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ABSTRACT

NONLEPTONIC DECAYS OF HYPERONS

By

Yoshikazo Ernesto Nagai

Ever since the techniques of current algebra were
first applied to nonleptonic decays of hyperons, each new
effort to calculate the s- and p-wave amplitudes for these
decays has led to more numerical puzzles than would seem
reasonable for such apparently simple processes.

We present a new analysis of the problem by ap-
plying dispersion relation techniques to the scattering of
a spurion from a hyperon. In a particular combination of
amplitudes, the scattering process formally reduces to the
weak decay process in the limit of vanishing four-momentum
of the spurion. In this approach the Regge behavior of the
scattering amplitude at high energies requires one subtrac-
tion in the dispersion relation, the subtraction point be-
ing chosen such that the calculable soft-pion amplitude
gives the subtraction constant. Then_the low-mass baryon
pole contribution is separated from the dispersion integral
with the remaining part of the integral coming from higher-
mass resonances. Our method of evaluating this latter reso-
nance contribution consists in assuming Regge behavior for
the scattering amplitude at high energieé and extrapolating

this form of amplitude to the lower energy region. In this
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Yoshikazo Ernesto Nagai
way the result of the higher-mass integration is just the
real part of the Regge amplitude from the t-channel ex-
changes. This approach has its justification in the con-
cept of local duality which states that the Regge amplitu-
de, when extrapolated to lower energies, represents the
true amplitude in an average sense.

The addition of the resonance contribution to
the soft-pion-plus-pole amplitude increases the number of
adjustable parameters to four. The numerical values of
these parameters are then found by a xz—fit to the experi-
mental data.

As a further test of our analysis we make predic-
tions for the amplitudes of the two-body radiative weak de-
cays of hyperons. These decays are closely related to the
nonradiative ones via low-energy theorems.

The main results can be summarized as follows:
(a) Our fit to the experimental pionic decay values is a
considerable improvement over that of previous work. (b)
The usual neglect of the higher-mass baryon resonances is
found to be unwarranted for the s-wave. However, it is
found to be fairly good for the p-wave. (c) A relatively
large violation of unitary symmetry is present. (d) Octet
dominance breaking is needed to explain the observed value
A(X:)=O. (e) The available experimental information on ra-
diative weak decays is in excellent agreement with our cal-

culation.
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I. INTRODUCTION

Since the historical paper of Lee and Yang on pa-
rity nonconservation,1 weak interaction processes have been
found to be a rich source of symmetry breaking. Apart from
Lorentz invariance and the conservation of electric charge
and baryon number, weak interactions appear to violate ev-
ery symmetry that has been found to hold in strong interac-
tions. Do these violations follow a definite pattern? Is it
a large effect or merely a small correction?

2,3 of weak interactions

The currentxcurrent theory
provides a framework for the investigation of these ques-
tions. This theory emerged soon after parity nonconserva-
tion had been discovered; since then it has been modified
to some extent, but its basic hypothesis remains intact.
Namely, that all weak interactions, be it leptonic, semi-
leptonic or nonleptonic, are generated by the interaction
of a charged current with itself. Thus the general weak Ha-
miltonian in the currentxcurrent picture has the form
£,-8 4 (K37 00 )
The weak current JA consists of a hadronic part, J?, and a

leptonic one, J;. Both of these terms are equal admixtures



of vector and axial-vector components so that they have

well-defined properties with respect to space-time trans-
formations. In addition, the conserved vector current (CVC)
hypothesis4 establishes a simple relationship between 3',

the vector component of J?, and the electromagnetic current

em
}\7

fined way with respect to internal symmetries, and so ?&

J this latter current is k.aown to behave in a well-de-
must do likewise. Similarly, the hypothesis of a partially
conserved axial-vector currentS (PCAC) relates the diver-
gence of 35, the axial component of I?, to the meson field
and thereby indicates specific symmetry properties for fi.
A far reaching extension of these ideas is the
identification of 5Aand }i with the elements of a Lie alge-

bra.6

The success obtained by Adler and Weisberger7 in cal-
culatiﬁg the renormalized axial-vector coupling constant
tends to confirm this identification, and it lead us to be-
lieve that symmetry is an essential ingredient for a dyna-
mical theory of weak interactions.

Nonleptonic decay is an ideal application for
such a theory. From thé point of view of internal symme-
tries, most decay modes are different charge states of a
few basic processes, and their amplitudes can be correlat-
ed by means of the transformation properties of the inter-
action Hamiltonian. If the hadronic current is of the Ca-

8

bibbo type, then the nonleptonic interaction has specific

transformation properties in sU(3), and these properties



are sufficient to make a number of important predictions.

Among the nonleptonic processes, the two-body
nonleptonic decays of hyperons have relatively accurate
experimental information which makes the confrontation with
the theory less ambiguous. The following decays will be

considered:

A T AN p+

2. = naT1

DD AR (2)
Ly Zt=n+1?
E:Z E_——v/\"'“—.

