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ABSTRACT

SWITCHING PROPERTIES OF ELECTROTHERMAL DEVIC?S

By

Dipankar Nagchoudhuri

Electrothermal semiconductor materials undergo a drastic re-

duction in band gap above a critical temperature, Tcr' Two-terminal,

bulk devices fabricated from these materials can exhibit current-con-

trolled negative resistance I-V characteristics and high-Speed bidirec-

tional switching. Switching times of the order of nanoseconds have

boon reported, though associated with large storage times, often of the

ordvr of hundreds of microseconds.

The primary purpose of this dissertation is to study the initi-

ation of the switching process in electrothermal devices (ETD'S). A

computer-based model is developed incorporating the salient features

of the ETD; e.g., the abrupt narrowing of the band gap and rise in car-

rier mobility at the critical temperature Tcr' The model consists of

a set of three coupled, nonlinear, second-order, partial differential

equations. The first of these, the Temperature Equation, is arrived at

from thermodynamical considerations of energy balance within the ETD.

In effect, the heat energy per unit time associated with the rate of

temperature rise at any point in the interior of the ETD is equated to

the sum of the net electrical power dissipated and the heat input by the

thermal diffusion process. The second, the Continuity Equation, is a

generalized form of the continuity of charge equation, which states that
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the sum of the rate of increase of charge in any differential volume

element and the divergence of the carrier current is zero. Here, the

carrier current is assumed to be due to electrons only and comprises

of three components, namely, a conduction current component due to the

presence of an electric field, and two diffusioi components, one due to

the mobile charge carrier concentration gradients and the other due to

the temperature gradients within the ETD. The third equation is the

Poisson's Equation obtained from Gauss' Law by assuming the electric

field to be conservative within the ETD.

The electrical boundary conditions for these equations are de-

termined by placing the sample between two electrodes in an electrical

circuit containing an ideal voltage source Va , a sorrce resistor Rs,

pp

and a switch 8. The sample geometry chosen is a rectangular parallel-

epiped, the two opposite surfaces being in contact with electrodes which

are assumed to be ideal heat sinks and electrical conductors. The other

four surfaces are in contact with air, which is assumed to be an ideal

thermal and electrical insulator.

To facilitate the numerical solution of the equation, the sample

is quantized into 10 x 10 x 10 identical rectangular parallelepipeds, and

finite dirrerence equations were developed for each volume element, thus

obtaining 1331 equations for each partial differential equation for each

time interval. Different algorithms are used to solve each set of equa-

tions. The Temperature Equation, which is parabolicin form, is solved

using Douglas' Implicit Alternating Direction (TAD) method in three Space

dimensions. The Continuity Equation and the Poisson's Equation are solved

using Successive Over Relaxation (SOR) methods. In addition, an overall

predictor-corrector loop is employed to achieve simultaneity.
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Three methods of inducing switching in the ETD are studied using

V02 as the prototype material--by Joule heating due to the external

biassing circuit, by the simulation of a defect within the bulk of the

ETD, and by photoswitching. The results of the simulations establish the

thermal character of the preswitching region as evidenced by the close

parallelism to the results obtained from simplified one-dimensional

analysis of the Temperature Equation. The results of the simulations

also compare well with the experimental I-V curves and the switching and

storage times observed in V02 devices. The mechanism of the switching

is shown to be the propagation of the narrowing of the band gap longi-

tudinally in both directions in a line parallel to the applied electric

field, as shown by the electric field data obtained from the simulationS.

The model also provides information regarding the profiles of various

eXperimentally inaccessible bulk variables like power density and heat

flux in the interior of the ETD. Finally, the possibility of inducing

photoswitching under Suitable bias conditions is predicted by the model.
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CHAPTER I

INTRODUCTION

In the mid 1960’s, a new class of bulk semiconductor switching

devices was discovered, arousing considerable curiosity and excitement

among workers in the area of solid state electronics(7). Though

. . l 2

plagued initially with problems of repeatability and reliab11ity< ’ ),

(3'4'5'6'7). For in-these devices exhibited many desirable properties

stance, the switching process was fast; switching times from the high-

resistance to low-resistance state were on the order of nanoseconds even

though large delay times were always present(4). Other significant pro-

perties were the memory and hysteresis effects, their relative case of

manufacturing, and their immunity to radiation damage(8).

Since investigations indicated that electrical switching was

associated with the thermal characteristics of the device material(9'10),

these devices will be referred to here generically as "electrothermal

devices" or simply ETD's. Initially, this switching phenomena was ob-

served in some amorphous transition metal oxides and chalcogenide glasses.

Thanks to researchers like Qphen, Eritzsche, and gyshinsky (founders of the

C-F-O model)(11'12), Sir Neville Mott(l3'14'15), and Gubanov(l6), rapid

progress was made in formulating a tranSport theory for amorphous mate-

rials to be analysed using many of the well-established techniques used

with conventional crystalline semiconductors. More recently, however,

e1ectrotherma1 switching has also been observed in crystalline materials

like CdS<17), GaAs<18'19), and Te(20).



1.1. Overview

Characteristically, in ETD materials, the band gap narrows dra-

matically above a critical temperature, Tcr' In this dissertation, a

computer-based model is developed for simulating the tranSport and ter-

minal characteristics of such semiconductors. The model is tested against

experimental data and then used to predict a photo-switching phenomenon.

The first few chapters are devoted to model development. The earlier

sections of this first chapter enumerate some of the properties observed

in electrothermal switches. Subsequently, theoretical formulations of

some of the major workers in the field are discussed in order to estab-

lish the need to develop a new model. In Chapter 2, the model itself

is constructed. The various electrical and thermal properties are de-

scribed in light of the assumptions and idealizations of the model. In

Chapter 3, the model is mathematically formulated. Applying the funda-

mental laws of electrodynamics and thermodynamics, a set of equations

is obtained which describe the electrical and thermal transport proper-

ties of the material under certain Specified conditions. In Chapter 4,

each differential equation is re-expressed as a set of difference equa-

tions, and then the total coupled system of equations is discussed.

Chapter 5 deals with investigations of the switching phenomena.

Results of various experiments are presented. These experiments were

used to test the model against existing experimental data, as well as to

predict some as yet unobserved phenomena. An analysis and discussion of

these results are also presented in Chapter 5. In Chapter 6, some con-

clusions are drawn on the basis of the results obtained, and Suggestions

are made for further model development, simulations, and laboratory

experiments.
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1.2. Electrothermal Device Parameters
 

Until about a decade ago, semiconductor parameters like band gap,

charge carrier mobility, and carrier conductivity were presumed to be

reasonably slow and continuous functions of temperature. However, ETD

parameters show a very strong temperature dependence near the charac-

teristic critical temperature} in fact, some of these parameters can be

treated as step functions of temperature. This behavior is thought to

be primarily reSponsible for the switching effects observed in ETD's(28).

In the sections immediately following, observed temperature dependences

of some important ETD parameters are noted.

1.2.1. Temperature Dependence of the Band Gap
 

For most semiconductors, the band gap reduces slowly with tem-

perature, as expressed by the following equation:

28(r) - 58(0) - pr (1.2.1)

In electrothermal switches, however, the band gap reduces abruptly at a

certain transition temperature, Tcr’ where Tcr is characteristic of the

Specific material, as illustrated in Table 1.1.

Table 1.1

Band GapgData for Various Electrothermal Materials

 

E E

g iCritical Temp. T < Tcr T _>_ or

Material (K) (V) (V)

V02 341 0.45 0.045

V0 126 0.14 0.10

T1203 450 0.04 Metallic

v203 150 0.12 0.07



As might be expected, there is often evidence of a structural

22 27

change at the critical temperature( ' )3 for instance, V0 changes from

an orthorhombic structure below the transition temperature, 126 K, to a

rock salt structure above it; V02 changes from a monoclinic to a rutile

structure at the transition temperature, 340 K.

1.2.2. Conductivity-vs-Temperature Characteristics

If the proper range of temperatures is chosen, the electrical

conductivity is also a strong function of temperature for most semi-

conductors. This is because the conductivity is related to the mobile

carrier density and carrier mobility<21), both of which are temperature

dependent parameters, the relation being:

0‘ - neph + pepp (1.2.2)

where 0‘: conductivity of the semiconductor,

n - density of mobile electrons,

p - density of mobile holes,

e a charge on an electron (magnitude only),

n - electron mobility which is defined as the carrier drift veloc-

ity per unit applied electric field, and

p a hole mobility.

In electrothermal devices, the conductivity-temperature depen-

dence is much stronger than in other semiconductors. For instance, in

Futaki's "Critical Temperature Resister"(33), it increased by as much

as three orders of magnitude at the critical temperature. Some typical

conductivity-versus-temperature curves are shown in Figs. 1.1a and 1.1b.

From the Eq. (1.2.2), it is apparent that a sharp increase in

conductivity is possible if the mobile carrier concentration increases

abruptly. In a doped, partially-ionized semiconductor, the mobile carrier
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Figure lalb

Typical S-shaped Conductivity-vs-Temperature

Characteristic of ETD's



density is primarily determined by the ionized donor density. The

ionized donor density is determined in part by the activation energy Ea

of the ionizing impurity level of the semiconductor, the activation

energy Ea for a donor impurity being the energy difference between the

donor level and the conduction band edge(6).

a-(r) ~Aoexp(-E3(T)/RT) (1.2.3)

where A0 is a material constant,

k is Boltzmanns constant,

T is the temperature, and

E3 is the activation energy.

The conductivity can also change abruptly due to a sudden jump

in carrier mobility. Many ETD's, in fact, do exhibit such jumps. These

"mobility gaps“ are an integral part of the C-F-o model<11> referred to

earlier, and are often associated with a structural transformation of

the electrothermal material(22'27). A local structural change often

introduces an increase in the free carrier concentration in the imme-

diate vicinity. The screening effect on the neighbor lattice centers

increases; in other words, the effective local binding potential reduces,

increasing the mobility of more electrons. The effect Spreads rapidly

through the material causing an abrupt increase in mobility(l3).

Some ETD's also show hysteresis in their conductivity-tempera-

ture plots as shown in Fig. 1.2. This feature is utilized in memory

2 2

devices( 8’ 9). The energy associated with the area of the hysteresis

(27,28)
loop is believed to be related to the energy involved in the

structural change, that is, the latent heat of transformation.

1.3. Switching in Electrothermals

The large change in conductivity is primarily reSponsible for

the negative resistance region in the static I-V curves of ETD's. The
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I-V characteristics of ETD's differ markedly from junction switches in a

couple of reSpects. Junction diode(21) switches are directional; current

is allowed in one direction and opposed in the other. On the other hand,

electrothermal switches are bidirectional; the switching is essentially

a level-sensing and not a direction-sensing mechanism. As soon as a

certain temperature level is reached within the device, switching will

take place regardless of the direction of current in the external elec-

trical circuit.

Also, the electrothermal switches are current-controlled, nega-

tive-resistance devices. In contrast, typical negative-resistance semi-

(21) like the Gunn diode and the tunnel diode exhibitconductor devices

voltage-controlled negative resistances. The difference is illustrated

in Figs. 1.3 and 1.4. Because of its shape, the I-V characteristics of

the ETD are also called S-curves(5).

1.4. Principal ETD Switching Models
 

The S-curves are believed to be caused by "filament" formation,

which have been actually observed in some electrothermal devices<43).

The "filament" is a thin, highly localized, conductive region extending

throughout the length of the material. In filamentary switching, the

"off" resistance is determined by the bulk conductivity of the material.

In the ”on" state, the filament has already formed. The ”on" resistance

is largely determined by the conductivity of the filament. From purely

(30)
thermodynamic considerations, Ridley demonstrated that filament for-

mation was possible in a current-controlled negative differential resis-

tance device. The actual mechanism of filament formation was not dealt

with. In a later chapter, an equation for energy balance will be derived

in close parallelism to Ridley's development.
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A Specific equation for the system energy balance was first

determined by Boer and Dohler<31)3 subsequently, Berglund(34), Fritz-

2

sche(1 ), OvShinsky(10) , and others have contributed significantly to

its development. In their development, the net electrical energy input

at any point is balanced by the temperature rise and the net thermal

energy flowing out from the point. The equation forms a sound basis

for explaining many of the features observed in electrothermal devices.

A computer simulation on the basis of this equation was performed by

Warren(35).

The addition of the continuity equation to the model was another

step forward towards the understanding of these devices. Using the Steady

state continuity equation

v.3 - 0 (1.4.1.)

and the appropriate energy balance equation, Kaplan<36), and others were

able to obtain the steady-state curves of the devices with reasonable

accuracy.

1.5. The Need for a New Model
 

DeSpite these numerous modeling efforts, many deficiencies

existed. Most importantly, all the models previously developed were

essentially static in nature. The only time constant involved was in

the energy equation. This thermal time constant is of the order of a

few hundred microseconds and cannot explain the nanosecond switching

observed.

Also, several significant features of the electrothermal switches

have not been accounted for in models to date. For instance, the ”mo-

bility gap“ and the reduction of the "band gap” don't play any part in

the formulation of the models. Instead, a change in conductivity, which



might include mobility in addition to other bulk parameters, is used as a

lumped parameter, explicitly dependent on the temperature.

Previously developed models do not take into account the diffusion

of charge carriers due to the high thermal and carrier concentration gra-

dients that would be inevitably set up when a thermal filament is formed.

Secondarily, carrier diffusion would cause extremely high local electric

fields to be set up. These effects have been completely neglected in

previous models.

The present model accounts for the dynamic behavior of the ETD's

by incorporating many pertinent features neglected to date by other workers.

Both the “mobility gap" and the reduction of the ”band gap" have been in-

corporated, and conductivity is treated as a function of both the mobile

carrier density and the carrier mobility. A1so, diffusion effects are

included by using a more generalized form of the continuity equation.



CHAPTER II

THE MODEL

A dynamic model suitable for observing the high-Speed switching

phenomenon is developed here. Due to the complexity of the phenomenon,

various simplifying assumptions are made. Each of these assumptions is

either immediately or later justified. Care has been taken to retain

all of the significant characteristic features of the ETD. An isotropic,

nondegenerate, homogeneous, uniformly doped ”n” type electrothermal semi-

conductor is considered, the sample being initially in equilibrium at

the ambient temperature Tam Being ”n” type, it has a net donor con-b.

centration of N atoms/m3 not all of which are ionized at room tem era-
d ' P

ture.

2.1. The Band Structure
 

For simplicity, consider the semiconductor to be a direct band

gap semiconductor possessing a single parabolic valence band and a single

parabolic conduction band. 'Furthcr, the semiconductor is assumed to be

nondegenerate in the entire temperature range of operation) in other

words, though the Fermi-Dirac statistics are applicable, the Boltzmann

distribution can be used as a reasonable approximation<21).

In a nondegenerate semiconductor, the Fermi level Bf lies within

the band gap, and, since the material is "n" type, Bf lies in the upper

half of the band gap. Since it is assumed that the material is only

partially ionized at the room temperature, the Fermi level if would lie

approximately half way between the donor level E and the conduction
d
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band edge Ec( ). The energy level diagram under these conditions is

shown in Fig. 2.1a, where Si is the intrinsic energy level.

In an ETD, the band gap E8 reduces sharply when the critical

temperature Tcr is reached. As discussed in Appendix G, the activation

energy Ea will also reduce correSpondingly. Thus, the form of the energy

level diagram of Fig. 2.1a remains the same after the transition tempera-

ture Tcr' Since the energy gap ES and the activation energy Ea change

so dramatically at the critical temperature Tcr' the continuous change

with temperature is negligable in comparison. So, the activation energy

Ea is simulated by a step function with respect to temperature, the step

occurring at Tcr° Below and above Tcr' it is a constant. (See Fig. 2.1b.)

2.2. Donors, Electrons, and the Net Charge Density

As stated earlier, the donors are assumed to be only partially

ionized below the transition temperature. The donor atoms ionize ther-

mally, creating one free electron per atom. It is assumed also that

thermal ionization of the donors is the only significant process existing

within the material which can create mobile charge carriers. If Boltzmann

statistics are applicable and if Ea is the thermal energy associated with

ionization, then the net density of ionized donors at any point in the

material is given by:

n:(;,t) - NdexpE-Ea(T)/ZRT(;,t)] (2.2.1)

where Nd is the uniform donor density, ngtrat) is the ionized donor den-

sity, k is the Boltzmann‘s constant, and T(§,t) is the temperature.

This equation is developed in some detail in Appendix G. Since Ea(T) is

a step function of temperature only (refer Fig. 2.1b), and Nb is a scalar

constant for the material, n: is an explicit function of temperature,

as shown in Fig. 2.20
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Like the donor atoms, the donor ions are stationary, but each ion

carries a charge of +e. The ionized donors are assumed to be the only

positive charges within the material; i.e., the density of holes and other

positive charge carriers are negligible. Therefore, the total positive

charge q+ at any point within the material is:

q+(?.t) - enélfit) (2.2.2)

Similarly, mobile electrons are assumed to be the only significant nega-

tive mobile charge present. The total negative charge, q-, at any point

is, therefore,

q’('£,t) -en(i~',c) (2,2,3)

where n is the free electron concentration. Thus the net charge density

9 at any point (;,t) is:

«so . ma.) + q‘('r'.t) - en§(?,c) - end—3c) (2.2.2.)

The net charge density if not necessarily zero everywhere within the

material, because of temperature gradients and possible diffusion effects,

as will be discussed in a later section. The Eqs. (2.2.1)-(2.2.4) are

thus assumed to be valid for the entire operating temperature range.

Again, since mobile electrons are created only by donor ioniza-

tion on a one-to-one basis, the rate of generation of electrons and donor

ions are equal:

+

396,2) - flat)
dt dt (2.2.5)

So the net charge creation rate is zero everywhere as follows:

Using (2e204),

931;») - gqflat) + ((5,0)

dt dt

Applying (2.2.2) and (2.2.3) to the above,

+

d_e_(i=.c) - (23236») - egnfifit) - 0 (2.2.6)
dt dt dt
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But, due to drift and diffusion of electrons, ggfl;,t) will not be zero

a

everywhere. Instead, the equation of charge continuity applies. (See

Appendix H.)

91(33):) - 233?») + V.3'('r‘.t)

(it .3:

”Sins (2.2.6) this reduces to

a_e_(?,t) +v.3(i~',c) . 0 (2.2.7)

at

where 31;,t) in the above two equations is the net electron current den-

sity.

The time of ionization is assumed to be ”instantaneous": this

is a reasonable assumption since this is an atomic process and involves

times of the order of lO-lsse0537).

2.3. Carrier Mobility and Conductivity

Since the material contains only one type of mobile carrier,

namely electrons, the carrier mobility refers only to the mobility of

the mobile electrons. Also, the mobility is a scalar, since the material

is isotropic; and it is a function of temperature, since "mobility gaps”

exist in such materials. But, the mobility change at TCr is so drastic

that the mobility, like the activation energy, can be taken to be a step

function of temperature as depicted in Fig. 2.3. Note that this choice

is made to simplify the mathematics of the problem: any given mobility

profile could have been chosen in Fig. 2.3.

The mobility change is assumed to be an explicit function of tem-

perature only. For instance, if the temperature of the material every-

where is less than its critical temperature Tor: the mobility is scalar

constant having a value Pa’ if the temperature everywhere is above Tor!

the mobility is a constant of value Pb'
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Since only n-type carriers are involved and no minority p-car-

riers are present, the conductivity relation of Eq. (1.2.2) reduces to

flit) - n(?.t)er(r) (2.3.1)

The conductivity is thus not a function of temperature only: however, a

fair approximation can be obtained from the following consideration:

Though n(r,t) is not an explicit function of temperature, nglr,t) is.

Also, at any point (arm; and n cannot be very radically different: a

large difference in the two would imply a large local charge separation.

This would result in tremendously large electric fields being set up

tending to reduce the separation. Thus, for many points within the mate-

rial, the conductivity-versus-temperature plot can be obtained by using

a-(T)~n:(r)e’v(r) (2.3.2)

The product of Figs. 2.2 and 2.3 yields Fig. 2.4 which bears a

close resemblance to Futaki's experimental curve (Fig. 1.1a) where0”1,

the asymptote to the first section of the curve is Nae/a and 02, the

asymptote to the second section is Ndefb.

For purposes of the model, however, Eq. (2.3.1) is utilized:

otherwise, the effects of the large local electric fields would not be

Observed s

2.4. Electric Fields and Potential

The electric field E'within a material is defined as the force

in newtons exerted on a unit charge (coulombs). In rationalized m.k.s.

units, which is used consistently throughout, E'is expressed in volts/m.

There are two factors that can contribute to the existence of the elec-

tric field Bil Firstly, it could be due to the application of an external

applied field and secondly, to the creation of local fields by internal

charge separation.
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In the present model, two kinds of charged particles are present,

namely electrons and singly ionized donor atoms. Although the donor ions

are stationary, a net local charge separation may occur due to the move-

ment of the mobile electrons. Gauss's Law states:

v .E(¥,c) - e(¥.t)/e (2.4.1)

where Q is the net charge distribution as defined earlier and E is the

permittivity. The only assumption in the above equation is that is a

scalar constant. Since the ETD has already been assumed isotropic, the

preceding statements imply that is assumed independent of temperature.

In addition to the above, an electric field can also result due

to a rate of change of magnetic flux in the material. Maxwell's second

equation expresses the above statement of Faraday's Law mathematically:

V X E(;,t) . - 2:8:(F’t) ' (2.4.2)

at

(38)
The rate of change of magnetic fields is associated with

inductive effects; it is large if:

1. the frequency of operation is large.

2. the magnetic permeability Ffof the material is large.

3. the current through the material is large and rapidly vary-

ing.

4. the path length of the current through the device is long

and strongly coupled to itself, as in a coil.

5. it is coupled strongly to external magnetic fields in its

neighborhood.

In the system discussed in the next chapter, the dimensions are

kept small and the geometry simple. The electrothermal material is non-

magnetic and often disordered; so the relative permeability p} is approx-

imately unity. Also, there are no strong externally applied magnetic
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fields in proximity to the device. Even the external circuit is chosen

such that the current is limited by an external resistor. Here the mag-

netic field effects are neglected and Eq. (2.4.2) can be rewritten as

V x E(;,t) .- 0 (2.4.3)

The validity of this assumption is discussed further in Chapter 6.

From the principles of vector calculus, it is known that if the

curl of a vector field is zero, then the vector field is conservative and

can be expressed as the gradient of a scalar potential function. The

potential function correSponding to the electric field is called the

electric potential V. Hence:

Rat) - -VV(?.I:) (2.4.4)

Combining the above equation with Gauss' Law, Eq. (2.4.1), Poisson's

equation is obtained:

v.vv('2':',t) = «(EU/e (2.4.5)

2.5. Electrical Current Mechanisms

The electrical current mechanisms in a semiconductor can be sub-

divided into two broad classes: mechanisms which involve a physical

tranSport of mobile charge carriers and those which do not. In the lat-

ter category is the capacitative or displacement current.

The diSplacement current density (r,t) at any point is ob-
diSp

tained from the following relation:

Jdisp(r,t) - '_B__I:_:_(r,t) (2.5.1)

at

It is related to the rate of change of electric field and will be large

when the electric field varies rapidly, as may happen when switching

takes place.

The mechanisms which can result in an actual tranSport of the

mobile charges, i.e., electrons, are drift and diffusion. The presence
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of an electric field causes drift. This drift or conduction current

density Econd is given by:

3.0.1.152” - «(Roman (2.5.2)

where 0(E3c) is the conductivity and E'is the net electric field.

Electron diffusion is produced by two methods: due to thermal

diffusion caused by temperature gradients in the material and due to

concentration diffusion caused by a non-uniform distribution of free

electrons in the electrothermal semiconductor. The expression for the

total diffusion current 3diff is:

3diff('i~’,c) =dVT(F,c) + eDVn(i~',I:) (2.5.3)

and so

3631:) -o(v1*(?.t) + eDVn(?.t) + «(Bali (2.5.4)

The above expression can be more rigorously obtained by a direct con-

sideration of the distribution function (Appendix A1).¢Kand D are pro-

portionality factors. In Appendix A2, 0(and D are evaluated, assuming

Maxwell-Boltzmann statistics closely approximate the actual non-equilib-

rium carrier distribution function. Hence .51ff(r,t) becomes

3diffG't) - (kle)p(T)[n(?,t)VT(?,t) + T(?,t)Vn(?,t)]

which can be rewritten as:

Edit-git) - (k/e)/A(T)V[n(?,t)T(F,t)] (2.5.5)

where the symbols have the same meanings as already defined.

