AN INVETIGATION OF UNIORMLY CONVERENT POWER SERTIES ON THE CLOSED UNT DISK

Thesis for the Dagree of Ph. D. MICHGAN STATE UNVERSTY
LOUIS THURMAN RICHARDS
1970

This is to certify that the
thesis entitled

AN INVESTIGATION OF UNIFORMLY CONVERGENT POWER SERIES ON THE CLOSED UNIT DISK

presented by

Louis T. Richards

has been accepted towards fulfillment of the requirements for
Ph .D
degree in Mathematics

Date July 17, 1970

AN INVESTIGATION OF UNIFORMLY CONVERGENT POWER SERIES ON THE CLOSED UNIT DISK

By

Louis Thurman Richards

Two facts are immediately known about a given power series with radius of convergence $R \geq 1$:
(1) the series converges absolutely for $|z|<1$, and
(2) the series converges uniformly on $\mid z i \leq p 1$.

Included in the class of all such power series are two subclasses:
(1') those power series which converge absolutely on $|z|=1$, and (2') those power series which converge uniformly on $|z|=1$ 。 The class of all power series obeying (1') has been extensively investigated. However, the class of all power series obeying (2') hàs not been adequately investigated.

After showing that U, the space of all power series obeying (2'), is a Banach algebra, this paper investigates some of the functional analysis properties of the space. The investigator was also interested in finding classes of functions, q, such that the composition of any power series in U with \ddagger would again be in U,

The following are typical results from the study:
Theorem: If $\left\{a_{k}\right\}$ is a sequence such that $\sum a_{k} z^{k}$ is in U, and if $:$ is a complex number such that $\lambda \neq 0, \lambda \neq a_{k} k=0,1,2, \ldots$,
then $\left\{\frac{a_{k}}{a_{k}-\lambda}\right\}$ is a sequence whose terms are coefficients of an element in U.

Theorem: If X is a sequence space which is a Banach algebra under coordinate-wise multiplication, and has a Schauder basis, then projections into the coordinates are the only non zero homomorphisms on X.

Theorem: If $\phi(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}, 0<\alpha<1,0<\beta<1$, then for any f in U, fo Φ is in U.

AN INVESTIGATION OF UNIFORMLY CONVERGENT POWER SERIES ON THE CLOSED UNIT DISK

By
\section*{Louis Thurman Richards}

A THESIS

Submitted to
 Michigan State University
 in partial fulfillment of the requirements
 for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

$$
\begin{array}{r}
1-6 \sin 2 \\
1-71
\end{array}
$$

TO JEAN

ACKNOWLEDGMENTS

The investigator wishes to acknowledge the suggestions and guidance which Dr. William Sledd rendered in the preparation of this manuscript. The investigator is also very thankful to Miss Linda Taylor who typed the manuscript and proved to be very helpful in proofreading the final copy.

TABLE OF CONTENTS

INTRODUCTION 1
CHAPTER ONE: UNIFORMLY CONVERGENT POWER SERIES ON|z|<1 5

1. The Banach Space U 5
2. Some Spaces Equivalent to IJ 11
3. The Banach Algebra U 16
4. The Dual Space 29
CHAPTER TWO: CONTINUOUS LINEAR OPERATORS ON U 37
5. Concepts From Summability 37
6. Bounded Linear Operators From A Banach Space X (With Schauder-Basis) To U 38
7. Karamata Type Operators on U 43
8. Bajanski Type Operators on U 60
OPEN QUESTIONS 78
BIBLIOGRAPHY 79

"INTRODUCTION"

If $\sum a n^{2}{ }^{n}$ is a given power series with radius of convergence greater than or equal to 1 , then
(1) $\sum a_{n} z^{n}$ converges absolutely for $|z|<1$, and
(2) $\sum a z^{2} z^{n}$ converges uniformly on $|z| \leq \rho<1$

Now if $\sum a_{n} z^{n}$ has radius of convergence $R ? 1$, then
(1') $\sum a{ }_{n} z^{n}$ converges absolutely on $|z|=1$, and, hence
(2') $\sum a{ }_{n} z^{n}$ converges uniformly on $|z| \leq 1$.
However, a series need not have radius of convergence greater than 1 in order to satisfy (1'). The series $\sum \frac{z^{n}}{n^{2}}$ has radius of convergence 1 [since $\left.1 \mathrm{im}\left(\frac{1}{n^{2}}\right)^{1 / n}=1\right]$, and it is absolutely
convergent on $|\boldsymbol{z}|=1$.
The space of all power series obeying (1') can easily be identified with ℓ_{1}. In fact, letting f be a typical power series which obeys (1') and denoting the norm of f by $\|f\|=\sum\left|a_{n}\right|$, the map $\left\{a_{n}\right\} \rightarrow f$ is an isometric isomorphism from ℓ_{1} onto this space. The space of all power series obeying (1') is generally given as
an example of a Banach algebra, and theorems are proved about it in books dealing with functional analysis and Banach algebras.

The space of all power series obeying (2') is not so very well known. This paper will deal with the space of all power series obeying (2') as a Banach algebra, its dual space, its Gelfand transform, and continuous linear operators mapping the space into itself.

Kahane and Katznelson [14] proved that the space of functions satisfying (2') is not an algebra under pointwise multiplication. Although the investigator was well into this paper before seeing their results, the notation for the space is nearly identical [they denoted the space of series obeying (2^{\prime}) by U^{\top}, and it is denoted in this paper by U], and the norm used is the same:

$$
\begin{equation*}
\|f\|=\sup _{p} \sup _{|z| \leq 1}\left|\sum_{k=0}^{p} a_{k} z^{k}\right| . \tag{3}
\end{equation*}
$$

The only mention which the investigator has seen of the space of series obeying (2') as a Banach space occurred in the above paper.

It will be shown in this paper that U is a semi-simple commiutative Banach algebra under coordinate-wise miltipilcation, and, hence (3) is essentially the only norm that can be used.

Another author who has written about series obeying (2') is Alpar [3], and he has proved the foliowing three theorems:

Theorem 1: Given a fixed point a $(0<|a|<1)$, then one can aiways find a function $f_{i}(z)$, which is holomorphic in $|z|=1$ and which has an absolutely convergent power series such that the power series defined by

$$
f_{1}\left(\frac{z-a}{1-\bar{a} z}\right)=f_{z}(z)=\sum_{k}(a) z^{k}
$$

is not absolutely convergent on $|z|=1$.
Theorem 2: Let $f_{1}(z)=\sum a_{k} z^{k}$ be holomorphic in $|z|=1$, $\sum\left|a_{k}\right|<\infty, \alpha(0<|\alpha|<1)$ a fixed point, and $\left|z_{1}\right|=1,\left|z_{2}\right|=1$ two points related by

$$
z_{1}=\frac{z_{2}-\alpha}{1-\bar{\alpha} z_{2}} .
$$

Then the power series obtained by the transformation

$$
f_{2}(z)=f_{i}\left(\frac{z-a}{1-\bar{u} z}\right)=\sum b_{k}(a) z^{k}
$$

is uniformly convergent on the circumference $|z|=1$ and

$$
f_{1}\left(z_{2}\right)=\sum a_{k} z^{k}=f_{2}\left(z_{2}\right)=\sum b_{k}(\alpha) z^{k}
$$

Theorem 3: There exist functions $f_{1}(z)$ holomorphic in $|z|=1$, whose power series development $\sum a_{k} z^{k}$ converges uniformly but not absolutely on $|z|=1$ and which are changed by the transformation f. $\left(\frac{z-\alpha}{1-\bar{x}_{z}}\right)$ into a function $f_{2}(z)$ whose power series $\sum b_{k}(\alpha) z^{k}$ is not absolutely convergent on the circumference $|z|=1$ for no value of a $(0<|a|<1)$.

There are both propositions and theorems in this paper. Propusitions will refer to those mathematical truths whose proofs are fairly eiementary. Theorems will refer to those truths which demand some care in proving. In each chapter; termas, theorems, propositions, and corollaries have been numbered consecutiveiy withouit regard to their spectal characters.

Chapter I deals principally with the functional analysis consequences of U being a Banach algebra. In order to facilitate the investigation, U will be identified with three spaces:
(4) $u_{1}=\left\{f(t)=\sum a_{n} e^{i n t}: \sum a_{n} e^{i n t}\right.$ converges uniformily $\}$
(5) $u_{2}=\left\{x=\left\{a_{n}\right\}: \sum a_{n} e^{i n t}\right.$ is a function in $\left.u_{1}\right\}$
(6) $U_{3}=\left\{s(t, n)=\sum_{k=0}^{n} a_{k} e^{i k t}: \sum a_{k} e^{i k t}\right.$ is in $\left.U_{1}\right\}$.

Under appropriate norm, all of these spaces are isomorphic-isometric to U.

Chapter II deals with continuous 1 inear operators on U. The major theorem of Chapter II states that Karamata type functions, i.e., functions of the type

$$
\phi(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z} ;\left(\sigma^{\alpha} \alpha<1\right),(0<\beta<1),
$$

operate on U under composition of functions. This result is used to show that certain Bajanski [4] type functions also operate on u

The following usäges and notations have been employed throughout the investigation:
a) infinite series and sequences whose indices begin with 0 or an appropriate positive integer nave been written withouit the index
b) $\widetilde{\ell_{1}}$ will denote the space of functions obeying (1')
c) $B[X, Y]$ will denote the space of all continuous in inear operators from the Banach space X to the Banach space Y
d) X^{\prime} will denote the dual space of X
e) coordinate-wise muitiplication will be denoted by "*".

CHAPTER ONE

UNIFORMLY CONVERGENT POWER SERIES ON $|\mathbf{z}| \leqq 1$

1. The Banach Space U

In this chapter, some basic theory concerning the structure of the class of uniformly convergent power series on $|z| \leq 1$ will be developed. It will be shown that this class forms a Banach space under appropriate definitions of addition, scalar multiplication, and norm. Furthermore, it will be shown that the space forms a semi-simple Banach algebra under coordinate-wise multiplication. The Gelfand transform of the space will also be investigated, and additional information about its structure will be obtained. The dual space will also be briefly investigated.

The goal of this section is to establish that the class, (1) $U=$ the set of all uniformly convergent power series on $\mid 4 \leq 1$, is a Banach space under very natural conditions. Since each $\sum a_{k} z^{k}$ which belongs to U defines a unique function, f, which is holomorphic in $|z|<l$ and whose power series development is precisely $\sum a_{k} z^{k}$, the elements of U will be denoted by these f's.

On the set U, addition is defined by the rule; if f_{1}, f_{2} are elements of U, then $f_{1}+f_{2}$ is the element of U defined by

$$
\left(f_{1}+f_{2}\right)(z)=f_{1}(z)+f_{2}(z) \text { for all } \mid z \leq 1 .
$$

If α is any complex number, and $f \varepsilon U$, then αf is the function defined by $(\alpha f)(z)=\alpha \cdot f(z)$ for all $|z| \leqq 1$. The set U clearly becomes a linear space over the complex numbers under these definitions. If $f \varepsilon U, f(z)=\sum a_{k} z^{k}$, define $\| f| |$ by

$$
\begin{equation*}
\| f| |=\sup _{n} \sup _{|z| \leq 1}\left|S_{n}(z)\right| \text {, where } S_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k} \tag{2}
\end{equation*}
$$

Lemma 1.1: The function, \| \|, defined by (2), is a norm on U.

Proof: Let $f, g \in U, \alpha \in C$, [C denotes the field of complex numbers]. It must be shown that:

1) $||f||<\infty$.
ii) $||f||=0$ iff f is the zero function.
iii) $||\alpha f||=|\alpha|| | f| |$.
iv) $\|f+g\|<\|f\|+\|g\|$.

Since if), ifi), and iv) Involve anly direct calculations, only 1) will be verified.

Verification (i): By definition, $\| f| |=\sup _{n} \sup _{|z| \leq 1}\left|S_{n}(z)\right|$ where $S_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$. Also S_{n} converges uniformly to f on $|z| \leq 1$. We note that S_{n} is an entire function for $n=0,1,2, \ldots$. Hence, $\sup _{|z|<1}\left|S_{n}(z)\right|=S_{n}(\zeta)$, for some ζ satisfying $|\zeta|=1$. Now for each n, choose a point on $|z|=1$ where S_{n} attains its supremum and call it ζ_{n}. Since f is continuous on $|z| \leq 1$, there exists M such that $\sup _{|z| \leq 1}|f(z)|<M$. Since S_{n} converges uniformly to f on $|z| \leq 1$, there exists N such that $n>N$ implies $\left|S_{n}(z)-f(z)\right|<1$ for all $|z| \leq 1$.

Hence, $n \rightarrow N$ implies that $\left|S_{n}(z)\right|<1+|f(z)|$ for all $|z| \leq 1$. Therefore, $\sup _{|z|=1}\left|S_{n}(z)\right|=\left|S_{n}\left(\zeta_{n}\right)\right|<1+M=M^{\prime}$, if $n=N$. Hence, $\sup _{n \rightarrow N} \sup _{|z|=1}|S(z)|<\infty$. It follows easily now that $||f||=\sup _{n} \sup _{|z| \leqq 1}|S(z)|<\infty$ since there exists $M^{\prime \prime}$ such that $\sup _{n_{<}}\left|S\left(\tau_{n}\right)\right|<M "$.

In addition to proving that $\|\|$ is a norm on U, the verification of i) has also shown

$$
\begin{equation*}
||f||=\sup _{n} \sup _{|z|=1}\left|s_{n}(z)\right| \tag{3}
\end{equation*}
$$

Theorem 1.2: The linear space U is a Banach space under \| \| as norm.

Proof: Since $(U,\| \|)$ is a normed 1 linear space, it suffices to show that every Cauchy sequence in $(U,\| \|)$ converges. Let $\left\{f{ }^{P}\right\}$ be a Cauchy sequence in U. Then, given $\varepsilon>0$, there is an N such that
(4) $\left|f^{p}-f^{q}\right|\left|=\sup _{n} \sup _{|z|=1}\right| \sum_{k=0}^{n}\left(a_{k}^{p}-q_{k}^{q}\right) z^{k} \mid<\varepsilon$ if $p, q \geqslant N$,

Hence, for any $n, \sum_{k-0}^{n}\left(d_{k}^{p}-a_{k}^{q} \| \leqq\left|f^{p}-f^{q}\right| \mid<\varepsilon \quad\right.$ if $p, q>N$,

Given m, we have, $\left|a_{m}^{p}-a_{m}^{q}\right|-\sum_{k=0}^{m-1} a_{k}^{p}-a_{k}^{q}\left|\leq \sum_{k=0}^{m} a_{k}^{p}-a_{k}^{q}\right|<\varepsilon$ if $p, q>N$, and therefore,

$$
\begin{equation*}
\left|a_{k}^{p}-a_{k}^{q}\right| \leqq 2 \varepsilon \text { if } p, q>N \tag{5}
\end{equation*}
$$

We now have $\left\{a_{k}^{p}\right\}_{p=0}^{\infty}$ is a Cauchy sequence of complex numbers for each k. Hence, there is an a_{k} such that

$$
\begin{equation*}
\left.\lim _{p} a_{k}^{p}=a_{k} \quad \text { (Uniformly in } k\right) \tag{6}
\end{equation*}
$$

Now define f by $f(z)=\sum a_{k} z^{k}$. We claim that $\sum a_{k} z^{k}$ converges for all $|z|<1$. To see this, we note that if $\left\{a_{k}\right\}$ is bounded, say by M, then for any $\left|z_{0}\right|<1, \sum\left|a_{k} z_{0}^{k}\right|<M \sum\left|z_{0}^{k}\right|<\infty$; hence,
$\sum a_{k} z^{k}$ converges for any $|z|<1$. To show that $\left\{a_{k}\right\}$ is bounded, observe that $\left\{a_{k}^{p_{k}}\right\}_{k=0}^{\infty}$ is bounded for any p. According to 5, given $\varepsilon=\frac{1}{2}$, there exists N such that $p^{\prime}>N$ implies that

$$
\begin{aligned}
\left|a_{k}\right| & =\left|a_{k}^{p^{\prime}}+a_{k}-a_{k}^{p^{\prime}}\right| \\
& \leqq\left|a_{k}^{p^{\prime}}\right|+\left|a_{k}-a_{k}^{p^{\prime}}\right| \\
& <\left|a_{k}^{p^{\prime}}\right|+1 .
\end{aligned}
$$

Since $\sup _{k}\left|a_{k}^{p^{\prime}}\right|$ is finite, $\sup _{k}\left|a_{k}\right|$ is finite.
Thus f is a candidate for the limit function of f^{p}. To see that f^{p} converges to f, observe that by (4),

$$
\sup _{n} \sup _{|z|=1}\left|\sum_{k=0}^{n}\left(a_{k}^{p}-a_{k}^{q}\right) z^{k}\right|<\varepsilon \quad \text { if } p, q>N .
$$

Fix z, n, and $p>N$ and let $q \rightarrow \infty$. Then

$$
\left|\sum_{k=0}^{n}\left(a_{k}^{p}-a_{k}\right) z^{k}\right|<\varepsilon .
$$

Since this is true for any $|z| \leq 1, n$, and p,

$$
\begin{equation*}
\left|f^{p}-f\right|\left|=\sup _{n} \sup _{|z|=1}\right| \sum_{k=0}^{n}\left(a_{k}^{p}-a_{k}\right) z^{k} \mid<\varepsilon \text { if } p>N . \tag{7}
\end{equation*}
$$

It must now be shown that $f_{\varepsilon} U$. But,

$$
\begin{aligned}
\left|\sum_{k=n}^{m} a_{k} z^{k}\right| & =\left|\sum_{k=n}^{m}\left(a_{k}-a_{k}^{p}\right) z^{k}+\sum_{k=n}^{m} a^{p} z^{k}\right| \\
& \leqq\left|\sum_{k=n}^{m}\left(a_{k}-a_{k}^{p}\right) z^{k}\right|+\left|\sum_{k=n}^{m} a_{k} z^{k}\right| .
\end{aligned}
$$

Let $\varepsilon>0$ be given, then, by (7), there is an N such that $p>N$ implies that

$$
\sup _{r,|z|=1}\left|\sum_{k=0}^{r}\left(a_{k}-a_{k}^{p}\right) z^{k}\right|<\frac{\varepsilon}{3} .
$$

Choose $p>N$ and fix it. Then

$$
\begin{aligned}
& \sup _{|z|=1}\left|\sum_{k=n}^{m}\left(a_{k}-a_{k}^{p}\right) z^{k}\right| \leqq \sup _{|z|=1}\left|\sum_{k=0}^{n-1}\left(a_{k}-a_{k}^{p}\right) z^{k}\right| \\
&+\sup _{\mid=1}\left|\sum_{k=0}^{m}\left(a_{k}-a_{k}^{p}\right) z^{k}\right| \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\frac{2 \varepsilon}{3} .
\end{aligned}
$$

Since $f^{p} \varepsilon U$, there exists an M such that $m, n>m$ implies that

$$
\sup _{z \mid=1}\left|\sum_{k=n}^{m} a_{k}^{p} z^{k}\right| \leq \frac{\varepsilon}{3} .
$$

Therefore, if $m, n>M$, then

$$
\sup _{|z|=1}\left|\sum_{k=n}^{m} a_{k} z^{k}\right|<\varepsilon .
$$

Hence, $f \varepsilon U$. This finishes the proof of Theorem 1.2.