Because all baryons involved in these decays belong to an

SU(3) octet, we can regard them as multiplet decays of a

single one:a+B+7m, with spin-parity assignment: %f+-%*+o—
Consider the decay of a at rest. Conservation of total an-
gular momentum requires that the only partial waves allowed
in the final state are {=0 and {=1, i.e., s- and p-wave
only. The intrinsic parity of both o« and B8 is +1 and that
of the pion is -1. Then the parity of the final state is
—(—lﬁ' so that the s-wave decay amplitude is parity vio-
lating (pv) and the p-wave is parity conserving (pc).
According to the notion of the universality of
the currentxcurrent form of weak Hamiltonian, the nonlep-

tonic Hamiltonian j{NL is proportional to the strangeness-

changing part of the symmetric product of the Cabibbo






current, J,, with itself, expression (1l). Since J, and JI
belong to the same octet of currents in the SU(3) group,9
the '%NL can only belong to the completely symmetric repre-
sentation in the direct product decomposition,

88 = 108,®8,®10010 ®27 . (3)

The symmetric representations are 1, 85, and 27. The first
has only a strangeness preserving term, and since we are
interested in strangeness-changing nonleptonic decays, j{NL
can only transform as 8S and 27. It is empirically known
that the 27 part is small compared to the part coming from
Bs. This enhancement of the 8S constitutes the so-called
octet dominance,lo an extension of the isospin AI=1/2
rule.11
The first success along the line of making full
use of symmetry properties was accomplished by Suzuki and
by Sugawara in their current algebra study of the s-wave
hyperon decays.lszsing PCAC, the algebra of currents, and
SU(3) symmetry, they derived the AI=1/2 rule for A,Z de-
cays, the pseudo AI=1/2 rule for It decays, and the pseudo

13

Lee-Sugawara relation. The extension of the same proce-

dure to p-wave decays was considerably clarified by Brown
and Sommerfield,14 and others;15 they confirmed the previ-
ous calculation of the s-wave amplitudes and, furthermore,

found that the p-wave amplitudes can be computed in terms

of the parameters appearing in the s-wave amplitudes. The



predicted values of the p-wave amplitudes, however, did
not compare well with experiment. In general they were
found to be two or three times smaller than the observed
values. In view of this discrepancy for the p-wave, Kumar
and Pati, and Itzykson and Jacob16 attempted to fix the p-
wave while trying to maintain the apparent success of the
s-wave calculations. They incorporated certain corrections,
of the order of AM/2M compared to the Born terms, that
were dfopped by Brown and Sommerfield on the grounds that
these were small. Also terms representing unitary symmetry
breaking, previously neglected, were added. Quantitatively
the agreement with experiment was found to be slightly bet-
ter, but still not good enough. Several other refinements

17-19

to the theory have been proposed from time to time,

none of them, however, really convincing.

Meanwhile Okubo20

attempted a new approach to the
problem of the simultaneous description of both the s- and
p-wave amplitudes by applying dispersion relation techni-
ques to the scattering of a spurion from a hyperon. The
scattering process formally reduces to the decay process

in the limit of vanishing four-momentum of the spurion. In
this approach Regge behavior21 of the scattering amplitude
at high energies requires one subtraction to the dispersion
relation in the energy, the subtraction point being chosen

such that the calculable soft-pion amplitude gives the sub-

traction constant. Next the low-mass baryon pole contribu-






tion is separated from the dispersion integral, the remain-
ing part of the integral coming from the higher-mass reso-
nances. Difficulties in evaluating this latter resonance
contribution with a minimum of free parameters has previ-
ously led to its neglect without justification.

We propose, within the scheme of current xcurrent
weak interaction and octet dominance, to implement Okubo's
dispersion approach by making further use of the Regge the-
ory. Our method of evaluating the resonance contribution
consists in assuming Recgge behavior for the scattering am-
plitude at high energies and extrapolating this form of
amplitude to the lower energy region. In this way the re-
sult of the higher-mass integration is just the real part
of the Regge amplitude from the t-channel exchanges,
slightly modified due to the once-subtracted form of the
dispersion relation. This approach has its qualitative jus-
tification in the concept of local duality22 which has
been explored in the realm of high-energy phenomenology.
Simply stated, local duality says that the Regge amplitude,
when extrapolated to lower energies, reproduces the true
amplitude in an average sense. The addition of the reso-
nance contribution to the soft-pion-plus-pole amplitude in-
creases the number of adjustable parameters to four. The
numerical values of these parameters are found by fitting
the experimentally determined amplitudes.

