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ABSTRACT
Cn-PARTITIONS OF FINITE GROUPS
by James W. Richards

Often in the study of mathematical systems, information about
a given system can be obtained from presupposed properties other
than the intrinsic ones. More specifically, in the study of finite
groups--with which we shall be concerned--information about a
given abstract group sometimes can be extracted if one presumes
certain conditions on its lattice structure.

Reinhold Baer [1] has studied finite groups which admit a
partition, that is, a family 0 of subgroups of G _whichrcover
G so that distinct numbers have trivial intersection. The purpose
of this dissertation is to consider more general types of partitions.

Let m [ n] denote the set of prime divisors of the positive
integer n. If T is a given set of primes, then a subgroup H of
G is said to be a T-subgroup if m[ |H|] S 1 and a ™-subgroup
if m[|H|]JNm=¢. Similarly, an element g of G is said to be
a T-element if ™ [|g|]<_:_ﬂ and a ﬂ'fellement if [ lgl] N = @,
If G is a finite group and if "< [ |G| ], then we define a

cm-partition of G as follows:

a family o of subgroups of G which cover G such that no

member is a proper subgroup of any other and distinct
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members intersect as a cyclic mT-subgroup.

If 7= {p}, then we call ¢ a cp-partition of G. Also, O is
said to be trivial if o = {G].

In chapter I, we prove the following results:

If 0 is a cT-partition of a finite group and if
the center Z(G) of G contains a m-element of
composite order, then 0 is trivial.

If G is a finite nilpotent grbup and if rcn[|G|]T,
then G admits a non-trivial cm-partition
iff G is the direct product of a cyclic T-subgroup
with a Sylow q-subgroup Sq of G where q¢ T,
‘Sq| # q, and Sq is not generated by all those elerx;xents
of Sq which do not have order q.

If 0 is a non-trivial cm-partition of G such
that "N [[G:h(G) ]] = 4, then there is a normal
Hall m-subgroup H of G such that 7 = {L/H:L €0g}is
a Baer partition of G/H.

In chapter II, we define ''0-admissibility' and derive the

following results:

If 0 is a non-trivial cp-partition of a finite group G
such that all components are normal, then G is a p-group’

or the semi-direct product of a cyclic p-group by an
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elementary abelian q-group where q # p.

If 0 is a normal non-trivial cp-partition of a
finite group G and if L is a component of 0 which is
not self-normalizing, then there is a prime divisor q
of [ NG(L):L] such that L 1is an Hn-group where n

divides q-exp (0).

In chapter 1II, we define a Frobenius cp-partition of G as
a normal cp-partition which contains a proper self-normalizing
component. We first prove the following result which is a partial

generalization of a well-known theorem of Frobenius:

If H is a self-normalizing Hall subgroup of
a finite group G such that g €G - H=HNH® is a cyclic
p-group, then H has a normal complement in G if G is

solvable or if H is a p-group.

The self-normalizing components of a Frobenius cp-partition are
called the cp-complements when the conclusion of the above theorem

holds. We then prove the following theorem:

Let 0 be a Frobenius cp-partition of a finite group G where
one of the self-normalizing components T is a Hall subgroup.
Also, assume that G is solvable or T 1is a p-group. Then,
G has a Frobenius cp-kernel K. Moreover, if Z(K) cont.ains

a p'-elernent of composite order, then there is a normal
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component L of 0 such that the following hold:

a) K€ L;

b) L =K iff 0 is a Frobenius Baer partition;

c) If K€ LA, then L/K is a cyclic p-group;

d) K is nilpotent unless the Frobenius cp-complements

are p-groups.

Baer R. [ 1] . Partitionen endlicher Gruppen. Math. Z. 75,
333-372 (1961).
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INTRODUCTION

1. Background

R. Baer [4] defines a partition of a finite group G as a
family 0 of subgroups of G such that each g(#1) €G is
contained in exactly one member (or component) of 0. The
problem of determining all groups which admit non-trivial
partitions, that is, with 0 # {G}, has been solved by Baer [1], [2]
[4] , Kegel and Wall [ 9] , and Kegel [ 8]

The class of all groups which admit non-simple partitions was
characterized by Baer [4] . These non-simple partitions are
partitions whose groups possess a proper normal 0-admissible
subgroup, i.e., a subgroup K of G satisfying the property
that LN K #1=L&< K for all components L of 0. Frobenius
partitions are special cases of non-simple partitions. They are
partitions which have a proper self-normalizing component. Their
structure is described in theorem B. 6 of appendix B. The
remaining non-simple partitions are described in theorem B. 3.

The other class is the class of all groups admitting simple
partitions, i.e., partitions which possess no proper normal
g-admissitle subgroup. It turns out that the key to the analysis
of this class is the sockel S(G), the product of all minimal
normal non-trivial subgroups of G. Baer shows that S(G) must

be either abelian or non-abelian simple if G admits a non-trivial
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partition (see theorem B. 7). If S(G) is abelian, then the fitting
subgroup F(G), the maximal normal nilpotent subgroup of G,

is non-trivial. _Baer shows that the only group G which admits
a non-trivial simple partition where F(G) #1 is S4 (see
theorem B. 2).

Some insight into the final determination was given by Baer
(see theorem B. 9) when he showed that if S(G) is non-abelian
simple, then: [ G:S(G)] = 2, the Sylow p-subgroups for odd
primes are abelian, and the Sylow 2-subgroups are D-groups.
The problem was completely solved when Kegel and Wall [ 9]
showed for S(G) non-abelian that: G is PGL (2, q) where q is
an odd prime power > 4 if G 1is not simple, and G is either one
of the Suzuki [%2‘] groups or PSL(2, q) where q is given as

above, if G is simple.

2. Statement of the Problem

The purpose of this dissertation is to generalize the concept
of partition of a finite group. It should be pointed out that there
are many possible directions of generalization. The author's choice
is to generalize upon the intersection property.

Before we give the formal statement, we need to introduce
some notation. If n is a positive integer, then m™ [n] denotes
the set of all prime divisors of n. An element g of a group G

is said to be a T-element for a given set of primes ™ if
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m [|g|]JSm A subgroup H of G is said to be a m-subgroup of

n [|H|] € Note that 7[ |I| ]= ¢ where I is the trivial sub-
group of G and hence, I is a M-subgroup for any set of primes.
We now describe the generalized partitions studied in this

thesis.

If G is a finite group and if mC ™ [lGl] » then a family o

of subgroups of G 1is said to be a cT-partition of G if

(i) o is a cover of G, (ii) no member of 0 is a proper
subgroup of any other element of 0, and (iii) distinct members

of 0 intersect as a cyclic T-subgroup.

The restriction that no member be a proper subgroup of any other
is introduced so that redundancy may be eliminated. The general-
ization is realized when one sees that a partition as defined by Baer

is a c @-partition.

3. Objectives and Synopsis of Results

The original object of this dissertation was to classify groups
which admit non-trivial cm-partitions. This we have been able to do
in certain special cases. In order to obtain a cornplete classification,
two well-known results must be generalized. The first one that
must be generalized concerns the Hp-problem, solved by Hughes
and Thompson [6] . The needed generalization will be alluded.

to in the conclusion of theorem 2.2.1. The famous Frobenius
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theorem, see theorem A. 6, is the other result which must be
generalized. As shown in Chapter III, no complete generalization
can be found, in the sense which we need. However, a partial
generalization is obtained.

After the definition of cmT-partition in chapter I, we discuss
the lattice of all possible cT-partitions of a given group. Next,
we consider commuting elements in G and develop sufficiency
criteria for elements to be contained in a common unique
component of 0. These conditions enable us to characterize éll
nilpotent groups which admit non-trivial cm-partitions when ™
is not too large. We finish the chapter with a structure theorem
for some groups which admit non-trivial cm-partitions when
suitable restrictions are placed on T.

In chapter II, we first define the concept of o-admissibility
in a fashion analogous to that for a Baer partition. We restrict
ourselves in this chapter, and throughout the rest of the thesis,
to cp-partitions, or cT-partitions where T= {p}. After a sequence.
of lemmas and theorems, we obtain the main result of this chapter
which is a structure theorem for all groups admitting a non-
trivial cp-partition where all components are normal subgroups.
We end the chapter with a theorem which gives some insight into
the structure of components which are not self-normalizing sub-
groups of G.

The last chapter is devoted to Frobenius cp-partitions
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or those cp-partitions which are normal and contain a proper
self-normalizing component. After obtaining a partial
generalization of Frobenius's theorem, we use the result to
derive information about some Frobenius cp-partitions.

A list of symbols and notation used in this thesis is given
in the index. Also, there are two appendices. Appendix A is
for general group theoretic results while Appendix B is reserved

explicitly for results on Baer partitions of groups.



CHAPTER
NOTATION AND BASIC CONCEPTS

All groups hereunder are assumed to be finite.

In this chapter we are concerned with the family of all
cTm-partitions of a given group. Also, we consider commutability
properties which yield sufficiency criteria for elements to be
contained within a unique common component of a given
cM-partition. The latter situatiqn will enable us to characterize
all nilpotent groups which admit cm-partitions when suitable
restrictions are placed on .

Let [T [n] denote the set of all prime divisors of the positive
integer n. If ™ is a given set of primes, then a group G is said
to be a T-group if TT[‘G‘] Cm and a m-group if ™ [\G‘]ﬂ =@,
Similarly, an element g of a group G is said to be a T-element if
[ |g|JE™ and a ™-element if T [\gl JNm=¢. A m-group
(m-element) is said to be p-group (p-element) if 7= {p}. We note
that the only @-group is I, the trivial group. We shall see that

a c@-partition is precisely a partition as defined by R. Baer [4].

Definition 1.1: Let n<&m [ lGl] . A family 0 of subgroups of a

group G 1is said to be a cT-partition of G if the following hold:

a) G = UH such that no member of 0 is a proper subgroup
H€o



of any other

b) If H, K(# H) €0, then HN K is a cyclic m-subgroup.

The members of 0 will be called components of g, If
o = {G}, then 0 is a cT-partition for any given set of primes.
This obviously trivial cm-partition will be referred to as the
trivial cm-partition of G. If m= {p}, then 0 will be called a
cp-partition.

