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ABSTRACT

ON THE EXISTENCE AND NONEXISTENCE OF PERIODIC

ORBITS IN A NEIGHBOURHOOD OF HOMOCLINIC

AND HETEROCLINIC ORBITS

BY

Mohammad Riazi-Kermani

We show that the eigenvalues of the linearized

system determines the existence or nonexistence of

periodic orbits in a neighbourhood of a homoclinic

3

for autonomousor heteroclinic orbit in R2 and IR

systems. We also show the existence of periodic orbits

in the modified logistic equation corresponding to the

central difference scheme by the method of averaging.

The existence of a heteroclinic orbit is also proved

in the modified logistic equation.
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INTRODUCTI ON

It is well known that the numerical approximation

of the solution of an initial value problem for an

ordinary differential equation requires many precautions

to be successful. One way of investigating the adequacy

of numerical schemes is the introduction of the concept

of modified equation. The logistic equation

six = _ =
dt y(l y) y(O) yO (1)

has been studied by M. Yamaguti and S. Ushiki. In

particular. these authors studied the central difference

scheme

= u (I‘ll) n: 112'00

n n

(2)

w1th u0 = y0 and 111 = yO-thyo(l‘-yo)

The results exhibit the phenomenon of the so called

"ghost" solution.

The iterative scheme (2) may be recreated again

in continuous form by inserting the taylor expansion



2

untl = u((nil)h) = u(nh) ihu'(nh) +g—l- u'(nh)

3

2 h u’”(nh) +0014)
37

If we put again u(1)(nh) = u(l)(t), the equation (2)

2

becomes %;'um(t)-ru'(t) = u(l‘-u)-+O(h3) with

u(O) = YO’ U'(O) = yo(l'-yo). u'(O) = (l -2yo)(l -yo)y0.

We call

ezu’”(t) +u'(t) = u(1 -u) (3)

the modified logistic equation.

The first two chapters of this manuscript are devoted

to the existence or nonexistence theorems in neighbourhoods

of homoclinic and heteroclinic orbits in m2 and 1R3 .

The existence of periodic orbits in (3) is shown in

Chapter 3 and Chapter 4 is devoted to the existence of

a heteroclinic orbit in (3).

Some graphs made by computer are also included.



CHAPTER 1

The existence and nonexistence of periodic orbits in

a small neighbourhood of homoclinic and

heteroclinic orbits in R2

Flows on R2
 

1.1. Neighbourhoods of homoclinic orbits in P?

Consider a system of two differential equations

where f is c2 and f(0) = 0. Assume that the

eigenvalues of the matrix A = f’fO) are -l and c where

c > O, l > O and c -x # 0.

Suppose there exists a homoclinic orbit issuing from

O and returning to it as shown in Figure l.



By the Stable Manifold Theorem, in a sufficiently small

neighbourhood of 0 there exists a stable manifold and

an unstable manifold correSponding to the negative and

positive eigenvalue of A respectively.

Since periodic orbits are topological invariants of the

space, following the ideas of the Grobman-Hartman theorem we

may assume that the system (1) is linear in a neighbourhood

V of the hyperbolic point and also we may assume the

stable and unstable manifolds are coordinate axes in that

neighbourhood.

The linearized system then has the form:

x = -XX

X > 0, c > 0 c-l # 0 . (2)

§=Gy

Without loss of generality we can assume that the

points (0.1) and (1,0) are in V. The lines x = l and

y = l are transversal to the solution curves of (2)

passing nearby (1,0) and (0,1). (See Figure 2)

  
Figure 2



Let us define: S0 = {(l,y) :0.g y‘g l} and

S1 = {(x,l) :0.g x‘g 1}. Starting at t = 0, from

(l,yO) 6 SO and following the trajectory, we get:

x(t) = e—)‘t

(3)

_ ct
y(t) — yoe

Therefore at t =‘%% zn (yo) the trajectory hits Sl

-lti%)zn(yo) ‘%

at the point x = e = y0 = y3, where

Y =-% s 1. We define the map T :S * S by
.L O O l

_ a

.l

Since v > 0, you tends to 0 as yO tends to 0 .

Therefore :Lf we define To(l,0) = (0,1), then T0 is

continuous on SO. Since the point B(O,l) is mapped by

the homoclinic orbit on the point All,0), from theorems

on the continuous dependence of solutions on initial value

and from the transversality of S the correSpondence map,
10

T1 is defined and is as smooth as f in some neighbourhood

r

S].1 :81 fl {(x,y) :x2+ (y-l)2 g ri] onto

r

SOZ==SO 0 ((x,y) :(x--l)2+y2 g r3}.

Consider the composite function TlTO :SS 4 SS and

let T = TITO' Then T(O) = 0.

Suppose Tllx) = le4-Bzx24-h.o.t. Then T(y) =

2Y- 2 _ y

T1T0(y) - BlTo(y)-+Bz(To(y)) -+h.o.t. — 81y -+62y -+h.o.t.



p

O

1 _ Y-l 2y-l .
dy(T(y)) - Blyy 4-2y82y +-h.o.t. Bl is the

derivative of the correspondence function. Therefore Bl # 0.

Since y # l, T’(y) tends to zero in case

y > 1 and goes to infinity in case y < 1. Therefore

T cannot have any fixed point near zero and different

from zero. (See Figure 3) 117)  

 
 

Figure 3-a: (O < Y < l)

x

‘1’")

Figure 3-b: (y > 1)

 

 

The following theorem is the direct result of the above

discussions.

Theorem 1.1. If the sum of the eigenvalues of the

linearized system at the hyperbolic point is different

from zero, then there exists a neighbourhood of the

homoclinic orbit without any periodic orbit.