As a test of our approach we also consider the



two-body radiative decays of hyperons. These processes are
closely related to the nonleptonic decays which will be
referred as nonradiative decays of hyperons when dealing
with the radiative processes. Insufficient experimental in-
formation on these radiative weak decays has prevented the
selection of the best model among more than a half-dozen
proposed since the first papers on the subject appeared
more than a decade ago.23'24 All of these models predict
decay rates and branching ratios that are in rough agree-
ment with each other and with the available data. However,

25 of the asymmetry

the first experimental determination
parameter a for Z++p+y gave the unexpected result a=-1.03
tg:ig, much larger than the theoretical predictions. The
soft-pion-soft-photonn approach, considered by Ahmed,z4 has
previously led to a value for the asymmetry parameter con-
sistent with the experimental value given above, but at the
expense of an internal inconsistency in the calculation.26
When the inconsistency is removed, Ahmed's calculation
also yields a negligible asymmetry parameter like the other
models. It is interesting, therefore, to test our results
for nonradiative decays against the above experimental num-

ber, and also make predictions for the other radiative de-

cays.



ITI. HAMILTONIAN AND INVARIANT DECAY AMPLITUDES

The starting point in most calculations of weak
decay amplitudes is the specification of the effective Ha-
miltonian responsible for the decay:; the choice is not
unique. Here we consider the most popular nonleptonic weak
interaction Hamiltonian, the currentxcurrent type, usually

written as

# -6 Iy (1)
NL 7
where C=l.OXI05?M;Fis the universal fermi constant. The

factor 1/Y2 appears for historical reasons, and JA is now
the hadronic Cabibbo current8 assumed to transform like an
octet of SU(3). This current is postulated to be made up

of charged currents only (in contrast to charged plus neu-

tral currents), both strangeness preserving and changing:

P=(FeiF)- 7705 ) coso +(a’f:+i3':- F- 157y sine . (2)

4

The superscript 5 stands fc+ axial-vector current and the
absence of it specifies the vector current; the subscripts
denote the components of an octet; and 6 is the Cabibbo
angle assumed to be the same for vector and axial-vector

currents.



)




Under the combined operation of charge conjuga-
tion and parity (CP), J, goes to JI so that we obtain ex-
plicit CP invariance if we choose the weak Hamiltonian in

the symmetric form
+ <2 ) +
j(:.g"_ijj JJ E..G_. J. J (3)
NLTO[Z 2( 2 T ) z ! A ]s

instead of expression (l1l). Because Jy and JI belong to an
octet of currents in the SU(3) symmetric scheme, the sym-
metrized Hamiltonian (3) can only belong to the completely
symmetric representation in the direct product decomposi-
tion of the two octets. Among the symmetric representations
1, 8s and 27, the first has only a strangeness preserving

term. Therefore in the case of strangeness changing nonlep-

tonic decays,‘x can only transform as 8S and 27. Further-

NL
more, we consider the octet dominance approximation.

In general an octet may be defined by its commu-

tation relations with the vector octet charge:2
(-]
Fix)= [dx F (0 . (4)
R R
The set of operators Ol(x) form an octet if
:-.i. O X .
LR, 0,00] = L {,  Om(x) (5)

Therefore for currents 5; and fix to be octets we require

A . A
[Fx), Fwl= i, F 00, (6a)
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. 5X
(R, F 0] = ffum F o . (6b)

To preserve the complete symmetry between vector and axial-

vector currents we postulate6 in addition that

LR, Fiwo) = if, 5ol (6¢)
5\ . A
O TR R T S C (6d)

Hamiltonian (3) is a sum of products of octet vectors; it
can be shown to be an octet tensor of second rank. To see
more explicitly the tensor nature of the nonleptonic Ha-

miltonian, it is convenient to define the following quan-

tities:

PC A s Sh
T{E[fhx ?t+:'rkx 3—!. ]s )
(7)

PV ~ 53 5 A
Ty =1 o T v T 3, s

1]

In the product JIJA, with J, given by (2), the term cosze is

LSRR DA AR AASTEE: AR ST U 10 O W AU A A 2D

At

LS M SO RN EAS A A0 A (8)

The pieces in parenthesis give no contribution under sym-

metrization so that we are left with

(cos® term of [J,3"),) = 2( T4+ T%¢) - 2(T747%) |
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Similar results for the other terms are

(sin‘® term of (3,371) = 2(T{S + T2) 2 (T7V 477
(sing cose term of [3,371) =4 (T( « TI)-a (TN + D)

We can therefore write the nonleptonic Hamiltonian as

H =R -

NL OTUNL T AL (9)
where
@G PC PC 2 PC PC .2 PC C, . ]
ﬂm.‘f—?_“.”n £ Too)costo s (ToaT o )sinor 2(T '+ “)sinbcosd]  (10)

and J{gz is identical to J(ig except for the replacement

PC

of the label PC by PV. Now, Tkl and Tkl can be shown to be

tensors by proving that they satisfy the following rela-

tions:

]

ec . PC : pC
[Fk(xoy"rem(x)]_ = l{kln T“m\x) +1 LkmnT (x)

tn

[F:(*o).T:,Cn(")]f { LH" ﬂm(ao U mn :‘: )

(11)
[Fk(xo> TP (X)] = l {‘hl (X) + ], {, (X) \

s PV K.
LFe0a), Ty 0= i, T7o 0 + hm Tt
From the above tensor defining relations it follows that
5 PC PV s PV _ PC
[FleQm ]-:' [Fle!m]_ ) [kaTlm ]_- [Fk)T!m]_ . (12)

Note that j{;ﬁ and j(;Z are constructed from identical
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pC PV

combindtions of Tkl and Ty respectively. From this fact

and Eq. (12) we get
s PC PV 5 PV x
(e Aol = LR H L TR 3 ) = R H ) (13)
so that

(Fe 1 =-[FR H ). (14)

Equation (14) is a basic one for the successful application
of current algebra technigques to weak interactions.

