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ABSTRACT

THE HARDY SPACES AND OTHER

RELATED FUNCTION SPACES

by

Steven Joel Leon

The Hardy spaces Hp are closely related to certain

other spaces of analytic functions. For 0 < p < 1, let

BP denote the class of all functions f analytic in the

unit disk satisfying

\lpr ‘27 I0ll:1r(1r)(H1/P21|f(reg)|d9 dr < ”-

Bp with the above norm is a Banach space. For 0 < p,q < m,

let Hp’q denote the space of all functions f analytic

in the unit disk for which

“rum = {I01 (:11? fi'rlflreig)Ipdofl
/Pdrll/q < co

and define HP’00 to be the Hardy space Hp. If 0 < p,q S 1

or O < p < 1, q = w and o = (%-+-§)'1, then B0 is the

"containing Banach space" for Hp’q in the sense that Hp,q

is a dense subset of Ba and Hp’q and B0 have the same

continuous linear functionals.

The relationships between the spaces H0, Hp’q, and B0

(o = (%-+-l)'l) are studied for all p and q. In particular,

q

if 0 < P:Q.S 1, then Hp,q is an intermediate space between

H0 and BC. This relationship, HO c.Hp’q-c:B°, may be used
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to determine certain coefficient properties of Hp,q

functions.

The general properties of the corresponding spaces

hp, bp, and hp’q of harmonic functions are also studied.

If 0 < p < 1, it is shown that hp is a non-locally convex

F-space with enough continuous linear functionals to

separate points. Next, the properties of bp are discussed

and its dual space is determined. Finally, the spaces

hp’q are studied and the relationships between hc, hp’q,

and b0 (o = (l-+-%d'l) are examined. In particular, it

is shown that bp/E is the containing Banach space for

hp’p, o < p g_l.

The last topic to be considered is composition

operators on Bp. If D is an analytic function mapping

the unit disk into itself and r is in Bp, the composition

operator C¢ is defined by C¢(f) = f o O. It is shown

that C¢ is a bounded linear operator on Bp. Conditions

are also given on ¢ in order that C¢ be a bounded operator

from Bp into Hg, 0 < q.g w. Isometric and invertible com-

position operators are characterized, and finally compact

operators and their spectra are discussed.
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CHAPTER I

INTRODUCTION

1. Fundamentals.
 

The unit disk in the complex plane will be denoted

by D. We will assume throughout that z e D has the form

relg and will often write r in place of [Z].

For a function u harmonic in D, the integral means

of order p, O < p < w are given by

2w -

r,u) {3;_I |u(relg)|pd9}l/p.
m

2W 0

Mp(

The infinity means of u are given by

Mw(r,u) = max Iu(reig)l.

OSO<2Tr

We denote by hp, O < p g w,the class of functions u

harmonic in D such that

sup M (r,u) < m,

O_<_r<l p

Similarly Hp denotes the class of all functions f analytic

in D such that

sup M (r,f) < m.

OSr<l p

It is well known that if r e Hp, o < p __<_ oo, then r

is of bounded characteristic and consequently has radial



limits a.e. Furthermore, the boundary function, f(elg),

defined by the radial limits is in Lp[O,2W]. (See, for

example, [2] or [11].)

The integral means Mp were first studied by G. H. Hardy [8]

in 1914. He showed that if f is analytic in D and O < p‘g m,

then Mp(r,f) is a nondecreasing function of r and log Mp(r,f)

is a convex function of log r. In further studies, G. H. Hardy

and J. E. Littlewood proved the following theorems.

Theorem l.l (G. H. Hardy and J. E. Littlewood [10], p. 406).
 

pr>O,a_}_O,p<q<ooand

Mp(r,f) 3 C(1 - r)-a,

then

Mq<r.r> g K<p.a>c<1 - r>'a'(l/p)+(l/Q).

where C is an absolute constant and K(p,a) depends only on

p and a.

Notation: C(a1,a2,...,an) will denote a constant depending

only on the numbers a1,a2,...,an.

Theorem 1.2 (G. H. Hardy and J. E. Littlewood [9], p. 413).
 

If p > O, a > O and

Mp(r,f') S C(l — r)‘a'1

then

Mp(r,f) g K(p,a)(l - r)'a.



Notation: f(r) a g(r) means f(r)/g(r) a l as r a 1.

f(r) ~ g(r) means f(r)/g(r) and g(r)/f(r) are both bounded

for r sufficiently close to 1.

The next theorem may be proved by simple computations

(see [2], p. 65).

Theorem 1.3. If a > 1, then
 

2
W

I ll - zl’ade ~ (1 - r)'a+l.

0

There are various definitions of fractional derivatives

and integrals. We shall use the one given by P. Duren,

B. W. Romberg, and A. Shields in [3]. This definition

differs only by a factor of z8 from the one given by

G. H. Hardy and J. E. Littlewood in [10].

Definition 1.1. If f(z) = ganzn, the fractional derivative
 

of order s of f is defined as

f[B](Z) = 2 ME) anzn

n!

and the fractional integral of order 8 is defined as

n: n

rial”) = '23 tom‘s—7 anz

A function u harmonic in D can be written in the form

rlnleinG.

We define

 



and

°° IHI! ' o
u[B](Z) = A}: f(ln]+l+5) cnrlnleln .

We will assume many of the elementary properties of harmonic

functions. For example, each u harmonic in D can be completed

analytically and any two analytic completions of u differ by

a constant. If f = u + iv is an analytic completion of u

and v(O) = O, then we say that f is the normalized analytic

completion of u or simply "the" analytic completion of u.

2. Background.
 

If f e Hp, then we define

(1 1) HfHHp = :2? Mp(r.f).

If p 2_1, then (1.1) defines a norm on Hp. If p < 1,

then (1.1) does not satisfy the triangle inequality and

hence fails to be a norm. However, H ”pp satisfies the

triangle inequality and induces a metrig on Hp. The spaces

HP, 0 < p‘g m, are complete. Indeed, Hp is a closed sub-

space of Lp(D), the class of complex-valued functions f

satisfying:

2W1 .

HfHLp = :13 i 27 IO |f<relg>lpd©}l/p < 00.

Thus, if p‘Z l, Hp is a Banach space.



Definition 1.2. An F space is a linear space with a complete
 

translation invariant metric under which scalar multiplication

is a continuous operation ([6], p. 51).

If p < 1, then Hp is an F space. F spaces have many

of the important properties of Banach spaces. In particular,

the Open Mapping Theorem, the Closed Graph Theorem, and the

Principle of Uniform Boundedness all hold for F spaces.

Furthermore, the Hahn Banach Theorem holds for locally convex

F spaces. For precise statement of these theorems, we refer

the reader to [6].

Definition 1.3. We say that an F space has the Hahn Banach
 

Extension Property, H.B.E.P., if every continuous linear

functional on each closed subspace has a continuous linear

extension to the whole space.

In particular, a locally convex F space has the H.B.E.P.

J. H. Shapiro [17] has shown that for an F space with a

basis, the H.B.E.P. is equivalent to local convexity.

3. The spaces Hp and Bp, O < p < l.
 

The properties of HP, 0 < p < l, as a linear space,

were first studied by S. S. Walters in [18] and [19]. He

showed in [18] that Hp has enough continuous linear functionals

to separate points, in contrast to the Lp spaces (0 < p < l)

which have no continuous linear functionals other than the

zero functional. In [19], he conjectured that the Hp spaces

were not locally convex. This was later proved by P. Duren,

B. W. Romberg, and A. Shields in [3].



If A is a linear space, we will denote its dual by A*.

We will also need the following definitions.

Definition 1.3. If f and g are harmonic in D, and g e hl,
 

then define

2w

<f,g> = lim I f(re19)g(e'ig)d9

r-0 0

provided the limit exists.

Definition 1.h. Two Banach spaces A and B are equivalent
 

if there is a one-to-one linear mapping T of A onto B such

that both T and T"1 are continuous, i.e., A and B are

equivalent if they are linearly homeomorphic.

s. s. Walters showed in [19] that corresponding to

each ¢ 6 (Hp)*, there is an analytic function g such that

(1.2) ¢(f) = <f,g>

for each f e Hp, and conversely if g is a function such

that <f,g> exists for every f in Hp, then (1.2) defines

a continuous linear functional on Hp. B. W. Romberg [1A]

continued this study improving upon Walters' results.

In the case p is not the reciprocal of an integer, Romberg

gave a condition on g which is necessary and sufficient

in order that (1.2) define a continuous linear functional

on Hp. Romberg also gave a partial characterization of

(Hp)* in the case that p is the reciprocal of an integer.

Finally in [3], P. Duren, B. W. Romberg, and A. Shields

gave a characterization of (Hp)* up to equivalence for



all p < 1. To present these results, we will need to

define certain Lipschitz classes of functions.

Definition 1.5. If f is a complex-valued function defined
 

on I2] = l, the modulus of continuity of f is given by

w(h;r) = su Ir(ei“>.- f(e13)|.
IG'B.Sh

f is said to belong to the Lipschitz class AG (0 < a.S 1)

if

w(h;f) = 0(h“) as h a 0.

Furthermore, f is said to belong to class A* if

|r(e1(t+h)) — 2r(eit) + f(ei(t‘h))| = 0(h).

The classes kc and x* are defined in a similar manner with

"0" replaced by "0". For a function f analytic in D, we say

f E Aa(xa,A*,x*) if f is continuous in D and f(eig) E “g(xa,A*,x*).

Definition 1.6. Let A2,(n = 0,1,..., 0 < a g_l), be the
 

space of functions f(z) analytic in D and continuous in

D such that f(n) 6 A“. A: is a Banach space under the norm

’ - n i e+t n '0
“r” = urn a, + sup t a|r( )(e( )) - r( )(aL )l.

H t,0

t>O

Similarly, A: denotes the Banach space of functions f

analytic in D and continuous on D such that f(n) e A* and

urn = urnH. + gag t‘llr<“)<ei‘9+t)> - 2r<n)<e19> + f(n)(ei(9't))l

tic

“
.
3

‘



The spaces x2, A2 are defined in the same manner.

Theorem 1.4. (P. Duren, B. W. Romberg, and A. Shields [3],

p. 35).

 

1 l l p * .
f ___. —-, = -- n and H then there 18I 11+]. < p < 1'1 (X. p CO 6 ( ) 3

. n-l
a unlque g 6 AG such that

cp(f) = <f,g>

I
for each f e H? Conversely, if g e A:_ , then <f,g> exists for

each f E Hp and defines a continuous linear functional on Hp.

n-l

If p = then g E An-l and conversely any function g e A*
l

EFT ’

defines a continuous linear functional on Hp.

Theorem 1.5. (Duren, Romberg, Shields [3], p. 39).
 

If 1 < p < l. = E—- n then (Hp)* is equivalent to

an: niap ’

An-l. If p = 1 , (Hp)* is equivalent to A2_1.

a n+1

We may also talk about the spaces Ad’ A*, ya, y*, A2, etc.,

of harmonic functions. The following theorem allows us to

characterize these spaces in terms of growth conditions.

Theorem 1.6. (See Zygmund [20], vol. 1, p. 263).
 

