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ABSTRACT

A THEORY OF NEUROMIME NETS CONTAINING

RECURRENT INHIBITION, WITH AN ANALYSIS

OF A HIPPOCAMPUS MODEL

BY

Duane G. Leet

A novel system component called the functal can be set to

realize any one of many different functions. A functal net is an

interconnected array of functals, function generators, and delays.

Some fundamental time-domain properties of these nets are developed.

A functal net model of recurrent inhibition as found in the

CA3 sector of mammalian hippocampus is presented. The model

contains a rank of functals, which are somewhat like adaptive threshold

logic units, and a rank of function generators, which are threshold

logic units. The two ranks are interconnected through delays, and the

function generators inhibit the functals. The only assumption on the

connectivity between ranks is that, for each element in the first rank,

there exists at least one direct circuit path from that element through

some element of the second rank and then back to itself.

The most important characteristic of the model's input-output

transformation is that a single input can be transformed into a

sequence of outputs. This sequence terminates, for a given input,

with the continuous repetition of either a single output or a sequence

of outputs. Some properties of the model's output sequences are

derived, and an algorithm is deve10ped for generating, for any

particular N-functal net, all output sequences which that net could

possibly produce.

A trainable functal net is one in which the functions realized by

its functals are under the control of an external structure called the

trainer, which Operates according to a specified algorithm. Both

the trainer and the trainable functal net are part of a new canonical

system called a functal system, some fundamental prOperties of which

are discussed.
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Duane G. Leet

The CA3 model is incorporated into an automate. theoretic

model of the hippocampus that is designed to take advantage of

certain of the CA3 model's properties. There does not exist a

training algorithm for this model that can always change the function

realized by one of its functals to any other arbitrarily specified

function. But an algorithm is given that can produce defined changes

as long as the parameters of,the CA3 model meet certain speci-

fications.

The function realized by a functal system model whenever it

is placed in a new environment is called the initial function. The

selection of initial functions is discussed, and an algorithm is

derived to select them automatically.
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CHAPTER 1

INTRODUCTION

1. l . What is the Function of Recurrent Inhibition?

Recurrent inhibition can be described in terms of components

and connectivity and interneuronal relationships. The components,

which are neurons, are arranged in two ranks. The first rank re-

ceives inputs from elsewhere in the nervous system and from

neurons in the second rank; it sends outputs elsewhere and to

neurons in the second rank (Figure 1.1. 1). The second rank

receives inputs only from the first rank and sends outputs only to

the first rank. The interneuronal relationship, termed interneuronal

inhibition, holds when a neuron in the second rank decrements the

impulse frequencies of those neurons in the first rank to which it is

connected.

Recurrent inhibition is found in many regions of vertebrate

nervous systems: sensory systems [1 ], the cerebellum [2], the

hippocampus [3], and perhaps the Spinal cord [4, 5 ]. For this

reason, understanding its function should be of interest to neuro-

scientists.

When a neuroscientist speaks of the function of a structure,

he is usually referring to its specialized actions or purposes.

Within this context, a number of functions have been attributed to

structures containing recurrent inhibition, or its close relative,

lateral inhibition:

1. enhancement of contrast [1 ] and the detection of edges

[6 ].

2. blockage of low-level inputs [1],

3. amplification of time -varying signals of certain

frequencies [7 ],
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4. selective response to signal patterns flowing in one

direction in a two-dimensional space [8] ,

5. the generation of two periodic signals approximately 180

degrees out of phase with each other from a single input

[9].

6. production of quasi-impulse responses to step inputs [10],

and

7. preferential response to stimuli having certain orientations

[11].

Mathematical readers usually interpret the function of a

structure to be the list of input-output correspondences produced by

it, where the word "list" presupposes only an algorithm (essentially

an ordered set of instructions) that can generate any input-output

pair of the list. With this interpretation, the neuroscientist's

"functions" can be regarded as a list of vaguely defined algorithms,

each of which indicates how a certain subset of the set of all

possible inputs is related to the set of outputs.

In order to avoid confusion over these two meanings of

function, the following convention will be adopted: if "function" is

meant in the neurOphysiological sense, the word "task" will be used

in its place; if "function" is meant in the mathematical sense, the

word "function" will be used. This thesis represents the first

attempt known to the author to investigate the function of recurrent

inhibition.

1. 2. Hippocampus Morphology

In general, in order to determine the function of any opera-

tional unit, 'it is necessary to measure its inputs and outputs

simultaneously. The vertebrate central nervous system does not

lend itself to this approach because the inputs and outputs of its

various subunits are for the most part inaccessable, undecipherable,

and apparently highly variable in the frequency domain. Furthermore,

the subunits themselves change rapidly with time.

An alternative approach to the determination of the function

of the operational unit is to model it mathematically or by computer
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simulation (or some blend of both). The hippocampus is well suited to

this approach. In particular, a wealth of both morphological and neuro-

physiological data exists on it (see Kilmer [12], References and

Appendix B), which makes component modeling comparatively easy.

The hippocampus also has a highly stylized connectivity and the CA3

sector clearly exhibits all of the known indicators of recurrent inhibi-

tion (see Figure 1.1.1); thus its circuit organization is easily carica-

tured. Two kinds of inputs (ignoring the commissural fibers) and their

origins, plus two kinds of outputs and their destinations are known to

exist (see Figure 1.2.1). Thus, the inputs and outputs of any model are

defined and their characteristics can be compared with the available

hippocampal electrophysiological data. In summation, the hippocampus

is the neural structure of choice for an investigation by mathematical

model and computer simulation of the function of recurrent inhibition.

1. 3. The Expositional Problem

The following example points up the difficulty of communicating

the principles of circuit actions for a neural net of the complexity

found in Figure 1. l. l and of concisely describing the net's function.

Consider the neuron net shown in Figure l. l. l, ignoring all of

the direct pyramid-to-pyramid connections. Assume all activity in the

net is allowed to die out, and then apply an input to the net sufficient to

cause P3 to produce a moderate number of pulses per second (fire at

a moderate rate) and to cause P5 to produce a large number of pulses

per second (fire at a high rate). If this occurs at time to (Figure

l. 3. l), and the leading edges of both trains of pulses require the same

time to reach the basket cell rank, then both B3 and B4 will be

affected at time t1; suppose B3 responds by firing at a moderate rate

and B4 responds by firing at a high rate. Assuming these pulse trains

require the same time to travel to the pyramidal cell rank, both P3

and P5 will be affected at the time t2; suppose P3 reacts by completely

turning off and P5 reacts by decreasing its output to a moderate rate.

At some later time t3 these changes will be felt by the basket cells;

as a result suppose B3 turns off and B4 decreases its output to a

moderate rate. At time t4 these changes will be felt by the pyramids;

as a result suppose P3 begins firing at a moderate rate again and P5
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All pyramid and basket numbers refer to Figure l. 1.

Figure l. 3. 1. A phase diagram for the example given in Section 1. 3.
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remains unchanged. At time t these changes will be felt by the

basket cells; as a result suppoge B3 returns to a moderate rate and

B4 remains unchanged. And so on ad nauseam.

In order to circumvent these nasty expositional problems, this

paper has developed a formal language, called functal system theory,

for systems of the kind exemplified by the hippocampus. The reader

is urged not to become discouraged by what may seem to him to be

excessive formalism in the following chapters; the formalism is

justified by the compactness with which it expresses functions involving

recurrent inhibition.

In addition to modeling the hippocampus as a functal system,

some of the operational principles of the class of neuromime nets to

which the model belongs are also given, along with characteristics of

the output sequences of such nets.

1. 4. What is the Function of the Hippocampus ?

An hypothesis of the primary task of the mammalian hippo-

campus has been proposed by W. Kilmer and T. McLardy [12].

Previously, Kilmer and W. McCulloch [13] proposed that the task of

the mammalian reticular formation is to decide the basic mode of

behavior of an animal. A mode might be to fight, take flight, groom,

mate, or eat. It is plausible to suggest that another structure exists

which takes modal and current sensory information and generates

commands for acts within modes. For instance, if the mode decision

is to fight, another structure may select the tactics or style to be

used. Kilmer and McLardy believe that the hippocampus is part of

this structure, at least during the animal's behavior-formative period.

Functal system theory is used in this paper to provide an

interpretation of the hippocampus's function which supports this

hypothesis. In a few words, the interpreted function is trainable

re cur rent inhibition.



CHAPTER 2

FUNCTAL SYSTEMS

2. 1. An Informal Description of the Functal System

The hippocampus and its associated structures appear to be

related to a theoretical structure called a functal system. Informal

definitions of each of the components and of the overall operation of

the system are as follows (see Figure 2. l. 1).

l. The INPUT GENERATOR interprets the present environ-

ment according to its built-in predisposition and produces an input

from a finite set of possible inputs.

2. The INPUT BUFFER, which is under the control of the

TRAINER, performs a combinational circuit transformation on the

input and produces the input to the functal net.

3. The TRAINABLE FUNCTAL NET has these

characteristics:

a. It is an array of three types of elements: functals,

function generators, and delays.

b. Each functal is capable of realizing any one of many

functions. Each function being realized is under the control

of the trainer.

c. A fixed connectivity exists between the elements of the

net (the rules defining the connectivity may involve probability

density functions).

The functal net generates a finite sequence of outputs for a given single

input.

4. The TARGET TABLE GENERATOR has observed the

environment by this time and has constructed a target table.

5. The TARGET TABLE contains the functions that each of

the functals is required to generate. All communication with the

target table is controlled by the READ/WRITE HEAD AND CONTROLLER.
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6. The TRAINER compares the desired output with the output

computed by the net and corrects any functals not generating the

required output.

7. The OUTPUT BUFFER is combinational circuitry under

the control of the trainer.

8. The EFFECTOR DEVICES use the output from the output

buffer to allow the entire system to interact with the environment.

It may also be true that this output affects the environment directly.

A formal discussion of functal system theory is presented in

the remainder of this chapter. Throughout the discussion it will be

assumed that the functal net and all its associated structures and

algorithms operate synchronously in discrete time.

2. 2. The Functal

The intuitive concept of a functal is that it is a mechanism

(that is, an algorithm or physical device) which can realize any one

of a finite number (greater than 1) of different functions. If the

domains and ranges of the functions are assumed to be finite sets, and

if time is assumed discrete, then:

Definition 2. 2. l
 

A functal can be represented over all time by

(11.11.? . >3)

and at any time t by

«r10 = F11M1t). 210. t)

where

0'(t)eZ‘., Fi(.)eT , Z(t)€y, and M(t)ep. .

Necessary supporting definitions are:

Definition 2. 2. 2

p. , a finite set, is the controlled input set of the functal. The
 

elements of (.1 are called controlled inputs. (u is under direct
 

external control. )

Definition 2. 2. 3

Y = {Z(t) = Zl(t) Zz(t) . . . :Z1(t) is an element of

internal input set}

 

 

is the internal input sequence set. The elements of y are called
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internal inputs. (y takes into account possible inputs to the functal

that cannot be directly controlled. )

Definition 2. 2. 4

F1

‘3" = {Fi: (.LXy-t 73}

is the function set. (The function set contains the functions the functal

can realize. )

Definition 2. 2. 5

Z = {0'(t) = H1(t) Hz(t) . . . :Hl(t) is an element of the

finite output setJ'C }
 

is the set of output seflences.

Definition 2. 2. 6
 

Any member of 2, 0(t), is called an output sequence.

Definition 2. 2. 7

 

 

Any vector element _

i

h1(t)

. i

H1(t) = h2(t)

  
i

Lhn‘”.

of an output sequence is called an ou_tput sequence element (or simply

an output).

Definition 2. 2. 8

 

 

A component h;(t) of an output vector is called an output

element.

Definition 2. 2. 9

Thesequence

l 2
0'.t = h.t h.tJ() J() J() 3

is called an output sequence component.

The specification of both controlled and internal inputs

emphasizes a basic prOperty of functals: only controlled inputs to a

functal are provided by the input generator; internal inputs are

generated within the functal net. In particular, feedback is one kind

of internal input. If it is present the functal can generate a sequence,

even when there is only a single input from the input generator.
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2. 3. The Functal Net

Definition 2. 3. l

A functal net consists of functals plus unit delay elements at
 

the output of each functal, function generators plus unit delay elements

at the output of each generator, and a connectivity scheme relating

these.

The delay elements are included for two reasons. First, the

outputs of some of the elements in a functal net will be in a feedback

configuration. The standard way to analyze such nets is to insert

unit delays. Second, all physically realizable functal nets will have

delays in lines and elements.

The concept of state plays a fundamental role in understanding

the behavior Of functals:

Definition 2. 3. 2
 

The outputs of the delay elements can be ordered in a vector

called the state vector 06 Q, the state vector set. The ordering will
  

be Q = (X, Z), where X is the output of the delay elements associated

with the functals and Z is the output of the delay elements associated

with the function generators. X is called the functal state vector and
 

Z is called the generator state vector.
 

If the functal net is considered to be a single functal of an

even larger net, then the elements H of the output sequence set will,

are those
f

components of X considered outputs and Hg are those components

by convention, have the form H = (Hf, Hg), where H

of Z considered outputs.

A special kind of functal net is the trainable functal net:

Definition 2. 3. 3

A trainable functal net is a functal net whose function is under

the control of a defined structure called the trainer.

The trainer will be discussed in more detail after the character

of the input-output relationship of a general functal net is revealed.