1.2. Neighbourhoods of heteroclinic orbits in 3&2

Systems of differential equation in R2 with hetero-

clinic orbits joining two critical points appear naturally

in science. For example the pendulum equation

x+sinx= 0

has its solutions on the level curves of

G(x,y) =-% y2-cos x = K

where y = x. Therefore in the (x,y) plane for k = 1 the

trajectories are hetroclinic orbits joining the critical

points l-v,0) and (v.0). In the above example the

eigenvalues of the linearized system at pl(-w,0) and

p2(w,0) are $1, and every trajectory starting at a

point inside the region bounded by the hetroclinic orbit

is a periodic orbit. The existence of periodic orbits in

a neighbourhood of the hetroclinic orbit depends on the

ratio of the products of positive and negative eigenvalues,

namely:

Theorem 1.2. Let
 

)2: f(X) (1)

be a 2-dimensional ordinary differential equation with

P1 and P2 hyperbolic critical points, and let xi < 0,

Pi > 0 be the eigenvalues of the linearized system at. Pi’



X k

If y = 1 2 # 1, then there exists a neighbourhood

9192

of the heteroclinic orbit without any periodic orbits.

 

Proof: We use the method of point transformation,

assuming that the system is linear in.a small neighbourhood

of Pl'

     

__JTq’/’

Figure 4

Without loss of generality we assume that P1 = 0 and

the stable and unstable manifolds are the coordinate axes.

Let s1 = {I-1,y): Ogyg 1],

82 = {(x,l) : -l'g X‘s 0} and T1 :81 4 82 be defined

as follows.

Since S1 and 82 are transversal to the trajectories

of (1), starting at {-l,yo) the trajeptory will hit

1

S at a point (x ,l), where x = y p1 . Define
2 O O 0

X1

BI
Tlt-l.y) = (x.l) = (Y



 

5;

A~

 S
\

Figure 5

Similarly we define the map T3 :83 * S4 in a neighbour-

hood of 92. X

 

 

  
Figure 6

Applying the Hartaman-Grobman theorem in a neighbourhood

of P2 and parametrizing the stable and unstable manifold

such that P2 = (0,0), and the stable manifold is

yl-axis and the unstable manifold the xl-axis, in that

neighbourhood of P2.

If 83 = {(xl,l) 30.3 Xl-g 1}, and if

is
84 = {(l,yi) :013 yi'g 1}, then the map T3 :83 + S4
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defined and a similar computation shows that

l

_2

P2)

T3(xl,l) — (l,xl .

Since the branch ofheteroclinicorbit joining P1

to P2 takes the 0 of S2 on the zero point on S3,

S2 and 83 are transversal to the trajectories, the

correspondence map

is defined for a small neighbourhood of 0, and it is

analytic. Therefore we can assume

2

Tzlx) — clx4-c2x 4-h.o.t. (al # 0)

Similarly we define the map T4 :84 4 S1 to be the

correSpondence map and assume

2

T4(yl) = Bly1+-Bzy24-h.o.t. . (Bl # 0)

The map T = T4 0T3 oTzcaTl :S1 4 81 is defined and

continuous on a small neighbourhood of 0 on that side

of S1 which is the interior of the region bounded by

the hetroclinic orbits.

We are interested in the right-hand derivative of

T at 0. Applying the chain rule. we get

oT’wr’mr’
I_I

T‘T4 3 2 1
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Therefore near zero, T’(y) z ay where Yl — _P_

l

_)‘2 ,

and v2 =-—B; . Since we assume y = YlYZ ; l, we get

a if v < 1

In either case there is no fixed point of T’y) near y = 0,

there is no periodic orbit in a neighbourhood of the hetro-

clinic orbit.

In case y > 1, the hetroclinic orbit is attractive

from inside. Therefore starting at a point near the hetro-

clinic orbit the trajectory will intersect a transversal

to the hetroclinic orbit infinitely many times making a

sequence which is convergent to the point of intersection.

When the distance between two consecutive terms of the

above Cauchy-sequence is less than the round off error of

the computer, then solving the differential equation by

computational methods results in the so—called ghost

solutions. The one dimensional picture looks like the

\ / ‘\ .

\ / \_

following:

 

 

 

 

Figure 7
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The flat parts of the graph in Figure 7 corresponds to

the long time which the trajectory remains in the small

neighbourhoods of the critical points and the steep parts

correspond to the short time which the trajectory takes to

pass nearby the remainder of the heteroclinic orbits.



CHAPTER 2

The existence and nonexistence of periodic orbits in

a small neighbourhood of homoclinic and

hetroclinic orbits in R3

Flows on R3
 

In the case of three-dimensional systems of

autonomous differential equations it has been shown by

P.L. Silnikov that if the eigenvalues of the linearized

system at the hyperbolic point satisfy y > -k > 0 where

eigenvalues are: y > 0 and k:tiw, the existence of

a homoclinic orbit issuing from O and returning to it

results in the existence of a denumerable set of periodic

orbits in any neighbourhood of the homoclinic orbit.

We use the Hartman-Grobman theorem to give a more

geometrical proof of Silnikov's theorem, showing also the

existence of a neighbourhood of the homoclinic orbit

without any periodic orbit under the condition 0 < Y < -l

Where the eigenvalues of the linearized system are Y and

l:tiw.

We suppose the system is linear in a small neighbour-

hood of the hyperbolic point 0, and assume the box

[-l,l]3 is contained in that neighbourhood.
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The motion is governed by the system:

 

i = lX-wy

jy=wx+xy
(1)

z: 2L Y

. . . 2 2
I =Starting at a pOint 'XO'YO’ZO) on the cylinder xO-t-yO l

the solution curve would be according to (l)

x(t) = ext-'(x cos wt-y sinmt)
O 0

it .

y(t) = e (xOSinwt-i-yocosmt) (2)

\It

( = ’z.t) e 20

The point of intersection of this trajectory with the

plane 2 = l is found easily from (2) as follows:

z‘t) = l

t—71- in (31—)

’ o

‘ l l l ->.

