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ABSTRACT

THE HARDY SPACES AND OTHER
RELATED FUNCTION SPACES

by

Steven Joel Leon

The Hardy spaces #P are cldsely related to certain
other spaces of analytic functions. For 0 < p < 1, let
BP denote the class of all functions f analytic in the
unit disk satisfying

el = 2 I;I?(l-r)(l/f’)'g|f<re19>ldo ar < =.

BP with the above norm is a Banach space. For O < p,q < =,
let HP*? denote the space of all functions f analytic

in the unit disk for which
1 2 10
Nl = (] (& [2TI£(re!®)|Pa0)VPar}l /e ¢ w
pP,q 0] 0

and define H®’” to be the Hardy space #P. If 0 <pPg<K1
or 0<p<Kl, q=wand g = (%-+ %)-1, then BY is the
"containing Banach space" for HP’? in the sense that HFP’9
is a dense subset of B® and HP’? and B° have the same
continuous linear functionals.

The relationships between the spaces H°, Hp,q, and BC
(o0 = (%-+ i)'l) are studied for all p and q. In particular,
if 0<p,q<1l, then HP*? is an intermediate space between

H® and BY. This relationship, H® c HP*% c B9, may be used



Steven J. Leon

to determine certain coefficient properties of gP-4

functions.

The general properties of the corresponding spaces
hp, bp, and hP?% of harmonic functions are also studied.
If 0O <Kp <K 1l, it is shown that hp is a non-locally convex
F-space with enough continuous linear functionals to
separate points. Next, the properties of bP® are discussed
and its dual space 1is determined. Finally, the spaces

h?>% are studied and the relationships between hc, hp,q’

and b (0 = (l-+ %)_l) are examined. In particular, it

bp/E

is shown that is the containing Banach space for

PP o <p < 1.

The last topic to be considered is composition
operators on BP. 1Ir 0 is an analytic function mapping
the unit disk into itself and f is in Bp, the composition
operator Cy is defined by C¢(f) =f o ¢. It is shown
that C¢ is a bounded linear operator on BP. Conditions
are also given on ¢ in order that C¢ be a bounded operator
from B into Hq, 0 <q< », Isometric and invertible com-
position operators are characterized, and finally compact

operators and their spectra are discussed.
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CHAPTER I

INTRODUCTION

1. Fundamentals.

The unit disk in the complex plane will be denoted

by D. We will assume throughout that z € D has the form

re'® and will often write r in place of |z

For a function u harmonic in D, the integral means

of order p, 0 < p < » are given by

em 1
cm 0

The infinity means of u are given by

M_(r,u) = max lu(ret®)].
o<e<ar

We denote by hp, O < p £ »,the class of functions u

harmonic in D such that

sup M_(r,u) < o.
ogr<l P

Similarly #P denotes the class of all functions f analytic

in D such that

sup (r,f) < =,
o<1

It is well known that if £ € H’, 0 < p < @, then f

is of bounded characteristic and consequently has radial



limits a.e. Furthermore, the boundary function, f(elg),

defined by the radial limits is in Lp[O,EW]. (See, for

example, [2] or [11].)

Tne integral means Mp were first studied by G. H. Hardy [8]
in 1914. He showed that if f is analytic in D and O < p < =,
then Mp(r,f) is a nondecreasing function of r and log Mp(r,f)
is a convex function of log r. In further studies, G. H. Hardy

and J. E. Littlewood proved the following theorems.

Theorem 1.1 (G. H. Hardy and J. E. Littlewood [l10], p. 406).

Ifp >0, a>0, p<g<®and

Mp(r,f) <c(1-r)78,

then

M (7,f) < K(p,a)C(L - ry-a- (1/p)+(1/a)

where C is an absolute constant and K(p,a) depends only on

p and a.
Notation: C(al,az,...,an) will denote a constant depending
only on the numbers al,ae,...,an.

Theorem 1.2 (G. H. Hardy and J. E. Littlewood [9], p. 413).

Ifp>0, a > 0 and

M (r,£1) < C(1 - ry-a-1

then

M (r,f) < K(p,a)(l - r)~2,

o



Notation: f(r) = g(r) means f(r)/g(r) - 1 as r - 1.
f(r) ~ g(r) means f(r)/g(r) and g(r)/f(r) are both bounded

for r sufficiently close to 1.

The next theorem may be proved by simple computations

(see [2], p. 65).

Theorem 1.3. If q > 1, then

2

m
[ 11 - 2z["%de ~ (1 - r)‘a+l.
0

There are various definitions of fractional derivatives
and integrals. We shall use the one given by P. Duren,
B. W. Romberg, and A. Shields in [3]. This definition
differs only by a factor of z® from the one given by
G. H. Hardy and J. E. Littlewood in [10].

Definition 1.1. If f(z) = zanzn, the fractional derivative

of order g of f is defined as

f[s](z) -y L(ntl+p) anzn

n!
and the fractional integral of order g is defined as

n

£ n.
[B](Z) =z F(nFiFg) a,z
A function u harmonic in D can be written in the form

(o] .
|n|einO.

We define




and

u[B](z) - _E F(In]+i+3) Cnt

We will assume many of the elementary properties of harmonic
functions. For example, each u harmonic in D can be completed
analytically and any two analytic completions of u differ by

a constant. If f = u + iv is an analytic completion of u

and v(0) = 0, then we say that f is the normalized analytic

completion of u or simply "the" analytic completion of u.

2. Background.

If £ € Hp, then we define

(1.1) pal p = Sup (r,f).
H r<l

If p > 1, then (1.1) defines a norm on uP. 1r p <1,

then (1.1) does not satisfy the triangle inequality and
hence fails to be a norm. However, || pr satisfies the
triangle inequality and induces a metric on P, The spaces
Hp, 0 <p=», are complete. Indeed, HP is a closed sub-
space of Lp(D), the class of complex-valued functions f

satisfying:
1 2T . 1
Iel o = sup { z [ l(re®)[Pao) /P ¢ w.
L r<l 0]

2

Thus, if p > 1, #P is a Banach space.



Definition 1.2. An F space is a linear space with a complete

translation invariant metric under which scalar multiplication

is a continuous operation ([6], p. 51).

If p < 1, then P is an F space. F spaces have many
of the important properties of Banach spaces. In particular,
the Cpen Mapping Theorem, the Closed Graph Theorem, and the
Principle of Uniform Boundedness all hold for F spaces.
Furthermore, the Hahn Banach Theorem holds for locally convex
F spaces. For precise statement of these theorems, we refer

the reader to [6]. g

Definition 1.3. We say that an F space has the Hahn Banach

Extension Property, H.B.E.P., if every continuous linear
functional on each closed subspace has a continuous linear

extension to the whole space.

In particular, a locally convex F space has the H.B.E.P.
J. H. Shapiro [17] has shown that for an F space with a

basis, the H.B.E.P. is equivalent to local convexity.

3. The spaces HP and BP, 0 < p < 1.

The properties of Hp, O0<p<K1l, as a linear space,
were first studied by S. S. Walters in [18] and [19]. He
showed in [18] that HP has enough continuous linear functionals
to separate points, in contrast to the 194 spaces (0 < p < 1)
which have no continuous linear functionals other than the
zero functional. 1In [19], he conjectured that the HP spaces
were not locally convex. This was later proved by P. Duren,

B. W. Romberg, and A. Shields in [3].



If A 1s a linear space, we will denote its dual by A*,

We will also need the following definitions.

Definition 1.3. If f and g are harmonic in D, and g € hl,

then define

am
<f,8> = 11? [ f(reig)g(e'ig)dg
b 23 0

provided the limit exists.

Definition 1.4. Two Banach spaces A and B are equivalent

if there is a one-to-one linear mapping T of A onto B such

1

that both T and T~ are continuous, i.e., A and B are

equivalent if they are linearly homeomorphic.

S. S. Walters showed in [19] that corresponding to

each ¢ € (Hp)*, there is an analytic function g such that

(1.2) o(f) = <f,e>

for each f € Hp, and conversely if g i1s a function such
that <f,g> exists for every f in Hp, then (1.2) defines

a continuous~linear functional on HP. B. W. Romberg [14%]
continued this study improving ﬁpon~Wa1ters' results.

In the case p 1s not the reciprocal of an integer, Romberg
gave a condition on g which 1s necessary and sufficient

in order that (1.2) define a continuous linear functional
on HP. Romberg also gave a partial characterizatioh of
(Hp)* in the case that p is the reciprocal of an integer.
Finally in [3], P. Duren, B. W. Romberg, and A. Shields

gave a characterization of (Hp)* up to equivalence for



all p < 1. To present these results, we will need to

define certain Lipschitz classes of functions.

Definition 1.5. If f is a complex-valued function defined

on |z| = 1, the modulus of continuity of f is given by
w(h;£) = sup |£(el®) - £(e'®)].
la-gl<h
f is said to belong to the Lipschitz class Ay (0<a<l)
if

w(h3;f) = 0(h%) as h - 0.

Furthermore, f is said to belong to class j, if

1(t+n), 1(t-h),

|£(e - or(et®) + £(e = o(h).

The classes Xa and A, are defined in a similar manner with
"0" replaced by "o". For a function f analytic in D, we say

fe Aa(xa’A*’x*) if f is continuous in D and f(eio) € Aa(xa,A*,x*).

Definition 1.6. Let Aj,(n = 0,1,..., 0 < a < 1), be the
space of functions f(z) analytic in D and continuous in

D such that f(n) € Aa' A: is a Banach space under the norm

£l = £l o + sup t’°|f(n)(ei(9+t)) - f(n)(eio)l.
H t,o
t>0
Similarly, A} denotes the Banach space of functions f

analytic in D and continuous on D such that f(n) € A, and

£l = i1l o + sup £711£(0) (e1(O+E)y _ 25(n)(o1€) 4 £(n)(g1(0-t)y)
£50



The spaces xg, xi are defined in the same manner.

Theorem 1.4. (P. Duren, B. W. Romberg, and A. Shields [3],

p. 35).

| —

1 1 Dy * .

If —_ < < = — - n and € (H then there is
L P > ¢ T p ® € (H)",

-1

a unique g € 7\ such that

e 3 3

o(f) = <f,g>

1

for each f € HE Conversely, if g € Ag' » then <f,g> exists for

each T € Hp and defines a continuous linear functional on Hp.

n-1
*

n-1

If p = then g € p\, and conversely any function g € \

1 3
n+1
defines a continuous linear functional on Hp.

Theorem 1.5. (Duren, Romberg, Shields [3], p. 39).

e L <p< 1 = L. n, then (Hp)* is equivalent to
nt1 n> %D ’

n-1 1 D\ * . n-1

A . If p= H is equivalent to A .

a ar 0 ) *

We may also talk about the spaces Aa’ Ay s Xa’ Ax>s Ag, etc.,
of harmonic functions. The following theorem allows us to

characterize these spaces in terms of growth conditions.

