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ABSTRACT

RECONSTRUCTION ALGORITHMS FOR LIMITED ANGULAR
DIFFRACTION TOMOGRAPHY

By

Pavel Roy Paladhi

Tomography is a ubiquitous imaging modality applied to numerous fields like medical

imaging, geophysical imaging, structural health monitoring etc. It is a process to view

cross-sectional profile of an object or region of interest through solving an inverse problem.

When diffracting sources are used as the interrogating energy, the specific tomographic

reconstruction is termed ‘Diffraction Tomography’ as the algorithm accounts for diffrac-

tion effects. As a result, these algorithms are more complex than straight ray tomography

algorithms viz. computed tomography which has been very successfully implemented

for X-ray tomography, PET etc. Ideally, projection data covering full 360◦ around the

region of interest is necessary for accurate reconstruction. However, in many practical

applications, this is not always feasible. As a result, reconstruction is performed on lim-

ited datasets, essentially making the process a recovery from an under-determined system.

This thesis focuses on development of novel and efficient methods to handle the challenges

on limited data for image reconstruction under diffraction tomography. For a moderately

limited coverage, some inherent redundancies in Diffraction Tomography projection data

can be used to reduce the effect of limited coverage. For highly limited angular coverage,

these redundancies are no longer available and cannot be exploited. Recently, however,

optimization techniques involving l1-norm minimization schemes under the so called ‘com-

pressed sensing’ regime have shown promise. These algorithms are capable of almost exact



reconstruction of the object even with highly limited number of projections. This research

has explored both techniques for moderate and highly limited angular tomography. In

the first part of the thesis, for moderate angular access limitations, an optimum method

for exploiting redundancy within projection data has been formulated. In the second

part, for highly limited coverage with further limitations on the number of available pro-

jections, reconstruction schemes under compressed sensing regime have been examined.

Further, this research demonstrates reconstruction of complex-valued objective function

under the regime of compressed sensing. This generalizes the application of tomographic

reconstruction for newer applications such as examining new complex structures (such

as metamaterial and other smart material based structures) where knowledge of complex

permittivity values is essential in evaluating structural integrity or morphological aber-

rations. The compressed sensing method heavily relies on sparsity of the reconstructed

signal in some transformation domain. In this research, the sparsity has mainly been

exploited through gradient magnitude of images. In a variety of applications, gradient

magnitude of images are highly sparse, even if the images themselves are not. So the

gradient magnitude of images can be effectively used as the sparse domain. Further, in-

corporation of multiple sparse domains into the compressed sensing framework has been

explored. Using Haar wavelets in addition to gradient magnitude of images as the sparse

domain has successfully been employed showing potential for significant improvements in

image reconstruction from highly limited data through further research.
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Chapter 1

Introduction

Science and technology has undergone a huge transformation over the span of the last

century and half. More recently, the development of big computers have vastly accelerated

the growth of new groundbreaking theories and also have served as a bridge between the-

ory and experiments. Huge and highly complex problems which do not have closed form

analytical solutions can now be easily solved using numerical techniques. Simulations can

be used to predict outcomes from complex experiments eliminating the need for a large

variety of time and labour intensive costly procedures. With the advent of computational

techniques and capabilities, theory and experiment have merged almost seamlessly pro-

viding a great and exciting path towards scientific advancement and betterment of the

human race. A great gift of modern science has been the domain of imaging sciences in-

cluding a variety of imaging modalities. Simultaneously, the computational advancements

have provided many robust schemes for image reconstruction from data acquired using

these modalities. The applications have ranged across multiple disciplines: from x-ray

crystallography to medical imaging, geophysical imaging to structural health monitoring

and non-destructive evaluation of materials.

One of the most popular imaging techniques is tomography. The word tomography

comes from the Greek word ‘tomo’ meaning a cut or section and ‘graph’ meaning a repre-

sentation. So tomography involves getting cross sectional images of structures. In a very
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general sense, it is achieved by irradiating the object under test with some interrogating

energy and then extracting the cross-sectional information from the resulting scattered

energy from the object. Thus the scheme is a two-stage process. The first stage involves

the data acquisition, where the object is irradiated and the scattered data collected. This

data is generally referred to as the projection data. The second stage involves extracting

the cross-sectional image by applying reconstruction algorithms to the projection data.

Based on the type of interrogating energy, tomography is broadly divided into two

sub-categories. When the interrogating energy follows straight ray propagation, then it

is called Computed Tomography or CT. The common examples are X-Ray CT, Single

Photon Emission CT (SPECT), Positron emmission tomography (PET) etc. When the

interrogating energy does not follow straight ray propagation, then it is called Diffraction

Tomography or DT. Examples of DT are Magnetic Resonance Imaging (MRI), near field

ultrasonic and microwave tomography. X-Ray is the most ubiquitous form of CT. So

much so that CT by itself mostly conjures the idea of an X-ray CT system. It has come

a long way since its first introduction by Hounsfield in 1970s as a commercially viable

system. It has almost become a gold standard for fracture detection in medical as well as

industrial applications. The high resolution of X-rays enable detection of minute defects

(with 0.2 mm resolution) and anomalies in bones, metallic structures etc. The straight

ray propagation also ensures simpler reconstruction algorithms as the diffraction effects

are not considered.

In spite of its pervasiveness, X-ray has two major disadvantages. Firstly, the high

energy of X-ray photons result in radiation damages in case of biological tissues. Further,

while these are efficient in detecting structures of strong absorbers like bones and metal,
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X-rays are not as effective in differentiating between many types of soft tissue. Other

CT scan techniques such as SPECT, PET etc also have a number of medical imaging

applications.

In many real life scenarios, the interrogating energy that is used might not adhere

to straight ray propagation. Depending on the sample being inspected, X-rays might

not be the most effective form of interrogation. The optimum technique to use may

be ultrasonics, microwaves or MR excitation. MRI is highly successful in soft tissue

differentiation and is another gold-standard imaging scheme in medicine. Ultrasound has

found applications in soft tissue imaging, bone imaging as well as in the NDT industry

for defect detection in a variety of materials. These are examples of DT and hence

the reconstruction algorithms need to take into account the diffracting nature of the

incident waveform. Hence DT reconstruction algorithms have also been an active field

of research. Conventionally, the projection data is gathered all around the specimen

under test. However, generating a full 360◦ coverage has its own challenges. Depending

on the application, generation of full 360◦ coverage might not be possible. It might be

due to limited access around the specimen or the time required for full data acquisition

might be too long in many scenarios. Further, for costlier imaging modalities like MRI,

if the angular requirements can be lowered, then the overall cost of operation can also be

reduced.

These issues have provided a significant impetus towards development of algorithms

which can reconstruct images from limited angular coverage or incomplete projection data.

This research explores algorithms for limited angle diffraction tomography. Broadly, two
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main aims are being explored. The first is using redundancies within the projection

dataset to reconstruct complex valued images under moderately limited angular DT. The

second is to apply various optimization and error minimization schemes for reconstruction

from highly limited angular projection data.

The thesis is arranged as follows: in chapter 2, a brief background of diffraction

tomography and the Filtered backpropagation (FBPP) technique for image reconstruction

is given. In chapter 3, the data redundancy concept in DT projection data is introduced.

Further, optimal ways to exploit this phenomenon in image reconstructions is discussed.

Results from optimum reconstructions through exploiting redundancies are also presented

in chapter 4. The last part of the thesis deals with application of a new technique for

tomographic reconstruction Chapter 5 introduces the new area of research viz. compressed

sensing (CS). Following a brief introduction on the subject, the framework for applying CS

to image reconstruction from highly limited angular DT projection datasets is presented in

chapter 6. Results from projection datasets from varying sparsity, both in terms of angular

coverage and number of projections have been presented and analyzed chapter 7. Further,

application of multiple sparse domains simultaneously has also been explored briefly. The

importance of this is significant as higher data limitations than that allowed by regular CS

might be achieved if multiple sparse domains are optimally exploited. The results show

the effectiveness of CS as a stable algorithm to reconstruct complex valued images from

severely limited DT projection data. Chapter 8 concludes the dissertation, summarizing

the contributions of this work, its applications and possible future developments.

5



Chapter 2

Diffraction Tomography and Filtered

Backpropagation technique

2.1 Introduction

Diffraction tomography (DT) is a popular imaging modality [2, 3], used in a variety

of applications such as medical imaging, non-destructive evaluation of materials, struc-

tural health monitoring, geophysics e.g. [4–11]. In the domain of optical imaging this

method has been explored in depth viz. optical diffraction tomography (ODT) with

multi-disciplinary applications, see e.g. [12–18] etc. DT is a broad imaging technique of

which ultrasound and microwave tomographic imaging are sub-classes. It is a comprehen-

sive way of characterizing the complex permittivity or refactive index of the test sample.

This is referred to as the object function. DT is applicable to microwave tomography of

tissue samples and has been of great interest in tomographic imaging for breast cancer

detection [19–22]. The high contrast of dielectric properties at microwave frequencies be-

tween healthy and cancerous breast tissue provides opportunities for clearly identifying

malignancies within breast tissue. The contrast is much higher than in case of X-rays and

hence microwave tomography is advantageous both in terms of true detection and avoiding

radiation damage from X-rays. Further applications are in fields of SAR imaging. Vari-
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ous backprojection techniques have been explored for use in radar imaging and modified

for better reconstructions [23–25]. Faster implementations for backprojections algorithms

are also being explored e.g. [25]. Again, radar based methods have been combined with

microwave tomography to generate higher resolutions for medical imaging [21]. Thus, any

improvement in the traditional backpropagation techniques is of potential interest across

multiple disciplines.

In the presence of weak scatterers, assuming the Born or Rytov approximations [3],

the Fourier Diffraction Projection theorem (FDP) is applied. The FDP relates the scat-

tered field data from the Region of Interest (ROI) to the 2D-Fourier Space of the ROI.

Devaney developed the filtered backpropagation (FBPP) algorithm for this configuration

to reconstruct a low-pass filtered image of the object function [2]. The traditional back-

propagation technique requires projection data from [0, 2π] angular coverage for accurate

image reconstruction of a complex image. Even though the formulation applies to weak

scatterers, it has found a number of applications and since its introduction, a steady re-

search focus has been maintained to increase the extent of usage for backpropagation-like

algorithms for DT and making them more general in applicability, e.g. [26, 27]. Some

basic preliminaries leading to the FBPP algorithm are briefly introduced below. Some of

the detailed derivations and explanations can be found in [3, 28,29].

2.2 The Helmholtz Equation

The propagation of light or other electromagnetic wave through space or any medium

obeys Maxwell’s equations. Propagation through any homogeneous medium can be de-
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scribed through the wave equation, where the the vectorial description of the fields is

simplified to a scalar description of waves. The general form of the wave equation is

∇2u(r, t)− 1

c2
∂2

∂t2
u(r, t) = 0. (2.1)

This equation has both spatial and temporal variables. For analysis of time harmonic

systems, we can only consider the time independent part, which gives us the standard

general form of the wave equation:

[
∇2 + k2(r)

]
u(r) = 0. (2.2)

where k(r) is the wavenumber depending on the local permitivity or refractive index of

the medium. If effects of polarization etc. are ignored, then k(r) can be considered as

a scalar depending on the refractive index n(r) of the medium along with the variations

nδ(r) :

k(r) = k0n(r) = k0 [1 + nδ(r)] . (2.3)

In a homogeneous area, in absence of scatterers, the wave equation reduces to the homo-

geneous Helmholtz equation [
∇2 + k2

]
u(r) = 0. (2.4)

In the presence of an inhomogeneity or scatterer, nδ represents the deviations in the

refractive index within the object. So nδ has bounded finite support within the object

and is zero outside it. In this case, the form taken by the wave equation is called the
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inhomogeneous Helmholtz equation and is given by:

[
∇2 + k2

0

]
u(r) = −k2

0

[
n(r)2 − 1

]
u(r), (2.5)

where n(r) is the electromagnetic refractive index of the media given by:

n(r) =

√
µ(r)ε(r)

µ0ε0
, (2.6)

where µ and ε are the permeability and dielectric constant variables. The right hand side

of (2.5) is the forcing function of that equation. Let o(r) = k2
0

[
n(r)2 − 1

]
, so that the

wave equation can be written as:

[
∇2 + k2

0

]
u(r) = −o(r)u(r). (2.7)

In order to deal with the inhomogeneity o(r), the use of Green’s function is applied [3].

