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ABSTRACT

AN INVESTIGATION OF UNIFORMLY CONVERGENT
POWER SERIES ON THE CLOSED UNIT DISK

By

Louis Thurman Richards

Two facts are immediately known about a given power series

with radius of convergence R>1:

(1)  the series converges absolutely for |z|<1, and

(2) the series converges uniformly on {zj<p-1.

Included in the class of all such power series are two subclasses:
(1')  those power series which converge absolutely on |z|=1, and
(2') those power series which converge uniformly on |z|-<1.

The class of all power series obeying (1') has been
extens'vely 1nvestigated. However, the class of ail power series
obeying (2') has not been adequately investigated.

After showing that U, the space of all power series obeying
(2'), is a Banach algebra, this paper investigates some of the func-
tional analysis properties of the space. The investigator was
also interested in finding classes of functions,¢, such that the
composition of any power series in U with ¢ would again be in U.

The following are typical results from the study:

Theorem: If {ak} is a sequence such that Z:akzk is in U,

and 1f % is a complex number such that »# 0, A # a k = 0,1,2,...,



Louis T. Richards

then {EE§;} is a sequence whose terms are coefficients of an element
in U.

Theorem: If X is a sequence space which is a Banach algebra
under coordinate-wise multiplication, and has a Schauder basis,
then projections into the coordinates are the only non zero homo-
morphisms on X.

Theorem: If o(z) = &*(I=a=B)2  g.,1, 0cgel, then
1-82

for any f in U, fo® is in U.
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"INTRODUCTION"
If Zanz" is a given power.series with radius of convergence
greater than or equal to 1, then
(1) Zanz" converges absolutely for [z /<1, and
(2) Zanz" converges uniformly on| z | I 1

Now if Eanz" has radius of .convergence R> 1, then

(1) E anz" converges absolutely on| z| = 1, and, hence
(') ¥ anz'.' converges uniformly on [z]<1.

However, a series need not have radius.of convergence greater

than 1 in order to satisfy (1'). The series'ZL: has radius
n

1 41/n
of convergence 1 [since 1im (——2-) = 1] , and it is absolutely
n

convergent on t z| =1,

The space of all power series obeying (1') can easily be
identified with l1 . In fact, letting f be a typical power series
which obeys (1') and denoting the norm of f by |[f || -Ilanl ,
the map {an}~> f 1s an isometric isomorphism from f1 onto this

space. The space of all power series obeying (1') is generally given as



an example of a Banach algebra, and theorems are proved about it
in books dealing with functional analysis and Banach algebras.

The space of all power series obeying {2') is not so very
well known. This paper will deal with the space of all power series
obeying (2') as a Banach algebra, its dual space, its Gelfand trans-
form, and continuous 1inear operators mapping the:. space into itself.

Kahane and Katzné]son [14] proved that the space of functions
satisfying (2') is not an algebra under pointwise multiplication.
Although the investigator was well into this paper before seeing
their results, the notation for the space is nearly identical [they
denoted the space of series obeying (2') by'UT;'and it is denoted

in this paper by U], and the norm used is the same:

(3) |If]| = sup sup | azk | .

p Izl 1 kD K
The only mention which the investigator has seen of the space of
series obeying (2') as a Banach space occurred in the above paper.

It will be shown in this paper that U is a semi-simple commuta-
tive Banach algebra under coordinate-wise multipiication, and, hence
(3) 15 essentially the only norm that can be used.

Another author who has written about series obeying (2')

is Alpar [3], and he has proved the foliowing three theorems:

Theorem 1: Given a fixed point o (0<lal< 1), then one can
always find a function fi(z), which is holomorphic in iz11 and
which has an absolutely convergent power series such that the

power series defined by -
e - Dy
- Q
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is not absolutely convergent on [z| = 1.

Theorem 2: Let f,(z) =£akzk be holomorphic in |z|<1,
I:hk|<xjo, a (O<|al< 1) a fixed point, and |z;] =1, [z,]| =1

two points related by 22 = o

Then the power series obtained by the transformation

(Z)=f(z-a) }:b

is uniformly convergent on the circumference |zi=1 and
- k. - k
f (z,) -Zakz =f (z) z b, ()z

Theorem 3: There exist functions f,(z) holomorphic in izl< 1,

whose power series development Xa\kzk ‘converges uniformly but not

absolutely on lz| =1 and which are changed by the transformation

- QO
f;(:_———-{-) into a function fz(z) whose power series zbk("‘)zk
‘3 not absolutely convergent on the circumference [z| = 1 for no
vatue of o (0<fal<1).

There are both propositions and theorems in this paper.
Progositions will refer to those mathematical truths “whose proofs
are fairly elementary. Theorems will refer to tnose truths which
demand some care in proving. In each chapter, Temmas, theorems,

propositions, and corollaries have been numbered consecutiveiy withoiit

regard to their special characters.



Chapter I deals principally with the functional analysis
consequences of U being a Banach algebra. In order to facilitate

the investigation, U will be identified with three spaceé:

(4) U] = {f(t) =Zanei’"t : Zanei”t converges uniform'ly}
= = . int P

(5) U2 { X {az : Zane is a function in U] }

(6) U {S(t n) =take Za elkt 45 in U }

Under appropriate norm, all of these spaces are isomorphic-iso-
metric to U.

Chapter II deals with continuous 1inear operators on U.
The major theorem of Chapter II states that Karamata type functions,

i.e., functions of the type
¢(z)= o + (] 'G-B) z . (0< a,<'])’ (0<B <1),
1-812

operate on U under composition of functions. This result is used
to show that certain Bajanski [4] type functions also operate on

u.

The foilowing usages and notations "have been employed
throughout the investigation:
a) infinite series and sequences whose indices begin with 0

or an appropriate positive integer nave been written without
the index
P

b),Js wiil denote the space of functions obeying (1')

¢) B[X,Y] will denote the space of all continuous 1inear
operators from the Banach space X to the Banach space Y

d) X' will denote the dual space of X

e) coordinate-wise muitiplication will be denoted by " "



CHAPTER ONE

UNIFORMLY CONVERGENT POWER SERIES ON |z|<1

1. The Banach Space U

In this chapter, some basic theory concerning the structure of
the class of uniformly convergent power series on |z < 1 will be de-
veloped. It will be shown that this class forms a Banach space under
appropriate definitions of addition, scalar multiplication, and norm.
Furthermore, it will be shown that the space forms a semi-simple
Banach algebra under coordinate-wise multiplication. The Gelfand
transform of the space will also be investigated, and additional
information about its structure will be obtained. The dual space
will also be briefly investigated.

The goal of this section is to establish that the class,

(1) U = the set of all uniformly convergent power series on| Z<1,
is a Banach space under very natural conditions. Since each E:Zakzk
which belongs to U defines a unique function, f, which is holomorphic

k

in |z|d and whose power series development is precisely >_a z", the

elements of U will be denoted by these f's.
On the set U, addition is defined by the rule: if fy, f2 are
elements of U, then f. + f_, is the element of U defined by

1 2

(f] + fz)(Z) = f](z) + fz(z) for all |4 1.



6
If ais any complex number, and feU, then of is the function de-
fined by (af)(z) = a+f(z) for all |z| <1. The set U clearly becomes
a linear space over the complex numbers under these definitions.

If feU, f(2) -Zakzk, define || f|| by

n
(2) |1f]| = sup sup ISn(Z)I , where S (z) = }:akzk.
n |zl k=0
Lemma 1.1: The function,|| ||, defined by (2), is a norm
on U.

Proof: Let f,g €U, aeC, [C denotes the field of complex numbers].
It must be shown that:
1) 1Ifl] < cO .
i1) |I1f]| = 0 iff f is the zero function.
111) |laf]| = la] |If]].
tv) |1 g [l< [If[]| + |lgl].

Since i1), 1ii), and iv) involve anly direct calculations, only
1) will be verified.

Verification (i): By definition, ||f|! = sup su IS (z)I
n |zl N

n
where Sn(z) = E'—U akzk. Also S, converges uniformly to f on |z]|<1.

We note that Sn is an entire function for n= 0,1,2,.... Hence,

su ISn(z)I = Sn(;) , for some ¢ satisfying |z| = 1. Now for
Iz$<1

each n, choose a point on lz| = 1 where S attains its supremum and
call it e Since f is continuous on |zl< 1, there exists M such
that sup |f(z)| < M. Since Sn convérges uniformly to f on |z|<1,

|2|<1
there exists N such that n>N implies ISn(z) - f(z)|<1 for all |z]|<l.
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Hence, nsN implies that |Sn(z)]z1 + [f(z)]| for all |z|<1. Therefore,

= 1<1+M = M', if n>N. H , <00.
72?=] 15,(2)| |Sn(;n)|< if n ence agﬁ lguzz.l IS (2)]

It follows easily now that [|f]|| = sup sup |S (z) <@ since there
n | <
exists M" such that sup S (z )]<M".
ne n
In addition to proving that || || is a norm on U, the verifi-

cation of i) has also shown

(3) 111 = sup ]szulp;] 1Sy(2) 1

Theorem 1.2: The linear space U is a Banach space under || ||
as norm,

Proof: Since (U, || || ) is a normed 1linear space, it suffices
to show that every Cauchy sequence in (U, || || ) converges. Let &P}

be a Cauchy sequence in U. Then, givene> 0, there is an N such that

n_
4) |ffp-fq||=sup sup l }L___(ap-ai)zqu if p, g>N.
n |z|=1 k=0 K

n
tence, tor any n, T (@ -l <) - fAlfcc if p,g>N.
=y

Given m, we have,

P _ 9 Qmﬂp_q! P_q L : _
ldm am| - Efﬁak ak:;_ lg:ak dK|<c if p, g>N, and therefore,

(5) jab - afig 2¢ if p.a>N.



We now have {az}ao is a Cauchy sequence of complex numbers for each k.
p=0
Hence, there is an a, such that

(6) 1;m aE = ak (Uniformly in k).

Now define f by f(z) = IZ:akzk. We claim that I:akzk converges
for al1 |z| < 1. To see this, we note that if {ak} is bounded, say
by M, then for any lzo|<1,Z:| akz:;l< MZI zlgl < CO; hence,

E:Zakzk converges for any |z|<1. To show that {a,} s bounded,

observe that {aP}® {s bounded for any p. According to 5,
k=0

given ¢ = %3 there exists N such that p'>N implies that

- [P _.p'
Iakl Iak ta - a |

<pu"' -pa
=|ak | |ak a |

<|a5'| £ 1.

Since sup Iai | is finite, sup Iakl is finite.
k k
Thus f is a candidate for the 1imit function of fp. To see
that " converges to f, observe that by (4),
n a\_k
sup sup Ijz:l(aﬁ - ak)z < e if p,q>N.
n Jz|=1 k=0

Fix z, n, and p>N and let q»@w. Then

n
|ZZZ(aE - ak)zkl <e.
k=0



Since this is true for any |z|<1. n, and p,

zkl < e 1if p>N.

