

This is to certify that the
dissertation entitled

1. Lineshapes of IR Zero Frequency Double Resonance Spectra in $\mathrm{CH}_{3} \mathrm{~F}$. 11. IR-MW Sideband Laser Spectroscopy of the v_{3} and ${ }^{3} 2 v_{3}-v_{3}$ Bands of $13 \mathrm{CH}_{3} \mathrm{~F}$ and $12 \mathrm{CH}_{3} \mathrm{~F}$. Ill. IR -IR DOuble Resonance of $13 \mathrm{CH}_{3} \mathrm{~F}$ by means of 3 Waveguide CO_{2} Laser and an IR-MW sideband Laser.
presented by
SANG KUK LEE
has been accepted towards fulfillment of the requirements for
\qquad
Ph.D.__degree in Chemistry

Date $\lambda 12 / 10 / 87$

RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

I. LINESBAPBS OF INFRARED ZBRO FRBQUBNCY DOUBLB RESONANCE SPBCTRA IN $\mathrm{CH}_{3}{ }^{\text {F }}$
 II. INFRARED-MICROWAVE SIDBBAND LASER SPBCTROSCOPY OF THE v_{3} AND $2 v_{3} \cdot v_{3}$ BANDS OF ${ }^{13} \mathrm{CH}_{3} F$ AND ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$
 III. INPRARED-INPRARED DOUBLE RESONANCE OF ${ }^{13} \mathbf{C H}_{3}$ F By mbans of a wavgguide CO_{2} Laser AND AN INFRARED-MICROWAVE SIDEBAND LASER

By

Sang Kuk Lee

A DISSBRTATION

> Subnitted to
> Michigan State University in partial fulfillment of the requirement
> for the degree of

DOCTOR OF PEILOSOPEY

Department of Chemistry
1986

I. LINBSHAPBS OF INFRARED ZBRO FREQURNCY DOUBLE RESONANCE SPBCTRA IN $\mathrm{CH}_{3}{ }^{\text {F }}$

II. INPRARED-MICROWAVB SIDEBAND LASBR SPBCTROSCOPY OF THE v_{3} AND $2 v_{3}-v_{3}$ BANDS OF ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ AND ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$

III. INFRARED-INPRARED DOUBLE RESONANCE OF ${ }^{13} \mathbf{C H}_{3}$ F BY MBANS OF A WAVBGUIDE CO_{2} LASBR AND AN INFRARED-MICROWAVE SIDEBAND LASER

By

Sang Kuk Lee

Bxperimental measurements and theoretical calculationa of infrared zero frequency double resonance (IR-ZF) spectra in a symetric top molecule without inversion are described. The IR-ZF spectra are infrared radiofrequency double resonance spectra at $R F$ frequencies tending toward zero. Spectra are hown for a near-resonant transition in the $\boldsymbol{v}_{\mathbf{3}}$ band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ that is resonant with the $9 \mathrm{P}(32) \mathrm{CO}_{2}$ laser line in the absence of a D.C. field and for a transition in the v_{3} band of ${ }^{12} \mathrm{CH}_{3}$ f. that is resonant with the $9 \mathrm{P}(22) \mathrm{CO}_{2}$ laser line in the presence of a D.C. field. All of the experimental lineshapes are in good qualitative agreenent
and the apectra in a Stark field are in excellent quantitative agreement with lineshapes predicted by the theory that is presented. The theory treats the effect of the RI radiation as high-frequency Stark field and is shown to predict the known lineshape of infrared microwave two-photon transitions in symetric top molecules without inversion.

A large number of transitions in the \boldsymbol{v}_{3} and $\mathbf{2} \boldsymbol{v}_{3} \cdot \boldsymbol{v}_{3}$ bands of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ and ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ have been recorded at Dopplerlimited resolution by means of an infrared laser microwave sideband spectrometer which was assembled at Michigan State University. For the ${ }^{12} \mathbf{C H}_{3}$ F epectra, the spectroneter was modified to include power leveling by incorporating a feed-back control to the microwave source. The sidebands were generated in a CdTe single crystal that was simultaneously irradiated by a CO_{2} infrared laser and a high power microwave source operating in the 8.2-18.0 GHz region. The J and K structures of the bands were well resolved except for the lowest F values. Frequencies of transitions involving J values up to 39 and K values up to 16 for ${ }^{12} \mathrm{CH}_{3}$ F and J values up to 47 and E values up to 16 for ${ }^{13} \mathrm{CH}_{3}$ r are reported. Vibration-rotation parameters for the $v_{3}=0,1$, and 2 atates were obtained by fitting to the experimental frequencies. These parameters reproduce the experimental values with standard deviations for an object of unit weight (SD) of 1.33 MHz for the fundamental and 1.37 MHz for the hot band for ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ and 2.45 MHz for the
fundamental and 1.37 MHz for the hot band for ${ }^{13} \mathbf{C H}_{3} \mathrm{~F}$.
A waveguide CO_{2} laser for pumping and an infraredmicrowave sideband laser for probing were used to study infrared-infrared double resonance in ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$. With the tunable range of a sideband systen, several kinds of threelevel double resonance and many four-level double resonance experiments could be carried out. The evidence for direct pumping of a particular velocity component could be observed by three-level double resonance. Bvidence for indirect pumping of all rotational energy levels in the first excited vibrational state $\left(v_{3}=1\right)$ was obtained by four-level double resonance experiments. Finally, evidence for vibrationvibration energy transfer was confirmed. The indirect pumping effect appeared to be useful not only for identification and observation of hot bands but also for characterizing the mechanism of the optical pumping.

To my family

ACENOWLEDGMENTS

I would like to thank my advisor, Professor Richard H. Schwendeman for his kindly guidance and encouragement during the course of this study and preparation of this thesis.

I wish to thank all of my family for their support and endurance.

The financial support of the National Science
Foundation is gratefully acknowledged.
Finally, I acknowledge all the members of this group and Mr. Martin Rabb for their friendship and stimulating discussions.

TABLE OF CONTENTS

Chapter Page
LIST OT TABLES VII
LIST OF FIGURES IX
PART I. LIMEsBAPES OF IMFRARED 2ERO PREQUENCY DOUBLE RESOMANCE SPECTRA IM CH $\mathbf{C H}^{7}$ 1
CEAPTER I. INTRODUCTION 2
CRAPTER II. THEORY 6
CRAPTER III. EXPERIMENT 17
CHAPTER IV. CALCULATIONS 25
Doppler Width 26
RT Rabi Prequency 26
IR Rabi Trequency 27
CHAPTER V. RESULTS AND DISCU88IOM 30
APPENDIX A 42
REFERENCES 46
Part il. infrared microwave sideband laserSPBCTROSCOPY OF TES v_{3} AND $2 v_{3} \cdot v_{3}$BANDS OF ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ AND ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. 47
CHAPTBR I. IMTRODUCTION. 48
CRAPTBR II. tEEORY 64
Introduction 54
Rotational Bnersy - General Theory 55
Risid Symetric Top Molecules 59
Symetric Top Wave Functions 63
Nonrigid Symetric Top Molecules 66
Intensities of Symetric Top Transitions 81
CHAPTRR III. INSTRUMBNTATION 86
Introduction 86
Generation of IR - MW Sideband Radiation 88
Structure of the Modulator 89
Adjustment of the Crystal Position
in the Modulator 94
CBAPTRR IV. BXPERIMENT 96
CBAPTRR V. RESULTS AND DISCUSSION. 108
v_{3} Fundamental and $2 v_{3} * v_{3}$ Hot Bandsof ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$108
v_{3} Fundamental and $2 v_{3}$ - v_{3} Hot Bandsof ${ }^{12} \mathrm{CH}_{3}{ }^{\mathrm{F}}$134
REPBRENCRS 159
PART III. INPRARED-INPRARED DOUBLE RESONANCE OF${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ BY MBANS OP A WAVBGUIDE CO_{2} LASERAND AN INPRARED-MICROWAVE SIDRBAND LASER . 164
CRAPTRR I. INTRODUCTION. 165
CHAPTBR II. TBRORY 177
Saturation Procese 177
Double Resonance in 184
CHAPTBR III. BEPBRIMEMT 187
Wavesuide $\mathbf{C O}_{2}$ Laser 189
CRAPTBR IV. RE8ULTS AND DI8CUSSIOM. 192
Three-Level Double Resonance 196
Tour-Level Double Resonance 204
REFERENCE8 218

LI8T OF TABLES

Table Page

1. Sources of Data for fits of the v_{3} Band of ${ }^{13} \mathrm{CH}_{3}$ r. 112
2. Comparison of Observed and Calculated Frequencies in the v_{3} Band of ${ }^{13} \mathrm{CH}_{3}$ F. 113
3. Comparison of Observed and Calculated Frequencies in the $2 v_{3} \cdot v_{3}$ Band of ${ }^{13} \mathrm{CH}_{3} r$. 123
4. Vibration-Rotation Parameters for ${ }^{13} \mathbf{C H}_{3}$. 126
5. The Fitting Parameters of Watson's Porm of Pade Approximant for v_{3} Band of ${ }^{13} \mathbf{C H}_{3}$ F. 132
6. Vibrational Dependence of Vibration-Rotation Parameters for ${ }^{13} \mathrm{CH}_{3} \mathbf{F}$. 133
7. Sources of Data for fits of the v_{3} Band of ${ }^{12} \mathrm{CH}_{3}$. 137
8. Comparison of Observed and Calculated Frequencies in the ν_{3} Band of ${ }^{12} \mathrm{CH}_{3}$ F. 139
9. Comparison of Observed and Calculated Frequencies in the $2 v_{3} \cdot v_{3}$ Band of ${ }^{12} \mathrm{CH}_{3}$ r. 146
10. Vibration-Rotation Parameters for ${ }^{12} \mathrm{CH}_{3}$. 148
11. Comparison of Ground-8tate Rotational Constants of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. 161
12. The Fitting Parameters of Watson's Form of Pade Approximant for v_{3} Band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. 182
13. Vibrational Dependence of Vibration-Rotation Parameters for ${ }^{12} \mathrm{CH}_{3}$ F. 153
14. Coincidences Between Celculated Frequenciee for v_{3} Band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ and CO_{2} Laser Prequencies 155
15. Coincidences Between Calculated Frequencieefor $2 v_{3}-v_{3}$ Band of ${ }^{13} \mathrm{CH}_{3}$ F and CO_{2} LaserPrequencies.166
16. Coincidences Between Calculated Frequenciesfor v_{3} Band of ${ }^{12} \mathrm{CH}_{3}$ r and CO_{2} Laser
Prequencies 167
17. Coincidences Between Calculated Frequenciesfor $2 v_{3}$ - v_{3} Band of ${ }^{12} \mathrm{CH}_{3}$ F and CO_{2} LaserPrequencies.188

LIST OF FIGURES

Fisure
Page

1. Block diacran of the infrared radiofrequency double resonance epectrometer used for the study of infrared zero frequency double resonance in a D.C. Stark field. 18
2. IR-2F apectra in sero D.C. Stark field for the $Q_{R}(4,3)$ transition in the v_{3} band of ${ }^{13} \mathbf{C H}_{3}$. The infrared source was the $\operatorname{9P}(32) \mathrm{CO}_{2}$ laser operating at power of $\mathbf{\sim} 100 \mathrm{~mW}$. The amplitude of the RF field was -1.3 V/cm. The eample preseures were: \bullet.e. 22.9 morr; xxx 35.8 mTorr; +++ 44.0 miorr.
3. IR-ZF epectra in sero D.C. 8tark field for the $\boldsymbol{Q}_{\mathbf{R}}(4,3)$ trancition in the v_{3} band of ${ }^{13} \mathrm{CH}_{3} \mathbf{F}$. The infrared source wae the $9 P(32) \mathrm{CO}_{2}$ laser operating at power of $\mathbf{- 1 0 0} \mathrm{mW}$. The sample pressure was 13.2 aTorr. The RF amplitudes were: \bullet - $1.1 \mathrm{~V} / \mathrm{cm} ; \times x x \sim 0.84 \mathrm{~V} / \mathrm{cm} ;+++\sim 0.67$

V/cm. 22
4. IR-ZF epectra in a D.C. Stark fiold of 9738.2 V/on for the $=1$ - 0 component of the ${ }^{Q_{P(2,1)}}$ trancition in the v_{3} band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. The infrared source was the 9P(22)CO2 laser at a power of ~100 mW . The RF amplitude was $\mathbf{\sim 0 . 6 7}$ V/cm. The sample preseures were: •७๑ 6.6 mTorr; xxx 4.9 merr; +++ 2.9 ETorr.23
6. IR-2F epectra in ${ }^{12} \mathbf{C H}_{3}$ F. The transition, laser, and laser power were the anc as in Fis. 4. The sample pressure was 6.6 mTorr. The RF amplitudes were: $\bullet \bullet \sim 1.1$ V/Cm; xxx $\sim 0.84 \mathrm{~V} / \mathrm{cm} ;$ +++ ~0.67 V/Cm.24
6. Results of least equares fit of experimental IR25 epectrum in ${ }^{\mathbf{1 2}} \mathbf{C H}_{3}$ F. The transition, laser, and laser power were the same as in Fis. 4. The sample pressure was 6.6 ITorr and the RF amplitude was $\mathbf{\sim 0 . 6 7} \mathrm{V} / \mathrm{cm}$. Observed epectrum xxx; observed - calculated epectrun ••๑.31
7. Reaulte of least equares fit of experimental IRZF epectrum in ${ }^{12} \mathbf{C H}_{3}$ r. The transition, laser,
and laser power were the same as in Fis. 4. The sample pressure was 6.6 mTorr and the RF amplitude was ~ 1.1 v/cn. Observed apectrum xxx; observed - calculated spectrun ・ャ.. 32
8. Pressure dependence of calculated IR-2F spectrun: laser power 32 mW ; RF amplitude 0.73 V/cm; laser frequency offset 0.0 MHz ; no. of harmonics 4. Sample presaures: ••• 6.5 merr; xxx 4.6 mTorr; +++ 3.0 mTorr. 36
9. RP amplitude dependence of calculated IR-ZF epectrum: laser power 32 mW sample preseure 6.6 morr; laser frequency offset 0.0 MHz ; no. of harmonice 4. RI amplitude: •e• l.l V/cm; xxx $0.92 \mathrm{~V} / \mathrm{cm} ;+++0.73 \mathrm{~V} / \mathrm{cm}$.
10. Dependence of calculated IR-ZF apectra on laeer frequency offset. Laser power 32 mW ; ample pressure 6.6 morr; RF amplitude $0.73 \mathrm{~V} / \mathrm{cm}$; no of harmonice 4. Laser frequency offsets: ••• 0.0 MHz; xxx $6.0 \mathrm{MHz} ;+++10.0 \mathrm{MHz}$. 37
11. Infrared laser power dependence of calculated IR-ZF spectra. sample pressure 6.5 mTorr; RF
amplitude $0.73 \mathrm{~V} / \mathrm{cm}$; laser frequency offeet 0.0
MHz; no of harmonics 4. Laser powers: ••• 32
mW; xxx $16 \mathrm{~mW} ;+++9 \mathrm{~mW}$. 38
12. Dependence of calculated IR-ZF epectra on no. of harmonics included in the calculation. Laser power 32 mW ; sample preseure 6.5 merr; laser frequency offset 0.0 MHz ; RF amplitude $1.5 \mathrm{~V} / \mathrm{cm}$. 39
13. Dependence of calculated IR-2F epectra on no. of harmonics included in the calculation. Laser power 32 mW ; sample pressure 6.6 mTorr; laser frequency offeet 0.0 MHz ; RF amplitude 0.73 V/cm. No. of harmonics: ••• 4; xxx 3; +++ 2 41
--- PART II ---

1. Classical motion of aymetric top. This is a combined rotation around the molecular axis associated with P_{z} and a precession of this axis around the total angular momentua P. The molecule represented is $\mathrm{CB}_{3} \mathrm{~F}$. 60
2. Enersy levels of typical symetric top molecules
(A) prolate, (B) oblate symetric top. 62
3. Mormal vibrations of linear $X Y_{2}$ molecule andthe effects of Coriolis coupling. v_{2} is adesenerate bending vibration and the arroweattached to the atom represent one component ofthe vibration. The other component (not shown)results from identical motions perpendicular tothe plane of the paper. 68
4. Coriolis coupling of the degenerate bendingvibrations in a $X Y_{3}$ esmotric top. (A) and(B) illustrate two components of the deseneratebendins mode. (C) showe the couplins effect ofthe Coriolis force on the (A) mode as it tendeto induce the (B) mode. In all threeillustrations, the fisure axis is perpendicularto the plane of the paper and only off-axis
atome are shown. 70
5. Allowed transitions and interactions for an
A_{1} and an E fundanental of a $C_{3 v}$ molecule. 74
6. Diagrametric representation of interactionbetween an A_{1} and an E vibration states for$J=3$. Bach dot represents a basis functioncharacterized by a particular values of k and$\ell_{0} ;$ the lines represent Coriolis interactions,connecting states of the sane $\left(k-l_{s}\right)$. Exceptfor the extrene valuee of $\left(k-\ell_{s}\right)$ the secularequation factors into (3x3) blocks. 75
7. Diagran of the sideband modulator, in which theCdTe crystal embedded between two $\mathrm{Al}_{2} \mathrm{O}_{3}$ elabs toachieve velocity match. The tapered double-ridsed waveguide section (upper half removed)provides impedance match to incoming/outsoingstandard waveruide sizes.91
8. Experimental diagran for adjusting the position of cryatal ineide modulator. 93
9. Variation of coupling efficiency with thecryetal position. (A) represente inputmicrowave power with frequency. (B) and (C)indicate the reflected microwave power fromthe modulator with improper position andoptimu position, respectively.95
10. Block diasran of IR-MW sideband laser epectrometer used for the measurement of ${ }^{13} \mathrm{CH}_{3} \mathrm{r}$, set for linear absorption spectroscopy of sases. 97
11. Variation of the output laser power (B) and thedifferential sisnal (A) dieplayed on ecreen withpiezoelectric translator voltage. The eignaldue to Lamb-dip can be easily distinguiehed fromthat due to the end of mode.99
12. Unnormalised epectrum obtained by IR-MW aidebandlaser spectroneter. The signal and thereference show the large fluctuation inamplitude with frequency. The lower aidebandsenerated from the $10 \mathrm{R}(20) \mathrm{CO}_{2}$ laser line usedwith -200 ETorr of ${ }^{13} \mathrm{CH}_{3}$ F for the $v_{3} P(27, x)$
transition. 104
13. Block diagran of MM feedback controlled IR-MWsideband laser spectroneter set for linearabsorption epectroscopy of sases used for${ }^{12} \mathrm{CH}_{3}{ }^{\mathrm{P}}$.106
14. Typical spectrum obtained by feedback controlled IR-MM sideband ayetea for lineshepe experiment.

The lower eideband senerated from the $9 P(18) \mathrm{CO}_{2}$
 laser line used with 3.2 cm long sample cell with 0.1 sec. of time constant. 107

16. Typical apectrum of the v_{3} band of ${ }^{13} \mathrm{CH}_{3}$ F obtained with the IR-MW aideband laser spectrometer. The lower sideband senerated from the $10 \mathrm{R}(20) \mathrm{CO}_{2}$ laser live was used with ~200 morr of sample pressure in an 1 long sample cell. Fron this spectrum, the intensity rule according to E values can be clearly seen. 109
17. Typical apectrum of the $2 v_{3} \cdot v_{3}$ band of ${ }^{13} \mathrm{CH}_{3}$ I obtained with the IR-MM sideband laser spectrometer. The lower sideband generated from the $10 \mathrm{R}(30) \mathrm{CO}_{2}$ laser line was used with -1.0 Tor of sample pressure in an 1 long sample cell.
18. Typical epectrum of the v_{3} band of ${ }^{12} \mathrm{CH}_{3} \mathbf{F}$ obtained with the MM feedback controlled IR-MW sideband laser spectrometer. Two epectra were obtained at different preseure; -100 $\mathbf{m o r r}$ for the spectrun at the left

and ~60 aTorr for spectrum at the risht. This epectrum shows much improved beseline and lineshape. The lower aideband generated from the 9R(12)CO2 laser line was used. . . . 136

PART III ---

1. Diagramatic representations of three-level double resonance epectroscopy (A)-(C) and four-level double resonance spectroscopy (D)-(F) 168
2. Bnersy level schenes in four-level double resonance experiments. The lisht and heavy arrows represent $10 w$ and high power radiation, respectively. The wavy arrows represent paths of collisional energy transfer. 170
3. Change in the particle velocity distribution over two-levels of transition under the action of a laser wave of frequency v. The z-component of velocity of particles interacting with the lisht wave is $\boldsymbol{v}_{\text {res }}=$ $c\left(v-v_{0}\right) / v_{0}$.172
4. Time evolution of the population of theexcited state of a two-level syetemsubjected to coherent dipole perturbation.On-resonance pumpins ($0=0$) results in theslowest oscillations having the sreatestamplitude.180
5. Schematic arrangenent of pumping and probing radiation in many infrared-infrared double resonance experiments. 183
6. Experimental diagran of infrared-infrared double resonance by means of a wavesuide CO_{2} lacer for pumping and an infrared-microwave sideband laser for probing. 188
7. Crose sectional view of the wavecuide CO_{2} laser used for this experiment. 191
8. Enersy level diagrans for the wavesuide CO_{2} laser and infrared-microwave aideband laser eysten used for infrared-infrered double resonance in ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ in this work. 193
9. Variation of the position of the pumped molecular velocity group with pumping frequency. The trancition is $\boldsymbol{a}_{\mathrm{R}}(6,3)$ of the $\mathbf{2 v}_{3}$ - v_{3} band of ${ }^{13} \mathbf{C H}_{3}$ F. The ${ }_{\mathbf{R}}(4,3)$ traneition of the v_{3} band was pumped at a different frequency for each the spectra A-F. . 196
10. Variation of the range of the molecular velocity group pumped with the modulation amplitude of the pumping laser. The modulation amplitude was increased in stepe fros (A) to (B). The ${ }^{Q_{R}(4,3)}$ transition of the v_{3} band was pumped. 197
11. Observation of a saturation-dip in the ${ }^{Q_{P}(6,3)}$ transition in the v_{3} band from three-level double resonance with a common level in the upper state. The $\boldsymbol{Q}_{\boldsymbol{R}}(4,3)$ transition in the $\boldsymbol{v}_{\mathbf{3}}$ band was pumped. 199
12. Observation of acturation-dip in the $\mathbf{Q}_{\mathbf{P}}(6,3)$ transition in the v_{3} band from three-level double resonance with a conmon upper level. The pumping frequency in this ficure has been ehifted elishtly from that in Ficure 11. . . 200
13. Observation of aturation-dip in the ${ }^{Q_{P}(4,3)}$ transition in the v_{3} band from three-level double resonance with a common level in the lower atate. The ${ }^{Q_{R}}(4,3)$ transition in the v_{3} band was pumped. 202
14. Observation of the increased intensity of the $\boldsymbol{Q}_{\mathbf{R}}(5,3)$ transition in the $2 v_{3} * v_{3}$ band that resulte from three-level double resonance with a comon level that is the upper atate for the pumping transition and the lower etate for the probinc transition. Also shown is the increased intensity of the remaining ${ }^{\boldsymbol{Q}} \mathbf{R (6 , E)}$ transitione that result from increased population of the \mathbf{v}_{3} $=1$ etate caused by pumping the $\mathbf{Q}_{\mathrm{m}}^{(4,3)}$ transition in the fundamental band. 203
15. Variation of the double resonance offect on the intensity of the ${ }^{Q_{R}(6,3)}$ transition in the $2 v_{3}$ - v_{3} band with eample preseure. The lower level of this transition is directly pumped by pampine the ${ }^{Q_{n}}(4,3)$ trancition in the v_{3} band. The solid line is a enooth curve drawn through the pointe.
16. Obeervation of the indirect pumping effect to all rotational enersy levele in the firet excited vibrational etate $\left(v_{3}=1\right)$ by pumpins the ${ }^{Q_{R}}(4,3)$ transition in the v_{3} band. The intensity of all transitions in the $\mathbf{2 v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{3}}$ band appears to increase with pumping. 207
17. Variation of the effect of indirect pumping on the intensity of the ${ }^{\mathbf{Q}} \mathbf{P (1 7 , 3)}$ transition of the $2 v_{3}$ - v_{3} band with sample pressure. The $Q_{R}(4,3)$ transition in the v_{3} band was pumped. The solid line is amooth curve drawn through the points.

209
18. Schematic diagran of the molecular population changes caused by pumping the $Q_{R(4,3)}$ transition in the v_{3} band. The numbers above each level are relative populations. 210
19. Comparison of the effecte of indirect pumping and heating on transitions in the v_{3} fundamental and $2 v_{3}$ - v_{3} hot bands of ${ }^{13} \mathrm{CH}_{3}$ F. The epectra was recorded (A) without pumpins at roon temperature, (B) with pumping of the $\mathbf{Q}_{\mathrm{R}}(4,3)$ transition in the v_{3} band at room temperature,

XXII

and (C) without pumping at $-100{ }^{\circ} \mathrm{C}$. 212
20. Observation of the effect of vibrational energy
transfer between ${ }^{13} \mathbf{C H}_{3}$ F and ${ }^{12} \mathbf{C H}_{3}$ F on the intensity of the $\mathbf{Q}_{\mathbf{Q}}(12,9)$ transition in the $\boldsymbol{2 v}_{3}$

- v_{3} band of ${ }^{12} \mathrm{CH}_{3}$ F. The $\mathbf{Q}_{\mathrm{R}}(4,3)$ in the v_{3}
band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ was pumped. 216

CBAPTBR I

INTRODUCTION

Infrared radiofrequency double resonance spectra of symetric top molecules are often characterized by atrong asymetric absorption lineshape at very low RF frequency. The appearance of this absorption has been used as evidence of a near resonance between the laser line and amolecular transition(1). It therefore identified the laser line as a fruitful one for double resonance at higher RF frequencies.

In a double resonance process, a three level asten is simultaneously irradiated by two different fields of different frequencies. One radiation, which has a fixed frequency in resonance, saturates one transition; the other field, which is generally weaker than the first one has a swept frequency. A variation of absorption is then detected on the second field when the pumping field becomes resonant with a transition. These processes were studied by Autler and Townes(2) in 1950. In 1952 Broseel and Bitter performed a double resonance experiment in which the Zeeman splitting of an excited state of ag atom screened by Doppler broadening was recorded(3). This technique was ultimately extended to infrared radiofrequency double resonance by Curl and Oka(4).

An absorption peak in normal spectroscopy shows a particular lineshape depending on the molecular environment;
in very low pressure gas the absorption peak exhibits a Gaussian lineshape which is dependent on the frequency of the radiation, temperature of the sample, and the molecular velocity distribution. At higher pressures, the peak is homogeneously pressure broadened, which typically shows a Lorentzian lineshape depending on the molecular dynamics. At intermediate pressures the peak appears as a Voigt profile, which is a convolution of the Gaussian lineshape and the Lorentzian lineshape.

When the infrared zero frequency double resonance was first encountered by A. Jacques at Michigan State University, the observation of an apparently Doppler-free infrared absorption suggested that it aight have potential for the determination of collisional relaxation rates. Therefore, an investigation was begun of the dependence on sample pressure and RF power of the infrared zero frequency double resonance that occurs as a result of the well-known near coincidences of the $\mathbf{Q}_{\mathbf{Q}}(12,2)$ transition in the v_{3} band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ with the $\mathrm{gP}(20) \mathrm{CO}_{2}$ laser line(5) and of the $Q_{R}(4,3)$ transition in the ν_{3} band of ${ }^{13} \mathbf{C H}_{3} F$ with the 9P(32) CO_{2} laser line(6). Although most IR-RF double resonance studies have been done with an absorption cell inside the laser cavity, an extra-cavity cell was chosen in order to remove the nonlinear effects of laser gain from the recorded lineshape.

An additional interesting feature of the infrared zero
frequency double resonance was the fact that the rotating wave approximation, comonly used in double resonance theories(7), is expected to fail for this effect. The rotating wave approximation is based on the assumption that the frequencies of the radiation are much larger than the relaxation rates or Rabi frequencies involved. This can hardly be true if the frequency of one of the radiation sources is near zero. Thus, it was necessary to extend the double resonance theory to include the IR-ZFeffect. The new theory resembles theories previously derived to describe the high-frequency Stark effect(8).

The theory developed to explain the IR-ZF lineshape was in qualitative but not good quantitative agreement with the observed lineshapes(9). This was attributed to the degeneracies of the states involved in the transitions. At first, a simple sum over the momponents was tried without success. It was concluded then that the disagreement between theory and experiment was the result of the many level crossings of the components that occur at zero field. These crossings were not taken into account in the theory.

In order to determine whether the derived theory could accurately represent an IR-ZF lineshape, I recorded the IRZF absorption of a single component of a transition brought into resonance with the laser by application of a D.C. Stark field. The transition chosen was the ${ }^{\mathbf{Q}} \mathbf{P (2 , 1) \text { , }}$
$=1-0$ in the v_{3} band of ${ }^{12} \mathbf{C H}_{3} F$. This transition has been shown to be in resonance with the $9 \mathrm{P}(22) \mathrm{CO}_{2}$ laser line in an electric field of $9738.2 \mathrm{~V} / \mathrm{cm}(6)$.

The purpose of this study is to describe the theory derived for the IR-ZF double resonance effect and to compare observed and calculated lineshapes for a ingle component of a transition in resonance with an infrared laser. As a by-product, it is shown that the new high-frequency stark effect theory provides an alternative to the usual description of infrared microwave two-photon absorption in symetric top molecules without inversion(10-12).

The next chapter outlines the theory used to calculate lineshapes and Chapter III describes the IR-ZF experimental apparatus. In Chapter IV, the methods and equations for theoretical calculation of the input parameters are derived and in Chapter V, the experimental and calculated lineshapes are compared and discussed. Finally, in Appendix A, the theory is extended to the case of infrared microwave two-photon absorption.

CHAPTBR II

THEORY*

We assume a ymmetric top in which the inversion splitting is negligible. In the presence of an electric field that is sufficient to separate the momponts the states are singly or doubly degenerate (ignoring nuclear spin degeneracy); we assume a transition between doubly degenerate states. The basis functions are chosen to be the linear combinations of mixed parity (i.e., the \pm linear conbinations of single parity states), in which case the electric dipole moment matrix element that connects the degenerate partners vanishes. It is therefore sufficient, within the electric dipole approximation for both radiation and collisions, to consider only one of the two pairs of states involved in the transition. We also assume that the rotating wave approximation is valid for the infrared radiation, since the infrared frequency is much greater than either the Rabi frequency or the relaxation rates. This approximation allows the two states to be separated from the states of other rotational levels so that we are left with the simple case of a two-state system.

[^0]Let us consider a two level systen of a symetric top molecule (that is the case of for $\mathrm{CH}_{3} \mathrm{~F}$) irradiated by IR and RF fields whose planes of polarization are perpendicular to one another. The sample is also in a D.C. Stark field which is assumed to be parallel to the RF field. Since the selection rules on the $I R$ transition are $\Delta M= \pm 1$, one M state in the ground vibrational level is connected by the IR field to either the $M+1$ or $M-1$ state in the upper vibrational level. We assume that only one of these transitions has significant probability at the IR frequency of interest.

In the case of a symetric top, energy levels have a first-order Stark effect, so diagonal perturbation matrix elements are non-zero. In this case, they are also time dependent because of the RF field. Starting fron these points, the absorption of $I R$ radiation by a two level systen having a first order Stark effect can be calculated by using the density matrix formalism.

As the first step, the Bloch equations are written in the rotating wave approximation for the IR field. The population and coherences are then developed in Fourier series dependent on the RF frequency. Density matrix elements have to be calculated by using the equation of motion of p;

$$
\begin{equation*}
\frac{d p}{d t}=-\Gamma\left(p-p^{0}\right)-\frac{i}{\hbar}[H, p] \tag{1}
\end{equation*}
$$

where r is the relaxation matrix and ρ^{0} is the density matrix at thermal equilibrium.

The time dependence due to the IR field can be treated by using the rotating wave approximation. A change of variables is done as follows;

$$
\begin{align*}
& \mathbf{n}=\rho_{\mathbf{a} a}-\rho_{\mathbf{b} b} \tag{2}\\
& \rho_{\mathbf{b a}}=(u+i v) e^{-i\left(\omega_{\ell} t-k_{\ell} z\right)} \tag{3}
\end{align*}
$$

Here, n is the population difference between levels and b, ω_{ℓ} is the IR frequency, and k_{ℓ} is the wave vector. By substituting fron Bqs. (2) and (3) for $p_{a a}, p_{b b}$, and $p_{b a}$ ($=$ $P_{a b}^{*}$) in the density matrix, $B q$. (1), and by ignoring rapidly oscillating terms (rotating wave approximation), we obtain the Bloch equations for a two-state systen(7) as

$$
\begin{align*}
& d n / d t=-2 x v-\gamma_{1}\left(n-n^{0}\right) \tag{4}\\
& d u / d t=-v \delta-\gamma_{2} u \tag{5}\\
& d v / d t=u \delta+\frac{x n}{2}-\gamma_{2} v \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
x=\mu_{b} \epsilon_{l}^{0} / \hbar \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\omega_{l}-\omega_{b a} . \tag{8}
\end{equation*}
$$

Here, $\mu_{b a}=\mu_{a b}$ is the dipole moment matrix element connecting states and b, ϵ_{l}^{0} is the amplitude of the electric field of the infrared radiation written as

$$
\begin{equation*}
\epsilon_{\ell}=\epsilon_{\ell}^{0} \cos \omega_{\ell} t, \tag{9}
\end{equation*}
$$

and $\omega_{b}=\left(B_{b}-B_{a}\right) / \hbar$ with B_{a} and B_{b} the energies of the states. Finally, in Bqs. (4)-(6) r_{1} and r_{2} are relaxation rates for n and $p_{b a}$, respectively, and n^{0} is the equilibrium value of $n ; p_{b a}$ is assumed to be zero at equilibrium.

The effect of the RF field is introduced as an
additional first-order Stark effect. Thus, we assume that

$$
\begin{equation*}
\delta=\delta_{a}+\delta_{b}\left(e^{i \omega t}+e^{-i \omega t}\right) \tag{10}
\end{equation*}
$$

Here, $\delta=\delta_{a}$ in the absence of the RF field and

$$
\begin{equation*}
\delta_{b}=\left(\mu_{b b}-\mu_{a a}\right) \epsilon_{R F}^{0} / 2 \hbar \tag{11}
\end{equation*}
$$

where $\epsilon_{R F}^{0}$ is the amplitude of the RF electric field written as

$$
\begin{equation*}
\epsilon_{R F}=\epsilon_{R F}^{0} \cos \omega t . \tag{12}
\end{equation*}
$$

As a result of the oscillation of δ at $R F$ frequency w,
which may be comparable to or even smaller than x, Y_{1}, and γ_{2}, the density matrix components, n, u, and v will oscillate at frequency ω and overtones of w.

$$
\begin{align*}
& n=\sum_{k=-\infty}^{\infty} n_{k} e^{i k \omega t} \tag{13}\\
& u=\sum_{k=-\infty}^{\infty} u_{k} e^{i k \omega t} \tag{14}\\
& v=\sum_{k=-\infty}^{\infty} v_{k} e^{i k \omega t} \tag{15}
\end{align*}
$$

These Pourier representations for n, u, and v, along with Eq. (10) for δ are substituted into the Bloch Eqs. (4)-(6). We assume that in the steady state \dot{n}_{k}, \dot{u}_{k}, and $\dot{\nabla}_{k}$, the time derivatives of the Fourier coefficients, vanish. The coefficients of each $e^{i k \omega t}$ are then collected on one aide of the equation and set equal to zero. The result is a series of coupled linear equations in the n_{k}, u_{k}, and v_{k}.

For our experiment, the important quantity is the effect of the absorption on the intensity of the infrared bean. The absorption coefficient for infrared radiation is known to be(7)

$$
\begin{equation*}
\alpha=\left(4 \pi N \mu_{a b} \omega_{l} / c\right) v / \epsilon_{l}^{0} . \tag{16}
\end{equation*}
$$

The output of the phase-sensitive detector used to record the spectrum is filtered with a time constant whose reciprocal is much smaller than the lowest usable RF
frequency. Therefore, we need the time-averaged value of α, which is given by

$$
\begin{equation*}
\bar{\alpha}=\left(4 \pi N \mu_{a b} \omega_{\ell} / c\right) v_{0} / \epsilon_{\ell}^{0} . \tag{17}
\end{equation*}
$$

To solve for v_{0}, expressions for n_{k} and u_{k} in terms of the ∇_{k} are obtained from Bqs. (4) and (5), respectively, and are substituted into Bq. (6) to give

$$
\begin{equation*}
\sum_{\ell=k-2}^{k+2} \mathbf{a}_{k, \ell} \quad v_{\ell}=\delta_{k, 0} \times n^{0} / 2 \tag{18}
\end{equation*}
$$

where $\delta_{k, 0}$, the Kronecker delta, is equal to one for $k=0$ and zero otherwise. The fact that only 5 non-zero terms appear in the sum is a result of the first-order perturbation form assumed for the frequency difference δ [Bq. (10)]. In Bq. (18),

$$
\begin{align*}
& a_{k, k-2}=a_{k-2, k}=\delta_{b}^{2} / F_{k-1} \tag{19}\\
& a_{k, k-1}=a_{k-1, k}=\delta_{a} \delta_{b}\left(F_{k}^{-1}+F_{k-1}^{-1}\right) \tag{20}\\
& a_{k, k}=F_{k}+x^{2} / G_{k}+\delta_{a}^{2 / F_{k}}+\delta_{b}^{2}\left(F_{k-1}^{-1}+F_{k+1}^{-1}\right) \tag{21}
\end{align*}
$$

where $F_{k}=\gamma_{2}+i k \omega$ and $G_{k}=\gamma_{1}+i k \omega$. Bq. (18) can be written in matrix form as

$$
\begin{equation*}
\underset{\sim}{\mathbf{A}} \underset{\sim}{\mathbf{V}} \underset{\sim}{\mathbf{C}} \tag{22}
\end{equation*}
$$

with obvious definitions for $\underset{\sim}{A}, \underset{\sim}{\underset{\sim}{y}}$, and $\underset{\sim}{C}$. The result is an
infinite complex linear syeten that must be truncated for solution. The results of calculations for different numbers of harmonics are shown in Chapter V.

It is possible to transfori Bq. (22) into a linear systen that contains only real numbers. This syeten can be solved alfebraically for any number of harmonice. In order to carry out the transformation of Eq. (22) and to give an alsebraic solution for ∇_{0}, the time independent element of v, we apply a transformation to Eq. (22)

$$
\begin{equation*}
\underset{\sim}{s} s^{-1} \underset{\sim}{v}=s \underset{\sim}{c} \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\overline{\mathbf{A}} \overline{\mathbf{v}}=\overline{\mathbf{c}} . \tag{24}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\overline{\mathbf{A}}=\underset{\sim}{s}{\underset{\sim}{s}}^{-1}, \overline{\mathbf{v}}=\underset{\sim}{\mathbf{s}} \underset{\sim}{\mathbf{v}}, \text { and } \overline{\mathbf{C}}=\underset{\sim}{\mathbf{s}} \underset{\sim}{\mathbf{C}} . \tag{26}
\end{equation*}
$$

For the case of truncation efter two harmonics, \mathcal{S} is choeen to be

$$
\underset{\sim}{\delta}=\frac{1}{\sqrt{2}}\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 1 \tag{26}\\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 \\
0 & -i & 0 & i & 0 \\
-i & 0 & 0 & 0 & i
\end{array}\right)
$$

in which case ${\underset{\sim}{s}}^{-1}$ is easily obtained.
The transformed matrices are

$$
\begin{align*}
& \bar{A}=\left[\begin{array}{ccccc}
a_{2}^{\prime} & b_{2}^{\prime} & \sqrt{2} c_{1}^{\prime} & -b_{2}^{\prime \prime} & -a_{2}^{\prime \prime} \\
b_{2}^{\prime} & a_{1}^{\prime}+c_{0} & \sqrt{2} b_{1}^{\prime} & -a_{1}^{\prime \prime} & -b_{2}^{\prime \prime} \\
\sqrt{2} c_{1}^{\prime} & \sqrt{2} b_{1}^{\prime} & a_{0} & \sqrt{2} b_{1}^{\prime \prime} & -\sqrt{2} c_{1}^{\prime \prime} \\
b_{2}^{\prime \prime} & a_{1}^{\prime \prime} & \sqrt{2} b_{1}^{\prime \prime} & a_{1}^{\prime}-c_{0}^{\prime} & b_{2}^{\prime} \\
a_{2}^{\prime \prime} & b_{2}^{\prime \prime} & \sqrt{2} c_{1}^{\prime \prime} & b_{2}^{\prime} & a_{2}^{\prime}
\end{array}\right],(27) \tag{27}\\
& \underset{\sim}{\bar{v}}=\left[\begin{array}{c}
\sqrt{2} v_{2}^{\prime} \\
\sqrt{2} v_{i}^{\prime} \\
v_{0} \\
\sqrt{2} v_{1}^{\prime \prime} \\
\sqrt{2} v_{2}^{\prime \prime}
\end{array}\right] \quad \text { and } \underset{\sim}{\bar{c}}=\left[\begin{array}{c}
0 \\
0 \\
\times n^{0} \\
0 \\
0
\end{array}\right] \tag{28}
\end{align*}
$$

In these matrices,
$a_{k, k}=a_{k}^{\prime}+i a_{k}^{\prime \prime}, a_{k-1, k}=b_{k}^{\prime}+i b_{k}^{\prime \prime}, a_{k-1, k+1}=c_{k}^{\prime}+i c_{k}^{\prime \prime}$, and $v_{k}=v_{k}^{\prime}+i v_{k}^{\prime \prime}$.
Thus, the linear system in Bq. (24) has only real componente.

To solve Bq. (24), we make use of the fact that all of the linear equations in this systen except one are homogeneous. This allows development of a general method for reducing the dimensions of the linear systen by 2 at a time. In this method the first and last equations are used
to obtain expressions for the first and last components of $\overline{\mathbf{V}}$ in terms of the remaining components; these are substituted into the remaning equations. This process is repeated until only a 3×3 linear system remains. The 3×3 linear systen can then be solved exactly.

To carry out the procedure just described, we let $a_{k \ell}$ now be a general element of \bar{A} and v_{k} be an element of $\overline{\mathbf{V}}$. Then, except for $\ell=0$, one of the linear equations in Bq. (22) can be written

$$
\begin{align*}
& \text { L } \\
& \underset{\mathbf{k}=-\mathrm{L}}{\mathbf{a}_{\ell k}} \mathbf{v}_{\mathbf{k}}=\mathbf{0} \tag{29}
\end{align*}
$$

where L is the number of harmonics. The dimension of the linear systen is $2 L+1$. We use the equations for $\ell=L$ and ℓ $=-L$ to solve for v_{L} and v_{-L} as follows:

$$
v_{J}=\sum_{k=-L+1}^{L-1} \alpha_{J, k} v_{k}
$$

for $J= \pm L$, where

$$
\begin{equation*}
\alpha_{J, k}=\frac{a_{J,-J} a_{J, k}-a_{J, J} a_{J, k}}{a_{J, J}{ }^{2}+a_{-J, J}} \tag{31}
\end{equation*}
$$

To obtain these expressions, the symetry relations $a_{-L, L}=$ $\mathbf{- a}_{L_{, ~}-\mathrm{L}}$ and $a_{-L,-L}=a_{L, L}$ were used. These relations hold only for $L 2$, so the reduction process must be stopped when $L=1$. However, when $L=1$ the linear systen is 3×3 and may be solved trivially.