T£n(-—) - -
ekt = e{ 20 = 01;)Y = 20v

20

‘L. '

r v l l . l -
= .'\— — - I— Ix 20 (xocosuY £n(zo)) yOSinhan 20)))

fl '

_ Y - . l .1. .1. ‘—y- 20 (XOSanMY jznlzo))+yocosm(V zn(zo)))

z = l 
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'L
V

This point is on a circle of radius 2 therefore0 :

circles on the cylinder x2+y2 = l, 0 < z g_l will be

mapped onto circles on the punctured disc 2 = l,

0 < x2+y2 g 1. We will call this map TO'

 

   

  
Fi re 8

Under TO each point of the cylinder will trace a funnel

which is invariant for the system (2) in the time interval

necessary to reach the plane 2 = 1.

Since 20 = e-Yt, y > 0 where t is the time

necessary for XX to hit 2 = 1, as XX
0 = (XO'YO'ZO) 0

gets closer to the stable manifold, TO(xO,yO,zO) gets

closer to the unstable manifold in longer time. This

correSpondence is illustrated in Figure 9.



l6

 

 

 
Figure 9

Without loss of generality we may assume that the

homoclinic orbit passes through points (1,0,0) and

(0,0,1). Therefore the point (0,0,1) maps to (1,0,0)

in a finite time t.

By the continuous dependence of solutions on the

initial value, there is a neighbourhood of (0,0,1) which

will be mapped onto a neighbourhood of (1,0,0) by the

trajectories of the system x = f(x).

Since the cylinder x2+y2 = 1, [2| g l is transversal

to the solution curves of ’2), we can define the correSpond-

ence map from the points on = l, nearby (0,0,1)

2

z

and the points of cylinder x24~y = l nearby (1,0,0).

We call this map T1 and by the Implicit Function

Theorem T1 is as smooth as the function f.

We define a new coordinate system on the cylinder

as follows:

For any point (x,y,z) near (1,0,0), we define
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. -l
s = Sln y

u = 2

Then 5 = cos-1x because x2+y2 = 1.

We define T1 to be the correspondence map from

points on 2 = 1, near (0,0,1), and define a new

coordinate system by Ax = x, Ay = y. The correspondence

map Tl can be expressed as: T1 = (fl,f2), where

fl(Ax,Ay) = ole4-o25y+-GBAXAy4-h.o.t.

f2(Ax,Ay) = Ble4-fisz4-fi3AxAy4-h.o.t.

The composite map T = TITO is defined on a small

neighbourhood of 0, and maps the point ’s,z) to the

point (fliAX.Ay). f2(AX.AY)) where:

 

(Ax = 71(T0(cos 5, sins, 2))

fl

= 2 Y (cos scos fi- Ln(%) -sins sin-‘5 zn(}l+))

Ay = 72(To(cos 5, sins, 2))

'i

L = z V (cos ssin$ Ln(%) +sinscos =3 zn(—Z:L)) 

Therefore.
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-2~.

= Y LU. J; _ ° ' 21 (l
(112 (cosscos Y zmz) SinSSin Y in 2))

‘2:

Y - L”. .1. - i (.1.
4- c122 (COSSSin Y zn’z) +SlnSCOS Y in z))

—ZX

+ 2 Y hlfs,z)

I
f2 AX.Ay)

-l

= Y .’ fl (.1:- _ ' ' .09. (.1;
£312 cosscos Y in z) SlnSSln Y Ln 2))

‘1.

Y ' LE Ll ° LE Al
+ [322 (COSSSin Y in z)) +SlnSCOS Y tn 2)))

-21

+ 2 Y h (5,2)

2

where hl(s,z) and h2(s,z) are bounded functions

near (0,0).

We are looking for the fixed points of the map T

near (0,0) that is the solutions of the system



l9

’ -i

Y
z [(o coss+o sins)cos(-L11

l

l 2 Y £n(E)) -2x

- - 23. .1 v _< +(o2coss-o151ns) Sln(Y Ln(z))]+z h1(s,z)_

fl

Y - a (A
z [(51 coss+13231ns)cos(Y in z)) _2)\

+ (52 coss-Blsins) sin(% zn(%))]+z Y h2(X.Z) =

 

 
or simply:

(

 

13* -1(s,z) — s

( .
f2(s,z) — 2

K

Let gl(s,z) = f:(s,z) -s: we show that the equation

gl(s,z) = 0 could be solved for s. as a function of 2

near 2 0, for positive values of 2.

Let a > 0 be small enough that the function

T = TIT is defined for (5,2) 6 [-v.w]><[0.€1o

 

 

a
r
i
r N

K
“

\
\
_
.
_
4
r
’

 

Figure 10
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Since TIT ([-v,wj x(zi) is homeomorphic to
O

TO([-v,vj x(z}) which is a circle, identifying (-v,z)

and (v,z) we get

T(-v,z) - T(*,z)

_ . 'k *

which implies fl(-v,z) = fl(v,z).

* ‘k

If fl(—7,z) = -v or f1(7,z) = r, then we define

s(z) = -v or s(z) = +v, respectively- Otherwise gl(-v,z)

and gltw,z) have different signs. In this case by the

intermediate value theorem glls,z) = 0 for some

5 e {-7T37T).

Now we show the uniqueness of 5. Suppose f:(sl,z) =

*

s1 and fl(52’2) = 52, Then gl(sl,z) = 0 and

91(52'2) = 0, Therefore by the mean value theorem

_—_§§———'= 0 for some 51 < s < 52. ut

* -

~ (3 z) 5f1(3'2) A
233§4——-= -——S§———-l = 2 Y [B(s,z)]-—l where B(s,z) is

bounded in s and 2. Therefore for 2 small enough,

‘1.

|z Y [B(s,z)]1 <-%. Hence 5 = 5(2) for some

*

121 g y. Then substituting in f2(s,z) = 2, we get

‘2;

Y ( ‘ L”. 1.];
z [Bl-coss+13251ns)cos(Y zn.z))

+ (Bzcoss-Blsins) sin %‘-(Ln(%))]

—2x ‘

+-z Y h2(s,z) = z . (4)



21

Substituting 2 = e-Yt in (4) we get

it .
e [(Blcoss+stins)cos mt

+ (132 coss -Slsins)sin wt] +e2)‘t h2(s,t) = e-Yt.