The total current density 3(r,t), comprising the drift and dif-

fusion components, is obtained by combining Eqs. (2.5.2) and (2.5.5):

3'5») .. Mac)? + kp(T)v[n(F,t)T(?.t)] (2.5.6)

Substituting for f, the conductivity, and E, the electric field, by pre-

viously obtained Eqs. (2.4.4) and (2.3.1), the above can be expressed in

terms of scalar variables only:

3(2):) = -n(F,t)e/I»(T)vv + kp(T)v[n(?,c)T(F,c)] (2.5.7)
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. /u(T){kV[n(r-,t)l‘(;,t)] -en(i7,t)VV(?,t)} (2.5.8)

In summary, the model assumes that carrier current is attribut-

able to electron motion only, which is made up of diffusion and conduc-

tion components:

3 a 300m + 3diff (2.5.9)

the conduction component being due to the electrical potential gradients

in the material

3com = -n(?,t)e,1('r)vv (2.5.10)

and the diffusion resulting from both thermal and concentration gradients

A third component, the diSplacement current, is also present,

which is contained in the'3g_term of the continuity equation:

_ 3::

a1 +V.J . 0

at

or

3% +V°Jcond +V. diff .. 0 (2.5.12)

2.6. Thermal Properties: Heat Content and Heat Transfer

Since the particle tranSport in the material involved the motion

of the electrons only, the mechanisms were predominantly electrical.

The thermal parameters play an important role, too, primarily when deal-

ing with the energy transport in the material. The two important thermal

parameters for this system are the heat capacity c and the thermal con-

ductivity kth'

The heat capacity c is defined as the amount of heat energy input

(joules) required to raise unit volume of the solid (lm3) through 1 K.

It is expressed in units of joules/(m3 - K). The increase in heat con-

tent increases the lattice vibrational energy as well as the energy of
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random motion of the mobile carriers--the conduction electrons. But

the latter is generally negligible compared to the former unless the

lattice vibrational energy is very small: e.g., when the temperature

approaches 0 K. At room temperature, the electron contribution can be

safely neglected. The vibrational heat capacity is usually a weak func-

tion of temperature. Over the limited temperature range used in the

model, it can be assumed to be independent of temperature. Also, the

model assumes material isotropy and allows only temperature related in-

homogeneities. Observe that the Specific heat has about the same numer-

ical value for most sclids: it is very weakly dependent on the structure.

Thus, if a new structure is achieved beyond Tcr' the Specific heat can

be assumed to remain the same. So, the heat capacity of the solid will

also remain unaltered provided no change takes place in the overall

volume of the solid. This is in fact assumed to be the case in the model

under discussion. This assumption is discussed further in the next sec-

tion. Therefore, if the temperature of the system at any point in-

creases by an amount T, the correSponding increase in internal energy

u is

Au :- cAT (2.6.1)

0f the three heat transfer mechanisms--radiation, convection,

and thermal conduction--only thermal conduction is significant here.

Radiation heat transfer is proportional to the fourth power of the dif-

ference in temperatures between the two bodies exchanging heat (Stefan's

Law)(39). It is insignificant if large temperature differences do not

exist between the sample and a neighboring body: in other words, it is

negligible if there are no heat sources in the vicinity. Convection

implies fluid motion; in a solid sample, there are no convection cur-

rents.
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In thermal conduction, the thermal flux density is related to

the temperature gradient by Fourier's Law(39)

Eh I -ktHVT (2.6.2)

kth is the thermal conductivity of the material and is expressed in units

of watts/(m - K). Like a'and 6, it is, in general, a tensor. However,

in the model, it is assumed to be a scalar constant. Since the ETD has

already been assumed isotropic, the preceding statement implies that kth

is assumed to be independent of temperature.

2.7. Entropy and Energy Transfer

All material variables can be conveniently divided into two

classes<39'46). The first class, called extensive variables, depend on

the mass of the material, typical examples being volume V, internal

energy U, number of carriers N or P, total charges Q, etc. On the other

hand, intensive variables do not depend on the mass of the material.

Typical examples are temperature T, chemical potential K, pressure p, and

electrical potential V. Similar classifications exist in other fields

of study: extensive variables are closely related to "flux" used in

physics and engineering or the "through" variables of systems science,

whereas intensive variables resemble the "potential“ or ”across” vari-

able. A frequently used extensive variable in thermodynamics is "entropy”.

It is a measure of the order of the system, and, for a totally closed

system, it always increases with time. For ideal, perfectly reversible

processes, the entropy for the system remains constant.

Each extensive variable in the system is linked to a Specific

intensive variable: for instance, the entropy S is usually linked to the

temperature T, the electrical potential V with Charge Q, etc. To des-

cribe a system of variables completely, a complete set of extensive
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variables is required, together with the set of correSponding intensive

variables.

The total internal energy D of the electrothermal sample is a

function of all other relevant extensive variables 8, V, N, P, Q.

U = U(S, v, N, P, Q) (2.7.1)

Taking the total time derivative of the above equation

 

 

w=m §+a| fl+£ e
dt S's'v,N,P,QdI-. 3v S,N,P,th 3N S,V,P,th

+ au 91; + 33 513 (2.7.2)

"5138,V,N,th aQ S,V,N,Pdt

 

The partials in the above expression correspond to the associated

intensive variables as follows:

flfl/V: N. P. Q a T (the temperature) (2.7.3a)

as

ED/S, N, P, Q s p (the pressure) (2.7.3b)

3V

32/3, N, P, Q = Kn (chemical potential for electrons) (2.7.30)

3N

5111/8. V. P. Q I Kp (chemical potential for + charges) (2.7.3d)

8P

EE/S, V, N, Q a V (electrical potential) (2.7.38)

3Q

Eq. (2.7.2) can therefore be rewritten as:

(114*
199T1§+Pfl+xnfl+x d+Vgg (20704)

dt dt dt dt dt dt

The above equation has the general form:

19.. 9" 8P1 dqis

dt 1 dt

where q.1 is a general extensive or flux variable of the system and pi

is the general intensive variable, or the potential reSponsible for the

flux qi.

In view of the various assumptions made, Eq. (2.7.4) can be sim-

plified considerably. The second term is disregarded since the volume
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of the system is assumed to remain constant. The term g!_is the mechan-

dt

ical work done by or on the system: the model assumes that no mechanical

work is being done.

9!. 0 (2.7.5)

dt

Also, the only kind of mobile charge carriers present in the system are

electrons. Thus, the term V dQ_can be rewritten as:

v g3 - -eV g_N_ dt (2.7.6)

dt dt

Using the above simplifying assumption and dividing the Eq. (2.7.4)

by the volume of the System V, it becomes:

+

gurgs+ggfl+xpdndwvgfl (2.7.7)

(it (it (it (it (it

where u, s, n, n; refer to the internal energy, entropy, number of free

electrons, and number of ionized positive charges per unit volume of the

sample.

The energy associated with the chemical reaction causing ioniza-

tion is also neglected. The implications of this statement will be ap-

parent in a later chapter.

Eq. (2.7.7) is an expression of the energy balance of the system.

The overall rate of change of internal energy dB is equal to the sum of

dt

the various energy components of the system. The first term, T g3, is

dt

a measure of the increase of disorder in the system; it can be looked

upon as a loss term. In an idealized, reversible system, this term is

zero. The term Kn g2_is the energy associated with the mobile electrons

dt

n due to the chemical potential Kn‘ It is thus the energy involved in

the creation and tranSport of mobile electrons by thermal and concentra-

+

tion diffusion. Kp dnd is the energy associated with the creation of the

dt

ionized donors. Lastly, the term -eV dg_is the energy associated with

dt
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the tranSport of electrons due to the presence of the electrical poten-

tial V. In other words, it accounts for the drifting of conduction elec-

trons due to the electric field it Each of these energies contribute

to the overall rate of increase of internal energy of the ETD.



CHAPTER III

MATHEMATICAL FORMULATIONS OF THE MODEL

The previous chapter dealt with the various properties of the

electrothermal material and how they were affected by the idealizations

and assumptions of the model. In this chapter, a Specific geometry is

chosen, and the sample is placed in an electrical circuit, comprising

a battery B, a resistor R5, and a switch S. Using the material pro-

perties discussed in Chapter 2, a set of equations describing the over-

all system is obtained, together with the necessary initial and bound-

ary conditions.

3.1. Sample Geometry,

Experimenters have commonly used three kinds of geometries in

studying the electrothermal switching device<41), namely: a) The Bead

or Pellet Configuration; b) The Planar Structure; c) The Sandwich Con-

figuration. The three types are illustrated in Figs. 3.1, 3.2, and 3.3

reSpectively.

Electrothermal switching was perhaps first observed in sintered

metal-oxide complexes<33). The sintering was done under pressure using

two half-ellipsoidal molds, with the electrodes laid as rods across the

middle and protruding at either end. The resultant beads, however, had

one major practical disadvantage-~they had poor thermal contact with the

heat sink, which, of course, was the electrode itself. Moreover, the

mathematical analysis of such ellipsoidal structures is quite complex.

23
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The planar geometry, obtained by thin-film deposition techniques

and used by Berglund<34), Duchene(40), and numerous other workers<41’42’43'34),

proved experimentally far more satisfactory, particularly because of the

large contact area with the heat sink. But the structure was asymmetric,

and so, the analytic solution of such a geometry was not very simple.

The sandwich structure is the simplest to analyze, eSpecially

if a Simple geometrical shape, like a cube, cylinder, or rectangular

parallelepiped, is selected as the Semiconductor geometry. It also pos-

sesses the advantages of the sandwich structure in that there is good

thermal contact with the heat sink. The advantages of the various geom-

etries have been discussed at some length by Yu<41). Nevertheless, the

underlying principles governing the Operation of the ETD remain the same

regardless of the geometry chosen.

For purposes of this model, the material geometry is selected

to be a rectangular parallelepiped with a square cross section. For

mathematical analysis, a Cartesian co-ordinate system is chosen with

the origin at one corner of the sample,* such that the y and z -axes

lie almost along the edges forming the Square face, and the x-axis lies

along the other edge. Thus, the sample is located entirely in the posi-

tive octant of the co-ordinate system. (See Fig. 3.4.)

The semiconductor is assumed to have the dimensions of LX'**

Ly, and L2 along the x, y, and z -axes reSpectively. Since the material

is assumed to have a square cross section: by - Lz. As pointed out

earlier, this choice of a Square cross section has been

 

*Actually, the origin is chosen to lie a distance within the

sample where (S > 0 and $<<< I‘x' This is convenient because of the

boundary conditions.

”More accurately, L + 28 where J<<< L . This is discussed in

detail when discussing the boundary conditions a? the semi-electrode in-

terface in Section 3.5.
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made merely for mathematical convenience: the model would work equally

well even if Ly i L2.

3.2. The External Electrical Circuit Configuration

The external circuit, connected between nodes 1 and 2 of the

sample (refer Fig. 3.4), comprises of the following:

a) an ideal d-c voltage source of Vapp,

b) a series resistor R8, assumed to be independent of tempera-

ture and the current through it,

c) an ideal Single pole single throw switch 8 which is initially

off and which is turned on at some time t = 0, and

d) two highly conducting electrodes at nodes 1 and 2 between

which the sample is connected and which is turned on at some

time t = 0. Also, the electrodes make ideal ohmic contacts

with the sample at each node. Thus, there is no voltage

drop either at the electrode or at the interface of the elec-

trode and the ETD.

The circuit diagram is shown in Fig. 3.5. Node 2 is grounded,

and node 1 is the live terminal of the ETD.

In addition, the following assumptions are made regarding the

system: (a) The electrodes are assumed to be ideal heat Sinks. (b) Air,

which surrounds the ETD on four sides, is assumed to be an ideal thermal

insulator and dielectric. (c) Initially, before the switch S is turned

on, the ETD is in equilibrium. Let the equilibrium temperature be Tamb

(d) In comparison to the various circuit parameters, cable capacitances

and lead inductances are assumed negligible. (e) The switch 8 is turned

on at time t I 0: i.e., all times t are measured with reference to the

instant the switch is turned on. (f) In this model, the various variables
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associated with the sample are evaluated at different times, starting

from a time Ato after the switch 8 is turned on. The time Ato is chosen

large enough such that the initial transients due to the switching im-

pulse have died down. But,‘At0 is chosen small compared to the thermal

time constant‘ra. (This time constant is discussed in more detail in

Section 3.4.) (g) The ETD is assumed to be electrically neutral at all

points in the sample before t - O. In other words,

n(;,0) - n31?;0) - NdexpE-Ea/kTamb] (3.2.1)

5(E}o) g 0 (3.2.2)

3.3. The Static D-C Characteristics
 

When the switch 8 is turned on at t I O, the entire System is

in thermal equilibrium, and the semiconductor is uniformly at the ambient

temperature T If db is the conductivity of the sample at the ambient
amb'

temperature, then its d-c resistance R0 at this time is given by

R0 I X , (30301)

2
0’L

0 y

 

where all surface effects are assumed to be negligible.

Consider the ETD at a time Ato .AtO is a time large enough such

that the initial switching transients due to turning on the switch S have

died out. However,1§to is much smaller than the thermal time constant

I; associated with the ETD.* At this time, the direct current 10+ at

node 1 is given by:

+ .
I0 . Vapp/(RS + R0) (3.3.2)

If R8 is chosen to be a fraction f(f _<_o°) of R such that:

O

+

R8 < fRo ohms, then the current IO can be rewritten as:

+ .
. .

10 - Vapp/RO(1 + f) (3.3.3)

 

*This is discussed further in Sections 3.4 and 3.5.
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Substituting the expression for R0 from Eq. (3.2.1), the current

measured at node 1 at t 20+ is

2

10+ 3 Va a—OL . 1 A (3.3.4)

1.,( 1 + f

The voltage appearing across the sample at t - 0+ is, therefore,

0 0

Substituting Eq. (3.2.3) in the above equation:

+ V

v0 ”.222. (3.3.5)

1 + f

Because the conductivity of the semiconducting sample is finite,

power is dissipated due to the current in the semiconductor. The dis-

sipated power is converted to heat: therefore, the temperature of the

sample will rise. Increased temperature implies increased ionization,

and so the conductivity will also increase. The conduction current will

increase with time until a final steady state is reached. Hence, the

voltage V0+ and current IO+ are the static maximum terminal voltage and

minimum terminal current at node 1 of the sample reSpectively and so are

designated hereon as vmax and 1min'

To obtain the limits of maximum static current Imax and minimum

static voltage vmin' it is assumed that the semiconductor is completely

and uniformly ionized at some temperature T . Since the material is uni-

formly ionized, no thermal or concentration gradients exist, and the only

component of current in the sample is conduction current. The conduc-

tivity of the sample at this time is (using Eq. 2.3.1)

(rmax - Ndepb (3.3.6)

Note that in the above expression, the electron concentration is taken

to be the donor concentration. This is because the model has only one

mechanism for creation of electrons, namely donor ionization. Conse-

quently, at any instant, the total number of ionized donors exactly equal
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the number of mobile electrons. Hence,

. Ndefih ~ (3.3.7)
Umaxfirb

_ NdexpC¥EgalkTamb)e a

If the mobility gap ratio is represented by :

 

r

T a ,
max Frexp(Ega/kTamb) (3.3.8)

0—

0

g 6’Hence: dfiax OPrexP(Ega/kTamb)

and so:

Rmin 8 —fx—-—. R0
(30309)

0' L 2 Prexfiftga/kramb)
max y

Thus, the maximum external circuit current Imax is:

V
= B ( 3.3.10Imax Vapp/(RS + Rmin) - ipp ( )

ROLf + l. exp(-Ega/kTamb)J

1‘

Similarly, vmin is given by:

  

R

vmin I Imamein ' app E x 08

ROD? + .L exI><._§£L)] firexp(_ae_>

Pr kTamb amb

. vapp
(303011)

 

[1 + fiprexp(Ega/kTamb)J

Summarizing and using the symbol IO to represent current Vapp/Ro'

i.e., IO = Vapp/RO, the maximum limits of the static voltage and current

that are allowed by the external circuit configuration are

 

V

Vmax . . 322 , (303012)

1 + f

V

vmin = app , (303.13)

1 + fprexp(h8a/kT)

1min 3 Io ’ and (3.3014)

1 + f

I a loprexflfiga IkT)

1 + ffrexp(88;7kT)

(3.3.15)
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The above expressions are the limits of the static terminal cur-

rents and voltages. As will be discussed further in the coming section,

these can be used as tests indicative of the stability of the results

obtained: if the terminal variables were to lie outside the range defined,

the ETD would be in an oscillatory state or even a physically unrealiz-

able situation.

3.4. Energy Storage Mechanisms and Time Constants of the ETD

In Spite of the apparent simplicity of the circuit, its dynamic

behavior involves more than just two resistances in series. This is

because of the various energy storage mechanisms present in the system,

each of which can be associated with a distinct time constant.

First, there is the thermal time constant, T3, due to the energy

storage associated with the heat capacity of the ETD. If c is the heat

capacity, kth the thermal conductivity and LR2 the cross-sectional area

of a uniform cube of the material, then‘Pé is given by

2

T I x
(3.4.1)

kth

 

For the ETD sample chosen, the time constant associated with

unit cube of the material is computed below.

The relevant material parameters are

kth a 6.0 w/(m - x)

3.3 x 105 J/(m3 - K)c a

Lk a 10-“ m

Ta = 55038

This time constant plays a significant role in the energy balance

equation which is discussed in detail in a later section. Since kth

and e have been assumed constant, this time constant I; is a constant

characteristic of the ETD in this model.
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A second time constant T; is associated with the thermal and

concentration diffusion of the conduction electrons, and is related to

the mobility of the electrons.

t a LX (3.4.2)

Unlike 2;, Tb is a function of temperature and so is not a con-

stant for the material. The value of Tb is evaluated at two character-

istic temperatures T and Tcr for easy reference:
amb

a) T a 300 K

amb

Pa = 4.3 x 10.6 m2/V - s

tbl '—' 90.8 ms

b) or = 341 x

fb B 4.3 X 10-) mZ/V - S

tbz = 7088 1118

This time constant is an important factor in the continuity

equation that is developed in Section 3.8.

A third important time constant is that associated with the per-

mittivity E'of the ETD giving rise to bulk capacitance effects. There

again the time constant to

T I E. (30403)

c 5????)

is not a constant for the material. Since is a function of the free

electron density n and mobility/4,?c is a fairly complex function of

(it).

Good estimates of 2; can be obtained by using the approximations

discussed in Chapter 2.

y'av'n:(T)ep(T) (from 2.3.2)

Thus for the two characteristic temperatures, the approximate
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values of 2; are:

a) 300 K

4.425 x 10"11

T

E F/m

0b = 800 mhos/m

I; ' 0055 ps

1

b) *
5

I 341 K

a 6.15 x 104 mhos/m

a
"
?

h
i
)

I 0.00717 ps

2

In addition to these three, there are other time constants which

have been neglected in the model. For instance, the time constants due

to lead inductances and capacitances have been neglected in the formula-

tion of the external circuit equation: and so has the inductive time con-

stant due to the time rate of change of magnetic field in the material.

The limiting values of the terminal current and voltage can be

assumed to be the maximum limits, even when the dynamic characteristics

of this model ETD are studied. Thus, the relationships (3.3.12) - (3.3.15)

for the limiting terminal current and voltages hold for the entire time

Spans of observation: they are used to test that the overall solution

obtained at any t is a physically realizable one.

The time constants obtained in this section are Summarized in

Table 3010

Table 3.1

- 550 s'?h m

Eb - 9008 m8

1

'sz - 7.88 ms

It ‘ 0.055 p8

°1

'rC ‘ 0.00717 p5
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3.5. The Thermal Boundary Conditions

Looking back on to the circuit diagram of Fig. 3.5, observe that

the rectangular semiconducting block, i.e., the ETD is in contact with

perfectly conducting electrodes at two of its surfaces x = ~i»and

x I Lx + 8, and with air, which is assumed to be a perfect insulator,

on the other four Surfaces. In the above statement, the terms ”conduct-

ing“ and "insulator” refer to both thermal and electrical conduction.

Because the electrodes are ideal heat sinks, the temperature at each

of these electrodes will remain at the ambient temperature Tan for all

1b

time. Thus, for all time t,

T(“8, y, Z, t) I Tam (30501)

b

TCLX + a, y, z, t) a Tamb (3.5.2)

Since 3<< Lx' the temperature at a distance inside the material

can be expected to be not significantly different from the temperature

at the electrode interface at all times t. Thus

T(O, y, z, t) I Tam (3.5.3)
b

T(Lk’ y, Z, t) . Tam (30504)

b

Since the surfaces y I O, y I Ly, z I O, and z = Lz are assumed

to be in contact with a perfect insulator, there is no heat flowing out

of these surfaces(39)3 the normal component of the heat flux density is

therefore zero everywhere on these surfaces:

qu I 0 at y a 0 and at y a Ly (3.5.5)

qu I O at z I 0 and at z I Lz (3.5.6)

Hence, applying Fourier's Law (Eq. 2.6.2)

kt T I 0 at y I 0 and at y I by

9;

kth:T a 0 at z I 0 and at z I L2

2
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Thermal conductivity being a finite non-zero scalar constant,

the boundary conditions become:

EEK)“ 0, Z, t) I 0, (3.507)

3y

8T(x' L , Z, t) a O, (3.508)

‘—' y
ay

21(x, y, 0, t) 0' and (3.5.9)

32

11$)“ y, L2, t) - 00 (305010)

Dz

3.6. The Electric Potential at the Electrode-Semiconductor Interface

Consider the ETD at a timeAtO after switch S has been turned

on. Recall that timelito is large enough such that the initial tran-

sients due to closing the switch have died down; yet, it is small com-

pared to the thermal time constant a discussed in the previous section.

Ato is the first observation time; for the model, this has been taken

to be lO/AS.

Since this time is small compared to the thermal time constant,

the resistance of the ETD is assumed to be not significantly different

from R0, where R0 has been defined as the ETD resistance when it is uni-

formly at the ambient temperature Tamb' Hence, the voltage at node 1

at t0 is given by Eq. (3.3.5). Hence,

vlmco) - v0+ . vapp/u + f) (3.6.1)

Also, since node 2 is grounded,

V2(At0) = V2(t) I 0 (3.6.2)

Again, since the electrodes are highly conducting and make ohmic

contacts with the ETD at the interfaces, the potential at each point on

a face in contact with an electrode will have the node voltage corres-

ponding to the electrode. Hence:
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V(-S, y, z, Ato) = vlcoto) (3.6.3)

V(l.x + 8, y, z,Atn) I 0 (3.6.4)

Obviously, the above is true not only for t IAtO, but for all

values of t.

V(-S, y, z, t) I V1(t) (3.6.5)

V(Lx +'6, y, z, t) = 0 (3.6.6)

The distance 8 has been chosen such that it is smaller than the

grid Spacing,* but larger than the Debye length associated with the

sample. The Debye length for the semiconductor7\u is obtained from the
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relation ( ) (3.6.7).

Afinez

For the present simulation, the minimum grid Spacing x and the

Debye length )‘D are compared below.

0 . 3.334 x 10.6m at T = 300 K

x .. 1 x 10" m

A value of 8 of 5 x 10.6m is therefore appropriate. Since 5 is much

smaller than the Space dimensions, i.e., 3 << Lx' l.y the potential at

points meet either electrode within a S-neighborhood of the electrode

interface can be assumed to be equal to the voltage at the electrode.

Consequently, the Eqs. (3.6.6) and (3.6.7) for any time become

V(O, y, z, t) I V1(t) (3.6.8)

V(Lx, y, z, t) I 0 (3.6.9)

Specifically, atlAtO, the relations become (using Eq. (3.6.l)):

V(0, y, z,A to) :- Vapp/(l + f) (3.6.10)

V(Lx' y, 2, Ato) ' 0 (3.6011)

 

*The grid structure is discussed in Chapter 4.
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V1(t) for all other times t >At0 is evaluated in a subsequent

section.

Because of the power dissipation in the ETD due to the electri-

cal current, the temperature of the ETD will rise. However, this tem-

perature rise will not be uniform due to the thermal boundary condi-

tions of the ETD.