R. Baer [ 4] defines a partition of G as a family 0 of
" subgroups such that g(# 1) € G implies that g is contained in
exactly one member of 0. Then, distinct members of o
intersect as the trivial subgroup I, the cyclic @-subgroup of
G. Also, no member of 0 1is a proper subgroup of any other.
So, 0 is a c@-partition. Conyversely, it is easy to see that any
c@-partition of G is a partition as defined by Baer. We hence-
forth shall refer to these c@-partitions as Baer partitions.

Let G be any non-cyclic group, T the family of all maximal
cyclic subgroups of G, and ™ rlG|]=U{m[|HK|]: H, K(#H)€T].
Then, T is a cr-partition where "= [|G|] . Hence, if
™ * [lGl]Eﬂ cnl lG‘] and if G is non-cyclic, then G always
admits a cT-partition, namely, the one above. Furthermore, it
is clear that T is non-trivial since G is not cyclic. If G is
cyclic, then the subgroups of G are well-ordere_d and thus, itis

impossible for G to admit a non-trivial cT-partition for any
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choice of M. Consequently, in order to restrict our attention
to a class of groups, the members of which do not necessarily
admit a cT-partition, we shall usually assume that m*[|G|]&

In particular, we will have 7= {p} in the later sections.

Example 1.1.1: Let G = A  and O be the family of all maximal

cyclic subgroups. Since A5 contains no elements of composite

order, we have that % [|A5|] = @. So, 0 is a Baer partition

of AS.

Fxample 1.1. 2: Let G=A The elements of A_ are as follows:

7 7

Type Order

(1,2,3,4,5,6,7)
(1,2,3,4,5)

(1,2, 3,4) (5,6)
(1,2,3) (4,5) (6,7)
(1,2,3) (4,5,6)
(1,2,3)

(1,2) (3,4)

(1)

NVNWWoONh O N

Now, let T be the family of all maximal cyclic subgroups of A7.

It is evident that T [IA7l 1= {2}. So, T is a c2-partition of A
N. Iwahori and T. Kondo--[ 7], theorem 5--have shown that the

alternating group An on n elements admits a Baer partition if

and only if n =4,5, or 6. So, A7 admits a c2-partition, but

not a Baer partition.
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We shall now obtain a means of comparing two cT-partitions
of a group G. In particular, we shall introduce a partial ordering
on the family of all cm-partitions of G, where ™ ranges over all

subsets of T[|G|] .

Definition 1. 2. Let 01 and 0’2 be cﬂl- and cﬂz -partitions

respectively of a group G. Then, O, is said to be a refinement

of crz if each component of 01 is a subgroup of some component
_ . < if o i . <

of 9, We write CJ'1 _02 if  isa refinement of 02 and o‘1 0‘2

for proper refinement where O’lfcz but 01 # 02.

It is clear that the concept of refinement defines a partial
ordering on the family of all cm-partitions of G since inclusion
is a partial ordering on the family of all subgroups of G.

If G is not-cyclic, then denote by pm(G) the cm-partition
of G which consist of all the maximal cyclic subgroups of G
and by pM(G), the trivial cm-partition of G. (When there is no
danger of ambiguity, we simply write pm and DM respectively.)
Similarly, write ™ for n%[|G|]. Now, if 0 is any cr-partition
of G, then we see that pmfof pM. So, the family of all
cr-partitions of a non-cyclic group always has a largest element
and a smallest element.

We now procced to establish that the family of all cm-partitions

of G is indeed a lattice under our partial ordering. In fact, we
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shall describe the meet and join operations in a precise fashion.

Theorem 1.2.1: Let Gl and 02 be cﬂl-and cﬂz—partitions

respectively of G. Then, the maximal elements of
S = {HﬂK:He'JI, K EGZ] determine a cﬂ3-partition, written

o, A Oy of G where m U m, =T and 9 A o, is the largest

refinement of both 01 and g,-
Proof: Let © AGZ denote the family of all maximal elements of

1

S = {HNK:H Eo‘l, K Eoz}. It is clear that the numbers of 01 I\O‘2

are subgroups of G. Let g €G. Since o) and o, are both

cn-partitions of G, there are subgroups H and K of G such that

g€HEo and g€K€og,. Then, g €HNKES implies that there

1 2
is a maximal element H1 n K1 of S such that g ¢ H1 n Kl. But,

HN K €0 Ao, and hence, G =U L. Since o, Ao, consists
1117 % LEo N 1%
1 2

precisely of the maximal elements of S, no member can be a
proper subgroup of any other.

Now, let U, V(£ U) Eol Ao Then, U =H,NH_ and

2’ 1 2
= n
v K1 K2 where Hl, KIEO‘1 and HZ’ K2 E’J’Z. But, U#V
implies that H) # K1 or HZ # KZ. If H # KI’ then UNV =

a cyclic ﬂl-subgroup. The other

. K N c N
(HlflKZ)ﬂ(:(l KZ)-—HI K1

part follows mutatis mutandis. Thus, the intersection of any
two distinct members is a cyclic ﬂ3~subgroup where =M UTTZ.

Therefore, cr1 A 02 is a cﬂ3-partition of G.
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Now, let T be any cm-partition which is a refinement of

both 0, and 5,. Let L€T. Then, T<o, and T< o, imply that

1 2 1
there are subgroups H1 and H2 of G such that LC HIE % and
= HZ 60‘2. So, LC H1 1 H2 €S. It then follows that there is a

maximal element U of S such that LS U. But, UEOIAGZ.

So, LESU 601 Ao, which implies that T<o Ao . Therefore,

2 1 2

I /\c2 is the largest refinement of both % and g, and the proof

is completed.

The refinement 01 A 02 of both 01 and 02 will be referred

to as the meet of crl and 02.

Next, we wish to define the join of two cTm-partitions. If

01 and 02 are two given cﬂl- and cTT2 -partitions respectively of

G, then they both are refinements of p .. So, the obvious approach

M

is to define the join of 9 and 7, as the meet of all cm-partitions,

each one of which 9 and CIZ are refinements. This approach is

contingent on the fact that the meet operation is associative and

hence, our next theorem.

Corollary 1.2.2: If'Gi is a cﬂi—partition fori=1,2,3, then

(cJ1 A')‘z) Ao

3 = 0'1 A (02 A03).

Proof: Let W € (cr1 /\GZ) Ao It then follows by theorem 1. 2.1 that

3

there are subgroups Hi of G such that W = (Hl n HZ) N H3 where

HiEui for 1 =1,2,3 and H ﬂHZ 6\31 !\0'2. Since 0. Ao, consists

1 2 3
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of the maximal elements of S = {KZ NK._: K2 €o., K_€ 03], we

3 2 3

have that there isa U €0_ Ao, such that W = Hlﬂ (Hzﬂ H3) c Hzﬂ H

2 3 3

C U. It now follows that (01/\ 02) A03 ioz A03. We also have

€0, which implies that

that W = (Hl ﬂHZ) NH ]

CH

3 1

< <
(Gl I\OZ) Ao _Gl. We then conclude that (01 AO‘Z)A 03 _01 A (O’Z A 0‘3)

3

since 0 A (02 /\0'3) is the largest refinement of 9 and I, !\03, and
(01 AO‘Z) A03 is a refinement of o) and a, l\03. By repeating the
same type of argument as above, we see that Gl A (02A03) < (GIAGZ)AO3 .

The proof is then complete.

Since we now know that the meet operation is associative, we
may consider without difficulty a refinerﬁent of any non-empty
collection {Gi: lf if n} of cﬂi—partitions of G. Thus, we have our
next theorem, the proof of which we omit since it is straight

forward by induction.

Corollary 1.2.3: Let {di: 1<i<n}be any non-empty collection of

cm, -partitions of G. Then, T = A 0, is a cm -partition of G
i . i s
1<i<n
n
where no= iyl n and the components of T are the maximal

n
elements of S = { n Hi: Hi Eo‘i}. Moreover, T is the largest
i=1

refinement of the Gi's.

We now define the join operation.



13

Definition 1. 2.1: Let ‘T1 and TZ be cﬂl- and c“z-partitions of G

and I be the familyof all cm-partitions of G. Then,

T T, = € T. < j = .
lVZ A{oriloi %, i S O'i,J 1, 2}

Our next theorem establishes the fact that I is a lattice

under our partial ordering. We omit its proof.

Theorem 1.2.1: If 'I’l and TZ are cﬂl- and cﬂz-partitions of G

respectively, then ’l'1 VT2 is the smallest cm-partition of which

Tl and TZ are both refinements.

Let 0 be a cm-partition of a group G and B be a group of
automorphisms of G. Let B8 €B and H €o. Although HB is a
subgroup of G, Ha is not necessarily a component of 0. This

suggests the following definition.

Definition 1. 3: Let 0 be a cT-partition of G and B be a group of

automorphisms of G. Then, 0 is said to be B-invariant if HBEO’

whenever H €0 and 2€ B. 0 is said to be normal if B = I(G).

Theorem 1.3.1: Let 0 be a cm-partition of G and B a group of

automorphisms of G. Then, 0 has a B~invariant refinement which

is a cm-partition.

Proof: For B €B define 08: {I—IS:H €7}, Now, 08 is clearly a

c-partition of G for each 5 € B. Define T = A 0.5 We have
3€EB
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by corollary 1.2.3 that T consists precisely of the maximal

elementsof S={ N H:H EOB}. Now, let H €T, Then,
sep P B

H= N K_ where K EOB. But, K EGS= Ku Eoeu' for each
8EB B B B

u € B. So, Kg=Lp€0p for some p € B. Hence

H =n K" = N L which implies that H €S. Since
8€EB B peB

automorphisms preserve the lattice structure of G, we ila.ve
that Hp' must be a maximal element of S. Thus, H" € T, which
establishes that Tis B-invariant.

The fact that T is a cT-partition follows directly from
corollary 1. 2. 3 since TTB =1 for all 3€ B. The proof is now

complete.

The techniques used to prove the preceeding theorems are
analogous to the ones used by Baer and credited by him to
O. Kegel--see Baer [4] , pages 359-351.

We shall now develop some sufficiency criteria for elements
of a group to be contained within a common unique component of
a cr-partition of G. The following theorems in this connection
are analogous to Baer's criterion for Baer partitions and in fact
the same type of argument is employed for each one--see
theorem B. 1.