(7) Ilfp-f|| = sup sup Ifif a,-
n |z|=1 k=0 %)

It must now be shown that feU. But,

m
|g?az|-|Za-a K 4 2P|
k=n k=n

3

k m  k
< |7 (a-aP)2" | + |7 a2 .
=n k k k:n k

=~

Let ¢>0 be given, then, by (7), there is an N such that p>N implies
that

sup 15— (a, -2z | <« =.
r.z|=1 k=0 k 'k 3
Choose p>N and fix it. Then
m n-1
k P, k
sup |3 _ (ak-aE)z | <sup | (a -a )z’
|z]=1 k=n |z|=1 k=0 k
. ( )
tsup |z (a -a)z |
Iz]:] k=0 k
< &, € 2¢
S —+ =
3 3 3

Since fp e U, there existsan M such that m, n>m implies that

sup lZaZI;

€
lz] =1 k=n 3

Therefore, if m, n > M, then

m k
sup 12— a z'| < e,
zl=1 k=n K

Hence, feU. This finishes the proof of Theorem 1.2.
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Corollary 1.3: Define the collection {py} by pk(f) = ak,

where ak.1s the kth coordinate of f, then the set {p,} is an
equicontinuous family of functionals on U. Hence, in particular,
for each k, pk is a continuous linear functional on U.

Proof: It is obvious that each Py is a linear functional. It
follows from (4) and (5) that given >0, we can choose § = ;-so
that if [|f-g|[<s = =, then P (F) - p (@)l = lay-by| < e for
each k.

Proposition 1.4: Let e , k = 0,1,2,... be the functions

k
defined by ek(z) = 2K, Then {ek} is a Schauder-basis for U.

Proof: Let feU, f(z) = 2::akzk. Let >0 be given. Since
feU, there is an N such that

sup su | Zf: a zkl< e if p>N.
N L
Therefore,
p-1 LI
AR SV
Hence,
f = :z:akek.

It is interesting to note that one merely observed the
behavior of f at z=1 in some of the most crucial steps in the
proof of Theorem 1.2, and that the norm used on U is analogous to
the norm used on the space of convergent series. Hence, a natural
question to ask is, "If i:ak converge, does Z:akzk converge uni-
formly on |Z|<1?" Although Zak converges implies that £akzk
converges uniformly on | z|<p<1, it does not imply uniform convergence

on | zl<1 as the following simnle example shows:



1

(8) )amgcM

k + 1

k., k
The series defined by (8) converges; however, the series 2:£:ll—£
k+1

does not converge at z = -1; a fortiori,it cannot be uniformly con-
vergent on |z |4].

Since, the elements of U converge uniformly on |zL;1, one
may naturally ask, "Does fcU imply that the radius of convergence
of f is R-1?" The answer to this question is, "No, there are elements
in U whose radius of convergence is 1." One way to see this is to
observe that Z:}i; converges absolutely, and hence, uniformly

on |z|<1, but the radius of convergence is 1.
2. Some Spaces Equivalent To U

If X is a Banach space, then we will say that X is equivalent
to U provided there exists a continous linear operator A such
that it maps U one-to-one and onto X, and such that IIA(f)Il)(= [f]].
That is, X is equivalent to U iff there existsan isomorphism be-
tween X and U which is also an isometry.

The purpose of this section is to develop some theory about
U by looking at different ways in which it is possible to describe
the class of uniformly convergent power series on |z|<1 as a Banach
space while maintaining the norm which was defined by (2). Of
course, if X is equivalent to U, then any information which is ob-
tained about X can be easily translated via A to information con-
cerning U. Since this can obviously be accomplished with no effort,

there will not be a need to specifically translate anything.
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Since by (3), if f belongs to U, then ||f|| = sup sup |S (z)],
n |z|=

2| =1

the norm will be restricted to the unit circle T.

The spaces which follow are all Banach spaces under the norm

defined by (3).

(9) U; = the set of all f such that f(t) = Zakeikt, and Zyi_,akta”(t

=0
converges uniformly to f.
(10) U2 = the set of all x = {ak} such that Z___ake1kt is a

function in U].

Let N denote the non-negative integers with the discrete

topology. Let N denote the one-point compactification of N.

(11) Uy = the set of all functions, S, on TxN of the form

n . .
S(t,n) = }___:ake”(t , and Z_ake1kt
k=0

is a function in U].

k
Define r: U-»U] by r (f) = g, where f(z) = Z:akz and

g(t) = fle't); T:U1dU, by T1(g) = x, where g(t) = Z::akejkt
and x = {a}; and w:U]+ Uss by v(g) =S, where g(t) = Zflakeikt

and n .
S(tyn) = X _a e1kt.

k=0 k
It is a trivial matter to check that r,r, and y are isometric

isomorphisms. Hence, the following proposition is stated without

proof:

Proposition 1.5: U], U2, and U3 are equivalent to U.
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Proposition 1.6: U], Uz.,and U3 have Schauder-bases,

Proof: The proof follows immediately from Propositions
1.4 and 1.5.
From the mappings defined prior to Proposition 1.5, the
following facts are obvious:
1. A Schauder basis for U] is given by the set of
functions defined by ek(t) = eikt
2, A Schauder basis for U2 is given by the set of sequences
of the form e, = (0,0,...,0,1,0,0,...) with 1 in the
kth coordinate »

3. A Schauder basis for U3 is given by the set of
functions defined by

(t.n) 0 ifk n
e t,n = »
k elkt 4f K <n

Proposition 1.7: If {ak}e U2 , then { ak}e UZ’ where a

denotes the complex conjugate of ak°

Proof: Since (ak}e U,, given n> 0, there is an N such that

2

sup [T 2. " < it pg> N
t  k=p
Choose p,q >N, and fix them. Then
EER—
sup ng:‘a'keikt% - I a ekt |
t =p T k=p

mtemeeeiiR——

= sup! };' a e'kt|,
t Rep
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Since |Z |= |z], Proposition 1.7 now follows from the last
equality.

It is well known that the complex series E:ak + 1bk
converges ( converges absolutely) iff the two real series
Zfak and }:bk converge (converge absolutely). The following
corollary follows directly from Proposition 1.7 and the fact
that U, is a vector space over C; hence, it is stated without

2
proof:

Corollary 1.8: {ak + 1bk} € U2 iff {ak} and {bk} el

2
U3 is an interesting space and seems to be the "natural"

space which one should use in investigating uniformly convergent

power series. Note that TxN is a compact Hausdorff space, and

that U, is at least a subset of B(TxN), where B(TxN) is the class

3
of bounded functions on TxN.

Theorem 1.9: Uy is a closed subspace of C(TxN), where
C(TxN) is the Banach algebra of continuous functions on TxN

with sup-norm.

Proof: Since U3 is a Banach- space under sup-norm on TQN,
and, therefore, is a closed subspace of B(TxN), it suffices to
show that U_. is a subset of C(TxN).

3
Let Se U3, and let @ be any open set in C. It must be
shown that s'][n] is open in TxN, where S'][n] ={ (t,n): S(t,n)eq} .
Case 1. S'][n] = ¢ ; whichis open, and we are done.

Case 2. (to,no)e S‘][n] with ng #0 . In this case,
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n
S(t.,n) = ZfE,a e1kt° . Since S(t,n ) is continuous in t,
0o k,ok 0

there is a neighborhood V., about to such that S(t,no)eﬂ for

to
all t e Vto. Hence, Vto XN is an open set about (to,no) which

is contained within S-][Q].

Case 3. (to,CX» € 5'1[91; S(to,cz»e Q . Since 2 is open,
there exists a §>0 such that V, = {¢: IS(to,om) - z]<6} s
a subset of 2. Since S(t,oc) is continuous in t, there is an
open neighborhood Vto about to such that |S(t,cq) - S(to.co)l< %
for all tevto. Since S(t,n) converges uniformly to S(t,<0),
there is an N such that, for all n>N, sgpls(t,co) - S(t,n)|< %-.
A fortiori, |S(t,o0) - S(t,n)]< %for all teV, and wN. Finally,

0

if t eV, and n>N, we have
to

|S(t°»00) = S(t.N)li 'S(to’m) - S(t,(}'O)l + IS(t,O‘\/)) = S(ton)l

8 8
< é-'f'?— 8.
Hence, (t,n) ¢ Vt x {nt”’ implies that S(t,n)e V4 which is a
0 n=N+1 .
subset of ©. Therefore, Vt x {n} is an open neighborhood
0 n=N+1
about (t_, ) which is contained in 5‘1[91.

0
From the above three cases, it follows that if @ is any

open set in C, and if S ¢ U3. then S-][Q] is open in TxN. Hence,
Uy is a subset of C(TxN).

Corollary 1.10: The norm,|| || , originally defined on U

as sup |Sp(2z)| can now be redefined as

2
n |zl n
(12) T O)fll = max 12— a
(n,t) k=0

keiktl, where maximum is used
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in the sense that the value n =@ is admitted.

Proof: Since TxN is compact, and since continuous functions

on compact sets attain their supremum, we have for SU_, there is

3

a point (to,no) such that s:p )|S(t,n)| = |S(t0,no)|.
oN

3. The Banach Algebra U

Since C(TxN) is a Banach algebra under pointwise mul-
tiplication of functions, one is tempted to conclude that U3
is also a Banach algebra under pointwise multiplication. However,
this is not the case. Kahane and Katznelson [14] proved that
U] is not an algebra under pointwise multiplication; hence,
U3,Up, and U are not algebras under this definition of multiplication.
In fact, this seems to be an unnatural way to define multiplication
on U,.

2

In this section, it will be shown that U2 is a Banach
algebra under coordinate-wise multiplication. This multiplication

corresponds to convolutions on U].

Lemma 1.11: Let f, g ¢ U,, and define fxg by

1

2n

(13) f*g(t) = El j; f(t-u)g(u)du.
I
0
Then the function f*g ¢ U].
Proof: It is well known--and it is easily proved via Fubini's
theorem--that the Fourier coefficients of h(t) = fxg(t) are given by

h(n) =c = f(n)g(n) = ab,. MHowa =0 for n<0 implies that c, =0
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forrn<0. Hence, to show that h eU], it suffices to show that

Zakbke'”‘t is uniformly Cauchy.