(i) A necessary and sufficient condition for a

harmonic function u to be in Ad’ O < a S_l is that

:19. = 0((1 - r)a_l).



(ii) A necessary and sufficient condition for u to

be in A* is that

Theorem 1.7. (Duren, Romberg, Shields [3], p. 44).
 

If f is analytic in D and f(z) = 0((1 - r)'a), a > 0,

then

<1) r[B]<z> = o<<1 - r>‘ii+8)>. s > o

and

(ii) f[B]<z) 0((1 - r)B’a). o < e < a.

Theorems 1.6 and 1.7 may be stated for either analytic

or harmonic functions since in general a harmonic fuficfiiOD

andlits.analytic.completi0n have the-same order of grOWth,

[201 volt I, p. 253.

Definition 1.7. Let yp, O < p < 1, denote the space of all
 

functions g analytic (harmonic) in D such that

l/ -l

s[ p] = o<<1 - r) >,

endowed with the norm

Hen p = sup {Ms (r,e[l/p])<1 - r>i.
y r<1

The spaces wp are defined similarly replacing "O" by "0".
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It has been noted ( J. H. Shapiro [17], p. 27) that

P n—l. . _ 1 1
y 18 equlvalent to Ad , a — - n for HTI < p <.H andI

p

1
equivalent to AE_ if p = This may be proved easily

n+1 '

using Theorems 1.6 and 1.7.

It was remarked earlier that Hp, O < p < l, is not

locally convex. Actually the following stronger theorem

was proved.

Theorem 1.8. (Duren, Romberg, Shields [3], p. 51). There
 

exists a proper closed subspace Hp(E) of Hp and a continuous

linear functional m on Hp(E) which cannot be extended to all

of Hp. Thus, Hp does not have the H.B.E.P. and hence is not

locally convex.

In [3], Duren, Romberg, and Shields found the ”containing

Banach space" of Hp, that is, they found a Banach space Bp

which has the same continuous linear functionals as Hp and

which contains Hp as a dense subspace.

Definition 1.8. For 0 < p < 1, let Bp denote the space of
 

all functions f(z) analytic in D such that

r,f)dr < m.(1.3) “ran = (:(l - r)(l/p)-2Ml(

The spaces bp of harmonic functions are defined similarly.

Theorem 1.9. (Duren, Romberg, Shields [3], p. 40). The
 

space BP, 0 < p < 1, with norm (1.3) is a Banach space.

Furthermore,
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(i) |f<z>|.s C(p)HfH p<1 - ,)-1/p
B

for each f e Bp’ and

f(z) = oc<l - r)‘1/P);

(ii) for each f 6 DP,

lim Hf - f] = o

p..l \Bp ’o

where fp(z) = f(pZ)S

(iii) Hp is dense in Bp;

(1V) HfHBp.S C(P)HfHHp

for each r e Hp.

Coefficients of Bp functions satisfy the same growth

condition as coefficients of Hp functions.

Theorem 1.10. (Duren, Romberg, Shields [3], p. 41). If
 

I]

f(z) = z anz 6 BP, then

lan| s.c<p>nrn pn(1/P>‘1
B

and an = o(n(l/p)'1). Conversely, if 0 < p < l and

an = O(na), a <(1/p) — 3/2, then f E Bp. The (l/p) - 3/2

is best possible, in that, there exists g(z) = 2b 2

such that bn = O(n(1/p)'3/2) and g is not in RP.

The next theorem shows that for O < p < q < 1, the

spaces Bq and Bp are equivalent under the correspondence

f a f[(1/p)-(1/q)] for each f equ.
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Theorem 1.11. (Duren, Romberg, Shields [3], p. 43). If
 

O < p < q < 1 and B = (l/p) - (1/q), then

(i) f 5 BP implies f ] 6 Eq and

[B

Hf[B]HBq S,C(P,Q)HfHBp3

(ii) f E Bq implies f[B] e Bp and

11481an _<_ c<p,q>\\anq.

Theorem 1.12. (Duren, Romberg, Shields [3], p. 46).
 

Theorems 1.4 and 1.5 remain true with Hp replaced by Bp.

Theorems 1.9 and 1.12 imply Bp is the containing

Banach space of Hp. The next theorem relates Bp to the

96*

Oclosure of Hp in (Hp)

Theorem 1.13. (Duren, Romberg, Shields [3], p. 46). For
 

each f e Hp (O < p < l),

c<p>nran s urn (Hp)... _<. K<p>uran.

Hence Bp is equivalent to the closure of Hp in (Hp)**.

Finally, Duren, Romberg, and Shields [3] showed that

Bp is itself a conjugate space.

Theorem 1.14. (Duren, Romberg, Shields [3], p. 49). If
 

1 < p <‘l , a = (l/p) - n, and w E (kg-l)* , then there is

11+]: 1’]

a unique function f e Bp such that

v(s) = <f,g>
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for each g e yg'l. Conversely for each f e Bp, <f,g>

determines a bounded linear functional on kngl. Furthermore,

(kg-l)* and Bp are equivalent. If p = i1 , the above state-

n

1
ments remain true with kn; replaced by yETl

The coefficient properties of Hp and Bp functions

have been studied by P. Duren and A. Shields, [4] and [5].

These properties are generally stated in terms of coefficient

multipliers.

Definition 1.9. Let A and B be two complex sequence spaces.
 

We say that a sequence {An} multiplies A into B if

{khan} E B whenever {an} E A.

Each analytic function can be associated with its

sequence of Taylor coefficients and hence Hp and Bp can be

treated as sequence spaces.

Theorem 1.15. (P. Duren and A. Shields [5], p. 70). If
 

O < p.g 1, then {An} multiplies Hp into Lm if and only if

1- l/
(1.4) An = O(n ( p)).

If p < 1, then {An} multiplies Bp into tm if and only if

(1.4) holds.

Theorem 1.16. (P. Duren and A. Shields [5], p. 70). Let
 

O < p < 1, then

(i) {An} multiplies Hp into tq (p‘g q < 00) if and

only if

N

(1.5) 2 nq/p lxnlq = omq);
n=l
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(ii) if 1 5 q < oo, {An} multiplies Bp into tq if

and only if (1.5) holds.



CHAPTER II

MIXED NORM SPACES

In [1], Benedick and Panzone studied the spaces Lp’Cl

of functions f(x such that
1’X2)

1/q

Hpr’q = { IKE [ le lf(Xl)X2)]pdul]q/
pdu2} < m,

where Xi e Xi and “i is a measure on Xi (i = 1,2). A

complex function f(z) = f(reig) may be considered as a

function of r and O. In particular, we will be concerned

with the Lp’q functions which are analytic in D. These

classes of functions were introduced by J. H. Shapiro in

[17] and are denoted Hp’q. Shapiro showed that if

0 < p,q S l, and %-=p%-+-%, then B0 is the containing Banach

space of Hp’q. He also considered the relationships

between these spaces in the case 0 < P.S 1, q > 1. In

section 2, we continue this study. In particular, we

consider the relationships between Hp,q and BC when p > 1,

and the relationships between H0 and Hp,q for all p and q.

In section 3, we make use of the relationships given

in section 2 to study coefficients of Hp,q functions.

1. Preliminaries.
 

We begin by defining the Hp,q spaces and stating some

of their basic properties.

15
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Definition 2.1. Let Hp’q denote the class of functions f
 

analytic in D such that

(2 1) Hf” = T [l (M (r f))qdr}l/q < w
' p,q. o p ’ '

If q = w, define Hp’oo to be Hp. The corresponding classes

hp’q of harmonic functions are defined similarly.

If 1.3 p,q S m, then (2.1) defines a norm and Hp’q,

hpaq are Banach spaces. If m = min (p,Q) < 1: then H Hp q
9

fails to be a norm, however, induces a complete
m

u ”p,q

metric. The next two theorems summarize some of the general

properties of Hp,q determined by J. H. Shapiro in [17].

Theorem 2.1. (J. H. Shapiro [17], pp. 28-30). The spaces
 

Hp’q (O < p,q 3.”) are complete with respect to the metric

mentioned above. Furthermore,

<1) lf<z)|.s c<p,q>nrup,q<1 - r>‘<<1/p>+<l/Q>>

for each f e Hp’q3

(ii) pr ‘ pr,q a O as p a 1 for each f e Hp,q

(ro<z> = f(oz))-

Theorem 2.2. (J. H. Shapiro [17], pp. 40 and 52). If
 

m = min(p,q) < 1, then Hp,q is not locally convex. If

0 < p < 1, O < q.g m, then Hp’q does not have the H.B.E.P.

To avoid repetition, we introduce the following

notation.

Notation: If p and q are positive numbers such that

%-+-% > 1, then 0 will denote the number defined by the

equation: l-= l.+.l,

o P q
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2. Relationships between Hp’q, HG, BC.
 

We consider first the relationships between Hp,q and

BC. The case 0 < p,q S 1 has been studied by J. H. Shapiro [17].

We present his results in the following two theorems.

Theorem 2.3. (J. H. Shapiro [17], p. 30). If f 6 Hp’q,
 

O < p,q S 1, then f e B0 and

Hmflgcmnmmgq

Theorem 2.4. (J. H. Shapiro [17], pp. 35 and 37). Let
 

O < p,q S_1. If m is a continuous linear functional on

Hp’q, then there exists a unique g 6 yo such that

(2.2) u<r> = <f,g>

for each f E Hp’q. Conversely, if g 6 yo, then (2.2)

:q.
defines a continuous linear functional on Hp Moreover,

the spaces v0 and (Hp,q)* are equivalent.

It follows then that (BO)* is equivalent to (Hp’q)*,

O < p,q g_1, and BC is the containing Banach space of

Hp’q. Furthermore, if we consider Hp,q and B0 as subspaces

of their second dual, then B0 can be associated with the

**

closure of Hp,q in (Hp’q)

Theorem 2.5. For each f E Hp’q, O < Paq 5,1,
 

C(paqufHBc, S [\f1\(Hp,q)** S K(p’q)”fHBo'

Hence, BC is equivalent to the closure of Hp’q in (Hp,q)**.
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Proof: By Theorem 1.12,(B0)* and v0 are equivalent under

the correspondence g e m, where m(f) = <f,g> for each f 6 BO.

Let 5 be m restricted to Hp’q- Then O(f) = <f,g> for each

f e Hp’q and, by Theorem 2.4, (Hp,q)* and yo are equivalent

under the correspondence g a i. It follows that (B°)* and

(Hp’q)* are equivalent under the correspondence m A $ and

C(p.q)H°T3H _<_ Hep”: K(p,q )HCPH

If f 6 Hp’q, then f e B0 and since BC is a Banach space,

we have

HfHB0 = HfH B,)**

= llf‘|i0_—Than)l

ELLE<

“ CM Manic Hen

= 7—7,], will we
3 (H J )

Similarly,

HfH(Hp,q)** S K(p:Q)HfH(BO-)** = K(pJQ)HfHBg

Let [fn] be a sequence in Hp’q, then {fn] is Cauchy in

the (Hp,q)** norm if and only if it is Cauchy in the B0

norm. Thus, each element in the closure of Hp’q in



l9

(Hp,q)** can be associated with an equivalence class of

*-)(-

Cauchy sequences in (Hp’q) norm and hence with a unique

130 function.