Let g be an element of a group G and ™ [lGl] Then,
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|g| factors uniquely as mn where "[m] Cm, n[n]Nn=@;

consequently, (m,n) =1. It then follows by theorem A.1l that
g = g8, = 8,8, uniquely where \gll =m and bzl =n. Also, g
and g, are both powers of g. g is said to be the m-part of g

and g, the ™ -part. This decomposition of g is called the

m-decomposition of g.

Theorem 1.4.1: Let 0 be a cm-partition of a group G and x;y
be elements of G which commute. Then, there is a unique
component of 0 which contains both x and y if one of their

m-parts has composite order.

Proof: Let XX, =% and VY, =Y be the decompositions of x
and y into their respective m-parts and ™-parts. Let us first
consider the case where ]yzl < lle. Now, xy = yx implies

that xiyj = iji for i, j =1, 2 since powers of commuting elements
commute. Let m = ‘xlyl . O being a cm-partition implies that

there are components H and K of 0 such that x € H and

xy € K. But, ‘(‘xlyll, ‘xzyz‘) =1 and Iyzl < ‘le together

imply that 1 # xzm = (xy)m € HN K. Then, we conclude that

H = K since xzm is a ™m-clement. So, x, xy €H. But, H

being a subgroup of G yields that y = x-l(xy) €H. The
uniqueness of H follows from the fact that x €H and x is

not a T-element. We get the same conclusion when lxz‘ < |y2\
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mutatis mutandis.

Let us assume now that lxz‘ = lyzl. Since x_ or Y, has

2

composite order and |x2‘ = lyz‘ » we have that X, and Y, both
have composite order. Let q be a prime divisor of Iyzl and

z = ylyzq. Then, z = Y2, where 1# z q Also, |22|< |x2|'

2 Y2
It then follows from the previous paragraph that there is a unique
component H of o .such that x, z €H. Also, Y, being of
composite order and |z2| < |y2| imply by the previous
paragraph that there is a unique component K of 0 such that

z, y€K. Then, z € HNK and hence, H =K since z is nota

m-element. The proof is now complete.

The assumption that x_ or Y, has composite order in the

2
preceding theorem cannot be removed as the following example

shows.

Fxample 1.4.1: Let G be the abelian group of order 18 whose

Sylow 3-subgroup is elementary abelian. The family of all cyclic
subgroups of order 6 determines a c2-partition of G. Let <
and <y> be distinct components of o’.' Now, xy = yx, but x and
y are contained within distinct components. The 2'-parts of x

and y both have order 3. So, theorem l.4.1 cannot be improved.

The above theorem gives us a sufficiency criterion, in terms

of the m'-parts, for elements to be contained in a unique common
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component. Our next step is to develop one in terms of the
M-parts.
Recall that the exponent of a group G, written exp(G), is

the smallest positive integer such that gn= 1 for all g €G.-

Definition 1.4: Let 0 be a cT-partition of a group G. The

exponent of 0 is defined to be exp(d) =1l.c.m. [exp (HNK):

H, K(# H) €0} if 0 is non-trivial and exp(o) = exp(G) otherwise.

If 0 is non-trivial, then it is clear that 0 is a Baer
partition if and o.nly if exp(0) =1. So, exp(d) in some sense

measures how close o is to being a Baer partition.

Theorem 1.4.2: Let 0 be a crm-partition of G and x,y be

commuting elements of G. If |x1] > lyll exp(o) or ‘y1l> lxllexp(O’)

where X, and yl are the m-parts of x and y respectively, then

there is a unique component H of 0 which contains both

x and y.

Proof: Let us assume that lxl‘ > lyll exp(J) where x = xlxz

and y = ylyz are the decompositions of x and y respectively

into their m-parts and m-parts. Let H and K be components of

0 such that x €H and xy €K. Also, let m = |x2y2| and
k = ‘Yl‘- Now, (m, ‘xli) =1 implies that leml = |x1|. This

together with k <k exp(7) < lx1| yields that 1 # xink= xmk

m)k exp(c)£ 1 since

= (xy)mk € HN K. However, (xl
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m
1

| | = ‘xll > k exp(7). Hence, exp(HNK) does not divide
exp(d) which implies that H = K. So, x, xy € H which implies
that x,y € H since H is a subgroup. The argpment for the
case |y1| > |x1| exp(c) is the same as before.

Assume that there is a component L of o which contains
both x and y and such that L# H. Then,<x,y> CHNL, a
cyclic m-subgroup. In particular, it follows that x = X, and
y = yl.. Let w be a generator of <, ~y1>. If |xl|> ‘yll exp(0),
then ’|w|2 |x1" > exp(0) which is a contradiction to the fact that
exp (H N K) divides exp(d). We get the same contradiction if

|y1‘ > lxl‘exp(d). So, we are forced to conclude that H is indeed

unique and hence, the proof is complete.

The assumption that |x1| > |yl| exp(0) or |y2l > |x1lexp(0')

cannot be weakened as the following example shows.

Example 1.4.2: Let G = Hx Q where lHl =2 and Q is the

quaternion group of order 8. exp(G) = 4. Let 0 be the family of
all subgroups of order 4. Then, 0 is a c2-partition of G and
exp(0) = 2. Let x €Q have order 4 and y € H have order 2.
Then, xy = yx. Now, x and y are contained in distinct
components of 0. However, |x| = |y|lexp(0). This shows that the

thecorem cannot be improved.

We now examine some consequences of the above theorems.
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Theorem 1.4.3: Let 0 be a cm-partition of a group G and H.

be a subgroup of G. H is then contained in a unique component

of o if Z(H) contains a ™-element of composite order.

Proof: Let h € Z(H) be a m-element of composite order and K
be the unique component of 0 which contains h. Let x €H.
Since h € Z(H), we have that xh = hx. Since h has composite
order, we conclude from theorem 1.4.1 that x and h are
contained within a unique component of 0. But, K is the
unique component of 0 which contains h. So, x € K. Hence,
HC K. The uniqueness of K follows from the fact that it is

the ‘only component which contains h. The proof is now complete.

Corollary 1.4.4: Let G be a group and n S [ |G|]. If Z(G)

contains a ™-element of composite order, then G admits only

the trivial cm-partition.

Proof: Let 0 be any cTm-partition of G and g0 be a m-element
of G. of composite order such that gOE Z(G). It then follows by
theorem 1.4.3 that G is contained in a unique component of G.
But, this occurs when and only when o = {G}. So, the proof is

complete.

Our next step is to extend these theorems to a slightly more
general situation.

Let G be a group and Z0 = I. We inductively define Zi by
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z./z, | =2(G/z, ). Then, 1=2 <27

< o= = =
- 03252 =2 =2 =

1
since G is finite. This series is called the upper central series
of G and its laréest member is called the hypercenter h(G) of G.
Another characterization of h(G) given by Baer--see theorem A.2--
is that an element g of G is contained in the hypercenter if and
only if each p-part of g is centralized by all p'-elements of G
for every prime p. Also, we mention here that G is nilpotent
if and only if G = h(G).
Now, let 0 be a cT-partition of G and U be a subgroup of G.
If s={KnN U:K €0}, then it is clear that the maximal elements of
S determine a cTTo -partition of U where TTOETT. This cﬂo-
~partition is called the induced partitionon U byo and‘is denoted
as 0, .. Obviously, if U is not contained in a component of o,

U

then 0 and UU both are non-trivial.
We now describe the structure of h(G) if it is not contained

in a component of .

Theorem 1.4.5: Let 0 be a cm-partition of a group G and assume

that h(G) is not a T-subgroup and is not contained in a component
of 0. Then, h(G) is the direct product of a cyclic T-subgroup with

a group whose center has exponent q.

Proof: Since h(G) is nilpotent and is not a T-subgroup, we know
that h(G) = H x K where H is a m-subgroup and K is a

m™-subgroup. Clearly, 0 induces a non-trivial cﬁo-partition GU
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on U = h(G). Now, Z(U) is not a m-subgroup since

nf |U]]= m[lZU)I] . It then follows by corollary 1. 4.4 that
exp(Z(K)) = q, a prime.

We assert now that if k(#1) €EK and if Kk € L EGU,then HC L.
Let h € H. The conditions: U nilpotent, k a ™-element, and h
a T-element, imply that hk = kh and that hk is contained within'

a unique component T of o From (lh!, Ik‘) =1 and

U
Ih| = n, we conclude that 1 # k™ = (hk)” € LN T. It then follows
that L = T since k° is not a m-element. So, k, hk € L and
hence, h = (hk)km1 €L since L is a subgroup of G. Thus, the
assertion that HC L is established.

§)
such that M # L. Since U = H x K where H is a T-subgroup and

Now,GUis non-trivial and so there is a component M of o

exp(z(K)) = q, we have that M = H1 X Kl where Hlf_-'-_ H and

K C K. It then follows from the fact that HCL # M that M
contains an element m of order q such that m&M - L.
Since |m| = q implies that m € K, we see that HcEM. So,

HSM N L such that M # L implies that H is a cyclic m-subgroup.

Therefore, the proof is complete.

In the proof of the next theorem, we use some results on

Baer partitions. The needed concepts are the following:

Definition: If 0 is a Baer partition, then a subgroup Kof G

is said to be o-admissible if LNK #1= L<SK for all components
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L of o.

Definition: A Baer partition o of G is said to be non-simple if
G contains a proper normal 0-admissible subgroup; otherwise,

it is said to be simple.

Definition: A Baer partition 0 is said to be Frobenius if ¢

contains a self-normalizing component which is proper.
We now state the main theorem of this chapter.

Theorem 1.4.6: Let G be a nilpotent group and TS [|G|] . Then

G admits a non-trivial cm-partition if and only if G is the direct
product of a cyclic T-group with a Sylow q-subgroup Q of G

such that Hq(Q) ©Q and |Q| £ q.

Proof: Le~t us begin by assuming that G admits a non-trivial
cM-partition g. By theorem 1.3.1, we may assume that o is
normal. Since G = h(G), it follows by theorem 1.4.5 that
m [|G[] =mU {q)} where q£m, and that G =Hx Q where H isa
cyclic T-subgroup and Q is the Sylow g-subgroup of G.