2. 4. The Concepts of State and Output Foundations

There is a graphic viewpoint which can promote some initial

understanding into the design .and analysis problems for functal nets.

Assume that at some initial time to the vector of functions currently
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realized by the functals is F(to), the controlled input vector is 1(to),

the state vector is Q(to), and the output vector is H(to).

Definition 2. 4. 1
 

The quadruple

Lu) = < FM. 010. 1m. H11) >

is called the_12_c_:ls_ of the functal net at time t.

Definition 2. 4. 2
 

 

The locus L(to) is called the initial locus.

Consider each and every combination of F and 1. Within each

combination, place the net in every possible state in the state set.

For each state allow the net to compute for one period and record the

new state. Construct a standard state table or state diagram from

these data. The resulting representation is given a special name.

Definition 2. 4. 3
 

A state level is the state structure associated with any arbi-
 

trary but specified combination of F and I. The notation is 1(F, 1).

Definition 2. 4. 4

The set of all state levels is called the state foundation of the
 

functal net. .

The fact that the output vector H is a subvector of the state

vector Q can be used to construct an equivalent set of definitions for

the output.

Definition 2. 4. 5
 

An output level lO(F, I) is the output structure associated with
 

a combination of any F and any 1.

Definition 2. 4. 6
 

An ouflaut foundation is the set of all possible output levels for
 

a given functal net.

2. 5. Properties of Output and State Levels

2. 5. 1. Properties of State Levels

Kauffman [14] has demonstrated the following property for

nets of arbitrarily connected switching elements having fixed inputs:

Definition 2. 5. 1

A state with the prOperty that the net remains in the state once

it is entered is called an gquilibrium state.
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Definition 2. 5. 2
 

A subsequence of states that is continuously repeated is

called a state cycle.

Definition 2. 5. 3

A subsequence of states with the property that it eventually

 

leads to a state cycle is called a state run-in.
 

PrOperty 2. 5. l
 

Each state of a level has one and only one of the following

properties:

1. It is in a state run-in.

2. It is an equilibrium state.

3. It is in a state cycle.

It is clear that this prOperty is true for function generators

of arbitrary but finite domains and ranges.

A useful relation between state run-ins and state cycles is the

following.

Definition 2. 5. 4

Within a state level, all states belonging to run-ins to the

 

same cycle plus all the states belonging to the cycle form a set of

states called the state cycle complex.
 

A typical state level is shown in Figure 2. 5. 1.

One state in each state cycle complex will assume particular

importance:

Definition 2. 5. 5
 

Any state in a state cycle complex may be designated as a

start state for the cycle.
 

Property 2. 5. 2
 

There can be only one start state per state cycle complex.

Proper_ty 2. 5. 3

A given start state will lead to a unique state cycle.

Definition 2. 5. 6
 

A sequence of states (run-in plus cycle) in state level 1(F, I)

with start state qo will be denoted by C(qo, F, I), and will be

called a state sequence.
 

An important property of any state sequence is:
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State Space

start state
 

run-in
 

start state

  
 

/ cycle

  
 

g \- equilibrium 8 tate

2

Figure 2. 5. 1. A typical state level structure.

The state space is three-dimensional, with each state being binary

valued.
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Propertj 2. 5. 4

The second occurrence of any state in the sequence C(q, F, 1)

indicates the completion of the state cycle and the beginning of a

second pass through the cycle.

2. 5. 2. PrOperties of Output Levels

Since the output vector H is subvector of the state vector Q,

for every state cycle there is a corresponding output cycle:

Definition 2. 5. 7

A sequence of outputs which continuously repeats itself is

called an output gycle.

There will also be sequences of outputs corresponding to the

state run-ins:

Definition 2. 5. 8
 

A sequence of outputs which eventually leads to an output cycle

is called an output run-in.
 

Corresponding to the equilibrium state:

Definition 2. 5. 9

An output which continuously repeats itself is called an

equilibrium ou_tput.
 

Finally, the definition corresponding to the state cycle complex

is:

Definition 2. 5. 10

Within an output level, all outputs belonging to run-ins to the

same cycle plus all the outputs belonging to the cycle form a set of

outputs called the ou_tput cycle cormlex.

Definition 2. 5. ll

 

 

An output cycle plus output run-in in level lO(F, I) with initial

output H1 is an ouglut sechnce of the net and is signified by

«(HR F, 1).

Of course the similarity between the output sequence of the

functal definition and the above definition is no accident. Indeed,

0' (H1, F, I) = HIHZHB... = F(I, 2).

Now, consider a specific state level 1(F, I) and the following

two state cycle 8:
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(The cycles are listed in the form

ql(tl) q1(tl+d) ql(tl+2d)

q2(t1) q2(tl+d) q2(tl+ 2d)

qn'h' qn(tl+d) qn(tl+2d) )

 

 

cycle numberl cycle number 2

00000 0000

10011 1011

11001 1101

00000 1111

If q1 and q2 are defined as the outputs, then the sequences

0 0 0 0 0 and 0 0 0 0 0 0

l 0 0 l l l

outputs are in more than one output cycle and the second occurrence

1 0 l 1 are the output cycles. Note that the 0 and

of g in cycle number 1 did not signal the end of the cycle. These

observations can be generalized in the following properties:

PrOperty 2. 5. 5

Any single output may be in more than one output cycle complex.

Property 2. 5. 6

It is not possible to determine the end of an output cycle

by comparing the current output with previous outputs.

These two properties play a significant role in determining

the complexity of the functal system trainer.

2. 6. The Target Table Generator

A target table can be generated whenever it is both advan-

tageous to do so and conditions permit. This generally requires the

target table generator to know what functions can be trained from

each function the net can realize. In other words, the target table

generator should have available as a reference the following class of

sets:

Definition 2. 6. 1
 

6’ = {1.0! i: 21 i is a convergence set}

is the convergence class.
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Definition 2. 6. 2

2! i = {er T : the functal realizing the

 

function FiGT can be trained to realize

the function Fk}

is the converflnce set of the function F,.
 

Implicit in these definitions is the requirement that the target

table generator must also have knowledge of the set T . This

requirement should not be taken lightly. In the real system it implies

that the target table generator and the functal net must be more than

just casually related: they must have evolved in a way that allows

each to know what it can expect from the other.

This kind of relationship could come about very naturally

in a neural system if the target table generator structure

grew the functal net to perform a deligated task.

On the other hand, in the design of the artificial system, the design

of the target table generator and the functal net will have to proceed

in parallel.

2. 7. The Target Table

The target table contains a list of output sequences, one

sequence for every possible input to the functal net.

Definition 2. 7. 1

When contained in a target table, an output sequence will be

 

called a target squence, with the notation 0*(t).
 

As with the output sequence, the target sequence is a vector

sequence. The following definitions locate the various parts of the

target sequence.

Definition 2. 7. 2

A target sequence element HJ*(t) corresponds to the output
 

sequence element of Definition 2. 2. 7.

Definition 2. 7. 3
 

A taget sequence commonent element, or m, hg*(t),

corresponds to the output element of Definition 2. 2. 8.

Definitionfi2_. 7. 4

A target sequence compgngnt 01*(t) corresponds to the output

sequence component of Definition 2. 2. 9.
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Definition 2. 7. 5
 

The set of target sequence components for a single output

terminal and over all possible input values to the net is called a

functal section of the target table.
 

In order to keep the target table as compact as possible, the

length of a target sequence is limited to the maximum length of any

component's run-in plus cycle. Along with this convention, a

modified regular expression "notation is used when explicitly listing

a target sequence. This notation is best defined by example.

Suppose the functal net has four outputs and the components of the

target sequence for some input I are:

0' 1*(1) = 0123456456456 .....

0' 2=1<(I) = 0000000.....

«3*(1) = 234523452345 .....

s4*(1) = 8722222222222.....

Then the notation for these is:

171*(1) = 0123456(456)*

_ (72*(1) : 00*

03*(1) = 2345(2345)*

04*(I) = 8722*

As one target sequence, the notation is:

0123 456456456456 456456456456 *

0*(1) = 0000 000000000000 000000000000

2345 2345 2345 2345 2345 2345 2345

8722 222222222222 222222222222

2. 8. A General Training Structure and Algorithm

2. 8. 1. Movement Within Foundations Under Input and Function Change

In this section a general form for a trainer structure and

algorithm is proposed. First, though, it will be necessary to

describe what happens in the foundations when there are changes

either in the inputs to a net or in the functions of a net.

Assume that the initial locus of the net is
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Leo) = < Foo), mo). one). Hue) > .

Therefore, the net is in:

a. state level 1(F(to), I(to) ).

b. state sequence C(Q(to), F(to). 1(to) l.

c. output level lo(F(to), 1(t0) ),

output sequence 0' (H(to), F(to), 1(t0) ).

Assuming I(to) and F(to) are not changed, (b) and (d) define the

future of the net.

Now suppose the input is changed and is effective at time t1.

At this time the net is in state Q(tl) and this becomes a new start

state. This means that the net is in:

a. state level 1(F(to), I(tl) ),

b. state sequence C(Q(t1), F(to), 1(t1) ),

c. output level lo(F(to), 1(t1) ),

(1. output sequence 0' (H(tl),F(to), 1(t1) ).

Finally, suppose the function that the net is realizing is

changed and becomes effective at time t At this time the net is in

state Q(t2) and this becomes a new stari state. Therefore, the net

18 m:

a. state level l(F(t2). 1011) l.

b. state sequence C(Q(t2). F<t2)’ 1(tl) ).

c. output level lO(F(tZ), I(tl) ),

output sequence 01(H(t2), F(t2), I(t1) ).

2. 8. 2. The Operation of the Trainer Under Input or Function Change

Suppose the target table has entries 0'*(I(to) ) and cr*(I(tl) ).

The ideal situation would be that when the input changes,

:1: = ,6 (ml) 1 a (Hal). Foo). 10:1) )

Of course, in general there is no assurance that this will happen.

The structure in Figure 2. 8. l is proposed to insure that the ideal

situation will occur, at the cost of some "dead time" when the input

changes. The function of the components of the structure are:

INPUT-CHANGE DETECTOR: Detects changes in the input.
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Figure 2. 8. l The basic trainer structure of a functal system.
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START-STATE TABLE: Contains a list of start states, one for each

possible input.

CHANGE-OF-STATE CONTROLLER: Retrieves a start state from

the start-state table and places the net in that state.

COMPARATOR: Uses the inputs it receives to compare the output

it receives from the net with the appropriate entry in the
 

target table. It may also be necessary to signal the comparator

to suspend operations until the output associated with a new

input has made its way to the comparator.

DECISION CONTROLLER: When an error has been detected, this

component decides whether to change the start state or the

function.

CHANGE-OF-FUNCTION CONTROLLER: Changes the function being

realized by the net.

START-STATE TABLE GENERATOR: Changes the start-state table.

The algorithm the structure follows is:

Algorithm 2. 8. 1

1. If the input changes, the input change detector output

becomes one.

2. This activates the change-of-state controller, which

signals the input buffer to withhold the new input from the net and the

output buffer to generate some "neutral" output. (It may also be

necessary to signal the comparator to suspend operations until the

output associated with the new input has found its way to the com-

parator. ) Then the change-of-state controller consults the start-

state table and imposes a new start state on the net.

3. The comparator is continually comparing outputs generated

by the net with the desired outputs in the target table. If there is a

difference between any two of them, the comparator notifies the

decision controller. This controller, in turn, activates either the

change-of-function controller or the start-state table generator.

4. The change-of-function controller attempts to train the

net to the sequence in the target table by changing the function being

realized by the net.

5. The start-state table generator attempts to train the net
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to the sequence in the target table by changing the start state of the

input in question.

The detailed manner in which the decision controller, the

change-of-function controller, and the start-state table generator

operate is, of course, of utmost interest. However, very little more

can be said about these devices without having a particular situation

in mind, such as the hippocampus and its environment.

Two kinds of time intervals will be of interest to the trainer.

Definition 2. 8. l
 

The time period is the time during which one output is com-
 

puted by the net.

As mentioned previously, when there is an output error, the

generation of outputs is suspended and training takes place. During

training the passage of time is indicated by the number of time pulses

that occur.

Definition 2. 8. 2

The time pulse is the fundamental time quantum of the net.

 

 

2. 9. The Trainer, Target Table Relationship

There are two methods the trainer might use to compare an

output sequence with a target sequence. Either it can wait until the

entire sequence has been generated and then compare it with the target

sequence, producing a single judgment on the similarity of the two

sequences; or it can compare the outputs one at a time, producing

judgments after each output. The first alternative is undesirable

because it implies that a sequence is equivalent to a single net output.

Consequently:

Assumption 2. 9. l
 

Each output of the functal net is assumed to have an effect on

the environment and/or the effector devices. Furthermore the

trainer has the capability to compare any single output with the

corresponding entry in the target table.

Since the target sequence consists of a run-in plus a cycle,

it might be efficient to compare the output sequence with the target

sequence only until the completion of the first output cycle.
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After that, and for as long as the input does not change, the output

and corresponding target sequence element would no longer be

compared. There are two reasons, however, that this approach is

undesirable. First, from Property 2. 5. 6 the generated sequence

may be a subsequence of a longer sequence. Second, no restrictions

are placed on when the target table can be changed. Therefore,

Assumption 2. 9. 2

The trainer has a mechanism for detecting the end of an

output cycle and a mechanism for finding the beginning Of the cycle

in the target sequence-representation whenever the end is

detected.

