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ABSTRACT

NONLEPTONIC DECAYS OF HYPERONS

BY

Yoshikazo Ernesto Nagai

Ever since the techniques of current algebra were

first applied to nonleptonic decays of hyperons, each new

effort to calculate the s- and p-wave amplitudes for these

decays has led to more numerical puzzles than would seem

reasonable for such apparently simple processes.

We present a new analysis of the problem by ap-

plying dispersion relation techniques to the scattering of

a spurion from a hyperon. In a particular combination of

amplitudes, the scattering process formally reduces to the

weak decay process in the limit of vanishing four—momentum

of the spurion. In this approach the Regge behavior of the

scattering amplitude at high energies requires one subtrac-

tion in the dispersion relation, the subtraction point be—

ing chosen such that the calculable soft-pion amplitude

gives the subtraction constant. Then the low-mass baryon

pole contribution is separated from the dispersion integral

with the remaining part of the integral coming from higher-

mass resonances. Our method of evaluating this latter reso-

nance contribution consists in assuming Regge behavior for

the scattering amplitude at high energies and extrapolating

this form of amplitude to the lower energy region. In this
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way the result of the higher—mass integration is just the

real part of the Regge amplitude from the t-channel ex-

changes. This approach has its justification in the con-

cept of local duality which states that the Regge amplitu—

de, when extrapolated to lower energies, represents the

true amplitude in an average sense.

The addition of the resonance contribution to

the soft-pion—plus-pole amplitude increases the number of

adjustable parameters to four. The numerical values of

these parameters are then found by a xz-fit to the experi-

mental data.

As a further test of our analysis we make predic-

tions for the amplitudes of the two-body radiative weak de-

cays of hyperons. These decays are closely related to the

nonradiative ones via low-energy theorems.

The main results can be summarized as follows:

(a) Our fit to the experimental pionic decay values is a

considerable improvement over that of previous work. (b)

The usual neglect of the higher-mass baryon resonances is

found to be unwarranted for the s-wave. However, it is

found to be fairly good for the p-wave. (c) A relatively

large violation of unitary symmetry is present. (d) Octet

dominance breaking is needed to explain the observed value

A(£:)=0. (e) The available experimental information on ra-

diative weak decays is in excellent agreement with our cal-

culation.
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I . INTRODUCTION

Since the historical paper of Lee and Yang on pa-

rity nonconservation,l weak interaction processes have been

found to be a rich source of symmetry breaking. Apart from

Lorentz invariance and the conservation of electric charge

and baryon number, weak interactions appear to violate ev-

ery symmetry that has been found to hold in strong interac-

tions. Do these violations follow a definite pattern? Is it

a large effect or merely a small correction?

2’3 of weak interactionsThe currentxcurrent theory

provides a framework for the investigation of these ques-

tions. This theory emerged soon after parity nonconserva-

tion had been discovered; since then it has been modified

to some extent, but its basic hypothesis remains intact.

Namely, that all weak interactions, be it leptonic, semi-

1eptonic or nonleptonic, are generated by the interaction

of a Charged current with itself. Thus the general weak Ha-

miltonian in the currentxcurrent picture has the form

18 -—G‘ 1(JXJ+X+J:JX)° (1)

”—52

The weak current JA consists of a hadronic part, J?, and a

l
leptonic one, JA' Both of these terms are equal admixtures



of vector and axial-vector components so that they have

well—defined properties with respect to space-time trans-

formations. In addition, the conserved vector current(CVC)

hypothesis4 establishes a simple relationship between 5’,

the vector component of J2, and the electromagnetic current

Jim; this latter current is known to behave in a well-de-

fined way with respect to internal symmetries, and so .?A

must do likewise. Similarly, the hypothesis of a partially

conserved axial-vector currents (PCAC) relates the diver-

gence of 55, the axial component of 1?, to the meson field

and thereby indicates specific symmetry properties for 5?.

A far reaching extension of these ideas is the

identification of Jaand I: with the elements of a Lie alge-

bra.6 The success obtained by Adler and Weisberger7 in cal-

culating the renormalized axial-vector coupling constant

tends to confirm this identification, and it lead us to be-

lieve that symmetry is an essential ingredient for a dyna—

mical theory of weak interactions.

Nonleptonic decay is an ideal application for

such a theory. From the point of view of internal symme-

tries, most decay modes are different charge states of a

few basic processes, and their amplitudes can be correlat—

ed by means of the transformation properties of the inter-

action Hamiltonian. If the hadronic current is of the Ca-

bibbo type,8 then the nonleptonic interaction has specific

transformation properties in SU(3), and these properties



are sufficient to make a number of important predictions.

Among the nonleptonic processes, the two-body

nonleptonic decays of hyperons have relatively accurate

experimental information which makes the confrontation with

the theory less ambiguous. The following decays will be

considered:

A3: A—DP‘i'fl-

ZZZ Z'—’r\+n'

Z2“- Z*-—+ p+n° <2)

Ziizhan+HI

:5: 2‘» AMP

Because all baryons involved in these decays belong to an

SU(3) octet, we can regard them as multiplet decays of a

single one:a+8+n, with spin-parity assignment: %f+-%++O-

Consider the decay of a at rest. Conservation of total an—

gular momentum requires that the only partial waves allowed

in the final state are {=0 and {=l, i.e., s- and p-wave

only. The intrinsic parity of both a and B is +1 and that

of the pion is ~l. Then the parity of the final state is

—(-1#’ so that the s-wave decay amplitude is parity vio—

lating (pv) and the p-wave is parity conserving (pc).

According to the notion of the universality of

the currentxcurrent form of weak Hamiltonian, the nonlep—

tonic Hamiltonian flNL is proportional to the strangeness-

changing part of the symmetric product of the Cabibbo
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current, JA, with itself, expression (1). Since J1 and J:

belong to the same octet of currents in the SU(3) group,9

the ‘XNL can only belong to the completely symmetric repre-

sentation in the direct product decomposition,

Beasleeseaaeloeféefl. (3)

The symmetric representations are l, 85' and 27. The first

has only a Strangeness preserving term, and since we are

interested in strangeness—changing nonleptonic decays,£KNL

can only transform as BS and 27. It is empirically known

that the 27 part is small compared to the part coming from

85’ This enhancement of the BS constitutes the so-called

octet dominance,lo an extension of the isospin AI=l/2

rule.11

The first success along the line of making full

use of symmetry properties was accomplished by Suzuki and

by Sugawara in their current algebra study of the s-wave

hyperon decays.12.Using PCAC, the algebra of currents, and

SU(3) symmetry, they derived the AI=l/2 rule for A,E de-

cays, the pseudo AI=l/2 rule for Z decays, and the pseudo

13
Lee-Sugawara relation. The extension of the same proce-

dure to p-wave decays was considerably clarified by Brown

and Sommerfield,14 and others;15 they confirmed the previ-

ous calculation of the s-wave amplitudes and, furthermore,

found that the p—wave amplitudes can be computed in terms

of the parameters appearing in the s-wave amplitudes. The



predicted values of the p-wave amplitudes, however, did

not compare well with experiment. In general they were

found to be two or three times smaller than the observed

values. In view Of this discrepancy for the p-wave, Kumar

and Pati, and Itzykson and Jacob16 attempted to fix the p-

wave while trying to maintain the apparent success of the

s-wave calculations. They incorporated certain corrections,

of the order of AM/2M compared to the Born terms, that

were dropped by Brown and Sommerfield on the grounds that

these were small. Also terms representing unitary symmetry

breaking, previously neglected, were added. Quantitatively

the agreement with experiment was found to be slightly bet-

ter, but still not good enough. Several other refinements

17-19
to the theory have been proposed from time to time,

none of them, however, really convincing.

Meanwhile Okubo20 attempted a new approach to the

problem of the simultaneous description of both the s- and

p—wave amplitudes by applying dispersion relation techni-

ques to the scattering of a spurion from a hyperon. The

scattering process formally reduces to the decay process

in the limit of vanishing four-momentum of the spurion. In

this approach Regge behavior21 of the scattering amplitude

at high energies requires one subtraction to the dispersion

relation in the energy, the subtraction point being chosen

such that the calculable soft-pion amplitude gives the sub-

traction constant. Next the low-mass baryon pole contribu—



  

 

 



tion is separated from the dispersion integral, the remain-

ing part of the integral coming from the higher-mass reso—

nances. Difficulties in evaluating this latter resonance

contribution with a minimum of free parameters has previ-

ously led to its neglect without justification.

We propose, within the scheme of currentxcurrent

weak interaction and octet dominance, to implement Okubo's

dispersion approach by making further use of the Regge the-

ory. Our method of evaluating the resonance contribution

consists in assuming Regge behavior for the scattering am-

plitude at high energies and extrapolating this form of

amplitude to the lower energy region. In this way the re-

sult of the higher-mass integration is just the real part

of the Regge amplitude from the t—channel exchanges,

slightly modified due to the once-subtracted form of the

dispersion relation. This approach has its qualitative jus-

tification in the concept of local duality22 which has

been explored in the realm of high—energy phenomenology.

Simply stated, local duality says that the Regge amplitude,

when extrapolated to lower energies, reproduces the true

amplitude in an average sense. The addition of the reso-

nance contribution to the soft-pion-plus-pole amplitude in-

creases the number of adjustable parameters to four. The

numerical values of these parameters are found by fitting

the experimentally determined amplitudes.

As a test of our approach we also consider the



two—body radiative decays of hyperons. These processes are

Closely related to the nonleptonic decays which will be

referred as nonradiative decays of hyperons when dealing

with the radiative processes. Insufficient experimental in-

formation on these radiative weak decays has prevented the

selection of the best model among more than a half-dozen

proposed since the first papers on the subject appeared

more than a decade ago.23'24 All of these models predict

decay rates and branching ratios that are in rough agree-

ment with each other and with the available data. However,

the first experimental determination25 of the asymmetry

parameter a for £++p+y gave the unexpected result a=-l.03

:g:2§, much larger than the theoretical predictions. The

soft-pion-soft-photon approach, considered by Ahmed,24 has

previously led to a value for the asymmetry parameter con-

sistent with the experimental value given above, but at the

expense of an internal inconsistency in the calculation.26

When the inconsistency is removed, Ahmed's calculation

also yields a negligible asymmetry parameter like the other

models. It is interesting, therefore, to test our results

for nonradiative decays against the above experimental num-

ber, and also make predictions for the other radiative de-

cays.



II. HAMILTONIAN AND INVARIANT DECAY AMPLITUDES

The starting point in most calculations of weak

decay amplitudes is the specification of the effective Ha-

miltonian responsible for the decay; the choice is not

unique. Here we consider the most popular nonleptonic weak

interaction Hamiltonian, the currentxcurrent type, usually

written as

:38 = .9. JIJ" , <1)
NL E

where C=l.OXl057M: is the universal Fermi constant. The

factor l//2 appears for historical reasons, and JA is now

the hadronic Cabibbo current8 assumed to transform like an

octet of SU(3). This current is postulated to be made up

of charged currents only (in contrast to charged plus neu-

tral currents), both strangeness preserving and changing:

x >- A 5*. 5'" K , A s) . 5) .

J =(3’, ”fl-3", —1§z)cose+(3~:+13’5 - 3; -z§5 )sme . (2)

The superscript 5 stands fer axial—vector current and the

absence of it specifies the vector current; the subscripts

denote the components of an octet; and 6 is the Cabibbo

angle assumed to be the same for vector and axial—vector

currents.





Under the combined operation of charge conjuga-

tion and parity (CP), JA goes to J: so that we obtain ex-

plicit CP invariance if we Choose the weak Hamiltonian in

the symmetric form

56:9.

Ia
NL

+ x t) + x

.5ij +JAJ )EEGELJAJ 1s (3)

instead of expression (1). Because JA and J: belong to an

octet of currents in the SU(3) symmetric scheme, the sym-

metrized Hamiltonian (3) can only belong to the completely

symmetric representation in the direct product decomposi—

tion of the two octets. Among the symmetric representations

1, 8S and 27, the first has only a strangeness preserving

term. Therefore in the case of strangeness changing nonlep-

tonic decays,.fi can only transform as 8S and 27. Further—
NL

more, we consider the octet dominance approximation.

In general an octet may be defined by its commu-

tation relations with the vector octet charge:27

3 O

The set of operators 01(x) form an octet if

= I, O “X .[Fk(x.),0{(x)]_ {Hm m( ) (5)

Therefore for currents I: and fix to be octets we require

x . , A

[Fk(x.),f{(x)1= 1mm IMO) , (6a,
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5x , 5)

[kax I, m]_ = qum 3mm . (6b)

To preserve the complete symmetry between vector and axial-

vector currents we postulate6 in addition that

x . sx
[F:(xo), T,(x)I_ = lIktm Im (A) , (6c)

5). . >.