We assert that Q 1is not contained in any component of 0.
Assume that there is a component L of ¢ such that QS L.
Let x(#1) €Q. As in the proof of theorem 1.4.5, we see !:hat
HS L. However, this implies that G = Hx Q =<H, Q> SL, a

contradiction to o being non-trivial. Thus, Q is contained in
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no component of O.
It now follows that 0 induces a non-trivial cm-partition

o.on Q. However, Q contains no T-element of G other

Q

than 1. So, GQ is in fact a Baer partition of Q. Also, ©

Q

is normal since 0_ 1s the maximal elements of

Q
S={QNL:L€cg}and 0 is normal. From the fact that Q = F(Q),
we conclude by theorem B.2 that o_ is not simple. Also,

Q

OQ is not Frobenius since nilpotent groups contain no proper
self-normalizing subgroups. So, {Q contains a proper normal
GQ -admissible subgroup K. If g €Q - K, then it follows by

theorem B. 3(b) that |g| = q. This implies that ‘Hq(Q) c KeQ.

It is clear that |Q| #q since 0 __ is non-trivial on Q. This

Q
completes the only if part.

Let us assume now that G = Hx Q where H is a cyclic
m-group and Hq(Q) CQ where lQl # q. By theorem B.4, it
follows that Q admits a non-trivial Baer partitiono. Define
T = {HL: L€0}. Now, if K and L are subgroups of Q, then
HLSHK if and only if LCK.

Let g€G and g = g8, be the decomposition of g into its
respective T-part and ™-part. Since 0 is a Baer partition of
Q, there is a component L of o such that g, € L. Thus,

g = g8, €HL €T. If HL # HK, then it is clear that H= HLNHK,

This completes the if part and hence, the thecorem.
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We shall now describe the nature of a cn-partition 0 of G

when suitable restrictions are placed on the given set of primes.

Theorem 1.4.7: Let 0 be a non-trivial cT-partition of G such

that "N 7 [[ G:h(G) }]= @. Then, there is a normal Hall m-subgroup

H of G such that 7= {L/H: L €0} is a Baer partition of G/H.

Proof: Let us first consider the case where G is nilpotent.
Then, G = h(G). If G has no T-elements, then 0 is a Baer
partition of G. So, assume that G contains M-elements and let
H be the normal Hall 7 -subgroup of G. We showed in
theorem 1. 4.6 that H must be contained in all components of ¢.
Let L,K(# L) €0. Then, H SLNK. However, H being the
maximal T-subgroup of G and LN K being a cyclic m-subgroup
imply that H = LNK. So, I=LNK/H=L/HNK/H. Let
X =x HEG/H. Now, 0 being a c-partition of G implies that
there is a component S of 0 such that x€S. So, x H€S/H
since HES. Therefore, 7= {L/H:L €0} is a Baer partition of
G/H.

Assume now that G is non-nilpotent. Then, h(G) S G. Let
H be the Hall m-subgroup of h(G). Then, 7 [[G:h(G)]]Nn =0
implies that H is the Hall m-subgroup of G. Also, G contains
a m-element x #1. Let L be the component of ¢ which
contains x. Let h € HSh(G). It then follows by thcorem A.2

that xh = hx, If K is the component of & which contains hx,
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we then have for lh\ = n that <x> = <x'>= <(xy)n> CLNK
since x and h are coprime elements. But ;c(# 1) being a
m-element implies that L = K. So, x, xh € L which yields
that h = x ‘(xh) € L. So, H CL. Let Land K be distinct
components of 0. Using the same argument as in the first
- paragraph, we have that T= LNK/H = L/HNK/H and hence,
T = {L/H: L €0} is a Baer partition of G/H. This completes

the proof.

If the restriction placed upon the given set of primes is
removed, then the theorem is false as the following example

shows.

Example 1.4.3: Let H = <a,b,c:a2= b3= c3= 1, ab = ba, ac = be>

Let e be the automorphism of H defined by:
ae = a, be = b-l, ce = c-l. Let G be the extension of H by 8.
Since le‘ = 2, we have that H = h(G). We define a c2-partition
o of G to be the family of all Sylow 2-subgroups together with
all the cyclic groups of order 6.

We see that {2} =1 = T[[G:h(G) ]]. Since G does not have

a normal Sylow 2-subgroup, the conclusion of theorem 1.4.7 is not

satisfied.



CHAPTER 1I
0 -ADMISSIBLE SUBGROUPS
OF CP-PARTITIONS

In this chapter, and throughout the rest of the thesis, we

consider cp-partitions where p is a fixed but arbitrary prime.

Definition 2.1: Let 0 be a cT-partition of a group G. Then, a

subgroup H of G is said to be O-admissible if for each component
L of 0 either LN H is a cyclic m-subgroup with exp (LN H)
dividing exp (0) or LCH. |

All non-cyclic components of a cM-partition are J-admissible
subgroups but the converse is not true as the following example

shows.

Example 2.1.1: Let A =<a> where |a] =4 and G=AxS

3
The family ¢ of subgroups of order 4 of G together with the
subgroups of order 3 determine a c2-partition of G where
exp (7) = 2. The Sylow 2-subgroups of G are S-admissible but

are not components of O,

If 0 is a normal cm-partition of G and if H is a g-admissible
subeoroup of G, then any conjugate of H is 0-admissible. However,

H # H® does not imply that HN HE is a cyclic m-subgroup as the

26
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following example shows.

Example 2.1.2: Let G = S4 and define O to be all the conjugates
of S3 in S4 together with all the cyclic subgroups of orders equal
to 4. 0 is a c2-partition of G and exp (0) = 2. The Sylow

2-subgroups of G are 0-admissible but intersect in the Klein

4-group which is not cyclic.

We now begin with a sequence of lemmas and theorems which
will terminate with a structure theorem for those groups which

admit non-trivial cp-partitions having all components normal.

Theorem 2.1.1: Let 0 be a cp-partition of a group G, Ka

o-admissible subgroup of G, U a component vfJ, andu €U - K,
Let u = u,u, be the decomposition of 1 into its respective p-part
and p'part. Then, the following hold:

a) If u, = 1, then exp (CK(u)) divides lull exp (0);

b) If luzl = q, a prime, then CK(u) is the semi-direct
product of a subgroup of UNK by a group of exponent
qor k;

c) If ]uZ! is composite, then CK(u)EUﬂK.

Proof: Let us first consider the case where u2 =1. Then, u=u

=u €U - K., Let kECK(u) andk=k1k2

1

which implies that u

be the decomposition of k into its respective p-part and p'-part.
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Since kl and kz are both powers of k, it follows that

kl,kz €EK. H kZ # 1, then there is a unique component S of

o which contains kZ' But, K being 0-admissible and RZEKHS

imply that SSK since k, # 1is a p'-element. Since k

centralizes u, we have that kZ centralizes u because k2 is a

power of k. Also, kz and u are coprime elements of G, Let

n = lul and W be the unique component of ¢ which contains ukz.
n

<k >=
Now, kZ <k2

>=<(uk,)”>S WNK. Then, K being

o-admissible and kz being p'-element imply that WS K. However,

if m = lkzl, then <u>= <d™s =< (ukz)m> CK, a contradiction to

our assumption that u € U - K. Hence, kz =1, -

Assume now that lkl = ]kll > |u1|exp (0). It then follows by
theorem 1. 4. 2 that there is a unique component R of 0 which

contains both u, and k,. But, k

1 1 € RN K and exp (0) <

1

lull exp (0) < lk imply that exp (R N K) does not divide exp (0)

1

and hence, RS K. Then, it follows that u =u€RCK, a

1

contradiction to our assumption that u €U - K. Therefore, we
see that exp (CK(u)) does indeed divide Iull exp (7) which
completes part a.

Assume that |u2| = q, a prime. Itis clear that CK(u)E
CK(uZ). Let kECK(uz). If k is a p-element, then let W be
the component of 0 which contains ku, =u k. Let m = ‘ x| .

2 2

Then, we have <u_> =<u2m> = <(ku2)m> cw NU. But, WNUis

2

not a cyclic p-group and so W = U. Since k G<ku2>f U, we conclude
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that k € UNK. It then follows that Cy(u,) has a unique cyclic

Sylow p-subgroup contained in KN U. Now, let k be any
p'-element of CK(uZ). Since UNK is a cyclic p-group, we
know that k £ U. So, it follows by theorem 1.4.1 that |k| =r,

r aprime. If r # q, then, ku_, has composite order and

2
centralizes k. But, this implies by theorem 1. 4.1 that kuz €U and
hence, k = ka—uz)uz-l € U, a contradiction. So, |k| =q. Thus, we
have that CK(u) is the semi-direct product of a subgroup of UNK
by a group of exponent q.

Finally, assume that ]uzl is composite. It then follows by

theorem 1. 4.1 that. C_ (u

Cc Cc f
K )€ U and hence, CK(Lb)._ KN U. However,

2

is a power of u. Hence, CK(u) c KNU and

C g 1
CK(u)_ CI(uZ) 51.nce u2

the proof of the theorem is complete.

Corollary 2.1.2: Let 0 be a cp-partition of a group G, Ka

o-admissible subgroup of G, and U a component of 0. Let

u € U - K such that u is neither a p-element nor a p'-element.

Then, CK(u)S UNK.

Proof: Let wu = u,u, be the decomposition of u into its respective

p-part and p"~part. Then, u being neither a p-element nor a

p'-element implies that w, #l4u If lu is not a prime, then

2° i ZI
we have by theorem 1.2.1 (c) that CK(u)S UNK. So, assume that
|u2| = q, q a prime. It then follows by theorem 2. 1.1 (b) that

CK(u) is the semi-direct product of a subgroup of UNK by a
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group of exponent q or 1. But, we have by theorem2.1.1 (a)

that exp (CK(ul) ) divides | u1| exp (0) which is a power of p.
. - c .
Since CK(u)_ CK(ul)' we now conclude. that CK(u)__ U N K which

completes the proof.

The next two lemmas which we prove are well known facts

about automorphisms.

Lemma 2.1.3: Let ¥ be an automorphism of order n > 1 of a group

G and assume that H# I is a normal y-invariant subgroup such that
Yy = idyandy induces the identity automorphism on G/H. Then,
there is an h{# 1) € H such that e

Proof: Let {_gl =1, Byreeeo gt] be a complete set of coset
representatives for H in G, Since n >1, there is a g, such that
‘)’(gi) # g Since ¥ induces the identity automorphism on G/H, it
follows y{g) = g.h where h (#1)€ H. Since y(h) = h,

n

g, =7 (gi) =8 h" which implies that h"= 1 and hence, the proof

is complete.