Example 2. 9. l
 

Each target sequence 0*(t) can be visualized as being on an

erasable tape. A mark on a companion tape can be used to indicate

the end of the run-in and the beginning of the cycle. The read/write

head and controller can be assumed to consist of two parts: a read-

head and its controller, and the write-head and its controller. The

read-head controller could initialize the read-head at the first element

of the tape whenever a new input is detected and it could move the

read-head to the right one element every time period. If the final

element in the representation is read and the input has not changed,

then the controller could move the read-head back (to the left) in the

tape until it found the beginning-of-cycle indicator on the companion

tape.

2. 10. Measures of Functal Net Performance

It is important to have measures by which nets, natural or

man-made, can be compared. Some of the obvious measures are the

number of functals, the number of function generators, the similarity

of connectivity, and the similarity of the training algorithm. Others

are:

l. The convergence set. One measure of the versatility of a

functal net is the number of net functions that the net can be trained

to realize from a specified function. This measure is the cardi-

nality of the convergence set of the specified function.
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2. The statistics of output sequence lengths. Another class of

measures of interest to some studies is the statistics of the output

sequence lengths. For instance, it might be of importance to look at

the distribution of run-in, cycle, or equilibrium lengths or the

percentage of sequences in the three categories.

3. The statistics of convergence times. It will not be of

much value to be able to train a functal net if a prohibitively long time

is required for training. Hence, the following measure.

Definition 2. 10. l

The convergence time T = T(0'(I), 0'*(I) ) is the number of

 

 

time pulses required to train a functal net to produce 6*(1) when it

was originally producing 0'(I).

Some of the convergence time statistics are:

a. The longest training period for a convergence set.

b. The shortest training period for a convergence set.

c. The longest training period for the entire convergence class.

The shortest training period for the entire convergence

class.

e. The average convergence times for any Of the above.

2. 11. The Functal System Analysis Problem

The following procedure has been found useful in modeling and

analyzing a natural system (the hippocampus) by a functal system.

Step 1. In the natural system identify:

1 The input and output spaces.

The functals.

The function generators.

The rules for connectivity.

The delay times between and within elements.

The trainer and its algorithm.

"
3
1
‘
”
9
9
9
9
'
?
’

The target table generator and its algorithm.

Step 2. Specify the model-~equations and parameters--of each of the

above.

Step 3. If possible, isolate the physical elements and establish that

the element models are satisfactory; that is, the input-output trans-

formations are within an acceptable range of those found in the
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physical system. GO back to Step 2 or perhaps even Step 1 if changes

need to be made in either the model or the natural system concepts.

Step 4. Verify that the model behaves in the way the modeler (L93)

expects it to. In some cases this may lead to a jump to either Step 2

or Step 7.

Step 5. Record properties and measure the characteristics of the

model.

Step 6. Design experiments or interpret existing data to obtain

comparable properties and characteristics of the physical system.

Step 7. Compare the results of Steps 5 and 6. If the comparison is

poor, then make a judgment as to the cause and return to the appro-

priate previous step to revise' either the physical system concepts or

the model.

It should be emphasized that Step 7 may lead to entirely new

concepts of the physical system. This is one of the two main contri-

butions functal net modeling (or any modeling, for that matter) can

make. The other contribution is that the functal net concepts are so

designed that computer component analogs can be constructed of the

physical system; this, especially when the physical system is neural

in nature, would lead to entirely new kinds of machines.



CHAPTER 3

A FUNCTAL SYSTEM MODEL OF THE HIPPOCAMPUS. PART 1

3. 1. Introduction .

The hippocampus system model presented in this chapter and

Chapter 5 (see Figure 3. l. l) is the compromise design which resulted

from intense negotiations to simultaneously satisfy four competing

interests: The anatomical and neurOphysiological data on neurons and

nervous systems in general and the hippocampus in particular, the

ability to meaningfully simulate the model either in hardware or soft-

ware, the experimenter's intuition, and the functal system theory.

The discussion of the model has been divided into two parts.

The first part, this chapter, discusses the model of the hippocampus

CA3 sector and those other elements of the canonical functal system

which do not rely on certain theoretical properties of the CA3 model.

These include the input and output sets and buffers. The next chapter

develops some of the computation theory of the CA3 model and then

Chapter 5 completes the specification of the hippocampus system

model.

3. 2. The Input and Output Sets of the Hippocampus System Model

There is insufficient evidence from the firing rate data of the

mossy fiber input or the pyramidal cell output of the CA1 sector to

determine the significant ranges for the input and output variables of

any hippocampus system model. It seems reasonable, therefore, to

choose the simplest range possible, the binary set (low firing rate,

high firing rate). The corresponding model values will be (0, l).

3. 3. The Input Buffer

The input buffer defines the connectivity of each component Ij

of the system input vector I to each pyramidal cell analog k in the

27
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model.
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CA3 model. It also acts as a combinational switching circuit with

Table 3. 3. l as the truth table (where M is the input matrix to the

CA3 sector model). From the table it is clear that SD is used to do

one of three things: block the input (SD = 0), allow the input to pass

unchanged (SD = l), or amplify the input (SD = 2).

In the hippocampus itself, it is possible that the dentate per-

forms the input buffer function, with SD corresponding to the septal

input, I corresponding to the perforant path fibers, and M corres-

ponding to the mossy fiber output of the dentate.

3. 4. The CA3 Sector Net

3. 4. 1. Introduction

The CA3 sector net is intended to be a model of the CA3

sector of the hippocampus. The major elements in the net are the

pyramidal cell logic units (PCLUs), which are functals representing

the pyramidal cells; and the basket cell logic units (BCLUs), which

are function generators representing the basket cells. The inputs to

the net are the matrix M and the vector S. The latter is assumed

to correspond to the septal input. The output of the net, the vector

H, represents the Schaffer and fimbrial fornix collaterals. The

values of the elements of the output are taken from the set {0, l, 2},

where 0 is assumed to represent a low firing rate, 1 a medium firing

rate, and 2 a high firing rate. The design rationale for the net is

given in Appendix A.

3. 4. 2. The Pyramidal Cell Model: The Pyramidal Cell Logic Unit

This functal, which is a close kin to the adaptive threshold

logic unit so prevalent in the literature of neural modeling, is designed

to generate a digital approximation to the firing rate of a pyramidal

cell.

The primary difference between the adaptive threshold

logic unit and the PCLU is that an individual weight of

a PCLU can only be adjusted in one direction.

There are two major parts to the PCLU, the discriminant

function and the training algorithm.
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Table 3. 3. l.

The Truth Table for the Input Buffer of the

Functal Systems Model of the Hippocampus

 

SD I. Does a connection mk. eM

J exist between input J

I. and R?

J

0 0 0

0 1 . 0

1 0 . 0

l 1 yes 1

1 1 no 0

2 0 . 0

2 1 yes 2

2 1 no 0
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Definition 3. 4. l

The discriminant function of PCLU i, denoted by
 

("A310 - M310 - Bim . zim‘lT = yitt). is

12

T2 > Ai(t) - Mi(t) - Bi(t) ° Zi(t) 2 T1 iff yi(t) : l

Ai(t) - Mi(t) - Bi(t) - Zi(t) 2 T2 iff yi(t) = 2

Ai(t) - Mi(t) - Bi(t) ° Zi(t) < Tl iff yi(t) : 0

where

mij(t) : 1 or 2 implies aij(t) mij(t) : aij(t).

The vectors and constants in the discriminant function have been

given names:

Definition 3. 4. 2
 

The vector A16 dam is the vector of mossy fiber (mf) weijlgg

for PCLU i.

Definition 3. 4. 3

The vector Bie 0n is the vector of feedback weights for

PCLU i.

Definition 3. 4. 4

The vector Wi : (Ai’ Bi) is the weight vector for PCLU i.

Definition 3. 4. 5

The vector Mic (Tm is the set of mossy fiber (meinputs to

PCLU i. (Mi is a row of the matrix M. )

Definition 3. 4. 6

The vector Zie an is the set of feedback inputs to PCLU i.

Definition 3. 4. 7

The constants T and T e 691 are the 1911131; and pm

1 2

thre 8 holds re spe ctively.

 

 

 

 

 

 

 

 

 

 

 

According to the discriminant function, each mf input is

multiplied by a corresponding mf weight and each feedback input is

multiplied by a corresponding feedback weight. (From Figure 3. 4. 1

note that a two is equivalent to a one in this multiplication. ) The total

PCLU contribution is subtracted from the total mossy fiber contribu-

tion (the inhibition effect) and the result is compared with the two
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Sim

M310 Q vim

Zi(t)

(a) Schematic

yi(t) = FAN) - Mia) - B310 . 21101

T
12

where

mij(t) = l or 2 implies

aij(t) mij(t) : aijm.

(b) Discriminant function

 

Si(t) mij(t) e Ai(t+d) Bi(t+d)

3 0 {0,1} Ai(t) 13,0)

0 {0. 2} Ai(t) Bi(t)

1 {0,1} Ai(t) Bi(t) + ozim

1 {0, 2} Aim + AMim Bim

  
(c) Weight adjustment table

Figure 3. 4. 1. The pyramidal cell logic unit.
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thresholds.

The other major part of the PCLU is the training algorithm,

which adjusts the weight vector if necessary. The mode of this

adjustment is determined by the septal fiber input.

Definition 3. 4. 8

The scalar function si(t)€(0, 1) is the septal inllut to PCLU i.

 

 

Figure 3. 4. 1 summarizes the algorithm. Expressed verbally:

a. If si(t) = 1 and the mf input has components from the

set (0, 2), then every component of the mf weight vector A having a

nonzero mf input is increased by some fixed amount A .

b. If si(t) : 0, then no change is made in any weight vector.

c. If s,(t) : l and the mf input has components from the

set ‘1 0, 1}, then every component of the feedback vector Bi having

a nonzero feedback input is increased by some fixed amount 6.

It is important to note that the connectivity of the net requires

the feedback inputs Zi to be internal inputs (see Definition 2. 2. 3).

3. 4. 3. The Basket Cell Model: The Basket Cell Logic Unit

The well-known function generator called the threshold logic

unit is used as the basket cell model in the net. Renamed the

basket cell logic unit, or BCLU, the representation is shown in

Figure 3. 4. 2. The definitions of interest are:

Definition 3. 4. 9

[Vim - Hi1tflT = 2311)

is the discriminant function of BCLU i, where
 

I

. 2 ° :Vi Hi(t) T lff zi(t) l

I

o < . :Vi Hi(t) T lff zi(t) 0

and where

v..h..(t) : v.. iff h..(t) : 1 or 2

1J 1J 13 1J

l

O(t) iff hij(t) = 0 or vij(t) = 0.vijhij

Definition 3. 4. 10

The vector Vic 01 is the vector of weights for BCLU 1.

Definition 3. 4. 11

The positive integer T is the BCLU threshold.
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Hi(t) e 211 (t)

(a) Schematic

T

where

v..h..(t) ._ v.. iff h..(t) : l or 2

lj lj lj lj

v..h..(t) = 0 otherwise

1.1 1J

(b) Dis criminant function

Figure 3. 4. 2. The basket cell logic unit (BCLU).
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Definition 3. 4. 12

The vector Hi(t)’ with components from the set {0, l, 2},

is the vector of inputs to BCLU i.
 

3. 4. 4. The Connectivity and Delays

The pattern of connectivity in the CA3 sector net (Figure 3. 4. 3)

is an extreme simplification of the connection scheme of the natural

system. The mossy fiber input feeds a rank of PCLUs. At the

output of each PCLU there is a unit delay; the output of these delays

is used as the input to a rank of BCLUs and also as the output of the

net. The output of each of the BCLUs first passes through a unit

delay and then feeds the PCLU rank.

There are two rules that might be used when defining a

specific connectivity. The first is suggested by the CA3 sector

morphology: a PCLU should feed the BCLUs in only a limited surround

of the PCLU, and a BCLU should feed PCLUs over an area several

times as large. The second rule is suggested by the behavior of the

model (as developed in the next chapter): a direct path should exist

from each PCLU i to at least one BCLU and back to PCLU i. If it

is assumed that only one BCLU per PCLU is connected in this

fashion, then:

Definition 3. 4. 13

The BCLU in the direct PCLU i - BCLU - PCLU i path is

called the special BCLU of PCLU i.

As will be seen in subsequent chapters, the extent of both the

 

trainer and the target table generator's knowledge of a functal net's

connection scheme plays an important part in determining the

operating characteristics of those structures (for example, their

versatility when changing the net's function). In order to emphasize

this point, the connectivity of the CA3 sector net is Specified only to

the extent of its trainer and target table generator's knowledge. That

is, it is assumed reasonable for both structures to know about the

Special BCLUs; it is assumed unreasonable to suppose that they know

the first connectivity rule. Therefore, the special BCLU connectivity

rule is the only one assumed for the CA3 sector net.
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551(t)

Y’ (t) (t- l) = In (ti

Iv11(t) ‘ l -J.‘\\. 3,1 l .-— f11(t)

 

 

 
 

 

532(t)

Mz(t)
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2' (t)
21“) I

zI(t) ‘ 9 HI“)

Figure 3. 4. 3. A general form of connectivity

for the CA3 sector net.
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A more complex and seemingly more realistic connection

scheme for a CA3 sector model is presented in the Appendix. It is

suggested that part of the reason for the complexity of the connec-

tivity in the natural hippocampal system is to overcome the restraints

placed on the natural trainer's activities because of its lack of

knowledge of the hippocampal structure. This observation appears to

present a paradox, but perhaps the explanation is that, after a certain

critical level of connection complexity, more complexity tends to elim-

inate the need for detailed knowledge on the part of the trainer and

target table generator; they can deal instead with generalities.

