PL INVOLUTIONS OF SOME 3.HMAFOLDS

Thesis for the Degree of Ph. D. RHCHCAR STATE UNNERSTY

MYUNG MIMYMG
1970

This is to certify that the
thesis entitled
"PL Involutions of Some 3-Manifolds"

presented by

Myung-Mi Myung

has been accepted towards fulfillment
of the requirements for
Ph.D._ degree in Mathematics

Date July 22, 1970

ABSTRACT

PL INVOLUTIONS OF SOME 3-MANIFOLDS

By
Myung Mi Myung

Let h_{1} and h_{2} be PL involutions of connected, oriented, closed 3 -manifolds M_{1} and M_{2}, respectively. Let a_{1} and a_{2} be fixed points of h_{1} and h_{2}, respectively, such that near a_{i} the fixed point sets of h_{i} are of the same dimension. Taking the connected sum of M_{1} and M_{2} along neighborhoods of a_{i}, one can define a PL involution $h_{1} \# h_{2}$ of $M_{1} \# M_{2}$ induced by h_{i}. Let M_{1} and M_{2} now be irreducible in addition. The question that under what condition a PL involution h on $M_{1} \# M_{2}$ is of the form $h_{1} \# h_{2}$ and related questions are studied when M_{1} and M_{2} are lens spaces (not necessarily having the natural orientations). Henceforth assume that M_{1} and M_{2} are lens spaces. Then the main results are the following:

Theorem 1: Let h be a PL involution of $M_{1} \# M_{2}$. If the fixed point set F contains an orientable surface, than F is a 2-sphere and $M_{2}=-M_{1}, h$ being the obvious involution in this case.

Myung Mi Myung

Theorem 2: Let h be a PL involution of $M_{1} \# M_{2}$. If the fixed point set F contains a projective plane, then $M_{1}=M_{2}$ is a projective 3-space.

The case $M_{1}=M_{2}$ is a projective 3 -space P_{3} is separately studied.

Theorem 3: Let h be a $P L$ involution of $P_{3} \# P_{3}$ with 2-dimensional fixed point set F. Then F is a 2sphere, the disjoint union of two projective planes, or the disjoint union of a Klein bottle and two points.

Theorem 4: In Theorem 3, if F is the disjoint union of two projective planes, then h is unique and $h=h_{1} \# h_{2}$ where h_{i} is the unique involution on M_{i} with a projective plane and a point a_{i} as the fixed point set.

PL INVOLUTIONS OF SOME 3-MANIFOLDS

By

Myung Mi Myung

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

$$
\begin{gathered}
9-6+61 \\
1-1+71
\end{gathered}
$$

To Hyo Chul

ACKNOWLEDGMENTS

The author wishes to express her gratitude to Professor K. W. Kwun for suggesting the problem and for his helpful suggestions and guidance during the research.

The last stage of this research was supported in part by NSF Grant GP-19462.

TABLE OF CONTENTS

Page
INTRODUCTION 1
CHAPTER
I. CODIMENSION ONE EMBEDDINGS OF MANIFOLDS 2
II. PL INVOLUTIONS OF SOME 3-MANIFOLDS 9
BIBLIOGRAPHY 32

Let M be a closed, orientable 3-manifold which is the connected sum $M_{1} \# M_{2}$ of two irreducible 3manifolds M_{1} and M_{2} and let h be a PL involution of M with a fixed point set F containing a non-orientable surface F_{0}. Since F_{o} is one-sided, it would seem that h cannot interchange M_{1}-part and M_{2}-part and h must be obtained from involutions h_{1} and h_{2} of M_{1} and M_{2}, respectively, by attaching two involutions along invariant neighborhoods of fixed points a_{1} and a_{2} of h_{1} and h_{2}, respectively, where near a_{i} the fixed point sets of h_{i} are of the same dimension.

Fremon [2] completely determined all possible fixed point sets of a PL involution of $S^{1} \times S^{2}$ and all PL involutions of $S^{1} \times s^{2}$. Kwun [4] proved that no lens space except the real projective 3 -space P_{3} admits orientation reversing $P L$ involutions and in case of P_{3} there exists a unique PL involution up to PL equivalences. Motivated by the fact that $s^{1} \times s^{2}$ covers $P_{3} \# P_{3}$, in this thesis, we consider the possibility of the above question, when M_{1} and M_{2} are isomorphic to lens spaces.

CHAPTER I

CODIMENSION ONE EMBEDDING OF MANIFOLDS

Let N be a connected n-manifold and M a connected (n - l)-manifold. Corresponding to an embedding $M \subset N$, we have a double covering $p: N_{1} \rightarrow N$ having the properties that (1) each component of $p^{-1}(M)$ is two sided and $p^{-1}(M)$ separates N_{1}, (2) $p^{-1}(M)$ is connected if and only if M is one-sided, (3) N_{1} is connected if and only if M does not separate N, and (4) if $N-M$ is connected, then $N_{1}-p^{-1}(M)$ has two components each of which maps homeomorphically onto N - M under p. Since we use the technique of "cutting along a submanifold" to obtain N_{1}, we will call $p: N_{1} \rightarrow N$ the double covering obtained from N by cutting along M.

In this chapter, we will show that no $k+1$ nonorientable, connected (n - l)-manifolds can be disjointly embedded in an orientable, connected n-manifold N whose homology group $H_{1}\left(N ; Z_{2}\right)$ with coefficient Z_{2} is a finitely generated group of rank k using the double covering, and examples will follow the theorem.

An embedding will mean an embedding as a closed subset. We frequently identify an embedding with its
image. Suppose that a connected (n - l)-manifold M is embedded in a connected n-manifold N. We say that M is one-sided if M does not separate any connected neighborhood of M. Otherwise, M is two-sided. It can be shown that every embedding is one-sided if M is non-orientable and N is orientable, every embedding is two-sided if M and N are orientable, and if M is one-sided, then N - M is connected.

Theorem 1.1: Suppose that N is an orientable, connected n-manifold such that its homology group $H_{1}\left(N ; Z_{2}\right)$ is a finitely generated group of rank k. Then no $k+1$ non-orientable, connected ($n-1$)-manifolds can be disjointly embedded in N.