Lemma 2.1.4: Let 7y be an automorphism of order n>1 of G

and Gy = {g € G: Ag) = g} be the stability group of G relative to
y. If G‘y is normal and if n is coprime to ‘G‘yl , then ¥ induces

a fixed-point-free automorphism on G/G‘y'

Proof: Since v # idG, it follows that Gy C G. Assume that
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G =gG for so €EG -G anddefine H=<g, G >
Y(g)ygyrsmeg y g G,
Clearly, H is a ¥ -invariant subgroup of G and Yy # idH since

G‘)'C H. But, induces the identity automorphism on H/G'y' So,

"H
we have by lemma 2.1. 3 that there is a go()é 1) € G‘y such that gomz 1
where m is the order of ‘yH. However, m divides n which is a
contradiction to the assumption that n and IGy‘ are coprime.

Thus, ¥ induces a fixed-point-free automorphism on G/H and the

proof is complete.

Lemma 2.1.5: Let 0 be a cp-partition of a group G, U a compo-

nent of 0, and K a 0-admissible subgroup of G with U¢ K. Let
T=KNU. I x(#1) €U has order q# p and if‘M is an
x~-invariant subgroup of K which contains T as a proper normal
subgroup such that x induces the identity automorphism on M/T,

then q divides [M:T] .

Proof: Assume that q does not divide [M:T] as described in the
hypotheses. Let C = CK(x) where x €U and |x| = q, a prime

# p. We have by theorem 2.1.1 (b) that C is the. semi-direct
product of a subgroup of T = UNK by a group of exponent q or 1.
Hence, CM = CNM is the semi-direct product of a subgroup of T
by a group of exponent q or 1. Since T 1is a cyclic p-group and
q(# p) does not divide [M:T] , q does not divide |M| . Hence,
CMET. Since T is a cyclic p-group normalin M and C, © T,

M-

it follows that CM is normal in M since it is characteristic in T,
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Now, |x| coprime to \CMl implies by lemma 2.1.4 that x

induces a fixed-point-free automorphism X on M/C Since T

M
is a normal x-invariant subgroup of M, it follows that T/CM is

a normal X-invariant subgroup of M/C_,. So, X induces a fixed-

M
point-free automorphism ¢ on M/CM/T/CM by theorem A. 4

- x

where cp(mCMT/CM) = x(rnCM)'_I‘/CM =m CmT/CM.
Now, by theorem A.5, the mapping f:M/T QM/CM/T/CM

defined by f{mT) = mCMT/CM is an operator isomorphism of

M/T onto M/CM/T/CM. Let m€M - T. Since x induces the

identity automorphism on M/T, it follows that m T = mT. But,

f(mxT) = q¢f(mT) = cp(mCM)/T/CM # rnCM/’i‘/CM = f(mT) since ©

is a fixed-point-free automorphism of M/CM/T/C We then

M-
have that f{mT) # f(mxT) = f{(mT) a contradiction. Hence, we are

forced to conclude that indeed q divides [M:T] and the proof is

complete.

Theorem 2.1.6: Let 0 be a cp-partition of a group G, Ka

o-admissible subgroup of G, and U a component of 0 such that
Ug K, but UCNG(K). Then, the following hold:

a) [U, N (U)]EKNU

b) T =KNU is a normal cyclic p-subgroup of both U 'and
N = NK(U)
c) U/T and N/T are either both p-groups or g-groups of

exponent q £ p if TCN,
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Proof: Let u€ U and k€N = NK(U). Then, uk € U which

implies that [u, k] = u K€U, Since UC N;(K), we have.

Llik ek, By

that u-lk-luEK and hence, [u, k] = u_
combining our results, we have that [U, N] SUNK which
completes part a.

Since K is a 0 -admissible subgroup of G and does not
contain U, it follows that T = UNK is a cyclic p-group. It
follows directly frgrn UCNG(K) that T=UN K is a normal
subgroup of U. Consider t€T and k €N. By part a it follows
that [t, k] €T. Thus, t [t, k] = kK tk€T. Thus, T isalso
normal in N. This establishes part b.

Lgt us assume now that TSN = NK(U). We shall show that
N/T and U/T are both p-groups if p divides [ N:T] and then
show that they are both q-groups of exponent q # p if p does .
not divide [N:T] .

We first consider the case where p divides [N:T] . We
assert that U/T is a p-group. Assume to the contrary and let
u€ U have order q # p. Let Sp be a Sylow p-subgroup of N.
Then, p dividing [N:’I’] implies that TCSp. Since [U,N]S T,
it follows that Sp is a u-invariant subgroup of N and also that S
contains T as a normal u-invariant subgroup. But, [N,T]CT
implies that u induces the identity automorphism on S /T. We

then have by lemma 2.1.5, since u ¢ K, that q(# p) divides

[Sp:T] , a contradiction. So, U/T is a p-group as asserted.
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We assert next that N/T is a p-group. Assume the contrary
and let n€ N have order q # p. Let W be the component of &
which contains n. Then, n€ NNWCKNW which implies that
WCSK since K is 0-admissible and n is a p'-element. So,
n¢ U. Since n€N = NK(U), it follows that U is a n-invariant
subgroup of G. Now, T is a normal n-invariant subgroup of U
since it is normal in both N and U. We conclude from [U,N]JEST
that n induces the identity automorphism on U/T and hence, it
follows from lemma 2.1.5 that q divides [U:T] = p°, a contra-
diction to g # p.” Hence, it follows that U/T is a p-group.

Assume now that p does not divide [N:T],. Let n€N
have order g, a prime, and W be a component of 0 which contains
n. Then, nENNWCSKNW which implies that WC K since K
is 0-admissible and n is a p'-element. Now, WNUSKNU=T
a cyclic p-group yields that n¢ U. Let H be any subgroup of . U
such that T&H. Since [N, U] €T, we have that H is a
n-invariant subgroup of U and that n induces the identity
automorphisms on U/T and hence on H/T. From lemma 2.1.5
we conclude that q divides [H:T] . Since H is arbitrary, it
follows that U/T is a q-group.

Now, let u €U have order q. Since UNK =T a cyclic
p-group, we see that u ¢ K. Let M be any subgroup of N such
that TEM. Now, M is a u-invariant subgroup of N since

[N, UJEST. Also, u induces the identity automorphism on
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M/T since [N, UJST. Thus, it follows by lemma 2.1.5

that q divides [M:T] . Therefore, N is a q-group since M
is arbitrary.

We assert now that exp (N/T) = exp (U/T) = q. Let
n € N such that |n| = qz. It then follows by theorem 2.1.1 (c)
that C = Cu(n)f T. Since T is cyclic and is normal in U
we have that C is characteristic in T and hence, normal in U,
But, |n| is coprime to |C]. So, we have by lemma 2.1.4 that
n induces a fixed-point-free automorphism of q power order on
U/T. However, it is well-known that a fixed-point-free automorphism
of prime power order has coprime order to that of the group, which is
a contradiction. So, exp (N/T) = q. Now, let u €U have order qz.
Again, we have bytheaem 2.1.1 (c) that C = CK(u)SKﬂ U=T. So,
u induces a fixed point free automorphism on N/C. But this is a
contradiction since q divides [N:C] and the fixed-point-free
automorphism is of q power order. Thus, exp (U/T) = q and

the proof is complete.
We now prove the main result of this chapter.

Corollary 2.1.7: Let 0 be a non-trivial cp-partition of G such

that all components are normal subgroups of G. Then, G is
either a p-group or the semi-direct product of a cyclic p-group

by an elementary abelian g-group.



36

Proof: If G is a p-group, then there is nothing to prove. So,
assume that G is not a p-group and let g € G have order q # p.
Let L be the component of 0 which contains g. Since o is
non-trivial, there is a component W of 0 such that W # L.

So, WNL =T is a proper subgroup of both W ;md L. Since

W and L are normal subgroups of G, it follows that

WNLCL =N, (T) and WNLCW =N_(T). Since q divides |L|,
we conclude from theorem 2.1.6 (c) that W/T and L/T are both
groups of exponent q.

We now separate the argument into two cases; (i) W NL =1
and (ii) WNL #I. If WNL-=1I, then W and L are both
q-groups of exponent q. Let R be any component of 0 such that
R # L. Then, RN L being a cyclic p-group and L having
exponent q yield that RA L =1 and hence R has exponeht q "by
theorem 2.1. 6 (c). So, all components of 0 have exponent q.
This implies that 0 is a Baer partition of G since distinct
components intersect as cyclic p-groups and G has no non-
trivial p-elements. It then follows by theorem B.5 that G is
an elementary abelian q-group.

Assume now that WN L =T #£1I. Let R be any component of
o where R f L. By theorem 2.1.6 (¢) R/RO1L and L/RNL are
both groups of exponent q. But, this impllies that TSRN L. Then,
we conclude that T = RN L since exp (L/T) = q. We thereupon have

established that T is the Sylow p-subgroup of G and is contained
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in all components of o.
Now, define 7= {U/T:U€0}. Let §=gT€G/T. Then,
g €G implies that there is a component S of 0 such that
g €S. Since TC S, it then follows that g = gT €S/T. Let
U/T and S/T be distinct elements of 7. Then
U/TNS/T=UNS/T=T/T =1 and thus, T is a Baer partition
of G. Now, U/T €T is normalin G/T since U is normal
in G. Hence all componénts of T are normal subgroups of
G. It then follows from theorem B.5 that G/T is an elementary

abelian g-group which completes the proof.

We now wish to say something about the components of
cp-partition of G. Due to the combined results of Baer, Kegel,
and Suzuki, the structures of all components are essentially
determined. To be more specific, Let H be component of a
Baer partition which is not self-normalizing. Then, HCG. If
H is normal in G, then H is a proper normal c-admissible sub-
group of G. If H is not normal, then let N be the normalizer
of H in G. Then, HC N implies that 7 induces a non-trivial

Baer partition o on N. Then, H is a proper normal

N
GN-admissible subgroup of N. If N is a q-group, then N and
hence H is nilpotent which we wish to show. So, assume that

N is not a q-group. It then follows by theorem B. 3 (c) that H

is generated by all those elements of N which do not have order p.
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So, g€N - H implies that |g| =q. Let h€H. Then,
-1 . . -l1.q . . q
hg "¢ H implies that (hg )’=1. So, this together with g'=1
-1 2 q-1
yields that 1 = (hg )¥ = hnBn8 ... h8" =1 which implies that H
admits an Hq-automorphism. It then follows by theorem A.7

that H is nilpotent. This now brings us to our next definition.