Finally, a comment on the delays. It may be that there has

been a significant oversimplification in the placement and magnitudes

of the model's delays. Unfortunately, a more complex arrangement

would remove the behavior of the model from the realm of the author's

existing intuition.

3. 4. 5. The Operational Algorithm

In order to discuss computational prOperties of the net it is

necessary to be specific about the order in which the computations

occur. This order is:

Advance the state.

Compute the new outputs of the PCLUs.

Compute the new weight vectors of the PCLU.

u
k
b
d
s
v
t
—
o

Compute the new outputs of the BCLUs.

3. 5. The Output Buffer

The computation of the output buffer obeys the following truth

 

table:

him ¢<t>

O 0

l 0

2 1

In addition, if the output buffer input CFO = 0, then all output buffer

outputs are zero.

Presumably the natural structure which performs this function

is the CA1 sector. This should not, however, be taken as the full

extent of the functional SOphistication of this area.



CHAPTER 4

PROPERTIES OF THE CA3 SECTOR NET

4. 1. Introduction

The properties of the CA3 sector net presented in this chapter

are important in two ways- First, the trainer and target table

generator designs depend, to a large extent, on the computational

properties of the functal net they control. Second, the properties

constitute an analysis of the function of recurrent inhibition as it

occurs in the net.

A necessary preliminary assumption concerns the major role

played by the special BCLU in net computation.

Assumption 4. l. l.

The output of the special BCLU of PCLU i is assumed

to be nonzero whenever the input to the BCLU from PCLU i is

 

nonzero.

The most basic CA3 sector net property is the following.

Property 4. l. l.
 

Two M = 0 inputs place the hippocampus net in the zero state.

Proof: Suppose the net is in some state Q = (H, Z) and has a PCLU

output Y and a BCLU output 2;. Furthermore, assume that the

mossy fiber input matrix M = O. The ope rational algorithm of the

net outlined in Section 3. 4. 5 says that the next time period will see

the state of the net become Q = (Y, Z'a) , the PCLU output become 0

and the BCLU output become 2%). If the mf input remains zero for

the next time period, then the state of the net, the PCLU output, and

the BCLU output will hedome Q = (0, 2.3), 0, and 0 respectively.

The state of the net for the next time period will be Q = (O, 0). QED

Therefore, any time a zero state is desired it is only necessary to

apply a zero input for at least two time periods.

The structure of the hippocampus and intuition made it difficult

to justify the existence of the start state table, the start state table

38
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generator, and the decision components of the general functal system.

By giving the change of state controller the capability to apply a zero

input to the net (through the input buffer) and making the following

assumption, it was possible to entirely eliminate these troublesome

components from the hippocampus system model.

Assumption 4. l. 2.
 

The only start state of a target sequence will be the zero state.

Based on this assumption, the following orthodox trainer and

target table generator operating algorithm was defined.

Algorithm 4. l. 1.
 

1. Assume the function realized by the net is also contained

in the target table. Change the table to a new function which is

contained in the convergence set of the original function.

2. Place the net in a zero state by applying two successive

zero inputs.

3. When a conflict between the computed and the desired output

of any one PCLU is detected, modify the net by increasing the mf

weights if the gene rated output is lower in magnitude than the desired

output, or the feedback weights if the gene rated output is higher in

magnitude than the desired output of the PC LU (using the Weight

Adjustment Table of Figure 3. 4. l).

4. Reset the entire net to a zero state. Recompute the output

sequence and go to Step 3 if an error is detected.

5. Training is successful when this output sequence and all

others are generated correctly.

In addition, the original method of evaluating and improving the

performance of this algorithm was defined to be: Maximize the inter—

section between each convergence set of the system and the function

set of the net.

As the following example illustrates, both of these definitions

proved to be unworkable because the convergence class of the net

cannot be defined.

Example 4. l. l.
 

Let “k = O 2 2 l l (l l)* be an output sequence component

of the function being realized by the PCLU of Figure 4. 1. 1. Suppose

the corresponding target sequence component is changed to
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H.

XJ

Figure 4. l. l. A PCLU and its special BCLU.

M is the mossy fiber input vector, Z is the feedback input vector

from BCLUs other than the special one, and ij is the input to the

BCLU from PCLUs other than PCLU j.



41

O'k* = O 2 Z 0 0 (O O)*. According to Algorithm 4. l. l the feedback

weights will be increased when the error at the h2 pair position is

detected. (The general sequence notation is a'k* = 0 h1 h1 h2 h2 h3

h3 . . . ) Since the special BCLU existence is assured by Definition

3. 4. 13 and its output is assured of being nonzero whenever the input

from its PCLU is nonzero, the training will succeed at least for the

h2 pair. Successful training for the next pair, h3, cannot be

guaranteed, however,” since there is no assurance that either one

of the following conditions is true: _ , . ,

l. The Zxk feedback input from BC LUs other than the special

BCLU are nonzero.

Z. The input to the special BCLU from other PCLUs is sufficient

to cause the special BC LU output to be nonzero, even though the input

from PC LU k is zero.

In conclusion, it is not possible to say whether or not any function

containing (rk* is in the convergence set of any function containing a'k.

The definition of a new algorithm and method of evaluation was

based on two prOperties of the net discovered while evaluating

Algorithm 4. l. l. The first is implied by the previous example: If

the atom of a target table function is changed, then the atoms and

elements following it in the sequence cannot be predicted. (It is

important to note that this statement does not imply anything about the

atoms preceding the altered atom. )

The second property involved a consideration of whether or not

successful training can be guaranteed if only one atom of a target table

function is allowed to change. The following example demonstrates

that in some cases it would be necessary to make multiple atom

changes in order to insure successful training as defined in Algorithm

4. 1. 1, Step 5.

Example 4. 1. 2.

Consider a net in state Q = (H, Z) = 0. The disc. fcn. of a

silngle PCLU k is Ak - Mk - Bk- 2;, which reduces to Ak - Mk for

h . A well-known property of disc. fcns. of this form is: If

M113 M17; and him/111‘) = a, then hl(M]:) 2 a. This implies that if

1

h *(Mllc) = a , then hl*(M12() Z a. Therefore, changing one atom in the

first element of a target sequence will generally require changing atoms

of several other target sequences.
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The problem of defining multiple atom changes is equivalent to

the function set definition problem and the latter can be solved in two

steps:

1. Develop an algorithm for generating target sequences.

2. Develop an algorithm for constructing the entire target

table from target sequences.

It has not been possible to develop the second algorithm. Even if one

was developed, however, it is unlikely that an algorithm of such

apparent complexity could be imitated by a nervous system. This is

especially true in light of the reasonableness of the following algorithm

and method of evaluation:

Algorithm 4. l. 2.

1. Assume the function realized by the net is also contained

 

in the target table. Change one atom pair hkhk in the table.

2. Place the net in a zero state by applying two successive

zero inputs.

3 When a conflict between the computed and the desired output

is detected, modify the offending PCLU's disc. fcn. by either (a)

increasing the mf weights if the generated output is lower in magnitude

than the desired output or (b) increasing the feedback weights if the

generated output is greater in magnitude than the desired output.

4. Reset the net to a zero state. Recompute the output sequence

and go to step 3 if an error is detected in any target sequence element

through the element containing the original alteration. Otherwise,

training is considered successful.

The method of evaluation and improvement was to determine the atom

alteration rules which, when used during step 1, would make it possible

for this algorithm to succeed.

4. 2. The Output Sequence Set of a PCLU

The output sequence set of an arbitrary PCLU in the CA3 sector

net has some important properties which will ultimately allow the set

of output sequences of an N PCLU net to be completely generated. The

properties are also interesting in their own right.
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Property 4. 2. l.
 

If a net is initially in state Q = 0 , then the output sequence

of any PCLU i for any input Mi will be of the form

«1(Mi) = o h1 h1 h‘2 h2 h3 h3

Proof: The proof can be summarized by Table 4. 2. l,which traces the

state of the net, the feedback input Zi , and the computed output bl;

through several time periods.-

Picking up the action at tl , the input Mi extracts an output

of yl from the PC LU. Since the input to all the BCLUs (H) is still 0,

their output is collectively 0. Therefore, the new state formed for the

t2 computations will be as shown.

For t2 the input to the PCLUs in general and for the PCLU i

in particular is no different than it was for tl . Therefore, the output

will not change. The input to the BCLUs has changed, however, and a

new collective output of Zl' should be expected. The state shift leaves

(H1, Zl) as the state for the t computations.

During t3 the feedback3input to the PCLUs can be nonzero for

the first time. This is reflected in the change in the PCLU i output.

The BCLU inputs have not changed, so their output remains the same

and the output of the BC LUs is different.

It is clear that such a pattern will continue as long as the input

to the net or the functions computed by the functals do not change. QED

Property 4. 2. 2.
 

The output sequence component a'k(Mk) = 0 h1 h1 h2 h2 . . .

generated by PCLU k must satisfy the following set of inequalities:

l 2 3 4 5

(1) h2h,h,h,h,.

(2) h2 s h3, h4, h5, h6, .

(3) h3 2 h4, h5, h6,

(4) h4 s h5, h6, h7, .

(5) h5 2 h6, h7, h8, .

(Note that the k subscript has been suppressed. )

Proof: The predicate for h1 is [Ak ' M13 . The predicate for any

other j > 1 is [Ak ° Mk - Bk ' Zu . Clearly (I) is true. Therefore,
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Table 4. 2. l.

The Computations, Over Several Periods, of

the CA3 Sector Net

 

period state of net feedback input output delayed output

Q = (H, Z) Zi Yik hi

to (0, O) O 0 0

t1 (0, 0) o yl 0

t2 (H1, 0) o yl hl

t3 (H1, ZZ) 212 y2 hl

t4 (H2, Z2) Z12 y2 hZ

t5 (H2, Z3) 2.: 3'3 h2

t6 (H3, Z3) 2: y3 h3
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HW(H1) 2 HW(Hj) for all j and Hj 3 H1. Since the BCLUs are

threshold functions, HW(ZZ) Z HW(Zj) and Zj D 22. As a result

B - 25 s B . z2 and h‘2 s hj for all 5,4 2. Therefore, HW(HZ) s

HW(Hj), j f 2. Any PCLUs which fire for h2 will certainly fire for

hj, so H2 D Hj . This completes the proof of (2).

Continuing, H'W(Z3) s HW(Zj) and Z3 D 23, j2 4. Therefore,

B - Z35 B - zJ and h32 hJ. HW(H3)2 HW(HJ) and so on. QED
k k

4. 3. The Output Sequence Set of the Hippocampus Net

The following property was implied in the proof of Property

4. 2. 1.

Property 4. 3. 1.
 

The CA3 sector net has output sequences of the form

0'(M) = 0H1H1H2H2H3H3...

Recall that in general the repetition of a subsequence in an out-

put sequence does not imply that the subsequence is a cycle. The CA3

sector net is nearly an exception, but the argument for it being an ex-

ception is purely academic, as can be seen by the following property.

Property 4. 3. Z.
 

If o-(M)=0H1Hl...H1H1... HJHJ...

and H1 = HJ (j > i), then H1 H1 H1+1 H1+1

is a cycle.

Proof: Assume a state (Hi-l , 21) produced an output Yi. This will

become Hi during the next period and the new state will be (Hi. Zi).

The next state will be (Hi, Zi+l). Similarly, assume a state

(de, Zj) produces an output Yj. This will become Hj during the

next period and the new state will be (Hj, Zj). The next state will be

(Hi, 25“). If Hi: H5, the 21“: 25“ and (Hi, 2””) = (Hj, zj“). The

two equal states mark the boundaries of a cycle. QED

Properties 4. 2. Z, 4. 3. l, and 4. 3. 2 can be combined in an

algorithm which exhaustively lists all possible output sequences of a

CA3 sector net containing N PC LUs .

Algorithm 4. 3. l.
 

1. Generate an output H1 from the set of 3N possible outputs.

2. Generate an output H2 from the same set.
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3a. If the sequence HlHlHZH2 satisfies Property 4. 2. 2, go

to 4.

3b. Otherwise, go to 2 until every possible output candidate

for H2 has been tested. Then go to l and repeat until every possible

output candidate for H1 has been tested.

4. If the sequence HlHlHZHZ satisfies Property 4. 3. 2, add

the sequence to the list of output sequences and go to 3b. Otherwise

K = 3 and continue.

5a. Generate an output for HK from the set of possible outputs.

If the sequence HlHlHZH2 . . . HKHK satisfies Property 4. 2. 2, go to

6.

5b. Otherwise, generate another output for I-l'K and test again

until the set of outputs for the K-th element in the sequence has been

exhausted. Then gene rate a new output for HK-l and reinitialize the

set of outputs to be tested for HK. The algorithm terminates when

all possible outputs for H1 have been tested.

6. If the sequence HlHlHZH2 . . . HKHK satisfies Property

4. 3. 2, add the sequence to the output sequence set and go to 5b.