Proof: Let A_{i} be a non-orientable, connected ($n-1$)-manifold, $f_{i}: A_{i} \rightarrow N$ an embedding, and $p_{i}: N_{i} \rightarrow N$ the double covering obtained from N by cutting along $f_{i}\left(A_{i}\right)$. Since $f_{i}\left(A_{i}\right)$ is non-orientable, $f_{i}\left(A_{i}\right)$ is one-sided, and hence $p_{i}^{-l}\left(f_{i}\left(A_{i}\right)\right)$ is connected. Therefore f_{i} cannot be lifted with respect to p_{i}. By the lifting theorem $f_{i_{\#}} \pi_{1}\left(A_{i}\right)$ is not contained in $p_{i_{\#}} \pi_{l}\left(N_{i}\right)$. Consequently, the composite

$$
\pi_{1}\left(A_{i}\right) \xrightarrow{f_{i_{\#}}} \pi_{1}(N) \xrightarrow{g_{i}} \pi_{1}(N) / p_{i_{\#}} \pi_{1}\left(N_{i}\right)=z_{2}
$$

($\pi_{1}(\mathrm{~N})$ has different base point for different i's.)
is an epimorphism, where g_{i} is the projection to the quotient group. Now g_{i} can be factored as

$$
\pi_{1}(N) \xrightarrow{h} H_{1}(N) \xrightarrow{g_{i}^{\prime}} Z_{2}
$$

where h is the Hurewicz homomorphism and $g_{i}{ }^{\prime}$ is an epimorphism. Hence we have a commutative diagram:

where $g_{i} " f_{i}$ is an epimorphism.
In order to complete the proof of the theorem, we need the following lemma:

Lemma 1.2: Suppose that N is an orientable, connected n-manifold such that its homology group $H_{1}\left(N ; Z_{2}\right)$ is a finitely generated group of rank k, and suppose that $f_{1}\left(A_{1}\right), f_{2}\left(A_{2}\right), \ldots, f_{t}\left(A_{t}\right)$ are mutually disjoint, non-orientable, connected (n - l)-manifolds embedded in N. Let K_{i} be the kernel of g_{i} " where $g_{i} ": H_{1}\left(N ; Z_{2}\right)+Z_{2}$ is the epimorphism which makes the following diagram commute:

Then $K_{i_{1}} \cap K_{i_{2}} \cap \ldots \cap K_{i_{s}}, l \leqslant i_{1}, i_{2}, \ldots, i_{s} \leqslant t_{\text {, }}$ $s \leqslant k$, and $i_{p} \neq i_{q}$ for $p \neq q$, is of rank $k-s$.

Proof: We use induction on s. Suppose $s=1$.
Let L_{i} be the image of $f_{i *}$ and K_{i} the kernel of g_{i} ". Then $L_{i} \not \subset K_{i}$ and $L_{i} \neq 0$, for all i, since $g_{i}{ }^{\prime \prime} f_{i}$ * is an epimorphism. On the other hand, since $N-f_{i}\left(A_{i}\right)$ is connected, $N_{i}-p_{i}^{-l}\left(f_{i}\left(A_{i}\right)\right)$ has two components each of which maps homeomorphically onto $N-f_{i}\left(A_{i}\right)$. Hence all $f_{j}, j \neq i$, can be lifted with respect to p_{i}, as $f_{j}\left(A_{j}\right) \subset N-f_{i}\left(A_{i}\right)$. By the lifting theorem, $L_{j} \subset K_{i}$ and $K_{i} \neq K_{j}$ for all $j \neq i$. since the exact sequence

$$
0 \rightarrow \text { ger } g_{i} " \rightarrow H_{i}\left(N ; \quad Z_{2}\right) \rightarrow Z_{2} \rightarrow 0
$$

splits, $H_{1}\left(N ; Z_{2}\right)=\operatorname{ker} g_{i} " \oplus Z_{2}=K_{i} \oplus Z_{2}$. Hence the rank of K_{i} is $k-1$ for all i.

Suppose that $K_{i_{1}} \cap K_{i_{2}} \cap \ldots K_{i_{r}}, l \leqslant i_{1}, i_{2}$, $\ldots, i_{r} \leqslant t, r \leqslant k$, and $i_{p} \neq i_{q}$ for $p \neq q$, is of rank k - r. Consider the isomorphism
where $K_{i_{r+1}} \cdot\left(K_{i_{1}} \cap K_{i_{2}} \cap \cdots \cap K_{i_{r}}\right)$ is the smallest subgroup of $H_{1}\left(N ; Z_{2}\right)$ containing $K_{i_{r+1}}$ and

Hence $\quad K_{i_{r+1}} \cdot\left(K_{i_{1}} \cap K_{i_{2}} \cap \ldots \cap K_{i_{r}}\right)$ must be of rank k. Since the rank of $\mathrm{K}_{\mathrm{i}_{r+1}}$ is $k-1$, the quotient group

$$
\frac{\mathrm{K}_{i_{r+1}} \cdot{ }^{\left(K_{i_{1}} \cap{ }^{k_{i_{2}} \cap} \cdots \cap{K_{i_{r}}}\right)}}{\mathrm{K}_{i_{r+1}}}
$$

is of rank 1. Therefore the above isomorphism and the fact that the rank of $K_{i_{1}} \cap K_{i_{2}} \cap \ldots \cap K_{i_{r}}$ is $k-r$ imply that $K_{i_{1}} \cap \mathrm{~K}_{\mathrm{i}_{2}} \cap \ldots \cap \mathrm{~K}_{\mathrm{i}_{r+1}}$ is of rank $k-(r+1)$. This proves the lemma.

We now return to the proof of the theorem.

Case I: $k=1$. Since $f_{1_{*}}$ is nontrivial, $H_{1}\left(N ; Z_{2}\right)$ $=L_{1}$ and $g_{1} "$ is an isomorphism. Hence if there were another $f_{2}\left(A_{2}\right)$ in N disjoint from $f_{1}\left(A_{1}\right)$, then $L_{2} \subset K_{1}=0$, which contradicts $L_{2} \neq 0$. Therefore no two non-orientable, connected (n - l)-manifolds can be disjointly embedded in N.

Case II: $k \geqslant 2$. Suppose that there are $k+1$ mutually disjoint, non-orientable, connected (n - l)-manifolds $f_{1}\left(A_{1}\right), f_{2}\left(A_{2}\right), \ldots, f_{k+1}\left(A_{k+1}\right)$ in N. since $L_{i} \subset K_{1} \cap K_{2} \cap \ldots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{k}$ and the rank of $K_{1} \cap K_{2} \cap \ldots \cap K_{i-1} \cap K_{i+1} \cap \ldots \cap K_{k}$ is 1 , we have $0 \neq L_{i}=K_{1} \cap K_{2} \cap \ldots \cap K_{i-1} \cap K_{i+1} \cap \ldots \cap K_{k}$ for all i and $L_{i} \cap L_{j}=0$ for all $i \neq j$. The fact that L_{1} and L_{2} are contained in $K_{3} \cap K_{4} \cap \ldots \cap K_{k}$, the rank of $K_{3} \cap \ldots \cap K_{k}$ is 2 , and $L_{1} \cap L_{2}=0$ imply $K_{3} \cap K_{4} \cap \ldots \cap K_{k}$ $=L_{1} \oplus L_{2}$. Repeating this process, we obtain
$K_{k}=L_{1} \oplus L_{2} \oplus \ldots \oplus L_{k-1}$. Since $L_{k} \notin K_{k}$ and the rank of L_{k} is $l_{1, ~} L_{k} \cap K_{k}=0$, which gives $H_{1}\left(N ; Z_{2}\right)$ $=K_{k} \oplus Z_{2}=K_{k} \oplus L_{k^{\prime}}$ since K_{k} is of rank k - l. Therefore $H_{1}\left(N ; Z_{2}\right)=L_{1} \oplus L_{2} \oplus \ldots \oplus L_{k-1} \oplus L_{k}$, and so $L_{k+1}=0$, which contradicts the fact that the rank of L_{k+1} is 1. This completes the proof.

