is

solved only numerically.

In this chapter we analyze a mass transfer system

in a tubular membrane with axial diffusion. The result
 

can easily be applied to heat transfer systems. We solve

this problem in terms of confluent hypergeometric functions

(CHF). The eigenvalues are obtained as the zeros of a

transcendental equation expressed in terms of the CHF,

and asymptotic forms of the CHF are used to obtain ex-

pressions for higher eigenvalues. Concentration dis-

tributions are calculated for various values of the Peclet

number and wall permeability. The linear combination co—

efficients in the solution are found by an "Overdetermined

Collocation" numerical scheme which involves a least—squares-

type collocation of the boundary condition equations and a

matrix inversion to solve for the coefficients. The most

obvious advantage in expressing solutions in terms of well-

known tabulated functions is that the properties of the

functions (e.g., derivatives, recurrence relations,
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convergence properties) are known and the asymptotic

solutions are available. In addition, eXplicit expressions

in tabulated functions obviates the need for a totally

numerical scheme to obtain eigenvalues from the differ—

ential equation and the boundary conditions. Application

of the CHF to the Graetz problem without axial diffusion

or heat conduction was reviewed by Davis (1973) and ex-

tended by Cooney, Kim and Davis (1974) to the case of

the hemodialyzer. However, this is the first time that

the "Overdeterined Collocation" method and CHF have been

applied to Graetz problem with axial diffusion. In the

case of no axial diffusion, the Overdetermined colloca-

tion method reduces to the usual method of finding the

linear combination coefficients in an orthogonal system.

Although our method is simpler, it has the same accuracy

as more sOphisticated ones. To our knowledge, no results

corresponding to the boundary condition considered here

(finite wall.permeability) are avilable in the literature.

We also demonstrate that the solution obtained by neglecting

axial diffusion may be regarded as a special case of a more

general solution in which the axial diffusion is included.

The methods given here are also applicable to parallel

plate membrane systems with axial diffusion.
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B. Basic Equations and Boundary Conditions
 

For economy of language, we use the terminology

for the artificial kidney system, which consists of hollow

fiber membranes. The results can of course be used for

analogous heat or mass transfer processes as well.

We consider mass transfer between two flowing

fluids (solution, dialysate) separated by a membrane which

is permeable to the species being exchanged but is im-

permeable to all other species. The permeability of the

tubular membrane is constant however can have different

values. The dialyzer system (artificial kidney) consists

of solvent with an evenly distributed solute flowing from

left to right in the tubular membrane. At a certain point

in the tubular membrane system, the fluid contacts a

portion of the wall that is permeable to the solute. The

length of the impermeable portion is assumed to be long

enough that the flow is laminar and fully developed before

the fluid contacts the section of the wall that is per-

meable, and the dimensions of the tubular membrane are

such that it can be considered to be semi-infinite. The

dialysate flow is turbulent, with flow rate high enough

that mass transfer resistance on the dialysate side can

be neglected. The dialysate is assumed to have a con-

stant bulk concentration at all axial positions in the

dialyzer. This is shown schematically in Fig. 6.1. We

also assume:
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(l) The solution is Newtonian, homogeneous and has

constant physical properties.

(2) Only purely diffusive transport occurs across the

membrane. Convection across the membrane and hence

the hydrostatic and osmotic pressure differences

between the fluids are considered to be negligible.

(3) Steady state has been reached.

(4) The solute distribution coefficients for both

solution-membrane and dialysate-membrane interface

are equal.

(5) Axial diffusion in the tubular membrane is not

negligible.

Impermeable Dialysate co

  

     

Permeable

c ux(r)

(I

Fig. 6.l--Schematic diagram of tubular membrane.

For a binary nonelectrolyte solution without

pressure gradients, the flux equation (5.2) becomes

N = - D Vc + c u . (6.1)
a a~ a a~

~
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This is also applicable to electrolyte solutions contain-

ing enough supporting electrolyte that the contribution

of ionic migration may be neglected. Substitution of

(6.1) into the continuity equation, with the understanding

from assumption (3) that the steady state has been reached,

yields

Dav c = 9 ° Vc , (6.2)

where we have used the constant physical prOperties as-

sumption. This is the so called convective diffusion

equation (Bird, Stewart and Lightfoot, 1960; Levich, 1962;

Kays, 1966; Newman, 1973). For the tubular membrane con-

sidered here, the solution of the Navier-Stokes equation

under the condition of steady laminar flow has the form

2u0[l-(r/a)2] , (6.3):
3 II

where the average velocity over the tube cross section is

o a a 2 —l
u = ( 5 uxrdr/ 5 rdr) = a (4n) (ap/ax) . (6.4)

The equation of convective diffusion then becomes

2u0[l-(r/a)2](3ca/3x) = Da[r-1(3/3r)r(6ca/3r) + (azca/3X2)] .

(6.5)



152

The boundary conditions are

BCI ca = cb at x = 0 for 0 i r i a , (6.6)

BCII ca = C0 when x + w for 0 i r i a , (6.7)

BCIII (Bea/3r) = 0 at r = 0 for x > 0 , (6.8)

BCIV -Da(3ca/3r) = Pm(ca—CO) at r = 0 for x > 0, (6.9)

where cb is the inlet concentration, c0 is the dialysate

concentration, P is the permeability coefficient of the
m

tubular membrane, and where the derivative is zero at the

center of the tube by symmetry. BCII indicates that for

downstream the concentration of the solution approaches

the dialysate concentration and BCIV serves as a defini-

tion of the permeability coefficient. The dimensionless

variables

c = (ca'°0)/(Cb—CO) , (6.10)

c = r/a . (6.11)

z = x/aPe where Pe = 2uoa/Da , (6.12)

Nsh = p a/D , (6.13)
W m on

transform the convective diffusion equation (6.5) and the

boundary conditions (6.6)-(6.8) to

(l-C2)(BC/32) = c’IIa/acIcIac/ac) + PéZIaZc/azz> , (6.14)
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BCI c = l at z = 0 for 0 i c i 1 , (6.15)

BCII c = 0 when 2 + w for 0 3'; i l , (6.16)

BCIII (ac/3;) = 0 at g = 0 for z > 0 , (6.17)

BCIV -(3c/3§) = Nshwc at C = 1 for z > 0 , (6.18)

where the Peclet number is a measure of convective to dif-

fusive effects and the wall Sherwood number Nsh describes

w

the transport conductance of the membrane.

C. The Graetz Problem and Its Extension
 

On the assumption that the Peclet number is large,

which implies that axial convection dominates over axial

diffusion since the Peclet number is the ratio of convective

to diffusive effects, the second derivative with respect

to z in (6.14) is usually neglected. This neglect is

equivalent to the neglect of the contribution of axial

diffusion. (6.14) then reduces to

(l-C2)(BC/32) c‘lIa/acI (ac/ac) . (6.19)

Neglect of axial diffusion changes the problem considerably.