A version of this algorithm with the ability to generate all

possible target sequences for a net with N PCLUs was programmed

on the CDC 6500 computer (see Appendix B). Since it would be pro-

hibitively expensive to allow the program to generate all possible

target sequences, a representative sample was taken for several

values of N and for target sequences with the first element containing

all twos and the second element containing all zeros (to give target

sequences of maximum length). Sixteen was the longest output run-

in length found (for N=5), with the length increasing slowly with in-

creasing N. Only output cycles of length 4 and equilibria were found;

there were approximately equal numbers of each.

4. 4. Rules for Successful CA3 Sector Net Training Using Algorithm

4. l. 2.

The results presented in the previous two sections, along with

those below, are sufficient to develOp the rules which assure success-

ful training using Algorithm 4. l. 2. The key word in the following

property is "guaranteed. "
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Propery 4. 4. l.
 

Using Algorithm 4. l. 2 and its associated success criterion,

training of the hippocampus net is guaranteed to be successful if and

only if the following rules are obeyed. (The subscripts have been

omitted for simplicity. )

Rule 1: If 0'(I) = 0 h1 h1 0"(1) , then changes in h1 are made

according to the following table.

1 1
h h * T2 _ T1

1 provided A < —N—- , N the number of

O 2 mf inputs to

PCLUj

l 2

Rule 2: If «(1) = 0 h1 hlhzhzo'u). then changes in h2 are

made according to the following table

 

h1 h2 h2*

T2 ' T1
2 O 1 provided A < —-——1—\I——— , N the number of

2 0 2 mf inputs to

PCLUj

2 l 2

2 2 0 T2 _ T1

2 2 1 provided 6 < T— , L the number of

2 l 0 feedback inputs

to PCLU i.

1 l 0

Rule 3: If 0'(I) = 0(2200)(2200)>=< hlhl ml) and h1 = 1, then

h1* = 0 or 2.

Rule 4: If «(1) = 022(0022)* hlhl 0"(1) and h1 = 1, then

h‘* = 0 or 2.

Proof:

"Rule 1: Assume the net is realizing the function in the target

table; change the atoms h”. Clearly, if 111* is increased to 2, then

h1 can be increased to 2 by increasing the mf weights and training

*

will be successful. If h1 is increased to 1, it is necessary that an

increase in the mf weights not force an output of hl= Z. The condition

T2' T1

A <T

of the disc. fen. will be less than the T2- T1 gap. Note that h1 can

will prevent this from happening, since any one increment

never be decreased, since the feedback input for h1 will always be

zero vector. ”
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Rule 2.: The table associated with Rule 2 defines the changes

that can be made in the second pair of atoms of a target sequence com-

ponent with guaranteed success. The changes in but are dependent on

h , since this output element defines the upper bound on any change.

If h'2 must be increased from 0 to 1, then the same A limit must be

observed as was defined in the proof of Rule 1. There is, of course,

no problem if h2 is increased to 2 (assuming h1 = 2). But note that

the alternative h1 = l and h2 is increased from 0 to 1 has been

omitted from the table. Any attempt to increase the disc. fcn. to

produce h2 = 1 under these conditions may inadvertently produce

h1 = 2. Since hl cannot be decreased, the training would have to be

considered a failure.

In general, H2 is the first output element associated with a

nonzero feedback input. The existence of the special BCLU guarantees

that if h1 is nonzero, the feedback input vector is nonzero. This in

turn guarantees that the disc. fcn. of the PCLU j can be decreased by

increasing the feedback weights. This is the justification for the

inclusion of the last four entries in the table under Rule 2. Note that

a change in h2 from 2 to 1 requires a condition on 6 . This condition

prevents the disc. fcn. from dropping from a value above T2 to a

value T1 or lower with a single increment of the feedback weights.

Rule 3: This rule summarizes the changes that can occur with

guaranteed success when the atom altered is h1* , i Z 3 and odd.

Suppose h1* is increased. From Property 4. 2. 2, the bound on this

 

increase is determined by hi-Z. The possible changes are:

hi-Z hi hi*

(a) l 0 l

(b) 2 O l

(C) 2 0 2

(d) 2 l 2

For alternatives (a), (b), and (c) h1 = 0 implies hk = 0, all

even k < i (using Property 4. 2. 2). If any of these changes are made,

then, when the error in the output is detected, the reaction of the

trainer is to increasethe mf weights. In doing so, it is entirely
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possible that some of the disc. fcns. of the even elements will be

inadvertently increased over the T1 threshold. When the PC LU

generates the incorrect output sequence element upon reinitialization,

the response of the trainer is to increase the feedback weights. The

possibility exists that this will force the disc. fcn. of hi to fall below

the desired threshold. To correct this, the mf weights are increased

again, creating the situation where the even elements may again become

incorrect. The trend is clear and the conclusion is that success cannot

be guaranteed if any of changes (a), (b), or (c) are made.

From the information given and Property 4. 2. 2, the output

sequence component associated with alternative ((1) is of the form

«(1): o (2 2 h‘z‘2h )(2 2 hk hk)* 1 l 0"(i)
\_V_J

h‘ hi

where k < i and even, ha and hke (0,1) and Property 4. 2. 2 holds.

If hk = 1 for any even k < i , then the situation is the same as in the

other three alternatives: there is the possibility of unstable training.

Therefore, all sequence components are eliminated except those of the

form suggested by the rule itself. The crucial step in the proof is to

demonstrate that the fatal trainer instability of the other alternatives

. does not occur.

Let the j-th PCLU generate a'j(I) and change hi* to 2. When

the change is first detected by the trainer, the mf weights are increased

to produce the correct value of the disc. fcn. for h, D1(tl ) 2 T2.

However, as in the previous alternatives, Dk1(t )>— Tl may be true for

some even k < i. In order to compensate for this error, the trainer

increases the feedback weights, thus decreasing the disc. fcns. until,

in particular, Dk(t2) < T] . So far the script .is the. same as in all of

the other alternatives. Note, however, that originally hk< hi, k < i

and even. Since 2; 3 2.1;, k < i and even, hi> hk implies HW(Z;) <

HW(Z;<). The important prOperty is the strictly less than of the

Hamming weight relation. This implies that the change in the disc.

fcn. for hi is strictly less than the change in the disc. ion. for hk:

Di(tl) - Di(t2) < Dk(tl) - Dk(t2)



50

If Di(t2) < TZ , the trainer will attempt to compensate by increasing

the mf weights again. This time, if conditions are right, * Dk3(t )

will be less than Dk(tl ). If Dk(t3 ) is still greater than Tl , the

compensation in the feedback weights need be no greater than the

compensation for Dk(t2 ), and it can be less. If D(t4 ) is still less

than T2 , the mf weights will be increased less than the increase that

occurred during the computation of D1(t3). Eventually Di (tn ) 2 T2

wilile at the same time Dk(tn) is not increased enough to force

h to be incorrect.

To complete the proof, note that any changes in the k-th

component, k S i, are corrected before the change can affect the other

PCLUs. Therefore, the other sequence components through target

sequence element i do not change during the training for the k-th

component.

Now suppose hi, i Z 3 and odd, is decreased. The bound on

the decrease is determined by hi-1 and the possible changes are

(again from Property 4. Z. 2):

i-l i

 

(a)

(b)

(C)

(d) H
o
o
o
s
‘

N
N
N
t
—
D
‘

H
O
H
O
D
‘

Alternatives (b), (c), and (d) can be eliminated in short order as

successful training candidates. In all cases hk = 2 , k < i and odd,

 

2’: Since the mf weights increase in "quantum jumps, " it would, in

general, not be possible to recompute D1(t1) exactly; the value actually

computed may range from a quantum higher to a quantum lower. If it

is the former, then it is possible that the difference D1(t3 ) - Di(t2) Z

Di(t1) - D1(t2). In this case, the feedback weights would be required

to increase the same amount as before to correct h However, the

next timehthe mf weights are increased, the increment required for a

correct will be even less than before. Eventually this extra

negative weight will be great enough that the contribution of the mf

weights will be less than the contribution of the feedback weights, no

matter what the magnitude of the quantums, and the proof will proceed

as outlined.
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and it is entirely possible that Z? = Z} for at least one of those k's.

If this is so, then any attempt to decrease Di by increasing the feed-

back weights decreases Dk by the same amount. Therefore, hk

will become incorrect at the same time h1 becomes correct. The

trainer will respond by increasing the mf weights, but the effect is

felt equally by both hk and hi. The result is training instability.

Alternative (a) implies output sequence components of the form

0'(I) = 0(hlh100)(hk hkO O)* l 1 0"(I)

h1 hi

where k < i and odd and h1 , hke (l, 2) , along with Property 4. 2. Z.

If any of the hk or h1 is one, then training instability may occur.

This leaves only output sequences of the form given in the rule state-

ment. In order to reduce hi, the feedback weights are increased, and

all of the disc. fcns. Dk, k < iand odd, are reduced. Perhaps some

will be reduced to below T2. Consequently, the mfweights will be

increased to compensate, with the possibility that D1 is forced to a

value above Tl . Fortunately, a property of the same nature as

described in alternative (d) of the previous set exists to prevent

training instability: Since Z}; 3 25.1if h1< hk for all k originally. then

HW(Z.) > HW(Zj). Therefore, the Dk will not be decreased as much

as D , and eveJntually D1< T1, while DkZ T2 for all k.

Rule 4: The final rule summarizes the changes that can occur

with guaranteed success when the atom altered is h1 , i 2 2 and even.

If h1 is increased, then the upper bound is determined by hlfll and

the possible changes are:

3
O

hi-l 1 hi*

 

(a)

(b)

(c)

(d) N
N
N
H

H
O
O
D

N
N
D
—
‘
I
—
l

Successful training for the (a), (b), and (c) alternative cannot

be guaranteed, since h1 = 0 implies that hk = 0, k < iand even.
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The output sequence components accompanying alternative ((1)

are of the form:

on) = 022(hk hk22)>-'< 1 l 0"(1)
“W"

hi h1

where k is even, hk, hie (O, l). The subset of sequence components

where bk 2 l for any k can be immediately eliminated, leaving

sequences of the form given in the rule. Successful training is

guaranteed for these by the same argument as was used for (d) in the

first set of alternatives in Rule 3.

If hi is decreased, then the lower bound will be determined by

hl-2 and the possible changes are:

i-Z hi

 

h h *

(a) 0 l 0

(b) O 2 l

(c) 0 2 0

(d) 1 2 1

Successful training for alternative (b), (c), and ((1) cannot be

guaranteed since h1 = 2 implies hk = 2, k< i and odd.

The output sequence components accompanying alternative (a)

are of the form:

0'(I) = o 2 2 (hk hk 2 2)* 1 l o-'(l)
W4

hi hi

where k is even and hk , his (1, 2). Again the subset of sequence

components where hk = l for any k can be eliminated, leaving

sequences of the form given in the rule. Successful training is

guaranteed for the remainder by the same argument as was used for

(a) of the second set of alternatives in Rule 3. QED
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CHAPTER 5

A FUNCTAL SYSTEM MODEL OF THE HIPPOCAMPUS. PART 2..

S. l. The Target Table

The previous chapter noted that if a net is realizing the

function in the target table and then one pair of atoms is changed,

the output function of the net after training could then differ greatly

from the function in the table. Consequently, if orthodox functal

system training techniques were used, that is, if the entire new target

table had to be realized by the net, training would be unstable and the

net would be essentially useless. The following assumption summarizes

a target table form different from the one originally defined in

Section 2. 7 which helps to circumvent this problem.

Assumption 5. l. l.-
 

The target table can contain a set of target sequences for

each input. The interpretation given to each set of target sequences

is: Any output sequence not contained in a set for a particular input

is considered to be harmful to the entity of which the hippocampus or

its model is a part. Those output sequences which are target

sequences are either neutral or beneficial to the entity.

The target table is a conceptual device which makes explicit

the relationship between the natural system and its environment. It

is not intended that a physical structure exist to hold the table. All

neuroscientific interpretations of target tables must comply with this

fact.

5. Z. The Trainer

Algorithm 4. l. 2. has been modified to be compatible with the

new target table concept. The new trainer Operating algorithm for

one time period is outlined in Algorithm 5. 2. l and the trainer structure

associated with it is given in Figure 5. Z. l. The following is a

description of the algorithm.
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At the beginning of the time period, the input-change detector

exanlines the input for any change since the last time period. If a

change occurred, then IC = l and the trainer does the following:

1. Its change-of—state controller sets SD = O for two time

pulses. This holds the mossy fiber inputs at zero for

the same length of time. (See Table 5. Z. l. )

Table 5. 2. l.

The Truth Table for the Change-of-State Controller

 

IC AMP SD

0 0 l

0 l 2

1 O 0

1 l 0

2. Its read-head controller positions the read head at the

beginning of the appr0priate target sequence tape.

3. Its change-of-function controller ignores the comparator

output.

If IC = 0, then the change-of—function controller interrogates

the flag ERROR to determine if an uncorrected error has occurred

since the current input was applied.

If ERROR = 0, then an error has not occurred and the

comparator compares the current output with the target sequence

element information on line RHC (see Section 5. 4. ). If there is a

match, then the output of the comparator, CCF = 1. The change -of-

function controller senses this and sends the read-head controller a

signal CFRHR = 1 for one time pulse in order to advance the read-

head. If there is no match, then the change-of-function controller

outputs CFRHS = l for a time pulse. This causes the read-head

controller to search through the other target sequences in the set

assigned to the current input for another target sequence candidate.