Let 0 < P.S 1, then B0 is the containing Banach space

for Hp,q if either 0 < q'g 1 or q = m. It is natural to

ask whether this is still true if 1 < q < w.

Theorem 2.6. If 1 < q < w, 0 < p <~agf , then Hp,q is not
 

contained in BC.

Proof: The functions
 

(2.3) ra,,<z> = <1 - z>'1/“i§-1os I%Ei'1/B . a > 0

were examined by J. E. Littlewood ([12], p. 93). He

showed that if y > a: then

<2.i> Mx<r.fa,,) e A(d:6:l)(1 - r>‘(1/a)+<1/*)(losf%;)'1/B-

Thus, if we set a = a, then (i) f = f is in Hp’q if
G:B 0:8

and only if a < q; (ii) f0 8 is in B0 if and only if B < 1.
D

In particular, if q > 1, we may choose a = $(q+l). Then

1 < B < q and hence f E Hp,q but f E BC.

0:8 038

Although Hp,q is not contained in B0 if q > 1, we do

have the following result.

Theorem 2.7. (J. H. Shapiro [17], p. 33). If f E Hp’q,
 

O < p.g l, l < q < m then f 6 BJ6 for each t < o and

ngsKmnmmm%¢
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We next turn our attention to the case p > 1.

 

Theorem 2.8. If p > 1, O < q < PET , t < p, then B0 is

contained in Ht’q and

Hdgqsxomsmmfl

for each f 6 BO.

Proof: We may assume t > 1. If f 6 BO, then
 

l n

HfHBo 2 Ir Ml(o:f)(1 ‘ p)(l/C)—Cdp

.2 M1<r,f><1 - r>(1/0)'1<<1/o>-1>‘1.

Thus,

(2.5) Ml<r.f>.s c<p.q>HfH ,(1 - r)1'<1/0>.
B

If t = 1,

(2.6) M%(r,f) = M‘11(r,f)

-1

scesmetI-nHL-FR
BC

Hence

(2.7) M%(r,f) S K(p,q)ququ (1 - r)Q((1/’°)‘(1/P))‘1,

B

The conclusion follows by integrating (2.6) and (2.7)

and then taking l/q powers.

 

Theorem 2.9. If p'Z l, O < q < Pgi) and s < q, then

B0 c Hp’S and
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urup,s.s K(P:Q:S)HfHBo

for each f 6 Bo.

Proof: If f 6 Bo, then we have by (2.5) that

Ml(r,f) _<_ C(p,q)]]f\\BG(1 - I‘)1-(1/a).

It follows from Theorem 1.1 that

Mp(r.f>.g K<p.q>nru ,(1 - r>'1/q
B

and hence

s s s _ -s/q

Mp(r:f).S Kp’quHBG(1 r) -

Corollary 2.10. If s < q.g 1, then
 

Hl.q C Bq/(q+l) C HLS.

If q > 1 and s < t < q, then

Hl,q C Bt/(t+1) l,s.
c H

Proof: The first statement follows from Theorems 2.4 and

2.9. The second statement follows from Theorems 2.7 and

2.9.

We next consider the relationships between Hp,q and

HG. These relationships can be determined using a theorem

of Hardy and Littlewood.

Theorem 2.11. (G. H. Hardy and J. E. Littlewood [10], p. 411).
 

If0<x<psoo,a=_if-%,{,ZxandeH)‘,then

1

£3<Mp(raf))é(l — r)La-ldr S K(4’p’é)HfHV.-
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In particular, if we set x = o, t = q = l/d, then we

obtain the following corollary.

Corollary_2.12. If 0 < p,q _<_ ¢° and f 6 HO, 3;":

*
o
h
4

+

.
n
h
4

\
o

 

then f e Hp’q and

urn,q_<K<p.q>nrnH,

It is easy to see that the above containment is strict,

since Hp,q contains all functions f satisfying

f(z): O((l - r)'a), a < l/q.

Thus, Hp,q contains functions which are not of bounded

characteristic. 'In fact, there exist functions having

radial limits a.e. which are in Hp’q, but are not in Ho.

The functions f defined by (2.3) have radial limits a.e.
(1:8

and J. E. Littlewood ([12], p. 96) showed that for 1 = a, x < B

(2.8) Mx(r,fm ) a A(a,s)(1og_:)B+(1/x)

Thus, if we set a = o and a = %(q + 0), then 0 < B < q

and it follows from (2.4) that fo 3 E Hp’q; however,

- _ 3

(2.8) implies f0 8 is not in H°.
)
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3. Coefficients.
 

It follows from Theorem 2.3 and Corollary 2.12 that

if 0 < p,q S 1, then Hp’q is an intermediate space between

H0 and BC, i.e.,

H0 c Hp’q c BC.

5
"

.

Thus, Hp’q functions possess properties common to H0 and BG

functions. In particular, coefficient results for Hp’q

functions are obtained as immediate consequences of the

HO and Bc properties given in Chapter I. f

Theorem 2.13. Let 0 <fp,q_g l.
 

n
° _ paq _ l/ -l

(1) If f(z) — zanz 6 H , then an - O(n( 0) )
3

the exponent (1/o)-l is best possible.

(ii) If 1.3 s < m, then {kn} multiplies Hp,q into

LS if and only if

(2 9) Eng/lenl = O(NS)3
n=l

(iii) If dug s < l and {in} multiplies Hp’q into LS

then (2.9) holds.

(iv) {in} multiplies Hp’q into L” if and only if

1- l

3322:: The "0" condition in (1) holds for Hp’q since it

holds for EU. The exponent is best possible for H0

(see [2], p. 98) and hence for Hp’q. If {in} satisfies

(2.9), then by Theorem 1.16, {in} multiplies B0 into LS

and hence multiplies Hp,q into LS. Conversely, if {)n}
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multiplies Hp’q into is, then it multiplies HO into is

and hence satisfies (2.9). This proves (ii) and (iii).

(iv) is proved similarly using Theorem 1.15.

We remark that the "0" estimate in (i) is actually

best possible in a much stronger sense. In [5], p. 70,

P. Duren and A. Shields showed that if {on} is any sequence

of positive numbers such that an = O(fin) for every

f(z) = zanzn in H0, then there exists an e > 0 such that

5 nl-(l/o)

n .2 e > O, n = 1,2,...,

In [4], p. 259, P. Duren and A. Shields showed that

if f(z) = zanzn is in H0, then

I S-5
(2.10) z n Ian < w

for s > o, 6 = l + s((l/g)—1), O < 0.3 1. They then

showed that B0 and HG functions differ in allowable moduli

of coefficients by giving an example of a BC function

whose coefficients do not satisfy (2.10). A similar

example may be provided for Hp’q. Indeed, the function

defined by (2.3) is in Hp’q for B = %(q + 0). However,f

098

J. E. Littlewood ([12], p. 93) has shown

)n(1/O)'l( - —1

an m C(p,q log n) /B

so that

l-5 s _

Z n lanl .2 KCP3q93) Z BEBE—H - m



CHAPTER III

HARMONIC FUNCTIONS

In this chapter, the spaces hp, bp, hp’q of harmonic

functions are studied. These spaces are defined in the

same manner as the corresponding spaces of analytic functions.

Section 1 deals with the question of whether the

harmonic conjugate of a function in one of the above

mentioned classes is in the same class. The spaces hp,

bp, and hp’q are treated in sections 2, 3 and 4 respectively.

The general properties of each of the spaces as well as

the relationships between the three spaces are discussed

in these sections.

1. Conjugate functions.
 

If p > 1, the spaces hp and Hp are very much alike.

In fact, if f = u + iv is analytic in D, then f e Hp if and

only if u 6 hp. This is a consequence of the following

well-known theorem of M. Riesz (see, for example, [2], p. 54).

Theorem 3.1. (M. Riesz). If f = u + iv is analytic in D
 

and p > 1, then

M r,v) S C(p)M r,u), O < r < l.

p( p( _.

Thus, if u 6 hp, then v 6 hp.

In the case p = 1, u e h1 does not imply its harmonic

conjugate v is in hl. However, we do have the following

theorem (see [2], p. 57).

25
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Theorem 3.2. (A. Kolmogorov). If u e hl, then its
 

harmonic conjugate v is in hp for all p < l and

M

If p < l, the situation is much worse. G. H. Hardy

and J. E. Littlewood ([9], p. 419) have shown that the

function

 “(2) = Re T(z) = Re( §

is in hp for all p < 1, however, n(z) has radial limits

existing on a set of at most measure zero. If T(z) is in

Hp for some p then T(z) must have radial limits a.e. But

this would imply n(z) has radial limits a.e. Thus, T(z)

is not in Hp for any p.

We next investigate whether theorems similar to

Theorem 3.1 hold for hp’q and bp. As an immediate con-

sequence of Theorem 3.1, we have that if u e hp’q, p > 1,

O < q S_w, then its harmonic conjugate v E hp’q and

Hvlvp,q _<_ c<p>nuup,q.

The question of whether u 6 hp,q implies v e hp’q for

O < p'g l, O < q < w is still open, although it has been

answered affirmatively in the case q = p.

Theorem 3.3. (G. H. Hardy and J. E. Littlewood [9], p. 413).
 

If u e hp’p, o < p < m, then its conjugate v e hp’p and
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HVHp9p S C(p)Hqu,p'

The situation for bp is much nicer.

Theorem 3.4. (P. Duren and A. Shields [4], p. 256). If
 

u 6 bp, then its harmonic conjugate v 6 bp and

HVH S C(pHWH -
bp ' bp

We may use Theorem 3.4 to show that most of the

theorems concerning Bp given in Chapter I hold also for bp.

2. The spaces hp, 0 < p < l.
 

Recall that u 6 hp if and only if

= sup M (r u) < w.
Huth r<1 p ’

As was the case for Hp, p < l, H H p does not satisfy the

h

triangle inequality and hence is not a norm. However,

H “pp does obey the triangle inequality and defines a

h

metric on hp.

The properties of Mp(r,u), u harmonic, have been studied

by Hardy and Littlewood [9]. We sum up a number of their

results in the following theorem.

Theorem 3.5. (Hardy and Littlewood [9], pp. 410-415). Let
 

u be harmonic in D and f(z) = z Ynzn be its analytic com-

pletion. If 0 < pug l, 3.2 O and

Mp(r,u) g C(l - r)'a



then

<1) lynl.s B<p.a>c<n + 1>a+<l/P>‘ls

(ii) If(z)| 5 B(p,a)C(l — r)'a‘(1/p);

(iii) Mp<r.r'>.g B<p.a>c<1 - r>a‘1;

(iv) if a > 0, then

M (r,v) S M a.p (Inf) : B(p,a)C(l - l")"
P

Theorem 3.5 will be used to prove some general theorems

about hp.

Theorem 3.6. The spaces hp, 0 < p < m are complete,
 

Proof: If p > 1, the result follows from Theorem 3.1 and

the completeness of Hp. Assume then that p's 1. By

Theorem 3.5 (ii), we have

(3.1) Iu<z>l g,B(p>HUH p<1 — r>‘l/p
h

for each u 6 hp. It follows from (3.1) that if {um} is a

Cauchy sequence in hp, then [un] converges uniformly on

compact subsets of D to a harmonic function u. On the

other hand, [um] is a Cauchy sequence in Lp(D) which is

complete. Thus, [um] converges in Lp(D) norm to an Lp(D)

function g. But then there exists a subsequence which

converges a.e. to g. Thus u = g a.e. So u 6 hp and {un}

converges to u in hp norm.