18 | e’ o 1= bkt -
k=p k=p 2m

T

f(u)e-Tkugy |

w
< A1 | f(u)] lzg: bke1k(t'”)l du
2 =p
0

< sup |f(u)] sup]ﬁ bke“‘(t'u)l .
u u k=p

Since  sup UE:bke (t- u)I = suplzg: elkU | | the right hand
u

side can be made arbitrarily small by choosing p sufficiently

lTarge. Hence, it is immediate that h eU1;

Corollary 1.12: Letu be a complex Borel measure on T. Define

the sequence {ck} by

¢, = S ekt qu(t),  k=0,1,....
T

Then {akck}eU2 for all {a, }e Us.

k

Proof: Since «is a complex Borel measure on T, the total

variation of u,|u|(T) is finite. Repeating the argument used in

l gg;akcke"k”l:;lul (T) suplf_—.ake"k(“"‘)l
=p t k=p

(18) yields

Corollary 1.12 follows immediately from the above inequality.



18
From Corollary 1.12, one has the fact that if f eU] and
g aL1, then fag eU]. This follows from the fact that the measure,

u(E) = _[ g(t) dt

E

u , defined by

is a complex Borel measure and that du = g dt.

Corollary 1.13: If f,g elUy, then |[fxa|ic|fii [igil.

Proof: In (14),let p=0. Then

iiﬁl ab e Yi< sup [f(u)| sup IZE%. bkeikti
u u k=

= 1l Tl
ence sup | $= abeelkt = [[faal] Zilfl] ilil-
(q,t) k=0

Since it is obvious that U2 is a comnutative ring under
adaition and coordinate-wise multiplication, we have proved:

Theorem 1.14: U, 1is a commutative Banach algebra under

coordinate-wise multiplication.

Corollary 1.15 If {a;}e Uy, then t!akiz}a u,.

Proot: This follows immediately from Proposition 1.7 and
_ o - 2
Theorem 1.14 since 33, Iak]

The converse Ef Corollary 1.15 is not true since the sequence

defined by a, = does not belong to U, while {iaklz}e U

0*
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Definition 1.1: If R is a commutative ring without identity,

“then an ideal, I, of R is called a regular ideal provided there
exists ueR such that ux - xeI for all x in R.[u is called an identity
modulo I].

Definition 1.2: If R is a commutative ring, then it is

semi-simple iff the intersection of all its maximal reqular ideals
is zero.

A well known result is that every regular maximal ideal in
a commutative ring R is the kernel of some non-zero homomorphism

from R to the complex numbers.

Theorem 1.16: If X is a space of sequences which is a

commutative Banach algebra under coordinate-wise multiplication
and has the set {ek} as a Schauder basis, then projettions into
the coordinates are the only homomorphisms, and, therefore, X
is semi-simple.

Proof: Since the system {ek} is a Schauder basis for X,
X contains the set of all finite sequences.

Let h be any non-zero homomorphism of X into C. Then h is
a continuous linear functional, and h(xxy) = h(x)h(y) for all
x,y =X, Since x ={a,} , y = {b} can be written as

k
x =Lae, and y =] be ., we obtain

(15) Labhle) =Lahle) L bhle,)

for all x,y eX.

Let h(ek) = Ay s k =0,1,... . Given n, let
Xq =¥, = (1,1,1,...,1,0,0,0,...), where 0 is in the n+p th
coordinate for p = 1,2,3,... . Hence, by (15)
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n o=
A = Y A A
Eo" 1T0) "Z;=o"

n n
Therefore, for any n, ? A =0 or N = 1. Now T2 =0
k=0

for all n would imply that h was the zero homomorphism. 'Hence,

E A = 1.

=0 k

N=min{nzﬁxk=1}.
=0

Then A, =1, and M = 0 for k <N. It will be shown by induction

there existsn such that

Let

that a 0 for k >N.

Let x

y be the sequence defined by
il if k=N

a =d41/2 if k= N+ 1

Lo otherwise
For the sequence x = y above, (15) yields -3 Anel = (AN+])2.

Since 1 must be -1 or 0, the above equality yields that it

N+1
must equal zero. Assume that AN+q =0 for q <p. Then

XN+D must be -1 or 0. Let x = y be defined by

1 if k=N

ak = 41/2 if k= N+p

0 otherwise
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= (1 + 1y )2. Hence,

:
Using (15) again, we obtain 1 + TAN >

+p

AN+p = 0, Since

0 ifk#N
h(ek) =
1 if k = N .

h(x) = PN(x) = a Projections into the coordinates are clearly

N’
homomorphisms. It has now been shown that these are the only ones.

Define Mk by

M = { xeX: a, = 0},

Obviously, Mk is the kernel of P Hence, Mk is a regular

maximal ideal for k = 0,1,2,... f The intersection of all
reqular maximal ideals is clearly the zero sequence. Hence X
is semi-simple. This completes the proof of Theorem 1.16.
It should be noted that one need only to have shown that
the set of projections was a subset of the set of homomorphisms
on X in order to have the fact that X was semi-simple. Hence,
the 1nterésting part of the theorem is the fact that a characteri-
zation of the homomorphisms on  this class of Banach algebras

is obtained.

Corollary 1.17: U2 is semi-simple.

Proof: The proof follows immediately from Proposition 1.4

and Theorem 1.16.

Corollary 1.18: The set«ﬂ is an ideal in Uz, but it is

not contained in any reqular ideal.

Proof: If x,ye 1° then x -‘yaﬁ. and if xe4 and yaUz, then
X*y = {akbk}e/]. Hence /1 is an ideal. To show that (] is not
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contained in any regular ideal, merely note that H/k!}e[,
and that no term of the sequence is zero; it now follows that
'l1 is not in any regular ideal since all such ideals are con-

tained in maximal regular ideals.

From the fact that UZ is semi-simple, one can obtain more
information about the norm which has been used. In a paper on
F-H spaces, Wilansky and Zeller [25] gave a very short proof
of the fact that a commutative semi-simple Banach algebra,A, has
an essentially unique norm under which A is a Banach algebra.
Hence, the norm, || ||, defined on U, is essentially the only

one that could be used.

Definition 1.3: In a commutative ring, an element x is

said to have an adverse y iff x + y - xy = 0.

It is a well known result that an element x in a com-
mutative ring has an adverse in the ring iff it iS not an identity

modulo any regular maximal ideals. Using this fact, one obtains:

Proposition 1.19: If {ak}euz, a, #1, for k =0,1,2,...,

Proof: For x = {ak} to be an identity modulo Mn’
Xx*y - y must be in Mn for all yeUz. Rut this means that anbn -bn =0

for all yeU,, and this is true iff a, = 1. Since a, # 1 for

2
any k, x is not an identity modulo any reqular maximal ideal.

Hence, there is an element yelU, such that

x+y-xxy = (0,0,0,0,0,...)



23

Hence, a + b, = akb =0 for k =0,1,2,.... Therefore, y

k k
is given by the sequence

Let XEUZ. The Gelfand transform of x, denoted by‘?, is a
function defined on, & ={ Mk tk=0,1, ...} , the collection of

maximal reqular ideals of U2 by
(16) ‘Q(Mk) = n where n is a co-set of Mk and xen.

It is well known that if M is a regular maximal ideal in a
commutative Banach algebra X, then the quotient algebra, X/M , is
isomorphic to the field of complex numbers,C. In the particular

case X = U2 and M = Mk’ an 1isomorphism can be exhibited explicit]yi

Proposition 1.20: Let Mk be a regular maximal ideal of Us.

k
Let 1 = (xeUp: a, =n}. Then Uym, ={ 1 :neC 3, and the

k

. k . . .
mapping 1 > n  is an 1somorphjsm of %honto C.

Proof: Elements x,y clearly belong to the same co-set of

Mk iff a = bk’ and it is equally clear that for any complex

numbery there is an xeU, such that a, = n . Hence, it follows
that {nﬁ : neC) 1s precisely the collection of co-sets of M,.

From the way addition and multiplication are defined on Up/M,,

and from the fact that the co-sets of Mk
that the mapping n§ + n is an isomorphism.

are disjoint, it follows
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The Gelfand transform of an element XeU2 can now be described

more completely by using Proposition 1.20:

(17) i(Mk) = a, where a_1s the kth coordinate of x.

k

Definition 1.4: Let T] and T2 be two topologies on a set

X. Then T] is coarser than T2 if T] is a subset of T2.

Let X be a commutative Banach algebra without identity,
and let 9 denote the collection of all maximal regular ideals of
X. Let T be the coarsest topology on 1 such that all the Gelfand
transforms are continuous on 7. A subbase for the topology is

given by the sets
(18) i'][n] for all open 2 in @, and for all x.

This topology makes 7 a locally compact Hausdorff space. The
functions x have the property that given ¢>0, there is a compact
subset K of ¥ such that |x(M)|<e for M not in K. (such functions
are said to vanish at infinity). Let Co(ﬂ) denote the collection
of all Continuous functions on 7--with the above topology--which

vanish at infinity.

Applying the above facts to U, yields:

2

Proposition 1.21: 9}05) is isomorphic to the space of null

sequences.

Proof: Since CB(A) consists of all continuous functions
which vanish at infinity, it suffices to show that the topology which
is defined on & must be the discrete topology. If the topology on

A is the discrete topology, then & is homeomorphic to the natural
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numbers,N, with the discrete topology, and the continuous functions
on N which vanish at infinity is precisely the collection of null
sequences. To show that the topology on A is the discrete topoloay,
it suffices to show that each Mk is open. From (18)

A0 = { M, LM ) e}

k
will be an open set--since it is a member of the subbase--for each
X in U2 and open set @ in C. Let Mn ed . Then for e, elr, let
@ be an open set in C such that 1 belongs to @ and 0 does not .
belong to &. Then,

2,70l

{ Mk: @n(Mk)eQ}

{ Mk: akeQ > e = {am} } by(17)

M1,
n

since e = (0,0,0,...,0,1,0,0,...) with 1 in the n th coordinate.

Hence, the coarsest topology on a for which all the X' are continu-

ous is the discrete topology.
One of the cases which one looks for in the Gelfand repre-

sentation of a commutative Banach algebra X is the case when

the collection of transforms equals Co(ﬂ). Lettin:;f% denote

the collection of all Gelfand transforms of members of UZ’ (17)

1.

and Proposition 1.21 yield the fact that U, 1is a proper subset

of CO(A).

Definition 1.5:- In a commutative Banach algebra,A, without

identity, the spectrum of an element x<A, o(x), is defined by

(19)  o(x) ={3eC: » £ 0, and (1/2)x does not have an adverse}l/ (N} .
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It is well known that the range of € is either identical to
the spectrum of x, o(x), or it 1s c(x) with the value zero removed.
For U2, this means that o(x) = {ak}. This yields the foilowing

proposition which is an improvement upon Proposition 1.19:

Proposition 1.22: If {ak}eUZ, and *ecC,» # 0, and *# a,k

for k =0,1,2,..., then

Proof: x = {ak} ,» and x# 0, » # ak implies that X does
not belong to o(x). Hence, by (19), this means that (¥,/1)x has

an adverse 1in U,. This adverse is obviously given by

8
ak - A

Definition 1.6: The multipliers on Uy, M(U;), is the set of

all g such that the pointwise product, f(t)g(t), is in U, for all ¢
in U].