After substitution for v_{L} and v_{-L} the linear systen is of the form

$$
\begin{align*}
\sum_{k=-L+1}^{L-1}\left(a_{\ell k}+a_{\ell,-L} \alpha_{-L, k}\right. & \left.+a_{\ell, L} \alpha_{L, k}\right) v_{k} \\
& =\delta_{k, 0} \times n^{0} / 2
\end{align*}
$$

which is of dimension 2L-1.
Two limiting solutions of Bq. (22) are of some interest. First, if $\delta_{b}=0$, the usual expression for partially-saturated absorption in a two-level system is obtained. A second limiting solution is that for which δ_{a} $\omega \gg x, Y_{1}, \gamma_{2}$, or δ_{b}. This case of two-photon absorption in a symetric top without inversion is discussed in Appendix A. It is shown there that two-photon absorption in such a molecule can be thought of as a consequence of a high-frequency Stark effect. The expression obtained for the two-photon absorption coefficient is the same as that obtained by a different approach by Oka and Shimizu(10).

In the derivation just given, $\delta_{a}[B q .(10)]$ depends on ω_{ℓ}, the infrared frequency seen by the molecule. To take the Doppler effect into account we assume that the overall absorption is a sum of products of the absorption coefficient for each velocity group multiplied by the relative population of each velocity group. The total absorption has to be averaged over the different velocity groupa.

$$
\begin{equation*}
\bar{\alpha}_{\ell}=\int_{-\infty}^{+\infty} \bar{\alpha} f\left(v_{2}\right) d v_{z} \tag{33}
\end{equation*}
$$

where $f\left(v_{z}\right)$ is the Maxwellian distribution of the velocity component along the propagation axis of the radiation. However, this Doppler averaging is unusually tedious for case in which the values of x, r_{1}, and r_{2} are sall. Fortunately, toward the end of this project an array processor (FPS-164) became available for the calculations, so that not only individual lineshapes could be calculated, but also full least squares treatment, including numerical calculation of the required derivatives, could be implemented.

CHAPTER III

BXPBRIMENT

Figure 1 is a block diagran of the spectrometer used for this investigation. The CO_{2} laser was a 2.2 water cooled plasma discharge flowing gas system with a 4.0 . cavity mounted on an invar frame, which has been described previously(13). One end of the cavity is a rotatable plane grating with 150 lines/mand the other end is a partially reflecting (95 \%) 10 madius concave spherical mirror. The combination of the liquid N_{2} cooled photovoltaic InSb detector, the phase sensitive detector (PSD), the operational power supply (OPS) and the piezovoltaic (PZT)driven laser mirror stabilized the laser output to within $\pm 300 \mathrm{kHz}$ by monitoring the saturation dip in the fluorescence from an intracavity cell filled with CO_{2} gas(14). The laser radiation was linearly polarized in a direction determined by the Brewster windows of the discharge tube. The plane of polarization was rotated by using a different mirror configuration for the $\Delta M= \pm 1$ transitions

The sample cell used for this experiment was designed for conventional laser Stark spectroscopy(13) and consisted of a 6-inch glass pipe tee that includes two solid nickel bars, $5 \mathrm{~cm} \times 2 \mathrm{~cm} \times 40 \mathrm{~cm}$, whose large faces are flat to $\pm 0.5 \mu \mathrm{~m}$. The bars are separated by optically flat guartz

Figure 1. Block diagram of the infrared radiofrequency double resonance spectrometer used for the study of infrared zero frequency double resonance in a D.C. Stark field.
spacers $\mathbf{\sim}$ m thick. The electrode spacing was determined by measuring the resonant field of the $\mathbf{Q}_{\mathbf{Q}}(\mathrm{l}, \mathrm{l})$ transition in the v_{3} band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}(6)$.

The RF source was a Hewlett Packard Model 8660A synthesizer whose output frequency was controlled by a Digital Bquipment Corporation PDP-8B computer through an interface designed by Mr. Martin Rabb at Michigan State University. The output of the synthesizer was chopped at 33.3 kHz by means of a Mini-Circuits Laboratory Model ZAD-3SH double balanced mixer and either amplified or applied directly to the sample cell. The RF voltage at the sample cell was monitored by means of a simple diode detection circuit. The parallel plate Stark cell was shunted by a 50 resistor to improve ite high frequency response and seened to operate satisfactorily over the 0-5 MHz range that was used with it. A maximun of $0.5 \mathrm{v}_{\text {ring }}$ of RF amplitude was used.

The laser radiation was monitored by a liquid N_{2} cooled Hg-Cd-Te photoconductive detector. The detector output was amplified and processed at the chopping frequency by a phase sensitive detector whose output was disitized and recorded by the minicomputer that controlled the RP frequency. The observed spectrum is the difference between the IR absorption in the presence of the RF field and that without the R field.

Several spectra recorded at different ample preseures
and BF powers with the $9 \mathrm{P}(32) \mathrm{CO}_{2}$ laser line with ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ in the stark cell outside the laser cavity are shown in Figs. 2 and 3. The absorption is the result of the near coincidence ($\mathbf{\sim} 25.8 \mathrm{MHz}$) between the laser frequency and that of the $Q_{R}(4,3)$ transition in the v_{3} band(6). Samplea of the ${ }^{12} \mathbf{C H}_{3} F$ spectra obtained with the laser stark cell are shown in Figs. 4 and 5. In these spectra the absorption is of the - $=1$ - 0 component of the ${ }^{(} \mathbf{P}(2,1)$ transition, which was brought into resonance with the $9 \mathrm{P}(22) \mathrm{CO}_{2}$ laser line by application of a D.C. Stark field of $9738.2 \mathrm{~V} / \mathrm{cm}(6)$.

The ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ was obtained from Peninsular Chemical Research, whereas the ${ }^{13} \mathbf{C H}_{3} \mathrm{~F}$ was obtained from Merck. Bxcept for the usual freeze-pump-thaw cycling, the samples were used as received.

Figure 2. IR-ZF spectra in zero D.C. Stark field for the $Q_{R}(4,3)$ transition in the ν_{3} band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$. The infrared source was the $9 \mathrm{P}(32) \mathrm{CO}_{2}$ laser operating at a power of $\sim 100 \mathrm{~mW}$. The amplitude of the RF field was $\sim 1.3 \mathrm{~V} / \mathrm{cm}$. The sample pressures were: - 22.9 mTorr; xxx 35.8 mTorr; +++ 44.0 morr.

Figure 3. IR-ZF spectra in zero D.C. Stark field for the $\mathbf{Q}_{\mathbf{R}}(4,3)$ transition in the ν_{3} band of ${ }^{13} \mathrm{CH}_{3} F$. The infrared source was the $9 \mathrm{P}(32) \mathrm{CO}_{2}$ laser operating at a power of $\sim 100 \mathrm{~mW}$. The sample pressure was 13.2 morr. The RF amplitudes were: \bullet - 1.1 V/cm; xxx ~0.84 V/cm; +++ ~0.67 V/cm.

Figure 4. IR-ZF spectra in a D.C. Stark field of 9738.2 V/cm for the $=1$ - 0 component of the ${ }^{Q_{P}(2,1)}$ transition in the v_{3} band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. The infrared source was the $9 \mathrm{P}(22) \mathrm{CO}_{2}$ laser at a power of ~100 miN. The RF amplitude was ~0.67 V/cm. The sample pressures were: ••• 6.6 merr; xxx 4.9 mTorr; +++ 2.9 morr.

Figure 5. IR-2F apectra in ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. The transition, laser, and laser power were the same as in Fig. 4. The sample pressure was 6.6 mTorr. The RF amplitudes were: ... ~l. $1 \mathrm{~V} / \mathrm{cm} ;$ xxx ~0.84 V/cm; +++ ~0.67 v/cm.

CHAPTRR IV

CALCULATIONS

For the theoretical calculations, we need 11 input paraneters which are as follows the number of points in the Doppler integration (NG); the frequency interval in the Doppler intesration (DG); the Doppler width (GW); the number of RP frequencies (NV); the RF frequency interval (DV); the starting RF frequency (VA); the IR offeet frequency (DA), which is zero for on-resonant pumping; the RF Rabi frequency (DB) for the transition; the IR Rabi frequency (X) for the transition; and the relaxation time for population $\left(\gamma_{1}\right)$ and for coherence (γ_{2}).

Of the 11 parameters, 3 (NV, DV, and VA) are chosen to match the experimental conditions, and 2 (NG and DG) are selected to provide an efficient but accurate numerical integration. For the latter, $D G$ should be lese than the saller of γ_{1} and r_{2} and NG x DG hould be creater than $6 \times$ GW. Of the remaining 6 parameters, δ_{a} is known from the epectrum and GW can be accurately calculated, as shown below. Also, $D B$ and X can be estimated, but were normally adjusted in the fitting process for reasons that will be described. The estimation of $G W$, $D B$, and X is described in the next 3 subsections.

Doppler Vidth (CW)

The Doppler width (GH $=\Delta \nu_{D}$) can be accurately calculated fron the expression,

$$
\begin{equation*}
\Delta v_{D}=\frac{v_{0}}{c} \sqrt{\frac{(2 \ln 2) R T}{M}}, \tag{34}
\end{equation*}
$$

where v_{0} is the resonance frequency, c is the speed of light, R is the gas constant, T is the absolute temperature, and M represents the molecular weight.

RF Rabi Frequency (DB)

The RF Rabi frequency for a transition, as it appears in the present theory is given by

$$
\begin{equation*}
\delta_{b}=\frac{\left(\mu^{\prime}-\mu^{n}\right)}{2 h} \epsilon_{R F}^{0} \tag{35}
\end{equation*}
$$

where $\epsilon_{R F}^{0}$ is the amplitude of RF and μ^{\prime} and $\mu^{\prime \prime}$ represent the diagonal matrix elements for the dipole moment of the upper state and the lower etate, respectively. The matrix elements can be obtained from the following equation:

$$
\begin{equation*}
\mu=\frac{\mu_{D} k=}{J(J+1)} \tag{36}
\end{equation*}
$$

where ω_{D} is the permanent dipole moment in the vibrational
state. The peak $R F$ electric field $\epsilon_{R F}^{0}$ is related to the root mean square R voltage, as follows:

$$
\begin{equation*}
\epsilon_{R F}^{0}=\sqrt{2} v_{r m e} / d \tag{37}
\end{equation*}
$$

where d is the distance between the two Stark plates.

IR Rabi Frequency (X)

The IR Rabi frequency for the transition, as it appears in the theory is given by

$$
\begin{equation*}
x=\mu_{f i} \epsilon_{\ell} / \hbar \tag{38}
\end{equation*}
$$

where $\mu_{f i}$ is the transition dipole moment matrix element between states f and i and ϵ_{2} is the peak amplitude of $I R$ radiation.

The dipole moment matrix element can be expressed as

$$
\begin{equation*}
\mu_{f i}=\left(\frac{\partial \mu}{\partial Q_{3}}\right) \int \phi_{1}^{*} Q_{3} \psi_{0} d \Theta_{3} \int \psi_{J} k^{\prime} a^{\prime}, \cos \theta \psi_{J^{n} k^{n} m^{n}} d \theta \tag{39}
\end{equation*}
$$

For the v_{3} band of ${ }^{12} \mathrm{CH}_{3}{ }^{F}$, the derivative of the molecular dipole moment with respect to the normal coordinate for v_{3} can be obtained from reported absolute
intensity data(16), as follows:

$$
\begin{equation*}
\left(\frac{\partial \mu}{\partial Q_{3}}\right)^{2}=\frac{3 c^{2} v_{3}^{0} r_{3}}{N_{A}} \tag{40}
\end{equation*}
$$

where v_{3}^{0} is the harmonic frequency, c is the apeed of lisht, N_{A} is Avosadro's number, and r_{3} is the intesrated absorption coefficient for the v_{3} band. The calculated value of $\left(\mathrm{a} \mathrm{\mu} / \partial Q_{3}\right)$ is $117.4 \mathrm{~cm}^{2 / 3} \mathrm{sec}^{-1}$ based on $r_{3}=9056$ $\mathrm{cm}^{2} / \mathrm{mole}(16,17)$ and $v_{3}^{0}=1067 \mathrm{~cm}^{-1}(18)$.

For the econd contribution, the normal coordinate integral is given by

$$
\begin{equation*}
\int \psi_{1}^{*} Q_{3} \psi_{0} d Q_{3}=\sqrt{\frac{1}{2 r_{3}}} ; \quad r_{3}=\frac{4 \pi^{2} v_{3}^{0}}{h} . \tag{41}
\end{equation*}
$$

Thus, $\int \psi_{1}^{*} Q_{3} \psi_{0} d Q_{3}=1.62 \times 10^{-21} \mathrm{~s}^{1 / 2} \mathrm{~cm}$.
Now, consider the directional cosine element for our experimental arrangement. The equation can be transformed into the matrix element(18)

For the transition $\mathbf{Q}_{\mathbf{P}}(2,1),=1=0$

$$
\begin{equation*}
J^{\prime}=J^{n}-1, k^{\prime}=k^{n}, \text { and } m^{\prime}=m^{n}+1 \tag{43}
\end{equation*}
$$

Thus, since $J^{\prime \prime}=2, k^{\prime \prime}=1$, and $m^{\prime \prime}=0$,

$$
\begin{gather*}
\left\langle J^{\prime} k^{\prime} m^{\prime}\right| s_{Y_{2}}\left|J^{n} k^{n} m^{n}\right\rangle=\left(\frac{1}{\left[4 J\left(4 J^{2}-1\right)\right]^{1 / 2}}\right)\left(2\left(J^{2}-k^{2}\right)^{1 / 2}\right) \\
x((J-m)(J-m-1))^{1 / 2}=0.1581 \tag{44}
\end{gather*}
$$

For the peak amplitude of the $I R$ radiation, we can obtain the equation

$$
\begin{equation*}
\epsilon_{0} /(V / c m)=27.449 \sqrt{\frac{P}{A}} /(\text { watt } / c m) \tag{45}
\end{equation*}
$$

fron the relationship

$$
\begin{equation*}
P / A=c \epsilon_{0}^{2} / 8 n \tag{46}
\end{equation*}
$$

where P is the radiation power and A is the area of the bean.

Finally, we can calculate the Rabi frequency from the relationship

$$
\begin{equation*}
x=\left(\frac{\mu \epsilon}{h}\right) / \mathrm{MHz}=0.50345(\mu / \text { Debye })(\epsilon / V / \mathrm{cm}) \tag{47}
\end{equation*}
$$

CHAPTBR V

RESULTS AND DISCUSSION

Sample experimental spectra are shown in Figs. 2-7. As indicated in the Introduction, the spectra of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ in Fige. 2 and 3, taken at zero D.C. field in the presence of multiple \quad degeneracy, could not be fit quantitatively with the theory presented in this paper. By contrast, spectra similar to that in Figs. 4 and 5, taken with the sample of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ in a resonant D.C. Stark field that split the degeneracy, could be fit to high accuracy. Bxamples of such fits are shown in Figs. 6 and 7. The small variation of the residual shown in these figures is within the experimental uncertainty in the lineshapes.

The original purpose was to obtain relaxation parameters fron these spectra. Unfortunately, that was not possible in the present work. The zero D.C. field spectra could be taken at relatively high sample pressures ($\quad 50$ morr) where pressure-dependent effects were obvious, but they did not fit the theory. The non-zero D.C. field spectra could be fit well, but because of dielectric breakdown they could not be observed at high enough sample pressure to observe linearly independent pressure effects. The absorption line chosen for the D.C. field studies $\left({ }^{12} \mathrm{CH}_{3}{ }^{\mathrm{F}} v_{3}\right.$ band ${ }^{\mathrm{Q}} \mathrm{P}(2,1)$, $=1$ - 0) required a field of ~ 9.7

Figure 6. Results of least squares fit of experimental IR2F epectrum in ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. The transition, laser, and laser power were the same as in Fig. 4. The eample pressure was 6.6 mTorr and the RF amplitude was $\sim 0.67 \mathrm{~V} / \mathrm{cm}$. Observed apectrun xxx; observed - calculated spectrum \bullet...

Figure 7. Results of least squares fit of experimental IR$2 F$ spectrum in ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$. The transition, laser, and laser power were the same as in Fig. 4. The sample pressure was 6.6 mTorr and the RF amplitude was $\sim 1.1 \mathrm{~V} / \mathrm{cm}$. Observed spectrum xxx; observed - calculated spectrum
$k V / c=$ to bring it into resonance with the $9 P(22) C_{2}$ laser line. At this high field the highest sample pressure that could be maintained reliably was ~6 morr.

Several attempts were made to fit the highest pressure D.C. field spectra to the lineshape described in the Theory section. For this purpose, we assumed that the spectrometer signal was of the form,

$$
\begin{align*}
& S=C_{1} \int_{-\infty}^{\infty} W\left(\delta_{a}\right)\left[v_{0}\left(x, \gamma, \delta_{b}, \delta_{a}\right)-v_{0}\left(x, \gamma, 0, \delta_{a}\right)\right] d \delta_{a} \\
&+C_{2} \tag{48}
\end{align*}
$$

Here $x, r=\gamma_{1}=\gamma_{2}, \delta_{a}$, and δ_{b} have already been defined; $W\left(\delta_{a}\right)$ is the probability density for $\delta_{a} ; C_{1}$ and C_{2} are constants. The functional form assumed for W was the appropriate Doppler-broadened Gausian centered about $\boldsymbol{\delta}_{\mathbf{a}}=$ 0. Care was taken to insure that the numerical integration was sufficiently accurate. The difference in square brackets in the integral in Bq. (48) is needed to represent the combined effect of chopping the $R F$ radiation and phasesensitive detection.

All least quares fits with independent variation of the 5 parameters x, Y, δ_{b}, C_{1}, and C_{2} diverged. By contrast, all fits with γ fixed at the value of $20 \mathrm{MHz} / \mathrm{Tor}$ converged rapidly. The results of two such fits for sectra taken with different RF amplitudes are shown in Figs. 6 and
7. Some 4-parameter fits with δ_{b} fixed at the value predicted from the fits with fixed converged slowly, but showed a very high correlation between x and γ. The excessive computer time required by the Doppler averaging and the predicted low reliability of the outcome led me to discontinue the numerical experimentation. It appears that use of this method for evaluation of relaxation paraneters will require that the resonance occur at much lower stark field than was the case in this work. Such an experiment could be carried out with a stable tunable laser source such as the recently developed infrared-microwave ideband laser(20).

Although it was not possible to determine the relaxation parameter, the quality of the fits in figs. 6 and 7 is sufficiently high to provide strong support for the theory presented above. In order to give an indication of the dependence of the IR-ZF lineshape with variation in parameters, several calculated spectra are shown in Figs. 812. Dependence on pressure, RF field, D.C. field, laser electric field, and number of harmonics used in the calculation is shown. The dependence on pressure, RF field, and laser field appears similar at first sight, which accounts for the near linear dependence in the least quares fits. However, closer examination reveals some differences. Of interest is an apparent competition between pressure and laser electric field (Figs. 4 and 8) that is similar to

Figure 8. Pressure dependence of calculated IR-ZF spectrum: laser power 32 mW ; RF amplitude $0.73 \mathrm{~V} / \mathrm{cm} ;$ laser frequency offset 0.0 MHz ; no. of harmonics 4. Sample pressures: 也.e 6.5 mTorr; xxx 4.5 mTorr; +++ 3.0 Torr.

Fisure 9. RT amplitude dependence of calculated IR-ZF spectrum: laser power 32 mW ; ample pressure 6.5 ETorr; laser frequency offset 0.0 MHz ; no. of harmonics 4. RF amplitude: \bullet. $1.1 \mathrm{~V} / \mathrm{Cm}$; xxx $0.92 \mathrm{~V} / \mathrm{cm} ;+++0.73 \mathrm{~V} / \mathrm{cm}$.

Fisure 10. Dependence of calculated IR-2F apectra on laser
frequency offset. Laser power 32 mW sample
pressure 6.6 ETorr; RF amplitude $0.73 \mathrm{~V} / \mathrm{Cm}$; no
of harmonics 4. Laser frequency offects: - ${ }^{\text {. }}$
0.0 MHz; xxx 6.0 MEs; +++ $\mathbf{1 0 . 0} \mathrm{MEz}$.

Figure ll. Infrared laser power dependence of calculated IR-ZF spectra. Sample pressure 6.5 morr; RF amplitude $0.73 \mathrm{~V} / \mathrm{cm}$; laser frequency offset 0.0 MHz ; no of harmonics 4. Laser powers: 也- 32 mW; xxx $16 \mathrm{~mW} ;+++9 \mathbf{W}$.

Figure 12. Dependence of calculated IR-ZF spectra on no. of harmonics included in the calculation. Laser power 32 mi sample pressure 6.5 Torr; laser frequency offset 0.0 MHz ; RF amplitude $1.5 \mathrm{~V} / \mathrm{cm}$. No. of harmonics: \bullet 4; xxx 3; +++ 2 .
ordinary saturation effects. In each of these figures, comparison of the relative peak heights to that of the offset shown at the right of the figure indicates that the intensity increases with pressure between the two lower figures, but decreases with pressure between the two upper figures.

Finally, the dependence on the number of harmonics included in the calculation (Fig. 12) justifies the derivation of a theory that goes beyond the rotating wave approximation. As expected, however, and shown in Pig. 13, there is little if any dependence on the number of harmonics when the RF amplitude is low enough.

Figure 13. Dependence of calculated IR-ZF spectra on no. of harmonics included in the calculation. Laser power 32 mW; sample pressure 6.5 aTorr; laser frequency offset 0.0 MHz RF amplitude 0.73 V/cm. No. of harmonics: ••• 4; xxx 3; +++ 2 .

APPENDIX A

The purpose of this Appendix is to give a solution of Bq. (22) for the case $\left|\delta_{a}\right| * \omega \gg \delta_{b}, r_{1}$, and γ_{2}. This is the case for infrared radiofrequency or infrared microwave two-photon spectra for ammetric top without inversion. The solution will be developed to third order in the product of δ_{b} and x, the factors that depend on $R F$ and infrared amplitudes, respectively.

It is sufficient to consider only one harmonic;
therefore, the linear systen that must be solved is

$$
\left[\begin{array}{lll}
a_{11}^{*} & a_{01}^{*} & 0 \tag{Al}\\
a_{01}^{*} & a_{00} & a_{01} \\
0 & a_{01} & a_{11}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{*} \\
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
x^{0} / 2 \\
0
\end{array}\right] .
$$

The $a_{k \ell}$ are given by Bqs. (19)-(21). This systen is readily solved to yield

$$
\begin{equation*}
v_{0}=\frac{\mathrm{xn}^{0} / 2}{a_{00}\left[1-\frac{{ }^{a_{01}^{*}}}{a_{00}{ }^{a_{11}^{*}}}-\frac{a_{01}{ }^{2}}{a_{00}{ }^{a} 11}\right]} \tag{A2}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{0}=\frac{x n^{0}}{2 a_{00}}\left[1+\frac{a_{01}^{* 2}}{a_{00} a_{11}^{*}}+\frac{a_{01}^{2}}{a_{00}{ }^{a_{11}}}\right] \tag{A3}
\end{equation*}
$$

After rationalization, this is

$$
\begin{equation*}
v_{0}=\frac{x n^{0}}{2 a_{0}}\left[1+\frac{2 a_{1}^{\prime}\left(b_{1}^{2}-b_{1}^{\prime 2}\right)+4 a_{1}^{\prime \prime} b_{1}^{\prime} b_{1}^{\prime \prime}}{a_{0}\left(a_{1}^{2}+a_{1}^{n^{2}}\right)}\right] \tag{A4}
\end{equation*}
$$

The nomenclature of Chapter II, i.e., $a_{00}=a_{0}, a_{11}=a_{1}+$ $i a_{1}^{n}, a_{01}=b_{i}^{\prime}+i b_{1}^{n}$, has been used.

The third-order terms in Bq. (A4) are in the ratio in parentheses. These may be written A / B, where after substitution from Bqs. (19)-(21),

$$
\begin{align*}
A & =2 \delta_{a}^{2} \delta_{b}^{2}\left(\frac{1}{r_{2}{ }^{2}}\right)\left(\gamma_{2}+\frac{\delta_{a}{ }^{2} \gamma_{2}}{\omega^{2}}\right)-\frac{4 \delta_{a}^{2} \delta_{b}{ }^{2}}{\gamma_{2} \omega^{2}}\left(\omega^{2}-\delta_{a}^{2}\right) \\
& =\frac{2 \delta_{a}^{2} \delta_{b}^{2}}{\gamma_{2} \omega^{2}}\left(3 \delta_{a}^{2}-\omega^{2}\right) \tag{A5}
\end{align*}
$$

and

$$
\begin{equation*}
B=\frac{\delta_{a}{ }^{2}}{\gamma_{2}}\left[\left(\gamma_{2}+\frac{\delta_{a}{ }^{2} r_{2}}{\omega^{2}}\right)^{2}+\left(\omega-\frac{\delta_{a}{ }^{2}}{\omega}\right)^{2}\right] . \tag{A6}
\end{equation*}
$$

In these expressions a number of higher order terms and terms that are negligible because of the assuned magnitude of δ_{a} and ω have been omitted.

To implify Bqs. (A5) and (A6) we make use of the fact that $\left|\delta_{a}\right|=\omega$. This leads to

$$
\begin{equation*}
A \equiv 4 \delta_{a}^{2} \delta_{b}^{2} / \gamma_{2} \tag{A7}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{\delta_{a}^{2}}{\gamma_{2}}\left[\frac{\left(\omega-\delta_{a}\right)^{2}\left(\omega+\delta_{a}\right)^{2}}{\omega^{2}}+4 \gamma_{2}^{2}\right] \text {. } \tag{A8}
\end{equation*}
$$

Finally, the desired third order contribution to v_{0} is

$$
\begin{equation*}
v_{0}^{(3)}=\frac{x_{n}^{0}}{2 a_{0}} \frac{A}{B}=\frac{n^{0} \gamma_{2} x \delta_{b}^{2}}{2 \delta_{a}^{2}}\left[\frac{\left(\omega-\delta_{a}\right)^{2}\left(\omega+\delta_{a}\right)^{2}}{4 \omega^{2}}+\gamma_{2}^{2}\right]^{-1} \tag{A9}
\end{equation*}
$$

This result is in essential agreement with that derived previously by another method(10). The conclusion is that infrared microwave two-photon absorption in symetric top molecules without inversion can be viewed as the result of a high-frequency Stark effect created by the microwave electric field. This Stark effect causes absorption sidebands in the molecules such that a resonance occurs when the laser frequency coincides with one of these sidebands. The denominator in Bq. (A9) shows resonances when $\delta_{a}=\omega_{l}$ $\omega_{b a}= \pm \omega$, or when $\omega_{l}=\omega_{b a} \pm \omega$.

RBFERBNCES

1. E. Arimondo, P. Glorieux, and T. Oka, Phys. Rev. Al7, 1375-1393 (1978).
2. S. H. Autler and C. H. Townes, Phys. Rev. 78, 340 (1960).
3. J. Brossel and F. Bitter, Phys. Rev. 86, 308-316 (1952).
4. R. F. Curl, Jr. and T. Oka, J. Chem. Phys. 58, 4908-4911 (1973).
5. F. Herlemont, M. Lyszyk, J. Lemaire, and J. Demaison, Z. Naturforsch. 36a, 944-947 (1981).
6. S. M. Freund, G. Duxbury, M. Romheld, J. I. Tiedje, and T. Oka, J. Mol. Spectrosc. 52, 38-57 (1974).
7. J. C. McGurk, T. G. Schmalz, and W. H. Flygare, Adv. Chen. Phys. 25, 1-68 (1974).
8. S. H. Autler and C. H. Townes, Phys. Rev. 100, 703-722 (1955).
9. A. Jacques and R. H. Schwendeman, "An infrared zero frequency double-resonance effect in CH3 ${ }^{\prime \prime}$, Symposium on Molecular Spectroscopy, 37th, Columbus, Ohio, 1982.
10. T. Oka and T. Shimizu, Phys. Rev. A2, 587-593 (1970).
11. T. Oka, in "Proceedinge of the Summer School of Theoretical Physics", Les Houches, France, 1975.
12. S. M. Preund, M. Romheld, and T. Oka, Phys. Rev. Lett. 35, 1497-1500 (1975).
13. T. Amano and R. H. Schwendeman, J. Chem. Phys. 68, 530-537 (1978).
14. C. Freed and A. Javan, Appl. Phys. Lett. 17, 53-56 (1970).
15. J. W. Russel, C. D. Needham, and J. Overend, J. Chem. Phys. 45, 3383-3398 (1966).
16. C. D. Barnett and D. F. Bggers, Jr. (private commancation, cited in Ref.l5)
17. S. Saeki, M. Mizuno, and S. Kondo, Spectrochim. Acta Part A 32, 403-413 (1976).
18. J. Aldous and I. M. Mille, Spectrochim. Acta 18, 1079-1091 (1962).
19. C. H. Townes and A. L. Schawlow, "Microwave Spectroscopy", McGraw-Hill, New York, NY, 1955.
20. G. Magerl, W. Schupita, B. Bonek, and W. Kreiner, J. Mol. Spectrosc. 83, 431-439 (1980).

INPRARED-MICROWAVE SIDEBAND LAEER 8PECTROSCOPY OF

TEE v_{3} AND $2 v_{3} \cdot v_{3}$ BANDS OF ${ }^{13} \mathrm{CH}_{3}$ TAND ${ }^{12} \mathrm{CH}_{3}$ F

CHAPTBR I

INTRODUCTION

This thesis is concerned with studies of the v_{3} and $2 v_{3}-v_{3}$ bands of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ and ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ by infrared microwave sideband laser spectroscopy. Methyl fluoride is a typical prolate symetric top molecule with $\mathbf{C}_{3 v}$ symmetry. This molecule possesses six fundamental vibrational modes, three totally gmetric (A_{1}) and three doubly degenerate (B), all infrared active. The v_{3} mode is of totally symmetric species A_{1}, associated mainly with the $C-F$ etretching vibration.

Since the ν_{3} band of $\mathrm{CH}_{3} \mathrm{~F}$ is in coincidence with 10μ CO_{2} laser lines and its rotational fine structure is a good example for a symetric top molecule, it has been the subject of many publications and has played a key role in the development of molecular microwave and infrared spectroscopy(1,2).

The measurements of pure rotational transitions in ${ }^{12} \mathrm{CH}_{3}$ F were done by Gillian et al.(3), Johnson et al.(4), Thomas et al.(5), Winton and Gordy(6), Sullivan and Frenkel(7), Tanaka and Hirota(8), and Hirota et al.(9) by means of microwave spectroscopy. The most precise measurements were obtained by a microwave Lamb-dip method(6), and high J transitions in the ground state were observed by Sullivan and Frenkel(7). Tanaka and Hirota(8)
and Hirota et al.(9) measured rotational transitions in excited vibrational states.

The infrared spectrum of $\mathrm{CH}_{3} \mathrm{~F}$ was first reported by Bennett and Meyer(10). Yates and Nielson(11) examined all the fundamental bands with moderate resolving power, and Anderson et al.(12) analyzed all of the perpendicular fundamental bands with relatively low resolution. A detailed high resolution study of the v_{3} band of $\mathrm{CH}_{3} \mathrm{~F}$ with a conventional infrared spectrometer has been carried out by Smith and Mille(13).

With the advent of lasers, methyl fluoride has been used for various laser spectroscopic experiments because of its near coincidences with laser lines and large intensity of absorption. Laser spectroscopy using these coincidences has been reported by Luntz and Brewer(14), Weitz et al.(15) and Freund et al. (16) who used 10 上 CO_{2} lasers for a radiation source. Chang and Bridges(17) and Chang and McGee(18) observed far infrared maser action between the rotational levels in the v_{3} state. Nonlinear spectroscopy of $\mathrm{CH}_{3} \mathrm{~F}$ and measurement of the dipole moment in the ground and excited states have been reported by Brewer (19,20). Additional nonlinear experiments include infrared-infrared two-photon spectroscopy by Bischel et al.(21) and the use of an infrared-aubillimeter wave double resonance technique by Blumberg et al.(22).

More recently, further high precision spectroscopy of
${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ has been reported. This includes application of tunable CO_{2} laser sideband radiation(23), diode laser measurement ($24,25,26$), IR-RF two-photon Lamb-dip technique $(27,28)$, and Lamb-dip spectroscopy (29). In addition, methyl fluoride has been of fundamental importance in the development of optically pumped far-infrared lasers (17, 18, 30,31).

The analysis of the $2 \boldsymbol{v}_{3}$ band was first reported by Pickworth and Thompson(32) without resolving the E rotational structure. Smith and Mills(13) performed a study of $2 v_{3}$ - v_{3} transitions by a conventional grating spectrometer. Recently, a very accurate study of the overtone band $2 v_{3}$ by using an interferometric spectrometer was done by Betrencourt(33), and Freund et al.(16) observed several $2 v_{3}$ - v_{3} transitions by means of laser Stark method. But the number of transitions was insufficient to determine the higher order centrifugal distortion constanta(16).

The natural abundance of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ is composed of 1.1% of $\mathrm{CH}_{3} \mathrm{~F}$ o that its spectroscopic interest should be emphasized. But relatively little work was done by infrared laser spectroscopy compared to its isotope ${ }^{12} \mathrm{CH}_{3}$ F. Pure rotational transitions in the ground state and in the $v_{3}=1$ excited state were observed by Gillian et al.(3) and Tanaka and Hirota(8), by means of microwave spectroscopy. Recently, Matterson and Delucia reported a number of frequencies measured in the millimeter wave region(35). The
conventional grating infrared spectrum of the v_{3} band of ${ }^{13} \mathrm{CH}_{3}$ f was first reported by Smith and Mills(13) and Duncan et al. (34) measured the overtone $2 v_{3}$ band. The first study of the $2 v_{3}$ overtone band with resolved K structure was made by Betrencourt(33) from an FT-IR spectrum. The actual application of laser spectroscopy to the ${ }^{13} \mathrm{CH}_{3}$ F molecule was carried out by Freund et al. (16) by means of laser Stark spectroscopy, by Shoja-Chaghervand and Schwendeman(29) by means of IR-MW two photon spectroscopy, and by Romeld(27) and Freund et al.(28) by IR-RF two photon Lamb-dip spectroscopy. Only quartic centrifugal distortion constants could be obtained because of the relatively limited data (44 transitions, $J \leq 8)(29)$.

There has been no previous measurement of the $2 \boldsymbol{v}_{3}$ * \boldsymbol{v}_{3} hot band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ with or without E structure resolution.

Centrifugal distortion constants for the ground and $\mathbf{v}_{\mathbf{3}}$ $=1$ and 2 etates of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ have been reported by a number of authors. Gordy and his group published several progressively improved sets of rotational constants in the ground state($4,5,36,37,38$). Winton and Gordy(6) reported sextic centrifugal distortion constants derived from their precise Lamb-dip measurements. Graner(39) has determined the ground state rotational constants, including A_{0} and $D_{K}^{(0)}$, by analysis of ground state combination differences in FT-IR spectra. Betrencourt(33) obtained molecular parameters for the second excited state from an analyis of
the $2 v_{3}$ overtone band of ${ }^{12} \mathrm{CH}_{3} F$ and ${ }^{13} \mathrm{CH}_{3} F$. And Freund et al. (16) also analyzed the rotational constants of $v_{3}=2$ for ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ from the observation of small number of transitions.

Recently, Arimondo and Inguscio(40), Magerl et al.(23), Herlemont et al.(24), Shoja-Chaghervand and Schwendeman(29), and Arimondo et al.(26) all obtained rotational constants for ${ }^{12} \mathrm{CH}_{3} F$ from their observations and compared then to previously reported values. Additional data needed to analyze the $v_{3}-v_{6}$ Coriolis interaction have been given by DiLauro and Mills(41) and by Hirota(42).

For ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$, Freund et al. (16), Shoja-Chaghervand and Schwendeman(29), Romheld(27), and Matterson and Delucia(35) all reported molecular parameters from their observations, just up to quartic centrifugal distortion constants.

In this work, the v_{3} and $2 v_{3}$ - v_{3} transitions of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ and ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ were measured by a CO_{2} laser-MW sideband laser spectroneter, in which the spectra were obtained by tuning the laser to more than $60 \mathrm{CO}_{2}$ laser lines and sweeping a microwave source from 8.2-12.2 and 12.4-18.0 GHz on each CO_{2} laser line. From the analysis of these spectra, the molecular parameters including quartic, sextic, and octic centrifugal distortion constants were determined and will be given.

The next chapter describes the theory used for vibration-rotation interaction (Coriolis interaction), centrifugal distortion, and absorption intensity. Chapter

III gives the theory and its application to the generation of an infrared-microwave sideband laser system. In Chapter IV, the experimental diagram and method for this work will be umarized. Finally the experimental results and their quantum number assignment will be presented with a detailed discussion in Chapter V.

Introduction

The study of molecular spectra is the most useful of all methods for experimental investigation of molecular structure and motion in free molecules. It affords information on the possible molecular energy levels as well as on the dimensions of molecules. Spectra arise from the enission or absorption of definite quanta of radiation when transitions occur between certain energy levels.

In the theory of molecular spectroscopy, it is customary, according to the Born-Oppenheimer approximation, to consider that the energy of a molecule can be expressed simply as the un of electronic, vibrational, and rotational contributions;

$$
\begin{equation*}
B=B_{\text {elec }}+B_{v i b}+B_{r o t} \tag{1}
\end{equation*}
$$

where $B_{e l e c}$ is electronic energy, $B_{v i b}$ is vibrational energy, and $B_{r o t}$ is rotational energy.

The observed spectra correspond to transitions between two energy levels according to the Bohr frequency condition,

$$
\begin{equation*}
h \nu=B^{\prime}-B^{\prime \prime}, \tag{2}
\end{equation*}
$$

where the and " refer to the upper and lower states, respectively, and v is the frequency.

The transition probabilities are determined by the eigenfunctions of the Schrodinger equation by way of the matrix elements of the dipole moment such as

$$
\begin{equation*}
\int \psi^{\prime} \boldsymbol{\mu} \psi^{\prime \prime} d \boldsymbol{d} \tag{3}
\end{equation*}
$$

Rotational Bnergy - General Theory

For a body rotating about a fixed axis, the moment of inertia about that axis is given by

$$
\begin{equation*}
I=\sum_{i} m_{i} r_{i}^{2} \tag{4}
\end{equation*}
$$

where r_{i} and m_{i} represent the distance and the mass of the i-th particle from the axis, respectively. If a molecule is considered as a rigid body of point masses, its structure can be described by a tensor whose diagonal elements are the moments of inertia about Cartesian axes. For a Cartesian coordinate systen fixed at the center of mass (COM), the diagonal elements of the inertia tensor are

$$
\begin{equation*}
I_{x x}=\sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \tag{5}
\end{equation*}
$$

where $I_{y y}$ and $I_{z z}$ can be formed by a permutation of x, y, and 2 ; the n_{i} are atomic masses whose coordinates are x_{i}, y_{i}, and z_{i}. The off-diagonal elements, called producte of inertia, are given by

$$
\begin{equation*}
I_{x y}=-\sum_{i} \mathbf{m}_{i} x_{i} y_{i} \tag{6}
\end{equation*}
$$

The inertia tensor can be simplified because it is symetric leaving only 6 independent tensor elements.

The orientation of the coordinate system used to define the inertia systen will determine the values of the monents defined above. There is always at least one proper orientation of the coordinate system which forces the off-diagonal elements of the tensor to vanish. The diagonal elements become the principal monents of inertia, and the axis system is termed the principal axis system. As the Cartesian systen is rotated into the principal axis systen, the moments of inertia approach either maximum or minimum values. The three principal moments of inertia are designated as I_{a}, I_{b}, and I_{c} such that $I_{a} \leq I_{b} \leq I_{c}$.