Theorem 3.7. If 0 < p S 1, then hp has enough continuous
 

linear functionals to separate points.
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Proof: If u is harmonic in D, then u can be written in
 

the form

We may assume without loss of generality that u is real-valued.

Let f(z) 2 § Ynzn be the analytic completion of u. Then

n=O

iyn ithO

(3.2) 20 II

ly ifn<O.

an

It follows from Theorem 3.5 (i) that

[(1/P)-1.
Icnl : B(p)Huuhp|n

For each integer n, define the operator ”n on hp by

mn(u) = Cn’ @n is a continuous linear functional on hp

and

(l/p)-1
“Tn“.S B(P)ln] .

If u = § C rInleinG and u = g d rInleino are in hp

1 _oo 1’]
2 -oo 1']

and ul + u2, then there exists n such that cn % dn. Hence

We will show next that hp is not locally convex. This

is a consequence of a more general theorem about the H.B.E.P.

Theorem 3.8. If S is an F space with the H.B.E.P. and A is
 

a closed subspace of S, then A has the H.B.E.P.
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Proof: Assume S has the H.B.E.P. and let B be closed in A.
 

Then B is also closed in S. Thus, if Q e B*, then there

exists QS E 8* extending @. Let QA be the restriction of

3(-

68 to A. Then QA e A and QA extends o to A.

Corollary 3.9. If 0 < p < 1, then hp does not have the H.B.E.P.
 

and consequently is not locally convex.

Proof: Hp is a closed subspace of hp, so the result is
 

immediate from Theorems 1.8 and 3.8.

3. The spaces bp, 0 < p < l.
 

Recall that for O < p < 1, bp is the class of functions

u harmonic in D for which

)(l/P)‘2
M r,u)dr < m.

l

(3.3) Huubp = [O <1 - r 1(

Because of Theorem 3.4, most of the theorems stated for

Bp in Chapter I hold also for bp. The proofs of these

theorems for bp are either immediate consequences of

Theorem 3.4 and the results for Bp or they are along the

same lines as the proofs given by Duren, Romberg, and

Shields in [3]. The relationships between hp and bp,

however, are not in general the same as the relationships

between the spaces of analytic functions. This is evidenced

in the next theorem.

Theorem 3.10. (P. Duren and A. Shields [4], p. 256). If

u 6 hp (0 < p.3 1), then v e bq for all q < p. If p = EéI ,

k a positive integer, then u 6 hp does not imply v 6 bp.
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1

Hence, if p = KIT , hp is not contained in bp, however,

hp is Contained in bq for all q < p.

Corresponding to Theorem 1.9, we have the following

theorem for bp.

Theorem 3.11. The space bp with norm (3.3) is a Banach
 

space. Furthermore,

(i) IU(Z)| g C(p)]|uH p(l - r)'(l/p)

b

for u 6 bp and u(z) = o((1 - r)-(1/p));

(ii) for each u 6 bp, up a u in bp norm as p a 1

(u (Z) = u(oZ))3

(iii) if p < q _<_ oo, then h01 is dense in op.

Proof: Set R = l(1 + r), then
 

 

2

1 l/ —2

(3-4) “111le 2 [RH - o)( p) Ml(p,U)do

_>. M1<R.u><l - 1)'1<1 - R)(1/p)'l.
p

Hence

(35) Miami) : (~1- - 1)!qu p<1i-R>l‘<1/p>,
p b

and since

c 2 2

C” R - r it
[u(relg)l < -£ _ , ._ n Iu Re ldt

CIT IO lReJ- _relgld ( )

3 _LL. M1(R,u))
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we have

— 1/

g C(pmuubpu - r) ( p)-

To show the "0” condition, note that for e > 0 given, the

left hand side of(3.4)may'o3replaced by e if r is sufficiently

close to 1. This proves (i). The proof of completeness

follows in the same manner as the proof of Theorem 3.6

using part (i) in place of (3.1) and noting that op lies

in the L1 space formed with respect to the measure

l.(l _ r)(l/p)-2drd0. (ii) follows from Theorem 1.9
2v

since if u 6 bp, then its analytic completion f 6 Bp and

u-u f—f .|l pub, s n ,qu

Finally, (iii) follows from (ii) since h00 c hg c bp and

(ii) implies h°o is dense in op.

The next theorem is an immediate consequence of (3.2),

Theorem 3.4 and Theorem 1.10.

CD

Theorem 3.12. If u(z) = g cnr

_OO

InleinQ 6 bp, then
 

1/p)—1

n
(3.6) lc l g c<p>\\un,bplnl<

l/p)-l). Conversely, if 0 < p < l andand c = o(lnl(
n

cn = O(Inla), a <(1/p)-3/2, then u 6 bp. Furthermore,

the (1/p)-3/2 is best possible (i.e., there exists

l/p)-3/2
g = z Bnrlnlelng such that an = 0(Inl( ) and g é bp).

n .
Proof: Let f(z) = 3 Ynz = u(z) + lv(z). Then by (3.2),

Theorem 3.4 and Theorem 1.10,
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W = é‘vlnll SismnranlnHl/m-
l

g C(p)Hqupln
l(l/p)-l

and |Y|n|| = o(|n|(l/P)-l).

If an = o(lnla), then yn = O(lnla). SO, by Theorem 1 10,

f E Bp and hence u 6 bp. The (1/p)-3/2 is best possible

for Bp and consequently for bp. Alternatively, (3.6)

could have been derived by direct computation using (3.5)

o 1.. o —

Since cn — 2 (an-lbn), c_n — cn (n > 0) where

l 2” i0
a = ———-f u(Re )cos n0d0
n n

FR 0

and

l 271' .

b =-——— I u(Relg)sin n0d0.
n n

HR 0

Theorem 3.13. Suppose 0 < p < q < 1 and let a =
 

l. I.

p q

(i) If u 6 bp, then u[B] 6 bq.

(ii) If u e bq, then u[B] 6 bp.

Proof: It is easily verified that if u = Re f, then

u[B] = Re f[B] and u[B] = Re f[B]. The theorem then

follows immediately from Theorems 3.4 and 1.11.

Theorems 3.11, 3.12 and 3.13 will be used to prove the

major results of this section which follow in the next two

theorems. Recall that Yp denotes the space of all functions

g harmonic in D such that
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HsH p = sup{Mw(r,s[l/p])(l - r)} < w.

v r<1

Theorem 3-14- Let m 6 (bp)*. Then there is a unique g E Yp
 

such that m(u) = <u,g> for each u 6 bp. Conversely, if g 6 mp,

then <u,g> exists for all u 6 bp and ¢(u) = <u,g> defines a

continuous linear functional on bp.

Proof: Let m be a continuous linear functional on bp and

set

m(zk) for k.2 0

bk = as
m<Z ) for K < 0,

then

K

Ibkl : llcoHHZl 'II p-
b

Now,

Hzlklubp S_C(p)Hzlk|HHp = C(p)-

(A more precise estimate of Hz'KlH p will be given

'b

in Chapter IV), so that

lbkl _<_ C(PchoH-

It follows that

” IR] ikQ
g(z) = z bkr e

(X) .

is harmonic in D. Let u(z) = y ckrlkle1kg 6 bp. For

—00

fixed 0, 0 < o < 1, let uo(z) = u(oz). Since up is the

N

uniform limit on Izl = l of the partial sums (SN = z) of

-N
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its power series (hence the limit in the bp norm) and

since m is continuous, it follows that

N

Cp(u ) = limCM 2 Ckp

Ikl IKI ikQ
r e )

D N_.oo _N

0° l l
3 Z Ckbkp

.00

But up a u in bp norm as o a 1, so

 

¢(u) = lim 2 chkplkl.

pal-0°

Let g = leiB E D and h(z) = 1+2, h(z) E Bp for all p < 1.

-z

Set

V(Z) = R8(h(§Z))

= z xlkleiksrlkleiko,

then

¢(V) = lim 2 bkxlkl lkleikB

o—o]. -°°

= s(§)

Thus,

|s(§)| s Hep” HVH p
b

< hH_ Hen u Bp

so that g is in H00 and hence in H1. Now,



Thus,  

2w .

l 10 -10

fifo Moe )s( )d9

2W . .

= llm ——-f u(rpelg)g(re—lg)d0

I'd]. 17' O

= 11m [2W(; olklrlklC eik0)( ; b I.lkle-ike)C19

r—o]. 72—7? 0 —oo K ‘00 k I I, ’

oo

_00

. 1. 2” 10 -lQ
Cp(U) = 11m 5 U(pe )g(e )dg

Del 0

= <u,g>.

p 1

To show g 6 v , we consider first the case Bil < p < %3

Let F(z)
)-(n+l)

nL[2(1 - z - l] and set U(z) = Re F(§z)

where g = pe:LB E D. Then

and hence

Now

so that

U(z) = ; (n+|k|)1 plkleiksrlkleiKQ

-w Ikll
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It follows that

n]
|s[ (s): S.HwH “Hub,

.: Hm” HFpqu

.: K(P)HwH HFpqu.

and by Theorem 1.3

HFDHHp = o((1 - 0

Let 5 = l-- n and set h(z) = g[n](z). Then by Theorem 1.7,

P

(3.7) ls[l/p](a)l = lumen g c<p><<1 - |e|)'l>HcpH,

so that g 6 VP.

1

If p = m, define

(n+1)![2(1 - z)-(n+2) - 1]'
1
1

A

N

v

H

and set

U(z) = Re F(gz), g e D.

Then

v(U) = s[n+l](§) = s[l/p](§)

and hence
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U
)

a
)

0
9 _
,

l
.
_
1

\
.

'
o

3
:

/
\

_ncpHIIUHbp

/
\

_mmnennmHp

gamma-Inrhmw

Thus, 2 6 WP.

w Ikl iKQ p
To show g is unique, suppose gl = z dkr e 6 v

.00 ,

and <u,gl> = <U,g> for each u 6 bp. Let uk = rlklelkg,

u 6 bp for each R. Furthermore, bk = <uk,g> = <uk,gl> = d
k

k'

Hence g = g1.

For the proof of the converse, assume first that

1 l
m .

KIT < p (.5 and g(z) = z bkrlkle1kg 6 vp is given. We

'” w [R] ikQ p
must show that for every u(z) = 2 ckr e 6 b ,

m .00

5(r) = z ckbkrIkl has a limit as r e 1 and that

.4!)

11m l6(r)|.s cuuu ,5
I'd]. b

where C depends only on g and p. We will prove the existence

of the limit by showing

1

[ I6'(r)|dr < m.

0

Let

u(z) =-§t <e[“'1]<reig>>

([k]+n—l)1

Ikll

bk rt 

__ a m k ikQ
__a—f(z

le ).