Firstly, there are no dimensionless parameters in the prob-

lem. Secondly, the original partial differential equation

is elliptic, while without axial diffusion the equation

becomes parabolic. In the elliptic problem, all boundary

conditions including the one at x + w have to be Specified.
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In the parabolic problem, there is no upstream propagation

of effects, and the boundary condition (6.16) is not neces-

sary. Furthermore, if constant wall concentration obtains,

then the Sherwood number N8 + w , and the boundary con-

h

ditions reduce to w

BCI c = l at z = 0 for 0 i c i l (6.20)

BCII (ac/3;) = 0 at c = 0 for z > 0 (6.21)

BCIII c = 0 at C = l for z > 0 . (6.22)

(6.19)-(6.22) constitute the classical Graetz problem.

Graetz (1883, 1885) treated this problem by the

method of separation of variables:

C(C.2) = R(C)Z(2) . (6.23)

Substitution of (6.23) into (6.19) gives

<1-c2IRId2/dzI = IZ/c><d/dc>c(dR/ch

or

z'l(d2/dz> = [(1-62)CR1-1(d/dC)C(dR/dc) = - 12 (5.24)

where A are the eigenvalues.

The function Z(z) can be determined from

(dZ/dz) = - 122 (6.25)

with the solution (apart from a multiplicative constant)
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z = exp(-lzz) (6.26)

The function R(;) can be determined from

c‘l(d/dc)c(dR/d6) + 12(1-62)R = o (6.27)

and the boundary conditions

(dR/dC) = 0 at C = 0 ,

R = 0 at C = l . (6.28)

(6.27) and (6.28) constitute a Sturm-Liouville problem be-

cause the linear, second-order, ordinary differential

equation (6.27) is self-adjoint with homogeneous boundary

conditions (6.28). The eigenfunctions of the Sturm-

Liouville problem are orthogonal,

I1 2 { 0 n + m

C(1-I; )R (2;)R (Dd; = (6.29)
0 n m l n = m '

where R.n and Rm are eigenfunctions corresponding to eigen-

values An and Am. The general solution is then

_ ” 2
c — Z AnIexp(-lnz)]Rn(c) . (6.30)

n=1

This is known as the Graetz series, with An the linear

combination coefficient corresponding to the nth eigen-

value and eigenfunction.



1
'

d
.

a
.

I

l
“

‘
3
4

-
,
v
.
.
-
.

.
—
:
,
.
‘

 



156

Only two boundary conditions have been used. The

remaining one, (6.20), together with (6.30), gives

1 = nil Aan(§) . (6.31)

With the use of the orthogonality property (6.29), the

coefficients can be obtained by

1 1

...I _2 I -22An_- o C(1 6 )Rn(;)dC/ 0 C(l ; )Rn(C)dC . (6.32)

This completes the solution of the classical

Graetz problem. From this solution one can calculate

other related quantities for the problems of interest.

Inspection of the solution (6.30) shows that fewer

terms are needed for large 2 and more terms for small 2 in

order to obtain proper convergence. LéveQue (1928) used

a boundary layer treatment (which is equivalent to singular

perturbation) to obtain a simple equation valid for small

2. For more detailed discussion of the Lévedue solution

and its extension see Newman (1973). Other extensions of

the Graetz problem involve constant mass flux or finite

wall permeability boundary conditions, which require extra

mathematical manipulations. However, the forms of the

solution are still the same as (6.30). The references for

these extensions have been given in Section A. The most
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important extension of the Graetz problem, however, is

the inclusion of axial diffusion. This is the topic of

the next section.

D. Exact Solution with Axial Diffusion
 

As pointed out in Section A, it is not always

justifiable to neglect the axial diffusion. Schneider

(1957) analyzed the effect of axial conduction on entrance-

heat transfer and concluded that it is appreciable if the

Peclet number Pe < 100. This was confirmed later by Singh

(1958) and Hsu (1967). The axial diffusion effect can be

very important in gases, for which the diffusion coeffi-

1 cmz/sec and thecients are usually of the order of 10-

Peclet number may well be much smaller than 100. This

can make the last term on the right hand side of (6.14)

comparable to or greater than the other terms. Conse-

quently, the axial diffusion contribution cannot be

neglected. Tan and Hsu (1970) recognized the necessity

of including axial diffusion for gas flow problems, but

they solved the differential equation by a Runge-Kutta

numerical scheme for a constant wall concentration bound-

aryecondition.

The starting equations are (6.14)—(6.18). With

the inclusion of the axial diffusion term, the method

of separation of variables no longer works.
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Nevertheless, we can seek a solution of the same form as

in the case of no axial diffusion, i.e.

c(6,2) = 21 BnIexp(-6§z)1 Yn(c) , (6.33)
n:-

where 8n and Yn(;) are the eigenvalues and eigenfunctions

of:

6‘1(d/d6)6(dYn/dc) + sin-c2 + (Bn/Pe)2] Yn = o (6.34)

with boundary conditions

(BYn/Bc) = 0 at C = 0

-(aY/a;) = Nsthn at c = 1 . (6.35)

By the transformation

a = Bncz and wn(a) = Yn(c) exp (Bncz/Z) , (6.36)

we obtain the CHF equation (or Kummer's equation)

2 2 1 2 _
£(d wh/da ) + (l-€)(de/d€)-{§~(Bn/4)[1+(Bn/Pe) I}wn — O o

(6.37)

This has the solution (apart from a multiplcation constant),

under the boundary condition (6.17),

_ 1_ 2 2

Wn - M(§ (Sn/4)[1+(Bn/Pe) J . l . 6n; ) , (6.38)
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where M is Kummer's function, defined by (see, e.g.,

Abramowitz and Stegun, 1964)

(a)2y2 (anyn
= 3!

M(a,b,y) 1+ b+W+ ...‘i'W‘l'... (6.39)

with (a)n

(b)

II

Ha(a+l)(a+2)...(a+n-1) , (a)O

I

H (6.40)n b(b+l)(b+2)...(b+n—l) , (b)0 -

Instead of M(a,b,y), the notation 1Fl (a,b,y) is also

widely used.

The advantages of expressing the solution to this

problem in terms of Kummer function are

(1)

(2)

(3)

(4)

The properties of the functions (e.g., derivatives,

recurrence relations, convergence properties) are

well known, and the numerical values of the function

are tabulated.

The asymptotic forms of the function are available.

Direct power series solutions obtained by the Fro-

benius method suffer from rapid error build-up due

to recurrence relations which evaluate coefficients

from previous coefficients. Moreover, fast con-

vergence is not guaranteed. (Both these remarks

apply only in the case that the general term cannot

be found).