NEW). 3r, I- = L Ium I,“ IX) - (6d)

Hamiltonian (3) is a sum of products of octet vectors; it

can be shown to be an octet tensor of second rank. To see

more explicitly the tensor nature of the nonleptonic Ha—

miltonian, it is convenient to define the following quan—

tities:

th=[3’m I?“ 3:: 37:312. ’

PV («5% 5 X (7)

T SI? jt+gkxyt15A

A . . .

In the product JIJ , With JA given by (2), the term c0526 15

TPC‘I’ T:C TPV- T?V ’II‘T‘X 3.: ‘- 312* 31)) + [(32) 3’25).— 3.5 $3)

II 11 22
2A 1

'ikiflx’fisi IizII'iU’i Task-$2131“). (8)

The pieces in parenthesis give no contribution under sym—

metrization so that we are left with

(C0519 Ierm OI [JXJAII5): ZI +T::)- 2. IT:;’+T::) .
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Similar results for the other terms are

(smze Ierm o; LEWIS) = 2(Tjj +T§§)—2(T§’Z+T::)

(sine cose term OI [JJVIJ:4(T::+T::)_
_4(T:’:+T21) .

We can therefore write the nonleptonic Hamiltonian as

PC ?V

A = film—16m (9)
ML

where

PC G pg PC, 2 PC. PC .2 PC PC .

flNL‘EIHH I Tzz)cos 9+ITM+TSSIStn 9+ 2(T‘4+T25)smeco59] (10)

and £K§Z is identical to its: except for the replacement

TPC PV

kl k1

tensors by proving that they satisfy the following rela-

of the label PC by PV. Now, and T can be shown to be

tions:

9(— '_ - PC , - pg

[Fr(*°‘»Temm]-* rim Tnmxx) +1 IkmnT (x) ,
In

PV

tn

(X)
)

5 PC. - PV .

[Fk(*o).T{m(x)I--“ I IN“ Tmm + 1 “MT

(11)

PV . 9v . PV

[Fk(x°)'Tlm(X)]‘= l Ihln TnmU) + I Ihmn Tin (x) ‘

5 PV . pc . PC

[F‘l(x°)’ TIm(X)]' - LIAIN TIM“0 + l I'hmu TIn (x)

From the above tensor defining relations it follows that

5 PC PV 5 PV _’ PC

[FK'TQm 3":[FIL'TIMI' , [Fk’Tlm]-- [Fk’Tlml‘ . (12)

Note that 16$: and J{§Z are constructed from identical
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combinations of Ti; and TEX respectively. From this fact

and Eq.(12) we get

IF: :iL = [@1821]- [Fifi‘m]; [Prim], (13))

so that

[FZ’file-z'IZF
h’flNLL . (14)

Equation (14) is a basic one for the successful application

of current algebra techniques to weak interactions.

We now proceed to consider the specific case of

nonleptonic decays of hyperons. Let us simply write it for

the weak Hamiltonian density responsible for the decay of a

hyperon a into a baryon B and a pion n:

a I

one)» [mew n (q) . (15)

Here p, p' and q' denote the four-momentum of the respec-

tive particles, and a is the isospin index of the pion. We

also denote the octet indices by a and B.

The S—matrix for process (15) to first order in

weak interaction is

S 2 1-‘1Id4x fax) (16)

and its matrix element between initial and final states

(Ftp) Tia(q')\S-lloup)> = -t IdIX (PW) ‘lTa‘Iq’Ha‘aUIMPD . (17)
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By writing %(x) in terms of the displacement (four-momen—

tum) operator P,

th -iP.x

TKO) 7- C 356(0) 5

we obtain

<p(p’)fla(q')\S-1I°<IP)> =—i(2W)4$‘((>’+q’—p)<p(p'>na(q'>t:fi((o)lo((p)> . (18)

The most general form for the matrix element (18) consis-

tent with Lorentz invariance can be written as a linear

combination of the five basic types of interactions: sca-

lar, pseudoscalar, vector, axial—vector, and tensor. Be-

cause of the Dirac equation, the last three types reduce

to either scalar or pseudoscalar. Hence the most general

form for the matrix element of 1&0) is

(Ftp’)1Ta(Q')I:r’{(o)lo((p)> = .L 1 1 “fi(pr3(A‘ ..
_

(21191 (2 0(2)” N. “P P“

 

153;)wp) (19)

where Naa(Ea/Ma)l/2, Ea=(P2+M2 1/2, and A, B are invariant

(1

functions of the Mandelstam variables:

fir-(PI‘I‘Q’ylez ,

t = n)“ W“ = q“, <2o>

u=(P*q’)2: P'z' .

If all three particles are on the mass-shell we have s=M:,

t=m:, u=M§ with the implication that the invariant amplitu-

des A and B are constants. A complete theory of weak
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interactions should allow a calculation of these amplitudes

in terms of the masses involved. Note that A is the ampli-

tude for the production of the pion in the 5 state (pv) and

B is the one with the pion in the p state (pc).

It will be convenient to define the amplitude

' I2 .32 , a ,

M=—t(2n) (Zqo) NNNP <p(p)fl (q)li((o)lo((p)) (21)

so that

M:— 171W) (A - XSBHMP) . (22)

Then the decay rate is given by

f‘: .Lb [fie dIP' £33 (2n)4 24(p’+q’vp) IMI2 . (23)l

7- (zn) EP zq;

Performing the trace calculations and integrating over the

phase space we obtain (Appendix C)

 
 

I": C1(IAI2'+ CZIBI‘) (24)

where

M +M )2.’ m2 ' Z- 2.

C12 J- L“ (51 1' I ’I . C25 m“ MP) m“ ~ (25)

8“ Md (Md+M fprnz



  



III. SOFT-PION THEOREM

The separation of the decay amplitude into two

invariant amplitudes A and B has been accomplished on the

grounds of Lorentz invariance alone. We can also write it

in terms of field operators according to the LSZ reduction

formula:28

<P(P’)fia(CI')I ‘j{(0)la(p)) =i Sd‘x Iqfix)(Uz+m:)(f5(P’)\T(¢a(x) MONMPI) . (1)

Here fq.(x) is the pion plane wave function,

—iq’.x

LU)? e a— (2)

(210" (qu3

 

and ¢a(x) is the pion field operator. In terms of the am-

plitude M defined in (11.21), LSZ formula (1) becomes

zq-x

M(q’)=(2“>3NdNPId‘x e (Emmi)(AFNTWatxwflohI«(I)» . (3)

12,14
The soft—pion technique consists in letting q' go off

the mass shell in an apprOpriate manner as follows. Inte-

gration by parts twice in (3) yields

£qu

M(q')=(Z“IBNdN (an e (mfi-q")<fs(p')lT(¢a(x)3((0))\o<<p>) . (4)
P

The pion field operator may be replaced by the divergence

15
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of the axial-vector current according to the PCAC relation

  

5A 3

’3 (If (X): c (x) , C a o.qs m . (5)
x a. (ha 132 fi

Inserting ¢a(x) from (5) into (4) we obtain

' 3 Z qlz chX 5A

M(q)=(zn) NNNP m1); 8cm 6 (meaxag (x)i(<o))\°(<p)> . (6,

The next step is to consider the expression

A . 3 4 iqu 5)

T (q’IE-L(ZTI)NO(NP Id x e (FIP'MTIfa (x);;((o))\o<(p)) , (7)

If we multiply (7) by q' and integrate by parts we get

A a iqix 5*
qu (q’)=(2“) )4de I d"x e, (PLP’IIENTHS (x)i((o))\o<(p)> , (8)

Making use of the identity

5} 5% $0

a.“ gamma) = flaflaumwn + 50c.) I Ia (x) , mm], ,9,

we can write (8) as

[qflx x

q;T*(q') —.- (unheard,3 I am e <F<P')IT(3. 11m 96(0))1 o<(p)

II“ o

+(zn)’N“N quxe (Ftp'm?:(x),i((o)]_ld(p)>8(xo) . (10)
P

The first integral is related to M through Eq.(6), and in

the soft-pion limit the second integral can be written as

{th so

hm [dtxe (Fcp'mId(x).zf((o)l.lo<q>)>6(xo)=<F(p')l[F:,3¢€]-\°I(p)> . (11)

qhac>

Hence from relations (6), (10) and (11) we get
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M(q’=o): Iim 19:! q'ATxW) - m: (211)3 Npr<F(PI)I[F:'fl]-WP>> , (12)

‘I*O C C

It is customary to name the first term on the RHS the sur-

face term, and the last the current algebra or equal~time—

commutator (ETC) term. The extrapolated amplitude given by

(12) expresses the content of the soft—pion theorem.

In their work Suzuki and Sugawara12 neglected the

possible contribution of the surface term and approximated

the physical amplitude by M(q'=0) given by (12). They con-

sidered only the s-wave amplitude A because in the limit

of exact SU(3) symmetry it has been shown29 that

. W

(baryonHi Ibaryon) : O . (13)

In fact, using (II.13), expression (12) without the surface

term gives

 

z a , ev

VIEWED) = -— "2“ (1“) N,Np<p<p)HFa,J€ Home) :0

because of (13), whereas

vv , i 3 , ec
M (q...o).—. .. 1%..(211) NdNP(P(p)\[Fa,;£€ JI°<<P>>

is not necessarily zero.

14 and others,15 split theBrown and Sommerfield,

amplitude M(q') in two parts, the Born (pole) term MB(q')

and the nonBorn (remainder) MN(q'):
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M(q’) = MSW) + M”(q’) . (14)

Combining (12) and (14) in the soft-pion limit we have

2.

MNMEOI .. \(m (1111. q'xTNq') — MEMO)

4-10 C

__ flit (anNMNr3 <{A((>')IIF:,;£(I-I°“P>> - (15)
c

When the intermediate states contributing to the pole and

to the surface terms are degenerate in mass with either the

initial a or final 8 states, the limits on the RHS of (15)

30 if taken separately. However, the ambiguityare ambiguous

disappears when both limits are considered together. We

will come to this point again in the next section where the

surface term will be treated in detail. For our present

discussion it is sufficient to know that the ambiguities

cancel each other, leaving a well-defined limit.

Difficulties in evaluating the on—mass-shell re-

mainder MN(q') led to the smoothness assumption expressed

by the approximation

N .

M”(q’) 2'- M (W0) (16)

i.e., the value of the remainier MN at a physical q' is ap-

proximately given by the value of MN at the soft-pion point

q'=0. This is a reasonable approximation in some cases, but

it is not valid in general and should be checked for each

particular case. The pragmatic attitude, when it comes to
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applications of the soft-pion theorem, is to accept (16)

as a working hypothesis, perform the necessary calculations

and confront the results with the experiment. If the agree-

ment is good one says that the smoothness assumption is

valid for the particular case; if not, one tries to pin-

point the trouble, in general without much success.

Assuming (16) we can combine (14) with (15) to

obtain

2

M(q') = MSW) + (m I In: q’xTVq’) - Mam]

q’->O C

_ 216$ (zn)3NdNP<F(p’)\[F:,3((I-IMP» . (17)

The surface—Born term is AM/ZM of the on—mass-shell Born

term, AM being a typical difference in baryon mass. Be-

cause the mass shift among the octet baryons is relatively

small, Brown and Sommerfield neglected the surface-Born

term. Under exact unitary symmetry the s-wave Born term is

zero because of (13) so that the s-wave amplitude is given

solely by the ETC term, thus reproducing the earlier result

of Suzuki and Sugawara. On the other hand, the p-wave am-

plitude receives contribution from the Born term only be—

cause the ETC term involves the matrix element (13) which

vanishes in the SU(3) limit.

The failure of Brown and Sommerfield, and others,

to fit the data may have its origin in one or more of the

following assumptions which they took for granted: (a) the
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smoothness assumption defined by the approximation (16).

According to expression (17) this assumption implies that

the higher-mass contributions are negligible; and/or (b)

the exact validity of unitary symmetry, implying the vanish-

ing of the matrix element of 5(PV between baryon states of

a same octet.

Kumar and Pati, and others,16 introduced the ef—

fect of symmetry breaking terms by allowing them to vary

through an overall adjustable parameter in order to fit the

data. The agreement with observation improved somewhat, but

was still far from being satisfactory. Their conclusion was

that the symmetry breaking terms are not significant, being

at most 15% of the observed amplitudes, which has been used

by several workers as evidence in order to disregard symme-

try breaking effects in nonleptonic decays and related pro-

cesses such as radiative weak decays of hyperons. We argue

that the fit of Kumar and Pati is not good enough to draw

conclusions about the magnitude of these symmetry breaking

effects.



. v' ..
‘31-}-.3

 

 



IV. THE SURFACE-BORN TERM AND THE SOFT-PION AMPLITUDE

The evaluation of the surface-Born term,

 

\hn ["fiq;an)-NCMWI (1)

q'eo C

and discussion of the ambiguity inherent in it will be con-

sidered in detail; also the ETC part of the amplitude will

be given explicitly.