The Green’s function is the solution to:

[
∇2 + k2

0

]
G(r− r′) = −δ(r− r′). (2.8)

For the 2D case, it is a zero order Hankel function of first kind and takes the form:

G(r− r′) =
i

4
H

(1)
0 (k0|r− r′ |). (2.9)

The object function of (2.8) can be considered as a point inhomogeneity. So the Green’s

function represents the field from a point scatterer. It is possible to represent the forcing

9



function as an array of impulses, i.e.

o(r)u(r) =

∫
o(r′)u(r′)δ(r− r′)dr′. (2.10)

Here, the forcing function of the inhomogeneous wave function is represented as sum-

mation of impulses weighted by o(r)u(r) and shifted by r − r′. As the green’s function

represents the solution due to a single impulse function, and the left hand side of the wave

equation is linear, therefore the total scattered field can be expressed as a summation of

the scattered fields by each individual point scatterer. Using this idea, the total scattered

field in the wave equation can be expressed as

us(r) =

∫
o(r′)u(r′)G(r− r′)dr′. (2.11)

Thus we arrive at an integral equation for the scattered field in terms of the total field,

u = u0 + us. The scattered field can be solved by applying some approximations. The

two most popular approximations in this field are the Born approximation and the Rytov

approximation. Both can be used to derive the Fourier Diffraction Projection Theorem.

These approximations are briefly introduced below.
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2.2.1 Born Approximation

The total field is the sum of the incident and the scattered field, i.e. u(r) = u0(r) +us(r).

Using this in (2.11), have:

us(r) =

∫
o(r′)u0(r′)G(r− r′)dr′ +

∫
o(r′)us(r′)G(r− r′)dr′. (2.12)

In a Born approximation, the scattered field is assumed to be much smaller than the

incident field. then, ignoring the second term of the right hand side of the equation

above, it can be approximated as:

us(r) ≈ uB(r) =

∫
o(r′)u0(r′)G(r− r′)dr′. (2.13)

This is a first order approximation with respect to computing the scattered field.

Higher order approximations can be applied by using the results of a Born approximated

field to calculate the next order approximation. Effectively, the ith order Born approxi-

mation field can be evaluated from the (i− 1)th Born approximation result as:

u
(i)
B (r) =

∫
o(r′)

[
u0(r′) + u

(i−1)
B (r′)

]
G(r− r′)dr′. (2.14)

As mentioned before, the first Born approximation is valid when the scattered field is

smaller than the incident field. If the object is a homogeneous cylinder, then it becomes

easy to evaluate the bounds of validity of the Born approximation. Let the radius be a

and the change of refractive index within the cylinder be nδ. Then for this cylinder, the

total phase change a wave passing through it would undergo would be: 4φ = 4πnδ
a
λ ,
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where λ is the wavelength of the incident wave. For the Born approximation to be valid,

the necessary condition is that the total phase change should be should be less than π.

Then the required bound becomes

anδ <
λ

4
. (2.15)

2.2.2 Rytov Approximation

This approximation method applies a slightly different restriction. Here, the total field

is represented through a complex phase: u(r) = eφ(r). Then the homogeneous wave

equation can be rewritten as:

[
∇2 + k2

]
u = 0

or, ∇2eφ + k2eφ = 0

hence, ∇2φ+ (∇φ)2 + k2 = 0

and finally with source, ∇2φ+ (∇φ)2 + k2
0 = −o(r).

All the fields φ have their spatial argument r dropped for ntoational convenience. Starting

here and assuming that φ = φ0 + φs, where, u0 = eφ0(r) and proceeding similsrly to the

Born approx. scenario, the necessary condition for the Rytov condition to hold is shown

to be:

nδ >

[
∇φsλ

2π

]2

. (2.16)
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This connects the change in the refractive index with the gradient of phase. A more

practical form can be derived:

|∇n(r)| <
√

2n0|n(r)− n0|
λ

, (2.17)

where, n0 is the refractive index of the background medium. This equation presents a

validity condition which is dependent on the gradient of refractive index change within

the sample rather than the absolute value or thickness of the sample. This makes the

Rytov approximation applicable to biological samples.

2.3 Fourier Diffraction Projection Theorem (FDPT)

The fundamental theory underlying 2D-DT is the FDPT which relates the scattered field

data from the Region of Interest (ROI) due to incident plane waves to the 2D-Fourier

space of the ROI [3]. It employs conditions of weak scattering i.e. the Born or Rytov

approximations. The traditional 2D-configuration is shown in Fig. 2.1. If the object

o(x, y) is illuminated with a monochromatic plane wave of frequency ν0 incident at an

angle φ to the horizontal axis, the 1D Fourier Transform (FT) of the scattered field

measured along the straight line η = l in the co-ordinate system (ξ, η) gives the values of

the 2D transform of the object O(νx, νy) along a semi-circular arc AOB in the frequency

domain, at angle φ as shown in the right half of Fig. 2.1. The scattered field data and
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the object function are related by the following equation:

U(ν, l) =
j

2
√
ν2

0 − ν2
e
j
√
ν2
0−ν

2l
O

(
ν,
√
ν2

0 − ν2 − ν0

)
, (2.18)

where U(ν, l) represents 1D FT of the scattered field, u(ξ, η) under Born approximation

(measured at line η = l), and ν lies in the range [−ν0, ν0].

Figure 2.1: Classical scan configuration of 2D DT (left) and relation of scattered field
data with the 2D Fourier space of the objective function (right).

2.4 Filtered Backpropagation Algorithm

Starting with the Fourier Diffraction Projection theorem, Devaney developed the well-

known filtered backpropagation method in [2]. In polar coordinates, as presented in [30],
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the backpropagation integral takes the form:

a(r, θ) =

∫ 2π

φ=0

∫ ν0

νm=−ν0

ν0

ν
′ |νm|M(νm, φ)e[j2πνm cos(φ−α−θ)]dνmdφ. (2.19)

In (2.19), a(r, θ) is the object function being reconstructed in polar spatial coordinates

(r, θ), ν0 is the frequency of the incident monochromatic plane wave and φ being the

incidence angle, M(νm, φ) is a modified 1D FT of the scattered data, defined as

M(νm, φ) = U(νm, φ)
jν′

2π2ν2
0

e−j2πν
′l, (2.20)

where ν′ =
√
ν2

0 − ν2
m, νa = sgn(νm)

√
ν2
m − ν2

µ, νµ = j(ν′ − ν0) and

α = sgn(νm) arcsin

(
1

2ν0

√
ν2
m − ν2

µ

)
, (2.21)

and also, α could be further simplified to

α =
1

2
arcsin

(
νm
ν0

)
. (2.22)

In order to reconstruct a complex object accurately, a full knowledge of M(νm, φ) in the

range [0, 2π] is necessary to perform the integration in (2.19), [31]. Using the projection

data from a full 360◦ coverage, the filtered backpropagation integral reconstructs a low-

pass filtered version of a complex-valued object function. The next part of the thesis

presents the inherent redundancies in a full projection dataset in DT and demonstrates

efficient ways to exploit that.
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Part 2

Accurate Reconstruction From

Moderately Limited Projection Data
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Chapter 3

Data Redundancy in Diffraction

Tomography

A major challenge in many real world situations is that projection measurements cannot

be gathered over full 360◦ view around the test object. With limited access to the ob-

ject and decrease in angular coverage, the available data in the Fourier space decreases.

Reconstruction from this partial Fourier space data leads to many artifacts and loss of

important image features. Hence alternate schemes are needed for image reconstruction

from limited angular coverage projection data. For highly sparse data or limited an-

gular access various minimization, regularization, estimation techniques and statistical

approaches are being successfully explored to make the reconstruction algorithms more

robust to sparse and noisy data e.g. [32–34]. However, generally these are iterative meth-

ods and the total computation time depends on the convergence rate of the algorithm. A

single step method would always be fast and desirable provided it can handle the limited

availability of data.

In [30,35,36], a novel alternative approach for moderately limited angular access was

introduced. It was shown that using inherent redundancies in the projection data from

the conventional setup, exact reconstruction is possible with data from [0, 3π/2] coverage.

This redundancy and the reconstruction method from lower coverage utilizing this is
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explained next.

Consider the two arcs OA and OB in Fig. 2.1 from the semi circle AOB. The two arcs

individually traverse the transform space (i.e. the Fourier space) as the projection angle

changes between [0, 2π]. Now consider their traversals in the Fourier space individually

for angular coverage of [0, 3π/2]. This is illustrated in Fig. 3.1 below. Individually each

half does an incomplete traversal of the Fourier space as shown in Fig. 3.1(a) and 3.1(b).

However, if superimposed, as seen in Fig. 3.1(c), the entire Fourier space is covered with

some areas of overlap. The key point is that at 270◦ there is in effect, a complete coverage

of the Fourier space. This scan range of [0, 270◦] is referred to as the minimal scan angle

and is the minimal angular coverage required for exact reconstruction [30].

To better appreciate the principle, the Fourier space domain is re-plotted in a modified

coordinate system, where the spatial frequency is plotted along x-axis and the angular

coverage along y-axis. Physically, it can be viewed as straightening out the arcs AOB

for different projection angles and stacking them up on top of each other sequentially. In

this layout, the entire Fourier dataspace can be divided into four sub-regions A,B,C and

D as shown in Fig. 3.1(d) where the boundaries for the four regions can be expressed

as A = [|νm| ≤ ν0, 0 ≤ φ < 2α + π/2], B = [|νm| ≤ ν0, π/2 + 2α ≤ φ < 2α + π],

C = [|νm| ≤ ν0, π + 2α ≤ φ < 3π/2] and D = [|νm| ≤ ν0, 3π/2 ≤ φ < 2π]. As seen in

(2.22), α is a function of νm and so the regions have nonlinear boundaries.

From FDP theorem the following periodicity holds [37]:

M(νm, φ) = M(−νm, φ+ π − 2α), (3.1)
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Figure 3.1: (a) Fourier space coverage for 270◦ angular access by segment OB in fig.1 (b)
same for segment OA of fig-1. (c) Superposition of the two coverages from (a) and (b).
(d) The Fourier data-space in alternate co-ordinate system with angular coverage along
y-axis and the frequency along x-axis.

which also implies that for every point in region A (or B), there is a point having equal

value for the Fourier coefficient in region C (or D). Thus, the knowledge of M(νm, φ)

in regions A and B, makes information in C and D redundant. This redundancy can

be handled by normalizing the dataspace using appropriate weight filters. The weighted

dataset M ′(νm, φ) can be defined as M ′(νm, φ) = w(νm, φ)M(νm, φ), where w(νm, φ)

satisfies the condition

w(νm, φ) + w(−νm, φ+ π − 2α) = 1. (3.2)
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It should be noted that since region D is unavailable in a 270◦ coverage we set w(νm, φ) =

0 in region D and correspondingly w(νm, φ) = 1 in region B. For regions A and C,

any weight function is valid as long as it satisfies (3.2). Using the weighted dataset

M ′(νm, φ) we can apply the regular backpropagation algorithm for reconstruction. This

is called Minimal-Scan Filtered Backpropagation (MS-FBPP) which involves evaluating

the following integral

aW (r, θ) =
1

2

∫ 3π/2

φ=0

∫ ν0

νm=−ν0

ν0

ν′
|νm|M ′(νm, φ)e[j2πνm cos(φ−α−θ)]dνmdφ. (3.3)

This integral can in theory exactly reconstruct an image from a 270◦ angular coverage

by utilizing data redundancy in projection data. The weights w(νm, φ) can then be used

to define classes of backpropagation algorithms for image reconstruction. An example of

weight functions introduced in [30] is given in equation below:

w(νm, φ) =



sin2
[
π
4

φ
π/4+α

]
, in A,

1, in B,

sin2
[
π
4

3π/2−φ
π/4−α

]
, in C,

0, in D.

(3.4)

This will be used as a reference later on in Section 4 for comparison with the weight

functions that are proposed in this thesis. The filter of (3.4) will be referred to as the sine-

squared filter hereon. This is a very elegant and simple filter designed to have continuity

across the boundaries between regions A,B,C and D. To demonstrate the efficacy of
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Figure 3.2: Demonstration of the MS-FBPP concept (a) real part of original image, (b)
FBPP reconstruction from 360◦ coverage (c) FBPP reconstruction from 270◦ coverage
and (d) MS-FBPP reconstruction from 270◦ coverage

MS-FBPP, a sample reconstruction is performed on a Shepp-Logan type phantom with

complex parameter distribution. The real part of the phantom is shown in Fig. 3.2(a)

and the imaginary part in Fig. 3.3(a). Reconstruction from regular FBPP and MS-FBPP

using weights of (3.4) are given in Fig. 3.2 and Fig. 3.3. The images show the MS-FBPP

algorithms capable of generating accurate reconstructions from 270◦ (equivalent to full

coverage), whereas the regular FBPP image shows considerable distortion at 270◦.