Theorem 1.6. (See Zygmund [20], vol. 1, p. 263).

(i) A necessary and sufficient condition for a

harmonic function u to be in Aa’ O0<a <1 is that

2% = o((1 - r)*7h).



(ii) A necessary and sufficient condition for u to

be in A, 1s that

2

o/

4= o((1 - r)7h).

%

Theorem 1.7. (Duren, Romberg, Shields [3], p. U4l4).

If £ is analytic in D and f(z) = O((1 - r)~%), a > 0,

then
(1) £Blz) = o((1 - r)"@*B)y g 50

and

(11) fpgy(2) = 0((1 - r)f?), 0<g <a.

Theorems 1.6 and 1.7 may be stated for either analytic
or harmonic functions since in general a harmonic furdction
and'!its analytic completion have the same ‘order of growth,

[20] vol. I, p. 258.

Definition 1.7. Let wp, 0 < p < 1l, denote the space of all

functions g analytic (harmonic) in D such that
1/ -1
gltPl - o1 - )Y,
endowed with the norm

lell 5 = sup (v, (relMPly(1 - n)y.
v r<l

The spaces wp are defined similarly replacing "O" by "o".
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It has been noted ( J. H. Shapiro [17], p. 27) that

b n-1

. . _ 1 1
vy~ 1s equivalent to Aa s a = - n for =T <p <K< = and

1
1 b
equivalent to Aﬁ'l if p = o This may be proved easily

using Theorems 1.6 and 1.7.

It was remarked earlier that Hp, O0<p<K1l, is not
locally convex. Actually the following stronger theorem

was proved.

Theorem 1.8. (Duren, Romberg, Shields [3], p. 51). There

exists a proper closed subspace Hp(E) of HP? and a continuous
linear functional ¢ on HP(E) which cannot be extended to all
of Hp. Thus, HP does not have the H.B.E.P. and hence is not

locally convex.

In [3], Duren, Romberg, and Shields found the '"containing
Banach space" of HP, that is, they found a Banach space BP
which has the same continuous linear functionals as HP and

which contains Hp as a dense subspace.

Definition 1.8. For 0 < p < 1, let BP denote the space of

all functions f(z) analytic in D such that
L (1/p)-2
(1.3) el = [ (1 - r){/P)=oM (r,f)dr < o,
BP 0
The spaces b® of harmonic functions are defined similarly.

Theorem 1.9. (Duren, Romberg, Shields [3], p. 40). The

space Bp, 0 <p < 1l, with norm (1.3) is a Banach space.

Furthermore,



(1) le(2)| < c@)e) (1 - 0P
B
for each f ¢ Bp, and
£(2) = of(1 - 1)7P);
(ii) for each f € BP,

1lim Hf
pal

o " fHBp = 0,
where fp(Z) = f(pz);
(iii) HP is dense in BP;
(1v) £l p < Ciel g
for each f € Hp.

Coefficients of BP functions satisfy the same growth

condition as coefficients of Hp functions.

Theorem 1.10. (Duren, Romberg, Shields [3], p. 41). If

n

f(z) =z az € BP, then

|a

ol < cm)e)_n(/P)-t
B

and a = o(n(l/p)'l).

a, = 0(n*), q <(1/p) - 3/2, then £ € B°. The (1/p) - 3/2

Conversely, if O < p € 1 and

is best possible, in that, there exists g(z) = gb 2"

n
1/p)-3/2

such that b = o(n! ) and g is not in BP,

The next theorem shows that for 0 < p < g < 1, the

spaces B and BP are equivalent under the correspondence
£ o e[(1/P)-(1/0)] £or cach £ ¢ BY.
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Theorem 1.11. (Duren, Romberg, Shields [3], p. 43). If

0<p<qg<1landp=(l/p) - (1/q), then

(1) f € B implies f[ e BY and

B
Hf[B]HBq < C(P,Q)HfHBps
(i1) f e BY implies £lBl ¢ BP ana

12t 5 < et g-

Theorem 1.12. (Duren, Romberg, Shields [3], p. 46).

Theorems 1.4 and 1.5 remain true with HP replaced by BP.

Theorems 1.9 and 1.12 imply BP is the containing
Banach space of P, The next theorem relates BP to the

* %
.

closure of HP in (H®)

Theorem 1.13. (Duren, Romberg, Shields [3], p. 46). For

each £ € HP (0 < p < 1),
C(p)HfHBp < HfH(Hp)** < K(P)HfHBp-

* ¥

Hence BY is equivalent to the closure of HP in (Hp) .

Finally, Duren, Romberg, and Shields [3] showed that

BP is itself a conjugate space.

Theorem 1,14, (Duren, Romberg, Shields [3], p. 49). If

1 <p<l,oq=(1/p) -n, and w € (xg‘l)* , then there is

n+1 n

a unique function f ¢ BP such that

w(g) = <f,g>
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for each g € xg'l. Conversely for each f ¢ BP, <f,g>

determines a bounded linear functional on xn;l. Furthermore,

(kz-l)* and B® are equivalent. If p = 11 , the above state-
n

1

ments remain true with xn; replaced by k271

The coefficient properties of 1P and BP functions
have been studied by P. Duren and A. Shields, [4] and [5].
These properties are generally stated in terms of coefficient

multipliers.

Definition 1.9. Let A and B be two complex sequence spaces.

We say that a sequence {xn} multiplies A into B if
{r,2,} € B whenever {a } € A.
Each analytic function can be associated with its

sequence of Taylor coefficients and hence #P and BP can be

treated as sequence spaces.

Theorem 1.15. (P. Duren and A. Shields [5], p. 70). If

0 < p <1, then {),} multiplies HP into 4” if and only if
1-(1/
(1.4) A, = 0t (1P,

If p < 1, then {),} multiplies B® into 4" if and only if
(1.4) holds.

Theorem 1.16. (P. Duren and A. Shields [5], p. 70). Let

0 <p<1l, then
(1) {x,} multiplies H® into +? (p < q < =) if and

only 1if

N
(1.5) z n%P |y |9 = ond);
n=1
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1i) if 1 < q < =, multiplies B® into 22 if
(i1) < \p
and only if (1.5) holds.



CHAPTER II

MIXED NORM SPACES

In [1], Benedick and Panzone studied the spaces P-4q

of functions f(x,,x,) such that

1/q

“fnp,q = { IXE [ -J‘Xl If(xl,xe)]pdul]q/pdug} < o,

where x, € X, and y; is a measure on X; (i = 1,2). A
complex function f(z) = f(reig) may be considered as a
function of r and 6. In particular, we will be concerned
with the IP’? functions which are analytic in D. These
classes of functions were introduced by J. H. Shapiro in

[17] and are denoted HP’9. Shapiro showed that if

0<p,a<1l, and % = % + %, then BY is the containing Banach
space of gP> 4, He aiso considered the relationships

between these spaces in the case 0O < p <1, g > 1. 1In
section 2, we continue this study. In particular, we

consider the relationships between P>% and BY when p>1,

and the relationships between H% and HP°Y for all p and q.

In section 3, we make use of the relationships given

in section 2 to study coefficients of #?>2 functions.

1. Preliminaries.

We begin by defining the gP-4d spaces and stating some

of their basic properties.

15
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Definition 2.1. Let HY’Y denote the class of functions f

analytic in D such that
(2.1) £l = { Il (M (r,£))%r}te < w
) psq o P° '

If q = », define HP*® to be HP. The corresponding classes

hP>? of harmonic functions are defined similarly.

If 1 < p,qg <», then (2.1) defines a norm and uP-q,

hP*? are Banach spaces. If m = min (p,q) < 1, then || ”p q
>

fails to be a norm, however, || ”g q induces a complete
b
metric. The next two theorems summarize some of the general

properties of 12> % determined by J. H. Shapiro in [17].

Theorem 2.1. (J. H. Shapiro [17], pp. 28-30). The spaces

gP-q (0 < p,qa < w) are complete with respect to the metric

mentioned above. Furthermore,
(1) l(2)] < c(p,a)lely g1 - r)~((/P)+(A7a))
for each f € Hp,q;
(11) If - £y q = 0 as p = 1 for each f ¢ rP» 4

(£,(2) = £(p2)).

Theorem 2.2, (J. H. Shapiro [17], pp. 40 and 52). If

m = min(p,q) < 1, then P29 is not locally convex. If
0<p<l, 0<q<w, then H°*? does not have the H.B.E.P.

To avoid repetition, we introduce the following

notation.

Notation: If p and g are positive numbers such that

% + é > 1, then o will denote the number defined by the
equation: 1.1 + l.

o} 1Y q
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2. Relationships between Hp,q, HO, BY.

We consider first the relationships between P> ang
B9. The case O < p,q < 1 has been studied by J. H. Shapiro [17].

We present his results in the following two theorems.

Theorem 2.3. (J. H. Shapiro [17], p. 30). If f ¢ uP>9,

0 <p,a2<1, then f ¢ BY and

IIfIIBG < C(p>a)|fll, o

Theorem 2.4. (J. H. Shapiro [17], pp. 35 and 37). Let

0<p,a<l. If g is a continuous linear functional on

#P>9 then there exists a unique g € ¥° such that
(.2) o) = <f.e>

for each £ € H®>?. cConversely, if g € y9, then (2.2)

Hp)q.

defines a continuous linear functional on Moreover,

the spaces y° and (Hp,q)* are equivalent.

It follows then that (B%)" is equivalent to (HP>3)™,
O0<p,a<l, and B° is the containing Banach space of
uP-q, Furthermore, if we consider uP>? and BY as subspaces
of their second dual, then BY can be associated with the

closure of HP°? in (Hp,q)**.

Theorem 2.5. For each £ ¢ #H°*%, 0 < p,q <1,

CE el g <ULl o, qpex < KRS -

Hence, BY is equivalent to the closure of HP>q in (Hp,q)**.
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Proof: By Theorem l.lE,(BO)* and y¥° are equivalent under
the correspondence g & ¢, where (f) = <f,g> for each f € BO.
Let ¢ be © restricted to P>, Then ®(f) = <f,g> for each
£ ¢ #°°9 and, by Theorem 2.4, (Hp’q)* and v° are equivalent
under the correspondence g « . It follows that (B%)* and

(#P29)* are equivalent under the correspondence ¢ & @ and

c(p,a)lloll < llell < K(p,a)lel.