For any general orientation of the molecule-fixed axes with origin at the COM, the principal monents of inertia can be obtained by diagonalizing the initial tensor. This is
done by solving the determinantal equation, as follows:

$$
\left|\begin{array}{ccc}
I_{x x}-\lambda & I_{x y} & I_{x z} \tag{7}\\
I_{y x} & I_{y y}-\lambda & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}-\lambda
\end{array}\right|=0
$$

where the roots λ are the principal moments of inertia. Since the trace, which is the sum of the diagonal elements is a constant for the diagonalization procedure,

$$
\begin{equation*}
I_{x x}+I_{y y}+I_{z z}=I_{a}+I_{b}+I_{c} \tag{8}
\end{equation*}
$$

When the principal axis systen of a rigid rotor is employed, the energy can be expressed in a simple form in terms of the angular momenta P_{i} about the three principal axes. Determination of the energy levels in a quantum nechanical systen follows from

$$
\begin{equation*}
\mathrm{H} \psi=\mathrm{B} \psi \tag{9}
\end{equation*}
$$

where H is the Hamiltonian operator for the sytem, ψ is an eigenfunction, and B is an eigenvalue. Since the Hamiltonian operator and eigenfunctions are independent of time, the B values are constants which are the only stationary state energy values of the system. The Hamiltonian is given by

$$
\begin{equation*}
H=\frac{P_{a}^{2}}{2 I_{a}}+\frac{P_{b}^{2}}{2 I_{b}}+\frac{P_{c}^{2}}{2 I_{c}} \tag{10}
\end{equation*}
$$

which is commonly written as follows:

$$
\begin{equation*}
B=\frac{4 \pi}{h}\left(A P_{a}^{2}+B P_{b}^{2}+C P_{c}^{2}\right) \tag{11}
\end{equation*}
$$

where A, B, and C are rotational constants which are defined in frequency units as

$$
\begin{equation*}
A=\frac{h}{8{ }^{2}{ }^{2} I_{a}}, \quad B=\frac{h}{8{ }^{2} I_{b}}, \quad C=\frac{h}{8{ }^{2} I_{c}} . \tag{12}
\end{equation*}
$$

Since

$$
\begin{equation*}
I_{a} \leq I_{b} \leq I_{c}, \quad A \geq B \geq C \tag{13}
\end{equation*}
$$

The operator for momentum about the principal axes is related to the total angular momentum of the systen P by

$$
\begin{equation*}
P^{2}=P_{a}^{2}+P_{b}^{2}+P_{c}^{2}=P_{x}^{2}+P_{y}^{2}+P_{z}^{2} \tag{14}
\end{equation*}
$$

The axes x, y, z may be identified with the principal axes a, b, c in any of 6 possible ways. For any identification, P_{z} is conventionally chosen as the component of angular
momentum for which there existe eimultaneous eigenstates with $\mathrm{P}^{\mathbf{2}}$ as shown in Fig. 1. The matrix elements are

$$
\begin{equation*}
\langle J k \boxminus| P^{2}|J k \boxminus\rangle=J(J+1) \hbar^{2} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle J k \cong| P_{z}|J k @\rangle=k \hbar . \tag{16}
\end{equation*}
$$

The energy of a risid rotor can be obtained by diagonalizing the energy matrix whoee nonvanishing elemente are

$$
\begin{equation*}
\langle J k m| R|J k m\rangle=\frac{\hbar^{2}}{4}\left\{\left(\frac{1}{I_{x}}+\frac{1}{I_{y}}\right)\left[J(J+1)-k^{2}\right]+\frac{2 k^{2}}{I_{z}}\right\} \tag{17}
\end{equation*}
$$

$\langle J k=| H|J k \pm 2 m\rangle=\frac{h^{2}}{8}\left\{\left(\frac{1}{I_{y}}-\frac{1}{I_{x}}\right)[(J \mp k)(J \mp k-1)\right.$

$$
\begin{equation*}
\left.(J \pm k+1)(J \pm k+2)]^{1 / 2}\right\} . \tag{18}
\end{equation*}
$$

Rigid Syinetric Top Moleculen

When a nonlinear molecule possesses two equal moments of inertia, it is classified as a smmetric top molecule. There are two possible identifications for the two equal moments. If I_{a} is equal to I_{b}, I_{c} is the unique moment and is by definition greater than I_{a} or I_{b}. The nolecule is then designated as an oblate symetric rotor. If I_{b} is equal to I_{c}, the molecule ia called as a prolate symetric

Figure l. Clasical motion of ammetric top. This is a combined rotation around the molecular axis associated with P_{z} and a precession of this axis around the total angular momentum P. The molecule represented is $\mathrm{CH}_{3} \mathrm{~F}$.
top molecule.
For a prolate rotor, the matrix elements of the Hamiltonian are

$$
\begin{align*}
& \langle J k m| H|J k m\rangle=\frac{\hbar^{2}}{2 I_{b}} J(J+1)+\frac{\hbar^{2}}{2}\left(\frac{1}{I_{a}}-\frac{1}{I_{b}}\right) k^{2} \tag{19}\\
& \langle J k m| H|J k \pm 2 m\rangle=0 . \tag{20}
\end{align*}
$$

The energy matrix is diagonal in k, since k is a good quantum number for a true symetric rotor. In terms of the rotational constants, the energy for a prolate rotor is

$$
\begin{equation*}
B=h B J(J+1)+h(A-B) k^{2} . \tag{21}
\end{equation*}
$$

For an oblate top, the energy is

$$
\begin{equation*}
B=h B J(J+1)+h(C-B) k^{2} . \tag{22}
\end{equation*}
$$

By convention A - B 20 and C - B \leq. The energy levels for a symetric top are shown in Fig. 2. Because k is the projection of J on the figure axis, $J 2|k|$. For a given value of J, however, k may have a number of values, as followe:

$$
\begin{equation*}
k=\mathrm{J}, \mathrm{~J}-1, \ldots \quad,-\mathrm{J} \tag{23}
\end{equation*}
$$

a total of $2 \mathrm{~J}+1$ different values. Since the energy is

$$
\begin{aligned}
& -10 \\
& \text {-10 } \\
& -10^{-10^{-10^{-10}}-9}-8 \\
& -9-9^{-9}-8-7 \\
& \left.\right|^{-8-8^{-8}-7-6} \begin{array}{l}
-7-7^{-7}-6-5 \\
-6-6{ }^{-6}-5^{-4}
\end{array} \\
& -8-8-9_{-9}^{-10} \\
& J^{-6-6-5-5} \\
& \begin{array}{l}
-6-6-6-7-8 \\
-5-5-6-6-7 \\
-4-4-5-6-5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 01 \\
& K=0 \quad 1 \quad 2 \quad 3 \quad 4 \\
& \text { (A) }
\end{aligned}
$$

Figure 2. Bnergy levels of typical symetric top molecules (A) prolate, (B) oblate symetric top.
independent of the sign of k, levels with the same absolute magnitude of k coincide, so that all levels for which k is greater than zero are doubly degenerate, and there are only J+l different energy values for each posible value of J. For each particular k, there is an infinite series of levels with different values of J.

Symetric Top Wave Functions

In terme of the Bulerian angles θ, ϕ, and x, the Schrodinger equation for a prolate symetric top is

$$
\begin{gather*}
\frac{1}{\sin \theta} \frac{a}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{a^{2} \psi}{\partial \phi^{2}}+\left(\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{A}{B}\right) \frac{\partial^{2} \psi}{\partial x^{2}} \\
-\frac{2 \cos \theta}{\sin ^{2} \theta} \frac{a^{2} \psi}{a x a \phi}+\frac{B}{h B} \psi=0 . \tag{24}
\end{gather*}
$$

The variables in Bq. (24) may be separated, and the solutions written in the form

$$
\begin{equation*}
\Psi_{J k m}=\theta(\theta) e^{i m \phi} e^{i k x} . \tag{25}
\end{equation*}
$$

Because and x only appear in the differential terms, they are known as cyclic coordinates and always appear in the wave function as exponential terms. The quantum number
and k must be integers for ψ to be single-valued. The θ equation has the form

$$
\begin{gather*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta(\theta)}{d \theta}\right)-\left[\frac{n^{2}}{\sin ^{2} \theta}+\left(\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{A}{B}\right) k^{2}\right. \\
\left.-\frac{2 \cos \theta}{\sin ^{2} \theta} k=-\frac{B}{h B}\right] \theta(\theta)=0 . \tag{26}
\end{gather*}
$$

By introducing the variable

$$
\begin{equation*}
x=\frac{1}{2}(1-\cos \theta) \tag{27}
\end{equation*}
$$

and letting

$$
\begin{equation*}
\theta(\theta)=x^{|k-m| / 2}(1-x)^{|k+2| / 2} F(x) \text {, } \tag{28}
\end{equation*}
$$

the equation for F is found to be

$$
\begin{align*}
& x(1-x) \frac{d^{2} F}{d x^{2}}+(\alpha-\theta x) \frac{d F}{d x}+Y F=0 \tag{29}\\
& \alpha=|k-m|+1, \tag{30}\\
& B=|k+n|+|k-n|+2, \tag{31}
\end{align*}
$$

and

$$
\begin{gather*}
r=\frac{W}{h B}-\frac{c k^{2}}{B}+k^{2}-\left(\frac{1}{2}|k+m|+|k-m|\right) \\
\left(\frac{1}{2}|k+n|+\frac{1}{2}|k-m|+1\right) \tag{32}
\end{gather*}
$$

The equation for F can be solved by using the polynomial

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty} a_{n} x_{n} \tag{33}
\end{equation*}
$$

The resulting recursion relation is

$$
\begin{equation*}
a_{n+1}=\frac{n(n-1)+\beta n-\gamma}{(n+1)(n+\alpha)} a_{n} . \tag{34}
\end{equation*}
$$

For ψ to be a satisfactory normalizable wave function, the series must terminate and become just a polynomial, which requires that the energy W is

$$
\begin{equation*}
W=h B J(J+l)+h(A-B) k^{2} \tag{35}
\end{equation*}
$$

with

$$
\begin{equation*}
J=n_{\max }+\frac{1}{2}|k+n|+\frac{1}{2}|k-n| \tag{36}
\end{equation*}
$$

$n_{\text {max }}$ is the largest value for which a_{n} does not vanish. From Bq. (36), J must be positive integer which is equal to or larger than $|k|$ or $|=|, s o t h a t$

$$
\begin{align*}
\mathrm{J} & =0,1,2, \ldots \\
\mathrm{k} & =0, \pm 1, \pm 2, \ldots, \pm \mathrm{J} \tag{37}\\
& =0, \pm 1, \pm 2, \ldots, \pm \mathrm{J}
\end{align*}
$$

The symetric top wave functions can be written in terme of the hypergeometric series and a normalization factor,

$$
\begin{gather*}
\Psi_{J k m}=N_{J k m} x^{|k-m| / 2}(1-x)^{|k+m| / 2} e^{i m \phi} e^{i k x} \\
F\left(-J+\frac{\beta}{2}-1 ; J+\frac{\theta}{2} ; 1-|k-I| ; x\right) \tag{38}
\end{gather*}
$$

where

$$
\begin{align*}
N_{J k m}= & {\left[\frac{(2 J+1)(J+|k+m| / 2+|k-m| / 2)!}{\left.8_{n}^{2}(J-|k+m| / 2)-|k-m| / 2\right)!}\right.} \\
& \left.\frac{(J-|k+\square| / 2+|k-m| / 2)!}{(|k-m|!)^{2}(J+|k+n| / 2-|k-m| / 2)!}\right] \tag{39}
\end{align*}
$$

Nonrifid Symetric Top Molecules

No real molecule is a rigid rotor. The molecules in a sample cell which are subjected to electromagnetic radiation are vibrating as well as colliding with other molecules and the sample cell walls. Thus the molecular energy levels cannot be predicted exactly by rigid rotor theory but are influenced by perturbations such as those resulting from vibration-rotation interactions (Coriolis interaction) and centrifugal distortion.

The Coriolis force is a vibration-rotation.
interaction, and vanishes when rotation and vibration are completely separated. If $\overrightarrow{\mathbf{v}}$ is the linear velocity of the molecule relative to the molecule-fixed axis system and $\vec{\omega}$ is

Abstract

the angular velocity of rotation of the molecule-fixed system with respect to a space-fixed axis system, the Coriolis force is defined as

$$
\begin{equation*}
\vec{F}_{\xi}=2 \overrightarrow{\mathrm{v}} \times \vec{\omega} . \tag{40}
\end{equation*}
$$

Under the proper conditions, the Coriolis force can produce large changes in the rigid rotor energy levels. These deviations may occur as an energy level splitting resulting from the removal of degeneracy or as a shift of energy levels due to a near degeneracy.

In order to visualize the influence of the Coriolis force more clearly, let us consider classically its effect in a linear symetric X_{2} molecule. Consider the vibration v_{3} in the rotating molecule. The displacement vectors (solid arrows in Fig. 3) also give the relative velocities at the instant when the nuclei pass through the equilibriun position. The Coriolis force on each nucleus is proportional to this velocity but perpendicular to it, and, for a counterclockwise direction of rotation, always toward the right when looking in the direction of motion.

From Fig. 3 it is seen that during the vibration v_{3}, these forces tend to excite the perpendicular vibration \boldsymbol{v}_{2}, but with the frequency of v_{3}. Conversely, when the vibration ν_{2} is excited in the rotating molecule, the Coriolis forces are as given in Fig. 3 and tend to excite

Figure 3. Normal vibrations of a linear $X Y_{2}$ molecule and the effects of Coriolis coupling. v_{2} is a degenerate bending vibration and the arrows attached to the atoms represent one component of the vibration. The other component (not shown) results from identical motions perpendicular to the plane of the paper.
the parallel vibration v_{3} but with the frequency v_{2} • If the frequencies of v_{2} and v_{3} were nearly the same accidently, a strong excitation of one of the two vibrations would take place if the other were first excited, in consequence of this Coriolis coupling. However, this excitation will be very weak when v_{2} and v_{3} have widely different frequencies. No coupling takes place between v_{1} and v_{3} or between the two components of \boldsymbol{v}_{2}. This results from the effective absence of rotation about the figure axis in a linear molecule. This coupling is called the secondorder Coriolis interaction. These two components of the degenerate bending mode can couple in a symetric top molecule where rotation about the figure axis is allowed.
Figure 4 illustrates the effects of a Coriolis force on the degenerate bending mode in a smmetric top molecule. When one of the degenerate components is excited, rotation about the figure axis produces vibrational components which excite the other component. Since the two frequencies are identical, the interaction may be very strong. This is called the first-order interaction because it does not vanish in the absence of rotation about the figure axis $(k=0)$. Buen when rotation ceases, a vibrational angular momentur coupling the two degenerate components is present. However, the degeneracy is only lifted by the second-order terms in the vibration-rotation Hamiltonian when rotation is present (k 0) because the two modes of vibration still

(A)

(B)

(C)

Figure 4. Coriolis coupling of the desenerate bending vibrations in a $X Y Z_{3}$ symetric top. (A) and (B) illuetrate two componente of the degenerate bending mode. (C) shows the coupling effect of the Coriolis force on the (A) mode as it tends to induce the (B) mode. In all three illustrations, the fisure axie is perpendicular to the plane of the paper and only off-axis atome are shown.
have the ame energy when $k=0$. For one level $k=\ell$ and for the other level $k=-\ell$, the relative positions of these two levels will depend on the afg of the Coriolis coupling constant. For $\mathbf{C}_{3 v}$ molecules, the first excited state of a degenerate bending vibration must belong to the degenerate irreducible representation B, and the rotational wave functions belong to the representations of the subgroup \mathbf{C}_{3}. The important case resulta when $k= \pm 1, \ell= \pm 1$. The rotational wave functions for $k= \pm 1$ belong to E with the resulting symetry of $\psi_{\mathbf{v}} \psi_{r}$ coming from the product

$$
\begin{equation*}
B \times B=2 A+B \tag{41}
\end{equation*}
$$

Of the four levels produced by $k= \pm 1, \ell= \pm 1$ permutations, two will be nondegenerate and two form degenerate pair whose degeneracy cannot be lifted by any internal permutations of C_{3} symmetry.

For $k=1$ the value of $|k-l|$ may be either 0 or 2.
From the symetry consideration of the group $C_{3 v}$, the levels of A symetry for a given k mut have a value of $|k-\ell|=3 n$; if $|k-\ell|$ is not a multiple of three, the level belonge to the representation B. In this case the levels with $k=\ell$ have A symetry and can be split by ℓ-type doubling.

With interaction between an A_{1} epecies normal
coordinate Q_{r} and an B apecies pair of coordinates ($Q_{B_{1}}, Q_{\varepsilon_{2}}$) due to rotation about the x and y axes, each pair of
degenerate gmetry coordinates or normal coordinates satisfy the following equations:

$$
\begin{align*}
& \hat{c}_{3}\left(Q_{s_{1}}+i Q_{s 2}\right)=e^{-i 2 \pi / 3}\left(Q_{s_{1}}+i Q_{s 2}\right) \hat{c}_{3}, \tag{42}\\
& \hat{\sigma}_{v}(x z)\left(Q_{s_{1}}+i Q_{s_{2}}\right)=\left(Q_{s_{1}}-i Q_{s_{2}}\right) \hat{\sigma}_{v}(x z) . \tag{43}
\end{align*}
$$

Bquation(42) defines the relative sense of each pair of degenerate coordinates and Bq. (43) fixes their coordination in the (x, y) plane. The $A_{1}-B$ interaction is characterized by a single zeta constant for the above coordinate conventions

$$
\begin{equation*}
s_{r, s_{1}}^{y}=-s_{r, s_{2}}^{x}=s_{r s}^{y} \tag{44a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{r, s_{1}}^{x}=+s_{r, s_{2}}^{y}=0 \tag{44b}
\end{equation*}
$$

The interaction between the pair of coordinates $Q_{s 1}$ and Q_{2} due to rotation about the z axis is characterized by the constant

$$
\begin{equation*}
\zeta_{s_{1, E 2}}^{2}=s_{s}^{2} . \tag{45}
\end{equation*}
$$

If the normal coordinate vectors are known, the zeta constante may be conveniently calculated from matrix
elements defined according to Ref. 47

$$
\begin{equation*}
\zeta^{\alpha}=L^{-1} C^{\alpha}\left(L^{-1}\right)^{\prime} \tag{46}
\end{equation*}
$$

where $\alpha=x, y$ or z.
Considering the matrix representing H in the vibration-rotation basis functions, denoted by $\mid v_{r}, v_{s}^{l e}, J$, k, the important selection rules for interaction between the first two excited vibrational levels in Q_{r} (A_{1} epecies) and $Q_{s_{1}}, Q_{e_{2}}\left(B\right.$ species) are $\Delta k=\Delta l_{s}= \pm l ;$ translated into terms of $K=|k|$ these become: $B(+\ell), k+1$ interacts with A_{1}, k which interacts with $B(-\ell), k-1$. The interaction is illustrated in Fig. 5. Thus if the interaction is large, k and ℓ_{s} are not good quantum numbers; the true rovibrational states are some mixture of the basis functions which cannot be characterized by particular values of k and $l_{\text {. }}$. For each value of J the Hamiltonian matrix factorizes into a numer of (3×3) blocks, according to the scheme of Fig. 6, each block being characterized by a particular value of (k-l$\left.\ell_{s}\right)$, so that ($k-\ell_{g}$) remains a good quantur number. In addition to the (3x3) blocke there will be two (2x2) blocke, for which $\left(k-\ell_{s}\right)= \pm J$, and two (1×1) blocks (unperturbed states) for which $\left(k-l_{s}\right)= \pm(J+1)$. A typical (3x3) block of the Haniltonian has the form

Pigure 5. Allowed transitions and interactions for an A_{1} and an B fundamental of a $C_{3 v}$ molecule.
\(\left.\begin{array}{r}\begin{array}{r}Vibrational

quantum

numbers\end{array}\end{array}\right\}\)| E | A_{1} | E |
| :---: | :---: | :---: |
| $V_{S}=1$ | $V_{r}=1$ | $V_{S}=1$ |
| $l_{S}=+1$ | $l_{S}=0$ | $I_{S}=-1$ |

Figure 6. Diagranactric representation of interaction between an A_{1} and an E vibrational state for J = 3. Bach dot represents a basis function characterised by particular values of k and ℓ_{s}; the lines represent Coriolis interactions, connecting states of the same ($k-\ell_{\mathrm{g}}$). Except for the extreme values of ($k-\ell_{0}$) the secular equation factors into (3×3) blocks.

$$
\begin{aligned}
& \left\langle v_{r}, v_{s}^{l s}, J, E\right\rangle=
\end{aligned}
$$

where

$$
\begin{align*}
& F^{\prime}(J, k)=B^{\prime} J(J+1)+\left(A^{\prime}-B^{\prime}\right) k^{2} \tag{48}\\
& \Omega_{r s}=\frac{1}{2}\left[\left(\nu_{r} / \nu_{s}\right)^{1 / 2}+\left(\nu_{s} / \nu_{r}\right)^{1 / 2}\right] \tag{49}
\end{align*}
$$

and

$$
\begin{equation*}
[J, k]^{1 / 2}=[J(J+1)-k(k+1)]^{1 / 2} . \tag{50}
\end{equation*}
$$

The off-diagonal elements in Bq. (47) arise from the terme $-\left(2 B / \hbar^{2}\right)\left(P_{x} J_{x}+P_{y} J_{y}\right)$ in the Hamiltonian. They are obtained by expreseing the vibrational angular momenta in terme of the normal coordinates.

For the CH_{3} Folecule, the Coriolis interaction between the $v_{3}(J, K)$ levels and the $v_{6}(J, R-1, \ell=-1)$ levels is large enough to produce a deviation from the normal symetric top energy. At the level of approximation of
second-order perturbation, this interaction energy is incorporated into B_{3}, the rotational constant of the v_{3} state. The deviation from the second-order term is given by the fourth-order term(48), as follows:

$$
\begin{equation*}
\delta B=\frac{\left[\left\langle v_{3}, J, K, 0\right| H^{\prime}\left|v_{6}, J, K-1,-1\right\rangle\right]^{4}}{\left[v_{6}(J, K-1,-1)-v_{3}(J, K)\right]^{3}} \tag{51}
\end{equation*}
$$

where

$$
\begin{gather*}
\left\langle\nu_{3}, J, R, 0\right| H^{\prime}\left|v_{6}, J, R-1,-1\right\rangle=i B \leq{ }_{36}^{(\mathrm{b})}[(\mathrm{J}+\mathrm{K})(\mathrm{J}-\mathrm{K}+1)]^{1 / 2} \\
\left.\left.\left[\nu_{3} / \nu_{6}\right)^{1 / 2}+\left(\nu_{6} / \nu_{3}\right)^{1 / 2}\right)\right] / 2^{1 / 2} \tag{52}
\end{gather*}
$$

and

$$
\begin{align*}
v_{6}(J, K-1,-1)-v_{3}(J, K)= & v_{6}^{0}-v_{3}^{0}-A(2 K-1+\zeta)(1-\zeta) \\
& +2 B(2 K-1) . \tag{53}
\end{align*}
$$

In modern calculations, the 3×3 matrix in Bq. (47) is diagonalized numerically rather than relying on perturbation theory.

The centrifugal force differs from the Coriolis force in that it does not vanish in the absence of a perturbing vibrational mode. The centrifugal force on ass at a distance r from the axis of rotation is

$$
\begin{equation*}
\vec{F}_{c}=\vec{\omega}^{2} \vec{r} . \tag{54}
\end{equation*}
$$

The effects of centrifugal distortion are generally small for low J values but can reach the order of hundreds of megahertz for transitions between levels of high J.

Rotation in a symetric top is accompanied by centrifugal forces which tend to alter the effective monents of inertia. For rotation about any axis in the molecule, this dynamic effect forces the atom away from the axis of rotation and increases the moment of inertia about that axis. The centrifugal effects enter the energy level expression as higher powers of $J(J+1)$ and K. For a prolate rotor, the first correction due to centrifugal distortion leads to the energy expression

$$
\begin{align*}
B / h=B J(J+1) & +(A-B) K^{2}-D_{J} J^{2}(J+1)^{2} \\
& -D_{J K} J(J+1) K^{2}-D_{K} K^{4} \tag{55}
\end{align*}
$$

Here, $D_{J}, D_{J K}$, and D_{K} are centrifugal distortion constants. Dependence of the rotational and centrifugal
distortion constants on the vibrational state is assumed implicitly. The correction terms for centrifugal distortion are found to depend only on even powers of the angular momentun because the distortion effects do not depend on the direction of rotation about any axis. The frequencies of a
symetric top molecule (selection rules $\Delta J=1, \Delta k=0$)
exhibiting detectable centrifugal distortion effects are

$$
\begin{align*}
h \nu(J+1, k-J, k)=2 B(J+1) & -2 D_{J K}(J+1) K^{2} \\
& -4 D_{J}(J+1)^{3} . \tag{56}
\end{align*}
$$

Since the effective rotational constants tend to decrease due to the centrifugal force, D_{J} is normally positive, but $D_{J K}$ may have either sign. The centrifugal distortion constants can be expressed in terms of the moments of inertia (nolecular structure) and molecular force constants of the molecule. However, a theoretical calculation of these constants is very difficult except for the simplest structures.

Wilson(49) has given explicit formulas for the distertion constants $D_{J}, D_{J K}$, and D_{K} for a symetric top molecule with $C_{3 v}$ symetry in the harmonic oscillator approximation. The formulas are given in terms of the constants,

$$
\begin{align*}
& I_{1}=I_{b}+I_{c}=\sum_{\alpha} m_{\alpha}\left(x_{\alpha}^{2}+y_{\alpha}^{2}+2 z_{\alpha}^{2}\right), \tag{57}\\
& I_{2}=I_{b}-I_{c}=\sum_{\alpha} m_{\alpha}\left(x_{\alpha}^{2}-y_{\alpha}^{2}\right), \tag{58}\\
& I_{3}=\sum_{\alpha} m_{\alpha}\left(x_{\alpha}^{2}+y_{\alpha}^{2}\right), \tag{59}
\end{align*}
$$

$$
\begin{equation*}
I_{4}=2 \sum_{\alpha} m_{\alpha} y_{\alpha_{\alpha}} z^{2} \tag{60}
\end{equation*}
$$

where the z axis corresponds with the axis(figure axis). The formulas are as follows:

$$
\begin{align*}
& D_{j}=\frac{8 n^{4}}{h} B_{e}^{4}\left[\sum_{i} j_{j} \frac{a I_{1}}{\partial S_{i}}\left(F^{-1}\right)_{i j} \frac{a I_{1}}{a S_{j}}+\sum_{i} \sum_{j} \frac{a I_{2}}{\partial S_{i}}\left(F^{-1}\right)_{i j} \frac{a I_{2}}{a S_{j}}\right], \tag{61}\\
& D_{J K}=-2 D_{j}+\frac{32 \pi^{4} A_{e}^{2} B_{e}^{2}}{h}\left[\sum_{j} \frac{a I_{3}}{\partial S_{i}}\left(F^{-1}\right)_{i j} \frac{a I_{3}}{\partial S_{j}}+{ }_{i} \sum_{j} \frac{a I_{4}}{\partial S_{i}}\left(F^{-1}\right)_{i j} \frac{a I_{4}}{\partial S_{j}}\right], \tag{62}\\
& D_{K}=-D_{J}-D_{J K}+\frac{32 \pi^{4} A_{e}^{4}}{h}{ }_{i},{ }_{j} \frac{a I_{3}}{\partial S_{i}}\left(F^{-1}\right)_{i j} \frac{a I_{3}}{\partial S_{j}} . \tag{63}
\end{align*}
$$

In these equations I_{b} and I_{c} are regarded as instantaneous moments of inertia. The S_{i} are internal symetry coordinates, and the $F_{i j}$ are elements of the force constant matrix consistent with the S_{i} and S_{j}. The derivatives of I_{1} and I_{3} are non-zero only for internal symmetry coordinates which have the symetry A_{1} of $C_{3 v}$. Similarly, the derivatives of I_{2} and I_{4} vanish unless the S_{i} have symmetry B.

For large J and K values and/or light molecules, the distortion correction mast be extended to higher order. The present study required centrifugal distortion constants that multiplied the eighth power of the angular monentum quantum
numbers. The energy level expression used was

$$
\begin{align*}
& B(J, K)=B J(J+1)+(A-B) K^{2}-D_{J} J^{2}(J+1)^{2}-D_{J K} J(J+1) K^{2} \\
& \quad-D_{K} R^{4}+H_{J} J^{3}(J+1)^{3}+H_{J K} J^{2}(J+1)^{2} K^{2}+H_{K J} J(J+1) K^{4} \\
& +H_{K} K^{6}+L_{4 J} J^{4}(J+1)^{4}+L_{3 J K} J^{3}(J+1)^{3} K^{2} \\
& \quad+L_{2 J K K} J^{2}(J+1)^{2} K^{4}+L_{J K K K} J(J+1) K^{6}+L_{K} K^{8} \tag{64}
\end{align*}
$$

where $H_{J}, H_{J K}, H_{K J}, H_{K}, L_{4 J}, L_{3 J K}, L_{2 J K K}, L_{J K K K}$, and L_{K} are additional distortion constants.

Intensities of Symetric Top Transitions

The intensity of a vibration-rotation transition for a symmetric top molecule interacting with plane polarizing radiation may be calculated from the basic formula given as follows:

$$
\begin{equation*}
r=\frac{8 \pi^{2} N f\left|\mu_{i j}\right|^{2} v^{2} \Delta v}{3 \operatorname{ckT}\left[\left(v-v_{0}\right)^{2}+(\Delta v)^{2}\right]} \tag{65}
\end{equation*}
$$

Here $N=$ the number of molecules per unit volume in the absorption cell,
$f=$ the fraction of the molecules in the lower of the two states involved in the transition,
$\left|\mu_{i j}\right|^{2}=$ the square of the dipole moment matrix element for the transition, summed over components,
$v=$ the source frequency,
$v_{0}=$ the resonant frequency or, to a good approximation, the center frequency of the absorption line,
$\Delta v=$ the half width of the line at half maximum, or the line-breadth parameter,
c = velocity of light,
$k=B o l t z m a n n$ constant,
and $T=a b s o l u t e$ temperature.
The selection rule for a parallel band, in which the dipole moment matrix element is nonzero only for the component along the molecular axis may be written for a nonplanar symmetric top without inversion, as follows:

$$
\begin{equation*}
\Delta J=0, \pm 1, \quad \Delta k=0 \tag{66}
\end{equation*}
$$

The matrix elements, which are nonzero only for transitions given by the above selection rules, are as follows;

$$
\begin{align*}
& \Delta J=+1, \quad \Delta k=0 ; \quad\left|\mu_{i j}\right|^{2}=\mu^{2} \frac{(J+1)^{2}-k^{2}}{(J+1)(2 J+1)} \tag{67}\\
& \Delta J=0, \quad \Delta k=0 ; \quad\left|\mu_{i j}\right|^{2}=\mu^{2} \frac{k^{2}}{J(J+1)} \tag{68}
\end{align*}
$$

$$
\begin{equation*}
\Delta J=-1, \Delta k=0 ; \quad\left|\mu_{i j}\right|^{2}=\mu^{2} \frac{J^{2}-k^{2}}{J(2 J+1)} . \tag{69}
\end{equation*}
$$

The fraction of the molecules in a particular initial state is the product of the fraction f in the vibrational state of interest and the fraction of these $f_{J K}$ in a particular rotational state. If the statistical weight due to nuclear spin is neglected, the probability of a mocule being in a state (J,K) is proportional to

$$
\begin{equation*}
(2 J+1) e^{-B_{J K} / k T} \tag{70}
\end{equation*}
$$

where $B_{J K}$ is the rotational energy level given by Bq.(64) and $2 \mathrm{~J}+1$ is the statistical weight due to the different orientations of J (different states). The fraction of molecules in this rotational state is

$$
\begin{equation*}
\mathbf{f}_{J K}=\frac{(2 J+1) e^{-E_{J K} / k T}}{\sum_{J=0}^{\infty} \sum_{k=-J}^{J}(2 J+1) e^{-B_{J K} / k T}} \tag{71}
\end{equation*}
$$

If B and A in $B_{J K}$ are small compared to $k T / h$ and if the small contribution due to centrifugal force can be negiected, the u may be replaced by integrals giving

$$
\begin{equation*}
f_{J K}=(2 J+1) e^{-B_{J K} / k T} \sqrt{\frac{B^{2} A h^{3}}{\pi(k T)^{3}}} . \tag{72}
\end{equation*}
$$

Bquation(72) applies to one particular value of K, and does
not allow for E degeneracy.
For a $C_{3 v}$ symetric top without inversion, the degeneracy due to spin and K degeneracy for each value of J and K is giving by the following rules:

For K a multiple of 3 , but not 0
$S(I, K)=2\left(4 I^{2}+4 I+3\right)(2 I+1) / 3$

For $K=0$
$S(I, R)=\left(4 I^{2}+4 I+3\right)(2 I+1) / 3$

For K not a mitiple of 3

$$
\begin{equation*}
S(I, R)=2\left(4 I^{2}+4 I\right)(2 I+1) / 3 \tag{73c}
\end{equation*}
$$

Allowing for this degeneracy, Bq. (71) becomes

$$
\begin{equation*}
f_{J K}=\frac{S(I, K)(2 J+1) e^{-B_{J K} / k T}}{\sum_{J=0}^{\infty} \sum_{K=0}^{J} S(I, K)(2 J+1) e^{-B_{J K} / k T}} \tag{74}
\end{equation*}
$$

With the assumption that B and A are much smaller than $k T / h$, Bq. (74) becomes

$$
\begin{equation*}
f_{J K}=\frac{S(I, K)(2 J+1)}{4 I^{2}+4 I+1} \sqrt{\frac{B^{2} A h^{3}}{\pi(k T)^{3}}} e^{-B_{J K} / k T} \tag{75}
\end{equation*}
$$

For low values of J and K

$$
\begin{equation*}
f_{J K}=\frac{S(I, K)(2 J+1)}{4 I^{2}+4 I+1} \sqrt{\frac{B^{2} A h^{3}}{\pi(k T)^{3}}} \tag{76}
\end{equation*}
$$

The fraction of molecules in a given vibrational state may be obtained as

$$
\begin{equation*}
f_{v}=e^{-\omega_{n} / k T} \not H^{\left(1-e^{-\hbar \omega_{n} / k T} d_{n}\right.} \tag{77}
\end{equation*}
$$

where d_{n} is the degeneracy of a vibrational mode of frequency ω_{n}. By substituting Bqs. (67) and (76) into (65), and setting $2 B(J+1)=h v_{0}$, the intensity for a transition $J+1$ - J, K - K is found to be

$$
\begin{equation*}
r=\frac{4 \pi h^{2} N f_{v} S(I, K)}{\left(4 I^{2}+4 I+1\right) 3 c(k T)^{2}} \sqrt{\frac{\pi A h}{k T}} \nu^{2}\left[1-\frac{K^{2}}{(J+1)^{2}}\right] \frac{v_{0} \nu^{2} \Delta v}{\left(v-v_{0}\right)^{2}+(\Delta v)^{2}} \tag{78}
\end{equation*}
$$

CHAPTER III

INS TRUMENTATION

Introduction

The infrared spectroneter is one of the nost useful instruments for study of the molecular dynanics such as vibration-rotation interaction, nuclear spin-rotation interaction, effects of molecular collisions, etc.

About 15 years ago it became possible to obtain high resolution spectra in the IR region by using a tunable narrow linewidth laser - the semiconductor diode laser (50). Since that time, several high resolution tunable IR lasers have been developed. Among these are the difference frequency laser (51), the color center laser(52), the spinflip Raman laser (53), the waveguide laser (54,55,56), and nagnetically tuned gas lasers (57,68).

The most useful laser in the mid-IR region is still the CO_{2} laser, which provides coherent output radiation of high intensity at a multitude of lines spaced $\sim \boldsymbol{c i}^{-1}$ apart. The only drawback to the CO_{2} laser is its fixed frequency nature, limiting its spectroscopic applications to accidental coincidences between a laser frequency and some feature of spectroscopic interest.

Several methods have been developed to increase the tunable range of the CO_{2} laser. One such method is the
waveguide CO_{2} laser which uses the molecular collisional broadening of CO_{2} to increase the tuning range. In practice, the tunability of a weguide laser is limited to $\pm 500 \mathrm{MHz}$ around each laser line which, although useful, is too narrow for general molecular spectroscopy. A second method for increasing the tuning range is infrared microwave two-photon spectroscopy which uses the aimultaneous interaction of an infrared photon, a microwave photon, and an absorbing molecule. This technique has wide tunability but has low sensitivity since it involves a nonlinear absorption. In this method, the transition moment is inversely proportional to the square of the laser frequency mismatch(59). For a symetric top molecule,

$$
\begin{equation*}
M_{2}=\frac{\left(\langle 1| \vec{\mu}_{p} \vec{\epsilon}_{r}|1\rangle-\langle 2| \vec{\mu}_{p} \vec{\epsilon}_{r}|2\rangle\right)\langle 1| \vec{\mu}_{v} \vec{\epsilon}_{\ell}|2\rangle}{2 \hbar^{2} \omega_{r}} \tag{79}
\end{equation*}
$$

where $\vec{\mu}_{p}$ and $\vec{\mu}_{v}$ are the permanent and vibrational dipole moment, respectively; ϵ_{r} and ϵ_{ℓ} are the amplitudes of the aicrowave and laser electric fields, respectively; and ω_{r} is the angular frequency of the MW radiation. A third method for increasing the tunability of a CO_{2} laser is the infrared microwave sideband technique which is the subject of this thesis. With this method the radiation has a frequency of $v_{I R} \pm v_{M W}(60)$ and has the tunability of the microwave frequency $\boldsymbol{v}_{\text {MW }}$.

Generation of IR-MW Sideband Radiation

Franken et al.(61) observed the first nonlinear optical effect generated from dielectric crystal. In this experiment second harmonic energy (~ 3472 A) was produced upon projection of bean of 6943 A light through crystalline quartz. The sum frequency from two beans at different frequencies was observed by Bass et al.(62), in which two ruby lasers at different temperatures were used for radiation sources.

Corcoran et al.(60) observed the first CO2 laser-MW sideband radiation by using a GaAs loaded waveguide cell as a modulator to measure CO_{2} gain profiles. Since then there. have been many developments to increase the tunability and the power for general molecular spectroscopy(63-68). However, the CO_{2} laser-MW sideband laser systen most useful for molecular spectroscopy was developed by Magerl et al.(69). They described a device that operates in a traveling wave mode with low power and wide tunability, or in a cavity mode with high power and narrow tunability.

The first application of the ideband laser technique to molecular spectroscopy was a report by Magerl et al.(70) in 1977 on the fundamental v_{3} band of the SiH $_{4}$ molecule. Bren though the sideband power is very weak due to low coupling efficiency between the two kinds of radiation,
sub-Doppler spectroscopy has been performed on the NH_{3} molecule(71) by employing modulated sidebands in an optical double resonance experiment and in a saturated Lamb-dip experiment.

Structure of the Modulator

The expression for the sideband power $P_{S B}$ generated by an electrooptic crystal with cubic symetry (CdTe single crystal) is given by(72)

$$
\begin{equation*}
P_{S B}=P_{L} r^{2} / 16 \tag{80}
\end{equation*}
$$

Here, P_{L} is the incident laser carrier power and Γ is the single-pass phase retardation induced by the transverse electrooptic effect. The latter can be written as(73,74)

$$
\begin{equation*}
\Gamma=\left(\frac{2 \pi}{\lambda_{L}}\right) n_{0}^{3} r_{41}^{B} L_{m} \operatorname{SINC} \quad\left(\omega_{m} L_{m} / 2 W\right) \tag{81}
\end{equation*}
$$

where λ_{L} stands for the free-space wavelength of the CO_{2} laser, $B_{\text {m }}$ denotes the peak microwave electric field strength within the modulator crystal, n_{0} is the refractive index, r_{41} is the electrooptic coefficient, and L_{m} is the length of the modulator crystal. The abbreviation SINC(x) is used for $(\sin x) / x, \omega_{n}$ is the angular frequency of the modulator
signal, and $1 / W$ characterizes the mismatch of the microwave phase velocity $\left(v_{M}\right)$ and of the laser group velocity (v_{ℓ}) within the modulator, that is,

$$
\begin{equation*}
\frac{1}{W}=\frac{1}{v_{\ell}}-\frac{1}{v_{M}} \tag{82}
\end{equation*}
$$

For optimun electrooptic interaction, the laser group velocity (v_{ℓ}) should be same as the microwave phase velocity $\left(v_{M}\right)$. Since the refractive index of the modulator crystal (CdTe) in the IR region is appreciably smaller than the square root of the microwave dielectric constant, it is necessary to accelerate the microwave signal. The easiest way to do this is to insert the modulator crystal inside a closely fitting rectangular waveguide. The width of the crystal a_{M} can be obtained as follows:

$$
\begin{equation*}
a_{M}=c_{0} /\left(2 f_{M_{0}} \sqrt{B}_{r}-n_{0}^{2}\right) \tag{83}
\end{equation*}
$$

where $f_{M o}$ is the microwave frequency where exact velocity match occurs, c_{0} is the speed of light, and E_{r} is the relative dielectric constant of the electrooptic crystal.

Figure 7 shows the modulator diagram designed by G. Magerl of the Technical University of Vienna, which is optimized for microwave frequency modulation at 8.2-18.0 GHz. In this design, the CdTe crystal ($\mathbf{B}_{\mathbf{r}}=10$) is partly replaced by two less expensive and stronger alumina ($\mathrm{Al}_{2} \mathrm{O}_{3}$)

CdTe CRYSTAL

Figure 7. Diagram of the sideband modulator, in which the CdTe crystal is embedded between two $\mathrm{Al}_{2} \mathrm{O}_{3}$ slabs to achieve velocity match. The tapered doubleridged waveguide section (upper half removed) provides impedance match to incoming/outgoing standard waveguide sizes.
strips with about the same microwave dielectric constant (B_{r} = 9.5). The crystal cross section is designed to be a square with side b_{M}, which is chosen as small as possible for high modulating field B_{n}, but large enough to permit unimpeded laser beam focusing through the modulator.

The excess length of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ slabs permitted improved coupling of the microwave energy into the modulator. By altering the relative positions of the CdTe and $\mathrm{Al}_{2} \mathrm{O}_{3}$ in a trial and error process, it is possible to obtain with different arrangements of the crystals either an almost perfectly matched traveling wave modulator (terminated by a power load) or a critically coupled resonant modulator (terminated by a sliding short section for frequency tuning).

Adjustment of the Crystal Position in the Modulator

Since the sideband power depends mainly on the velocity mismatch ($1 / W$) within the modulator, the adjustment of the position of the $C d T e$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ crystal is crucial in generating the optimun sideband power over a desirable modulation frequency range for a given laser and microwave power.

Figure 8 is a diagram of the microwave setup used for the adjustment of crystal within the modulator. For this

Figure 8. Experimental diagram for adjusting the position of crystal inside modulator.
experiment, 10 dB -directional couplers P_{2} and P_{1} monitor the input microwave power and the reflected microwave power from the modulator, respectively. By trial and error adjustment of the position of the crystal and of the length of the modulator housing, the almost optimum condition shown in Fig. 9(C) was obtained. In this configuration, the housing is 23 miong, the CdTe crystal is 0.5 me behind the edge of modulator and the two alumina slabs are 3.0 min inont of the modulator.

Figure 9. Variation of coupling efficiency with the crystal position. (A) represents input microwave power with frequency. (B) and (C) indicate the reflected microwave power from the modulator with improper position and optimum position, respectively.

CHAPTBR IV

BXPBRIMENT

Abstract

Figure 10 shows the experimental diagram of a CO_{2} laser-microwave sideband laser spectrometer in the configuration for linear absorption apectroscopy used in the early stages of this work. The laser medium is a 2.2 m water cooled plasma discharge containing less than 10 torr of a flowing gas mixture of $\mathrm{CO}_{2}, \mathrm{~N}_{2}$, and He. The plasma tube is in a 4 mavity mounted on an invar frame. The laser tube is a 25 m inner dianeter Pyrex glass tube sealed with NaCl windows at the Brewster angle at each end. The windows are oriented such that the output radiation is plane polarized with the electric field of the radiation parallel to the floor. One end of the cavity is a rotatable plane grating of 50 m diameter ruled with 150 lines/an. The other end of the cavity is a partially transitting (95\% reflection) concave spherical Ge mirror (50mediameter, 10 - radius of curvature) which is mounted on a piezoelectric translator (PZT) to control the length of the laser cavity. For stabilization of the laser frequency the position of the cavity mirror is inusoidally modulated at 250 Hz , causing modulation of the laser cavity length and therefore modulation of the laser frequency. A cell containing CO_{2} at a pressure ranging from 30-100 morr, depending on the CO_{2}

Figure 10. Block diagram of IR-MM sideband laser spectrometer used for the measurement of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$, set for linear absorption spectroscopy of gases.
laser line, is inserted in the cavity(29). The frequency modulation of the laser causes amplitude modulation of the saturation-dip in the fluorescence from this cell at $\mathbf{\sim 4 . 3} \boldsymbol{\mu}$ wavelength. The fluorescence is detected by a liquid \mathbf{N}_{2} cooled InSb photovoltaic detector and is processed at 250 Hz by a phase sensitive detector (PSD). The output of the PSD controls the output of a high voltage operational power supply (OPS) which sets the length of the PZT. By this means the laser frequency is controlled to $\pm 300 \mathrm{kHz}$ (l part in 10^{8}). An Optical Bngineering Model 16-A CO2 laser spectrum analyzer was used to identify the particular $\mathbf{C O}_{2}$ laser line. The frequency of the laser radiation depends on the orientation of the grating and the length of the laser cavity. The grating is rotated to select a particular laser line and the length of the cavity provides fine frequency control within the laser gain curve. The cavity length is controlled by the PZT crystal whose length is linearly proportional to the voltage applied to crystal. Figure 11 shows the relationship between the PZT voltage (laser cavity length) and the laser gain curve with a saturation Lamb-dip. Thus the laser optics can be adjusted for single frequency, single mode operation at the Lamb-dip of the gain curve with an output power of 10 watts on the strongest laser line.