Neuwirth [ll] proved a stronger version in case embeddings are nice, namely, if the disjoint union of k closed, non-orientable (n - l)-manifolds M^{n} can be semilinearly embedded in a closed, orientable n-manifold, then there exists a homomorphism of $\pi_{1}\left(M^{n}\right)$ onto the free product of k copies of Z_{2}.

Example 1: No two disjoint copies of P_{2} can be embedded in P_{3}. This will be used later.

Example 2: If $H_{1}\left(N ; Z_{2}\right)=0$, then no nonorientable codimension one manifold can be embedded in N, since $H_{1}\left(N ; Z_{2}\right)=0$ implies that N is orientable.

Example 3: No three disjoint copies of P_{2} can be embedded in $\mathrm{P}_{3} \# \mathrm{P}_{3}$.

CHAPTER II

PL INVOLUTIONS OF SOME 3-MANIFOLDS

Let h_{1} and h_{2} be piecewise linear (PL) involutions of connected, oriented, closed 3 -manifolds M_{1} and M_{2}, respectively. Let a_{1} and a_{2} be fixed points of h_{1} and h_{2}, respectively, such that near a_{i} the fixed point sets of h_{i} are of the same dimension. Taking connetted sum of M_{1} and M_{2} along invariant neighborhoods of a_{i}, one can define a PL involution $h_{1} \# h_{2}$ of $M_{1} \# M_{2}$ induced by h_{i}. Let h be a $P L$ involution of a manifold M, where M is isomorphic to the connected sum $M_{1} \# M_{2}$ of two connected, oriented, closed, irreducible 3-manifolds, with a fixed point set F containing a non-orientable surface F_{0}. Since F_{0} is one-sided, it would seem that h cannot interchange M_{1}-part and M_{2} part and that h must be of the form $h_{1} \# h_{2}$. Therefore, in this chapter, we will study under what conditions a PL involution h on $M=M_{1} \# M_{2}$ is of the form $h_{1} \# h_{2}$ and related questions when M_{1} and M_{2} are isomorphic to lens spaces (not necessarily having the natural orientation). This work was suggested by Kwun [6], who considered orientation reversing $P L$ involutions of lens spaces, and proved that no lens space except the projective 3 -space \mathbf{P}_{3}
admits an orientation reversing $P L$ involution and there exists exactly one orientation reversing PL involution on P_{3} up to $P L$ equivalences. In this case, the fixed point set is a projective plane P_{2} plus a point.

Definition 2.1: The connected sum $M_{1} \# M_{2}$ of two oriented 3-manifolds is obtained by removing the interior of a nice 3 -cell from each, and then matching the resulting boundaries using an orientation reversing homeomorphism.

Definition 2.2: A manifold M is isomorphic to a Manifold M^{\prime} if there is a piecewise linear, orientation preserving homeomorphism between them.

Definition 2.3: A manifold M is non-trivial if M is not isomorphic to a 3-sphere S^{3}.

Definition 2.4: A non-trivial manifold P is prime if there is no decomposition $P=M_{1} \# M_{2}$ where M_{1} and M_{2} are non-trivial.

Milnor [10] has shown that every connected, oriented, non-trivial, compact 3 -manifold M is isomorphic to a sum $P_{1} \# P_{2} \# \ldots \# P_{k}$ of prime manifolds and the summands P_{i} are uniquely determined up to order and isomorphism.

Definition 2.5: A 3-manifold M is irreducible if every nice 2-sphere in M bounds a 3-cell.

Milnor [10] also proved that with the exception of manifolds isomorphic to $S^{1} \times S^{2}$ a manifold is prime if and only if it is irreducible and $S^{1} \times S^{2}$ is prime, but it is not irreducible.

From now on, we assume that M_{1} and M_{2} are lens spaces and h is a $P L$ involution on $M_{1} \# M_{2}$ with a 2-dimensional fixed point set.

Remark: Since the fixed point set F is twodimensional, any PL involution h on M has the property that near each point of F it maps one side of F to the other side of F. For, if this were not true, one could find a small invariant 2-sphere S near F such that $\left.h\right|_{S}$ has a 2-cell as fixed point set. But this is impossible. Hence near each point of F, h reverses the orientation, and therefore h reverses the orientation globally.

Theorem 2.1: Let h be a PL involution of M $=M_{1} \# M_{2}$. If the fixed point set F contains an orientable surface, then F is a 2-sphere and $M_{2}=-M_{1}$, h being the obvious involution in this case.

Proof: We first show that if F contains an orientable surface, then F is a 2-sphere. Let S be an orientable surface contained in F. Then by the Alexander duality theorem [12], over the rationals Q

$$
H_{2}\left(M_{1} \# M_{2}-F ; Q\right)=H^{0}(F ; Q)
$$

Hence F separates $M_{1} \# M_{2}$ into two parts U and V. Since h has to interchange those two parts, $M_{1} \# M_{2}=2 \bar{U}$ and we have

$$
\bar{U} \xrightarrow{i} M_{1} \# M_{2} \xrightarrow{r} \bar{U}
$$

such that $r i$ is the identity, where i is the inclusion and r is a retraction defined as follows:

$$
r(x)= \begin{cases}x & \text { if } x \in \bar{U} \\ h^{-1}(x) & \text { if } x \in h(U)\end{cases}
$$

Therefore we obtain the exact sequence

$$
H_{i}(\bar{U} ; Q) \xrightarrow{i_{*}} H_{i}\left(M_{1} \# M_{2} ; Q\right) \xrightarrow{r_{\star}} H_{i}(\bar{U} ; Q)
$$

such that $r_{*} i_{*}$ is the identity. Since $H_{i}\left(M_{1} \# M_{2}\right)=0$ for $i=1,2, H_{i}(\bar{U} ; Q)=0$ for $i=1,2$. Therefore F must be a 2-sphere.

We now prove that $M_{2}=-M_{1}$. Since F is a 2sphere, F separates M. Let U and V be the two complementary domains of M - F. Attaching a 3-cell to each of U and V to eliminate the boundaries, we obtain two connected, orientable manifolds U^{\prime} and V^{\prime}, and M $=U^{\prime} \# V^{\prime}$. By the unique decomposition theorem for 3manifolds [10], either $U '$ is isomorphic to a 3-sphere or U^{\prime} is isomorphic to one of M_{1} and M_{2}. But U^{\prime} cannot be a 3-sphere. If it were, U would be a 3-sphere minus a 3-cell and V would be $M_{1} \# M_{2}$ minus a 3-cell, and
hence h would not be able to interchange U and V. Hence U ' is isomorphic to M_{1} or M_{2}. We may assume that U^{\prime} is isomorphic to M_{1}. Similarly, it follows that V^{\prime} is isomorphic to M_{2}. Since U and V must be interchanged by $h, V^{\prime}=-U^{\prime}$. Therefore, $M_{2}=-M_{1}$, and h is the obvious involution. This completes the proof.