Definition 2.2: An automorphism ¥ of order n is said to be an

y v2 Al
Hn-automorphism of a group Gifg.g'.g" ... g =1 for all

g €G. A group G is said to be an Hn-group if G admits an

Hn-automorphism.

Remark 2.2.1: A fixed-point-free automorphism of order n of

a group G is an Hn-automorphism, but not conversely. The
converse, however, is true if n is coprime to |G|. It is still
an open question as to whether a group G which admits a fixed- _
point-free automorphism is solvable or not.

We now state our result for proper normal c-admissible

subgroups of a cp-partition.

Theorem 2.2.1: Let 0 be a normal cp-partition of a group G

and K a proper normal g-admissible subgroup of G. Then,
there is a prime divisor q of [G:K] such that K is an
Hn-group where n divides g exp (7), K is a p-group, or the

semi-direct product of a cyclic p-group by a group of exponent q.

Proof: We use induction on |G]. 53 is the ground case.
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Let g €G - K such that gK has order q in G/K. Define

U=<g, K> If UCEG, then U not contained within a component
of o0 implies that 0 induces a normal non-trivial cp-partition
oy on U. Now, K is clearly a proper normal GU-admissible
subgroup of U. Hence, it follows by induction that there is a
prime divisor q of [U:K] such that K is an Hn—group where n
divides q exp (O U). Then, exp (O‘U) dividing exp (0) yields that n
divides q exp (0). So, let us assume that G =<K, g>

Now, let g be any element of G - K. Then, G/K being
cyclic of order q implies that gq € K. Since, g ¢ K, there isa
component L of 0 such that LE Kand g€ L. But, gq €ELNK
a cyclic p-group such that exp (LN K) divides exp (7). Hence,
|gql divides exp (7). We thereupon have that lgl divides q exp ().

Assume first that p=q. If K is a p-group, then we- are
through. So, assume that K is not a p-group. Since ‘gl divides
p exp(d), g is a p-element. Now, CK(g) is a p-group by
theorem 2.1.1 (a). Then, K not being a p-group implies that g
induces a non-trivial automorphism on K. Assume now that q # p.
By the previous paragraph |g| divides q exp (0). Hence CK(g)
is the semi-direct product of a cyclic p-group by a group of
exponent q by theorem 2.1.1 (b). If K is the semi-direct product
of a cyclic p-group by a group of exponent q, then we are ’throug'h.
So, assume to the contrary Then g induces a non-trivial

automorphism on K.
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Now, let g€ G - K and k € K. Then, kg-l € G - K implies

-1.9 exp (0)
that (kg ) =1. Let m = q exp (0). It then follows that

lm 2 m-1 m m-1
1=(kg )™ =kkBk® ... k8 g™=kk®...k® ; and hence g

induces on Hn-automorphism on K where n divides q exp (0),

and the proof is complete.

Corollary 2.2.2: Let 0 be a normal non-trivial cp-partition of a

group G and L a component of 0 which is not self-normalizing.
Then, there is a prime divisor q of[ NG(L):L] such that L is

an Hn-group where n divides q exp (0).

Proof: Since L is not-self-normalizing in G, \x;e haQe that
LCNG(L) = N; hence, N is not contained within a component of o.
If N = G, then the result follows directly from theorem 2.2.1. So,
assume that NCG. Then, 7 induces a non-trivial normal

cp-partition o

N °n N and L is a proper normal 5 __-admissible

N
subgroup of N. Thus, it follows by theorem 2.2.1 that there
is a prime divisor q of [N:L] such that L is an Hn-group
where n divides q exp (O’N). But, exp (UN) divides exp (0)

which yields that n divides q exp (7), and the proof is complete.

This last theorem reduces to question of the structure of non-
self-normalizing components of cp-partitions to that of the structure

of Hn-groups.



CHAPTER 111
FROBENIUS CP-PARTITIONS

In this chapter, we shall generalize the concept of Frobenius
partitions to cp-partitions. After establishing a partial
generalization of Frobenius's theorem, we shall use this result
to obtain information about Frobenius cp-partitions in a limited
scope.

Baer [ 4] defines a Frobenius partition of a group G as a
normal partition 0§ where one of the components, say H, is a
proper self-normalizing subgroup of G. By a well-known Frobenius
result, theorem A.6, H has a normal complement in G, say K.

K is referred to as the Frobenius kernel of G and. the complements
to K in G are called the Frobenius complements. J. Thon-lpson’ is]
established that the Frobenius kernel is always nilpotent. Baer,
theorem B. 6, uses Thompson's result to show that F(G) is the
Frobenius kernel of G and that it is a proper 0-admissible Hall
subgroup of G. So, the Frobenius complements are Hall sub-
groups of G.

The author has not been able to decide whether or not a
self-normalizing component of a cp-partition is a Hall subgroup

of G. Our discussion will be limited in this respect.

Definition 3.1: A normal cp-partition 0 of a group G is said to

41
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be a Frobenius cp-partition if one of the components is a proper

self-normalizing subgroup of G.

One readily sees that if H is a self-normalizing component
of g, then H has the property that g€ G - H HMHE isa cyclic
p-group since H8 is a component distinct from H. In order to
completely generalize the situation of Frobenius Baer partitions
to that of Frobenius cp-partitions, we must at least show that H
has a normal complement in G. However, this is impossible as

the following example shows.

Example 3.1.1: Consider A_, the alternating group on five

5
letters. Let O consist of the isomorphic copies of A4 in A5
together with the cyclic subgroups of order 5. A, has the property

4

that it is a self-normalizing Hall subgroup of A5 and

€ isa cyclic 3-group. However, A,k has no

- n
g€A5A4=°A4 A 4

4

normal complement in AS since AS is simple.

We now proceed to show that Frobenius's theorem can be
generalized in a limited situation.
Let Sp be a Sylow p-subgroup of G and Z its center. G is

said to be p-normal if z8c 5, = 2B= 7 for all g €G.

Lemma 3.1.1: Let Sp be a Sylow p-subgroup of a group G such -

that g €G - NG(Sp) =Sp n Spg is cyclic. Then, G is p-normal.
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Proof: Assume that G is not p-normal and let Z be the center of
a Sylow p-subgroup of G. Then, there is a g € G such that

(Zg). By theorem A. 9, 28 is not normal
Yy

2z +28cs . Let N=N

in Sp and hence, Sp is not contained in N. So, there is a Sylow
h h h
p-subgroup Sp of G such that Sp S N and Spﬂ NESp . It

then follows that S NNCS ’IShCS N N. So, SﬂN=SnSh.
P - P P— P P P P

Since S h #S , it follows that h€G - N ‘ (S ). Thus,
P P G'p

S TN=S NS his cyclic.
P P P

Now, we have that ZgE Spﬂ N. It then follows that

N_. (SNN)EN (Zg) since S NN is cyclic and all subgroups of
Ss'p '— S P
P P
cyclic groups are characteristic. But, NS (Zg) = Sp N N. Hence,
p .
NS (Sp NN) = Sp NN. Now, 22 notnormal in Sp implies that
p :

Sp 1N CSP. But, this is contrary to the fact that no proper subgroup

of a p-group is equal to its normalizer. We are, therefore, forced

to conclude that G 1is indeed p-normal, which completes the proof.
We now give our partial generalization of Frobenius's theorem.

Theorem 3.1.2: Let H be a self-normalizing Hall subgroup of a

group G with the property that g €G - H=HN HE is a cyclic
p-group, p a fixed prime. Then, H has a normal complement in

G if G is solvable or if H is a p~-group.
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Proof: We use induction on lGl S, is the ground case.

3
Case I: CorG(H) 1

Let K= CorG(H). Since K is a normal subgroup of G
contained in H, we have that KSHAN Hg for all g€G. In
particular, if g€G - H, then KSHAN Hg, a cyclic p-group.
Choose SCK so that |Sl = p. Itis clear that S is normalin
G and that H/S is a Hall subgroup of G/S. Let
g =gS€G/S - H/S. Then, g€G - H. So,
H/S N (H/S)® = H/SAHE/S = HN HE/S, a cyclic p-group. If

€= gS ENg g(H/S), then H/S=H/SN (1/s)® = /s u8/s = HN HE/S

which implies that H = HN H8 thatis g ¢ NG(H.) = H. Thus, H/S
is self-normalizing in G/S. Finally G solvable or H a p-group
implies that G/S is solvable or H/S is a p-group. It then follows
by induction that H/S has a normal complement, say W/S, in G/S.
Now, I =W/SN H/S = WNH/S which implies that S = WNH.

Also, IHW|/|s| =|Hl-|w|/ |HM"W |s] = IH|-|w|/Is|2

[H:s] [w:s] =|H/s||w/sl| =|H/s| |w/s| / |H/sn w/s]|

|H/s w/s| =lG/s] = [ G:s]=]|G|/|S|. Hence, G =HW.

Now, [W:S] =[W:HNW] = [WH:H] = [G:H] . Then,
|H| coprime to [ GtH] and S< H imply that lSl is coprime to
[W:S] . So, S is a Sylow p-subgroup of W. If S has a normal
complement, say R, in W, then R becing a Hall subgroup of W

implies that R is characteristic in W, But, W is normal in G. So,
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R is normal in G. Then, HR = HSR = HW = G, Also,
RNHCSWNH=S and RN S =1 yield that RNH =1. Therefore,
it suffices to show that S has a normal complement in W,

Assume now that H is not a p-group and let h € H have
order q#p. If w€W sothat wh = hw, then h€HNH". But,
h is not a p-element. It then follows that w € NG(H) = H and
hence, wE&WNH =S. Thus, if h does not centralize S, then h
induces a fixed-point-free automorphism of prime order on W. We
then have by Thompson's result, theorem A.10, that W is nil-
potent. Then, S being the Sylow p-subgroup of W implies that S
has a normal complement in W and we are through.