Weight filters which are discontinuous across boundaries of the four regions in Fig.

3.1(d) can give rise to artifacts, especially in case of discrete data. Further, for each

class of weights, its distribution in frequency space of Fig. 3.1(d) also determines the

performance when the available coverage is below 270◦. This is because, C and D are
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Figure 3.3: Demonstration of the MS-FBPP concept (a) imaginary part of original image,
(b) FBPP reconstruction from 360◦ coverage (c) FBPP reconstruction from 270◦ coverage
and (d) MS-FBPP reconstruction from 270◦ coverage

complementary to regions A and B respectively. An efficient weight function set would

be that which spans most of the regions A and B, thus limiting the requirement to access

regions C and D. In effect such weights can generate good reconstructions even when the

angular coverage is less than 270◦. The next section explains a systematic approach to

generate general classes of weight functions.

3.1 Generation of Efficient Weight Functions

For lower angular coverages, the algorithm using sine-squared weights results in significant

distortions. In this section a technique is explored that efficiently uses the redundancies in

the Fourier space data using the conventional setup [38]. This technique can reconstruct
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better images (than regular FBPP) effectively over any range between π to 3π/2. This

is a crucial development, as the demands on angular access for complex valued object

reconstruction is lowered considerably. The projection datasets are used optimally to

get enhanced reconstructions from lower angular coverages. Also, this is a direct recon-

struction method which does not employ any error minimization algorithms and hence

is faster and accurate over angular coverages between 180◦-270◦. From previous section,

we see that the weights in regions B and D are 1 and 0 respectively. Notice that weights

in region C can be generated from weights of region A, because for any point (νm, φ)

in region C, the point (−νm, φ + π − 2α) in A is equivalent due to (3.1), and we get

w(νm, φ) = 1−w(−νm, φ+ π − 2α), using (3.2). Thus it is sufficient to generate weights

for the region A only.

Furthermore from (3.2), the non-negative weights are bounded above by 1. So in region

A, for any fixed νm, the function w(νm, ·) =: F (·) is defined on [0, 2α + π/2], and takes

values between 0 and 1. However it is desirable to have weights which are continuous at

the boundaries between two regions. Weights which are discontinuous at the boundaries

will generate artifacts in case of discrete datasets as noticed in [30].

Here we propose an approach to generate the weights, by using cumulative distribution

functions (cdf) to model F (·), which are guaranteed to be bounded within 0 and 1. To

obtain continuous weights, we use continuous F with

F (0) = 0, and F (2α + π/2) = 1. (3.5)

This will ensure that weights are continuous at the boundary between regions A and
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B, and consequently at the boundaries between regions B and C, and C and D. This

approach would allow us to choose weights from a number of cdfs. In this dissertation,

we primarily use beta-cdf to generate weights. The standard beta-cdf is defined as:

F (x|a, b) =

∫ x

−∞
f(t|a, b)dt. (3.6)

Where a > 0, b > 0, and f is the standard beta probability density function:

f(t|a, b) =


1

B(a,b)
ta−1(1− t)b−1, 0 ≤ t ≤ 1,

0, otherwise,

(3.7)

and B(a, b) =
∫ 1

0 t
a−1(1− t)b−1dt. We obtain family of beta-cdf’s by changing values of a

and b in (3.7), as shown in Fig. 3.4. Notice that, the standard beta-cdf has support [0, 1],

while in region A for a fixed νm, we need to define weights for φ ∈ [0, 2α + π/2]. This

can be achieved by substituting x = φ
2α+π/2

in (3.6). The corresponding weight profiles

in the frequency domain are shown in Fig. 3.5.

The plots in Fig. 3.4 can be used to understand how the weights will be distributed

in Regions A and C. Fig. 3.5 gives useful insight on choosing optimal parameter values.

For example, with combinations a = 2, b = 5 or a = 6, b = 1, region A is not well covered,

whereas for a = 0.4, b = 6, region A has been almost fully covered with near unity weights

leaving Region C with mostly near-zero weights. This combination is expected to better

utilize data redundancy than the other combinations shown in Fig. 3.4.

This can be further illustrated through Fig. 3.6 and Fig. 3.7. Fig. 3.6 shows some

weight distributions in the Fourier space (in the modified co-ordinate system).The beta-
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Figure 3.4: Beta-cdf plots for different values of the parameters a and b

cdf parameters used to generate these weights are shown in inset white text. Fig. 3.7

shows the reconstructed real parts of the images by using these weights. The weights

which cover region A more completely also give better reconstructions.

It should be noted that especially for coverages less than 270◦, we receive less informa-

tion from C, hence an optimum weight function should span most of region A with near

unit weight. Since the weights are continuous across the boundaries of the regions, the

lower boundary of A (with region D) starts from zero and ends with unity at the bound-

ary with B. The transition from zero to unity should be adequate to retain as much

information as possible within region A. Then the loss of information in region C would

not affect the reconstruction quality. In this thesis, we demonstrate the efficacy of using

cdf based weights in image reconstruction at sub-minimal angular coverage. To do this,

optimum values of parameters were heuristically determined in the following manner: for

the beta-cdf, a parametric sweep over the range of a ∈ [0.2, 3], b ∈ [1, 6] was performed and
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Figure 3.5: Images showing weight distributions in Fourier domain generated by para-
metric variation of the beta-cdf (using the parameters shown in Fig. 3.4). Frequency is
plotted along abscissa and angular coverage along ordinate.

the corresponding weight distributions were generated. Reconstructions were performed

with these weights for a sub-minimal coverage of 200◦. The weight combination which

gave the least distortion in the reconstruction and maintained highest correlation with

the original image was chosen as the optimum set. Within this range, the combination

a = 0.4, b = 6 gave best results and is used for image reconstruction in the next section.

Similar approach can be used to generate weight functions from other cumulative

distribution functions as well, for instance with the gamma-cdf. However, since the gamma

distribution has unbounded support, a suitable transformation of the argument is required

to ensure that the weights are constructed with continuity properties at the boundaries
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Figure 3.6: Images showing weight distributions in Fourier domain generated by paramet-
ric variation of the beta-cdf. The parameters a and b used for each weight distribution
are inset in each plot. Frequency is plotted along abscissa and angular coverage along
ordinate.

as discussed above. Details about constructing the weights with gamma-cdf are described

in appendix-A. For this case, the parameters were varied in the range a ∈ [0.1, 3.1],

b ∈ [0.1, 3.1]. The best parameter set found from this range was a = 2.1, b = 0.1. In

the following chapter, results from beta and gamma distributions using these optimum

parameters for each distribution will be presented and compared with the results from

using weights given in (3.4). Their performance under the presence of noise will also be

evaluated.
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Figure 3.7: Corresponding reconstructions from using the weight distributions in Fig. 3.6
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Chapter 4

Accurate Reconstructions for

Moderately Limited Angular

Measurements

In this chapter results from simulated projection data for DT are presented.The test image

is complex. Both the real and imaginary parts of the image are in effect, modified versions

of the Shepp-Logan phantom, a standard model used to validate computed tomography

algorithms. The real and imaginary parts of the test image are shown in Fig. 3.2(a) and

3.3(a). The projection data from the phantom was computed following [30,37]. The image

matrix is 128 × 128 pixels with pixel size of λ/8. The image has an area of 16λ × 16λ.

The objective of this section of the thesis was to define a procedure to generate optimum

weights which can exploit the redundancy for angular coverages below 270◦ and up to

180◦, where redundancy is still present in the projection data.

4.1 Noiseless Reconstruction

Proceeding in the manner described in the previous section to generate weights, the

following optimum parameters for different cdfs were used: for beta-cdf, a = 0.4, b = 6;
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Figure 4.1: Reconstructed real part from complex test image under noiseless conditions.
The left column shows reconstruction from 270◦ coverage and right column shows recon-
struction from 200◦ coverage. (a)-(b) using regular FBPP, (c)-(d) using sine-sq weights,
(e)-(f) using gamma-cdf weights, (g)-(h) using beta-cdf weights
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Figure 4.2: Reconstructed imaginary part from complex test image under noiseless condi-
tions. The left column shows reconstruction from 270◦ coverage and right column shows
reconstruction from 200◦ coverage. (a)-(b) using regular FBPP, (c)-(d) using sine-sq
weights, (e)-(f) using gamma-cdf weights, (g)-(h) using beta-cdf weights
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for gamma-cdf, a = 2.1, b = 0.1. Reconstructed images have been plotted from regular

FBPP and MS-FBPP using different weight functions for coverages 270◦ and 200◦ (an

example of sub-minimal angular coverage). Both real and imaginary parts are shown

in Fig. 4.1 and 4.2 respectively. The reconstructions show the beta-cdf and gamma-cdf

based weights generate a very stable reconstruction even in lower angular coverage of

200◦, with beta-cdf performing slightly better overall.

To compare the performance of the different MS-FBPP algorithms quantitatively, we

use their Mean-Absolute-Error (MAE) with respect to the original image. The MAE is

calculated as the absolute mean pixel-by-pixel difference between the original and recon-

structed image: MAE = 1
n

∑
|imor(i)− imre(i)|, where imor(i) is the intensity of the ith

pixel in the original image and imre(i), the intensity of the ith pixel in the reconstructed

image and n is the total number of pixels in the image. The errors in real and imaginary

parts of image were calculated separately. At 200◦ coverage, for the real part of the image,

the beta-cdf based reconstruction had a 30.77% lower error than regular FBPP, while the

gamma-cdf based reconstruction yielded a 29.11% lower error. A similar trend is seen for

the imaginary part of the image. The sine-squared based weights give accurate recon-

structions at 270◦, but below 270◦ they progressively deteriorate. These are clearly not

optimum choices for coverage < 270◦. For example, at 200◦ coverage, the quality of recon-

struction degrades for both the regular FBPP and sine-squared weighted FBPP. However,

the latter has a higher error than the regular FBPP reconstruction (2.46% higher in real

part of image). A more detailed error-analysis has been done with noisy data in the next

subsection. Below 180◦ coverage, the redundancy disappears and using weights alone, in

principle cannot produce a better reconstruction than regular FBPP. So, reconstructed
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images are not shown for further lower coverage. However, it should be noted that for

such lower coverage, reconstruction from un-optimized weights will generate higher errors

than regular FBPP. This is also evident from the sine-square weighted reconstructions for

sub-minimal coverage.

4.2 Reconstruction with Noisy Data

Noise is an integral part of any measurement system. In a DT setup, noise may arise from

random inhomogeneities in medium or may be introduced by the experimental procedure.

To account for these, noisy reconstruction has been modeled as a stochastic process in

literature [39], [40]. Reconstruction from noisy data is necessary to examine the reliability

of these algorithms when applied to practical systems. The MS-FBPP algorithms are

expected to respond to noisy data models differently. To consider the effect of all noise

sources, it was assumed as sufficient to consider a white Gaussian noise distribution in

the scattered field data [37]. An additive white Gaussian noise (AWGN) with different

variances has been injected to the analytically computed projection data to give different

noise levels. To observe the effect of noise, we compared the reconstruction from the

weighted MS-FBPP algorithms with regular FBPP using the projection data injected

with 3-dB AWGN. The reconstructed images from noisy data using beta-cdf weights for

different angular coverages in the range of [200◦, 270◦] are given in Fig. 4.3 and Fig. 4.4.

We use here weights based on beta-cdf with a = 0.4, b = 6, which earlier gave best results

with noiseless data. The reconstructions show robustness of the algorithm to noise levels

that can be considered to be reasonable in good experimental data.
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Figure 4.3: Reconstruction of real part of image from 3dB awgn projection data using
beta-cdf weights for angular coverages (a) 270◦ (b) 250◦ (c) 220◦ (d) 200◦

Fig. 4.3 and Fig. 4.4 show that the beta-cdf based weights are capable of maintaining

all the features and without significant distortions up to 220◦ with 43.1% improvement

of MAE over regular FBPP in real part and 38.7% in imaginary part of the image. The

reconstruction at 200◦ is also almost distortionless with the error improvement figures

being 27.8% and 19.4% for the real and imaginary parts respectively. The responses are

stable and the images are not affected noticeably due to the noise injection as seen in

these figures. A detailed discussion of the performance in terms of MAE is given next.