The laser output radiation is focussed by a ZnSe lens into a CdTe single crystal mounted in double ridge microwave cell where electrooptic interaction with the tunable

Figure ll. Variation of the output laser power (B) and the differential signal (A) displayed on screen with piezoelectric translator voltage. The signal due to Lamb-dip can be easily distinguished from that due to the end of mode.

Eicrowave signals is accomplished. The infrared power at the entrance of the modulator is kept less than 2 watts by adjusting the size of the diaphragns in the laser to prevent damage to the crystal or to its anti-reflective coating.

The microwave source is either one of two Varian Backward Wave Oscillators (BWO) operating in the 8.0-12.4 GHz or the 12.4-18.0 GHz region. The voltages for the BWO are obtained from a power supply designed at MSU, except for the frequency controlling helix voltage. This voltage is obtained from a Kepco Model 2000 operational power supply, which is controlled by the output from a digital/analog converter that is in turn controlled by a minicomputer. The nicrowave frequency is brought into the lock range of a phase sensitive synchronizer (Hewlett Packard Model 8709A) by the OPS output. The sychronizer locks the microwave frequency to 20 MHz above a harmonic of a synthesized frequency also controlled by the computer, so that the frequency sweep of the BWO is under complete control of the computer. The attenuated output power of the BWO enters a 3 dB directional coupler, where it is divided into two parts; one part is sent to a diode mixer-multiplier for comparison with a harmonic of a precisely known reference frequency, the other part which has around 1 EW power, is switched at a frequency of 33.3 kHz square wave by a PIN diode. The modulated MW signal is then amplified to more than 20 watts
by means of a traveling wave tube amplifier (Varian Model VZM-6991Bl TWTA). The output of the TWTA with the polarization of the MW adjusted to be perpendicular to that of the CO_{2} laser radiation, is applied directly to the modulator. With the aid of the TWTA, we can access a tunable range of $8.2-18.0 \mathrm{GHz}$ on either side of each CO_{2} laser line.

Four kinds of radiation are emitted from the modulator: (l) slightly modulated carrier radiation which has almost the same power as the input radiation but whose phase is rotated 90° from that of the sidebands, (2) fully modulated carrier with the same polarization as the sidebands and with comparable amplitude, (3) the fully modulated positive sideband whose frequency is the sum of the CO_{2} laser and microwave frequencies, and (4) the fully modulated negative sideband whose frequency is the difference of the CO_{2} laser and microwave frequencies. Both sidebands have the same polarization as that of microwave radiation. The fraction of negative sideband within the total aideband power increases with decreasing microwave frequency, reaching almost 100\% of total sideband power in the 8-9 GHz region. This appears to be an unexplained property of our particular modulator.

A ZnSe focusing lens with a 20 cn radius of curvature is located $\mathbf{\sim} 25$ fnom the modulator. A second comparable lens recollimates the radiation. A II-VI Model Paz-6-AC
polarizer, which consists of six ZnSe windows placed at the Brewster angle abstantially attenuates the carrier radiation. A Ge beam splitter divides the sideband radiation into a probe bean, which passes through a sample cell containing the sample gas, and into a reference bean. The sideband radiation that passes through the cell is monitored by a liquid N_{2} cooled Santa Barbara Research Center Hg -Cd-Te photoconductive detector, and the reference beam is monitored by a liquid \mathbf{N}_{2} cooled Honeywell Radiation Center $\mathrm{Hg}-\mathrm{Cd}$-Te photovoltaic detector. The outputs of the two detectors are amplified and processed by two phase sensitive lock-in amplifiers whose reference frequencies are obtained from the square wave that drives the PIN switch in the microwave circuit.

The power and the bean direction of the sideband radiation depend on the modulator temperature which is strongly affected by the microwave power and by the alignment of the CO_{2} laser beam in the crystal. In order to maintain a constant temperature at the modulator, it was air-cooled by means of a fan. In addition, the modulator position was adjusted to obtain the maximur signal to noise ratio.

For the measurements in this work, less than 200 Torr of sample pressure for the fundamental band and lese than 2 Torr of sample pressure for the hot band were used. For some experiments, the sample cell was heated to $\sim 100{ }^{\circ} \mathrm{C}$ to
increase the population of the first excited state, causing increased intensity on the hot band transition. The pressure was measured by our MKS Model 220BHS-2A5-B-10 Baratron.

The spectra were taken by tepping the BWO frequency at 1 or 2 MHz intervals through a range of $500-1000 \mathrm{MHz}$. The output of the phase sensitive detectors was digitized and recorded almost imultaneously by the PDP8/B computer. Usually 5 sweeps were used and 5 readings at each frequency were averaged during each sweep. The time constants on the phase sensitive detectors ranged from 30-100 ms and the time between readings was 100 ms.

After normalizing the signal sectrum by the reference spectrum, a Gausian lineshape fitting progran was used to determine the peak frequency of the observed transition. Most of the transitions that were not overlapped showed a reproducibility from spectrum to spectrum within $\pm 1 \mathrm{MHz}$.

The large fluctuation of microwave power inside the modulator, as shown in Fig. 12 , caused a fluctuation in the baseline and the lineshapes of the normalized spectrum. We therefore took steps to modify the microwave pin diode control syster to include a feedback loop that maintained constant ideband power as the frequency was changed. The new systen includes an absorptive modulator and a feedback control circuit designed by Mr. Martin Rabb at Michigan State University.

Figure 12. Unnormalized spectrum obtained by IR-MW sideband laser spectrometer. The signal and the reference show the large fluctuation in amplitude with frequency. The lower sideband generated from the $10 R(20) \mathrm{CO}_{2}$ laser line used with ~ 200 morr of ${ }^{13} \mathrm{CH}_{3}$ F for the $v_{3} P(27, \mathrm{I})$ transition.

According to the experimental diagram shown in Fig. 13, the reference detector monitors the sideband power generated fron the modulator. Then, the output of phase sensitive detector No. 2 is fed to an electronic circuit that controls the current to the PIN diode during the "on" position of the on-off cycle. Thus, the input MW power depends on the sideband power monitored by the reference detector.

The necessary conditions for lineshape study are that the radiation should be highly monochronatic relative to the linewidth, that it should have precise frequency control, and that it should have very good amplitude and frequency stability. Since the MW feedback controlled IR-MW sideband laser satisfies all of these conditions, it is a promising radiation source for lineshape study. Figure 14 shows the lineshape obtained by the modified spectrometer for the $\mathbf{Q}_{\mathbf{Q}}(5,5)$ transition in the v_{3} band of the ${ }^{12} \mathrm{CH}_{3}$ F molecule. In this work, all ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ measurements were done with the normal IR-MW sideband laser spectroneter, while all ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ measurements were made with the MW feedback controlled IR-MW sideband laser spectroneter.

Figure 13. Block diagran of MW feedback controlled IR-MW sideband laser spectrometer set for linear absorption spectroscopy of gases used for ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$.

Figure 14. Typical spectrum obtained by feedback controlled IR-MN sideband systen for lineshape experiment. The lower aideband generated from the $9 P(18) \mathrm{CO}_{2}$ laser line used with a 3.2 cm long sample cell with 0.1 sec. time constant.

CHAPTRR V

RBSULTS AND DISCUSSION

v_{3} Fundamental and $2 v_{3} \cdot v_{3}$ Hot Bands of ${ }^{13} \mathrm{CH}_{3} F$

In the present study, the spectrometer was operated for more than $60 \mathrm{CO}_{2}$ laser lines ranging from $10 \mathrm{P}(10)$ 9R(26). The microwave sources were tuned from 8.2-12.2 GHz and from 12.4-18.0 GHz for each CO_{2} laser line so that it was possible to observe a total of $386 v_{3}$ fundamental band transitions involving J values up to 47 and K values up to 16. Of these transitions, the peak frequencies of 305 transitions could be accurately measured by a Gassian lineshape fitting program with a good reproducibility, while the others could not be resolved due to overlapping of several transitions. A typical spectrum of the v_{3} fundamental band of ${ }^{13} \mathrm{CH}_{3} F$ obtained by the IR-MW sideband spectrometer is shown in Fig. 15. In this spectrum, the intensity doubling for $K=3 n$ that results fron nuclear sin statistics is clearly seen.

For the measurement of the frequencies of transitions in the $2 v_{3}-v_{3}$ hot band, more than $16 \mathrm{CO}_{2}$ laser lines were tuned ranging from $10 R(4)-9 P(20)$ and the microwave sources were scanned from 8.2-12.2 GHz and from $12.4-18.0 \mathrm{GHz}$. Since there were no previous data, it was very difficult to predict the frequencies of the $2 v_{3}-v_{3}$ transitions.

Fortunately, during the measurement of the v_{3} fundamental band, several $2 v_{3}$ - v_{3} hot band transitions were observed even though they were very weak and noisy. From these observations it was possible to extend the prediction of the $2 v_{3}$ - v_{3} frequencies. Finally, a total of 101 transitions could be observed, of which 81 transitions could be resolved. Figure 16 shows a typical spectrum of $2 \boldsymbol{v}_{3} \cdot v_{3}$ transitions of ${ }^{13} \mathrm{CH}_{3} F$ obtained by the IR-MW sideband laser spectrometer.

For the least squares fitting, a total of 296 IR-MW sideband laser frequencies of the v_{3} fundamental band were fitted to Bq. (64) together with the previously reported data listed in Table I. The frequencies of the v_{3} transitions measured in this work are shown with their estimated uncertainties in Table II. For the $2 v_{3}$ - v_{3} hot band the frequencies shown in Table III were fit, also to Bq. (64). For the least squares fits, the data were weighted by the inverse of the square of the uncertainties shown in Tables I - III. The parameters obtained from the fitting are given for the ground state and the $v_{3}=1$ state in the first two colums and for the $v_{3}=2$ state in the last column of Table IV. In these fits, the L constants were constrained to zero for the ground state, but allowed to vary for $v_{3}=1$ and 2 . Also, the $v_{3}=1$ parameters obtained from the fit of the fundamental frequencies were constrained in the fit of the hot band transitions. The

Table I.
sources of Data for fits of the v_{3} Band of ${ }^{13} \mathrm{CH}_{3}$ r

Experiment	Source	Trancitions	Uncert. ${ }^{\text {a }}$
$\underset{\substack{\text { Laser } \\ \text { Las }}}{\text { Sideband }}$	This work, Table II	Hish and low J, I ; $\mathrm{P}, \mathrm{Q}, \mathrm{R}$.	$\begin{aligned} & 1.0- \\ & 3.0 \mathrm{MHz} \end{aligned}$
IR-MW Two-Photon	Ref. 29, Table IV	Low J, $\mathrm{K}_{\text {; P, P,R. }}$	6.0 MHz
IR Laser stark	Ref. 16, Table IV Ref. 27, Appendix A6	Low J, X; P,Q,R.	6.0 MHz
IR Laser Stark Lamb Dipa	Ref. 16, Table IV Ref. 27, Appendix $A 6$	$\begin{aligned} & Q(J, \mathbb{R}), \quad J=1-3 ; \\ & R(4, \mathbb{Z}) . \end{aligned}$	2.0 MHz
$\begin{aligned} & \text { IR-RF Two-Photon } \\ & \text { Lamb Dipa } \end{aligned}$	Ref. 16, Table IV Ref. 27, Appendix A6	$Q(3, L), R(4, L)$.	2.0 MHz
nn Wave	Ref. 8	$\begin{aligned} & R(0,0), \text { pure rot. } \\ & \mathbf{v}_{3}=0,1 . \end{aligned}$	0.2 MHz
	Ref. 35	$\begin{aligned} & R(J, K), \text { pure rot.i. } \\ & J=3-5, v_{3}=0,1 . \end{aligned}$	0.05 MHz

[^1]Table II.
Comparison of Observed and Calculated Frequencies in the v_{3} Band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$

Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	v / MHz	$0-C^{c}$ Unc. ${ }^{\text {d }}$	$v / c^{-1} e$

P(37, 0)	10P(10)	-13735.0	28552914.2	24.3	OVERLAP	962.42270(81)
P(37, 1)	10P(10)	-13736.0	28552914.2	19.3	OVERLAP	952.42270 (64)
P(37, 2)	10P(10)	-13735.0	28552914.2	4.3	OVERLAP	962.42270(14)
P(37, 3)	10P(10)	-13735.0	28552914.2	-21.1	OVERLAP	952.42270 (-70)
P(37, 4)	10P(10)	-13735.0	28552914.2	-67.1	OVERLAP	952.42270(-190)
P(37, 5)	10P(10)	-13735.0	28552914.2	-104.2	OVERLAP	952.42270(-347)
$\mathrm{P}(37,6)$	10P(10)	-13572.0	28553077.2	0.5	2.0	952.42814 (1)
P(37, 7)	10P(10)	-13502.0	28553147.2	0.8	3.0	952.43047(2)
$\mathrm{P}(37,8)$	10P(10)	-13424.0	28553225.2	-1.8	2.0	952.43307(-6)
P(37, 9)	10P(10)	-13326.0	28553323.2	5.5	2.0	952.43634(18)
P(37, 10)	10P(10)	-13236.0	28563413.2	-3.7	3.0	952.43934(-12)
P(37,11)	10P(10)	-13126.0	28553523.2	1.1	3.0	962.44301(3)
P(37,12)	10P(10)	-13010.0	28563639.2	9.1	3.0	952.44688(30)
P $(35,11)$	10P(4)	-17836.0	28696301.7	-3.2	1.0	957.20569(-10)
P(36,12)	10P(4)	-17600.0	28696537.7	4.2	1.0	957.21346(13)
P $(35,13)$	10P(4)	-17356.0	28696781.7	-1.1	3.0	957.22160(-3)
P(35,14)	10P(4)	-17080.0	28697057.7	6.7	3.0	957.23081(19)
P(36,16)	10P(4)	-16784.0	28697353.7	13.5	OMIT	957.24068(44)
P(32, 7)	10R(4)	-17964.1	28905092.4	-2.8	1.0	964.17010(-9)
P(32, 8)	10R(4)	-17724.9	28905321.6	-3.6	1.0	964.17774 (-11)
P(32, 9)	10R(4)	-17463.6	28905592.8	-1.7	1.0	964.18679(-6)
P(32,10)	10R(4)	-17144.2	28905902.2	-3.7	1.0	964.19711(-12)
P(32,11)	10R(4)	-16784.8	28906261.6	-1.3	1.0	964.20910(-4)
P(32,12)	10R(4)	-16378.0	28906668.5	-0.4	1.0	964.22267(-1)
P(32,13)	10R(4)	-15915.4	28907131.0	3.0	1.0	964.23810(10)
P(32,14)	10R(4)	-15406.0	28907640.4	-5.0	2.0	964.25509 (-16)
P(32,16)	10R(4)	-14818.4	28908228.1	0.3	3.0	964.27469(1)
P $(32,16)$	10R(4)	-14196.3	28908850.2	-32.9	OMIT	964.29645(-109)
P(32,17)	10R(4)	-13305.8	28909740.6	118.0	OVERLAP	964.32515(393)
P(32, 18)	10R(4)	-12481.0	28910565.4	104.6	OVERLAP	964.35266(348)
$\mathrm{P}(30,0)$	10R(10)	-13002.0	29041070.7	23.6	OVERLAP	968.70586(78)
P(30, 1)	10R(10)	-13002.0	29041070.7	7.0	OVERLAP	968.70586(23)
P(30, 2)	10R(10)	-13002.0	29041070.7	-42.7	OVBRLA	968.70586(-142)
P(30, 3)	10R(10)	-12874.0	29041198.7	1.3	2.0	$968.71012(4)$
P(30, 4)	10R(10)	-12756.0	29041316.7	-0.2	1.0	$968.71405(0)$
$\mathrm{P}(30,5)$	10R(10)	-12601.1	29041471.6	-2.4	1.0	968.71922 (-7)
P(30, 7)	10R(10)	-12156.4	29041916.3	5.0	1.0	968.73405 (16)
P(30, 8)	10R(10)	-11877.1	29042195.6	-2.7	1.0	968.74337 (-8)
P(30, 9)	10R(10)	-11639.7	29042533.0	-2.7	1.0	968.76463 (-9)
P(30,10)	10R(10)	-11146.0	29042926.7	-1.8	1.0	968.76776(-6)

Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	v / MHz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
P(30,11)	10R(10)	-10692.6	29043380.1	-1.9	1.0	968.78288(-6)
P(30,12)	10R(10)	-10172.7	29043900.0	-2.3	1.0	$968.80022($	-7)
P(30,13)	10R(10)	-9682.0	29044490.7	-6.0	1.0	968.81993 (-19)
P(30,14)	10R(10)	-8917.2	29045155.5	-18.8	OMIT	968.84210 (-62)
P(29, 4)	10R(12)	12638.0	29108812.4	5.5	2.0	970.96547 (18)
P $(29,5)$	10R(12)	12708.0	29108982.4	3.8	2.0	970.971141	12)
P(29,6$)$	10R(12)	12924.1	29109198.5	4.2	2.0	970.97834 (14)
P(29, 7)	10R(12)	13187.2	29109461.6	4.3	1.0	$970.98712($	$14)$
P(29, 8)	10R(12)	13600.9	29109775.3	3.6	1.0	970.99759(11)
P $(29,9)$	10R(12)	13872.8	29110147.2	4.8	1.0	971.00999(16)
P(29, 10)	10R(12)	14301.4	29110575.8	1.1	1.0	$971.02429($	3)
P(29,11)	10R(12)	14805.1	29111079.5	4.5	1.0	$971.04109($	15)
P(29,12)	10R(12)	16382.6	29111657.0	6.2	1.0	971.06035	20)
P $(29,13)$	10R(12)	16040.0	29112314.4	3.3	1.0	971.08228 (10)
P(29,14)	10R(12)	16772.0	29113046.4	-20.3	OMIT	971.10670	-67)
P(29,15)	10R(12)	17656.0	29113930.4	-0.2	2.0	971.13619 (0)
P(27, 0)	10R(20)	-16942.9	29241715.7	6.8	OVRRLAP	976.39864 (22)
P(27, 1)	10R(20)	-15942.9	29241715.6	-14.2	OVERLAP	975.39864 (-47)
P(27, 2)	10R(20)	-15864.5	29241794.0	1.1	2.0	976.40126(3)
P(27, 3)	10R(20)	-15760.3	29241898.2	-1.3	1.0	976.40473(-4)
P(27, 4)	10R(20)	-15608.7	29242049.8	-1.5	1.0	976.40979	-4)
P(27, 5)	10R(20)	-15409.6	29242248.9	-2.2	1.0	976.41643	-7)
$\mathbf{P}(27,6)$	10R(20)	-15158.2	29242500.3	-1.9	1.0	976.42482	-6)
$\mathrm{P}(27,7)$	10R(20)	-14851.5	29242807.0	-2.0	1.0	975.43505	-6)
P(27, 8)	10R(20)	-14484.4	29243174.1	-2.6	1.0	975.44729	-8)
P(27, 9)	10R(20)	-14049.4	29243609.2	-2.0	1.0	975.46180	-6)
P(27,10)	10R(20)	-13542.3	29244116.2	-3.4	1.0	$975.47872($	-11)
P(27,11)	10R(20)	-12952.6	29244706.0	-4.5	1.0	976.49839(-14)
P(27,13)	10R(20)	-11479.9	29246178.7	-2.7	1.0	$975.54761($	-8)
P(27,14)	10R(20)	-10578.0	29247080.5	-7.1	3.0	976.57760(-23)
$\mathrm{P}(27,15)$	10R(20)	-9541.1	29248117.5	-12.6	OMIT	975.61218(-41)
$\mathrm{P}(27,16)$	10R(20)	-8356.0	29249302.5	-27.2	OMIT	975.65171(-90)
$\mathrm{P}(26,0)$	10R(22)	11312.5	29307448.9	14.3	OVERLAP	977.69127	47)
P(26, 1)	10R(22)	11312.5	29307448.9	-8.0	OVBRLAP	977.59127	-26)
P(26, 2)	10R(22)	11396.5	29307532.9	8.7	2.0	977.69407	28)
P(26, 3)	10R(22)	11506.7	29307643.1	5.3	1.0	977.59775	17)
P(26, 4)	10R(22)	11668.8	29307805.2	5.4	1.0	977.60316(18)
P(26, 5)	10R(22)	11880.8	29308017.1	4.3	1.0	977.61022(14)
$P(26,6)$	10R(22)	12141.3	29308277.6	-3.4	1.0	977.61891(-11)
P(26, 7)	10R(22)	12476.1	29308612.5	3.7	1.0	977.63008(12)

Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	v/MHz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
P(26, 8)	10R(22)	12868.3	29309004.6	2.8	1.0	977.64316	9)
$\mathrm{P}(26,9)$	10R(22)	13334.2	29309470.6	3.7	1.0	977.65870	12)
$\mathrm{P}(26,10)$	10R(22)	13878.3	29310014.6	2.8	1.0	977.67685	9)
P(26,11)	10R(22)	14512.6	29310649.0	2.8	1.0	977.69801	9)
P(26,12)	10R(22)	15247.5	29311383.8	2.8	1.0	977.72252	9)
P(26,13)	10R(22)	16096.7	29312233.1	3.4	1.0	977.75086(11)
P(26,14)	10R(22)	17076.0	29313211.4	3.0	1.0	977.78348(9)
P(23, 0)	10R(34)	-9968.1	29501098.6	11.4	OVERLAP	984.05073	37)
P(23, 1)	10R(34)	-9968.1	29501098.6	-14.8	OVERLAP	984.05073(-49)
P(23, 2)	10R(34)	-9872.9	29501193.8	1.6	2.0	984.05390 ($5)$
P(23, 3)	10R(34)	-9742.3	29501324.4	-1.2	1.0	984.05826	-3)
P 23,4$)$	10R(34)	-9563.0	29501513.7	-1.7	1.0	984.06457(-5)
P(23, 6)	10R(34)	-9301.9	29601764.8	-1.0	1.0	984.07296 (-3)
$P(23,6)$	10R(34)	-8987.2	29502079.5	-1. 5	2.0	984.08345	-4)
P(23, 7)	10R(34)	-8601.3	29502465.4	-1.6	2.0	984.09632	-6)
P(22, 0)	10R(38)	-12078.6	29564466.5	12.3	OVERLAP	986.16445	41)
P(22, 1)	10R(38)	-12078.6	29564466.5	-16.0	OVERLAP	986.16446	-49)
P(22, 2)	10R(38)	-11981.3	29564563.8	-0.2	2.0	986.16770	0)
P(22, 3)	10R(38)	-11843.7	29664701.4	-1.6	1.0	986.17229 (-6)
P(22, 4)	10R(38)	-11643.7	29564901.4	-0.1	1.0	986.17896($0)$
P(22, 5)	10R(38)	-11384.2	29665161.0	-2.1	1.0	986.18762	-6)
$P(22,6)$	10R(38)	-11053.3	29565491.8	-0.8	1.0	986.19865	-2)
P(22, 7)	10R(38)	-10651.1	29565894.1	-2.3	1.0	$986.21207($	-7)
P(22, 8)	10R(38)	-10164.9	29566380.3	-1.7	1.0	986.22829 (-5)
P(22, 9)	10R(38)	-9588.9	29666966.3	-2.2	1.0	986.24750 (-7)
P(22,10)	10R(38)	-8910.5	29567634.6	-2.2	1.0	986.27013(-7)
P(21, 0)	10R(42)	-11643.0	29627237.2	12.4	OVERLAP	988.25826	41)
P(21, 1)	10R(42)	-11643.0	29627237.2	-15.9	OVBRLAP	988.25826	-53)
P(21, 2)	10R(42)	-11638.9	29627341.3	2.4	2.0	988.26173	7)
P(21, 3)	10R(42)	-11402.4	29627477.8	-5.8	1.0	988.26628	-19)
P(21, 4)	10R(42)	-11189.4	29627690.8	0.7	1.0	988.27339	2)
P(21, 6)	10R(42)	-10919.2	29627961.0	-1.3	1.0	988.28240	-4)
$P(21,6)$	10R(42)	-10576.1	29628304.1	-1.2	1.0	988.29386 (-4)
P(21, 7)	10R(42)	-10156.3	29628724.9	-1.0	1.0	988.30788(-3)
P(21, 8)	10R(42)	-9649.9	29629230.3	-1.7	1.0	988.32474	-6)
P(21, 9)	10R(42)	-9048.0	29629832.2	-1.1	3.0	988.34482	-3)
P(21, 10)	10R(42)	-8336.0	29630544.2	2.7	3.0	988.36857	9)
P(20, 0)	10R(46)	-8620.7	29689408.7	12.4	OVBRLAP	990.33207	41)
$\mathbf{P}(20,1)$	10R(46)	-8620.7	29689408.7	-17.0	OVERLAP	990.33207 (-66)
P(20, 2)	10R(46)	-8515.9	29689513.4	-1.1	3.0	990.33557(-3)

Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$ b	v / MHz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
P(20, 3)	10R(46)	-8367.9	29689661.6	-3.0	3.0	990.34051 (-9)
P(6, 0)	9P(50)	15050.7	30495577.7	20.3	OVBRLAP	1017.22298(67)
P(6, 1)	9P(50)	15050.7	30495677.7	-14.7	OVBRLAP	1017.22298(-48)
P(6, 2)	9P(50)	15174.0	30495701.0	3.0	1.0	1017.22709(10)
P(6, 3)	9P(50)	15354.2	30496881.2	4.4	1.0	1017.23310(14)
P(6, 4)	9P(50)	15609.9	30496136.9	4.0	1.0	1017.24163(13)
P(6, 6)	9P(50)	15948.6	30496476.5	3.1	1.0	1017.25293(10)
$P(4,0)$	9P(46)	-9764.7	30600751.4	11.1	OVBRLAP	1020.73120(37)
P(4, 1)	9 P (46)	-9764.7	30600751.4	-23.0	OVERLAP	1020.73120(-76)
P(4, 2)	9P(46)	-9635.6	30600880.5	2.7	2.0	1020.73550(8)
P(4, 3)	9P(46)	-9468.1	30601048.0	-4.9	1.0	1020.74109(-16)
P(1, 0)	9P(42)	16089.0	30753745.7	-1.8	3.0	1025.83454(-6)
Q(6, 6)	9P(40)	-8989.6	30791153.0	-1.3	2.0	1027.08231(-4)
$Q(6,5)$	9P(40)	-9356.2	30790786.5	-0.4	1.0	1027.07008(-1)
Q(6, 4)	9P(40)	-9644.8	30790497.9	-1.3	1.0	1027.06046(-4)
$Q(6,3)$	9 P (40)	-9860.7	30790281.9	-1.3	1.0	1027.05326(-4)
$Q(6,2)$	9 P (40)	-10011.9	30790130.8	-2.2	2.0	1027.04821(-7)
Q(6, 1)	9 P (40)	-10102.0	30790040.6	-3.9	3.0	1027.04520(-13)
Q (7, 7)	9P(40)	-13054.6	30787088.2	-2.0	1.0	1026.94672(-6)
Q (7, 6)	9P(40)	-13501.1	30786641.6	-1.8	1.0	1026.93182(-5)
Q(7, 5)	9P(40)	-13859.4	30786283.3	-1.2	1.0	1026.91987 (-4)
Q(7, 4)	9P(40)	-14141.0	30786001.6	-2.0	1.0	1026.91048(-6)
Q(7, 3)	9P(40)	-14351.2	30785791.4	-1.5	1.0	1026.90347(-4)
Q(7, 2)	9P(40)	-14498.3	30785644.3	-2.1	2.0	1026.89856 (-7)
Q(7, 1)	9P(40)	-14586.0	30786556.6	-3.6	3.0	1026.89563 (-11)
Q (8, 8)	9P(40)	-17687.4	30782455.3	-1.7	1.0	1026.79218(-5)
Q(12, 2)	9 P (42)	16974.0	30753630.7	0.7	3.0	1025.83070	2)
$0(12,3)$	9P(42)	16096.0	30753752.7	2.1	3.0	1025.83477(7)
Q(12, 4)	9P(42)	16270.7	30753927.4	2.9	1.0	1025.84060 (9)
Q(12, 5)	9P(42)	16498.0	30754154.7	-2.4	3.0	1025.84818(-8)
Q (12, 6)	9P(42)	16796.0	30754452.7	-2.9	3.0	1025.85812	-9)
Q(12, 7)	9P(42)	17170.0	30754826.7	-2.2	3.0	1025.87059(-7)
$Q(12,8)$	9P(42)	17637.2	30756293.9	5.7	1.0	1025.88618 (19)
$Q(13,8)$	9P(42)	9234.8	30746891.6	3.6	3.0	1025.60590(11)
$Q(13,9)$	9P(42)	9771.3	30747428.0	7.7	2.0	1026.62380 (26)
$Q(13,10)$	9P(42)	10408.0	30748064.7	0.7	3.0	1025.64504 (2)
Q $(13,11)$	9P(42)	11183.9	30748840.6	2.4	2.0	1026.67092(7)
$Q(13,12)$	9 P (42)	12110.0	30749766.7	1.0	3.0	1025.70181($3)$
Q $(13,13)$	9 P (42)	13218.0	30750874.7	0.9	3.0	1026.73877 (2)
Q(15, 2)	9P(42)	-10878.0	30726778.7	1.4	3.0	1024.93501($4)$

Trans.	Laser ${ }^{\text {a }}$	v	v/MEz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
$Q(15,3)$	9P(42)	-10779.9	30726876.9	0.2	3.0	1024.93829($0)$
$Q(16,4)$	9P(42)	-10638.2	30727018.5	-2.0	1.0	1024.94301(-6)
Q(15, 6)	9P(42)	-10446.0	30727210.7	-3.1	3.0	1024.94942(-10)
$Q(15,6)$	9P(42)	-10189.4	30727467.3	4.3	1.0	1024.95798(14)
O(15, 7)	9P(42)	-9881.5	30727775.2	-1.3	2.0	1024.96825 (-4)
$Q(15,8)$	9P(42)	-9493.2	30728163.6	-0.7	1.0	1024.98121(-2)
$Q(15,9)$	9P(42)	-9019.4	30728637.4	-1.2	2.0	1024.99701(-4)
$Q(15,10)$	9P(42)	-8434.1	30729222.6	8.1	2.0	1025.01653(27)
O $(16,12)$	9P(42)	-17394.1	30720262.6	-0.9	1.0	1024.71766(-3)
Q $(16,13)$	9P(42)	-16448.0	30721208.7	0.4	3.0	1024.74922(1)
Q $(16,14)$	9P(42)	-15317.0	30722339.7	-1.3	1.0	1024.78694(-4)
Q $(16,15)$	9P(42)	-13967.5	30723699.2	2.7	1.0	1024.83229(8)
Q $(19,9)$	9P(44)	8946.0	30683391.8	-2.5	3.0	1023.48778(-8)
$Q(19,10)$	9P(44)	9369.4	30683815.2	3.7	2.0	1023.50191(12)
Q $(19,11)$	9P(44)	9880.9	30684326.7	4.4	2.0	1023.51897(14)
Q $(19,12)$	9P(44)	10501.1	30684946.8	2.3	1.0	1023.53965(7)
Q $(19,13)$	9P(44)	11253.3	30685699.1	-0.3	2.0	1023.56474(0)
Q $(19,14)$	9P(44)	12160.0	30686605.8	-6.7	3.0	1023.69499(-22)
Q $(19,15)$	9P(44)	13260.0	30687705.8	-8.7	3.0	1023.63168(-29)
$Q(19,16)$	9P(44)	14597.1	30889042.8	0.7	1.0	1023.67628(2)
$0(21,7)$	9P(44)	-17965.6	30656480.2	-2.6	2.0	1022.69011(-8)
$Q(21,8)$	9P(44)	-17756.4	30656690.4	-0.2	1.0	1022.59712(0)
$0(21,9)$	9P(44)	-17494.0	30656951.8	-0.9	1.0	1022.60584(-2)
Q $(21,10)$	9P(44)	-17169.2	30657276.6	-3.8	1.0	1022.61667(-12)
Q $(21,11)$	9P(44)	-16761.9	30667683.9	-3.0	1.0	1022.63026(-10)
$Q(21,12)$	9P(44)	-16253.9	30658191.9	3.7	1.0	1022.64720(12)
Q $(21,13)$	9P(44)	-15648.3	30658797.5	-6.6	1.0	1022.66740(-18)
Q $(21,14)$	9P(44)	-14896.5	30659549.2	-6.2	1.0	1022.69248(-17)
O $(21,16)$	9P(44)	-13986.0	30660459.8	-9.7	3.0	1022.72285(-32)
Q $(23,1)$	9P(46)	16883.0	30627399.1	54.5	OVERLAP	1021.62007(181)
Q $(23,2)$	9P(46)	16883.0	30627399.1	40.2	OVERLAP	1021.62007 (134)
Q(23, 3)	9P(46)	16883.0	30627399.1	14.7	OVBRLAP	1021.62007(48)
Q (23,4)	9P(46)	16883.0	30627399.1	-24.4	OVERLAP	1021.62007(-81)
Q(23, 6)	9P(46)	16966.0	30627482.1	2.5	3.0	1021.62284(8)
(23, 6)	9P(46)	17041.4	30627557.6	0.3	1.0	1021.62535(1)
(23, 7)	9P(46)	17152.9	30627669.0	7.2	1.0	1021.62907(23)
$(23,8)$	9P(46)	17287.6	30627803.7	3.4	1.0	1021.63356(11)
$(23,9)$	9P(46)	17469.2	30627985.3	4.6	1.0	1021.63962(16)
$(23,10)$	9P(46)	17699.8	30628216.0	3.3	1.0	1021.64731(10)
$(23,11)$	9P(46)	17994.0	30628510.1	2.2	3.0	1021.65713(7)

Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	v / MHz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
Q(25, 1)	9P(46)	-14254.0	30596262.1	30.1	OVERLAP	1020.68146(00)
Q(25, 2)	9P(46)	-14254.0	30596262.1	28.7	OVBRLAP	1020.58146($95)$
$Q(25,3)$	9 P (46)	-14254.0	30596262.1	24.9	OVERLAP	1020.58146(83)
$Q(25,4)$	9 P (46)	-14254.0	30696262.1	16.6	OVBRLAP	1020.68146($55)$
$Q(25,5)$	9P(46)	-14254.0	30596262.1	0.9	OVBRLAP	1020.58146(2)
Q $(25,6)$	9P(46)	-14254.0	30596262.1	-26.2	OVBRLAP	1020.58146(-87)
$Q(25,7)$	9 P (46)	-14254.0	30596262.1	-69.6	OVERLAP	1020.58146(231)
$Q(25,8)$	9 P (46)	-14122.0	30596394.1	-2.7	3.0	1020.68585 (-9)
$Q(25,9)$	9 P (46)	-14026.0	30596490.1	-0.8	3.	1020.68905(-2)
Q $(25,10)$	9P(46)	-13900.3	30596616.8	-6.2	2.0	1020.59325(-20)
Q (25,11)	9P(46)	-13718.5	30596797.6	-2.2	1.0	1020.59931(-7)
$0(25,12)$	9 P (46)	-13481.8	30597034.3	-1.4	1.0	1020.60721(-4)
Q $(25,13)$	9P(46)	-13177.6	30597338.5	-4.8	1.0	1020.61736(-16)
Q $(25,14)$	9 P (46)	-12772.7	30597743.5	4.4	1.0	1020.63086(14)
Q(27, 1)	9P(48)	16647.0	30562521.3	-111.6	OVERLAP	1019.45698(-371)
Q(27, 2)	9 P (48)	16647.0	30562521.3	-99.4	OVBRLAP	1019.45598(-331)
Q(27, 3)	9 P (48)	16647.0	30562521.3	-80.5	OVERLAP	1019.45598(-268)
Q (27, 4)	9 P (48)	16647.0	30562521.3	-56.5	OVBRLAP	1019.45598(-188)
$0(27,5)$	9 P (48)	16647.0	30562521.3	-30.0	OVERLAP	1019.45698(-100)
Q 27,6)	9P(48)	16647.0	30562521.3	-4.3	OVRRLAP	1019.45698(-14)
Q(27, 7)	9P(48)	16647.0	30562521.3	16.6	OVERLAP	1019.45698(65)
Q(27, 8)	9P(48)	16647.0	30562521.3	27.9	OVERLAP	1019.45598(93)
$0(27,9)$	9 P (48)	16647.0	30562521.3	24.1	OVERLAP	1019.45598(80)
Q $(27,10)$	9 P (48)	16647.0	30562521.3	-1.4	OVBRLAP	1019.45598(-4)
Q $(27,11)$	9 P (48)	16647.0	30562521.3	-56.3	OVERLAP	1019.45598(-187)
$0(27,12)$	9 P (48)	16647.0	30562521.3	-149.6	OVBRLAP	1019.45598(-499)
Q $(27,13)$	9 P (48)	16940.0	30562814.3	0.9	2.0	1019.46576(2)
Q $(27,14)$	9 P (48)	17142.0	30563016.3	-1.7	2.0	1019.47249(-5)
Q(27,16)	9 P (48)	17423.0	30563297.3	-3.2	1.0	1019.48186(-10)
O $(27,16)$	9P(48)	17807.0	30563681.3	1.3	3.0	1019.49467(
Q $(32,3)$	9P(50)	-12822.0	30467706.0	-2.3	2.0	1016.29325	-7)
$0(32,4)$	9P(50)	-12930.0	30467597.0	-0.7	3.0	1016.28964(-2)
Q(32, 5)	9P(50)	-13066.0	30467461.0	1.7	3.0	1016.28611(6)
Q $(32,6)$	9P(50)	-13234.0	30467293.0	-0.7	1.0	1016.27950(-2)
Q $(32,7)$	9P(50)	-13422.0	30467105.0	2.2	1.0	1016.27323(7)
Q $(32,8)$	9P(50)	-13637.9	30466889.1	0.3	1.0	1016.26603(0)
$0(32,9)$	9P(50)	-13875.6	30466651.4	-2.4	1.0	1016.25810(-8)
$0(32,10)$	9P(50)	-14130.0	30466397.0	-3.0	2.0	1016.24962(-10)
O(32,11)	9P(50)	-14400.0	30466127.0	-2.9	2.0	1016.24061(-9)
Q $(32,12)$	9P(50)	-14688.0	30465839.0	-7.1	2.0	1016.23100(-23)

Trans.	Laser ${ }^{\text {a }}$		v / MHz	$0-{ }^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
$0(32,13)$	9P(50)	-14970.0	30465567.0	6.5	2.0	1016.22160()
R(0,0)	9P(38)	-9341.8	30852556.7	-0.9	1.0	1029.13048(-2)
R(3, 0)	9P(34)	12777.0	30996967.8	18.2	OVERLAP	1033.91419(60)
R(3, 1)	9P(34)	12777.0	30995967.8	-8.8	OVERLAP	1033.91419(-29)
R(3, 2)	9P(34)	12872.0	30996062.8	4.5	2.0	1033.91736(14)
R(3, 3)	9P(34)	13012.2	30996202.9	6.6	1.0	1033.92204(18)
R(6,6$)$	9P(30)	-12534.0	31088958.2	-3.3	1.0	1037.01602(-11)
R(5,4)	9P(30)	-12774.4	31088717.8	-1.8	1.0	1037.00800(-5)
R(5, 3)	9P(30)	-12964.9	31088537.3	-1.9	1.0	1037.00198(-6)
R(5, 2)	9P(30)	-13077.8	31088414.4	-0.1	3.0	.1036.99788($0)$
$\boldsymbol{R}(5,1)$	9P(30)	-13165.0	31088327.2	-14.2	OVERLAP	1036.99497 (47)
R(5, 0)	9P(30)	-13165.0	31088327.2	10.0	OVERLAP	1036.99497(33)
R(12,11)	9P(20)	9635.4	31393436.8	3.0	2.0	1047.17230(9)
R(12,12)	9P(20)	10214.0	31394114.4	4.6	3.0	1047.19494(16)
R $(14,11)$	9P(16)	-17960.0	31473477.4	-2.0	2.0	1049.84220(-6)
R $(14,12)$	9 P (16)	-17412.4	31474025.0	-1.6	1.0	1049.86047	-5)
R $(14,13)$	9P(16)	-16724.0	31474713.4	-2.3	2.0	1049.88343(-7)
R $(14,14)$	9P(16)	-16862.0	31475575.4	-2.0	3.0	1049.91218(-6)
$\mathbf{R}(19,0)$	9P(10)	16000.0	31661843.4	-131.1	OVERLAP	1056.12541(437)
$\mathbf{R}(19,1)$	9P(10)	16000.0	31661843.4	-124.8	OVBRLAP	1056.12541(-416)
R(19, 2)	9P(10)	16000.0	31661843.4	-106.4	OVERLAP	106	364)
R(19, 3)	9P(10)	15000.0	31661843.4	-77.6	OVBRLAP	1056.12541	-258)
R(19, 4)	9P(10)	15000.0	31661843.4	-41.3	OVBRLAP	1056.12541(-137)
R $(19,5)$	9P(10)	16000.0	31661843.4	-1.7	OVBRLAP	1056.12541(-6)
R $(19,6)$	9P(10)	16000.0	31661843.4	36.0	overlap	1066.12641 (120)
$\mathbf{R}(19,7)$	9P(10)	16000.0	31661843.4	65.0	OVBRLAP	1056.12541(216)
R(19, 8)	9P(10)	16000.0	31661843.4	76.8	OVERLAP	1056.12541(256)
$\boldsymbol{R}(19,9)$	9P(10)	16000.0	31661843.4	61.7	OVBRLAP	1056.12541(205)
R(19,10)	9P(10)	16000.0	31661843.4	7.4	OVBRLAP	1056.12841(24)
R (19,11)	9P(10)	15000.0	31661843.4	00.3	overlap	1056.12541(-334)
R $(19,12)$	9P(10)	16278.0	31662121.4	-0.4	2.0	1056.13469(-1)
R $(19,13)$	9P(10)	16544.6	31662387.9	-2.9	2.0	1056.14358(-9)
R $(19,14)$	9P(10)	16934.3	31662777.6	2.4	1.0	1056.15658(8)
R $(19,16)$	9P(10)	16464.0	31663307.4	3.2	1.0	1056.17425(10)
R $(19,16)$	9P(10)	17162.0	31664005.4	-7.4	3.0	1056.19763(-24)
$\mathbf{R}(21,0)$	9P(6)	-13042.0	31733441.8	-13.2	OVERLAP	1058.51368(-43)
R(21, 1)	9P(6)	-13042.0	31733441.8	-1.2	OVERLAP	1058.51368(-4)
$\boldsymbol{R}(21,2)$	9P(6)	-13042.0	31733441.8	34.1	OVERLAP	1058.51368(113)
$\boldsymbol{R}(21,3)$	9P(6)	-13132.0	31733361.8	1.1	2.0	1058.51088(3)
R(21, 4)	9P(6)	-13208	31733275.8	1.4	2.0	1058.50814	4)

Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	ν / MHz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
R(21, 5)	9P(6)	-13302.0	31733181.8	-0.8	2.0	1058.50601	-2)
$\mathbf{R}(21,6)$	9P(6)	-13406.0	31733077.8	-2.4	2.0	1058.50154(-7)
$\mathbf{R}(21,7)$	9P(6)	-13514.0	31732969.8	-3.4	2.0	1058.49794	-11)
$\mathbf{R}(21,8)$	9P(6)	-13618.0	31732865.8	-3.2	2.0	1058.49447	-10)
$\boldsymbol{R}(21,9)$	9P(6)	-13711.0	31732772.8	-3.7	2.0	1058.49136(-12)
$\mathbf{R}(21,10)$	9P(6)	-13786.0	31732697.8	-8.5	3.0	1058.48886(-28)
$\mathbf{R}(29,0)$	9R(4)	-10908.1	31993109.3	-20.0	OVBRLAP	1067.17526(-66)
$\mathbf{R}(29,1)$	9R(4)	-10908.1	31993109.3	16.5	OVBRLAP	1067.17526(55)
R(29, 2)	9R(4)	-11037.2	31992980.2	-3.3	2.0	1067.17095(-11)
$\mathbf{R}(29,3)$	9R(4)	-11219.3	31992798.1	-4.3	1.0	1067.16487(-14)
$\boldsymbol{R}(29,4)$	9R(4)	-11469.0	31992548.4	-2.4	1.0	1067.15654	-8)
$\mathbf{R}(29,5)$	9R(4)	-11788.2	31992229.2	-1.5	1.0	1067.14590(-5)
$\mathbf{R}(29,6)$	9R(4)	-12173.6	31991843.8	-0.8	1.0	1067.13304(-2)
$\mathbf{R}(29,7)$	9R(4)	-12626.2	31991391.2	-4.1	1.0	1067.11795(-13)
$\mathbf{R}(29,8)$	9R(4)	-13134.3	31990883.1	-3.3	1.0	1067.10100(-10)
$\mathbf{R}(29,9)$	9R(4)	-13699.4	31990318.0	-3.4	1.0	1067.08215(-11)
$\boldsymbol{R}(29,10)$	9R(4)	-14315.1	31989702.2	-2.5	1.0	1067.06161	-8)
$\boldsymbol{R}(29,11)$	9R(4)	-14976.8	31989040.6	-0.6	2.0	1067.03954 (-2)
$\mathbf{R}(29,12)$	9R(4)	-15679.1	31988338.3	1.8	1.0	1067.01611(6)
R $(29,13)$	9R(4)	-16420.4	31987597.0	0.2	2.0	1066.99139(0)
$\mathbf{R}(30,4)$	9R(4)	17990.1	32022007.4	1.9	3.0	1068.13919(6)
$\boldsymbol{R}(30,5)$	9R(4)	17640.2	32021657.6	2.3	1.0	1068.12752(7)
$\mathbf{R}(30,6)$	9R(4)	17217.9	32021236.3	3.7	1.0	1068.11344	12)
$\boldsymbol{R}(30,7)$	9R(4)	16722.2	32020739.6	2.4	1.0	1068.09690 (8)
$\mathbf{R}(30,8)$	9R(4)	16158.9	32020176.3	1.6	1.0	1088.07811(5)
$\mathbf{R}(30,9)$	9R(4)	15536.0	32019553.4	6.2	1.0	1068.05734	20)
$\mathbf{R}(30,10)$	9R(4)	14845.4	32018862.7	4.5	1.0	1068.03430	14)
$\mathbf{R}(30,11)$	9R(4)	14100.0	32018117.4	5.8	1.0	1068.00943(19)
$\boldsymbol{R}(30,12)$	9R(4)	13297.7	32017316.1	3.7	2.0	1067.98267(12)
$\mathbf{R}(32,0)$	9R(8)	-11992.0	32079660.7	-25.0	OVBRLAP	1070.06230(-83)
$\mathbf{R}(32,1)$	9R(8)	-11992.0	32079660.7	21.3	OVERLAP	1070.06230	71)
R(32, 2)	9R(8)	-12155.0	32079497.7	-2.8	3.0	1070.05686(-9)
R(32, 3)	9R(8)	-12380.0	32079272.7	3.0	3.0	1070.04936(10)
R(32, 4)	9R(8)	-12706.4	32078946.3	-1.6	1.0	1070.03847	-6)
$\mathbf{R}(32,5)$	9R(8)	-13116.0	32078536.7	0.2	3.0	1070.02481($0)$
$\mathbf{R}(32,6)$	9R(8)	-13617.9	32078034.8	-2.1	1.0	1070.00807(-7)
$\mathbf{R}(32,7)$	9R(8)	-14208.7	32077444.0	-6.9	1.0	1069.98836(-23)
$\mathbf{R}(32,8)$	9R(8)	-14870.0	32076782.7	2.5	3.0	1069.96630(8)
$\mathbf{R}(32,9)$	9R(8)	-15625.0	32076027.7	1.3	3.0	1069.94111(4)
R $(32,10)$	9R(8)	-16460.7	32075192.0	0.8	1.0	1069.91324(2)

Trans.	Laser ${ }^{\text {a }}$	\cdots	v / HMz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
R $(32,11)$	9R(8)	-17375.6	32074277.1	0.9	2.0	1069.88272 (3)
$\mathbf{R}(33,0)$	9R(8)	15560.0	32107212.7	-15.1	OVERLAP	1070.98133	-50)
R(33, 1)	9R(8)	15660.0	32107212.7	34.6	OVERLAP	1070.98133(116)
R(33, 2)	9R(8)	15380.1	32107032.8	3.6	1.0	1070.97533(12)
R(33, 3)	9R(8)	15132.9	32106786.6	4.0	1.0	1070.96709(13)
R(33, 4)	9R(8)	14784.0	32106436.7	0.5	3.0	1070.95545 (1)
R $(33,5)$	9R(8)	14345.2	32106997.9	4.0	1.0	1070.94081(13)
$\mathbf{R}(33,6)$	9R(8)	13807.5	32105460.2	4.2	1.0	1070.92288(13)
R(33, 7)	9R(8)	13176.0	32104828.7	4.9	3.0	1070.90181(16)
R $(33,8)$	9R(8)	12450.0	32104102.7	4.3	3.0	1070.87760	14)
$\boldsymbol{R}(36,0)$	9R(12)	-15765.5	32160314.0	-34.9	OVBRLAP	1072.75260(16)
$\boldsymbol{R}(35,1)$	9R(12)	-15765.5	32160314.0	21.5	OVBRLAP	1072.75260(71)
$\mathbf{R}(35,2)$	9R(12)	-15961.4	32160118.1	-5.3	1.0	1072.74607	-17)
$\mathbf{R}(36,3)$	9R(12)	-16239.8	32159839.7	-2.3	1.0	1072.73678(-7)
R $(36,4)$	9R(12)	-16631.6	32159447.9	-0.8	1.0	1072.72372(-2)
$\mathbf{R}(35,5)$	9R(12)	-17136.5	32158943.0	-1.3	1.0	1072.70687(-4)
$\mathbf{R}(35,6)$	9R(12)	-17763.1	32158326.4	-2.9	1.0	1072.68630(-9)
$\mathbf{R}(37,6)$	9R(14)	-8505.2	32208586.1	-0.1	1.0	1074.36279	$0)$
$\mathbf{R}(37,7)$	9R(14)	-9326.9	32207764.3	-3.2	1.0	1074.33538(-10)
$\mathbf{R}(37,8)$	9R(14)	-10273.4	32206817.9	-4.1	1.0	1074.30381(-13)
$\mathbf{R}(37,9)$	9R(14)	-11340.1	32205751.1	3.4	1.0	1074.26822(11)
$\mathbf{R}(37,10)$	9R(14)	-12566.2	32204535.0	-6.8	1.0	1074.22766(-22)
R(37,11)	9R(14)	-13893.4	32203197.9	-2.7	2.0	1074.18306(-8)
$\mathbf{R}(37,12)$	9R(14)	-15384.0	32201707.3	-11.2	OMIT	1074.13334	-37)
$\boldsymbol{R}(38,0)$	9R(14)	17982.0	32235073.3	-55.5	OVERLAP	1075.24631(-184)
$\mathbf{R}(38,1)$	9R(14)	17982.0	32235073.3	11.1	OVERLAP	1075.24631(37)
$\mathrm{R}(38,2)$	9R(14)	17775.5	32234866.8	4.2	1.0	1075.23942(14)
$\mathbf{R}(38,3)$	9R(14)	17443.2	32234534.5	4.5	1.0	1075.22833 (16)
R $(38,4)$	9R(14)	16972.0	32234063.3	-1.2	2.0	1076.21262(-4)
$\boldsymbol{R}(38,5)$	9R(14)	16378.0	32233469.3	3.1	3.0	1075.19280(10)
$\boldsymbol{R}(38,6)$	9R(14)	15648.7	32232740.0	5.2	1.0	1075.16848(17)
$\mathbf{R}(38,7)$	9R(14)	14780.1	32231871.4	1.9	1.0	1075.13950(6)
$\mathbf{R}(38,8)$	9R(14)	13779.6	32230870.8	2.1	1.0	1075.10613(7)
$\mathbf{R}(38,9)$	9R(14)	12640.0	32229731.3	1.2	3.0	1075.06812(3)
$\mathbf{R}(40,0)$	9R(18)	-15004.0	32281713.1	-6.3	3.0	1076.80204	-20)
$\mathbf{R}(40,1)$	9R(18)	-15072.0	32281645.1	-0.9	3.0	1076.79977	-2)
$\mathbf{R}(40,2)$	9R(18)	-15292.7	32281424.4	-1. 5	1.0	1076.79241(-4)
$R(40,3)$	9R(18)	-15659.0	32281058.0	-1.0	1.0	1076.78019(-3)
$\mathbf{R}(40,4)$	9R(18)	-16174.0	32280543.1	-2.2	1.0	1076.76302(-7)
$\mathbf{R}(40,5)$	9R(18)	-16832.5	32279884.6	0.2	1.0	1076.74105 ($0)$

Trane.	Laser	v	v / MHz		Unc.	$v /$	
$\mathrm{R}(40,6)$	9R(18)	-17641.0	32279076.1	0.8	2.0	1076.71408()
R(42, 0)	9R(20)	-9633.9	32325700.1	-4.	2.	1078.26929	-14)
R(42, 1)	9R(20)	-9714.	32325619.6	-4.8	2.0	1078.26660	-15)
$\mathbf{R}(42,2)$	9R(20)	-9955	32325378.9	-6.0	1.0	1078.25858	-16)
$\mathbf{R}(42,3)$	9R(20)	-10353.0	32324981.1	-1.7	1.0	1078.24631	-5)
R(42, 4)	9R(20)	-10914.9	32324419.1	-1.7	1.0	1078.22656	-5)
R(42, 5)	9R(20)	-11636.8	32323697.2	0.0	1.0	1078.20248	0)
$\boldsymbol{R}(42,6)$	9R(20)	-12523.3	32322810.7	0.0	2.0	1078.17291	$0)$
R(42, 7)	9R(20)	-13573.2	32321760.8	1.8	2.0	1078.13789	6)
$\mathbf{R}(42,8)$	9R(20)	-14796.0	32320538.0	-0.5	3.0	1078.09710	-1)
$\mathbf{R}(42,9)$	9R(20)	-16196.6	32319138.4	-6.8	2.0	1078.05042	-19)
R(42, 10)	9R(20)	-17763.2	32317570.9	1.8	2.0	1077.99813	5)
$\mathbf{R}(43,0)$	9R(20)	11392.0	32346726.0	4.5	2.0	1078.97064(14)
R(43, 1)	9R(20)	11310.1	32346644.1	6.1	2.0	1078.96791(20)
$\mathbf{R}(43,2)$	9R(20)	11053.4	32346387.4	0.	2.	1078.95934	0)
$\mathrm{R}(43,3)$	9R(20)	10642.0	32345976.0	7.0	1.0	1078.94562	23)
R(43, 4)	9R(20)	10056.0	32346390.0	7.0	3.0	1078.92608(23)
$\mathbf{R}(45,3)$	9R(22)	12839.7	32385995.9	2.2	2.0	1080.28054	
R(46, 4)	9R(22)	12200.0	32385356.2	-3.4	3.0	1080.25920	-11)
$\mathbf{R}(46,5)$	9R(22)	11394.0	32384560.2	7.6	2.0	1080.23232(24)
$\boldsymbol{R}(46,6)$	9R(22)	10366.0	32383522.2	-18.7	OMIT	1080.19803(-62)
$\mathbf{R}(47,0)$	9R(24)	14110.0	32424295.7	-4.6	3.0	1081.65809	-15)
$\mathbf{R}(47,1)$	9R(24)	14008.0	32424193.7	-9.4	3.0	1081. 65468 (-31)
$\mathbf{R}(47,2)$	9R(24)	13718.8	32423904.5	-7.1	2.0	1081.54504 (-23)
$\mathbf{R}(47,3)$	9R(24)	13246.5	32423431.2	6.9	2.0	1081.52926	19)
$\mathbf{R}(47,4)$	9R(24)	12568.0	32422753.7	10.1	OMIT	1081.50665)
${ }^{\mathbf{C}} \mathrm{CO}_{2}$ laser line used.							
$b_{\text {Microwave frequency in ME }}$. The aigned microwave frequency is added to the laser frequency to obtain the absorption frequency.							
Cobserved minus calculated frequency in MHz. The paraneters for the calculation are in the last two colunns of Table IV.							
$d_{\text {Betimated }}$ uncertainty in the observed frequency in MHz. An "OMIT" and an "OVBRLAP" mean that the frequency was onitted from the least equares fits and the transition was overlapped by another transition(s), respectively.							
${ }^{\circ}$ Observed frequency in cm^{-1}. The numbers in parentheses are the observed minus calculated frequencies in units of $0.00001 \mathrm{~cm}^{-1}$							

Table III.
Comparison of Observed and Calculated Frequencies in the $2 v_{3}+v_{3}$ Band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$

Trane.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	v / MHz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-1}	
P(25, 3)	10R(4)	12492.0	28935538.4	-3. 8	3.0	966. 18567 (-12)
P(25, 4)	10R(4)	12691.7	28935738.1	-6.2	2.0	965.19233(-17)
P(25, 6)	10R(4)	12961.4	28936007.8	-2.3	2.0	965.20133 (-7)
P(25, 6)	10R(4)	13305.9	28936352.3	4.1	2.0	965.21282(13)
$\mathbf{P}(\mathbf{2 5 , 7})$	10R(4)	13722.0	28936768.4	4.7	3.0	966.22670	16)
$\mathbf{P}(25,8)$	10R(4)	14196.3	28937242.7	-19.7	OMIT	965.24252(-65)
P(25, 9)	10R(4)	14818.4	28937864.8	16.6	OMIT	965.26327(55)
P (24,3)	10R(8)	-12131.0	28999001.0	-2.2	2.0	967.30255(-7)
P(24, 4)	10R(8)	-11923.0	28999210.0	-1.1	2.0	967.30962	-3)
P (24,5)	10R(8)	-11646.0	28999487.0	0.8	2.0	967.31876(2)
P(24, 6)	10R(8)	-11298.0	28999836.0	0.8	2.0	967.33037(2)
P(24, 7)	10R(8)	-10870.0	29000263.0	1.8	2.0	967.34465	6)
P(24, 9)	10R(8)	-9760.0	29001373.0	-0.7	2.0	967.38167(-2)
P(22, 0)	10R(14)	-13793.1	29123943.0	9.6	OVBRLAP	971.47017(32)
P(22, 1)	10R(14)	-13793.1	29123943.0	-20.3	OVERLAP	$971.47017($	-67)
P(22, 2)	10R(14)	-13680.3	29124055.9	2.1	2.0	971.473931	6)
P (22, 3)	10R(14)	-13529.6	29124206.5	-0.2	1.0	971.47896(0)
P(22, 4)	10R(14)	-13311.7	29124424.4	-0.8	1.0	971.48623(-2)
P(22,5)	10R(14)	-13023.8	29124712.4	-1.2	3.0	971.49583 (-4)
P(22, 6)	10R(14)	-12657.1	29125079.0	1.6	3.0	971.50806($5)$
P(22, 8)	10R(14)	-11682.0	29126054.1	-1.8	2.0	971.54059(-6)
P(22, 9)	10R(14)	-11056.0	29126680.1	-1.2	3.0	$971.56147($	-4)
P(22,10)	10R(14)	-10336.0	29127400.1	-0.3	3.0	971.58549 (-1)
P(21, 8)	10R(16)	9366.0	29187821.7	-0.7	3.0	973.60093(-2)
P(21, 9)	10R(16)	9997.6	29188453.3	-4.7	3.0	973.62200	-15)
P(21,10)	10R(16)	10736.5	29189192.2	2.8	3.0	973.64665	9)
P(20, 0)	10R(20)	-10833.8	29246824.7	13.9	OVERLAP	975.56906(46)
P(20, 1)	10R(20)	-10833.8	29246824.7	-17.2	OVBRLAP	975.56906(-57)
P(20, 2)	10R(20)	-10722.3	29246936.3	0.4	2.0	976.57278(1)
P(20, 3)	10R(20)	-10562.1	29247096.4	2.1	1.0	975.67812	$6)$
P(20, 4)	10R(20)	-10337.7	29247320.9	0.4	2.0	975.58561(1)
P(20,5$)$	10R(20)	-10041.5	29247617.0	-1.6	1.0	975.59649(-4)
P(20,6$)$	10R(20)	-9666.7	29247991.9	-2.1	2.0	975.60799(-6)
P(20, 7)	10R(20)	-9206.0	29248452.5	-0.4	3.0	975.62336(-1)
P(20,8$)$	10R(20)	-8657.9	29249000.6	-1.4	3.0	975.64164	-4)
P(19, 6)	10R(22)	12440.0	29308576.4	3.7	3.0	977.62888(12)
P(19, 8)	10R(22)	13460.0	29309596.4	4.1	3.0	977.66290	13)
P(19, 9)	10R(22)	14108.0	29310244.4	-0.1	2.0	977.68451($0)$
P(17, 0)	10R(30)	-15727.6	29426756.8	16.0	OVERLAP	981. $57092($	$53)$
P(17, 1)	10R(30)	-15727.5	29426755.8	-16.2	OVERLAP	981.57092(-53)

Trans.	Laser ${ }^{\text {a }}$	v	v / MHz	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	v / cm^{-}	
P(17, 2)	10R(30)	-15613.7	29426869.6	0.7	2.0	$981.57471($	2)
P(17, 3)	10R(30)	-15462.2	29427031.2	-1.4	1.0	981.58010 (-4)
P(17, 4)	10R(30)	-15218.2	29427265.1	-0.7	1.0	981.58791 (-2)
P(17, 5)	10R(30)	-14909.7	29427573.6	0.8	1.0	981.69820	2)
P(17, 6)	10R(30)	-14525.8	29427957.6	-1.6	1.0	981.61100	-6)
P(17, 7)	10R(30)	-14054.3	29428429.0	-2.3	1.0	981.62673(-7)
$\mathrm{P}(17,8)$	10R(30)	-13490.0	29428993.3	-3.0	3.0	981.64565 (-9)
$\mathrm{P}(17,9)$	10R(30)	-12823.6	29429659.7	-0.9	2.0	981.66778(-2)
P(17,12)	10R(30)	-10218.0	29432265.3	3.2	3.0	981.75470	10)
P(16, 5)	10R(32)	9216.0	29486376.9	2.8	3.0	983.56966 (9)
$\mathrm{P}(16,6)$	10R(32)	9606.4	29486767.3	4.8	2.0	983.57268 (15)
$\mathrm{P}(16,7)$	10R(32)	10082.0	29487242.9	6.6	2.0	983.58856 (18)
$\mathrm{P}(16,8)$	10R(32)	10646.1	29487807.0	1.2	3.0	983.60737 (4)
P(16, 9)	10R(32)	11316.9	29488477.8	3.2	3.0	983.62974 (10)
$\mathrm{P}(16,12)$	10R(32)	13938.0	29491098.9	-4.0	3.0	983.71717 (-13)
P(13, 0)	10R(44)	-10481.3	29658374.5	18.6	OVERLAP	989.29689 (61)
P(13, 1)	10R(44)	-10481.3	29658374.5	-14.0	OVBRLAP	989.29689 (-46)
P(13, 2)	10R(44)	-10367.4	29658488.4	1.8	2.0	989.30068 (6)
$P(13,3)$	10R(44)	-10202.0	29658653.8	1.7	3.0	989.30620 (5)
P(13, 4)	10R(44)	-9966.0	29658889.8	2.0	1.0	989.31407 (6)
P(13, 5)	10R(44)	-9656.6	29659200.3	2.1	1.0	989.32443 (6)
P(13, 6)	10R(44)	-9266.2	29659589.6	0.7	2.0	$989.33742($	2)
P(13, 7)	10R(44)	-8787.4	29660068.4	1.5	3.0	989.35339 (5)
P(12, 0)	10R(48)	-11611.8	29714782.9	16.8	OVERLAP	991.17847	$56)$
P(12, 1)	10R(48)	-11611.8	29714782.9	-15.7	OVERLAP	991.17847	-52)
P(12, 2)	10R(48)	-11496.8	29714897.9	1.4	2.0	991.18230 (4)
P(12, 3)	10R(48)	-11336.1	29715058.7	-2.9	1.0	991.18767	-9)
P(12, 4)	10R(48)	-11100.4	29715294.4	-2.5	2.0	991.19553	-8)
P(12, 6)	10R(48)	-10788.4	29715606.4	-0.3	1.0	991.20593($0)$
P(12, 6)	10R(48)	-10398.2	29715996.6	-0.1	1.0	991.21895 ($0)$
P(12, 7)	10R(48)	-9921.0	29716473.8	-0.2	2.0	991.23487 ($0)$
P(12, 8)	10R(48)	-9350.0	29717044.8	-2.0	3.0	991.25391 (-6)
R(3, 0)	9P(48)	-11425.7	30534448.6	29.2	OVBRLAP	1018.61957(97)
R(3, 1)	9P(48)	-11425.7	30534448.6	7.8	OVBRLAP	1018.51967(26)
R(3, 2)	9P(48)	-11366.9	30534507.5	1.8	2.0	1018.52154(6)
R(3, 3)	9 P (48)	-11260.6	30534613.7	-1.8	2.0	1018.52508(-6)
R(5, 0)	9P(46)	15249.8	30625766.0	31.7	OVERLAP	1021.56569(105)
R(5, 1)	9 P (46)	15249.8	30625766.0	13.0	OVBRLAP	1021.56559(43)
R(6, 2)	9 P (46)	15249.8	30625766.0	-43.5	OVBRLAP	1021.66559(-146)
R(6, 3)	9P(46)	15393.5	30625909.7	4.1	2.0	1021.57039(13)

Trans. Laser $\quad v_{\mathrm{a}}^{\mathrm{b}} \quad v / \mathrm{MHz} \quad 0-\mathrm{c}^{\mathrm{C}} \mathrm{Unc}^{\mathrm{d}} \quad \mathrm{v} / \mathrm{cI}^{-1} \mathrm{e}$

R(6, 4)	9P(46)	15525.0	30626041.1	-3.1	2.0	1021.57477(-10)
R(5,5)	9P(46)	15713.0	30626229.2	-0.6	3.0	1021.68104(-2)
R(10, 8)	9P(38)	-17994.0	30843903.5	-0.6	3.0	1028.84188(-1)
R(10, 9)	9P(38)	-17696.0	30844201.6	-2.2	3.0	1028.85182(-7)
R(13, 0)	9P(34)	-17340.0	30965850.8	17.3	OVERLAP	1032.90960 (67)
R(13, 1)	9P(34)	-17340.0	30965850.8	12.3	OVERLAP	1032.90960($40)$
R(13, 2)	9P(34)	-17340.0	30965850.8	-3.3	OVBRLAP	1032.90960(-11)
R(13, 3)	9P(34)	-17312.0	30965878.8	-3.1	3.0	1032.91053(-10)
$\mathrm{B}(13,6)$	9P(34)	-17120.0	30966070.8	-2.0	3.0	1032.91694(-6)
R(13, 7)	9P(34)	-17002.0	30966188.8	-1.1	3.0	1032.92087(-3)
R(13, 8)	9P(34)	-16850.0	30966340.8	-3.9	3.0	1032.92594(-12)
R(13, 9)	9P(34)	-16644.0	30966546.8	3.1	2.0	1032.93282 (10)
R(13,10)	9P(34)	-16398.0	30966792.8	1.3	3.0	1032.94102(4)
R(13,11)	9P(34)	-16102.8	30967088.0	0.3	2.0	1032.95087(1)
R(20, 0)	9P(26)	13388.0	31230149.3	-14.3	OVERLAP	1041.72565	-47)
$\mathbf{R}(20,1)$	9P(26)	13388.0	31230149.3	-3.9	OVBRLAP	1041.72565	-12)
$\mathbf{R}(20,5)$	9P(26)	13178.0	31229939.3	5.4	2.0	1041.71864(17)
$\mathbf{R}(20,6)$	9P(26)	13096.0	31229857.3	5.0	2.0	1041.71591(16)
$\mathbf{R}(20,9)$	9P(26)	12863.0	31229624.3	-0.2	2.0	1041.70814(0)
$\mathbf{R}(25,2)$	9P(20)	15940.0	31399840.4	3.1	2.0	1047.38594(10)
$\mathbf{R}(25,6)$	9P(20)	15225.9	31399126.3	-2.1	2.0	1047.36212(-7)

${ }^{\mathrm{CO}} \mathrm{CO}_{2}$ laser line used.
$b_{\text {Microwave frequency in MHz. The aigned microwave frequency is added }}$ to the laser frequency to obtain the absorption frequency.

Cobserved minus calculated frequency in MHz. The parameters for the calculation are in the lat two colunas of Table IV.
$d_{\text {Betimated }}$ uncertainty in the observed frequency in MHz. An "OMIT" and an "OVBRLAP" mean that the frequency was onitted from the least squares fits and the transition was overlapped by another transition(s), reepectively.
eobeerved frequency in $c m^{-1}$. The numbers in parentheses are the observed minus calculated frequencies in units of $0.00001 \mathrm{~cm}^{-1}$.

Table IV.
Vibration-Rotation Parameters for ${ }^{13} \mathbf{C H}_{3} \mathbf{F}$.

Parameter ${ }^{\text {a }}$	$v_{3}=0^{\text {b }}$	$v_{3}=1^{\text {b }}$	$v_{3}=2^{c, e}$
$\mathrm{B}_{\mathrm{v}} / \mathrm{GHz}$	$0.0000^{\text {d }}$	30803.4726(8)	61147.771(3)
$\mathrm{B}_{\mathrm{v}} / \mathrm{MHz}$	24862.6460(34)	24542.1245(36)	24231.981(36)
$\Delta\left(A_{v}-B_{v}\right) / \mathrm{MHz}$	0.0000	31.3483(650)	57.308(294)
$\mathrm{D}_{\mathrm{J}} / \mathrm{kHz}$	57.7386(156)	55.0634(147)	52.808(193)
$\mathrm{D}_{\mathrm{JE}} / \mathrm{kHz}$	424.7361(2852)	477.5582(3141)	516.564(1958)
$\Delta \mathrm{D}_{\mathrm{K}} / \mathrm{kHz}$	0.0000	-69.8591(10668)	-115.718(6958)
$\mathrm{H}_{\mathrm{J}} / \mathrm{Hz}$	-0.0172(100)	-0.1349(97)	-1.443(417)
$\mathrm{H}_{\mathrm{JX}} / \mathrm{Hz}$	1.5815(1425)	9.8596(1894)	23.931(4992)
$\mathrm{H}_{\mathbf{L J}} / \mathrm{Hz}$	20.3809(13806)	-40.2484(16926)	-54.356(23928)
$\Delta_{\mathrm{L}} / \mathrm{Hz}$	0.0000	55.9988(62308)	208.862(61590)
$\mathrm{L}_{\mathrm{J}} / \mathrm{mHz}$	$0.0000^{\text {d }}$	0.0078(15)	1.600(303)
$\mathrm{L}_{\text {JJJK }} / \mathrm{mHz}$	$0.0000^{\text {d }}$	-0.7656(433)	-17.569(4004)
$L_{\text {JJEI }} / \mathbf{H z}$	$0.0000^{\text {d }}$	11.3394(5012)	64.984(23322)
$L_{\text {JEEE }} / \mathrm{BHz}$	$0.0000^{\text {d }}$	-81.6815(27527)	-352.961(101561)
$\Delta L_{L} / \mathbf{H z}$	0.0000	49.2839(118569)	-700.256(204238)
${ }^{\text {a }}$ Vibration-rotation parameter. $\quad \Delta P=P\left(v_{3}\right)-P\left(v_{3}=0\right)$.			

$b_{\text {Obtained }}$ fron fit of frequencies indicated in Table and listed in Table II. Number in parenthesis is one standard error in units of last digit in the parameter.

Cobtained fron fit of frequencies in Table III. Parameters for $v_{3}=l$ were constrained to values shown in this table. Number in parenthesis is one standard error in units of last digit of the parameter.
${ }^{d}$ Constrained to zero in the least squares fit
${ }^{\text {e }}$ It should be noted that the parameters for $v_{3}=2$ are given to one less agnificant figure than the parametars for $\mathbf{v}_{3}=0$ and 1 .
standard deviations for an object of unit weight (SD) were 2.45 and 1.37 MHz (r.m.s. deviations 3.38 and 2.49 MHz) for the fits to the fundamental and hot band frequencies, respectively.

If the L constants for the $v_{3}=l$ state were constrained to zero for the fundamental frequencies, the SD rose to 9.77 MHz . In addition, there was a definite increase in the residual for increasing J and K. On the other hand, allowing the L constants to vary for the ground state led to only a slight improvement in the SD (from 2.45 to 2.44 MHz). These findings are probably a result of the $v_{3}-v_{6}$ Coriolis coupling, which strongly affects the energies for $v_{3}=1$ and 2. The effect of this coupling can be expanded in a power series in $J(J+1)$ and K^{2} and apparently L constants are required to calculate the frequencies to within a few MHz for the high J's(s47) and K's(sl6) in the present study.

The standard deviation for an object of unit weight obtained from the fit of the v_{3} fundamental band (2.45 MHz) is more than twice the value expected (1.00 MHz) if the uncertainties are accurately estimated. This large value of the $S D$ is probably the result of model error rather than underestimation of the experimental uncertainty. The SD for the $2 v_{3}$ - v_{3} hot band (1.37 MHz) was much closer to the expected value, which can be explained as being a result of smaller effects of model error for the lower J 's and K's
included in the fits of the hot band.
The least squares fits to Bq. (64), although providing an accurate representation of the experimental frequencies, are not entirely satisfactory. Part of the problem is the unexpectedly large SD just discussed. In addition, however, there is a question of convergence of that part of the expansion having to do with $\mathrm{K}^{2 n}$. This is best seen by calculating the contributions from the terme involving ΔD_{K}, ΔH_{K}, and ΔL_{K}. For the largest $K(=16)$ value studied, there is slow convergence in these terms (e.g., $\Delta H_{K} K^{6} / \Delta L_{K} R^{8}=$ 4.5). For large K values, however, the convergence rapidly decreases and for $K=40$, which is still smaller than the largest J values studied, these terms are diverging. For these reasons, the values in Table IV, especially the L constants, should be regarded as fitting constants for the range of J and K values studied (Tables II and III).

In order to try to obtain a convergent set of parameters to represent the experimental frequencies for the fundamental band, several fittings to equations in the forms of a Pade approximant(76), which is famous for fits of the NH_{3} inversion frequencies, were applied. The first Pade form tried was similar to Young's form(76,77), which was applied to the NH_{3} inversion frequencies with a great success. This can be expressed as

$$
E_{p}(v, J, K)=\left[\sum_{m=0, n=0}^{m+n S 3} B_{m n} f^{m} g^{n}\right] /\left[1+b_{10} f+b_{01}^{g}\right]
$$

where $f=J(J+1)$ and $g=K^{2}$. Least squares fits with this Pade approximant form of the energy showed exceptionally high correlations between the parameters, even when the denominator and the coefficients of $K^{2 n}$ were onitted for the ground state. The second Pade approximant tried is Burenin's form(78) given by

$$
\begin{equation*}
B=\frac{B_{0}+\sum_{l \leq m+n \leq 2} \sum_{m n} f^{m} g^{n}}{1+\sum_{1 \leq m+n \leq 3} \sum_{m n^{m}} f^{m^{n}}} \tag{85}
\end{equation*}
$$

And the last one tried is Watson's form(79,80), which is

$$
\begin{equation*}
B=B_{0}+B_{10} f+B_{01} g+\frac{\sum_{m+n \sum 2} \sum_{m n^{\prime}} f^{m} g^{n}}{1+b_{10} f^{f+b_{01}}{ }^{g}} \tag{86}
\end{equation*}
$$

The application of Watson's form of Pade approximant to the experimental frequencies worked very well for the case of $m+n \leq 3$. Of a total of 24 parameters used for this fit, 6 parameters ($B_{0}, B_{01}, B_{02}, B_{03}, b_{10}$, and b_{01}) for the ground state were fixed to zero. The least squares fits to Eq.
(86) showed good convergence and small deviation in the
region of high J and K values. Also, the fitting uncertainty is much better compared to the fits to Bq. (64). Moreover, the SD was improved to 2.99 MHz (r.m.s. deviation 3.77 MHz) for these fits, which proves that the Watson's form of Pade approximant is very useful for high J and K region. The fitting parameters to Bq. (86) are given in Table V. No attempt was made to include the Coriolis interaction explicitly because there is not enough information available for the interacting bands (v_{6} or $v_{3}+$ v_{6}).

The data in Table IV are sufficient to allow estimation of the first 3 constants in an expansion of the vibration-rotation parameters for ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ in powers of v_{3}. If a parameter $P(v)$ is expressed as

$$
\begin{equation*}
P(v)=P(0)+c_{1} v+c_{2} v^{2} \tag{87}
\end{equation*}
$$

then

$$
\begin{equation*}
c_{1}=[P(0)-2 P(1)+P(2)] / 2 \tag{88}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=-[3 P(0)-4 P(1)+P(2)] / 2 \tag{89}
\end{equation*}
$$

The values of $P(0), c_{1}$, and c_{2} for the vibrational energy,

Table v
The Fitting Parameters of Watson's Forn of Pade Approximant

$$
\text { for } v_{3} \text { Band of }{ }^{13} \mathrm{CH}_{3} \mathrm{~F}
$$

Parameters $\quad v_{3}=0^{a} \quad v_{3}=1^{a}$
B/GHz
0.00000^{b}
30803.47561 (0)
${ }^{\mathrm{B}} \mathbf{1 0}_{0} / \mathrm{MHz}$
24862.64766(0)
24542.11570(0)
${ }^{B_{01}} / \mathrm{MHz}$
0.00000^{b}
31.05489(4)
$\mathrm{B}_{20} / \mathrm{kHz}$
57.72178(2)
$-55.04668(2)$
$\mathrm{B}_{11} / \mathrm{kHz} \quad 424.78897$ (34)
-476.49688(33)
$\mathrm{B}_{02} / \mathrm{kHz} \quad 0.00000^{\mathrm{b}}$
72.73522(42)
$\mathrm{B}_{30} / \mathrm{Hz} \quad-0.03717(1) \quad-2.46022(30)$
$\mathrm{B}_{21} / \mathrm{Hz} \quad 1.86983(17)$
55.65918(355)
${ }^{B}{ }_{12} / \mathrm{Hz}$
19.35117(165)
528.17178(1466)
$\mathrm{B}_{03} / \mathrm{Hz} \quad 0.00000^{\mathrm{b}}$
$-41.25928(266)$
$\mathrm{b}_{10} \times 10^{3}$
0.00000^{b}
$41.93419(550)$
$b_{01} \times 10^{3}$
0.00000^{b}
-120.51669(2989)
${ }^{\text {a Obtained fron fit of frequencies indicated Table } I \text { and }}$ listed in Table II. Number in parenthesis is one standard error in units of last digit in the parameter.
${ }^{b}$ Constrained to zero in the least squares fit.

Table VI.
Vibrational Dependence of Vibration-Rotation Parameters for ${ }^{13} \mathbf{C H}_{3}$ F
$P(v)^{a} \quad P(0)^{b} \quad c_{1}^{b} \quad c_{2}^{b}$
$\mathrm{B}_{\mathrm{v}} / \mathrm{GHz} \quad 0.000 \quad v_{3}=31033.060(2) \quad x_{33}=-229.587(1)$
$B_{v} / \mathrm{MHz} 24862.646(3) \quad-\alpha_{3}^{B}=-325.710(20) \quad 5.189(18)$
$\Delta A_{v} / \mathrm{MHz} \quad 0.000 \quad-\alpha_{3}^{A}=-291.668(197) \quad 2.494(162)$
$\mathrm{D}_{\mathrm{J}} / \mathrm{kHz} \quad 57.739(15) \quad$-2.885(103) 0.210(98)
$\mathrm{D}_{\mathrm{JK}} / \mathrm{kHz} \quad 424.736(285) \quad 59.730(1239) \quad-6.908(1038)$
$\Delta D_{R} / k H z \quad 0.000 \quad 12.000(3639)$
${ }^{a}$ vibration-rotation parameter. $\quad P(v)=P(0)+c_{1} v+c_{2} v^{2}$. $P(0), c_{1}$, and c_{2} were derived from the parameters in ${ }^{2}$ Table IV.
${ }^{b}$ Uncertainties in parentheses, in units of the last digit in the parameter, were propagated from one standard error in the parameters.
rotational constants, and quartic distortion parameters are given in Table VI together with the more conventional symbols for some of then.
v_{3} Fundamental and $2 v_{3}-v_{3} H o t$ Bands of ${ }^{12} \mathrm{CH}_{3}{ }^{F}$

By using a MW feedback controlled CO_{2} infrared laser$M W$ sideband laser, more than $30 \mathrm{CO}_{2}$ laser lines ranging from 10R(40)-9R(26) were tuned according to the predictions of approximate frequencies for the v_{3} fundamental band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ obtained from many transitions observed previously. However, the predictions turned out to be not so accurate, particularly for high J and K transitions in the P branch. By scanning the $M W$ frequency from $8.2-12.2 \mathrm{GHz}$ and from 12.4-18.0 GHz for each CO_{2} laser line, a total of $266 \mathrm{v}_{3}$ fundamental band transitions could be observed, of which 212 transitions could be resolved, and of which 206 transitions were used for the vibration-rotation analysis. The estimated accuracy of these frequencies is $1-3 \mathrm{MHz}$, depending on the signal to noise ratio of the spectra. Figure 17 shows a typical spectrum from the v_{3} band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ obtained by the MW feedback controlled IR-MW sideband systen.

For the least squares fits, the data were weighted by the inverse of the square of the uncertainties shown in
(14.04
> laser line was used. . feedback controlled IR-MW sideband laser spectroneter. Two epectra were obtained at different pressure; $\mathbf{~} \mathbf{1 0 0}$ ITorr for
the epectrum at the left and $\mathbf{~ 5 0}$ miorr for the epectrum at epectra were obtained at different pressure; $\mathbf{~} \mathbf{1 0 0}$ eforr for
the epectrum at the left and $\mathbf{\sim} \mathbf{5 0}$ morr for the epectrum at the right. This epectrum ahows much improved baseline and lineahape. The lower aideband senerated fron the $\mathbf{9 R (1 2)} \mathrm{CO}_{2}$
> Typical epectrun of the v_{3} band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ obtained with MW
Pisure 17.
 Fisure 17.
FREQ.(GHz)

Table VII, and the present data were conbined with the available millimeter wave and laser-based frequencies and fitted by least squares adjustment of the parameters.

The $2 v_{3}$ - v_{3} hot band of ${ }^{12} \mathrm{CH}_{3}$ F was observed with the same instrument as the v_{3} fundamental band. According to the rough predictions based on the data from a previously published IR laser Stark experiment(16), a total of $11 \mathrm{CO}_{2}$ laser lines were tuned while sweeping the microwave frequency from 8.2-12.2 GHz and/or from $12.4-18.0 \mathrm{GHz}$. From these measurements, a total of 84 transitions in the $2 v_{3}$ v_{3} hot band could be observed, of which 70 transitions were resolved and used for the least squares fits. The estimated accuracy was again l-3 MHz depending on the S / N. In the fit of the $2 v_{3}$. v_{3} transitions the energy levels of the $v_{3}=1$ state were assumed from the fit of the $v_{3}=1-0$ transitions.

With the same method as ${ }^{13} \mathrm{CH}_{3} F$, the transitions of v_{3} fundamental and $2 v_{3}$ - v_{3} hot bands were fitted to Bq. (64). With the L constants being constrained to zero for the ground atate and allowed to vary for $v_{3}=1$ and 2 state, the standard deviations for an object of unit weight were 1.33 and 1.37 MHz (r.m.s. deviations 7.43 and 2.22 MHz) for the fits to the fundamental and hot bands frequencies, respectively.