Theorem 2.2: Let M be a connected sum $M_{1} \# M_{2}$, where M_{1} and M_{2} are isomorphic to lens spaces and h is a PL involution on M . If a real projective plane P_{2} is contained in the fixed point set F of h, then $M=P_{3} \# P_{3}$.

Proof: Suppose that h fixes a real projective plane A and assume that M has been triangulated so that h is simplicial and the simplicial neighborhood U of A is an invariant regular neighborhood of A. Moreover, we may assume that $\left.h\right|_{U}-A$ is fixed point free. Since A is 2-dimensional, near each point of $A \quad h$ maps one side of A to the other side. Hence $\left.h\right|_{\bar{U}}$ reverses orientation. Since U is orientable, but A is not, A is one-sided in U. Consider the double covering $p: M_{1} \rightarrow M$ obtained from M by cutting along A. Then $\mathrm{p}^{-1}(\mathrm{~A})$ is connected. Therefore, $\mathrm{p}^{-1}(\mathrm{~A})$ is isomorphic to a 2-sphere. $\mathrm{P}^{-1}(\mathrm{~A})$ separates M_{1} and $M_{1}-\mathrm{p}^{-1}(\mathrm{~A})$ has two components each of which maps homeomorphically onto

M - A. Therefore, $\mathrm{p}^{-1}(\mathrm{U})$ is a two-side collar neighborhood of $p^{-1}(A)$, and each component of its boundary, which is isomorphic to $\mathrm{p}^{-1}(\mathrm{~A})=\mathrm{s}^{2}$, maps homeomorphically onto the boundary of U. Hence (U, A) is homeomorphic to (N, A) where N is the mapping cylinder of a double covering $S^{2} \rightarrow A$.

Let U^{\prime} and $(N-U)^{\prime}$ be the connected manifolds obtained from U and $N-U$ by attaching a 3-cell to each. Then $M=U^{\prime} \#(N-U)^{\prime}$. By the unique decomposition theorem for 3-manifolds [10], U^{\prime} is isomorphic to S^{3}, M_{1}, or M_{2}. But U^{\prime} cannot be isomorphic to a 3-sphere, since the fundamental group $\pi_{1}\left(U^{\prime}\right)$ of U^{\prime} is Z_{2}, but $\pi_{1}\left(S^{3}\right)$ is trivial. Therefore we may assume that U^{\prime} is isomorphic to M_{1}. Now $\left.h\right|_{U}$ can be extended to an orientation reversing $P L$ involution h^{\prime} of $U^{\prime} \approx M_{1}$, since $U^{\prime}-U$ is a $3-c e l l$ and $\left.h\right|_{B d}(U): B d(U) \rightarrow B d(U)$ is fixed point free, and hence $h^{\prime} \mid U^{\prime}-U$ can be defined by the cone over $\left.h\right|_{B d(U)}$. Since no lens space except the projective 3-space P_{3} admits an orientation reversing PL involution, $\mathrm{U}^{\prime}=\mathrm{M}_{1}$ must be P_{3}.

From $U^{\prime}=M_{1}$ and the unique decomposition theorem,
we get $(N-U)^{\prime}=M_{2}$. Since $(N-U)^{\prime}-(N-U)$ is a
3-cell and $\left.h\right|_{B d}(N-U)$ is fixed point free, letting $h^{\prime \prime} \mid(N-U)^{\prime}-(N-U)$ be the cone over $\left.h\right|_{B d}(N-U)^{\prime}$ $\left.h\right|_{N}-U$ can be extended to a PL involution $h "$ of (N - U)', and moreover $h^{\prime \prime}$ is orientation reversing, since
$\left.h\right|_{B d(N-U)}$ reverses orientation. Therefore (N - U)' $=M_{2}$ must be P_{3}. Hence $M_{1}=M_{2}=$ a real projective 3-space P_{3}. This proves the theorem.

Henceforth assume that $M_{i}, i=1,2$, is a manifold isomorphic to a projective 3-space P_{3} and h is a PL involution on $P_{3} \# P_{3}$ with a 2-dimensional fixed point set. Since the case where a 2-dimensional component is an orientable surface has been taken care of, we have only to consider the case where each 2-dimensional component is non-orientable.

Lemma 2.3: Let h be a PL involution of $P_{3} \# P_{3}$. Then there exists a PL involution $h^{\prime}: S^{1} \times S^{2} \rightarrow S^{1} \times S^{2}$ such that the following diagram commutes

$$
\begin{aligned}
& s^{1} \times s^{2}-p^{\prime} s^{1} \times s^{2} \\
& P_{3}^{\#} p_{3} \xrightarrow{n} P_{3}^{\#} P_{3}
\end{aligned}
$$

where $p^{\prime}: S^{l} \times s^{2} \rightarrow P_{3} \# P_{3}$ is a 4-to-l covering projection.
Proof: Consider the covering space $\mathrm{S}^{1} \times \mathrm{S}^{2}$ of $P_{3} \# P_{3}$ and the usual 2-to-1 covering map $p: s^{1} \times s^{2}$ $\rightarrow P_{3} \# P_{3}$. Let $H=p_{\#} \pi_{1}\left(S^{1} \times S^{2}\right)$ and $G=\pi_{1}\left(P_{3} \# P_{3}\right)$. Then the index [G: H] of G modulo H is 2 , since p is 2-to-1. Suppose $h_{\#} H \neq H$. Since [G: H] $=\left[G: h_{\#} H\right.$] $=2$, neither $h_{\#} H$ contains H nor H contains $h_{\#} H$, and
moreover H and $h_{\#} H$ are normal subgroup of G. Let $L=H \cap h_{\#} H$. Then L is a normal subgroup of G, since L is the intersection of two normal subgroups, and $[\mathrm{G}: \mathrm{L}]=[\mathrm{G}: \mathrm{H}][\mathrm{H}: \mathrm{L}]$. We now show that $[\mathrm{G}: \mathrm{L}]=4$. Let $H^{\prime}=h_{\#} H^{\prime}$ Clearly $H^{\prime}=G$ and $H / L=H / H \cap H^{\prime}=H H^{\prime} / H^{\prime}$ $=G / H^{\prime}=Z_{2}$, which shows $[H: L]=2$. Consequently [G: L] =4. Furthermore, $h_{\#} L=h_{\#}\left(H \cap H^{\prime}\right)=H^{\prime} \cap H=L$. Hence by the lifting theorem, there is a $P L$ involution h^{\prime} on $S^{1} \times s^{2}$ such that $p^{\prime} h^{\prime}=h p^{\prime}$, where $p^{\prime}: S^{1} \times s^{2} \rightarrow P_{3} \# P_{3}$ is a 4-to-l covering projection. This proves the lemma.