The Kummer function can be evaluated quickly, and

its convergence properties are known.
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When the eigenvalue 8n is sufficiently large, the

following asymptotic form can be used instead of the series

from

M(a,b,y) = P(b)sin(afl)eXp[(b—2a)(%sinh20- cosh20)]

x [(b-2a)cosh0]l-b[fl(%b-a)sinh201-1/2[1+O(|%b-2|_l)]

(6.41)

where coshze = y/(2b-4a) .

Combination of (6.36) and (6.38) gives

2 l 2 2

Yn = exP(-Bn§ /2) M(§--Bn/4)[l+(8n/Pe) 1, 1181,11; ) . (6.42)

Applying the boundary conditions (6.35) to (6.42), we ob-

tain the transcendental equation

{1+%enI1-(sn/Pe)21-Nsh }M(%-(Bn/4)I1+(en/Pe)21, 1.8n)
W

= {l-§enI1+(en/Pe)21}M(%~(en/4)I1+(sn/Pe)21, 1,8n) . (6.43)

The eigenvalues are those values of 8n which satisfy this

equation. We have solved this equation by a half-interval

method (Carnahan, et al., 1969) for various values of Pe

and Nshw' Eigenvalues up to the 10th have been calculated

to an accuracy of at least 9 significant figures on a

CDC 6500 computer. In the range of parameters considered

here, computer calculations show that function converges
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to the 9th decimal place in less than 50 terms, and for

some parameters convergence is achieved in less than ten

terms. In order to assure convergence, we used 100 terms

for every Kummer function calculated. Sideman, Luss and

Peck (1965), who used a Frobenius method for the no

axial diffusion case, had to calculate 300 terms in order

to assure convergence. It has not been necessary in our

work to use the asymptotic formula (6.41) because the

computation time needed for evaluating the more general

expression is reasonably short. Eigenvalues calculated

for different values of Pe and Nshw are tabulated in

Table 6.1. For the case of Pe = w (no axial diffusion)

and Nshw = 0 (constant wall concentration), our eigen-

values are exactly the same as the most accurate ones

reported by Brown (1960). This serves as a check on

the accuracy of our calculations and the solution of

the transcendental equation (6.43).

The solution to this problem is, then

0 II

°° 2 2 1 2 2
nngnexm-anmxphsn; /2)M(-2--(Bn/4)[l+(Bn/Pe) 1,1,8nr, ) .

(6.43)

Application of boundary condition (6.15) leads to the re-

quirement that
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EUES AND LINEAR COMBINATION COEFFICIENTS

HHERE P IS THE PECLET NOov NSHH IS THE HAIL SHERWOOD NO.

TABLE 6.l-cEIGENVA

(NO AXIAL DIFFUSION). NSHH00PE

L.C.COEFFICIENTEIGENVALUE

I
.
I
Q
3
3
2
2
2
2
1
1

0
0
0
0
0
0
0
0
0
0

1
1
2
2
2
2
2
2
2

0
0
0
0
0
0
0
0
0

1
3
3
4
5
6
7
8
0
0

1

NSHH(NO AXIAL DIFFUSION),= noPE

LoC.COEFFICIENTEIGENVALUE

1
0
0
1
1
1
1
1
1
2

1
2
7
A
v
6

0
.
.
.
.

.
.

-.a

.4

-.2

.4

-.3

1
1
1
2
2
2
2
2
2
2

0
0
0
0
0
0
0
0
0
0

0
o
o
o
o

o
a
o
9
o

—
.
=

=
-
.
.
.
:
.
=
.
:
.
=
.
=

.
.
.
—
 M
9
M
?
H
M
W
&
#
$

9
8
3
4
9
2
4
2
9
6

A
G
M
Q
S
W
G
M
A
N
M

l
‘

‘
‘

‘

I
E
S
L
V
E
E
N
N
N

 

 
 
 1
2
3
4
5
6
7
8
9
0I
.

(NO AXIAL DIFFUSION), NSHH00PE

L.c.coerr1c15~t

.13464218

EIGENVALUE

1
0
0
0
0
0
0
1
0
]
.

 
 

 
 

ll

 
  ‘1‘!

1
1
1
2
2
2
2
2
2
2

0
0
0
0
0
0
0
0
0
0

1
2
3
4
5
6
1
1
8
9
01
.
.
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(CONTINUED)TABLE 6.1

S

L.C.COEEFICIENT

(NO AXIAL DIFFUSION), NSHH= wPE

EIGENVALUE

1
0
0
0
0
0
0
0
0
1

 
   
 

 

1
1
2
2
2
2
2
2
2
2

0
0
0
0
0
0
0
0
0
0

1
2
3
1
4
5
6
7
8
9
01

20NSHH(NO AXIAL DIFFUSION).z 00PE

L.C.COEFFICIENTEIGENVALUE

1
0
0
0
0
1
1
1
1
1

1
1
1
2
2
2
2
2
2
2

 

 
 

 
   1
2
1
7
5
5
6
7
8
0
01

(NO AXIAL DIFFUSION), NSHHPE

L.C.COEFFICIENTEIGENVALUE

1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

  

l

l

( 
 

 
 

 
 

 

1
1
2
2
2
2
2
2
2
2

 I
,
”

I
V
,
   (
-
(
I
I
I

 
 

 

1
2
3
4
5
6
7
8
9
.1
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(CONTINUED)TABLE 6.1

NSHU =109PE

LoC.COEEFICIENTEIGENVALUE

1
4
3
3
3
3
2
2
2
2

 
 

  
 
 
 

 9
20"“

 

.1979“

I

.3

1
1
1
2
2
2
2
2
2

1
2
3
4
5
6
1
1
8
9
01

NSHU109PE

L.C.COEFFICIENTEIGENVALUE

.
I
O
O
O
I
I
I
I
I
I
I

  
 
 

 

I
]
€
l
1
9
§
£
2
)
§
£
2

0
0
0
0
0
0
0
0
0
0

6
6
8
7
0
1
2
4
5
6

1
4
6
8
1
1
1
1
1
1

0
0

I
O

O
O

I
O

O
0

1
2
3
6
5
6
7
8
0
01

NSHH =109PE

LoC.COEFFICIENT

.140789SOSE001

-.667468723E*0

EIGENVALUE

0
0
0
0
0
0
1
1
1

.430915217E0

5

9

h

0

5

1

1
1
1
1
2
2
2
2
2
2

1
2
3
6
5
6
7
8
9
01



O
O
O
N
O
‘
W
I
‘
U
N
I
‘

2

fl

O
O
Q
Q
O
M
¢
U
N
~

2

H

O
O
O
N
O
‘
U
‘
J
‘
U
N
H

2

H

TABLE 6.] (CONTINUED)

 

 
 

   
  

 

 
           

 

 

 