.

Let‘/

I
convergent series, Kahane and Katznelson [14] have proved that
7\

deriote those elements of Uy which have absolutely

/1 15 a proper subset of M(U])o Nevertheless, the foilowing theorem
7\
yilelds & more direct proof that;4 1s a subset of M(U])~

Theorem 1.23: fa is a subset of M(U]),

Proof: Let f(t)=-~z:ake1kt be in £,, and g(t) =z:_bkejkt be
in Up. To snow that f(t)g(t) 1ds 1n Uy, 1t suffices to show that
given €0, there is an M such that p,g-M impiies that

sup [3{t;p,q)] = sup Ete"”t§ _ab | <e,
t n-p T knek

t



, T N ~
S{tsp,q) = B T aelftp  eitiokt

n=p k=0
, -k \ v*i"' gk
- ake1kt b e'lt plkt “b.eint
n Lngumnee swiezx )
k-0 n-p-k K-t n-

r - zfi 3 e‘k Z%:E by, elint 4 Z°9” a. e]ktéﬁ pint

Without 1oss of generality, one can assufie tnat neilther

f nor g 1's zes Tnen there exists M] such that N>MI implies that
D

Z:: ‘ak|< £/3119;

k=N+1

There exists M, such that m‘M2 implies tnat

At ;ﬁ:.b\emt A f,:] (, ;5] 1S f norin
t (Tl r !
Lioose fvf3 SN -.\J"f!,MZ). Cnccse NO‘ ,',;5 ard fix 1t Let M = M3 + NO
y 1t p oM, then
- ok .
dep o Sup 1g bl 37T o
pri_k-.q n- ‘ k-p+l
)
A S .
k=pt]
/3 s

since prl- M ?Nu' M],
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Since N >M],
0

-k ) \‘ ‘
¥, sup ff;kbne‘”ta i% layl

No+1;k <p n=

(90)
<llall Z— la, |
k=Ny+1

< e/3 .

Now, if K<N,, then -k> -Nj. Hence, p-k>p-N,. But
p-No > M3 > MZ' Hence, k<:N0 implies that p - k > M2. Therefore,

-k .
sup sup [ I be™< /3l IfI1.
0<kzNy t n=p-k

Hence,

1T 1= sup  sup | bye?nt| 3
1 O_kzN, 't n=p-

-k )
©supsup | B bpett] (11,
k

O;k;No t n=p-

£/3

Since S(t;p,q)=’Z-” +Z,2 +}: ,

sup |S(tsp,q)| < ¢ if p> M.
t

This completes the proof of Theorem 1.23.
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4. The Dual Sbace

Since U is isomorphic-isometric to U1’U2’ and U,, the dual

3)
space of U, U', is isomorphic-isometric to the dual spaces of Uy,

U2, and Ug~denoted respectively by Ui, Us, and U3. That is, if X

is Uy, U,, or U3 and I' is an isomorphic-isometric mapping of U onto

2
X, then the map, ¥, defined by

(20)  w¥(L) =T where T is defined by T(f) = L(r(f))

1s an isomorphic-isometric mapping of X' onto U'.

Proposition 1.24: The members of Ué are uniquely determined by
sequences {c } which have the property z:akck converges for all {ak}

in U2.

Proof: Let L be a continuous Tinear functional on Up. Let x

be any member of UZ' Since U2 has a Schauder basis, x = Z:akek .
Since L is a continuous linear functional, L(x) = Z:akL(ek) .  Hence,
the sequence defined by L(ek) = Cy uniquely determines L. Conversely,
let 1ck? be a sequence such that'z:akck converges for all {ak} n
U2. NOw Pk(x) S ay 15 @ continuous linear functional on U2 for each
k. Hence, for each n,

n n

Sp(«) = ZPk(ckx) = I a,Cy

k=0 k=0
is a continuous linear functional on U,. The assumption that Z:akck
converges for all !ak} in U2 implies that Sn converges weakly to S,
where S(x) = 2:akck . Hence, S is a continuous linear functional.

An immediate result from Proposition 1.24 is that if zj is such

that |zg| =1, then {zgl defines a continuous linear functional on U,

d
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0
In particular, the sequences (1,1,i, ; and {{-!,% a e csntinucus

linear functionals on UZ‘
For each fixed t, 0 -t -2, define the class B.V.(t) by
) Y = N . ‘ - -t d o
(21) BV.(t) =1 et} iq -eley <D
For t:0, the above class is simply the sequences of bounded variations.

Propaysition 1.25: If {Ck7u8 V.(t), then iim cke"Kt ex15ts

Proof: ¢ -B.V.(t) imphies thet 3 ic, - e Ml - OO

But
R oot (keit. Z a0t .
:Z: le-lklc, - e ) Chatr =L iCp = €75,
Hence, Z(le']kt - ck”e"(k”"t) converges. But
C 1kt (k+! L)
Y (c.e -1 (ktt
S, - (Eke il
k-0
. _ -(n+igt
o 7 tn+l
hence, o oce” Mt exasts
Now 1t C - Dim ce”*t,  then C - him o, since
O Y ‘(ne'mt - Ci.
Proposttren 1.26: B.V.(t) 1s a subset of Ué for each t

Proci: Llet +cC

k} ¢BV (t) Then for any n and any Jak'-,.UZ

n-1
%akck =% Sk(t)e-]kt[fk - Cme']tl + tne"”‘sn(t))

where S (t) - 2:0 a et . But Tim ¢ e-1nts (t) exists, and
ni-
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}[Sk(t)e‘ikt[ck - 1€ 1t] is aboslutely convergent. Hence,
Z:akck converges for each {ak}zuz, By Proposition 1.24, €ck}nug

Corollary 1.27: Let L = {cgl=B.V.{t) Then

[ = sup L(x)]
Jixi]-1

Z Z}ck - e T T ey
Proof: From the proof of Proposition 1.26, 1t foilows that
[L(x)i = sip ISK(t)](i:lck - ck+]e'it! + 1im ick!)
i}xif(ZZICk - ck+1e'it]+ 1im icki),

Hence, Coroliary 1.27 follows.

l‘ A
HERS

Proposition 1.28: There exist {ck1 +Up  such that O does

not belong to B.V.(t) for any t.

‘ 7/
Proof: Since {(-1)k1 and (1,1,1,1,...) are 1n U2, the seguence
. ) , /
tgidefined by ¢ = 1+ (-l)kis in Uy, However, for any t,
m m_

| - ' A | ) ; Ny K‘] - 1
D T I A G P RN AR CP AN T
k-0 k=0

S 1 = 2(m~1) -
k=0

From the fact that [ﬂ is a subset of U2, the following proposit-

ion is easily cbtained, and, 1s therefore stated without proof:
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Proposition 1.29: As sets, Ué 15 a subset of m, where m

is the collection of bounded sequences,

Corollary 1.30: There exists f in U such that the derivative

of f, f', does not belong to U.

Proof: If E:akzka U implied that Z:kakzk'1e U, then

Y kak converges for all {a,} in U Hence, by Proposition 1.24,

k 2’
{k} would be in Up, but this contradicts Proposition 1.29.

Corollary 1.30 is a prefectly natural result since there are
power series in U whose radius of convergence is precisely 1, and,

hence, have a singularity on |z| = 1.

Theorem 1.31:  fc,}-U, 1ff {ayc U, for all fa

K ‘r.;Uzc

2 k

K 'k’
z:akckzk converges on |z{z] for all CIRE

Proof: Assume that{a c leU, for di]{ak;,uz. Then the series

X In particular, it
converges at z = 1. Hence, by Proposition 1.24 {Ck}fué‘
Now assuire that L = 1ck»fU2~ Let fak;.Uz, To show that

.. - e . cr 2 LTKL Ge unsfarmly
fa ¢ Uy, 1t sutfices to show that znakuke is uniformly Cauchy.
Let 'S be a point on T and fix ir. Then y -{dKe‘KS} is in Uy,

and

n
-p t

t K-p

Hence,

el n i
3 ae e e L[ s )]
k=p k-p

n

< |iL] iz; ae |l
=3 k k
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By choosing p sufficiently large, the right hand side of the inequal-
ity can be made as small as desired. Therefore,Z:akcke1kt is uni-

formly Cauchy.

Corollary 1.32: If L =A{ct, M= {uk}aU' then

2’

L * M= {cu eU,.

Proof: Let x = {ak}eUZ. Then y ={akck}eU2. But
M(y) =§:akckuk. H?nce,z:ﬁk(ckuk) converges for all {ak}eUz.
Therefore, {ckuk}sUZ.

Theorem 1.33: Ué is a commutative Banach algebra with identity

under coordinate-wise multiplication.

Proof: Let L = {cy} , M= {ule U2. Let x = {a tely.

Then y ={aycyte U,.  For fixed s, {akeiks}aUZ. Hence,

n . n .
17 akcke’ks | = |L (E:f ake1k5ek\‘|
k=0 k=0 /

<UL 1SR el
k=0

= I Fix]]s

Since the right-hand side 1s independent of n and s,
[yt Tt Hixd .

Hence, [M*L(x)| = [M(y)l< [IMI] [lyi

ZIMEE LT T

Therefore, LIMsL] (2] IME] TILT .

The ring structure of U2 js obvious, and (1,1,1,...) is
the identity. Hence Ué is a commutative Banach algebra with

identity.
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In order to find the precise dual space of U2, we will

examine the dual space of Uj. From the fact that Ué and Ué

are equivalent, we will be able to deduce the manner in which the

]
sequence space, U2 ,» 1S generated.

Definition 1.7: Let B be the sigma-algebra generated by

the open sets of a topological space X. Let EeB. Then a
collection of sets, {En}, in B is said to partition E iff
E is equal to the union of the En’ and the collection is
pair-wise disjoint. A complex Borel measure, u, on B is a

complex-valued function on B such that for each EeB,

[88)
u(E) = E;:; u(En) for every partition {En} of E,
n=0

and the above series always converges absolutely.

Definition 1.8: If u is a complex Borel measure on B,

the total variation of u is the finite, positive Borel measure |u]

defined on B by

|u] (E) = sup-(}Z]u(En)I : {E }is a partition of E}.

Definition 1.9: If u is a complex Borel measure on B,

then it is regular iff for every EeB,
lul(E)
[ul(E)

inf{|u|(V): E is a subset of V, and V is open}, and

sup{|{u|(K): K is a subset of E, and K is compact}.