If f e Hp,q’ then f € B° and since BY is a Banach space,

we have
IEll_g = il 0yee

] H@”io nwn

<

< T (S nwu

= p,q 10 p,q,*x

=9

Similarly,

R R L T

Let {fn} be a sequence in HP’?, then {fn} is Cauchy in
the (HP*Y)** norm if and only if it is Cauchy in the B

norm. Thus, each element in the closure of P2 in
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pq** . . .
(H"?2)  can be associated with an equivalence class of
* ¥
)

Cauchy sequences 1in (Hp’q norm and hence with a unique

BY function.

Let 0 < p <1, then B’ is the containing Banach space
for HP*Q if either O <qg<1lorq=w® It is natural to

ask whether this is still true if 1 < q < .

Theorem 2.6. If 1 < g < o, 0<p¢K< E%T , then HP’? 15 not

contained in BC.

Proof: The functions

(2.3) £, 0(2) = (1= )7L 108 517 L >0

were examined by J. E. Littlewood ([12], p. 93). He

showed that if 3 > q, then

(2.4) M (r,7 ) = Aasssn) (1 - x)T(FeI ) (100 1= 1/B,

Thus, if we set q = g, then (i) £ . = f_ _ is in HP’% if
asB o,58

and only if g < gq; (ii) £ 5 is in BY if and only if g < 1.

b

In particular, if q > 1, we may choose B = %(q+l). Then

1 d hence f P> q pyt BY,
< B < q and hence 0.8 € ut £ £

Although HP’? is not contained in B if q > 1, we do

have the following result.

Theorem 2.7. (J. H. Shapiro [17], p. 33). If f € u®>9,

0<p<1l, 1<qg<»then f ¢ Bt for each t < g and

Hf\\Bt <K@ )|, o
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We next turn our attention to the case p > 1.

Theorem 2.8. If p > 1, 0 < q < 5%I , t < p, then BY is

contained in Ht’q and

Il q < K00l 2l

for each f ¢ BY.

Proof: We may assume t > 1. If f ¢ BO, then

1/¢)-2

1
I g 2 [ My (eaf) (L - o) dp

>y (re)(1 - )79 (1/5)-1)7 T

Thus,
(2.5) Ml(r,f) < C<p’q)”f”BG(l _ r)l—(l/c).
If t =1,
(2.6) M%(T,f) = M%(r,f)
-1
< C(P,Q)Hfllqo(l - ryalFo)-t,

B
Hence
(2.7) M3(r,f) < K(p,q)qu”qc (1 - r)a((1/8)=(1/p))-1

B

The conclusion follows by integrating (2.6) and (2.7)

and then taking 1/q powers.

Theorem 2.9. If p > 1, 0< q < ﬁgT, and s < q, then

B < #P>® ang
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Hfup, s .S. K(p’q’s)”f“BO

for each f € BO.
Proof: If f € B9, then we have by (2.5) that

uy (r,1) < e(msa)lf] (1 - 0 (e,

It follows from Theorem 1.1 that

M (.8 < K(psa)fe (1 - )7

and hence

s S S -s/q
Mp(r,f) S-Kp,q”f”Bg(l -r) .

Corollary 2.10. If s < g < 1, then

H1,q - Bq/(q+l) c Hl,s.

If g >1and s <t < q, then

glsa o pt/(t+1) 1,5

c H

Proof: The first statement follows from Theorems 2.4 and
2.9. The second statement follows from Theorems 2.7 and

2.9.

We next consider the relationships between P> 9 ang
H9. These relationships can be determined using a theorem

of Hardy and Littlewood.

Theorem 2.11. (G. H. Hardy and J. E. Littlewood [10], p. 411).

1

If0<>\<p5°°,a=%--§,&_>_xandeH>*,then

1

[ 0¥ (1 - )" har < xGup,2)| 1) L
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In particular, if we set \ = g, £ = q = 1/a, then we

obtain the following corollary.

Corollary 2.12. If 0 < pd <® and £ ¢ HO, %_= % + '}i’
then £ € HP°? and

I19lp,q < K@l ;-

It is easy to see that the above containment is strict,

since HP*? contains all functions f satisfying
f(z)= 0((1 - r)™®), a < 1/q.

Thus, HP>9 contains functions which are not of bounded
characteristic., In fact, there exist functions having
radial limits a.e. which are in Hp,q’ but are not in HC.
The functions f defined by (2.3) have radial limits a.e.

asB
and J. E. Littlewood ([12], p. 96) showed that for » = a, A < B

(2.8) M (.2 ) = A(a,8)(log g5 )PF(T/A).

Thus, if we set ¢ = ¢ and g = %(q + g), then ¢ < g < q
and it follows from (2.4) that £, 8 e H?*9; nowever,
3

(2.8) implies f_ 8 is not in HO.
3
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3. Coefficients.

It follows from Theorem 2.3 and Corollary 2.12 that
if 0 < p,g <1, then #P>% is an intermediate space between

H® and BY, i.e.,

1 « g% < r9.

HE 4

Thus, P29 functions possess properties common to HY and BY
functions. In particular, coefficient results for uP-4q
functions are obtained as immediate consequences of the

H® and B° properties given in Chapter TI. i

Theorem 2.13. ILet 0 < p,g < 1.

(1) If £(z) = za 2" € 52°Y, then a_ = o(n(1/a)-1y,

the exponent (1/g)-1 is best possible.

(i1) If 1 < s <=, then {3, } multiplies 129 into
L% if and only if
N s/
(2.9) ¥ | = o(x®);
n=1
iii If 6 < s <1 and {A.} multiplies HP>9 into 25
= n
then (2.9) holds.

(iv) {An} multiplies H®’? into ¢” if and only if

Proof: The "o" condition in (i) holds for #P>? since it
holds for B®. The exponent is best possible for HC

(see [2], p. 98) and hence for P4 1r {An} satisfies
(2.9), then by Theorem 1.16, {A,} multiplies E° into ¢°

and hence multiplies P29 into 45. Conversely, 1if {xn}
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multiplies Hp,q into LS, then it multiplies H° into &s
and hence satisfies (2.9). This proves (ii) and (iii).

(iv) is proved similarly using Theorem 1.15.

We remark that the "o" estimate in (i) is actually
best possible in a much stronger sense. In [5], p. 70,
P. Duren and A. Shields showed that if {Sn} is any sequence

of positive numbers such that a, = 0(d for every

n)
f(z) = }:anzn in H?, then there exists an € > O such that

5 ni-(1/0)

N >€e>0,n=1,2,...,

In [4], p. 259, P. Duren and A. Shields showed that

if £(z) = 2anzn is in HY, then
-5 5
(2.10) zn o |7 < e

for s > g, 8 =1+ s((1/g)-1), 0 < o0 < 1. They then

showed that B® and HY functions differ in allowable moduli
of coefficients by giving an example of a BY function

whose coefficients do not satisfy (2.10). A similar
example may be provided for uP> 4, Indeed, the function
defined by (2.3) is in H?*? for B = %(q + o). However,

b
0,8
J. E. Littlewood ([12], p. 93) has shown

1/0)—1(

2, = ¢(p,a)n log n)7Y/8

so that

1

-5 s
zn e |t > K(Psas8) £ gregm <



CHAPTER IIT
HARMONIC FUNCTIONS

In this chapter, the spaces hp, bp, oL of harmonic
functions are studied. These spaces are defined in the

same manner as the corresponding spaces of analytic functions.

Section 1 deals with the question of whether the
harmonic conjugate of a function in one of the above
mentioned classes is in the same class. The spaces hp,
bp, and h®’? are treated in sections 2, 3 and 4 respectively.
The general properties of each of the spaces as well as
the relationships between the three spaces are discussed

in these sections.

1. Conjugate functions.

If p > 1, the spaces hP and HP are very much alike,
In fact, if £ = u + iv 1s analytic in D, then f € P if and
only if u € hp. This is a consequence of the following

well-known theorem of M. Riesz (see, for example, [2], p. 5%).

Theorem 3.1. (M. Riesz). If f = u + iv is analytic in D

and p > 1, then

M _(r,v) < C(p)M

b (ryu), 0 < r < 1.

P —_
Thus, if u € hP, then v € nP.
In the case p =1, u € hl does not imply its harmonic

conjugate v is in hl. However, we do have the following

theorem (see [2], p. 57).
25
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Theorem 3.2. (A. Kolmogorov). If u € hl, then its

harmonic conjugate v 1is in nP for all p <1 and

Mp(r,v) < C(p)Ml(r,u), 0<r<1.

If p < 1, the situation is much worse. G. H. Hardy
and J. E. Littlewood ([9], p. 419) have shown that the

function

(z) = Re 7(z) = Re( g {11 )
n 1 n 1+z8

is in hP? for all p < 1, however, n(z) has radial limits
existing on a set of at most measure zero. If 7(z) is in
HP for some p then T(z) must have radial limits a.e. But
this would imply n(z) has radial limits a.e. Thus, T(z)

is not in Hp for any p.

We next investigate whether theorems similar to
Theorem 3.1 hold for h®’% and vP. As an immediate con-
sequence of Theorem 3.1, we have that if u € hp,q, P> 1,

hPsd

0 < q <o, then its harmonic conjugate v € and

Il q € S uly, o

The question of whether u € nP-4 implies v ¢ hP*9 for
0K<Kp<1l, 0<g<»is still open, although it has been

answered affirmatively in the case q = p.

Theorem 3.3. (G. H. Hardy and J. E. Littlewood [9], p. 413).

If u € hP°P, 0 < p < ®, then its conjugate v ¢ hP’P and
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1905,p < SR8, -

The situation for bp is much nicer.

Theorem 3.4. (P. Duren and A. Shields [4], p. 256). If

u e bp, then its harmonic conjugate v ¢ bP and
\% C . |
IVl p < cle)ull g 1

We may use Theorem 3.4 to show that most of the

theorems concerning BP given in Chapter I hold also for bP.

2. The spaces hp, 0O <p <K 1l.

Recall that u ¢ nP if and only if

ul = sup M_(r,u) < =,
ol p Sup My
As was the case for Hp, p <1, || D does not satisfy the
h
triangle inequality and hence is not a norm. However,
i pr does obey the triangle inequality and defines a
h

metric on hp.

The properties of Mp(r,u), u harmonic, have been studied
by Hardy and Littlewood [9]. We sum up a number of their

results in the following theorem.

Theorem 3.5. (Hardy and Littlewood [9], pp. 410-415). Let

u be harmonic in D and f(z) = g Ynzn be its analytic com-

pletion. If 0 <p <1, a >0 and

Mp(r,u) < C(1 - r)7"
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then

(1) lyyl < B(p,a)c(n + 1)@H(H/R)-L

(11) |£(z)] < B(p,a)c(1 - r)~2~(1/P);

(111) M (r,£') < B(p,a)C(1 - r)@-1,

(iv) 1if a > 0O, then

M (r,v) <M (r,f) < B(p,a)C(1l - '

P( p

Theorem 3.5 will be used to prove some general theorems

about hp.