PE 3 109 NSHH = S

EIGENVALUE LoCoCOEFFICIENT

.22":I\ ‘[ -' :‘ol Olt’ci‘bsa 5’7E‘01

.5107073fl95‘01 -.79h0]4 37E‘00

.7gih .9;45001 .Sunovyno7g.oo

.av‘qr 56:32:00] -.§U"‘Hl VI 'VQEOOO

.10“. .Ile=+oz .c, p2t+00

.117'9“0155602 -.Zg!h "I! ‘2E*00

.1299!2248;002 .131J49Ioaeooo

.141353452;.02 -.1JyE6V593E000
0151,93335E902 01975744'8E900

ol61h306725‘02 ~o7u 38376E'01

PE = 109 NSHU = 20

EIGENVALUE LoCoCOEFFICIENT

.194469705E‘01 0134716874F’01

.489 097605‘01 -.548532ITPE‘00

.69 74 1356.01 .32 716618E‘00

876854786E‘01 -.206942774E‘00

.103164 BZE‘OZ .539238737E‘00

0116899 GZE’OZ -. 73835464E‘01

0129329049E‘02 .7506170025'01

0140743695E‘02 ~0539480010E'01

0151346842E°02 .48008l532E'0*

0161284238E002 v.26§72 llE-o

PE = 10! NSHH = m

EIGENVALUE LoCoCOEFFICIENT

0259003069:.°1 0154482887E901

.SSQ. 8364:*01 -o99?091824E900

. 7lnpqu1ugool .834827499Eooo

.945”? Zflg’OI -o743207154E900

o109§.’010;‘02 .664788758E000

.12211!043;‘02 -.610516342E‘00

.13ar 44=ooz .550461882E000

.14509317lg‘02 -o519711 63E900

.1561'!fl43;90? .423382882E000

.165ll.’ I 3'. —.02 -0434981718E.oo      
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(CONTINUED)TABLE 6.1

59 NSHHPE

L.C.COEFFICIENTEIGENVALUE

1
5
4
4
4
3
3
3
3
3

0
0
0
0
0
0
0
0
0
0

9
o

u
..

._
.

q
.

a
.

E
E
E
E
E
E
E
E
E
E

0
4
4
8
2
1
0
2
7
8

0
6
8
7
5
4
3
.
5
6
3

0
5
4
5
0
9
1
1
7
8

0
3
5
3
0
7
4
6
3
8

0
4
7
0
4
2
9
4
4
9

0
K
¥
D
O
A
T
A
V
6
§
§
J

0
1
9
0
2
0
2
4
9
1

0
1
5
5
4
0
8
8
2
1

1
&
{
1
2
6
1
1
2
4
4
6

1
1
1
1
1
1
2
2
2

0
0
0
0
0
0
0
0
0

0
O

6
O
O

O
O
O
O

E
E
E
E
E
E
E
E
E

0
2
6
3
8
6
4
8
2

6
6
8
0
4
2
5
6
5

7
3
3
5
1
0
7
1
6

8
1
3
6
6
9
2
8
5

8
3
4
6
3
4
7
2
2

8
4
3
4
2
5
8
2
1

9
8
8
7
3
9
2
0
7

5
2
5
6
6
4
0
1
1

0
3
5
6
7
8
9
1
1
1

0
o

o
o

o
o

o
o

0
0

1
2
3
4
5
6
7
8
9
01

59 NSHHPE

LoC.COEFFICIENTEIGENVALUE

1
0
0
1
1
1
1
1
1
2

0
0
0
0
0
0
0
0
0
0

0
o
o

v
v

.
.

c
o

.

F
E
E
E
E
E
E
E
E
E

7
1
3
7
3
3
0
8
5
1

1
9
6
1
5
1
8
4
9
4

6
6
3
9
8
8
8
6
1
0

6
5
5
9
1
9
0
1
9
7

1
1
1
1
1
1
1
2
2
2

0
0
0
0
0
0
0
0
0
0

9
O
O
G
O

6
O

O
9
O

E
E
E
E
E
E
E
E
E

4
3
2
9
6
6
7
7
3
4

5
6
1
3
1
2
2
9
8
7

0
5
4
1
0
3
2
8
0
1

3
3
5
8
9
6
7
6
1
3

4
8
7
6
7
5
9
8
2
0

6
7
1
5
1
1
9
9
3
2

2
8
6
2
0
5
0
2
0
7

5
7
3
6
7
6
5
0
1
1

1
3
5
6
7
8
9
1
1
1

0
O

O
C

O
O

O
O

O
0

1
2
3
6
5
6
7
8
9
0

1

NSHH 3

EIGENVALUE

.196825988

50PE

LoC.COEFFIC1ENT

1
0
0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0
0
0

8

6

5

0

3

3
l.

7

7
9
3
9
8
1
9
9

4
9
2
5
5
9
8
8

8
6
9
6
6
1
4
6

5
4
5
8
3
1
0
5

9
0
5
8
3
3
0
7

4
7
7
6
5
0
1
1

6
7
8
9
1
1
1

0
O

O
O

O
O

0

.40262713

.5 1

3

3

8

8

2

S

3

1
2
3
4
5
6
7
8
9
01
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(CONTINUED)TABLE 6.1

59 NSHHPE

L.C.COEFF1CIENTEIGENVALUE

N

1
5
4
4
4
3
3
3
3
3

0
0
0
0
0
0
0
0
0
0

0
v

p
9

.
.

9
.

9
.

E
E
E
E
E
E
E
E
E
E

0
4
4
8
2
1
0
2
7
8

0
6
8
7
5
4
3
5
4
3

0
5
4
5
0
9
1
1
7
8

0
3
5
3
0
.
7
4
6
3
8

0
4
7
0
4
2
9
4
4
9

0
0
5
0
6
1
9
6
5
3

0
1
9
0
2
0
2
4
9
1

0
1
5
5
4
0
8
8
2
1

1
<
{
1
4
6
I
i
k
4
4
6

1
1
1
1
1
1
2
2
2

0
0
0
0
0
0
0
0
0

6
O
O
O
O

O
O
O
O

E
E
E
E
E
E
E
E
E

0
2
6
3
8
6
4
8
2

6
6
8
0
4
2
5
6
5

7
3
3
5
1
0
7
1
6

8
1
3
6
6
9
2
8
5

8
3
4
6
3
4
7
2
2

8
4
3
4
2
5
8
2
1

9
8
.
8
7
3
9
2
0
7

5
2
5
6
6
4
0
1
1

0
3
5
6
7
8
9
1
1
1

0
o

o
o

o
o

o
o

b
0

1
2
3
4
5
6
7
8
9
01

59 NSHHPE

L.C.COEFFICIENTEIGENVALUE

1
0
0
1
1
1
1
1
1
2

0
0
0
0
0
0
0
0
0
0

0
0

o
c

v
.