The form of the Riesz Representation theorem which we need
states:
If X is a compact Hausdorff space, thento each continuous

Tinear functional L on C(X) there corresponds a unique complex
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Borel measure, u, such that

(21) L(f) = b{ f du , for all feC(X),
X

and ||L[] = [u] (X).

By the Hahn-Banach Theorem, if LeU;, then there exists a
continuous linear functional H on C(TxN) such that L(S) = H(S)
for all S in U3. Since TxN is a compact Hausdorff space, there
exists a unique complex regular Borel measure, u , such that

H(S) = j S du
TxN

3
regular Borel measure on the Borel sets in TxN. Moreover,

Hence, for each L in U,, L can be represented by a complex

L can be represented by one whose total variation on TXN is equal
to the norm of L. However, it is not true that L can be represented
by a unique Borel measure since the extension of L to H 1is not

unique.
Now the system {e,} defined by
0 if n <k

ek(t,n) =
ekt if n- k

is a Schauder basis for U3. IfL ¢ Ué , and Se U3, then there is

a complex regular Borel measure, u , on TxN such that
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ek(t,m) du(t,m) .
TxN

Finally, if L = {ck} belong to U;, then it is immediately seen

that there is a complex regular Borel measure on TxN which

generates the c¢, by the rule

k

(22) c e, (t,m)du(t, m) and

TXN
conversely, any complex regular Borel measure will generate

a sequence--when defined by (22)--which belongs to U2



CHAPTER TWO

CONTINUOUS LINEAR OPERATORS ON U

1. Concepts From Summability

Let A=(a, ) be an infinite matrix. A sequence x = {x} is

said to be A - 1imitable provided the sequence y = {y,} defined

by yn =£E§:ankxk converges. If every convergent sequence is

A - limitable, then the matrix A is said to be conservative. A
conservative matrix A = (a, ) is clearly a linear operator on the
Banach space of convergent sequences. A conservative matrix is

called a regular matrix provided A - Timit x = 1im x, for every
n-»w

convergent sequence x = {x,}. Toeplitz' Theorem gives the following

necessary and sufficient conditions for a matrix to be conservative:

(o =]
i) sup &_lapl < OO
n k=0

ii) lim a, = ay exists for each k,

n-»oo

(2]
iii)  lim 2 apk = a exists.
n k=0

If a = 0 for each k and a=1, then the above conditions become
necessary and sufficient for A to be regular. Toeplitz' Theorem also

shows that a conservative matrix is a bounded operator, i.e.,

Q27
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sup| o aoxil suplxg] supElany
N R S i

Let ¢ be a holomorphic function in |z|<R, R~1. Then by
taking powers of ¢, [¢(z)]Nn =iEi ankzk, a matrix A= (ap) is

k=0
obtained where agp= 1, and agg = 0 for k=1, 2, 3, .... If

¢(z) = a +(1-0-8)z » then the resulting matrix is called a Karamata
1-p2z
matrix. ‘
Bajanski [4] has proved that if
i) ¢ is holomorphic in |z|<R, R>1
i1) |e(z)|<1 for |z]<1. z#1
iii) ¢(1) =1, and
iv) Re A# 0, where
$(z) - 22= iP A(z-1)P +0.(1)(z-1)P as z-1, A#0, and a=0-(1),
then the matrix defined by [¢ (z)]" =§§;ank X is regular. In this
paper, he also has shown that necessary and sufficient conditions
for a Karamata matrix to be regular (for real o,8) are a<l, p< 1,
and a+8>0, or a=g=0.
Notation 1: If X and Y are Banach spaces, let B[ X,Y] denote the
Banach space of all continuous linear operators from X to Y.
2. Bounded Linear Operators From A Banach Space
X (With Schauder-Basis) To U.
Theorem 2.1 In order for an operator A to belong to B[ X,U]
(where X is any Banach-space with a Schauder-basis (éo,ej yeon)) it

is necessary and sufficient that



39

i) A is uniquely determined by a matrix (ank) satisfying
ii) fi(z) = ;;% ap 2" belongs to U for each k, and
i) L, ={ ang-::; belongs to X~ for each n and the continuous
linear functionals defined by Fp,t= Zigéeint L, satisfy

I, <@,

sup Ile,t X

p,t
Proof: Assume that A belongs to B[X,U]. Let x belong to X.

Then x can be written as x =§;§ X Ek. Since A is continuous and
k=

linear, we have A(x) = ffi Xk A(ék). But A(ey) belongs to U for
k=0
each k. Hence,

~ - - n .
(1) Aley) = §§§'anken where en(z) = 2", and we obtain

(2) A(x) = g Xy gank e,- Since A(x) belongs to

k=0 n=0

U, we have

o
(3)  A(x) = Zo_bnen
n=

We will show that b_ = f%% a_ X.. Without loss of generality, we
m =0 mk

can assume that |||A]]]| = rrpll [TA(X)||y # 0. Given >0, there
x| | =1
is an N such that r >N implies that Ilgfi xk%kylx <
k=r

[TTAlTl
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Hence r>N implies that

Ilf X M1y =11 A(E X &1y
k=r k=r

< N1E rea e
k=r

aQ
Hence, xkz a8, converges in U-norm to
n=0

Pn(A(x)) =P (f X‘kf 3Ken)
=0 n=0
3
= Pp(1im S Xy & 3ken)
oo k=0 k=0
09,
= lim i: X Pm (Z anien)
r>co k=0 n=0
(5]
‘2:: x'k 3k
k=0
Hence, b =% a_ X, ,and
m k=0 mk k

‘ &p
P o Qo Bk
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We now have that A is completely determined by the matrix (ank) and

from(1), we have f, = A(@') = ffi a. e, belongs to U for each k.
k k® " p=p Nkn

Moreover, from(4), we have that a1 %k must converge for each n
k=0
and arbitrary x in X.

Hence, L, = {ank}aD is a continuous linear functional on X for each
k=0

n. Now let p and t be given. Let x be an arbitrary member of X.

Then
o) ax
HAGO Ty =[ [ en & anexe]|
U "%;% n k=0 n k{ U
o, £
n
= e 0 a, X
'2;; k=0 nk k'
(by Corollary 1.10 where p' may be0).
Hence,
o, - B e Lo ] - [, 0.
n=0 n=0
Hence, |[[Alll = sup  [JA()|| 2 sup |F, ((x)} = |[F _I].
[1x]=1 1= Pt Pt

Since |||A|||<@D, and p and t are arbitrary, we have

;‘,‘{’HFp,tHX' zl 1Al < o9,

Hence, conditionsi), ii) and iii) are necessary.
Assume that (ank) is a matrix which satisfies ii) and iii).

0.9
To show that EE% en 2:: ap Xk belongs to U for each x in X, we
n=0 k=0
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need to show that é z "L (x) converges uniformly on |z|<1.
n=0

But this is equivalent to showing that 2::.e’"tL (x) converges
n=0

uniformly in t for each x. Hence, we need to show that the continuous
linear functionals {Fp,t} converges weakly and uniformly in t.
As a consequence of the Uniform Boundness Principle {Fp t} will

converge weakly and uniformly in t, provided

P
(5) ¢ (&) = 2:: eint L, anke1nt converges
n=0 n=0
uniformly in t for each k, and
(6) sup ||Fp,tl| X' < oo

p,t
o0
But conditions (5)and (6) are satisfied by (a, ). Hence, z::enLn(x) is

in U for each x in X. Letting A denote the operator defined by (ank),
we clearly have A(xy + xo) = A(xy) + A(x,) and Afxx) = aA(x).
To show that A belongs to B[X,U], it suffices to show that A is

bounded.
But ||A<x>|lu=|l}:eux>|l
= supl 5&: 1ntL (x)
Pst n=0
= sup | F ¢ (x (x)|
p,t Ps
< sup IRy oIl HxlTy

Pyt
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Hence, A is bounded, and |||A|]} = ;ug [le,tllx..
Therefore, conditions ii and iii are sufficient.
For X = F], conditions ii and iii become fk = § a 8 1s

n=0
in U for each k and sup ||fk||U <ao, This follows from the fact
k

that O
Fo.(x) =§ e1nt5 a., X
p,t / nk "k
n=0 k=0
x
_ int
= X a.e
k=0 n=0
= int
and | IFp,tl I/' iup IZE: a.e | . Hence,
1 n=0

sup | [Fy &l ly0 =sup [|f I], .
p,t p’t[1 Kk kU

Hence, if an f in U is chosen such that || f|| <1 and if we define

ank=aﬁ k=1, 2, 3, ... where f=£:anen, ap, = 0 for all n,

then the matrix (a is a continuous linear operator from ,éq

nk)

into U. Here, f (2) = Sfi aﬁz”, and since U is a Banach algebra,
n=0

we have igp Hfk Il = S%? llfkli;l. Where £ denotes F*Fxf*. . *f.

3. Karamata Type Operators on U.

If ¢ is holomorphic in |z|<R, R>1, and if |¢(z)|< 1 for
lz|< 1, then for f belonging to U, we can consider the composition

of f with ¢, f(¢). f(¢)will certainly be holomorphic in |z| < 1,
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and will be continuous on |z|= 1. The power series coefficients

for fo¢ will be given by

1 1
n= 7T f( o(z) ) -7 dz
z
|z]=1

o
L[]

1}
-
[+¥]

x
L=d
—
N
S
|_J
Q.
N

Letting a =1 ¢k (z) 'TT-'dZ’ we have that

Hence, if we definer by r(f) = foo, we can ask if r belongs to
B[U,U].

The following lemmas whose proofs are well known will be used
extensively:

Lemma 2.2: If O<t<1, then for any p>0

>0
STy ey g
(1-t)P*1 kZ:” P P pik-p):

Lemma 2.3: If m and n are nonnegative integers with m>n,
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m+]
n

then (:) + (nT]) = ().

Lemma 2.4: Abel summation:

m m-1
Y ok = Anbn - ADogt Y Al )
k=p+1 k=p+1
k
where Ak = 2:: a,

r=0

Notation 2: [X] will denote the greatest integer which is less

than or equal to x.

Theorem 2.5: If #z) =o+(1-a)z, O<a<l, then the operator
r, defined by r(f) = fo¢, belongs to B[U,U].

Proof: For each k, we have r(e,) =(a +(]-a)e])k = ¢k(z)

which certainly belongs to U. Now @k(z) = (:}Gk-n(1-a)nz",
n=
ok if n<k
Hence, aqp ©
0 if n>k

0 a~
Now Zankak Z:, )aa —/

k=0 k=n

29,
(1 ) EE::: ) o a is absolutely convergent
k=n

for each f = ZZ: a,e in U. Hence, the Tinear functional

O
Ln = {a .} belongs to U. We must now show that the continuous
k=0
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1inear functionals F

P
- int
Pt > e Ln satisfy ;fﬁ"Fp.t"<‘°'

n=0

Let f belong to U, f = Z:akek.