3.7. Net Charge Density at the Electrode-Semiconductor interface

Once the switch 3 is turned on, a surface charge of -¢é and

+0§ is built up at the semiconductor surfaces x = -6 and x I LX + 8,

the magnitude of which is determined by the bulk capacitance of the ETD.

If E is the permigtivity of the semiconductor, vs at Ato is given by

é L

0g I [,2 Vlait) coulombs (3.7.1)

x

However, at a distance 5 within the semiconductor from an elec-

trode, there is no surface charge density, since 6 has been assumed to

be much larger than the Debye length. The volume charge density Q at

such a point can be obtained from a consideration of Gauss' Law:

9 awn?

Consider the semiconductor at the instantlbto where

tO << 2;, the thermal time constant

t0 >> 1;, the time constant

associated with the turning-on of the switch. writing the continuity

equation at this time:

1+v.[avE]= 0 (3-7-2)

at

which after a little algebraic manipulation and applying Gauss' law,

yields

3 8 '9 + E.%’ 3 0 (30703)

.3 a
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Now Ema-- 30' E + a.- E + 30‘ E where E , E , and E are the electric
-- x — 5.— Z X y 2

3x, 3y 2

field components along x, y, and 2 directions reSpectively. But, near

the metal electrodes, the tangential components of the E-fields must be

zero, because the tangential component of the E-field must be continuous

across a boundary, and, in a metal, there can be no electric fields.

Hence, By and El are zero and 80, Eq. (3.7.3) becomes

inflatifix'o (3.7.4)

3t 6 3x

Hence, at the boundaries, can be obtained by assuming Ex to be a con-

stant with reSpect to t. The solution for 9 is approximately,

-£’_'t

9 2‘90 + Be e

Thus, for all t >>5/a’, i’ :9 at x I 0 and x = Lx' For this model, it

0

is assumed that the above statement is true for all times t >tit0. It

may be noted that this is not strictly true, since, in the above argu-

ment, the material was assumed to be homogeneous. Hence,

€(0, Y, Z, t) ' 90 (30705)

?(LX, y, z, t) I 90 (3.7.6)

3.8. Boundary Conditions at the Air-Semiconductor Interfaces

Consider now the conditions existing at the four surfaces of

the semiconductor exposed to air, for instance, at the plane y = 0. At

this boundary, Ex in air is non-zero since the tangential component of

the electric field is continuous across the boundary. This is the

"fringing" field. The normal component Ey is reSponsible for the normal

conduction current,

J O’E
COUd y = y

Since air is assumed to be a perfect insulator, there cannot be any con-

duction currents if surface charge effects are neglected. Within the

semiconductor,¢7, the electrical conductivity is non-zero; hence, Ey
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at the surface y I 0 is zero. This is similarly true for all four sur-

faces y I O, y = Ly, z I 0, and z I Ly. Using the relation E's -VV

developed in Chapter 2, the boundary conditions can be written mathe-

matically as:

EEOC, 0, z, t) a 0,

3y

2109 L ' Z, t): 0,

a), y

§!(x, y, 0, t) I O, and

62

31(x, y, Lz’ t) - 0.

82

The volume charge density is related to the electric field by

Gauss' Law f I 6V. E.

The tangential components Ex and 82 are continuous across the

interface y I O, and also, there is no conduction current across the

interface. Constructing a pillbox of infinitesimally small thickness

A, it can be shown that

‘7. E at y I 0.

Hence, by Gauss' Law

9(x, O, z, t) I 0.

Similarly,

Q(x, Ly' z, t) I 0,

9(x, y, 0, t) I O, and

“X. y. Ly. t) - 0-

3.9. The External Circuit Equations

So far the terminal voltage V1(t) has only been evaluated at the

first observation timeAt0 (refer to Eq. (3.6.1)). The terminal voltage

V1(t) and the terminal current i(t) measured at node 1 are functions of
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time and are related to each other by Kirchhoff’s Voltage Law:

V1(t) a va p - i(t) . as (3.9.1)
p

This is the load line equation.

Obviously, this terminal current is equal to the total current

at x I 0. The current at x I O is comprised of three components:

a) Conduction Current,

b) Diffusion Current, and

c) Diaplacement Current.

The conduction current density in the x I 0 plane is:

J (0, y, z, t) I -¢(0, y, z, t)7'V(0, y, z, t) (3.9.2)

cond

However, at x I O, the temperature T remains the same for all t and, also

no significant charge separation takes place here.* Hence,

~ + _¢'(0, y, z, t) I n(0, y, z, t)ep(Tamb) M nd(Tamb)eu(Tamh)-<fl)

Thus, the Eq. (3.9.2) reduces to

Jeond(o, y, Z, t) . "f0 o'V(0, y, z, t) (30903)

The diffusion current density at x I O is given by (refer Sec.

2.5):

3diff(0' y, z, t) 1/u(T)kV(n(0, y, z, t).T(O, y, z, t))

Since the temperature at x I O is Tamb for all T5/4(T) is/ga and so

Fdiffu)’ y, z, t) I’uak‘WMO, y, z, t).T(0, y, z, t)) (3.9.4)

The diSplacement current density Shiff is given by

Jdiffu)’ y, z, t) I'eag'gm, y, z, t) (3.9.5)

In Sec. 3.8, it was assumed Ex did not change with time.* Hence

3h1ff<°9 Y: z, t) ' 0 (3.9.6)

The total current density 3} at x I 0 is therefore:

'J'Tw, y, z, c) . vovwo, y, z, c) 7431. (n(0, y, z,t)

0T(0, y, Z, t)) (3.907)

 

*Surface charge effects are neglected in this model.
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The total current can be obtained by integrating the above ex-

pression (3.9.7) over the face of the semiconductor at the x I 0 plane

i(t) .IF 0 d;- (3.908)

surface of semi

Resolving the carrier current density 3 into three components,

Jx Jy, and J2, along the three axes

- A A A

J J +’J + J .I xx yy 22

Also,

dE'I ydy x zdz I xdydz.

Hence,

3 . d? . deydz.

Thus, the total current i(t) is given by

L L

i(t) :- gylc‘) sz(0, y, z, t)dydz. (3.9.9)

L

Y Z _
i(t) I {L .4; (’,t(‘l‘)k[:V(nT):]x ghde. (3.9.10)

The above is obtained by substituting Eq. 2.5.8) in the Eq.

(3.9.1). The subscripts (x, y, z, t) have been omitted for the sake of

brevity.

Substituting this expression back into the load line Eq. (3.9.1)

I"y Lx
v1(t) - vapp - as .4 f0 .k53‘m' a) . dydz (3.9.11)*

In subsequent sections, equations for the voltage V and temperature T

will be obtained.

3.10. The Continuitygof Chargg

The charge continuity equation was obtained for the ETD in Eq.

(2.2.7).

 

*Note that {*(T) can be treated as a constant in the above ex-

pression, since the semiconductor surface, being in contact with an

ideally thermally conducting electrode, is assumed earlier.
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a_9_ + V. 3' - 0 (3.10.1)

at

Where 3.15 the current density, the current density 3'is given

by Eq. (2.5.10):

3' - «E + kP(T)V(nT) . (3.10.2)

Substituting Eq. (2.4.4) and Eq. (2.3.1) in Eq. (3.10.2)

3': kr(T)E7(nT) - neVV] (3.10.3)

Computing the divergence of the above expression:

V. '3' .- k/u(T)[V2(nT) - neVZV - eVn .vv] + k Vp. [mm

- new] (3.10.4)

where T - nit).

Also, recall that'VZV I -976 (Eq. 2.4.5). Substituting this into

Eq. (3.10.4) yields

V. 3 I kp(T)[V2(nT) + ne 9/6 - eVn .VV] + [kvlu .V(nT) - kne

Vv .vij (3.10.5)

Also, recall that in Eq. (2.2.4) '

9 I en:(T) - en.

Rearranging terms in the above yields

en . en:(T) - e (3.10.6)

Substituting for n in Eq. (3.l0.5) and working the algebra (see

Appendix C), a parabolic partial differential equation for the volume

charge density is obtained as shown below:

2

1g;+V2?.(_-__kT)+V9. (vv-_2__krr~k__'_r1np)+§ kvl‘

/p&1?))3te e e Le

enL: - _9_ + 1 (v kT) 1 k T)- ++ T 2+ up..V - e J + E: V2d(n efndVV

+ 1h,(-endvv + kV(ndT))] . 0 (3.10.7)

The differential equation obtained requires six boundary con-

ditions on each face and an initial condition to be completely solvable,

all of which have been arrived at in the previous sections.
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3.11. The Poisson Equation
 

Once the net charge density 9 is known at every point in the semi-

conductor, the electrical potential V(x, y, 2) within the semiconductor

can be directly evaluated by using Poisson's Eq. (2.4.5).

V.VV(X, y, z) I -S’(x, y, z)/€ (3.11.1)

Since €(x, y, 2) has been completely evaluated at each time

step in the previous section, the above elliptic partial differential

equation is solvable provided a complete set of six boundary conditions

are known.

Two of the boundary conditions have been obtained by consider-

ing the external circuit in Sec. 3.3. The other four boundary condi-

tions were arrived at when discussing the air-semiconductor interface

in SECQ 3080

3.12. The Temperature Equation

The equation for the temperature at any point in the sample is

obtained by considering the energy balance within the sample. Rewriting

the SQ. (2.7.7) Yields

T93 - 93 + Kngg + K d - eVgi_n_ (3.12.1)

(it (it dt dt (it

(a) (b) (c) (d) (e)

Each term of the above expression is considered in turn below:

(a) ng -- This represents the rate of creation of entropy in

the system. Sgfice the System has been idealized, such that no less

terms have been included, this term is zero.

(b) du -- Since u, the internal energy per unit volume, is a

2'1?

function of Space and time, it can be expressed as: (see Appendix H)

d -a(}'t)+V.3"'t 3.12.23%; S?’ . u(r, ) ( )

(f) (g)
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Considering each of the terms separately, 22_represents the ex-

3t

plicit rate of change of internal energy per unit volume at each point

in the system. This must correSpond to the explicit energy increase

due to the rise in temperature of the material. Hence:

136;) = c a; (3.12.3)

3 3

3; represents the energy flux crossing a unit cross-sectional

area in the material per sec and is expressed as Jim2 - S). The energy

flux in the semiconductor is composed of electrical and thermal, all

other forms of energy flow having been assumed absent in the model.

Ju 8 J; + Jelec
(3.1204)

where Ja-and jelec are the thermal and electrical energy per unit area

per second, reSpectively.

Taking the divergence of both sides,

V. Ju V. “'6' + . Jelec (3.12.5)

(h) (J)

Recalling Fourier's Law as stated in Eq. (2.6.2), (h) reduces

to

gvzr (3.12.6)

Again, the electrical energy flux density, Jelec' is given by

V. J; ‘3 “kt

Jelec : Jcondv
(3.12.7)

Computing the divergence of the above:

‘V ='_ '—. 5e1ec Jcond .vv + vv. Jc0nd (3.12.8)

and substituting Eqs. (2.4.4) and (2.5.6) yields

Vs Jelec ' ' E s E + VVo Jcond (3.12.9)

Substituting Eqs. (3.12.9) and (3.12.6) back into Eq. (3.12.5)

_

w

\7 . Tu - -kthV2T -rb . if + v V. 30”“, (3.12.10)
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Substituting back Eqs. (3.12.3) and (3.12.10) for terms (f) and

(3), the term (b) becomes:

dU'Cfi-ktVZT-Eof'i’VVQFh (3.12.11)

dt at

Thus Eq. (3.2.1) with terms (a) and (b) evaluated now becomes:

  

+

2 fi' -' —‘ dn
c §T_- ktfiv T - h . E +~v V. Jcond + Kp d + Kn 92.

[ at J dt dt

(0)7 (k) (C) (d)

dt

(e) (a)

Consider now the last four terms in the expression (k), (c),

(d), and (e). The term (d) represents the energy associated with the

creation of electrons at any point in the sample due to the chemical

potential Kn, which is reSponsible for thermal and concentration dif-

fusion in the semiconductor. Using the now familiar technique outlined

in Appendix H and remembering that the electron (particle) has a charge

of -e,

(d)K anKGn -1V.J.

n dt n.at 8 diff
) (3.12.13)

Similarly, expanding the term (e)

(e) -eV in - -eV(§_r_1_ - _1_V. '3) (3.12.14)

dt at e

Combining Eq. (3.12.13 and (3.12.14) with (k), we obtain:

- ev g2_+ V‘?. T
Kn(3.’l ' lV. Jdiff) + VV' Jcond

3t e 3t

. . (k) + (d) + (e) (3.12.15)

Recalling that the current density 3 due to electron motion is the Sum

of diffusion and conduction components,

J ' Jcond + Jdiff (2'5'14)

Eq. (3.12.15) reduces, after a little algebraic manipulation, to



 

I
'
l
l

 

w.

.-

cu
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(Kn - ev>g_g_ = (k) + (d) + (e)
dt

But, (Kn - eV) correSponds to the net electrochemical potential

acting on the electrons. Hence, combining this with term (c):

+

(c) + (a) + (e) + (k) - f: 93 + Kp :11 (3.12.16)

dt dt

Moreover, recall that the net creation rate of donor ions and

electrons is everywhere equal in the model. Hence using Eq. (2.2.5):

(e) + (d) + (e) + (k) a (F+K )9};

pdt

i1.and Kp are opposite in Sign, and the expression gives the net

energy involved in the ionization process. In the present model, this

energy of ionization is neglected. The equation for temperature can

therefore be written as

C 3T 3 kthva +O'E o E (3.12.17)

5'1:-

This equation is identical in form to the equations used by

Berglund and other investigators(31’34’36). However, the approach used

here closely parallels Ridley's thermodynamic argument, thus demonstra-

ting the consistency between the two.

3.13. Summary

In this chapter, three partial differential equations have been

obtained, together with the necessary boundary conditions for T, the

temperature, V, the potential, and 9, the charge density. Since all

other variables EB' n3, n'f"‘E,’a—’ 3cond’ 3diff can be expressed in

terms of these three, the system is completely known if these three equa-

tions are solved. The numerical solution of these three partial differ-

ential equations by computer simulation forms the subject of the next

chapter.
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For easy reference, the relevant equations together with their

boundary conditions are recapitualated below:

a) Voltage:

‘VZVCX, y, z, t) = -€(x, y, z, t)/é

Boundary Conditions:

22(X, O, z, t) a 0; §!(x, Ly, z, t) a 0

3y By

3V(x, y, 0, t) a 0; 32(x, y, Lz, t) a O

z 82

V(O, y, z, t) a V1(t); V(Lx’ y, z, t) a 0

Also,

V(t)-V -R fly/L7“ a"
1 " app S 0 0 ak 3&222.' 0 3M)dydz

3)( 3x

Att=At0,

+ V

V (At ) = V I 822

1 0 0 1+f

b) Charge:

9(Ato) a 0

1 21+vzg.(_-__}_<_l_‘_)+V9.(VV-2_1§_VT-I_<_’I_‘_Vlnf)

[4(T3'3t e e e

2 en+

+ 3. (iv T+ d-£+VlnP.V(V-_l_<_'_l‘_))

e E G e

+ (kV2(n+T) - eV +W +v1 (- +Vv + kV( +T)))d nd nr end nd

Boundary Conditions:

9(0) Y: z: t) a 90! ?(LR' Y: z: t) 3 €0

9(x, 0, z, t) a O; 9(x, Ly, z, t) a O

€(X. y. 0. t) =- 0: 90:, y, L2, t) . 0

c) Temperature:

cBT-khvz'r+t'§.§

S? t
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Boundary Conditions:

T(O’ Y! Z, t) a Tamb; T(LX' Y. Z, t) g Tamb

22(x, 0, z, t) a O; §I(x, L , z, t) = O

y y y

210‘: Y: O: t) '3 03 910‘: Y: Ly: t) ' O

32 32



CHAPTER IV

A NUMERICAL APPROACH TO THE SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

In the previous chapter, we deve10ped a set of three partial

differential equations, each associated with a complete set of boundary

conditions. For convenience, these equations are listed again below:

the subscripts (x, y, z, t) have been omitted for brevity:

a) *vgv + 94. I 0

b) 1_§_g_ +vZeb-161‘) + V? . (we) -vz_1_<__'r - LTvlnrflD

17—“ e
+

+9(:_k v2'r + end(T) - 1 +V1n’:(T) .Vw - 1(1))

e E 9 e

+ 1(kVZ(n:T) - e'n:(T)V¢ + V13}: . (kV(n;T) - enSVfl)

8 0 (4.0.2)

SE. th

The three dependent variables used to describe the system are V, the

electric potential; 9 , the charge density: and T, the temperature at,

any point in the semiconducting material. If V,q , and T are known for

all points (x, y, z) in the semiconductor at all times t, the system

is completely described. In the three equations, the only other vari-

ables are n; and’I. However, both of these depend explicitly on tem-

perature T, which is separately evaluated in Eq. (c). For easy refer-

+

ence, the expression for (T) and nd

[1(1‘) 'Pa -- T < Tar [See Fig. 2.2]

are recalled below:

'f'b -- T Z Ter (4.0.4)

47
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n+(T) I N exp(-E /2kT) - T < T [See Fig. 2.2]
d d ga er

a Ndexp(-Egb/2kT) - T 3. Tcr (4.0.5)

The set of Eqs. (a), (b), and (c) are nonlinear and coupled, and

hence are too complex to handle in a closed form analytically. An ap-

proach to numerically solving these equations is presented in the re-

mainder of the chapter.

4.1. The Formation of Finite Difference Equations
 

The finite difference technique is perhaps the most convenient

and frequently-used method to solve a partial differential equation

(PDE) together with its associated initial and boundary conditions. In

this method, a network of grid points is first established throughout

the region of interest occupied by the independent variables. In this

case, the independent variables are x, y, z, and t; and the region

occupied by the spatial operators is the sample Space which has dimen-

sions of Lx' Ly’ and L2 in the x, y, and 2 directions reSpectively.

Next, the partial derivatives of the original PDE are approximated by

suitable finite-difference expressions involving x, y, and z. The

finite difference expressions are obtained by using Taylor's series ex-

pansions of the function. The only types of Spatial partial derivatives

that occur in our mathematical formulations are the gradient, diver-

gence, and Laplacian operators. Thus, in Cartesian co-ordinates, no

mixed partial derivatives of the form 32f are involved. The finite

are involved. The finite difference exgregsions for these partial de-

derivatives are developed in Appendix B.

There are two major types of errors associated with this tech-

nique, namely the discretization error and the round-off error.
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The discretization error, e, is the departure of the finite dif-

ference approximation from the solution of the PDE at any grid point;

i.e., if f1 be the solution of the PDE and f2 the solution of the alge-

braic equation, then

Gsfl-fz

f1

The discretization error plays an important role in the selection of the

grid as discussed in the next section.

Also, the computational procedure is assumed to be capable of

an exact representation of the solution of the finite difference equa-

tion. As only a finite number of digits can be retained by the computer,

round-off error is introduced. Round-off error is minimized if

a) the number of arithmetic operations at any given location

is minimized,

b) the numbers on which the operations are performed, as well

as the result obtained, are of the same order of magnitude,

and

c) all variables are of the order of unity.

The first criterion depends largely on the algorithm used in

the solution as well as the grid size involved.

The useful technique to reduce errors of the types (b) and (c)

is by “normalization". Here, the dependent variable is transformed by

suitable additive and scaling factors to a dimensionless quantity lying

between zero and one. For instance, consider the temperature equation

vz'r -P
cE-T-"kth

it

obtained in the last chapter. In this model, we are interested prima-

rily in the preswitching region, where the temperatures within the ma-

terial would lie between the temperature Tamb and Tcr' Consider therefore
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the transformation

u I T - Tamb (401.1)

Tcr - Tamb

Here u is a dimensionless variable lying between zero and one. Using

this transformation, the temperature equation becomes:

° 23 ' kthVZ'r ' P (4.1.2)

at 'r - _T
Ct

 

amb

Note that this transformation is useful only in the preswitching

region. Once switching takes place, the temperatures in the filament

region can be expected to be much larger than the critical temperature

Tcr'

The other transformations used are as follows:

Ax-ExibAy-fiyxziz-Lz’i:

10 10 10

eV (:1 - T )
v - vappgh g- .222}; 1‘ - cr amb a, (4.1.2)

L .

X

where , , and 9 are the normalized dimensionless dependent variables

corresponding to V, , and T and x, y, and z are unit vectors in the

x, y, and 2 directions reSpectively. The transformed equations thus

obtained from (a), (b), and (c) are

(a) Davfi?g + Dav§f + Davifi -YD55 +1 - O,

(b) 31+ [F6 . y . qvue) - F31 . qVOtG) - Egg . qgvo

+ Fél . (nflflj :- 0, and

(a) '22" PIEDaVAe‘fDaVG'i'DaV 9"? e 9].?F.9

3t 7? x 9 2 D d

where

1)::fo . f(x +Ax, y, z) + f(x -Ax, y, z)

Dav9f -T[f(x. Y +A)’: 2) + f(x. Y ‘AYo 3)]

Davaf -Y[f(x, y, z +Az) + f(x, y, z -Az)]

Delfif .- f(x +AxLJ, z)- f(x -Ax, y, z)

2
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Delyf a J7f(x, y +Ay, z) - f(x, y -Ay, z),

2

Delzf = ‘5’“be 2 +112) - f(x, y. 2 ~02).

2

IT" _£L_:

kth

I . n;(T)

NdexpCEgbiTcr) - Ndexp( 8é7Tém6)

‘1’. a n(T) '

NdexpCEgb7T;;) - Ndexp(E 7T )
ga amb

 

 

a w .. n * [(Delx¢)2 + (mnyebz + (Delz¢)2], and

WC ai§0 = ;(Tamb)'

These transformations are formulated using n1 2 n2 I n3 = 10 in Appen-

dix C. The choice of n1, n2, n3 is discussed in the next section. In

the equations and relations listed above, the spatial subscripts have

been omitted; i.e.,} , 11,, , (,1' , 6, fl, and xare all functions of

space and Davx, Delx, Davy, Dely, Davz, Delz denote Special Spatial

operators. (The terms Fa, Pb, PC, Fd'Y'TD' AT, and Ar are all dimen-

sionless constants.

4.2. Selection of the Grid Structure

In the last section, it was pointed out that the round-off error

could be minimized by a suitable choice of algorithm and by normalizing

the variables to dimensionless quantities of the order of unity. But

this has little or no effect on the discretization error.

The discretization error depends largely on the nature of the

grid structure chosen. For computer applications, it is preferable to

use as uniform and regular a grid structure as possible, since this re-

duces the memory storage requirements and the number of operations on

the computer. Thus, this entails not only a saving in terms of computer
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time and money, it also minimizes the round-off error, which, as was

pointed out earlier, depends on the number of operations performed.

Hence, a cubic or a rectangular grid are the obvious choices. Recall

that a rectangular parallelepiped with a Square cross section had been

chosen for the semiconducting sample.* To minimize round-off error,

an equal number of points are chosen along each axis. Obviously, the

mesh Spacing in the three directions is not the same; in fact, it is

proportional to the dimensions of the sample in the three directions.

In other words, if Li, Ly' Lz are the sample dimensions and n1, n2, :13

are the number of points along the x, y, 2 directions reSpectively, then

the grid Spacings Ax, Ay,.Az are given by

L L

Ax . E35; by = _y_; A2 a _g (4.2.1)

n1 n2 n3

Since

L

y ' L2

and

n1 - n2 8 n3 2 n

x . Egg Y a El: 2 = 2 (4.202)

n n n

The number n is selected from the following considerations.

First, it is desirable to minimize the discretization error. Since all

the differential equations are of second under, consider the discretiza-

tion error involved in obtaining 32f. From Appendix B, for an interior

3x2

point (x0, yo, 20)

*Another logical choice, from symmetry considerations, would

have been a cylindrical sample. However, this choice leads to program-

ming complications because of the singularity of the Laplaciar opera-

tor at r I 00



S3

82f . f("o 1’ 24’“ ’0' 20) ' 2“"0 +Ax' yo' 7‘0) 1' f("0' y0' zo)

"" 2
 

N

3x Ax

2 3

+ X a f + as.

21 3x3

The discretization error e is hence given by

33f

2 3
e m x 73x

2: a?-

8x?

 

Thus, e is minimum when Ax ¢ 0, and hence when n 4'00.