.
o

v
.

E
E
E
E
E
E
E
E
E
E

7
1
3
7
3
3
0
8
5
1

1
9
6
1
5
1
8
4
9
4

6
6
3
9
8
8
8
6
1
0

6
5
5
9
1
9
0
1
9
7

1
8
8
8
7
9
0
1
8
4

9
9
5
8
0
9
5
6
2
0

4
1
3
8
6
3
8
1
4
7

2
6
7
7
3
3
4
3
4
5

1
1
9
1
9
A
2
3
3
2
2
3
,

O
O

O
O

O
O

O
0

1
1
1
1
1
1
1
2
2
2

0
0
0
0
0
0
0
0
0
0

9
O
O
Q
6
O

O
O
O
4

E
E
E
E
E
E
E
E
E

4
3
2
9
6
6
7
7
3
4

5
6
1
3
1
2
2
9
8
7

0
5
4
1
0
3
2
8
0
1

3
3
5
8
9
6
7
6
1
3

4
8
7
6
7
5
9
8
2
0

6
7
1
5
1
1
9
9
3
2

2
8
6
2
0
5
0
2
0
7

5
7
3
6
7
6
5
0
1
1

1
3
5
6
7
8
9
1
1
1

0
O

O
O

O
O

O
O

O
0

1
2
3
4
5
6
7
8
9
01

3

EIGENVALUE

.19682598

6271.402

NSHH

.5

59PE

L.C.COEFF1C1ENT

.
1
0
0
X
2
0
0
1
i
1
1
1

0
0
0
0
0
0
0
0
0
0

.
L
v
o
o
o
.
.
.
.
v
.

1
1
1
1
1
1
1
2
2
2

3

5847

4699

S923

8659

3658

1191

8489

689

1
3
3
8
8
2
5
3

9
0
5
8
3
3
0
7

4
7
7
6
5
0
1
1

6
7
8
9
1
1
1

O
O

O
O

O
O

I

1
2
3
4
5
6
7
8
9
01
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(CONTINUED)TABLE 6.1

NSHH59PE

L.C.COEFFICIENTEIGENVALUE

1
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0

0
O
O
O
O
O
O
O
9

.

E
E
E
E
E
E
E
E
E
E

3
1
2
2
3
5
:
3
5
1
0
?
.

3
9
1
1
6
2
4
7
5
1

1
6
1
8
7
0
1
6
2
2

3
4
7
8
9
2
0
0
8
4

1
9
5
8
8
4
6
4
4
7

.
3
0
6
7
1
1
8
4
{
}
b
8

0
8
8
9
8
8
5
1
1
5

5
3
5
7
6
9
5
2
0
0

1
8
5
3
2
1
1
1
1
7

0
o

o
o

o
o

o
o

o
0

1
1
1
1
1
1
1
2
2
2

0
0
0
0
0
0
0
0
0
0

0
O

O
0
O
O
O
O
O
O

E
E
E
E
E
E
E
E
E
E

0
7
5
2
7
7
4
3
8
2

4
7
7
4
6
1
5
4
3
0

9
1
1
6
4
4
6
6
1
6

6
I
Z
Z
I
S
R
V
A
V
4
7
.

3
6
2
4
5
8
5
2
8
0

1
6
7
9
0
3
5
4
6
5

1
5
8
6
0
2
6
3
0
7

1
:
5
5
7
R
3
L
5
0
1
3
1

2
4
5
6
7
8
9
1
1
1

o
o

o
o

o
o

o
o

o
0

1
2
3
4
5
6
7
8
9
01

208

EIGENVALUE

59 NSHHPE

L.C.COEFFICIENT

1
0
0
0
0
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0

3
1
5
7
6
2
1

1
1
1
1
1
1
1
2
2
2

0
0
0
0
0
0
0
0
0
0

0
O

O
O
O
9
O
O
O
O

E
E
E
E
E
E
E
E
E
E

1
2
1
5
8
5
9
5
4
1

6
9
9
3
4
3
4
0
2
2

6
7
3
5
6
6
0
1
4
3

6
6
7
0
9
4
9
0
3
0

.
I
9
I
A
Y
I
4
7
2
9
1
8

.
J
§
?
£
5
8
n
l
?
1
4
?
.

2
2
3
6
2
7
2
3
0
7

8
9
4
6
7
6
5
0
1
1

1
3
5
6
7
8
9
1
1
1

c
o

o
o

o
o

o
o

o
0

1
2
3
4
5
6
7
8
9
01

59 NSHHPE

L.C.COEFFICIENT

.157996866

-.104878236

EIGENVALUE

1
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

.86389647

9

8

6

8

9
S

-.7

6

6

S

S

a

3

1
1
1
1
1
1
1
2
2
2

0
0
0
0
0
0
0
0
0
0

0
O

o
6
o
O

O
o
o
O

E
E
E
E
E
E
E
E
E
E

8
2
1
1
7
8
6
8
2
4

8
1
9
1
4
0
5
9
6
2

3
0
5
3
4
0
7
4
0
7

0
4
2
1
9
4
9
3
3
6

3
9
5
9
3
8
9
5
6
5

5
0
6
7
4
9
3
6
7
4

8
1
7
5
7
7
0
6
3
0

1
2
5
9
i
:
!
0
9
n
¥
£
c

2
4
5
7
8
9
9
1
1
1

6
o

o
o

o
.

o
o

o
.

1
2
3
4
5
6
7
8
9
01
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(CONTINUED)TABLE 6.1

59 NSHUPE

L.C.COEEFICIENTEIGENVALUE

1
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0

9
9
9
1
:
9
9
9
9
.
.
.

E
E
E
E
E
E
E
E
E
E

3
I
Z
Z
J
S
R
X
E
I
O
?
.

.
3
9
1
1
1
6
2
h
5
L
P
I

.
1
6
1
8
5
1
9
1
6
?
5
c

3
4
7
8
9
2
0
0
8
4

1
9
5
8
8
4
6
4
4
7

«
J
O
A
Y
L
I
B
A
J
E
O
B

0
8
5
K
2
8
8
fi
7
1
1
5

5
3
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nil Bnexp(-BnC2/2)M(%-(Bn/4)[l+(Bn/Pe)2],1,BnZ;2) = 1 . (6.44)

do not constitute a Sturm-Liouville system, and the eigen—

functions (6.42) are therefore not orthogonal. The usual

way of finding the linear combination coefficients Bn fails.

We demonstrate in the next section that by employing an

"Overdetermined Collocation" method the values of Bn can

easily be calculated. The advantages of this "Overdeter-

mined Collocation" have been described in Section A.