Then F t(f)«zfie""‘( SDips ) (::)akak
=n

n=0
Since the expression on the right is absolutely convergent, we can

change the order of summation to obtain:

0 el O] - Bty 0]
L, L,
pady -!E;o\\k[ifflé%‘ﬂk
- B e (el

k=0

Now,

< Hf

Let m = [%TZJ' Then we write

e Y AP A w L]

k=p+1 K n-O n kem+1

- 7:21 + :22 .. 1f m=p, then :21 = 0,

. . p+1 p+ =g n
If mp+1.then]zz1| |ap+1a n%(n)[l;*ﬂ
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Hence, if m=p+l,

AP o n
Tl < 11611 P O[22 = i
n=0 @

If m>p+1, then we write 2 o7 as

s

k o it]N m Kk K Kk Ao, 541D
To = ek i el T (e
n=0 @ n

b
]
o
+
—

Lom - Loz

| Lol - Ikzﬁ_?: 3 [or 0 el

< 2[Ifll,

We will use Abel summation on ZZ]Z‘ Letting

k .
b =t 12 Coflzeltn
n=p+1 "

we obtain }_42]2 = Smbm - Spbp-H ¥ L9121

where

)

3 m-;l k k k el k+] k+1 ln
: .5 1-a 1? _ ﬁ E
Z2121 : ]Skﬁ‘ 2 (WS &= s J

Ln_—_l k k _ it n k+] m-1
Y S Z[l—e‘] ) - o] )) T 5,0 (1-a)e’
k=p+1 n=p+1 k=p+1
=Ly Z—'21212 '

1

t k+1
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5 2 ]
[5yl" g‘ml; M=)
|S, since Z ( )(-O‘T ('I + 'a)

<IfIT

|s bl
mm

A

Similarly,

[SPp,l< 1111

‘221212 |;llfll %r::;l:] (1-a)k”.

iff k+1 >

T

We observe that (:) > a(k;])

]-a

Now in £ 21211 » m-1> k. Hence, B> my k1. But inTyypyps

we have n.p. Hence, T¥§'> k+1. Therefore,

- |(‘ iy’ ( '-a(k’;]))] - z_'%’.1(’-;-°‘-)n(a(k;])-(';) )

n=p+

k
R =S AL R k)
n:EJ.:](OL)G(,,J) (1-2)(%)
B et (EVLRNUR IS LANS
n=p+1 n-1 n-1 an n
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Thus,

-a)p+1 -l m-1 k+1
o1y | < L] i—a— S &) - = (1-0)
k=p+1 k=p+]
(=l = 15500+ 1500,
+1
< ||f||L‘—°‘>p Sk
k=p+1 p
<l f|l%°‘—’p+’):("> N
a k=p p
= [|f|| by Lemma 1.
Thus,
< 3If].
Hence,
= 2 151+ 1=y |

511fF1.

For 2:22, we observe that Abel summation, with

o ZE:. (;__e‘t> , gives us

n=0 " o

by

r -

r__ <=1 kP q_ait\n/ k

ST ab, = Spby - S by v S T (1%t (( ) - o] 9
k=m+1 k=m+1 n=0 °

We will show that the last sum on the right converges absolutely
and since the sum on the left converges, we must have 1im S b

| g

existing. Hence,

T = ‘”“ Spbp = Spbmal * T=221,4
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— Za®l p VRO B
~ k 1-0 it k+1
where =, soes—(=="") [()-o" )]
221 1 K pe0 ° n n
In ..., kxmtl. Hence, k+1 >m+2 > B+ 1 >0
221 1-a 1-a
Hence,
-a 3t.N P q_an
F 22" 16 - ok = 2 0" 1 - et
n=0 n n n=0 n n
p ('I-a)nﬂ k ]-a n k
= EE%[ n (n) - L;ﬁ:% (n-1)]
= g]_azp'ﬂ (k)
oP p
+ oo
Hence, | gl < 161 L=2)77 57 (k) oK
ap k=m+1 P

1 DO
TEIRCE S i ¥

A

o kep P
= |Ifl].
1im S,b, 1z s s, | Ib,|
< fl] sup o= (AR
rm n=0 "

= |Ifli.
In 1ike manner, iSmbm+]l; |If]]. Hence, |§:22| ;=3|ff|’A

I.(
Hence, |, 1z =y, | +15=,, ]

< 8llfll.
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Finally,

Foe (D)l [ 5] #0911

Hence, |}Fp tll< 9. Since p. and t are arbitrary, we have

sup | |F < 9.
s 115, 4/l

Hence, T belongs to !iU,U].
In connection with the proof of Theorem 2.5, we observe

that our linear functionals, L_, are also given by

n
1
(7) Ln(f) = sz Sf(qa(z)) y dz.
[¢(2) |=1

This follows from the fact Ln(f) = E;%.ankak = bn where b, 1

the n-th coefficient in the power series expansion of fop. In

fact, letting w=¢(z), we obtain z = H(w) = Tii. dz = W

T=
and integrating around |w|= 1, we have
= | 1-a )"
Lo (F) = 5 | f(w) J(WT%” dw.
|w| =1
By the calculus of residues, we have
n
L) = 0201 g5 ¢(n) gy
n' W o
oD (D)
= (1=2)" “)aw® (since £(0)(o)- k: aokm
(—5—) EEE;(n) e 177 () AR

which is precisely the value that we should obtain.

Theorem 2.6: If ) (z) = l%:%%E-, O<g--1, then the operator ,,

defined by 4 (f) = fo>, belongs to BLU,U].
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k
Proof: We have /\(ek) = q;z—elel) belongs to U for each k-
5

= ] )\k(z) 1 dz
zn+'l

1-
= A = = L =
Let w (z), Then z=t (W) = ;= , dz _‘Lj?u-ww o,

Hence, for n >1
1
k n-1
.- w (1-B+8w)
I ?T_ﬁi ‘S o dw

| w| =1

a00=1 an0=0 n=1,2,....

Using the calculus of residues, we obtain

- a. k
@l e (15 N>k nfF0 k#0
a., = 0 n< k
nk 1 n=0,k=0
0 n>1, k=20
L n-1 n ;18K
Hence, Lo(f) = ag» and Ln(f) =%55 (k—1) B 07;9 a
-] k+1
- n-1 n,1B
k=0 ( k )8 (B ak+]
for nx 1.

Let q and t be given, and let f be an element of U.
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Then
L BTN B CL R I P

- )]

Fat(f) =+ >(se™™) %;%( e 84
_] q
-B k+1 n-1 s N
Y e L L LS TIRTS
o Y0 ° 1
2y B2, S () ity
k=0 n=k+1
g . k+1 n-1 se N
§:<T " S ety
n=q+1 K
/ /
=, t3, - .
— q-1 (1- B)e’t k+]
+ = + —_—
3t i) 0[ 1-geit 34
q ] B)e1t k
= 5 [ —]"a
0 1-geit -k
= E::] .

Changing the order of summation in 5 yields

— o2 . -1 k+1
T2 = 2 (ge'H)" g:(n ])(]—BB-) A4
n=q+1 k=0 K

’

Let m [%;;—ﬂ. If m = q+1, then‘Z:; remains as it is and nothing

is Tost. For m > q+1, we write Z:;y as
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-1
(geit)" zc‘: LRI

3

R
n=q+1
2,0
v T (selt)" %:("")(1 <RI
n=m ]
— 1/
-2, +2:3 ‘
We write z;’ as
) - T (ool z=(" hikea
n=q+]
m-1
P (et (T Hdsgyk
n=q+1 k=q k
V//i
N 7—_2 - Z2
Hence,
2. —
Fq,t( ) =2y 'EZé 23
But,
_J
L)+ LZ//= F ’t(f). Therefore,
Fm-],t(f) =Zl +Z_2 -23 ’
DaNIERE =Y 2T Ik Sy RPITIE
k=0 1-gelt

k+1
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We use Abel summation on the inner sum of Zz. Letting

- -g\k+1
b = () (L&),

we obtain
n-1 n-2
i-:qakﬂbk = Spbp_y = Sgbq * kz;:q Si+1 (b = byyr)

- n=1,,1-g\q+]
5o (50" - sq(M R

h-2
1-8,k*1 . n-
Eq S+ ('—B-) [ ( (k+1 )]
Hence, we can write }_‘_'2 as

o) =y - Iy, 45T,

|§:21|=|>::ee1t Jg-ﬂnl<||f|1:u-e>"

n=q+]

giqtl 1 TN
| T22] = 15T T (e’ |
n=q+'| q

] 1
< 1Fl 2 ! X ")
n=q+l

We observe that

(n;]);_ %&(E;b iff  (k+1) > (1-8)n.

In 223, n;m—]:_?f—é—-1=%%a

Hence, g+g > (1-g)n. But in 223, k>q. Hence, (k+1) > q+8 > (1-8)n.
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Therefore,

-1
Epple 1FI1E= @ E2LA5R () - (d5ekez(]

)]
n=q+1 k=q k1

= |If|IL 1-8yq+] n 1 g 1-8
lll()r__;]<q ﬁ‘”

Finally, we obtain

T |2 =gy |+ 50| +| 53]

< 2||f]] (=2 Bq+‘z: WTY
n=g+1 9

< 2|Ifll

+] m-2
since (L—)q” Z (" ygn = (1-6)d S (M <.
n= q+] Bq n=q q

We use Abel summation on the inner sum of 2:5. Letting

= (-1 -8yk+1
bk‘(k)(]—ﬁ)+s

we obtain
-1

-2
_ 1-8, , 3 3yk+T (n=1)_(1-8)k+2 n-]
EZ—Hak”bk = SPg-1 - Bolg) * z:k=0 S LD (M - (=) T R

Ne]
—
ml

Therefore, we can write§:3 as

23 =231 -332 +2.33
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2311 = 15581 15 (ge't)" (0}

n=m

: -1
1] (589 nim 8" (§7)
Iao )Q(Be

n=m

IA

|132|

< HFl (—Q)ﬁls

n=m

hmZ:33, we have (1-g)n > k+1. Hence,

q-2 - -
I233] < |IF]] Cfs e ("k‘)>

- 1- 8409 - =1 n_ (1-g n
I ((-B-) Sl s (B)gs>

Finally, we have

lig] < lmy |+ l32] *+ |53
(-
<2][f]] B)q § (q ]) "

<2|If ]
Hence, [Fr_1st(f)] < |m| *lm| *+Im|
<S1IfFII.
We now have that for any positive integer q,
| Fn1,e(P)lz 51111, where m<[£
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We now show that there exists an integer h such that if q is any

integer, then there are at most h integers between
= [ a = [ 22,
my [ 1-B] and m, L 1-B]

Let h = [ —%EJ + 2. Then

h+m

- 1 1
'([iﬂ+2)+[%ﬁ

—

1-
[ L1+1+ 9
L 81 ) 175
L an
~1-p 1-8
- a2
1-8
> [—%121 = m,. Hence,
-B

hzm -m and h is independent of q.