Corollary 1.3: Define the collection $\left\{p_{k}\right\}$ by $p_{k}(f)=a_{k}$, where a_{k} is the k th coordinate of f, then the set $\left\{p_{k}\right\}$ is an equicontinuous family of functionals on U. Hence, in particular, for each k, p_{k} is a continuous linear functional on U.

Proof: It is obvious that each p_{k} is a linear functional. It follows from (4) and (5) that given $\varepsilon>0$, we can choose $\delta=\frac{\varepsilon}{2}$ so that if $||f-g||<\delta=\frac{\varepsilon}{2}$, then $\left|p_{k}(f)-p_{k}(g)\right|=\left|a_{k}-b_{k}\right|<\varepsilon$ for each k.

Proposition 1.4: Let $e_{k}, k=0,1,2, \ldots$ be the functions defined by $e_{k}(z)=z^{k}$. Then $\left\{e_{k}\right\}$ is a Schauder-basis for u.

Proof: Let $f \varepsilon U, f(z)=\sum^{-} a z^{k}$. Let $\varepsilon>0$ be given. Since $f \varepsilon U$, there is an N such that

$$
\sup _{n>p} \sup _{|z|=1}\left|\sum_{k=p}^{n} a_{k} z^{k}\right|<\varepsilon \quad \text { if } p>N .
$$

Therefore,

$$
\left|\left|f-\sum_{k=0}^{p-1} a_{k} e_{k}\right|\right|=\sup _{n>p} \sup _{|z|=1}\left|\sum_{k=p}^{n} a_{k} z^{k}\right|<\varepsilon
$$

Hence,

$$
f=\sum a_{k} e_{k}
$$

It is interesting to note that one merely observed the behavior of f at $z=1$ in some of the most crucial steps in the proof of Theorem 1.2, and that the norm used on U is analogous to the norm used on the space of convergent series. Hence, a natural question to ask is, "If $\sum a_{k}$ converge, does $\sum a_{k} z^{k}$ converge uniformly on $|z| \leq 1 ? "$ Although $\sum a_{k}$ converges implies that $\sum a_{k} z^{k}$ converges uniformly on $|z| \leq p<1$, it does not imply uniform convergence on $|z| \leqq 1$ as the following simple example shows:

$$
\begin{equation*}
\sum=\frac{(-1)^{k}}{k+1} \tag{8}
\end{equation*}
$$

The series defined by (8) converges; however, the series $\sum \frac{(-1)^{k} z^{k}}{k+1}$ does not converge at $z=-1$; a fortiori,it cannot be uniformly convergent on $|z|<1$.

Since, the elements of U converge uniformly on $|z| \leq 1$, one may naturally ask, "Does f\&U imply that the radius of convergence of f is R1?" The answer to this question is, " $N o$, there are elements in U whose radius of convergence is $1 . "$ One way to see this is to observe that $\sum \frac{z^{k}}{\mathrm{k}^{2}}$ converges absolutely, and hence, uniformly on $|z| \leq 1$, but the radius of convergence is 1 .

2. Some Spaces Equivalent To U

If X is a Banach space, then we will say that X is equivalent to U provided there exists a continous linear operator a such that it maps U one-to-one and onto X, and such that $\|\Lambda(f)\|_{X}=\|f\|$. That is, X is equivalent to U iff there exists an isomorphism between X and U which is also an isometry.

The purpose of this section is to develop some theory about U by looking at different ways in which it is possible to describe the class of uniformly convergent power series on $|z| \leqq 1$ as a Banach space while maintaining the norm which was defined by (2). Of course, if X is equivalent to U, then any information which is obtained about X can be easily translated via Λ to information concerning U. Since this can obviously be accomplished with no effort, there will not be a need to specifically translate anything.

Since by (3), if f belongs to U, then $\|f\|=\sup _{n} \sup _{|z|=1}\left|S_{n}(z)\right|$, the norm will be restricted to the unit circle T.

The spaces which follow are all Banach spaces under the norm defined by (3).
(9) $U_{1}=$ the set of all f such that $f(t)=\sum a_{k} e^{i k t}$, and $\sum_{k=0}^{n} a_{k} e^{i k t}$ converges uniformly to f.
(10) $U_{2}=$ the set of all $x=\left\{a_{k}\right\}$ such that $\sum a_{k} e^{i k t}$ is a function in U_{1}.

Let N denote the non-negative integers with the discrete topology. Let \bar{N} denote the one-point compactification of N.
(11) $U_{3}=$ the set of all functions, S, on $T X \bar{N}$ of the form

$$
S(t, n)=\sum_{k=0}^{n} a_{k} e^{i k t} \text {, and } \sum a_{k} e^{i k t}
$$

is a function in U_{1}.
Define $\Gamma: U \rightarrow U_{1}$ by $\Gamma(f)=g$, where $f(z)=\sum a_{k} z^{k}$ and
$g(t)=f\left(e^{i t}\right) ; T: U_{1} \rightarrow U_{2}$ by $T(g)=x$, where $g(t)=\sum a_{k} e^{i k t}$ and $x=\left\{a_{k}\right\}$; and $\psi: U_{\urcorner} \rightarrow U_{3}$, by $\psi(g)=S$, where $g(t)=\sum a_{k} e^{i k t}$ and

$$
s(t, n)=\sum_{k=0}^{n} a_{k} e^{i k t} .
$$

It is a trivial matter to check that Γ, T, and Ψ are isometric isomorphisms. Hence, the following proposition is stated without proof:

Proposition 1.5: U_{1}, U_{2}, and U_{3} are equivalent to U.

Proposition 1.6: U_{1}, U_{2}, and U_{3} have Schauder-bases.
Proof: The proof follows immediately from Propositions 1.4 and 1.5.

From the mappings defined prior to Proposition 1.5, the following facts are obvious:
'1. A Schauder basis for U_{1} is given by the set of functions defined by $e_{k}(t)=e^{i k t} \cdot$
2. A Schauder basis for U_{2} is given by the set of sequences of the form $e_{k}=(0,0, \ldots, 0,1,0,0, \ldots)$ with 1 in the $k^{t h}$ coordinate.
3. A Schauder basis for U_{3} is given by the set of functions defined by

$$
e_{k}(t, n)=\left\{\begin{array}{l}
0 \text { if } k>n \\
e^{i k t} \text { if } k \leq n
\end{array}\right.
$$

Proposition 1.7: If $\left\{a_{k}\right\} \varepsilon U_{2}$, then $\left\{\bar{a}_{k}\right\} \varepsilon U_{2}$, where \bar{a}_{k} denotes the complex conjugate of a_{k}.

Proof: Since $\left\{a_{k}\right\} \in U_{2}$, given $n>0$, there is an N such that

$$
\sup _{t}\left|\sum_{k=p}^{q} a_{k} e^{i k t}\right|<\eta \quad \text { if } \quad p, q>N
$$

Choose $p, q>N$, and fix them. Then

$$
\begin{aligned}
\sup _{t}\left|\sum_{k=p}^{q} \bar{a}_{k} e^{i k t}\right| & =\sup _{t}\left|\sum_{k=p}^{q} a_{k} e^{-i k t}\right| \\
& =\sup _{t}\left|\sum_{k=p}^{a} a_{k} e^{i k t}\right|
\end{aligned}
$$

Since $|\bar{z}|=|z|$, Proposition 1.7 now follows from the last equality.

It is well known that the complex series $\sum a_{k}+i b_{k}$ converges (converges absolutely) iff the two real series $\sum a_{k}$ and $\sum b_{k}$ converge (converge absolutely). The following corollary follows directly from Proposition 1.7 and the fact that U_{2} is a vector space over C; hence, it is stated without proof:

Corollary 1.8: $\left\{a_{k}+i b_{k}\right\} \varepsilon U_{2}$ iff $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\} \varepsilon U_{2}$.
U_{3} is an interesting space and seems to be the "natural" space which one should use in investigating uniformly convergent power series. Note that $T x \bar{N}$ is a compact Hausdorff space, and that U_{3} is at least a subset of $B(T x \bar{N})$, where $B(T x \bar{N})$ is the class of bounded functions on $T x \bar{N}$.

Theorem 1.9: U_{3} is a closed subspace of $C(T x \bar{N})$, where $C(T x \bar{N})$ is the Banach algebra of continuous functions on $T x \bar{N}$ with sup-norm.

Proof: Since U_{3} is a Banach space under sup-norm on $T \bar{N}$, and, therefore, is a closed subspace of $B(T x \bar{N})$, it suffices to snow that U_{3} is a subset of $C(T x \bar{N})$.

Let $S_{\varepsilon} U_{3}$, and let Ω be any open set in C. It must be shown that $S^{-1}[\Omega]$ is open in $T x \bar{N}$, where $S^{-1}[\Omega]=\{(t, n): S(t, n) \varepsilon \Omega\}$.

Case 1. $S^{-1}[\Omega]=\phi$; whichis open, and we are done.
Case 2. $\left(t_{0}, n_{0}\right)=S^{-1}[\Omega]$ with $n_{0} \neq \infty$. In this case,
$S\left(t_{0}, n_{0}\right)=\sum_{k=0}^{n_{0}} a_{k} e^{i k t_{0}}$. Since $S\left(t, n_{0}\right)$ is continuous in t, there is a neighborhood $V_{t_{0}}$ about t_{0} such that $S\left(t, n_{0}\right) \in \Omega$ for all $t \varepsilon V_{t_{0}}$. Hence, $V_{t_{0}} \times n_{0}$ is an open set about $\left(t_{0}, n_{0}\right)$ which is contained within $S^{-1}[\Omega]$.

Case 3. $\left(t_{0}, \infty\right) \varepsilon S^{-1}[\Omega] ; S\left(t_{0}, \infty\right) \varepsilon \Omega$. Since Ω is open, there exists a $\delta>0$ such that $V_{\delta}=\left\{\zeta:\left|S\left(t_{0}, \infty\right)-\zeta\right|<\delta\right\}$ is a subset of Ω. Since $S(t, \infty)$ is continuous in t, there is an open neighborhood $v_{t_{0}}$ about t_{0} such that $\left|s(t, \infty)-s\left(t_{0}, \infty\right)\right|<\frac{\delta}{2}$ for all $t \in V_{t_{0}}$. Since $S(t, n)$ converges uniformly to $S(t, \infty)$, there is an N such that, for all $n>N$, $\sup _{t}|S(t, \infty)-S(t, n)|<\frac{\delta}{2}$. A fortiori, $|S(t, \infty)-S(t, n)|<\frac{\delta}{2}$ for all $t \in V_{t_{0}}$ and $n>N$. Finally, if $t \in V_{t_{0}}$ and $n>N$, we have

$$
\begin{aligned}
&\left|S\left(t_{0}, \infty\right)-S(t, n)\right| \leq\left|S\left(t_{0}, \infty\right)-s(t, \infty)\right|+|S(t, \infty)-s(t, n)| \\
& \leq \frac{\delta}{2}+\frac{\delta}{2}=\delta .
\end{aligned}
$$

Hence, $(t, n) \in V_{t_{0}} \times\{n\}_{n=N+1}^{\infty}$ implies that $S(t, n) \varepsilon V_{\delta}$ which is a subset of $s 2$. Therefore, $V_{t_{0}} \times\{n\}{ }_{n=N+1}^{\infty}$ is an open neighborhood about ($\left.t_{0},\right)$ which is contained in $S^{-1}[\Omega]$.

From the above three cases, it follows that if Ω is any open set in C, and if $S \varepsilon U_{3}$, then $S^{-1}[\Omega]$ is open in $T \times \bar{N}$. Hence, U_{3} is a subset of $C(T \times \bar{N})$.

Corollary 1.10: The norm, \| \| , originally defined on U as $\sup _{n} \sup _{|z| \leq 1}\left|S_{n}(z)\right|$ can now be redefined as $(12)^{n} \quad|z| \leq 1 \quad\|f\|=\max _{(n, t)}\left|\sum_{k=0}^{n} a_{k} e^{i k t}\right|$, where maximum is used
in the sense that the value $n=\infty$ is admitted.

Proof: Since $T X \bar{N}$ is compact, and since continuous functions on compact sets attain their supremum, we have for $\mathrm{S}_{8} \mathrm{U}_{3}$, there is a point $\left(t_{0}, n_{0}\right)$ such that $\sup _{(t, n)}|S(t, n)|=\left|S\left(t_{0}, n_{0}\right)\right|$.

3. The Banach Algebra U

Since $C(T \times \bar{N})$ is a Banach algebra under pointwise multiplication of functions, one is tempted to conclude that U_{3} is also a Banach algebra under pointwise multiplication. However, this is not the case. Kahane and Katznelson [14] proved that U_{1} is not an algebra under pointwise multiplication; hence, U_{3}, U_{2}, and U are not algebras under this definition of multiplication. In fact, this seems to be an unnatural way to define multiplication on U_{2}.

In this section, it will be shown that U_{2} is a Banach algebra under coordinate-wise multiplication. This multiplication corresponds to convolutions on U_{1}.

Lemma 1.11: Let $f, g \varepsilon U_{1}$, and define $f * g$ by

$$
\begin{equation*}
f * g(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t-u) g(u) d u \tag{13}
\end{equation*}
$$

Then the function $f * g \varepsilon U_{\mathcal{1}}$.
Proof: It is well known--and it is easily proved via Fubini's theorem--that the Fourier coefficients of $h(t)=f * g(t)$ are given by $\hat{h}(n)=c_{n}=\hat{f}(n) \hat{g}(n)=a_{n} b_{n}$. Now $a_{n}=0$ for $n<0$ implies that $c_{n}=0$
for $n<0$. Hence, to show that $h \varepsilon U_{1}$, it suffices to show that $\sum a_{k} b_{k} e^{i k t}$ is uniformly Cauchy.

$$
\begin{align*}
\left|\sum_{k=p}^{q} a_{k} b_{k} e^{i k t}\right| & =\left|\sum_{k=p}^{q} b_{k} e^{i k t} \frac{1}{2 \pi} \int_{0}^{2 \pi} f(u) e^{-i k u} d u\right| \tag{14}\\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(u)|\left|\sum_{k=p}^{q} b_{k} e^{i k(t-u)}\right| d u \\
& \leq \sup _{u}|f(u)| \sup _{u}\left|\sum_{k=p}^{q} b_{k} e^{i k(t-u)}\right| .
\end{align*}
$$

Since $\quad \sup _{u}\left|\sum_{k=p}^{q} b_{k} e^{i k(t-u)}\right|=\sup _{u}\left|\sum_{k=p}^{q} b_{k} e^{i k u}\right|$, the right hand side can be made arbitrarily small by choosing p sufficiently large. Hence, it is immediate that $h \varepsilon U_{1}$.

Corollary 1.12: Let μ be a complex Bore measure on T. Define the sequence $\left\{c_{k}\right\}$ by

$$
c_{k}=\int_{T} e^{-i k t} d u(t), \quad k=0,1, \ldots
$$

Then $\left\{a_{k} c_{k}\right\} \varepsilon U_{2}$ for all $\left\{a_{k}\right\}=U_{2}$.
Proof: Since μ is a complex Bore measure on T, the total variation of $\mu,|\mu|(T)$ is finite. Repeating the argument used in (14) yields

$$
\left|\sum_{k=p}^{q} a_{k} c_{k} e^{i k u}\right| \leq|\mu|(T) \sup _{t}\left|\sum_{k=p}^{q} a_{k} e^{i k(u-t)}\right|
$$

Corollary 1.12 follows immediately from the above inequality.

From Corollary 1.12, one has the fact that if $f \varepsilon U_{1}$ and $g \varepsilon L^{1}$, then $f_{\star} g \varepsilon U_{1}$. This follows from the fact that the measure, μ, defined by

$$
\mu(E)=\int_{E} g(t) d t
$$

is a complex Borel measure and that $\mathrm{d} \mu=\mathrm{gdt}$.

Corollary 1.13: If $f, g \varepsilon U_{1}$, then $\|f * g||\leq \| f i|||g i|$.
Proof: In (14), let $p=0$. Then
$\left|\sum_{k=0}^{a} a_{k} b_{k} e^{i k t} i \leq \sup _{u}\right| f(u)\left|\sup _{u}\right| \sum_{k=0}^{a} b_{k} e^{i k t} \mid$
$\frac{\therefore}{q}\|f\|\|q\|$.
Hence $\sup _{(q, t)}\left|\sum_{k=0}^{q} a_{k} b_{k} e^{i k t}\right|=\|f \star a\|=\|f\| \quad \| g i i$.

Since it is obvious that U_{2} is a commutative ring under adaition and coordinate-wise multiplication, we have proved:

Theorem 1.14: U_{2} is a commutative Banach algebra under coordinate-wise multiplication

$$
\text { Corollary } 1.15 \text { If }\left\{a_{k}\right\} \in U_{2} \text {, then }\left\{\left|a_{k}\right|^{2}\right\} \varepsilon U_{2} .
$$

Proof: This follows immediately from Proposition 1.7 and Theorem 1.14 since $a_{k} \bar{a}_{k}=\left|a_{k}\right|^{2}$.

The converse forollary 1.15 is not true since the sequence defined by $a_{k}=\frac{(-1)^{k}}{k}$ does not belong to U_{2} while $\left\{\left|a_{k}\right|^{2}\right\} \in U_{2}$.

Definition 1.1: If R is a commutative ring without identity, then an ideal, I, of R is called a regular ideal provided there exists $u \varepsilon R$ such that $u x$ - $x \varepsilon I$ for all x in $R .[u$ is called an identity modulo I].

Definition 1.2: If R is a commutative ring, then it is semi-simple af the intersection of all its maximal regular ideals is zero.

A well known result is that every regular maximal ideal in a commutative ring R is the kernel of some non-zero homomorphism from R to the complex numbers.

Theorem 1.16: If X is a space of sequences which is a commutative Banach algebra under coordinate-wise multiplication and has the set $\left\{e_{k}\right\}$ as a Schauder basis, then projections into the coordinates are the only homomorphisms, and, therefore, X is semi-simple.

Proof: Since the system $\left\{e_{k}\right\}$ is a Schauder basis for X, X contains the set of all finite sequences.