E. Overdetermined Collocation Method--
 

Least Square Scheme
 

In this section we utilize an approximate but

direct method to evaluate the linear combination coeffi-

cients in (6.44) where the eigenfunctions are not ortho-

gonal. Of several different methods for obtaining approxi-

mate solutions, the "Overdetermined Collocation" (Lee, 1966)

is applied here, not only because of its simplicity but

also because it is formulated in such a way that the

boundary conditions pertinent to the problem are satisfied

particularly well on the boundaries. This is similar to

the least-squares method often used in solving integral

equations (Hildebrand, 1965).

The usual method of collocation consists in using

a truncated series solution of the differential equation
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to satisfy the boundary conditions at a selected finite

set of boundary points. It is hOped that the solution

thus found will also meet the boundary conditions at

boundary points between those of the selected set. The

accuracy of the solution found in this way depends on

how well the boundary conditions are met at the inter-

mediate boundary points. Usually, the solution satisfies

only the selected collocation points and oscillates be-

tween them. It is therefore desirable to have a solution

which minimizes the difference between the real and the

mathced boundary values. The method of Overdetermined

Collocation is an extension of the usual method of collo-

cation. It involves writing more boundary equations than

there are unknown coefficients and solving the overdeter-

mined system of equations by a least-squares scheme. We

illustrate this method by solving (6.44) for Bn'

After truncation of the infinite series at the

Nth term and division of the dimensionless radial co-

ordinate into m-l divisions such that

0 i :1 < :2 < ... < c 3 1 with m > N , (6.45)
m

(6.44) reduces to

N 2 1 2 2
nil BnexP('BnCi/2)M(-§-(Bn/4)[1+(Bn/Pe) 1, Lanai) = 1 ,

i=l,2,...,m (6.46)
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or

y. B = 1 , (6.47)

where

_ _ 2 l_ 2 2

Yin - exP( Suzi/2)M(§ (Sn/4)Il+(Bn/Pe) 1, 1. anci). (6.48)

Define the residue as

N

s. = 2 Y. B -1 , (6.49)

and also define the residue squares by

m

g(Bl,B2,...,bN) = Z 5151 . (6.50)

i=1

Minimizing g by

(Bg/BBk) = o , (6.51)

we obtain

Y . , k=l,2,...,N . (6.52)

This is similar to the Galerkin method used in elasticity

problems (Sokolinkoff, 1956). The difference is that the

weighting functions in (6.52) are the Yin themselves. (6.52)

is the required system of N equations for determining the N
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unknowns Bn‘ The final result is in a form which is very

convenient for computer calculations. The solutions Bn

obtained minimize the residues in the least-square sense.

(6.52) was solved on a CDC 6500 computer for

various values of Fe and Nsh with a Gauss-Jordan reduc-

tion algorithm to invert thewmatrix. We have used N = 10

and m = 8. All the Bn are calculated to nine significant

figures. They appear in Table 6.1.

F. Physical Analysis
 

From the results of Sections D and E, particularly

(6.43), the local radial concentration distributions at

certain fixed axial coordinates are calculable. These

are shown in Fig. 6.2 to Fig. 6.3.

The local bulk concentration is defined as

1 1

E(c.z) = 5 uxc(c.z)cdc/ g uxcdc . (6.53)

Substitution of (6.3) into (6.53) yields

1 1

E(;.z) = 5 (1—c2)c(6,z)cdc/ 5 (l-C2)Cdc , (6.54)

which can be further simplified by the use of (6.43) with

truncation

— N 2 1 2 2
C(C,2) = Z Bnexp(-an) 6 C(l-C )exP(-Bnc /2)

n=1

x M(§-(sn/4)(1+(6n/Pe)21, 1, BnC2)d . (6.55)
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Fig. 6.2--Radial concentration distribution for NSh
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Fig. 6.3-—Radial concentration distribution for Nsh
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The local bulk concentrations have also been calculated.

The integrals in (6.55) were computed by the use of a

lS-point Gauss-Legendre quadrature formula (Carnahan,

1969). The results are shown in Fig. 6.4 to Fig. 6.6.

As expected the local bulk concentrations decrease with

axial distance and with increasing Peclect number. We

observe that if axial diffusion is neglected for small

Peclect number, the local bulk concentration may have up

to 400% error near the netrance region (iLELJ small 2).

In general neglect of axial diffusion usually lends to

underestimation of the local bulk concentration.

One can also define an overall Sherwood number by

use of a total mass transport coefficient:

Nsh = (hDa/D) = - (ac/3;)C=1/E (6.56)

where the total mass transfer coefficient is defined as

hD = NCW/(E40) = - 9(ac/ag)c=1/aE (6.57)

with N2;W the radial diffusional flux at the wall. Again,

the overall Sherwood number is a dimensionless mass trans-

fer coefficient which characterizes the rate of mass trans-

port for the whole system. Substitution of (6.43) into

(6.56) gives
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Fig. 6.4--Local bulk concentration as a function of re-

duced axial distance from the entrance for

N = 1, Pe = 2, 5, and w.
Shw
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Fig. 6.5-~Local bulk concentration as a function of re-

duced axial distance from the entrance for

Nsh = 5, Pa = 2, 5, and w.

w
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Fig. 6.6--Local bulk concentration as a function of re-

duced axial distance from the entrance for)

Nsh = w, Pa = 2, 5, and m.

w
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N

_ _ 2 _. -
Nsh - nil Bnexp( BnZ)exp( Bn/Z) [2kM(k+l.l.Bn) (2k+8n)M(k.l,Bn)]/

N 2 ,1 2 2 2
2 “£1 Bnexp(-enz) 0 C(l-C )exp(—Bnc /2)M(k,1,8nc )dc

(6.58)

with

k = -1- - (a /4) mm /Pe)2] (6 59)
2 n n ' '

where we have truncated the infinite series to N terms for

the numerical calculation. The overall Sherwood numbers

are calculated for various Fe and Nsh values and are shown

in Fig. 6.7 to Fig. 6.9. It is seen that the Sherwood num-

ber increases with increasing Peclect number for a fixed

wall Sherwood number and, not surprisingly, increases with

increasing wall Sherwood number for fixed Peclet number.

The figures also indicate that the mass transfer rate is

highest near the entrance region and generally decreases

to a constant value.

The overall picture can be summarized qualitatively:

(1) Whenever the membrane permeability increases (in—

creasing Nshw) the total mass tansfer rate through

the membrane also increases (increasing overall

Sherwood number Nah)“

(2) The local bulk concentration decreases with axial

coordinates due to the fact that solutes are



Fig.
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6.7--Overa11 Sherwood number as a function of re-

duced axial distance from the entrance for

P8 = 2' Nshw = 1' 5' CD.
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6.8--Overall Sherwood number as a function of re-

duced axial distance from the entrance for

Fe = 10, Nshw = l, 5, w.
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Fig. 6.8—-Overall Sherwood number as a function of re-

duced axial distance from the entrance for

Fe = 10, N8 = l, 5, m.
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Fig. 6.9--Overall Sherwood number as a function of re-

duced axial distance from the entrance for

Pa = m, N = l, 5, w.

shw
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diffusing through the membrane into the dialysate

along the membrane wall.