The starting point is the definition (111.7):

X . 3 4 {qfix 5%

T (q') 5 442“) N“ NP Id x e <F(p')IT( Ta (X)J((ODI°<(P)> - (2)

Insertion of the time-ordering operator,

5% 5* /

T( Ia (031(0)) 2 9W) 3‘; (X) 3((0) + amt.) Me) if“) (3)

in (2) gives two additive pieces for T‘:

iqflx
THM'IE'I‘ZHISNaNE

Id” 6 90(0) ({flp’)! 3’:X(X) fl(0)Ia(P)> ) (4)

1%.-‘1Ty" N (fix < ')}{(}SX()I0(()T (q)=-1(2 N“ PI x8 em.) F<pI o) a x p). (5)

A complete set of intermediate states put between 5§A(x)

and 5((0) :

I

(qx s(ZFPW‘W‘>
n

21
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allow us to use the displacement Operator (four-momentum)

P to write

 

g) [PX g; —IP.X

ya (x) = 8 Ian) 6

and integrate by parts to obtain

1) 3 {01+P5BQ-X s)

T ((1)4210 (‘1pr Z dix 9 1 SW.) (Push Ta(o)ln>(n|i((0)lah)> . (7)
n I

(I), " Po ‘ PHD

Integration with respect to x yields

T”(qI)-.-(zn)é’r\l..h’p£ sleeve) <p<enfiiln><nlfl|etr>> . ‘ (a)
n 1 ,

qa+PovPhO

 

The summation in n involves sum over intermediate states

as well as sum over spins and three-momentum for each in-

termediate state. Thus, for a particular single particle

intermediate state 6 we have

Z Z Ids?“ ' (9)
n 5 sem

Il
l

Performing the 3-moment1m integration in (8) we obtain

 

T”<q’) .42an N, Z <P(P’>l 5:) WWWW'*“')W°“P>>
351'“

(10)

P q; + qup') — E5())>'+q')

Now the weak vertex can be written as

(8(Fn)lj((o)lo((?)) :: .L .1. mama“- XS VsflwP) . (11)

(2.11)5 N... ”P

The matrix element of the axial-vector current ISA between
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baryon states can be obtained as follows. The PCAC relation

5A

:2 X913; (x) CCI>a( ) (12)

combined with the displacement operator gives

“PZPVJ'X 5).

axe (fags) 11(0)) 3(a)) = e <F(P')I¢a(x)\5(i’n)>

so that

t(p'- Fn)x(p(p’)I3:x(O)\$(f>n)> = upweleaw)! Mp9) . (13)

Similarly the wave equation

(C35: mi) 43am = Ian) (14)

yields

Z ' 2 ' C I(m“*(P-Fn) )<p(p)\¢a(o)l.(pn)>=<p(p)\3a(o)13(f>n)) . (15)

The strong vertex can be written as

< ((2')) (own .)> = .1. .1... m )1) u( ,,) K" (16)
F (Ia I) (21”) N‘5 N8 I) S I) p5

where

K22. s: zgnw (“Fa+("°‘IDa)/es . (17)

Here a is the experimentally known F,D mixing parameter

and Pa --if a:

86’ D86 d
a86’ 86(Appendix B).

From (13), (15) and (16) we get

a

 

 

(' ) <')15?)\5())—- ‘ l 0K;
P‘I’nx<PPl a0 P" "

__. a( )1 u('g . (18)

(“"3”); “3 mi—(P'Tny F s P
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Dirac equation allow us to make the replacements

mp') = J— mp’) (5’ , mp“) = J» 15.. um.)

P ”‘8

on the RHS of (18) leading to

, s) Ka _.

M (p— ")< (in)? W.» = J— __.L.. __C__Ji§.. u< ') '2!
F F I I} a P (ZTT)3 Np N5 m:“(P’-Pn)z F Id 51MB.) )

(19)

a

(«we»)than»: .1. 1 mime)».
(21!)3 NP N3 mi—LPCPQZ

Addition of these two expressions gives the desired matrix

element for the axial—vector current:

 

5%

((Mp’Hfifa (5(3)) = .9. J ‘ __..1___ DOWNS we") K; (20)

m: MP+MS (2“)5 NF N3

where we have made the approximation (p'-pn)2=0 to be con-

sistent with the value of the form factor K36 evaluated at

zero momentum-transfer squared.

Inserting the weak (11) and the strong (20) ver-

. . . A .

tices in the expreSSIOn (10) for T1 we obtain

x .— .

TM(C(’)=—C— 1 :12. Z a?!” XSU(P,.)U.(P..)(KC—XSKVIwP)

ml SI ’ ’ ’ I«Mp-r543 E) (’n q°+EP(fi>)—E3(p+q)

 

  (21)

where we have simply written Kc for Kaescsa’ etc. Summation

over spin states

Z Megan) :2: Id" + M8

5P“ 2M3
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yields

(T‘im : .9... ‘ WP'M’UPn M.) (KC — xsKV) we)qx

. (22)

mi; My“. 2 E$(P’+q(’>[q’.+ EPW’) ' E5‘P’+q\’>1

Following step by step the preceding calculation we also

get

q'xTZIq'I :__ g l #_ ‘&(p’)(CK—7{5VK)(Pm+M,) Wis w?)L
I ’

(23)

m“ MP+M, 2 E,(fiiv‘ll)Iqot E,(Y*q)’)'5.(t)]

If M69€MB and My#Ma, the soft—pion limit of both terms

giTlA and qiT2A vanishes. There is an ambiguity, however,

when at least one of the equalities M5=MB or My=Ma holds.

In this case expressions (22) and (23) can be simplified

 

to yield

L - /

TIq’XTNq') =u(p’) H i... - _L))’5(KC-Xs Kv)

C
ZPI'CI’ 2MP

'(CI<—-I VI<) .ft. 1 X- u(

5 Izmfl 2M“) 5) P) (24)

It turns out that there is also an ambiguity of the same

nature in the Born term which cancels the ambiguity in the

surface term. In fact, Feynman rules applied to the dia-

grams of Figure 1 give

MB(q')=_fi(p’)I15 I (Kc-Xskv)+(cK—¥5vK) 1 Hum) (25)

P’+fl'—-M3 P-fiC-M,
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/ (P)
(X?) ///'II(CI’> {3

//

. . /;r(q')

$(?+q ) 7(P_q0 ’///

 

/I/

“I: aip/

Figure 1. Born diagrams for the s and u channels.

which, for M =M and MYzMa, reduces to

 

6 8

MB(q')=u()>')I Lime—(5m—(cs-(svm W ,1; INF) ‘ (26)

ZEE’ 29g

From (24) and (26) we see that the surface—Born term (1)

is well-defined and of the order AM/ZM relative to the on-

mass—shell Born term. Note that for all practical purposes

we may take M5761“!B and MY#Ma throughout the calculation and

only at the end set M6=MB and/or My=Ma at the appropriate

places. The final expression for the Born term is the same

as that one would get by taking care of the ambiguities.

In what follows we write the nonBorn soft—pion

amplitude as simply given by the ETC part:

 

MN(q’=O) z 72“ (2103100, NP<F(p’)I [ Fa.) ii I- IMP» (27)
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with the understanding that the surface—Born term has been

added to the on-mass-shell Born term.

We now consider a more explicit form for the ETC

term. Any cartesian component Fa of the isospin operator

can be written in terms of the raising, lowering, and third

component isospin operators. The action of these operators

on the baryon states are known so that for each particular

decay the ETC can be easily evaluated. The result may be

put in a closed form14

 

7.

N I m“ - , "

M (q=o)= c ([31)de )(5 [FamI/M) - (28)
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9
.
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V. DISPERSION RELATION FORMALISM

The energy-momentum conservation for the decay

cap) a FAD) + Na(q’) (1)

requires p=p'+q'. Then the invariant s and p—wave amplitu-

des are constant and we are not able to write dispersion

relations directly for the process (1). This difficulty

can be avoided by considering the associated scattering

process of a spurion K from the hyperon a,

rag) + 0((P) -—+ PW) + Iraq) (2)

and properly taking the limit q+0 in the scattering ampli-

tudes so as to recover the amplitudes for the decay (1).

The most general transition amplitude for (2)

can be written as

M(sitm-I .-:: "MIMI F‘(s,t,u) - 75 Fz(s.t,u) + li(¢+;2§')

X[G‘1($.I,U.)* $5 62(5)I.u)I I111?) (3)

where the invariant amplitudes Fi and Gi are functions of

the Mandelstam variables defined by

28
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s (p+g)2= (P'WI’)2 .

t: WW7? (ct-q)z .

2 L (4)

u=(p—q'>=(p’—q) .

Z_ 7. 2.

s+t+u= Md+MP+mfi+qL.

It is convenient to take s,t,q2 as independent variables.

Also, using the Dirac equation, we can express amplitude

(3) in a more suitable form for taking the limit q+0. If

we multiply (3) by M and add to it the same amplitude (3)

B

multiplied by Ma, we obtain

WNW =fi<t’>l<F.-(5F.)(Mp+m) + (ecn'+()+(s('+n)e) E3}

-éfiiflm +MNIIS CIZIIMP) . (5)

2 F

If instead of adding the results of the multiplications by

M8 and Ma, we subtract them we get

(MP-Mdm = we) I(F,-YSFZ)(MP~M“) + #214 (M)? M...) 5.1

, (p/(A’MHM’WDPWS €122 1w?) . (6)

Now a simple, but tedious, algebraic manipulation shows

p'(¢1'+91)+(94’+s4))5 = [91»)4’1. + S-UL . (7)

Inserting this identity into (5) and (6) we get
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“—C

M =E(p’)l(F.—(.H)+ [MI-"5‘“ CA .. “M (s 61;le)
Mp-I-Mq 2 2

M = U(P’)I(F‘—XSFZ) + M (E)1 - M,<}I’I-+$-u X5 9;] mp)

9- M‘s—Md 7-

Adding again gives the result

M=‘(1(p')I(F,—(5FL)+Ji([<;),9i’l-+ s-u) (£11.. -15 £11.)]u(p).

MP+M4 MFIM‘"

In terms of new invariant amplitudes defined by

 

 

H12 Fl I ——-———S‘u G11 ) H25 F2 " S-U. G12 ’

J15-—-E:1L—-'-' ) J a 7 ch. ‘*

2(Md‘rMP) 2(Md-MP)

the scattering amplitude M becomes

M(siq‘) = my) I [H1(s.t.q‘) - )5 (12151301

+ MAI)- IJLISILq‘) - XS J,(s,t,q‘)I} U‘F) .

2

(8)

(9)

(10)

In the limit q+0 we see that s=M:, t=q' =mi20, and q2=0 so

that the transition amplitude M reduces to

M(M:,o.o) =U(P’)IH.(M3,0.0) - ((5 H,_(M§,O,O)I 2MP) .

We formally identify H1(M:,O,O) and H2(M:,0,0) with the

s— and p—wave decay amplitudes respectively,

A=H,(M:,o,o) and Br—HJMSIO'OW

(ll)

(12)
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Before we write down dispersion relations in s

and fixed t,q2 for the amplitude Hi(s,t,q2), we have to

settle the question of subtractions. Assuming Regge behav-

ior for Hi(s,t,q2) at high energies, the need for subtrac-

tion depends on the trajectories exchanged in the t-channel.

For the s-wave amplitude, Hl(s,t,q2), the exchanged trajec—

tory in the t-channel is that of K*, whereas for the p—wave

amplitude, H2(s,t,q2), we have the trajectories of K and KA

mesons exchanged. Although the trajectory parameters for

these particles are not firmly established at present, un—

der the reasonable assumption of a linear trajectory with

a universal slope of about 1 GeV-Z, we obtain the following

intercepts for K*, K, and KA respectively:

aVzO.ZS , age-«0.255 , “Ax-'0-75- (13)

An unsubtracted dispersion relation involves an integral of

the form

+00

8 015' 1m “WWW
 
wt

I”. "6

_a) S S l

which for large 5' would give contributions

03 o(--‘ o“ (D a) 1lorir-V ,

was =24 =K(xi 0 {or L'slA,P ,

Therefore intercepts (13) imply one subtraction for H1 and

none for H2. However, we make one subtraction to both



32

amplitudes and write the dispersion relation

 

HI)

Hibiuqz) =- Hi<501thz) + l (5-50) 5 d5. 1m Hi($”t’qz). (14)

1T _00 (s’—So)(5"5'1€)

where the subtraction point so should be chosen in such a

way that we are able to compute the subtraction constant

Hi(so,t,q2). For this purpose recall that in the soft-pion

calculation we let q'+0 and find the extrapolated amplitu-

de in terms of an equal-time-commutator. In this limit

q'+0 we have s=p'2=M: and t=q2. Therefore, if we choose

so=M: and let q+0 in order to recover the desired decay

amplitudes, the subtraction constant Hi(M:,0,0) will be

given by the soft-pion amplitude.