Theorem 3.6. The spaces hp, O < p < » are complete,

Proof: If p > 1, the result follows from Theorem 3.1 and
the completeness of HP. Assume then that p<1l. By

Theorem 3.5 (ii), we have

(3.1) lu(z)] < B(p)|ull (1 - r)~1/P
h

for each u € hP. It follows from (3.1) that if {u)} is a
Cauchy sequence in hp, then {un} converges uniformly on
compact subsets of D to a harmonic function u. On the
other hand, {un} is a Cauchy sequence in Lp(D) which is
complete. Thus, {u,} converges in Lp(D) norm to an Lp(D)
function g. But then there exists a subsequence which
converges a.e, to g. Thus u =g a.e. So u ¢ nP and {un}

converges to u in h® norm.

Theorem 3.7. If 0 < p <1, then nP has enough continuous

linear functionals to separate points.
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Proof: If u is harmonic in D, then u can be written in

the form

u(relO) = T cnr|
-0

n{ein@

We may assume withcut loss of generality that u is real-valued.

Let f(z) = b Ynzn be the analytic completion of u. Then
n=0

(L, irno0
(3.2) e = 2

1 v if n < 0.
= 'n
L 2

It follows from Theorem 3.5 (i) that

leg] < B(R) [l glnl (H/P)71,

For each integer n, define the operator ¥, On hP by
mn(u) =Ch- @, is a continuous linear functional on hP

n
and

oyl < B(p)In|(+/P)-1

o0 . 00 .
If up = ¢ r|n|e1n® and u, = g d rlnlelng are in hP
n 2 o n

- 00 -

and u; + u,, then there exists n such that c i d, . Hence
mn(ul) + wn(u2)°
We will show next that h® is not locally convex. This

is a consequence of a more general theorem about the H.B.E.P.

Theorem 3.8, If S is an F space with the H.B.E.P. and A is

a closed subspace of S, then A has the H.B.E.P.
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Proof: Assume 3 has the H.B.E.P. and let B be closed in A.

Then B is also closed in S. Thus, if & € B*, then there

exists @S € s* extending &. Let QA be the restriction of
*

QS to A. Then QA € A and QA extends § to A.

Corollary 3.9. If O < p < 1, then hP does not have the H.B.E.P.

and consequently is not locally convex.

Proof: HP is a closed subspace of hp, so the result 1is

immediate from Theorems 1.8 and 3.8.

3. The spaces bp, 0 <p < 1.

Recall that for 0 < p < 1, bP is the class of functions

u harmonic in D for which

(3.3) ||ul b = Il (1 - r)(l/p)'ng(r,u)dr < >,
b 0

Because of Theorem 3.4, most of the theorems stated for

BP in Chapter I hold also for . The proofs of these
theorems for bP are either immediate consequences of
Theorem 3.4 and the results for B® or they are along the
same lines as the proofs given by Duren, Romberg, and
Shields in [3]. The relationships between hP and bp,
however, are not in general the same as the relationships
between the spaces of analytic functions. This is evidenced

in the next theorem.

Theorem 3.10. (P. Duren and A. Shields [4], p. 256). If

u € P (0O<p< 1), then v € bd for all q<p. Ifp-= E%T s

k a positive integer, then u € h® does not imply v € vP.
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1
Hence, if p = T nP is not contained in bp, however,

hP? is contained in b% for all q < p.

Corresponding to Theorem 1.9, we have the following

theorem for bp.

Theorem 3.11. The space b with norm (3.3) is a Banach

space. Furthermore,

(1) Iu@)] < c@)ul (1 - ry~(1/P)
b

for u ¢ Y and u(z) = o((l - r)-(l/p));
(ii) for each u € oP, uy = u in b® norm as o =~ 1
(u_(z) = u(pz));

(iii1) if p < g < », then h? is dense in bP.

Proof: Set R = l(l + r), then
2
1 1/p)-2
34l > f - o)) (ou)dg
¥ R
> M (Ru) (2 - 1)7H1 - r)(1/P)-1
b
Hence
1 : 1-(1
(3.5) M (Rw) < (£ - L)full p(1F )P,
P ©
and since
2 2 2
®) 1 =T R - it
lu(re™) | < o2 [ o _;eiglg [u(Re™™)|dt
< _i_ Ml(R:u%
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we have
i0 -(1

lu(re™™) | < C(p)full (1 - x) (1/p).
To show the "o" condition, note that for € > O given, the
left hand side of (3.4)may bereplaced by € if r is sufficiently
close to 1. This proves (i). The proof of completeness
follows in the same manner as the proof of Theorem 3.6
using part (i) in place of (3.1) and noting that b® lies
in the Ll space formed with respect to the measure

L (1 - r)(l/p)'gdrdg. (ii) follows from Theorem 1.9

2m
since if u € bp, then its analytic completion f € BP and

sl o < NEEl o

Finally, (iii) follows from (ii) since h” < h? < v® and

(ii) implies h” is dense in bP,

The next theorem is an immediate consequence of (3.2),

Theorem 3.4 and Theorem 1.10.

(o]

Theorem 3.12. If u(z) = gc T

-00

|n|ein® € bp, then

/o) -
(3:6)  legl < c(p)ul, plnl /)

1/p)-1

and c = o(|n|( ). Conversely, if 0 < p < 1 and

c, = o(|n|®), o <(1/p)-3/2, then u € bP. Furthermore,

the (1/p)-3/2 is best possible (i.e., there exists

|n|ein@

o0}
g = T B, such that g = O(|n|( and g ¢ bP).
- 00

Proof: Let f(z) = g ynzn = u(z) + iv(z). Then by (3.2),

Theorem 3.4 and Theorem 1.10,
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(1/p)-1

|A

PN In{

1
lenl = Ly

< C(p)nu”bplnl(l/p)-l

!

5
<
e

and IYInll

If ¢ = 0(In|%), then y = 0(In|*). So, by Theorem 1.10,
f e BP and hence u € bP. The (1/p)-3/2 1is best possible
for B and consequently for bP®, Alternatively, (3.6)

could have been derived by direct computation using (3.5)

. _ 1 : - C
since ¢, = = (an-lbn), C_p = Sy (n > 0) where
1 e .
a = — [ u(Re °)cos nodo
TR o
and
1 am .
b= — [ u(Relg)sin nede.
n n
TR 0

Theorem 3.13. Suppose O < p < q <1 and let g =

g |~
Q|

(i) If u € bp, then u[B] e b9,

(11) If u € b2, then ulBl ¢ vP.

Proof: It is easily verified that if u = Re f, then

u[B] = Re f[s] and u The theorem then

(g] = ¢ g1

follows immediately from Theorems 3.4 and 1.11.

Theorems 3.11, 3.12 and 3.13 will be used to prove the
major results of this section which follow in the next two
theorems. Recall that vp denotes the space of all functions

g harmonic in D such that
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gl p = sup[Mm(r,g[l/p])(l -r)} < o,
v r<l

Theorem 3.14. Let o € (bp)*. Then there is a unique g € wp

such that ¢(u) = <u,g> for each u € vP. Conversely, if g € Yp,
then <u,g> exists for all u € bP and p(u) = <u,g> defines a

continuous linear functional on bp.

Proof: Let ¢ be a continuous linear functional on bp and

set ,
0(z) for k > 0
LN IR
v(z ) for k < 0,
\
then
K
o < etz -
b
Now,

1240 o < ozl - o).

(A more precise estimate of HZIKIH p will be given
he)
in Chapter IV), so that

[0 [ < C(@)]oll-

It follows that

k| 1ke
g(z) = % bkrl e
- 00
. . ® k| ike p
is harmonic in D. Let u(z) = ¥y c rile € b". For
- 00
fixed p, 0 < p < 1, let uo(z) = u(pz). Since U is the
N

uniform limit on |z| = 1 of the partial sums (8y = £) of

-N
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its power series (hence the limit in the P norm) and

since ¢ 1s continuous, it follows that

N .

. k kK ko

@(uo) = lim ¢( = Ckpl |r| Ie1 )
Naw N

[ee]

= T CbyP

-00

el

But up ~u in b®? norm as p - 1, so
[e]

. K
p(u) = lim ¢ Ckbkpl '.
p—ol -

1+z

il

Let ¢ = Ae™® ¢ D and h(z) , h(z) € B® for all p < 1.

Set
V(z) = Re(h(gz))
- el ike k] 1k0
then
(V) = lim ; bkllkl |K|eik5
p—l ==
= g(g)
Thus,
&) | < lloll IVl
b
< el HhHBp

so that g is in H” and hence in Hl. Now,



Thus,

Let F(z) = n)[2(1 - z

where

2m .
1 ie -ie
a7 [ ulpe")g(e7 7 )ae
am . .
= lim — [ u(rpelg)g(re'lg)dg
r-1 T *0
em k| _|k|] . _ike,, © |k| _-ike
= lim (¢ p''r'le e (=D e ~ )de
Lm0 (2 k E % ,
= ; plklckbk.
- 00
R R S - N 1=
p(u) = lim o [ u(pe " )g(e™ ") de
o1 0
= <u,g>.
p . . 1 1
To show g € v©, we consider first the case B?T'< p < o

g = pe'f

U(z) =

and hence

Now

so that

g[n](g) = 3 (k| bkplk|eiks

)-(n+l)

€ D. Then

- 1] and set U(z) = Re F(&z)
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It follows that
1)) | < ol 91l

< lell IF )
<K@)lel) 171 5

and by Theorem 1.3
1/p)-n-1
IFgll p = 01 = p){H/RI=7h),

Let B = 1. n and set h(z) = g[n](z). Then by Theorem 1.7,
p

(3.7) 162l = Byl < ey - 1) Hlsls

so that g € vP.