(3) The presence of axial diffusion (small Pe) tends

to decrease the overall mass transfer rate (de-

creasing Nsh) along the tabular membrane and also

tends to reduce the size of local concentration

gradients.

G. Discussion
 

In this chapter we have treated tubular membrane

transport with axial diffusion and with a boundary con-

dition of finite wall permeabilities. The solutions are

expressed terms of-Kummer functions, and numerical values

are obtained by the use of an "Overdetermined Collocation"

method.

In addition we have used a boundary condition of

finite wall permeability which is more general than the

constant wall concentration and the constant wall mass

flux conditions. In fact these are the limiting cases of

our boundary condition. We have also used the boundary

condition that the entrance concentration is uniform over

the cross section of the tubular membrane. Rigorously,

the axial diffusion effect, which tends to propagate up-

stream, will change the entrance concentration profile.

Nevertheless under some experimental conditions (e.g.,
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in hollow-fiber artificial kidney), the uniform entrance

concentration condition can be considered as a very good

approximation.

Although only selected results for only a few

values of Pe and Nshw are presented here, they suffice to

demonstrate the general trends. For other values of Pe

and N , one can use the method developed here systemat—
shw

ically.

From the results in previous sections it is clear

that axial diffusion is important for small Peclet numbers.

This effect is significant for the prediction of performance

in artificial kidney systems Operated at low blood flow rate

or in gas separation through tubular glass membranes.

Further extensions of this approach can be made by

taking into consideration of chemical reactions at the mem-

brane surface. This should be a good model for the hollow-

fiber membrane/enzyme reactor Operated at low flow rate

such that Pe < 100 (Waterland, et al., 1974; Lewis and

Middleman, 1974). Further improvement in the results can

be attained by considering non—uniform entrance concentra—

tions and extending the problem to an infinite domain in-

stead of the semi-infinite one considered here. One can

also extend the approach to non-Newtonian flows (which

do not have parabolic velocity profile) such as polymer

solutions. Moreover, one could take into account osmotic
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pressure and convection across the membrane in the radial

direction. In either case the neglect of axial diffusion

can only be justified when the Peclet number is very large.
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APPENDIX A

THE MODIFIED NERNST-PLANCK EQUATION

Equation (5.1) repeated here,

N = - z w c FV¢ - DGYCa a a Q ~ - BaYp + c u (A.1)
O. (1"

is useful, but it is correct only for extreme dilution.

Our use of it in Chapter V is justifiable because our

chief purpose there was to obtain the form (particularly

the sign) of the concentration gradient contribution to

anomalous osmosis. Better numerical estimates of the

contribution can be obtained by starting with the more

exact equation of this Appendix.

Most common transport prOperties for electrolyte

solutions (mobility, transference number, conductance)

are defined and measured in the Hittorf frame of refer-

ence, where the diffusion fluxes are defined by

jg E ca(9a - 9w) '
(A.2)

where uw is the velocity of the solvent, water. The

absolute molar fluxes,

E c u , (A.3)

204



205

are related to the Hittorf fluxes by

.H _ W‘l .H

ova = cal—3 + 2a - (X /M) E M828 1 a=l,...,W-l

8—1 ~

w-l H

~w = cwg - (xw/M) X M838 , (A.4)

where M is the mean molecular weight,

fi =

"
5
4
$

)
4

M , I (A.5)
1 B B

and the velocity 9 of the center of mass is given by

_ W

s = (V/M) X M N

B=l 8”

B I (A06)

where v is the molar volume of the solution.

For an isothermal single strong electrolyte, the

linear flux equations in the Hittorf frame are (Haase,

1969; Katchalsky and Curran, 1965)

.H

2+ = ' a++Yuj - a+-y“'

.H _ , ,
2- — - a_+Yu+ - a__yu_ (A.7)

where the ads are Onsager coefficients and the u& include

external potentials. For an ideal solution (or for a

sufficiently dilute solution),
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' =yua vayp + RTYana + zaF§¢ . (A.8)

Moreover,

Vinx = Vinx ~ {1+vclv -(z v -z v )(z -z )-l]}-1V£nc
~ + ~ — w - + + - — + ~ + '

(A.9)

where, for an electrolyte of molarity c which contains 0+

moles of cation and v_ moles of anion per mole of electro-

1yte,

c+ = v+c , c_ = v_c ,

v = 0+ + v_ , z+v+ + z_v_ = 0 . (A.10)

In terms of more accessible experimental quantities,

the Onsager coefficients are, when a+_ = a_+ ,

a = (c lz/z F2A) + (v c D/vRT)
++ + + + + +

_ _ 2

a+_ - a__+ - (c+A+A_/z_F A) + (v_c+D/vRT)

_ _ 2

— (c_A+A_/z+F A) + (v+c_D/vRT)

2 2
a = - (c_A_/z_F A) + (v_c_D/vRT) . (A.11)

The Ad in these formulas are the single ionic conductances,

which are related to the Hittorf transference number ta

by
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>
2 ll At , a=+,- (A.12)

where A is the equivalent conductance,

A = A + A (A.13)

and the transference numbers sum to one,

t+ + t_ = l . . (A.14)

The diffusion coefficient D in (A.11) is the Fickian mutual

diffusion coefficient for the binary system. Instead of

conductances, earlier workers used mobilities ”a defined

by

2

w+ = A+/2+F2 w_ = - A_/z_F

w_ = c(v_l_ + v+l+)w+ . (A.15)

Thus,

z w — z w = A/F2 (A.16)
+ + - -

and

w - w = ((1 /z ) + (1 /z )/F2
+ - + + - -

[(t+/z+) + (t_/z_)](z+w+ - z_w_) . (A.17)
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Combining (A.7) through (A.17), we find

jg = - {1+\)c[vw-(z_v+-z+v_)(z_-z+)-l]}”l

X [D +z RTw (w -w )(z w -z w )_1]Vc
+ + + + - + + — - ~ +

- c+z+w+Fy¢

—[czm(vw-vm)(z<»-zu))"l
+ + + + + - - + + - —

+ v+(c+v++c_v_)(D/vRT)]Yp

g? = - {1+vc[vw-(z_v+—z+v_)(z_-z+)-l]}—l[D

-1
+ z_RTw_(w+-w_)(z+w+- z_w_) JYC

- c_z_w_Fy¢

- [c z w (vcn-firu))(z w —z w )-1
- - - + + - - + + - -

+ v_(c+v++c3v_)(D/vRT)]2p . (A.18)

Now define Da by

. -1 _ _

Da = D + zawaRT(w+-w_)(z+w+-z_w_) , a—+, . (A.19)