There are three reasons why we wish to separate

the pole contribution from the dispersion integral in (14).

First, we need the pole term to remove the well-known am-

biguity associated with the soft—pion extrapolation. Sec—

ond, the soft-pion term (subtraction constant) plus the

pole contribution reproduces the old results so that the

magnitude and form of the remaining integral provides a

possible explanation for the numerical puzzle associated

with the problem. Third, the removal of the pole makes the

idea of extrapolating the Regge amplitude down to low ener-

gies more plausible, as discussed below. Then, denoting H?

for the pole contribution to the dispersion integral, we

rewrite (14) as
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HI)

HAS) = HHS.) + HE‘S) + 1.6-5.) ds’ Inn ”((5) _ (15)

1‘ m Ls’-s.)($'— s—ie)

where Hi stands for the remaining part of Hi after the re-

moval of the one—baryon intermediate states. Also the argu—

ments of the H's have been simplified for ease of notation.

Note that the point s=M:, to which we wish to extrapolate

in order to obtain the decay amplitude, lies at the lower

end of the resonance region, and since we already extract-

ed the large pole contribution from this region, the re-

maining amplitude Hi(s) can be assumed to be represented

approximately by the extrapolated Regge amplitude according

to the concept of local duality.22 In what follows we ela-

borate on this qualitative idea and evaluate the remaining

integral explicitly.

With the help of the formal identity

_.___.L__r__ _._._ p_1___ +g1rs(s’-—s>

§’54£ SLS

the integral in (15) can be written as

 

 

 

+00 ,
+00 ’

ds'JmHim ._—. ”V lmHEw) + des'hmm - (16)

-oo (S’—s.)($'*5'l€) 5‘5" —oo (5,"5°)($"S)

Now, the assumption of local duality implies,
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+03 , +a) R

P ds’ 1’” Hi“) 2 P ds' 1m HHS) (17)

-00 (5"5o)(5'-5) -0) (5’-so)(s'—s)

 
 

where the Regge amplitude H§(s) has the form

-{noq

R I O"

Him 2 X, i. e S‘ . (18)

smfloq

Here the minus sign refers to K* and K trajectories, and
A

the plus sign to that of K. From this form for the Regge

amplitude we see that

Has; “MTV-5) ior Ka‘ and KA ;

(l9)

Hfls)’ +H?(-S> #0“ K -H

These identities imply that the imaginary part of HE is

even for K* and KA’ whereas it is odd for K:

lm Hike) = 1m HEW—S) iror K’, KA ,

 

 

 

(20)

m Him =-1mH‘?<-S> W K

Hence we can write

+00
00R I

.R I w
R ’

ds’ 1‘“ Hi“) .—.-. ‘5 ds’ 1'” H“) + XdS'JmHMSz (21)
(s’-so)(5'—5) o ($'+ So)($'+$) o (s’—$.)(s’-s)

Inserting the explicit Regge form (18) into (21) we get
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+0)

 

R I O( 0(-

, Ian-b) *_ t
P d5 " = TF1,- {anflim 5_________5° Lor K‘,KA .

-m (5"$°)(S'—S) 5’50

a (22)

“i t.

:z-flxl COtgdL 34.59. 103‘ K

S‘So

With these values for the integral, expression (16) becomes

 

 

 
 

 

HI)
I

I ’3 - x -

ds' 1m HAS :: t“ 1m Him + M, (5“- sf‘vfianfltxv , 1

-00 (s’—so)(s’-saie) 5-50 s-—so 7- g

+00 I (23)

ds' 1mm) _ ... A...“ was) + m (s‘xm 5?“)fanflotA L
5—50 2

-oo (S’-s.)(s>s-ie) 5—6.

1382.. (5%» $7")cot1Lo<P

s—s 2-0

d

Note that the equality (17) is less restrictive than local

duality itself. By taking the values of the integrals ob-

tained in (23) into the expression (15) we get

.
z 2.0!

A: K‘+Rer(M:)+$\/(Mav M v)tdnflz°‘v’
“'P

B: K2 + ReH:(M:) + XALM?“ — M120“) tan TINA

20¢? 20‘?

-rP(Md IMP )cojtjétxp ,

(24)

where we have written Ki for the ETC term and have elimi—

nated the soft-pion ambiguity between the surface and the

pole terms.

With the intercepts given in (13) and the small

mass splitting among the octet baryons we see that
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2 2
MaaP - MBaP is proportional to M:GA - MgaA. Also recent

studies31 suggest the same D/F ratio for the strong §BK

and EEKA vertices. Therefore we can replace the two reso-

nance contributions to the p—wave amplitude B by an effec-

tive term and write

— M(3 )ian 1; cxv ,HA K“? Re HRMi) + XV(M:

(25)

13 M

'9 0‘ 2.

K2 + Re HQ :) + 25’ (M: A; Mp0“) tang: «A

The form of the resonance terms is reminiscent

of the t—channel pole models.31a
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VI. POLE TERMS

For the evaluation of the pole term

*m I H? .
Re HRS) _—. s-sops as, m d5) (1)

1‘ (s’-s.)(s'—s)

 

-m

we need to know the pole contribution to the imaginary

part of Hi(s). 1

  
The scattering amplitude M(s,t,q2) reduces to the

decay amplitude M(Mi,0,0) in the limit q+0. Before taking

the limit, however, we consider a convenient form for M in

order to obtain the imaginary part of the invariant ampli—

tudes H1 and H2. The connection between M and the H's is

MP“: fi£p')(H,-— XSHZMHF) (2)

where we have dropped the term with the factor [q,q']_ for

this term will vanish in the limit q+0.

The Hermitian conjugate of (2) is

Mg“: fi(p)(Hf + x5 H:)U(p’) . (3)

Under the interchange a(p)eB(p') the Mandelstam variables

'in Hi do not change, but

37
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Timmy) -—-> +'i1(p')u(p) ,

(4)

fl<P>Y5U(P') ——> - ilqa') um)

Therefore, performing the interchange a(p)HB(P') in (3)

+ _. , * *
Ma‘s: u(p)(H‘—-Y5HZ)U(F) - (5)

Subtraction of (S) from (2) yields

MP0; mi? 2 21‘ my) (1m H, — 151m Hz)u(p) . (6)

with this combination of amplitude M in mind we work on the

field theoretical form for the same amplitude:

3 {qfix

MFO‘: (2W) NNNP Sd‘x e (02+m:)(F(P')‘T(¢a(X) X(0)H0((P)> . (7)

An alternate form32 of (7) more convenient for our purpose

is

a «fix

2 L ,

Mpdzeu) NNNPX ch 9, (U +mfi)<p(p)[ecx,)[¢a(x)1((o)]_|o<(P)) . (8)

Taking the Hermitian conjugate of (8) and performing the

interchange a(p)HB(p') we get

f iq’.x

Mdeztzflmdwpld‘xe (Dz+mf,)<P(p')\9(—xo)[4((03,¢a<><)]-WP». <9)

Subtraction of (9) from (8) gives

‘ I

+ 1 .X

MPd—M“ =<2MBN°<N Sd‘x e. (Ftp’)\[}a(x).#{(0)]-\0<(P)) (10)
(s P
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where we have introduced the pion current

2, Z

.. x .&£X)-(D +WM)¢Q.)

The pole contribution to (10) arises from the

JP

%+ baryon intermediate states in s and u channels. Let

6 be a typical s—channel intermediate baryon state and y

an u-channel intermediate state, Figure 2. Then the pole l

 

  

 
Figure 2. Baryon intermediate states in s and u channels.

contribution to (10) can be written

I

upx

‘ + 3 4 .MFd-Mdpzmm NdNP 3d x e 2: (<pwugagsttp.»

x “(991mm “(PW " WWIfl<°>lv<r>.>><m>m 34"“ at?» . (11)

Using the 4-momentum operator to translate ja(x) to ja(0)

we obtain

Mpg—M: =<2“)’N«NPgun)“34(q’+p'-'1>.)<p(p’)13a15(pn)><s(p,3\2WMp3)

P
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.. (210“ 24(q'+pn- F) <p(p')\ 2}! My.» MPH! gal “(FD . (12)

The strong and weak vertices have been introduced before:

<('>\ (mm r9):.1... __L_. Eu M)! u( )Ka ,
PP 3a P (2103 NPNS P S F" ’53

(3(pnlli6(o\\a(p)>= .1. ‘ fi(n)(c —x v )w ).
(2“)5 NSN‘X F 80! 5 8.x P

Insertion of these matrix elements in (12) and summation

 

over spin states of the intermediate states give

 

Jr - , , _. , ‘

Mpd’wlzs‘ t Zn_(2n)g4(p+q-pn)utp)xs $213!». (KC. 1:, “WW”

3

-i2%(zmz‘(q’+Pn-P)mp’HCK—XSVKlm15w?) . (13)

25,

The identity

93K ) = 8d4Pn$(P:‘M")( )

25,,

can be used to perform the integration implicit in the sum-

mation sign. Thus we get

+ ' I I 2' '- I /

MP“M°‘(3 = 12.11 3((p+q)"—M3)u(p)15(p+¢j+Ms)(Kc—XSKv)u<p)

-1’zn 3((p—q’f- Mi) Eur) (CK-YSVK)(15-;4’+My) 7.- mp) . (14)

We separate (14) in smaller pieces and write (14) as
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+ .
Mpa'MdP =-. 21H[6(s— M‘s) M1S Kc - 8(u— Mi) MmcK

.- 8(S'Mg) M25 KV + $(u‘ Mi) Mzu, VK .3 (15)

where

Mwea£P’>X.<I'+A'+M.>u<P> , M252aWWs(?’*f4’+MS)Y5u(p).

(16)

Mmzfi<1>’>WW+M,mu<p> . MzuamP’Hszq’JrMfiXsmp).

At this stage of the calculation it is important not to re-

place p'+q' by p or p-q' by p' as we would in case of decay

for which p=p'+q'. Dropping of some terms because of q+0

should be made carefully.

Dirac equation is applied to rewrite (16) in a

more convenient form as

- I I I ,2'_ —

I~4b(t~4m-Mp).—.u(p)1g(séWWIM4f5 MaMP+M3M« MsMPWP) ,

MW; MP) .—. iltp') ( M5 + M’ — M: + M.M + M, M; M, M, WP) ,
, (17>

MZS(M“+MP)=u(p’)k—H'P qmu MP'MO‘MFMSMgMbMPMIP) ,

MZJMJMQ‘EWM W + m4" M: - MdMP+M,Md + M, MP)u(p).

We can repeat these manipulations on the M's by replacing

p'+q' by p+q and p—q' by p'-q in the expression (16). We

get the same value for the M's because of the energy-momen—

tum conservation. Thus

 I
'
h
y
u
p
-
'
7
‘

'
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Mum“- Mpxsmp'wsmr . W1" M: - M,,MP+M8M“— Mst)u(p) ,

+Mde- MxMP)X5u(P) ,Mde—M 3:. quwM —M;'+M0(M
P

Mzs(Md+Mfiy=a(P’)(flfiPflgtq”Moi-'MdM +MSMN+M5MF)U(P) ’

P

(18)

M2u(Md+MF)=fi(P’)M? +4514-M;‘M.MP+MIM.+M.M,)M(P> -

In section V we have used the identity

MW) MAW)? = s—u + [mgr],

 

At this point we drop the commutator in the q's because its

contribution becomes irrelevant in the limit q+0. Also s—u=

25—Mi—Mg at the point of interest, t=O. Hence the above

identity reduces to

I I Z 2.

?’(s4+$4)+(54*¢i)P=25’M«‘M/5 . (19)

Addition of (17) and (18), and the use of (19) yields

M'$(Md—MP) = my) 15(5- MdMP+M8M“- MSMF) (up) ,

mama-MP) = my) (5 — Mj— M;+ MuMP+ M,M~*M,MP)15U(9) ,

MZS(MN+MP)=a(p’)(—S‘M«M +M5Ma¢+ MSMP)u(F) (20)

MquJMF) = mp'Ms— Mil-MP ~M,‘ MP+M,M“ +M,MF) cup).