Now for any q and associated m, we have

F) + (geit)n 7“1 (1) (15

F (0] = [F g 4 18)a L1

m,

m m-1 _
O+ e 1e]] - (") (B
k=0

<

[Fooy ¢ (F) B

< SIIfI] + [|f[] (1-8)
= [|f]| (5 + (1-8)).

_ m+1 k+]
IFm+1,t(f)I - IFm,t(f) ;g:é 8 +]|~
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Therefore
N m+1 o my1-Ey k4]
Py AT <P ()] + 6™ 0[] ﬁo(k)(—ﬁ—)

| A

LT (5 + (1-8)) + [[F]](1-8)
L[] (5 + 2(1-8)) |

Continuing in this manner, we obtain
Fen-bfal < TIFI1 (5 + []—IEJ (1-8)) .

Since we have at most h points between my-1 and mo-1, my+h-1-m,-1.
Hence, we have [Fp.+k,t(f)| < [[f]] (5 + k(1-g)) where 1§k5£T;§J :

] ) .
Hence, k 1z and k(1-g) < 1. Therefore, for any integer p and

given t, |F_ .(f)] < 6||fl|. Finally, we have sup ||F. .||< 6
p,t p,t p,t -
and Theorem 2.6 is proved.

Corollary 2.7: If ¥(z) = a.i%%é%:ﬁlé., 0-o<1, 0<8<1, then
the operator T defined by T (f) = fo¥r belongs to B[U,U].
(1-8)z

Proof: Let ¢(z) = o+(1-a)z, A(z) = 122
1-82

ThenT and A are members of B[U,U]. Since B[U,U] is a Banach algebra
under compositions, we have AT belongs to B[U,U], but

EE(E)) < A (fob)

n

(fc ¢ o

fo (o ox )

But ¢ (A (z)) = at (1-a) L]_glz
-Bz

= at (l-a- =
- + ](-BZ Blz =y (Z)

Hence Te B[U,U}
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4. Bajanski Type Operators On U

The goal of this section is to show that certain Bajanski
type functions operate on U under composition of functions. The
method used consists of comparing a given Bajanski type operator
with a Karamata type operator.

Theorem 2.8: If

i) ¢ s holomorphic in lz] <R, R

i) |e(z)] <1 for |zl z#1

iii) ¢(1) =1
iv) Re A#0, where
¢(z) - 2¥ = -A(z-1)2 + 0(1) (z-])2 as z> 1,
y = ¢'(1)
v o) >0, 0 () >0, and (1 (1)F < er(1) ¢ &

then the operator A defined by A(f) = fo¢ belongs to B[U,U].

One should note that the first four hypotheses serve to
identify the Bajanski type functions,and that the Karamata type
functions with O<a< 1, 0<B<1, are included in the Bajansk{ type
functions. The fifth hypothesis is added for comparison purnoses
with Karamata-type functions.

It will facilitate the proof of Theorem 2.8 to first prove
a few Temmas.

Lemma 2.9: If ¢ obey the hypotheses of Theorem 2.8, then
¢ has a local inverse ¥ in a neighborhood of z=1, such that for
|8| sufficiently small,

¥(eit) - o7 2 ket + (1))

where t= arg(¢e'9) and k is a constant independent of & .
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Proof: Since ¢'(1)>0, a local inverse to ¢, v, exists in
a neighborhood of z=1, and y'(1)>0. One can clearly choose a

neighborhood N about z=1 such that
Re ¥' (2)> !!éll.> 0 if zeN.

Let ¢ be a number such that ¢(Z) 1is in N. Integrating along

the line segment joining (%) and z in N, one obtains

2
¥(z) - ¢ = S ¥'(£)dE .
(z)

Let &= 9(c) + A(z-%(Z2)), then d& = (z-¢(Z))d* and

1

¥(z) - ¢l = |z - 9(2)l S\”-(m) + A (z - 0(2))dh
0
]
> |z - o(z)l iSRe ¥'dr l
0
> W'él) 2 - o(z)].
Hence,
(8) l¥(z) - z]2 >clz - ¢(C)|2 where C = 1) 5

2
independent of ¢&.

Let g(t) = lelt - <l>(€)|2, and let T denote the point where g

attains a minimum.
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Since

leTt - o(2)] 2 1-le ()]
it is clear that 1t= arg ¢(z). Let ¢ = eie. Then,

1 - Je(ei®)]= 1 - 2(ed®)]2
1+ [2(e19)]

From hypothesis iv) of Theorem 2.8 ,

0(z) = 20 - A(z-])2 + o(])(z-'l)2 as z1

2z2) cq a0 s DT 212+ o) (@102 as 2+
z
=1 - A(z-1)2 + o(])(z-])2 as z>1 .
Hence,
|¢(em)]2=|1 -A(éw-1F +..J2 as 6-0
=1+ m2s |2 as 60
= 142 Re Ag? + larger powers of ¢ .
Hence,
V- Je(e®)] = Lo l2el®) 2
1+ |o(e19)]

- -6°2 Re A + large powers of 6
1+ |o(el®)]

Therefore ,

1 - [9(ef®)]

> -Re A as 6~ 0 (Re A < D).
e2

0
Hence, 1 - £¢(e‘ )| is bounded in a neighborhood
6
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of 6 =0. Hence, there exists C] > 0 such that
1o e(ei®)]z el

Hence,

(9) g() = (1 - lee1®)])? 2 cBet.
Expanding g in a neighborhood of t=t, one obtains
(10) g(t) = g(1) + S (¢-0)7
where T is between t and 7, and

g"(T) = 2Re®(ei®) cos T + 2 Im ¢(e'®) sin T.
For el® in N, there exists n> 0 such that
(11) g"(T)2n > 0 1independent of 6.

From 8, 9, 10, and 11, one obtains the existences of a k>0
such that
. )
|+(eit) - 1|2 k(64 + (t-1)2.

Before the next Lemma is stated, observe that for

h(z) = 2 +](1'?;5)Z ,» the power series development is given in

a neighborhood of z=1 by

o<
h(z) = 1+ (A+B) 2:; g1 (z-1)k |
k=

where A= I s B

E e

1
P
+
o)
1}
o—
'
R

Hence, h'(1) =
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Lemma 2.10: If a, b>0 with ai < 1, then there exist real
at
numbers o and g8 such that
i) O<a<l, 0<g<1 and
i) %-:%=a, and BU-a) _
(1-8)2
2 b
. = - a = —
Proof: Let a =1 575 ° 8 vl

If ¢ is a function which obey the hypotheses of Theorem 2.8,

then from Lemma 2.10, there exists a, B, such that

- + (1-0-8)z
h(z) = 2 T - Bz

satisfies h(1) = ¢(1) h"(1) = ¢"(1).

"
—
-
o
—
—
~
[}
o
—
—
~
-
[o3)
3
o

Also, the local inverse to ¢,¥, in a neighborhood of z=1 satisfies

¥(1) =1,  ¥'(1) = FT]TT and  ¥"(1) = Gi(%ga

If H is the local inverse to h in a neighborhood about z=1,

H(1) = ¥(1), H'(1) = ¥ (1), and H"(1) = ¥"(1).

Therefore,
(12) | H(elt) - v(eit)] = O(t3) as t-0
(13) | H'(eTt) - v (eTt)]| = 0(t2) as t-0

Lemma 2.11: If © is a function of & such that %-= 0(1)

as 6 -0, then

2
f; 7 te dt 5 = 0(1) as 6 -0.
- 1)
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Proof: Let u = t-t, then

b b-t b-t bt
t2 dt ydu 2 .4 du
zT D " du + 21 + (1¢-0%)
Se '0'(1:-1')2 5 2 4 o4

uc + 6 ul + 64
a a-t a-T a-t
b=t
du = (b-a) = 0(1) as 6 -0.
-T
b-1
2
21 ZUdu 7 - tlog iglll_;i_ii = 0(1) as 9 0.
u® + o (a-'r)2 + o4
a-t
b-t
(<2 - %) .7?_____. JL'?T"‘ [ tan -1(b=2 ) - tan'1(a 1)1
uc + 64 6
a-t
Since tan~'x is bounded as x+so, and since .5_ =0(1) as 6~0,

the last integrand is 0(1) as 6 ~0.

Corollary 2.12: If t is a function of 6 such that

% = 0(1) as & -0, then

b
1t1"dt . 0(1) as 6 -0, for n2l.
S [e% + (t-1)2]% )
a
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Proof:
b b
n - dt
4|tldt . S sup ltIM 4|t| =5
[6% + (t-7)2] astsh [e% + (t-7)¢]
a a

sup 1t . 0(1)» and the Cauchy-Schwarz inequality

astsh

yields

b 2

2
|t |dt < \gt 4t dt > - 0(1)
(64 + (t-7)2]* ot + (t-7)

d a a

as 8 - 0.

Lemma 2.13: If T is a function of © such that §-= 0(1)

as 6-0, and ¢c>0 a constant independent of 6, then

3ne- ct? d
Hp,e) = | LEpePEdt 61y ase -0, p-00.

o4 + (t-1)2f?
a

Proof: If 0 is between a and b,

0 2 - 2
v : - t3pe-cpt dt t3pe-cpt dt
ps) = ) A 2
[+ (t=)F b4+ (t )%
a 0
= I](p,e)+12(p,e).
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In I](pse)s let

2
u=— t 5, dv = -pte“cPtZdt.
[o7 + (tt)°]™
Then
4 2 2
2t[ 6 + - t4(tT
du = Lo + (t=r) g t () dt and v = L-e-CPt
b4 + (t=)273/2 x
Hence,

tze-cpt2 0
2c[6% + (t-1)21%

I](p. 6 =

_pctz 2t[e + (t-1) ). ¢ 2(t-1)
[o 4, + (t-1) ]3/2

N —
O

a2e-cpa2

Tapteaoas

The first expression on the right is clearly bounded as 6 -0,

p »c The integral on the right can be expressed as

0

2 dt
1 _pct2 t2(t4) 1| -pet 2t
I..(p8) = =z |c7PC dt - e —_
d a
o1 ]
=zc P9 - gz Ippleso)
0
Now |[Iy7,(p,6)] | 4 dt =0(1) as o>0, p - ¢
I N Gk T

a

by Corollary 2.12.
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t2 -7l dt
[6* + (t-1)%7%/2
a

II]”(pa 8) |<

Assume that a<:<0. If this does not prevail then nothing is lost.