We also need the continuity of the function 5 = 512) in

t. since 2 = e-xt is continuous in t, it suffices to

show that s(z) is continuous in 2. '

Let 2n 4 2. we show that s(2n) 4 5(2) by proving

that the only limit point of s(zn) is 3(2).

Suppose s(2 ) = s 4 G. Since by definition of
n n
k k

s , f(s .z ) = s I and since f is continuous,

“k “k “k “k

2n 4 2, sn 4 q = fls ,2n ) 4 f(q,z).

k k “k k

Therefore f(q,2) = o. Definition and uniqueness of s/z)

imply a = 5(2).

Since slzn) E [-n,n], it has at least one limit

point by Boltzano-Weirestrass theorem. The above argument

shows

 

 

Let f(t) = ext[(Blcoss+stins)cos mt+

(52 cos 3 - Bl sins)sin wt+ ext

elt

h2(s,t)]. Since 1 < 0 ,

h2(s,t) 4 0 exponentially as t 4 m. Therefore f(t)

is an oscillating function, and
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k ekt Rt

2 g \f’tH g kle

for kl and k2 positive numbers.

In case y x -X the curves f(t) and e->‘t have
/

infinitely many intersection points as t 4 m, and in

case y < -l. the function eYt dominates the functions

it it
kle and kze

*

intersection points for t‘z t .

eventually and there will be no

 

 

Case 1. Infinitely many intersections

(Y > ->.)

Figure ll-a

 

\ / 31' VII ‘3./ \i/ ‘L, 

 
Case 2. No intersection (y < -1)

Figure ll-b
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The geometry of the transformations TO and T1

and T = TITO is illustrated in Figure 12.

 

   
 

Figure 12
 

In case 1, eventually the circles will be mapped so

that they hit the apprOpriate levels to create periodic orbits,

and in case 2, all circles are eventually mapped lower

than the appropriate level and therefore there is no

periodic orbit in a small neighbourhood of homoclinic

orbit. We can summarize the above results in the following

theorem.

Theorem 2.1. Under the above assumptions there are
 

infinitely many periodic solutions in any neighbourhood of

the homoclinic orbit in case y > -l and there is a

neighbourhood of the homoclinic orbit with no periodic

orbit in case v ( -l.
\
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The next section will be devoted to the neighbourhoods

of hetroclinic orbits in IR; .

2.2. On the existence of a neighbourhood of a

cycle consisting of two hetroclinic orbits without any

3

 

periodic orbit in It
 

Consider a system of 3 differential equations

x = f(x) (1)

and assume that (1) has two hyperbolic critical points,

p1 and p2 with eigenvalues of the linearized system

xiztmi and Yi respectively where YlY2 < 0 and

1112 < O and also kl < 0, Yiki < 0 for i = 1,2.

In this case the well-known theorem on the stable and

unstable manifolds indicates the existence of a two dimensional

stable manifold, and a one-dimensional unstable manifold at

one point and a 2—dimensional unstable manifold along

with a one-dimensional stable manifold at the other point.

We also assume there exists a hetroclinic orbit

joining the two critical points from pl to p2 and

another one joining p2 to pl making a cycle.

The following illustration shows the complete

situation.



 

Figure 13

We claim the following:

Theorem 2.2. If le2 < Y2xl' then there exists a

neighbourhood of the cycle without any periodic orbit.

2329;: We use the method of point transformation,

assuming the system to be linear in a small neighbourhood

of each critical point. Define the maps T1' T2, T3, T4,

consider the composite map T4 0T3 °T2 0T1 and look

for its fixed points in a small neighbourhood of the cycle.

a) Construction of the map Tl:

Assume the system to be linear in a small neighbourhood

of p1' and also assume that the motion is governed by

the following system in some neighbourhood N of pl = 0:
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< Y = lej-lly (2)

 (.2 = le'

We also suppose that the cube [--l,l]3 is contained in N.

. . . 2 2 _
Starting at a pOint (x0,y0,zo) on the Circle xo+yO — l

the solution curve would be,according to (2)

 

r Xlt
x(t) = e (xocos wlt-yOSlnmlt)

Xlt

< y(t) = e (XOSlnmlt+ yO cos wlt) (3)

v t

'l
t =kz( ) e 20

The point of intersection of this trajectory with the plane

2 = 1 is found easily from (2) as follows:

2(t) = l =

Y1 zo

kiwi, 11.1. '11.

x1“ Y1 2o 1 Y1 Y1
e - e — l—) 20

‘2o

‘Ll.

r = Y1 ._1_ i. _ - i. ,x 20 (x0 cos ”(Y1 in (20)) YOSlnw(V’l in 20”)

‘11.

< .. *1). $1.44.... (in. (i m ))) (4)

2 = l 
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‘L1

This point is on the circle of radius 20 1. Therefore

circles on the cylinder x2+y2 = l, 0.3 z.g 1 will be

mapped onto circles on the punctured disc 2 = 1,

0 < x2+y2 g 1. This transformation is illustrated in

Figure 14 and we call it T 1'

 

T.

‘ —'-

   

 
Figure 14

b) Construction of the map T3:

We assume that the system is linear in a small

neighbourhood of P2, and since we have a one dimensional

stable manifold along with a two dimensional unstable

manifold, every trajectory starting at a point on the disk

1 i4—yi g 1 ‘will oscillate and hit the

2
cylinder xi4—y1 = 1, z g_l in a point (x

z = l, 0 < x

lO'YIO'le)

where the following relation could be easily verified
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( ._2

x1 = zloY2 (x10 cosuu(-1— zn(—l—))

Y2 210

y sinu)( l znfz )V
< 10 2 y2 10 ’

‘12.
Y

2 . 1 l

y = z (x smwt- 2n( ))
l 10 10 {2 210

k + y COSUJ(—L'Ln(z 1)). (5)
10 2 y2 10

Therefore

".23.;
Y

2 2 _ 2

X1*‘Y1 ‘ 210

or

21
_ 2 2 2

21o ' (X14'Y1) -

SolVing the above system for (xlo,ylo), we get

( 1 1 . 1 1
x cos w(-— zn(-—-)) -y Slnw(— LIN—1)