_OO

 

I t
I
n
!
!
-
-
r
-
—
-
—
—
-
u
1
'
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Then

h<re-i0) = ; (Ik|+n-l)1 b r(|k|-l)e_ikg

-w (Ikl-l)!

and

19 m IKI' IKI ikG

u (re )=
C I‘ e

[n_l] —w (IKI+n-1)' k ’

so that

2 m 2 k -1
r81(r ) _ r—g Ckbklklr (l I )

oo

_ (2IkI-l)
— _E ckbklklr

]_ 2w 10 -i0

)h(re )d9
= 2?'IO u[n-l](re

, B _ P
By Theorem 3.13, we have that u[n-1] 6 b where B — T:TE:T7PH

Now g e vp implies

l -l

s[ /p]<z> = o<<1 - r) >

and so by Theorem 1.7,

s[n](Z) = o<<1 - r>(l/P)‘n‘l>

and hence

Thus,
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Finally, u[n-l] 6 b8 implies

l/ —2
j (l - r)( B) Ml(r,u[n_l])dr < e

O

and l-- 2 = l-- n - 1.

P

_ 1 _ _ ” IKI iKQ
For the case p — KIT , set U(z) — u[n_l](z) __g Akr e ,

1/2
then U(z) E b by Theorem 3.13. Let

G(Z) =-§; s[n'l](Z)

 

= ; (jk|+n—l)! b r(|k|—1)eiko

 

-°° MRI-l)!

m .

= z Bkrlkleiko.

_W

Then

2 'l 2” i0 —io
r6'(r ) ='2F I U(re )G(re )d0

0

Set

00 o

J(z) = U[1/2](z) = 2 [k]! Akrlklelkg.

-w P(Ikl+3/2)

Then by Theorem 3.13, J(z) e b‘C/3 and hence

I

f (l - r)'l/2Ml(r,J)dr < w.

0

Let

K(Z) = G[1/2](Z) = g P(:k:+3/2) Bkrlkleik0.

.00 k1

It follows from Theorem 1.7 that



1. 2" io —io io -19
'2? £3 U(re )G(re )d0 — §?-£) J(re )K(re )dQ

and hence

1 1

f 6'(r2)dr < C I (1 - r) l/2Ml(r,J)dr < m.

0 —- 0

Finally, we must show that the operator m, defined by

¢(U) = <u)g>

for each u 6 b2, is bounded. For fixed 0 < 1, let

°° Ikl
¢p(u) = _g Ckbkp .

Then by Theorem 3.12

Iop<u>l s c<p>nuubp§ bklkl(l/P)'1p'k',

so mp 6 (bp)*. But for fixed u 6 bp,

_ . °° Ikl
SUP lm (u)| — 11m I E Ckbkp I

o<l p pal -”

|<u,s>| < m.

Thus, by the Principle of Uniform Boundedness w 6 (bp)*.

Theorem 3.15. The Banach spaces (bp)* and Yp are equivalent.
 

Proof: The mapping Tzw a g defined as in Theorem 3.14 is a

one-to-one linear mapping of (bp)* onto vp. It follows



from (3.7) and (3.8) that T is bounded. The Open Mapping

Theorem implies T-1 is bounded.

Theorems 3.14 and 3.15 give a characterization of the

dual space of bp. These results correspond to Theorem 1.12

for Bp. In Theorem 1.14, it was observed that BP is itself

a conjugate space. We will show next, by the same methods

used in [3], that bp is the conjugate of mp.

Given u 6 bp, we may define the operator wu on vp by

(3'9) $u(g) = <u5g>

for each g e vp. For fixed g 6 mp, with Hg” p = 1, let mg

Y

be the operator on bp corresponding to g in Theorem 3.14,

then

|ou(g)l = lwg(u)|

A
.

._ Hm lHuH -
81 bp

By Theorem 3.15, we have

nmgn.s c<p>nsuvp

so that

Imu(g)l s_c<p>uunbp-

Hence mu 6 (vp)* and

nuun(wp)..s c<p>nuubp.
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Similarly mu 6 (mp)* and

< C p u .Huun(wp)* _. < >1 ubp

We may now define a new norm on bp by

3.10 u = *< > IH m noun(¢p)

for each u 6 bp.

Lemma 3.16. The norm (3.10) is equivalent to the bp norm,
 

i.e.,

Hqup S K(P)IHUHI _<_ C(PHWpr

for each u 6 bpo

Proof: The above remarks give

[Hull] S C(p)\\uubp.

It remains to show

wkpsmmwm

Since (bp)* is equivalent to vp, it follows that (bp)**

is equivalent to (yp)*. Hence

HUH = H H H S K<P>||cp H -
bp ”“ (hp) u (rp>*

Thus, it suffices to show

HcpuH( p < *.
‘Y )* _ “CPUH(wP)
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Let c > 0 be given and choose g e yp such that Hg” p = 1

Y

and

|<u, >l > * - e.8 HcpuHWp)

Now gp E wp and

Hg H .S Hg“ = 1
p wP YP

so that

l<u,sp>l _<_ nepnwpnoun up>*

< *._ llcpullwp)

But, <u,gp> a <u,g> as p a 1. Hence

* s_ u * + e.hump) Hep ll up)

Theorem 3.17. If 0 < p < 1 and m 6 (mp)*, then there exists
 

a unique u 6 bp such that ¢(g) = <u,g> for all g 6 mp.

Conversely, each u 6 bp determines a bounded linear functional

on (p by the above formula. Finally, the Banach spaces

(mp)* and bp are equivalent.

Proof: In view of Lemma 3.16 and the remarks preceding it,

we need only show that if m 6 (mp)*, then there exists

u 6 bp such that ¢(g) = <U,g> for each g 6 mp. For a

given ¢ 6 (mp)*, define
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and let

Then

Ickl s ncpHIIz'kJ pr

c<p>ncpnlklwp>V
\

(where Stirling's formula ([6], p. xv) has been used to

estimate Hzlklu ). It follows that u is harmonic in D.

l k ikO . .
Let g(z) = z bkr le be ln wp and gp(z) = g(oz). Slnce

go is the uniform limit of the partial sums of its power

series, we have

. N k k ik0

wep) = 1m cp< >2 bkp' 'r' 'e >
N-o°° -N

°° lkl
= -020 Ckbkp .

We claim that ”go-g“ p a 0 as p a 1. Indeed since

1/ -1

s[ 101(2) =o<<1-r) >.

we can choose R sufficiently close to 1 so that

(l - r)|g[l/p](z)| < 6/2 for r > R.
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It follows that

(l - r)lggl/p](z)| < 6/2 for r > R

and hence

(3.11) (l - r)|g£l/p](z) _ g[l/P](z)] < e for r < R.

Choose 90 such that if p0 < p < 1 then

(3.12) Isgl/p]<z) - sfl/P]<z>l < e

for [Z] S R. It follows from (3.11) and (3.12) that

ng-gpr < e for p > po-

Hence

'
8

0
9 ll lim ¢(g )

p-°l 9

oo

lim 2 c b
Ikl

041 —w k kp .

To show u 6 bp, define

*

for each g 6 mp, where uR(z) = u(Rz), 0 < R < 1. mR 5 (WP)

since u 6 bp. For each fixed g 6 up
R

lim ¢R(g) = lim <uR,g>

Rdl R41

= lim <u3gR>

Ral

= we).
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Therefore, by the Principle of Uniform Boundedness,

{HTRH p *, O < R < 1] is uniformly bounded. It follows

‘(w )

from Lemma 3.16 that [Hu 0 < R < 1} is uniformlyH ,R bp

bounded. However, the bp norm is an L1 norm and uR a u

pointwise. So by Fatou's Lemma

Hqup S 3.1—m HuRpr < 00.

4. The spaces hp’q.
 

Recall that hp’q is the space of all functions u

harmonic in D such that

Hun = { fl Mq(r u)dr}1/q < w
p,q. o p ’

and that hp’q is a Banach space if and only if

m = min (p,q) Z 1.

Theorem 3.18. If m = min (p,q) S l and u E hp’q, then

u 6 bm/2 and

 

Hqum/g s C(p,q>nuup,q.

m,m
Proof: If u E hp’q, then u e h It follows from

m

Theorem 3.3 that f = u + iv 6 Hm’ and

anm,m s 21/m<nuum,m + nvum,m>

< C(m)|IUHm,m-
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Furthermore, since f E Hm’m, we have by Theorem 2.3 that

/2
f 6 Bm and

HfHBm/Q _<_ K(m) Hf‘]m,m°

/2
Thus, u E bm and

Hqum/g S HfHBm/g
V
\

K(m)Hme,m

< C(m)K(m)||uHm’m

< C(m)K<m)IIqu q

Corollary 3.19. If m = min (p,q) 3'1 and
 

then

Iu<z>l g C(p,q)llul1p,q<1 - IVE/m

and

2/m)-l

lcnl g K<p.q>uuup,qlnl(

Proof: The result follows immediately from Theorems 3.11(i),

3.12 and 3.18.

If p > 1 and u E hp’q, then by the remarks preceding

Theorem 3.3, we have that f E Hp,q and
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Ilrllp,q s c<p>nunp,q.

It follows from Theorem 2.1 that

IU(Z)| _<_ C(p,q)llullp,q(l - r)‘(1/0)

1

where —-= +

o U
I
H

Q
I
H

Theorem 3.20. The spaces hp’q are complete.
 

Proof: If p > 1, then the result follows from the completeness

of Hp’q. If p S_l, then m = min (p,q) 3'1 and the proof

follows in the same manner as the proof of Theorem 3.6,

treating hp,q as a subspace of Lp’q, and using Corollary 3.19

instead of (3.1).

Theorem 3.21. If m = min (p,q) < 1, then hp’q is not
 

locally convex. If 0 < p < l, 0 < q.g m, then hp’q does

not have the H.B.E.P.

Proof: If hp,q is locally convex, then since Hp,q is a

linear subspace of hp’q, it must also be locally convex.

But this contradicts Theorem 2.2. The second statement

is immediate from Theorems 2.2 and 3.8.

In Chapter II, we studied the relationships between

Ho, Hp’q, and Bo. It is natural to ask whether the same

relationships hold between hc, hp’q, and b0. It has been

observed that in general h0 is not contained in b0. Hardy

and Littlewood ([9], p. 416) showed that the function

u(z) = Re f(z) = Re(e(l/2)KW1(1 - z)-k_l)
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. . 1 . .. . V
is in h0 for o :‘E:I (k a pOSltlve lnteger). However,

f(z) is not in BG and hence u(z) is not in bc(see [4], p. 257).

A similar example may be used to show h0 is not contained in

hp’q for the proper choice of p and q.

1

Theorem 3.22. If p = q = i, o = 2k’ k a positive integer,

then h0 is not contained in hp’q.

 

Proof: Let

A w

f(z) = u(z) + iv(z) = el(Ck-l)2(l - z)-2K.

. c, 1
By the above remarks, u(z) e h for g = 2k 0n the other

hand,

2v1 _f“

(Mp(r,f))q = 2'? [0 ll — 2] ‘do

and thus by Theorem 1.3,

(M (mm 2. T??-
P

Hence, f t Hp’q and since p = q = , we have by Theorem 3.3,

11¢ hp’q.

W
I
r
—
J

Although in general h0 is not contained in bo,'we know that

h0 is contained in bt for all t<o. A similar result holds for hp’q.