The MAE calculated for the different weights at different angular coverages are plotted
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Figure 4.4: Reconstruction of imaginary part of image from 3dB awgn projection data
using beta-cdf weights for angular coverages (a) 270◦ (b) 250◦ (c) 220◦ (d) 200◦

in Fig. 4.5 and Fig. 4.6. The plots show that as the coverage goes further below 270◦,

the beta-cdf and gamma-cdf weights are able to generate MAEs which remain lower than

regular FBPP and are very steady up to 200◦. For the beta-cdf based reconstruction, as

the coverage decreases from 270◦ to 200◦, the value of MAE increases by only 2.33% in

the real part and 1.45% in the imaginary part. For gamma-cdf based reconstruction, the

numbers are 4.31% and 2.64% respectively. For coverages below 200◦, as the redundancy

is lost, these two MAEs increase and slowly converge towards the MAE of a regular FBPP

reconstruction around 180◦. For the sine-squared based weights, the MAEs are almost
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equal to the other two weights (beta and gamma cdf) in the interval [250◦, 270◦], but

rapidly increases as the coverage reduces, and become greater than the regular FBPP and

other two cdf weighted reconstructions. At 200◦ coverage, the MAE of the real part of

the image increases by as much as 46.05% of its value at 270◦ coverage and that of the

imaginary part by 48.62%.

The MAE plots for the regular FBPP algorithm in Fig. 4.5 and Fig. 4.6 may look

counterintuitive. This is because the error increases as the angular coverage increases

from 180◦ to 270◦. However, it should be noted that starting from 180◦ coverage and

above, there are regions in the Fourier space where there is overlap from the two halves

OA and OB of the semi-circular arc AOB in Fig. 2.1. The regular FBPP doesn’t apply

weights to the dataspace to account for these partial overlaps and hence gives higher errors

in reconstruction. At 360◦ coverage, as there is complete coverage by both the arcs OA

and OB, weighting the dataspace is not required. Following this, it is found that error

increases from 180◦ coverage to a maximum at 270◦, where there is maximum asymmetry

with respect to overlapping coverage in Fourier space by the two half semi-circles, OA and

OB. Weighting becomes most important at 270◦. Beyond that, the importance decreases

again and vanishes at 360◦ coverage. For this reason, an error increase is seen between 180◦

and 270◦ coverage. The solution to this problem in that coverage range is to normalize

the projection data with optimal weights before applying the backpropagation algorithm.

The percentage improvements of MAE for all the three filter classes with respect to

the regular FBPP are plotted in Fig. 4.7 and Fig. 4.8. All the weights show maximum

improvement at 270◦, and it decreases as the coverage gets more limited. The degradation

of sine-squared filters is much greater than the cdf based filters. The plots show that at
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180◦, with the disappearance of redundancy within the projection data, the MAEs for

regular FBPP and that of beta-weighted MS-FBPP converge. In contrast, for the sine-

squared weights, the MAE steadily increases and becomes greater than the MAE from

regular FBPP. This is expected and demonstrates the effectiveness of the beta-cdf based

weights as an optimal choice. The gamma-cdf based reconstruction behaves similarly with

a slightly higher MAE (1.66% higher than beta-cdf reconstruction in real part of image

and 1.32% higher for the imaginary part of the image at 200◦ coverage).

Figure 4.5: MAE calculated at different coverages for real part of reconstructed image
with regular FBPP and MS-FBPP using different weights

4.3 Summary

In this part of the thesis, new approach to exploit data redundancy within the traditional

2D DT setup has been explored. Using cumulative distribution functions, especially the

beta-cdf, it was shown that distortionless reconstructions of complex-valued object func-
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Figure 4.6: MAE calculated at different coverages for imaginary part of reconstructed
image with regular FBPP and MS-FBPP using different weights

Figure 4.7: Percentage improvement of MAE from different weights over regular FBPP
at different coverages for real part of reconstructed image

tions are possible even at angular coverage of 200◦. The advantages of this observation

are numerous. The major benefit is that it reduces the angular scanning requirements

for accurate reconstructions. This also implies shorter access times for collecting relevant

projection data. In medical applications this can mean a lower amount of exposure to
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Figure 4.8: Percentage improvement of MAE from different weights over regular FBPP
at different coverages for imaginary part of reconstructed image

the interrogating energy and also, fewer artifacts due to temporal variations caused by

movements of the patient. For still lower coverages (< 180◦), the redundancy in the tomo-

graphic dataset vanishes and alternate approaches are being explored for application to

DT setups. In the next part of the thesis, reconstruction algorithms under the compressed

sensing regime have been developed. These fall under iterative techniques and the aim is

to solve an optimization problem, the solution of which is in agreement with the available

projection data. So, these are not fast one-step reconstructions as those of this first part

of the thesis, however, at the cost of algorithmic complexity very sparse or highly limited

data requirements can be achieved for full image recovery. This is the topic for the next

part of this thesis.
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Part 3

Reconstruction from highly limited

projection data: Compressed sensing

approach
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Chapter 5

Overview

Recently a huge thrust area of research has been in the so called ’compressed sensing’

regime [1, 41–43]. The strength of this area is that it has given a firm mathematical

background and structure which ensures very low error guarantees to solutions from highly

under-determined systems. It is a radically new way of sampling and recovering signals at

sub-Nyquist rate. The traditional bounds put by the Shannon-Nyquist theorems can be

defeated under certain conditions. Fortunately these conditions are met in a number of

imaging and sensing applications. Hence compressed sensing becomes a very important

new realm of signal sampling and recovery.

This chapter gives a brief background and introduction to this emerging field. The

importance of compressed sensing for medical imaging is also described. The motivation

to use this framework for microwave imaging is explained. The proposed framework and

approaches are presented in the succeeding sections.

5.1 Background

Traditionally, any analog signal reconstruction is limited by the Shannon-Nyquist the-

orem which puts a lower limit on the minimum amount of information required for re-

constructing the signal exactly [44]. When a signal is sampled, this theorem states that

the sampling rate must be at least twice the highest frequency present in the sampled
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signal. This is known as the Nyquist rate which provides theoretical limits on sampling

requirements. This implies that higher the frequency components in the sampled signal,

larger the number of samples or measurements necessary to retain adequate information.

This in turn implies higher time and acquisition complexity. However, recently it was

found that under certain conditions signals can be sampled at rates much lower than the

Nyquist requirement without any significant loss of information [43,45–47]. This remark-

able possibility is largely due to the fact that for most practical signals, of bandwidth say

B, all the components within the range B do not have equal amount of information. Thus

the sampling frequency dictated by the Nyquist theorem is much higher for many prac-

tical signals. Compressed sensing has effectively exploited this loophole with great success.

The field of compressed sensing was triggered by two ground breaking papers by

Donoho [43] and [45] and followed by a host of follow up papers which mathematically

formalized the theory. The field benefited from fruitful combination of theories in applied

mathematics, statistics and electrical engineering with applications in different disciplines

ranging from image processing [48], radar technology [1], sampling theory [49], medical

imaging [50]. In fact [50] opened up the CS theory as a great tool for medical imaging.

MRI proved as a great field to demonstrate the potential benefit of CS and a considerable

volume of work followed on CS based MRI reconstruction: [51–55] etc. to mention a few.

Soon a huge interest was generated in applying CS to different medical imaging schemes

and tomography in general: [56–60] etc. The available literature proves the usability of the

CS framework for tomographic reconstructions. The aim of this research is to setup a CS

framework to reconstruct complex-valued object function from limited angular projection
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data in diffraction tomography.

5.2 CS Theory

Compressed sensing aims to reduce the number of minimum measurements required to

completely describe a signal by exploiting its compressibility. This can be expressed in

terms of sparsity of a signal. A S-sparse signal f ∈ Rn is a signal which has at most S

non-zero elements. The goal is to be able to completely reconstruct a S -sparse signal f

of dimension n from M measurements where M ≈ S or marginally more. To do this, the

measurement (or data acquisition), signal handling and image recovery (reconstruction)

has to be done in a certain framework and adhering to some constraints. These are

actually the very conditions which enable us to defeat the Shannon sampling rate on a

grand scale. These requirements are briefly enumerated below:

• The signal of interest f should be sparse or compressible in some domain.

• A stable measurement matrix Φ must be available which can transform the sparse

signal, f ∈ RN to y ∈ RM without any loss of information due to the dimensional

reduction from N to M . This condition of Φ is often referred to as the Restricted

Isometry Property (RIP).

• A reconstruction algorithm which can recover the original signal from the measure-

ments y. For compressed sensing framework, l1-norm minimization is the de-facto

algorithm of choice.
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These properties and requirements are discussed next. A curious fact is that many

physical signals of interest do in fact abide by these conditions. Hence, compressed sensing

is applicable to a variety of scenarios. Thus, the development of this new theory gained

a huge impetus over the last few years. It has become one of the most hotly researched

topics under image reconstruction algorithms.

5.2.1 Sparse Basis Representation

In the present world, information travels over the internet at an enormous rate. Large

volumes of data are stored in servers across the world. All this would really have not

been possible without the available data compression techniques. A huge amount of re-

search has been done in this area. The most famous works in this aspect are probably

the wavelet transforms and discrete cosine transforms (DCT), see e.g. [61, 62]. These

techniques are routinely used for reducing storage of large images. This is done by ex-

ploiting sparsity of images in these bases. Another very important sparse representation

is the image gradient. In many practical cases, especially in medical images, the images

themselves are not sparse, however, their gradient magnitude image or GMI is sparse.

Wavelets are a great example of sparse basis set for images. This means that when an

image is transformed to its wavelet domain, only a very few coefficients in that domain

have non-zero or significantly high values. So, if these coefficients are thresholded, the

resulting vector of coefficients is sparse with practically no lost information. To state it

mathematically, consider a signal vector x ∈ RN which could be an image with N pixels.

Let it be expressible in some orthonormal basis Ψ = [ψ1, ψ2, ....ψn], such that:
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x(t) =
N∑
i=1

siψi(t), (5.1)

where si =< x, ψi >, are the coefficients of x in Ψ domain. Here, t is the time index

or pixel location depending on whether the x is a time signal or picture. Then x can be

readily expressed as

x = Ψs, (5.2)

where s is the coefficient sequence. Ψ is a matrix with ψ1, ψ2, ....ψn as columns. Now

the importance of sparsity can be explained as follows: since Ψ is a sparse basis of x, the

low valued coefficients of s can be discarded without much loss of information (or image

quality). Let xk(t) be the recovered signal by keeping the K largest coefficients of s, i.e.,

xk := Ψsk where sk is the coefficients’ vector (si) with all but K highest coefficients set

to 0. This vector sk is sparse because only a few of its entries are non-zero, i.e. K << n.

In literature, a vector like sk is called K-sparse, meaning there are at most K non-zero

entries in the entire vector sk. Ψ being an orthonormal basis, the following relation holds:

‖x− xk‖2 = ‖s− sk‖2. (5.3)

If the sorted magnitudes of s decay very rapidly, then sk and s would be almost

equivalent. Thus, the error ‖x − xk‖2 would be small and xk would be a very accurate

approximation of x. As an example, in Fig. 5.1 the loss due to rejecting > 95% of

the coefficients in the wavelet domain is visually almost imperceptible. On the left is

the original gray scale image and a zoomed-in section. On the right, the corresponding
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Figure 5.1: (a) Sample image (b) zoomed-in view (c) Compressed image by retaining
< 5% of largest coefficients in wavelet domain. (d)zoomed-in view of the compressed
image

compressed images (compressed in wavelet domain) are shown. This demonstrates that

even though the original image by itself is not sparse, it can be effectively sparsified

in some suitable domain. Then with respect to this domain, the number of required

measurements (in our case, projection data) would be far less than in the original case.

A point to note here is that compressed sensing only claims to reconstruct sparse signals.

So in effect the sampling theorem is not really violated. However the main challenge is

to identify the sparsity domain and then design an effective sampling and reconstruction
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system.

5.2.2 Sensing Matrix: The Restricted Isometry Property

Consider a sensing matrix Φ, representing the data acquisition. For example, in tomog-

raphy, Φ is the Fourier matrix. Let Φ directly compress the signal while sensing it. That

is, a small number of measurements (e.g. projection data in tomography) retain all the

information within the original signal. Let it be a linear measurement process that col-

lects M datapoints (M < N). Then Φ is a M × N matrix and the output y is an inner

product of x with the columns of Φ. Then using (5.1), we can write

y = Φx = ΦΨs = Θs. (5.4)

where Θ := ΦΨ is an M ×N matrix. The measurement or sensing matrix Φ is fixed

and independent of x. In traditional theory, since M < N , the system in (5.4) is under

determined and in general the solution is ill-posed. However, the sparsity of x in the Ψ

domain alleviates this issue. The necessary and sufficient condition for this M×N system

to have guaranteed stability is the following: if for any vector v which has 3K sparsity, if

the following relation holds:

1− ε ≤ ‖Θv‖2
‖v‖2

≤ 1 + ε, (5.5)

then a stable inverse exists for all K-sparse and compressible signals. This is the so called

Restricted Isometry property or simply RIP. It might be an appropriate to introduce the

formal definition of RIP here.