If the L constants are allowed to vary for the ground state, the $S D$ was slightly decreased to 1.29 MHz . Tables

Table VII.
Sources of Data for fits of the v_{3} Band of ${ }^{12} \mathrm{CH}_{3}$ r

Experiment

Source
Transitions
Uncert. ${ }^{\text {a }}$

IR-MM 8ideband	This work, Table VIII	$\begin{aligned} & \text { Hish and low J, } \mathrm{I} \text {; } \\ & \mathrm{P}, \mathrm{Q}, \mathrm{R} \text {. } \end{aligned}$	$\begin{aligned} & 1.0- \\ & 3.0 \mathrm{MHz} \end{aligned}$
	Ref. 23, Table I	High J, \mathbf{E}; \mathbf{Q}, R. Low J; P,R.	$\begin{aligned} & 10.0 \mathrm{MHz} \\ & 10.0 \mathrm{MHz} \end{aligned}$
IR-MW Two-Photon	Ref. 29, Table I	Low J; P, Q,R.	6.0 MEz
IR Laser stark	Ref. 16, Table III	Low J; P, Q,R.	6.0 MEz
```IR Laser stark Lamb Dips```	Ref. 16, Table III	$Q(1,1), Q(2,2)$.	1.0 MHz

IR-RF Two-Photon Ref. 16, Table III Q(12,2). 1.0 MHz
Ref. 40, Table III O(12,3). 1.0 MHz
Waveguide Leser Ref. 24, Table I $Q(12,1)$, $Q(12,2)$. 0.5 mHz

Diode Laser

FIR Eniseion
namben
nn Wave

Ref. 8, Table VI

Ref. 9, Table I

Ref. 75

Ref. 24, Table I
Ref. 26, Table 1
Ref. 17, Table I

Ref. 6, Table 2

Ref. 7, Table I

Hish J, I ; $Q, P(1,0)$. 10.0 MHz High J, E ; $\mathrm{P}, \mathrm{R}$. $\quad \mathbf{3 0 . 0} \mathrm{MHz}$ High J, pure rot., $\quad 6.0 \mathrm{MHz}$ $v_{3}=0$ and 1.
$R(1-3, K), \quad 0.01 \mathrm{MHz}$ pure rot., $v_{3}=0$.

R(4, I), pure rot., 0.1 MHz $\nabla_{3}=0$.
$R(0,0)$, pure rot.. 0.1 MHz
$\nabla_{3}=1$.
R(1,K), pure rot.,
0.6 MHz $v_{3}=1$.

High and low J; R, 0.1 MHz pure rot., $v_{3}=0,1$.

[^2]VIII and IX show the measured frequencies with their estimated uncertainties for the $v_{3}$ and $2 v_{3}$ - $v_{3}$ transitions, respectively. The parameters in Table $X$ were obtained from fits to Bq. (64) in which the L constants were constrained to zero for the ground state.

The small SD for ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ compared to ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ can be explained as being the result of the lower maximum $J(=39)$ value ( $J \leq 47$ on ${ }^{13} \mathrm{CH}_{3} F$ ) and a larger number of data for ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$.

The molecular parameters for the vibrational ground state were compared with the data obtained from combination difference of several thousand transitions by Graner(39). Table XI shows the comparison between two data, in which the present parameters are in very good agreement with the previous ones.

The least squares fits of the $v_{3}=1$ transitions to Bq. (86) were done by the same method as for ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ by constraining 6 parameters for the ground state to zero and allowing the other paraneters to vary. The results show that the SD decreased to 1.63 MHz (r.m.s. deviation 7.39 MHz) and the fitting uncertainties are much improved. This phenomenon can be explained in the same way as for ${ }^{13} \mathrm{CH}_{3}{ }^{\mathrm{F}}$. The fitting parameters to Bq. (86) are shown on Table XII. Also the vibrational dependence of vibration-rotation parameters for ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ is given in Table XIII.

## Table VIII.

Comparison of Observed and Calculated Frequencies
in the $v_{3}$ Band of ${ }^{12} \mathrm{CH}_{3}$

Trans.	Laser	$v$	$v / \mathrm{MHz}$	0-C ${ }^{\text {c }}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$
P(30, 0)	10R(40)	10610.0	29618718.1	5.8	OVERLAP	987.97409 ( 19)
P(30, 1)	10R(40)	10610.0	29618718.1	-5.3	OVERLAP	987.97409( -17)
P(30, 2)	10R(40)	10610.0	29618718.1	-39.0	OVERLAP	987.97409(-129)
P(30, 3)	10R(40)	10708.0	29618816.1	2.0	3.0	987.97736( 6)
P(30, 4)	10R(40)	10791.0	29618899.1	3.4	2.0	$987.98013(11)$
P(30, 5)	10R(40)	10895.0	29619003.1	-0.6	2.0	987.98360( -1)
P(30, 6)	10R(40)	11036.0	29619143.1	3.8	1.0	987.98827( 12)
$\mathrm{P}(30,7)$	10R(40)	11196.0	29619304.1	-0.3	2.0	987.99364 ( -1)
$\mathrm{P}(30,8)$	10R(40)	11396.6	29619604.7	4.6	1.0	988.00033 ( 15)
P(30, 9)	10R(40)	11615.4	29619723.5	-3.3	1.0	988.00763( -10)
P(30,10)	10R(40)	11870.6	29619978.7	-5.9	1.0	988.01614(-19)
P(30,11)	10R(40)	12162.0	29620270.1	-2.9	2.0	$988.02586(-9)$
P(30,12)	10R(40)	12481.8	29620689.9	-0.9	1.0	988.03663( -3)
P(30,13)	10R(40)	12830.0	29620938.1	0.7	1.0	988.04814 ( 2)
P(30,14)	10R(40)	13209.9	29621318.1	5.6	2.0	988.06082 ( 18)
P(30,15)	10R(40)	13618.0	29621726.1	7.8	2.0	988.07443( 25)
P(29, 0)	10R(46)	-9530. 5	29688498.8	12.1	overlap	990.30173( 40)
P(29, 1)	10R(46)	-9530.5	29688498.8	-1.7	OVERLAP	$990.30173(-6)$
P(29, 2)	10R(46)	-9630.5	29688498.8	-43.4	OVERLAP	990.30173(-144)
P(29, 3)	10R(46)	-9418.8	29688610.5	-2.2	2.0	990.30546( -7)
P(29, 4)	10R(46)	-9313.4	29688716.0	2.5	2.0	990.30897( 8)
P(29, 5)	10R(46)	-9182.0	29688847.3	0.9	2.0	990.31336( 2)
$\mathrm{P}(29,6)$	10R(46)	-9014.6	29689014.7	1.1	1.0	990.31893 ( 3)
P(29, 7)	10R(46)	-8813.6	29689216.7	-1. 5	1.0	990.32564( -4)
P(29, 8)	10R(46)	-8576.1	29689453.2	-6.0	2.0	990.33356( -20)
P(29, 9)	10R(46)	-8294.0	29689736.3	-6.0	OVERLAP	990.34297( -20)
$\mathrm{P}(16,0)$	9 P (46)	-10176.8	30600340.3	23.8	OVERLAP	1020.71748( 79)
P(16, 1)	9 P (46)	-10175.8	30600340.3	-17.9	OVBRLAP	1020.71748(-59)
P(15, 2)	9 P (46)	-10031.5	30600484.7	0.5	1.0	1020.72230( 1)
P(15, 3)	9P(46)	-9820.3	30600695.8	-1.1	1.0	1020.72934(-3)
P(15, 4)	9P(46)	-9616.1	30601000.1	-0.9	1.0	1020.73949(-2)
P(15, 5)	9 P (46)	-9113.1	30601403.1	0.6	1.0	1020.76293( 1)
$P(15,6)$	9 P (46)	-8604.6	30601911.6	1.5	2.0	1020.76990( 4)
P(14, 0)	9 P (44)	-13761.7	30660684.1	1.6	OVBRLAP	1022.73033( 5)
P(14, 1)	9P(44)	-13761.7	30660684.1	-41.3	OVERLAP	1022.73033(-137)
P(14, 2)	9P(44)	-13593.9	30660851.9	-3.0	1.0	1022.73693( -10)
P(14, 3)	9 P (44)	-13374.0	30661071.7	-2.0	1.0	1022.74326( -6)
P(14, 4)	9P(44)	-13059.9	30661385.8	-0.7	1.0	1022.75374( -2)
P(14, 5)	9P(44)	-12647.9	30661797.9	-1.9	1.0	1022.76749(-6)
P(14, 6)	9P(44)	-12124.6	30662321.2	-1.2	1.0	1022.78494(-3)


Trana.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	v/MEz	0-C	Unc. ${ }^{\text {d }}$	v/cm ${ }^{-1}$	
P(14, 7)	9P(44)	-11480.8	30662964.9	-0.8	1.0	1022.80642 (	-2)
$P(14,8)$	9P(44)	-10701.3	30663744.5	0.4	1.0	1022.83242(	1)
P(14, 9)	9P(44)	-9769.6	30664676.1	0.8	1.0	1022.86350	2)
P(14,10)	9P(44)	-8664.0	30665781.8	0.0	2.0	1022.90038(	0)
$P(13,0)$	9P(42)	-17238.8	30720417.9	19.3	OVERLAP	1024.72284 (	$64)$
P(13, 1)	9P(42)	-17238.8	30720417.9	-24.7	OVBRLAP	1024.72284(	-82)
P(13, 2)	9P(42)	-17079.2	30720577.5	2.2	1.0	1024.72816(	7)
P(13, 3)	9P(42)	-16857. 8	30720798.9	-0.6	1.0	1024.73555 (	-1)
P(13, 4)	9P(42)	-16537.2	30721119.6	-0.6	1.0	1024.74624(	-1)
P(13, 5)	9P(42)	-16112.8	30721543.9	0.1	1.0	1024.76040(	$0)$
P(13, 6)	9P(42)	-16576.7	30722080.0	0.0	1.0	1024.77828(	0)
P(13, 7)	9P(42)	-14916.5	30722740.2	-0.1	1.0	1024.80030(	$0)$
P(13, 8)	9P(42)	-14117.0	30723639.8	0.0	1.0	1024.82697(	$0)$
P(13, 9)	9P(42)	-13159.7	30724497.0	0.0	1.0	1024.85890	0)
P(13,10)	9P(42)	-12022.8	30725633.9	-1.5	1.0	1024.89683(	-4)
P(13,11)	9P(42)	-10675.0	30726981.7	-1.9	1.0	1024.94178(	-6)
P(13,12)	9P(42)	-9078.1	30728578.6	0.9	1.0	1024.99605	3)
P(12, 8)	9P(40)	-17469.1	30782673.6	-0.2	1.0	1026.79947(	$0)$
P(12, 9)	9P(40)	-16488.2	30783654.5	0.1	1.0	1026.83219(	0)
P(12,10)	9P(40)	-15321.6	30784821.2	-0.1	1.0	1026.87110(	$0)$
P(12,11)	9P(40)	-13940.6	30786202.1	-2.8	1.0	1026.91716(	-9)
P( 5, 0)	9P(28)	14967.8	31174476.0	22.2	OVBRLAP	1039.86859(	74)
$P(5,1)$	9P(28)	14967.8	31174476.0	-25.1	OVERLAP	1039.86859(	-83)
P( 5, 2)	9P(28)	16136.0	31174644.2	0.2	1.0	1039.87420 (	0)
P( 5, 3)	9P(28)	15378.8	31174887.0	1.1	1.0	1039.88230 (	3)
$P(5,4)$	9P(28)	15724.3	31175232.4	0.0	2.0	1039.89382 (	0)
P( 4, 0)	9P(26)	11481.4	31228242.7	23.0	OVERLAP	1041.66206(	76)
P( 4, 1)	9P(26)	11481.4	31228242.7	-24.0	OVBRLAP	1041.66205(	-80)
P( 4, 2)	9P(26)	11648.0	31228409.3	0.5	1.0	1041.66761(	1)
P( 4, 3)	9P(26)	11889.3	31228650.6	1.0	1.0	1041.67566(	$3)$
Q $(39,12)$	9P(36)	-16133.6	30907781.9	0.5	2.0	1030.97263	1)
$Q(38,9)$	9P(36)	14669.9	30937585.3	1.6	2.0	1031.96676(	6)
Q $(33,3)$	9P(32)	17624.0	31060342.1	-11.9	OMIT	1036.06149(	-39)
Q(33, 4)	9P(32)	17420.0	31060138.1	-9.0	3.0	1036.05469(	-30)
Q(33, 5)	9P(32)	17168.0	31059876.1	-6.6	2.0	1036.04596(	-21)
$Q(33,6)$	9P(32)	16839.1	31059557.2	-3.6	1.0	1036.03531(	-12)
Q (33, 7)	9P(32)	16470.6	31059188.6	7.6	OMIT	1036.02302(	25)
Q (33, 8)	9P(32)	16029.2	31058747.3	5.9	1.0	1036.00829(	19)
$Q(33,9)$	9P(32)	16523.3	31058241.4	3.2	1.0	1036.99142(	10)
Q (33, 10)	9P(32)	14946.6	31057664.6	-1.2	1.0	1036.97218(	-3)


Trana.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	$v / \mathrm{MHz}$	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$	
Q $(33,11)$	9P(32)	14297.3	31057015.4	-0. 1	1.0	1035.96052	$0)$
Q $(33,12)$	9P(32)	13555.4	31056273.5	-3.1	1.0	1035.92578(	-10)
Q $(33,13)$	9P(32)	12711.8	31055429.9	-5.4	2.0	1035.89764 (	-17)
Q $(29,8)$	9P(28)	-16017.2	31143491.0	0.7	2.0	1038.83504 (	2)
Q $(29,9)$	9P(28)	-16236.6	31143271.6	-3.4	1.0	1038.82772 (	-11)
$Q(29,10)$	9P(28)	-16478.0	31143030.2	-9.6	OMIT	1038.81967 (	-32)
Q $(29,11)$	9P (28)	-16721.7	31142786.4	2.2	2.0	1038.81154(	7)
O(29,12)	9 P (28)	-17001.8	31142506.4	-1.3	2.0	1038.80220 (	-4)
$0(29,13)$	9P(28)	-17293.0	31142216.1	5.5	1.0	1038.79248(	18)
Q $(29,14$ )	9P(28)	-17609.3	31141898.9	8.4	2.0	1038.78193(	28)
Q $(29,15)$	9P(28)	-17962.2	31141646.0	-6.7	2.0	1038.77016(	-22)
O $(26,14)$	9 P (26)	-16174.0	31200587.3	1.4	2.0	1040.73967	4)
$0(26,15)$	9P(26)	-15961.4	31200799.9	-2.7	1.0	1040.74666(	-9)
Q $(26,16)$	9 P (26)	-15682.0	31201079.3	-31.3	OVERLAP	1040.75698(	-104)
Q $(26,17)$	9P(26)	-15332.0	31201429.3	-113.5	OVERLAP	1040.76765 (	-378)
Q $(23,17)$	9 P (24)	-17151.7	31256096.5	-60.4	OVBRLAP	1042.59112(	-201)
O $(23,18)$	9P(24)	-15662.1	31257685.1	38.4	OVERLAP	1042.64414(	127)
O(21,11)	9P (24)	9628.6	31282875.8	1.8	2.0	1043.48442(	6)
Q $(21,12)$	9P(24)	10212.0	31283459.2	1.0	3.0	1043.60387	3)
Q $(21,13)$	9P(24)	10934.1	31284181.3	6.2	2.0	1043.62796(	20)
Q $(21,14)$	9P(24)	11809.8	31285057.0	1.8	2.0	1043.65717	5)
Q $(21,16)$	9P (24)	12890.2	31286137.3	-0.2	1.0	1043.59321(	0)
$Q(21,16)$	9P (24)	14215.0	31287462.2	-10.2	OMIT	1043.63740 (	-33)
O $(21,17)$	9P(24)	15845.5	31289092.7	-31.1	Overlap	1043.69179(	-103)
$0(21,18)$.	9P(24)	17926.2	31291173.3	-1.0	2.0	1043.76119(	-3)
O(19,11)	9P(22)	-17734.9	31311226.6	2.9	1.0	1044.43010(	9)
Q $(19,12)$	9P(22)	-16965.5	31311996.0	-3.6	1.0	1044.45676(	-11)
Q $(19,13)$	9P(22)	-16018.0	31312943.5	0.6	2.0	1044.48737	1)
Q $(19,14)$	9P(22)	-14870.7	31314090.8	0.2	1.0	1044.52564(	$0)$
Q $(19,16)$	9P(22)	-13473.3	31315488.2	-1.6	1.0	1044.57225	-4)
Q $(19,16)$	9P(22)	-11765.1	31317196.4	-3.2	1.0	1044.62923 (	-10)
Q $(19,17)$	9P(22)	-9663.1	31319298.4	2.5	2.0	1044.69934(	8)
$0(17,13)$	9P(22)	10017.4	31338978.9	3.2	2.0	1046.36581(	10)
Q (17,14)	9P(22)	11414.3	31340375.8	2.7	1.0	1045.40241(	8)
$0(17,15)$	9P(22)	13111.6	31342073.1	6.7	3.0	1045.45903(	18)
Q $(17,16)$	9P(22)	16176.6	31344137.1	10.1	2.0	1045.52787	$33)$
O(17,17)	9P(22)	17680.0	31346641.5	3.9	2.0	1045.61141(	13)
Q(16, 2)	9P(22)	15826.0	31344787.5	0.2	2.0	1045. 54957	0)
Q(16, 3)	9P(22)	15955.1	31344916.6	5.1	2.0	1046.56388(	17)
Q(16, 4)	9P(22)	16130.0	31345091.6	0.4	2.0	1045.55971(	1)


Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	$v / \mathrm{MHz}$	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$	
Q (16, 5)	9P(22)	16372.0	31346333.6	1.6	1.0	1046.56778(	5)
Q(16, 6)	9P(22)	16682.1	31345643.6	2.0	1.0	1046.57812(	6)
Q (16, 7)	9P(22)	17069.2	31346030.7	0.8	1.0	1045.59104(	2)
Q $(16,8)$	9P(22)	17550.2	31346511.7	2.2	2.0	1045.60708(	7)
Q(14, 4)	9P(20)	-17839.5	31366060.9	-0.9	1.0	1046.25917	-2)
O(14, 5)	9P(20)	-17556.8	31366343.6	-1.5	1.0	1046.26860	-4)
Q (14, 6)	9P(20)	-17192.8	31366707.6	-0.7	1.0	1046.28075 (	-2)
Q(14, 7)	9P(20)	-16738.0	31367162.4	0.0	2.0	1046.29591	$0)$
Q (14, 8)	9P(20)	-16179.6	31367720.8	-0.3	1.0	1046.31464(	0)
Q (14, 9)	9P(20)	-15496.0	31368405.4	3.9	2.0	1046.33738(	12)
O(14, 10)	9P(20)	-14676.7	31369223.7	-1.3	1.0	1046.36467	-4)
O(14,11)	9P(20)	-13681.7	31370218.7	0.8	1.0	1046.39786(	2)
Q $(14,12)$	9P(20)	-12490.2	31371410.2	-3.1	1.0	1046.43760	-10)
Q $(14,13)$	9P(20)	-11049.5	31372850.9	-1.0	1.0	1046.48566(	-3)
O(14,14)	9P(20)	-9313.0	31374587.4	2.6	3.0	1046.54359(	8)
Q(13, 2)	9P(20)	-8746.1	31375155.3	-1. 5	2.0	1046.56253(	-5)
Q(13, 3)	9P(20)	-8587.9	31375312.5	-1.7	1.0	1046.66777 (	-5)
Q(13, 4)	9P(20)	-8361.4	31376539.0	-2.0	1.0	1046.57533(	-6)
Q(11, 6)	9P(20)	9326.3	31393226.7	-27.1	OVERLAP	1047.16529(	-90)
Q(11, 7)	9P(20)	9896.4	31393796.8	5.1	1.0	1047.18434(	17)
Q(11, 8)	9P(20)	10555.4	31394456.8	3.1	1.0	1047.20633(	10)
Q(11, 9)	9P(20)	11356.9	31395257.3	1.8	1.0	1047.23306(	5)
Q(11,11)	9P(20)	13489.0	31397389.4	0.7	1.0	1047.30418(	2)
$Q(10,2)$	9P(20)	15591.1	31399491.5	0.6	2.0	1047.37430(	1)
Q ( 10,3 )	9P(20)	15776.3	31399676.7	1.0	1.0	1047.38048(	3)
Q(10, 4)	9P(20)	16042.3	31399942.7	1.2	1.0	1047.38936(	3)
$Q(10,5)$	9P(20)	16396.6	31400297.0	1.4	1.0	1047.40117(	4)
$Q(10,6)$	9 P (20)	16849.1	31400749.5	1.5	2.0	1047.41626(	4)
Q ( 10,7 )	9P(20)	17412.6	31401313.0	1.7	1.0	1047.43506(	5)
Q ( 6, 1)	9P(18)	-15679.2	31422381.0	0.3	2.0	1048.13781(	1)
O( 6, 2)	9P(18)	-15556.1	31422505.1	-0.2	1.0	1048.14196(	$0)$
Q ( 6, 3)	9 P (18)	-15344.0	31422716.2	-0.3	1.0	1048.14899	$0)$
O( 6, 4)	9P(18)	-15041.2	31423019.0	-0.9	1.0	1048.15909	-3)
Q ( 6, 5)	9 P (18)	-14637.5	31423422.7	-1.0	1.0	1048.17256(	-3)
$0(6,6)$	9P(18)	-14121.0	31423939.2	0.6	1.0	1048.18979(	1)
O( 5, 2)	9P(18)	-11491.8	31426568.3	-1.5	1.0	1048.27748(	-4)
Q ( 5, 3)	9P(18)	-11275.8	31426784.3	-1.5	1.0	1048.28469(	-4)
Q (5, 4)	9P(18)	-10965.1	31427095.1	-0.9	1.0	1048.29506(	-2)
Q ( 5, 6)	9P(18)	-10552.0	31427508.2	-0.5	1.0	1048.30883(	-1)
R( 2, 0)	9P(12)	-10109.9	31585721.9	18.0	OVERLAP	1053.58627(	60 )


Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	$v / \mathrm{MHz}$	O-C ${ }^{\text {c Unc. }}{ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$

$\left.\begin{array}{l}R(2,1) \\ R(2,2) \\ R(3,0) \\ R(3, \\ R(3, \\ R(3) \\ R(3, \\ R(4,\end{array}\right)$

R( 4, 4) R(5, 0) R(5, 1) R(5, 2) R(5, 3) R(5, 4) R(5, 6) $\mathbf{R}(13,0)$ R(13, 1) R(13, 2) R(13, 3) R(13, 4) R(13, 5) $\mathbf{R}(13,6)$ R(13, 7) R(13, 8) R(13, 9) R(13,10) R(13,11)
R(14, 0)
R(14, 1)
R(14, 2)
R(14, 3)
R(14, 4)
R(14, 5)
R(14, 6)
R(14, 7)
R(14, 8)
R(14, 9)
R(14,10)

9P(12)
-10109.9 -9962. 1
-12766.4
$-12766.4$
$-12623.9$
-12424.0
-16313.0
$-15313.0$
-16175.5
-14985.5
-14706. 3
-17745.2
-17746.2
-17620.0
-17433.9
-17167.8
$-16809.9$
-11697.8
$-11697.8$
-11697. 8
-11563.0
-11436.0
-11263.0
-11034.8
-10740.4
-10364. 1
9R( 8) -9890.8
9R( 8) -9298.9
9R( 8) -8569.2
9R(10) -13508.6
9R(10) -13508.6
9R(10) -13508.6
9R(10) -13400.0
9R(10) -13294.8
9R(10) - 13150.0
9R(10) -12958.5
9R(10) -12706.5
9R(10) -12404.0
9R(10) -11965.6
9R(10) -11447.3
31585721.9 31585869.7 31634077.0 31634077.0 31634219.5 31634419.4 31681748.4 31681748.4
31681885.9
31682075.9
31682356.1
31728738.6
31728738.6
31728863.8
31729049.9
31729316.0
31729673.9
32079964.9
32079954.9
32079954.9

## 32080089.7

## 32080216.7

32080389.6
32080617.9
32080912.3
32081288.6

## 32081761.9

## 32082353.7

32083093.6
32120758.3
32120758.3
32120758.3
32120866.9
32120972.2
32121116.9
32121308.4
32121560.4
32121862.9
32122301.3
32122819.6

-22.8	OVERLAP	1053.58627	-76)
1.3	2.0	1053.59120(	4)
18.1	OVERLAP	1055.19923(	60 )
-21.3	OVERLAP	1055.19923(	-71)
2.0	1.0	1055.20398(	6)
-0.4	1.0	1055.21065(	-1)
16.7	OVERLAP	1056.78937(	$56)$
-21.0	OVBRLAP	1056.78937	-70)
2.3	2.0	1056.79396(	7)
-1.7	1.0	1056.80030 (	-5)
-1.0	1.0	1056.80965 (	-3)
17.3	OVERLAP	1058.35680 (	57)
-18.5	OVBRLAP	1058.35680 (	-61)
-2.1	2.0	1058.36097(	-7)
-0.9	1.0	1058.36718(	-2)
-1.4	1.0	1058.37606(	-4)
0.1	1.0	1058.38800	0)
16.1	OVERLAP	1070.07211(	$53)$
-0.2	OVERLAP	1070.07211(	$0)$
-49.8	OVRRLAP	1070.07211(	-166)


-0.6	2.0	$1070.07661($	$-1)$
0.3	1.0	$1070.08084($	$1)$
0.3	1.0	$1070.08661($	$1)$
0.1	1.0	$1070.09423($	$0)$
-0.5	1.0	$1070.10406($	$-1)$
0.4	1.0	$1070.11660($	$1)$
0.7	1.0	$1070.13239($	$2)$
0.5	2.0	$1070.15213($	$1)$
2.6	3.0	$1070.17880($	$8)$
14.1	OVBRLAP	$1071.43317($	$46)$

0.9 OVERLAP $1071.43317(2)$ -39.5 OVBRLAP 1071.43317(-131)
$-1.1 \quad 3.0 \quad 1071.43679(-3)$
$0.02 .0 \quad 1071.44030(0)$
$0.31 .0 \quad 1071.44513(0)$
$-1.0 \quad 1.0 \quad 1071.45152(-3)$
$-0.7 \quad 1.0 \quad 1071.45992(-2)$
-22.0 OVBRLAP 1071.47001( -73)
$4.11 .01071 .48464(13)$
$1.41 .01071 .60192(4)$
4)

60 )
1)
6)
55)

70 )
)

0.9	OVERLAP	$1071.43317($	$2)$
39.5	OVRRLAP	$1071.43317(-131)$	
-1.1	3.0	$1071.43679($	$-3)$
0.0	2.0	$1071.44030($	$0)$
0.3	1.0	$1071.44513($	$0)$
-1.0	1.0	$1071.45152($	$-3)$
-0.7	1.0	$1071.45992($	$-2)$
22.0	OVERLAP	$1071.47001($	$-73)$
4.1	1.0	$1071.48464($	$13)$
1.4	1.0	$1071.60192($	$4)$


Trane.	Laser ${ }^{\text {a }}$	$v_{\text {n }}{ }^{\text {b }}$	$v / \mathrm{MHz}$	$0-c^{\text {c }}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1} 0$	
R(14,11)	9R(10)	-10792.1	32123474.8	1.7	1.0	1071.52378(	5)
R(14,12)	9R(10)	-9973.3	32124293.6	0.2	1.0	1071.55109(	0)
R(15, 0)	9R(12)	-15205.0	32160874.5	14.4	OVERLAP	1072.77130(	48)
$\mathbf{R}(15,1)$	9R(12)	-15205.0	32160874.5	4.4	OVBRLAP	1072.77130(	14)
R(15, 2)	9R(12)	-15205.0	32160874.5	-26.6	OVBRLAP	1072.77130(	-88)
$\mathbf{R}(15,3)$	9R(12)	-15131.3	32160948.2	-6.9	OVBRLAP	1072.77376(	-22)
R(16, 4)	9R(12)	-15044.0	32161035.5	-1.0	2.0	1072.77667(	-3)
$\mathbf{R}(16,5)$	9R(12)	-14929.6	32161149.9	-1.3	1.0	1072.78049(	-4)
$\mathbf{R}(15,6)$	9R(12)	-14773.7	32161305.8	-1.1	1.0	1072.78569(	-3)
$\mathbf{R}(16,7)$	9R(12)	-14567.6	32161511.9	-1.7	1.0	1072.79256(	-5)
$\mathbf{R}(15,8)$	9R(12)	-14296.3	32161783.1	-0.6	1.0	1072.80161(	-2)
$\mathbf{R}(15,9)$	9R(12)	-13947.0	32162132.5	-0.3	1.0	1072.81326(	$0)$
$\mathbf{R}(15,10)$	9R(12)	-13499.3	32162580.2	0.3	1.0	1072.82819(	$0)$
$\mathbf{R}(16,11)$	9R(12)	-12930.1	32163149.4	0.6	1.0	1072.84718(	1)
R(15,12)	9R(12)	-12200.0	32163879.5	10.6	OVBRLAP	1072.87154(	$35)$
R $(16,13)$	9R(12)	-11301.6	32164777.9	0.7	1.0	1072.90150(	2)
R(16,14)	9R(12)	-10154.0	32165925.5	5.9	2.0	1072.93978(	19)
$\mathbf{R}(16,0)$	9R(14)	-16800.0	32200291.3	5.2	OVERLAP	1074.08610(	17)
$\mathbf{R}(16,1)$	9R(14)	-16800.0	32200291.3	-1.5	OVERLAP	1074.08610(	-6)
$\mathbf{R}(16,2)$	9R(14)	-16800.0	32200291.3	-22.5	OVERLAP	1074.08610(	-74)
$\mathbf{R}(16,3)$	9R(14)	-16800.0	32200291.3	-69.9	OVERLAP	1074.08610(	199)
R(16, 4)	9R(14)	-16800.0	32200291.3	-117.8	OVERLAP	1074.08610(	-392)
$\mathbf{R}(16,5)$	9R(14)	-16601. 5	32200489.8	-3.2	2.0	1074.09272(	-10)
$\mathbf{R}(16,6)$	9R(14)	-16482.1	32200609.2	-1.1	1.0	1074.09671(	-3)
$\mathbf{R}(16,7)$	9R(14)	-16321.7	32200769.6	-0.7	1.0	1074.10206(	-2)
$\mathbf{R}(16,8)$	9R(14)	-16108.1	32200983.2	-1.6	1.0	1074.10918(	-5)
$\mathbf{R}(16,9)$	9R(14)	-16824.3	32201266.9	-1.4	1.0	1074.11865 (	-4)
$\mathbf{R}(16,10)$	9R(14)	-15453.3	32201638.0	-0.8	1.0	1074.13102(	-2)
R(16,11)	9R(14)	-14972.5	32202118.7	0.5	1.0	1074.14706(	1)
R(16,12)	9R(14)	-14356.7	32202734.6	0.1	1.0	1074.16760 (	$0)$
$\mathbf{R}(16,13)$	9R(14)	-13567.1	32203524.2	2.2	1.0	1074.19394(	7)
R(16,14)	9R(14)	-12568.3	32204623.0	-1.0	1.0	1074.22726(	-3)
$\mathbf{R}(16,15)$	9R(14)	-11300.7	32205790.6	-4.2	1.0	1074.26954(	-14)
$\mathbf{R}(17,7)$	9R(16)	-17972.4	32239330.9	-0.3	1.0	1075.38832(	$0)$
$\mathbf{R}(17,8)$	9R(16)	-17816.7	32239486.7	-1.6	1.0	1076.39352(	-5)
$\mathbf{R}(17,9)$	9R(16)	-17601. 5	32239701.8	-2.1	1.0	1075.40070(	-7)
$\mathbf{R}(17,10)$	9R(16)	-17310.4	32239993.0	-2.2	1.0	1075.41041(	-7)
$\mathbf{R}(17,11)$	9R(16)	-16922.0	32240381.3	-0.9	1.0	1075.42336(	-3)
R(17,12)	9R(16)	-16412.8	32240890.6	-0.4	1.0	1075.44036(	-1)
R $(17,13)$	9R(16)	-15736.3	32241667.0	13.7	OMIT	1076.46291(	$45)$


Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	$v / \mathrm{MHz}$	$0-c^{c}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$	
R (17, 14)	9R(16)	-14890.8	32242412.6	2.8	1.0	1075.49112	9)
R $(17,15)$	9R(16)	-13796.5	32243506.9	-4.1	2.0	1075.52762(	-13)
R $(18,13)$	9R(18)	-17838.0	32278879.0	6.7	OMIT	1076.70751(	22)
R $(18,14)$	9R(18)	-17141.3	32279575.7	-2.7	1.0	1076.73075 (	-9)
$\mathrm{R}(18,15)$	9R(18)	-16208.3	32280508.9	4.4	2.0	1076.76187(	14)
$\mathbf{R}(22,0)$	9R(24)	12150.0	32422335.7	-13.9	OVERLAP	1081.49271(	-46)
$\mathbf{R}(22,1)$	9R(24)	12150.0	32422335.7	1.3	OVBRLAP	1081.49271(	4)
R(22, 2)	9R(24)	12150.0	32422335.7	46.6	OVBRLAP	1081.49271(	154)
$\mathbf{R}(22,3)$	9R(24)	12028.0	32422213.7	-2.1	2.0	1081.48864(	-6)
$\mathbf{R}(22,4)$	9R(24)	11931.0	32422116.7	0.1	2.0	1081.48540	$0)$
$\mathbf{R}(22,5)$	9R(24)	11808.0	32421993.7	-1.6	2.0	1081.48130	-6)
$\mathbf{R}(22,6)$	9R(24)	11670.0	32421855.7	-1.0	2.0	1081.47670	-3)
$\mathbf{R}(22,7)$	9R(24)	11522.0	32421707.7	1.4	2.0	1081.47176(	$4)$
$\mathbf{R}(22,8)$	9R(24)	11366.0	32421551.7	0.7	2.0	1081.46656(	2)
$\mathbf{R}(22,9)$	9R(24)	11214.0	32421399.7	1.0	2.0	1081.46149(	3)
$\mathbf{R}(22,10)$	9R(24)	11074.0	32421259.7	0.5	2.0	1081.45682(	1)
$\mathbf{R}(23,0)$	9R(26)	10500.0	32456925.0	-20.4	OVERLAP	1082.64648(	-67)
$\mathbf{R}(23,1)$	9R(26)	10500.0	32456925.0	-1.2	OVBRLAP	1082.64648(	-3)
R(23, 2)	9R(26)	10460.0	32456885.0	16.0	OVBRLAP	1082.64515 (	53)
$\mathbf{R}(23,3)$	9R(26)	10350.0	32456776.0	-0.4	2.0	1082.64148(	-1)
$\mathbf{R}(23,4)$	9R(26)	10222.1	32466647.1	-0.6	1.0	1082.63721	-1)
$\mathbf{R}(23,5)$	9R(26)	10067.7	32456492.6	3.4	1.0	1082.63206(	11)
$\mathbf{R}(23,6)$	9R(26)	9880.0	32456304.9	0.7	1.0	1082.62580 (	2)
$\mathbf{R}(23,7)$	9R(26)	9673.7	32456098.6	0.9	1.0	1082.61892(	2)
$\mathbf{R}(23,8)$	9R(26)	9450.6	32455875.6	0.0	1.0	1082.61148(	$0)$
$\mathbf{R}(23,9)$	9R(26)	9222.7	32455647.6	2.9	1.0	1082.60387(	$9)$

${ }^{\mathbf{C O}} \mathbf{C O}_{2}$ laser line used.
bicrowave frequency in MHz. The igned microwave frequency is added to the laser frequency to obtain the absorption frequency.

Cobserved minus calculated frequency in MHz. The parameters for the calculation are in the last two columas of Table $X$.
$d_{\text {Batimated uncertainty }}$ in the observed frequency in MHz. An "OMIT" and an "OVBRLAP" mean that the frequency was onitted from the least equares fits and the transition was overlapped by another transition(s), respectively.
eobserved frequency in $c^{-1}$. The numbers in parenthesea are the observed minus calculated frequencies in unite of $0.00001 \mathrm{~cm}^{-1}$.

Table IX.
Comparison of Observed and Calculated Prequencies in the

Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	$v / \mathrm{MHz}$	$0-c^{c}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$	
R(17,12)	9P( 6)	10836.0	31757318.8	-0.7	2.0	1059.31013(	-2)
$\mathbf{R}(17,9)$	9P( 6)	10006.0	31756489.8	14.6	OVBRLAP	1059.28248(	48)
R(15,12)	9P( 8)	-16500.0	31680561.4	16.4	OVERLAP	1056.74978(	54)
$\mathbf{R}(16,9)$	9P( 8)	-17765.0	31679296.4	-3.8	2.0	1056.70758(	-12)
$\mathbf{R}(12,10)$	9P(14)	14935.0	31558963.9	-1.6	3.0	1052.69372(	-6)
$\mathbf{R}(12,9)$	9P(14)	14453.4	31558482.3	1.7	2.0	1052.67766(	5)
R(12, 8)	9P(14)	14057.9	31558086.8	-2.2	2.0	1062.66447	-7)
$\mathbf{R}(12,7)$	9P(14)	13749.0	31557777.9	2.6	1.0	1052.65416(	8)
$\mathbf{R}(12,6)$	9P(14)	13494.9	31557523.8	-2.6	1.0	1052.64569(	-8)
R(12, 6)	9P(14)	13303.7	31557332.6	0.5	1.0	1052.63931(	1)
$\mathbf{R}(12,4)$	9P(14)	13152.0	31557180.9	-2.8	2.0	1062.63425	-9)
$\mathbf{R}(12,3)$	9P(14)	13045.0	31557073.9	-0.8	3.0	1052.63068(	-2)
R(12, 2)	9P(14)	12925.0	31556953.9	-46.4	OVERLAP	1062.62668(-	154)
R(12, 1)	9P(14)	12925.0	31556953.9	-3.1	OVBRLAP	1052.62668(	-10)
R(12, 0)	9P(14)	12925.0	31556953.9	11.1	OVBRLAP	1052.62668(	$37)$
R(10,10)	9P(16)	-16282.7	31475154.7	-1.8	2.0	1049.89815 (	-6)
$\mathbf{R}(10,9)$	9P(16)	-16866.1	31474571.3	1.4	1.0	1049.87869	4)
$\mathbf{R}(10,8)$	9P(16)	-17349.9	31474087.5	-3.0	2.0	1049.86256(	-9)
$\mathbf{R}(10,7)$	9P(16)	-17737.1	31473700.3	-1.3	1.0	1049.84964	-4)
$\boldsymbol{R}(1) 3)$	9P(18)	-8380.0	31429680.2	-1.9	3.0	1048.38128(	-6)
$\mathbf{R}(9,2)$	9P(18)	-8488.0	31429672.2	-2.3	2.0	1048.37768(	-7)
$\mathbf{R}(9,1)$	9P(18)	-8562.0	31429498.2	-13.2	OVERLAP	1048.37521(	-44)
$\mathbf{R}(9,0)$	9P(18)	-8562.0	31429498.2	7.6	OVERLAP	1048.37521(	$25)$
$\mathrm{R}(7,6)$	9P(22)	13218.7	31342180.2	0.7	2.0	1045.46260	2)
R( 7, 6)	9P(22)	12899.9	31341861.4	0.1	2.0	1045.45196(	$0)$
$\boldsymbol{R}(7,4)$	9P(22)	12651.7	31341613.2	-0.6	1.0	1045.44368(	-1)
$\mathbf{R}(7,3)$	9P(22)	12463.7	31341425.2	-3.7	1.0	1045.43742 (	-12)
R( 4, 4)	9P(26)	-12455.9	31204305.4	0.1	1.0	1040.86359(	0)
$\mathbf{R}(4,3)$	9P(26)	-12677.7	31204083.6	1.5	1.0	1040.85619(	4)
R( 4, 2)	9P(26)	-12835.0	31203926.3	-0.8	2.0	1040.85094(	-2)
$\mathbf{R}(4,1)$	9P(26)	-12938.9	31203822.4	-13.4	OVERLAP	1040.84748(	-44)
$\mathbf{R}(4,0)$	9P(26)	-12938.9	31203822.4	16.7	OVERLAP	1040.84748(	65)
Q $(23,12)$	9P(40)	-15667.8	30784474.9	0.0	1.0	1026.85955	$0)$
Q 23,9$)$	9P(40)	-16924.0	30783218.6	-0.7	2.0	1026.81765	-2)
Q (21, 9)	9P(40)	12598.8	30812741.5	3.6	2.0	1027.80242(	11)
$Q(18,10)$	9P(38)	-9140.0	30852757.5	-4.9	3.0	1029.13721(	-16)
Q $(18,9)$	9P(38)	-9701.4	30852196.1	-1.2	1.0	1029.11849(	-3)
Q (18, 8)	9P(38)	-10169.1	30851728.4	0.4	1.0	1029.10289(	1)
Q(18, 7)	9P(38)	-10557.5	30851340.1	-0.9	1.0	1029.08993(	-3)
Q (18, 6)	9P(38)	-10875.0	30851022.5	-2.5	1.0	1029.07934(	-8)


Trans.	Laser ${ }^{\text {a }}$	$v^{\text {b }}$	$v / \mathrm{MHz}$	$0-c^{c}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$	
Q $(18,5)$	9P(38)	-11125.2	30850772.3	1.2	1.0	1029.07099(	3)
Q(18, 4)	9P(38)	-11325.0	30850572.5	0.3	1.0	1029.06433(	1)
$Q(18,3)$	9P(38)	-11475.0	30850422.5	-0.2	2.0	1029.05933 (	$0)$
$Q(16,12)$	9P(38)	15683.1	30877580.6	0.3	1.0	1029.96522(	1)
Q $(16,11)$	9P(38)	14769.6	30876667.1	0.9	1.0	1029.93475 (	2)
Q $(16,10)$	9P(38)	13998.0	30875895.5	-2.7	2.0	1029.90902(	-9)
Q $(16,9)$	9P(38)	13358.2	30875255.7	0.5	1.0	1029.88767(	1)
Q $(16,8)$	9P(38)	12825.7	30874723.2	3.6	1.0	1029.86991(	11)
Q $(16,6)$	9 P (38)	12020.0	30873917.5	3.6	2.0	1029.84304	11)
Q $(13,13)$	9P(36)	-14028.6	30908886.8	0.0	1.0	1031.00949(	$0)$
Q $(13,12)$	9P(36)	-16278.9	30907636.6	-1.3	2.0	1030.96778(	-4)
Q(13,11)	9P(36)	-16323.4	30906592.0	10.5	OVBRLAP	1030.93294(	$35)$
Q (13,10)	9P(36)	-17224.0	30905691.4	0.7	2.0	1030.90290	2)
Q (13, 9)	9P(36)	-17973.4	30904942.0	-0.6	2.0	1030.87790	-1)
Q (12,10)	9P(36)	-8605. 5	30914310.0	1.2	2.0	1031.19038(	3)
Q (12, 9)	9P(36)	-9388.1	30913527.4	-1.4	1.0	1031.16428(	-4)
Q (12, 8)	9P(36)	-10040.4	30912875.1	-1.6	1.0	1031.14252(	-5)
Q(12, 7)	9P(36)	-10579.0	30912336.4	0.7	3.0	1031.12455	2)
Q(12, 6)	9P(36)	-11022.0	30911893.4	1.4	3.0	1031.10978(	4)
Q (12, 5)	9P(36)	-11329.0	30911536.6	2.4	3.0	1031.09787(	8)
Q(12, 4)	9P(36)	-11660.0	30911255.4	2.6	3.0	1031.08849(	8)
Q(12, 3)	9P(36)	-11874.0	30911041.4	0.3	1.0	1031.08136(	0)
Q( 9,9$)$	9P(36)	12434.1	30935349.5	0.8	1.0	1031.89219(	2)
Q( 9, 8)	9P(36)	11710.0	30934625.4	0.9	3.0	1031.86803(	2)
Q ( 9, 7)	9P(36)	11110.0	30934025.4	2.3	3.0	1031.84802(	7)
Q( 9,6$)$	9P(36)	10614.0	30933529.4	0.0	3.0	1031.83148(	$0)$
O( 9, 6)	9P(36)	10218.0	30933133.4	2.4	2.0	1031.81827(	8)
O( 9, 4)	9P(36)	9903.1	30932818.5	0.8	2.0	1031.80776(	2)
Q ( 9, 3)	9P(36)	9668.0	30932583.4	1.7	3.0	1031.79992(	6)
Q ( 8, 8)	9P(36)	17647.0	30940562.5	0.6	3.0	1032.06607(	2)
Q ( 8, 7)	9P(36)	17026.6	30939942.1	-1.1	2.0	1032.04538(	-3)
Q ( 8, 6)	9P(36)	16521.4	30939436.8	1.6	1.0	1032.02852(	5)
Q ( 8, 6)	9P(36)	16112.0	30939027.5	2.4	1.0	1032.01487(	7)
Q( 8, 4)	9P(36)	15786.5	30938701.0	-1.7	1.0	1032.00398(	-5)
Q( 8, 3)	9P(36)	15547.4	30938462.9	3.0	1.0	1031.99604(	10)
Q( 8, 2)	9P(36)	16378.2	30938293.6	3.0	3.0	1031.99039(	10)
P( 1, 0)	9P(36)	-11660.0	30911255.4	-1.7	3.0	1031.08849(	-5)
P( 7, 6)	9P(46)	-13658.6	30596857.6	-0.8	1.0	1020.60131(	-2)
P( 7, 5)	9P(46)	-14171.0	30596345.2	-2.7	1.0	1020.68422(	-8)
P( 7, 4)	9P(46)	-14670.0	30596946.1	2.0	2.0	1020.67091(	6)


Trans.	Laser ${ }^{\text {a }}$	$v_{m}^{b}$	v/MHz	$0-c^{c}$	Unc. ${ }^{\text {d }}$	$v / \mathrm{cm}^{-1}$ e	
P( 7, 3)	9P(46)	-14877.0	30595639.1	0.5	1.0	1020.56067	)
P( 7, 2)	9P(46)	-15090.7	30595425.5	0.7	1.0	1020.55354(	2)
P( 7, 1)	9P(46)	-15239.8	30595276.3	-22.0	OVERLAP	1020.54857(	-73)
P( 7, 0)	9P(46)	-15239.8	30595276.3	19.9	OVBRLAP	1020.54857(	$66)$

$\mathbf{a}_{\mathrm{CO}_{2}}$ laser line used.
$b_{\text {Microwave frequency in }} \mathrm{MHz}$. The signed microwave frequency is added to the laser frequency to obtain the absorption frequency.

Cobserved minus calculated frequency in MHz. The parameters for the calculation are in the last two colume of Table $X$.
$d_{\text {Batimated }}$ uncertainty in the observed frequency in MHz. An "OMIT" and an "OVBRLAP" mean that the frequency was onitted from the least squares fits and the transition was overlapped by another transition(s), respectively.

OOberved frequency in $\mathrm{cm}^{-1}$. The numbers in parentheses are the observed ninus calculated frequencies in units of $0.00001 \mathrm{~cm}^{-1}$.

Table X. Vibration-Rotation Parameters for ${ }^{12} \mathbf{C H}_{3}$ F

Parameter ${ }^{\text {a }}$	$v_{3}=0^{\text {b }}$	$v_{3}=1^{\text {b }}$	$v_{3}=2^{c, e}$
$\mathrm{B}_{\mathrm{v}} / \mathrm{GHz}$	$0.0000^{\text {d }}$	31436.5567 (3)	62398.209(1)
B ${ }^{\text {/ } / \mathrm{MHZ}}$	25536.1498(7)	25197.5027(22)	24870.976(40)
$\Delta\left(A_{v}-B_{v}\right) / \mathrm{MHz}$	0.0000	44.3433(214)	81.290(111)
$D_{J} / \mathbf{k H z}$	60.2330(48)	56.8509(100)	53.434(376)
$\mathrm{D}_{\mathrm{JK}} / \mathrm{kHz}$	439.5279(488)	518.0548(739)	576.102(1074)
$\Delta \mathrm{D}_{\mathrm{K}} / \mathbf{k H z}$	0.0000	-94.1387(3113)	-169.779(3174)
$\mathrm{H}_{\mathrm{J}} / \mathrm{Hz}$	-0.0214(81)	-0.2737(165)	-6.672(1173)
$\mathrm{H}_{\mathrm{JK}} / \mathrm{Hz}$	1.7321(951)	16.0470(1644)	57.728(5559)
$\mathrm{H}_{\mathbf{H J}} / \mathrm{Hz}$	21.4254(2708)	-93.1078(8176)	-208.694(20427)
$\Delta \mathrm{H}_{\mathrm{K}} / \mathrm{Hz}$	0.0000	106.7283(17075)	173.320(39066)
$\mathrm{L}_{\mathrm{J}} / \mathrm{mHz}$	$0.0000^{\text {d }}$	0.0795 (73)	8.370(1603)
$\mathbf{L}_{\text {JJJK }} / \mathbf{m z}$	$0.0000^{\text {d }}$	-2.9636(825)	-46.610(15279)
$\mathbf{L}_{\text {JJKK }} / \mathbf{B H z}$	$0.0000^{\text {d }}$	41.7067(5323)	107.530(50419)
$\mathrm{L}_{\text {JKER }} / \mathrm{BHz}$	$0.0000^{\text {d }}$	-237.9115(19977)	-238.983(57475)
$\Delta L_{k} / \mathrm{mHz}$	0.0000	155.1981(32803)	142.063(105343)

obtained from fit of frequencies indicated in Table VII and listed in Table VIII. Number in parenthesis is one standard error in units of last digit in the parameter.

Cobtained from fit of frequencies in Table IX. Parameter a for $v_{3}=1$ were constrained to values shown in this table. Number is parenthesis is one standard error in units of last digit of the parameter.
${ }^{d}$ Constrained to zero in the least squares fit.
© It should be noted that the parameters for $\nabla_{3}=2$ are given to one less significant figure than the parameters for $\mathbf{v}_{3}=0$ and 1.

Table XI.
Comparison of Ground-State Rotational
Constants of ${ }^{12} \mathrm{CH}_{3}$.

Parameter	This Work ${ }^{\text {a }}$	Graner ${ }^{\text {b }}$
$A_{0} / \mathrm{MHz}$	-	165352.72
B. /MHZ	25536.1498	25636.14929
$D_{J} / \mathbf{k H z}$	60.2330	60.228
$\mathrm{D}_{\mathbf{J E}} / \mathbf{k H z}$	439.5279	439.50
$\mathrm{D}_{\mathbf{L}} / \mathrm{kHz}$	-	2108.4
$\mathrm{H}_{\mathrm{J}} / \mathrm{Hz}$	-0.0214	-
$\mathrm{H}_{\mathrm{JI}} / \mathrm{Hz}$	1.7321	1.29
$\mathrm{H}_{\mathbf{L J}} / \mathrm{Hz}$	21.4254	24.6
$\mathrm{H}_{\mathbf{L}} / \mathrm{Hz}$	-	-

Oobtained fron fit of frequencies indicated in Table VII and listed in Table VIII.
bobtained fron the rable 3 in Ref. 39.

Table XII.
The Fitting Parameters of Watson's Form of Fade Approximant for $v_{3}$ Band of ${ }^{12} \mathrm{CH}_{3}$ F
Parameters
$v_{3}=0^{a}$
$v_{3}=1^{a}$

- /GRE
$0.00000^{b}$
30803.47561(0)
$\mathrm{B}_{10} / \mathrm{MHz}$
25536.15001(0)
25197.49134(0)
${ }^{B_{01}}$ /M ER
$0.00000^{b}$
44.16021(1)
$\mathrm{B}_{20} / \mathrm{kHz}$
60.22898(1)
$-56.83832(1)$
$\mathrm{B}_{11} / \mathrm{kHz}$
439.57479(6)
$-617.36781(6)$
${ }^{\mathrm{B}} 02 / \mathrm{kHz} \quad 0.00000^{\mathrm{b}}$
97.12210(11)
$\mathrm{B}_{30} / \mathrm{Hz} \quad \mathbf{- 0 . 0 0 8 6 3 ( 1 )} \quad \mathbf{- 3 . 6 3 1 7 5 ( 2 0 )}$
$\mathrm{B}_{21} / \mathrm{Bz} \quad 1.44265(11) \quad 63.66637(197)$
${ }^{B_{12}} / \mathrm{Hz} \quad 22.27008(32) \quad 624.42426(601)$
$\mathrm{B}_{03} / \mathrm{Ez} \quad 0.00000^{b}$
$-44.91134(126)$
$b_{10} \times 10^{3} \quad 0.00000^{b}$
58.26188(353)
$b_{01} \times 10^{3}$
$0.00000^{b}$
-1388.91964(1088)

Obtained from fit of frequencies indicated Table VII and listed in Table VIII. Number in parenthesis is one standard error in units of last digit in the parameter.
${ }^{b}$ Constrained to zero in the least squares fit.

## Table XIII.

Vibrational Dependence of Vibration-Rotation Parametere for ${ }^{12} \mathrm{CH}_{3}$ r

$P(v)^{\text {a }}$	$P(0)^{\text {b }}$	$c_{1}{ }^{\text {b }}$	$c_{2}{ }^{\text {b }}$
${ }^{\text {B }} / \mathrm{GHz}$	0.000	$v_{3}=31674.009(1)$	$x_{33}=-237.462(1)$
B /MEz	25636.160(1)	$-\alpha_{3}^{B}=-344.708(21)$	6.060(21)
$\mathrm{AA}_{\mathbf{v}} / \mathrm{MHz}$	0.000	$-\alpha_{3}^{A}=-296.666(73)$	2.362(63)
$\mathrm{D}_{\mathrm{J}} / \mathrm{kHz}$	60.233(5)	-3.365(190)	-0.017(189)
$\mathrm{D}_{\text {JE }} / \mathbf{k H z}$	439.628 (49)	88.767(562)	-10.240(543)
OD $^{\text {c/kEz }}$	0.000	-103.388(1705)	9.249(1618)

Qibration-rotation parameter. $P(v)=P(0)+c_{1} v+c_{2} \nabla^{2}$. $P(0), c_{1}$, and $c_{2}$ were derived from the paranetire in ${ }^{2}$ table $X$.
buncertainties in parentheses, in units of the last disit in the parameter, were propagated from one atandard error in the parameters.

For the Coriolis interaction between $v_{3}$ and $v_{6}$ bande, Shoja-Chaghervand and 8chwendeman(29) gave a detailed explanation on the formulas relating the perturbed state to unperturbed state. By using the formulas, they calculated the unperturbed molecular constants of the $v_{3}$ and $v_{6}$ etates with aseumption of $\boldsymbol{s}_{36}=0.318$.

Finally, Tables XIV - XVII show the coincidences between the calculated frequencies of the $v_{3}$ fundamental and the $2 v_{3}$ - $v_{3}$ hot band transitions of ${ }^{13} \mathrm{CH}_{3}$ F and ${ }^{12} \mathrm{CH}_{3}$ r and the 10 min resion fixed frequency sas laser lines (81,82,83). In this comparison, the calculated frequencies were obtained by the parameters obtained from the fittinge in which the $\nabla_{3}$ $=1$ atate parameters were fixed from the fite of the $v_{3}=1$ - O transition and the $L$ constante were constrained to zero for the ground etate only. The results from the coincidences may be useful both for analysis of far infrared laser experiments and for the obeervation of the $v_{3}=3$ state by an infrared-infrared double resonance experiment.