We now show that the possible 2-dimensional nonorientable surfaces which can be fixed under a PL involution of $\mathrm{P}_{3} \# \mathrm{P}_{3}$ are a projective plane and a Klein bottle. Consider S^{n} as a suspension of S^{n-l} and let k_{n} be the simplicial involution of s^{n} that leaves s^{n-l} pointwise fixed and interchanges the suspension vertices, and define two involutions h_{1} and h_{2} of $s^{1} \times s^{2}$ by

$$
h_{1}(x, y)=\left(k_{1}(x), y\right), h_{2}(x, y)=\left(x, k_{2}(y)\right)
$$

Kwun [5] considered PL involutions of $S^{1} \times S^{2}$ and proved the following two theorems:

Theorem: Let h be a PL involution of $S^{1} \times s^{2}$ with homogeneously two dimensional fixed point set F. If F is not connected, then h is $P L$ equivalent to h_{1}.

Theorem: Let h be a PL involution of $S^{1} \times s^{2}$ with 2-dimensional connected fixed point set F and orientable orbit space. Then h is $P L$ equivalent to h_{2}.

Fremon [2] completed the work and proved that all possible fixed point sets of a PL involution of $S^{1} \times s^{2}$ are $s^{2} U s^{2}, s^{1} \times s^{1}, s^{2}$ plus two points, and a Klein bottle. Hence by the Lemma 2.3 we obtain:

Lemma 2.4: Let N be the connected sum $P_{3} \# P_{3}$ and h a PL involution of $P_{3} \# P_{3}$. Then all possible 2-dimensional, non-orientable components of a fixed point set F of h are a Projective plane and a Klein bottle. We shall first consider the case that a projective plane is fixed and show that, in this case, the fixed point set F is a disjoint union of two projective planes and h is uniquely determined.

Theorem 2.5: Let N be the connected sum $P_{3} \# P_{3}$ and h a PL involution of N. If a projective plane is contained in the fixed point set F, then F is the disjoint union of two projective planes.

Proof: Suppose that a projective plane A is contained in F and assume that the simplicial triangulation of N is such that h is simplicial, the simplicial neighborhood U of h is an invariant regular neighborhood of A, and $\left.h\right|_{U-A}$ is fixed point free. Then we
have seen that U is homeomorphic to P_{3} minus a 3-cell and $N-U$ is homeomorphic to P_{3} minus the interior of a 3-cell in Theorem 2.2. Moreover, we have seen that $\left.h\right|_{N}-U$ can be extended to an orientation reversing $P L$ involution h^{\prime} of P_{3} obtained from $N-U$ by attaching a 3-cell. Let F^{\prime} be the fixed point set of h^{\prime}. Then by the parity theorem and the Lefschetz fixed point formula, the dimension of F^{\prime} is either 0 or 2. But by work of Kwun [6], the dimension of F^{\prime} cannot be 0 , and F^{\prime} is the disjoint union of a projective plane and a point p. By the way we extended h to h ', the cone vertex must be an isolated fixed point. Hence p is the cone vertex, and p lies in the 3-cell attached to $N-U$ to obtain a P_{3}. Therefore $\left.h\right|_{N}-U$ has a projective plane as the fixed point set. Using the same argument for $\left.h\right|_{U}$ as above, we obtain that F is the disjoint union of two projective planes. This completes the proof.

Theorem 2.6: Let N be the connected sum $P_{3} \# P_{3}$ and h a $P L$ involution of N. If the fixed point set F of h contains a projective plane, then h is unique and h is of the form $h_{1} \# h_{2}$, where h_{i} is the unique PL involution on P_{3} with a projective plane and a point as the fixed point set.

Proof: By Theorem 2.5, F is the disjoint union of two projective planes. Let A and A^{\prime} be two projective
planes whose union is F. We may assume that h is simplicial and simplicial neighborhood U and U^{\prime} are invariant regular neighborhoods of A and A^{\prime}, respectively. Furthermore, assume that U is disjoint from $U '$. Then U and U^{\prime} are isomorphic to P_{3} minus a 3-cell, and by the unique decomposition theorem for 3-manifolds, N - (U U U') is isomorphic to S^{3} - two open 3-cells $=s^{2} x[0,1]$ such that $h\left(s^{2} x i\right)=s^{2} x$ i for $i=0,1,\left.h\right|_{N}-\left(U U U^{\prime}\right)$ is fixed point free, and
 that if f is any fixed point free involution on $S^{2} x[0,1]$ satisfying $f\left(S^{2} x i\right)=S^{2} x i$ for $i=0,1$, then there exists a homeomorphism $t: S^{2} x[0,1] \rightarrow S^{2} x[0,1]$ such that $t f t^{-1}=g$, where g is the involution on $s^{2} x[0,1]$ defined by $g(x, t)=(-x, t)$ for $x \in s^{2}$. $t \in[0,1]$ and $-x$ denotes the antipode of x. That is, there is a unique involution g on $S^{2} x[0,1]$ up to $P L$ equivalences. Hence it suffices to analyse $\left.h\right|_{U}$ and $\left.h\right|_{U}$ '• We now analyse $\left.h\right|_{U}$ as in Kwun [6]. Let 0 be the orbit space and let $f: \bar{U} \rightarrow 0$ be the orbit map. Then 0 is a compact 3 -manifold and the boundary components are $f(B d(U))$ and $f(A)$. Let V be a regular neighborhood of $f(A)$ in 0 disjoint from $f(B d(U))$. Let W be $f^{-1}(V)$. Then W is a neighborhood of A in U and f is 2-to-1 except on $f(A)$, since h is fixed point free on $\bar{U}-A$. We triangulate W in such a way that for each
simplex s in V, there corresponds two copies of s in W. By collapsing two corresponding simplices as we collapse s, we can collapse W to A. Hence W is a regular neighborhood of A in U, which is disjoint from $B d(U)$. Therefore $C l(U-W)$ is homeomorphic to $S^{2} x[0,1]$ on which h is fixed point free. By Livesay [8], the orbit space of $\left.h\right|_{C l}(U-W)$ is homeomorphic to $P_{2} x[0,1]$ with $P_{2} \times 1$ as $f(B d(U))$. Since V is a collar of $f(A)=P_{2}$, V is homeomorphic to $P_{2} \times[0,1]$. Therefore 0 is homeomorphic to $P_{2} \times[0,1]$ such that $P_{2} \times 0$ and $P_{2} \times 1$ correspond to $f(A)$ and $f(B d(U))$, respectively. We will construct a PL involution on U and show that for any two $P L$ involutions h_{1} and h_{2} on U, there exists a PL homeomorphism $t: U \rightarrow U$ such that $h_{1}=t^{-l} h_{2} t$. Consider a PL double covering $j: B d(U)=S^{2} \rightarrow A$. Then there exists only one non-trivial covering transformation g of j. Let $\left.h\right|_{B d}(U)$ be the covering transformation g. Then U is a mapping cylinder of j. Hence g can induce a $P L$ involution on this mapping cylinder in the obvious way. Let h_{1} and h_{2} be any two such $P L$ involutions on U and let g_{1} and g_{2} be orbit maps: $U \rightarrow P_{2} \times[0,1]$ corresponding to h_{1} and h_{2}, respectively, with $P_{2} \times 0$ corresponding to the fixed point set A. Since $g_{i} \mid U-A$ is a universal covering, there exists a PL homeomorphism t from $U-A$ to $U-A$ such that $g_{1}=g_{2} t$. Then t can be uniquely extended to a PL homeomorphism t : $U \rightarrow U$ such
that $g_{1}=g_{2} t$. But $t h_{1}=h_{2} t$ as t respects covering translation. This is true on $U-A$ and by continuity this is also true on U. Hence $h_{1}=t^{-1} h_{2} t$ and therefore there exists a unique PL involution of U up to PL equivalences.