We now proceed to consider the specific case of
nonleptonic decays of hyperons. Let us simply write iﬂ for
the weak Hamiltonian density responsible for the decay of a

hyperon o into a baryon B and a pion n:
a
x(p) — ,s(p'w m(q") . (15)

Here p, p' and q' denote the four-momentum of the respec-
tive particles, and a is the isospin indek of the pion. We
also denote the octet indices by o and B.

The S-matrix for process (15) to first order in

weak interaction is
S~ 1-1i de"x H(x) (16)

and its matrix element between initial and final states

<pLp) T S-Llap)y = -1 Sd‘x <{3<p')1ra(q')lﬂcx)\o<tp>> . (17)
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By writing J%(x) in terms of the displacement (four-momen-

tum) operator P,

1P.x PX
Hx) = e o) e

we obtain
(PN T S-L|x(py) = -1(2m) §(pq-p) O Ay . (18)

The most general form for the matrix element (18) consis-
tent with Lorentz invarian—ce can be written as a linear
combination of the five basic types of interactions: sca-
lar, pseudoscalar, vector, axial-vector, and tensor. Be-
cause of the Dirac equation, the last three types reduce
to either scalar or pseudoscalar. Hence the most general

form for the matrix element of 5&0) is

PP T AG )y = L L Loapn (A2 4B )up)  (19)
F (2m*2 (29,)%2 N, Ng po” 5T O

where N =(E /M )1/2, E =(P2+M2 1/2, and A, B are invariant
a a a a a

functions of the Mandelstam variables:

£‘>=(§:>’+q’)""=‘:>2 ,

t=(p-p =97, (20)
(p-q)°

|}

2

u P’ .

]
1!

If all three particles are on the mass-shell we have s=M§,

t=m:, u=M§

des A and B are constants. A complete theory of weak

with the implication that the invariant amplitu-
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interactions should allow a calculation of these amplitudes
in terms of the masses involved. Note that A is the ampli-
tude for the production of the pion in the s state (pv) and
B is the one with the pion in the p state (pc).

It will be convenient to define the amplitude
: ) N a
M=-1(21)"(2q)) I\J‘,‘N‘e <p(p’)ﬂ CRIF(CIEIEN (21)
so that
M= Up) (A - BIUp) . (22)
Then the decay rate is given by
L[ Me oy La @n)* s pea-py IMIZ (23)
) EP zq;

Performing the trace calculations and integrating over the

phase space we obtain (Appendix C)

M= ¢, (A% + C,1Bl1%) (24)
where
M +M, ) - mi - “oomg
o= L M e T gl Cs (M. MP’Z M (25)
8™ M (Md+Mf).-m2

n






IIT. SOFT-PION THEOREM

The separation of the decay amplitude into two
invariant amplitudes A and B has been accomplished on the
grounds of Lorentz invariance alone. We can also write it
in terms of field operators according to the LSZ reduction

formula:28

. %
<F(p’)ﬂa(q')l HoNaip)y = ¢ Xd‘x ,[q,(x)(aﬂmi)(F(p')\Twa(x) HoNletp)y . (1)

Here fq.(x) is the pion plane wave function,
-19. %
fg 0z —2 ‘ (2)
7 1\
(2 (29,)™

and ¢a(x) is the pion field operator. In terms of the am-
plitude M defined in (II.21), LSZ formula (1) becomes
3 i(]'-x b 2
M) =(2T™"N, N, Xd”x e (T em)pIT(Q 00 HE)| «(p)) . (3)

12,14

The soft-pion technique consists in letting g' go off

the mass shell in an appropriate manner as follows. Inte-

gration by parts twice in (3) yields
19'%

M(q'\-:(zn)’NaN Sd’x e (mﬁ—q'zﬂptp')\T(cka(x) KON jx(p)) . (4)

P

The pion field operator may be replaced by the divergence

15
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of the axial-vector current according to the PCAC relation

(-3 3
= - 0.95
3 F, =cdm , c= = M (5)
Inserting ¢a(x) from (5) into (4) we obtain
. 3 z q/l 1q'x 5\
M(q'y=(2T) N«NP TJ.C:___ Sd"'x e (F(p’)lT(aA?a (x) H)[x(p)) . (6)
The next step is to consider the expression
% . 3 4 iql.x Sh
THq)=-1m NN, Sd ne ppITUE, CoHONp) (7)

If we multiply (7) by g' and integrate by parts we get

X 3 Lq-x s>
9 T @)= (21NN, ] dxe <2, T(F, H)(p) . (8)
Making use of the identity

3, T( T (0K = T(2, T HO) + 50 [ F :°(x) , Ho) (9)

we can write (8) as

!