## Table XIV. <br> Coincidences Between Calculated Frequenciee

for $v_{3}$ Band of ${ }^{13} \mathrm{CH}_{3}$ F and $\mathrm{CO}_{2}$ Laser Prequencies.

Trans.	Prequency ${ }^{\text {b }}$	$v_{0} v_{L}$	Laser ${ }^{\text {d }}$			
P(44, 16)	28034726.1	68.9	$13 \mathrm{Cl}^{20002}$	BAND	I	R(30)
P(36, 9)	28624893.5	-52.8	$\mathrm{HzO}_{2}$			R(19)
P(36, 10)	28625036.8	89.5	$\mathrm{N}_{2} \mathrm{O}$			R(19)
P(30, 0)	29041047.2	-21.8	MzO			R(38)
P(30, 1)	29041063.7	-6.3	Nz 0			R(38)
P(30, 2)	29041113.4	44.6	$\mathrm{Na}_{2}$			R(38)
P(26,13)	29312229.7	12.9	$12 \mathrm{Cl2O}$	BAND	I	R(16)
P(25,16)	29379942.4	-3.2	$12 \mathrm{Cl}{ }^{100}$	BAND	I	R(20)
P(24,10)	29440019.4	82.3	$12 c^{1000} 0$	BAND	1	R(23)
P(24,13)	29442534.9	51.6		BAND	I	R(30)
P(23,12)	29605764.1	85.0	12cteos	BAND	I	R(28)
P(16,12)	29938027.2	47.9	$13 \mathrm{Cl}^{180}$	BAND	II	P(36)
P(16,13)	29998669.7	19.6	$13 \mathrm{Cl}^{1000}$	BAND	II	P(20)
$\mathrm{P}(13,0)$	30107614.5	61.4	${ }^{13} \mathrm{Cl}^{16} \mathrm{O}$	BAND	II	P(16)
P(13, 1)	30107648.9	96.8	13 Clsom	BAND	II	P(16)
Q $(6,6)$	30791154.4	-88.3	$12 \mathrm{Cl}^{10} 0^{12} 0$	BAND	II	P(52)
O $(20,16)$	30674416.2	-29.6	12 Cls 02	BAND	II	P(44)
Q $(21,13)$	30658803.1	99.5	$13 \mathrm{Cl}^{180}$	BAND	II	P( 6)
O(29,11)	30525857.4	59.6	$13 \mathrm{Cl}^{180} 0$	BAND	II	P(12)
Q $(29,12)$	30525802.9	6.1	$13 \mathrm{Cl}^{10} 08$	BAND	II	P(12)
$0(29,13)$	30525774.2	-23.7	$13 \mathrm{Cl}^{2} 0 \mathrm{O}_{2}$	BAND	II	P(12)
$0(29,14)$	30525780.4	-17.6		BAND	II	P(12)
Q 29,16 )	30525833.0	36.1	$13 \mathrm{Cl}^{18} \mathrm{O}_{2}$	BAND	II	P(12)
R( 4, 3)	31042692.2	-25.9	12 ClCO	BAND	II	P(32)
$\mathbf{R}(12,7)$	31391833.2	-27.6	$13 \mathrm{Cl}^{160}$	BAND	II	R(48)
$\boldsymbol{R}(14,9)$	31472712.0	-25.0	$13^{102000}$	BAND	II	R(38)
R(21, 1)	31733443.0	95.9		BAND	II	R(68)
$\mathbf{R}(21,2)$	31733407.7	60.6	$13 \mathrm{Cl}^{180} 0$	BAND	II	R(58)
$\boldsymbol{R}(21,3)$	31733350.6	3.6	$\mathrm{SaCl}^{180}$	BAND	II	R(58)
R(21, 4)	31733274.4	-72.8	$13 \mathrm{Cl}^{2} \mathrm{O}$	BAND	II	R(58)

arancition in the $v_{3}$ band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F} ; \mathrm{J} \leq 47$, $\leq 16$. ${ }^{b}$ Frequency of $v_{3}$ band transition in MHz.

Crequency of $v_{3}$ band transition minus laser frequency in MEs. Laser frequencies calculated from constants in Refs. 81, 82, and 83.
${ }^{\text {d Identification of }} \mathrm{CO}_{2}$ or $\mathrm{N}_{2} \mathrm{O}$ laser. Band I is $10 \mu=$ band; Band II is 9 ul band?

Table XV.
Coincidences Between Calculated Frequencies for $2 v_{3}$ - $v_{3}$ Band of ${ }^{13} \mathrm{CH}_{3}$ F and $\mathrm{CO}_{2}$ Laser Frequencies.


Transition in the $2 v_{3}+v_{3}$ band of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F} ; \mathrm{J} \leq 25$, E 12.
Frequency of $2 v_{3} \cdot v_{3}$ band transition in MHz.
Frequency of $2 v_{3}$. $v_{3}$ band transition minus laser frequency in MHZ. Laser frequencies calculated from constant e in Refs. 81, 82, and 83.
d identification of $\mathrm{CO}_{2}$ or $\mathrm{N}_{2} \mathrm{O}$ laser. Band I is 10 ma band; Band II is 9 , band?

## Table XVI. <br> Coincidences Between Calculated Frequencies

for $v_{3}$ Band of ${ }^{12} \mathrm{CH}_{3}$ F and $\mathrm{CO}_{2}$ Laser Frequencies.

Trans.	Frequency ${ }^{\text {b }}$	$\boldsymbol{v}_{0}{ }^{-v_{L}}$	Laser ${ }^{\text {d }}$			
P(27,11)	29828909.0	-16.6	$13^{C^{10}} 02$	BAND	II	P(26)
Q( 6, 4)	31423019.9	-87.4	$12 \mathrm{Cl}^{100200}$	BAND	II	P(30)
$Q(11,1)$	31391948.0	87.2	${ }^{3} \mathrm{Cl}^{2} 008$	BAND	II	R(48)
Q(12, 1)	31383841.7	-68.7	$12 \mathrm{Cl} \mathrm{c}^{6}$	BAND	II	P(20)
Q(12, 2)	31383940.1	39.7	$12 \mathrm{Cl}{ }^{10} 0$	BAND	II	P(20)
Q $(13,13)$	31382754.9	61.2	${ }^{3} \mathrm{Cl}^{10} 02$	BAND	II	R(32)
Q(14, 2)	31365702.8	-64.2	$13 \mathrm{Cl}^{160}$	BAND	II	R(46)
Q $(14,3)$	31365849.8	92.8	$13^{1}{ }^{10} 08$	BAND	II	R(46)
Q $(16,16)$	31365846.0	88.0	$13^{180} 08$	BAND	II	R(46)
Q $(21,16)$	31286137.6	-28.7	$12 \mathrm{ClO}^{100}$	BAND	II	P(35)
Q 28.3 )	31163602.8	93.3	$12 \mathrm{Cl}^{10} 08$	BAND	II	P(64)
Q 28,4 )	31163526.6	17.1	$12 \mathrm{Cl}^{1008}$	BAND	II	P(64)
Q 28,6 )	31163432.1	-77.4	$12 \mathrm{Cl} \mathrm{c}^{0} \mathrm{O}$	BAND	II	P(54)
Q $(33,8)$	31058741.4	-79.0	$12 \mathrm{Cl}^{20} 0^{2} \mathrm{O}$	BAND	II	P(43)
Q $(34,16)$	31029723.8	23.5	$28 \mathrm{Cl}^{180} 0^{20}$	BAND	II	P(44)
Q 38,2 )	30941471.5	63.4	$12 \mathrm{ClO}^{180}$	BAND	II	P(47)
Q(39, 8)	30912621.1	42.4	$13 \mathrm{C}^{16} \mathrm{O}$	BAND	II	R(18)
$\mathbf{R}(10,3)$	31963615.9	17.2	$12 \mathrm{ClO}^{18} 0$	BAND	II	P( 9)
R(11, 9)	31998587.9	-26.2	$12 \mathrm{Cl}^{10} 0$	BAND	II	P(22)
R(11, 11)	32000205.2	-78.7	$2 \mathrm{ClO}^{180}$	BAND	II	P( 7)
R $(26,16)$	32550672.7	24.6	$12 \mathrm{Cl}^{20} 02$	BAND	II	R( 2)
R(31, 4)	32708073.7	-22.7	$12 \mathrm{Cl}{ }^{10} 0$	BAND	II	R(10)
$\mathbf{B}(34,3)$	32791607.1	38.0	$2^{2} \mathrm{Cl}^{20} 0^{18} 0$	BAND	II	R(32)
R(36,12).	32807743.3	-48.4	$12 \mathrm{Cl} 0^{180}$	BAND	II	R(33)

arancition in the $v_{3}$ band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F} ; \mathrm{J} \leq 40$, $\leq 16$. $b_{\text {Prequency of }} v_{3}$ band traneition in MRz.

CPrequency of $v_{3}$ band transition minus laser frequency in MHz. Laser frequencies calculated from constants in Refa. 81, 82, and 83.
$d_{\text {Identification of }} \mathrm{CO}_{2}$ or $\mathrm{H}_{2} \mathrm{O}$ laser. Band I is $10 \mu \mathrm{~m}$ band; Band II is 9 靣 band?

Table XVII.
Coincidences Between Calculated Frequencies for $2 v_{3} \cdot v_{3}$ Band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{CO}_{2}$ Laser Frequencies.


Transition in the $2 v_{3} * v_{3}$ band of ${ }^{12} \mathrm{CH}_{3} \mathrm{~F} ; \mathrm{J} \leq 26$,
( 12 .
Frequency of $2 v_{3} * v_{3}$ band transition in MHz.
Crequency of $2 v_{3}$ - $v_{3}$ band transition minus laser frequency in MH3. Laser frequencies calculated from constants in Refs. 81, 82, and 83.
${ }^{\text {d Identification of }} \mathrm{CO}_{2}$ or $\mathrm{K}_{2} \mathrm{O}$ laser. Band I is $10 \mu \mathrm{~m}$ band; Band II is 9 號 band?

## REPBRENCES

1. P. D. Coleman, J. Opt. 8oc. Amer. 67, 894-901 (1977).
2. J. R. Izatt and P. Mathieu, Canad. J. Phys. 68, 1401-1416 (1980).
3. O. R. Gillian, H. D. Bdwards, and W. Gordy, Phys. Rev. 76, 1014-1016 (1949).
4. C. M. Johnson, R. Trambarulo, and W. Gordy, Phys. Rev. 84, 1178-1180 (1961).
5. W. J. Orville Thomas, J. T. Cox, and W. Gordy, J. Chem. Phys. 22. 1718-1722 (1964).
6. R. 8. Winton and W. Gordy, Phys. Lett. 32A, 219-220 (1970).
7. T. B. Sullivan and L. Frenkel, J. Mol. Spectrosc. 39, 185-201 (1971).
8. T. Tanaka and B. Hirota, J. Mol. Spectrosc. 64, 437-446 (1975).
9. B. Hirota, T. Tanaka, and S. Saito, J. Mol. Spectrosc. 63, 478-484 (1976).
10. W. H. Bennett and C. F. Meyer, Phye. Rev. 32, 888-905 (1928).
11. K. P. Yates and B. H. Mielson, Phys. Rev. 71, 349-359 (1947).
12. F. A. Andersen, B. Bak, and 8. Brodersen, J. Chen. Phye. 24, 989-992 (1966).
13. W. L. 8mith and I. M. Mills, J. Mol. Spectrosc. 11, 11-38 (1963).
14. A. C. Luntz and R. G. Brewer, J. Chen. Phys: 54, 3641-3642 (1971).
15. R. Weitz, G. Flynn, and A. M. Ronn, J. Appl. Phys. 42, 6187-6190 (1971).
16. S. M. Treund, G. Duxbury, M. Romheld, J. T. Tiedje, and T. Oka, J. Mol. Spectrosc. 52, 38-67 (1974).
17. T. Y. Chang and T. J. Bridses, Opt. Commun. 1, 423-426 (1970).
18. T. Y. Chang and J. D. McGee, Appl. Phys. Lett. 19, 103-105 (1971).
19. R. G. Brewer, Phys. Rev. Lett. 26, 1639-1641 (1970).
20. R. G. Brewer, Science 178, 247-255 (1972).
21. W. K. Bischel, P. J. Lelly, and C. K. Rhodes, Phys. Rev. Lett. 34, 300-303 (1976).
22. W. A. M. Blumbers, H. R. Fetterman, D. D. Peck, and P. F. Coldenith, Appl. Phys. Lett. 36, 582-686 (1979).
23. G. Maserl, W. Schupita, B. Bonek, and W. A. Ereiner, J. Mol. 8pectrosc. 83, 431-439 (1980).
24. F. Herlemont, M. Lyazyk, J. Lemaire, and J. Demaison, Z. Naturforsch 36a, 944-947 (1981).
25. J. P. Sattler and G. J. Simonis, IERE J. Quantus Electron. Q5-13, 461-465 (1977).
26. B. Arimondo, M. I. Schisano, P. B. Davies, and P. A. Hanilton, Infrared Phys. 25, 209-213 (1985).
27. M. Romheld, Ph. D. Thesie, University of Ulm, 1979.
28. S. M. Freund, M. Romheld, and T. Oka, Phys. Rev. Lett. 35, 1497-1500 (1975).
29. P. 8hoja-Chaghervand and R. H. Schwendeman, J. Mol. Spectrosc. 98, 27-40 (1983).
30. B. Bava, A. DeMarchi, A. Godone, R. Benetti, M. Inguscio, P. Minguzei, F. Strumia, and M. Tonelli, Opt. Coman. 21, 46-48 (1977).
31. H. B. Radford, F. R. Peterson, D. A. Jenninge, and J. A. Mucha, IEEB J. Quantua Electron. QE-13, 92-94 (1977).
32. J. Pickworth and E. W. Thompson, Proc. Roy. Soc. Ser. A 222, 443-465 (1964).
33. M. Betrencourt, J. Mol. Spectrosc. 47, 275-286 (1973).
34. J. L. Duncan, D. C. Mckean, and G. E. Speirs, Molec. Phys. 24, 653-565 (1972).
35. W. H. Matterson and F. C. Delucia, J. Opt. Soc. Am. B2, 336-342 (1985).
36. S. E. Ghosh, R. Trambarulo, and W. Gordy, J. Chen. Phys. 20, 605-607 (1962).
37. W. C. Eing and W. Gordy, Phys. Rev. 93, 407-412 (1954).
38. P. A. Steiner and W. Gordy, J. Mol. Spectrosc. 21, 291-301 (1966).
39. G. Graner, Molec. Phys. 31, 1833-1843 (1976).
40. E. Arimondo and M. Inguscio, J. Mol. Spectrosc. 76, 81-86 (1979).
41. C. Dilauro and I. M. Mills, J. Mol. Spectrosc. 21, 386-413 (1966).
42. E. Hirota, J. Mol. Spectrosc. 74, 209-216 (1979).
43. C. H. Townes and A. L. Schawlow, "Microwave Spectroscopy", McGraw-Hill Inc., New York, NY, 1965.
44. J. B. Wollrab, "Rotational 8pectra and Molecular structuren, Acadenic Press, New York, NY, 1967.
45. H. W. Eroto, "Molecular Rotation Spectra", John Wiley \& 8one, Hew York, NY, 1976.
46. G. Hersbers, Molecular Spectra and Molecular Structure (Infrared and Raman Spectra of Polyatomic Molecules)", Van Nostrand Reinhold Co., 1946.
47. J. H. Meal and 8. R. Polo, J. Chem. Phye. 24, 1126-1133 (1966).
48. T. Oka, J. Chen. Phys. 47, 5410-6426 (1967).
49. B. B. Wilson, Jr., J. Chen. Phys. 27, 986-987 (1967).
50. R. 8. McDowell, Adv. in IR and Raman Spectroscopy, Vol. 6, ed. by R. J. B. Clark and R. E. Hester, Heydon \& Son, London, 1978.
51. A. 8. Pine, in Laser spectroscopy III (ed. by J. L. Hall and J. L. Carletein), Springer-Verlag, Berlin, 1977. P. 376.
52. L. F. Mollenauer and D. H. Alson, Appl. Phys. Lett.

24, 386-388 (1974).
53. C. . N. Patel and B. D. Shaw, Phys. Rev. Lett. 24, 461-466 (1970).
64. R. L. Abrame and W. B. Bridges, IBEB J. Quantur Electron. Q8-9, 940-946 (1973).
65. P. W. Smith, in Laser Spectroscopy (ed. by R. G. Drewer and A. Mooradian), Plenun Prese, New York, NY, 1974, P. 247.
66. R. L. Abrans, ibid., p. 263.
67. T. Kasuya, Appl. Phys. 2, 339 (1973).
68. T. Iasuya, Appl. Phys. 3, 223 (1974).
69. T. Oka and T. Shimizu, Phye. Rev. A2, 587-593 (1970).
60. V. J. Corcoran, R. B. Cupp, J. J. Gallapher, and W. T. Smith, Appl. Phye. Lett. 16, 316-318 (1970).
61. P. A. Franken, A. B. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118-119 (1961).
62. M. Bass, P. A. Pranken, A. B. Bill, C. W. Petere, and G. Weinreich, Phys. Rev. Lett. 8, 18 (1962).
63. P. K. Cheo and M. Gilden, Appl. Phys. Lett. 28, 626-627 (1976).
64. P. K. Cheo and M. Gilden, Optics. Lett. 1, 38-39 (1977).
65. B. Bonek and H. Korechy, Appl. Phys. Lett. 25, 750-741 (1974).
66. G. Magerl and E. Bonek, J. Appl. Phys. 47, 4901-4903 (1976).
67. ©. Magerl and B. Bonek, Appl. Phys. Lett. 34, 452-454 (1979).
68. G. Magerl and E. Bonek, "Direct-frequency reading IR epectroscopy", presented at the Int. Conf. LA8ER '79, Orlando, PL, 1979.
69. G. Magerl, W. 8chupita, and E. Bonek, IBER J. Quantua Blectron. QE-18, 1214-1220 (1982).
70. G. Magerl, B. Bonek, and W. A. Ereiner, Chen. Phy』. Lett. 62, 473-475 (1977).
71. G. Magerl, J. M. Frye, W. A. Ereiner, and T. Oka, Appl. Phye. Lett. 42, 656-659 (1983).
72. M. Mcavoy, J. Osmundson, and G. Schiffner, Appl. Opt. 11. 473-474 (1972).
73. 8. Namba, J. Opt. 8oc. Amer. 61, 76-79 (1961).
74. I. P. Kaminow and J. Liu, Proc. IEEE. 61, 132-136 (1963).
75. D. 8tatrud and F. C. Delucia, private commancation.
76. L. D. G. Youns and A. T. Young, J. Quant. Epectrosc. Radiat. Tranefer 20, 633-637 (1978).
77. M. Misushima, "The Theory of Rotating Diatonic Molecules", Wiley, New York, NY, 1982, p. 282.
78. A. V. Burenin and V1. G. Tyuterev, J. Mol. spectrosc. 108, 153-154 (1984).
79. J. K. G. Watson, J. Mol. Spectrosc. 103, 350-363 (1984).
80. J. K. G. Watson, 8. C. Foster, A. R. W. Mckellar, P. Berneth, I. Amano, F. 8. Pan, M. W. Crofton, R. 8. Altman, and T. Oka, Can. J. Phys. 62, 1878-1885 (1984).
81. F. R. Peterson, B. C. Beaty, and C. R. Pollock, J. Mol. 8pactrosc. 102, 112-122 (1983).
82. B. G. Whitford, K. J. Siensen, E. D. Riccius, and G. R. Hanes, Opt. Comun. 14, 70-74 (1975).
83. C. Freed, L. C. Bradley, and R. G. $0^{\prime}$ Donnell, IEEE J. Quantum Electron. QS-16, 1196-1206 (1980).

# INFRARED-INFRARED DOUBLE RESONANCE OF ${ }^{13} \mathbf{C H}_{3}$ F BY MBANS OF A WAVBGUIDE $C_{2}$ LASBR AND AN INPRARED-MICROWAVE SIDEBAND LASER 

## CBAPTRR I

## IMTRODUCTION

A molecule in quantur state collides with another molecule and changes its quantum state to . For most molecules at roon temperature, the enersy transfer may be characterized as beins between vibration and rotation (V R), between vibration and tranclation (V - T), between rotation and tranelation ( $R$ - T), between vibration and vibration (V - V), between rotation and rotation (R - R), and between translation and translation (T - T). Normally, the $R$ - $R$ procesees have the highest rate constants with V $R$ and $V-V$ processes being much slower. The experiments to be described in this section provide information about the relative rates of the various modes of energy transfer.
since the molecular interaction is result of collision, the rates of energy transfer provide information about the mechanism of the collision process.

In discuseing the theoretical treatment of the collision procese, we usually introduce the concept of etrons and weak collisions. This is because, contrary to the situation for radiative interaction in which the energy of interaction is much emaller than the energy epacing, a collision interaction has a wide range of energy values. Por a limiting case of weak collisions, in which the intermoleculer interaction is amall and of long range, a
perturbation technique for the rotational energy changes can be used to a sood approximation. For such collisions, the conversion from rotational enersy to translational energy is enall and the moleculer path is not deflected eisnificantly. Most of the $\mathrm{NH}_{3}-\mathrm{NH}_{3}$ collisions at room temperature are examples of weak collisions(1). Also, when the interaction is weak, molecule in certain initial level has appreciable transition probabilities to only few levele, and the selection rules can be understood by ueing the known symetry properties of the lons range potential.

For atrong collisions, for which the energy of interaction is larger than the rotational energy apacing, the molecular path is deflected by a large angle, and a molecule has transition probabilities to many rotational levels. For ach collisions, no selection rules can be established. In reality, however, most collisions lie in a difficult resion between these two extreme cases.

For the study of collision processes, three experimental methods - molecular beans, optical fluorescence, and double resonance have been developed and used widely for the last two decades. In these methods a known non-Boltsmann distribution is established in some molecular levels of a gas at low pressure, and the consequence of collisions is obtained by monitoring populations of molecules in other levels.

In the molecular bean method(2), a bean of molecules
in a single rotational level is selected by an inhomogeneous electric field and, after paseing through a region in which collisions occur, is analyzed by a second state selector. The advantage of this method is that the analysis of the results eivee aingle transition probability directly, and, further, it is possible to control the relative angle and velocity of the collision partners. The application of this method hes been limited by the experimental difficulties. However, with the advance of molecular bean technique, this method may become a powerful tool for the atudy of collisions.

In the optical fluorescence method(3), the molecules are pumped by monochromatic radiation into a angle rotational level in an excited electronic or vibrational state and collision-induced rotational transitions in the excited state are detected in the fluorescence spectrun. So far, these experiments have been done by using accidental coincidences between the exciting radiation and the molecular absorption lines, but this method may become more senerally applicable by using tunable lasers. One limitation of this method is that the lifetime of the excited state, which cannot be controlled, has to be of the order of collision time.

The double resonance method uses two resonant onephoton interactions in a ingle molecule to probe moleculer etructure and relaxation properties. Fisure 1 shows energy


Fisure 1. Diagranatic representations of three-level double resonance spectroscopy (A)-(C) and four-level double resonance epectroscopy (D)-(F).
level diagrams for several kinds of double resonance.
The fundamental double resonance procese is that of three-level double resonance, in which fields at two different frequencies, $v_{1}$ and $v_{2}$, couple a given molecular energy level to two other levela. The common level may be either lower in energy than the other two, as in Fis. l(A), higher than the other two, as in Fis. l(B), or internediate in energy, as in Fis. $1(C)$. A second procese is four-level double resonance, in which the two radiation fielde probe pairs of levele not heving a level in common. For this kind of double resonance to occur, at least one level in each of the two paira must be coupled to the other by collisional or other relaxation processes. This can occur by relaxation in the excited state, Fis. $1(D)$, in the sround state, Fis. l(B), or both. Another variant is shown in Fis. l(f), in which relaxation occurs to an intermediate level d.

Fisure 2 shows several kinds of pumping and monitoring echemes in four-level double resonance. Fisure $2(A)$ is an energy diagran for microwave-nicrowave double resonance, in which strong and weak microwave fields are used for the pumping and probing radiation sources, respectively. The ease of handling microwave radiation has made this method widely applicable to many rotational levels of aimple polyatomic molecule. Since the non-Boltzmann distribution is introduced into two rotational levels rather than in one level, the interpretation of the reaults is more complicated


Fisure 2. Enersy level schemes in four-level double resonance experiments. The light and heavy arrowe represent $10 w$ and high power radiation, respectively. The wavy arrows represent paths of collisional energy tranefer.
than for other methods. Nevertheless, most of our information about selection rules for collision procesees has been obtained by this technique(1).

The infrared-nicrowave double resonance, Fif. $2(B)$ hae usually used etrons infrared and weak microwave radiation sources for the pumping and probing fields, respectively. This method has been widely used for the measurement of rotational frequencies and relaxation rates in the excited etate because arge non-Boltzmann distribution is introduced in a eingle rotational level in an excited vibrational atate by the infrared pumping. However, in most cases of infrared pumping, it has been necessary to rely on an accidental coincidence between a fixed frequency laser and the frequency of a mecular transition. Infraredinfrared double resonance of the type shown in Fis. $2(C)$ is even more difficult because it is necessary to rely on a double coincidence, in which atrong infrared and weak infrared radiations are used for pumping and probing sources, respectively. Since in most cases the infrared source for pumping is a coherent radiation with very narrow bandwidth, the molecules with a particular velocity component are depleted from the pumped level, that is, a hole is "burned" in the Doppler profile of the moleculer absorption(1,4,5), as in Pis. 3.

The first true double resonance was performed by Brossel and Bitter(8) in 1962. They used a mercury


Figure 3. Change in the particle velocity distribution over two-levels of trancition under the action of a laser wave of frequency $v$. The z-component of velocity of particles interacting with the lisht wave is $v_{\text {res }}=c\left(v-v_{0}\right) / v_{0}$.
resonance lamp to excite mercury atome which were simultaneously abjected to a radiofrequency field. Double resonance as a seneral technique in molecular spectroscopy was first realized in the microwave spectroscopy of rotational levels by E. B. Wilson's group at Harvard University(7-11) and by T. Oka at the National Research Council of Canada(12-20). With the introduction of the laser, it become possible to extend these techniques to the infrared and optical regions of the spectrum. For most infrared-microwave double resonance experiments(21-37), coherent gas lasers in the 10 me resion, such as $\mathrm{CO}_{2}$ and $\mathrm{N}_{2} \mathbf{O}$ lasers, have been used for the pumping source. It would be very useful to be able to extend these techniques to a wide range of rotational energy levels in different vibrational states. Such studies would greatly increase our knowledge of molecular structure and the mechanien of collisional interaction.

Until 1970, a true infrared-infrared double resonance experiment had not been done because of the limitation on the availability of anable infrared laser for the probing source. Rhodes et al.(38) had carlier tried to measure a collisional relaxation rate by using two fixed frequency $\mathrm{CO}_{2}$ lasers for pumpins and probing sources on $\mathrm{CO}_{2}$ molecules.

In the early 1970's, Luntz, working in Brewer's laboratory(39-42), exploited the nonlinear behavior in three-level eystens, which was originally worked out by

Schlossbers and Javan(43), to atudy double resonance in a molecular eysten. In these experimente, two laser radiations with elightly different frequencies were used in the presence of D.C. Stark field to measure the 8 tark ehifts with hish accuracy. At about the sane time, Steinfeld and his collaboratores(44-47) and Preses and Plynn(48) measured the vibrational relaxation by monitoring the population change due to pumping in $8 \mathrm{~F}_{6}, \mathrm{BCl}_{3}$, and $\mathrm{CH}_{3}$ molecules, respectively.

In order to increase the tunability of an infrared source, Freund et al.(48) introduced the two-photon technique into infrared-infrared double resonance by carrying out a four-level double resonance experiment on ${ }^{15} \mathrm{NH}_{3}$. From this experiment, they observed not only the non-Boltemann dietribution, but also the hole being traneforred to the eignal levels. shoenaker et al. (60,61) observed the same phenomenon in ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$, by using two fixedfrequency $\mathrm{CO}_{2}$ lasers and a D.C. Stark field.

Although the two-photon technique has a wide range of tunability, the transition intensity is much weaker than that of one-photon epectroscopy, especially for the case of a large difference between the laser frequency and the onephoton allowed molecular transition(82). 8o, Orr and Oka(53,64) developed an infrared-infrared double resonance technique that employed the aidebands senerated by passins $\mathrm{CO}_{2}$ laser radiation through an electro-optic modulator
driven by the combination of a radiofrequency and a D.C. Stark field. With this technique they could accurately measure the dipole moment for several symetric top molecules. With the same method, Duxbury et al. $(56,56)$ used isotopic $\mathrm{CO}_{2}$ laser radiation to measure the dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ and its isotopes, Weber and Terhune(57) extended the infrared-infrared double resonance technique into the $6 \mu \mathrm{~m}$ wavelength region by enploying a $C O$ laser as the pumping source and a tunable diode laser as the probing source. By using two laser sources in different frequency regions, they were able to see the double resonance effect in three different vibrational atatee in the $\mathrm{NH}_{3}$ molecule. Recently, another infrared-infrared double resonance experiment on vibrational energy transfer between ${ }^{15} \mathrm{NH}_{3}$ and ${ }^{14} \mathrm{NH}_{3}$ was done by Euze et al.(58) by means of a $\mathrm{CO}_{2}$ and a tunable diode laser as pumping and probing sources, respectively. From the analyeis of the experimental results, a preference for dipole-allowed ( $\Delta J=0, \pm 1, \Delta I=0$ ) transitions and a prohibition of ortho-para convereion were confirmed, which is in agreement with the previous etudies by microwavemicrowave double resonance(16) and by infrared-microwave double resonance $(37,69)$.

The study of vibrational energy transfer is also very important to understanding the collisional process and ite elementary mechanisme. Preses and Flynn(60) used an infrared-infrared double resonance technique to study the
vibration-vibration energy transfer between ${ }^{12} \mathrm{CH}_{3} \mathbf{F}$ and ${ }^{13} \mathrm{CH}_{3}$ f with two-fixed frequency $\mathrm{CO}_{2}$ lasers operating on different laser lines. The analysis of the experimental results showed that one quantum of $v_{3}$ energy is transferred between ${ }^{12} \mathrm{CH}_{3}$ F and ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ in every aix collisions. In the study to be described in this thesis, a waveguide $\mathrm{CO}_{2}$ laser and an infrared-microwave aideband laser were applied for the first time to infrared-infrared double resonance as pumping and probing radiation sources, respectively. The sample was ${ }^{13} \mathrm{CH}_{3}$ F and many kinds of three-level and four-level double resonance experimente were carried out. The results of the three-level double resonance meacurements are in good agreement with the previous studies. However, four-level double resonance showed the evidence of indirect pumping to all rotational energy levels in the first excited atate ( $\nabla_{3}=1$ ), which is extremely useful for identification as well as observation of hot bands.

The next chapter gives the theoretical background of saturation effecte and double resonance. Chepter III provides an explanation of experimental details which is similar to that in the second part of this thesis. Pinally, Chapter IV describes the experimental results and presents an analysis of the reeults and several spectra.

## CBAPTER II

THEORY

## Saturation Procene(82)

When a molecular transition is subjected to hish intensity radiation, the fraction of light absorbed by the molecule becomes less than that for low intensity lisht, that is, the absorption coefficient appears to saturate.

Consider a two-level syeten, with etates 1 and 2 coupled by electric-dipole radiation:

$$
\begin{equation*}
H=H_{0}-\mu_{12} \epsilon \cos \omega t \tag{1}
\end{equation*}
$$

where $\mu_{12}$ is the dipole moment matrix element between states 1 and $2, w$ is the frequency of the radiation, and $\in$ is the amplitude of radiation field. Let the quantum mechanical aplitude of the upper state be $a_{2}$, and that of the lower state be $a_{1}$. Then

$$
\begin{align*}
& \frac{d a_{1}}{d t}=\frac{i}{2} x \in a_{2}\left[e^{i\left(\omega-\omega_{0}\right) t}+e^{-i\left(\omega+\omega_{0}\right) t}\right]  \tag{2}\\
& \frac{d a_{2}}{d t}=\frac{i}{2} x \in a_{1}\left[e^{i\left(\omega-\omega_{0}\right) t}+e^{-i\left(\omega+\omega_{0}\right) t}\right]
\end{align*}
$$

where $x=\mu_{12} / h$ and $\omega_{0}=\left(B_{1}-B_{2}\right) / h$. As long as the Rabi
frequency $\omega_{1}=x \in \ll \omega_{0}$, we may neglect the high frequency tern (rotating wave approximation) to give

$$
\begin{equation*}
\frac{d^{2} a_{2}}{d t^{2}}+i\left(u-\omega_{0}\right) \frac{d a_{2}}{d t}+\frac{(x \epsilon)^{2}}{4} a_{2}=0 . \tag{3}
\end{equation*}
$$

The solution to Eq. (3) is

$$
\begin{equation*}
a_{2}(t)=e^{-i \Delta t / 2}\left(\Lambda e^{i \Omega t / 2}+B e^{-i \Omega t / 2}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
& a_{1}(t)=-\frac{1}{K \epsilon} e^{i \Delta t / 2}\left[(\Delta-\Omega) \Delta e^{i \Omega t / 2}\right. \\
&\left.+(\Delta+\Omega) B e^{-i \Omega t / 2}\right] \tag{6}
\end{align*}
$$

where $\Delta=-\omega_{0}$ and $\Omega=\left[\Delta^{2}+(x \in)^{2}\right]^{1 / 2}$.
Let us assume the initial conditions $a_{1}\left(t_{0}\right)=e^{i \theta}$ and $a_{2}\left(t_{0}\right)=0$. This gives the coefficients

$$
\begin{equation*}
a_{1}(t)=e^{\left[i \bullet+i \Delta\left(t-t_{0}\right) / 2\right]}\left[\cos \frac{\Omega}{2}\left(t-t_{0}\right)-i \frac{0}{\Omega} \operatorname{in} \frac{\Omega}{2}\left(t-t_{0}\right)\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}(t)=i \frac{x \epsilon}{\Omega} e^{\left[i \theta-i \Delta\left(t-t_{0}\right) / 2\right]} \sin \frac{\Omega}{2}\left(t-t_{0}\right) \tag{7}
\end{equation*}
$$

The corresponding expressions for the populations are

$$
\begin{equation*}
n_{1}(t)=\left|a_{1}(t)\right|^{2}=\frac{0^{2}}{\Omega^{2}}+\frac{(K \epsilon)^{2}}{\Omega^{2}} \cos ^{2} \frac{\Omega}{2}\left(t-t_{0}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{2}(t)=\left|a_{2}(t)\right|^{2}=\frac{(x \epsilon)^{2}}{\Omega^{2}} \sin ^{2} \frac{\Omega}{2}\left(t-t_{0}\right) \tag{9}
\end{equation*}
$$

Fisure 4 shows the population variation of the excited state subjected to a coherent dipole perturbation.

The effect of collisions can be incorporated in this treatment by averaging Eq. (9) over a Poisson distribution of dephasing collisions with characteristic time $\mathrm{T}_{2}$;

$$
\begin{equation*}
d n_{2}(t)=\frac{1}{T_{2}^{\prime}} e^{-\left(t-t_{0}\right) / T_{2}^{\prime}} d t \tag{10}
\end{equation*}
$$

to give

$$
\begin{align*}
\left.\left.\langle | a_{2}\right|^{2}\right\rangle_{a v} & =\frac{1}{T_{2}^{\prime}} \int_{-\infty}^{t}\left|a_{2}\left(t, t_{0}\right)\right|^{2} e^{-\left(t-t_{0}\right) / T_{2}^{\prime}} d t_{0} \\
& =\frac{1}{2} \frac{(x \epsilon)^{2}}{\left(\omega-\omega_{0}\right)^{2}+\left(1 / T_{2}^{\prime}\right)^{2}+(x \epsilon)^{2}} \tag{11}
\end{align*}
$$

This expression indicates that the line shape is that of a Lorenteian, modified by power broadening proportional to $\epsilon^{2}$, the intensity of the radiation field. Also thie equation


Figure 4. Time evolution of the population of the excited state of a two-level systen ubjected to a coherent dipole perturbation. On-resonance pumping $(\Delta=0)$ results in the slowest oscillations having the greatest amplitude.
shows that a very intense field will eventually equalize populations between upper and lower levels of a transition because $\left.\left.\langle | \mathrm{a}_{2}\right|^{2}\right\rangle_{\mathrm{av}} \rightarrow 0.5$ as $\in \rightarrow \infty$.

The power absorbed, which is the observable in this eysten, can be written as

$$
\begin{equation*}
\Delta P=\frac{d w}{d t}=\frac{N_{1}-N_{2}}{2 T_{2}^{\prime}} \frac{h_{\omega}(x \epsilon)^{2}}{\left(\omega-\omega_{0}\right)^{2}+\left(1 / T_{2}^{\prime}\right)^{2}+(x \epsilon)^{2}} \tag{12}
\end{equation*}
$$

Here $N_{1}$ and $N_{2}$ are the equilibrium populations of etates 1 and 2 , respectively. $A s \in \rightarrow \infty, \Delta P$ becomes a constant. Thus, the absorption coefficient,

$$
\begin{align*}
\alpha=\frac{\Delta P}{P} & =\frac{\Delta P}{c|\epsilon|^{2} / 8 \pi} \\
& =\frac{N_{1}-N_{2}}{T_{2}^{\prime}} \frac{4 \pi \mu_{12}^{2} \omega}{c \hbar\left[\left(\omega-\omega_{0}\right)^{2}+\left(1 / T_{2}^{\prime}\right)^{2}+(\alpha \epsilon)^{2}\right]} \tag{13}
\end{align*}
$$

approaches zero and the medium saturates.
Figure 3 shows the particle velocity distribution in the two levels of a transition subjected to a laser wave of frequency $v$, in which the laser light is intense enough to stimulate transitions of a considerable proportion of the molecules to an excited state. The excitation of particles with a certain velocity ( $v_{\text {res }}$ ) chanses the equilibrium distribution of particle velocities in each level of the
transition. In the lower level there is a lack of particles whose velocity complies with the resonance condition, that is, a hole in the velocity distribution. By contrast, in the upper level there is an excess of particles with resonance velocities, or a peak in the velocity dietribution. The hole depth and the peak height depend on the degree of absorption saturation by the radiation field. With a ingle propagating field, there will be no appearance of a Doppler free resonance as the frequency is tuned acrose the transition. The nonlinear dependence on the intensity of the etrong (pumping) radiation requires a second transition to appear as change in absorption coefficient of the weak (probing) radiation.

Let us assume a pumping radiation at a fixed frequency $\omega$, saturating the Doppler broadened resonance, and the direction of propagation to be the $+z$ direction. Aleo, we assume that a probing radiation at the frequency $\omega_{p}$ is propagating in the opposite direction of the etrong radiation at the same time. This is the actual experimental scheme for most double resonance studies as shown in Fis. 5.

For molecules with a velocity component $v_{z}=v$, the frequency of the intense field at the molecules will be Doppler shifted to $\omega \rightarrow \omega(1-v / c)$. The weak probe field, however, will be Doppler shifted to $\omega_{p}+\omega_{p}(1+v / c)$. Therefore, if $v>0$, the intense field will be down-shifted in frequency, but the weak field will be up-shifted.


Pigure 5. Schematic arrangement of pumping and probing radiation in many infrared-infrared double resonance experiments.

Consider the absorption of the probe field in the presence of an intense field at fixed frequency w. The change in radiation power $\delta I_{p}$ due to molecules with a velocity $v$ in a narrow range dv is given by(63)

$$
\begin{equation*}
\delta I_{p}=\left(d n_{1}-d n_{2}\right) \hbar \omega_{p} R\left(\omega_{p}\right) \tag{14}
\end{equation*}
$$

where $\left(d n_{1}-d n_{2}\right)$ is the change in the population difference between two states 1 and 2 over velocity distribution range $d v$, and $R\left(\omega_{p}\right)$ is the transition rate induced by the probins field. Here, $R\left(\omega_{p}\right)$ has the following form

$$
\begin{equation*}