Definition: For each integer k = 1, 2, ..., define the isometry constant δk ≥ 0 of a matrix
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Φ as the smallest number such that

(1− δk) ‖v‖2 ≤ ‖Θv‖2 ≤ (1 + δk) ‖v‖2 , (5.6)

holds for all k-sparse vectors v. A matrix Φ has the RIP of order k as long as δK is

not too close to one [41]. It can be surmised that when the RIP holds for Φ, then for

K sparse signals, Φ will approximately preserve the Euclidean distance during sensing

(or acquisition). This further means that the K-sparse vectors cannot be in the null

space of Φ. This is because, if there is a K-sparse vector in the nullspace of Φ, then

Φx = 0 ⇒ ‖Φx‖22 = 0. Then in (5.6), we must have δk ≥ 1, which goes against the

definition of RIP where δk < 1 . This is beneficial as otherwise, there would be no way

of preserving these signals. An important corollary is that if Φ satisfies RIP for K-sparse

signals, then the solution x∗ to the system y = Φx can be recovered and further, the

sparsest solution to the system is unique and the exact solution [63].

5.2.2.1 Incoherent sampling

Stability of the reconstruction can also be ensured by another approach. If the measure-

ment matrix Φ can be ensured to be incoherent with the sparse basis Ψ, i.e. The columns

of Ψ cannot be represented by linear combinations of columns of Φ and vice versa, then Φ

and Ψ are said to be incoherent. An intuitive example would be impulses (delta function)

for φi and Fourier sinusoids for ψi. Formally, coherence between the sensing matrix Φ
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and sparse basis Ψ is defined as

µ(Φ,Ψ) =
√
N max

1≤k,j≤N
|< φk, ψj >| . (5.7)

Coherence gives an estimate of the correlation between the two matrices. So, for a good

sensing matrix, the correlation with the sparsifying matrix should be minimum , i.e. µ

should be small. The range for µ is: µ(Φ,Ψ) ∈ [1,
√
N ]. The upper limit is a result of the

fact that the inner product |< φk, ψj >|≤ 1 for two unit vectors. The lower limit is due to

Parseval’s rule, where, for each j,
∑N
k=1 |< φk, ψj >|2=|| ψj ||22= 1, [41]. A very simple

example of such an incoherent pair would be the spike basis Φ with φ(k) = δ(t− k) and

Ψ the Fourier basis with ψj(t) = n−1/2ei2πjt/n. Here Φ can be viewed as the classical

sampling scheme in time or space. The time-frequency pair gives µ(Φ,Ψ) = 1 providing

maximum incoherence. This incoherence is not limited to one dimension, and valid for

higher dimensions as well. In typical practical applications, random matrices are mostly

incoherent with any fixed basis Ψ [41]. If an orthobasis is selected randomly from an

uniform distribution (e.g. by sampling n vectors on the unit sphere independently and

uniformly) and orthonormalized, then with high probability, the coherence between Φ and

Ψ would be low and of the order of
√

2 log n

To summarize, the sensing matrix Φ must have RIP property or be incoherent to

the sparse basis Ψ for compressed sensing to be successful. However proving that a

particular matrix Φ does indeed have RIP is an NP-hard inverse problem. Fortunately,

some classes of matrices have already been proven to have RIP. If these matrices could

represent particular sensing or data acquisition techniques, then the reconstruction can
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be performed under the compressed sensing regime. A very important category of RIP

matrices is a partial Fourier matrix. A partial Fourier matrix is formed when the M rows

of the matrix Φ are chosen randomly from a full N ×N Fourier matrix. Then Ω satisfies

RIP. This implies that the compressed sensing framework can be applied to tomographic

reconstruction, as the projections in a tomographic acquisition are directly related to the

Fourier or k-space of the object being probed. This has in fact generated a huge interest

in applying CS techniques for image recovery from highly sparse tomographic data.

5.2.3 Image Reconstruction

The RIP gives theoretical guarantee that a K-sparse signal can be fully recovered from

M measurements given by the measured vector y. However,the recovery process has not

been addressed there. The recovery procedure should be able to regenerate the N -length

signal x or the sparse representation s, when y, Φ and Ψ is given. We have M < N in 5.4.

So there are in theory infinite solutions, the solution space given by a (N -M) dimensional

hyperplane, H := N (Θ) + s in RN, which is the null-space N (Θ) of Θ translated by the

true solution s. This happens since y = Θ(s) = Θ(s+r) for ∀ r ε N (Θ). The requirement

and challenge then becomes one of finding the sparse signal s in the translated null space.

5.2.3.1 l-2 Minimization

The classical approach to handle this type of inverse problems is by means of a least-

squares method. Here, the vector in the translated nullspace H with smallest l2 norm
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(i.e. minimum energy) is selected:

ŝ = argmin || s′ ||2, such that ,Θs′ = y. (5.8)

The advantage of this method is in the availability of a closed form solution of the form:

ŝ = ΘT (ΘΘT )−1y. Unfortunately what is being sought is a K-sparse vector. Minimizing

the energy does not help as the sparsest signal is not bound to have minimum energy as

well. l2 minimization is not a sparsity promoting method. As a result, what is recovered

is a non-sparse low energy signal which is not the true solution.

5.2.3.2 l-0 Minimization

Since l2 minimization does not promote signal sparsity, a logical alternative is to locate

the sparsest vector in the translated null space H. That is to perform a l0 minimization:

ŝ = argmin || s′ ||0, such that ,Θs′ = y. (5.9)

As was mentioned before, it has been shown that this can generate the exact solution

for a k-sparse signal from M = K + 1 measurements [64], [63] which makes the scheme

attractive. However, solving (5.9) is numerically unstable with computational complexity

of an NP-complete problem which requires exhaustive enumeration of all
(N
K

)
possible

combinations to find the non-zero entry locations in s.
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5.2.3.3 l-1 Minimization

A surprising fact in compressed sensing field is that in many of its relevant practical

problems, a l1 norm can replace the l0 norm in the minimization scheme described above

to get equivalent and stable reconstructions with high probability. Most of the signal

recovery related work in compressed sensing explores the use of l1 as a substitute of l0

norm. In [42], it was shown that for a k-sparse signal, if the measurement size M satisfies

M ≥ cK log (N/δ), (5.10)

then with probability more than 1− δ, the solution to the l1 minimization problem:

ŝ = argmin || s′ ||1, such that ,Θs′ = y, (5.11)

is the required original signal. In the presence of noise, the constraint is just || Θs′y ||2≤ ε

with ε being a tolerance parameter. The l1 minimization problem can be recast as a convex

optimization problem as:

ŝ = argminŝεRN || y −Θs′ ||1 . (5.12)

This can be conveniently solved as a linear program called basis pursuit, which has O(N3)

computational complexity [45], [43]. A very well researched minimization problem is to

minimize the following functional:

Fτ (x) ≡|| Φx− y ||22 +2τ || x ||1, (5.13)
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Figure 5.2: Visual interpretation of the effectiveness of different norms for signal recovery
by minimization [1]: (a)A sparse vector s lies on a K-dimensional hyperplane aligned with
the coordinate axes in RN and so close to the axes (b) Recovery through l2 minimization
does not find the correct sparse solution on the translated nullspace (green hyperplane),
but a non-sparse solution ŝ with least energy. (c)With sufficient measurements, recovery
by l1 minimization does find the correct sparse solution s.

with τ > 0. This is an unconstrained convex optimization problem. It has been shown [65]

that a solution to (5.11) would also minimize (5.13). Thus many well investigated convex

optimization algorithms can be applied to solve a l1 minimization problem.

5.2.3.4 Geometrical Insights

A geometric viewpoint gives a simpler intuitive explanation as to the effectiveness of using

the l1 norm over the l2. For the graphical representation, Fig 5.2 is used from [1]. The set

of all K-sparse signals s in a N -dimensional space (RN) is a non-linear space consisting

of K-dimensional hyperplanes aligned with the coordinate axes (shownn in Fig. 5.2(a)).

Then, sparse vectors are located near the co-ordinate axes in RN.

When l2 minimization is performed, the translated nullspace H = N (Θ) + s has di-

mension (N −M). It is oriented at a random angle due to the randomness in Θ as shown
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in Fig. 5.2(b)). A point to note here is that in reality, N,M,K >> 3 and hence some

intuitive imagination is required to view the same in higher dimensions.

The l2 minimizer ŝ of (5.11) is the point onH nearest to the origin. AsH has a random

orientation, with a high probability ŝ will be neither sparse nor near to any coordinate

axes and hence to s.

Any lp minimization scheme (where p = 0, 1, 2..., etc.) can be geometrically viewed as

progressively enlarging the lp ball from the origin till it touches the constraint hyperplane

(H). The point of contact gives the minimizer of that lp problem. The general definition

of the lp unit ball is:

Definition- The lp unit ball B of a vector space V is the set of all vectors with lp norm

less than or equal to one, i.e.

B = {x ∈ V | || x ||p ≤ 1}. (5.14)

The l1 ball is diamond shaped with the vertices aligned along the coordinate axes (Fig

5.2(c)). The spikiness along the coordinate axes increase with increasing N . So when the

l1 ball is blown outwards, it first touches H at a point near the coordinate axes which

is where the actual signal s is located. Thus lp minimization turns out to be a suitable

sparsity promoting minimization scheme.
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5.2.3.5 Summary

In short, what is seen is that to set up a compressed sensing based system, one has to

come up with a data acquisition scheme from random measurements. The sensing matrix

Φ must have some specific properties as discussed.After acquisition, signal is recovered

through linear programming reconstruction scheme. The error term to minimize would

ideally be the l0 norm but due to computational constraints, the alternative is to use the

l1 minimization. Fortunately the latter performs equally well under certain conditions

mentioned earlier. These findings lead to a huge amount of research conducted on l1 based

reconstruction schemes under the compressive sensing regime. In the following chapters,

the CS based framework for diffraction tomography will be described and results thus

obtained will be presented.
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Chapter 6

CS based Reconstruction for DT

The projection data acquisition in diffraction tomography (ref. chapter- 2) can be ex-

pressed as

F = Φ(x) (6.1)

where Φ is the diffraction operator, F is the sample data in k-space and x is the object

function x(r). If the acquired data is highly sparse, then classical interpolation methods

are no longer applicable as the Nyquist limit is not met. FBPP alone results in a lot of

artifacts in the reconstructed image and distort actual features in the image. Using more

accurate non-uniform fast Fourier transforms, a compressed sensing framework can be set

up,for high quality reconstruction from sparse view data. Firstly, it is assumed that x is

approximately sparse in some domain Ψ, such that x = Ψs as in previous sections. Then,

with the availability of F , knowledge of Φ and Ψ, we can formulate a convex optimization

problem using the functional in (5.13):

min
s
{α || s ||1 + || y −Θs ||22 }, (6.2)

where α is the regularization parameter.
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6.1 Application of CS to sparse DT recovery

For ultrasound or microwave based DT, the data acquisition matrix is the partial Fourier

matrix. The sparse view data is generated by randomly choosing view angles. These

samples give the vector y of (5.11) and (6.2). For setting up the CS framework, the

sensing matrix Θ = ΦΨ must be constructed with Ψ being the sparse basis for the

object. Let the object function be denoted by f , so that f(x, y) can be used to represent

the spatial distribution of the object function. The object has a bounded support, say

[−C,C] × [−C,C], i.e. f(x, y) = 0 for |x|, |y| > C. Let fd denote the discretized object

function which is to be reconstructed. fd ∈ Cnd×nd , with nd = 2[C/T ]) with T being

the sample period. Also, let F (u, v) and Fd(u, v) be the Fourier transforms of f(x, y) and

fd(n1, n2) respectively. Also, the receiver array will have limited number of elements. Let

the discrete field be ûs,θ = us,θ(nτ), where τ being the spatial sampling interval of the

system. Let Ûs,θ(κ) and Us,θ(κ) be the respective Fourier transforms. In the limit τ → 0,

both the signals become equal. A point to note here is that the Fourier transform of

the scattered field is related to the Fourier space of the object along semicircular arcs as

mentioned in section 2. Here, κ gives the projection of a point on the semicircular arc to

its tangent at the origin. Also, θ is the angle of incidence. Then, invoking the FDP, we can

have Ûs,θ(κ) ≈ Us,θ(κ) = F (u, v) ≈ Fd(u, v). Let Ω1 = θ1, θ2, .., θN1
be the set of view

or projection angles over which ûs,θ(nτ) is obtained and from that Ûs,θ(κ) is calculated

for ∀κ ∈ Ω2 = κ1, κ2, ..., κN2
. Then, fd can be reconstructed from the projection dataset
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Ûs,θ(κ) | (θ, κ) ∈ (Ω1,Ω2) as [66] :

(Tκ0)2U0

2jγ
ejγl

dC/T e∑
n1=b−C/T c

dC/T e∑
n2=b−C/T c

fdn1,n2
e−2πj(n1u+n2v)T = Ûs,θ(κ) + ns,θ(κ). (6.3)

This is expressible in a compact matrix equation form as Φfd = F + n, where Ω =

(Ω1,Ω2),Φ ∈ C|Ω|×(nd)2 , fd ∈ C(nd)2 , (n1, n2) ≤ |nd/2|, F ∈ C|Ω|. From (6.3), the Φ

for the minimization problem is obtained. Essentially, the summation expression in (6.3)

gives the coefficients of a Fourier matrix. By FDPT, the spatial frequency samples are

gathered along the arc AOB (see Fig. 2.1). As the angle of incidence varies, the arc

revolves around in the Fourier space and describes a centered disk of radius
√

2k0. So

the reconstruction of the object is always a low-pass filtered version of the original image.