1q.x A
9 T7(q) = QTN N, §d4" ¢ <F(P"\T(3x5:(*‘ A ()

19"X S0
+ (ZTT)BN“NP jd"x e <Fq>')\[ ?a(x),j((ovl_ld(p» 8(xo) . (10)

The first integral is related to M through Eg.(6), and in

the soft-pion limit the second integral can be written as

’

iq'x (1]
lim ‘d‘xe <F<p’)u3’d (x\,;(<o)]_|o<tr>>8(x,)=<p(p')l[F:,5€]_|«(1>)> . (11)
q'-qo

Hence from relations (6), (10) and (11l) we get
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M(q'=0) = lim L“_i.q;T’(q’) - m‘z; (2)> N«NP<P(PI)HF:’;”‘WP» . (12)
q'=0 c c

It is customary to name the first term on the RHS the sur-

face term, and the last the current algebra or equal-time-

commutator (ETC) term. The extrapolated amplitude given by

(12) expresses the content of the soft-pion theorem.

In their work Suzuki and Sugawara12 neglected the
possible contribution of the surface term and approximated
the physical amplitude by M(g'=0) given by (12). They con-
sidered only the s-wave amplitude A because in the limit

of exact SU(3) symmetry it has been shown29 that
4 W
(baryon\;}{ lbar\/on) = 0 . (13)

In fact, using (II.1l3), expression (12) without the surface

term gives

z PV
MP(q'=0) = - rvg« (2’ N NGCRE LRy 3 ) Natpyy =0

because of (13), whereas
(4] , f‘ 3 , PC
M™(q=0) = - _L“C, (21)" N Nz <pp)| [F, , K Ja(pdd

is not necessarily zero.

14

Brown and Sommerfield, and others,15

split the
amplitude M(g') in two parts, the Born (pole) term MB(q')

and the nonBorn (remainder) MN(q'):
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M(@Q') = MB(q’) + MM . (14)
Combining (12) and (14) in the soft-pion limit we have
2
M (q=0) = lim (D= q, T'(q) - MP(a)
q’-?O C

_ my (2mY N NG Bl (g, H LI . (g
c

When the intermediate states contributing to the pole and
to the surface ferﬁs~are degcnerate in mass with either the
initial o or final B states, the limits on the RHS of (15)
are ambiguous30 if taken separately. However, the ambiguity
disappears when both limits are considered together. We
will come to this point again in the next section where the
surface term will be treate¢ in detail. For our present
discussion it is sufficient to know that the ambiguities
cancel each other, leaving a well-defined limit.
Difficulties in evaluating the on-mass-shell re-
mainder MN(q') led to the smoothness assumption expressed

by the approximation

MYy =~ MM(g'=0) (16)

.
i.e., the value of the remainder mE at a physical g' is ap-
proximately given by the value of Mh at the soft-pion point
q'=0. This is a reasonable approximation in some cases, but

it is not valid in general and should be checked for each

particular case. The pragmatic attitude, when it comes to
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applications of the soft-pion theorem, is to accept (16)
as a working hypothesis, perform the necessary calculations
and confront the results with the experiment. If the agree-
ment is good one says that the smoothness assumption is
valid for the particular case; if not, one tries to pin-
point the trouble, in general without much success.
Assuming (16) we can combine (14) with (15) to
obtain

2
M(q) = M3(a) + [im \ M q'ATx(q’) - MB(q')]
q'-»0 c

_ _'r‘cj (21’ NdNP((S(p')\[Fi,ﬂ]_\u(pD , (17)

The surface-Born term is AM,’2M of the on-mass-shell Born
term, AM being a typical difference in baryon mass. Be-
cause the mass shift among the octet baryons is relatively
small, Brown and Sommerfield neglected the surface-Born
term. Under exact unitary symmetry the s-wave Born term is
zero because of (13) so that the s-wave amplitude is given
solely by the ETC term, thus reproducing the earlier result
of Suzuki and Sugawara. On the other hand, the p-wave am-
plitude receives contribution from the Born term only be-
cause the ETC term involves the matrix element (13) which
vanishes in the SU(3) limit.

The failure'of Brown and Sommerfield, and others,
to fit the data may have its origin in one or more of the

following assumptions which they took for granted: (a) the
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smoothness assumption defined by the approximation (16).
According to expression (17) this assumption implies that
the higher-mass contributions are negligible; and/or (b)
the exact validity of unitary symmetry, implying the vanish-
ing of the matrix element of j{PV between baryon states of
a same octet.