The delta functions in (15) allow further simplification

of the expressions (20) to give
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M‘s: fi(P') ‘5 (M8+M«)(M3'Mfi) “'(P) )

Mq—Mp

Mm... w) Vs (MWMLHMM’M') utp) ,

Md" MP

__ I (21)

M25 311(4),) (Md-M5)\MS"M{3) (HP)

Md+MP

M2m = EMF) (Mu-MIHMI*MP) utp)

Md+MP "

With these values for the M's, expression (15) becomes

+ . -
Mr”- Mupzwflkcmdmflm‘ MP) 3(s-M2) , CK

Mx‘MP

x (Ma-MAM” Mr) SUI-M1,) ] x5 +Z1Ti [-— Kv (MM'MNMS'MQ

Mq‘MP Mx+MP

x “SI-Mi) + VK (MVMQMVMP) Mal—MW] . (22)

Md+MF

Comparing (6) and (22) we obtain

1m HT: , 1T KV (MMJMSEMVMP) 5(s—M:) +flvKiMd’M’XM'iL') Sax-MD . 

  

Md+MP Md+MP

(23)

Im HZ: — 11 Kc, (MN MUWS- MP) 3(s—Mf) +1ICK(M«‘M1)(M:+ Mp) aux-Mi),

Md” MP MOI-MP

Inserting these values for the ImHi in the dispersion in-

tegral (l) we finally obtain the desired pole terms:

 

 

 
 

ReH‘RMZ): M“- MP KV _. Mu’ M9 VK‘ ,

(Mfl'MSHMgi’MF) (Md+Mx)(M7+Mf)

(24)

ReH:(M:\ ._. WM: l K... mm 4K .

(M,M,3(M,+MPS (M,+M,)(M.—M,)



VII. SYMMETRY BREAKING IN THE TADPOLE MODEL

The weak vertex has been written as

 

(flp’flfllsmws IM’P’HCf38 ‘Xs V’sMM?) (1)

m? N; N

The form factor V86 is zero in the limit of exact SU(3)

symmetry because it has been shown that the matrix element

of the pv Hamiltonian between baryon states belonging to a

same octet vanishes if exact SU(3) symmetry is assumed.

In a broken symmetry scheme such as the present

one, V86 does not necessarily vanish. In fact, a tadpole

33
model has been proposed to evaluate VBG' In this model

the matrix element

< momma?»__ .2... ______. utp) Iumv

F (2“)3 N, N F (2)

is given by the tadpole Feynman diagram, Figure 3. Here

the meson K: is a spin zero uncharged particle with CP=+1

which can communicate with the vacuum in the presence of

the weak interaction. The tadpole diagram yields

< (:5) “12(9):2‘1?) N_u(y>i1 KWum “Ki-'0)
F \fl P NPNS F3 P 2"“) Pug) (3)
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W5

————’-‘-7—-——O< It”

2m.)

Figure 3. Tadpole diagram

where A(K$+O) is the transition amplitude of the K: into }

 
the vacuum.

Comparing (2) and (3) at zero momentum transfer

we obtain

. :(K‘I) PAN-*0)

 

s S
P {5 m:

Since we are working with the cartesian octet states34 we

0

need the upper index in Kégl) in this system. In our phase

convention

IK1)=j-L;UK°)—IR°))= [EEIP64P7)-IL;(P6+1'B,)]

a
v

so that IK§>=P7, where P1,...,P8 are the cartesian pseudo-

scalar meson octet states.

The strong coupling constant in (4) is, therefore,

given by

7 _ 7 _ 7

K195 "' 2 91“»:wa “1 MD )FS ' (5)
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We rewrite (4) as

 

. 7 '7

was s 2t6(0< Fp8+(l—°<)DPS) (6)

where

G = ‘3 AMI—>0) ° (7)
“NM ‘nqi

Soft-pion techniques can be applied to eyaluate I

the amplitude A(Ki+0) in terms of the amplitude A(Ki+2w°)

for the decay Ki+2flo. This latter amplitude can be defined

more precisely according to g

 
o o , PV 0 1 1 o o

<fl(q)1f(<])lfl \KLUI» = ___q/ __ , AKKp-leT) . (8)

(2102 (2 qozqukaYz

On the other hand the LSZ reduction formalism allow us to

write

PV 1 Lq'x

4mqm(q')l:KlK(m> -.-.- __________ 54x e

w

. (uz+m;)<mq)l‘r(¢,(x)Mowqh». <9)

(amyflzqu’z

We replace the pion field Operator by the divergence of the

axial—vector current according to the PCAC relation, let q'

go off the mass shell, and integrate by parts twice. The

result is

. 9v . z_ ,2 {q’.x 5). PV

(mmmq’nmmm = {me‘q ) ‘ 54x e (qul‘rm 3'3(x);'((o>)|K(k>>. (10)

mama/1 (2%)”-

From (8) and (10) we get
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I

1 I 2. , iQ-X

A(K‘:—~2W°) = i(zn)5(zq°)/"(zko{‘fl1:j: d4), 6

C

s) w

x<mqnflafl5 mxcmnm» . (11)

ext, the usual surface term is introduced,

)x . 3 I; 3/; 4 Mix 5) w

T a—LLZTU (zqo) (zho) dee (mq)\T(§5(x)i€(o))|KLk)> . (12)

Multiplying (12) by q; and integrating by parts we get

‘/ {ql-X X W

q'xTx =(zn)3(zqozk.)zxd4x e (mmlafiwixwflofi1K0“) - (13)

The identity

be K §:X(X)3€(0)) == TWA yfiflflofi +80%) [ 3::0(x),fl%)]_ (14)

allow us to rewrite (13) as

, X 3 1/2. {q’.X SA pv

(M =42“ “(1.2% [am e (mqnflbfls (we (o))lK(k)>

l

. X
I (q ,

+\m3k2qozh.3/‘8d4x e mum);LIf°<x>,;t€'fo>]_IK<k)> . (15,

Taking the limit q'+0 we get

. 4

mam") = - l 39$ (2n)3(zqozko)/’- (mqn (F: , 3W]- Wm) (16,
c

where we have dropped the surface term.

Toget the desired amplitude A(Ki+0) we have to
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contract the remaining pion. Let

, 5 rv

if 2[F,,1{ ]. (17)

By repeating the previous procedure in obtaining (16) to

the matrix element of X' we are led to

I [m2 ‘ 5 I

0on Wk» = W _..._3/ _.‘——1 (OILF3 ,fl LIKUU) - (18)

C (2101 (Um/l

 

Inserting (18) in (16) we obtain

A(K°,—'2“°) =

 

4 3L 1m: (210/ (ZBOYZ (0‘ “3:, [ F:,j{w],],|K(h)> . (19)

C
 

‘
I
V
!

~
:
.
4
—
—
a

Application of the property (11.13) of the weak Hamiltonian

yields

[F:,LF:,:I{”1-)- = an, .fl”)- - WWW, (20)

The matrix element of this commutator is

(o\[F:,[F:,}€"1-HK(h)> = <omwgglxm> <21)

But

REM) s. .L |K°‘>
4

so that

W

<0\[F:,[Ff.?{"l1-|K‘I> == £031?“ 1K?) . (22)

Frchthe definition for the transition amplitude A(K$+O),
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<o\i€w\Kf)= _L. _L_ Ain—oO)

(211)547- (am/1

and equations (22) and (19) we obtain

N

4C.

"1

 

Am—ao) _—. Amt—+2?) .

:
3
4
)

With the numerical value for the constant c given by

0.95 m:

c=———-

[5

we finally have the desired relationship:

2

Amt—’0) = 2 FW A(Kj’—,21r°)

where F =O.95 m .

1T 11'

Note that the amplitude on the RHS of (25) is

(23)

(24)

(25)

the soft-pion amplitude for the decay K§+2n°. In a hard—

35
pion study of the decays K+2w it has been found that the

physical amplitude differs by only about 10% from the one

given by the soft-pion technique so that the use of the

experimental value of A(K§+2n°) in (25) cannot be a large

source of error.

So far we have assumed that the coupling con-

stants of the vertices BBK for the various decay modes are

given by the SU(3) values, in agreement with a dispersion

theoretical evaluation36

stants. However, bootstrap calculations37

of some of these coupling con-

have suggested
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considerable reduction from the SU(3) values. For the nu-

merical analysis in the next section we consider a middle

point between these two extremes by properly inserting a

suppression factor.

 



VIII. NUMERICAL ANALYSIS AND RESULTS

 

Previous sections have considered the derivation

of the general expressions for the three pieces which make

 

up the s- and p—wave amplitudes for the nonleptonic decay I_.f

a+8+fla. In this section those pieces are put together and

the final form of the A,B amplitudes are written in terms

of the adjustable parameters which are determined by means IE

of a xz-fit to the experimental values of the amplitudes.

There are a few details about coupling constants

that must be clarified before the final form for the ampli-

tudes can be written. Recall that the BBK weak vertex has

the SU(3) symmetric coupling constants:

C = ZHFé +dD6),

P5 p8 P3
(1)

l
l ZIG (a F7 -I- (I—cx)D;3) ,

VIM P3

In the tadpole model G takes the form

a Z

e: g 9 flue—’0) ) A(K?-*O)=Zfi A<Ko~21"). (2)
«MN Th2 I

K

This value of G differs from the one defined in section VI

by the factor 5, which is a corrective suppression factor

put by hand in order to account for the coupling constant

51
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Lift from the SU(3) values in the BBK vertex as well as

or the 10% uncertainty involved in the use of the physical

alue of A(K:+21ro) instead of the unknown soft—pion limit-

-ng value. Also 6 takes care of the extrapolation to zero

nomentum transfer squared in the tadpole model. For reasons

given previously and assuming relatively small coupling

constant shift from SU(3) values, we expect 5 to be nearly

unity.

As we have seen the resonance terms come from the

exchange of mesons in the t-channel, i.e., from t-channel

Regge poles, Figure 4. Regarding the SU(3) structure of the

Figure 4. t-channel Regge poles.

strong and weak vertices in these resonance terms, we as—

sume the coupling of the K* to the baryons to be of the F

type only,38 whereas the BBKA and BBK vertices have both F

and D type couplings with the same mixing parameter a for

both vertices. As for the weak vertex, we take it to be

proportional to 06 for both the s- and p-wave amplitudes.29

Now we have all the information needed to write
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he s- and p-wave amplitudes-

(Mr Mp) V91 Ka

' N

F“ F (MdJrMSXMgMP) (Mot +M1)(M,+ MP)

«v 21x

+vaK d (M: — “

  

 

F“ 6&1) P )tan gdv , (3)

ZE [Fab/1- F“ + (M“+MP) K23 0‘1 (M«”4151 CP’Kvat ! i

F“
(Mat-'M::(MS+MP)

(Md+M13(MX‘MP)

+ I! ded6:15 (Maid "AM:“tanZ “A I (4) El

where we have extracted the SU(3) dependence from y
I

Vandy

defined in (v.27) For convenience we rewrite the above ex-

preSSions in terms of equal—time-commutator (E), pole (P),

and resonance (R) parts in the following form

A=1AE+RG AP +AR,

5‘ In“

BzngE-Jc-EBP + BR I (5)

F}, m,

The expressions for AB, A , etc. for the various decays are

displayed in Tables 1 2, 3, and 4. There the parameters y

amiy' have been redefined to absorb overall factors.

For the numerical evaluation the masses in the

resonance terms are specified in GeV and the values of the
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ixed constants are

2.

3.12.33..— 2: E , ”9““! -.-. (4.6

—4

A‘Ko‘a Z'fl") =: 2.58 X ‘0 MeV. (6)

°‘ 4n

A priori the coupling constant shift should be about 25%,

corresponding to the mass splitting within the baryon octet

In fact, we have found that the X2 increases rapidly for

950.7 and increases gently for 520.7. This is consistent

with the expectation of a being nearly unity as discussed

before. With 5:0.7 we obtain G=ll.25 m“ in units of

u

105 m;7- sec . This leaves four adjustable parameters: f,

d! YV' Y'-

M
a
-

The best fit to the experimental amplitudes gave

the following values for these parameters:

2‘. = - Loq ,
1L

, (7)

lemtsm“ , Xv=-zo.52 , yrs—3.25 ,

5 —i -1- .
in units of 10 mflz sec 1 . The corresponding theoretical

amplitudes are displayed in Table 5 with the contribution

of each part given explicitly. Also shown are the experi—

mental values.39

Table 5 shows a very good overall fit, being

sufficiently accurate to discriminate between the two ex-

perimental values for the decay 2:. The only appreciable

deviation occurs in the amplitude ANSI) in which none of

the four adjustable parameters appears. Then, in the frame-

work of the currentxcurrent interaction and octet domi-

nance, the observed value A(2:)=0 requires the symmetry

 L
L
.
.
.
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brefldng terms to be negligible. However, deviations from

ochfl:dominance and from unitary symmetry have been found

tocxmur in many other decays, indicating that the inter-

preunfion of the observed value A(2:)=0 as evidence for the

shmfltaneous validity of octet dominance and unitary sym-

metry to a high degree of accuracy does not seem plausible.