However, there is a lower limit ofiix determined by the nature

of the problem. While discussing the boundary conditions for the charge

distribution, it was required that the Spacing be much larger than the

Debye lengthTKD to be able to neglect surface charge effects. Thus

x >DVAD.

Hence

L

LX << l..-

E?
D

n-

Since

Am and D I 3.34 x 10-6m, n << 30.LXI-1x10-

However, practical considerations limit the choice of n even

further. Since a number of arrays (at least one for each dependent vari-

able) of size n x n x n have to be simulataneously stored in the computer

memory, the core memory requirements and costs increase very rapidly

with n. A compromise choice of n was 10, which required an operating

computer core memory of 100 k.** In Appendix C, the normalizations are

performed with n I n1 I :12 I 10.

 

**At the time, the maximum allowable core memory on the CDS 6500

computer used was 120 k.
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4.3. The Equation in j
 

For the equation in 15, X-is assumed to have been already eval-\

uated, and so it is a second order elliptic partial differential equa-

tion, in three Space dimensions with'X as a forcing function. Typically,

elliptic PDE'S are solved by some kind of relaxation method: in this case

the Successive Over Relaxation (SOR)(44) method is used to Speed up the

converging process. Briefly, this method consists of initializing each

element of the matrix to some convenient value. In this Specific simu-

lation, the value obtained at the previous time step is used. A new

approximation to the value of an element is obtained using the governing

Eq. (b) and the relaxation parameter w, and the current value immediately

replaces the previous value of the element in the matrix.

For instance, for an interior point, the equation for f is:

Davx¢ + Davy¢ + Davzfi - TD” +x I 0 (4.3.1).

Expanding the above by using the definitions of Dav , Davy, and Davz
x

”(x +Ax , y, z) + ¢(x -Ax, y, z) + 0(x, y +Ay, z)

+ i(x, y -Ay, z) + “x, y, z +Az) + (Xx, y, z -Az)

- {D¢(x9 y, Z) +$(x9 Y: Z) s o (4.302)

Rearranging terms:

”(X, y, Z) ' L ”(X +AX, Y: z) + ”(X “AX, Y. Z) 4' ”(X9 Y +AY: 2)

TD

+ C(x, y -Ay, z) + 0(x, y, 2 +432) 4» ¢(x, y, z -Az)

+f(x, y, 2) (4.3.3)

In the 80R method, a new value ¢+(x, y, z) is obtained by

¢+(x. y. z) I ¢(x, y, z) +'w * [0'(x. y. 2)

- 0(x, y, 2)] (4.3.4)

where I'(x, y, 2) denotes the right hand side of Eq. (4.3.3). Similar

expressions for ¢'(x, y, 2) can be obtained for points lying on the edge

as shown in Appendix E.
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The relaxation parameter w determines, to a large extent, the

rate of convergence. If chosen too small, the solution tends to converge

slowly: if too large, the successive inerations may not converge at all.

(45)
Forsythe and Hasow recommends an optimal choice of w of 1.5.

Convergence is determined by the relative deviation RD:

 

RD 3 Elf}, (X: Y: z) ' “()hj: 2H (4.3.5)

over 221 “x, y, 2)]

all

elements

when RD drops below a Specified value Eps' convergence is attained, and

the solution is acceptable. As before 6 and 0+ stand for the older and

newer approximations to the solution reSpectively. For the complete pro-

gram listing, refer to Appendix F.

4.4. The Equation is 9
 

The normalized equation for 9 is:

as - 1 [Davifi + Davie + Davfie Cine] a PFd

This is a parabolic partial differential equation in three Spa-

cial dimensions. However, the equation is non-linear, the non-linearity

arising from the nature of the forcing function P-FU' From a knowledge

of the conductivity and the electric field E, the forcing function P is

first evaluated for each time interval: the differential equation is then

solved assuming the forcing function to .be invariant during the evalua-

tion process.

The boundary conditions on the six boundaries, as ennumerated

earlier, are of the von Neumann type<45). In normalized form, these

are

9 I 90 at x I O and at x I 1.x

)9 I 0 at y I O and at x I L

s;’ Y

22': O at z = 0 and at z I L2

32
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Two standard methods exist for solving this kind of equation;

i.e., explicit methods and implicit methods. In explicit methods, to

obtain a solution at time tn + 1, all Space derivatives are evaluated

at the instant tn. Though this implies that the calculation procedures

are inherently simpler, it requires that very small time steps be taken

relative to the Space grid size; i.e.

0 < t/ x2 5_%

This is undesirable particularly because thermal time constants are

usually large and hence would place severe restrictions on the size of

the sample and the Space grid structure.

Implicit methods overcome this difficulty at the expense of a

Somewhat more complicated algorithm. It consists of representing the

Spatial derivatives 5x2, Syz, etc. by a finite difference form evaluated

at the advanced point of time tn + 1, instead of tn as in the explicit

method.

There are, however, two serious drawbacks to the standard im-

plicit method in three dimensions. For the one dimensional case, the

scheme is Stable and is independent of A, where

A.= At/sz

But, in three Space dimensions, the method is unstable for l.> 3/2(45).

Furthermore, it requires an inversion of a fairly complex matrix, which

takes considerable computation time.

The implicit alternating direction method, developed by Peaceman

and Rachford<aa> and Douglas(aa'45'49) avoids these disadvantages and

manages to use a system of equations with a tridiagonal coefficient ma-

trix which can be solved by fairly straightforward methods (see Appendix

D). Essentially, the principle is to employ three difference equations

for each time step, the solution of the first two being intermediate
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values denoted by u* and u** as follows:

(2");)(u.'. .. ”n ) . _1_ 5x201" + on) +15y2un + Yszzun + FDP (4.4.1)

2 2 2

- I: ‘4‘ - 'k'Ax (u** on) 1 5x201 on) +1; 8y (on + u w) + 52 u

zit 2

+ F P (4.4.2)
D

Ax2(u -u)-lé 2(u*+u)+f$2(u**+u)
E n + 1 n E X 1'1 ‘2" y n

+r5 2(u + u ) + F 1’ (4.4.3)
2 n + l n D

In the above difference equations, the time subscripts are n and

n + l. The Space-subscripts have been omitted for clarity. Leaving

Eq. (4.4.1) as it is, subtracting Eq. (4.4.2) from Eq. (4.4.1) and Eq.

(4.4.3) from Eq. (4.4.2) and rearranging terms, we obtain

1‘cu""'--lSx2__u*Ilun+xzun +75},2u +78221: +FDP

2 2 n n

Kuirw-TsyzuflIXu*-152u

2 Y n

2

K%+l';éyzun+IBXU**-% zun

In the above set, the right side is a known column matrix,

whereas the left side is a tridiagonal matrix. The algorithm for solving

such a system is shown in Appendix D. The actual implementation is done

in subroutines TEMPEQN and TRIDAG (see listings in Appendix F).

4.5. The Equation in 3

The equation for 9 in normalized form has been written out in

Section 4.2. This also is a parabolic partial differential equation in

three Space dimensions, but with Dirichlet boundary conditions at the

boundaries. However, this equation is considerably more non-linear than

the temperature equation, and 50, though the alternating-direction

scheme deve10ped there could be applied, considerable computational time

is involved in merely evaluating the tridiagonal coefficients.



 

w
h
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m
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Instead, an iteration scheme based on the 80R method discussed

earlier is used. This method is particularly advantageous because of

the numerical values of the constants Fé, F5, Fé, and F5. Typical values

of these constants are illustratedin Table 4.1 for a V02 sample.

 

Table 4.1

Normalization Constants F5, F6, F8, Pd

F; 7.96 x 107 mz/s

Fb 1.63 x 105 mz/s

F; 6.58 x 10‘2m2/s

Fa 1.29 x io'zmz/s

Since F5 and F5 are so much larger than either Fé or F5, and all

quantities:}$ 6, 9, etc. have been normalized, the terms containing the

coefficients Pd and Fé can be neglected to a first approximation. Thus,

the equation in 9 reduces to

xT'xl'l -J(n - 1 F; Vs (Q‘V‘)- Ft.) Vs (Qv(§9)) (“0501)

[it

and hence

n

x g xn _ 1 + 5% [F5 v. (qivm - Ff) v. (qv(§e))] (4.5.2)

The right side of the equation is known, and so the first ap-

proximation to xn to start the iterative process is obtained from Eq.

(4.5.2). Because of the dominance of this term, the iterative process

converges very rapidly. As in the Poisson equation, a relaxation para-

meter w or 1.5 is used.

4.6. Gestalt of the Logic Flow
 

In the preceding sections, we have developed schemes to solve

each of the three differential equation--in 9, ¢, and? --with the ap-

propriate boundary conditions. But, the three equations are mutually



 

 

it.

.w
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coupled to each other; therefore, solving each of the variables 9, fl,

and Q in turn assuming the other two known does not imply simultaneous

solution.

To correct for this error, a predictor-corrector loop is employed,

its logical flow chart being illustrated in Fig. 4.1. The method uti-

lizes the feature that the thermal time constant is long; in other

words, of the three dependent variables 9, fl, and? , the temperature

would vary least within a time step. As the flowchart indicates, an

estimate of the terminal voltageyi: t is first made by solving the
n + l

circuit equation using the values obtained at tn. This is then used as

a boundary condition to solve for the matrix ¢ for all elements of the

Space grid. Using this value ¢* and the temperature at tn, the conti-

nuity equation is Solved to obtain *. The electron density n is then

computed, and, applying Simpson's Rule, the new estimate of terminal

current i§(t) is obtained. The circuit equation is used again to obtain

a new estimate of the terminal voltage fly. The new estimate is tested

against the older estimates; the looping is terminated if

|¢***;*-¢:*i (EL

where éL is a preset positive real number. When the above convergence

 

test is satisfied, the current estimates of 9 and D are taken to be the

true values at time t These are then used to solve the tempera-
n + 1'

ture equation for time tn + 1. The time is then stepped Up and the pro-

cess is repeated for the next time interval.
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CHAPTER V

RESULTS OF THE SIMULATIONS

Now that the model has been translated into a computer program,

it is possible to demonstrate its utility. This is best achieved by

simulating the behavior of the ETD's under various biasing and other

external conditions to verify its "goodness" and then making some pre-

dictions regarding the device based on the outcomes of the simulations.

Of course, the ”goodness" of a model is relative. It has meaning only

in relation to the objectives of the model. In other words, while there

are various aSpects and facets to an experiment, a model seeks to ex-

plain and make understood those aSpects which are of primary interest

to the investigator. Thus, the model has to fit the objectives and

goals set by the investigator, and the "goodness” criteria of the model

is determined by how well it is able to attain these objectives. There-

fore, in order to be able to judge and criticize the efficiency of the

model, it is necessary to delineate clearly the purpose of this study.

From a panoramic viewpoint, the goal of this thesis is to under-

stand the physical nature of the switching process in electrothermal

devices. Experimental evidence to date(40'41'42) indicates that the

electrical switching process must involve a complex combination of phys-

ical phenomena. For instance, the thermal nature of the device has been

clearly established, yet, obviously, its extremely fast switching time

cannot be accounted for by thermal processes alone. So, a primary ob-

jective is to study and develop a better understanding of the physical

processes related to the initiation of this fast switching process.
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A change in band gap and mobility gap has been presumed to be

involved in the switching process. For simplicity, in this model, both

of these were assumed to be abrupt step functions of temperature, the

step occurring at the critical temperature, Tcr' It is proposed to Show

that such a change does indeed initiate a fast switching mechanism coupled

with a change of state. The ”goodness" of the model will be judged on

the basis of comparisons of the switching times from actual experimental

data.

The terminal I-V characteristics of the device also form a focal

point of interest, since it forms the interface between the device phys-

icist and the applications engineer. A typical I-V curve for a current

negative resistance, shown in Fig. 1.4, is reproduced here in Fig. 5.1.

For convenience, this curve is Split up into four regions.

The first or low current region extends from the origin to the

switching or threshold voltage vthr' The associated terminal current

at this point is called the threshold current Ithr' As shown in Fig. 5.1,

this is a Stable region with a positive resistance coefficient. When

operated here, the semiconductor will act as a non-linear resistor.

The dynamic properties of a device operating in this region are Studied

in the next section. Since all points in the region are stable, all

bulk dynamic characterists should tend to approach a steady state value

with time.

The next region is termed the transition region for obvious

reasons; it is a highly unstable switching region with a non-linear

negative resistance coefficient. Being unstable, this region cannot

be obtained as Solutions to a static model. Adler and Kaplan's solu-

tion(36) of the static equations for energy flow and continuity of charge

closely resembles Fig. 5.2a which was obtained as a Solution of this

more dynamic model.
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The third important region of the curve, the post-switching

region shown in Fig. 5.1, is called the unstable high-current region.

It exhibits a slight negative slope; i.e., a negative resistance coef-

ficient implying that the region is still unstable. In fact, as other

subsequent experiments Show, the device is in a "thermal runaway" con-

dition. Many of the earlier experimental failures with the ETD re-

sulted from a failure to control this post-switching phenomenon.

Though the temperature and hence the conductivity increases very

rapidly in this region, the power dissipation, given by (ES, reduces,

due to the decrease in the electric field E} This reduces the rate of

temperature rise and effectively increases the terminal dynamic re-

sistance of the device, until finally the resistance coefficient becomes

positive. This fourth region is called the "high-current" region. Con-

trolling the length of the third region such that this roll-over takes

place before the temperature attained is too high and the device burns

out is a current problem in device design.

This dissertation, however, concentrates on the preswitching

region; it is of interest here to observe the onset of the switching

process rather than the postswitching stabilization process. Hence, it

is the first two regions, namely the low-current and transition regions,

that are of interest here.

Another subject of interest are the methods of inducing switch-

ing in the ETD. Four distinct types of simulated experiments are per-

formed. In the first class of experiments, the external battery vol-

tage V8 p is small; so that in the final steady-state condition, the
p

ETD remains in the low-current zone. Therefore, in this class, no

switching is expected to occur. This type of simulation is useful both

in the construction of the low-current zone of the I-V characteristics
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as well as in the study of the development of steady-state conditions

within the sample.

' The other three methods are attempts to induce switching by vari-

ous mechanisms. The first obvious method is to apply a ”large” applied

voltage such that at least some points within the sample reach or exceed

the critical temperature. In the other two methods, switching is attempted

by locally applying a power pulse and an optical ionization pulse. The

switching characteristics observed, if any, sometimes provide a basis for

correlating with existing experimental data, providing further vindica-

tions for the goodness of the model.

Other characteristics provide a basis for making useful pre-

dictions regarding the behavior of the ETD as a switching device. After

all, the model's validity and usefulness is dictated not only by its

ability to explain observed phenomena, but aISo in its ability to pre-

dict and foresee phenomena not yet observed. It then becomes a useful

tool with which to guide future experimental research.

In this set of simulations, the experiments are performed using

the data of V02 as a prototype material. The selection is so partly

because, in the past decade, V02 has been widely experimented with by

various investigators. Thus, the documentation on them is fairly good.

Correlative work is also much easier, since the switching characteristics

of V02 have already been observed. Predictions regarding this material

is also likely to be more than merely academically useful, since opti-

cal effects in V02 is a matter of current research. In this chapter,

the first few sections concentrate on establishing the goodness of the

model, while the later sections deal with the predictive aSpectS of the

model.
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5.1. Terminal I—V Curves

The I-V curve obtained by this simulation (Fig. 5.2a) is in

agreement with published experimental results in the following sense.

Although the magnitudes of currents obtained by the simulation is very

much higher than experimental data would indicate, the current density

normalized to a unit volume sample is of the same order of magnitude.

An experimental curve obtained by Duchene et. al.(40) is reproduced in

Fig. 5.2b for comparison. The discrepancy is therefore due to the large

sample size chosen. Recall that the choice of a large sample size was

dictated by the Debye length for the material; in order to neglect the

surface effects at the metal-semiconductor interface, the grid size, and

hence the sample size must be chosen much larger than the Debye length.

The current densities at the threshold voltage Vt and sustaining vol-
hr

tage V are compared with experimentally-obtained figures in Table 5.1.
sus

The sustaining voltage obtained from the simulation is 0.85V

which is in excellent agreement with the experimental data; the break-

down or threshold voltage Vthr is, however, about an order of magnitude

smaller. This is attributed to the oversimplification involved in com-

puting the volume charge densities at the boundaries. In actuality,

the diffusion current component due to thermal and concentration dif-

fusions result in much larger charge densities near the ends. One would

therefore expect large electric fields to be set up near the electrodes,

and, therefore, considerable voltage drops would occur near the ends.

Recall, however, that the sustaining voltage obtained compares very well

with the experimental data (see Table 5.1). As borne out by the other

experiments discussed later, the switching observed is indeed with fila~

ment formation. Once the filament extends from one end of the material

to the other, the large electric fields at the ends can no longer exist;
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thus, the error involved in the boundary conditions of the volume charge

density does not have a significant contribution.

Table 5.1

Constants of the I-V Curve Depicted in Figs. 5.2a and 5.2b

 

Experimental Simulated

4 2 4 2

Isus/cross-sectional area 3'1 x 10 A/m 3'20 x 10 A/m

vsus 0.8V 0.85V

I 3 1 104a/ 2 1 27a/ 2
thr/cross-sectional area 0 x m - m

vthr lB-V 1.39V

5.2. Steady-State Conditions in the Preswitching Region

In this simulation, the voltage of the battery shown in the cir-

cuit diagram of Fig. 3.5 is small. The power dissipation at any point

as described by the temperature is given by r73- . E; hence, the larger

the battery voltage applied, the larger is the eXpected power dissipated

at any point, so the final temperature attained would be expected to be

larger. By a small battery voltage it is meant that the voltage is suf-

ficiently small so that no point within the material attains, in the

steady-state, the critical temperature Tcr beyond which switching is

expected to occur.

As evidenced by the I-V characteristics discussed in the pre-

ceding section, the preswitching region of the ETD is stable. So, for

small voltages, the ETD should reach a steady state in a time t large

compared to the thermal time constant of the system; all variables of

the system--V, Q, n, T, etc.d-should tend to a final steady state value.

That this is indeed the case is evidenced by the curves (Fig. 5.3) ob-

tained from a simulation of the model.
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In Fig. 5.3, the potential V, dissipated power density P, temper-

ature T, and free election density n are plotted with respect to time for

a representative point in the sample. As expected, all of the above vari-

ables tend to approach their reSpective steady-state values. The temper-

ature T starts from the initial ambient value Tamb to the final value

Tcr’ the rise can be approximated by an exponewtial laws

T I Tamb + (Tf - Tamb)(e-tft1)

The time constant can be computed from the plot. The value of this time

constant’ti is compared in Table 5.2 with the thermal time constant Tk.

It is also interesting to note that the other variables V, n,

etc. exhibit the same exponential nature. Whereas the potential V re-

duces with time, decaying to the final steady-state voltage Vf, the power

density P and electron concentration n for representative points in-

crease with time. But, in each case, the approximate law is exponential;

typically, for voltage V and the electron density n for a representa-

tive point, reSpectively, the relations are:

V=V +(V

a

- -c/1
f Vf)e 2

PP /

‘t t3

n a nf + (nf n0)e

Note that the time constants T1, Ti, and 23 are approximately the same

and close to the thermal time constant (k.

Table 502

Time Constants Computed from Fig. 5.3

T1 630's

t2 SBOps

7:3 720’s

1A 550,6
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Therefore, in the preswitching region I, the thermal properties

are primarily reSponsible for the tranSport phenomena in the ETD. This

is why the sample Berglund model<34) , which utilizes only the equation

of energy balance as discussed in the introductory chapter, works so

well in the preswitching region.

Consider also the temperature-current curve shown in Fig. 5.4b.

This curve is obtained by varying the input current in the simulation

runs. More precisely, referring to Fig. 3.5, this is the curve obtained

by keeping the battery voltage constant and varying the external resis-

tance Rs to alter the current through the device. The curve (Fig. 5.4a)

shows that the time required to reach the switching temperature Tor de-

pends on the input current. This is reasonable since the power dissi-

pated in a volume element of the sample depends on the square of the

current density. It was also observed that the time required tr to

attain 952 of the final steady state value depended on the input current:

the larger the input current, the larger the final temperature and also

the shorter it took to reach the final steady state value, the latter

relationship being approximately linear:

i I cltr + c2

The values of tr for various input terminal currents are tabu-

lated in Table 5.3. A simplistic consideration of the energy balance

equation lends substance to this observation. Neglecting the diffusion

term, the energy balance equation can be written as:

c 33 - o-‘i . E (5.2.1)

at

Since the electrical conductivity U'can be written as

0"- nelu

and n, the free electron density can be approximated by the ionized

charge density, it can be written as an explicit function of temperature:
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e Nae/LexpC-Eg/ZkT)

The above relation uses the donor ionization equation developed earlier.

Table 5.3

Data P10tt€d in Ftfifle 5043 and 5.4b

 
  

V t
i Final app r

Terminal Current Temperature Battery Voltage Rise Time

(M) (K) (V) (m5)

1000 328.3 1.875 1.80

1100 333.7 1.875 1.70

1150 338.1 1.875 1.64

1300* 356.5 1.875 1.50

*No band gap switching was simulated in this case.

The approximation nt~rng is particularly good in the preswitching region

because of the absence of temperature and free electron concentration

gradients in the y and 2 directions (see Fig; 5.6). Returning to Eq.

(5.2.1), and substituting for the electrical conductivity

1'1: . NdefA exp(-E /2kT)§ . E

dt c 5

Since both E3 and f.are step functions of temperature (refer Figs. 2.1b

and 2.3), and assuming the electric field E'to be a constant also in

this preswitching region, the Eq. (5.2.3) can be integrated. Note that,

although no physical justification is given, the assumption that the

electric field E.is constant in the preswitching region has been used

(10,31)
extensively by many experimenters with considerable success.

To simplify the integration involved, consider conductivity to be a

linear function of temperature given by

9’. «0(1 Mu) - W‘BKI +°tT)

Extensive examples of this kind of linear approximation to o'can be

found in the literature<31'34).
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Rearranging terms:

T t

f dT . { noel" 32d:
 T _—

amb l + dT 0 c

Integrating:

2
E

_1_1.(1+o<r .50 t

at 1+o(r "6"" r
amb

Hence for constant V

i - cltr + c2

Since the voltage applied is kept constant, the time tr is pro-

portional to the terminal current i. Thus, by adjusting the external

circuit parameters, it is possible to exceed any known switching tem-

perature Tcr for a Specified material. Thus, by using high enough applied

voltages, switching to the high-conducting state can be induced. Ex-

perimental data on this kind of simulation is discussed in a later sec-

tion.

5.3. Spatial Distribution of Temperatures in the Preswitching “95122.

For a small applied battery voltage, the ETD reaches a final

stable steady state in the preswitching region T. The temperature dis-

tribution along the axial line joining the midpoint of the two elec-

trodes is plotted in Fig. 5.5 for various instants in time. Starting

from an initially flat distribution (when the sample is uniformly at

the ambient temperature Tamb)' the temperature profile becomes parabolic

in shape with the peak occurring at the geometrical center of the device.

The plots along the y and z axes remain flat throughout. This is con-

sistent with the thermal boundary conditions for the ETD. At the elec-

trode semiconductor interfaces, the metal electrodes act as heat sinks

and so the temperature at these ends remain at the ambient temperature.

Since power is being dissipated due to the external circuit, the tem-

perature is bound to increase.
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Thus, because it is constrained at the ambient temperature at the two

ends, a parabolic profile is only to be expected. Furthermore, the

thermally insulating boundaries on the other sides of the semiconductor

prevent any thermal currents in the lateral directions, which is borne

out by experimental data.

The Spatial distribution of the power density is of interest.

(See Fig. 5.12s.) As discussed in a later section, the power density

curve is also approximately parabolic with a minima at the center.

This contributes to the stabilizing process in the semiconductor: while

the boundary conditions tend to force the temperatures to be higher at

the middle than at the ends, the power density curve seeks to balance

this by dissipating more power at the ends than near the moddle. In

the y and 2 directions, the temperature distribution is flat and, con-

sistently, so is the power distribution. The steady state profile in

the x-direction is readily understandable from the following simplified

analysis. The energy balance equation of the system (also referred to

in preceeding chapters as the temperature equation) can be written as

k
g- thVZT-E

at C C

where P is the power dissipation in a unit volume element of the sample.