Kumar and Pati, and others,16 introduced the ef-
fect of symmetry breaking terms by allowing them to vary
through an overall adjustable parameter in order to fit the
data. The agreement with observation improved somewhat, but
was still far from being satisfactory. Their conclusion was
that the symmetry breaking terms are not significant, being
at most 15% of the observed amplitudes, which has been used
by several workers as evidence in order to disregard symme-
try breaking effects in nonleptonic decays and related pro-
cesses such as radiative weak decays of hypérons. We argue
that the fit of Kumar and Pati is not good enough to draw

conclusions about the magnitude of these symmetry breaking

effects.






IV. THE SURFACE-BORN TERM AND THE SOFT-PION AMPLITUDE

The evaluation of the surface-Born term,

lim [mf, q, T\(q')-MB(q')] (1)
q—0 €

and discussion of the ambiguity inherent in it will be con-
sidered in detail; also the ETC part of the amplitude will

be given explicitly.

The starting point is the definition (III.7):

’

{q.x N
TNq) = -t 2m'N, N, Xd‘x e <ppIIT( F. 00 Honlsapy (2)
Insertion of the time-ordering operator,

T( f:)(ﬂ Ho) = 6(x0) jjx(x\ KO + g(-x,) J (o) :;;x(x) (3)

in (2) gives two additive pieces for T
1 ~ 3 iq'x A
T 2-LEZTNGNg | d'x € 80x) (AP F, 0 H©x(p) (4)

> ) 3 . 1q’.x , jsx
T(q) == (2m) N“Npidx e 9(-xo)<f5(p)\}((0) a ENEIH (5)

A complete set of intermediate states put between fix(x)

and j{(VO) :

!

1q-x s
T @) =- 1N N, &d‘x ¢ o) Z(pip)| F200Inn] H(o)| xp (6)
n

21
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allow us to use the displacement operator (four-momentum)

P to write

o 1P.Xx s -1P.x
Fo=e F,0e
and integrate by parts to obtain
" 3 '+ p=p)- X s
T™q) = (2m) Npr& d*x € — §0) Cptp)| T, @I HNapd . (7)
qlo'P;‘Fno
Integration with respect to x yields
3 A
T‘“(q’)=(zm"’~,‘u{,£ s (AP -Fn) <pl ?f: [nydn) Hlax(p)y . (8)

" QR - P,

The summation in n involves sum over intermediate states
as well as sum over spins and three-momentum for each in-
termediate state. Thus, for a rarticular single particle

intermediate state § we have

o= Z jdp . (9)

n 5 spin

]

Performing the 3-moment im integration in (8) we obtain

TNq) = (21NN, & ) T2 SRHACS ()| Rty

$ shin (10)
¢ q’°+EF([P)- Es(ﬂ"*’q')
Now the weak vertex can be written as
lplHamy = L1 apyle, - %y, Jup) - (11)

(21 N P

The matrix element of the axial-vector current }ZA between
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baryon states can be obtained as follows. The PCAC relation
2, 5 T = c,00 (12)

combined with the displacement operator gives

i(P,'P“)'X 2
2,0 (F(p')\ T, @1s(p)y=¢ <F<P')\¢a(")\5(?n)>
so that
i(p'- Fﬂ)X<P(Pf)\j;*(o>\z(pn>> = CLpPI ] 8(p)) (13)

Similarly the wave equation
(@ + M) 8,00 = 4 () (14)
yields
mﬁ( —(‘D'- R\)‘) (F(p’)\¢a(0)\ Py )) = (F(p’) \ &a(o) \ 5(p,)Y . (15)

The strong vertex can be written as

Bplylsipyy = L L apyuyg ulp,) K2 (16)
PN = L, S B K,
where
K:’) =28 (o(I—‘a‘»((\-edbé“)laf> : (17)

Here a is the experimentally known F,D mixing parameter

and F66 -ifasé’ DZG aBG(Appendlx B).
From (13), (15) and (16) we get
(p- F")X<F(p | 7, (oB\S(P,.)) L IS _ﬁf_?__ u(p’)lfsu(Pn) . (18)

(21 N, Ns My - (p-p,)
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Dirac equation allow us to make the replacements

- ’ ' 1 !/ ’ ‘
uip’) = — Uulp) . ulp )= L nu(“)
on the RHS of (18) leading to
N a
Mp(p'—?.‘)xq}(p’)\?; sy = L ' _CKps W) proulp)
(2“)3 N {\J mz _( ! )Z n
p s Ma-{p-p, (19)
A a
MR Ty Tty = L 1< Kas Tpgp g, |

(2m)? NP Ny mz-p-py’

Addition of these two expressions gives the desired matrix

element for the axial-vector current:

Sh
e TNy - £ A
P m:; Mp*'MS (2“)5 NP Ns

ﬁ(p’) ' ¥s ulp,) K;s (20)

where we have made the approximation (n'-pn)2=0 to be con-

sistent with the value of the form factor K?G evaluated at

zero momentum-transfer squared.