Assume now that h does centralize S and consider
H1=<S, h> and G, = WH.. If gIEGI-H

1 1
so HAH "¢ HNH ", acyclic p-group. If gle Ng (Hl)' then

1
&1 &1
I—I1 = H1 n H1 CHNH . But, I-I1 is not a cyclic p-group. Hence,

we have that g € NG(H) = H. So, g €EHN G1 =HN WHI = H1 which

yields that H, is self-normalizing in G,. We also have that

1 I
[GI:HIJ = lWHl:Hll = [W:WﬂHl] = [W:S] which is coprime

to |H| and consequently to ‘Hll Finally, if H, ©H, then

1
[C::G1 ]= [WH:WH, 1= H:Hl] >1. It then follows by induction that
S has a normal complement in W. So, let us assume thaf H = Hl'
Now, H = Hl = <S5, h> which is abelian. Then HCSC = CG(S).
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But, S normal in G implies that C is normal in G. This
togethér with the fact that H is self-normalizing in G yields
that HSC. We assert now that C = G. If CSG, then we have
by. induction that H has a normal complement U in C. Let
g€G -C. C normalin G implies that H8<C. But, Hfisa
compleme11t to U in C. It then follows by the Schur-Zassenhaus
result, theorem A. S that all complements to U in C are
conjugate. So, there is a ¢ € C such that HE = H®, This implies
that g c‘-1 € HG(H) =HC< C. Then, g-=(g c-l)c € C, a contradiction
to g€G - C. We are thus forced to conclude that C = G. 1t then
follows in particular that S is in the center of W. Using
Burnsides result, theorem A.12, we are able to conclude that S
has a normal complement in W and thus, H has a normal
complement in G.

The remaining subcase is where H is a p-group. But, any
normal subgroup of order p of a p-group is necessarily in the center
of the group. So, HC CG(S). By repeating the above arguments we
get that C = G and hence, H has a normal complement in G.

Case II: CorG(H) =1

If G is solvable, then the commutator subgroup G' is proper
in G. We assert that HG' = G. Since G'C HG' and G/G'is
abelian, it follows that HG' is normal in G. If HG'<G, then we
have by induction that H has a normal complement U in HG'.

Let g€ G - HG'. Then, HG' normal in G yields that HE C HG',
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Again, we have by the Schur-Zassenhaus result that there is an
' g _ -1 - '
x € HG' such that H®° = and hence, gx = € NG(H) = HS HG'.
So, g = (g x-l)x € HG" a contradiction. Thus, we are able to
conclude that G = HG".

Let H, = HN G'. It is clear that H_  is a Hall subgroup

2 2
of G'. Assume that H2 is not a cyclic p-group. If g €G' - HZ'
then g €G - H and we have that Hzﬂ Hzg CHN HE, a cyclic

p-group. If g€ NG'(HZ)’ then H_ = Hz ﬂHZgEHﬂ HE. Then, H

2 2

not a cyclic p-group implies that g € NG(H) =H. So, g€G'NH = Hz

implies that H, is self-normalizing in G'. Then, G'< G implies by

2

induction that H2 has a normal complement V in G'. But, V isa

Hall subgroup of G' and consequently is normal in G. Then,

G = HG' = HHZV = HV, where HN V =1. Thus, H has a normal

complement in G.

Assume now that HZ = HN G' is a cyclic p-group. If H2 =1,

then G' is a normal complement to H in G. So, assume that
= 1 i = (=
H2 # 1. Now, CorG(H) I implies that N NG(HZ) G. But,

G' normal in G yields that H, = HNG' is normal in H. So,

2

HSN. If H=N, then NG'(HZ) = H) which implies by Burnsides

2

theorem that H2 has a normal complement in G', say V. Then,

G = HG' = HHZV = HV where HN V =1. So, assume that HE N,

By induction, it follows that H has a normal complement U in N.

Then, U being the normal p-complement to H in N and H_ being

2
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normal in N imply that US CN(HZ). In particular,
H2 < Z(Nd(Hz) ). Therefore, it follows that HZ has a normal
complement M in G' by Burnside's theorem. Finally, we
have that G = HG' = HH2°M= HM where HN M=1. This completes
the subcase where G is solvable.

Assume now that H is a p-group. We then have by
lemma 3.1.1 that G is p-normal. Let Z be the center. of H and
N the normalizer in G of Z. Now, N©G since CorG(H) =1. Also,
HSN. If HEN, then it follows by induction that H has a normal
complement in N and hence, H is isomorphic to the largest factor
group of N which is a p-group. The same conclusion follows if
H = N. But, it follows by the second Hall-Greun theorem,
theorem A.1I, that the largest factor group of G which is a p-group

is isomorphic to the same for N. Therefore, H has a normal

complement in G and whence, the proof is complete.

The norrnal complement described in the above theorem is
unique when it exists since it is a Hall subgroup of G. This normal
complement shall be referred to as the Frobenius cp-kernel of G,
The complements to it in G shall be called the Frobenius
cp-complements.

We now state our main result of this chapter.

Theorem 3.1.3: Let 0 be a Frobenius cp-partition of a group G

where one of the self-normalizing components H is a Hall sub-
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group. Then, G has a Frobenius cp-kernel K if G is solvable
or if H is a p-group. Moreover, if Z(K) contains a p'-element
of composite order. then there is a normal component L of ©
such that the following hold:

a) KC L;

b) [L:K] =1 iff 0 is a Frobenius Baer partition;

c) If [L:K] >1, then L/K isa cycli'c p-group;

d) K is nilpotent unless the Frobenius cp-complements

are p-groups.

Proof: Let H be a self-normalizing Hall component of 0. Since
Frobenius cp-partitions are normal, it follows that H® isa
component of 0 for all g €G. Then, g€G -H=H# HE since
H is self-normalizing. So, HN HE is a cyclic p-group for all
g €G - H. We then have by theorem 3.1.2 that G has a Frobenius
cp-kernel, say K, since G is solvable or H is a p-group.
Assume now that Z(K) contains a p'-element x of
composite order. It then follows by theorem 1. 4. 3 that there is a
component L of 0 such that K& L. Since K is normal in G, we
have that KSLNL® for all g €G. But, K is not a cyclic p-group
and so, L = LE for all g €G. Thus, part a is established.
Assume now that [L:K] =1. Then, L = K. First, we
assert that the elements of H different from 1 induce fi)éed—point-

free automorphisms on K. Let h(#1) €H. If h is neither a
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p-element nor a p'-element, then it follows by corollary 2.1.2
that CK(h) C HN K =1. So, assume that h is either a p-element
or a p'-element. If h isa p-element, then we conclude from
theorem 2.1.1(a) that exp(Cy(h)) divides |nl- exp (o). Since H
is a Hall subgroup of G, h(#1) €H is a p-element, and since K
is a normal complement to H in G, it follows that K is a
p'-subgroup of G and hence, CK(h) is a p'-subgroup. But,
|h|- exp (0) is a power of p. We then must conclude that CK(h) = 1.
So, assume that h is a p'-elemenf. Choose n so that lhnl =q, a
prime. Then, C‘K(h)ECK(hn). But, lhnl =q where q#p
implies by theorem 2.1.1 (b) that CK(hn) is the semi-direct
product of a subgroup of HN K =1 by a group of exponent q. Then,
|H‘ and | K| being coprime yield that CK(h) = 1. This establishe.s
that CK(h) =Y and hence, h induces a fixed-point-free automorphism
on K.

Our next assertion is that CG(k)SK for all k(#1) €EK. Let

g€ CG(k) where k(#1) € K. Then, G = HK implies that g = hko

hk
where h €H and ko € K. We then have that k o k or that
h 1

k = kok ko- . So, h induces a fixed-point-free automorphism on

K and fixes the conjugate class of K which contains k if h # 1. Since

h induces a fixed-point-free automorphism on K, ko can be

h k -1. So,

expressed uniquely in the form ko = kl 1

h h 1

h_ h -l -1 -1 - .
k —k1 k1 kkl(k1 ) or (k1 kkl) —kl kkl. But, this is a
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contradiction to the fact that h induces a fixed-point-free
automorphism on K. Thus, h =1 and hence, g = ko €K as
asserted.

Now, K is nilpotent by Thompson's result, theorem A.10.
We also have by the Schur-Zassenhaus result, theorem A. 8,
that all complements to K in G are conjugate. By theorem A.13
we conclude K has a complement M such that M N M8 =1 for
all g €G - M. Then, all complements being conjugate implies
that M = H® for some x € G. Hence, all complements have trivial
intersection.

Now, let L be any component of o such that L # K. We
first assert that LN K =1. Assume to the contrary. Ihen,
LNK is a cyclic p-group. Now, [L:LNK]=[LK:K] . Then,
K being a Hall subgroup of K implies that 1 = ( [ LK:K] , -IKI) N
=( [L:LNK], |K]). Also, LNKis a Hall subgroup of L. Let
x € L have order q # p, where q divides [L:LNK] . Then H
being a Hall subgroup of G such that (|H]|, ‘Kl) = 1 implies that q
divides |H| and hence, there is a conjugate H* of H such that
x €H™. It then follows that x € LN 'IX, But x is a p'-element
and so, L= Hx. However, this implies that H*N K>= LNK¢#I, a
contradiction. So, we are forced to conclude that L €0 such that
L# K=°-LﬂK =1. Since K =F(G) and LNK =1, it follows by
theorem B. 6 (c) that there is a conjugate HY of H such that

LE Hy and hence, L = Hy. It now follows that ¢ is indeed a
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Frobenius Baer partition of 0. This establishes the only if part
of b.
Assume now that KC L. Then, G = HK implies that
LN H#1I and hence, 0 is not a Frobenius Baer partition since
H and L are components of o. This completes the if part of a.
Again, if KCL, then G = HK implies that there is a sub-

group H of H such that L = HK. So, L/K = HIK/K"—-'HI. But

H1 = LN H a cyclic p-group since L and H are distinct components.
Finally, if H is not a p-group, then let h € H have order q # p.

We have by theorem 2.1.1(b) that CK(h) is the semi-direct

product of a subgroup of HN L by a group of exponent q. But,

|Hl and |K| being coprime implies that CK(h) =I. Thus, h

induces a fixed-point-free automorphism of prime order on K and

so, K is nilpotent by theorem A.10. The theorem is now proved.