1° Y2 210 10 Y2 210

'32
X

_ 2

“ X1210

< (6)

. l l l l

X Slnw(— zn( )) +y cosw(— zn(——))

10 Y2 21o 10 Y2 z10

‘32

_ 2 12
V ‘ y1 10

or



l 1

10 10 (x1 cos My; Lug-5))

 

)1)+ yl sin w(71_ 1n<zl

i 2 10

4:2— (7)

"2

1o

1 1

(y cos r1;(-- Ln(—))

1 Y2 zo
y10= z

  

H)x - xlsinuM3L-zn(zl

‘2 10

Therefore in fact the map T3 :(xl,yl) 4 (x10,y10,zlo)

with the following formula maps the punctured disk

_ 2 2 .
2l - l 0 < xl+yl g l to the cylinder 0 < 210 g l,

2 2 _ . .
xlO-i-ylO — l. The map T3 is not well-defined at

the point (0,0) but we define T3(0,0) = M2 where M2

is the point of intersection of the hetroclinic orbit with

the cylinder 2.

 

 

 
 

:12
2).

_ 2 2 2

Y ‘210 ‘ (X1+Y1)

3.—

. .. 2 _1- 1
x10 — zlo (xlc05112(Y2 zn(zlo))

. 1 1
< + Y Slnw (‘— zni— H)

l 2 2 210

_,,2 (a)

T

_ 2 _l_ ;

Y10 ' 210 ”1°05”sz “”210”

. 1
x - xlsmw2(:— 1n( )))
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The map T is illustrated in Figure 15.
3

 cylinder 1

k
/

x
 

 

 

Figure 15

c) Construction of T2 and T4:

The map T2 is defined along the hetroclinic orbit

from the disc 2 = l to 21 = 1. It is defined by point

transformation by following the trajectory and since both

. 2 2 2 2
discs 2 = l, 0.3 x 4-y .g l and 21 = 1, O'g xli'Yl-S l

are transversal to the trajectories of the system, the map

T2 could be expressed as

x ll1 allx4-a12y4-h.o.t.

T - (9)

yl = a21x+ a22y+ h.o.t.

and the map T4 is defined similarly but from a

neighbourhood of M on cylinder (2) to a neighbourhood

l

of M2 on cylinder (1)
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where x and y2 are new local coordinates of points

2

in a neighbourhood of M on cylinder (1) with
2

_ (

M 0,0).

To have a periodic orbit, we need a fixed point of

the composite map T = T4T3T2Tl, which means starting at

a point on a level 2 = 20 on cylinder 1, we have to come

back to the same level and the same point. We show that if

the product is greater than yle, then we canYlXZ

never return to the starting level 2 = 2 which means
0!

no periodic orbit Could exist in a small neighbourhood

of the cycle.

From (4) it is clear that starting at the level

2 = 20 we end up at a point on a circle of radius

‘11. 1.22.1
Y Y

20 1 via Tl; that is, x2+y2 = z 1 From (9) in

the definition of T assuming the transversality of the
2'

hetroclinic in the sense that the matrix

is invertible, we get

22 2 2 2 2 2 2
Kl(x +y)gxl+yng2(X +y)

where (x,y) and (xl,yl) are in small neighbourhoods

of (0,0).



32

Therefore the composite map T transforms the
2T1

points of level 2 = 20 to the points on the circle of

radius Y1 where

  

'11 '11

VI '3 2 2
K120 .g rl'g K22O , K1+K2 > 0

T3 takes the points on the circle of radius r to the

—\{2

2 212
points of level 210 = (r ) . Therefore the composite

map T3T2Tl takes level 2 = 20 to the level 210 = r2

where

X1Y2 *1Y2

Y1*2 Y1‘2 2 2
L120 ‘; rz‘g L22O , L1+L2 > 0

b11 b12

Assuming that the matrix B == in the

b21 b22

definition of T is invertible,we get
4

2 2 2 2 2 2 2 2
Ml(XO4-yo) g X24'y2-S M2(XO4-yo) , M1+M2 \

/

0

Therefore T4T3T2Tl takes the level 2 = 20 to p01nts

on circle with radius R, where

Y1‘2 Y1X2 2 2
N120 g R S N220 , Nl+ N2 > O ,

 



 

 

A Y

Since by our assumption Yllz > 1 and the equation

1 2

x112

Y1‘2
N2O = 20

does not have any nonzero solution in a small neighbourhood

of zero, the system cannot have any periodic orbit in

a small neighbourhood of the cycle.



CHAPTER 3

A singular perturbation problem on the

existence of periodic orbits for

€2u+u==u(l-u)

3.1. The differential equation:

azu+a= u(l-u) (1)

appears naturally as a modified equation for the logistic

equation u = u(l-u) solved by some numerical methods.

We show that even if the logistic equation does not

have any nontrivial,periodic solutions, the modified

equation (1) has nontrivial periodic orbits for e

sufficiently small.

The third order differential equation (1) is

equivalent to the 3-dimensional system:

 

f .

u = v

< v = w (2)

2.

evv=-v+uU-u)

K

Due to the rapid growth of w and v relative to u,

it is appropriate to change the variables and look for

the periodic solutions of the new system. The prOper

change of variable would be

34



 

U = u

V = ev

1 ‘W = e w

KT=%t

which changes the system (3) into

r

 

i1=v

(<7 = w

k1117 = -V+eU(l-U)

. U 0

or X = AX+—ef(X) where X = V , f(x) = 0

W U(1-U)

0 l

and A = O l

0 -l

The eigenvalues of A are 0, :i, with eigenvectors

l l

0 , i

0 1

Since w

5

1

(-i) respectively.