1
If p = YRR define

(nt1)i12(1 - z)"(P*2) _ 14

]
—
N
~
I

and set

a
N
]

Re F(egz), g € D.
Then
o(v) = gl ey = gl[1/P1(e)

and hence
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3.8)  [el¥Pl(g)] < lellv] g

N\

<@)llollIFl 5

<c@) (- leh) ™Mol

Thus, g € Yp.
® k| ike p
To show g is unique, suppose g, = % dkr e € Vv
-00 .
and <u,gl> = <u,g> for each u € P, Let uk = rlklelkg,

)Y — — —
u, € b¥ for each k. Furthermore, b, = <u,8> = <u,8> = dy -

k

Hence g = gq-

For the proof of the converse, assume first that

1 o .
7 <P < % and g(z) = ¢ bkrlklelkg € Yp is given. We
- _® |k| ike . .p
must show that for every u(z) = g c ritle € b+,

- 00

6(r) = % ckbkr|k| has a limit as r - 1 and that

-00

1im [5(r)| < cllull ,»
r-1 b

where C depends only on g and p. We will prove the existence
of the limit by showing
1

i |81 (r)|dr < .
0

Let

n(z) = 2 (e["H(re™®))

( ; (|k|+n-1)1

r[k]eik@>.
~00 ||t

fe)
3T by



39

Then
h(re-io) ; k[+n-1)1 r(|k|-1)e-ike
- (|x[-1)!
and
i0 ® |k|! |x| ike
u (re”7) = — 1 c,r'le
[n-1] o (Tk|+n-1)t & ’
so that
2 > 2(|k|-1
ro'(r°) = r-g ckbklklr (Ix]-1)
[o0)
_ (2]k|-1)
= _E ckbklklr
- L 2"ru (reig)h(re'ig)de
2m IO [n-1] ’

By Theorem 3.13, we

Now g € Yp implies

gl/Pl(z)

and so by Theorem 1.
gl?l(z) -

and hence

Thus,

B = p
have that u[n-l] € b¥ where g = IT-(n-T)p"

= o((1 - )™

o((1 - r)(M/P)nody,
1 - r)(l/p)-n-l)
| < C(1 - r)(l/p)-n-lMl(rau[n l])
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. B . .
Finally, u[n-l] € b” implies

1
1/g)-2

[a- e My (ryup, q)dr <

0

and L. 2 = 1. n - 1.
D
1 0
For the case p = —7 , set U(z) = u[n-l](z) =L Ar

1/2

then U(z) € b by Theorem 3.13. Let

a(z) = & glP (2

_ o (Ikf+n-1)t oo (fk[-1) 1Ko

—= ([x]-1)
_ 5 Bkrlkleikg.
Then
2 . .
r6'(r2) = é%-j FU(relQ)G(re'lg)dQ
0
Set
® : k| _1ke
J(z) = U (z) = % | k]! p, rlklo1KS,
[1/2] -0 T (|k|+3/2) K
Then by Theorem 3.13, J(z) € bz/3 and hence
1
'fo (1 - r)_l/ng(r,J)dr < o,
Let
K(z) = G[l/E](Z) - 5 r(|k|+3/a),Bkr|k|eik@.

-0 |k|!

It follows from Theorem 1.7 that

k| ike
e

3



(since G'(z) = O((1 - r)'l)). Now

2T

2m : . . .
g# [ U(relQ)G(re-lg)dO = g# [ J(relO)K(re'lQ)dO
0 0
and hence
1 1
[erPyar<c [ (- 1) Pu (r,0)ar < o
0 0

Finally, we must show that the operator ¢, defined by

Cp(u-) = <u,g>

for each u € bY is bounded. For fixed p < 1, let

_ 2 | k|
¢p(u) = _E Ckbkﬂ .

Then by Theorem 3.12

o, ()] < Sl 5 B oy ] /RITIE

50 ¢ € (bP)*. But for fixed u € bP,

T x|
sup o (u)| = lim | £ ¢ 0, p' "]
p<l P p=1 -

[<u,g>| < .
Thus, by the Principle of Uniform Boundedness ¢ € (bp)*.

Theorem 3.15. The Banach spaces (bp)* and v® are equivalent.

Proof: The mapping T:p - g defined as in Theorem 3.14 is a

one-to-one linear mapping of (bp)* onto Yp. It follows



from (3.7) and (3.8) that T is bounded. The Open Mapping

Theorem implies 7! is bounded.

Theorems 3.14% and 3.15 give a characterization of the
dual space of bP. These results correspond to Theorem 1.12
for Bp. In Theorem 1.14, it was observed that BP is itself
a conjugate space. We will show next, by the same methods

used in [3], that bP is the conjugate of wp.

Given u ¢ bp, we may define the operator ¥, on Yp by

(3.9) @u(8) = <u,e>

for each g € v’. For fixed g ¢ vP, with ||g]| p =1, let g
Y
be the operator on pP corresponding to g in Theorem 3.14,

then

log(8) ] = log(w)]

IA

logllial o
By Theorem 3.15, we have

loglh < o(o)lell o
so that

[o(8)| < C(p)ul] -
Hence ¢ € (v*)* and

Il pyx < SR
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Similarly ¢, € (wp)* and
¥ < cp)lull -
I9all o Iull o
We may now define a new norm on bP by

3.10) ull| = "
( 12l = oyl o,
for each u € bP.

Lemma 3.16. The norm (3.10) is equivalent to the b°® norm,

i.e.,

Hullbp < K(plulll < C(p)\\Upr
for each u € bP,
Proof: The above remarks give

llul < ce)ful]_p-
It remains to show

Iull_p < KCeYull

Since (bp)* is equivalent to yP, it follows that (bp)**

is equivalent to (wp)*. Hence

”U‘”bp = H%”(bp)** < K(P)llcpu\\(\yp)w

Thus, it suffices to show

< .
loall oyx < ol o,



ly

Let € > 0 be given and choose g ¢ yp such that ||g|| p = 1
¥

and
| <u,e>| > [lo,|l L - €.
Pl ()
Now gp € wp and
lell o < lell o =1
\ o WP YP
so that

w52 <Nl plleall o

< llogll ) ooxe
(+")
But, <u,gp> - <u,g> as p - 1. Hence

HCpuH( P\ * < ”Cpu”( D + €.

v) )

Theorem 3.17. If 0 < p < 1 and ¢ € (yP)°, then there exists

a unique u € b® such that w(g) = <u,g> for all g € ¢p.
Conversely, each u € bP determines a bounded linear functional
on wp by the above formula. Finally, the Banach spaces

(wp)* and bP are equivalent.

Proof: In view of Lemma 3.16 and the remarks preceding it,
we need only show that if ¢ € (wp)*, then there exists
u € b® such that p(g) = <u,g> for each g € wp. For a

given ¢ € (¢p)*, define
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m(zk) for k > 0
Cr = ¢
w(flk|) for k € O
\
and let
u(z) = ; ckrlkleikO
Then
el < lolllz! e
¥
< o(p) ol 1] (72

(where Stirling's formula ([6], p. xv) has been used to

estimate ”z'kln ). It follows that u is harmonic in D.

¥ .
Let g(z) = T b,r klelkg be in ¢p and gp(z) = g(pz). Since
gp is the uniform limit of the partial sums of its power

series, we have

_ 1 N Ik
@(g. ) = lim ( T byp
p N0 -N

r|k|eiko)

o)

k|

= _E Cy by p
We claim that ng-g“ o~ 0 as p - 1. Indeed since
1/ -1
glPl(z) = o((1 - 1)),

we can choose R sufficiently close to 1 so that

(1 - r)|g[l/p](z)| < e/2 forr >R.
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It follows that
(1 - r)lgél/p](z)| <e/2 forr >R
and hence

(3.11) (1 - r)lggl/p](z) - g[l/p](z)] < € forr <R,

Choose pO such that if pO < p <1 then
(3.12)  1alPle) - DRIy ) <

for |z| < R. It follows from (3.11) and (3.12) that

- e T .
I8l p < < o 5 > 5,

Hence

¢(g) = 1im o(g )
p~1 P

(o]

lim g c b

| x|
p=1l - K kP .

To show u € bp, define

*

for each g € ¢p, where uR(z) = u(Rz), 0 < R < 1. R € (Wp)

since up € bP. For each fixed g € ¢p
lim ch(g) = lim <uR:g>
R-1 R-1
= lim <u:gR>
R-1

= o(8)-



&7

Therefore, by the Principle of Uniform Boundedness,

{H@R” D ¥ O < R < 1} is uniformly bounded. It follows
V)

from Lemma 3.16 that {|u 0 < R< 1} is uniformly

[y
R oP
bounded. However, the b® norm is an Ll norm and ug = u

pointwise. ©So by Fatou's Lemma

ol p < Lim flugl o < -

4. The spaces hP>9,

Recall that hP’% is the space of all functions u

harmonic in D such that
= " M dr}l/q w
Hunp,q - { IO p(rau) <
and that hP’% is a Banach space if and only if
m = min (p,q) > 1.

Theorem 3.18. If m = min (p,q) < 1 and u € hP>9, then
m/2

u €b and

90 sz < O 8l q-

m,m

Proof: If u € hp,q, then u € h It follows from

Theorem 3.3 that £f = u + iv € g™ ™ ang

1l < 2l * 190, )

.S. C(m)”u”m,m’
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Furthermore, since f € Hm,m’ we have by Theorem 2.3 that

/2

f e " and

1l e < K(m) g, -

/2

Thus, u € o and

Ilullbm/g SEN g0

Bm

IA

K(m) [ £l

< C(m)K(m)Hu”m,m

IA

cmx(m)al

Corollary 3.19. If m = min (p,q) < 1 and

then

lu(z)| < cesa)lfu], (1 - )"

and

|0n| < K(P,q)“u”p,q|n|(2/m)_1.

Proof: The result follows immediately from Theorems 3.11(1),

3.12 and 3.18.

If p>1and u € hp,q, then by the remarks preceding

Theorem 3.3, we have that f € P> and
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1€, q < Culp, o
It follows from Theorem 2.1 that

lu(z)| < c(psa)ful, (1 - )71/

+

Ql-

where l =
o

kel I

Theorem 3.20. The spaces P29 are complete.

Proof: If p > 1, then the result follows from the completeness
of P*2, 1r p <1, thenm = min (p,q) < 1 and the proof
follows in the same manner as the proof of Theorem 3.6,
treating 2% as a subspace of Lp,q’ and using Corollary 3.19

instead of (3.1).

Theorem 3.21. If m = min (p,q) < 1, then nP>% is not

locally convex. If 0 < p < 1l, 0<q< =, then hP2q does

not have the H.B.E.P.

Proof: If n®*? is locally convex, then since P29 15 4
linear subspace of hp,q, it must also be locally convex.
But this contradicts Theorem 2.2. The second statement

is immediate from Theorems 2.2 and 3.8.

In Chapter II, we studied the relationships between
HO, Hp,q, and B°. It is natural to ask whether the same
relationships hold between h%, h®’%, and v9. It has been
observed that in general h® is not contained in b°. Hardy

and Littlewood ([9], p. 416) showed that the function

u(z) = Re f(z) = Re(e(l/E)K"i(l - z)-k-l)
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s L oy .
is in hO for ¢ = 7T (k a positive integer). However,
f(z) is not in BY9 and hence u(z) is not in b9(see [4], p. 257).
A similar example may be used to show h® is not contained in

hP>? for the proper choice of p and qg.

1
Theorem 3.22. If p =q = %, ¢ = mp k a positive integer,

then h® is not contained in hp,q.