Instead, we argue that these two types of deviations tend !

to cancel each other in the amplitude A(£:) so as to repro- ' 3

duce the observed value. On the other hand, the vanishing

p-wave amplitude, B(Z:)=0: has all three parts combined to ‘i

H: 
reproduce the observed value. Thus, having several adjust-

able parameters, the addition of the 27 representation can

be made without spoiling the present good fit for this am-

plitude. Similar arguments hold for the other amplitudes.

In the approximation of octet dominance, therefore, we do

not see the nonvanishing result for A(Z:) in Table 5 as

unreasonable, although the validity of our arguments re—

mains to be seen by actual evaluation of the 27 contribu-

tion and re-search of the parameters.

Another important result displayed in Table 5

<mancerns the relative magnitude of the resonance contribu-

titni to the s-wave amplitude. Note that a suitable choice

of tflne d/f ratio (=-0.3) makes the current algebra term

ftu: the s-wave proportional to the observed amplitude. This

has previously led to the belief that the current algebra

ternixvas the dominant one, so that the assumption of
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negUgible higher-mass baryon contribution to the s-wave

wascmnsidered to be on a good footing. Table 5 does not

sumxxt this assumption. In contrast, the assumption works

weLlfor the p-wave, explaining the rough fit of the old

p-wave pole model results.

Finally, the magnitude of the current algebra

contribution to the p-wave amplitude indicates a relative-

ly large violation of unitary symmetry, a result quite

different from that of any previous work.

In summary, the main results of our analysis are:

(a) Our fit to the experimental values is a considerable

improvement over that of previous work. (b) The usual ne-

glect of the higher-mass baryon resonances is found to be

unwarranted for the s-wave. However, it is found to be

fairly good for the p-wave. (c) A relatively large viola-

tion of unitary symmetry is present. (d) Deviation from

octet dominance is needed to explain the observed value of

A(Z:)=O. (e) No simple dynamical explanation seems to

emerge for the value of B(£:)=O.

 

 

I
n
“
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Table l. Equal-time-commutator and resonance parts of the

s—wave amplitudes.

 

 

Decay AE AR

1“ zd

A-* U“ _‘__ 3 +d) v... v 11p+ {3‘ ¥ IVE (MA MN )ianidv

_. 20! 20‘

z —¢H+T\" Jr-d Xv (MZ '- MN V) {61’1ng

2“» + TI° l L d ) l MZD‘V Mzo‘v)t 11
P E( ’ XVE( Z ' N 3(1de

Z+an+fi+ O 0

VP - za z

c. —+/\+IY _1_(3{—d) “I; (Mg‘l MAdeangdv

$6 2 -

 

Table 2. Equal-time-commutator and resonance parts of the

p—wave amplitudes.

 

 

Decay BE BR

ZO‘A INA

A—'P+fl' 1.0+“) 2r’.L(2m+n(MA -MN )tanIIaA

E If: 2'
2d 2.0!

z-qnm‘ (Zeb-1) x’(zo<—1)(Mz“— MN “Mango“

+ o 0 201A z’dA
z apm _L (ax-1) leza—nmz --MN ){anxiozA

{E 5. ~7-

Z‘r—an-HY‘. O O

(X

B'aAi'n- _L(4o<-1) X'J.(40(-l)(M: ‘— Mid‘)tan121o<A

{5 IE ‘
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Table 3. Pole part of the s—wave amplitudes.

Decay

 

/\——»p+n‘ 1.02400 MA’MN ZMN

4'5 MN+MN MA+MN

+ £(“°‘)(1‘Z°‘)MA- MN ZMN

Z—m +11” -_‘§(1~o()(1+20() Mz-fl ZMN + «(1.200 Mz'MN JMM

MZ+MA MA+M~

23' FM It°

Z*—-n+fi* ~(t-'Zo() Mz‘m jMN

MN+MN Mz+MN

J_(1—zo<) £42111 2M»

E MN+MN M2+MN E

_ 3. «(t-zoo Mz—PL»:

.. l(1-a)(t+zo<)£‘z‘M~

Mz+Mz M2+M~

Mz+ M: M; +MN

 

«am—zoo Mi ’Mi ZMN

3 —*/\+TV .3. “-00 ME‘MA 2”"

 

MZ+MI Mz‘PMN

.. .L (1-200L4x-1)”: -fl\ 

E Mz‘VMA [43‘th (C;

 

__-7:M~

M}: ”M MA+MN

ZMN

M: * M5 M3 +MA
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Table 4. Pole part of the p-wave amplitudes.

 

Decay B

 

/\—-p+fl‘ l(3£+d)MA*M” 2M” _3_(.-“)(I_d)MA+M~ ZMN

{Z MN+MM MA-MN {5 MA+MZ Mz’MN

Z-r' nm‘ «Hf-d) Mfl - l(t-o¢)(5l+d) M2+MN ZMN

M2+M£ Mx’MN 3 MA+MZ MA'MM

Z+4P+flo -.L(‘("d) Mz+M~ ZMN +.;.O(({~"d) Mz‘tm ZMN

fi- M~+M~ ray-MN f2: Mz+Mz MZ-MN

Z*——7n+n* (Len Mzmw ZML _ L(‘-a)(3{+d)Mz+"1g zMu

M~+MH MZ‘MN 3 M1+MA MA’MN

«Ml-d) 91;: M” 2M“

Mt‘Q'Mz Mz‘ MN

:‘- AHV .2.(1-o<)u+d)fl§_t_’l4_a £4.21... - .L(1-z«)(34-d) Ms M. 2M»

 

{5 {‘4}:chA Mg-Mz {5 M2*M3 M
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Table 5. Best fit solution to both the s- and p-wave ampli-

-l

tudes, and experimental values, in units of 105m"2 sec 2 .

i

 

 

Decay ETC Baryon Resonance Total Experimental

Pole (Theory) values

A(Af) 1.241 1.113 -0.909 1.444 1.54510.024

A(£:) 3.330 -0.437 -1.047 1.846 l.859t0.0l7

A(Z:) 2.355 0.151 -0.740 1.766 l.568:0.142

(l.155:0.l87)

A(£:) 0 -0.942 0 -0.942 0.016:0.034

A(E:) 2.660 0.489 -o.954 2.195 2.02010.029

8(43) 8.374 4.090 —1.390 11.074 10.644:O.475

B(X:) —3.173 2.357 0.697 —0.120 -0.549:0.386

B(Z:) -2.244 -11.203 0.493 -12.954 -ll.573:1.880

(—1s.713:1.420)

.za(z:) 0 18.200 0 18.200 l9.07810.347

13(e:) 2.244 —9.780 -o.278 -7.814 -6.831:0.574

 

 

 

 



 
IX. RADIATIVE WEAK DECAYS

The remarkably good fit of our model for nonlep-

'Uxflc decays of hyperons has led to results quite different

from those of previous work on the same problem. In partic- h I

ular, the relative importance of the symmetry breaking

terms has afforded a new interpretation of the well-known

 
experimental result A(£:)=O.

"1‘

Apart from explaining nonleptonic decays, the

analysis also yields further consequences in the form of

predictions for the two—body radiative weak decays of hy-

perons. Lack of sufficient data on these processes does not

allow a full test of the theory, but the few available ex-

perimental numbers are in good agreement with our calcula-

tions.

The following two-body radiative weak decays of

hyperons will be considered in detail:

/\ and

it» P+Y

2"» 0+1

(1)
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Thenaexists no experimental information on these, except

for the second decay.

The above decays have the general form

cap) —-v PW) + Nb.) (2)

where 0,8 also denote SU(3) indices for the respective

baryons. The invariant amplitudes, A' and B', for the radi-

ative weak decay (2) are defined as

<p<p>m>mmv>> = .1— _L... __l._ emp’)(A’+XSB’)As.¢ IMP) (3)
W V

(2.0)2 (2m?— NdNP

on general grounds of Lorentz invariance.4o

The method used here to compute A' and 8' re-

quires the consideration of the companion three-body radi-

ative weak decay

cup) -——v IMF) + 11°(q') + mu (4)

for which we define the transition amplitude R“ as

I I '
F(“pmqwtmmlatpw = .9... __L_' ._L_.‘/ ___L_. erR (5,

12m" (am/L (290‘ NJ,

*where a“ is the polarization 4-vector of the photon. An

(mitline of the procedure helps to introduce the basic ideas

euui to guide the derivation of the final expressions for

the invariant amplitudes.

The soft-pion theorem applied to the three—body
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radunjve weak decay (4) yields the familiar formula

 

2 x Z '

E.RN(q'=0) .-= lim [If]: 6!. q; SP (q') .- e.RB(q')} + ’2' (20)q/z(2h.)/2‘

Cq’-0

x Mm!A (lawman [F5,:}()-\o((p>> . (6)

In section X we show that the surface-Born term in (6) is

zero in the soft-pion limit as long as we use the deriva- H I

tive coupling for the strong §Bn vertex. Then the nonBorn

soft-pion amplitude on the LHS of (6) is proportional to

 
the ETC term which is essentially the amplitude for the de- 1

sired two—body radiative weak decay. ;

In section XI the amplitude RN for a+B+w°+y is

related to MN, the amplitude for the nonradiative weak de-

cay a+B+n°, in the soft—pion limit via Low's soft-photon

theorem. 1 Since the parameters for the amplitude MN have

already been determined, through this chain of low-energy

theorems we are able to express the invariant amplitudes,

A' and B', in terms of known parameters and predict the

values of several experimentally accessible quantities such

as decay rates, branching ratios, and asymmetry parameters.

As usual the starting point in deriving the soft-

pdxni theorem (6) is the LSZ reduction formula for the ma-

trix element of the Hamiltonian:

94x. l

<F(P‘)'fl(qr)x(k)lj{(o)l 0((P)) = ___l___ _)___' d“x 6 (02+ mi)

(210‘ mm”:

x (F(p')1(b.)1T(¢3(x) 9%)) M9» (7)
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whhfliin terms of thakes the form

iq’.x

e.R(q’).—.(2n)q/"(zh.)va“NPId‘x€ (Dam?)<F(pf)‘l(k)|T(¢a(x)3((o))(°<(p)). (8)

Ifllowing q' to go off the mass shell and integrating by

parts twice we get

I

W2. '/2 2' '2' iq-X s):alum-.420) (2h) MN? "‘6'“ an 8 <{scpwcmlnggmmcon16(9)) (9)

C

 

where the PCAC relation has been used to replace the pion

field Operator by the divergence of the axial-vector cur-

rent.

Multiplying by q' the surface term Suk defined as

iqix
x 4

er 5%qu = -Hmquka‘Na‘Np Xd‘x 8 ((up'mmmffixmconloap» (10)

and integrating by parts we obtain

. 8*, Q4 v 19’»:
quAS (ms-(20) (Zh°)ZN“NP [d‘xe (PLp'nmlbewfu)Mama?» , (11)

If the identity

5; 5A 50

an 3301740)) = Nada 00100)) + 80.) L 3’3 (xxmoxL (12)

is used, the RHS of (11) becomes split in two parts, one

proportional to R“l of (9) and the other prOportional to an

Eflxi. Thus, in the soft-pion limit, expression (11) gives
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2. x

e.RN(q'=o) = "mol "2" 68 W15" (9') - 619(4))

8’» ..

, LEE (2104"(Zh.)yquNP<p(V)l(h)l[FBJUJMW (13)

where the amplitude Ru has been separated in a Born (RB")

and a nonBorn (RNu) parts in order to get rid of the ambi-

guities arising in the soft-pion limit.

From Eq.(13) we see that the on-mass-shell ampli-

tude for 0+B+Y is given in terms of the off-mass-shell sur-

face—Born terms and the current algebra term for a+8+n°.

These off—mass-shell terms take different values for deri-

vative and nonderivative couplings of pseudoscalar mesons

to baryons. In fact, working in the limit of exact unitary

symmetry and assuming nonderivative coupling for the §Bn

vertex, Ahmed24 obtained a relatively large pv amplitude

for the decay Z++p+y coming from these off—mass-shell sur-

face-Born terms. On the other hand, assuming unitary symmef

try, CP invariance, and the usual octet dominance, Hara has

shown42 that the pv amplitude for £++p+y and E-+Z-+y is ze-

ro in the currentxcurrent interaction picture. This appar-

ent contradiction has its origin in the use of the nonderi-

'vative coupling for the §Bn vertex as pointed out by Ram

Mohan.26 Therefore, within the framework of current algebra

and currentxcurrent interaction, the derivative coupling

should be used consistently throughout the calculation.
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In light of the above arguments the derivative

coupling will be used for the BB0 vertex, in which case it

will be shown in the next section that the surface-Born

term of Eq.(13) vanishes for both the pc and pv amplitudes

regardless of unitary symmetry arguments. By allowing sym—

metry breaking we restore a nonvanishing pv amplitude for

a+8+y proportional to the symmetry breaking pc current al-

gebra amplitude for a+8+n°.