-1

1 {o

u4-iv, where u = 0 , v = l ,

1 \0

II

A

H
P
'
H

v

N

l l

the matrix P = 0 0 1 has the prOperty that,

0 -l

O 0 0

B = P-lAP = 0 0 l is the Jordan Canonical form of

0 -l

A and the transformation y = P_lx changes the linear

system X = AX into y = By.
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x

Let y=<y> . The transformation y = P-lx

2

has the form:

x = U4-W

y: —W
(4)

z = V

and the system (3) becomes:

 

r

x=efix+yHl-x-y)

<y==z-dx+yHl-x-y) w)

ké=-y.

To show the existence of a periodic solution in (S) we use

another change of variable:

 

(y'=~{sin 9

4 z = y cos 9 (6)

x = p

k

. 1 . . , . . . 2
Y = ¥(yy+zz) = -c-; 3111 e(p+ysine)+631ne(P+Y51n9)

= —g sine(p+ysine)(l-p-Ysin6)

tan a =‘E = é(14—tanze) =-JE(yz-y2)

2

 
 '— iz‘yé -12‘Yé -XZ—zfi:

e _ 2(1+tan2 ) - 2 2 - 224- 2
z 9 2 (“15) Y

Z

_ 22--ez(x+y)+e2(x+y)2+y2 = l-c 2(X+Y)(1-X-Y)

" 2 2 ' 2 2 '
y 4-2 Y 4-2
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Therefore

é-l—ccos Q(p+ysine)(1-p-ysine)

_ ‘ Y

and

P: )2 = €(X+Y) -e:(x+y)2

g(p+ysin9)(l-p-y sin e)

The new system in (y,p,e) is

r

p = e(p+ysin8)(l-p-Ysine)

A -
<
o

II -esin9(p+ysine)(l-p—ysina) (7)

 e = 1-. -%cose(p+ysin9) (1-p-ysine).

The existence of a periodic solution for (7) is equivalent

to the existence of a 2n periodic solution of

 

 

 

r

39 _ eUL+YsineH1 -P—1_sin 9)

de y-ecose(p+ysine)(l-p-Ysine)

( (a)

sly. = _€ YSinG(Pj'LSinBHl-p-ysine)

\de y-ecos8(p+ysine)(l-p-Ysine)

for y in a compact set.

Consider the Zw-periodic change of variable

2Y()

= + e + e + ---
(l) (2) fl

(9)

Y Y

taking ( ) into ( O) and try to determine Y1(Y0'p0'a)

P PO

2 .

y(2)(YO.PO.B).....pl(YO.POa6). p‘ )(Yo'Po'e) and functions
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l (2)
R (yo,po), R (yo,po),... so that the differential

Y

p0) is autonomous and given by

O

equation for (

d Yo _ 1 2 (2)
E§'< > - 6 R (YOIPO)*'€ R (YO'pO)Y' . (10)

If such a transformation can be found, then the 27

periodic solutions of (8) coincide with the equilibrium

points of (10).

We can find functions Rl(yo,p0), R(2)(yo,po),...

(2) (l)(l

) (YO.PO.6).---oP (YOoPOoe):Y (YOpPOoB): Y

9(2)(YO.PO.6),... inductively by the Method of Averaging,

using the requirement of 22-periodicity of y(l)(yo.po.e)

and p(i)(yo.po.8). i = 1,2,... . Since

(1)

d Y d YO d Y (Yorpooe)

.__ =.__ + e ——- + --' we get

C” (p) d9 (90) d9 (p‘l)(vo.po.e>

(leYIPIE)

8 > = e R1(YO.pO)4-ez R2(YO.PO)+-°°°+

92(Y.P.e)

(11),

2

e .— + e — + 00.

d6 (1) d8 (2)
p (Yolpooe) P (Yoopooe)

where

-Y(P+Y3in8)(l-p-ysine)sine

Y-ecose(p+ysine)(1-p-ysine)
91(Y.P.e)

y(p+ysine)(l-p-ysine)

r-ecose(p+ysin9Xl-p-ysine)
92(Y.p.e)
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From (11) we see that the following equation must be

satisfied:

1

R (YOIPO) = + '55 1

or

1

d Y (Yon/3019) _ l 91(Y00p000)

d9 1 ‘ R (YO’pO) ‘ ° (12)

(12) is equivalent to

271' g (Y op 00)

alw ,p ) =-1—=" (1 0 0 de (12.1)
0 0 2w J

Y(l) (“{OoPO:8)>

(9(1)(Y0o90:8)

g (Y '9 ,0) \

=f R(1)(Yo,po) -< 1 ° 0 >)de, (12.2)

92(Y00p000)

1 2" 1 27’ . .
EEO 91(Y0.p0,0)de =EI0 -Sln 9(po+y051ne)

. _‘1

(1-po- {Os-:Ln3)de— 2 Y0(2 pO-l)

2W 2F

.1. .. .1. r - _ _ .

O O

_ 2 l 2

‘ po“’o"2 Y0'

2 l 2

l

po‘po'i Yo

Therefore Rl(yo,po):=(
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Y(l)(YO:PO:9) = 01' % Y0(2 pO-l)+sin 8(po+vosin9)

. 2 1 .

(l-pO-v031n8)d8 = -(pO-po)cos 9+2}- YO(2 pO-l)Sin29-

12( 3
Y0? cos e-cos e)

(l 2 l 2 .

P )(YOoPO.8) = 01' pO-p0-2 Y0- (po+y051n9)

- .. 1
(l-pO-y051n9)de-yo(1-2 po)cos 9- 4 YCZ) sin 28 . T herefore

1

d Yo 210(29‘1) 2 2

56( )=€( 2 (12 +8 R(10"30H'”

po po‘po'i' Yo

I

‘Y (2p -l)

e (2 02 C]? 2)+€R(2)(YOoPO)+”° (13)

p0"90'2'Yo

€ G(Yo,poo€) .