Proof: Let

f(z) = u(z) + iv(z) = ei(zk-l)§(l - z)-EK.

1
By the above remarks, u(z) € h® for c = =% On the other
hand,
2
l _f‘\
(Mp(r,f))q = = ﬁ) |1 - z|™“de

and thus by Theorem 1.3,

(M (r,6)) > o

p

Hence, f é Hp,q and since p = q = =, we have by Theorem 3.3,

u é hp’q-

~ =

Although in general n°® is not contained in tp, we know that

h® is contained in bt for all t<og. A similar result holds for hp,q.

t

Theorem 3.23. If u € h%, ¢ )™t <1, then £ ¢ HS’

s,t

I
1T

+

l

where s < p, t < q and (s,t) # (p,q). Furthermore,

and u € h
Jullg ¢ < Ifllg ¢ < K(sstopsa)iull -

Proof: We need only consider the cases (i) t =g, s < p

and (ii) t < q, s = p. To prove (i), we may assume g < s < p.
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Then by Theorem 3.5 (1ii), we have that u € hC® implies
M (r,£7) < C(o)]ull (2 - )7
(o] ? - ho
and hence by Theorem 1.1
-1-(1/c)+(1
My(r, 1Y) < (o)l g(1 - r)7H ()R,

Therefore by Theorem 1.2,

My (r,£) < Hoyo)llul o(1 - r)(1/8)7(1/0),

Let € =

w |~

1 > 0, then
p

M3(rsa) < ((0s8)) ¥ (1 - 1),
and hence

12lls,q < Clas8)ull o

To show (ii), we have as in the argument above,

' -1-(1/
My (r81) < Cla)u] g1 - )7t ()

and hence

My(rsf) < K(U,P)Hunho(l - r)~(1/a)
Thus,

M;(r,f) < (K(c”p))t“““zo(l _ )~ (t/a),

so that

Mhﬁscwmﬁmww.



We remark that if g = ( )™ > 1, then n% < nP29

and for u € hc,
13llp,q < Clesa)ull -

The containment is strict by the remarks following Corollary 2.12.

We next consider the relationships between nPs9 and vo.

If q > 1, we have by Theorem 2.6 that nP2? 1s not contained
in b9 (l =14 %). As a consequence of Theorem 3.4, we
Y 1Y

have that if p > 1, then Theorem 2.8 remains valid if the
spaces of analytic functions are replaced by the corresponding
spaces of harmonic functions. Similarly, if p > 1, then
Theorem 2.9 holds for harmonic functions. If m = min(p,q) < 1,
bm/2.

then by Theorem 3.18, hP*9 < In particular, hP’P ¢ bp/2,

0O<p<L 1.

Theorem 3.24. If 0<p <1, and g € Yp/q’ then <u,g>

exists for each u € hP>P and defines a continuous linear
functional on hP°P. Conversely, for each continuous linear

p/2

functional ¢ on hp,p’ there is a unique g € v such that

p(u) = <u,g> for each u € nPo P, Moreover,

l&ll /2 < C(P)llol

Proof: If g € Yp/2

,» then gp(u) = <u,g> defines a continuous
linear functional on bp/g. Thus, in view of Theorem 3.18,
@ restricted to h®*P defines a continuous linear functional

on hp,p.
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Conversely, if o € (hP’P)*, let u € hP’P and £ be its
analytic completion. Set up(z) = u(pz) and fp(z) = f(pz)
for O < p < 1. Then '

la-w iy o < IHE-£ 11 o
and hence by Theorem 2.1,

1lim "u

p-1 _uPHP’P =0

Since ¢ is continuous,

p(u) = lim ¢(up).

p—l
Let.
' n
o(z) forn >0
bn = <
¢(E|n|) for n < O.
\
If u(z) =g c rlnleinO’ then it follows as in Theorem 3.14
that
N
yin| 1noe
p(ug) = lim o( T Cn(pr)|.|e )
N -N
= ; c.b In|
L pPpf
and hence

)
n
@(U) = ii? -2 Cnbnpl l.
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Since ¢ is bounded,

ol < Vol 2211

< c(@)llgllIn]~(V/P).

(-]
So g(z) = & bnr‘nleing is harmonic in D. Let F(z) = %if ¢ HP°P
-0 =

and set U(z) = Re F(gz) where g = pei“, p < 1. Then as in

Theoren 3.14, o(U) = &(s) and la(e)| < Iollivly,p < NolllFl 5
so that g € H°. If g > 0, then

(8] _ 5 « T(n+p+l n
riPl(gz) =2 3 DML (62)" - p(pe) /

T(g+1)[2(1 - g2)7(B*H) - 1)

and
U[B](z) - Re F[s](gz)
_ ; r(n;?+1) (pr)lkleikaeikg.
Hence,

q)(U[B]) = S[B](g)-
In particular for g = 2/p

16B/P1(e)| < folut/ly

< lolliFB2Y

= T((2/p)+1)|lollll2(1 - gz)'(E/p)-l = Up,p-
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It follows from Theorem 1.3 that

)‘(Q/P)'l

l2(1 - g2 -1l S K@) - gD

p/2

Hence g € v and

lell /2 < C@lel-

p/2

Corollary 3.25. (hp,p)* and vy are equivalent.

Proof: The mapping ¢ — g defined in Theorem 3.24 is con-

tinuous, one-to-one, and onto. Its inverse is continuous

by the Open Mapping Theorem.

In the same manner Theorem 2.5 was proved, we may show:

bp/2

Theorem 3.26. is equivalent to the closure of hPsP in

(hp,p)**, O < p S 1.

Thus, bp/2 is the containing Banach space for nPoP,

Note, that for p = 1, the spaces are identical.



CHAPTER IV
COMPOSITION OPERATORS

Let ® be a nonconstant analytic function mapping D
into itself. If f is analytic in D, set C¢(f) =f o ¢
where £ o ¢(z) = £(P(z)). C¢ defines a linear operator

on Hp and Bp.

It was shown by J. Ryff [15] that C@ is a bounded
operator on Hp, O <p <= 1In [13], E. Nordgren studied
the operators C¢ on H2 for ¢ an inner function. Composition
operators on Hp, 1 < p <=, were studied by H. J. Schwartz [16].

We intend to present a similar study for Bp.

In section 1, it is shown that C¢ is a bounded linear
operator on BP. Upper and lower bounds on HC¢H are given,
and a necessary and sufficient condition is determined in
order that C¢ be an isometry. 1In section 2, the methods
of H. J. Schwartz [16] are used to characterize those
operators on BP which are composition operators. This
characterization is then used to determine which com-
position operators are invertible. In section 3, conditions
are given on ¢ in order that C¢ be a bounded operator from
BP into HY, 0 < g < ». Finally in section 4, compact

composition operators and their spectra are discussed.

1. Bounds on C¢.

It has already been remarked that C¢ is a bounded
linear operator on #P. This was shown by J. Ryff [15]

as part of the following theorem.

56
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Theorem 4.1. (J. Ryff [15], p. 348). Let 0 < p < =,

Let f be analytic in D and § be an analytic function

mapping D into D.

(1)

(1i1)

If ¢ maps |z| < r into |z| < R, then

M(r,f 0 0) < (%{%%{)“pbapmf).

If £ € H®, then £ o ¢ € HP. The operator Cy>
defined by C¢(g) =go 0O for all g € HP, is a
bounded linear operator on 5ig and

gl < (TP,

If ¢(0) = O and for some r, 0 < r < 1,

Mp(r,f o ¢) = Mp(r,f), then either ¢(z) = ez,

R

le] = 1 or £ is constant.
Proof: To prove (i), we will first assume ¢ maps |z| < r
into |z| < R. Let q;,...,a, De the zeros of f in |z| <

where each zero 1s counted according to its multiplicity.

Let
b, (z) = R(z - ag)
_2—
R - akZ
and
n
B(z) = 1 b, (z).
k=1
It is easily seen that |B(z)| < 1 in |z| < R and |B(z)]| =
if and only if |z| = R. If f has no zeros in |z| < R, set

B(z)

1.

Note that (£f/B)F is analytic in |z| < R.

1



p o 1t 2 2
{Af(ggz))} S L {f(Rei )} Iieil?é?iglg dt

B(¢(z)) 0 |B(Re™™)
and
or : o 10yy p
(4.1) ﬁ%umm%%w%%gﬁgﬂlw

since |B(¢(rei©))| < 1. Thus,

2m .
(h.2) gy ] le(0(re™®)) | as

L P relty P Boo]0(2)]?
— f ' dt d
S i ey R

(since B(Relt) = 1). If the order of integration is
changed, we may use the well-known property of the Poisson

kernel that

1 f" RP-19(2)|% 4o . E°-]0(0)]%
T 0 |re"-0(2)|" R "-0(0) |7
R+ o)
< .
= R-19(0)]

It follows that

2T .
1 % |f(re19)|pdg < (BﬁlQigll)l/p M

(r,f).

em R-19(0)| P
To prove (i) in the case ¢ maps |z| < r into |z| < R, let
R, =R+ =R n >2. So, ¢ maps |z| < r into |z| < R, and



Letting n = o,

M (r,f) < (

5 M_(R,f).

R+ @(ozl)l/p
| Y

R-|{(0

To prove (ii), let f € HP and assume ¢ maps |z| < r into

|z| < R. Then by (i)

R+|0(0)],1/P
Mp(r,f o) < (R-|¢(O)|) Mp(R,f).
Letting R - 1,
14|0(0) | 1/P
R T L)

Thus, £ o ¢ € HP and

£ Ol p <

/
1+]¢ (0 1 pr”
1-|¢(0)I

This proves (ii).

To prove (iii), we note that ¢(0) = O implies by
Schwarz's Lemma that § maps |z| < R into |z| < R. Thus,

we may let r = R in (4.1) obtaining

2m .
y 1 i0 f(¢(Re )) Py
(%.3) o jo | £(0(Re™7)) <zr % B(0 (R
If the equality holds in (4.3), then either |¢(Relg)| =R

or B= 1., If, however, |¢(Relg)| = R, then the equality
case of the Schwarz Lemma implies ¢ = ez, |e| =
Assuming equality holds in (4.3), if ¢ is not of the form

€z, then B = 1 and |¢(Reig)| < R, hence (4.2) becomes
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: o 2 16,2
B4 et = d [T rrett) P R =R L e,

2m

Taking absolute values,

2m . 2 16,2
I If(Relt)lp R -|O(Re %é)lg

o dt.
0 |Re™"-0(Re

n
'—_‘
3

(5.5)  |£((re*"))|P <
Integrating both sides of (4.5) with respect to 6, we get,
as in the proof of (i),

(4.6) Mp(R,f o ) < Mp(R,f).