T

Then
0 ' 0 2
t |t-ridt £214_1|dt te |t-¢]dt
= +
[ + (t-7)273/2 [+ (¢-0)2332 ) [ef + (¢-7)27%2
a a E
Y 2
g2(t-1) dt t4(t-1)dt
= - +
[ + (t-1)273/2 E4 v (to1)273/2
a T
] "
= - le) + Iy (o)
It suffices to examine I;]](e).
Let y =t° dy = __t-tdt . Then, du = 2tdt
[g + (t=m)¢]3/2
_'| .
vV = Hence,
L4+ (t-99 %
0
" 2 -t dt
I;;,(g) = o +2 :
nity s 7 b4+ (ter)2]2
T
L2
Now, -7 = 0{(1) as -0, and
8
0 0
t  dt . |t dt
4 2 L = _'4 2 ] = 0(]) as e—»O
[o " + (t- 9¢] [6 + (t-r)“]
T

by Corollary 2.12.
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Hence, |I]]](p,e)| = 0(1) as 8 -0, p> ¢Q.
Hence, |I;;(p,8)| = 0(1) as e -0, p->CO-
Therefore, |Iy(p,8)| = 0(1) as & ~0, p>@.

In 1ike manner,
|I,(p,8)| = 0(1) as 6 ~0, p>.

This proves Lemma 2.13.
Lemma 2.14: If ¢ obey the hypotheses of Theorem 2.8, then
T = arg o(el?) obeys z= 0(1) as 8 -0.
Proof:
¢(reie) = u(r,6) + iv(r,6), and u and v are

continuously differentiable. Moreover, v(1,0) = 0.

arg (@(eie)) = tan'] v(1,8) 0

u(l,e)
By L'Hopitals rule,
1im %-tan'] :(}’2 = 20,0).
o> 0 :
Hence, é- = 0(1) as 6> 0.

Lemma 2.15: If ¢ obey the hypotheses of Theorem 2.8, and
if jt| is sufficiently small, there exists a constant c¢>0 such

that the inverse function to ¢, H, obeys,
H(elt)] ot
Proof: Let vy = ¢'(1). Then
2/ (1 ('

1+l (z-1) + Lo qy(z-1)?
1 +§_ (z-1) + 2Y(Y 1N(z-1)" + ...
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Observe that from hypothesis v) that ¢'(1)>0, ¢"(1)>0, and
(4002 <o+ &l <o) +0m01).

Hence, )
let c = 0"'(1) + ¢"(1g -(er (1)) 0.
2(e' (1))

Hiz) - 277 =1 + 0 (1) (z-1) + ﬂiéll (z-1)% + ...

=D R M) + PR () - 1)(z-1)2+...

S R - (B aNZFH) )Pl
2

() - )2y = - S L
(o (1)) (er (12 er(1)

. -e'() - ey + (e (1))P
(o (1))3

-2
Hence,
Helt) - e = e (eftnZ 4 01 ) (112 as to0 -

it . .
Berd - g cietnZromEe™n? e o
it/

. 2 a3
since (eit-1)% = [it+ (;t) + 1;?) b7

M) 21+ qt? + ...,

cy .2
- t

2 4
Now, £°1t§>4 =1+ %l-tz + (%l)2 el

21+ for |t] sufficiently small.
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For || sufficiently small,

c 4
1+ E%-tz > 1+ t2 4 (E%Jz L , since
C‘| C] 2 tz C'| 3 t4

c1,2 ¢? c1,3 t4
since Z(Z—J > + 2(2- 30 + ... can
be made arbitrarily small by choosing t sufficiently small.

c 2
Hence, letting ¢ = Zl , one obtains |H(elt)| > ect® for
| t| sufficiently small.

Proof of Theorem 2.8: Since |¢(z)|<1 for |z|<1, z#1,

a curve I~ can be chosen such that r~ surrounds the unit circle

and touches it only at z=1, and T~ is inside the set of points

where |o(z) |=1 (z # D, and f={z:|¢(z)|=1} for z close to 1.
Since A(ek) = ¢k i; in U for each k, it suffices to show

that

sup |G(f,p, §] = sup
pse p,e

P i1 | fle(2)
%;ON hij zkﬂ dz

T~

is finite for each fel.

It will facilitate the following discussion to assume that
we have chosen a neighborhood, N, about z=1 so small that all the
assertions which follow hold.

Denote the part of the curve, '’y inside N by vy, and the

part outside by r. In N, y = {z:]|¢(z)]=1}.

~1 i -1 3
G(f,p-1,9 = 1 Sf(¢£z)) % (e—;e—)kdz + 2]. S f(i(z)) %:(%—e-)kdz,
Y

2ri i -
2 k=0
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Hence , G(f,p-1,6) = I, + L.
Now, there exists § >0 such that |z|>1 +Sonr. Hence,

(14) sup IIr|<w.

8

Let w=¢(z) for z ony, so that z=y(w) [assuming that N is small
enough so that ¢ has v as a local inverse in N], and y is mapped

onto an arc, c, of the unit circle. Hence,

1 £(w) eips
I, = 1 = =——)dw.
Y 2ni Jl \y(w)-eie ( vP(w) "

Clearly if |e|>n >0, then

(15) sup |IY|< (07
Ps[6]>n
Hence, only g's sufficiently close to zero need be considered.
at (1-a-8)z
1-gz
satisfies h(1) =¢(1), h'(1) =¢'(1) and h"(1) =¢"(1).

By Lemma 2.10, there exist o, such that h(z) =

By Corollary 2.7,

<

sup
Pso

! eing
T E:: dz

z n=0 2"
| h(z)|=1

Let y' denote the part of the curve |h(z)|=1 inside of N, and let

T denote the remainder. Then one easily obtains

sup <

Ps0

f(h(z))
E%?-bg (z EE:: -———dz

N’
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Without Toss of generality, it can be assumed that the mapping

w=h(z) maps y' onto the arc of the unit circle c. One then
obtains

(16) sup
p,6

1 () ww g o elPoyt
T LS Ha) - of6 (1 Hp(w))dw QO .
c

Now write IY as

IY = I] + I2 , where

1= 1 \fw) __LL_( e1pe o Hw)

)]dw

v (W) - P e Hp()
C
and
1 = 2]. fw) H'(w) 1 - Elfi_)dw .
22 ) Hw) - e HP (W)
c

From (16) sup|121<(19
P,

[Notation: For the remainder of the proof, it will be convient to

denote all constants which are independent of 6 by 0(1)]

From (12) and (Té), we have
¢ (et - ety < o) td
v (e1t) - i (eft)ic 0(1)t2,
From Lemma 2.9,

1 < i
IH(e't) - e 6% + (t-r )°]?

A
o

|~
—

N

where

1

, = arg h(el®); and




74
where T, = arg ¢o(eif),
[In order to have adequate space, in the remainder of the proof,
functions in the integrands will be written without the variable in

those cases where possible. For example we will write v(elt) as v.]

Let w= eit; c being given by a<t<b. Write I as
Lh=In+*he
where
b
it oy 1p9
I, = %;. SL_ij_ﬁgi;l (1 - S%r‘?dt
H- e H
a
and
b ] - eiP 1 - el )
- ] ite, yP H
112-— e f‘y .e - .e dt
21 y - e" H - e1
a
Now
b
, ; ipg 24
|111‘:-_S“p’f(e1t) TR Ll B ar:
t | WP (e1t) 6% + (t=1)°]
a
b
2
= 0(1) L
64 + (t-1,)]*
a
By Corollary 2.12
(17) sup |I]]| <D .

P»]6]<n
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Write 1 as

12

112 = 1]2] * 1y where

H-v

] it
I = — e “fy' - : dt , and
121 ¢m (v-e'%)(H-e')
d
b
im 3 ’ '| 1

1= &\ eltey I —)dt .
1227 2= P [y-e®]  HP[H-e®7]

a

Now write 1122 as

122 ° Tioor ¥ 1222 where

b
ips ita H-Y
11221 - 92 - € pﬁy ; - dt, and
y (v-e™ ) (H-e1)
a
b
ip eite y? 1 1
e b —
- dt.
I1222 2 H-eie ( ;Ty Hp )
a
Now b
| ¢ t2dt

. o0 Fleity y- (oit , 1
[ Tygp 1< 00) sup [F(eT8) v (T8 | [ 4+ (t- 5) 2T % (£ )20 =
a

b

- o) Itl t2dt ~ .
| [64 + (t- ‘1)2]% [64 + (t_TZ)ZJ'i
a
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But
b b b

| t] +2 dt t2 dt 4
s 7 ‘41—‘”_2

Do+ (e 1% T8+ (- )21 | 6% + (b2 o%4(tr,)

a
From the proof of Lemma 2.11,
1 R Dl @
In 1ike manner, we have
(19) p’sur< |I1221|<c13.
By Lemma 2.15, there exists ¢ 0 such that
IH(eit)lz. ect2
and
|w(e1t)|;, eCtz for each point in N.
Then
b 34%_ L=
. 1t°%=T THIN g PR
1,055 0(1) sup £ (e't)] |“"(e’t)|5 T T gt
1t ()
But
b b
| 3] p 1 |t3lP —c(p+1)t2

dt<
6" + (t-ry)"1'/% B TR ) T 22
a

b 2
I t3l pe-Cpt

“| e +(t1)1‘/2
a

= 0(1) as p>~ ,6 0,
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by Lemma 2.13. Hence,

(20) su | 1y55,]|<00 .
p.leT:.n 1222

From (20), (19), (18), (17), and (16), we obtain
su |1 |< Q0.
Psf9|§n Y

Finally, from (15) and (14), we obtain

sup |G(fsp-1,8) <.
p, 6



OPEN QUESTIONS

The aim of this section is to present a series of questions
concerning U, its dual space and operators on U:
(1) As sets, ﬁl is a proper subset of U2, and U, is a proper
subset of fé. Does there exist p such that 1<p<2 and f; is a

subset of U2 or U, a subset of IL?

2

(2) 1If {ck} € U2', then a necessary condition for {%—J € U2' is

that there exists n>0 such that Ickl> n for k = 0,1,2,... Sufficient
conditions for {%TJ e Uy' when {c, } e Up' are (1) there exists

n>0 such that IckT> n for k = 0,1,... and (2)[c£ is of bounded
variation. Establish necessary and sufficient conditions for a

sequence to have an inverse in U2
(3) A question related to (2) is "What are the homomorphisms on U2'?"

(4) 1f f belong to U, with partial sums Sn(z) obeying,

inf |Sn(z)|;§>0, will %-belong to U? -

n,|zj=<1l
(5) A more difficult question is "If f belong to U, |f|>0 on

|z <1, will %-be]ong to U?"

(6) Given a(0<|al<1), will fos be in U for all f in U, where

78
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