Since

1 2

1

- Y (2 P -1)

90‘90‘2 Yo

the equation G(yo.po.0) = 0 has solutions

_ .12 1
(YOIPO) " ( 2 :2): (000): (Oil)

We are not interested in the trivial periodic solutions

(0,0) and (0,1). Therefore we use The Implicit

Function Theorem at («(0.90) = (3% '2') to show the

existence of an equilibrium point near (E l

2'2)'



41

 

 

l

- (2 p 1-1) Y
BG(YO,pO,O) _ 2 0 0

BTY .p )
O 0

-YO l«-2 p0

Therefore

aG(YO.pO.O) _ 1

C181: 5 (Y ) _ — i 5! O

0'90 “/2 _1_)

2 '2

which gives (YO(€) .po(€) . G(YO(€) .po(€) .e)) = o for

small enough 5 and a 2v-periodic solution for (8).

We have proved

Theorem 3.1. The modified equation

2." . _
e 11-Fu - u(l -u)

has a periodic solution for sufficiently small 6 > 0.

3.2. The Averaged System

The averaged system

(

dr _ 1
_g_r(p_§)

( .(14)

§§=p-92-§_r2 '

is conservative with the energy function

 
K

H(r,p) = r2(4p-4p2-r2) .

because
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SE =2‘((4p -4p2 -Y2) -2Y3 = 8Y(p -p2 .0:— Y2)Y

8H _ 2 _ 1

5-5- Y (4-8p) - -8Y(YP-2 Y).

aH . aH ._ . .
Therefore, SY'Y + 33 p — 0, which shows the solution

curves of the averaged system (14) are on the level curves

of H(Y,p) = c.

For c = 0, the level curves correspond to Y = 0

and Y = zjfiTITTET' which are the heteroclinic orbits

whose existence was shown in previous chapters by

studying the qualitative behavior of the averaged

system.

 

 

 

 

  
For c # 0, H(Y,p) = c implies 4p -4p2--Y2 = 5%, (Y510).

Y

The positive values of c correspond to the periodic

orbits inside the heteroclinic. The maximum value of
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H is i- and it is attained at Y = 1%Z, p =‘%

which is a critical point of the averaged system

corresponding to the periodic orbit of the original

3-dimesnional system. For negative values of c,

the level curves are unbounded as shown in the graph.

We are only interested in the positive values of c,

corresponding to the periodic orbits and we would like

to investigate the existence of periodic solutions of (8).

Since it takes infinite time to trace the heteroclinic

orbitpthe period map goes to infinity as c tends to

0*.

11¢)

  

I
'
a
-

n
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5.2 The existence of periodic orbits in (8)

Since (2) remains unchanged under the transformation

,

Y"Y

(921-9 (15)

84-9: 

[/—

starting at e = 0. p(0) = %-, 0 < y(O) < 1%-. the

trajectory T+ corresponding to the positive values

of e traces a curve in (Y,p) plane symmetric t0

the trace of the trajectory F- corresponding to the

 

 

negative values of 9, with respect to the line p = %.

(=19

I -1

4)

?= ?o 1"

1

‘ —Ju——— —-——-— —-—.— ———.—

(”=2 ‘1’ 

Since the solutions to the system (8) remains

close to the solutions of the averaged system for finite

time, and due to the 2V periodicity of (8),the stable

and unstable manifolds at the hyperbolic points are

Zw periodic, and as a point approaches the stable
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manifold on the line p = p0, the solution curve

passing through that point hits the line Y = YO at

a point approaching the unstable manifold, and from

the line Y = Y0 it takes finite time to hit p = % ,

at a point close to (l,%). We conclude that starting

at e = 0, p(0) = %, y(O) > 0 small, r+ would hit

p = % at some y(el) near 1. For 91 = nw we get

n distinct periodic solutions of period 2nw in (8)

because (8) is 22 periodic and

F 9 9

p(-81) p(91)

 
K

We have proved

Theorem 3.2. For every 6 > 0 there is
 

N = N(e) > 0 such that for every n, 0; 113 N,

there are n distinct periodic orbits with period

~ 2nv in (8). Furthermore N(€) 4 a as e 4 0.



CHAPTER 4

On the Existence of a heteroclinic orbit

4.1. The differential equation

€2u+u==u(l-u) (1)

has been studied in the previous chapter and the existence

of periodic orbits for small 5 was proved.

The existence of a heteroclinic orbit from (1,0,0)

to (0,0,0) has been observed in computer experiments

using the Shampine-Gordon Method to solve the associated

 

system

f .

u = v

3 v = w (2)

2.

c w = -v4-u(l-u) ,

k

We prove the existence of a spiral heteroclinic orbit

using a prOper change of variable and the variation of

constant formula.

The change of variable which suits our purpose would be:

2
U = u, V = av, W = e w, T = t (3)

(
o
h
-
4

which changes the system into

46
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v

w (4)

W = -V+ e U(l—U)

<
°
c
r

II
II

System (4) could be written in the form X = AX+F(e,X)

where:

,_

0 l 0 0

A = O l p F(€'X) = 6 O

o -1 0 u(1 -U)

U

and X = V

W

. . . erA

A Simple computation Will show that e = I, and the

solution to X = AX is:

u‘(t) = uo+vO Si~nt+w0(l-cos t)

V1. (t) = v0 cos t+w0 Slnt (5)

w‘ (t) = -vO Slnt+WO cos t 0

These solutions are 22-periodic, and satisfy

v2(t) +w2(t) = v2(0) +w2(0)

tEIR (6)

u(t) +w(t) = u(O) +w(0) .

Solutions to the purturbed system (3) satisfy the variation

of constant formula:

t

At _

x(t) = e X0+i eA(t S)F(x(s),e)ds.

O
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For t = 2V.

Y- e(l-coss)u(s)(l—u(s))q

X(2*r) = x(o) +j -€ (sin s)u(s) (l-u(s)) dS (7)

O ecoss u(s)(1‘u(S))
L ._  

Since the solutions of X = AX+F(e,X) depend smoothly

on e, and for e 0, the solutions satisfy (5), we

get

u(t) = uL(t) + eh

where h is bounded and uz(t) = uO+vO sin t +

wO (1 - cos t) . Therefore,

u(t) (l-u(t)) = uL(t) (l-u£(t)) +eB ,

Substituting the above expression for u(s) (l -u(s)) in

(7) we get

211‘

of (l-cos S)U(s) (l-u(S)) ds

0

Au

27

e I (l-cos s) (uz(s)) (l-uz(s)) + eZBlds.