Let h be any non-zero homomorphism of X into C. Then h is a continuous linear functional, and $h(x * y)=h(x) h(y)$ for all $x, y=x$. Since $x=\left\{a_{k}\right\}, y=\left\{b_{k}\right\}$ can be written as

$$
x=\sum a_{k} e_{k} \quad \text { and } \quad y=\sum b_{k} e_{k} \text {, we obtain }
$$

$$
\begin{equation*}
\sum a_{k} b_{k} h\left(e_{k}\right)=\sum a_{k} h\left(e_{k}\right) \sum b_{k} h\left(e_{k}\right) \tag{15}
\end{equation*}
$$

for all $x, y \in X$.
Let $h\left(e_{k}\right)=\lambda_{k}, k=0,1, \ldots$. Given n, let
$x_{n}=y_{n}=(1,1,1, \ldots, 1,0,0,0, \ldots)$, where 0 is in the $n+p$ th coordinate for $p=1,2,3, \ldots$. Hence, by (15)

$$
\sum_{k=0}^{n} \lambda_{k}=\sum_{k=0}^{n} \lambda_{k} \sum_{k=0}^{n} \lambda_{k} .
$$

Therefore, for any $n, \sum_{k=0}^{n} \lambda_{k}=0$ or $\sum_{k=0}^{n} \lambda_{k}=1$. Now $\sum_{k=0}^{n} \lambda_{k}=0$
for all n would imply that h was the zero homomorphism. 'Hence, there exists n such that

$$
\sum_{k=0}^{n} \lambda_{k}=1
$$

Let

$$
N=\min \left\{n: \sum_{k=0}^{n} \lambda_{k}=1\right\}
$$

Then $\lambda_{N}=1$, and $\lambda_{k}=0$ for $k<N$. It will be shown by induction that $\lambda_{k}=0$ for $k>N$.
Let $x=y$ be the sequence defined by

$$
a_{k}= \begin{cases}1 & \text { if } k=N \\ 1 / 2 & \text { if } k=N+1 \\ 0 & \text { otherwise }\end{cases}
$$

For the sequence $x=y$ above, (15) yields $-3 \lambda_{N+1}=\left(\lambda_{N+1}\right)^{2}$. Since λ_{N+1} must be -1 or 0 , the above equality yields that it must equal zero. Assume that $\lambda_{N+q}=0$ for $q<p$. Then λ_{N+D} must be -1 or 0 . Let $x=y$ be defined by

$$
a_{k}= \begin{cases}1 & \text { if } k=N \\ 1 / 2 & \text { if } k=N+p \\ 0 & \text { otherwise }\end{cases}
$$

Using (15) again, we obtain $1+\frac{1}{4} \lambda_{N+p}=\left(1+\frac{1}{2} \lambda_{N+p}\right)^{2}$. Hence, $\lambda_{N+p}=0$. Since

$$
h\left(e_{k}\right)= \begin{cases}0 & \text { if } k \neq N \\ 1 & \text { if } k=N\end{cases}
$$

$h(x)=P_{N}(x)=a_{N}$. Projections into the coordinates are clearly homomorphisms. It has now been shown that these are the only ones. Define M_{k} by

$$
M_{k}=\left\{x \in X: a_{k}=0\right\}
$$

Obviously, M_{k} is the kernel of P_{k}. Hence, M_{k} is a regular maximal ideal for $k=0,1,2, \ldots$. The intersection of all regular maximal ideals is clearly the zero sequence. Hence X is semi-simple. This completes the proof of Theorem 1.16.

It should be noted that one need only to have shown that the set of projections was a subset of the set of homomorphisms on X in order to have the fact that X was semi-simple. Hence, the interesting part of the theorem is the fact that a characteryzation of the homomorphisms on this class of Banach algebras is obtained.

Corollary 1.17: U_{2} is semi-simple.

Proof: The proof follows immediately from Proposition 1.4 and Theorem 1.16.

Corollary 1.18: The set \mathcal{l}_{1} is an ideal in U_{2}, but it is not contained in any regular ideal.

Proof: If $x, y \varepsilon l_{1}$, then $x-y \varepsilon l_{1}$, and if $x \in l_{1}$ and $y \varepsilon U_{2}$, then $x * y=\left\{a_{k} b_{k}\right\} \varepsilon l_{1}$. Hence l_{1} is an ideal. To show that l_{1} is not
contained in any regular ideal, merely note that $\{1 / k!\} \in d_{1}$ and that no term of the sequence is zero; it now follows that \boldsymbol{l}_{1} is not in any regular ideal since all such ideals are contained in maximal regular ideals.

From the fact that U_{2} is semi-simple, one can obtain more information about the norm which has been used. In a paper on F-H spaces, Wilansky and Zeller [25] gave a very short proof of the fact that a commutative semi-simple Banach algebra, A, has an essentially unique norm under which A is a Banach algebra. Hence, the norm, $\left\|\|\right.$, defined on U_{2} is essentially the only one that could be used.

Definition 1.3: In a commutative ring, an element x is said to have an adverse y iff $x+y-x y=0$.

It is a well known result that an element x in a commutative ring has an adverse in the ring iff it is not an identity modulo any regular maximal ideals. Using this fact, one obtains:

$$
\text { Proposition 1.19: If }\left\{a_{k}\right\}_{\varepsilon U_{2}}, a_{k} \neq 1, \text { for } k=0,1,2, \ldots,
$$

then $\left\{\frac{a_{k}}{a_{k}-1}\right\} \varepsilon U_{2}$.
Proof: For $x=\left\{a_{k}\right\}$ to be an identity modulo M_{n}, $x * y-y$ must he in M_{n} for all $y \varepsilon U_{2}$. Rut this means that $a_{n} b_{n}-b_{n}=0$ for all $y \in U_{2}$, and this is true iff $a_{n}=1$. Since $a_{k} \neq 1$ for any k, x is not an identity modulo any regular maximal ideal. Hence, there is an element $y \in U_{2}$ such that

$$
x+y-x * y=(0,0,0,0,0, \ldots)
$$

Hence, $a_{k}+b_{k}-a_{k} b_{k}=0$ for $k=0,1,2, \ldots$. Therefore, \boldsymbol{y} is given by the sequence

$$
b_{k}=\frac{a_{k}}{a_{k}-1}
$$

Let $x_{\varepsilon} U_{2}$. The Gelfand transform of x, denoted by \hat{x}, is a function defined on, $\Delta=\left\{M_{k}: k=0,1, \ldots\right\}$, the collection of maximal reqular ideals of U_{2} by

$$
\begin{equation*}
\hat{x}\left(M_{k}\right)=\eta \text { where } \eta \text { is a co-set of } M_{k} \text { and } x \in \eta \text {. } \tag{16}
\end{equation*}
$$

It is well known that if M is a regular maximal ideal in a commutative Banach algebra X, then the quotient algebra, X / M, is isomorphic to the field of complex numbers,C. In the particular case $X=U_{2}$ and $M=M_{k}$, an isomorphism can be exhibited explicitly.

Proposition 1.20: Let M_{k} be a regular maximal ideal of U_{2}. Let $\Pi_{n}^{k}=\left\{x \varepsilon U_{2}: a_{k}=n\right\}$. Then $U_{2} / M_{k}=\left\{\eta_{n}^{k}: n \varepsilon C\right\}$, and the mapping $n_{n}^{k} \rightarrow n$ is an isomorphism of \mathscr{y} / M_{k} onto C.

Proof: Elements x, y clearly belong to the same co-set of M_{k} iff $a_{k}=b_{k}$, and it is equally clear that for any complex number η there is an $X_{\varepsilon} U_{2}$ such that $a_{k}=n$. Hence, it follows that $\left\{\Pi_{n}^{k}: \eta_{i} C\right\}$ is precisely the collection of co-sets of M_{k}. From the way addition and multiplication are defined on U_{2} / M_{k}, and from the fact that the co-sets of M_{k} are disjoint, it follows that the mapping $\pi_{n}^{k} \rightarrow n$ is an isomorphism.

$$
i:
$$

The Gelfand transform of an element $X_{E U_{2}}$ can now be described more completely by using Proposition 1.20:

$$
\begin{equation*}
\hat{x}\left(M_{k}\right)=a_{k} \text { where } a_{k} \text { is the } k \text { th coordinate of } x . \tag{17}
\end{equation*}
$$

Definition 1.4: Let T_{1} and T_{2} be two topologies on a set X. Then T_{1} is coarser than T_{2} if T_{1} is a subset of T_{2}.

Let X be a commutative Banach algebra without identity, and let I denote the collection of all maximal regular ideals of X. Let T be the coarsest topology on π such that all the Gelfand transforms are continuous on π. A subbase for the topology is given by the sets

$$
\begin{equation*}
\hat{x}^{-1}[\Omega] \text { for all open } \Omega \text { in } \mathbb{} \text {, and for all } x \text {. } \tag{18}
\end{equation*}
$$

This topology makes π a locally compact Hausdorff space. The functions \hat{x} have the property that given $\varepsilon>0$, there is a compact subset K of π such that $|\hat{x}(M)|<\varepsilon$ for M not in K. (such functions are said to vanish at infinity). Let $C_{0}(\pi)$ denote the collection of all continuous functions on $\pi--$ with the above topology--which vanish at infinity.

Applying the above facts to U_{2} yields:
Proposition 1.21: $C_{0}(\Delta)$ is isomorphic to the space of null sequences.

Proof: Since $C_{0}(\Delta)$ consists of all continuous functions which vanish at infinity, it suffices to show that the topology which is defined on Δ must be the discrete topology. If the topology on Δ is the discrete topology, then Δ is homeomorphic to the natural
numbers, N, with the discrete topology, and the continuous functions on N which vanish at infinity is precisely the collection of null sequences. To show that the topoloqy on Δ is the discrete topoloay, it suffices to show that each M_{k} is open. From (18)

$$
\hat{x}^{-1}[\Omega]=\left\{M_{k}: \hat{x}\left(M_{k}\right) \varepsilon \Omega\right\}
$$

will be an open set--since it is a member of the subbase--for each x in U_{2} and open set Ω in C. Let $M_{n} \varepsilon \Delta$. Then for $e_{n} \varepsilon U_{2}$, let Ω be an open set in C such that 1 belongs to Ω and 0 does not. belong to si. Then,

$$
\begin{aligned}
\hat{e}_{n}^{-1}[\Omega] & =\left\{M_{k}: \hat{e}_{n}\left(M_{k}\right) \varepsilon \Omega\right\} \\
& =\left\{M_{k}: a_{k} \varepsilon \Omega, e_{n}=\left\{a_{m}\right\}\right\} \text { by }(17) \\
& =\left\{M_{n}\right\},
\end{aligned}
$$

since $e_{n}=(0,0,0, \ldots, 0,1,0,0, \ldots)$ with 1 in the nth coordinate. Hence, the coarsest topology on Δ for which all the \hat{x} 's are continuous is the discrete topology.

One of the cases which one looks for in the Gelfand representation of a commutative Banach algebra X is the case when the collection of transforms equals $C_{0}(y)$. Letting \hat{U}_{2} denote the collection of all Gelfand transforms of members of U_{2}, (17) and Proposition 1.21 yield the fact that \hat{U}_{2} is a proper subset of $C_{0}(\Delta)$.

Definition 1.5: In a commutative Banach algebra, A, without identity, the spectrum of an element $x \in A, \sigma(x)$, is defined by
(19) $\sigma(x)=\{\lambda \in C: \lambda \neq 0$, and $(1 / \lambda) x$ does not have an adverse $U\{0\}$.

It is well known that the range of \hat{x} is either identical to the spectrum of $x, \sigma(x)$, or it is $\sigma(x)$ with the value zero removed For U_{2}, this means that $\sigma(x)=\left\{a_{k}{ }^{j}\right.$. This yields the following proposition which is an improvement upon Proposition 1.19:

Proposition 1,22: If $\left\{a_{k}: \varepsilon U_{2}\right.$, and $i \varepsilon C, \lambda \neq 0$, and $i f a_{k}$ for $k=0,1,2, \ldots$, then

$$
\left\{\frac{a_{k}}{a_{k}-\lambda}\right\} \varepsilon U_{2} .
$$

Proof: $x=\left\{a_{k}\right\}$, and $\lambda \neq 0, \lambda \neq a_{k}$ implies that λ does not belong to $\sigma(x)$. Hence, by (19), this means that ($/ / \lambda) x$ has an adverse in U_{2}. This adverse is obviously given by

$$
\left\{\frac{a_{k}}{a_{k}-\lambda}\right\}
$$

Definition 1.6: The multipliers on $U_{1}, M\left(U_{1}\right)$, is the $s \in t$ of all g such that the pointwise product, $f(t) g(t)$, is in U_{1} for all f in U_{1}.

Let \tilde{l}_{1} deriote those elements of U_{1} which have absolutely convergent series. Kahane and Katznelson [i4] have proved that $\hat{\ell}_{1}$ is a proper subset of $M\left(U_{1}\right)$. Nevertheless, the following theorem

Ineorem 1.23: $\tilde{\ell}_{1}$ is a subset of $M\left(U_{1}\right)$,
Proof: Let $f(t)=\sum a_{k} e^{i k t}$ be in $\tilde{\ell}_{1}$, and $g(t)=\sum b_{k} e^{i k t}$ be in U_{1}. To show that $f(t) g(t)$ is in U_{1}, it suffices to show that given $\varepsilon>0$, there is an M such that $p, q=M$ implies that

$$
\sup _{t}\left|s^{\prime}(t ; p, q)\right|=\sup _{t}\left|\sum_{n-p}^{q} e^{i n t} \sum_{k=0}^{n} a_{k} b_{n-k}\right|=\varepsilon .
$$

$$
\begin{aligned}
S(t ; p, q) & =\sum_{n-p}^{q} \sum_{k-0}^{n} a_{k} e^{i k t_{b_{n-k}} e^{i i l-k, t}} \\
& =\sum_{k-0}^{p} a_{k} e^{i k t} \sum_{n-p-k}^{q-k} b_{n} e^{i r t}+\sum_{n-j+1}^{q} a_{k} e^{i k t} \sum_{n-0}^{q-k} b_{n} e^{i n t} \\
& =\sum_{n}+\sum_{2} .
\end{aligned}
$$

$$
\sum_{1}=\sum_{k-0}^{N} a_{k} e^{i k t} \sum_{n=p-k}^{\dot{g-k}} b_{n} e^{i n t}+\sum_{k=N+1}^{\infty} a_{k} e^{i k t} \sum_{n_{1}=p-k}^{q-k} b_{n} e^{i n t}
$$

$$
=\sum_{11}+\sum_{12}
$$

Without loss of generality, one can assufie that neither
f nor g is zens. Then there exists M, such that $N \sim M$, implies that

$$
\sum_{k=N+1}^{\infty}\left|a_{k}\right|<=/ 3\left|g_{i}\right|
$$

There exists M_{2} such that $m-M_{2}$ implies that
 an it $p: M$, then

$$
i 3
$$

since $p+1 \cdot M=N_{0}: M_{1}$

Since $N_{0}>M_{1}$,

Now, if $k<N_{0}$, then $-k>-N_{0}$. Hence, $p-k>p-N_{0}$. But $p-N_{0}>M_{3}>M_{2}$. Hence, $k<N_{0}$ implies that $p-k>M_{2}$. Therefore,

$$
\sup _{0 \leqq k \subseteq N_{0}} \sup _{t}\left|\sum_{n=p-k}^{q-k} b_{n} e^{i n t}\right|<\varepsilon /\left.3| | f| |\right|_{1}
$$

Hence,

$$
\begin{aligned}
& \left|\sum_{11}\right| \leq \sup _{0=k=N_{0}} \sup _{t}\left|\sum_{n=p-k}^{q-k} b_{n} e^{i n t}\right| \sum_{k=0}^{N_{\Omega}}\left|a_{k}\right| \\
& =\sup _{0=k \leq N_{0}} \sup _{t}\left|\sum_{n=p-k}^{q-k} b_{n} e^{i n t}\right|\|f\|_{1} \\
& \varepsilon / 3 \\
& \text { Since } s(t ; p, q)=\sum_{11}+\sum_{12}+\sum_{2} \text {, } \\
& \sup _{t}|S(t ; p, q)|<\varepsilon \quad \text { if } p>M .
\end{aligned}
$$

This completes the proof of Theorem 1.23.

Since U is isomorphic-isometric to U_{1}, U_{2}, and U_{3}, the dual space of U, U^{\prime}, is isomorphic-isometric to the dual spaces of U_{1}, U_{2}, and U_{3}-denoted respectively by $U_{1}^{\prime}, U_{2}^{\prime}$, and U_{3}^{\prime}. That is, if X is U_{1}, U_{2}, or U_{3} and I is an isomorphic-isometric mapping of U onto X, then the map, ψ, defined by

$$
\begin{equation*}
\Psi(L)=T \quad \text { where } T \text { is defined by } T(f)=L(\Gamma(f)) \tag{20}
\end{equation*}
$$

is an isomorphic-isometric mapping of X^{\prime} onto U '.

Proposition 1.24: The members of U_{2}^{\prime} are uniquely determined by sequences $\left\{c_{k}\right\}$ which have the property $\sum a_{k} c_{k}$ converges for all $\left\{a_{k}\right\}$ in U_{2}.

Proof: Let L be a continuous linear functional on U_{2}. Let x be any member of U_{2}. Since U_{2} has a Schauder basis, $x=\sum a_{k} e_{k}$. Since L is a continuous linear functional, $L(x)=\sum a_{k} L\left(e_{k}\right)$. Hence, the sequence defined by $L\left(e_{k}\right)=c_{k}$ uniquely determines L. Conversely, let c_{k} : be a sequence such that $\sum a_{k} c_{k}$ converges for all $\left\{a_{k}\right\}$ in U_{2}. Now $P_{k}(x)=a_{k}$ is a continuous linear functional on U_{2} for each k. Hence, for each n,

$$
S_{n}(x)=\sum_{k=0}^{n} P_{k}\left(c_{k} x\right)=\sum_{k=0}^{n} a_{k} c_{k}
$$

is a continuous linear functional on U_{2}. The assumption that $\sum a_{k} c_{k}$ converges for all $\left\{a_{k}\right\}$ in U_{2} implies that S_{n} converges weakly to S, where $S(x)=\sum a_{k} c_{k}$. Hence, S is a continuous 1 inear functional.

An imnediate result from Proposition 1.24 is that if z_{0} is such that $\left|z_{0}\right| \leqq 1$, then $\left\{z_{0}^{k}\right\}$ defines a continuous linear functional on U_{2},

In particular, the sequences (i,i,),) arid (i.!) k, ae coritinuouz linear functionils on U_{2}.

For each fixed $t, 0=t=2 \pi$, define the class B. V. (t) by
(21) BV.(t) $=\left\{c_{k}\right\}: \sum i c_{k}-e^{-1 t} c_{k+1}<\infty$

For $t=0$, the above class is simply the sequences of bounded variations.

$$
\begin{aligned}
& \text { Proposition 125: If } c_{k}=B V(t) \text {, then } i m c_{k} e^{-1 k t} \text { exists } \\
& \text { Proof: } c_{k}^{j} \text { B.V.(t) implies that } \sum c_{k}-e^{-1 t_{c}} c_{k+i}=O
\end{aligned}
$$

But

$$
\sum e-i k t_{c_{k}}-e^{-i(k+1) t_{c_{k+1}}}=\sum c_{k}-e^{-1 t_{c_{k+1}}}
$$

Hence, $\sum\left(c_{k} e^{-i k t}-c_{k+1} e^{-i(k+1) t}\right)$ converges. But

$$
\begin{aligned}
s_{n} & =\sum_{k=0}^{n}\left(c_{k} e^{-1 k t}-c_{k+1} e^{-1(k+i j t}\right) \\
& =c_{0}-c_{n+1} e^{-i(n+i j t}
\end{aligned}
$$

Hence, lily $c_{n} e^{-i n t}$ exists

Now it $C-\lim c_{n} e^{-i n t}$, then $i C$. $\lim c_{n}$ since $\therefore c_{n}-C^{\prime} \dot{{ }^{\prime}{ }_{n} e^{-1 n t}-C+.}$

Proposition 1.25: B.V.(t) is a subset of U_{2} for each t
Proci: Let $\left.i_{k}\right\} B \vee(t)$ Then for any n arid any $d_{k}: U_{2}$

$$
\sum_{k=0}^{\infty} a_{k} c_{k}-\sum_{k-0}^{n-1} s_{k}(t) e^{-1 k t}\left[c_{k}-c_{k+1} e^{-1 t}\right]+c_{n} e^{-1 n t} j_{n}(t),
$$

where $S_{k}(t)=\sum_{m-0}^{k} a_{m} e^{i m t}$. But lime $c_{n} e^{-i n t} j_{n}(t)$ exists, and
$\sum S_{k}(t) e^{-i k t}\left[c_{k}-c_{k+1} e^{-i t}\right]$ is aboslutely convergent. Hen: e, $\sum a_{k} c_{k}$ converges for each $\left\{a_{k}\right\}=U_{2}$, By Proposition 1.24, $\left\{c_{k} \vdots U_{2}^{\ell}\right.$

Corollary 1.27: Let $\left.L=\left\{c_{k}\right\} \varepsilon B, V, i t\right)$. Then

$$
\begin{aligned}
\| L i \mid= & \sup _{||x| i=1}|L(x)| \\
& =\sum\left|c_{k}-c_{k+1} e^{-i t}\right|+1 i m j c_{k} \mid
\end{aligned}
$$

Proof: From the proof of Proposition 1.26, it follows that

$$
\begin{aligned}
|L(x)| & \equiv \sup _{k}\left|s_{k}(t)\right|\left(\sum\left|c_{k}-c_{k+1} e^{-i t \mid}+1 i m i c_{k}\right|\right) \\
& \leqq \quad \mid x:\left(\sum\left|c_{k}-c_{k+1} e^{-i t}+1 i m\right| c_{k} \mid\right)
\end{aligned}
$$

Hence, Coroliay 1.27 follows.