The same argument applied to $\left.h\right|_{U}$, shows that there exists exactly one PL involution on U^{\prime} up to PL equivalences and $h \|_{U}$ is exactly the same type of involution as $\left.h\right|_{U}$. Therefore there exists a unique PL involution on N with a projective plane in the fixed point set.

Now $h=h_{1} \# h_{2}$, where h_{i} is the unique involution on P_{3} with a projective plane and a point as the fixed point set, since $\left.h_{l}\right|_{U}=\left.h\right|_{U},\left.h_{2}\right|_{U}=\left.h\right|_{U ' \prime}$ and $\left.h_{1}\right|_{P_{3}}-U\left(\left.h_{2}\right|_{P_{3}}-U^{\prime}\right)$ is the cone over $\left.h_{1}\right|_{B d}(U)$ $\left(\left.h_{2}\right|_{B d(U ')}\right)$. This completes the proof.

From now on we shall consider the case that F contains a Klein bottle and shall show that F is the disjoint union of a Klein bottle and two points. To prove this we need following lemmas:

Lemma 2.7: Let N be the connected sum $P_{3} \# P_{3}$ and let K be a Klein bottle contained in N and U a regular neighborhood of K in N. Then $\pi_{1}(N-U)=z$.

Proof: Suppose that U is a regular neighborhood of K in $P_{3} \# P_{3}$. Consider the double covering $p_{1}: N_{1} \rightarrow N$ obtained from N by cutting along K. Then $p_{1}{ }^{-1}(K)$ is connected and separates N_{1} into two components. Since N_{1} is orientable, $p_{1}^{-1}(K)$ is also orientable, otherwise $p_{1}^{-1}(K)$ cannot separate $\left.N_{1} \cdot p_{1}\right|_{p_{1}} ^{-1}(K): p_{1}^{-1}(K) \rightarrow K$ is 2-to-1. Hence $p_{1}{ }^{-1}(K)$ must be homeomorphic to $s^{1} \times s^{1}$. Now consider $p_{1}^{-1}(U) . p_{1}^{-1}(U)$ is a regular neighborhood of $p_{1}{ }^{-1}(K)$, since each component of $N_{1}-p_{1}^{-1}(K)$ maps homeomorphically onto $N-K$, and hence $p_{1}^{-1}(U)$ is a collar of $p_{1}^{-1}(K)$. Hence each component of the boundary of $p_{1}^{-1}(U)$ is homeomorphic to $S^{1} \times s^{1}$ and p_{1} maps $s^{1} \times s^{l}$ homeomorphically onto the boundary of U. Therefore $B d(U)$ is homeomorphic to $S^{1} \times S^{l}$. By the MeyerVietoris sequence

$$
\mathrm{H}_{2}(\mathrm{~N}) \rightarrow \mathrm{H}_{1}\left(\mathrm{~S}^{\mathrm{l}} \times \mathrm{S}^{\mathrm{l}}\right) \stackrel{f}{f} \mathrm{H}_{1}(\overline{\mathrm{U}}) \oplus \mathrm{H}_{1}(\mathrm{~N}-\mathrm{U}) \stackrel{G}{+} \mathrm{H}_{1}(\mathrm{~N}) \rightarrow 0
$$

we obtain

$$
0 \rightarrow z \oplus \mathrm{Z} \underset{\left(\mathrm{f}+\mathrm{Z}_{2}\right) \oplus \mathrm{H}_{1}(\mathrm{~N}-\mathrm{U}) \stackrel{\mathrm{q}}{+} \mathrm{Z}_{2}+\mathrm{Z}_{2} \rightarrow 0}{ }
$$

where f is one-to-one and the kernel of g is $f(Z \oplus Z)$. Therefore $H_{1}(N-U)$ is a group of rank 1 .
$\pi_{1}(N-U)$ is abelian. For, since $S^{l} \times S^{2}$ covers N in 2-to-1 fashion, $\mathrm{s}^{1} \times \mathrm{s}^{2}$ - a Klein bottle, which is homeomorphic to $R^{2} \times S^{1}$, covers $N-U$ 2-to-1. Hence we obtain an exact sequence

$$
0 \rightarrow z \neq \pi_{1}(N-U) \stackrel{q}{+} z_{2} \rightarrow 0
$$

Hence if we choose $a \in \pi_{1}(N-U)$ such that $g(a) \neq 0$ and a generator b in Z, then $\pi_{1}(N-U)$ is generated by a and b. Suppose $a b a^{-1}=b^{-1}$. We abelianize it. Then $1=a b a^{-1} b^{-1}=\left(a b a^{-1}\right) b^{-1}=b^{-1} b^{-1}=\left(b^{-1}\right)^{2}$. Hence $b^{2}=1$. And a is not of infinite order either, since $g\left(a^{2}\right)=g(a) g(a)=1$ implies that $a^{2} \in Z$, and therefore $a^{2}=1$ or $a^{4}=1$ in $H_{1}(N-U)$. Therefore $H_{1}(N-U)$ is finite. This contradicts the fact that the rank of $H_{1}(N-U)$ is 1 . Hence $\pi_{1}(N-U)$ is abelian, which implies

$$
\pi_{1}(N-U)=Z+\text { Torsion part. }
$$

Consider the covering space $S^{1} \times S^{2}$ of N. Since $s^{1} \times s^{2}$ minus a Klein bottle is homeomorphic to $R^{2} \times s^{1}$, we have a universal covering

$$
R^{2} \times R^{l} \rightarrow R^{2} \times S^{l} \rightarrow N-U .
$$

But no non-trivial finite group can act freely on a finite dimensional, contractible space. Hence $\pi_{1}(N-U)=Z$. This proves the lemma.

Lemma 2.8: Let N, K, and U be the same as in the Lemma 2.7. Then N - U is irreducible and is homeomorphic to $\mathrm{D}^{2} \times \mathrm{S}^{1}$.