If one is not found, then the change-of-function controller is notified

by RHCF: 1. In response, it sets the flag ERROR = 1 and stores the
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current input, the previous output, and the error correction informa-

tiont): in a memory area called STORE; if STORE is full, the error

is ignored.

If ERROR = 1, then the current input and output are compared

with each of the sets of data in STORE. If an identical pair is not

found, then CFRHR = l for one time pulse to advance the read-head.

If an identical pair is found, then the change-of-function controller

sets the output of the output buffer to a neutral value (CFO = 1) for

the next time period:): :I: , clears all the stored valuesi, sets ERROR =

O, and uses the error correction information to set AMP or SD. If

the AMP is set, indicating an mf weight adjustment, then the change-

of-state controller computes SD according to Table 5. 2. 1. Finally,

the read-head is advanced with a CFRHR = 1 signal.

5. 3. The Error Correction Information for the Change of Function

Controller

As described in the, previous section, when a bona fide error

is detected by the change-of—function controller, error correction

information is stored as well as the current input and the output

preceeding the erroneous one. This information consists of a PCLU

 

2): Any error procedure will require that the net be in the state that

led to the error. From the results of Chapter 4, the output just prior

to the erroneous output is uniquely related to that state. Therefore,

if the weights are activated exactly when this output is detected, the

state for the next period will be the one desired. The rules for deter—

mining which weights are adjusted, i. e. , the error correction infor-

mation, are discussed in the next section.

i :): Note that the weights are adjusted after the output is computed.

Therefore, the output will be the same erroneous value it was before,

even though the weights are changed. The CFO = 1 signal prevents

this output from forcing the same erroneous, and presumed dangerous,

response from the entity containing the model, thus increasing the

chances for survival.

$ If the stored values are not cleared, then the problem of training

interference exists. This condition occurs when the training for one

target sequence unintentionally changes the state sequence of another

erroneous sequence. If this happens, then the output stored for that

sequence may never occur, or it might occur in the wrong place in the

sequence. This is another technique to increase the chances for

survival.
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number and the weight vector, mf or feedback, to be adjusted. These

two quantities can be determined by a number of different methods.

Among them:

Method 1: Randomly select both the PCLU and the weight

vector to be modified.

Method 2: Select the PCLU whose disc. fcn. is closest to

one of the thresholds. In a sense this PCLU is

the most uncertain of its output components. A

weight vector is chosen which will force the disc.

fcn. toward the nearest threshold.

Method 3: Compare the computed output with the target-

sequence element and determine the erroneous

PCLU. A weight vector to be modified is chosen

which will adjust the disc. fcn. in the right

direction.

There are advantages and disadvantages to each of these methods.

Method 1 should be the slowest to arrive at an acceptable output, a

possible disadvantage, but the change-of-function controller does not

need to know the CA3 sector net output, a possible advantage. Method

2 is perhaps the most "neurophysiological" method. The change -of—

function controller would require the values of the disc. fcns. of each

of the PCLUs. This might be a disadvantage in any model, but such

information could be easily provided in the natural system if the firing

rate were proportional to the disc. fcn. over the range of interest.

The change -of-function controller would also require some idea of the

average threshold values of the PCLUs. In the natural system this

information could be genetically provided.

Method 3 is the most direct method, and the one be st adapted

to simulation. However, the change-of-function controller would

require the target sequence elements and the hippocampus output as

inputs. It can be reasonably argued that if the target sequence

elements are actually stored somewhere else, as this method implies,

then the existence of the hippocampus can not be justified, since the

storage of sequences is its proposed main function.
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5. 4. The Read/Write Head and Its Controller

The read/write head and its controller are organized in a

manner similar to that described in Example 2. 9. l. The target

table is assumed to consist of a number of multidimensional tapes,

one tape for each target sequence (see Figure 5. 4. l). The dimension

of the tapes is exactly N + l, where N is the number of PCLUs in‘

the net: The extra dimension is for the beginning-of-cycle indicator.

The tapes are read by a read -head, which is under the control

of the read-head controller. The exact position of the read-head is

located by the triple (M, T, E), where M is the rrlf input to the net, T

is a number indicating the target sequence within the set for the input,

and E is the number of an element within the sequence. The various

inputs to the read-head controller from the other elements of the

hippocampus system model, and their effect on this triple, are:

CFRHB: An input from the change-of-function controller

of the trainer. Sets E = l.

CFRHR: Also an input from the change -of-function controller.

This sets E = E + 1 unless E is equal to the far right element

of the sequence. If this is true, the controller uses the

beginning of cycle dimension on the tape to reposition the

read-head to the correct element in the sequence.

IC: An input from the input change detector. Sets E = l and

T = l.

CFRHS: An input from the change—of-function controller.

If this input is one, T = T + 1, unless every target sequence

in the set for this input has been inspected, in which case T =

1 and RHCF = 1. After T is increased, the new tape is

inspected to determine if all elements prior to the element

indicated by E are equal to the corresponding elements of the

old tape. If they are not, then T is increased again.

The outputs of the read-head controller are RHCF and RHC, the latter

being the contents of the element currently under the read-head.

The target table generator modifies the target table through

the write —head controller. The details of operation of this controller

do not concern us here.
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CHAPTER 6

THE INITIAL CONDITIONS PROBLEM

6. l. The Phase Concept

The behavior of the entity of which the hippocampus system

model is a part is assumed to be influenced by the output of the CA3

sector net. Furthermore, in any steady state situation, the function

generated by the net is the same as the function in the target table.

Any changes in the target table are made, of course, by the target

table generator. Presumably, it receives a signal from a perfor-

mance evaluator whenever the response of the environment to past

behavior is considered harmful. Upon receipt of such a signal, the

generator makes a change in an atom of the target table. In doing

so, it consults the rules developed in Chapter 4 and perhaps other rules

on how to make the reSponse more palatable to the judgment device.

A tacit assumption in this description is that the target table

contains a function at the beginning of the period of interest. The

problem of the initial assignment of the functions to the net and target

table is not trivial: the assignment should be realistic in terms of

hippocampus data and it should insure maximum survivability to the

entity of which it is a part. Another problem that cannot be overlooked

is the placement of the initial function in the net.

Fortunately, a bit of hippocampus data offers a plausible solu-

tion to both problems. Purpura [15] has observed that basket cells

do not make connections to the pyramidal cell somata until about the

third week after birth in kittens. This suggests that at birth the

output of the hippocampus is generated by pyramidal cells that are not

yet communicating to each other through basket cells. Furthermore,

it must be assumed that the function in the hippocampus at birth is

something other than the trivial function, and that the function, in part,

controls the newborn kitten's instinctive behavior. It is also

61
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reasonable to extrapolate on these data and to assume that when the

basket cell axons do begin to make connections, they are at first

limited to the pyramids immediately surrounding the basket cell.

In applying these ideas to the solution of the two aforementioned

problems, it seemed reasonable that if nature felt maximum survi-

vability was insured by a hippocampus initially containing no recurrent

inhibition, then the initial function of the CA3 sector net need not be

any more sOphisticated than what can be generated by a CA3 sector

net with no recurrent inhibition. This and another idea on the

subsequent growth of the basket cells were formalized by assuming

that the lifetime of the net is divided into the following three phases:

Phase 1 -- The functions to be generated by the net are from

the set of functions that can be generated by nets not having recurrent

inhibition.

Phase 2 -- The functions to be generated by the net are from

the set of functions which can be generated by a net with only

PCLU-to-special BCLU-to-PCLU connections.

Phase 3 -- No restrictions.

6. 2. Phase 1: Target Table Training

It should be clear that the target sequences generated during

Phase 1 will be equilibria with components taken from the set

{00*, 01*, 02*}. To illuminate some secondary principles, assume

that the only target sequence components allowed during Phase 1 arei):

{ 00*, 02*}. Then the initial function assignment is reduced to one

of defining the relationship between the entity's behavior and all of

the net's 2N output vectors with components from the set 1 0, 2}.

This problem, although considerably simpler than the general initial

function assignment problem, is still formidable. When a function

of the right form is found, however, the results deveIOped in this

 

2‘: Note that this is comparable to saying that the pyramidal cell output

is either firing at a very high rate or a very low rate, but not at a

moderate, or "fine-tuned" rate.
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section permit it to be placed in the target table and trained into the

net prior to the net's placement in its environment.

The first result is an algorithm for generating any function

that can be generated by the net while it is in Phase 1. It is based

on a property presented informally in the second example of Section

4. l and more formally here:

PrOperty 6. 2. 1

:et M]: and M:

 

be two different mf inputs to a PCLU k.

1 lMllcCM: and .h11((M:) = a, .

then h'k(M'k) 2 a. The algorlthm itself simply assigns functlon values

arbitrarily to all inputs with Hamming weight of one, and then uses

the above property to generate restrictions on the assignment of

function values for all inputs with Hamming weight of two. Successive

application of the property for inputs with successively larger

Hamming weights will result in a complete function;

Algprithm 6. 2. 1

Do Steps 1-5 for each PCLU in the net. I).

l. Initialize by assigning values to h1 for all M s. t.

HW(M) = 1.

2. For each hl(M) = 2 assigned, replace all zeros in M

 

with x. Call the resulting set (L, with elements M*.

RULE: It must be true that h1(M*) : 2.

3. Consider all inputs M s. t. HW(M) is one greater than

the last Hamming weight considered. Assign values to the h1 for

these M within the restrictions set by RULE.

4. If the current Hamming weight is N, the dimension of

the mf input vector, then go to 5; otherwise go to 2.

5. The output sequence components are of the form

0’(M) = 0 hl*.

Example 6. 2. 1

Let N = 5 for the PCLU under consideration.

 

 

:1 The ”k" subscript (for PCLU k) has been omitted from the description.
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Step 1. Assume it is desirable to assign values from the

range set (0, Z) to the mf inputs with a Hamming weight of 1 in the

manner indicated by column A of Table 6. 2. 1.

Step 2. The set 11* is (xxxxl, xxxlx). This set automatically

assigns a range value of 2 as shown in column B of Table 6. 2. 1.

Step 3. The inputs with a Hamming weight of 2 not yet

assigned range values are 01100, 10100, and 11000. The values

chosen are as indicated in column C of Table 6. Z. 1.

Step 4. N = 2. Therefore, go to 2.

Step 2. The set (1* contains the additional elements lxlxx,

llxxx, and xllxx. An assignment of 2 is forced on the only input

not yet paired with a range value, as is shown in column D. The

algorithm terminates at this point because the function is complete.

The following example demonstrates a disturbing prOperty of

the hippocampus system model: It is not possible to train the net to

realize every function the net is theoretically capable of generating

during Phase 1.

Example 6. 2. 2

Suppose a portion of the target table for one PCLU k is:

 

h1(Mll( = 00011) = 2

Max/1: = 00101) = 0

hl(M: = 01001) = 2

MW: = 10001) = 2

hl(M: = 10100) = 2

Assume W = 0 initially and the inputs are presented in the order of

their superscripts. At the completion of training for M116

A = (0, 0, 0, aA, aA),

where a is an integer, A is the mf weight increment, and ZaA 2 T2.

If a and A are in the right proportion, then at the completion of

3
training for Mk’

1

0: la 3' 3) 3A.
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The Function Assignment for Example 6. 2. 1.

Table 6. 2. l.
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At the completion of training for M4
k!

_ .1. .1. Z
A ‘ (4! Z! 09 l: 4) 3A °

Finally, when the training for M: is complete,

_ 5 .1. 2. Z
A -’ ( 8! z) 8, l, 4) 3A.

Note that h1(M12<) = 2, which is incorrect. It is not possible for the

trainer to correct this error. Therefore, the function in the target

table will not be realized by the net.

Fortunately, an algorithm has been developed which generates

trainable Phase 1 functions. The algorithm generates the function

as signed to only one PCLU, but since the PCLUs remain independent

throughout Phase 1 (the feedback weight vector remains 0), it can be

applied to each PCLU to generate the entire function. A required

definition is that the set of mf inputs in the domain of h1 which have

not yet been given values in the range is called the 2091' The initial

pool, containing ZN-l elements, is denoted by (Pl.

Algorithm 6. 2. 2

1. Let K=l and szo.

2. 6k = {M:HW(M) = K and Mcth}. Assign

h1(M), Mask, as desired except that the following rule must be

obeyed. l

RULE: If h (M) = 2, Mask, then Mka.

3. K = K+ 1. (Pk = k_l “SR—1 —mk_l, where

(RJ = {M:HW(M)>J, MC M', Ma SJ. and

hl(M') = 2} .

If 0k: 4), continue. Otherwise, select Xk from the set:

{M: HW(M) = K-l, hl(M) = o, and MC xk_ }
1

and go to Z.

4. For each M, h1(M) = hl(M) i> 1. STOP.

Example 6. 2. 3

Let N = 6.
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Step 2. .31 = {000001, 000010, 000100, 001000, 010000,

100000} .

RULE is inconsequential for this set. Suppose all members Of 51

are assigned a 0 output.

Step 3. K = 2, 092 : (Pl - 51, ml = 4). 02 is not empty.

Let X2 = 000001.

Step 2. :32 has 15 elements. Only the elements in the set

{100001, 010001, 001001, 000101, 000011} satisfy RULE.

Suppose hl(000011) = 2; the remainder are assigned 0 outputs.