 



X. THE SURFACE-BORN TERM

In this section we show explicitly that the sur-

face-Born term vanishes in the soft—pion limit, provided

the strong BB0 vertex is assumed to be of the derivative

type.

The surface term defined in (IX.10) is written

I

x , 9 iq

e S" =———L(zrr)/‘(.zh.)"z MN, 04x 8

x
' 6x

F <pq>')h‘(3‘3 (x) #{(o))lo<(p)> (1)

without the photon in the final state because in what fol—

lows the line from which the photon is emitted can be the

final leg as well as the initial one, and also from inter—

mediate states.

To avoid carrying along the nonessential normali-

zation factors in (l) we introduce the integrals

I

A [qx 5X

1 a (due eun<p<w15§ (x)}€(°)|°<(P>> ,

iq€x
(2)

A 4. 5X

J .=. [d x e e(—X.)<f5(p)l 18(0)}; (x)\cx(p))

corresponding to the definition of the time—ordering oper-

ator T. Of course
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61* SIX-z-iumq/‘(zhoI/Z N‘NPUHJ") , (3)

In the soft-pion limit only the pole contribu-

tions to S“A coming from one-baryon intermediate states

have a chance to survive. Thus we insert a complete set of

intermediate states between the operators 33A and 56, but

keep one-baryon states only: p

I

iqix

1* a Z d‘x e 9(Xo)<(5(P’)\ 5:A<x3|n><nlfl(°>\°“P3> . (4)
fl

 
Depending on the position of the photon line, the integral

(4) can be split in two parts corresponding to the first

two diagrams and the last two in Figure 6:

 
Li) (Z) (3) (4')

Figure 6. s-channel one—baryon intermediate state in radi-

ative decays.
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e{(q+P',,-*P) X

1",=d§\m9000318))31:"\s<p..,)><z<r.));tu«<p)>

( h w)x (5)

+ + —

1:, ér-dee9.qu em)<p(p':"l)lf 81p.)><s(1>.)l2(lo«p>>.

Integration by parts with respect to xo transforms 6(xo)

into a delta function, 6(xo). Then the integration in x can f1

1. J
a-

“
'
1
1
:
.

be readily performed to give a delta function in 3—momenta.

Integration with respect to p implicit in the summation

 % can now be carried out to yield {I

‘
—
‘

 
1210 ZWm»3”)s1)+9)><3(p+q))ma<p)>
 

 

1‘2

)

st q; + EFW) -— ES’M) (

s , , 6)

1" = 11211)"): <41”) 3‘. tWWI+k1><s<r+q+k>lduaq>>>
34

SP)“ 9', + EPW) +19, - E$(P'+q’+k)

A
In the soft-pion limit, q'+0, the denominator of I34 does

not vanish so that this term makes no contribution to the

surface-Born term. Hence we have to deal with 122 only.

The strong BB" vertex can be written as

()5:\8(.3 _——-.__‘.__"""(xx ,,<(3M P>s1szFN up) SU(PHK,;$) (7)

with

z a a.

In; (K) = K ,
C A p: p8 (8)

whereas the weak-electromagnetic vertex take the form
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($(pn)\j{|o<(p)) = ._l_q _i_‘ _L__. 3(P.)[(cvisv) __..._.‘___

(mu/31213.14 N, N, 43—h.— M...

313 + ““ M¢>+1¢+ “‘ M) ——-1——-<c—X.v>1w3> <9)
2M, 2M, {WK'Ms

corresponding to (l) and (2) in Figure 6. By inserting (7) a

and (9) into (6a) and summing over spins we get

 

X in) 'Y( n+M,St‘ :. V ‘4 s P" s) [(KAC‘YsKAV)—L——

e .

r" " I 256114)lq.’+E,.<P'>-E.tr’+ca’>l 45-1444. -3 

 

“33 K . £8.13 1 -x1¢+ 2M, 4) ($43 2M; ”WSW“ (SKAvaP) (10)

where we have written 8“" for the part of 8“" corresponding
I

to I" in (3).

The other part J" of 8“" has associated with it

the graphs of the Figure 7. Of these graphs, the last two

do not contribute to the surface term in the soft-pion li-

mit just as corresponding graphs did not to I". Repeating

the procedure followed in the calculation of I" we obtain

er q; 8:" == - WV) [(¢ + i 11¢) ______L__. (c KA- xsv KA)+(<;KA- xvaA)

‘ Z MP 19w. - MP

1 (4 + P! 4143)] {fn+M,)fi’Y5 (HP)

14. -K - M, 2 M, 2 E,(p-q’)[q;+ E,(p—q’)-Ed(|>)]

(ll) X
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-
.

.
_
.
_
.
_

 
 

Figure 7. u-channel one—baryon intermediate state in radi-

ative decays.

We can immediately see from (10) and (ll) that

the surface term vanishes in the soft-pion limit when M6#Mé

and MY#MG. However, if at least one of these mass inequali-

ties does not hold, an ambiguity arises which can be can-

celed by a corresponding ambiguity in the Born term. The

net result is a well-defined limit whose value depends on

the type of interaction (derivative or nonderivative)

adopted for the strong vertex.

Consider M6=MB and MY=Ma, in which case expres-

sions (10) and (11) can be put in a more convenient form.

In fact, note that in the limit q'+0 we can make the fol-
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lowing replacements:

P“ L P, ’ Fn L4, P 3

7— Esw’wu') [613+ Em —E.<a>'+qr>1 .4 2w ,

ZEN-qr)ng+E,tr-qr>-Ed<p>]-—+ 2m ,

so that in the limit q'+0, (10) and (11) reduce to

 

X __ I .

EPq/xS: g IMF) 94 ISL/pip?) [(KAC “ i5 KAV)“"'“-"“" (¢ +13" K¢)

ZP‘C' Pck-M,‘ 2’ at

+(¢+ P“ JD/~¢)—-—-—1--—-—-(KC-'1(K\/)]u(), (12a)

2M“ #H'K—MP A 5 A P

I F) — “P i

equ z—UW)[(¢+_———Ké)__.___(cK -7 vK)

t‘ J 2MP P’Ufi-MP A s A

 

 + (c Ky. 35v KA) ‘ (¢ . £114” 9:" MA“: mp) . (12b)

P‘wK' Md 2M4 2 P-Q’

Let us now turn our attention to the Born term.

There are altogether six Feynman diagrams of which four

present singularities of the nature discussed in the case

of the surface term. These singular diagrams are almost

identical to those contributing to the surface term, the

difference being the appearance of off-mass-shell propa—

gators in the Feynman diagrams instead of on-mass-shell

intermediate states. The four diagrams of interest are

given in Figure 8. The amplitudes corresponding to these

diagrams are

_
_

_
w
_
_
.
—
j
w
t
‘
4
.
|
‘
u
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'
n
l
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 L}
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P' h ,

P

p’+h

/ thh/

Vim, ‘ X, \P a]

$ P"qHY /’q Y //Cl'

    P'+q’+b. / Pal, I, a

P a

Figure 8. Born diagrams for the radiative decays.

 

€~Ri= my) 94’15 ____1__[(KC_XSKV)———i——(¢+P—5— 44¢)

P'+i4'-Ms PvK-Ma 2”

Ké) ‘ (Kc —- XSKVH 1MP) . (13a)+ (¢ +

2M5 P’*K+fl”Mg

 

 

 

 e. R‘: -‘a(y)[(¢+ 29:4 M) Fm ikcx— 15vK)+(cK XvK)

P F

x— a “'14 ‘fi van. (13>p—g-K—M (¢+ 2MY H] A" 54% W F b
 

 

 

In the soft-pion limit and for M6=M8 and My=Ma, the above
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amplitudes can be put in the following form:

B

e.R1="<P’>”"5"’*MP)[<KC45KV) 1 (¢+ ”144!)
2‘)qu P‘IK-M“ Z’Mx

 

  

+<¢ + Jig—45¢) 1 (KC-UsKvnmp) , (14a)

ZJWP ‘Pfl+*i—IWP

 

ER: :- -fl(y)[(¢ + PP kg!) __.l____(CK—Y5VK)+(CK-Y5VK) w“

2MP Wadi-MP ’

 

 

 

 " 1 W’r iii-KW] (”WW" MP) . <14b) ;;

P’K "' Md
2M“

2 Pq/

L

i and Ka we see from (12)

and (14) that the surface-Born term indeed vanishes in the

Recalling the connection between K

soft-pion limit.



XI. SOFT-PHOTON THEOREM AND DECAY AMPLITUDES

The result of the previous section states that

the surface-Born term vanishes in the soft-pion limit.

Then the soft-pion formula of section IX connecting the

two- and the three—body radiative weak decay amplitudes can

 

be simply written as

!-.
fl: (Una/7' (ZkJ/ZN“ NP<p(p’) Y(R)\[F3,9‘(]_\o¢(f)) = erRNHq‘: o) . (1)

C

The next step consists in applying Low's soft-

photon theorem41 to relate Ru and the amplitude M for the

o -

nonradiative decay a+B+fl , by expanding R11 in powers of k,

the relation being exact to orders km1 and k0.

The choice of the kinematical variables is the

following:

5: (p'+q’)" .

t=(V—pf .

A: p‘- M: ,

AZ: p’z- M; .

Of course the dependence of the nonradiative amplitude on

the last two variables indicates off-mass-shell amplitudes

77
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which will be written as M(s,t,A1,A2). Note that Eq.(l) is

a relationship between the physical amplitude for the two—

body radiative weak decay of interest, a+e+y, and the un-

physical, soft-pion extrapolated nonBorn part of the three-

body radiative weak decay amplitude RN"(q'=O). By "nonBorn"

we mean what is left after the pole term of the nonradia-

tive part have been removed, Figure 9.

/ l \|

M E : + I/ + ’non Born

a N a

Figure 9. Definition of "nonBorn" amplitude.

The diagrams contributing to Ru are given in Fig-

? ”0 fl, /

1 17 E5 I, “0 P l/n’"

/ /

l /

+ +

d x

Figure 10. Diagrams for the three-body radiative decay.

ure 10.
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Feynman rules applied to these diagrams give a relationship

between Ru(g') and M(q'). Then the removal of the pole con-

tributions from M(q') leads to the nonBorn part of Ru(q'):

e.R"'(q') = e {Riflhé + 1‘3.qu) __‘____ W(s+zk.(p’+q’), ’C

2MP pick-MP

+ zh.<p’—p),o,zp’.k) + 174”“, t+zh.(p’-p),—ZP-k,0) 1

P-K- M«

H" K¢)]u(p) + [5.R”(q')1mt (2)

2M“

 

X(¢+

where EN stands for MN without the spinors, and [RN"(q')]int

is the part of RNu(q') corresponding to the diagram in

which the photon is emitted directly from the blob.

Low's soft-photon theorem states that, to orders

-1
k and k0, Eq.(2) can be written in the following form

e.RN(q') = €fi(P’)[(¢ + Jif— Jié) ‘ A F4”(s+ zk.(p’+q’), t

2MP [Park -MP

+ztz.(p’-P),o,o) +MN(s.t+2h.(P’-P),OIO) -——_-L———-(¢+ P4 5“)

F-IK‘M.‘ 2W

.. 2 e.(p’+q’)_§_ M”(s,t+zh.(p'-p),o,0)) (up). (3)

BS

 

Note that now MN is evaluated on the mass-shell: Al=0,

A2=0. Because the physical amplitude EN for the nonradia-

tive decay, a+B+n°, is independent of the kinematical vari—

ables, formula (3) can be simply written as
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e.R“(q'=o) = e MPH (¢ + Jikgé) ‘ (7’1" (q’so)

-N , 1 (‘4
M4 (qzo) .___......___(¢+ M w) (4)

P'"K”'Md ZNL' )] P

where we have taken the soft-pion limit of both sides.

We have derived previously the soft-pion ampli— "

tude

 

MW ’-0)- m: (2“)3N N < (F'HLF it] leap) (5)
q' — C 0‘ P F 3) -'

 
with the surface-Born term being set equal to zero in the

derivative coupling for the §Bn vertex. Expression (5)

yields

M”(q’=03 =

 

z

m, LIP-I‘MC—st) (6)
3 3

C

where I; is the eigenvalue of the third component of the

isospin operator for the baryon B. Insertion of (6) into

(4) and some algebraic manipulations give

 

e.R”(q'=o) =~. me“ (If—1:); ‘z1(p')[(Mq+MF( ”P H“ )c

2.1M»~ ZR} - 2M

  

P P‘.+XS(M..'MP)( 2;P+ 2M“)V]K¢u([>). (7)

From (1), (7), and (IX.3) we immediately obtain the expres-

sion for the invariant amplitudes,
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(8)

 

Ey:= ___l___.(’_tfl_ + fk")v .