0

Computing the integral part in Au, we get

_ _ 2_ 2__ 2 2
Au—Tr(2uo+3w0 2uO 5wO V )6+ 3BO - 6quO 1 .
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Similarly:

Av = -wa(v -2u v -2v w )4-52B

0 0 0 0 0 2

Aw = ve(-w04-2uow04-2wo)+-€2B3.

For small 6

F All-1 ‘4 7(2uo+ 3wO-2ué-5wé-vg-6uowo)

< AlV % -v(vO-2uOvO-2vowo)

Alw z Tr(-w0+ 2uowo+ 2wC2)) . 

Since w = 0 is transversal to the trajectories for

v0 # eu0(1-u ), the Poincare's map is defined on w = 0,
O

a compact set disjoint from a neighbourhood of

 

v0 = auo(l-uo). Therefore for T = T’s) z 27

F _ 2 2
Alu — 7r(2uO--2uO--VO)+€Bll

4 Alv = -Tr(vO--2uovo)+eB2l

A W = O
K 1

We divide the (uO,vO) plane into 4 regions, namely

Alu > 0 Alu > 0

R1 : , R2 :

AlV > 0 Alv < 0

Alu < 0 Alu < 0

R3 : , R4 :

Alv ) O AlV < O .
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fl

 

0 y\ U” “‘1’: o)

 w
e

 
Figure 22

For 6 = 0, starting at a point (uO,vO), wb = 0, the

trajectory will be periodic in the (u,v) plane. It will

trace the circle

2 2 _ 2 _ z
(u no) -+v — R0 R0 - gv

returning to (u0,vo) at t = 2v. For a > 0, t = 7(a)

the trajectory will be nearby. (u0,vb) and according to

the position of (uO,vO) above, below, to the right or

to the left of (uo,vo). For instance,starting near (1,0)

in the (uO,vO) plane in R3, the trajectory will reach a

point (u -+Av) which is located to the left and
O 0

above (uo,vb). (See Figure 21)

+Au, V
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Figure 23

While starting at a point in R2. the trajectory will reach

a point to the right and below (uO,vO). Therefore starting

in R3, the trajectory starts to oscillate and move to the

left and the radius of oscillation will grow until it reaches

u0 = 1/2.

After entering R4 the trajectory starts to trace

smaller and smaller rings until it tends to zero, or escapes

to the region u < 0. (See Figure 24.)



  
 

Uo 

  
Figure 24

We are looking for a point (uo,vo) such that the trajectory

starting at (u0,Vb) moves to the left and tends to (0,0)

in positive time and tends to (1,0) in negative time.

Since the 2-dimensional unstable manifold at the critical

point (1,0,0) is almost perpendicular to the u-axis, the

intersectionof that manifold with the plane w = 0 is a

curve passing through (1,0) almost perpendicular to the

u-axis at u = 1. (Figure 25)
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- (no

The intersection '1 a“

(,1. moniiv“
K) “(\5‘3 w - o

0“", (x 0,0) Ni“ ‘
1, 13 f/ I

K U
 

 
Figure 25

We pick a point (uo,vb) on the intersection of w = O

and the unstable manifold in R following the trajectory30

we get another point of the intersection forward in time,

(t7! 211’) say (u1,vl) 6R3. Since (ul,vl) 6R3, starting

at (ul,vl) the trajectory will reach a point (u2,v2) 6R3

forward in time after At F‘ZF, and in this way we define

If for some k, Pk enters R from the positivity of1'

Au in R1. the trajectory will reenter R3 ,

Therefore, let us assume the trajectory enters R4 for

some Pk where Pk-IER This simply means uk—l > 1/23.

and uk < 1/2.

Let Aun = u -u Then we have

n n-l'
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k k-l

v~ Y‘
uO-r :.Aun < 1/2 and uO-t :IAUn > 1/2.

n—1 n—1

Since solutions to 01333 are continuously dependent on

the initial values (uO,vO), uk is a continuous function

of (uO,vO).

Let the unstable manifold on w = 0 be parametrized

by = $(s), v = 1(5), -sO S s S so. Then as s-40,

k-Oo.

Therefore, k depends on s and 11k is a continuous

function of s. We define a step function k = k(s) as

follows:

For 0 < s S so, let k(s) be the number of oscilla-

tions required to reach uk(s) 2 1/2 and uk(s)+1 < 1/2.

Then clearly as s-40 :k-oo. (See Figure 26.)

‘F

} 1

lit—I

(“LT
1

(
I

 

 

 

’ l
l l l 1

l ' I l.__.l k(s)

- l l i E 1 5

0 55 3: 55 53 s; s‘

Figure 26

From the definition of k(s), it is clear that for

the jumping points, $1.32,..., uk(sr) = 1/2: that is,



there are infinitely many points on the unstable manifolds

such that the trajectory starting at those points hits the

plane u = l/2 after an integral number of oscillations.

Let s e (0.50] be such a value; therefore,

l/2. We claim that starting at u0 = uk(s),

the trajectory will be an oscillating

uk(s)

wO = 0, v = v0,

heteroclinic orbit.

Since the system remains unchanged under the change

of variable

U = l-u

V = v

W = -w

T=-T,

the trajectories are symmetric with reSpect to u =-% .

' ' = ( = =The trajectory starting at 110 uk 3), wO 0, v VO

would merge to (0,0,0) as t 4 m.

The graphs on the next 3 pages were made by the

computer, showing the oscillating heteroclinic orbit

with different scalings in (uo,v0) plane.

We have proved

Theorem 4.l. There is a heteroclinic orbit in the
 

modified logistic equation

€2.11.+ u = u(1-u)

for e > 0 sufficiently small.
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The oscillating heteroclinic orbit connecting two

critical points of ofii-o = u(1-u).
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