Proposition 1 28: There exist $\left\{c_{k}\right\}: U_{2}^{\prime}$ such that $i c_{k}$ does not belong to B. V. (t) for any t.

Proof: Since $i(-1)^{k}$, and $(1,1,1,1, \ldots)$ are in U_{2}^{\prime}, the sequence \therefore defined by $c_{k}=1+(-1)^{k}$ is in U_{2}^{\prime}. However, for any t,

$$
\begin{aligned}
\sum_{k-0}^{m} i c_{k}-c_{k+1} e^{-1 t} & =\sum_{k=0}^{m}-i\left[1+(-1)^{k}\right]-\left[1+(-1)^{k+1}\right] e^{-1 t} \\
& =2 \sum_{k=0}^{m} 1=2(m+1)+(\mathbf{D}
\end{aligned}
$$

From the fact that l_{1} is a subset of U_{2}, the following proposition is easily obtained, and, is therefore stated without proof:

Proposition 1.29: As sets, U_{2}^{\prime} is a subset of m, where m is the collection of bounded sequences.

Corollary 1.30: There exists f in U such that the derivative of f, f^{\prime}, does not belong to U.

Proof: If $\sum a_{k} z^{k} \varepsilon U$ implied that $\sum k a_{k} z^{k-1} \varepsilon U$, then $\sum k a_{k}$ converges for all $\left\{a_{k}\right\}$ in U_{2}. Hence, by Proposition 1.24, $\{k\}$ would be in U_{2}^{\prime}, but this contradicts Proposition 1.29.

Corollary 1.30 is a prefectly natural result since there are power series in U whose radius of convergence is precisely 1 , and, hence, have a singularity on $|z|=1$.

Theorem 1, 31: $\left\{c_{k}\right\}=U_{2}^{\prime}$ of $\left\{a_{k} c_{k}\right\}=U_{2}$ for all $\left\{a_{k}\right\}=U_{2}$
Proof: Assume that $\left\{a_{k} c_{k}\right\} \varepsilon U_{2}$ for ail ia a_{k}, U_{2}. Then the series $\sum a_{k} c_{k} z^{k}$ converges on $|z|=1$ for all $\operatorname{aa}_{k} U_{2}$. In particular, it converges at $z=1$. Hence, by Proposition $1.24\left\{c_{k}\right\} \in U_{2}^{\prime}$

Now assure that $L=\left\{c_{k}\right\} U_{2}$, Let $a_{k} ; U_{2}$. To show that $\left\{a_{k} c_{k}, U_{2}\right.$, it suffices to show that $\sum a_{k} c_{k} e^{i k t}$ is uniformly Cauchy. Let $e^{i s}$ be a point on T and fix it.. Then $y-\left\{a_{k} e^{i k s}\right\}$ is in U_{2}, and

$$
\sup _{t}\left|\sum_{k-\bar{p}}^{n} a_{k} e^{i k s} e^{i k t}\right|=\sup _{t} \left\lvert\, \frac{\sum_{k-p}^{n}}{n} a_{k} e^{i k t}\right.
$$

Hence,

$$
\begin{aligned}
\left|\sum_{k=p}^{n} a_{k} c_{k} e^{i k s}\right| & =\left|L\left(\sum_{k-p}^{n} a_{k} e^{i k s} e_{k}\right)\right| \\
& \doteq||L||\left|\left|\sum_{k=p}^{n} a_{k} e_{k}\right|\right|
\end{aligned}
$$

By choosing p sufficiently large, the right hand side of the inequality can be made as small as desired. Therefore, $\sum a_{k} c_{k} e^{i k t}$ is uniformly Cauchy.

Corollary 1.32: If $L=\left\{c_{k}\right\}, M=\left\{u_{k}\right\} \in U_{2}^{\prime}$, then
$L * M=\left\{c_{k} u_{k}\right\} \varepsilon U_{2}^{\prime}$.
Proof: Let $x=\left\{a_{k}\right\} \in U_{2}$. Then $y=\left\{a_{k} c_{k}\right\} \in U_{2}$. But $M(y)=\sum a_{k} c_{k} u_{k}$. Hence, $\sum a_{k}\left(c_{k} u_{k}\right)$ converges for all $\left\{a_{k}\right\}_{\varepsilon U_{2}}$. Therefore, $\left\{c_{k} u_{k}\right\} \varepsilon U_{2}^{\prime}$.

Theorem 1.33: U_{2}^{\prime} is a commutative Banach algebra with identity under coordinate-wise multiplication.

$$
\text { Proof: Let } L=\left\{c_{k}\right\}, M=\left\{u_{k}\right\} \varepsilon U_{2}^{\prime} \text {. Let } x=\left\{a_{k}\right\} \varepsilon U_{2}
$$

Then $y=\left\{a_{k} c_{k}\right\} \in U_{2}$. For fixed $s,\left\{a_{k} e^{i k s}\right\} \in U_{2}$. Hence,

Since the right-hand side is independent of n and s,

$$
\|y\| \doteq\|L\| \quad\|x\|
$$

Hence, $|M \star L(x)|=|M(y)| \leqq||M|||y||=|M|||L|| | x| |$.
Therefore, $\quad||M \star L|| \underline{\underline{\underline{\mid}}||M||||L|| \text {. }}$

The ring structure of U_{2}^{\prime} is obvious, and $(1,1,1, \ldots)$ is the identity. Hence U_{2}^{\prime} is a commutative Banach algebra with identity.

In order to find the precise dual space of U_{2}, we will examine the dual space of U_{3}. From the fact that U_{3}^{\prime} and U_{2}^{\prime} are equivalent, we will be able to deduce the manner in which the sequence space, U_{2}^{\prime}, is generated.

Definition 1.7: Let B be the sigma-algebra generated by the open sets of a topological space X. Let $E_{\varepsilon} B$. Then a collection of sets, $\left\{E_{n}\right\}$, in B is said to partition E iff E is equal to the union of the E_{n}, and the collection is pair-wise disjoint. A complex Borel measure, μ, on B is a complex-valued function on B such that for each $E_{\varepsilon} B$,

$$
\mu(E)=\sum_{n=0}^{\infty} \mu\left(E_{n}\right) \text { for every partition }\left\{E_{n}\right\} \text { of } E,
$$

and the above series always converges absolutely.

Definition 1.8: If μ is a complex Borel measure on B, the total variation of μ is the finite, positive Borel measure $|\mu|$ defined on B by

$$
|\mu|(E)=\sup \left\{\sum\left|\mu\left(E_{n}\right)\right|:\left\{E_{n}\right\} \text { is a partition of } E\right\} .
$$

Definition 1.9: If μ is a complex Borel measure on B, then it is regular iff for every $E_{\varepsilon} B$, $|\mu|(E)=\inf \{|\mu|(V): E$ is a subset of V, and V is open $\}$, and $|\mu|(E)=\sup \{|\mu|(K): K$ is a subset of E, and K is compact $\}$.

The form of the Riesz Representation theorem which we need states:

If X is a compact Hausdorff space, then to each continuous linear functional L on $C(X)$ there corresponds a unique complex

Borel measure, μ, such that

$$
\begin{equation*}
L(f)=\int_{X} f d_{\mu}, \text { for all } f \varepsilon C(X) \tag{21}
\end{equation*}
$$

and $||L||=|\mu|(X)$.

By the Hahn-Banach Theorem, if $L_{\varepsilon} U_{3}^{\prime}$, then there exists a continuous linear functional H on $C(T x \bar{N})$ such that $L(S)=H(S)$ for all S in U_{3}. Since $T x \bar{N}$ is a compact Hausdorff space, there exists a unique complex regular Borel measure, μ, such that

$$
H(S)=\int_{T \times \bar{N}} S d_{\mu} .
$$

Hence, for each L in U_{3}^{\prime}, L can be represented by a complex regular Borel measure on the Borel sets in $T x \bar{N}$. Moreover, L can be represented by one whose total variation on $T x \bar{N}$ is equal to the norm of L. However, it is not true that L can be represented by a unique Borel measure since the extension of L to H is not unique.

Now the system $\left\{\mathrm{e}_{\mathrm{k}}\right\}$ defined by

$$
e_{k}(t, n)= \begin{cases}0 & \text { if } n<k \\ e^{i k t} & \text { if } n \geq k\end{cases}
$$

is a Schauder basis for U_{3}. If $L \varepsilon U_{3}^{\prime}$, and $S \varepsilon U_{3}$, then there is a complex regular Borel measure, μ, on $T x \bar{N}$ such that

$$
\begin{aligned}
L(S) & =\sum_{k=0}^{\infty} a_{k} L\left(e_{k}\right) \\
& =\sum_{k=0}^{\infty} a_{k} \int_{T \times \bar{N}}^{\infty} e_{k}(t, m) d \mu(t, m) .
\end{aligned}
$$

Finally, if $L=\left\{c_{k}\right\}$ belong to U_{2}^{\prime}, then it is immediately seen that there is a complex regular Borel measure on $T x \bar{N}$ which generates the c_{k} by the rule

$$
\begin{equation*}
c_{k}=\int_{T \times \bar{N}} e_{k}(t, m) d \mu(t, m) \text { and } \tag{22}
\end{equation*}
$$

conversely, any complex regular Borel measure will generate a sequence--when defined by (22)--which belongs to U_{2}^{\prime}.

CHAPTER TWO

CONTINUOUS LINEAR OPERATORS ON U

1. Concepts From Summability

Let $A=\left(a_{n k}\right)$ be an infinite matrix. A sequence $x=\left\{x_{k}\right\}$ is said to be A - limitable provided the sequence $y=\left\{y_{n}\right\}$ defined by $y_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}$ converges. If every convergent sequence is A - limitable, then the matrix A is said to be conservative. A conservative matrix $A=\left(a_{n k}\right)$ is clearly a linear operator on the Banach space of convergent sequences. A conservative matrix is called a regular matrix provided $A-\operatorname{limit} x=\lim _{n \rightarrow \infty} x_{n}$ for every convergent sequence $x=\left\{x_{n}\right\}$. Toeplitz' Theorem gives the following necessary and sufficient conditions for a matrix to be conservative:
i) $\sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right|<\infty$
ii) $\lim _{n \rightarrow \infty} a_{n k}=a_{k}$ exists for each k,
iii) $\lim _{n} \sum_{k=0}^{\infty} a_{n k}=a$ exists.

If $a_{k}=0$ for each k and $a=1$, then the above conditions become necessary and sufficient for A to be regular. Toeplitz' Theorem also shows that a conservative matrix is a bounded operator, i.e.,

$$
\sup _{n}\left|\sum_{k=0}^{\infty} a_{n k} x_{k}\right| \leqq \sup _{k}\left|x_{k}\right| \sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right|
$$

Let Φ be a holomorphic function in $|z|<R, R>1$. Then by taking powers of $\Phi,[\Phi(z)]^{n}=\sum_{k=0}^{\infty} a_{n k} z^{k}$, a matrix $A=\left(a_{n k}\right)$ is obtained where $a_{00}=1$, and $a_{0 k}=0$ for $k=1,2,3, \ldots$ If
$\Phi(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}$, then the resulting matrix is called a Karamata matrix.

Bajanski [4] has proved that if
i) Φ is holomorphic in $|z|<R, R>1$
ii) $|\Phi(z)|<1$ for $|z| \leq 1 . \quad z \neq 1$
iii) $\Phi(1)=1$, and
iv) $\operatorname{Re} A \neq 0$, where

$$
\Phi(z)-z^{\alpha}=i^{p} A(z-1)^{p}+0(1)(z-1)^{p} \text { as } z \rightarrow 1, \quad A \neq 0 \text {, and } \alpha=\Phi^{-}(1) \text {, }
$$

then the matrix defined by $[\Phi(z)]^{n}=\sum_{k=0}^{\infty} a_{n k} z^{k}$ is regular. In this
paper, he also has shown that necessary and sufficient conditions for a Karamata matrix to be regular (for real α, β) are $\alpha<1, R<1$, and $\alpha+\beta>0$, or $\alpha=\beta=0$.

Notation 1: If X and Y are Banach spaces, let $B[X, Y]$ denote the Banach space of all continuous linear operators from X to Y.
2. Bounded Linear Operators From A Banach Space
X (With Schauder-Basis) To U.

Theorem 2.1 In order for an operator A to belong to $B[X, U]$ (where X is any Banach-space with a Schauder-basis ($\hat{\mathrm{e}}_{0}, \mathrm{e}_{1}, \ldots$)) it is necessary and sufficient that
i) A is uniquely determined by a matrix ($a_{n k}$) satisfying
ii) $f_{k}(z)=\sum_{n=0}^{\infty} a_{n k} z^{n}$ belongs to U for each k, and
iii) $L_{n}=\left\{a_{n k}\right\}_{n=0}^{\infty}$ belongs to X for each n and the continuous linear functionals defined by $F_{p, t}=\sum_{n=0}^{p} e^{i n t} L_{n}$ satisfy $\sup _{p, t}| | F_{p, t} \|_{X^{\prime}}<\infty$.

Proof: Assume that A belongs to $B[x, U]$. Let x belong to x. Then x can be written as $x=\sum_{k=0}^{\infty} x_{k} \hat{e}_{k}$. Since A is continuous and linear, we have $A(x)=\sum_{k=0}^{\infty} x_{k} A\left(\hat{e}_{k}\right)$. But $A\left(\hat{e}_{k}\right)$ belongs to U for each k. Hence,
(1) $A\left(\hat{e}_{k}\right)=\sum_{n=0}^{\infty} a_{n k} e_{n}$ where $e_{n}(z)=z^{n}$, and we obtain
(2) $A(x)=\sum_{k=0}^{\infty} x_{k} \sum_{n=0}^{\infty} a_{n k} e_{n}$. Since $A(x)$ belongs to
U, we have

$$
A(x)=\sum_{n=0}^{\infty} b_{n} e_{n}
$$

We will show that $b_{m}=\sum_{k=0}^{Q O} a_{m k} x_{k}$. Without loss of generality, we can assume that $\|A A\|=\sup _{\|x\|=1}\|A(x)\| \cup \neq 0$. Given $\varepsilon>0$, there is an N such that $r>N$ implies that $\left\|\sum_{k=r}^{\infty} x_{k} \hat{e}_{k}\right\|_{X}<\frac{\varepsilon}{\| \| A \|}$.

Hence $r>N$ implies that

$$
\left\|\sum_{k=r}^{\infty} x_{k} A\left(e_{k}\right)\right\|_{u}=\left\|A\left(\sum_{k=r}^{\infty} x_{k} \hat{e}_{k}\right)\right\|_{u}
$$

$$
\leq\| \| A\| \| \sum_{k=r}^{\infty} x_{k} \hat{e}_{k} \|_{X^{<}} \varepsilon
$$

Hence, $\sum_{k=0}^{r-1} x_{k} \sum_{n=0}^{\infty} a_{n k} e_{n}$ converges in U-norm to
$\sum_{k=0}^{\infty} x_{k} \sum_{n=0}^{\infty} a_{n k} e_{n}$. Let P_{m} be the $m^{\text {th }}$ projection. Then, from (3),
$p_{m}(A(x))=b_{m}$. From (2)

$$
\begin{aligned}
P_{m}(A(x)) & =P_{m}\left(\sum_{k=0}^{\infty} x_{k} \sum_{n=0}^{\infty} a_{n k} e_{n}\right) \\
& =P_{m}\left(1 i_{r \rightarrow \infty} \sum_{k=0}^{r} x_{k} \sum_{k=0}^{\infty} a_{n k} e_{n}\right) \\
& =\lim _{r \rightarrow \infty} \sum_{k=0}^{r} x_{k} P_{m}\left(\sum_{n=0}^{\infty} a_{n k} e_{n}\right) \\
& =\sum_{k=0}^{\infty} x_{k} a_{m k} .
\end{aligned}
$$

Hence, $b_{m}=\sum_{k=0}^{Q} a_{m k} x_{k}$, and

$$
\begin{equation*}
A(x)=\sum_{n=0}^{\infty} e_{n} \sum_{k=0}^{\infty} a_{n k} x_{k} \tag{4}
\end{equation*}
$$

We now have that A is completely determined by the matrix ($a_{n k}$) and from (1), we have $f_{k}=A\left(\hat{e}_{k}\right)=\sum_{n=0}^{\infty} a_{n k} e_{n}$ belongs to U for each k. Moreover, from (4), we have that $\sum_{k=0}^{\infty} a_{n k} x_{k}$ must converge for each n and arbitrary x in X.
Hence, $l_{n}=\left\{a_{n k}\right\}_{k=0}^{\infty}$ is a continuous linear functional on X for each
n. Now let p and t be given. Let x be an arbitrary member of x. Then

$$
\begin{aligned}
\|A(x)\| U & =\left\|\sum_{n=0}^{\infty} e_{n} \sum_{k=0}^{\infty} a_{n k} x_{k}\right\|_{U} \\
& =\left|\sum_{n=0}^{p^{\prime}} e^{i n t} 0 \sum_{k=0}^{\infty} a_{n k} x_{k}\right|
\end{aligned}
$$

(by Corollary 1.10 where p^{\prime} may be $\boldsymbol{\infty}$).
Hence,

$$
\left|\left|A(x) \|_{U}=\left|\sum_{n=0}^{p^{\prime}} e^{i n t_{0}} L_{n}(x)\right| \geq\right| \sum_{n=0}^{p} e^{i n t_{L_{n}}(x)\left|=\left|F_{p, t}(x)\right|\right.}\right.
$$

Hence, $\quad\|A\|=\sup _{\|x\|=1}\|A(x)\| \geqq \sup _{\|x\| \mid=1}\left|F_{p, t}(x)\right|=\left\|F_{p, t}\right\|$.

Since $\|||A| \|<\infty$, and p and t are arbitrary, we have

$$
\sup _{p, t}\left\|F_{p, t}\right\| x^{\prime} \leq\| \| A \|<\infty
$$

Hence, conditionsi), ii) and iii) are necessary.