If equality holds in (4.6), it follows that (4.5) must have

been an equality. But then (4.4) and (4.5) imply

e . 2 igy |2
7 [ rmet)? SO acl

e . 2 ie
= = [ |f(re’®)|P B “[0Re" )| g,

0 |Re -0 (Rel®)|?

However, if in general g = u + iv is continuous and
I[ el = [ lgl, then g = gu, |g| = 1. So f must be of

this form on |z| = R and hence f is constant.

It has been shown by E. Nordgren [13] that if ¢ is
an inner function, then
logh = (2L 1/e,
1-16(0)|
On the other hand, H. Schwartz [16] has shown that there
are functions ® mapping D into itself for which

el < (RHRQLLP,
1-1(0) |
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Theorem 4.2. If f € B?, 0 < p < 1 and ¢:D - D is analytic,

then £ o ¢ € BP. The operator Cp defined by Co(f) = £ o ¢

for all f ¢ BP is a bounded linear operator on BP and

’4(1f|®(8)|)l/p for p > 1/2
ool < 4
[2(l+i$(g)|)]l/ for p < 1/2.
{ -

Proof: A general form of Schwarz's Lemma gives the inequality

(4.7) 0(2)-00) ] ¢ |.
|1-0(0)(2) |

It may be verified by elementary methods that if a and b
are any two complex numbers such that |a| < 1, |b| < 1,
then

lal-|p] lato]|
1-lal|o] = [1+ab]

This inequality applied to (4.7) yields

0(2) [0 ]

1-10(0) [1o(2)] ~
Let
(r) = L0+ g
+[e(0)[r 7
Then |¢(reig)| < A(r), rA(r) is an increasing function of

r, and A(r) - 1l as r - 1. Set R = l(l + A(r)). Then
2
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%(l + |0(0)]) < R< 1 and ¢ maps |z| < r into |z| < R.

Furthermore,

R+| (0 1+]|0(0)
|

|
R-19(0)| = (1+19(0))-10(0)]

and

dr - _2(1-10(0) %) . f1ld()]).
dR (1-10(0) [x(x))® T |{1-16(0)]

If p > % , then

(4.8) (1-r)(1/P)-2 S.(liiEKQJl.)(1/p)‘2(1_R)(l/p)-2-

1-{¢(0)|
If p < 1 , then
=2
(1-r) (1/P)2 PYREaTIC ](I/P)'Q(I_R)(l/p)-2.
|1 16(0)]
It follows from Theorem 4.1 (i) that
M, (r,f o ) < 2O v (R,£)
. T R-]0(0)]
Thus,
fl(l-r)(l/p) 2, (e, 0 O)ar < K(p,§) [1 (1-R)(YP)Py (R,r)aR
0 1+]4 (0
2
< K(p,0)|Ifl




where
[y 1+i¢'§02| (1/p) for > 1
1¢(0)! P2
K(p,¢) = ¢

1-10(0) | C

Therefore, £ o ¢ € BP and
Il o ¢HBp < K(p,¢)HfHBp~

If p > 1 and [©(0)| is not tco large, we may improve
2
the bound on HC¢H by a slight alteration to the above proof.

The following is then a corollary to the proof of Theorem 4.2.

Corollary .3. If p > = and 19(0)] < 23~ (1/P)) _ 1, then
2

! 1 1/
el < 21/p<l+x¢<o>|>(;-+%f§%+ °
L=0X )

Proof: In the proof of Theorem 4.2, replace (4.8) by

(z-r (1/P)2 <1+l¢<o>!>£z(liﬂﬂﬂillL) (1-5) ) /P)-2,

- 1-1¢(0)]

In the next theorem, a lower bound for HC¢” is given

in terms of ¢(0).

Theorem 4.4, If C¢ is a ceomposition operator on Bp, then

1 e
oy = ol



€l

Proof: If f(z) is in B, then

"N

T

£(0) = g= [ £(re™®)ae
0

and hence

£00) gl p < 171l g

1 2
where eo(z) = 1. Let g(z) = (zt%%%?;) . Now g € BP,

sogo 0 ¢ B and

e

o,
2 = |le
e PE T Ieollgple®oD)]
<lee bl 5
< ll_ gl
<

= L .
" o

Corollary 4.5. ICyll = 1 if and only if d(0) = O.

Proof: If §(0) = O, then Schwarz's Lemma implies

0:]z] < r = |z] < r. Thus, by Theorem 4.1 (i),

M (r,f o Q) < My(r,f)
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and hence
120 0l p < Il g

1S
for each f € BY. Thus, |C4]| < 1. But Cqe = |le
s | oIl = > | 0) oHBp H oan’
where ey = 1, so HC¢H = 1. Conversely, if HC¢H = 1, then
Theorem 4.4 implies §(0) = O.
The next theorem characterizes those composition

operators which are isometries on Bp.

Theorem 4.6. C¢ is an isometry if and only if ¢ is a

rotation. (i.e., §(z) = ez, |e| = 1).

Proof: If ¢ is a rotation, then M,(r,f o ¢) = M, (r,f) for

1
f e Bp and hence

12 = e e 0l = 10p(O)1| -

On the other hand, if C¢ is an isometry, then nc¢n =1
so that $(0) = 0. Let £ € BP, f not constant. If
My (r,f o §) < M{(r,f) for each r, 0 < r < 1, then
|f o ¢HBp < HfHBp which implies C¢ is not an isometry.

Therefore, M. (r,f ¢ ¢) = M, (r,f) for some r. But then

1( 1 (
Theorem 4.1 (iii) implies ¢ is a rotation.

Results similar to the theorems given in this section

have been proved for Hp, 1 <p<<®by H. J. Schwartz [16].

The lower bound he obtained for ”C¢H was ( ——-E;——g )l/p

1-14(0)|

He showed that C¢ is an isometry on P if and only if ¢ is
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an inner function vanishing at zero, which is quite different

from our case.

2. Characterization.

The question of when a bounded operator is a composition
operator can be answered in terms of its multiplicative

properties.

n -
Lemma 4.7. Let eq(z) = z . Then ”en”Bp =~ C(p)n~Y where

1 . 1
S Pt

1
k+1 °

1
=-1 if p =
- P

A

k a positive integer.

Proof: Let

(2:a) _ (a+1)(a+i2 ... (atn) _ (a;n)

and set g = . 2. It follows from Stirling's formula that

n-+
( a

) = T (g+1)n®

(see [T], p. xv). Now,
_ ot e
nenan = L) (1-r)Pr-dr.
If p = E%T s ”en”Bp may be computed using integration by

parts an appropriate number of times. This gives
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k-1 1 -1
leqll_p = (n+l)(n£?) — (mFK) = 7K P17

If p + E%T , then repeated integration by parts yields:

1
e, H s+n+l)(s+n+2) [(n+B)
Thus,
”en”BP = C(p)n”Y
1 1
where C(p) = T(+I) ~ T(X-1)
Y

We will use this lemma in proving our next theorem.

Theorem 4.8. If A is a bounded linear operator other than

zero on Bp, O <p<K1l, then A is a compdsition operator

if and only if

n) = (A(el))n for n = 0,1,2,...,

Proof: If A is a composition operator, then A = C¢ for

some ¢. Hence, A(e ) = C¢(en) = 9" = (A(el))n. Conversely,

suppose A(e ) = (A(el))n for each n. Let ¢ = Ae;, then
1971 < Ialleg -

It follows from Lemma 4.7 that |le | p 0 and hence
B
1167 p~0an-x.  Tet p be fixed, 0 < p < 1 and
B

set Tp = {z:|z] = p}. If [§(z)] > 1 on some subset S of

Tp of positive measure, then M; (o, ¢n) > m(S) (where m



€8

denotes normalized Lebesgue measure on Tp). It follows that

1
1071 o = Q}(l-r)(l/P)'eMl(r,¢n)dr

fl(l‘r)(l/p)-2M1(9:¢n)dr

P

v

> m(s)(l-p><l/1°>'1(-ll; -1,

contradicting ||¢" 0. Hence ¢ € H”, |9l geo < 1 and

| p -
n n

O & 1. Therefore, ¢:D - D. Now, C¢(en) = ¢ = (A(eq))” = A(e,).

Thus, C¢ and A are continuous linear operators and they

agree on the polynomials (since the polynomials are

linear combinations of the en's). But the polynomials are

dense 1in Bp, hence C¢ = A.

This theorem was proved for Hp, 1 <p< o by
H. J. Schwartz ([16], p. 8). His proof is also valid for
Hp, O < p <1l. Schwartz then showed that the theorem
could be restated in terms of the property "almost

multiplicative".

Definition 4.1. An operator A on a function space S is

almost multiplicative if whenever f, g, fg € S then
A(fg) = (Af)(Ag).

The following corollary was proved for Hp, l{p<Ke
by H. J. Schwartz ([16], p. 10). His proof works also for
BP.

Corollary 4.9. If A is a bounded linear operator other than

Zero on Bp, O <p<K1l, then A is a composition operator if
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and only if A is almost multiplicative,

Proof: If A = C¢ and f, g, fg € Bp, then
A(fg) = Cy(fg) = fa o ¢ = (£ o )(g o 9)

and

(£ o 0)(e c §) = (Cyf)(Cy) = (Af)(he)
so A 1s almost multiplicative.

Conversely, if A is almost multiplicative, then
A(e,) = A(eeq) = (A(e,))(Bey).

If A(e = O, then A(e,) = 0 and A vanishes on the

o)
polynomials. But this would imply A is the zero operator,
contrary to hypothesis. Therefore A(eo) + 0. Furthermore,

A(ey) = (Aey)(Rey) and hence A(e Also,

) = eq.
0 0
A(ey) = (A(eq))(A(eq)) = (Ae;)®. It follows by induction

that A(e ) = (Ael)n for each n.

This corollary may be used to characterize invertible
composition operators. The next theorem was proved by
H. J. Schwartz ([16], p. 12) for uP, Again, his proof

is also valid for Bp.

Theorem 4.10. cq> is invertible if and only if ¢ is a

conformal map of D onto D, in which case (C¢)-1 = C¢_1.

Proof: If ¢ is a conformal map of D onto D then
C¢_1 = (Cq))'l so that C¢ is invertible. Conversely, if C¢

is invertible, then there exists
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an operator A on BP such that AC¢ = C¢A = I. Choose

£, £, € B® such that £,f, € B®. Let g, = A(f}),

12 "2 172

g, = A(fe), and g5 = A(flfz)' Then C¢gl = £, C¢g2 = f,,

and Cygs = £1f,. Also, Cy(g))Cy(ey) = £,1, € BP. Thus,

818, ° ¢ = g3 ° d. Now, g,8, and g5 are both analytic

and agree on ((D). Hence, g,8&, = g3, 1.e., (Af;)(Af,) = A(f,f

So A is almost multiplicative and by Corollary 4.9, A = Ccp

for some ¢. Furthermore,
C¢Ccp = C¢C¢ =1 = Cel

which implies ¢ o ¢ = ¢ °© @ = €y, i.e., 9 = ¢-

Corollary 4.11. C¢ maps BP onto BP if and only if ¢ is a

conformal map of D onto itself.