Step3. K: 3. (P3: 6’2- 82- (R2. 02

X3 = 000101.

Step 2. Only the elements in the set {100101, 010101, 001101}

satisfy RULE. Suppose hl(001101) : 2; the remainder are assigned

is not empty. Let

0 outputs.

Step 3. K = 4. 6’4 = (P3 - <93 - 613. 03 is not empty. Let

X4 = 010101.

Step 2: 84 = 1 110101 }. This is also the only element which

satisfied RULE. Suppose hl(110101) : 2.

Step 3. K: 5. 0’5: 6’4 - 84 - (R4: o. STOP.

The ability Of the system to train the net to realize an

”Algorithm 6. Z. 2" function depends on the following conditions being

satisfied.

Conditions 6. 2. 1

l. The net is initially generating the trivial function, with

all W = 0.

2. The function generated by Algorithm 6. Z. 2 is in the target

table.

3. The mf input vectors are presented to the net in order Of

increasing Hamming weight.

4. Each input is held for as long as is required to train the

net to generate the correct output.

In addition, there is a fifth condition consisting of two relations

between the values assigned to A, T1' and T2, that requires a more

lengthy discussion. One of these, relating A and T1’ is particularly

complex, and the following property is presented in an attempt to ease
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the shock of the more general result. Note that the sets 5k defined

in Algorithm 6. 2. 2 are required, but since they must be computed

anyway, this is not an inconvenience. Also, once training is complete

for the inputs in j' no other lnputs W111 require a tralnlng sessmn.

PrOperty 6. 2. 2

For every PCLU in the net, if

 

(a) Conditions 6. 2. 2 are satisfied,

(b) JN - J+1A Z T where J is the lowest K for which
Z,

317;”),

c312< = {M:M€SK and hl(M)=2},

and N is the dimension of the mf input to the PCLU.

N-J+l .

(c) (J-1)JN"J z 11" < Tl/A.
i=1

(d) |5§| = N- J+l,

then Algorithm 5. 2. 1 will successfully train the net to realize the

function in the target table.

Proof:

Let

u; = {M:HW(M)=K and hl(M)=2},

u; = {M:HW(M)=K and h1(M)=0},

0 N 0

H = U 111

i=1

N

14-2 = U 1137‘
. 1

121

A necessary and sufficient condition for a function generated by a

PCLU is:

A ° M < Tl, Mcu° (1)

A'M 2 T Men2 (2)
Z,

The proof consists Of developing an expression for the largest

A ° M, Mep. 0 over all functions generated by Algorithm 6. 2. 2

obeying (d). It will be used to construct relations between T1’ T2,
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and A such that the satisfaction of relations (1) and (2) is insured.

Example

Let N = 5, J = 2, and X2 = 00001. Then the function has

5: = p: = {00011, 00101, 01001. 10001}.

After training for the first vector in p. g, the weight compo-

nent(s) ax corresponding to the nonzero components of XJ will have

avalue CA, C an integer, where

J CA 2 T2. (3)

C represents the number of training trials required to drive the

discriminant above T2.

Example

After training is complete for 00011, the mf weight vector

A will be A = (0, 0, 0, l, 1)CA.

Training for the second vector in p. g benefits from the

previous training, since the discriminant at the start of training will

already have a value (J-l)CA. Therefore, the increment required

of the apprOpriate weight components is 1/J(CA ). Of course C

must contain J as a factor.

Example

After training is complete for 00101, A = (0, 0, %, 1, %)CA.

At the completion of all training, the components ax have

a magnitude:

N-J+l 1 .

a a CA 2 J '1. (4)
X .

1:1

Example

After training is complete, A = (é, %. 2" 1, -1—85- )CA.

In order to add A an integral number of times to a weight

component, it is necessary that

c = JN'J.

Furthermore, in order for the training to be successful, it is

(5)

necessary that both X and the input of highest Hamming weight
J

assigned a zero output, which will always be l-X produce dis-
JD

criminants less than Tl' But since the weight components ax are

incremented every time any weight component is incremented, and
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the number of components ax is at least equal to the number of

other components incremented during any one training session, the

discriminant for XJ will be at least as large as the discriminant

for l-XJ. Therefore, it is necessary that

(J-1)ax < T (6)
l

or, N-J+l l-i

(J-l) CA 2 J < T1° (7)

i=1

Example

With c: 25‘2 = 8, A = (1, 2, 4, 8, 15)A.

Note that A - (l -XJ) = A ~XJ = 15A.

Relations (3), (5), and (7) are enough to insure that training

will be successful if the functions are of the kind discussed so far.

They can be used to compute the values to be assigned to A, T
1’

and T2 of the PCLU before training begins. QED

Example

16A 2 T2. (3)

15A < T1. (7)

T2 = 104, T1 = 9.8 x 103, and A = 650 satisfy these inequalities.

If an Algorithm 6. 2. 2 function does not Obey (d), then the

expression for the largest A ° M, Mep. o can be awarded to either

 

A - XJ or A - (l-XJ), as the following examples demonstrate.

Example 6. 2. 1

Let

,5: = {(000011)}

2

cS3 = t

2

(S4 : 9’

.32 = {(111101)}
5

The mf weight vector after training is: A = (— 1, %)CA.

Therefore, since X2 = (000001),

A- (1-x2)= 9/5 CA > A- x2: 6/5 CA.
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Examle 6. 2. 2

Let

s; = {(0000111), (0001011)}

6: = {(0110011), (1010011)}

The mf weight vector after training is:

A = (1, 4, 5, 16, 48, 69, 69)C/48 A.

Therefore, since X3 = (0000011),

A- (1-x3) = 74/48 CA < A- x3 = 138/48 CA.

Therefore, for the general Algorithm 6. 2. 2 function,

max { (J-1)ax, A- (1-xJ)} < T1

The following prOperty includes the specific values for this expression.

PrOperty 6. 2. 3

For every PCLU in the net, if

(a) Conditions 6. 2. 2 are satisfied,

(b) J CA 2 T2, J as defined in Property 6. 2. Z,

 

(c) max{(J l)ax,--(1XJ)} < T1, where

2A

IeSJ I 1‘1'182'

ax = CA EJ J' +

i=1 2 “'7

457:) IS!) _

x Z: IIj J 2: f

l j i=1

see see

C1 C2 -'

2

8
I JI l-i 1_J|5 I

A- (l-XJ) : CA 2 J + J1

i=1

2

— 57t| I511 .

x E (f-k+l) n j J 2: f."

!,k j i=1

see see

C3 C2

C1 -- This sum is over all subscripts I Oféf where

1 2 J+1 and 5: ,1 o.

C2 -- This product is over all j, J < j < k such that 5? 7! (t.
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C3 -- In addition to the I defined in C1, k is the largest

k' for which 1:"! o and yet k' < f.

2 2
|5|-1 IS IJ IIK K

K

where the product is over all subscripts of 5; greater than J.

((1) C=J

Proof:

At the completion of training for 5 g:

2

a (5 ) = CA 2: J '1

x J i=1

2 2

A . (l-XJ) : D($J) : ax(8J)'

If [8;] had been one greater, say due to some input Y,

then the amount of increase required in the discriminant A ° XJ

would have been 2

-||
JJ JCA.

This quantity would have been divided among the J - lax weight

components and one other weight component whose value had remained

zero up to that time.

The next input requiring training is in 3 120 K > J. It differs

from Y only in having more than one other weight component which

has remained zero. Therefore, the increase required to attain

J CA is divided among K 2components, and the ax increment is:

IS JI .
CA (J/K) J- (1)

If there is another element in 3 120 then it will differ from the

preceeding vector in only two components in the same way two vectors

are different in 8;. Therefore, the discriminant of the new input

before training is short of J CA by (1). If this value is divided evenly

among the K weight components associated with nonzero input

components, then the increment to any one weight component is:

2 46%|
CA(J/K ) J . (2)

2.

In general, after the completion of training for 5 K
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2

a(5) = a(r3)+CAJ-J J 2 '1
x K X J ..

1-1

Each of the weight components selected by XK - XJ (there are K-J

of these) are increased by the same amount as the ax

the sum Of all other increments to all the remaining weights is equal

to the ax increment. Therefore

2

3 2 Is I
2 2 'l J| K -i

msK) = D(,SJ)+ (K-J+l) J-J 2 K CA.

i=1

If another 5 Z, L > K, is not empty, then, by the same

reasoning as for the 8; case, the necessary total increment for

the first input of this set must equal:

-52 -l _52

K[J-KIK| J|J|]CA.

This quantity is divided among L components. Therefore, the ax

increment is l/L of this. In general, after training is complete for

this set:

2 2
-|8 |—1 1-|5 |

24,551) = ax(812<)+ CAK [K K J J

2

ISLI ,

x E 1.”1

i=1

and

2 z 48;) 1463,)
D(SL) : D(5K)+(L-K+1)K J

2

1.3L) ,

x 2“. L“.

121

By an extension of this argument, the expressions at the

completion of all training are those given in the statement of the

property.

The property is proved if a technicality involving the integer

C is cleared up. The smallest quantity a weight component can be

increased by is A. In order for C to contain all factors that might

occur during a training session and thereby allow an increase of A

and no more, C should contain all Of the factors given in (d). QED.
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Example

The computation of (c) for Example 6. 2. l.

ax(CA(2O + 20 (no product term) 5'1) = (1+ 1/5)CA.

ax = 6/5 CA.

Therefore,

(J-l) = (2.1)ax : 6/5 CA.a

x

A - (1-Xj) : CA(l + 20(5-2+l) (1/5) ) = 9/5 CA.

Therefore,

max{(J-1) ax, A- (l-XJ)} = 9/5 CA.

Example

The computation of (c) for Example 6. 2. 2.

(
D I
I

2 l-i 1-2 2 -i
CA (2 3 + 3 (no product term) 2 4 ).

x 121 121

ax = 69/48 CA.

Therefore,

(J-l) ax = 2ax = 138/48 CA.

A- (l-XJ) = CA {1 + 1/3 (43.1) (l/4+ 1/16)}

a 74/48 CA.

Therefore,

max { (J-l)ax, A- (1-xJ)} = 138/48 CA.



CHAPTER 7

DISCUSSION

7. 1. Summary

An automaton model of the CA3 sector of mammalian hippo-

campus is presented. The connectivity between the PCLU (the py-

ramidal cell model) rank and the BCLU (the basket cell model) rank

is left unspecified except that a direct PCLU-BCLU-PCLU loop is

required for each PCLU. It is assumed that whenever the output of

a PCLU's delay is nonzero, the output of its special BCLU is also

nonzero. The input to each PCLU is a vector Mi with components

having values from the set {0, l} . The output of the model is a

time-sequence of vectors of the form

0’(Mi) = 0H1H1H2H2H3H3. . . ,

with each vector HJ having components hit with values from the set

{0, l, 2} . Assuming each nontrivial input is separated by a zero

input to clear circulating quantities left over from the previous input,

the output sequences are shown to have these properties:

1. Each sequence terminates in either an equilibrium or

a cyclze. 3

4 5
-hk, hk’ , etc.

3. lff-li=Hj, j > i, thenI-I:lI-1"‘....HJ-1 HJ-l isacycle.

I
V

.
1
1
.

.2
..

.2
..

An algorithm is developed to generate all possible output sequences

of any model containing N PCLUs.

The characteristics Of a training structure for reshaping the

output sequences of the foregoing model are also presented. This

structure is supported by a target table containing a set of allowed

output sequences for each input to the model. It is assumed that

75
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when the system is placed in its environment for the first time, the

function realized by the model is contained in the target table. In

order to insure this, a special training session is held before the

model is placed in its environment. An algorithm (Algorithm 6. 2. 2)

is developed to generate the function placed in the target table for

the special session. If certain parameters (the mossy fiber and

feedback weights) are set correctly (to zero) at the beginning of this

session, the function realized by the model at the completion of

training is the function in the target table.

After the system is placed in its environment, desired changes

in the model's function are registered by changing the target table.

The trainer compares the output sequence generated in response to

a net input, M, with the sequences in the target table. If no match

can be found (which implies a change in the target table has been

detected), a marker is set. The next time M occurs as the net input,

the output sequence up to the point of the fault is generated, and then

a training session is triggered. It is proved that the training session

is guaranteed to "succeed" if and only if both the change in the target

table and the selection of some of the model's parameters (A, 5, T1’

and T2) are in accordance with certain rules (PrOperty 4. 4. 1). To

"succeed, " the output sequence must be the same as the target table

sequence only up to and including the element containing the change.

It is understood that the outputs following the subsequence just

described, as well as any other output sequence of the model, may

be altered by this training session. The model's new function may or

may not be the same as the functions in the target table. If it is not

the same, then, more training sessions are required.

A number of other ancillary results on the time-domain

behavior of CA3-like automata were also obtained, both analytically

and by computer simulation.

7. 2. Comments on the Neuroscientific Aspects of this Study

As sume that the hippocampus is a memory bank containing

transformations of single inputs into output sequences, and that its

task is to make act decisions. Furthermore, assume that a trainer

is available for changing the output sequence that any input is trans-
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formed into and that it Operates in the manner described in Chapter 5.

The following observations might now be of speculatory interest to

neuroscientists.

The results of Section 6. l on training phases, together with

Property 4. 4. 1, suggest an increase in both the capability of the

trainer and the complexity of the hippocampus‘s transformations as

it matures. At birth, and during phase 1, a single input is related

to a single output; that is, the relevant output is not sequential.