In Order to make contact with the Nernst—Planck equation

rearrange the middle two parts of (A.11)

D

2
(vRTa+_/v+c_) + (vRTl+1_/v+z+F A)

2
(vRTa+_/v_c+) - (vRTA+l_/v_z_F A)

(vRT/v+c_)a+_ + (vRTt_/v+)u)+

(vRT/v_c+)a+_ + (vRTt+/v_)w_ . (A.20)
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(A.20) and (A.19) yield

Da = RTwa + (vRT/v+v_c)a+_ , a=+,- . (A.21)

Thus, the Einstein Relation RTwa = Du is valid only when

a =0 . Katchalsky and Curran (1965) have calculated

a++ , a__ and a+_ for Nacl Solutions. They find that for

0.01 M solutions, a+_ is about 4% of a++ and about 3% of

a__ ; for 0.1 M solutions, a+_ is about 11% of a++ and

about 7% of a__ ; for 1.0 M solution a+_ is about 21% of

a++ and about 14% of a__ . For greatest accuracy, the

a+_ term should be retained in (A.21). However, for

estimating effects, it is satisfactory to use Einstein
 

Relation.

With (A.19) and the further definitions

RTwa = D& , a=+,- (A.22)

and

B = c z w (v w —v w )(z w -z w )—l
d a a a + + - - + + - -

+ Va(c+v++c_v_)(D/0RT) , (A.23)

and

Dc = {1+vc[v -(z v -z v )(z -z )—1}-1D (A 24)
a w — + + - - + a ’ °
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The Hittorf diffusion fluxes become

+
m

c
- D+YC+ - C+z+w+FY¢ - B+Yp

(
U
.

I
:
1
:

— nyc_ - c_z_w_Fy¢ - B_yp . (A.25)

(
U
.

Note that D: = Du for dilute solutions.

Substitution of these into (A.4) yields

_ -_ c_ — c c
N+ — c+u {9+ (x+/M)[M+D++(v_/v+)M_D_]}yc+

- [c+z+w+-(x+/M)(M+c+z+w++M_c_z_w_)]F1¢

- [B+-(x+/fi)(M+B++M_B_)]yp

Z (I c_g-{Df- (x_/M) [M+D: (v+/v_) +M_D_‘f] )yc_

- [c_z_w_-(x_/M)(M+c+z+w++M_c_z_w_)]Fy¢

- [B_-(x_/M)(M+B+-M_B_)]yp . (A.26)

For high dilution x << 1 and x_ << 1 and we have
+

Na = cag - DaYca - cazawaFy¢ - BaYp , (A.27)

the modified Nernst-Planck Equation.



APPENDIX B

DERIVATION OF SOME INTEGRALS INVOLVING

MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

In the following we drive equations (5.25), (5.26),

(5.29), (5.30), (5.31) and (5.32) which are not available

in published tables. We utilize the known relations

X

6 on(x)dx = xIl(x) ,

x 2 2 2 2
6 xIO(x)dx = x [10(x)—Il(x)]/2 , (5.24)

x 2 2 2
6 x Io(x)I1(x)dx = x Il(x)/2 ,

and

(dIo(x)/dx) = 11(x) ,

(dIl(x)/dx) = I0(x) — (Il(x)/2) . (B.1)

We also employ integration by parts,

b b b

éudv = uVIa - éVdu . (B.2)
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(1)

Let u = XZIIg(X) — Ii(x)]/2 and dV = 2xdx .

Integration by parts yields

x x x

6 x3I§(x)dx - 6 x3Ii(x)dx = 3 2x{x2[Ig(x)-Ii(X)J/2}dx

x

= x4[Ig(x)-Ii(x)]/2 — 6 x3I§(x)dx

or

x 3 2 X 3 2 4 2 2
2 6 x 10(x)dx - 6 x Il(x)dx = x [10(x)-Il(x)]/2 . (B.3)

Similarly, letting u = x3Il(x) and dV = Il(x)dx and inte-

grating, by parts, we obtain

X X X

I 3 2 = 3 _ I 2 _ I 3 2

0 x I1(x)dx x Il(x)IO(x) 2 0 x 10(x)Il(x)dx 0 x Io(x)dx

or

Ixx3I2(x)dx + Ixx3I2(x)dx = x31 (x)I (x)-x212(x) (B 4)

0 0 0 1 l 0 1 '

where we have used (5.24). Solving (B.3) and (B.4) to-

gether, we find

I x313(x)dx = (1/3){x4[Ig(x)-Ii(x)]/2 + x3Il(x)IO(x)-x21i(x)} (5.25)

and

Ixx312(x)dx = (1/3){2x31 (x)I (x)—2x212(x)-x4[I2(x)
o 1 1 o 1 o

- Ii(x)]/2} . (5.26)
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(2)

Integration by parts with u = x2 and dV = Il(x)dx yields

Ix 2 2 Ix

0 x I1(x)dx = x 10(x) — 2 0 xIO(x)dx

_ 2 _
- x 10(x) 2xIl(x) , (5.29)

where we have used (5.24)-

(3)

Letting u = x21i(x) and dV = xIO(x)dx and integrating by

parts we obtain

X X

g x31i(x)lo(x)dx = x3xi(x) - 2 5 x3Ii(x)IO(x)dx

or

1x32 33
0 x Il(x)Io(x)dx = x Il(x)/3 . (5.30)

(4)

Integration by parts with u = x2 and dV = xIO(x)dx yields

x x

I 3 = 3 _ I 2
0 x Io(x)dx x 11(x) 2 0 x Il(x)dx

3 _ _ 2
.x Il(x) — 4xIl(x) 2x I0(x) , (5.31)

where (5.29) has been used.

(5)

Let u = x4Io(x) and dV = Il(x)dx. Integration by parts

yields
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Ixx4I (x)I ( )dx-x412(x)— 4 IXx312( )dx- Ixx4I (x)I (x)dx
o o 1 x " o o o x o 1 0

or

X

5 x4IO(x)Il(x)dx==(x415(x)/6)+-(x4Ii(x)/3)-(2x3Il(x)Io(x)/3)

+ (2x21i(x)/3) , (5.32)

where (5.25) has been used.



APPENDIX C

COMPUTER PROGRAMS

The three primary computer programs used in

Chapter VI are listed in this appendix. Program ROOTS

uses the half-interval method to calculate eigenvalues

from (6.43). Program OCM utilizes the "Overdetermined

Collocation" method to evaluate linear combination co-

efficients for non-orthogonal functions. Program BULCON '

calculates local axial bulk concentrations and overall

Sherwood numbers according to (6.55) and (6.58). A

15-point Gauss—Legendre quadrature formula is included

in BULCON to evaluate integrals.
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PROGRAM ROOTS
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