Inserting the weak (11) and the strong (20) ver-

A
tices in the expression (10) for Tl we obtain

T Lq/):_ Cc | _‘Y_‘_g_ Z ﬁ(?’)“xxs u(Pn)a(Pn.)(KC‘XSKV)U(P)
my M{s*MS ES spin q;_’_ E‘s(ﬂ’l) _ ES(P,"'C")

(21)

where we have simply written Kc for szcéa' etc. Summation

over spin states

Z ulp)ulp) = Bt Mg
spn 2 Mg
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yields

¥ T = | WP (B M) (Ke - B KY ) u(p)
m MF+M5 zE(P+q1)[q,+E (p) - E (p+q)]

. (22)

Following step by step the preceding calculation we also

get

g gy —- & 1 BRIV U e My) % )
My MMy 2 B (p-a0) [ah+ EfAp-a) -2, (p) ]

. (23)

If MG#M8 and MY#MG, the soft-pion limit of both terms

qiTlA and qisz vanishes. There is an ambiguity, however,

when at least one of the equalities M6=MB or My=Ma holds.
In this case expressions (2Z) and (23) can be simplified

to yield

mﬂq T(q)—u(P)[(____.-___)‘( (Ke - XKV)
2p.q 2r4P

~(CK- XVK)(ZM ZM)X fupy . (24)

It turns out that there is also an ambiguity of the same
nature in the Born term which cancels the ambiguity in the
surface term. In fact, Feynman rules applied to the dia-
grams of Figure 1 give

MB(q’):-ﬁW)lfs (Ke =% Kv)+(CK-YgVK)

Bed -M ?'W‘MI

Vs)WP) (25)
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7 )
ply) ) C
//
Ha)
b 71(q’
6(?+q ) Y(p-q) ///

o(w) 0((?/

Figure 1. Born diagrams for the s and u channels.

which, for M,=M, and M =M , reduces to
§ B Y a

Miq’):ﬁ(p’){iXS(Kc—XSKV)—(C&-XsVK) A’ Y ]u(P) .
2pq ial

(26)

From (24) and (26) we see that the surface-Born term (1)

is well-defined and of the crder AM/2M relative to the on-

mass-shell Born term. Note that for all practical purposes

we may take MG#MB and My¢Ma throughout the calculation and

only at the end set M =M, and/or MY=Ma at the appropriate

§ B

places. The final expression for the Born term is the same

as that one would get by taking care of the ambiguities.

In what follows we write the nonBorn soft-pion

amplitude as simply given by the ETC part:

MMq'=0) = _"_2_“_(2“)3!\}“ NP<(5(§>')\ LRy, 2T Tpd)y

(27)
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with the understanding that the surface-Born term has been
added to the on-mass-shell Born term.

We now consider a more explicit form for the ETC
term. Any cartesian component Fa of the isospin operator
can be written in terms of the raising, lowering, and third
component isospin operators. The action of these operators
on the baryon states are known so that for each particular
decay the ETC can be easily evaluated. The result may be

put in a closed form14

2
N ] mﬂ . 1
M"(q’=0) = - ([Fa,CIPd—Xs[Fa,V]M) . (28)






V. DISPERSION RELATION FORMALISM

The energy-momentum conservation for the decay
x(p) — Blp) + T2(q) (1)

requires p=p'+q'. Then the invariant s. and p-wave amplitu-
des are constant and we are not able to write dispersion
relations directly for the process (1l). This difficulty
can be avoided by considering the associated scattering

process of a spurion « from the hyperon «,
<)+ epY = BLp) + TG (2)

and properly taking the limit g»0 in the scattering ampli-
tudes so as to recover the amplitudes for the decay (1).
The most general transition amplitude for (2)

can be written as

Msitw) = WP Fistw) = ¥ F,(s.t,u) + Liged)

[ Gyt w) - vy Gylsitu) ] ] wip) (3)

where the invariant amplitudes Fi and Gi are functions of

the Mandelstam variables defined by

28



29

o= (prq) = (prq)

= (p-p)= (9-9)°
(4)
u=(p-q)=(p-q)

P

2 2
s+t+ru =M, +M +Me+q°,

It is convenient to take s,t,q2 as independent variables.
Also, using the Dirac equation, we can express amplitude
(3) in a more suitable form for taking the limit g-+0. If

we multiply (3) by M, and add to it the same amplitude (3)

B
multiplied by Ma, we obtain

(M, MM = WD LR -¥4F,) (M tM) + (') + U4+ A) B) %_1

_ A (M

: ot M G, Jup) . (5)

If instead of adding the results of the multiplications by
MB and Ma’ we subtract them we get

(My=M M = Tp) L(F - % F) (M- M) + 9—-“2-—‘4- (Mg-M) &,

_ (p'(é’wi)ir(q’*q)ﬁ)fs a, ]u(l’> . (6)
2
Now a simple, but tedious, algebraic manipulation shows
plaeg) + (e p = (44 + s-u . (7)