Proof: Suppose N - U is not irreducible. Then there exists a nice 2-sphere which does not bound a 3cell. But every nice 2-sphere in N - U is a bounding 2-sphere, and actually every bounding 2-sphere bounds a 3-cell. Let S be any nice 2-sphere in $N-U$, and consider the following diagram:

Since $\pi_{1}(S)=0$, by the lifting theorem there exists I: $S \rightarrow R^{2} \times s^{1}$ such that $i=p i . \quad S$ separates $N-U$ into two parts W and V, and
$\pi_{1}(W \cup V)=\frac{\pi_{1}(W) * \pi_{1}(V)}{\pi_{1}(W \cap V)}=\frac{\pi_{1}(W) * \pi_{1}(V)}{\pi_{1}(S)}=\pi_{1}(W) * 1_{1}(V)$.

But by Lemma 2.7, $\pi_{1}(W U V)=\pi_{1}(N-U)=Z$. Hence $\pi_{1}(W)$ $=0$, which implies that $I(S)$ consists of disjoint copies of S in $R^{2} \times S^{1}$. Then it can be embedded in S^{3}. By the theorem of Alexander [1], it bounds a 3-cell and therefore S bounds a 3-cell. Hence N - U is irreducible.

Since N - U is an orientable, irreducible, compact 3-manifold with the fundamental group isomorphic to Z and the boundary is homeomorphic to $S^{l} \times S^{l}, N-U$ is homeomorphic to $D^{2} \times S^{1}$. This completes the proof.

Lemma 2.9: Consider $S^{1} \times S^{1}$ as the boundary of $D^{2} \times S^{1}$. Let $f: S^{1} \times S^{l} \rightarrow S^{l} \times S^{1}$ be a homeomorphism such that $f_{*}: \pi_{1}\left(S^{1} \times S^{l}\right) \rightarrow \pi_{1}\left(S^{1} \times S^{1}\right)$ is presented by

$$
\left[\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right]
$$

using canonical generators for $\pi_{1}\left(S^{1} \times S^{l}\right)$. Then f may be extended to a homeomorphism $\bar{f}: D^{2} \times S^{1} \rightarrow D^{2} \times S^{1}$.

Proof: By [9], isotopy classes of homeomorphisms of $S^{1} \times S^{l}$ are precisely isomorphism classes of $\pi_{1}\left(S^{1} \times S^{1}, *\right) \quad\left(\right.$ We disregard base points as $\pi_{1}\left(S^{1} \times S^{1}\right)$ is abelian.). Since extendability is an isotopy invariant, we may suppose that $f\left(e^{2 \pi i t}, e^{2 \pi i s}\right)=\left(e^{2 \pi i(t+q s)}\right.$, $\left.e^{2 \pi i s}\right)$. Define $\bar{f}\left(e^{2 \pi i t}, \rho e^{2 \pi i s}\right)=\left(e^{2 \pi i(t+q s)}, \rho e^{2 \pi i s}\right)$. This proves the lemma.

Theorem 2.10: Let N be the connected sum $P_{3} \# P_{3}$ and let h be a $P L$ involution of N. If a Klein bottle K is contained in the fixed point set F of h, then F is the disjoint union of a Klein bottle and two points.

Proof: Let U be an invariant regular neighborhood of K in N. Then by Lemma 2.8, $N-U$ is homemorphic to $D^{2} \times s^{1}$. Denote $h \mid D^{2} \times s^{1}=h^{\prime}$. Then either the fixed point set F_{h}, of h^{\prime} is of dimension 0 or 2, or h^{\prime} is fixed point free.

We shall show that, in the case that dimension of F_{h}, is 0 , the number of fixed points is 2 and shall rule out the case the dimension of F_{h}, is 2 and the case h^{\prime} is fixed point free.

Case I): $\operatorname{dim} F_{h^{\prime}}=0$. Suppose that h^{\prime} fixes $x_{1}, x_{2}, \ldots, x_{k}$ in $D^{2} \times S^{1}$ and no other point. We may assume that h^{\prime} is simplicial with x_{i} as vertices and that closed stars of x_{i} are mutually disjoint. Let M be obtained from $D^{2} \times S^{1}$ by removing open stars of x_{i}. Then $h^{\prime \prime}=\left.h\right|_{M}$ is a free involution on M reversing orientation of each boundary component of M. Then the Lefschetz number of $h^{\prime \prime}$ is $1+1-k+0=0$. Hence $\mathrm{k}=2$.

Case II): $\operatorname{dim} F_{h^{\prime}}=2$. Consider the double covering $p: S^{1} \times S^{2} \rightarrow P_{3} \# P_{3}$. Since $F_{h}, \cap B d\left(S^{1} \times D^{2}\right)=\varnothing, F_{h}$, is contained in the interior of $S^{l} \times D^{2}$, and hence $P^{-1}\left(F_{h}\right)$) is disjoint union of two 2-dimensional components and $p^{-1}\left(F_{h}\right)$ must be a fixed point set of a PL involution of $s^{1} \times s^{2}$. By Fremon [2] $p^{-1}\left(F_{h},\right)$ is the disjoint union of two 2-spheres, which implies that F_{h} is a 2-sphere. Since $S^{1} \times D^{2}$ is irreducible by Lemma 2.9, F_{h}, bounds a 3-cell. But the other side of F_{h}, cannot be a 3-cell, and therefore h^{\prime} will not be able to interchange those two parts. Hence the dimension of F_{h}, cannot be 2 .

Now in order to rule out the case F_{h}, is fixed point free, we need to see how the boundary $s^{1} \times s^{l}$ of U is attached to the boundary $S^{1} \times S^{1}$ of $S^{1} \times D^{2}=N-U$. Hence let $f: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$ be the attaching map and let a and b be the canonical generators of $\pi_{1}\left(S^{1} \times S^{1}\right)$ of $S^{1} \times s^{1}$ covering K and α and β the canonical generators of $\pi_{1}\left(S^{l} \times S^{l}\right)$ of $S^{l} \times S^{1}$ contained in $S^{1} \times D^{2}$. Let $p: S^{1} \times S^{l} \rightarrow K$ be the covering projection and $i: S^{1} \times S^{1} \rightarrow S^{1} \times D^{2}$ the inclusion. suppose $f_{\#}(a)$ $=p \alpha+q \beta$ and $f_{\#}(b)=r \alpha+s \beta$. We may assume that the determinant

$$
\left|\begin{array}{ll}
p & q \\
r & s
\end{array}\right|=1
$$

Since the covering projection p takes a to a and b to b^{2} with relation $b a b^{-1} a=1$, and the inclusion i takes α to c and β to 1 , we have

$$
\begin{array}{r}
\mathrm{z}_{2} * \mathrm{Z}_{2}=\pi_{1}\left(\mathrm{P}_{3} \# \mathrm{P}_{3}\right)=\left\{\mathrm{a}, \mathrm{~b}, \mathrm{c} \mid \mathrm{bab}{ }^{-1} \mathrm{a}=1, \mathrm{a}=\mathrm{c}^{\mathrm{p}}\right. \\
\left.\mathrm{b}^{2}=c^{r}\right\}
\end{array}
$$

with generators a, b, c and relations $b a b^{-1} a=1, a=c^{p}$, and $b^{2}=c^{r}$. Since $b c^{p_{b}}{ }^{-1} c^{p}=1$ and $b^{2 p}=c^{r p}, c^{r p}$ $=b\left(b^{2 p}\right) b^{-1}=b\left(c^{p}\right)^{r} b^{-1}=\left(b c^{p_{b}}\right)^{r}=\left(c^{-p}\right)^{r}=c^{-r p}$. Hence $c^{2 r p}=1$.