+ i)-1 S_l, then f 6 HS’
_l_.

p q

where s < p, t.§ q and (s,t) + (p,q). Furthermore,

Theorem 3.23. If u 6 ho, o = ( t
 

and u E hS’t

1112118,. 31%,. : K(s:t:p:q>IIUHG-

Proof: We need only consider the cases (i) t q, s < p

and (ii) t < q, s = p. To prove (i), we may assume 0 < s < p.
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Then by Theorem 3.5 (iii), we have that u 6 ho implies

-l

M4nt)guww%gl-n

and hence by Theorem 1.1

Ms(r,ft) _<_ K(U)Hu||ho(l - r)‘1"(1/0)+(1/S).

Therefore by Theorem 1.2,

r)(l/S)-(l/b).

Ms(r,f) S EXO:S)”u”ho(l ‘

Let c =

m
l
H

--1-> 0, then
D

M§(r.q).s.(sxo.s>>quungo<1 - r>q€‘1.

and hence

Imhflscwemmw-

To show (ii), we have as in the argument above,

Mp(r,f:) g C(o)||u||ho(1 _ r).-l-(l/q)

and hence

Mp<r,r) .s K<o,p)uunh,<1 - r>‘<1/q>.

Thus,

M;(r:f).S
(K(O:P))t“uu:0(1

_ r)-(t/q)’

so that

Mhfiscmmnmww
.
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We remark that if g = (l + ifl > 1, then h0 < hp’q

p q

and for u 6 ha,

0 .\\u\\p,q S (p,q)llullhcj

The containment is strict by the remarks following Corollary 2.12.

We next consider the relationships between hp,q and b0.

If q > 1, we have by Theorem 2.6 that hp’q is not contained

in b0 (l-= l-+ i). As a consequence of Theorem 3.4, we

0

have that i: p > 1, then Theorem 2.8 remains valid if the

spaces of analytic functions are replaCed by the corresponding

spaces of harmonic functions. Similarly, if p'Z 1, then

Theorem 2.9 holds for harmonic functions. If m = min(p,q) S_l,

then by Theorem 3.18, hp,q c bm/E. In particular, hp’p c bp/E,

0 < p.g 1.

Theorem 3.24. If 0 < p 3.1, and g e wp/q) then <u,g>

hpip

 

exists for each u E and defines a continuous linear

functional on hp’p. Conversely, for each continuous linear

p/2
functional m on hp’p, there is a unique 2 E Y such that

¢(u) = <u,g> for each u e hp’p. Moreover,

Hemp/2 _<_ compu-

p/2
Proof: If g E v , then ¢(u) = <U,g> defines a continuous

p/g. Thus, in View of Theorem 3.18)linear functional on b

w restricted to hp’p defines a continuous linear functional

on hp’p.
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Conversely, if c e (hP’P)*, let u e hp’p and f"be its

analytic completion. Set up(z) = u(pz) and fp(z) = f(pz)

for 0 < p < 1. Then I

"u-uoup,p S ”f-fpllp’p

and hence by Theorem 2.1,

:flHW%%m=O

Since m is continuous,

¢(U) = lim o(up)-
pdl

Let.

¢(zn) for n'z 0

¢(21n|) for n < 0.

If u(z) = z cnrlnleing, then it follows as in Theorem 3.14

that

N
- n inO

o(up) = lim m( 2 Cn(pr)l J6 )
Nam -N

.00 nn

and hence

m

n

@(u) = ti? _5 cnbnpI '-
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Since ¢ is bounded,

Ibnl.s.HmH Hz'“'np,p

.s C(p)HmH|n|’(1/P).

Inleing is harmonic in D. Let F(z) = 1+2 6 Hp’p

l-z

on

So g(z) = z bnr

-oo 1

and set U(z) = Re F(gz) where g = pe a, p < 1. Then as in

Theorem 3.14. o(U) = 8(5) and |s(§)|.s nonnvup,p.s nonuFuH,,p

so that g e H”. If B > 0, then

F”N¢>=2glfimfifl<uP-rwai ,
n=O r(n+l)

P(B+1)[2(1 - sz)'(5f1) - 1]

and

U[31(z) = Re F[B](§z)

= 28° {1332) (pr)lk|eikdeik0.

Hence,

In particular for a = 2/p

ls[2/P](g)| s;umunv[2/P]up,p

.s usuuF[2/P]np,p

= I‘((2/P)+1)H¢P““2(l - g(z)-(”Nd ' lupm'
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It follows from Theorem 1.3 that

)f(2/p)-1

u2<1 - :z - In” _<_ K<p><1 - Islrl.

p/2
Hence g E Y and

Hgpr/g S C(P)HCPH°

p/2
Corollary 3.25. (hp,p)* and v are equivalent.
 

Proof: The mapping w ~ g defined in Theorem 3.24 is con-
 

tinuous, one—to-one, and onto. Its inverse is continuous

by the Open Mapping Theorem.

In the same manner Theorem 2.5 was proved, we may show:

bp/2
Theorem 3.26. is equivalent to the closure of hp’p in
 

(hpfip)**’ O < p S 1.

Thus, bp/2 is the containing Banach space for hp’p.

Note, that for p = 1, the spaces are identical.



CHAPTER IV

COMPOSITION OPERATORS

Let 0 be a nonconstant analytic function mapping D

into itself. If f is analytic in D, set C¢(f) = f o m

where f o $(z) = f(¢(z)). C¢ defines a linear operator

on Hp and Bp.

It was shown by J. Ryff [15] that C¢ is a bounded

operator on Hp, 0 < p < m. In [13], E. Nordgren studied

the operators C¢ on H2 for 0 an inner function. Composition

operators on Hp, 1.3 p S_w, were studied by H. J. Schwartz [16].

We intend to present a similar study for Bp.

In section 1, it is shown that C¢ is a bounded linear

operator on Bp. Upper and lower bounds on HC¢H are given,

and a necessary and sufficient condition is determined in

order that C¢ be an isometry. In section 2, the methods

of H. J. Schwartz [16] are used to characterize those

operators on Bp which are composition operators. This

characterization is then used to determine which com-

position operators are invertible. In section 3, conditions

are given on 0 in order that C¢ be a bounded operator from

Bp into Hq, 0 < q S.”- Finally in section 4, compact

composition operators and their spectra are discussed.

1. Bounds on C¢.

 

It has already been remarked that C¢ is a bounded

linear operator on Hp. This was shown by J. Ryff [15]

as part of the following theorem.

56
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Theorem 4.1. (J. Ryff [15], p. 348). Let 0 < p < w.
 

Let f be analytic in D and 0 be an analytic function

mapping D into D.

(i) If 0 maps Izl S.r into Izl S_R, then

M (r’f 0 ¢) S_(BIIQIQIL)l/pM (R’f).

P R-|¢>(O)| P

(ii) If f e Hp, then f o 0 e Hp. The operator C¢,

defined by C¢(g) = g o o for all g e Hp, is a

bounded linear operator on Hp and

1+ 0 1/

no,” 5. (491—4) p.
1-Id>(0)l

(iii) If 0(0) = 0 and for some r, 0 < r < l,

Mp(r,f o 0) = Mp(r,f), then either $(z) = ez,

|e| = l or f is constant.

Proof: To prove (i), we will first assume 0 maps Izl S r

into Izl < R. Let al"°"an be the zeros of f in Izl S R

where each zero is counted according to its multiplicity.

 

Let

b (z) _ B(Z ‘ ak)

k R27- z
“k

and

n

B(z) = H bk(Z)’

K=l

It is easily seen that [B(z)] S l in Izl S R and IB(z)I = 1

if and only if Izl = R. If f has no zeros in Izl S R, set

B(z) E 1. Note that (f/B)p is analytic in Izl S_R.



If Izl S_r, then

 

P . P
f:];Z:) = 3;. 2W f Belt R2:|¢(Z)I2 dt

[ ] 2F f {—L—_Ifl] IRelt-¢(Z)l2

 

 

B(¢(Z)) 0 B(Re )

and

2W . 2F 19

4 l 1‘ If(¢ rel lde <-%— lf(¢(rei )) p d0
( ) 2w I6 ( )) —-2v IO B(¢(re 0))

Since IB(¢(reig))I 3.1 Thus,

2w .

(u 2) .5; I; Ir<¢<re19>>lpde

2W 2WI

[P R2'I¢(ZlI2 dt d9

—' WCfifO IDIf IRelf-(D( z)I2

(since B(Relt) = 1). If the order of integration is

changed, we may use the well-known property of the Poisson

kernel that

2w R2 2 2

1L) R-|<1>(Z )12 do: R;J¢(O)l
2W

|%W-©l stem?

|
/
\

mmmf

It follows that

2w .

iplmew%@sfl‘ghmwrwhp(

To prove (i) in the case 0 maps Izl SDr into Izl S.R: let

 R =R+]"R
n

, n > 2. So, 0 maps Izl < r into |z| < Rn and
n _. ._

hence
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Rn+l¢(0)l l/p
Mp(r,f) _<_ (Rn-|¢(O)T M
 p(Rn,f).

Letting n a w,

 

/

Munog<§$g§prwno.
  

To prove (ii), let f e Hp and assume ¢ maps Izl S_r into

Izl S_R. Then by (i)

l/p
(R+ O )

Mp(r,f o ¢) S. R—|¢(o)| Mp(R,f).

Letting R a 1,

1+ 0 1/

Mp( ’f ¢) S'(1-I<I><o>l) HfHHp

Thus, f 0 ¢ 6 Hp and

/

Hf o ¢qu<_. (Eii91gli->l pufW”

This proves (ii).

To prove (iii), we note that $(O) = 0 implies by

Schwarz's Lemma that ¢ maps Izl S_R into Izl S R. Thus,

we may let r a R in (4.1) obtaining

1 2w

(4.3) lg; I

If the equality holds in (4.3), then either¢|¢(Re

Ir<¢<ReiQ>>Ip
1£)|Bnf(¢(R::M))|p

2W19»

i9>I

o

E R

_ i9 .
or B = 1. If, however, |¢(Re )l a R, then the equality

case of the Schwarz Lemma implies ¢ = 62, Isl = 1.

Assuming equality holds in (4.3), if ¢ is not of the form

ez, then B E l and I¢(Relg)| < R, hence (4.2) becomes

 

'
.

$
2
.
1

l
'
_
L
_

,



 

. 2v . ‘ 2_ i9 2

(u.4> <f<¢<Re Q>>p =-l— £ <f<Re t))p fRel$fgiRe%$)lgdt-

Taking absolute values,

 

. 2n . 2 i9 2

G p 1 1t p R -|©(Re )l(4.5) |f(<1>(Rel ))| g F—- [f(Re )| . . dt.
cf f0 IRelt-¢(Relg)|2

Integrating both sides of (4.5) with respect to G, we get,

as in the proof of (i),

(4.6) Mp(R,f 0 ¢) S_Mp(R,f).

If equality holds in (4.6), it follows that (4.5) must have

been an equality. But then (h.4) and (4.5) imply

2w . 2 i9 2
elt p R -i¢(Re g]

§%-I2"If<Reit>Ip R2"¢(Reig)' dt-it i9 2

o |Re -¢(Re )l

However, if in general g = u + iv is continuous and

If gl = I lgl, then g = Bu, Isl = 1. So f must be of

this form on Izl = R and hence f is constant.