Assume that ($a_{n k}$) is a matrix which satisfies ii) and iii).
To show that $\sum_{n=0}^{\infty} e_{n} \sum_{k=0}^{\infty} a_{n k} x_{k}$ belongs to U for each x in x, we
need to show that $\sum_{n=0}^{\infty} z{ }^{n} L_{n}(x)$ converges uniformly on $|z| \leq 1$. But this is equivalent to showing that $\sum_{n=0}^{\infty} e^{i n t_{L_{n}}}(x)$ converges
uniformly in t for each x. Hence, we need to show that the continuous linear functionals $\left\{F_{p, t}\right\}$ converges weakly and uniformly in t. As a consequence of the Uniform Boundness Principle $\left\{F_{p, t}\right\}$ will converge weakly and uniformly in t, provided

$$
\begin{equation*}
F_{p, t}\left(\hat{e}_{k}\right)=\sum_{n=0}^{p} e^{i n t} L_{n}\left(\hat{e}_{k}\right)=\sum_{n=0}^{p} a_{n k} e^{i n t} \text { converges } \tag{5}
\end{equation*}
$$

uniformly in t for each k, and

$$
\begin{equation*}
\sup _{p, t}| | F_{p, t}| | x^{\prime}<\infty \tag{6}
\end{equation*}
$$

But conditions (5) and (6) are satisfied by ($a_{n k}$). Hence, $\sum_{n=0}^{\infty} e_{n} L_{n}(x)$ is in U for each x in X. Letting A denote the operator defined by (${ }_{n k}$), we clearly have $A\left(x_{1}+x_{2}\right)=A\left(x_{1}\right)+A\left(x_{2}\right)$ and $A(\alpha x)=\alpha A(x)$. To show that A belongs to $B[X, U]$, it suffices to show that A is bounded.

But

$$
\begin{aligned}
\|A(x)\|_{U} & =\left\|\sum_{n=0}^{\infty} e_{n} L_{n}(x)\right\|_{U} \\
& =\sup _{p, t} \mid \sum_{n=0}^{p} e^{i n t_{L_{n}}(x) \mid} \\
& =\sup _{p, t}\left|F_{p, t}(x)\right| \\
& \leqq \sup _{p, t}\left\|F_{p, t}\right\|\left\|_{x}| | x .\right\|_{x} .
\end{aligned}
$$

Hence, A is bounded, and $\||A|\|=\sup _{p, t}\left\|F_{p, t}\right\|_{X \cdot}$.
Therefore, conditions ii and iii are sufficient.

$$
\text { For } x=\ell_{1} \text {, conditions ii and iii become } f_{k}=\sum_{n=0}^{\infty} a_{n k} e_{n} \text { is }
$$ in U for each k and $\sup _{k}\left\|f_{k}\right\|_{U}<\infty$. This follows from the fact that

$$
\begin{aligned}
& F_{p, t}(x)=\sum_{n=0}^{p} e^{i n t} \sum_{k=0}^{\infty} a_{n k} x_{k} \\
&=\sum_{k=0}^{\infty} x_{k} \sum_{n=0}^{p} a_{n k} e^{i n t} \\
&\left\|F_{p, t}\right\|_{l_{1}^{\prime}}=\sup _{k}\left|\sum_{n=0}^{p} a_{n k} e^{i n t}\right| . \text { Hence, } \\
& \sup _{p, t}\left\|F_{p, t}\right\|_{l_{1}^{\prime}}=\sup _{k}\left\|f_{k}\right\|_{U} .
\end{aligned}
$$

and

Hence, if an f in U is chosen such that $||f|| \leqq 1$ and if we define $a_{n k}=a_{n}^{k} \quad k=1,2,3, \ldots$ where $f=\sum a_{n} e_{n}, a_{n 0}=0$ for all n, then the matrix $\left(a_{n k}\right)$ is a continuous linear operator from l_{1} into U. Here, $f_{k}(z)=\sum_{n=0}^{\infty} a_{n}^{k} z^{n}$, and since U is a Banach algebra, we have $\sup _{k}\left\|f_{k}\right\|=\sup _{k} \| f^{k}| | \leqq 1$. Where f^{k} denotes $f \star f \star f \star \ldots{ }^{*} \ldots$.
3. Karamata Type Operators on U.

If Φ is holomorphic in $|z| \cdot R, R>1$, and if $|\Phi(z)| \leq 1$ for $|z| \leqq 1$, then for f belonging to U, we can consider the composition of f with $\Phi, f(\Phi) . f(\Phi)$ will certainly be holomorphic in $|z|<1$,
and will be continuous on $|z|=1$. The power series coefficients for fou will be given by

$$
b_{n}=\frac{1}{2 \pi i} \int_{|z|=1} f(\Phi(z)) \frac{1}{z^{n+1}} d z
$$

$$
=\frac{1}{2 \pi i} \int_{|z|=1}^{\infty} \sum_{k=0}^{\infty} a_{k} \Phi^{k}(z) \frac{1}{z^{n+1}} d z
$$

$$
=\sum_{k=0}^{\infty} a_{k} \frac{1}{2 \pi i} \int_{|z|=1}^{k}(z) \frac{1}{z^{n+1}} d z
$$

Letting $a_{n k}=\frac{1}{2 \pi i} \int_{|z|=1}^{\infty} \Phi^{k}(z) \frac{1}{z^{n+1}} d z$, we have that

$$
b_{n}=\sum_{k=0}^{\infty} a_{n k} a_{k}
$$

Hence, if we define Γ by $\Gamma(f)=f \circ \Phi$, we can ask if Γ belongs to $\mathrm{B}[\mathrm{U}, \mathrm{U}]$.

The following lemmas whose proofs are well known will be used extensively:

Lemma 2.2: If $0 \leq t<1$, then for any $p>0$

$$
\frac{t^{p}}{(1-t)^{p+1}}=\sum_{k=p}^{\infty}\left({ }_{p}^{k}\right) t^{k} \quad ; \quad\binom{k}{p}=\frac{k!}{p!(k-p)!} .
$$

Lemma 2.3: If m and n are nonnegative integers with $m>n$,
then $\binom{m}{n}+\binom{m}{n-1}=\binom{m+1}{n}$.
Lemma 2.4: Abel summation:

$$
\sum_{k=p+1}^{m} a_{k} b_{k}=A_{m} b_{m}-A_{p} b_{p+1}+\sum_{k=p+1}^{m-1} A_{k}\left(b_{k}-b_{k+1}\right)
$$

where $A_{k}=\sum_{r=0}^{k} a_{r}$.

Notation 2: [x] will denote the greatest integer which is less than or equal to x.

Theorem 2.5: If $\Phi(z)=\alpha+(1-\alpha) z, \quad 0<\alpha<1$, then the operator Γ, defined by $\Gamma(f)=f \circ \Phi$, belongs to $B[U, U]$.

Proof: For each k, we have $\Gamma\left(e_{k}\right)=\left(\alpha+(1-\alpha) e_{j}\right)^{k}=\Phi^{k}(z)$
which certainly belongs to U. Now $\Phi^{k}(z)=\sum_{n=0}^{k}\left({ }_{n}^{k} ; \alpha^{k-n}(1-\alpha)^{n} z^{n}\right.$,
Hence, $\quad a_{n k}= \begin{cases}\left(\begin{array}{l}k \\ n\end{array}\left(\frac{1-\alpha}{\alpha}\right)^{n} \alpha^{k}\right. & \text { if } n \leq k \\ 0 & \text { if } n>k\end{cases}$
Now $\sum_{k=0}^{\infty} a_{n k} a_{k}=\sum_{k=n}^{\infty}\binom{k}{n} \alpha a_{k} a_{k}\left(\frac{1-\alpha}{\alpha}\right)^{n}$

$$
=\left(\frac{1-\alpha}{\alpha}\right)^{n} \sum_{k=n}^{\infty}\binom{k}{n} \alpha^{k} a_{k} \text { is absolutely convergent }
$$

for each $f=\sum a_{k} e_{k}$ in U. Hence, the linear functional $L_{n}=\left\{a_{n k}\right\}_{k=0}^{\infty}$ belongs to U. We must now show that the continuous
linear functionals $F_{p, t}=\sum_{n=0}^{p} e^{i n t_{L}}{ }_{n}$ satisfy $\sup _{p, t}\left\|F_{p, t}\right\|<\infty$.
Let f belong to $U, f=\sum a_{k} e_{k}$.
Then $F_{p, t}(f)=\sum_{n=0}^{p} e^{i n t}\left(\frac{1-\alpha}{\alpha}\right)^{n} \sum_{k=n}^{\infty}\binom{k}{n} \alpha^{k} a_{k}$.
Since the expression on the right is absolutely convergent, we can change the order of summation to obtain:

$$
\begin{aligned}
F_{p, t}(f) & \left.=\sum_{k=0}^{p} a_{k} \alpha^{k} \sum_{n=0}^{k}\left({ }_{n}^{k}\right)\left[\frac{1-\alpha_{\alpha}}{\alpha}\right]^{n}\right]^{n}+\sum_{k=p+1}^{\infty} a_{k} \alpha^{k} \sum_{n=0}^{p}\left({ }_{n}^{k}\right)\left[\frac{1-\alpha}{\alpha} e^{i t}\right]^{n} \\
& =\sum_{1}+\sum_{2} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left|\sum_{1}\right| & =\left|\sum_{k=0}^{p} a_{k}\left[1+\frac{1-\alpha^{1 t}}{\alpha}\right]^{k} \alpha^{k}\right| \\
& =\sum_{k=0}^{p} a_{k}\left(\alpha+(1-\alpha) e^{i t}\right)^{k} \mid \\
& \leq\|f\|
\end{aligned}
$$

Let $m=\left[\frac{p}{1-\alpha}\right]$. Then we write

$$
\begin{aligned}
\Sigma_{2} & =\sum_{k=p+1}^{m} a_{k^{\alpha}} k \sum_{n=0}^{p}\left({ }_{n}^{k}\right)\left[\frac{1-\alpha_{e}}{\alpha} 1 t\right] n+\sum_{k=m+1}^{\infty} a_{k} a^{k} \sum_{n=0}^{p}\binom{k}{n}\left[\frac{1-\alpha_{\alpha}}{a} e^{i t}\right]^{n} \\
& =\Sigma_{21}+\Sigma_{22} \cdot \quad \quad \text { if } m=p, \text { then } \Sigma_{21}=0 .
\end{aligned}
$$

If $m=p+1$, then $\left|\sum_{21}\right|=\left\lvert\, a_{p+1} \alpha^{p+1} \sum_{n=0}^{p}\binom{p+1}{n}\left[\frac{1-\alpha}{\alpha} 1 t\right]^{n}\right.$ |

Hence, if $m=p+1$,

$$
\left|\sum_{21}\right| \leqq||f|| \alpha^{p+1} \sum_{n=0}^{p+1}\binom{p+1}{n}\left[\frac{1-\alpha}{\alpha}\right]^{n}=\| f| | .
$$

If $m>p+1$, then we write \sum_{21} as

$$
\begin{aligned}
\Sigma_{21} & =\sum_{k=p+1}^{m} a_{k^{\alpha^{k}}} \sum_{n=0}^{k}\binom{k}{n}\left[\frac{1-\alpha}{\alpha} e^{i t}\right]^{n}-\sum_{k=p+1}^{m} a_{k^{\alpha}}^{k} \sum_{n=p+1}^{k}\left({ }_{n}^{k}\right)\left[\frac{1-\alpha}{\alpha} e^{i t}\right]^{n} \\
& =\sum_{211}-\sum_{212} .
\end{aligned}
$$

$$
\begin{aligned}
\left|\sum_{211}\right| & =\left|\sum_{k=p+1}^{m} a_{k}\left[\alpha^{+}(1-\alpha) e^{i t}\right]^{k}\right| \\
& \leqq 2| | f| |
\end{aligned}
$$

We will use Abel summation on $\sum_{212^{\circ}} \quad$ Letting

$$
b_{k}=\alpha^{k} \sum_{n=p+1}^{k}\binom{k}{n}\left[\frac{\hat{1}-\alpha}{\alpha} e^{i t}\right] n
$$

we obtain $\quad \Sigma_{-212}=S_{m} b_{m}-S_{p} b{ }_{p+1}+\Sigma_{2121}$

$$
\begin{aligned}
\sum_{2121} & =\sum_{k=p+1}^{m-1} S_{k}\left[{ }_{\alpha}^{k} \sum_{n=p+1}^{k}\binom{k}{n}\left[\frac{1-\alpha}{\alpha} e^{i t}\right]^{n}-\alpha{ }_{\alpha}^{k+1} \sum_{n=p+1}^{k+1}\binom{k+1}{n}\left[\frac{1-\alpha}{\alpha} e^{i t}\right]^{n}\right] \\
& =\sum_{k=p+1}^{m-1} S_{k^{\alpha}}{ }^{k} \sum_{n=p+1}^{k}\left[\frac{1-\alpha}{\alpha} e^{i t}\right]^{n}\left(\binom{k}{n}-\alpha\binom{k+1}{n}\right)-\sum_{k=p+1}^{m-1} S_{k}\left((1-\alpha) e^{i t}\right)^{k+1} \\
& =\sum_{21211}-\sum_{21212} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left|S_{p} b_{p+1}\right| \leqq||f|| \\
& \left|\sum_{21212}\right| \leqq||f|| \sum_{k=p+1}^{m-1}(1-\alpha)^{k+1}
\end{aligned}
$$

We observe that $\binom{k}{n} \geqq \alpha\binom{k+1}{n}$ iff $k+1 \geqq \frac{n}{1-\alpha}$.

Now in $\Sigma_{21211,} m-1 \geq k$. Hence, $\frac{p}{1-\alpha \geq m \geq k+1 . ~ B u t ~ i n ~} \sum_{21211}$, we have n. p. Hence, $\frac{n}{1-\alpha}>k+1$. Therefore,

$$
\begin{aligned}
\sum_{n=p+1}^{k} \left\lvert\,\left(\frac{1-\alpha}{\alpha} e^{i t}\right)^{n}\left(\begin{array}{c}
\left.\binom{k}{n}-\alpha\binom{k+1}{n} \right\rvert\,
\end{array}\right.\right. & \left.=\sum_{n=p+1}^{k}\left(\frac{1-\alpha}{\alpha}\right)^{n}\binom{k+1}{\alpha}-\binom{k}{n}\right) \\
& =\sum_{n=p+1}^{k}\left(\frac{1-\alpha}{\alpha}\right)^{n}\left(\alpha\binom{k}{n-1}-(1-\alpha)\binom{k}{n}\right) \\
& =\sum_{n=p+1}^{k}\left(\frac{(1-\alpha)^{n}}{\alpha^{n-1}}\binom{k}{n-1}-\frac{(1-\alpha)^{n+1}}{\alpha^{n}}\binom{k}{n}\right) \\
& =\frac{(1-\alpha)^{p+1}}{\alpha^{p}}\binom{k}{p}-\frac{(1-\alpha)^{k+1}}{\alpha^{k}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left|\Sigma_{212}\right| & \leqq\left|S_{m} b_{m}\right|+\left|S_{p} b_{p+1}\right|+\left|\Sigma_{2121}\right| \\
& \leqq 3| | f| | .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\Sigma_{21}\right| & \leqq\left|\Sigma_{211}\right|+\left|\Sigma_{212}\right| \\
& =5| | f| |
\end{aligned}
$$

For Σ_{22}, we observe that Abel summation, with

$$
\begin{aligned}
b_{k} & =\alpha^{k} \sum_{n=0}^{p}\binom{k}{n}\left(\frac{1-\alpha}{\alpha} e^{i t}\right)^{n} \text {, gives us } \\
\sum_{k=m+1}^{r} a_{k} b_{k} & =S_{r} b_{r}-S_{m} b_{m+1}+\sum_{k=m+1}^{r-1} S_{k} \alpha^{k} \sum_{n=0}^{p}\left(\frac{\left.\left.1-\alpha e^{i t}\right)^{n}\binom{k}{n}-\alpha\binom{k+1}{n}\right)}{} .\right.
\end{aligned}
$$

We will show that the last sum on the right converges absolutely and since the sum on the left converges, we must have $\lim _{r+\infty} S_{r} b_{r}$ existing. Hence,

$$
\Sigma_{22}=11 m S_{r} b_{r}-S_{m} b_{m+1}+\Sigma_{221}
$$

where $\Sigma_{221}=\sum_{k=m+1}^{\infty} S_{k} \alpha^{k} \sum_{n=0}^{p}\left(\frac{1-\alpha}{\alpha} e^{i t}\right)^{n}\left[\binom{k}{n}-\alpha\binom{k+1}{n}\right]$.

In $\sum_{221}, k \geq m+1$. Hence, $k+1 \geqslant m+2>\frac{p}{1-\alpha}+1>\frac{n}{1-\alpha}$.

Hence,
$\sum_{n=0}^{p}\left|\left(\frac{1-\alpha}{\alpha} e^{i t}\right)^{n}\right|\left|\binom{k}{n}-\alpha\binom{k+1}{n}\right|=\sum_{n=0}^{p}\left(\frac{1-\alpha}{\alpha}\right)^{n}\left[\binom{k}{n}-\alpha\binom{k+1}{n}\right]$

$$
=\sum_{n=0}^{p}\left[\frac{(1-\alpha)^{n+1}}{\alpha^{n}}\binom{k}{n}-\frac{(1-\alpha)^{n}}{\alpha^{n-1}}\binom{k}{n-1}\right]
$$

$$
=\frac{(1-\alpha)^{p+1}}{\alpha^{p}}\binom{k}{p}
$$

Hence, $\left|\Sigma_{221}\right| \leqq||f|| \frac{(1-\alpha)^{p+1}}{\alpha^{p}} \sum_{k=m+1}^{\infty}\binom{k}{p} \alpha^{k}$

$$
\leqq\|f\| \frac{(1-\alpha)^{p+1}}{\alpha^{p}} \sum_{k=p}^{\infty}\left({ }_{p}^{k}\right) \alpha^{k}
$$

$$
=\| f| |
$$

$\lim _{r \rightarrow \infty} S_{r} b_{r}\left|\leq \sup _{r: m}\right| S_{r}| | b_{r} \mid$

In like manner, $\left|S_{m} b_{m+1}\right| \leqq||f||$. Hence, $\left|\Sigma_{22}\right| \leqq 3| | f| |$.

Hence,

$$
\begin{aligned}
\left|\Sigma_{2}\right| & \underline{=}\left|\Sigma_{21}\right|+\left|\Sigma_{22}\right| \\
& \leqq 8| | \mathrm{f}| | .
\end{aligned}
$$

Finally,

$$
\left|F_{p, t}(f)\right| \leqq\left|\Sigma_{1}\right|+\left|\Sigma_{2}\right| \leqq 9| | f| |
$$

Hence, $\left|\left|F_{p, t}\right|\right| \leqq$ 9. Since p, and t are arbitrary, we have

$$
\sup _{p, t}| | F_{p, t}| | \leq 9
$$

Hence, Γ belongs to $B[U, U]$.
In connection with the proof of Theorem 2.5, we observe that our linear functional, L_{n}, are also given by

$$
\begin{equation*}
L_{n}(f)=\frac{1}{2 \pi} \int_{|\Phi(z)|=1} f(\Phi(z)) \frac{1}{z^{n+1}} d z \tag{7}
\end{equation*}
$$

This follows from the fact $L_{n}(f)=\sum_{k=0}^{\infty} a_{n k} a_{k}=b_{n}$ where b_{n} is the n-th coefficient in the power series expansion of $f_{\circ} \Phi$. In fact, letting $w=\Phi(z)$, we obtain $z=H(w)=\frac{w-\alpha}{1-\alpha}, d z=\frac{d w}{1-\alpha}$, and integrating around $|w|=1$, we have

$$
L_{n}(f)=\frac{1}{2 i i} \int_{|w|=1} f(w) \frac{(1-\alpha)^{n}}{(w-\alpha)^{n+1}} d w
$$

By the calculus of residues, we have

$$
\begin{aligned}
L_{n}(f) & =\frac{(1-\alpha)^{n}}{n!} \lim _{w \rightarrow \alpha} f^{(n)}(w) \\
& =\left(\frac{1-\alpha}{\alpha}\right)^{n} \sum_{k=n}^{\infty}\binom{k}{n} a_{k} \alpha^{k} \quad \text { (since } f^{(n)}(\alpha)=\sum_{k=n}^{\infty} \frac{k^{\prime}}{(k-n)!} a_{k^{\alpha}} k-n
\end{aligned}
$$

which is precisely the value that we should obtain.
Theorem 2.6: If $\lambda(z)=\frac{(1-\beta) z}{1-\beta z}, 0_{\beta \cdot 1}$, then the operator A, defined by $\Lambda(f)=f^{\circ \lambda}$, belongs to $B[U, U]$.