R\left(\omega_{p}\right)=\frac{\frac{1}{2}\left(\frac{\mu_{12} \epsilon^{0}}{h}\right)^{2} T}{\left[\omega_{p}\left(1+\frac{\nabla}{c}\right)-\omega_{0}\right]^{2} T^{2}+1} \tag{15}
\end{equation*}
$$

Thus, the probe field will show a Lorentz shaped resonance at $\omega_{p}=\omega_{0} /(1+v / c)$.

## Double Resonance in Three-Level Systen

Double resonance in a three-level systen, as shown in Fig. l(A)-(C), means that two transitions induced by strong and weak fields share amon level. Consider a threelevel eysten of the type shown in Pis. $1(B)$, and let $a_{1}, a_{2}$,
and $a_{3}$ be the quantum mechanical amplitudes of the states $c$, $b$, and a, respectively. Suppose that strong field $\epsilon_{p}$ at frequency $\omega_{p}$ is applied close to the transition frequency $\omega_{31}=\omega_{a c}$, and a weak field $\epsilon$ is applied at frequency 0 close to $\omega_{32}=\omega_{a b}$. The equations of motion for the amplitudes are then

$$
\begin{align*}
& \frac{d a_{1}}{d t}=\frac{1}{2} x_{p} \epsilon_{p} a_{3} e^{i\left(\omega_{p}-\omega_{31}\right) t}  \tag{16}\\
& \frac{d a_{2}}{d t}=\frac{i}{2} \times \in a_{3} e^{i\left(\omega-\omega_{32}\right) t}  \tag{17}\\
& \frac{d a_{3}}{d t}=\frac{1}{2}\left[x_{p} \epsilon_{p} a_{3} e^{-i\left(\omega_{p}-\omega_{31}\right) t}+x a_{2} e^{-i\left(\omega-\omega_{32}\right) t}\right] \tag{18}
\end{align*}
$$

with $x_{p}=2 \mu_{13} / h$ and $x=2 \mu_{13} / h$. Let us impose the initial conditions $a_{1}\left(t_{0}\right)=e^{i \theta} a_{2}\left(t_{0}\right)=a_{3}\left(t_{0}\right)=0$. The steady state solution for $\epsilon_{p}$ and $\epsilon$ being constant may be found by setting $d a_{1} / d t=0$, yielding

$$
\begin{align*}
& a_{1}(t)=A_{1} e^{i\left(\omega_{p}-\omega_{31}-\lambda\right) t} \\
& a_{2}(t)=A_{2} e^{i\left(\omega_{p}-\omega_{32}-\lambda\right) t}  \tag{19}\\
& a_{3}(t)=A_{3} e^{-i \lambda t}
\end{align*}
$$

where

$$
\begin{align*}
& \lambda^{3}-\left(\omega_{p}-\omega_{31}+\omega-\omega_{32}\right) \lambda^{2}+\left[\left(\omega_{p}-\omega_{31}\right)\left(\omega-\omega_{32}\right)-\left(\kappa_{p} \epsilon_{p}\right)^{2}\right. \\
& \left.-(x \epsilon)^{2}\right] \lambda+\left(\kappa_{p} \epsilon_{p}\right)\left(\omega-\omega_{32}\right)+(x \epsilon)\left(\omega_{p}-\omega_{31}\right)=0 \tag{20}
\end{align*}
$$

The complicated cubic expression for $\lambda$ can be solved approximately by recognising that $\epsilon_{p} \gg \in$ in typical experiments. We then find that

$$
\begin{equation*}
a_{13}(t)=i \frac{K_{P} \epsilon_{p}}{\Omega_{p}} e^{i \theta-i\left(\omega_{p}-\omega_{31}\right)\left(t+t_{0}\right) / 2} \operatorname{in} \frac{\Omega_{p}\left(t-t_{0}\right)}{2} \tag{21}
\end{equation*}
$$

where $\Omega_{p}=\left[\left(\omega_{p}-\omega_{31}\right)^{2}+\left(x_{p} \epsilon_{p}\right)^{2}\right]^{1 / 2}$ and

$$
\begin{align*}
a_{12}(t)=\frac{K \in \kappa_{p} \epsilon_{p}}{2 \Omega_{p}} & \exp \left\{i \in \left[\frac{e^{i\left(\Omega_{p}+\delta\right)\left(t-t_{0}\right)}-1}{\Omega_{p}+\delta}\right.\right. \\
& \left.\left.+\frac{e^{-i\left(\Omega_{p}-\delta\right)\left(t-t_{0}\right)}-1}{\Omega_{p}-\delta}\right]\right\} \tag{22}
\end{align*}
$$

where $\delta=2\left(\omega-\omega_{32}\right)-\left(\omega-\omega_{31}\right)$.

## CRAPTER III

## EXPERIMBNT

Figure 6 shows the experimental diagran for the infrared-infrared double resonance studies described in this research. A wavesuide $\mathbf{C O}_{2}$ laser (Laakmann Blectro-Optics Inc. Model RFG 88-S) and a nicrowave feedback controlled infrared-aicrowave sideband laser system were used for the pumping and the probing radiation sources, respectively. The eyaten for the probing radiation was explained in detail in Chapter IV of the second part of this thesis. However, the sample cell was alightly modified to prevent the reflection of the pumping radiation from the window of sample cell to the detector. In order to do this, the NaCl window was sealed at the slant angle, in which the angle of window was rotated to let the probing radiation transit nore favorably. The pumping radiation, whose polarization was perpendicular to that of the probing bean, passed through the sample cell after reflection by the beam splitter.

In this experiment, the frequency of the pumping radiation was locked by means of its internal pyroelectric detector stabilizing aysten. The amplitude of the frequency modulation required for this stabilization was minimized to keep the fluctuation of the frequency of the pumping laser as sall as possible.


Figure 6. Bxperimental diagran of infrared-infrared double resonance by means of a wavesuide $\mathrm{CO}_{2}$ laser for pumpins and an infrared-microwave sideband laser for probing.

## Wavesuide $\mathrm{CO}_{2}$ Laser

As a result of molecular collision broadening, it has been possible to increase the tunability of the frequency of a gas laser by developing amall, hish pressure, and sealedoff waveruide $\mathrm{CO}_{2}$ lasers. Since the $\mathrm{CO}_{2}$ Doppler full width at half maximum at 300 og is approximately 50 MHz and the collision broadening is $\mathbf{\sim} \mathbf{5 . 3} \mathrm{MHz} / \mathrm{Torr}(65)$, collision broadening will dominate the lineshape for operating pressures sreater than about 10 Torr. At pressures above several hundred Torr, it is theoretically poseible to increase the tunable range of $\mathrm{CO}_{2}$ laser to several CHz . For most gas lasers, the electron temperature, and hence the characteristics of the discharge tube diameter are determined by the product of the pressure and the discharse tube diameter, so by soing to small diameter tubes one can increase the pressure and still obtain high gain performance. These arguments led to the developaent of the wavesuide $\mathrm{CO}_{2}$ laser $(65,68)$, in which the discharge is contained in hollow dielectric wavesuide with an inside dianeter of aillimeter or less.

Since the individual vibration-rotation lines of $\mathrm{CO}_{2}$ in the -10 上n resion are separated by 1 to $2 \mathrm{~cm}^{-1}$, pressures of about 10 atm. are neceseary to provide adequate overlap for continuous tuning. But it is difficult to obtain population inversion and gain in this preseure resion, and
when laser action can be achieved the linewidthe tend to be the order of a few tenthe of a $\mathrm{cm}^{-1}$.

Figure 7 shows a composite metal-ceramic waveguide leser etructure, in which the tube is surrounded by two ceramic plates which are separated by precisely formed metal electrodes. The sas mixture in this small tube is RFexcited. The laser tube is bonded into a hermetically sealed aluminium tube and support structure, which also functions as the gas reservoir. The end mirror is mounted at the output end of the laser to seal the systen, and a erating is placed inside the vacuum envelope at the other end. A single micrometer control allowe the grating to rotate for tuning the syeten over wide range of laser lines without causing any severe problem in optical alignment.


Figure 7. Cross sectional view of the waveguide $\mathrm{CO}_{2}$ laser used for this experiment.

## CHAPTER IV

## RESULTS AND DISCUSSION

For an infrared-infrared double resonance experiment, a waveguide $\mathrm{CO}_{2}$ laser and an infrared-microwave sideband laser were used for pumping and probing radiation sources, respectively. Figure 8 shows the energy level diagran for three-level double resonances within the tunable range of the sideband system, in which a microwave oscillator was swept from 8.2 to 18.0 GHz for each $\mathrm{CO}_{2}$ laser line. The 'famous' $9 \mathrm{P}(32) \mathrm{CO}_{2}$ laser line of the waveguide $\mathrm{CO}_{2}$ laser was used for a punping source because the frequency of the $Q_{R}(4,3)$ molecular transition of the $v_{3}$ band of ${ }^{13} \mathrm{CH}_{3} F$ is just 25.8 MHz below the laser frequency. Within the tunability of the sideband system, three kinds of threelevel double resonances could be observed, all of which involved pumping the $\mathbf{Q}_{\mathrm{R}}(4,3)$ transition ( $B$ in Fig. 8). The signal transitions were (intermediate common level), C (upper common level), and $D$ (lower common level). In addition, two four-level double resonance experiments (combinations of $B$ and $B$ and $B$ and $F$ ) were performed without observing any significant pumping effect, in agreenent with the selection rules ( $\Delta K=0$ ) for a collisional process. Since many transitions in the $2 v_{3}-v_{3}$ band of ${ }^{13} \mathbf{C H}_{3} F$ could be observed by using the infrared-microwave sideband system(61), it was possible to observe many four-level


Figure 8. Bnergy level diagrame for the waveguide $\mathrm{CO}_{2}$ laser and infrared-microwave sideband laser system used for infrared-infrared double resonance in ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ in this work.
double resonances that were apparently the result of cascading collisional processes(67) or of vibrationvibration energy transfer(60).

We concluded from these preliminary experiments that a waveguide $\mathrm{CO}_{2}$ laser and infrared-microwave sideband laser system is a very useful combination for infrared-infrared double resonance, at least for the pumping of aingle transition and the observation of a variety of double resonances.

With the experimental diagran shown in Fig. 6, in which the pumping and probing beans travel in opposite directions, the sum of two laser frequencies at resonance in a three-level experiment should be equal to the sur of the frequencies of the two molecular transitions, irrespective of the molecular velocity components; that is,

$$
\begin{equation*}
\omega_{\text {pump }}+\omega_{\text {probe }}=\omega_{0}^{\text {pump }}+\omega_{0}^{\text {probe }}=\text { constant } . \tag{24}
\end{equation*}
$$

Figure 9 shows the variation in frequency of the pumped molecular velocity group with pumping frequency for a threelevel double resonance (combination of $B$ and $A$ ). The epectra shown were obtained by probing transition A with the positive aideband generated by combination of the $\operatorname{SP}(46) \mathbf{C O}_{2}$ laser line and P-band microwave radiation. Bach time the pumping frequency is changed, the laser pumps a different velocity group. The saturation effect of one particular


Figure 9. Variation of the position of the pumped molecular velocity group with pumping frequency. The transition is ${ }^{Q^{\prime}}(5,3)$ of the $2 v_{3}-v_{3}$ band of ${ }^{13} \mathrm{CH}_{3}$ F. The ${ }^{\mathrm{Q}}(4,3)$ transition of the $v_{3}$ band was pumped at different frequency for each the spectra A-F.
velocity group in the upper state was monitored by a weak probe field. The increased population for amall rance of velocity is shown in the spectra. Fros this kind of variation, the tunability of the wavesuide $\mathrm{CO}_{2}$ laser could be determined to be greater than 110 MHz , which is a reasonable value considering the $\mathrm{CO}_{2}$ pressure broadening. One of the advantaces of infrared pumping is to tranefer only the molecular velocity sroup which is in resonance with the laser frequency. Since the waveguide $\mathrm{CO}_{2}$ laser was frequency modulated for stabilization purposes, actually a range of velocity groups was pumped. By increasing the modulation amplitude the range of velocities pumped could be increased. Figure 10 shows the variation of the width of the molecular velocity group pumped with modulation amplitude. For this apectrum, the positive sideband senerated from the $9 P(46) \mathrm{CO}_{2}$ laser line and P-band microwave radiation was used at -108 morr of sample pressure. The ${ }^{Q_{R}}(4,3)$ transition in the $v_{3}$ band was pumped and the ${ }^{Q}(5,3)$ transition in the $2 v_{3} \cdot v_{3}$ band was probed. From these spectra, the need for aishly stable pumping laser was comfirmed to study the velocity preserving collisional procese.

Three-Level Double Resonance


Fisure 10. Variation of the ranse of the molecular velocity group pumped with the modulation amplitude of the pumping laser. The modulation amplitude was increased in eteps from (A) to (B). The $\mathbf{Q}_{\mathbf{R}}(4,3)$ transition of the $v_{3}$ band was pumped.

For the three-level double resonance (combination of $B$ and C) which has the upper state of the transitions in common, the ${ }^{Q_{R}(4,3)}$ and $Q_{P(6,3)}$ transitions of the $v_{3}$ band were pumped and monitored, reapectively. since one component of the molecular velocity groupe was transferred into the upper state by pumping, the upper etate was overpopulated at a particular velocity. Therefore, as shown in Fig. 11, the ${ }^{Q_{P}(6,3)}$ transition shows a saturation-dip at a frequency corresponding to the pumped velocity sroup. By tuning the laser frequency, the saturation-dip was shifted to another position, as shown in Fis. 12. In this experiment, the positive sideband senerated from the 9P(50) $\mathrm{CO}_{2}$ laser line and P -band microwave radiation was used and the sample pressure was $\mathbf{\sim} 20$ morr. The $9 P(60) C_{2}$ laser line is very weak in our systen and many comercial $\mathrm{CO}_{2}$ lasers cannot senerate this radiation. However, by adjusting the laser gas mixture to the optimum condition for the 9P(50) $\mathrm{CO}_{2}$ laser line, approximately 100 all of laser power could be obtained. Bven with this low power for the sideband senerator, excellent spectra were obtained (Fiss. 11 and 12). This fact demonstrates the usefulness of the infrared-microwave sideband systen for both linear and nonlinear spectroscopy. By using isotopic $\mathrm{CO}_{2}$ lasers, we can set almost continuously tunable sideband radiation throughout the 9 - 11 上in resion.


Fisure 11. Observation of aturation-dip in the ${ }^{Q_{P}(6,3)}$ transition in the $v_{3}$ band fron three-level double resonance with a common level in the upper state. The ${ }^{Q_{R}(4,3)}$ transition in the $v_{3}$ band was pumped.


FREQ.(GHz)

Fisure 12. Observation of a saturation-dip in the $\mathbf{Q}_{\mathbf{P}}(\mathbf{6 , 3}$ ) transition in the $v_{3}$ band from three-level double resonance with a common upper level. The pumpins frequency in this fisure has been shifted slightly from that in Figure 11.

As a result of the depletion in population of the $J=$ 4, $x=3$ level in the ground atate of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ achieved by puping the $\mathbf{Q}_{\mathbf{R}}(4,3)$ transition, the $\mathbf{Q}_{\mathbf{P}}(4,3)$ transition also shows a saturation-dip at particular velocity eroup; this is shown in Fis. 13. The probing transition was monitored by canning the negative aideband generated fron the 9P(46) $\mathrm{CO}_{2}$ laser line and X-band microwave radiation at ~46 morr of sample pressure. This is a three-level double resonance (combination of $B$ and $D$ ) with a common level at the lower state.

One of the advantages of infrared-infrared double resonance is to be able to observe the population difference between vibrational etates compared to other types of double resonance. With the overpopulation at one velocity group achieved by pumping the $\mathbf{Q}_{\mathrm{R}}(4,3)$ transition of the $v_{3}$ band, the $Q_{R}(6,3)$ transition of the $2 v_{3} * v_{3}$ band shows the pumping effect very clearly with a sharp eaturation epike. Fisure 14 shows this double resonance effect resulting from three-level double resonance with a comon level between two transitions (combination of $B$ and A). In this epectrun a sharp eaturation-spike is seen, in which the position and the width of the epike depend on the pumping frequency and the modulation amplitude of pumping laser, respectively. For the observation, the positive sideband senerated fron the $9 P(46) \mathrm{CO}_{2}$ laser line and P -band microwave radiation was


Fisure 13. Observation of a eaturation-dip in the ${ }^{Q_{P}(4,3)}$ transition in the $v_{3}$ band fron three-level double resonance with a coman level in the lower state. The ${ }^{\mathbf{Q}} \mathbf{( 4 , 3 )}$ transition in the $v_{3}$ band wae pumped.


Figure 14. Observation of the increased intensity of the $\mathbf{Q}_{\mathbf{R}}(5,3)$ trancition in the $2 v_{3} \cdot v_{3}$ band that reaults from three-level double resonance with a comon level that is the upper atate for the pumping transition and the lower atate for the probing transition. Also shown is the increased intensity of the remaining $\mathbf{Q}_{\mathbf{R}}(6, \mathrm{~K})$ transitions that result from increased population of the $v_{3}$ $=1$ state caused by pumping the $\mathbf{Q}_{\mathrm{R}}(4,3)$ transition in the fundamental band.
used and the sample pressure was $\mathbf{\sim} 96$ morr.
Usually the rotational relaxation rate ( $\sim 1$ usec) is much faster than that of the vibrational relaxational rate (~l meec). Both rates increase linearly with pressure. Under the conditions of our experiment, the rotational rate is 0 fast that Boltsmann distribution is established among the populations of the rotational levels in both states and this saturation is not changed by variation in sample pressure up to $\sim 1$ Torr. However, the vibrational populations do not follow aoltzmann distribution and are etrongly affected by sample preseure.

Fisure 16 shows the variation of the double resonance effect at the peak frequency of the direct pumping with sample preseure. This is comparison of the peak heisht of the traneferred epike in the ${ }^{( } \mathbf{R}(6,3)$ transition in the $2 v_{3}$. $v_{3}$ band with pumping and without pumping. As the sample pressure increases, the double resonance effect (saturation effect) decreases because of the increase in the vibrational relaxation rate with the sample pressure.

## Tour-Level Double Resonance

According to the selection rule for collisional process ( $\Delta J=0, \pm 1, \Delta K=0$ ), the possible candidates of four-level double resonance are the combinations of $B$ and $B$


Fisure 15. Variation of the double resonance effect on the intensity of the ${ }^{Q}(5,3)$ transition in the $2 v_{3}$. $\nu_{3}$ band with ample presaure. The lower level of this transition is directly pumped by pumping the ${ }^{Q}(4,3)$ transition in the $v_{3}$ band. The solid line is a sooth curve drawn through the points.
and $B$ and $F$ in Fig. 8. No significant double resonance effects were observed for these combinations. We believe that this is because $B$ and $F$ are transitions in the fundamental band with hish intensity and the collisional effect is small. For this experiment, the amplitude modulation of the probing radiation at 33.3 kHz was used. However, if we modulate the pumping radiation, it may be posible to observe the pumping effect from four-level double resonance on a fundamental band traneition.

For the evidence for indirect pumping to all rotational levele in the excited atate $\left(v_{3}=1\right)$, the transitions $Q_{P(22, \Sigma)}$ of $2 v_{3} * v_{3}$ band were chosen because they are within the range of tunability of the sideband systen and their energy levels and quantun numbers are much hisher that of the direct pumpins level.

Comparison of peak heights with pumping and without pumping shows that the intensity of all the transitions was increased by a factor of 2 - 4. Fisure 16 shows the spectrun obtained fron this case of four-level double resonance, in which the negative sideband senerated from the 10R(14)CO2 laser line and P-band microwave radiation was used with -112 mTorr of sample pressure.

The ${ }^{Q_{P}}(17,3)$ transition of the $2 v_{3}-v_{3}$ band was chosen for observation of the variation of the effect of indirect pumping with pressure, because its frequency is within the tunable rance of a ideband systen and its peak


Figure 16. Observation of the indirect pumping effect to all rotational enersy levele in the first excited vibrational state $\left(v_{3}=1\right)$ by pumping the $Q_{R}(4,3)$ transition in the $v_{3}$ band. The intensity of all transitions in the $2 v_{3} \cdot v_{3}$ band appears to increase with pumping.
is completely isolated from other transitions. From Fis. 17 it can be seen that the indirect pumping effect decreases with increasing sample pressure. As in the previous case of direct pumping, this phenomenon can be explained from the increasins vibrational relaxation rate with sample pressure. In Fis. 17, the ratio 1.0 meane that there is no effect of indirect pumping on the intensity of the traneition. The 10R(30)CO laser line and microwave radiation at frequency of 15452 MHz were used to senerate the negative sideband for thie experiment.

The diagram in Pis. 18 may be used to explain indirect pumping phenomena. Without pumping, all vibration-rotation energy levels are ubjected to the Boltzmann distribution. The population of the first excited atate ( $\left.v_{3}=1\right)$ is approximately $1 \%$ of that of the ground state and the population of the second excited state $\left(\sigma_{3}=2\right)$ is only $1 \%$ of that of the first excited state. We therefore write the relative populations as 99, 1 , and 0.01 . The effect of pumping causes a non-Boltzmann distribution in the ground state and first excited state. The population of (4,3) enersy level in the ground state and of the $(5,3)$ level in the first excited state are equalized by strong pumping of the $\boldsymbol{Q}_{\mathbf{R}}(4,3)$ transition. They therefore become 50 and 50. The overpopulation at the upper state decays to the ground vibrational state by vibrational relaxation and into other rotational levels in the first excited vibrational atate by


Figure 17. Variation of the effect of indirect pumping on the intensity of the ${ }^{( } \mathbf{P}(17,3)$ transition of the $2 v_{3}$ - $v_{3}$ band with sample pressure. The ${ }^{Q_{R}(4,3)}$ transition in the $v_{3}$ band was pumped. The solid line is smooth curve drawn through the points.


Figure 18. Schematic diagran of the molecular population changes caused by pumping the ${ }^{Q}(4,3)$ transition in the $v_{3}$ band. The numbers above each level are relative populations.
either rotational relaxation,

$$
\left(J, \mathbf{X}, v_{3}=1\right)+\left(J^{\prime}, \mathbf{E}^{\prime}, \mathbf{v}_{3}=1\right) \rightarrow\left(J^{n}, \mathbf{E}^{n}, v_{3}=1\right)+\left(J^{\prime \prime \prime}, \mathbf{E}^{n \prime}, v_{3}=1\right),
$$

or by vibration-vibration enersy transfer,

$$
\left(J, E, \nabla_{3}=1\right)+\left(J^{\prime}, \mathbf{E}^{\prime}, V_{3}=0\right) \rightarrow\left(J^{n}, \mathbf{R}^{n}, \nabla_{3}=0\right)+\left(J^{n \prime}, \mathbf{E}^{n \prime}, \nabla_{3}=1\right) .
$$

In either case we inagine that collisions cause a enall net lose in population of connected level in the sround state and a corresponding gain in population of an excited state level.

At the steady atate, the population difference between the ground vibrational state and the first excited vibrational state does not change very much by pumping (99 $1=98 \rightarrow 97-3=94)$, while the population difference between the firat excited state and the second excited etate increases by a factor of $3(\sim 1 \rightarrow \sim 3)$. This explanation seens to asree with the experimental results.

In order to confira the above explanation explicitly, a frequency region was chosen in which fundamental and a hot band transitions coexist. The region selected is the negative sideband tunable range generated from the 10R(20)CO2 laser line and $x$-band microwave radiation from 9.4 to 9.8 GHz . The evidence for indirect pumping to all rotational levels in the first excited vibrational atate can

$$
\begin{array}{llll}
9.56 & 9.64 & 9.72 & 9.80
\end{array}
$$

osuełt!usue»1

[^3]FREQ. (GHz)
be seen in Fis. 19. The $v_{3}$ fundamental and $2 v_{3}$ * $v_{3}$ hot band transitions chosen are $Q_{P(27,15)}$ and ${ }^{Q_{P}(20,6), ~}$ respectively(61). For this example, the fundamental transition is seen to be weaker than the hot band transition. This is because the $J$ and eapecially the $I$ quantun number for the fundamental are enough larger than for the hot band transition that the lower level of the $v_{3}$ transition is higher in energy than the lower level of the $2 v_{3}$ - $v_{3}$ transition. Fisure $19(A)$ indicates the spectrum obtained without pumping, Fis. 19(B) represents the spectrum obtained with pumping, and Fis. $19(C)$ exhibits the epectrun obtained by heating the sample cell to $-100{ }^{\circ} \mathrm{C}$. In Fig. 19(B) only the hot band transition showe aignificant change in intensity, whereas in Fis. 19(C) both the fundamental and the hot bands show increased intensity. This can be explained by the shift in the Boltemann distribution to hisher vibration-rotation quantum numbers as the temperature increases. Since the transitions chosen have hish $J$ and $E$ values, the molecular population increases with the temperature. So the intensity of both transitions is increased by an amount proportional to the change in the Boltzmann factor. On the other hand, as result of pumping the $\boldsymbol{Q}_{\mathbf{R}}(4,3)$ transition at roon temperature as shown in fis. 19(B), the intensity of the transition in the fundamental band does not change, while the intensity of the transition In the hot band increases by a factor of $2-3$ due to the
increased population of the $v_{3}=1$ state. This can be explained by the diagram shown in Fis. 18. These results also demonstrate that the four-level double resonance effects are not simply a result of heating the sample. The population of the $v_{3}=1$ vibrational level is increased, but the rotational temperature in the ground state is hardly changed. In most cases, the observation of a hot band transition is more difficult than that of a fundamental transition because of the small population in the first excited vibrational state (lese than $1 \%$ of the ground atate at roon temperature if $\Delta B_{v}=1000 \mathrm{~cm}^{-1}$ ). In order to increase the intensity (spectrum signal) of hot band infrared transitions in gas samples, three methods have been used so far: increase the length of the sample cell in order to increase the beam path throush the mample; increase the pressure of the sample in order to increase the number of molecules within the bean of radiation; and increase the sample temperature to increase the population of excited vibrational levels. But, when the sample pressure is increased, the collisional broadening effect (~20 MHz/Torr for ${ }^{13} \mathrm{CH}_{3}$ ) and the pressure shift of peak frequency ( $\sim 3$ MHz/Torr for $\mathrm{NH}_{3}$ ) should be considered. Also, the Doppler broadening increases with the temperature of sample. The application of the indirect punping effect, however, to the observation of hot band transitions appears to be able to increase the intensity of ${ }^{13} \mathbf{C H}_{3}$ F transitions by actor of

2 or more due to an increase of vibrational temperature without any additional considerations.

Until now, the only method used for dietinguishing hot band transitions fron fundamental band transitions is use of the shift of Boltsmann distribution with chanse in temperature. Unfortunately, ae has been just seen, thie method also increases the population of high J and guentun states in the sround vibrational state. Therefore, the chanse in intencity upon heatins or coolins the saple is not a reliable indicator of fundanental or hot band transitions. By contrast, the application of indirect pumpins to the molecular systen increases the intensity of hot band transitions and only weakly affects the inteneity of fundamental band transitions.

In order to obtain evidence of vibration-vibration energy transfer, a sample that is an equinolar mixture of ${ }^{12} \mathrm{CH}_{3}$ I and ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ was made. The $\boldsymbol{Q}_{\mathbf{R}}(4,3)$ transition in the $v_{3}$ band of ${ }^{13} \mathrm{CB}_{3}$ was ecain pumped. The pumpinc increased the intensity of the $\mathbf{a}_{\mathbf{Q}}(12,9)$ transition in the $2 v_{3}-v_{3}$ band of ${ }^{12} \mathrm{CH}_{3}$ as shown in fis. 20, which confirmed the vibration-vibration energy transfer described by preses and Tlynn(60).

In unnary, a weveguide $\mathrm{CO}_{2}$ laser was used for pumpins and an infrared-aicrowave sideband laser was used for probins infrared-infrared double resonance of ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$.


Figure 20. Observation of the effect of vibrational energy transfer between ${ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ and ${ }^{12} \mathrm{CH}_{3} \mathrm{~F}$ on the intensity on the ${ }^{Q_{Q}}(12,9)$ transition in the $2 v_{3}-v_{3}$ band of ${ }^{12} \mathrm{CH}_{3}$ F. The ${ }^{Q}{ }_{R}(4,3)$ in the $v_{3}$ band of ${ }^{3}{ }^{13} \mathrm{CH}_{3} \mathrm{~F}$ was pumped.

The observations included evidence for direct pumping of a particular velocity component by three-level double resonance, evidence for indirect pumping to all rotational levels in the first excited atate $\left(v_{3}=1\right)$ by four-level double resonance, and evidence for vibration-vibration energy tranefer.

## REPERENCES

1. T. Oka, Adv. in Atomic and Molecular Physica Vol. 8, 127-206(1973).
2. J. P. Toennies, Discuse. Faraday Soc. 33, 96-98 (1962).
3. T. Carrington, J. Chem. Phys. 31, 1418-1419 (1959).
4. R. G. Brewer, science 178, 247-256 (1972).
5. G. Duxbury, Chem. 8oc. Rev. 12, 453-604 (1983).
6. J. Brossel and F. Bitter, Phys. Rev. 86, 308-316 (1952).
7. A. P. Cox, G. W. Plynn, and B. B. Wilson, Jr., J. Chen. Phys. 42, 3094-3106 (1965).
8. A. M. Ronn and E. B. Wilson, Jr., J. Chem. Phys. 46, 3262-3263 (1967).
9. R. G. Gordon, P. B. Larson, C. H. Thomas, and B. B. Wilson, Jr., J. Mol. Phye. 60, 1388-1393 (1969).
10. J. B. Cohen and E. B. Wilson, Jr., J. Chen. Phys. 68, 466-467 (1973).
11. J. B. Cohen and B. B. Wilson, Jr., J. Chen. Phys. 68, 442-466 (1973).
12. T. Oka, J. Chen. Phys. 45, 764-756 (1966).
13. T. Oka, J. Chen. Phys. 46, 762-763 (1966).
14. T. Oka, J. Chem. Phys. 47, 4852-4863 (1967).
15. T. Oka, J. Chem. Phys. 47, 13-26 (1967).
16. T. Oka, J. Chem. Phys. 48, 4919-4928 (1968).
17. T. Oka, J. Chem. Phys. 48, 3136-3146 (1968).
18. T. Oka, J. Chen. Phys. 49, 4234-4235 (1968).
19. P. W. Daly and T. Oka, J. Chen. Phye. 53, 3272-3278 (1970).
20. A. T. Pabris and T. Oka, J. Chen. Phys. 66, 3168-3169 (1972).
21. A. M. Ronn and D. R. Lide, Jr., J. Chen. Phys. 47, 3669-3672 (1967).
22. H. Jetter, B. F. Pearson, C. L. Norris, J. C. McGurk, and W. E. Flysare, J. Chen. Phys. 59, 1796-1804 (1973).
23. L. Prenkel, H. Marantz, and T. Sullivan, Phys. Rev. A3, 1640-1651 (1971).
24. H. Jones and F. Eohler, J. Mol. Spectrosc. 58, 125-141 (1975).
25. T. Shimizu and T. Oka, J. Chen. Phye. 53, 2536-2537 (1970).
26. T. Shimizu and T. Oka, Phys. Rev. A2, 1177-1181 (1970).
27. W. A. Ireiner and H. Jones, J. Mol. Spectrosc. 48, 326-329 (1974).
28. M. Fourrier and M. Redon, Appl. Phys. Lett. 21, 463-464 (1972).
29. J. Lemaire, J. Thibault, F. Herlemont, and J. Houriez, Molec. Phys. 27, 611-624 (1972).
30. J. M. Levy, J. H. 8. Wang, 8. G. Eukolich, and J. I. Steinfeld, Phye. Rev. Lett. 29, 396-398 (1972).
31. J. M. Levy, J. H. S. Wang, S. G. Eukolich, and J. I. Steinfeld, Chen. Phye. Lett. 21, 698-602 (1973).
32. M. Pourrier and M. Redon, J. Appl. Phys. 46, 1910-1911 (1974).
33. 8. Kano, T. Amano, and T. Shimizu, Chem. Phys. Lett. 25, 119-121 (1974).
1. 8. M. Freund and T. Oka, Appl. Phys. Lett. 21, 60-62 (1972).
1. G. M. Dobbs, R. H. Micheels, J. I. Steinfeld, J. R. S. Mang, and J. M. Levy, J. Chem. Phys. 63, 1904-1913 (1975) .
2. M. Redon, H. Gurel, and M. Pourrier, Chen. Phys. Lett. 30, 99-103 (1976).
3. S. Kano, T. Anano, and T. 8hinizu, J. Chem. Phys. 84, 4711-4718 (1976).
4. C. K. Rhodes, M. J. Eelly, and A. Javan, J. Chen. Phya. 48, 5730-6731 (1968).
5. R. G. Brewer, Phys. Rev. Lett. 26, 1639-1641 (1970).
6. A. C. Luntz and R. G. Brewer, J. Chen. Phye. 64, 3641-3642 (1972).
7. A. C. Luntz, Cher. Phys. Lett. 11, 186-187 (1971).
8. A. C. Luntz, J. D. Swalen, and R. G. Brewer, Chen. Phys. Lett. 14, 512-613 (1972).
9. H. R. Schlosebers and A. Javan, Phys. Rev. Lett. 17, 1242-1244 (1966).
10. I. Burak, A. V. Nowak, J. I. Steinfeld, and D. G. Sutton, J. Chen. Phys. 51, 2275-2276 (1969).
11. J. I. 8teinfeld, I. Burak, D. G. Sutton, and A. V. Nowak, J. Chen. Phys. 62, 6421-6434 (1970).
12. J. I. Steinfeld, I. Burak, D. G. Sutton, and A. V. Nowak, J. Chen. Phys. 63, 3390 (1970).
13. P. L. Houston, A. V. Nowak, and J. I. Steinfeld, J. Chen. Phys. 68, 3373-3380 (1973).
14. J. M. Preses and G. W. Plynn, Bull. An. Phys. Soc. 17, 573-674 (1972).
15. S. M. Preund, J. W. Jones, A. R. W. Mckellar, and T. Oka, J. Chen. Phys. 69, 3445-3453 (1973).
16. R. L. 8hoemaker, 8. Stenholn, and R. G. Brewer, Phys. Rev. A10, 2037-2050 (1974).
17. R. G. Brewer, R. L. Shoemaker, and S. Stenholin, Phys. Rev. Lett. 33, 63-66 (1974).
18. T. Oka and T. Shinizu, Phys. Rev. A2, 587-593 (1970).
19. B. J. Orr and T. Oka, J. Mol. Spectrosc. 66, 302-313 (1977).
20. J. Orr and T. Oka, Appl. Phys. 21, 293-306 (1980).
21. D. J. Bedwell and G. Duxbury, Chen. Phys. 37, 445-462
(1979).
22. G. Duxbury and H. Lato, Chem. Phye. 66, 161-167 (1982).
23. W. H. Weber and R. W. Terhune, J. Chem. Phys. 78, 6437-6446 (1983).
24. H. Luze, H. Jones, M. Taukakoshi, A. Minoh, and M. Takali, J. Chen. Phys. 80, 4222-4229 (1984).
25. W. A. Ereiner, A. Byer, and H. Jones, J. Mol. 8pectrosc. 52, 420-438 (1974).
26. J. M. Preses and G. W. Flynn, J. Chem. Phys. 66, 3112-3116 (1977).
27. S. L. Lee, R. H. Schwendeman, and G. Magerl, to be published.
28. L. Allen, J. H. Bberly, "Optical Resonance and TwoLevel Atoms", John Wiley \& Sons, Inc., New York, NY, 1975.
29. A. Javan, "Doppler free apectroscopy", in Advances in Laser spectroscopy, ed. by F.T. Arecchi, F. strumia, and H. Walther, Plenum Press, New York, NY, 1983.
30. E. Shimoda, "Infrared-nicrowave double resonance", in Laser spectroscopy (R. G. Brewer and A. Mooradian, eds.), Plenem publishing Co., NY, 1974.
31. R. L. Abrane, Appl. Phys. Lett. 25, 609-611 (1974).
32. R. L. Abrans and W. B. Bridses, IBBE J. Quantum Blectron. 03-9, 940-946 (1973).
33. H. Jones and F. Kohler, J. Mol. Spectrosc. 58, 125-141 (1975).

[^0]:    * The theory described in this chapter was developed by $R$. H. Schwendeman.

[^1]:    ancertainty assumed in least squares fits.

[^2]:    Ouncertainty assumed in least equares fits.

[^3]:    Figure 19. Comparison of the effects of indirect pumping and heating on
    
    
    
    
    Figure 19. Comparison of the effects of indirect pumping and heating on

    $$
    \text { at } \sim 100{ }^{\circ} \mathrm{C}
    $$