Mq+ M!3 2MP

Expression (8) is good for the radiative weak decay of a

charged particle. For the decay of neutral hyperons, how-

ever, (8) is not complete because diagrams in which the

purely electromagnetic transition 2°»A can occur also con—

tributes. These diagrams are of the general form shown in

Figure 11(a) with the electromagnetic vertex of the Figure

11(b).

 

 
(a) (b)

Figure 11. (a) Diagrams for the radiative decay of a neu-

tral hyperon. (b) Electromagnetic 20A vertex.

In case of neutral hyperons, therefore, in addition to (8)

there are terms arising from interactions of the form
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6‘? i—tfi—Ofivh,+ (9)

2M1

where uTEu(XOA) is the transition anomalous magnetic mo-

ment, and the average MTE(MZO+MA)/2 has been taken as the

transition mass. If all four types of diagrams occur in a

radiative weak decay the amplitudes will be given by

 

 

 

 

’d=_.l__(_fl£.-_ifz_)c +4 FTC,___L___rf_:

P MVMP 2M{3 2M“ P“ Mx‘Ms 2M, 3“ MVMP 2M1 F”

f‘ P‘ (10)Bid: I J— "|' Pat V + I T V + 1 HT V

P Md+MP 2MP 2 Md) Pd Mu+ M5 2M1 5“ M1+MP ZMT Pk

Once the amplitudes are known the decay rate

__L 3 fl d’p’ 9:5. (21x34 S‘(p’+'a—p) (2 my) (A’ + X;B’)J5.¢ MM2 (11)

E Z
P 0

can be evaluated (Appendix C) to yield the result

2 z 3

1“: g: (M) (IM‘HB’H . (12)

an M,

Measurement of the decay rate alone does not

always discriminate among several models, in the same sense

that cross-section data sometimes accommodate conflicting

models to describe the same scattering process. In such

cases polarization measurements are needed to test the mod-

els. In a decay process the additional measurable quantity
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is the asymmetry parameter defined as

1* ,

a: 2R8<A B) . (l3)

(A'\z+ lB’lz

 

It is related to the right and left helicities of the pho-

ton.

With the expressions (10), (12), and (13) we are

in a position to perform the numerical computation which is

done in the next section.

 

 



XII. PREDICTIONS FOR RADIATIVE WEAK DECAYS

The general expression (XI.10) for the radiative

weak decay amplitudes derived in the previous section can

be applied to each of the decays (IX.l). Below is a list of

amplitudes obtained from (XI.10) with the help of the Ap—

pendix B on SU(3) invariant vertices. The respective dia-

grams are shown in Figure 12.
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A/:———‘ H“ - HL)SI{+d _ 1 PT (L’d)

MA- Mn ZMn ZMA 5 MZO’M" 2M1

B’s..__—_1____( P“ + t1A) 1:20: Q+___L_r_‘_(zo<-1)G1
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For the numerical computation the experimentally

determined (total) magnetic moments of the proton and of

the neutron43 are used:

“Meta”: 2.793 (AN )

(l)

Hn(t0{a‘) =“.9‘3 H“ ,

where is the nuclear magneton. The total magnetic mo—u

N

ments of the other baryons are taken to be the SU(3) val-

ues44 with appropriate "mass corrections":45

Pd = PM SU(3) value) x .13.?— . (2)

4

These "mass-corrected" values come closer to the existing

experimental values for DA and p£+.

The numerical results are displayed in Table 6.

The only experimental numbers available at present24 are

those for the decay Z++p+yt

+_, —3 0.52

T‘U'. P”) =(2..6_to.3)x10 , a=.-1.03:’O.42 - (3)

r‘(z* -—9 P+fl‘)

 

I

The theoretical branching ratio and asymmetry parameter are

2.82x10'3 and —0.78 respectively. The agreement is excel—

lent, although further reduction of the experimental errors

is highly desired. Note that the relatively large violation

of unitary symmetry found in nonradiative decays gives rise

to the relatively large magnitude of B' which is the symme-

try breaking amplitude for the radiative decay. Therefore
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the measured asymmetry parameter of about -1.0 strongly

supports breaking of unitary symmetry in both types of de-

cays, which is a result quite different from that of pre—

vious models.

Table 6. Theoretical radiative weak decay amplitudes of

hyperons, decay rates, and asymmetry parameters.

 

 

Decay Amplitude Decay rate Asymmetry

(105 m;%sec-%GeV-l) (107 sec-1) parameter

A' B' r a

A+n+y —0.147 0.927 0.795 -0.309

Z++p+y 0.887 -0.429 2.328 -0.783

Z°+n+y -1.538 -0.304 6.009 +0.380

EO+A+Y 0.483 -0.512 0.653 -0.998

EO+ZO+Y 1.574 0.226 0.846 +0.281

E-+Z—+y 0.0015 -0.062 0.0013 -0.049

 

In concluding this last section we briefly men—

tion what remains to be done. We have seen in section VIII

that our overall fit to the experimental data is very good,

with the exception of a discrepancy in the s-wave A(2:).

We argued that this discrepancy can be removed without dis-

turbing the good fit by incorporating the contribution of
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the 27 representation. This addition, however, implies an

undesirable increase in the number of free parameters, un-

less a way is found to determine some of these parameters

independently of the experimental decay amplitudes. For in-

stance, the parameters Yv and y' are essentially residue

functions evaluated at t=0 so that they might be determined

from the high energy total cross-section data. Recall that

the total cross-section is related to the imaginary part

of the forward scattering amplitude through the optical

theorem.
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APPENDICES

 



APPENDIX A. Notation and Conventions

We describe here the notation and conventions

used in the text. The metric and gamma matrices are those

defined by Bjorken and Drell.

The coordinates t,x,y,z are denoted by the con-

travariant four-vector x“,

XH=(XO,X',XL,X3)=(t)x))’12):(t1x)o (1)

The covariant four—vector xu is

XH=(X0,X,,XL,X3)=(t,—X,-Y,'Z)=grvxu (2)

with the metric tensor guv=g11v given by

1 ' <3

9‘ ° (3)

The four-momentum of a particle of mass m is de-

fined by

V

P“=(E.F.»P1»P.)=UP‘+"“)"P) ‘4)

so that (summing over repeated indices)

PsFrFr‘r-m o (5)
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The scalar product of two four-momenta is

' = F ___._ _ q = E E “51C! .

Pq F qr Foqo “3 P ‘74 (6)

Four-vector will always be set in lightface,

three-vectors in double line.

For the four-dimensional gradient we use the ab-

breviations

3 s 2. 3r25.2__
3 3x" Dxr (7)

For example, the four-divergence of Bu=(B°,B.) is

BVBV‘ =3 £0 + i c

21: Ex

The four-dimensional Laplacian, denoted by [32,

is defined by

clearanzze-Zi-liezim". <8)
axrax, 7t‘ 2x‘ W

Let P11 denote the four-momentum operator. If

F(x) is any field operator. its commutator with Pu is

[PKFm] = Aamx) . (9)

This gives the translation formula

(Rx -LP.x

F(x) = C FUD) 6 - (10)

The gamma matrices in the Dirac equation satisfy

the anticommutation relations

[7",1’L e mwvxr = zgr‘“ . (11,
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Useful combinations are

or“ e izxwhmr‘) = 11.1821’1 , (12)

15 a 1' 7°X‘1‘X’ 21“ » ‘13)

*5 5 “Pr 1.. 1°90 + tapas 1°?°—%S.fi> 1 (14)

76 _=. “Mr .5 yr; ._. x°a_ + 7‘9, .722. .5’1115)
a 2X” at 3x DY 72

Let 1 and o (a=l,2,3) denote the unit and the

Pauli spin matrices:

1 O O 1 O “L. 1

O 1 l O 1 O 0 -\

We adopt the representation

a.

7;a._ (00) 601(105 X‘-(O') .

‘ a 1 I ‘ I (17)
*0 O o -1 10

The positive-energy spinor u(p,s) and its adjoint

u(p,s)su+(p,s)y° normalized H(p,s)u(p,s)=1, satisfy Dirac

equation

(:5 -M)u<p.s) =0 ,

 

_ (18)

u(p,53(p—M)=O

Here 3 indicates spin variable. The positive-energy pro-

jection operator is

-- +

Z U‘P.s>u(P,S)= 32‘ M . (19)
5

2M

 



APPENDIX B. SU(3) Invariant Vertices

SU(3) invariant interactions among various octets

can be constructed with the help of the F and Dk matrices
k

defined by

(Wm = 41...... , (Duh... = dam <1)

where the value of the structure constants are displayed

below:

klm fklm klm dklm

123 1 118 1/J3

147 1/2 146 1/2

156 -1/2 157 1/2

246 1/2 228 1/73

257 1/2 247 -1/2

345 1/2 256 1/2

367 -1/2 338 1/J§

458 V572 344 1/2

678 «J372 355 1/2

366 -1/2

377 -1/2

448 -1/(273)

558 -1/(2J§)

668 -1/(2J§)

778 -1/(2J3)

888 -1/(2J§)
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fklm 1s antisymmetric and d

change of any two indices.

klm is symmetric under inter-

The SU(3) invariant Yukawa coupling, for example,

is written

fl :: quNN ‘6‘ L 15 [a (Fh)(m+ ("°‘)<Dk)cm] Bmpk ° (2)

The relation between physical states and the octet opera— w

tors Bk is S

1(6 '55 10)IF) ‘5: 4+1 )

 F.
—

m) (Db + 1' ENG)
l

E

+ -...L B 'BlZ>-— E( (+1 ZMO>

lZ°> = 55W)

(3)

- = 1(5‘-'B,_)|o)
12> E l

M) = 3810)

“

a°>

‘;->=-.\1.(B4—-1BS)IO)

Similar relations hold for the pseudoscalar meson states

1(5/870
«.2: e. l 7 >

and the operators Pk' Using the structure constants given

. a

above we can determine K

_ a a
BézzgnNN[a(F )86+(l—a)(D ’86] for

any particular vertex.



APPENDIX c. Decay Rate

The decay rate of the radiative weak decay,

a(p)+8(p')+v(k), is given by

 

T“: .L .L. _M_P- d' ’ .815. (210" SN ’+h- )2 \MV' (1)

2' (217W EF P ZR. P P spin

where

M=11(p')(A’+x.8’)K¢u(p> . (2)

The Hermitian conjugate of M is

M’{ = mp) M (A‘— 1.8" ) NP) (3)

so that

 

ZIM12=Tr\wL(AI+‘/SB')K¢ 8+ M4 ¢K(AI*-rsa’*)1 . (4)
Wm 2MP 2MP

Inserting the identity

K¢(F+Md)=(V+Md)k¢—2(R.P)¢ (5)

in (4) we obtain two pieces for the trace: one containing

the factor kilk and the other the factor ilk. Because

100
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¢¢=€Z=4 and Kfiskzr-O

the first piece is zero. Thus the trace (4) reduces to

Z IMP: 2“” Tr[(P+Mp)(A’+x.8')MA’*—x.e”>]

SW" 4 M“ MP

. 3112.312? «(Ammo . (a)

Mmr.

Now, the energyémomentum conservation p=p'+k gives

 

Z.

2 kp’: Mai—W3

There is also a factor 2 coming from the two states of po-

larization of the photon. Then expression (6) becomes

2. .3.

Z M)": M UA’I‘HB’I‘) . (7)

5pn NLJWP

Substituting (7) in the decay rate (1) we get

1. Z

T‘: i 3— (Mi‘MP) (IMZHB’F') d’P’ d’k 4
z--——— .._. .. S( 4&- . (8)2(211) 4 1 EF zh. F P)

Integration in k yields

1 (MS-Méyummwug d’?’ 8888.42,) . (9)
_‘P= i

2' (21172. Md
El, 2k0

Write d3p'=pzdpd9 where 0=|P'|. Also let

HP) 5 PQHZVP. = (92+ Mg)” + {3 ”M4 . (10)
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If 00 is the value of p at which f(p) is zero, then

 

 

o . M

(if) = P + 1 “ (11)

P'eod? (9,Z+M;)‘/l ’ (p,’-+ Mpy‘

The argument in the 6-function of (9) can be changed accord—

 

 

 

 

ing to

2 V

$(Pg+h.—P.)= 3‘9"” e “’5“ Md; 8(9-9.) (12)

(41.) M.
4? (=9.

so that

3 z z z &

d: SQPhko—Pflsdcfl S €dP|__ (P°+MP) “91%)

E4 ° (FWD/‘29 .4

2, 2.

-_-. 2W 1’: e. 11 ME. (13)

94‘ )4:

where we have replaced

2 z

P ..._ M“ —-MP

2M4

Therefore, inserting (13) into (9) we finally obtain

M1 M‘ 3 ..T‘=..L( «7 g) ()MHBI) . (14)

8Tr ’44

This is the expression for the decay rate used in the text.



    



 