Proof: We have $\Lambda\left(e_{k}\right)=\left(\frac{(1-\beta) e_{1}}{1-\beta e_{1}}\right)^{k}$ belongs to U for each k.

$$
a_{n k}=\frac{1}{2^{\pi} j} \int_{|\lambda(z)|=1} \lambda^{k}(z) \frac{1}{z^{n+1}} d z
$$

Let $w=\lambda(z)$. Then $z=\tau(w)=\frac{w}{1-\beta+\beta w}, d z=\frac{1-\beta}{(1-\beta+\beta w)^{2}} d w$.

Hence, for $n \geqq 1$

$$
a_{n k}=\frac{1-\beta}{2^{1!}} \int_{|w|=1}^{1} \frac{w^{k}(1-\beta+\beta w)^{n-1}}{w^{n+1}} d w
$$

$a_{00}=1 \quad a_{n 0}=0 \quad n=1,2, \ldots$.
Using the calculus of residues, we obtain

$$
a_{n k}= \begin{cases}\left(\begin{array}{l}
n-1 \\
k-1) \beta^{n}\left(\frac{1-\beta}{\beta}\right)^{k} \\
0
\end{array}\right. & n \geq k \quad n \neq 0 \quad k \neq 0 \\
1 & n<k \\
0 & n=0, k=0 \\
& n \geq 1, k=0 .\end{cases}
$$

Hence, $L_{0}(f)=a_{0}$, and $L_{n}(f)=\sum_{k=1}^{n}\binom{n-1}{k-1} \beta^{n}\left(\frac{1-\beta}{\beta}\right)^{k} a_{k}$

$$
=\sum_{k=0}^{n-1}\binom{n-1}{k} B^{n}\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1}
$$

for $n \geqslant 1$.

Let q and t be given, and let f be an element of U.

Then

$$
\begin{aligned}
& F_{q, t}(f)=a_{0}+\sum_{n=1}^{q}\left(\beta e^{i t}\right)^{n} \sum_{k=0}^{n-1}\left({ }_{k}^{n-1}\right)\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \\
&= a_{0}+\sum_{k=0}^{q-1}\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \sum_{n=k+1}^{q}\left(c_{k}^{n-1}\right)\left(\beta e^{i t}\right)^{n} \\
&= a_{0}+\sum_{k=0}^{q-1}\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \sum_{n=k+1}^{\infty}\binom{n-1}{k}\left(\beta e^{i t}\right)^{n} \\
&=-\sum_{0}+\sum_{k=0}^{q-1}\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \sum_{n=q+1}^{\infty}\left(\begin{array}{l}
\left.\sum_{k}^{n-1}\right)\left(\beta e^{i t}\right)^{n} \\
a_{0}+\sum_{1}^{\prime \prime} \\
=
\end{array}\right. \\
& a_{0}+\sum_{k=0}^{q-1}\left[\frac{(1-\beta) e^{i t}}{1-\beta e^{i t}}\right]^{k+1} a_{k+1} \\
&= \sum_{k=0}^{q}\left[\frac{(1-\beta) e^{i t}}{\left.1-\beta e^{i t}\right]^{k} a_{k}}\right. \\
&=\sum_{1}
\end{aligned}
$$

Changing the order of summation in Σ_{2}^{\prime} yields
$\Sigma_{2}^{\prime}=\sum_{n=q+1}^{\infty}\left(\beta e^{i t}\right)^{n} \sum_{k=0}^{q-1}\left(\begin{array}{c}n-1\end{array}\right)\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1}$
Let $m=\left[\frac{q+1}{1-B}\right]$. If $m=q+1$, then Σ_{2}^{\prime} remains as it is and nothing is lost. For $m>q+1$, we write Σ_{2}^{\prime} as

$$
\begin{aligned}
\Sigma_{2}^{\prime}= & \sum_{n=q+1}^{n-1}\left(\beta e^{i t}\right)^{n} \sum_{k=0}^{q-1}\binom{n-1}{k}\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \\
& +\sum_{n=m}^{\infty}\left(\beta e^{i t}\right)^{n} \sum_{k=0}^{q-1}\left(\begin{array}{c}
n-1
\end{array}\right)\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \\
= & \sum_{2}^{\prime \prime}+\sum_{3} .
\end{aligned}
$$

We write $\Sigma_{2}^{\prime \prime}$ as

$$
\begin{aligned}
\Sigma_{2}^{\prime \prime}= & \sum_{n=q+1}^{m-1}\left(\beta e^{i t}\right)^{n} \sum_{k=0}^{n-1}\binom{n-1}{k}\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \\
& -\sum_{n=q+1}^{m-1}\left(\beta e^{i t}\right)^{n} \sum_{k=q}^{n-1}\left(\begin{array}{c}
n-1
\end{array}\right)\left(\frac{1-\beta}{\beta}\right)^{k+1} a_{k+1} \\
= & \sum_{2}^{\prime \prime \prime}-\Sigma_{2} .
\end{aligned}
$$

Hence,

$$
F_{q, t}(f)=\Sigma_{1}-\Sigma_{2}^{\prime \prime \prime}+\Sigma_{2}-\Sigma_{3}
$$

But,

$$
\begin{gathered}
F_{q, t}(f)+\Sigma_{2}^{\prime \prime \prime}=F_{m-1, t}(f) . \quad \text { Therefore, } \\
F_{m-1, t}(f)=\Sigma_{1}+\Sigma_{2}-\Sigma_{3} . \\
\left|\Sigma_{1}\right|=\left|\sum_{k=0}^{q} a_{k}\left[\frac{(1-\beta) e^{i t}}{1-\beta e^{i t}}\right]^{k}\right| \leqq||f|| .
\end{gathered}
$$

We use Abel summation on the inner sum of Σ_{2}. Letting

$$
b_{k}=\binom{n-1}{k}\left(\frac{1-\beta}{\beta}\right)^{k+1},
$$

we obtain

$$
\begin{aligned}
\sum_{k=q}^{n-1} a_{k+1} b_{k}= & S_{n} b_{n-1}-S_{q} b_{q}+\sum_{k=q}^{n-2} S_{k+1}\left(b_{k}-b_{k+1}\right) \\
= & S_{n}\left(\frac{1-\beta}{\beta}\right)^{n}-S_{q}\binom{n-1}{q}\left(\frac{1-\beta}{\beta}\right)^{q+1} \\
& +\sum_{k=q}^{n-2} S_{k+1}\left(\frac{1-\beta}{\beta}\right)^{k+1}\left[\binom{n-1}{k}-\frac{1-\beta}{\beta}\binom{n-1}{k+1}\right] .
\end{aligned}
$$

Hence, we can write Σ_{2} as

We observe that

$$
\binom{n-1}{k} \geqq \frac{1-\beta}{\beta}\binom{n-1}{k+1} \text { iff } \quad(k+1) \geqq(1-\beta) n .
$$

In $\sum_{23}, \quad n \leqq m-1 \leq \frac{q+1}{1-\beta}-1=\frac{q+\beta}{1-\beta}$.
Hence, $q+\beta \geqq(1-\beta) n$. But in $\sum_{23}, k \geq q$. Hence, $(k+1) \geqq q+\beta \geqq(1-\beta) n$.

Therefore,

$$
\begin{aligned}
&\left|\sum_{23}\right| \leqq| | f \| \sum_{n=q+1}^{m-1} \beta^{n} \sum_{k=q}^{n-2}\left[\left(\frac{1-\beta}{\beta}\right)^{k+1}\binom{n-1}{k}-\left(\frac{1-\beta}{\beta}\right)^{k+2}\binom{n-1}{k+1}\right] \\
&=\|f\|\left[\left(\frac{1-\beta}{\beta}\right)^{q+1} \sum_{n=q+1}^{m-1}\binom{n-1}{q} \beta^{n}-\sum_{n=q+1}^{m-1}(1-\beta)^{n}\right] .
\end{aligned}
$$

Finally, we obtain

$$
\begin{aligned}
\left|\Sigma_{2}\right| & \leqq\left|\Sigma_{21}\right|+\left|\Sigma_{22}\right|+\left|\Sigma_{23}\right| \\
& \leqq 2| | f| |\left(\frac{1-\beta}{\beta}\right)^{q+1} \sum_{n=q+1}^{m-1}\binom{n-1}{q} \beta^{n} \\
& \leqq 2| | f| |
\end{aligned}
$$

since $\left(\frac{1-\beta}{\beta}\right)^{q+1} \sum_{n=q+1}^{m-1}\binom{n-1}{q} \beta^{n}=\frac{(1-\beta)^{q}}{\beta^{q}} \sum_{n=q}^{m-2}\left(\begin{array}{l}n \\ q\end{array} \beta^{n} \leqq 1\right.$.

We use Abel summation on the inner sum of Σ_{3}. Letting

$$
b_{k}=\binom{n-1}{k}\left(\frac{1-\beta}{\beta}\right)^{k+1},
$$

we obtain
$\sum_{k=0}^{q-1} a_{k+1} b_{k}=S_{q} b_{q-1}-a_{0}\left(\frac{1-\beta}{\beta}\right)+\sum_{k=0}^{q-2} S_{k+1}\left[\left(\frac{1-\beta}{\beta}\right)^{k+1}\binom{n-1}{k}-\left(\frac{1-\beta}{\beta}\right)^{k+2}\binom{n-1}{k+1}\right]$.

Therefore, we can write Σ_{3} as
$\Sigma_{3}=\Sigma_{31}-\Sigma_{32}+\Sigma_{33}$

$$
\begin{aligned}
\left|\Sigma_{31}\right| & =\left|S_{q}\left(\frac{1-\beta}{\beta}\right)^{q} \sum_{n=m}^{\infty}\left(\beta e^{i t}\right)^{n}\binom{n-1}{q-1}\right| \\
& \leq\|f\|\left(\frac{1-\beta}{\beta}\right)^{q} \sum_{n=m}^{\infty} \beta^{n}\binom{n-1}{q-1} \\
\left|\Sigma_{32}\right| & =\left|a_{0}\left(\frac{1-\beta}{\beta}\right) \sum_{n=m}^{\infty}\left(\beta e^{i t}\right)^{n}\right| \\
& \leq \| f| |\left(\frac{1-\beta}{\beta}\right) \sum_{n=m}^{\infty} \beta^{n} .
\end{aligned}
$$

In Σ_{33}, we have $(1-\beta) n>k+1$. Hence,

$$
\begin{aligned}
\left|\Sigma_{33}\right| & \left.\leq\|f\| \sum_{n=m}^{C D} \beta^{n} \sum_{k=0}^{q-2}\left(\frac{1-\beta}{\beta}\right)^{k+2}\binom{n-1}{k+1}-\left(\frac{1-\beta}{\beta}\right)^{k+1}\binom{n-1}{k}\right)=\|f\|\left(\left(\frac{1-\beta}{\beta}\right)^{q} \sum_{n=m}^{\infty}\binom{n-1}{q-1} \beta^{n}-\left(\frac{1-\beta}{\beta}\right) \sum_{n=m}^{Q} \beta^{n}\right) .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
&\left|\Sigma_{3}\right| \leq\left|\Sigma_{31}\right|+\left|\Sigma_{32}\right|+\left|\Sigma_{33}\right| \\
& \leq 2| | f| |\left(\frac{1-\beta}{\beta}\right)^{q} \sum_{n=m}^{\infty}\binom{n-1}{q-1} \beta^{n} \\
& \leq 2| | f| | \\
& \text { Hence, } \mid F_{m-1}, t
\end{aligned} \quad \begin{aligned}
& \leq|\Sigma \tau|+|\Sigma 2|+\left|\Sigma_{3}\right| \\
& \leq 5| | f| | .
\end{aligned}
$$

We now have that for any positive integer q,

$$
\left|F_{m-1, t}(f)\right| \leq 5| | f| | \text {, where } m=\left[\frac{q+1}{1-\beta}\right] \text {. }
$$

We now show that there exists an integer h such that if q is any integer, then there are at most h integers between

$$
m_{1}=\left[\frac{q+1}{1-\beta}\right] \text { and } m_{2}=\left[\frac{q+2}{1-\beta}\right]
$$

Let $h=\left[\frac{1}{1-\beta}\right]+2$. Then

$$
\begin{aligned}
h+m_{1} & =\left(\left[\frac{1}{1-\beta}\right]+2\right)+\left[\frac{q+1}{1-\beta}\right] \\
& \geqq\left[\frac{1}{1-\beta}\right]+2+\frac{q+1}{1-\beta}-1 \\
& =\left[\frac{1}{1-\beta}\right]+1+\frac{q+1}{1-\beta} \\
& \geqq \frac{1}{1-\beta}+\frac{q+1}{1-\beta} \\
& =\frac{q+2}{1-\beta} \\
& \geq\left[\frac{q+2}{1-\beta}\right]=m_{2} . \text { Hence }
\end{aligned}
$$

$h \geq m_{2}-m_{1}$ and h is independent of q.
Now for any q and associated m, we have

Therefore,

$$
\begin{aligned}
& \left.\mid F_{m+1,(f)}^{f}\right)\left|\leq\left|F_{m, t}(f)\right|+\beta^{m+1}\right||f| \left\lvert\, \sum_{k=0}^{m}\left(\frac{m}{k}\right)\left(\frac{1-\xi}{\beta}\right)^{k+1}\right. \\
& \leq\|f| |(5+(1-\beta))+\| f \|(1-\beta) \\
& =\| f| |(5+2(1-\beta)) \text {. }
\end{aligned}
$$

Continuing in this manner, we obtain

$$
\left|F_{m+h-2}, f, t\right| \leq \| f| |\left(5+\left[\frac{1}{1-\beta}\right](1-\beta)\right) .
$$

Since we have at most h points between $m_{1}-1$ and $m_{2}-1, m_{1}+h-1 \geq m_{2}-1$. Hence, we have $\left|F_{m_{1}+k, t}(f)\right| \leq\|f\|(5+k(1-\beta))$ where $1 \leq k \leq\left[\frac{1}{1-\beta}\right]$. Hence, $k \leq \frac{1}{1-\beta}$ and $k(1-\beta) \leq 1$. Therefore, for any integer p and given $t,\left|F_{p, t}(f)\right| \leq 6\|f\|$. Finally, we have $\sup _{p, t}\left\|F_{p, t}\right\| \leq 6$ and Theorem 2.6 is proved.

Corollary 2.7: If $\psi(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}, 0.0<1,0<\beta<1$, then the operator T defined by $T(f)=$ for belongs to $B[U, U]$.

$$
\text { Proof: Let } \Phi(z)=\alpha+(1-\alpha) z, \lambda(z)=\frac{(1-\beta) z}{1-\beta z}
$$

Then r and Λ are members of $B[U, U]$. Since $B[U, U]$ is a Banach algebra under compositions, we have hor belongs to $\mathrm{B}[\mathrm{U}, \mathrm{U}]$, but

$$
\begin{aligned}
h(F(f)) & =\Lambda(f \circ \phi) \\
& =(f \circ \phi) \circ \lambda \\
& =f \circ(\phi \circ \lambda)
\end{aligned}
$$

But $\pm(\lambda(z))=\alpha+(1-\alpha) \frac{(1-\beta) z}{1-\beta z}$

$$
=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}=\psi(z)
$$

Hence $T \in B[U, U]$
4. Bajanski Type Operators On U

The goal of this section is to show that certain Bajanski type functions operate on U under composition of functions. The method used consists of comparing a given Bajanski type operator with a Karamata type operator.

Theorem 2.8: If
i) Φ is holomorphic in $|z|<R, R>1$
ii) $|\Phi(z)|<1$ for $|z| \leqq 1 \quad z \neq 1$
iii) $\Phi(1)=1$
iv) Re $A \neq 0$, where

$$
\begin{aligned}
\Phi(z)-z^{\gamma} & =-A(z-1)^{2}+0(1)(z-1)^{2} \text { as } z^{\rightarrow} 1 \\
\gamma & =\Phi^{\prime}(1) \\
\text { v) } \Phi^{\prime}(1)>0, \Phi^{\prime \prime}(1) & >0, \text { and }\left(\Phi^{\prime}(1)\right)^{2}<\Phi^{\prime}(1)+\frac{\Phi^{\prime \prime}(1)}{2},
\end{aligned}
$$

then the operator Λ defined by $\Lambda(f)=$ fo Φ belongs to $B[U, U]$. One should note that the first four hypotheses serve to identify the Bajanski type functions, and that the Karamata type functions with $0<\alpha<1,0<\beta<1$, are included in the Bajanski type functions. The fifth hypothesis is added for comparison purooses with Karamata-type functions.

It will facilitate the proof of Theorem 2.8 to first prove a few lemmas.

Lemma 2.9: If Φ obey the hypotheses of Theorem 2.8, then Φ has a local inverse Ψ in a neighborhood of $z=1$, such that for $|\theta|$ sufficiently small,

$$
\left|\psi\left(e^{i t}\right)-e^{i \theta}\right|^{2} \geqq k\left(\theta^{4}+(t-\tau)^{2}\right)
$$

where $\tau=\arg \left(\xi\left(e^{i \theta}\right)\right)$ and k is a constant independent of θ.

Proof: Since $\Phi^{\prime}(1)>0$, a local inverse to Φ, ψ, exists in a neighborhood of $z=1$, and $\psi^{\prime}(1)>0$. One can clearly choose a neighborhood N about $z=1$ such that

$$
\operatorname{Re} \psi^{\prime}(z)>\frac{\psi^{\prime}(1)}{2}>0 \text { if } z_{\varepsilon} N .
$$

Let ζ be a number such that $\Phi(\zeta)$ is in N. Integrating along the line segment joining $\Phi(\zeta)$ and z in N, one obtains

$$
\psi(z)-\zeta=\int_{\Phi(\zeta)}^{z} \psi^{\prime}(\xi) \mathrm{d} \xi
$$

Let $\xi=\Phi(\zeta)+\lambda(z-\Phi(\zeta))$, then $d \xi=(z-\Phi(\zeta)) d^{\lambda}$ and

$$
\begin{aligned}
|\psi(z)-\zeta| & =|z-\Phi(\zeta)| \mid \int_{0}^{1} \psi \cdot\left(\Phi(\zeta)+\lambda(z-\Phi(\zeta)) d^{\lambda} \mid\right. \\
& \geq|z-\Phi(\zeta)|\left|\int_{0}^{1} \operatorname{Re} \Psi^{\prime} d^{\lambda}\right| \\
& \geq \frac{\psi^{\prime}(1)}{2}|z-\Phi(\zeta)| .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
|\Psi(z)-\zeta|^{2} \geq C|z-\Phi(\zeta)|^{2} \text { where } C=\frac{\Psi(1)}{2} \text { is } \tag{8}
\end{equation*}
$$

independent of ζ.
Let $g(t)=\left|e^{i t}-\Phi(\zeta)\right|^{2}$, and let τ denote the point where g attains a minimum.