Inserting this identity into (5) and (6) we get
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M = H(Pl)[(F‘_xst) + [%.64']_“’5‘& (jl! - ﬂ,—tﬁ )/5 GZ]U(P) ‘
Mp+f4« z z

M= B [(F-%F) + B2 - LAAL S0y 6 40
2 Ms - M, 2

Adding again gives the result

M= W) LCR-%F) + L4, 4] +s-w) (G v G Yup . (8)
2 MP+M°‘ MF-Md

In terms of new invariant amplitudes defined by

H,‘E FL + ______S-L\ G‘; ) HzE Fz - _____S-U. G‘ )
- 61‘ J = _ a?— (9)
J‘ =z — N 2= e
Z(M“*MP) Z(M“_MP)

the scattering amplitude M kz2comes

M(s.t,gr) = Wp) | [H(s:t.q?) - ¥g b, (s.t,9%))

+ [‘A»‘?‘I]- [JL(S't'q‘) - X; JZ(Slirqz)] } U(P) - (10)
.. 2 2_ 2 2
In the limit g+0 we see that s=Ma, t=q =m“=0, and g =0 so

that the transition amplitude M reduces to

M(M%,0.0) = Wip) [H((MZ,0,0) - ¥5 H,(MZ,0,00 ] ul(p) . (11)

We formally identify Hl(Mi,0,0) and HZ(Mi,O,O) with the

s- and p-wave decay amplitudes respectively,

A=H,(MZ,00) and B=H,(M;00) . (12)
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Before we write down dispersion relations in s
and fixed t,q2 for the amplitude Hi(s,t,qz), we have to
settle the question of subtractions. Assuming Regge behav-
ior for Hi(s,t,qz) at high energies, the need for subtrac-
tion depends on the trajectories exchanged in the t-channel.
For the s-wave amplitude, Hl(s,t,qz), the exchanged trajec-
tory in the t-channel is that of K*, whereas for the p-wave
amplitude, Hz(s,t,qz), we have the trajectories of K and KA
mesons exchanged. Although the trajectory parameters for
these particles are not firmly established at present, un-
der the reasonable assumption of a linear trajectory with

a universal slope of about 1 GeV ™2, we obtain the following

intercepts for K*, K, and KA respectively:

x,>~ 0.25 o(P:v.-o.ZS ) X, 2-0.75 . (13)

An unsubtracted dispersion relation involves an integral of

the form
+00
g ds’ Im Hc(-‘*'f»qL)
© s'-5-1€

which for large s' would give contributions

) 1 . |00 o for 1=v ,
st s |
X 0 tor (=A,P |

Therefore intercepts (13) imply one subtraction for Hy and

none for H2‘ However, we make one subtraction to both
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amplitudes and write the dispersion relation

)
Hi(s.t,ql) = Hi(so,t,9") ¢ 1 (s-5) S ds' Im Hi(s’.t.q‘). (14)
m _0 (s'-5.)(s'-5-1¢€)

where the subtraction point s, should be chosen in such a
way that we are able to compute the subtraction constant
Hi(so,t,qz). For this purpose recall that in the soft-pion
calculation we let g'-0 and find the extrapolated amplitu-
de in terms of an equal-time-commutator. In this limit
q'+0 we have s=p'2=M§ and t=q2. Therefore, if we choose
so=M§ and let g-0 in order to recover the desired decay
amplitudes, the subtraction constant Hi(Mg,0,0) will be
given by the soft-pion amplitude.

There are three reasons why we wish to separate
the pole contribution from the dispersion integral in (14).
First, we need the pole term to remove the well-known am-
biguity associated with the soft-pion extrapolation. Sec-
ond, the soft-pion term (subtraction constant) plus the
pole contribution reproduces the old results so that the
magnitude and form of the remaining integral provides a
possible explanation for the numerical puzzle associated
with the problem. Third, the removal of the pole makes the
idea of extrapolating the Regge amplitude down to low ener-
gies more plausible, as discussed below. Then, denoting HE
for the pole contribution to the dispersion integral, we

rewrite (14) as
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+0 ,
H(s) = Hi(s) + HY(s) + L (s-50) g ds' ™ Hi &) (15)

n o (8=se)(s'-s-1e)

where Hi stands for the remaining part of Hi after the re-
moval of the one-baryon intermediate states. Also the argu-
ments of the H's have been simplified for ease of notation.
Note that the point s=M§, to which we wish to extrapolate
in order to obtain the decay amplitude, lies at the lower
end of the resonance region, and since we already extract-
ed the large pole contribution from this region, the re-
maining amplitude Hi(s) can be assumed to be represented
approximately by the extrapolated Regge amplitude according
to the concept of local duality.22 In what follows we ela-
borate on this qualitative idea and evaluate the remaining
integral explicitly.
With the help of the formal identity
Pt ims(s-s)
s'-S-1€ s'-S

the integral in (15) can be written as

+00 : +® ,
ds’ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>