The following steps would be used to assure that the CS framework is maintained:

• Incoherence will be maintained by using a random set of angles for the projection

data. A partial Fourier matrix will be used, which ensures RIP of the sensing matrix.

• Sparsity will be exploited initially through image gradients in section-7.1. Later,

in section-7.2 simultaneous exploitation of multiple sparse domains will also be ex-

plored briefly.

Let the sparse basis matrix be Ψ. Combining l1 norm and data constraints in the

minimization problem, the initial problem is of the form:

min
s
{G(s) =|| F − ΦΨs ||22 +α || s ||1 }. (6.4)
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Here, F gives the spatial frequency samples, s is the coefficients of fd in the sparse basis

Ψ. In the next section, the reconstruction algorithm from projection dataset is presented.

6.2 Reconstruction

A minimization problem involves reducing a cost function in a series of iterative steps

starting from an initial value of the cost function. The key feature is how the cost function

is updated at each iteration. A significant amount of literature on methods are available

to minimize a cost function. In this research, as the minimization problem is essentially a

convex optimization problem, optimization toolkit from Boyd and Vanderbeghe [65] has

been used.

The overall reconstruction algorithm sequentially follows these steps:

• Generate projection data from random view angles.

• Fourier space data along semi-circular trajectories is found applying the FDPT.

• Iterative reconstruction through l1 minimization in the sparse domain is applied

while preserving the data constraints .

In the following chapter, reconstructions have been performed using TV as the l1

norm of the sparse domain. The performance of the reconstruction under varying degree

of limited data and angular access have been evaluated.
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Chapter 7

Reconstruction with Total Variation

as l1 penalty term

Most physical samples investigated tomographically, do in fact possess piecewise con-

tinuous property distribution. Particularly, biological specimens would fall under this

category, where regions over extended areas would have no variations but rapidly vary

in certain confined areas, such as edges of organs or boundaries between different tissue.

These images themselves are not sparse, however, their gradient images are sparse.

This is one form of sparsity that can be exploited in a CS framework. The gradient

magnitude image (GMI) is defined in terms of derivatives in the vertical and horizontal

direction of the image. Let Dh
n1,n2

and Dv
n1,n2

denote the finite difference operators in

the horizontal (h) and vertical (v) directions respectively. The gradient of the image is

∇fd = [Dh
n1,n2

, Dv
n1,n2

]fd = Dfd, where D = [Dv, Dh] = Ψ is the sparsity promoting op-

erator. The gradient magnitude then becomes | ∇fd |=
√

(Dh
n1,n2

fd)
2 + (Dv

n1,n2
fd)

2.

The l1-norm of the gradient image has often been termed as the total variation (TV) of

the image, which then can be defined as

TV (fd) =
∑
n1,n2

√
(Dh

n1,n2
fd)

2 + (Dv
n1,n2

fd)
2. (7.1)
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TV can be employed as a means to exploit sparsity of piecewise smooth objects. It

has been already used as a regularizing term before e.g. [32]. TV can be effective in

suppressing Gibbs effect while preserving edges [67]. To use TV as the l1 norm, in the

minimization problem of (6.4), the sparse signal s is the GMI, so that s = D(fd) where

D is the sparsity operator and by definition, || D(fd) ||1= TV (fd). In this case, (6.4)

becomes

min
s
{G(s) =|| F −Θs ||22 +α || s ||1=|| F − ΦD∗s ||22 +αTV (fd) }, (7.2)

with α being the regularization parameter for the TV term and Θ = ΦD∗. To avoid

a zero denominator in the TV term, an approximation which is often employed is: ‖

Dn1,n2fd ‖≈
√

(Dh
n1,n2

fd)
2 + (Dv

n1,n2
fd)

2 + µ, where µ is a small positive number.

The second term in (7.2) is the data constraint term added to keep the problem as an

unconstrained optimization problem. The parameter α determines the relative weightage

of the data constraint term and the l1 penalty term. The value of α needs to be carefully

chosen. In most cases this value would be application specific. A standard approach is to

plot a response of the two terms in the minimization term with respect to the variation of

α. A sweep of α over a large range would generally give insight towards an optimal value.

Over the range of the sweep generally as α increases, the l1-norm decreases whereas the

error norm increases. A value of α is so chosen as to make the l1 norm low enough without

increasing the error norm. For the reconstructions performed here, the value of α has been

fixed at 0.2. Once the reconstruction problem is set up in the CS framework as shown

here, the l1 minimization is an optimization problem in standard form. It is efficient
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to use an optimization toolkit if applicable. For solving convex optimization problems

expressed in standard forms, a host of optimization toolsets are already available. In this

work, the minimization problem of (7.2) is solved using a convex optimization toolkit cvx

by Boyd & Vanderberghe, [65], [68]. A particular advantage of using this toolkit is that it

can be used to solve the primal-dual problem with the Matlab based SeDumi toolkit [69].

The solution comes with a certificate of convergence in the form of the distance from the

dual maximum and the duality gap. So the distance of the solution (i.e. minimum of the

objective function achieved) from the theoretical lower limit is known.

7.1 Reconstruction with TV as l1 minimizer

As part of the main aim of this research, reconstruction was performed on a complex-

valued phantom structure similar to that in Part 2. To see the effectiveness of TV as

the l1 penalty term, two types of data variation could be analyzed. The first being the

number of projections when the angular access is fixed. The second being the variation of

total coverage for a fixed number of projections. In this exercise, the projection datasets

have been fixed at 15, 20, 30 and 45 views. The angular coverage limits have been fixed

at 180◦, 150◦, 120◦ and 90◦. In the figures below, reconstructions of real and imaginary

part of the phantom are shown separately for these aforementioned variations. The effect

of both type of variations on the reconstruction error have been presented separately.

In Fig.7.1 and Fig.7.2, reconstructions from 45 projections have been shown. It can be

seen that for the first three coverages, the quality of the images is almost constant. At 90◦

coverage, the reconstruction starts showing considerable distortion. This is however not
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Figure 7.1: Reconstructions of real part of image with 45 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦

Figure 7.2: Reconstructions of imaginary part of image with 45 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦
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surprising as the restriction of the available data has been limited on both grounds, that

of projections as well as coverage. It is expected to see better reconstructions from same

number of projections when the angular access is higher or more complete. The interest-

ing observation here is that as the coverage decreases from 180◦ to 120◦, the degradation

in the image quality is marginal and mostly would be acceptable based on the application.

Detailed error analysis has been done in the next section of this chapter. From Fig.7.3 to

Fig.7.8, the reconstructions of real and imaginary parts have been shown separately for

angular sweeps as the number of projections is progressively decreased. With higher angu-

lar coverage, the reconstruction quality is maintained at upto 20 projections. Significant

degradation is observed at 15 projections. This illustrates that as long as the coverage is

high, the random sampling and l1 minimization can perform good reconstructions from

very few peojections. As the coverage is lowered, decent reconstruction is maintained

at upto 120◦. For even lower coverage, the l1 minimization alone is not effective. This

is because the minimum data requirement even under sparse reconstruction starts to be

violated.

7.1.1 Error Analysis

In order to quantitatively evaluate the reconstructions performed, the Mean Absolute

Error (MAE) described in chapter 4 is used again. For error performance additional

reconstructions for a coverage range of 60◦ has also been considered. The average error in

reconstruction for real and imaginary parts have been calculated separately. The relative

percentage change in MAE for different projection numbers and angular access are shown

in Fig.7.9 - Fig.7.12.
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Figure 7.3: Reconstructions of real part of image with 30 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦

Figure 7.4: Reconstructions of imaginary part of image with 30 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦
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Figure 7.5: Reconstructions of real part of image with 20 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦

Figure 7.6: Reconstructions of imaginary part of image with 20 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦
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Figure 7.7: Reconstructions of real part of image with 15 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦

Figure 7.8: Reconstructions of imaginary part of image with 15 views for different angular
coverage of : (a) 180◦, (b) 150◦, (c) 120◦, and (d) 90◦
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Fig. 7.9 and Fig. 7.10 show the MAE increase for a fixed angular coverage as the

number of projections change. The MAE from the maximum number of projections (60)

is taken as the base reference to which the percentage change of error is measured as

the number of projections is progressively lowered up to 15. This change is plotted for

different angular coverages between 60◦ to 180◦. Fig. 7.9 shows the performance for the

real part of the reconstructed image and Fig. 7.10 for the imaginary part. As expected,

for each angular coverage, as the available number of projections is reduced, the error

increases, as seen from the plots.

The percentage increase remains below 20% for all coverages at 30 views. From 20

views or less, the error rate increases sharply, e.g. in the real part of the image, the

MAE increase for 180◦ coverage at 20 views is 18% and 56.7% for 15 views. For 120◦

coverage, the values are respectively 26.7% and 43%. With respect to visual identification

of features or defects from reconstructed image, this translates to good reconstructions

maintaining all features upto 30 views and acceptable reconstruction at 20 views. At 15

views, the degradation gets considerably high to depend on the images for diagnosis or

fault detection with high confidence. An important thing to note here is that in Fig.

7.9 and Fig. 7.10, each line show the percentage increase of error as the view number is

decreased while the coverage is fixed. So, although all the plots start at 0% error increase,

the actual error value would be higher for a lower coverage, and vice versa. The total

coverage determines the extent of data availability for reconstruction. Hence, the change

in percentage MAE increase is more striking for higher angular coverages than lower ones.

This is illustrated through the plots themselves. The percentage change for 60o is 10.5%

in real and 12.4% in imaginary part at 15 projections which is the lowest change observed.
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This is because the starting point itself is already much worse due to limited coverage and

in effect does not get worse with lower number of projections. The observed percentage

change in error increases with increasing angular coverage. The MAE plots show that

with higher access, the reconstruction accuracy increases.

Another avenue to explore is to observe the effect of the available angular access for

a fixed number of projections. This effect is illustrated in Fig. 7.11 and Fig. 7.12.

Here, for a fixed number of projections, the percentage MAE error is calculated with

respect to the maximum angular coverage (180◦). The coverage is decreased to 60◦. The

process is repeated while varying the number of projections from 60 to 15. A similar

trend is observed as in the last case. For each fixed projection number, the MAE error

increases as the total coverage decreases. This is expected. However, a surprising and

appealing fact is that the increase in error is marginal irrespective of total number of

projections between 180◦ to 120◦. This illustrates the stability and utility of this CS

based reconstruction procedure. The procedure would be handy in either lower angular

access or a sparse projection dataset (and upto a certain limit when both constraints

are simultaneously present). This puts this CS based framework in a strong position to

handle highly adverse data acquisition conditions.

In summary from these reconstruction sets it can be concluded that at 120◦ coverage,

as little as 20 projections might be sufficient for a reasonably accurate reconstruction.

This is definitely a great improvement over other traditional iterative methods.