Considering only a one-dimensional variation in the x-direction,

In the steady state, the partial derivative with reSpect to time

vanishes, and so,

-ktld2T - P

2

dx

For simplicity consider the power dissipation in the steady state

to be uniform: i.e., independent of x. Hence,
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2

d T a - P (5.3.1)

dx kth

The boundary conditions for the above equation are

T I Tamb at x I O and (5.3.2)

r- ramb at x - 1.x (5.3.3)

Solving the above,

QI.‘ - P x + c

dx kth 1

and 80,

T u - P x2 + clx + c2 (5.3.4)

2ktn

Here, the constants c2 and c1 represent the temperature at the origin

and the temperature gradient at the origin reSpectively. Applying the

boundary condition (5.3.2),

C2 I Tamb (50305)

Applying the remaining boundary condition (5.3.3) to evaluate c1

_ 2
T P Lx +c1Lx + Tamb
amb '

2kth

and consequently,

C13 X

Zkth

The temperature profile T(x) at the final steady state is there-

fore,

- Px(x - Lx)
T(x) I Tam 2k

Ch

b  

which is parabolic in form. The maxima for the above occurs at the mid-

point x a E§_which agrees with the curves drawn in Fig. 5.5. Further-

more, the final steady-state temperature at the midpoint x n f: can be

2

estimated from the Eq. (5.3.7) as

T T + PL 2
max ' amb -—-§—

Bkth
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Using the data from the simulation run,

P I 1.7345 w/m3

-4
LR I 1.0 x 10 m

kth 3 600 J/(m "' K)

T u 300 K
amb

the computed value of the maximum temperature is

Tmax I 336.14 K

This is in good agreement with the value of 337.2 K obtained from the

curve 0f Fig. 5.50

A noteworthy feature of this analysis is that the maximum steady

state temperature attained at any point is independent of the Specific

heat c: this is reasonable since the Specific heat merely determines

the rate at which the temperature rises and not the final steady state

condition.

The experimentally obtained steady state temperature distribu-

tion was fitted to a parabolic curve, the results obtained being shown

below in Table 5.4.

Table 5.4

Comparison of Simulated Experimental Data with Analytic Data

  
 

 

A 2 B C D

Coeff of x Coeff of x Const Term T

max

2
k

Math formula P th PLx T T + 13Lx
I—jr— 2k amb amb 8E—-

th th

11

Best fit parameters .1445 x 10 .1445 x 107 . 300 X 336.1 K

Experimental values .146 x 1011 .145 x 107 300 X 337.2 K

As can be seen from the above data, the curve fit is excellent. The

constant term Tamb is determined by the electrode temperature. Here the

2
correlation is exact. The coeff of x and x are related to the slope

at the ends:
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91 . Ax + 11 (5.3.8)

dx

ACXIOQEIB

dx

Here the correlation, though good, is not exact. Thus, we can conclude

that the final shape of the temperature profile is parabolic with the

end points exactly as constrained: both the maxima and the slopes at the

ends are, however, slightly lower than that predicted from the one dimen-

sional analysis. This is due in large part in assuming the power den-

sity to be a constant instead of the concave shape observed.

5.4. SwitchinggTimes
 

In these simulations, two distinct methods are utilized to in-

itiate switching in the ETD. In the first method, a large battery vol-

tage is applied such that the temperature at a point within the material

exceeds the critical temperature Tcr' whereas in the second method, a

small battery voltage is applied such that the temperature reaches a

steady state value just below the critical temperature. A ”power pulse"

is then applied to switch the device to the ”on" state. Here, a ”power

pulse" means that excessive power is being dissipated at some randomly

chosen local point in the ETD. In physical reality, local power dissipa-

tion may be caused by the presence of local inhomogeneities in the ETD,

e.g., dislocations, crystal disorder, etc. because of its added resis-

tance to the current. In effect, this simulates the effect of a random

defect in the material. The results are in agreement with observed fact:

a local defect can induce switching in these devices. In each case,

there are two distinct switching times associated with the ETD. The

first time is a storage time and is related to the heat capacity of the

semiconductor and the external circuit parameters. It is the time taken
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for any one point in the sample to reach the critical temperature. 0b-

viously, from Table 5.3, this time is much smaller in the first method

since a larger current is being applied. In either case, the time is

of AJlOOFS. Though this time is large, it can be controlled and em-

pirically determined. The storage time can be considerably reduced by

operating at ambient temperatures closer to the critical temperature

Tcr' For example, in the power-pulse switching method, a storage time

of the order of only 50’s is required if the pulse is applied after

steady-state conditions have been reached at a temperature of 33.9 K.

After at least one point in the sample has crossed the critical

temperature, the switching occurs with great Speed in both cases: this

actual switching time is only 2ns as shown in Fig. 5.6. This is slightly

faster than the switching times reported in such devices. This small

discrepancy is easily explained. First, the experimental devices are

not homogeneous and, as such, are liable to contain a number of defects

and inhomogeneities in the material. This could cause the band gap re-

duction at slightly different temperatures creating an overall effect

of a smoother transition than the step function variation for E assumed

in the model. Second, the model neglects inductive effects, which may

exist due to two reasons. In the first place, the model neglects mag-

netic field effects which could be large during switching when the cur-

rent is varying so rapidly. Also, the effect of stray capacitances and

lead inductances due to the external circuit configuration have not been

considered. Last, but not least, there is a distinct possibility of

experimental error: at such fast switching times, the reSponse time of

the measuring circuit may well effect the measurement.
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5.5. Filament Formation in the Switching Process

Figures 5.7, 5.8, and 5.9 are sets of plots showing the tempera-

ture variation along the various directions x, y, and 2 at different

times. The filament formation is very easily observed in the lateral

plots: i.e., the plots along the y and 2 directions. In the preswitching

reghan, these curves are absolutely flat: no gradients exist in the y

and z directions, and there are no diffusion currents due to either ther-

mal or concentration gradients in these directions. Observe that this

is true even Zns before the switching actually occurs. However, once

the temperature crosses the critical temperature threshold, the tempera-

ture at that point rises very fast to produce a localized hot region--

the filament. The phenomenon can best be observed in Fig. 5.8b, which

is the plot of T(ZAx, y, 40!) at various times. Once the filament for-

mation has started, the temperature in the region seems to rise without

limit. Though this post-switching instability due to thermal runaway

lies outside the scope of this present dissertation, it is interesting

to recall Ridley's(3o) discussion in this context. He pointed out that

this can be controlled by limiting the power dissipation through the

device. In the circuit configuration used, this can best be done by

increasing the external circuit resistance Rs. When switching occurred,

the current through the device would be limited by this resistance: the

power dissipation in the device would reduce, thereby reducing the rate

of temperature until a final Steady state is reached. The axial tem-

perature profiles (Figs. 5.7a, b, and c) demonstrate the propagation of

the switching phenomenon. Once the first point has switched, the neigh-

bor points in the axial direction also switch; within two nanoseconds,

this phenomenon propagates, and the entire axial line reaches a temper-

ature above the critical value. (See Fig. 5.7b.) Points not lying in
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this axial line (e.g. Fig. 5.7a) are not affected, and the temperature

profile remains as if no filament existed within the sample.

An interesting feature is the point of initiation of the switch-

ing process. When the switching is induced by the power dissipated due

to the electrical current through the device, the switching occurs, as

may be expected, in the geometrical center of the device. If, however,

a power—pulse is applied to an eccentric point, e.g., (28x, 36y, 4A2),

the switching does not originate either at the ”power point" which Simu-

lates a local defect or at the geometrical center; in fact, it occurs

at (48x, 3Ay, 442) (see Fig. 5.9b), a point located between these two

points. A moment's consideration will, however, show that this is en-

tirely reasonable and logical.

At first glance, it might seem that the temperature distribu-

tion should have a double-humped characteristic with peaks at (50x, SAy,

5A2), the geometrical midpoint and at (ZAx, 3Ay, 4A2), the latter peak

possibly being larger depending on the power input there. However, such

a situation is physically impossible unless there are two heat sources

within the device. For, if such was the characteristic, it would imply

the existence of a valley between the peaks with a minima somewhere in

between the two. The temperature gradients are now such that heat should

flow from the peaks into the valley, causing the temperature to rise.

For every other point outside this region, there are two thermal forces

balancing each other. There is heat imput to each point due to the elec-

trical power dissipation, and there is an established temperature gra-

dient tending to conduct heat away to the nearest electrode. But, for

points in the hypothetical valley, both forces tend to add to the heat

content, and there are no forces tending to conduct heat away from this

region. Consequently, the temperature in this region may be expected
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to rise more rapidly until the direction of the temperature gradients

is reversed. Thus, it is logical to expect that the hottest point would

lie here, between the supposed peaks at the midpoint and the defect

point and so will be the first to reach the critical switching temper-

ature Tcr and initiate switching.

Consider a simple steady-state one-dimensional analysis similar

to the preceeding ones. Let x0 be a point lying between 0 and Lx/Z where

such a defect is localized. Representing the power pulse by a Dirac

delta function, the relevant heat equation becomes

  

2
kth d g - (P1 + P28(x x0)) (5.5.1)

dx

where P1 is, as before, a constant power dissipated in the material and'fi

is the "power pulse". Solving this yields

2 - -

T - -(P1x + P2(x "0)“x x0)) + clx + c2 (5.5.2)

2kth kth

Using the boundary conditions that T I Tam at x I 0 and at x I Lx’ the
b

constants c1 and c2 can be evaluated

 

c2 = Tamb and (5.5.3)

C1 3 PILX + P2(LX - x0) (505.4)

Zkth ktth

Notice that c1, which represents the slope of the temperature

distribution at the origin, has increased. And so the temperature pro-

file is given by

  

 

2 _ 2
T . _[x P1 _ (x xo)u(x x0)P2 _ Ple

2kth kth 2kth

" P2(LX - x0)x] + T (505.5)

2k amb

Lx th
I

The maxima can be localized by differentiating the above and is given

by the simple expression

 

x a Ex_- 2 0 (5.5.6)

2
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L

As discussed earlier, xm occurs neither at x nor x, but dis-
ax o T?’

L

placelfrom the center ;5 towards x0.

2

is preceeded by switching, no numerical correlation is possible.

However, Since the Steady state

Once switching has taken place, thermal runaway occurs. As seen

from Fig. 5.8b, the temperature rise is now much greater near each end

than at the middle. This is due to the Speed of switching. The temper-

ature rise is now so rapid that the thermal diffusion forces that tended

to inhibit valley formation in the interior of the device can no longer

keep pace. Since the Spatial distribution of the power dissipation

(Figs. 5.12 and 5.13) tends to be higher at the ends than at the center,

the temperature rise will now be much faster at the ends and cause hot

Spots to be visible near each electrode. This situation is, however,

unstable; a post-switching mechaniSm Should re-establish the thermal

diffusion effect, and the temperature of the valley in between the hot

Spots should rise. This is consistent with visual observations wherein

during filament formation, hot Spots have been observed near each end

before forming the hot line or filament extending along the length of

the sample, which is the final stable State.

In Fig. 5.10, the carrier current densities are plotted versus

x and y at various instants of time in similar fashion to the temperature

profiles plotted earlier. The filament formation is best observed in

the lateral plot of Jx(2Ax, y, 4A2) vs y: note the peak occurring at

(2Ax, 34y, 442). In the axial plots, combinations of diffusion effects

blur the picture. However, the phenomena of thermal runaway near the

two electrodes can easily be Seen.

Another method of observing the mechanism of the switching pro-

cess is by observations on the local electric field and the carrier cur-

rent densities along the axes at various times.
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Figure 5.11 depicts the variation of the magnitude of the elec-

tric field IEI, where

 

IE|.‘/ Ex2 + By2 + E22

along the x-direction in the z I 5A2 plane.

This coded representation consists of two codes: Ea represents

a relatively low field which exists almost uniformly in the preswitching

region, Eb represents a field an order of magnitude lower; this is the

field once the switching process has commenced. Note how in the first

of the three time intervals, it is Ea everywhere except at one point,

where switching is originating. In the second, Eb has Spread axially

to its neighbor points but not laterally. In the third, it has Spread

axially through the length of the sample.

5.6. Power Dissipation and Energy Flux Density
 

It has already been established that the switching phenomenon

in the ETD has a pronounced thermal character, and the nature of energy

balance (as embodied in the temperature equation) plays an important

role. But important energy variables, like power dissipation density

and the energy flux density in the interior of the sample, are diffi-

cult to observe experimentally. On a computer model, however, such ob-

servations are relatively simple and of tremendous value to the device

and applications engineer.

Figure 5.12b is a set of plots showing the variation of dissi-

pated power density with time. In the preswitching region, for any

point within the sample, the dissipated power density increases until

a steady state is reached. The plot is similiar to the temperature

plots discussed in Sec. 5.2. The rise is exponential, and the rise time

is the same as the correSponding temperature profile. However, if
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switching occurs, the power dissipation increases tremendously: this

follows logically, too, since the dissipated power is proportional to

the square of the electric field which is also increasing rapidly as

noted earlier. This, in fact, is the cause of the thermal runaway

phenomenon; the rate of power dissipation increases so rapidly that it

more than offsets any reduction in the rate of increase of the electric

field. Outside the filament region, the power dissipation reduces slightly

during this time. Along the x-direction, the profile is roughly the

opposite of the temperature profile. Starting from an initially flat

profile, the power density tends to Show a minima at the center and the

highest power dissipations at the two ends. When a power pulse is super-

posed, the power density profile tends to shift showing a maxima at both

the point of impressed power (2Ax, 3Ay, 4A2) and the diSplaced ”hot”

point (4Ax, 3Ay, 4A2), which is consistent with the observations made

in Sec. 5.5.

The heat flux resembles the power dissipation profile. (See

Fig. 5.13.) The maximum heat energy flows out at either end via the

conducting electrodes; the minimum occurs at the center. Once switch-

ing occurs due to the occurrence of a "power pulse”, the heat flux den-

sity is low both at the defect point (ZAx, 3Ay, 4A2) and the diSplaced

hot point (44x, 3Ay, 4A2).

5.7. Optical Switching of the ETD

In this experiment, a random interior point--chosen again to

be the point (2Ax, 38y, 4Az)--is locally excited by a continuous exter-

nal light source such that the point is totally ionized. In the com-

puter model, this is simulated by setting the ionized donor density n+
d

at the point equal to the total donor density Nd. The effect is almost
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immediate; the device switches to the unstable high-current region and

proceeds, as in the previous switching methods, to experience thermal

runaway.

Some interesting observations can be made with regard to this

experiment. In this experiment, the external bias voltage Vapp is low

such that the ETD reaches a steady state just below the critical tem-

perature. The light pulse is now applied, and switching is almost im-

mediately observed. Note that in the case of a defect forming in the

device, there is still a fairly large ( SQPS) storage time associated.

In this case, however, it is much, much less than lOps, and hence opens

up very interesting lines of application for the device. For one, since

the thermal runaway is controlled by device design and external circuitry,

there is a very fast photoswitching device available. Furthermore, the

switching can be originated at will anywhere within the sample: this

can be developed into a fast read/write unit which would have increasing

applications in interfacing with computers and other high-Speed equip-

ment.



CHAPTER VI

CONCLUSION

The objective of this research effort was primarily to gain an

understanding of the physical principles underlying the initiation of

the switching phenomenon in the ETD. Experimental evidence(6’8) and

literature surveys(s) indicate that this is a complex phenomenon, and a

number of interdependent variables--1ike V, p, n, T--p1ay important

roles in determining the switching characteristics of this device. To

understand the mechanisms involved in its switching behavior, it is

necessary to understand the interrelationships between these variables

and be able to analyze the significance of the contribution of each.

The means chosen to assist in achieving this objective was to

construct a computer-based model of the ETD. The model embodies all

the available physical information known or held to be true regarding

the ETD, and is based on well-known physical laws. It is used to simu-

late the behavior of the ETD in order to study the mechanisms involved

in the switching process within the bounds of the model; in other words,

the scope of the model is limited to the study of the initiation of the

switching process so as to be able to develop a more comprehensive under-

standing of the physical principles associated with it.

Some of the results obtained from those simulations were compared

with available experimental data in order to verify the goodness of the

model. The model is useful in understanding the distributed bulk pro-

perties of the ETD. This information is not available experimentally,

R7
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but is important in understanding the overall behavior of a given device

under various electrical and thermal boundary conditions. In addition,

the model possesses the capacity to simulate conditions which have not,

as yet, been experimentally investigated, thus giving it a predictive

aSpect. This feature enables the model to be used to design optimal

devices and understand the practical limitations of existing ETD'S.

6.1. Accomplishments of this Research

The major accomplishment of this research project lay in the

physical principles that were uncovered and the generalizations that were

made regarding the behavior of the ETD. This project has focused on the

preswitching region and the processes involved in the initiation of

switching. In relation to the I-V characteristics of the device, the

stable low-current region and the unstable transition region described

in Fig. 5.1 form the primary areas of interest.

The thermal character of the preswitching region was firmly es-

tablished by the model. In the stable low-current region, the thermal

parameters like the thermal conductivity k and the Specific heat c,
th

and the thermal boundary conditions almost completely determine the tem-

perature profile as was Shown by the excellent co-relation with the

solution of the one-dimensional steady State equation:

d2

dx2

8 =21:
C

where‘P, the dissipated power density of the sample is assumed constant.

Also, the time constant associated with reaching a steady state was in

close accord with the theoretical thermal time constant 2; as compared

in Table 5.2. Therefore, both the final steady-state temperature pro-

file and the time constant involved in reaching this steady state were

associated with thermal parameters. Also, the other dependent variables
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of the device show an exponential time dependence, the time constant

involved being again close to the same theoretical time constant‘?;.

This agrees with the expectations of numerous theoretical workers in the

area like Boer(10), Dohler<31), Ovshinsky<12), and others.

The thermal time constant is also associated with the large

storage time observed in the device. However, the switching time in

the device is very fast-of the order of nanoseconds--and cannot be

attributed to thermal diffusion effects. In this transition region,

the model succeeds in describing the simulated behavior of the ETD in

close parallelism to actual experimental observations made on these

devices. The model describes the switching mechanism as the propagation

of a band gap reduction through the length of the material. Such a re-

duction caused a change in the local electric field which propagated

along the length as the switching progressed, as illustrated in the

electric field snapshots at succeeding time Steps depicted in Fig. 5.11.

The model is also able to simulate the switching behavior of the

ETD induced by different methods. Consider, for example, the phenom*

enon of switching induced by the introduction of a defect in the mate-

rial. In the first place, the results agreed with the experimentally

observed fact that the switching first occurred along an axial line

containing the defect. But, that is not all. It also localizes the

point of origin of the switching process at a point away from the de-

fect. From hindsight, this is readily understandable and reasonable

Since thermal diffusion prevents the formation of a double-humped char-

acteristic with humps at the defect point and at the midpoint. Hence,

the competing forces result in a maximum forming in between the two

points.



 H
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The combination of these two regions, the low-current and the

transition region form part of the Static and dynamic I-V curves to-

gether with the unstable and Stable high current regions which lie out-

side the scope of this present model. The overall agreement of this

curve to the experimentally observed I-V characteristics of the ETD is

further testimony to the validity of the model. Thus, the model is not

only capable of providing an understanding of the interactions in the

interior of the device; it is also able to relate to the easily observ-

able static and dynamic terminal I-V characteristics. Since the I-V

characteristics form a crucial interface between the device engineer

and the circuit designer, the ability of the model to depict these charac-

teristics give it considerable value.

6.2. Predictive ASpectS of the Model
 

The predictive aSpects of the model are useful guides to further

material and device development. This is largely due to the capability

of the model to present experimentally inaccessible data regarding the

nature of the variables in the interior of the semiconductor material,

and so contribute significantly to understanding the physical processes

in the ETD. Thus, using the model, one can predict the nature of the

electrical potential and charge distribution in the interior of the

material; one can also predict the temperature profile, the power dis-

sipation density and the magnitude of heat flux density at various points

in the interior in both the low-current and transition regions. It is

thus possible to study the interrelationships that exist between the

various electrical and thermal variables.

For instance, the power dissipation curve predicted by the model

provides a vital link between apparently unrelated experimental observa-

tions. The switching times observed in the ETD'S are of the order of
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nanosecunds<34). This is in agreement with the simulated results of

the model: in fact, the switching mechanism can actually be observed

progressing through the device by studying the electric field and tem-

perature profile snapshots of the interior. Also, it has been experi-

mentally observed that, prior to filament formation, thermal hot Spots

appear near each electrode. The ETD simulation also projects similar

results as shown by the temperature profile of Fig. 5.8b. The simula-

tion predicts that the power dissipation curve (see Fig. 5.12) is approxi-

mately an inverted parabola. Since the thermal time constant is so much

larger than the switching time, thermal diffusion is practically non-

existent once the switching process has been initiated. Hence, the

power dissipation accounts for the exceSsive temperature rise near the

electrodes resulting in the experimentally observed hot Spots.

Simulations were also made to Study various methods of initiat-

ing switching within the device. Switching was initiated

a) if the external circuit parameters were such that the tem-

perature at a point within the sample exceeded the critical

temperature,

b) by simulating a defect wherein excessive power was dissipated

resulting in local temperatures greater than the critical

temperature, and

c) by simulating a light pulse focused at a point on the ETD

operating under suitable bias conditions.

These first two methods agree with experimental observations;

the third method has considerable predictive value. In this case, the

temperatures at all points within the device were below the critical

temperature Tcr' The incidence of the simulated light beam creates local

donor ionization, and this is sufficient to initiate switching in the
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device. The simulation results therefore predict that under suitable

bias conditions, any energy source capable of causing local ionization

is suitable to switch the ETD. Thus, radiant energy of various fre-

quencies and even acoustical waves may be used to initiate switching

in ETD'S under suitable bias conditions.

6.3. Limitations and Deficiencies of the Model
 

By virtue of the Stated objectives of the model, its scope is

limited to simulating the ETD behavior in only the low-current and tran-

sition regions of the terminal I-V curves. The third region, namely

the unstable high-current region is portrayed to some extent. Thereafter,

thermal runaway occurs, and excessive temperatures are generated in the

device. The fourth region, the stable high-current region, is thus never

reached.

Ridley<30> has pointed out that the stability of the ETD depended

heavily on the external resistance Rs. This would limit the current

through the device and hence the power dissipation. In the model, the

iteration scheme* is such that, for large Rs' the scheme is divergent.

The iteration scheme referred to is the Inner Loop* elucidated in Chapter

4. Here, the terminal current is computed by integration near the edge

of the device, and the terminal voltage is computed therefrom by apply-

ing Kirchhoff's voltage law. In Such a scheme, the limiting effect is

not obtained since a negative voltage would still satisfy the voltage

law, and the current continues to increase. Obviously, for simulation

of this region, a revision in the iteration scheme is required.

Although such a revision would limit the power dissipation, it

still may not limit the temperature to realistic values. The crux lies

 

*See Fig. 4.10
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in the assumptions that the thermal variables k , the thermal conduc-
th

tivity, and c, the Specific heat, remain constant beyond Tcr' For sta-

bility to be achieved within a reasonable temperature, both c and kth

should increase: i.e., the material should require more heat input to

raise its temperature and should also conduct heat away faster.

In addition to this, there are other deficiencies in the model.

For one, there is a discrepancy between the experimentally observed thres-

hold voltage and the Vt r observed in the simulation runs. As pointed
h

out earlier, this is because the assumption that the net charge density

remains constant is not strictly valid due to the external circuit con-

figuration. One way of correcting for this would be to reconstruct the

circuit so that a charge source instead of a voltage source supplies

energy to the semiconductor. An alternative method would be to re-

evaluate the charge density at the ends at each time step and use this

variable charge density as a boundary condition. Another source of

numerical disagreement is in the magnitudes of currents: however, this

can be adjusted by using sample dimensions closer to the Sample sizes

used in experiments. There is also a quantitative error between the

switching times observed in the Simulations and experimental data.

Though several reasons for this have been discussed earlier, one pos-

sible explanation is that it is due to a breakdown in an assumption of

the model. In the model, all magnetic field effects were neglected.