The conclusion that K 1is contained in a component of o is
false if Z(K) does not contain an element of composite order as
the following example shows.

5
Example 3.1.2. Let K =<a,b: as =b =1> Consider the group

4
of automorphisms of K defined by H =<u, S:ad= b4, ba'—‘ ab4, aa=a,bs=ab >,

One can easily verify that CY3 = 32 =1 and that Ba B = dz. So,
|H| = 6. Let G be the holomorph of K by H. If we define o
to be all the conjugates of H in G together with the cyclic subgroups

of order 10, then J 1is a Frobenius c2-partition with exp(9) = 2.
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Clearly, K is not contained in any component of O.



APPENDIX A

Theorem A.1l: Let x be an element of order mn in a group G

where (m, n) =1. Then, x = yw = wy uniquely where |y| = n

and |zl = n. Both y and w are powers of x.

This is lemma 3.2.1in M. Hall's Group Theory.

Theorem A.2: Let G be a group and g €G. Then, g € h(G) if

and only if each g-part--q a prime--is centralized by all q'-elements.

This was proved by Baer [ 3], page 38.

Theorem A.3: Let A, B, and C be subgroups of G such that

BS A and BC =CB. Then, AN<B, C>=<B, ANC>

This is theorem 8.4.1 in M. Hall's Group Theory.

Let @ be an automorphism of a group G and H a subgroup,
then H is said to be ¢-invariant if HY = H. If H is a normal
¢-invariant subgroup of G, then ¢ induces an automorphism §
on G/H in the following natural fashion: ®(gH) = g(pH. Before
we state the next theorem, an automorphism ¢ of G is said to

be fixed-point-free if g(p = g implies that g =1,

Theorem A.4: Let ¢ be a fixed-point-free automorphism of G

and H a normal ¢-invariant subgroup of G. Then, ¢ induces a

fixed-point-free automorphism on G/H.
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The statement of this theorem is given in Schenkman, page 279,

and its proof is left as an exercise.

Now, if S is a non-empty set and if G is a group, then G
is said to be an S-group if there is a function * from G x S into

G such that (glgz)* s = (gl* s) (gz* s) for all g &, €G, s€5. A

particular case of this is where S isa group of automorphisms

of G. Two S-groups G1 and GZ are said to be S-isomorphic

if there is an isomorphism ¢ from G1 onto G2 such that

g * g) =¢@g) *s. Now, a subgroup H of an S-group G is said

to be an S-subgroup if h* scH for allh €H.

Theorem A.5: Let G be an S-groupand KSHCS G normal

S-subgroups of G. Then, the relation U = {(gH, gK(H/K) )|g€G }

is an S-isomorphism of G/H onto G/K/ H/K.
This is theorem 2.9.4 in W. Scott and its proof is left as an exericse.

Theorem A.6: Let G be a finite group and H a subgroup of G

such that g € G - H implies that HENH =1 Then, H has a

normal complement in G.

This is a well-known Frobenius theorem--see W. Scott, theorem
12.5.11. The normal complement to H is referred to as the
Frobenius kernel of G and has been shown to be nilpotent by

Thompson [15].
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Now, a group G is said to be an Hq-group if it admits an
2 q-1

automorphism ¥ of order q such that g'gy- gy gy =1 for

all g €G.

Theorem A.7: All Hq—groups are nilpotent.

This theorem was proved by O. Kegel, Math A. 75, 373-376 (1961).
A subgroup H of G is said to be Hall if |H| and [G:H]

are coprime.

Theorem A.8: If K is a normal Hall subgroup of a group G such

that K or G /K is solvable, then any two complements of K are

conjugate.

This result was proved by H. Zassenhaus and is theorem 9.3.9 in

W. Scott's book.

Theorem A.9: If P1 and P2 are Sylow p-subgroups of G such that

Z(Pl) is normal in P_, then Z(Pl) = Z(PZ)'

2

This is theorem 13.5.3 in W. Scott's book.

An automorphism Y of a group G is said to be fixed-point-

free if gy= g implies that g = 1.

Taeorem A.10: Any group G which admits a fixed-point-free

automorphism of prime order is nilpotent.
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This classic result was first proved by Thompson [15] , and its

proof may be found in Schenkman, theorem IX. 4.h,

Theorem A.1ll: If G is p-normal, then the largest factor group

of G which is a p-group is isomorphic to the same for the

normalizer of the center of a Sylow p-subgroup.

This is known as the second theorem of Hall-Grun and is

theorem 14.4. 6 in M. Hall's book.

Theorem A.12: If P is an abelian Sylow p-subgroup of G which
. is in the center of its normalizer, then P has a normal complement

in G.

This is known as Burnside's theorem and is theorem 14.3.1 in

M. Hall's Book.

W. Scott in his book defines a Frobenius group as one which
contains a proper normal subgroup K (called the Frobenius
kernel) such that if k(# 1) € K, then CG(k)SK, see page 348.

He then proves the following theorem, theorem 12.6.1.

Theorem A.13: If G is a Frobenius group with Frobenius kernel

K, then there is a Hall subgroup H such that G = HK and

HNHE =1for all g€G - H.



APPENDIX B

Theorem B.1: If 0 is a Baer partition of a group G and

a, b €G are commutable elements of G, then a and b are
contained within a common component unless they both have

order q for some prime gq.

For the proof of this theorem see Baer[ 4] , lemma 2.1.

Theorem B.2: If o is a normal non-trivial Baer partition of a

non-simple grouﬁ G, then the following are equivalent:
a) o is simple

b) If F(G) # 1, then G is isomorphic with S4

c) If G is not isomorphic with S,, then S(G) is simple and

4

non-abelian.

d) G contains S, as a subgroup.

4

For the proof, see Baer [2] , page 2.

Theorem B.3: If o is a normal Baer partition and K a proper

normal O-admissible subgroup of G, then the following hold:
a) o0 is not Frobenius if and only if [G:K] and |K| are not coprime.
b) If o is not Frobenius, then there is a prime p such that

g €G - K implies lg| = p.

c) If o is not Frobenius and G is not a p-group, then [G:K] =p
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where P is a prime. Also, K and G both are extensions of
nilpotent groups by a p-group. Finally, K is a component which

is generated by all g € G such that Ig| # p.
For the proof, see Baer [4] , theorem 5.1.

Theorem B.4: A p-group G where |G| # p admits a non-trivial

partition if Hq(G) C G.
This was proved by O. Kegel [8],

Theorem B.5: If 0 is a non-trivial Baer partition of a group G

and each component of 0 is a normal subgroup of G, then G is an

elementary abelian gq-group.

For the proof of this theorem see O. Kegel [8] , pages 172-173."

Theorem B. 6: Every Frobenius partition of a group G has the

following properties.

a) F(G) is a proper normal 0-admissible Hall subgroup of G.

b) All self-normalizing components are conjugate.

c) A subgroup U of G is contained within a self-normalizing
component if and only if UNF (G) =1.

d) Every normal subgroup not contained in F(G) contains F(G);
and the proper normal o-admissible subgroups are contained,
in F(G).

e) The self-normalizing components faithfully induce on F(Q)
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Frobenius groups of automorphisms and do not contain any
2
elementary abelian subgroups of order p .
f) If a subgroup U of G contains a self-normalizing component,

then U is self-normalizing.
This was proved by Baer [4] , theorem 4.1.

Theorem B.7: If the sockel S(G) of a finite group is neither abelian

nor simple, then any normal partition on G is trivial.

- This was proved by Baer [ 4] , theorem 3. 6.

Theorem B.8: If 0 is a normal non-trivial partition of a finite
group G and F(G) #1, ois then and only then simi:le when the
following occuar:

a) G is isomorphic with S4;

b) S(G) is elementary abelian of order 4;

c) o consists precisely of those cyclic subgroups of G which are

not contained in S(G).
This is a result of Baer [1 }, theorem A.

Theorem B.9: Let 0 be a non-trivial partition of a finite group G

and assume that S(G) is non-abelian simple. Then, the following hold:
a) [G:s(G)] =2
b) The Sylow p-subgroups of odd order are abelian

c) The Sylow 2-subgroups are D-groups, that is, non-abelian groups
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which contain an abelian subgroup H of index 2 and an

involution g outside of H such that (goh)z= 1 for all h €H.

This was proved by Baer [2] , Hauptsatz, page l.



INDEX OF NOTATION

I. Relations and Sets

< Is a subset of

c Is a proper subset of

< Is less than or equal to

< Is less than

€ Is an element of

II. Groups

I The trivial group

S(G) = < H:H # I is a minimal normal subgroup of G>

F(QG) = < H:H is nilpotent normal subgroup of G >

GL(n,q) = The group of n x n non-singular ﬁxatric_.es
over GF(q)

PGL(n, q) = GL(n, q)/Z(GL(n, q))

SL(n, q) = {A € GL(n, q): det A =1}

PSL(n,q) = SI.(n,q) / Z(SL(n,q))

|Gl the order of G

‘gl the order of g

™ a set of primes

7 [n] the set of all prime divisors of n> L.

T-subgroup m [|H| Jjc
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m-element m[]gl] S
m-subgroup n [|H| ]nm=19¢
m'-element nllg]linm =9
hB The image of h under B
HB The image of H under 8 3
I(G) The inner automorphism group of G |
exp(G) = smallest positive integer n such that
gnz lfor all g €G ‘ é
< 500> The group generated by ...
z(G) <x€G:xg =gx forall g €G>
Hn(G) = <g €G: |gl does not divide n >
h(G) Largest element of the ascending central

series of G.

CK(H) = {k €EK:kh = hk for all h €H }
CK(h) = {k € K:kh = hk }
¥ -invariant H”: H

y is fixed-point-free g‘y =g=g-=1

G, = geGg’ = ¢}
k

Ny (L) = (k€L:L" =L}
-1 A
[x, y] = x 'y xy

[ H, K] = < [h, k]:h€H, KEK >
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n-1
Hn-automorphism |¥| =n and g gy- g - g‘y =1 for
all g €G

H is Hall in G |H| is coprime to [G:H )

-normal 2(s )Bcs =27(s )8 = z(s ) for all g €G
) p =55 p) ( p g

- .
G <[g1. gz].gleG, g2€G>
Cor H) = n ué

G

g €G
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