Further restrictions would be too limiting for reconstruction in a generalized setup of

complex valued image with no prior information or known restrictions. However when we

have some a-priori knowledge, either about the structure or some practical insights about
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the imaged system or ROI, tighter bounds might be achievable as will be demonstrated

briefly in the next subsection.

7.1.2 Reconstruction from phantoms with realistic permittivity

distribution

In practical scenarios, the physical distribution of permittivity variation in the real and

imaginary parts would be same, i.e. the real and imaginary parts of the complex valued

image would have the same spatial variations and would essentially look same. In this

section some reconstructions from a more realistic phantom is shown. The imaginary part

of the phantom is kept same as the real with respect to the shape, as expected in practical

measurements. Thus the data requirement would be looser than in the last section. Re-

constructions from 15 and 10 projections from different angular coverage are given in Fig.

7.13 - Fig. 7.16. As is evident, for 15 views, there is almost distortionless reconstruction

for all angles. The imaginary part shows more degradation than the the real part at lower

coverage. This is because the magnitude of the imaginary components have been kept at

half of that in the real part and as such, is more susceptible to degradation in general

and especially under sparse data recovery conditions. For 10 views, the real part is well

retained upto 120◦, however, below 150◦, the imaginary part degrades considerably. In

conclusion, we see that for 15 projections, acceptable reconstruction can be achieved at

120◦ and for 10 views at 150◦. At full 180◦, even 10 views can generate a clear recon-

struction, maintaining all features distinctly. For any measurement system, noise is an

integral part. The robustness of any reconstruction algorithm is dependent on the noise
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Figure 7.9: Percentage increase of MAE for real part of image as the coverage is lowered
for a fixed number of projections. Graphs plotted for different number of projections

Figure 7.10: Percentage increase of MAE for imaginary part of image as the coverage
is lowered for a fixed number of projections. Graphs plotted for different number of
projections
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Figure 7.11: Percentage increase of MAE for real part of image as the number of projec-
tions is lowered for a fixed coverage. Graphs plotted for different coverages

Figure 7.12: Percentage increase of MAE for imaginary part of image as the number of
projections is lowered for a fixed coverage. Graphs plotted for different coverages

72



margins it can handle. So far, in this chapter, reconstructions have been done with 5%

noise. However, to see the effect of increasing noise in the data, reconstructions were

performed under various levels of noisy data. The effect was observed on reconstruction

from 20 views and 120◦ angular coverage. The effect can be seen in Fig. 7.17 - Fig. 7.18.

The reconstruction is good at 10% noise. The real part is still acceptable at 20% noise,

however, the imaginary part is considerably degraded. At 50% noise both real and imag-

inary parts are highly degraded and unacceptable for visual analysis. However, it should

be noted that this is too high a noise margin, which should require improvements in the

physical acquisition system rather than the reconstruction algorithm itself. In conclusion,

it can be inferred that with TV based CS reconstruction, acceptable reconstruction of

complex valued objective function can be achieved from moderately noisy data with as

limited coverage as 120◦ and as little measurements as 15 projections. This is a signifi-

cant feat and highly beneficial in numerous scenarios with either highly limited angular

access or various constraints (like available acquisition time) limiting the total number of

projections that can be obtained. With an aim to explore other avenues which might also

have pertinent effect towards lowering data requirements in tomographic reconstruction,

effect of incorporating multiple sparsity promoting factors is briefly explored in the next

section.

7.2 Multiple sparse domain incorporation

The fundamental principle behind compressed sensing based signal recovery is to exploit

a sparse representation of the signal. If a signal could be represented in multiple sparse
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Figure 7.13: Reconstructions of real part of image with 15 views, when real and imaginary
parts have similar physical boundaries, for different angular coverage of : (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦

Figure 7.14: Reconstructions of real part of image with 15 views,when real and imaginary
parts have similar physical boundaries, for different angular coverage of : (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦

74



Figure 7.15: Reconstructions of real part of image with 10 views, when real and imaginary
parts have similar physical boundaries, for different angular coverage of : (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦

Figure 7.16: Reconstructions of real part of image with 10 views,when real and imaginary
parts have similar physical boundaries, for different angular coverage of : (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦
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Figure 7.17: Reconstructions of real part of image with 15 views and 120◦ coverage,
when real and imaginary parts have similar physical boundaries, for different noise levels
(measured as % of mean signal energy level) : (a) 5%, (b) 10%, (c) 20%, and (d) 50%

Figure 7.18: Reconstructions of imaginary part of image with 15 views and 120◦ coverage,
when real and imaginary parts have similar physical boundaries, for different noise levels
(measured as % of mean signal energy level) : (a) 5%, (b) 10%, (c) 20%, and (d) 50%
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domains, it would be interesting to see if these domains could be used simultaneously for

better reconstruction. Traditionally wavelets have been a very popular sparse domain in

image processing and has been used in CS based reconstructions with great success. It

would be instructive to see if wavelets could be incorporated as an added sparse domain

in recovery of complex valued objects. If a basic wavelet based penalty term can be

incorporated to get a decent level of reconstruction, a vast bank of wavelet (or curvelet,

coiflet etc.) based filters open up and provide opportunity of further research towards

utilizing multiple sparse representations for increasing reconstruction efficiency or lowering

data requirements further. Here a basic wavelet based penalty term has been incorporated

using haar wavelets. The main aim is to explore the possibility of incorporating multiple

sparse domains easily for complex-valued image reconstruction from sparse data. To

incorporate the wavelet sparsity term, the optimization problem of (7.2) is modified as

min
s
{G(s) =|| F − ΦDfd ||22 +αTV (fd) + β || Ψ ∗ fd ||1}. (7.3)

In the above equation, Ψ is the haar wavelet operator so that Ψ ∗ fd is the wavelet

domain representation of the image fd. β is the regularization parameter for the second

l1 penalty term. In the following reconstructions, α = 0.2 and β = 0.1 has been used.

In Fig. 7.19- Fig. 7.20, reconstruction have been performed by solving the optimization

problem (7.3) for 15 projections at different angular coverages.

It is interesting to note that the reconstructions are comparable or marginally better

for 180◦ and 150◦ coverage but degrades more rapidly than the TV based reconstruction

at lower coverage and especially for the imaginary part. There are two possible reasons
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Figure 7.19: Reconstructions of real part of image with 15 views, when real and imaginary
parts have similar physical boundaries, for different angular coverage of : (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦

Figure 7.20: Reconstructions of imaginary part of image with 15 views, when real and
imaginary parts have similar physical boundaries, for different angular coverage of : (a)
180◦, (b) 150◦, (c) 120◦, and (d) 90◦
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behind this. Firstly, for theses reconstructions, haar wavelets have been used for wavelet

domain representation. This is the simplest wavelet available. Further sophisticated

wavelets would actually be much more effective in better sparse representation. Secondly,

once a better suited wavelet is determined, the the regularization factors can be optimized

to set up a more efficient optimization problem which will generate better reconstructions

by truly exploiting the sparsity in multiple domains in parallel. That multiple sparsity

promoting terms can be simultaneously used is apparent in these simple exercise. However,

there is a huge potential of improvement by using more optimal wavelets than the haar

wavelet used here. This is an interesting future work or extension of this research, an

avenue to explore with benefits across multiple disciplines.
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Chapter 8

Conclusions

8.1 Summary

Diffraction tomography is an active field of study in imaging which is used in nonde-

structive evaluation and biomedical applications. In many practical scenarios, a major

challenge in DT is a limited availability of projection data. The limitations might ap-

pear in the form of constraints in angular access or total number of projections or a

combination of both. This essentially makes the available set of measurements highly

limited or sparse. This thesis focuses on development of efficient methods to handle the

challenges on limited data for image reconstruction. Image reconstruction algorithms for

diffraction tomography with limited data were investigated and developed. Sparse to-

mographic reconstruction has been explored under two categories: (a) the moderately

limited angular coverage scenario, by exploiting redundancy in projection data and (b)

severely limited projection data, both in terms of angular access and number of projec-

tions, through employing sparse representations of the test image and invoking compressed

sensing framework for image recovery.
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8.1.1 Exploiting data redundancy for moderately limited angu-

lar diffraction tomography

Traditionally, 360◦ coverage is required for accurate reconstruction of complex valued

object functions. However, under angular coverage range between 180◦−270◦, redundan-

cies are present in the DT projection data. Formulations to exploit these redundancies

optimally and in a generalized approach, was shown to provide accurate reconstruction,

independent of the image characteristics or features. A novel weighting function for the

projection data in its Fourier space was proposed using cumulative distribution functions.

Algorithms were developed to reconstruct complex valued images with this weighted pro-

jection dataset using filtered backpropagation techniques. This method yielded recon-

structions of complex-valued object functions that were shown to be superior to the

standard backpropagation algorithm in the coverage range of [180◦ − 270◦]. Efficient

data-weighting resulted in recovering images from 220◦ coverage but equivalent to full

coverage (360◦) reconstruction. Robustness of the algorithms with noisy projection data

was also verified.

8.1.2 Compressed Sensing based diffraction tomography from

highly sparse data

Reconstruction from highly sparse data with limitations on angular access and number

of projections was was developed and evaluated. A compressed sensing framework for

DT image reconstruction for complex valued objects has been developed. Using Total

Variation as the sparsity norm, accurate reconstruction of complex permittivity distri-
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bution was achieved from severely limited projection dataset. Accurate reconstructions

from very limited datasets of 15-20 projections with angular access as low as 120◦ was

achieved. Reconstruction from noisy projections established the robustness of the algo-

rithms in presence of noise.

The feasibility of using multiple sparse domains was also explored by adding wavelet

domain l1-norm as an added penalty factor in the optimization problem. A basic Haar

wavelet based penalty term was successfully implemented in the optimization scheme to

get reconstructions in a CS framework, thereby opening the road to further exploring

multiple sparse domain incorporation in the image reconstruction process.

8.2 Contribution: Significance and Benefits

The primary focus of this thesis was to develop reconstruction algorithms to recover

complex-valued images under diffraction tomographic regime with varying limitations on

the available projection data. In particular, this thesis presents the following contribu-

tions:

• Algorithms were developed to exploit redundancy in DT projection data. This is

an efficient way to reconstruct complex valued images accurately under moderately

limited angular constraints.

• Total variation was successfully employed as a sparsity promoting norm under com-

pressed sensing formulation. The TV algorithm is simple to implement. Using it as

the l1-norm in a CS framework provides an efficient alternative for image recovery.

Reconstructions from as few as 15 projection sets and low coverage of 120◦ has
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been achieved. The algorithms performed accurately under noisy data proving their

robustness to measurement error and related perturbations.

• Use of multiple sparse domains in image recovery was explored briefly. This opens

up a huge potential of further research. Optimal exploitation of multiple sparse

domains would have applications in scenarios where the availability of projection

data is lower than that required in a general CS framework.

The benefits of this research are manifold, the salient ones are:

• The algorithms are applicable for reconstruction of complex valued objective func-

tions or images under the DT regime. This includes modalities such as ultrasonic

DT, microwave tomography, ODT etc.

• This research has multi-disciplinary applications such as biomedical imaging, mate-

rial characterization and structural health monitoring.

• The capability to reconstruct complex valued images is particularly of interest in

the present age when smart and artificial materials are increasing in popularity.

These are being designed and fabricated for use across a wide gamut of applica-

tions. Knowledge of the complex permittivity distribution (or refractive index etc.

depending on the application) is fast becoming a necessity for NDE applications

and material characterization.

83



8.3 Future Work

In the first part of the thesis, a generalized approach to exploit data redundancy in

DT was presented. The main idea was the introduction of weights based on cumulative

distribution functions to the Fourier space projection data. For a given dataset, a single

distribution function was used with a fixed set of parameters to exploit redundancy. As

an interesting future work, multiple parameter sets can be employed based on frequency

locations. An optimization problem can be set up to determine parameter sets based on

a particular νm in Fig. 3.1(d). This can enable application of independent and different

cdfs for each value of νm and can lead to further image improvements in the lower limits

of operation below 220◦ angular coverage.