However, in the transition region of the I-V curve, the current in the

filament region changes very rapidly. By neglecting the magnetic field,

the inductive effects of this change is neglected, too, which may affect

the switching time, though the extent is difficult to determine. Incor-

porating the magnetic field in the equations is difficult, as a wave

equation is to be solved instead of the Poisson's equation. The wave
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equation is a vector equation and thus is comprised of three scalar equa-

tions, and both computer time and memory requirements is increased tre-

mendously. Obviously, when modifying this model, a balance or compro-

mise has to be readhed: there is a definite tradeoff here between the

accuracy and numerical predictability on the one hand and Simplicity,

ease of interpretation, computer memory requirements, and costs on the

other.

6.4. A Possible Simplification of the Model
 

Because of the existence of this tradeoff, it is worthwhile to

consider schemes to simplify the model and reduce the computer costs

of simulation. One Such example is outlined here.

In the preceding chapter, the temperature equation,

cfl-VZT'BE
Est

was reduced to a simple one-dimensional steady state equation

dZT . is

c

dx2

The analytic solution of the above indicated that the tempera-

ture distribution should be parabolic in Shape. Then the axial tem-

perature distribution obtained by simulating the low-current Steady state

condition was fitted to a parabolic curve, and the best-fit parameters

obtained were very close to the analytic solution. This indicates that

reasonable accuracy of simulated results (say within 52) can be obtained

by considering only the temperature equation in this region of operation

where the temperatures lie well below the critical temperature.

Let the starting ambient temperature be Tamb' Tcr the critical

temperature, and TD the temperature difference defined by

T I T - T

D or amb



 H



90

If T is the highest temperature tested at any time, then as long as

151‘ +f(Tcr-T ),
amb amb

where f is a preset positive real number less than unity, only this sim-

plified model needs to be solved. At higher temperatures, however, the

other parameters will begin to play a more significant role, and the

more complete set of equations will have to be Solved.

The preset factor f is a function of the material parameters of

the ETD, and a good estimate can be obtained by preliminary runs with

the present model. For example, for V02, a good value for f is 0.9.

Using the simplified model, the temperature at the maximum is identical

to that obtained from the one-dimensional analysis, as P would be assumed

constant. Thus, for f I 0.9, the expected error in the maxima estimated

from Table 5.5 is less than 52.

6.5. Spggestions for Future Research

From the results obtained in the simulation runs thus far, some

suggestions for future areas of research can be seen and are presented

below:

1) An extension and broadening of the objectives of the model

to include the final stable steady State of operation is a

prime area for research. This would probably necessitate

a revision of the computing scheme as discussed. Such a

revised model would be able to simulate the behavior of an

ETD in all four regions of the I-V curve.

2) Some of the assumptions of the model need to be relaxed to

incorporate more of the characteristics of the real device

and thus obtain closer numerical agreement. In this regard,

the two suggested targets are the assumption of constant



 H



3)

4)

S)

6)
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charge density at the electrode interfaces and of neglect-

ing the effects of magnetic field. For the former, an

iterative scheme to compute the charge density at the inter-

face at each time step is suggested. For the latter, the

Poisson equation VZV I ~9/g which uses the relation E a -VV

should be replaced by an appropriate wave equation. Since

such modifications would represent a substantial increase

in computer time and memory requirements, simplifying modi-

fications of the type outlines in Sec. 6.4 could also be

Simultaneously made.

A single defect in an otherwise homogeneous material has

been Simulated on this model. A possible extension would

be to observe the switching phenomena when a statistical

distribution of defects exist in the material.

Individual material parameters of the device, like kth' c,

Nd, etc., could be varied in the existing model with a view

to isolating and analyzing the effect of each parameter on

the device switching characteristics. This could provide

considerable impetus to material development and guide ex-

perimentation in that area.

Environmental parameters like the ambient temperature and

boundary conditions could be varied. Such studies would

be of importance to both the circuit designer and the device

engineer. To the circuit designer, a study of the device

characteristics under various electrical circuit bias con-

ditions would also be of interest.

The model predicts that local ionization by the impinging

of an external energy would cause the device to switch
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under Suitable bias conditions. Optical, u-v radiation, or

other radiations could be tried. Acoustic waves could also

be tried.
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APPENDIX A

Derivations Using the Boltzmann's TranSport Equation

In Sec. A.l, we shall derive the basic charge carrier tranSport

equation used in Chapter 2 from the Boltzmann's equation. Subsequently,

in Sec. A.2, we arrive at expressions for the tranSport parameters,

namely 03 the electrical conductivity, D, the concentration diffusion

coefficient, and as the thermal diffusion coefficient.

A.l. The Transport Equation
 

Let fO be the equilibrium distribution function for the electrons

in the semiconducting material for all temperatures T in the operating

temperature range. Under the application of forces during operation,

the perturbed distribution is f, where f is a function of ; Space and

velocity Space

f = f(‘f', V)

Using a first-order perturbation theory, f can be written in

terms of the equilibrium distribution fO as

f .. £0 + Vrfo . Fe + vao . gt (11.1)

where T'is the net time constant associated with the perturbation. This

is known as the Boltzmann tranSport equation.

Consider a unit volume of the sample. The carrier current den-

sity due to the flow of electrons is given by:

Ji a :ne < v > (8.2)

93
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where < v > is the expectation value of the electron velocity. The

expectation value < v > is defined, for a given statistical distribu-

tion f, as:

< v > I £(Vfdv (A.3)

f;fdv
V

where v'is the total velocity Space.

USing (A.1),

_ r _ .9. ..

< v > =[Iv(f0 + (vvrfo) + (v .vao ))dv

V .5de
 

Hence

3- : -ne(£f/f°dv +£ITWVr~f°JV7 + £ V t-vao ° t't )dv)

1:4dv

Defining the root-mean-square velocity by the expression

w2 8 I52 I

and, in cylindrical co-ordinates,

 

.x g

fng a {:10 foz‘wzsinededadw

The expression for the carrier current thus reduces to:

d I ..

.— - f 2A V .

J +[nxe(f\2rf0dv + [0 f0 0 Cw + rfOSmededsdw

“ x

+ 6 f0 4) 'Cv(VrfO . V)wzsin8d9d0dw]

 

fvf0d?

For simplicity, it is assumed that, in the model, the equilibrium

distribution is Naxwellian.

3/2 'fl.

f0 = n( H) ) e 2kT

2KkT

Since there are n free particles per unit volume, the integral

of the denominator is obviously n. Also, the first integral in the

numerator is zero. Thus,
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._ 26

J .. [foofx f -?e anrfOSinededfldw

0 0 0

(a)

+ ID” I; (fiscveo . V)w2.'meded¢dw]

(b)

Consider the term (b). The term % Simplifies as follows:

% -- a7. = .1. a - 1 .-
dt m dt m

where F is the applied force. Since the force in this model is due to

the presence of the electric field E

I -eE"
3
|

'1'?<
|
°

e

m

The term (b) thus becomes:

(b) - [-efowfo‘ fozxuvvfo . V)wsineded¢dw]E

Obviously, this component of current is the conduction component 3cond'

since it is proportional to the field E} The quantity within paren-

thesis must therefore be the electrical conductivityOf: the integral is

evaluated later in this section.

The other term, (a), is the diffusion term 3diff; it comprises

of the concentration diffusion component and the thermal diffusion com-

ponent. Consider the quantity V5f0°

foo I fig-V“ + inf—O.VT

Br1 3

Since 2

I2 ~me
fO I n( n1 )3

ZlkT

Hence - I312

f 3/2 ”tr

:3 0 8 ( n1 ) e I :2_

‘arl ZKkT n
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and 2 2

f 3/2 ’—-‘§“ 2 -m"
3 n n( m ) [-3e' RT + . e Zij

er 2xx 2T 57 2kT2 T 3/2

- mw

. n( m )3/2e 2n m2 _ 3

kT 2kT2 2r

- f.£_mw2 - 2.1
ZRT2 2r

Substituting the above relations back into termil:

(a) I Fdiff a [féméx fozgwa :2 SinGdOdewJe n

n

(C)

co 1: 2

+ [f0 f0 [0 Te w4f0( mw2 - l)sin8d6d0dw]VT

ZkTZ T

(d)

From the form of the equation, it is apparent that the quantities (c)

and (d) enclosed in parenthesis are the proportionality factors D and

d, the concentration and thermal diffusion coefficients reSpectively.

A.2. The Proportionality Constants

(a) The Electrical Conductivityp"

The required integral is

3'
‘ 1— 2 _.

cond ' -33 fomf; 4’2! (VVTO . V)W SinQdedeE

m

and so

0' a -_3_ {wag 162; (va0 . 'V)wzsin8d9d¢dw

m

Expanding Vyfo in Spherical co-ordinates,

3f A
M .3foe+1 09+ 1 afoa

0 am- .755- .——51.9 Te

Since a Spherically symmetric Maxwellian distribution has been chosen,

the partials in 9 and O are zero. Hence
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Assuming T'to be a constant, the integrations in 6 and O can be performed:

K

f0 SinGdQ B 2

fort“ a 2K

Since the other terms are independent of 8 and 0, the integrations in

9 and 0 yields:

w33f

 

 

(radxezfoo-t Odw
.__ 0 .___

m 8w

Since
2

-mw

3 2fo‘“( m )/e2kT

2XkT

2

-m_w__

3:9 - n<J_>3/Ze 2” - a”.
3w 2KkT kT

Therefore
2

-mw

-.-. + Me fownm( m )alszae dw

m kT 2KkT

Substituting

1 2

.. (.11.) ’ w
ZkT

W4 = u4(2kT)2

m

dW 3 (2kT)1/2du

m

Hence

2
so 3 "U 1/2

tr: + 4Ke2n f0 _‘_t_ m lze (ZkT)2 u!J . (ZkT) GU

kT‘K3/2(2kr)3/2 m2 n1

2

a + A‘Kezn {000 2? uae u (111

mKT3 2
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From Tables

2

fowure-u du : 1/2 (t ' 1) see 2 e ‘3- s

 

l.,/r

2 2 2 2

Assuming I to be a constant,

T3+4K92nXlslsloJ%-s 2?

2 2 2 n1x372

I 3nezz

m

Defining the average electron drift mobility by

[“8 = 3 3: (Add

m

the expression for the electrical conductivity becomes:

U“: hep. (2.3.1)

This is the eXpression arrived at in Sec. 2.3. Thus

: rE'

3 1'1th

Jcond

(b) The Concentration Diffusion Coefficient: D
 

The current density due to concentration diffusion has been

obtained earlier as

1'1

c» K 2K 4
.. : ff _1:w f

Jdiffc (16 f6 0 O sin6d6d¢)eVn

and so D, the concentration diffusion constant for the mobile electrons,

is given by

F 21' 4
D = {0°70 f0 3" fo sinededaclw

n

Since the Maxwellian distribution is Spherically symmetric and T, the

perturbation time constant, is assumed constant, the integra*ion in 9

and 0 can be separately performed. Since

1’2X

0 dfl I 2X
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and

r

f Sin8d9 I 2

0

Hence -mw2

D I fgat4IwQC n1 )3/2e 2ET'dw

ZXkT

Substituting

2 2
mw-ii

2kT

aniV

2kT

du I 4’ m dw

ZKT

Thus

.. - 2 1 2
D 3 f0 art<£§l)2“a(_fli_)3/2

1 e u (.231) / du

m ZkT K372 m

an 4 - 2

.. 4 (21.1“) foueudu
""

.JK m

Using the Tables as before, this integral reduces to:

D'fli; legals-J?

In .JK 2 2 2

=51o3
m

Recalling that We, the electron mobility, had been defined as:

We I 3e?

m

the diffusion coefficient becomes:

which is the well-known Einstein relation.

(c) The Thermal Diffusion Coefficient: _g

The carrier current density due to thermal diffusion is

-’ K 2r' 2
Jdiffd :- [fowfo ,6 eTwaf0(;mw - _l_)sinGde¢dw]VI‘

2k'ri T
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and so,

2x

OC .. fOOOfOK/g) e‘fwhf0( mw2 - l) sinOdOdde

2kT2 T

Evaluating the integrals in 0 and O as before yields

05.. 4 I Orwefwaf0( mw2 - _3_)dw

ZRTZ 2T

Recalling that

and making the substitution

w I (252)1/2u

m

the integral becomes

 

 

2

«=4xf0°°e‘ru“(2kr)2 n (m )3/2e“(9_2_-_3__)J'3__'kfdu

m 2'K372 2kT 2 1‘ 2T m

00 _ A-

fl.8kne(f u6eudu-3fwueudu)

__ 0 —-0

4r m 2

Using the Tables as before

I8kfl8(105.13/7‘303010‘y/FII)

I8kne s_6_.\/.i'-

"hfi- 16

I kn . 3e?

m

I‘Pkn

The net diffusion current density 3diff is therefore:

Jdiff I eDvn +«VT

I e ekTvn +,ukn\7T

e

I :kV(nT)



APPENDIX B

The Finite Difference Equations

Consider a continuously differentialbbounded function f(x, y, 2).

Using a Taylor's series expansion about a point(x , 20) an adjacent
0' yo

point f(xo +-Ax, yo, 20) can be expressed as:

f(x0+ Ax, yo, 20) I f(xo, yo, 20) + Ax if

 

3x X I X0

Y'YO

z I 20

3

4'sz 32f +AX3 3f + see (Bel)

7F”— 31'—
8x x I x0 'Bx x I x0

y-YO y-yo

z I 20 z I zO

Consider first the point (x0, yo, 20) to be in the interior of

of the material. In such a case, both points f(xO +mAx, yo, 20) and

f(xo -»Ax, yo, 20) exist. Expanding f(xO - Ax, yo, 20) about (x0, yo, 20)

using the Taylor's series as before:

2 2

- n -Af(xO Ax, yo, zo) f(xo, yo, 20) x 2£_+-Ax a f

ex 20 2

3x

3

”AX 3f + see (B02)

3: B 3

x

all partials being assumed to evaluated at (x0, yo, 20), the subscripts

having been omitted for conciseness.

Subtracting (8.2) from (8.1) yields the following:

3

3X 30 3

Ex

101
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Rearranging terms :

 

if. 2: f(x0 +Ax, yo, 20) - f(xO -Ax, yo, 20)

3x x - xo 2Ax

Y ' 3’0

2 - 20

- AXZ 33f (8.3)

3! a 3
x

As discussed in Sec. A.l, a discretization error of Oosxz) is tolerated.

So, the truncated expression for 91 is obtained. For an interior point,

a

B f(x0 +Ax, yo): 20) - f(xO - Ax, yo, zo)

 

 

if;

axx-x0 ZKx

Y'YO

2920

if; can be similarly obtained as:

3

y g f(xo, yo +Ay, 20) - f(xo, y0 - Ay, 20)

 

 

2i

3y x I x0 ZAy

Y " Y0

z = 20

To obtain the second derivation 3222:, add equations (8.1) and

(13.2) to obtain: Bx

f(xo +AX, Yo! Z > + f(xo - AX, yo! 20) a 2f(x0) yo, 20)

O

x+ X2 32f +2A4;af+ooo

3x2 4. 3x

Rearranging terms and dividing throughout by x2,

 

2f . f(x0 +fx, yo, 20) + f(xo ~Ax, yo, 20) - 2f(xo, yo: 20)

x2 X'X sz

X4 34f + 000 (3.5)

4! X4

+ N >

(
V

Discretization error terms of order sz or higher is neglected as before:
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3Zf a f(xo +Ax, yo, 20) + f(x0 -Ax, yo, 20) - 2f(x0, yo, 20)

3x2 x I x0 X2

y ' ’0

z - 20 (8.6)

Similarly, the second order derivative in y is: .

32f . f(XO' YO +AYO' '0) + f(XO, ’0 "AYO’ Zo) " 2f(xO, yo, 20)

3y [5’2

N

(3.7)

Consider now a point on the edge x I 0. In this case, the point

(x0 -lix, yo, 20) does not lie within the domain of the semiconductor.

But, (x0 +:Ax, yo, 20) does, and f(xO + 2Ax, yo, 20) can be expanded

by Taylor's Series about (x0, yo, 20) to yield:

f(xo +~2Ax, yo, 20) - f(xo, yo, 20) + 44x gg_+ gZszz 32f

Ex 2: 8x2

+ SZAX)3 39f + 000
(8'8)

33 3 3
x

Multiplying (3.1) by 4 yields:

2 2

l:f(xo +Ax, yo, 20) I 4f(x0, yo, 20) + (sax it; + 1: Ax 3 f

g x

+ 4 AXB 33f + 000 (309)

‘1"3. ax3

Subtracting (8.8) from (3.9) and rearranging terms:

_ -3f(xo, yo, 20) -+ l:f(x0 +Ax, yo, zo) - f(xo + 2Ax, yo, zo)

 

ii,

31: XI!) ZAx

y - ’0

Z ' 20

3

+ 4 x3 3 f + so. (3010)

3! 9’3

X

2
Neglecting terms containing A): or larger power of Ax, the equation be-

comes I
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9i ,3 -3f(xo, ’0' 20) + 4f(x0, yo +Ay, 20) - f(xO + 2Ax, yo, 20)

31 x I O ZAX

y - yo

2 ' 2o (8.11)

Similarly, the partial derivatives and at y I 0 and z I 0 respectively are:

. -3f(xo’ yo, 20) + [st-(X0, ’0 + Ay, 20) " f(xové ZAY' zo)

 

 

 

 

22.

3 x I X
M

Y 0
y

Y ' 0

z " 20
(3.12)

33' _ -3f(x0, yo, 20) + 4f(xo, yo, 20 +-Az) - f(xo, yo, zo +-2Az )

‘3: x I x
2A2

O

Y ' Yo

z I. o
(8.13)

The second partial derivatives for this family of points is ob-

tained by multiplying (8.1) by 2 and subracting it from (8.12). Per-

forming the above mentioned operation and rearranging terms:

 

.azf _ f(x0 + 2Ax, yo, zo) - 2f(x0 +uax, yo, 20) + f(xo, yo, :0)

2 2

3X x-O X

y-yo

z I 20

+ x 3f + ...

2: 3
x

Neglecting second order terms, the second partial derivations are:

i I f(xo + 2.x, yo. 20) - 2f(xo +AX, yo, 20) + f(xo' YO, 20)

x2 151

2f _ f(x,, ’0 + 2Ay. 20) - 2f(xo. yo Mir. 20) + f(xo. y

2

‘Ayz

f . f(xo, yo, 20 + 2A2) - 2f(xo, yo, 20 +132) + f(xo, yo, 20)

:2 4:2

 

0’ 20)

N
e
l

 

The third type of point is one lying on the edge x I LX' wherein

the point (x0 +-Ax, yo, 20) is not defined within the semiconductor, but

(X0 - 253a yo, 20) is. Similar Taylor's series truncations can be made
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by utilizing the expansion of f(xO - ZAX, yo, 20), the method proceeding

along similar lines to the previous case. Neglecting second order terms

the first and second partial derivatives are written below:

 

 

 

 

 

3 - - -
?_f_ - f(XOp YO, ZO) 4f(x0 AX, YO, 20) + f(XO de, yo, 20)

38 x I L 24x

x

Y " 3'0

2 I 20

if. a 3f(x0, yo, 20) - 4f(x0, y0 -Ay, 20) + f(xO, yO - 2A)., 20)

I L

y Y

z =- 20

3-f_ B 3f(x0’ ’0' 20) - “f(xo' yo, 20 - Z) + f(xo, yo, 20 - 2A2)

37' x 3 X 2A2 



APPEKDIX C

NURMALIZATION

In Chapter 1, it was pointed out that round-off error could be

minimized by normalizing variables and reducing the equations to dimen-

sionless form. The details of such transformations are worked out in

this section.

The normalizing variables are:

 

Ax I fixzdy I 113:;st = 32;?) V I Vapgz

10 10 10

Bv 0100 .G 3 _ . V.

R app 2 T (Tct Tamb)e + Tamb’ n pnb 9

L

x

nd pnb’ T - Tcr - Tamb

where

pnb ' pn0 - p0

pO ' "b/efh

4.

pna - “deli

‘7 '“h

{9 I lnfl

Using the truncations discussed in Sec. 4.1, the relevant equa-

tions are transformed as follows:

1) Poisson's Equation:

vzv . J/e

fi+ozv+fi+9le . 0

3x2 ’y 322
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NOW

3:1” V0‘ +Ax, Y) Z) + V(X -AXI_YJ 2) ‘ 2V(XL Y: Z)

2 2

3X AX

. 0

I vapp 1 O . [¢(x +~Ax, y, z) + 9(x -Ax, y, z) - 2¢(x, y, 2)]

L 2

x

The other derivatives can be similarly obtained. Substituting

back into the Poisson Equation and using the relationships Dav“, Davy,

Davz, and fidefined in the text, the final relation is obtained below:

Davxfl + Davyfl + Davzfl - Yd” +X I 0

2) The Continuitwaguation:

it+Vo3.o

8::

33_ + V. (-nepVV +’AkV(nT)) I 0

at

Using the charge neutrality relationship to express the equation

in terms ofg , yields

%’— + v. (- engvv +3:va +fek7g(n: - 9/e)T) . 0

t

The above equation is now re-expressed in terms ofIX by using the trans-

formations used earlier in the text.

2

a): +Paepnbvapg sz . (”Ii”) + 100,? vamp v. (mum)

5? Ioovme 100v."

+ ”a Paepnb sz qume) + Pa k1'cil‘ma’atpxr>"x V-QVOW = 0

10" VIP 100W 1. 2e
app x

Defining the following constants for conciseness

2

F' I vOP'aEPnbe

looevapp

2

F' I epnbe

1006
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0

Fe . Mavapp

0

Fa " PaVO

we obtain

:1 - Fav. (awn) + Fé V. mm + F1.) v. omen + F5 7.7”“)

t

I0

3) The Temperature Equation:

ch + kt vzr arE . E

3t h

,3}. - flavzr - nefav .vv

at c

Applying the same transformations used earlier in this section

and considering the equation term by term, we obtain

22." Tali
at at

kth va I ktth v26

C C

Using the truncation sceme developed in Appendix B, the righthand side

of the above equation reduces to

2 2
V 9 I (Davx9 + Dav 8 + Davze -‘1D9) . lOO/Lx

Y

and dafining Pd and 1.1. as

Pd I pnbepavapploo

L 2

x

7‘1? . ktthIOO

cL

x

 

th

6 Temperature equation becomes

39 .. -
a? (Davxs + DavyG + Davzs d9)/ 1' + Pl-‘d



APPENDIX D

ALGORITHM FOR SOLVING A SET OF TRIDIAGONAL EQUATIONS

In Chapter 4, the partial differential equation for temperature

was reduced to a set of tridiagonal equations by using finite difference

techniques. To solve such a system, consider a linear set of n triI'

diagonal. equations whose subdiagonal, diagonal, and superdiagonal coef-

ficients are at, b1, and c1 respectively, the righthand side'is di, and

01 18 the ith variable. The ith equation, therefore, reads

A recursion solution of the form

ut ”‘1 - °i“1 + 1 (9.2)

:‘t

is found to be valid. The coefficients 0‘1 and P1 obey backward recur-

sive relations of the for:-

‘1 - d1 " ‘1“1-1 (8.3)

71

p1 - bi - ‘1": - 1 (9.4)

Since rewriting the first equation of the tridiagonal set yields

“1 - i; " c1 “2

b1 Ff

by °°lnparing coefficients, 4" and ’51 can be evaluated.

’51 " b1

“1 " d1’P1
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From the recursion relations (8.3) and (0.4), all coefficientsai1 and

Pi can be evaluated, and, employing the applicable boundary conditions

to obtain "i and un, all ui's can be obtained.





APPENDIX E

TREATMENT OF THE EDGE POINTS BY THE 30R METHOD

In Sec. 4.3, a finite difference scheme was outlined for solving

the electrical potential distribution in the interior of the semicon-

ductor.

The behavior of the edge points is governed by the boundary

conditions as outlined here. Consider first the edges in contact with

the metal electrodes. These edges, as discussed in the boundary condi-

tions in Chapter 3, are constrained to have

V(Lx' y, z) I O

Normalizing,

¢(Lx. y. 2) I 0

This takes care of all points on the surface x I Lx' For points

on the surface x I O, the boundary conditions are obtained from a con-

sideration of the circuit equation

L L

V(o, y, z, 1;)- Va -f yI ’(46 i! + I‘a kgn‘T) )dydz
PP

ZIO yIO 3x

Normalizing the above equation and using the truncated grid structure

discussed in Chapter 4

“0. y. z. t) ' 1 ”32,222. 101* Zigwoqm) " wanjo k
LX100 " 3-1 kIl

where

§;'-sx:§§;

3x x I O

In the computer, the double summation is performed using the Simpson's

integration rule.
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Consider next the surface y I 0. Here,

21-0
By

and so

¢(X, 0, Z) ' ¢(X, AY; 2)

where the righthand side is an interior point which is evaluated by the

80R method. The other three surfaces in contact with air can be simi-

larly evaluated.