Proof: If ¢ is conformal, then clearly C¢ is onto. Con-
versely, assume C¢ is onto. C¢ is also one-to-one, for if
C¢(f) = C¢(g), then f and g are analytic functions agreeing

on ¢(D) and hence f = g. Thus, C¢ is one-to-one, continuous

and onto. The Open Mapping Theorem implies C¢ is invertible.

3. Operators into HY.

The first theorem in this section gives a sufficient
condition for C¢ to be a bounded operator from BP into Hq.

Y™t

Theorem %.12. If (1-|0(z is in LYP(D), 0 < p < 1,

0 < g < », then C¢:Bp - H% and

ol < C@I (=106} )T _g/p:

2)t e

o~
AT

et
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where HC¢H denotes the norm of Cy as an operator from BP
into HY.
Proof: If f ¢ Bp, then by Theorem 1.9,

2(2)] < e@lisll_p(1-12])7HP.
Thus,

1£(0(2)) | < ()£l p(1-10(2) )7/
B

so that £ o ¢ € HY and
e o Ol g < CEME GI-10DH g5

Corollary 4.13. If (1-|¢0])"Y ¢ LY(D), then Cy:B° ~ HP and

eyl < c<p>n<1-|¢l>"1nLl,

where "C¢“ denotes the norm of Cp as an operator from BP

into HP. 5

Corollary 4.14. 1If (1-](1)])'1 € Lq/p(D), 0<p<l, q>p,
. -1
then c¢.HP -~ 19 and eyl < c(p)||(1-19]) uLp/q.

Proof: If f ¢ Hp, then
£(2)] < el p(a-1z])7H

(see [2], p. 36). The proof follows in the same manner

as the proof of Theorem 4.12.

The next theorem gives a necessary condition for C¢

to be a bounded operator from BP into HY.

gt
13
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Theorem 4.15. If C¢ is a bounded operator from BP into

Y, 0<p<1l, 0<q<w, then |P(e*®)] < 1 a.e.

Proof: If C¢ is a bounded operator from BP into Hq, then

“C¢(en)an < HC¢H”en”Bp' Thus, it follows from Lemma 4.7

that ”C¢(e )| , = 0 asn - », Suppose there exists a
n’ll.q .

set E c [0,2m) of positive measure such that M)(ei )| =1

for t € E. Then,

Iogtealll g = 1871 g

2 .
25 | |6(e1%) | Pdasy
> (o J”jEW(e“)Inth}l/q

{Eigl}l/q >0

2m

contradicting ”C¢(en)u - 0 as n - =,

If q > p, the condition |¢(eit)l <1l a.e. is not

sufficient. In the case q > p, choose s such that p < s < g

1+z -1/s

and let §(z) = = The function f(z) = (1l-2z) is in

#P and hence in BP. However, f(¢(z)) = 21/3(1_2)-1/8 1s
1+z

2

The function fp 8 defined by (2.3) is in BP? for p < g < 1,
3

out £(0(z)) ¢ HP.

not in H:. For the case q = p, again choose ¢(z) =

Theorem 4.16. C¢ is a bounded operator from BP into H®

if and only if ||9|| , < 1.
H
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Proof: If C¢ is a bounded operator from BP into Hw, then

as in Theorem 4.15,

ICglen)ll o = 0 a5 n = .
But,
IgCer)ll o = 1071 o = (U] o).
H H H
Thus, ||¢]| ., < 1. Conversely, if ||¢|| , < 1, then
H H

-1/
242N < el p(1-10(z) )P

< e@iel_p (-0 o) 7P

Hence C¢(f) € H and

llcgll < C(p)<1-ud>nHw)’1/P.

4, Compact operators.

A bounded linear operator A on a Banach space X is
said to be compact if the image under A of every bounded
sequence has a convergent subsequence. The following theorem
was proved for Hp, 1 <p <<=»by H. J. Schwartz. His proof

is also valid for B® and is given below.

Theorem 4.17. C¢ is a compact operator on BP if and only

if for every bounded sequence {fn} in B® such that £, =T

uniformly on compact subsets of D, ||Cyf -Cufl| - 0 as
0" n™"0" lpp

Nn — o,



T4

Proof: Assume C¢ is compact. Let {fn} be a sequence

in BP? such that £, p < K for each n and £ - f uniformly
B

on compact subsets of D. Suppose there exists a subsequence

{f, } such that
k
(4.9) ”C(Dfnk - C¢f”Bp 2a > 0

for each k. Since an ”Bps K and C@ is compact, there exists
k

a subsequence (f } such that Cu(f ) - g in B® norm. But
n, ¢ n,

i i
then C¢(fn ) = g uniformly on compact subsets of D. It
k

follows from our hypothesis that C¢(fn ) - C¢(f) uniformly
k

1 |
on compact subsets of D. Therefore g = C¢(f) and

C(b(fnk ) - C¢(f) in B® norm contradicting (4.9).
i
Conversely, let {f be any bounded sequence in BP.
n

It follows from Theorem 1.9 (i) that {f } is a normal
family and hence there exists a subsequence {fn } such that
k
fn - f uniformly on compact subsets of D. By our hypothesis,

k

. p :
C¢fn - C®f in B* norm, and hence C¢ is compact.

k
Theorem 4.18. 1If (l--|(1)(z)|)':L ¢ 11 (D), then Cy is a compact

operator on BP.

Proof: Let {fn} be a bounded sequence in BP which converges

uniformly on compact subsets of D to a function f. Then

[2,00(2)) | < @)yl p(3-16(2))7HF

< K(p)(1-10(z)])"L/P
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for each n. Letting n - «,

1£(0(z))] < K(p)(1-10(2)]) P,

Hence,

(4.10) £ (0(2))-£(d(2)) 1P < c(p)(1-10(2)])”

for each n. Let g = C¢(fn)—C¢(f) for each n. It follows
from (4.10) and the Dominated Convergence Theorem that
g, € HP for each n and “gn”Hp - 0 asn - », Finally,
Theorem 1.9 (iv) implies "gn” p ™ O as n =», i,e.,

B

HC¢(fn)'C¢(f)HBp -+ 0 as n - », Hence C¢ is compact.

Corollary 4.19. 1If |¢(z)] < r <1 for all z € D, then

C¢ is compact.

Similar results for Hp, 1 <p <=, were given by
H. J. Schwartz ([16], p. 26). The proof of Theorem 4.18
is also valid for Hp, 0 <p<1l. Next we give a necessary

condition for C¢ to be compact.

Theorem 4 .20, If C¢ is a composition operator on Bp,

then
(h.11) o7, = o(r7"),
B
where
1

"" T am——— _"_“""‘"_‘—.1‘.'

T
e SFT
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and k is a positive integer. If C¢ is compact, then

(4.12) u¢nqu = o(n”Y).

Proof: (4.11) follows immediately from Lemma 4.7 since

1% 5 = Npell_p < opllieg] p-

e, (2)

= ﬂ—_ﬂ_ for each n.
e
n
BP

If C¢ 1s compact, let f (z)

|fn(z)|SC(p)nY|z|n for each n. Hence {f } converges uni-

formly to zero on compact subsets of D. Furthermore,

WEA = 1 for each n. Therefore, since C4 is compact,
nllop o

”c(banBp - 0. But,
-1,4n
ICoeall_p = Clegll o)™ 197

and
hence

As a simple example, consider the function {(z) = pz,
0<p<1l. Ifp <1, then C¢ is compact by Corollary 4.19.
If p = 1, then C¢ is not compact since n¢nHBp = ”en”Bp does
not satisfy (%.12).

We next turn our attention to finding the spectrum

c(C¢) of a compact composition operator C¢. This problem
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was investigated for compact operators C¢ on HP by
H. J. Schwartz [16]. He relied upon the following theorems

by M. Koenig (see [16], p. 72).

Theorem 4.21. (M. Koenig). If ¢:D - D is analytic,

0(0) = 0,0'(0) ¥ O then there exists a function K(z)

analytic in D such that K(¢(z)) = (¢'(0))K(z).

Theorem 4.22. (M. Koenig). Let ¢:D = D and ¢(0) = 0. Then

there exists a non-zero analytic function f, satisfying

£(0(z)) = Af(z) if and only if x» = 1 or A = ($'(0))".

We remark that both of these theorems may be stated
for any fixed point z, of $. Furthermore, if ¢:D - D is

analytic, then § can have at most one fixed point ([16], p. T4).

Theorem 4.23. (H. J. Schwartz [16], p. 77). If C¢ is an

operator on HY, 1 < p < =, ¢(zo) = z4 and (l-|4)|)'1 e L5(D)

s = max[p,p'], (l + L 1), then
P

pl

5(Cy) = (0" (2)™py U (1.

We use Theorem 4.23 to prove the following:

Theorem 4.24. If §(z,) = z,, (1-|d>|)'1 € L2(D), and Cg

is an operator on Bp, then

0
n
C = ! 1}.
9(Cy) p = (O (21", U (1]
Proof: If (1-|¢)|)_l € LQ(D), then C¢ is compact by
Theorem 4.18. Hence g(C¢) D consists entirely of eigenvalues
B

and by Theorem 4.22, c(C®)Bp c {(¢'(zo))n} U {1}. On the
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other hand, C¢ is also a compact operator on He (see [16], p. 26).
By Theorem 4.23, the spectrum of C¢ as an operator on H2 is

given by

o(Cp) 2 = L' (%))"} u (13-

If )\ € c(C¢) 0> then 3 is an eigenvalue and hence there exists
H
f € H° such that £(¢(z)) = af(z). But f € H° implies £ € BP

and hence 3 € c(C¢)Bp.

Corollary 4.25. If [§(z)] < r <1 and Cy is a composition

operator on Bp, then the spectrum of C¢ is given by

[~

o(Cp) = L('(2))™)__, v (1}

n

for some zO € D.

Proof: ¢:|z|] < r - |z| < r. Hence § has a fixed point Z4

by the Brouwer fixed point theorem.

The following theorem can be proved in the same manner

as Theorem 4 .24,

Theorem 4.26. If 0 < p <2, {(z5) = 25, (1-10])71 € 12(D),

and C¢ is an operator on Hp, then

> ]

o(Cp) = 101 (20)1 U (1}

n=1

o
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