In the second part of the thesis, DT reconstruction under a CS framework was per-

formed to recover complex valued images. In case of medical imaging, TV had been

successfully used as a regularization parameter for sparse reconstructions. So in a com-

pressed sensing based setup, employing TV as the l1 norm where the gradient magnitude

is a sparse representation of the image is a natural choice and implementation of the

method has been demonstrated. Outside TV, wavelets in general have found great suc-

cess in image compression and recovery. As can be expected, different applications might

find different forms of sparse representations. As a result, the sparsity promoting l1 norm

would also have to be changed. For specific applications, finding the most effective sparse

domains is an interesting and important research goal. This could be studied under the

next phase of this research. Generalized methods to extract most effective sparse domains

for complex-valued reconstruction would be of value across multiple disciplines. As an
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example, in this research, Haar wavelets have been used to demonstrate a basic platform

for using multiple sparsity promoting norms in the minimizing term of the optimization

problem. Numerous wavelets and filter databases are available today which can be broadly

classified into a few standard categories. It is logical to assume that the most effective

wavelet category would actually be determined by the type of application being devel-

oped and can be determined through investigation into the nature of the data features

associated with the problem at hand. Thus a procedure to select optimum wavelets or

filters based on the associated application would be an interesting avenue to explore with

benefits across multiple disciplines.
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Appendix A

Distribution Function based weight

generation

Gamma-cdf based weighting:

The gamma-cdf is defined as F (x) =
∫ x
−∞ f(t)dt, where f is the gamma probability

density function defined as:

f(t|a, b) =


1

Γ(a)ba
ta−1e−t/b, t ≥ 0,

0, t < 0.

(A.1)

where a > 0 and b > 0 are parameters, and Γ(a) =
∫∞

0 ta−1e−tdt is standard gamma-

function. As we can see that gamma-cdf has support on [0,∞), F (2α + π/2) < 1, which

does not meet (3.5). Therefore weights created using gamma-cdf in its original form will

be discontinuous at the boundary between A and B, and consequently at the boundary

between B and C of Fig. 3.1(d). One possible way to get a continuos weight is by

inputting a transformed argument. So for fixed νm ∈ [−ν0, ν0], we shall construct weights

by using

w(νm, φ) = F

(
tan

(
π

2

φ

2α + π/2

))
, (A.2)
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where F is the gamma-cdf as defined above.

Normal-cdf based weighting:

In case of normal-cdf, we used truncation method as follows:

w(νm, φ) =
F (νm|µ, σ)− F (0|µ, σ)

F (2α + π/2|µ, σ)− F (0|µ, σ)
, (A.3)

where µ ∈ (−∞,∞) and σ > 0 are parameters and

F (x|µ, σ) =
1√
2πσ

∫ x

−∞
e−(t−µ)2/2σ2

dt. (A.4)
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Appendix B

Non-linear Optimization Techniques

When we have an under-determined system, i.e. the number of unknowns is more than

the number of measurements, there is generally no unique solution. A typical example

would be the projection data from a limited angle (� 360o◦) tomography experiment.

The general approach to solving this type of systems is to find an ‘optimal’ solution from

the set of all probable solutions while obeying some constraints. These constraints are

either known a priori or known through experiment (i.e. measured data). This solution is

approximate and is reached through a series of steps or iterations which aim to minimize

a ’cost function’ or ’objective function’. This approach of reaching the most acceptable

but approximate solution forms the branch of computational science called optimization.

In our case, when tomographic image reconstruction is done from limited number of

projection data, iterative techniques are used which employ some form of optimization.

Thus this chapter is a brief note on optimization and some of the non-linear optimization

techniques used in this research. Consider a simple system of the form

Ax = b. (B.1)

If x∗ be an approximate solution to the problem, then often the corresponding residual

is defined as Ax∗ − b. The aim would be to minimize this residual. The ideal solution

89



would produce a zero residual. Let this residual be expressed as f(x) = Ax − b. In this

case, the cost function (without any other constraints) would be the residual and we have

the minimization problem as

min
x
f(x). (B.2)

Based on the characteristics and complexity of the system represented by A, this mini-

mization problem could be anything from a simple linear to highly non-linear system. For

many practical scenarios, incorporating all the requirements into this objective function

creates a complex function which needs to be minimized while conforming to the ‘known’

or experimental datapoints.

Linear systems:

Traditionally, a system is said to be linear if it obeys additivity (superposition) and scalar

multiplication (homogeneity). Mathematically, a function can be expressed in a general

form as

f(αx) = αf(x), f(x+ y) = f(x) + f(y) (B.3)

here f represents a general function or operator. If a system however complex, obeys

linearity, it can then be broken into a sum of many smaller and relatively simpler units.

A very complex problem can then be decomposed into an aggregate of smaller tractable

problems and solved independently. Thus it is always convenient if a system can be mod-

eled in a linear fashion.
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Beyond linearity:

Many complex real world problems are inherently non-linear and cannot be expressed

through linear approximations. As a result, non-linear mathematical theories have seen

tremendous growth over the last few decades. Several branches of mathematics e.g. fractal

theory, non-linear dynamics, chaos etc. have been developed. These tools in turn have

helped the development of new theories in pure and applied sciences. These developments

coupled with the advent of powerful computers with high computational capabilities led to

the development of many methods to tackle real-world problems. Nonlinear optimization

is one of the foremost techniques. An optimization problem is generally formulated as:

min
x

f(x), s.t. g1(x) = 0, g2(x) = 0...., gn(x) ≥ 0 (B.4)

.

Here, f is a scalar valued function which is being minimized subject to the constraint

equations and inequalities: g1, g2 etc. The presence of these constraints in effect incorpo-

rate a priori information and thereby limit the search space. This type of optimization is

called constrained optimization and is of fundamental importance in reconstruction tech-

niques. If the constraints are not present, then the procedure is termed unconstrained

optimization. Optimization is a process of finding an amenable solution from the feasible

space. Based on the search approach, optimization methods can be classified into direct

and indirect methods. The former enumerate the possible solutions and evaluate the
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object function for all sets to determine the best solution set. Common direct methods

include exhaustive search, the simplex method, random method, the Fibonacci search

and more. A complete treatment can be found in standard texts, [70], [71] etc. However,

direct methods are only efficient when there are small number of variables or in cases with

countable inputs. For continuous problems with complicated object functions, the imple-

mentation of these methods is unpractical. In the last few decades, the genetic algorithms

became an efficient member of direct optimization methods. This searching process ex-

ploited analogous concepts of gene mutations of organisms to select smaller populations

for evaluating the objective function. This results in highly improved efficiency of direct

search process. It has been applied to many real world datasets including microwave imag-

ing. Indirect methods mostly involve gradient based techniques in principle. If analytical

forms of the objective function exist, then the optimization steps are iteratively directed

using the gradient information. The popular methods under this category include the

steepest descent (SD) method, Gauss-Newton (GN) method, conjugate gradient (CG)

method, Levenberg-Marquardt (LM) method etc. The simplest among these is possibly

the steepest descent method whereas the method of conjugate gradients is one of the

mostly used across multiple disciplines because of it versatility and quick convergence. In

this work, both SD and CG methods have been used at different phases and hence they

are briefly described below. The theory and explanations have mostly been summarized

from [70] and [72]
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Steepest Descent Method

One of the very well established methods, the steepest descent method uses the negative

direction of gradient vector as the direction of minimization. Intuitively and geometrically

it makes sense. The gradient gives the direction of maximum increase of the function.

The negative gradient is the opposite direction and hence the direction where the fuction

will be minimized. The method starts with an initial trial point Xi and iteratively moves

along the steepest descent directions till an optimum point or convergence is reached. the

algorithm consists of the following steps:

1. Start with an arbitrary initial point Xi. Set iteration number i=1.

2. Find steepest descent direction as: Si = −∇fi = −∇f(Xi).

3. Find the optimal step length λ∗i :
∂f
∂λ |λ=λ∗= 0

4. Set Xi+1 = Xi + λ∗Si.

5. Check Xi+1 for optimality. If so, iteration is stopped, otherwise the loop is iterated

till convergence is reached.

Convergence: The stopping criteria of any design problem depends on the problem

itself and the design requirements. The iterations are stopped when either any or a com-

bination of the stopping criteria are fulfilled. Some typical stopping criteria could be:

1. The change in functional value between successive steps is small:

∣∣∣∣f(Xi+1)−f(Xi)

f(Xi)

∣∣∣∣ ≤ ε1

2. When change in the design vector between successive steps is small: |Xi+1 −Xi| ≤ ε2

3. When partial derivatives of the minimizing functional are small.

4. The maximum number of allowed iterations is reached.
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Conjugate Gradient Method

Steepest descent is a very simple, fast and easy to implement algorithm. It has found

success in a lot of applications. However, it is not a very fast algorithm and it can get

trapped in a local minimum. Another popular and robust technique which has been of

great importance in the field of optimization is the method of conjugate gradients. It

extends the method of steepest descent with great improvements. The fundamental prin-

ciple behind this method is the use of ‘conjugate directions’. This ensures that the method

will be quadratically convergent. This is very beneficial as it implies that the convergence

will be reached in n steps or less.

Conjugate Directions: A conjugate directions method can minimize a quadratic func-

tion within a finite number of iterations. Any general non-linear function can be well

approximated near its optimum point by a quadratic. So any quadratically convergent

method should be able to achieve a quicker convergence for general non-linear functions.

Definition- If A be an n × n symmetric matrix, the set of n vectors {Si} is said to be

conjugate with respect to A if STi ASj = 0, for all i 6= j, i = 1, 2, ..., n, j = 1, 2, ..., n

Orthogonal directions or unit vectors for cartesian co-ordinate systems would be a specific

case of conjugate directions with A = I. S is a set of n linearly independent vectors and

so they can form a basis, i.e. any vector X can be expressed as a linear combination of

the elements of S. Let us assume that we need to solve for the system Ax = b. Let X0

be the initial starting solution and X∗ be the true solution. The difference can also be
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expressed in terms of S, i.e.:

X∗ −X0 =
n−1∑
j=0

αjSj (B.5)

Multiplying both sides by STk A, on the left hand side we have

STk A(X∗ −X0) = STk (b− Ax0) = STk r0

and on the right hand side we have

STk A
n−1∑
j=0

αjSj = αkS
T
k ASk.

and hence,we can get

αk =
STk r0

STk ASk
. (B.6)

Then we can have an algorithm to solve AX∗ = b:

1. Pick Xk and A-conjugate directions Sk. Set iteration number k = 1

2. Set αk =
STk r0

ST
k
ASk

.

3. Set Xk+1 = Xk + αkSk.

4. Continue for n-iterations.

After n steps, then we should have Xn = X∗.

The process to generate a set of A-conjugate vectors is not too complex. It can be

done by starting with any set of linearly independent vectors V = Vk and then applying a

Gram-Schmidt transformation with respect to A. A standard stable numerical approach

is the following:
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1. Let S = V .

2. Then, compute ∀k, Sk+1 = Sk+1 −
∑k
j=1

STk ASk+1

STj ASj
Sj

The conjugate gradient method is a special case of the method of conjugate direc-

tions. Here the calculation of X at each stage is interlaced with the calculation of the

new Sk vector. The algorithm can be applied through these steps:

1. Let X1 be the initial guess. Let r1 = b− AX1 and S1 = r1.

2. For k=1,2,.. until convergence,

(a) Compute search parameter αk, the new iterate and residual

αk =
STk rk

ST
k
ASk

Xk+1 = Xk + αkSk

rk+1 = rk − αkASk

(b) Compute the new search direction

βk = −
STk Ark+1

ST
k
ASk

Sk+1 = rk+1 + βk§k

After K ≤ n steps, the algorithm terminates with rK = 0 and XK = X∗. Since the di-

rection Sk used here are A-conjugate, the process should converge for quadratic functions

in n-cycles or less. But for ill-conditioned quadratics, the method may require more cycles

for convergence. However, this method is superior to the steepest descent method in terms

of faster convergence and lower error bounds. This algorithms has been researched and

implemented on on a variety of problems. As a result many readily available CG-codes

can be directly incorporated into reconstruction algorithms. The CG iterations are suit-
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able for incorporating into TV minimization for image reconstruction. To compute the

CG iterations the gradient of the TV term has to be computed as well. In the expression

for TV in (7.1), to avoid a zero denominator in the TV term, an approximation which is

often employed is: ‖ Dn1,n2fd ‖≈
√

(Dh
n1,n2

fd)
2 + (Dv

n1,n2
fd)

2 + µ, where µ is a small

positive number. It can further be approximated as:

∇ ‖ Dn1,n2 fd ‖2=
Dh
n1,n2

fd

‖ Dn1,n2 fd ‖2
+

Dv
n1,n2

fd

‖ Dn1,n2 fd ‖2

−
Dh
n1,n2−1 fd

‖ Dn1,n2−1 fd ‖2
−

Dv
n1−1,n2

fd

‖ Dn1−1,n2
fd ‖2

.

(B.7)
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