 



APPENDIX E

LISTIVG

This section c-ntains a complete listing of the computer pro-

gram used in the simulation runs and consists of a main program and

thirteen other subroutines. The LAIN program controls the overall

logic flow and the Outer Loop referred to in Chapter A.

The MAIN program calls TEMPEQN which sets up the tridiagonal

equations corresponding to the Temperature Equation that is solved by

TRIDAG. It also calls CONTROL, which controls the Inner Loop. CONTROL,

in t rn, calls the subroutines CIRCUIT, PSSN, and LMATRIX which solves

the Circuit, Poisson, and Continuity of Charge Equations reSpectively.

The remaining subroutines perform auxiliary functions. BYPASS

sets up the initial conditions, PRINT is concerned with all output

Prints, and RHP computes the power dissipation density required for the

[solution of the Temperature Equation. The function subprogram SIMPS

performs the integrations required in the Circuit Equation using

Simpson's Rule, and DELX evaluates the truncated difference operators.

Finally, BUFFIN and BUFFOUT control the flow to and from auxiliary

memory locations on tape enabling data at any intermediate times to be

Stored. The actual listing is given in the following pages.
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PRUORAM MAINIINPUToUUTPUToTAPEOOIINPUTcTAPEbI=0UTPUToTAPEIoTAPtZs

ITAPEJ)

NEAL LAOLY

COMMON/A/IIoJJoNloNJ

COMMON [ATIIOIIOIilotbiliolloiiioLCIIIoIIoII)

COMMON/LOUP/KUUNToTIHE

COMMON/TsU/Pll(lloIIoliioPPTIIollvill

COMMUNIRST/HSTiIIoIIoII)

COHHON/UtbK/TNETAIIIQIIvii)

COMMON/VOLTb/PHI(IIsIAsIII

LOHMUH/LUL5/UIAO(II)ohUHIIIIOSPR(II)

CUMMON/MAI/I‘Vlsvfh

COMMON/FH/PAoINUAsLloPH

COMMON/ATRA/FtofllolAUb

COMMON/3101A

CUMMUN/H/CAobAotbAofibd

COMMON/VIVRQVIHOVU

CUMMON/bAMS/OAMD

COMMON/DUN/GAMCOALAMUA

CUNMON/LIMITS/CMAXoCMINoUELVoNA

COMMON/VU/VA

COMMON/N/NUAIA

COMMON/MU/GMUOIUUEVSDQNAX

CUMMON/HEADtR/HEAUIoHtAUdoHEAUs

COHMON/UUT/CO:CDENS:PF«CH

COMMON/DIR/AIJIsIAIZIoJAIZIsKAIZI

COMMON/VAR/VANTOVAHCOVANVOVAHEoVAHPoVARUoVARIQVAHFQINTAOINTMOINICO

IINTD

COMMON/ITEPS/EPSMAXIoITMAXI

COMMON/CUN/GAMMAoAMDAsbAMflobAMHNoUAMMd

COMMON/FACTORS/FAoffivfCoFU

COMMON/Aw/ITMAAOEPSMAAQI

COMMON/I/IHOOIAOTU

COMMON/CONDTV/RATIU

COMMON/PULSLITIMCIoTIMKF

tUUIVALENCF (UELVoPK)

C" SET INIYIAL CONDITIONS "'

a F0NMAI¢IN0~II¢EI:.A.:K::

C 0' 1aurr=0n NU HUFFLR out 0-

C9. INDEX DETERMINES INITIALIIINO INPUT "

L.“ L IS TAPE NO. ON NHICH INITIAL INPUT IS HtCORUEU “I

HEADIbOo717) INDEXoIHUFFoL

C " COMPUTER TIME CONSTANTS '0

READIOOoTAT) dsDELIsTIMAAsEPSMAAsCX

747 FORMATISEIbo7)

C 0' OHIO SETS AND UNIVERSAL CONSTANIS '0

HEADIOOOTQ?’ LloLYsUEPSoULTKsECH

c '0 VARIABLE PARAMETER SET 0-

KEAOID007Q7I EMUAQEMUBsébHoEGLoQI

C 0' CUNSTANT PARA StT ..

' NEADC¢097~7T THKoSPHTgTAHUoTCRoSIOO

C " INTEGER CONSTANTS "

NEAUIbOoTITI IIoJJoNIsNJsITMAXoKMAXoNAoND

READ(bso787) UELvoNxA

READI6007e71IIMtloTIMtI

MEADIOUO7I7)(IAIKIOJAIKICKAIKI9K=I0NUI

thocso.777: EPSHAXIvllflAAIoflI

777 FORMAIIEIZsQOIIOI

PRINT TTIOEPSMAAIOITMAAI

AIIISIHA SA(2)IIHY $A(3)81Hl

HEADI‘IOHDISTRTUUTI

HEADZ'IOMUN ALONG

HEADJ3IOHDIRECTION

’8’ FUHMAT‘FIOAJ-IIOD

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

SINU

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

JULY“

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

JULY“

MAIN

JULYe

MAIN

JULYQ

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

c
s
u
s
m
s
u
w



98M

98?

C

C

565

115

FORMATIMIIUI

NAIIO=EMUBIEMUA

PMINI 987

PRINT 9M5.NA.NAA.NINII.KFIN.IIMAA.AMAA

FONMAII IHUofiISAoIbII

FORMATIIM I'TME FOLLoNINu VANMLES AML NA.NAA.NINII.NIINIIIMAonuAA

o.)

.... CUNSTANTS 0F TEMPERATURE 00.0

TUSTCR-TAMH

TAsTCM/TU

IMOzIAMM/IO

VUsNLIMOIU/CCM

"' TIME CONSTANTS "'

ALPMA=IIII-I)/LXI"Z

dETA SIIJJ-II/LYI'°2

IAUAsISPHT/THKI/ALPNA

IAUHaI.0/(ALDMA°CMUA0VUI

TAUC80EPS/SIHU

".“ CUNSTANTS UF TfiHP Lu” "0'“

MAMMA=ILAILY)'°£.

bAMZ:Z-0“GAMMA

bAMMBxl.9/0AMMA

0AMM2=9.bOhAMMH

6AMD=2.0°M.U°6AMMA

LbAt-EbH/IVU'ECH'ZoOI

tuna-EGL/IVO':CH'£.OI

NI8LA/(SIMO'LY9'2)

HS”C08.RI

CA=CA'LY"2

VAPP8CA'IMSOMI)

VTH8VAPP/VU

VR3RS'SIGU'IIl-II/IMLTA.LA)

FC-LA/LY ’

FE‘FC/ZOU

FU”GAMMA/Zo°

FH=fE/20

POSSIOO/ILMUA'ELM)

PNAapu'iAPI-LuA/TMUI'LAPIEhb/IA)

PNH=PNA-PU

A=POIPNM

SIGM=PNH'LCM'EMUA

blblzPNAAECM'EMUB

UELVsPNA/PO

PRINI SbSISIhIoUELv

FORMATIIMOoOSIUIa OotIo.doO UELV= 0.tIh.6)

uAaAOEAPI-EbA/IMUI

A=UA'EAPIEGA/THUI

FU=SIOB'VAPP9'2/(TD°THMI

CC=-VAPP/HS '

PF=THK'TU'ALPHA

028ALPHA0DEPS'VAPP

FAsTAUH/IAOTAUCI

FMsFA/VIM

FC=GAMU'IHO .

CASMIIIFA'A-FCI

AMUA=UELTITAUA

FCSTAUM/DELI

vA-VAPP/e.

BAMCII.O°bAMMb/MMUA

ALAMOAaI.oI./AMUA

MMUtEUM/EbA

PI'JAIMI59265358979

UtV'oOI

TOUEv5082.0'DEV'DEV

bMusIMMu-I.0IIISUMTIZoO'PI I'ULVI

uMUsGMUOtGA

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

JULYA

JULY“

JULY“

JULY“

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

JULY»

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

65

66

67

69

70

7|

77

7M

80

8|

83

B“

85

86

' 67

8M

89

9|

92

93

9h

95

96

97

9B

99

I00

IOI

I02

I03

I06

'I05

I06

I07

I08

IIM

IIS

II6

II7

IIB

II9

I2!

I22

I23

I26

I25

I26

I27

I28

I29

I30

IJI



 li



(a.

c no

556

:57

~75

“7“

707

272

coo

us

[
-
4

H g
;
\

" LIMITING VALUES UF TNL CIRCUIT CUMRENTS AND VULTAGES ...

CMINaMI/IHIORbI

63P0/9NA

CMAK300{/IH/NATIU°0.2I

PRINT SbboLbLoEbHofiMUAIEMUHOSPHIICAIPK

" PRINT INPUT DATA 9' 9.

IORMATIIHIOZUAQ. INPUT UATA IN RAT MKS UNITS‘c/lo

Z‘EUL 3 .Oblo. 30IOAO’LUH 3 'OGIO 39/10

3. EMUAa .obIoo399A09EMUM 8 .QGIU.3o//o

9'SPHT 8 .QGIOATO. CUMNcNT UENbITY 3‘OGIUAJO.PK= .9 bIOoJ)

PHINI 5570LA0L790£PSODLIKOCCHQTHKQTANHOTCNO IIMAA

FORMATIIfloo

I‘LA = ‘OUIOAJOIOAI'LV I 'OGIOAJ0/lo

Z‘EPSR 3 .OGIOOJ‘IOXO.HLIN I .OGIOo30IOX0.E 8 '06I0.3!I0A0'KTH 3 .9

JUIJ.39IOA‘//o

M'TAMN 3 'IGIOoI0I0A9.TCK 3 .IGI0o3oI0A99TIMAA 8 .0bI0037

PRINI 559

FUNMAIIIMoo' THL FOLLUMING INIthk VARIABLES ARE ..l.

d” bTAHTKoIHUFFoTAPENOOIIOJJOPSSNITMAAQKMAAQNAIMAA ITEM UF INNER LP

OIo.i/O. NAAICUNVUI ITLN CRIIIARNUITMAAI.I

PRINT 7I79 INUEAOIMUFFQLIIIQJJ.

IIM£=A.o

NOUNT39

PRINT 30VAPP0TUOSIGBQUZOPNH

FORMATIINIo/lllodhAo' CONVERSIUN FAC10RS°

I/lv' VOLTAGE -"9IPLI3. So. VOLTS'0

dl/o. TEMPERATUHL .OIPLIJQSQ. UEDK.O

a/lo. CONDUCTIVITY -'.0IPCIJ.50. MHUS/METEN'Q

d/lo. CHAMbE DENSITY '-'0IPLIJo50' COUL PER METER CUHE'Q

3 //o. CARRIER UCNbIIY".9IPCI3050. PLN MEIER CUHE'I

PRINT IOCC

FONHATIIHOQ'CUNHENT

CDLNss SIGO0III-IIOVAPPILA

L68A0CUENS

CH=IMNOIUONIILA

PRINT ZOCGOLH

PRINT “750CULNS

FORMATIIHGO. CURRENT

VRINT “7999‘

FORMATIINOQ. POULR ULNSIIY

PRINT 70705IUUQPOQEMUA0IAMH

FUPMATIIdOo' SCALt AHUEMS 'o/llo' sluu = 'vCI2o“oIOAo' P0 =

IMOIOA.

Oolllo. MUA= “OEI2.498A0.TAM88 ..Elz. “I

PRINT 27B

F0RMATIIMI03SXI. OTHER VARIABLLS'I

LIST VARIABLES‘.

PRINT ZISITNOQTAITDQVKQVIMQVUotbAQEbUIPNAvoRI0M5.

IUAICAOFUOAMDAIGAMCA

IALAMDAQUAMMAobAMZobAMMHOUAMMZQGAMDQFUIFHOFAOFBOFCOTAUAOTAUBOTAU.

FONMATIIMOO' TH0309LIZAMODAQ' TA='9LI2o905Ao/QIH00

I. Ina'ofIdofiofiAo'VH='oEI2.“95A9/9Ih09

d. VTH8.9EI2.“05AO. V0=.oEI2.“05Av/o IMO.

30 tuAsioila.“oSAoO Lufla'oEI2.~cSAI/0IH09

9. PNA8’oEIZ.“05Ao' A3'9EI2.“95A9/9IH00

ITMAAIKMAAINAINAXIITMAAI

’-'oIPLI3obo. AMPS.)

DLNSITY --‘.IPLI3.509 AMPS PER MTR SQUASE'I

-—9IIPLI3.bo' MATTS PER MLTLR CUHE'I

.QEIZO

0' HI8.9EI20405K0. “$3.05I20905A0/0IHOO

5’ bA=.0fIZoMQSXo. CA1.9EI2099550/0IH00

0' rD=.o£IZo“ODAv' AMUA3.9EI2.“obAo/QIM09

7' 6AMC3.CEIZ.*05A9.ALAMDA8.otIZ.“obAo/0IMO.

d. AMMMS'OEIZ.“¢5AO. hAMZI'oEIZ.“v5Ao/OIH09

9. UAMMH='OEI20905A0.UAMM2 3.0£I209v5A0/9IH00

I. bAMH3'otI2o“oSA99 b=°9EI2.“05A9 /0IH°0

2' FHS'AEI2.“95Ao/OIHJO

3' FA8'otIfloMOSAo' F88.OCI20995Ao/0IH09

TAUA:'9£I2.“95A0/IIH09

TAUC”.EI2.“¢SAI

«0 FC8'0EI2.“05A0'

5' TAUB’.0EI2.695AN'

MAIN

MAIN

MAIN

MAIN

. MAIN

JULY“

JULY“

MAIN

MAIN

MAIN

JULY“

JULY“

JULY“

JULY“

JULY“

JULY“

JULY“

JULY“

JULY“

JULY“

JULY“

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

JULY“

MAIN

MAIN

SIND

SINU

SINU

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

I32

I33

I3“

I35.

I36

II

I39

I“0

I“I

I2

I3

I5

I6

I7

I8

I9

20

22

I“a

I“)

I““

I“5

I“b

I“!

I“8

I“9

ISO

23

I52

I53

I5“

I55

I56

I57

158

I59

169.

"II

I62

I63

16‘

I»

I66

I51

I68

I69

I70

I“

I72

I13

I7“

I75

116

I77

I73

I19

Iuo

IBI

I82

I83



(A.

95

97

99

lo

PRINT MoAUUNI.|IML

NUATA=I

NLAU IN FROM HUFFEN UN OPTION 0'

CALL BYPASS

IF IINUEA) 95099097

CALL SPECINIINDEAoLI

DO TO 99

CALL dUFFINIINDEAoLI

CONTINUE .

TIME=TIMEODELT

MOUNT=KDUNT°I

IFITIMCoUEoTIMEII NDATASND

PRINT “oKOUNTOTIME

FORMATIIHIol/lo' MOUNT 3 .0I3o' TIME 3 'OIPEI2059. SECS.)

IFIMOUNT.6T.KMAAI GO TO I2

CALL. CUIITKUI

CALL PNINTIPHIIVAHVI

C .9 A) RIGHT HAND SIDE " POWER

C

I7

I6

I9

... M) LLFT HAND SIDE --- TEMPEQN

CALL NHU

CALL PRINTIZAQVARLI

CALL PRINTIZCIVARPI

IFIIHUFFI79996

CALL SP£CUUTIIUDFFIINULAI

uU TD 9

CALL UUFFUUIIIHUFF)

LUNIINUE

CALL IEMPEUN

IFIIRUFFIIG.19.I7

CALL SPELUUIIIBUFFIINULAI

00 To I“

CALL HUFFOUIIIBUFFI

CUNIINUL

c0'0 SET up MAIMICES coo

coo

I2

bTUHE AND PRINT OUTPUTS ”'9

IFITIMfioLTATIMAAI GD TO IO

CONTINUE

END

MAIN

MAIN

MAIN

SIND

SINO

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

UUMMY

MAIN

MAIN

MAIN

JULY“

JULY“

MAIN

MAIN

MAIN

JULY“

JULY“

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

JULY“

MAIN

MAIN

MAIN

MAIN

MAIN

MAIN

I6“

‘I85

I86

I88

I89

I92~

I93

I9“

I95

I97

I98

I99

26

202

203

20“

28

205

206

207

206

209

2I0

2II

212

2I3

29

215

2I6

217

2I8

2I9

220



 



C

50

S“

(
\
h

F
D
O
Y
‘
O

SUMROUTINE TEMPLUN

DIMENSION USISIIIIoIIoIII

COMMON USIIIIoIIoIII.AIIIoII.III.uIII.IIoIII

COMMON/vaun/

COMMON/TAU/P/IIIIOIIOII)OPIIIOIIIIII _

LOMMON/VAR/VAKTIVAHLQVAKVQVAREIVARPQVARUOVARIOVANFQINTAQINTROINTCO

IINIn

COMMON/dUMK/A(IIIoDIIIIoCIIIIonIIII

COMMON/LOLS/UIAMIIII.SUMIIII.SPM(III

LUMMUN/DUM/GAMCoALAMUA

COMMON/IIMES/TAngquIAutoud

UIIIOIIOIII

COMMON/V/VMQVIHOJU

COHHflN/A/IIOJJOHIONJ

LUMHON/CUN/LIAMHA o AMIIA v (IAflgf o {IMM‘III o IIAMHt

COMMON/L/LAOLG

COMMON/T/THOQTAQIU

tUUIVALENLEIUbToUbTbTI

LUUIVALENCEIJJIKAI

“0 I0 I3I0II

SUHII)"U.5

SPHII73’009

CONT INUE

SPNII73‘I00

5UHIIII3'IAO

SOLVE IN I’DIHLLTIUN

DO 50 I=I9II

DO 50 J=IoJJ

DO 50 NIIIJJ

UIIOJONIIUIIOJQKI’TMO

PII.J.KI=0II.J.AIouIIoJcNI/AMUA

CONTINUE

LAIZ t LMONJ

OO 5“ I'IQII

OIAOIIISALAMUA

CONTINUL

DO 5 K-IOJJ

UO 5 J'IOJJ

DO 6 I320NI

AIIISIUIIOIoJoKIOUII'IIJIAI-2.U'UIIoJoKII‘0o5

IFIIJ.NE.II.AND.(J.NL.JJII

IMIII'IUIIoJ’I'KIOUIIIJ'IOBI'2o0'UIIoJoKII'GAMMA

IFIJALUoII

OHIIIsIUIIQJOIOKI-UIIOJQNII.

MIII‘IUIIoJ-IohI-UIIOJIKII'GAM2

IFIIKoNE-IIoANU.IfigNtoKKIICIII=IUII0JOK°II‘UIIQJOA'II-2.'UIIOJ9VII

IFIJ.EO.JJI

O'OAMMA

IFIinfloII CIII‘IUIIOJQAOII‘UIIoJoKIIOUAM2

IFIKoEQoKNI CIIISIUIIQJOK‘II-UII0JoKII‘UAMC

DIII2MMS

DII73PIIOJOKI'UIIOJQ“I/LMHUA _

PIIOJOKIaPIIQJoKIOAIIIOHIII°CIII

DIIIIPIIOJQKI

TERM:

NMAND Is COMPLETE

N0 CORRLCIION NEHUIMéU AI MOUNUARILS aINCE BOUNDARY VALUL5 ARLZVRO

SOLVE HY TMIUAG MAIRIA MLTMUU

CALL THIDAG

SOLUTION METUMNED IN DIII

USTIIoJohI'0oc

USTIIIOJOKI'ooc

U0 5 L320NI

U5TIL0J0KIIOILI

CONTINUE

PAN! 2 --- CONSINUCIINM USISI MAINIA

LA'I 6 LM'NJol

11‘

TEMPEUN

TEMPEUN

TEMPEON

TEMPEUN

TEMPEON

TEMPEON

TEMPLUN

TEMPEON

TEMPLUN

TEMPLUN

TLMPLUN

TEMPEON

TEMPEON

TEMPEON

TEMPEON

IEMPLON

TEMPLON

TEMPLON

IEMPEON

TEMPLON

TEMPEON

TEMPEON

TEMPLON

TEMPEUN

TEMPLON

TLMPEON

TEMPLON

TLMPLUN

TEMPEON

TEMPLUN

TEMPLUN

TEMPLUN

IEMPEON

TEMPLON

TEMPLON

TEMPLON

TEMPEUN

ILMPEUN

TLMPEUN

TLMPLON

ILMPLHN

IEMPEON

TEMPEON

IEMPEUN

TEMPLUN

IEMPLON

TEMPEUN

TEMPEUN

TEMPLON

IEMPEON

TEMPEON

IEMPLON

TEMPtUN

TEMfiEON

TEMPEON

TEMPEON

TEMPLUN

TEMPEON

TEMPEON

TEMPEON

TEMPEON

IEMPLUN

TLMPEON

TEMPLON

~
C
¢
:
N
¢
7
U
I
O
I
H
N
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D0 56 J=I'JJ

56 UIAb I JI =UAMC

”0 I5 I320NI

U0 I5 K=I~JJ

U0 Ib ngvJJ

IFIIJoNfoIIoANfloIJoNLoJJII

IMIJISIUIIQJOIORIOUIIOJ'I0KI'2.O'UIIOJOKII'oob

IFIJ.EO.II

ZMIJISUII0J0IQKI'UIIOJQKI

IFIJoLNoJJI

JhIJI‘UIIOJ'IQKI’UIIQJQAI

AIJI'IU5TII‘lecKIAUbTII’IoJokI'200.U5TIIOJ9KII'GAHME

PIIoJoKI=bANMHGPIIIJIAI‘HIJIOAIJI

OIJI=PII9JIKI

HMS IS CUMPLEIE

CORRECT FOR BOUNDARIES

CALL IRIUAG

bOLUTION RETUHNEU IN UIJI

U0 I5 L3IIJJ

I5 U5TSTIIOL¢KI=OILI

UO 25 J8IIJJ

DO 25 I=ZOKI

no 26 KaloJJ

IF IKoLIIo I I

ICIKICUIIOJOROII'UIIIJIKI

IFIKACOAJJI

2CIKIIUIIoJoK-II'UIIQJQRI

IFIIKQNEOIIOANOOINoNLoJJII

JCIKISIUIIOJOKOIIOUIIOJQK’II‘2AO'UII9J0KII'Oo5

IFIJoifloII .

IUIKI=UST5TIIQJOIOKI-UbTDTIIIJQKI

IFIJofiaoJJI

IuIMIsUSISIIIcJ-IoNI-USISI(IoJ.AI

ITIIJoNEoIIoANDoIJoNLoJJII

IDIKI8005.(U3I5TIIOJOIOKIOUbTbIIIoJ-IOKI’ZAO'USTSTIIOJOKII

PIIOJOKI'PIIOJQAI‘CIKIObIKI

UIBI=PII0JIKI

00” 9H5 I: CUMPLLIL “*9

.... CONNECT FUN UUUNUAklwb ...“

CALL TRIUAU

50LUTION RETURNED IN IN“)

00 25 L=IOJJ

USTIIOJOL7=0IL7

(0.x dODNDARIES ...

DO 220 K=I~JJ

DO 220 JzIoJJ

UIIoJoAI=IML

- UIIIOJIKISIHU

220 CONTINUE

L'. ALL INTERIOR PIS “'

DO 225 I320NI

DO 22) J320HJ

DO 225 M320NJ

22b OIIQJIKI3U5TII0J0RI'IMU

MA=2

no 7 AL=I.JJ.MJ

M=MA

IFIKLALUoIII M3NJ

0. ALL VACCS '°

DO 253 I'ZONI

U0 253 J=LONJ

UIIoJoRLI=UIIoJoMI

UIIoALoJI=UIIoMoJI

2‘13 CONT INHL

LUNI I NUL

'0 ALL LUwEb “'

IEMPLON

IEMPEUN

ILMPLUN

IEMPEON

TEMPEON

TEMPLON

TEMPEON

TEMPEON

IEMPEON

IEMPLON

TEMPLQN

TEMPLUN

[EMPLON

TEMPLON

IEMPLON

TEMPLON

ILMPLON

IEMPLON

ILMPEUN

IEMPLON

IEMPtuN

IEMPLUN

IEMPLON

TEMPLON

TEMPLuN

TEMPLON

IEMPEUN

IEMPLON

TEMPLUN

TEMPEON

IEMPLON

IEMPLON

TEMPLUN

IEMPLON

TEMPLUN

IEMPLuN

ILMPEQN

IEMPLUN

ILMPEUN

IEMPLUN

IEMPLON

TEMPLON

IEMPLUN

IEMPLUN

IEMPLQN

ILMPLUN

TLMPEON

IEMPLUN

IEMPLUN

IEMPLON

IEMPLON

ILMPEON

IEMPLUN

[EMPEUN

ILMPLUN

ILMPLUN

ILMPLUN

ILMPLUN

IEMPLUN

ILMPLUN

ILMPLUN

ILMPLUN

ILMPLNN

IIMPIUN

ILMPLUN

IEMPIQN

IOI

I02

I03

I0“

I05

100

I07

I06

I09

IIO

III

II?