It has been shown by E. Nordgren [13] that if ¢ is

an inner function, then

HC¢H = (111EKQJiol/p.
l-|¢(O)|

On the other hand, H. Schwartz [16] has shown that there

are functions ¢ mapping D into itself for which

l+l¢(0)l)l/p.
C

H (1)” < (1-l<b(0)|
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Theorem 4.2. If f e Bp, o < p < 1 and ¢:D a D is analytic,
 

then f o ¢ 6 Bp. The operator c¢ defined by C®(f) = f o o

for all f e Bp is a bounded linear operator on Bp and

{4(ljigigli)l/p for p > l/2

l-|¢(O)|

HC¢H.S ‘

 

 
[2(i+ $E8%:)]l/p for p.S l/2.

\ _
 

Proof: A general form of Schwarz's Lemma gives the inequality

(4.7) |Q£El:¢(0)' < Izl-

|1-¢(O)¢(Z)l —

It may be verified by elementary methods that if a and b

are any two complex numbers such that Ial < l, Ibl < 1,

then

IaI-lbl a+b

l-lallbl - l1+7abl

This inequality applied to (4.7) yields

|¢(Z)l-l¢(0)[ < (2|.

1—l¢(0)||¢(2)| _' ’

Let

l+|¢(0)lr —

Then |¢(relg)l S_x(r), x(r) is an increasing function of

r, and A(r) « l as r a 1. Set R =-l(l + x(r)). Then

2
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%(1 + |¢(O)|) S.R < l and ¢ maps Izl S r into Izl < R.

Furthermore,

R+I¢o>L< 1+|<1>(0ll

R-I¢<O)| " §<1+l¢(o>l>-I<b<o>l

 

_ 2 1+|@(o)|

1-|<1>(O)l

and

dr 2(1—l¢(O)I2> < 2 1+! <0

dR (l-I¢)(O)|Mr>7g — 1-|<1>(O)|

(4.8) (l_r)(l/p)-2 S,(1+:$EO§: )(1/p)-2(1_R)(1/p)-2.

l- o

(l-I‘)(1/p)—2 < [2Il+ (D O ]<l/p)-2(1_R)(l
/p)-2

( -|<I>(O)|

It follows from Theorem 4.1 (i) that

M (r,f o ¢) < R+ O i M (R,f).

1 " R—|¢(O)| 1

Thus,

(1(1—r)(l/p) 2Ml(r,f 0 @)dr 3 K(p,¢) (1 (1-R)(l/p)‘2Ml(R,f)dR

0 1+ 0

2

.3 K(p,¢)HfH
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where

1-1¢<o>:

11(LL'ELEL')WP) p >5-

K<p:¢) =<

  
[2 1+!¢-(0)! ](l/p>

‘ l-WO)!

Therefore, f 0 ® 6 Bp and

Hf o (13' < K(p,¢‘)HfH ~

If p > 1- and §®(O)I is not too large, we may improve

2

the bound on HC¢H by a slight alteration to the above proof.

The following is then a corollary to the proof of Theorem 4.2.

Corollary 4.3. If p >-; and |$(O)l < 2(2-(l/p)) _ 1, then

2

 

\,
I 

" 1 i. l/

HCoH 3.21/p<1+1¢<01 (. ”O p.
HMO)!

Proof: In the proof of Theorem 4.2, replace (4.8) by

< <1+I¢<o>l>t2 liiQLQLL <1-R>1(l/p)'2.
" 1-l<1>(0>l

 

In the next theorem, a lower bound for HC¢H is given

in terms of $(O).

 
Theorem 4.4. If C¢ is a composition operator on Bp, then

 

1 . ,.

1-ic1<c>i2 5'“ ©H°
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Proof: If f(z) is in Bp, then
 

f(0) = gF-£)f(re

and hence

 

Ir<o>IneOan _<_ xxanp

l

where eO(z) E 1. Let g(z) = (E:$%6§2)2. Now g E Bp,

so g 0 ¢ 6 Bp and

lleoll p
B . = e O I(l_l¢(o)l2)g H OlprIa<¢< >>

5 Hg 0 <14pr

_<_ HgHBpHC¢H

: Heolpr\\%HH1HC¢ll-

The conclusion follows since

 

Han = 1 .
H1 1-l<1>(0)|72

 

Corollary 4.5. HC¢H = 1 if and only if o(o) = 0.

Proof: If $(O) = 0, then Schwarz's Lemma implies

¢:|Zl 3. I‘d 'Zl S r. Thus, by Theorem 11-]- (i):

M1(r:f 0 ¢) S.M1(r:f)
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and hence

1r . 113,.s anBp

p
for each f e B . Thus (C | < 1. But C e = \e

5 1 $1 _. 9 H ¢ OHBp 1 oHBp’

where e0 5 1, so HC¢H = 1. Conversely, if HC¢H = 1, then

Theorem 4.4 implies $(O) = O.

The next theorem characterizes those composition

operators which are isometries on Bp.

Theorem 4.6. C¢ is an isometry if and only if ¢ is a
 

rotation. (i.e., $(z) = €z, 161 = 1).

Proof: If ¢ is a rotation, then M (r,f 0 ¢) = Ml(r,f) for
l

f 6 Ep and hence

nrqu = nf . 11B, = nc¢<r>1Bp-

On the other hand, if C¢ is an isometry, then HC¢H :1

so that ¢(O) = 0. Let f 6 Pp, f not constant. If

M (r,f 0 ¢) < Ml(r,f) for each r, O < r < 1, then
1

Hf o ¢H p < Hf” p which implies C¢ is not an isometry.

B B

Therefore, M r,f 0 ¢) = M r,f) for some r. But then

Theorem 4.1 (iii) implies ¢ is a rotation.

Results similar to the theorems given in this section

have been proved for Hp, 1.3 p < w by H. J. Schwartz [l6].

( l )l/p

2’

l-I¢(O)l

He showed that C¢ is an isometry on Hp if and only if ¢ is

 The lower bound he obtained for HC¢H was
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an inner function vanishing at zero, which is quite different

from our case.

2. Characterization.
 

The question of when a bounded operator is a composition

operator can be answered in terms of its multiplicative

properties.

n _

Lemma 4.7. Let en(z) = z . Then HenHBp a C(p)n Y where
 

l .
._ lfp +—

p +1

‘1 ifp=1aiis

k a positive integer.

Proof: Let

n+a = (a+l)(a+2) ... (a+n) = a+n)

< a > n, < n

and set 8 = l-- 2. It follows from Stirling's formula that

P

(n;a> e r<a+1>na

(see [7], p. xv). Now,

Henan = 1: <1-r>8rndr.

1
If p = Eil , HenHBp may be computed using integration by

parts an appropriate number of times. This gives
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k—l I . -1.

HenHBp = (n+l)(n12) 1.. (n+k)H—E [(B+n)]

If p + Eél" then repeated integration by parts yields:

11en11Bp=(—~1}1’-1—+T)(B_+]1:1T2) “n?”

Thus,

HenHBp = CW"Y

l
l

where C(p) = ffgiij' = r(£r1)

P

We will use this lemma in proving our next theorem.

Theorem 4.8. If A is a bounded linear operator other than
 

zero on BP, 0 < p < 1, then A is a composition operator

if and only if

= (A(el))n for n = 031:2:--°:

 

Proof: If A is a composition operator, then A = C¢ for

n ' n
some ¢. Hence, A(en) = C¢(en) = ¢ = (A(el)) . Conversely,

suppose A(en) = (A(el))n for each n. Let ¢ = Ae then
1’

H1 1Bp_<nAnne H Bp.

It follows from Lemma 4.7 that “en” p a O and hence

B

H¢nH p a O as n a w. Let p be fixed, 0 < p < 1 and

B

set T0 = {2:121 = p}. If |¢(z)l.2 l on some subset S of

T0 of positive measure, then Ml(p,¢n) 2_m(S) (where m
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denotes normalized Lebesgue measure on To). It follows that

£:(l'r)(l/p)-2M1(r:¢n)dr

n

11 MB,

> .fl(1.-r)(1/p)‘2
_. M1(P:¢n)dr

p

_>. m<s><1-p)(1/P)‘1(-I1;- 11'1,

contradicting n¢nn p 4 0. Hence ¢ E H”, ||¢>||H0° g l and

B

¢ * 1. Therefore, ¢:D a D. Now, C¢(en) = ¢n = (A(el))n = A(en).

 

Thus, C¢ and A are continuous linear operators and they

agree on the polynomials (since the polynomials are

linear combinations of the en's). But the polynomials are

dense in Bp, hence C¢ = A.

This theorem was proved for Hp, 1.5 p < w, by

H. J. Schwartz ([16], p. 8). His proof is also valid for

Hp, O < p < l. Schwartz then showed that the theorem

could be restated in terms of the property "almost

multiplicative".

Definition 4.1. An operator A on a function space S is
 

almost multiplicative if whenever f, g, fg 6 S then

A(fs) = <Af><Ae>.

The following corollary was proved for Hp, 1.3 p < w

by H. J. Schwartz ([16], p. 10). His proof works also for

Bp.

Corollary 4.9. If A is a bounded linear operator other than
 

zero on BP, 0 < p < 1, then A is a composition operator if
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and only if A is almost multiplicative.

Proof: If A = C¢ and f, g, fg 6 DP, then

A(fs) = C¢(fs) fs 0 ¢ = (f o ¢)(s ° ¢)

and

(f . ¢)<s . 1) = (C¢f)(C¢s) = (Af)(As)

so A is almost multiplicative.

Conversely, if A is almost multiplicative, then

A(en) = A(eneo) = (A(en))(AeO).

If A(e = 0, then A(en) = O and A vanishes on theO)

polynomials. But this would imply A is the zero operator,

contrary to hypothesis. Therefore A(eO) + 0. Furthermore,

A(e = (AeO)(AeO) and hence A(eo) = e0. Also,)o

A(e2) = (A(el))(A(e1)) = (Ael)2. It follows by induction

) =that A(e (Ae n for each n.
n 1)

This corollary may be used to characterize invertible

composition operators. The next theorem was proved by

H. J. Schwartz ([16], p. 12) for Hp. Again, his proof

is also valid for Bp.

 

Theoremv4.lO. c¢ is invertible if and only if t is a

conformal map of D onto D, in which case (C(13).l = C¢-1.

Proof: If ¢ is a conformal map of D onto D then

C¢-1 = (C¢)-l so that C¢ is invertible. Conversely, if C¢

is invertible, then there exists
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an operator A on Bp such that AC¢ = C¢A = I. Choose

f f 6 Ep such that f f e Bp. Let gl = A(fl),
l’ 2 l 2

g2 = A(f2), and g3 = A(flf2). Then C¢gl = fl, C(bg2 = f2,

and C(Dg3 = flf2. Also, C¢(gl)C¢(g2) = flf2 6 Bp. Thus,

glge ° ¢ = g3 o O. Now, glg2 and g3 are both analytic

and agree on O(D). Hence, glg2 = g3, i.e., (Af1)(Af2) = A(flfg).