Case (i): The order of c is finite. Since $a=c{ }^{p}$, the order of a is also finite. But actually the order of a is infinite. For, consider the subgroup \{a\} generated by a. Since $b a b^{-1}=a^{-1}$ and $a=c^{p}$ commutes with c, \{a\} is a normal subgroup of $Z_{2} * Z_{2}$. Therefore we obtain

$$
0 \rightarrow\{a\} \not f z_{2} * z_{2} \stackrel{g}{\rightarrow} z_{2} * z_{2} /\{a\} \rightarrow 0
$$

which is exact. Hence $Z_{2} * Z_{2} /\{a\}$ is presented by

$$
\begin{aligned}
& \left\{a, b, c \mid b a b^{-1} a=1, a=c^{p}, b^{2}=c^{r}, a=1\right\} \\
= & \left\{b, c \mid b b^{-1}=1, c^{p}=1, b^{2}=c^{r}\right\} \\
= & \left\{b, c \mid c^{p}=1, b^{2}=c^{r}\right\} .
\end{aligned}
$$

Since $p s-r q=1, c^{p s} c^{-r q}=c$. On the other hand, $c^{p s} c^{-r q}=\left(c^{p}\right)^{s} c^{-r q}=c^{-r q}=\left(c^{r}\right)^{-q}=\left(b^{2}\right)^{-q}=b^{-2 q}$. Hence $b^{-2 q}=c$. Therefore $Z_{2} * z_{2} /\{a\}$ is generated by \bar{C}, where \bar{c} is the image of c under the projection. Since $Z_{2} * Z_{2}$ G $\overline{\mathrm{C}}=\mathrm{Z}_{2} * \mathrm{Z}_{2} /\{\mathrm{a}\}$ can be factored through $z_{2}+z_{2}$, we obtain

where g^{\prime} is onto. Hence $\{\bar{c}\}=0$ or Z_{2}. But $\{\bar{c}\}$ cannot be trivial, since $Z_{2} * Z_{2} \neq\{a\}$, which implies $\{\bar{c}\}=Z_{2}$ is finite. Consequently, $\{a\}$ must be infinite,
which shows that the order of a is infinite. Therefore c cannot be of finite order.

Case (ii): The order of c is infinite. Since $c^{2 r p}=1$, $r p=0$, which implies either $r=0$ or $p=0$. But p cannot be 0 . For, if $p=0$, then we would have

$$
\mathrm{z}_{2} * \mathrm{z}_{2}=\left\{\mathrm{b}, \mathrm{c} \mid \mathrm{b}^{2}=\mathrm{c}^{\mathrm{r}}\right\}
$$

Hence we could define a homomorphism $\gamma: Z_{2} * Z_{2} \rightarrow Z$ as follows:

$$
\gamma(b)=r \text { and } \gamma(c)=2
$$

which is impossible. Therefore $r=0$, and consequently we obtain that $p=s= \pm 1$. We may further assume that $p=s=1$, and have that $f_{\#}$ is presented by

$$
\left[\begin{array}{ll}
1 & q \\
& \\
0 & 1
\end{array}\right]
$$

Considering $S^{1} \times S^{1}$ as the double covering space of K and t as the non-trivial covering transformation of the covering projection, $t_{\#}: \pi_{1}\left(S^{l} \times S^{l}\right) \rightarrow_{1}\left(S^{l} \times S^{l}\right)$ is presented by

$$
\left[\begin{array}{cc}
-1 & 0 \\
& 1
\end{array}\right]
$$

and we have the following commutative diagram

where $h^{\prime}: S^{l} \times S^{l} \rightarrow S^{1} \times S^{l}$ is a PL involution of $S^{1} \times S^{l}$ considered as the boundary of $s^{1} \times D^{2}$. Consequently, $h^{\prime} \#$ is presented by

$$
\left[\begin{array}{rr}
-1 & -2 q \\
0 & 1
\end{array}\right]
$$

and by Lemma 2.9, h^{\prime} can be extended to a PL involution h^{\prime} on $S^{1} \times D^{2}$, and $h_{\#}^{\prime}=\pi_{1}\left(S^{1} \times D^{2}\right) \rightarrow_{1}\left(S^{1} \times D^{2}\right)$ sends 1 to -1 , which implies that the Lefschetz number is not 0. Therefore h^{\prime} cannot be fixed point free.

Hence F is the disjoint union of a Klein bottle and two points. This proves the theorem.

Remark: The uniqueness question for h in case F is the disjoint union of a Klein bottle and two points is not settled. If h is unique, then $h=h_{1} \# h_{2}$.

For, let $F_{h_{i}}$ be the disjoint union of a projective plane A_{i} and a point p_{i} which is the fixed point set of h_{i}. Taking the connected sum $P_{3} \# P_{3}$ along invariant neighborhood of a_{i}, where $a_{i} \in A_{i}$, we obtain a PL involution $h_{1} \# h_{2}$ whose fixed point set $F_{h_{1}} \# h_{2}$ is the disjoint union of a Klein bottle and two points ($A_{1} \# A_{2} U\left\{p_{1}, p_{2}\right\}$).

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] J. W. Alexander, On the subdivision of 3-space by a polyhedron, $\overline{6-8}$ Proc. Nat. Acad. Sci. U.S.A. 10(1924),
[2] R. L. Fremon, Finite cyclic group actions on $S^{1} \times s^{n}$, Thesis, Michigan State University, 1969.
[3] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
[4] K. W. Kwun, Non existence of orientation reversing involutions on some manifolds, Proc. Amer. Math. Soc. 23(1969), 725-726.
$M_{\text {Mich. }} \quad$ Math. J. $\frac{\text { Piecewise linear involutions of } \mathrm{s}^{1} \mathrm{x} \mathrm{s}^{2} \text {, }}{}$
volutió Scarcity of orientation reversing PL involutions of lens spaces, to appear.
[7] G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. 72(1960), 603-611.
three' sphere, Ann. of Math. $78(1963), 582-593$.
[9] W. Mangler, Die Klassen von topologischen Abbildungen einer geschlossenen Flache auf sich, Math. Z. 44 (1939), 541-554.
[10] J. Milnor, A unique decomposition theorem for 3manifolds, Amer. J. of Math. 84(1962), 1-7.
[11] L. Neuwirth, fn groups and imbeddings of n-compleces in ($n+1$)-manifolds, Bull. Amer. Math. Soc. (1964), 737-738.
[12] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