Since

$$
\left|\mathrm{e}^{i t}-\Phi(\zeta)\right| \geqq 1-|\Phi(\zeta)|,
$$

it is clear that $\tau=\arg \Phi(\zeta)$. Let $\zeta=e^{i \theta}$. Then,

$$
1-\left|\Phi\left(e^{i \theta}\right)\right|=\frac{1-\left|\Phi\left(e^{i \theta}\right)\right|^{2}}{1+\left|\Phi\left(e^{i \theta}\right)\right|}
$$

From hypothesis iv) of Theorem 2.8 ,

$$
\begin{aligned}
\Phi(z) & =z^{\gamma}-A(z-1)^{2}+0(1)(z-1)^{2} \text { as } z \rightarrow 1 \\
\frac{\Phi(z)}{z^{\gamma}} & =1-A[1+(z-1)]^{-\gamma}(z-1)^{2}+0(1)(z-1)^{2} \text { as } z \rightarrow 1 \\
& =1-A(z-1)^{2}+0(1)(z-1)^{2} \text { as } z+1 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\Phi\left(e^{i \theta}\right)\right|^{2} & =\left|1-A\left(e^{i \theta}-1\right)^{2}+\ldots\right|^{2} \text { as } \theta \rightarrow 0 \\
& =\left|1+A \theta^{2}+\ldots\right|^{2} \quad \text { as } \theta \rightarrow 0 \\
& =1+2 \operatorname{Re} A \theta^{2}+\text { larger powers of } \theta .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
1-\left|\Phi\left(e^{i \theta}\right)\right| & =\frac{1-\left|\Phi\left(e^{i \theta}\right)\right|^{2}}{1+\left|\Phi\left(e^{i \theta}\right)\right|} \\
& =\frac{-\theta^{2} 2 \operatorname{Re} A+1 \text { large powers of } \theta}{1+\left|\Phi\left(e^{i \theta}\right)\right|} .
\end{aligned}
$$

Therefore ,

$$
\frac{1-\left|甲\left(e^{i \theta}\right)\right|}{\theta^{2}} \rightarrow-\operatorname{Re} A \quad \text { as } \theta \rightarrow 0(\operatorname{Re} A<0) .
$$

Hence, $\quad \frac{1-\left|\Phi\left(e^{i \theta}\right)\right|}{\theta^{2}} \quad$ is bounded in a neighborhood
of $\theta=0$. Hence, there exists $C_{1}>0$ such that

$$
1-\left|\Phi\left(e^{i \theta}\right)\right| \geqq C_{1} \theta^{2}
$$

Hence,

$$
\begin{equation*}
g(\tau)=\left(1-\left|\Phi\left(e^{i \theta}\right)\right|\right)^{2} \geq C_{1}^{2} \theta^{4} . \tag{9}
\end{equation*}
$$

Expanding g in a neighborhood of $t=\tau$, one obtains

$$
\begin{equation*}
g(t)=g(\tau)+\frac{g^{\prime \prime}(T)}{2}(t-\tau)^{2}, \tag{10}
\end{equation*}
$$

where T is between t and τ, and

$$
g^{\prime \prime}(T)=2 \operatorname{Re} \Phi\left(e^{i \theta}\right) \cos T+2 \operatorname{Im} \Phi\left(e^{i \theta}\right) \sin T .
$$

For $e^{i \theta}$ in N, there exists $n>0$ such that
(11) $g^{\prime \prime}(T) \geqslant n>0$ independent of θ.

From 8, 9, 10, and 11, one obtains the existences of a $k>0$ such that

$$
\left|\forall\left(e^{i t}\right)-e^{i \theta}\right|^{2} \equiv k\left(\theta^{4}+(t-t)^{2} .\right.
$$

Before the next Lemma is stated, observe that for $h(z)=\frac{\alpha+(1-\alpha-\xi) z}{1-\frac{\beta z}{\beta z}}$, the power series development is given in a neighborhood of $z=1$ by

$$
h(z)=1+(A+B) \sum_{k=1}^{\infty} B^{k-1}(z-1)^{k},
$$

where

$$
A=\frac{1-\alpha-\beta}{1-\beta}, \quad B=\frac{\beta}{1-\beta} .
$$

Hence, $h^{\prime}(1)=A+B=\frac{1-\alpha}{1-\beta}, \frac{h^{\prime \prime}(1)}{2}=B(A+B)=\frac{\beta(1-\alpha)}{(1-\beta)^{2}}$.

Lemma 2.10: If $a, b>0$ with $\frac{a^{2}}{a+b}<1$, then there exist real numbers α and β such that
i) $0<\alpha<7, \quad 0<\beta<1$ and
ii) $\frac{1-\alpha}{1-\beta}=a$, and $\frac{\beta(1-\alpha)}{(1-\beta)^{2}}=b$.

Proof: Let $\alpha=1-\frac{a^{2}}{a+b}, \quad \beta=\frac{b}{a+b}$.
If ϕ is a function which obey the hypotheses of Theorem 2.8,
then from Lemma 2.10, there exists α, β, such that

$$
h(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}
$$

satisfies $h(1)=\Phi(1)=1 ; \quad h^{\prime}(1)=\Phi^{\prime}(1)$, and $\quad h^{\prime \prime}(1)=\Phi^{\prime \prime}(1)$.
Also, the local inverse to Φ, ψ, in a neighborhood of $z=1$ satisfies

$$
\psi(1)=1, \quad \psi^{\prime}(1)=\frac{1}{\Phi^{\prime}(T)}, \quad \text { and } \quad \psi^{\prime \prime}(1)=-\frac{\Phi^{\prime \prime}(1)}{\left(\Phi^{\prime}(1)\right)^{3}} .
$$

If H is the local inverse to h in a neighborhood about $z=1$,

$$
H(1)=\Psi(1), \quad H^{\prime}(1)=\Psi^{\prime}(1), \quad \text { and } \quad H^{\prime \prime}(1)=\Psi^{\prime \prime}(1) .
$$

Therefore,

$$
\begin{align*}
& \left|H\left(e^{i t}\right)-\Psi\left(e^{i t}\right)\right|=0\left(t^{3}\right) \text { as } t \neq 0 \tag{12}\\
& \left|H^{\prime}\left(e^{i t}\right)-\Psi^{\prime}\left(e^{i t}\right)\right|=0\left(t^{2}\right) \text { as } t \div 0 \tag{13}
\end{align*}
$$

Lemma 2.11: If τ is a function of θ such that $\frac{T}{\theta}=0(1)$ as $\theta \rightarrow 0$, then

$$
\int_{a}^{b} \frac{t^{2}}{t^{4}+(:-\tau)^{2}}=0(1) \quad \text { as } \theta \rightarrow 0
$$

Proof: Let $u=t-\tau$, then

$$
\begin{aligned}
& \int_{a}^{b} \frac{t^{2} d t}{\theta^{4}+(t-\tau)^{2}}=\int_{a-\tau}^{b-\tau} d u+2 \tau \int_{a-\tau}^{b-\tau} \frac{u d u}{u^{2}+\theta^{4}}+\left(\tau^{2}-\theta^{4}\right) \int_{a-\tau}^{b-\tau} \frac{d u}{u^{2}+\theta^{4}} . \\
& \int_{a-\tau}^{b-\tau} d u=(b-a)=0(1) \quad \text { as } \theta \rightarrow 0 . \\
& 2 \tau \int_{a-\tau}^{u^{2}+\theta^{4}}=\frac{u d u}{b-\tau} \frac{(b-\tau)^{2}+\theta^{4}}{(a-\tau)^{2}+\theta^{4}}=0(1) \\
& \left(\tau^{2}-\theta^{4}\right) \int_{a-\tau}^{b-\tau} \frac{d u}{u^{2}+\theta^{4}}=\frac{\tau^{2}-\theta^{4}}{\theta^{2}}\left[\tan ^{-1}\left(\frac{b-\tau}{\theta^{2}}\right)-\tan ^{-1}\left(\frac{a-\tau}{\theta^{2}}\right)\right] .
\end{aligned}
$$

Since $\tan ^{-1} x$ is bounded as $x \rightarrow \infty$, and since $\frac{\tau}{\theta}=0(1)$ as $\theta \rightarrow 0$, the last integrand is $0(1)$ as $\theta \rightarrow 0$.

Corollary 2.12: If τ is a function of θ such that $\frac{\tau}{\theta}=0(1)$ as $\theta \rightarrow 0$, then

$$
\int_{a}^{b} \frac{|t|^{n} d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}=0(1) \text { as } \theta \rightarrow 0, \text { for } n \geq 1
$$

Proof:

$$
\int_{a}^{b} \frac{|t|^{n} d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}} \leqq \sup _{a \leq t \leq b}|t|^{n-1} \int_{a}^{b} \frac{|t| d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{3}{2}}} .
$$

$\sup _{a \leq t \leq b}|t|^{n-1}=0(1)$, and the Cauchy-Schwarz inequality yields

$$
\left(\int_{a}^{b} \frac{|t| d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}\right)^{2} \leq \int_{a}^{b} d t \int_{a}^{b} \frac{t^{2} d t}{\theta^{4}+(t-\tau)^{2}}=0(1)
$$

as $\theta \rightarrow 0$.

Lemma 2.13: If τ is a function of θ such that $\frac{\tau}{\theta}=0(1)$ as $\theta \rightarrow 0$, and $c>0$ a constant independent of θ, then

$$
I(p, \theta)=\int_{a}^{b} \frac{|t| 3{ }^{3}-p c t^{2} d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{-1}{2}}}=0(1) \quad \text { as } \theta \rightarrow 0, p \rightarrow \infty .
$$

Proof: If 0 is between a and b,

$$
\begin{aligned}
I(p, \theta) & =\int_{a}^{0} \frac{-t^{3} p e^{-c p t^{2} d t}}{\left[\theta^{4}+(t-\tau)^{2}\right]^{2}}+\int_{0}^{b} \frac{t^{3} p e^{-c p t^{2}} d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}} \\
& =I_{1}(p, \theta)+I_{2}(p, \theta) .
\end{aligned}
$$

In $I_{1}(p, \theta)$, let

$$
u=\frac{t^{2}}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}} \quad d v=-p t e^{-c p t^{2}} d t
$$

Then

$$
d u=\frac{2 t\left[\theta^{4}+(t-\tau)^{2}\right]-t^{2}(t-\tau)}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}} d t \text { and } v=\frac{1}{x} e^{-c p t^{2}}
$$

Hence,

$$
\begin{aligned}
I_{1}(p, \theta)= & \left.\frac{t^{2} e^{-c p t^{2}}}{2 c\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}\right|_{a} ^{0} \\
& -\frac{1}{2 c} \int_{a}^{0} e^{-p c t^{2}} \frac{2 t\left[\theta^{4}+(t-\tau)^{2}\right]-t^{2}(t-\tau)}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}} d t \\
= & -\frac{a^{2} e^{-c p a^{2}}}{2 c\left[\theta^{4}+(a-\tau)^{2}\right]^{\frac{1}{2}}}-I_{11}(p, \theta)
\end{aligned}
$$

The first expression on the right is clearly bounded as $\theta \rightarrow 0$, $p+\infty$. The integral on the right can be expressed as

$$
\begin{aligned}
& I_{11}(p, \theta)=\frac{1}{2 c} \int_{a}^{R} c-p c t^{2} \frac{t^{2}(t-\tau)}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}} d t-\frac{1}{2 c} \int_{a}^{0} e^{-p c t^{2} \frac{2 t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}}+ \\
& \quad=\frac{1}{2 c} I_{111}(p, \theta)-\frac{1}{2 c} I_{112}(p, \theta) \quad \\
& \text { Now }\left|I_{112}(p, \theta)\right| \leq 2 \int_{a}^{0} \frac{1 t d t}{\left.\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}=0(1) \text { as } A \rightarrow 0, p \rightarrow C
\end{aligned}
$$

$$
\left|I_{111}(p, \theta)\right| \leq \int_{a}^{0} \frac{t^{2}|t-\tau| d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}}
$$

Assume that $a<\tau<0$. If this does not prevail then nothing is lost. Then

$$
\begin{aligned}
\int_{a}^{0} \frac{t^{2}|t-\tau| d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}} & =\int_{a}^{\tau} \frac{t^{2 \mid}|-\tau| d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}}+\int_{\tau}^{0} \frac{t^{2}|t-\tau| d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}} \\
& =-\int_{a}^{\tau} \frac{t^{2(t-\tau)} d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}}+\int_{\tau}^{0} \frac{t^{2}(t-\tau) d t}{\left.\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}} \\
& =-I_{111}^{1}(\theta)+I_{111}^{\prime \prime}(\theta) .
\end{aligned}
$$

It suffices to examine $I_{111}^{\prime \prime}(\theta)$.
Let $u=t^{2} \quad d v=\frac{t-\tau d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{3 / 2}}$. Then, $d u=2 t d t$

$$
\begin{array}{ll}
v=\frac{-1}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}} & \text { Hence, } \\
I_{111}^{\prime \prime}(\theta)=\frac{\tau^{2}}{\theta^{2}}+2 \int_{\tau}^{0} \frac{t d d}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}
\end{array}
$$

Now, $\frac{\tau^{2}}{\theta^{2}}=0(1)$ as $\theta \rightarrow 0$, and

$$
\left|\int_{\tau}^{0} \frac{t d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}\right| \leq \int_{\tau}^{0} \frac{|t| d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{\frac{1}{2}}}=0(1) \text { as } \theta \rightarrow 0
$$

by Corollary 2.12.

Hence,

$$
\left|I_{111}(p, \theta)\right|=0(1) \quad \text { as } \theta \rightarrow 0, \quad p \rightarrow \infty \text {. }
$$

Hence, $\left|I_{11}(p, \theta)\right|=0(1)$ as $\theta \rightarrow 0, p \rightarrow \infty$.
Therefore, $\left|I_{1}(p, \theta)\right|=0(1)$ as $\theta \rightarrow 0, p \rightarrow \infty$.
In like manner,

$$
\left|I_{2}(p, \theta)\right|=0(1) \quad \text { as } \theta \rightarrow 0, \quad p \rightarrow \infty .
$$

This proves Lemma 2.13.
Lemma 2.14: If Φ obey the hypotheses of Theorem 2.8, then $\tau=\arg \Phi\left(e^{i \theta}\right)$ obeys $\quad \frac{I}{\theta}=O(1)$ as $\theta \rightarrow 0$.

Proof:

$$
\Phi\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta), \quad \text { and } u \text { and } v \text { are }
$$

continuously differentiable. Moreover, $v(1,0)=0$.

$$
\arg \left(\Phi\left(e^{i \theta}\right)\right)=\tan ^{-1} \frac{v(1, \theta)}{u(1, \theta)} .
$$

By L'Hopitals rule,

$$
\lim _{\theta \rightarrow 0} \frac{1}{\theta} \tan ^{-1} \frac{v(1, \theta)}{u(1, \theta)}=\frac{\partial v}{\partial \theta}(1,0) .
$$

Hence, $\quad \frac{\tau}{\theta}=0(1)$ as $\theta \neq 0$.
Lemma 2.15: If Φ obey the hypotheses of Theorem 2.8, and if $|t|$ is sufficiently small, there exists a constant $c>0$ such that the inverse function to Φ, H, obeys,

$$
\left|H\left(e^{i t}\right)\right| \geqq e^{c t^{2}} .
$$

Proof: Let $\gamma=\Phi^{\prime}(1)$. Then

$$
\begin{aligned}
z^{1 / \gamma} & =(1+(z-1))^{1 / r} \\
& =1+\frac{1}{\gamma}(z-1)+\frac{1}{2 \gamma}\left(\frac{1}{\gamma}-1\right)(z-1)^{2}+\ldots
\end{aligned}
$$

Observe that from hypothesis v) that $\Phi^{\prime}(1)>0, \Phi^{\prime \prime}(1)>0$, and $(\Phi(1))^{2}<\Phi^{\prime}(1)+\frac{\Phi^{\prime \prime}(1)}{2}<\Phi^{\prime}(1)+\Phi^{\prime \prime}(1)$.

Hence,

Hence,

$$
\begin{aligned}
& H\left(e^{i t}\right)-e^{i t / \gamma}=-c_{1}\left(e^{i t}-1\right)^{2}+0(1)\left(e^{i t}-1\right)^{2} \quad \text { as } t \rightarrow 0 . \\
& \frac{H\left(e^{i t}\right)}{e^{i t / \gamma}}=1-c_{1}\left(e^{i t}-1\right)^{2}+0(1)\left(e^{i t}-1\right)^{2} \quad \text { as } t \rightarrow 0 .
\end{aligned}
$$

Since $\left(e^{i t}-1\right)^{2}=\left[i t+\frac{(i t)^{2}}{2}+\frac{(i t)^{3}}{3!}+\ldots .\right]^{2}$,

$$
\left|H\left(e^{i t}\right)\right| \geq 1+c_{1} t^{2}+\ldots
$$

$$
\geq 1+\frac{c_{1}}{2} t^{2} \quad \text { for }|t| \text { sufficiently small. }
$$

Now, $\quad\left(c_{1} t^{2}\right) / 4=1+\frac{c_{1}}{4} t^{2}+\left(\frac{c_{1}}{4}\right)^{2} \frac{t^{4}}{2}+\ldots$.

$$
\begin{aligned}
& \text { 1.et } \quad c_{1}=\frac{\Phi^{\prime \prime}(1)+\Phi^{\prime \prime}(1)-\left(\Phi^{\prime}(1)\right)^{2}}{2\left(\Phi^{\prime}(1)\right)^{3}}>0 . \\
& H(z)-z^{1 / \gamma}=1+H^{\prime}(1)(z-1)+\frac{H^{\prime \prime}(1)}{2}(z-1)^{2}+\ldots . \\
& -\left[1+H^{\prime}(1)(z-1)+\frac{1}{2} H^{\prime}(1)\left(H^{\prime}(1)-1\right)(z-1)^{2}+\ldots\right] \\
& =\frac{H^{\prime \prime}(1)-\left(H^{\prime}(1)\right)^{2}+H^{\prime}(1)}{2}(z-1)^{2}+\ldots \cdot \\
& H^{\prime \prime}(1)-\left(H^{\prime}(1)\right)^{2}+H^{\prime}(1)=-\frac{\Phi^{\prime \prime}(1)}{\left(\Phi^{\prime}(1)\right)^{3}}-\frac{1}{\left(\Phi^{\prime}(1)\right)^{2}}+\frac{1}{\Phi^{\prime}(1)} \\
& =\frac{-\Phi^{\prime \prime}(1)-\Phi^{\prime}(1)+\left(\phi^{\prime}(1)\right)^{2}}{\left(\Phi^{\prime}(1)\right)^{3}} \\
& =-2 C_{1} .
\end{aligned}
$$

For $|t|$ sufficiently small,

$$
\begin{aligned}
1+\frac{c_{1}}{2} t^{2} & \geq 1+\frac{c_{1}}{4} t^{2}+\left(\frac{c_{1}}{4}\right)^{2} \frac{t^{4}}{2}+\ldots, \text { since } \\
c_{1} & \geq \frac{c_{1}}{2}+2\left(\frac{c_{1}}{4}\right)^{2} \frac{t^{2}}{2}+2\left(\frac{c_{1}}{4}\right)^{3} \frac{t^{4}}{3!}+\ldots,
\end{aligned}
$$

since

$$
2\left(\frac{c_{1}}{4}\right)^{2} \frac{t^{2}}{2}+2\left(\frac{c_{1}}{4}\right)^{3} \frac{t^{4}}{3!}+\ldots \quad \text { can }
$$

be made arbitrarily small by choosing t sufficiently small. Hence, letting $c=\frac{c_{l}}{4}$, one obtains $\left|H\left(e^{i t}\right)\right| \geq e^{c t^{2}}$ for $|t|$ sufficiently small.

$$
\text { Proof of Theorem 2.8: Since }|\Phi(z)|<1 \text { for }|z| \leq 1, z \neq 1 \text {, }
$$ a curve Γ^{\prime} can be chosen such that Γ^{\prime} surrounds the unit circle and touches it only at $\mathrm{z}=1$, and Γ^{\prime} is inside the set of points where $|\Phi(z)|=1(z \neq 0$, and $\mathcal{f}=\{z:|\Phi(z)|=1\}$ for z close to 1 .