So A is almost multiplicative and by Corollary 4.9, A = Ccp

for some m. Furthermore,

C C = C C = I = C

¢ 1 1 ¢

. . . . -l
which implies m o O = ¢ 0 w = e1, i.e., m = ¢ .

 

Corollary 4.11. C¢ maps Bp onto Bp if and only if ¢ is a

conformal map of D onto itself.

Proof: If ¢ is conformal, then clearly c¢ is onto. Con-

versely, assume C¢ is onto. C¢ is also one-to-one, for if

C¢(f) = C¢(g), then f and g are analytic functions agreeing

on ¢(D) and hence f = g. Thus, C¢ is one-to-one, continuous

.and onto. The Open Mapping Theorem implies C¢ is invertible.

3. Operators into Hq.
 

The first theorem in this section gives a sufficient

condition for C¢ to be a bounded operator from Bp into Hq.

Theorem 4.12. If (l-IC1)(z)l)-l is in Lq/p(D), O < p < 1,
 

O < q < m, then C¢:Bp q Hq and

no,” _<_ C(p)11(1-|<1>(:Z)|)‘111Lq/p.

 

'
.
.

I
L
I
I
—

.
I

!
~

.

‘
V
V

V
'
I
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L
I
-

_
;
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where HC¢H denotes the norm of C¢ as an operator from Bp

into Hq.

3399:: If f 6 BP, then by Theorem 1.9,

lf(z)| s.c<p>nrqu<1-Izl>'1/P.

Thus,

If<¢<z>>l.s C(p)nru p<1-I¢<z)l>'1/P
B

so that f 0 ¢ 6 Hq and

1r . ¢an.s C(p)urquu<1-I¢I>‘11Lq/p-

Corollary4.13. If (l-lcbl)‘l e L1(D), then C¢zBp a Hp and
 

10,1.3 c<p>n<1-I¢I)'1HL,.

where HC¢H denotes the norm of C¢ as an operator from Bp

into Hp. s

Corollary 4.14. If (1-1(1)|)-1 e Lq/p(D), O < p < 1, q > p,

, -1
then C¢.Hp 4 HQ and HC¢H S C(p)n(l-I¢I) “LP/q.

 

Proof: If f e Hp, then

Ir<z>l.s C(p)HrHHp<1-Izl>'1/P

(see [2], p. 36). The proof follows in the same manner

as the proof of Theorem 4.12.

The next theorem gives a necessary condition for C¢

to be a bounded operator from Bp into Hq.

"
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Theorem 4.15. If C¢ is a bounded operator from Bp into
 

Hq, O < p < l, O < q < m, then [O(eit)| < 1 a.e.

Proof: If C¢ is a bounded operator from Bp into Hq, then

“C¢(en)HHq S-HC¢HHen”Bp' Thus, it follows from Lemma 4.7

that “C®(e )H ~ 0 as n a w. Suppose there exists a
n Hq t

set E c:[O,2w) of positive measure such that I¢(ei )I = 1

for t e E. Then,

 HC¢(en)HHq = n¢nufiq

2 .

= 12-1.? fowl¢<e11>lnthluq

212151;1¢(eit)|nth}l/q

 
{m(E)}1/q > 0

2w

contradicting HC¢(en)H 4 O as n s m.

If q.Z p, the condition I¢(eit)| < 1 a.e. is not

sufficient. In the case q > p, choose 5 such that p < SIS q

l+z nl/s
and let O(z) = —§*u The function f(z) = (1-z) is in

Hp and hence in Bp. However, f(¢(z)) = 2l/S’(l-z)"1/S is

not in Hq. For the case q = p, again choose ¢(z) = lgi .

The function fp 8 defined by (2.3) is in Bp for p < 3 < 1,

)

but f(¢(z)) t Hp.

Theorem 4.16. C¢ is a bounded operator from Bp into H0°
 

if and only if “O“ m < 1.

H
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Proof: If C¢ is a bounded operator from Bp into Hm, then

as in Theorem 4.15,

HC¢(en)H m a O as n a m.

H

But,

n n

uwepua=wu.=<wnn.
H H H

Thus, “t“ m < 1. Conversely, if H1” m < 1, then

H H

Ir<¢<z>>l.s c<p>ufu p<1-I¢<z>l>'1/P
B

.: C(p)nanptl-111H.>'1/P.

Hence C¢(f) 6 Hm and

110.111 5. C(p><1-H¢nH,.)‘1/P.

4. Compact operators.
 

A bounded linear operator A on a Banach space X‘is

said to be compact if the image under A of every bounded

sequence has a convergent subsequence. The following theorem

was proved for Hp, 1.3 p < w by H. J. Schwartz. His proof

is also valid for Bp and is given below.

 

Theorem 4.17. C¢ is a compact operator on Bp if and only

if for every bounded sequence {fn} in Bp such that fn 4 f

uniformly on compact subsets of D, HO f —C f” 4 O as

n-O°°.
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Proof: Assume C¢ is compact. Let [fn} be a sequence

in BP such that uan p < K for each n and fn « f uniformly
'B ._

on compact subsets of D. Suppose there exists a subsequence

{fn ] such that

k

(4.9) Hc¢fn - C¢fH p 2_a > o

k B

for each R. Since an ”BPS'K and C® is compact, there exists

k

1 k1

then C¢1fnk ) a g uniformly on compact subsets of D. It

a subsequence (fn } such that C¢(fn ) a g in BD norm. But

k.

follows fr6m our hypothesis that C¢1fn ) a C¢(f) uniformly

k

i .

on compact subsets of D. Therefore g = C¢(f)-and

C®(fn ) s C¢(f) in Bp norm contradicting (4.9).

k.
1

Conversely, let {fn} be any bounded sequence in Bp.

It follows from Theorem 1.9 (i) that {fn} is a normal

family and hence there exists a subsequence [fn } such that

k

fn a f uniformly on compact subsets of D. By our hypothesis,

k

C f a C f in Bp norm, and hence C is compact.

1 nk 1 ¢

1
Theorem 4.18. If (1-|¢(z)l)- E L1(D), then C¢ is a compact
 

operator on Bp.

Proof: Let {fn} be a bounded sequence in Bp which converges

uniformly on compact subsets of D to a function f. Then

- /

lfn(¢(z))| < C(p)nfnan<1-I1<z>l) 1 p

s.K<p><1-I¢<z>l>'1/P
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for each n. Letting n ~ w,

lf(¢(z))| s K<p><1-I¢<z>l>‘1/P.

Hence,

(4.10) Irn<¢<z)>-r<¢<z>)lp s_c<p>(1-I1<z)l)'1

for each n. Let gn = C¢(fn)-C¢(f) for each n. It follows

from (4.10) and the Dominated Convergence Theorem that

gn e Hp for each n and HgnHHp « O as n a w. Finally,

Theorem 1.9 (iv) implies ”gnu p a O as n «w, i.e.,

B

HC¢(fn)-C¢(f)||Bp « O as n a w. Hence C¢ is compact.

Corollary 4.19. If I¢(z)l S_r < 1 for all z 6 D, then
 

C¢ is compact.

Similar results for Hp, 1.3 p < m, were given by

H. J. Schwartz ([16], p. 26). The proof of Theorem 4.18

is also valid for HP, 0 < p < 1. Next we give a necessary

condition for C¢ to be compact.

Theorem 4.20. If C¢ is a composition operator on Bp,
 

then

(4.11) “mm” p = O(n-Y),

B

where

, 1
.
n
u
-
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-
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and k is a positive integer. If C¢ is compact, then

(4.12) utnqu = o(n‘Y).

Proof: (4.11) follows immediately from Lemma 4.7 since

thqu = HC¢enHBp.s HcmuuenHBp.

en(Z)
for each n.

He

 If C¢ is compact, let fn(z) =

Hn
BP

1fn(Z)1S C(p)nleln for each n. Hence {fn} converges uni-

formly to zero on compact subsets of D. Furthermore,

anHBp = 1 for each n. Therefore, since C¢ is compact,

HC¢anBp » 0. But,

nc¢rnHBp = (nenqu>‘1n1nqu

and

—l

(HenHBp) e C(p)nY

hence

Y $11 3

II 11 11 p 5115 Il ’

As a simple example, consider the function O(z) = pZ,

O < pig 1. If p < 1, then C¢ is compact by Corollary 4.19.

If p = 1, then C¢ is not compact since HOnHBp = HenHBp does

not satisfy (4.12).

We next turn our attention to finding the spectrum

c(C¢) of a compact composition operator C¢. This problem
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was investigated for compact operators C¢ on Hp by

H. J. Schwartz [16]. He relied upon the following theorems

by M. Koenig (see [16], p. 72).

Theorem 4.21. (M. Koenig). If ¢:D a D is analytic,
 

O(O) = O,¢'(O) + 0 then there exists a function K(z)

analytic in D such that K(¢(z)) = ($‘(O))K(z).

Theorem 4.22. (M. Koenig). Let ¢:D a D and O(O) = 0. Then
 

there exists a non—zero analytic function f, satisfying

f(¢(z)) = xf(z) if and only if 1 = l or 1 = (¢'(O))n.

We remark that both of these theorems may be stated

for any fixed point zO of O. Furthermore, if ¢:D « D is

analytic, then O can have at most one fixed point ([16], p. 74).

 

Theorem 4.23. (H. J. Schwartz [16], p. 77). If C¢ is an

operator on Hp, 1 < p < w, O(zo) = Z0 and (l-IdDI)’l e LS(D)

s = max[p,p'], (l +i = 1), then

P
p!

okc¢) = 1110)“);l u 111.

We use Theorem 4.23 to prove the following:

Theorem 4.24. If O(ZO) = 20, (l-IdDI)‘l e L2(D), and C¢
 

is an operator on Bp, then

m

o<c¢>Bp = 1(1<zo>)“1n=1 u 111.

33223: If (l—|<1)I)-l E L2(D), then C¢ is compact by

Theorem 4.18. Hence c(C¢) p consists entirely of eigenvalues

and by Theorem 4.22, O(C¢):p c [($‘(ZO))n} U {1]. On the
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other hand, C is also a compact operator on H2 see [16], p. 26 .

<1)

By Theorem 4.23, the spectrum of C¢ as an operator on H2 is

given by

°1C¢)a2 = 1<¢'(zo))n1 u 111.

If x 6 o(C¢) 2, then x is an eigenvalue and hence there exists

H

f 6 H2 such that f(¢(z)) = xf(z). But f 6 H2 implies f e Bp

and hence x 6 o(C¢)Bp.

 

Corollary 4.25. If |¢(z)1 g.r < 1 and C¢ is a composition

operator on Bp, then the spectrum of C¢ is given by

00

o(c¢> = {(¢'(ZO))n} u 11}
n=l

for some Z0 6 D.

Proof: Ozlzl S r a Izl S r. Hence O has a fixed point zO

by the Brouwer fixed point theorem.

The following theorem can be proved in the same manner

as Theorem 4.24.

Theorem 4.26. If 0 < p < 2, O(ZO) = zO, (1-1(1>l)'l 6 L2(D),
 

and C¢ is an operator on Hp, then

00

U(C¢) = {¢'(ZO)} U {1}-
n=l

'.
1‘
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