At this stage, the trainer can increase the firing rate Of an output

but not decrease it. As the hippOCMpus matures, and in particular

as the basket cell rank begins to make connection with pyramidal

cells, the outputs of the hippocampus can become sequential in nature,

involving oscillations. The trainer now has the ability to decrease

the output rate, but at the risk of forcing the output into oscillations.

The trainer cannot yet suppress these oscillations. This capability

is achieved only when the basket cells have made connections with a

sufficient number of pyramidal cells.

A second observation is related to the assumed ability of the

natural system to avoid training instabilities. Recall that in the

model, successful training can be guaranteed if and only if certain

rules are followed when altering the target table and certain relation-

ships are obeyed when specifying the CA3 sector model's parameters.

But even then undesirable changes can occur in other output sequences.

In fact, it is possible that: (1) either these changes cannot be

corrected; or (2) as each change is corrected, another nlismatch

occurs. Such training instabilities might be dangerous to an animal.

A third Observation involves the problem the trainer has in

selecting the output to be retrained when a mismatch occurs. As

mentioned in Section 5. 3, one approach would be to select the most

“uncertain" PCLU. Another approach, involving training all PCLUS

at once, might also be used.

A related observation involves the knowledge a hypothetical

natural target table generator has of the connectivity of the natural

functal net. From computer simulations, it appears that the more

information the target table generator has about the connectivity, the

more freedom it has in making changes in the target table that are
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guaranteed realizable by the net. On the other hand, the more

connectivity knowledge the target table generator has, the greater

the information that must be genetically stored and the greater the

chance for a connectivity error to occur during growth. In the

author's Opinion, the weight Of evidence supports only the most

general kind of connectivity knowledge on the part of the natural

target table generator, and hence supports a limited function changing

capability with safety.

The final observation pertains to the code employed by the

natural system to convey act information. If the hippocampus is

indeed an act computer, there must be a direct relationship between

behavior and the hippocampus's output. Since the behavior of a

mammal often consists of essentially a stimulus-directed Markovian

sequence of actions, each output of the hippocampus might well be

related in a nontrivial way to its preceeding output. In other words,

a hippocampus output associated with a certain behavioral act on one

occasion may be associated with a different behavioral act on another

occasion. The original function of the hippocampus would have to be

compatible with this, as would the hypothetical target table generator

when it decided on changes in the hippoc ampal output function.

7. 3. Comments on the Engineering Aspects of the Study

The functual system theory developed in this report introduces

a new perspective for understanding interconnected arrays of variable

function nonlinear function generators (functals). Useful applications

of this theory may arise in fields other than neurocybernetics.

It is generally accepted that the nervous system combines

memory and logic in the same location in an extremely effective way.

The Kilmer-McCulloch Retic model, the Kilmer-McLardy hypothesis

of the task of the hippocampus, and the hippocampus model presented

in this report suggest a partial organization of a robot controller

which takes advantage of this prOperty. Consider the design of the

controller for a moon rover. The controller can be imagined as a

hierarchy of subcontrollers with the apex occupied by the Retic, which
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commands the mode Of the rover. As an example, suppose one of the

_ modes is "proceed with the search. "

The rover would receive information on its environment

through its sensory transducers. A reasonable choice of transducers

for a moon rover might be a 3-D television camera, temperature and

pressure sensors (for internal state monitoring), and tactile sensors

(on probes, shovels, and bumpers). The data from these would be

fed into processors designed to extract certain kinds of information.

Some of these may be assigned the task of processing data for input

to the hippocampus system.

The hippocampus occupies the next level of the hierarchy; it

computes the acts within a mode. For example, the acts within the

"proceed with the search" mode might define the direction and speed

of the rover and the search mode of its camera system. The acts

associated with an input configuration would have to be programmed

on earth according to the best information available. Once on the

moon, however, if either a situation occurred which was found to be

harmful to the rover or an unexpected situation occurred, then the

hippocampus would be retrained. From the hippocampus the act

command would be passed on to lower levels where the actual motor

command sequences would be generated.

There are many problems yet to be solved while pursuing the

details of any hippocampus system design for a robot. Most of these

are analogous to problems yet to be solved in the natural system.

Among these are:

(l) the definition of the code assigned to each output;

(2) a determination of whether the code is context-sensitive

or context-free;

(3) the definition of an initial function for a net which affords

the robot maximum protection and versatility;

(4) the specification of the connectivity of the net (Do usable

connectivities exist which increase the freedom of the

trainer? );

(5) the specification of the trainer rules to (a) guarantee

successful training, (b) select the PCLU to be trained,
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(c) select the direction in which the PCLU is changed,

and (d) allow the new output to fit smoothly into the act

sequence.
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APPENDIX A

BACKGROUND ON THE DEVELOPMENT OF THE HIPPOCAMPUS NET

A. l. The Pyramidal Cell Logic Unit

The pyramidal cell model as originally conceived was the set

of continuous firing rate equations shown in Figure A. 1. In this

figure, Equation 2 says that the firing rate of model pyramidal cell j

at the axon hillock at time t, yj(t) is a linear function of xJ.(t) only

when xj(t) is in the range from 0 to a .. If xj(t) is less than

mYJ

zero, then .(t) = 0. If x, t is reater than u ., then .(t) isYJ J( ) g myj YJ

equal to the maximum value of Omyjayj-

The function xJ.(.) as defined in Equation 1 consists of six

terms: I

1. Z) 6.. .. a.. t-T ..) zt-T..

1:1 jl le J1( Ajl ( 31)

This term represents the effect of the firing rates of the basket cells

on the firing rate of the pyramidal cell. To explain the concepts which

were used to develop this term, assume synaptic contact is made

between basket cell i and pyramid j. At time t-Tji the basket cell

fired at a rate zi(t-'rji). This signal traveled through various

collaterals to bouton j, i, arriving there at time TAji’ altered by

an amount in' (Note: By convention, if there is no connection

between basket cell i and pyramid j, then in: 0. ) At or near the

bouton, the signal is modified by the memory process ajiu-TAji)’

which is defined in Equation 4. Finally, the signal passes through

the dendritic arbor and soma of the pyramidal cell as an inhibitory

post-synaptic potential and arrives at the axon hillock at time t,

having been altered on the way by an amount €ji'

K

2. Z}

k=1

This term represents the effect of the septal fiber firing rate on the

O'jk sk(t-'rsjk)

83
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X(t) = -€yA(t-7'A)z(t-'r) + 0’s(t-‘rs) + 0M(t-'TM)

+ 0Y(t-tx) - I‘(t) (1)

Y t) - t) t) (t) )T (2)( — (y,( . y2( , y,

where

0 . S 0xJ(t)

:: < ,yj(t) aijj(t), 0 < xj(t) amyj

o. .o. ., x.(t) 2 CI. .

1713'] VJ J mYJ

t

l"(t) : \II So exp [-% (t-w)] x(w)dw + F0 (3)9

A(t) — 1+ 111 43‘; M” ( )d_ ( - )exp - T 0 exp[— 1T—flyz w-‘rz w

(4)

Figure A. 1. The pyramidal cell firing rate equations.

The expressions are for J pyramidal cells, I basket cells, K

septal fibers, and N mossy fibers. The dimensions Of the vectors

are: X(t), 1"(t), \II, 6, 1" , o. , c1, and C:Jxl; Z(t):Ix1;

0 mx x

s(t) : le; M(t) : le. The dimensions of the matrices are:

A(t), A, II, TA, 7, e, y:JxI; 0, ‘rx:JxJ; TM, 9 :JxN;

'r, 0' : JxK.
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firing rate of the pyramidal cell. The memory effects between the

septum and the cell are assumed to be constant relative to the

basket to pyramidal cell memory. This will also be true of both

the mossy fiber and other pyramidal cell inputs discussed below.

N

. 23 0. - .3 n=1 jn mn(t TMjn)

This term represents the effect of the mossy fiber input on the firing

rate of the pyramidal cell.

J

4. E (3. y (t-‘r
[:1 j! I

This term represents the input from other pyramids and the possible

xj 1)

feedback from pyramid j itself.

5. I‘. tJ( )

This term is the variable threshold defined by Equation 3. This

expression is an attempt at a simple linear continuous equation for

the kind of firing rate dependence on the input rate threshold above

which nerve spikes are generated: the threshold increases as the

firing rates of the inputs to the neuron increases in the recent past.

The equation is a convolution of the potential function with an

exponential decay. Thus, at some time t the threshold is made up

of a constant term plus an infinite number of terms of the form

f(w) exp{ - 1/7 (t-w)} o s w s t.

Therefore, the value of the potential function which occurred at time

w = 0 will have decayed the most, since it would have the value

f(0) exp (- t/T);

and the value of the potential function occurring at time w = t will

have decayed not at all, since it would have the value

f(t) - l = f(t).

Equation 4 is an attempt to give the pyramidal cell model a

memory, where memory can be loosely defined as a device for storing

records of events which have occurred in time previous to the present.

The aji-th entry expresses the concept that the memory

process becomes larger as the basket cell i's firing rate zi(t-'rz) in

the recent past becomes larger and approaches 1 in the limit: that is,
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t

_ , lL-vzl _ -
A — So exp I: )‘ji in zi(w iji)dw large,

exp [-A/Tji] -> 0 and aji(t) -' 1

If the basket cell i's firing rate zi(t-'rz) has been very small in the

past, then a.i(t) approached some minimum value “51‘ that is, as

the A expression defined above becomes small,

- .. -’ t -*exp ( A/le) l and aji( ) IIJl

The PCLU as defined in Chapter 3 is an extreme simplification

of this continuous model. Some more of the more important simplifying

assumptions are:

1. There is a constant threshold.

2. There are no inputs from other PCLUS.

3. The septal input controls the magnitude of A and is not Of

primary importance in the determination of the pyramidal cell firing

rate.

4. The memory has no decay.

5. Most time lags are omitted.

A. 2. The Basket Cell Logic Unit

The terms in the basket cell firing rate equations, Figure A. 2,

are analogous to terms in the pyramidal cell firing rate equations.

Z(t), Equation 2, is the basket cell firing rate vector. It is expressed

in the same form as Y(t), with in being the proportionality con-

stant and amzi being the maximum permissible value of di(t)°

D(t) is the basket cell firing rate potential vector, and it is

analogous to X(t). The first term on the right hand side of Equation 1

is of the same form as Equation 1, Figure A. 1, term 1: ¢ corres-

ponds to e; A correSponds to y; G(-) correSponds to A(-). The

second term in the expression, (Z(t), is the threshold for the basket

cells. Its Equation 3 is analogous to Equation 3 of Figure A. 1. The

last term in the expression, 2;, is the constant firing rate potential

vector for the basket cells, and it is analogous to C of the pyramidal

cell expression. The memory expression, Equation 4, is of the same

form as the memory expression for the pyramidal cells.
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D(t) = <1> A G(t-TQ) Y(t-TR) - G(t) + 1; (1)

Z(t) = (2,8). 21m )T, (2)

where

0 di(t) S 0

zim = 1 azidiu)’ 0 S dim < amzi

O .0. ,, d.(t) Z (1 Z.
_ mm m l m l

t 1
(Z(t) : {2150 exp [- R (t-w)-] D(w) + 90 (3)

t

_ .1. - 1_)"W -
G(t) _ l + (p -1) exp {g 30 expl: v J AY(t 'rv)dw

(4)

Figure A. 2. The basket cell firing rate equations.

The expreséions are for J pyramidal cells and I basket cells. The

dimensions of the vectors are: D(t), Z(t), (Z(t), 91. 90, g, and

p:lxl; Y(t) : Jxl. The dimensions of the matrices are: (b, G(t),

TV: g9 P's V31x-J; A3JXIoTR, TQ,
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It is clear from the BCLU model presented in Chapter 3

that some radical simplification of this model has been made. The

major additional assumption for the BCLU over and above those

presented in the previous section is that there is no memory process.

A. 3. The Connectivity

AS originally conceived, the connectivity of the hippocampus

model was based on the concept of a card. A card was defined as

(1) all pyramidal cell (PC) models connected to one septal fiber,

plus (2) all basket cell (BC) models which receive inputs from the PCS

of the card (it was assumed that a BC did not receive inputs from two

different cards), plus (3) a cell in CA1 which received inputs from

every PC in the card. The output of the card was the output of this

last cell. The communication between cards was accomplished by

BC collaterals to the PCS Of other cards.

This concept was modified to the connectivity described in

Chapter 3, with one septal fiber per PC, because it seemed possible

that a card could be modeled as a Single PC.



APPENDIX B

A COMPUTER PROGRAM BASED ON ALGORITHM 4. 3. 1

Figure B. l is a CDC 6500 FORTRAN EXTENDED (MSU)

listing of the program TTABLE and its subroutines. This program

generates all possible output sequences of a CA3 sector net model

containing N PCLUS. It does so according to Algorithm 4. 3. 1.

Note that one data card is required in order to specify the number

N; the format of this card is 10X, 15. The output sequences are

printed in rows of ten; the format for a typical sequence is demon-

strated by the following, which is an actual output sequence generated

by TTABLE with N = 5:

PCLU 1- l 0 1 0 l 0 l (The output sequence component for PCLU 1.)

PCLU2-2010000

PCLU3-2021222

PCLU4-2010101

PCLU 5 2 0 0 0 81-9 0.

cycle
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