Since $\Lambda\left(e_{k}\right)=\Phi^{k}$ is in U for each k, it suffices to show that

$$
\sup _{p, \theta}|G(f, p, \theta)|=\sup _{p, \theta}\left|\sum_{k=0}^{p} e^{i k \theta} \frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\phi(z))}{z^{k+1}} d z\right|
$$

is finite for each $f_{\varepsilon} U$.
It will facilitate the following discussion to assume that we have chosen a neighborhood, N, about $z=1$ so small that all the assertions which follow hold.

Denote the part of the curve, Γ^{\prime}, inside N by γ, and the part outside by Γ. In $N, \gamma=\{z:|\Phi(z)|=1\}$.

$$
G(f, p-1, \theta)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\Phi(z))}{z} \sum_{k=0}^{p-1}\left(\frac{e^{i \theta}}{z}\right)^{k} d z+\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\phi(z))}{z} \sum_{k=0}^{p-1}\left(\frac{e^{i \theta}}{z}\right)^{k} d z .
$$

Hence., $G(f, p-1, \theta)=I_{\Gamma}+I_{\gamma}$.
Now, there exists $\delta>0$ such that $|z|>1+\delta$ on Γ. Hence,

$$
\begin{equation*}
\sup _{p, \theta}\left|I_{\Gamma}\right|<\infty . \tag{14}
\end{equation*}
$$

Let $w=\phi(z)$ for z on γ, so that $z=\psi(w)$ [assuming that N is small enough so that Φ has ψ as a local inverse in N], and γ is mapped onto an arc, c, of the unit circle. Hence,

$$
I_{\gamma}=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{\psi(w)-e^{i_{\theta}}}\left(1-\frac{e^{i p \theta}}{\Psi^{p}(w)}\right) d w .
$$

Clearly if $|\theta|>n>0$, then

$$
\begin{equation*}
\sup _{p,|\theta|>n}\left|I_{\gamma}\right|<\infty . \tag{15}
\end{equation*}
$$

Hence, only θ 's sufficiently close to zero need be considered. By Lemma 2.10, there exist α, β such that $h(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}$ satisfies $h(1)=\Phi(1), h^{\prime}(1)=\Phi^{\prime}(1)$ and $h^{\prime \prime}(1)=\Phi^{\prime \prime}(1)$. By Corollary 2.7,

$$
\sup _{p, \theta}\left|\frac{1}{2 \pi i} \int_{|h(z)|=1}^{1} \frac{f(h(z))}{z} \sum_{n=0}^{p-1} \frac{e^{i n_{\theta}}}{z^{n}} d z\right|<\infty .
$$

Let γ^{\prime} denote the part of the curve $|h(z)|=1$ inside of N, and let
r denote the remainder. Then one easily obtains

$$
\sup _{p, \theta}\left|\frac{1}{2 \pi i} \int_{\gamma^{-}} \frac{f(h(z))}{z} \sum_{n=0}^{p-1} \frac{e^{i n_{\theta}}}{z^{n}} d z\right|<\infty .
$$

Without loss of generality, it can be assumed that the mapping $w=h(z)$ maps γ^{\prime} onto the arc of the unit circle c. One then obtains

$$
\begin{equation*}
\sup _{p, \theta}\left|\frac{1}{2 \pi i} \int_{c} \frac{f(w) H^{\prime}(w)}{H(w)-e^{i \theta}}\left(1-\frac{e^{i p_{\theta}}}{H^{p}(w)}\right) d w\right|<\infty . \tag{16}
\end{equation*}
$$

Now write I_{γ} as

$$
\begin{gathered}
I_{\gamma}=I_{1}+I_{2} \text {, where } \\
I_{1}=\frac{1}{2^{\pi i}} \int_{C} f(w)\left[\frac{\psi^{\prime}(w)}{\psi(w)-e^{i \theta}}\left(1-\frac{e^{i p \theta}}{\Psi^{p}(w)}\right)-\frac{H^{\prime}(w)}{H(w)-e^{i \theta}}\left(1-\frac{e^{i p_{\theta}}}{H^{p}(w)}\right)\right] d w
\end{gathered}
$$

and
$I_{2}=\frac{1}{2 \pi i} \int_{C} \frac{f(w) H^{\prime}(w)}{H(w)-e^{i \theta}}\left(1-\frac{e^{i p \theta}}{H^{p}(w)}\right) d w$.
From (16) $\sup _{\mathrm{p}, \theta}\left|\mathrm{I}_{2}\right|<\infty$.
[Notation: For the remainder of the proof, it will be convent to denote all constants which are independent of θ by $0(1)]$

From (12) and (13), we have

$$
\begin{aligned}
& \left|\Psi\left(e^{i t}\right)-H\left(e^{i t}\right)\right| \leq 0(1)\left|t^{3}\right| \\
& \left|\psi^{\prime}\left(e^{i t}\right)-H^{\prime}\left(e^{i t}\right)\right| \leq 0(1) t^{2}
\end{aligned}
$$

From Lemma 2.9,

$$
\left.\left.\frac{1}{\left|H\left(e^{i t}\right)-e^{i \theta}\right|} \leqq \frac{0(1)}{\left[\theta^{4}+(t-\tau\right.}\right)^{2}\right]^{\frac{1 / 2}{2}} \quad \text { where }
$$

${ }_{1}{ }_{1}=\arg h\left(e^{i \theta}\right)$; and

$$
\frac{1}{\left|\psi\left(e^{i t}\right)-e^{i \theta}\right|} \leqq \frac{0(1)}{\left[\theta^{4}+\left(t-\frac{r}{2}\right)^{2}\right]^{\frac{1}{2}}}
$$

where ${ }_{2}=\arg \Phi\left(e^{i \theta}\right)$.
[In order to have adequate space, in the remainder of the proof, functions in the integrands will be written without the variable in those cases where possible. For example we will write $\psi\left(e^{i t}\right)$ as $\left.\psi.\right]$

Let $w=e^{i t} ; c$ being given by $a \leq t \leq b$. Write I_{1} as

$$
I_{1}=I_{11}+I_{12}
$$

where

$$
I_{11}=\frac{1}{2^{\pi}} \int_{a}^{b} \frac{e^{i t_{f}\left[\Psi^{\prime}-H^{\prime}\right]}}{H-e^{i \theta}}\left(1-\frac{e^{i p \theta}}{H^{p}}\right) d t
$$

and

$$
I_{12}=\frac{1}{2 \pi} \int_{a}^{b} e^{i t_{f \psi^{\prime}}}\left(\frac{1-\frac{e^{i p \theta}}{\psi^{p}}}{\psi-e^{i \theta}}-\frac{1-\frac{e^{i p \theta}}{H^{p}}}{H-e^{i \theta}}\right) d t
$$

Now

$$
\begin{aligned}
\left|I_{11}\right| & \left.\left.=\sup _{t}\left|f\left(e^{i t}\right)\left(1-\frac{e^{i p_{\theta}}}{H^{p}\left(e^{i t}\right)}\right)\right| 0(1) \int_{a}^{b} \frac{t^{2} d t}{\left[\theta^{4}+(t-\tau\right.}\right)^{2}\right]^{\frac{1}{2}} \\
& \left.\left.=0(1) \int_{a}^{b} \frac{t^{2}}{\left[\theta^{4}+(t-\tau\right.}\right)^{2}\right]^{\frac{1}{2}} \cdot
\end{aligned}
$$

By Corollary 2.12

$$
\begin{equation*}
\sup _{p,|\theta| \leq n}\left|I_{11}\right|<\infty \tag{17}
\end{equation*}
$$

Write I_{12} as

$$
\begin{gathered}
I_{12}=I_{121}+I_{122} \text { where } \\
I_{121}=\frac{1}{2 \pi} \int_{a}^{\infty} e^{i t_{f \psi^{\prime}}} \frac{H-\psi}{\left(\Psi-e^{i \theta}\right)\left(H-e^{i \theta}\right)} d t \text {, and } \\
I_{122}=\frac{e^{i p \theta}}{2 \pi} \int_{a}^{b} e^{i t_{f}} \Psi^{\prime}\left(\frac{1}{\psi P\left[\Psi-e^{i \theta}\right]}-\frac{1}{H^{p}\left[H-e^{i \theta}\right]}\right) d t
\end{gathered}
$$

Now write I_{122} as

$$
\begin{aligned}
& I_{122}=I_{1221}+I_{1222} \\
& I_{1221}=\frac{e^{i p \theta}}{2 \pi} \int_{a}^{b} \frac{e^{i t_{f \psi^{\prime}}}}{\psi^{p}} \frac{H-\Psi}{\left(\psi-e^{i \theta}\right)\left(H-e^{i \theta}\right)} d t \text {, and } \\
& I_{1222}=\frac{e^{i p_{\theta}}}{2 \pi} \int_{a}^{b} \frac{e^{i t_{f} \Psi^{\prime}}}{H-e^{i \theta}}\left(\frac{1}{\Psi^{p}}-\frac{1}{H} p\right) d t .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|I_{121}\right| & \left.\left.\leqq 0(1) \sup _{t}\left|f\left(e^{i t}\right) \Psi^{-}\left(e^{i t}\right)\right| \int_{a}^{b} \frac{\mid t t^{2} d t}{\left[\theta^{4}+(t-\tau)^{2}\right]^{2}\left[\theta^{4}+(t-\tau\right.}\right)^{2}\right]^{\frac{1}{2}} \\
& \left.\left.=0(1) \int_{a}^{b} \frac{\mid t}{\left[\theta^{4}+(t-\zeta)^{2}\right]^{\frac{1}{2}}} \frac{t^{2} d t}{\left[\theta^{4}+(t-\tau\right.}\right)^{2}\right]^{\frac{3}{2}}
\end{aligned}
$$

But
$\left.\left(\int_{a}^{b} \frac{|t|}{\left[\theta^{4}+\left(t-\tau_{1}\right)^{2}\right]^{\frac{3}{2}}} \frac{t^{2} d t}{\left[\theta^{4}+\left(t-\tau_{2}\right)^{2}\right]^{\frac{1}{2}}}\right)^{2} \int_{a}^{b} \frac{t^{2} d t}{\theta^{4}+(t-\tau,)^{2}} \int_{a}^{b} \frac{t^{4} d t}{\theta^{4}+(t-\tau}\right)^{2}$.
From the proof of Lemma 2.11,

$$
\begin{equation*}
\sup _{p,|\theta| \leq n}\left|I_{121}\right|<\infty \tag{18}
\end{equation*}
$$

In like manner, we have

$$
\begin{equation*}
\sup _{p,|\theta| \leq n}\left|I_{1221}\right|<\infty . \tag{19}
\end{equation*}
$$

By Lemma 2.15, there exists $\propto 0$ such that

$$
\left|H\left(e^{i t}\right)\right| \geq e^{c t^{2}}
$$

and

$$
\left|\Psi\left(e^{i t}\right)\right| \geqq e^{c t^{2}} \text { for each point in } N .
$$

Then

$$
\left|I_{1222}\right| \leq 0(1) \sup _{t}\left|f\left(e^{i t}\right)\right|\left|\psi^{\prime}\left(e^{i t}\right)\right| \int_{a}^{b} \frac{\left.\left.\left|t^{3}\right| \sum_{k=1}^{p} \frac{1}{\left[\theta^{4}+(t-\tau\right.}\right)^{R}\right]\left.^{1 / 2}\right|^{p+1-k}}{(t) . ~ . ~ . ~ . ~}
$$

But

$$
\begin{aligned}
& \int_{a}^{b} \frac{\left|t^{3}\right|}{\left[\theta^{4}+(t-\tau)^{2}\right]^{1 / 2}} \sum_{k=1}^{p} \frac{1}{|H|^{k}|\Psi|^{p+1-k}} d t \leq \int_{a}^{b} \frac{\left|t^{3}\right| P e^{-c(p+1) t^{2}}}{\left[\theta^{4}+(t-\tau 1)^{2}\right]^{1 / 2}} d t \\
& \leq \int_{a}^{b} \frac{\left.\left.\frac{t^{3} \mid p e^{-c p t^{2}}}{\left[\theta^{4}+(t-\tau\right.}\right)^{2}\right]^{1 / 2}}{} d t . \\
& =0(1) \text { as } p \rightarrow \infty, \theta \rightarrow 0 \text {, }
\end{aligned}
$$

by Lemma 2.13. Hence,
(20)

$$
\sup _{p,|\theta| \leq n}\left|I_{1222}\right|<\infty .
$$

From (20), (19), (18), (17), and (16), we obtain

$$
\sup _{p,|\theta| \leq n}\left|I_{\gamma}\right|<\infty .
$$

Finally, from (15) and (14), we obtain

$$
\sup _{p, \theta}|G(f ; p-1, \theta)|<\infty .
$$

OPEN QUESTIONS

The aim of this section is to present a series of questions concerning U, its dual space and operators on U :
(1) As sets, l_{1} is a proper subset of U_{2}, and U_{2} is a proper subset of ℓ_{2}. Does there exist p such that $1<p<2$ and l_{p} is a subset of U_{2} or U_{2} a subset of l_{p} ?
(2) If $\left\{c_{k}\right\} \in U_{2}^{\prime}$, then a necessary condition for $\left\{\frac{1}{c_{k}}\right\} \varepsilon U_{2}^{\prime}$ is that there exists $n>0$ such that $\left|c_{k}\right|>n$ for $k=0,1,2, \ldots$ Sufficient conditions for $\left\{\frac{1}{c_{k}}\right\} \in U_{2}^{\prime}$ when $\left\{c_{k}\right\} \in U_{2}^{\prime}$ are (1) there exists $n>0$ such that $\left|c_{k}^{k}\right|>n$ for $k=0,1, \ldots$ and (2) $\left\{c_{k}\right\}$ is of bounded variation. Establish necessary and sufficient conditions for a sequence to have an inverse in U_{2} '.
(3) A question related to (2) is "What are the homomorphisms on U_{2} '?"
(4) If f belong to U, with partial sums $S_{n}(z)$ obeying,

$$
\inf _{n,|z| \leq 1}\left|S_{n}(z)\right| \geq \delta>0, \quad \text { will } \frac{1}{f} \text { belong to U? }
$$

(5) A more difficult question is "If f belong to $U,|f|>0$ on $|z| \leq 1$, will $\frac{l}{f}$ belong to U?"
(6) Given $\alpha(0<|\alpha|<1)$, will fod be in U for all f in U, where

$$
\phi(z)=\frac{z-\alpha}{1-\bar{\alpha} z} ?
$$

1. R.P. Agnew, "Euler Transformations", American Journal of Mathematics (66 (1944), 313-338.
2. L. Alpar, "Remarque sur la sommabilite des series de Taylor sur leurs cercles de convergence, I, II, and III", Publications of the Mathematical Institute of the Hungarian Academy of Sciences 3 (1958), 141-158; $\underline{5}$ (1960), 97-152.
3. L. Alpar, "Sur certaines transformees des series de puissance absolument convergent sur la frontiere de leur cercle de convergence", Publications of the Hungarian Academy of Sciences 7 (1962), 287-315.
4. B. Bajanski, "Sur une classe generals de procedes de sommation du type Euler-Borel", Publications De L'Institute Mathematique De L'Academie Serbe Des Sciences 10 (1956), 131-152.
5. S. Banach, Theorie Des Operations Lineaires Monografje Matematyezne, Tome I., Warszawa (1932).
6. J. Clunie and P. Vermes, "Regular Sonnenschein Type Summability Methods", Bulletin de l'Academie Royale de Belgique 45 (1959), 930-954.
7. J. Clunie, "On Equivalent Power Series", Acta Mathematica, Academiae Scientiarum Hungaricae 18 (1967); 165-169.
8. V. Cowling, "Summability and Analytic Continuation", Proc. Amer. Math. Soc. 1 (1950), 104-107.
9. P. Dienes, The Taylor Series, Oxford at the Clarendon Press (1931).
10. G. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice-Hall, Inc., Englewood, New Jersey (1965).
11. G. Hardy, "A Theorem Concerning Taylor's Series" $\frac{\text { Quarterly Journal }}{77--88 \text {. }}$ of Mathematics 44 (1913), 147-160; 45 (1914),
12. G. Hardy, Divergent Series, Oxford University Press (1949).
13. J. D. Hill , "Summability of Sequences of 0 's and l's", Annals of Mathematics 46 (1945), 556-562.
14. J. Kahane and Y. Katznelson, "Sur Les series de Fourier Uniformente Convergente", C. R. Acad. Sc. Paris 261 (1965), 3025-28.
15. L. Loomis, An Introduction to Abstract Harmonic Analysis, Van Nostrand Company, Inc., Princeton, New Jersey (1953).
16. S. Mazur, "Eine Anwendung der Theorie der Operationen bei der Untersuchung der Toeplitzschen Limiterungsverfahren" Studia Math. (1930) 40-50.
17. Z. Nehari; Conformal Mappings, McGraw-Hill Book Company, New York (1952).
18. A. Peyerimhoff, Lecture Notes on Summability, Winter and Spring Quarters 1967, University of Utah.
19. G. Piranian, A. Shields, and J. Wells, "Bounded Analytic Functions and Absolutely Continuous Measures" Proc. Amer. Math. Soc. 18 (1967), 818-826.
20. C. Rickart; General Theory of Banach Algebras, D. Van Nostrand Company, Inc., Princeton, N.J. (1960).
21. W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company, New York (T966).
22. W. Sledd, "The Gibbs Phenomenon and Lebesque Constants for Regular Sonnenschein Matrices", Canadian Journal of Mathematics 14 (1962), 723-728.
23. W. Sledd, "Regularity Conditions for Karamata Matrices", Journal London Mathematical Society 38 (1963) 105-107.
24. P. Turan, "A Remark Concerning the Behavior of a Power Series on the Periphery of its Convergence Circle", Publ. Inst. Mathe. Accd. Serbe Sci. 12 (1956), 19-26.
25. A. Wilansky and K. Zeller, "F-H Spaces and Intersections of F-K Spaces", Michigan Mathematical Journal 6 (1959); 104-107.
26. L. Wlodarski, "Sur les methodes continues de limitation I, II", Studia Math. 14 (1955); 161-199.
27. A. Zygmund, Trigonometrical Series I. and II., Cambridge (1959).