II)

II“

II5

II6

II?

IIb

II9

I20

IZI

I22

I23

I2“

I25

I26

I27

Ian

I29

IJO

III



235

UU 63‘.) J‘IOJJINJ

“0 235 I329NI

bIIoJoII‘UIIoJQZI

UIIoJoJJI=UIIoJ9NJI

UIIOIOJI=UIII20JI

UIIIJJoJI=UIIoNJoJI

CONTINUE

CALL PRINTIOQVARTI

RETURN

LNI)

ILMPLuN

IEMPEON

TEMPEQN

TEMPEON

TEMPEQN

IEMPEUN

TEMPEQN

TEMPLON

IEMPEuN

TEMPLQN

I32

~I33

I34

I35

13o

I37

I38

I39.

140

I“I
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SUHRDUTINE PRINTIVIVARI

COMMON/N/NDATA

COMMON/A/IIOJJINIONJ

COMMON/DIR/XIJIOIAIZIOJAIZIOKATZI

COMMON/HEADER/HEAUIoHEAUZvHEAUJ

DIMENSION VIIIOIIOIII

DU 5 I=Io3

PRINT IoHEAUIoHEAU29AIIIIHEAU3

U0 5 K=IONDATA

IX=IATKI

IY=JATKI

II=KAIKI

60 TU (899.10) I

PRINT JOVAROATIIOJAIKIQKAIKI

PRINT BIIVILOIYoIlIoL=IoIII

IIO TO 6

PRINT “OVAROIAIKIOXTIIOKAIKI

PRINT 29IVIIA0LOIZI9L=I9JJI

UU TO 6

PRINT IOVAROIATKIOJATKIIXTII

FORMATIIHOISAOAIOOZAIIIO'O'OAII.9.0III

FORMATIIHOISAOAIOIZAIIII’I'IIIO'9.0AII

PRINT 20IVIIX9IY0LI9L=IOJJI

CONTINUE

CONTINUE

FORMATIIHOIROKIZAIOIABIAIOI

FURHATI IHUOSAIAIOIBAIAII’I’OII9.9.9III

FORMATTIHOOIIIEII0“9IAII

RETURN

END

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

 



70

5UHROUTINE CONTROL

COMMON/LIHITS/CHAAQCMINQUELVONX

COMMON/NU/UHUCTUUEVSU'NKK

COMMON/A/IIOJJONIONJ

COMMON/RST/RSTIIITIIOIIT

COMMON ZATIIOIIOII)IZUTIIOIIOIIIOZCTIIOIIOIIT

ITLR=I SL=0 $N=0 .

DU 70 I=IvII

'UO TO J=IIJJ

00 To R=|.JJ

RbTTIvJoKI=lHTIOJOKT

C“. THUS RST CONTAINS OLD CHI FOR ENTIRE INNER LOOP"

85

co.

90

can

80

IS

76

Co.

TOO

N=N0l

H=ITER

CALL LHATRIA

CALL CIRCUIT

CALL PSbNTITERT

IFTthR-MT 80080990

" TtNOENCY TO DIVERUL on on

L=L°T

-- TENUb to CUchRoL " -'

PRINT “.ITEROHOLON .

IFIITtRoLLoNXX) GO TO 75

IFTN.oE.NAI Go To 75

00 TO 85

CONTINUE

DO 76 I=I9II

DO 76 J=I9JJ

DO 76 K=IOJJ

RSTTIoJohT=lCTIoJ9KT

RbT STORES DIFFN CURRENT DENSITY 9.

RETURN

PRINT “'ITEROHOLON

PRINT 5

CALL LXIT

FORMATTIHOO' ITER = .0139' M8 .9139. L8 .OIJO. N I .OI3T

FORMATTIHOQ 'THJS I5 TENOING T0 OIVEROE O)

[NO .

o

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL'

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL .

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

O
G
N
U
‘
U
’
T
J
‘
U
N
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anROUTINE RUFFOUT (THUFFI BUFFOOT

COMMON lATIIoIIvII)oZUTIIOIIoIIToZCTIIoIIoIII BUFFOUT

CONRON/LOOP/KOUNTOTIHE BUFFOUT

COMMON/TUO/PZITIIOIIOIIIoCONDJTIIoIIoIII RUFFOUT

COMMON/RbT/RSTTIITIIcIIT . BUFFOUT

COMMON/OEbK/THETATIIoIIoIIT BUFFOUT

COMMON/VOLTb/PHITIIOIIOIII . ‘ BUFFOUT

LII . BUFFOUT

«0 IFTIUUFF.LT.O) GO TO 50 BUFFOUT

C '. IRUFF I: 0 ' UUFFOUT

C '. BUFFER OUT ONLARELLEO ULOCK " '. .' BOFFOUT

C P“ " IN ORDER. SIbMAoRHOoPOUER " BUFFOUT

73 CONTINUE A HUFFOUT

IF TUNITOLT TJQOJCTR975 UUFFOUT

63 BUTFER uUTTLoITTlATIoIoITTZCTIIoIIoIITT HUFFUUT

on TO 00 ‘ BUFFUUT

C '. IUUFF lb - . HUFFOUT

C '. " HEPFER OUT LAHLLLLO BLOCKS) bOFFOOT

C " IN ORDER 9 KUUNTvTIMEoNTnJCONUoJUIfFoU9V 0' BUFFUUT

50 CONTINUE BUFFOUT

IF TUNITOLT 50.55974075 BUFFOUT

$5 UUVFER OUTTLoI)TKOONToPHITIIoIIoIITI BUFFOUT

60 IMUFF=-IRUFT UUFFOUT

PRINT TITQIUUFFoLoKOUNT ' UUFFOUT

Coo THE ABOVE ENSURES THAT LABELLED AND UNLABELLED BLOCKS ARE BuFr.o ALT BUFFUUT

90 CONTINUE BUFFUUT

IFTUNITILT 9099I079975 BUFFOUT

91 CONTINUE BUPFOUT

RETURN ‘ BUFFUUT

74 PRINT 30 ' UUFFOUT

36 FORMATT' EOF 0N LAST OPERATION .o/lv' lSKIPOI'I . BUFFOUT

PRINT TITOIHUFFoLoKOUNT UUFFOUT

CALL EXIT UUFFOUT

75 PRINT 37 HUFFOUT

37 FURMATT' PARITY ERROR 'I . BUFFOUT

CALL EXIT BOFFOUT

72 FORMATT ¢ UNIT NOT READY i) BUfFOUT

717 FORMATTBIIOT HUFFOUT

END BOFFOOT

c
c
s
a
m
c
u
w
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bUUROOTINE BUFFINIIRECNU0LI BUFFIN 2

COMMON ZATII0IIOIII0ZbTII01I0II)0ZCTII0II0III UUFFIN 3

COHMON/LOOP/KOUNT0TIHE BUFFIN 4

COMMON/TUO/Pll(IIOIIIII)0CONUJTIIOIIOIII UUFFIN 5

COMMON/RST/RSTTII0II0III I BUFFIN 6

CUMMON/DEGK/THETATII0II0III BUFFIN 7

COMMON/VOLTb/PHI(IIOIIOIII . BUFFIN 8

C P. INUEA DETER MINES THL STARTING POINTOL IS THE UUFFIN 9

C .. REQUIRED TAPE NO. RLAO IN MAIN BUFFIN IO

C '. ‘° L IS THE REQUIRED TAPE NO .. BUFFIN II

RERINO L UUFFIN I2

ISKIP=IRECNO'd-2 BUFFIN I3

ICOUNT =0 I BUFFIN I“

IFTIbKIP.EU.0) GO TO 527 . BUFFIN I5

C .. .. SKIP TU T"L REQUIRED RECORD 0. O. . UUTFIN IO

DO 50 I=I0ISKIP BUIFIN I7

52 ILUUNT=ICUUNT0I bUFFIN I8

IF (UNTT0LI 52053074075 - BUFFIN I9

53 HUIFER INTLOIITKOKI bUFFIN 20

SO CONTINUE HUFFIN 2T

527 PRINT 7I70ICOUNT0I5KIP0IRLCNO0L MUFFIN 22

C" .. BUFFER IN ALL ARRAYS ... UUFFIN 23

73 CONTINUE BUFFIN 24

IF TUNIT0LI 73065074075 UUFFIN 25

65 CONTINUE BUFFIN 26

60 HUFFER IN (L01) IZATIOIOIIOZCIIIOIIoIIII BUFFIN 27

S CONTINUE UUTFIN 23

If TUNIT0L) 5088074075 ' . BUFFIN 29

68 BUFFER INTLOIIIKOUHT0PHITIIOII0IIII BUFFIN 30

b FORMATTIHI0' KOONT = .0140. INDEX 8 '0I40. TIME I'0EI6070. VAPP : BUFFIN 3I

I'0EI407I BUFFIN 32

REAUIb007I7T LL UUFFIN 33

70 CONTINUE BUFFIN 39

IFTUNIT0LI7007707407S BUFFIN 35

77 CONTINUE BUFFIN 3b

KK=KUUNT'LL UUFFIN 37

PRINT 60KOUNT0IRECNO0TIHE0PHITIDI0II HUFFIN 38

IFTKK oNEoIRECNOI CALL EXIT bUFFIN 39

RLTURN I BUFFIN 40

74 PRINT 3b ' UUFFIN “I

36 FORMATT' EOF ON LAST OPERATION I0//0' ISKIP0I'I BUFFIN 62

PRINT 7I70ISKIP0I bUFFIN 43

fl CALL EXIT UUFFIN 4“

'75 PRINT 37 ' UUTFIN 45

37 FORMATI' PARITY ERROR 0 BUFFIN ab

CALL EXIT UUFFIN b7

72 FORMATT ’ UNIT NOT READY “I BUFFIN Q8

7I7 FORMATTBIIOT - UUFFIN #9

END ’ BUFFIN 50



C9.

366

I20

I30

SURROUTINE LNATRIX
.

.' THIS IS CALLED HY LHATRIA TO EVALUATE.RHS OF CONTINUITY EON ...

COMMON/CUNIOAMRA0AHOA0GAM
20OAMHB0OAMR2

COMMON/OEbK/THETATIIoIIOIII

COMMON/VOLTS/PHITIIOIIOIII

COMMON/LOOP/KOUNTOTINE

COMMON/PULSE/TINEI0TIMEF

COHHON/LINITS/CHAKQCNINOUELVO
NA

COMMON/TIO/PllTII0II0III0TEHPIII0
II0III

COMMON/RaT/RSTTII0II0III

COMMON PSITII0IIIIII0CHIIII0I10III0OZITI
I0II0IIT

COMMON/A/II0JJ0NI0NJ

COMMON/VAR/VART0VARC0VARV0VARE0VA
RP0VAR00VARI0VARF0INTA0INTROINTC0

IINTD '

COMMON/FACTORthAOFBOFCOFO

COMMON/SIOIA

COMMON/B/CAOOA0EGA0EOH

CONNON/V/VROVTHOVO

COMMON/GANS/GAHU

COMMON/CONDTY/RATIO

COMMON/T/THO0TA0TO

COMMON/TTEPS/EPsRAA.ITMAA

COMMON/VD/VA

COHHON/XTRl/FCORIOTAUU

Fl'2o0.FE

CONTINUE

DO I ISI0II

DO I J8I0JJ

DO I K8I0JJ

IFITHETATI0J0KI0LToTAI GO TO 130

UlITIIJOKIBALOGTRATIUI

EOcEOR

PSITI0J0KI8‘FC/RATIO

no TO_TJa '

CG‘EGA

PSITI0J0KI8'FC

Ull‘IQJO‘I’Uo

TENPTI0J0KI‘P5IIIOJ0KT.HSTII0
J0RI

PZI(I0J0KI3UA.EXPTEO/THETATIO
JOKII

IFTTTINEobToTIHEIIoANuoITIHEoLEoT
INEFTI

PZI(30405I:PZIIJ060SIO

IUELV

CHIIchoKI=PlITIOJOKI.THETATI
OJOKI

CONTINUE ‘

UO 3 I3I0II

UO 3 J=IoJJ

DO 3 K8I0JJ

ATLHP‘IOJOKI3TEMVIIOJONI9F“.IU‘VA
ICHIOIOJQKT.UAVTICNIOIGJOKI

'OUAVZ(CHIOIOJOKI’UANU'LHIII0
J0BI

I

TEHPII0J0KI8TEHPII0J0KIOFR'THELAI
DllvI0J0KI'DELATCHI0I0J0KI

OODELYTCHI0I0JTKI‘UELYIUZI0I0J0KI
OUELlICHI0I0J0KT‘UELITUZI0I0J0"II

TENPIIOJOKT'TENPIIOJOKI’FA'P‘
IIIOJ0KI'I

UELXTUIIvIoJoKI'DELXTPHIOI

O0J0KIODELYTOZI0I0J0KI'DELY(PHI0|
0J0KIOUfiLZ(PRI0I0J0KI'OELZTDIIOI0

J

OoKII

TENPTIOJOKI‘TEHPTIOJORI-FA.TD
LLATPZI9IOJ9KI’UELXIPHIOIOJOK

I

I’DEL'TP‘IOIOJOKT.DELTIPHIOIOJOKI
.UELIIPZIOI'JOKIPUELZIPNIOIOJOHII

C09 PSI IS THE COEFF OF -CHI "

PSITIoJoKI3UAVlTTHETA0I0J0RIOOAVYTTHLTA0I0J0KI

I'DAVZITHETAol9J0KI'GAHN'ThtTATI0J0KI

‘.ZOVTH.RSTIIOJOKIOP§IIIOJOKI

Z‘FAOPIITI0J0KI

PSITIOJ0RI=P5ITIoJ0KI’TUELATUZI0IOJOKI'TOELXTPHI0I0J0KI'VTH

0‘DELATTHETA0I0J0KIIOULLVTuzlOIOJOKI.TUELYTPHI0I0J0KI'VTH'

ODELYITHETAoloJokIIODELZTUII0I0J0KI'TUELZIPHI0I0J0KI9VTH-OELZTTHETA

‘OIOJOKIII

LHATRIA

LRATRIA

LNATRIA

LNATRIA

LNATRIA

LHATRIX

JULVQ

JULYu

LHATRIX

LNATRIA

LHATRIA

LRATRIA

LRATRIA

LHATRIA

LNATRIX

LHATRIA

LMATRIA

LHATRIA

LHATRIA

LHATRIA

LNATRIA

LNATRIA

LHATRIA

LRATRIA

LNATRIA

LHATRIA

LRATRIA

LHATRII

LRATRIK

LRATRIA

LNATRIA,

LHATRIX

LHATRIA

LRATRIx

LRATRIx

LHATRIx

LHATRIA

LHATRIx

LHATRIA

JULY“

JULY“

LNATRIA

LMATRIX

LRATRIx

LHATRIA

LRATRIx

LHATRIA

LRATRIA

INATRIA

LNATRIA

LNATRIA

LNATRIA

LMATRIA

LRATRIX

LHATRIA

LHATRIA

LHATRIA

LRATRIA

LuaTRIA

LHATRIx

LHATRIx

LMATRIA

LHATRIA

JULY“

U
t
d

(
T
C
I
-
G
D
‘
I
O
I
F
C
T
E
H
V
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3

co.

373

3

C

C

C

777

g

.4

202

9

20)

I55

0°“:TART

... FCIBOOODR'OD.

.9 UR=UIFC3CA

126

CONTINUE

" INITIALIZATION cf VARIABLES "

UU 33 I=IOII

OO 33 J=IOJJ

U0 33 K3I0JJ

IFT(IoEUoII.O“.TJoE00II00R.TKoEUoIII DO TO 373

IFT(I.Eu.IT).uR.TJ.Lu.JJ).uR.TK.Eu.JJ)) 00 TO 373

CHIIIOJOKI3TENPII0J0KI/P5ITI0J0KI

00 T0 33

CHIII0J0KI=Uo0

00 T0 33

CONTINUE

OVERRELAKATIONo

0.0

9..

PRINT 7770EPSHA10ITMAA

FORMATTIHOO. LNATNIA.9EI0070IIUI

ITER=0

EP53000

ITERIITEROI

SUM3°oo

UO b I‘ZONI

UO 6 J=20NJ

DU 6 K320NJ

3T0NE3 CHIIIOJOKI

CHIIIOJOKIaLHITI0J0KI’CA’T

ICHITI'I9J0KI'TVA'UELATPHIOIOJQKI-UE
LAITNETficl.J.K)-1H£T‘([.J.K)O

dtl.¢°0.5'DELxTu£10IoJoxTI)

J'CHITI-IoJokI'IUELAITHETAOIOJOK
I-VA

h-THETATI030KT'(I.°0.5'U£LATUZI0
I0J0KIII

SOCHITI0JOI0KT'TFA'TVA'UELVTPHI0I0J0kI-UL
LYTTHETA0I0J0KII

b-THETATI0J0KT°TOAHMAOIE'UELTTUl
loI0J0KIII

'OELXIPHI0I0J0KI

70CHITI0J-I0KI'TFA'IOELYTTHLTA0I0J0KI-VA' UELYTPHI0I0J0KII

D'THETATI0J0KI'(GANHA‘FE.OLLYTDII0I0J0KIII

9°CHITI0J0ROII'IFA‘TVA‘UELITPHIOI0J0KI'OELITTHLTA0IOJ0KII

A-THETATI0JoKI'TGAHHAOFE'OELZTOII0I0J0k)I)

HOCHIII0J0K-II’TFA‘TDELITTHETA0I0J0KI-VA. OELZTPHI0I0J0KII

C‘THETAIIoJoKI.IGAHNA'TE.UELZIUZIOIIJOKIII

O-CHITI0J0KI.P5ITI0J0KI0

8TEHPTI0J0KII

EPS'EPSOAHSTCHITI0J0KI-STORLI

5OM8§UM0ARSTCHITI0J0KII

CONTINUE

IFT3UH.E0.0.0I

EPSsEPS/sun

PRINT ZotPSCSUH

IFTEP5.LE.EPSHAAT GO TO 9

IFIITER-ITNAXI “0605

PRINT ZJZOITERQEPSQSUH

FORMATTIH00'NO CONVERGANCE

Thu.l0'Anu >un:¢.u|l.«I

00 TU I55 ,

PRINT 20I01TER0EPS0SUR

FORMATTIH000CUNVEROENCE

IEPS ='0EH.I0 ' ANU >UR

CONTINUE

SUH'IOOC‘IO

AFTER .0Ih0'ITERATIONS HITH £PS:O0

hAS NEACHEU AFTER 0.I«.OTT£RATIONS uTTR

3 .OUIIO“7

C ..‘OHTAIN CONDUCTIVITV0"

II

ISIOII

J'IOJJ

KI|0JJ

00 II

00 II

UO II

N...

IFTTHETATI0J0KI00E0TAI RSRATIU

PSITIOJOKIIPIIIIOJ0KI-CHITIOJ0KI/IU

PlITI0J0KI=THETATI0J0KI'PSITI0J0KI

PbIIIoJoKIIR'PSIIleOKI

CONTINUE

LRATRIx

LHATRIA

LHATRIA

LRATRIA

LNATRIA

LHATRIX

LHATRIA

LHATRIA

LHATRIA

LRATRIx

LHATRIA

LRATRIA

LHATRIA

LHATRIA

LHATRIA

LRATRIA

LNATRIK

LNATRIX

LHATRIA

JULY»

LNATRIx

LNATRIA

LMATRIA

LRATRIA

LMATRIA

LRATRII

LNATRIA

LRATRIx

LRATRIA

LRATRIx

LRATRIA

LNATRIA

LRATRIA

LNATRIA

LNATRIA

LHATRIA

LRATRIA

LNATRIX

LHATRIA

LRATRIA

LRATRIx

LRATRIx

LRATRIA

LNATRIX

LRATRIA

LNATRIx

LRATRIA

LNATRIX

LRATRII

LRATRIA

LHATRIX

LRATRTX

LRATRTA

LRATRIx

LHATRIL

LRATRIX

LNATRIA

LNATRIX

LHATRIA

LNATRIA

LHATRIA

LNATRIA

LRATRIx

LHATRIA

LHATRIK

LMATRIA

IIO

III

II2

II3

II“

IIS

II6

I17

IIU

II9

I20

IZI

I22

I23

I26

I25

I20

I21



n
n
n
r

IZ

“0P5! cumTAle SIUMA 0THLTA CONTAINS NORMALIlLD Tgup,0o

‘.'COMPUTE CURRENT IN OCURRENT OUT FOR LO0PINO"

".OZI=OIFF CURRENT DENSITY 0P2I'CDNO. CURRENT

"'OZI3OIFF CURRENT DENSITY OPZI‘CONOo CURRENT

DO I8 I=IOII

DO I2 J=I9JJ

DU IZ K=I0JJ

TEHPTI0J0KI=-PSIII0J0KI'DELAIPHI0I0J0KI/A

DZITI0J0KI=DELXTP11010J0KI/IA'VTHI

CONTINUE

FORMATIIHO0IITEII040IAII

RETURN

END

DENSITY...

DENSITY IN A DIR-0'

LRATRIA

LMATRIx

LHATRIA

LHATRIX

LHATRIX

LMATRIx

LNATRIX

LMATRIA

LRATRIx

LMATRIX

LMATRIA

LMATRIx

LHATRIX

I2”

-IZ9

I30

131

I32

I33

I34

I35

I36

I37

I38

I39

IRO

 



9

co.

5

SURRUUTINE Rho

COMMON/CON/OAHNNOONONOG‘NZOGANNUObflufll

COMMON/A/IIOJJ0NIONJ

COMMON IAIII0I|0III0lDIII0II0III0 PIIIOIIOIII

COMMON/VOLTSIPHITIIOIIOIII

COMMON/SID]. .

CUNNON/T/IHOOT‘OTD

CONHON/V/VROVTHOVO

'COHHON/FACTORS/FAOFROFCOFO

COMMON/TIRES/TAUU0OI0TAUF002

C0NR0N/LUOP/ROUNT0TIRE

FORRATIIR00QIIO0FI003I

'0 P CONTAINS STORA-l-SDUARED

DO 5 I3I0II

DO 5 J3I0JJ

DO 5 K'IOJJ.

PIT0J0KI'FO'IDELKTPHI0I0J0KI"2 '

IODELYIPRI0I0J0KI"2 0DLL£IPHI0I0J0KI.‘2I

2.1ATIOJINI '

CONTINUE

RETURN

END

RNO

RNO

RN”

RNO

RNO

RHO

RHO

RRO

RRO

RRO

RNO

RNO

RNO-

RHO

RHO

RNO

“HO

RRO

RND

RHD

O
I
I
C
I
O
W
I
I
P
H
H
U

.
.
.
t
”
-
_
fi

vi
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SURROUTINE BYPASS

COMMON/B/CA0OA0EOA0EDB

COMMON/AIRS

COMMON/CON/OAHHA0ARDA0UAR20GAHHB0BANR2

C0MH0N/A/II0JJ0NI0NJ

COHHON/TdO/PZI(IIOIIOIII0TENPII30II0III

CORHON/OEbK/THETATII0II0III

COMMON/SIUIA

LUNHON/VAR/VART0VARCoVARVQVAREQVARPQVAROQVARIoVARFoINTAQINTeoINTC.

IINTO

COMMON (ATII0II0III0IBIII0II0III0ZCIIIOIIOIII

COMMON/VOLTS/PRITII0II0III

CUMMUN/I/THO0TA0TD

COHHUN/V/VR0VTH0VO

COMMON/ATRA/FE0RI0TAUU

EOUIVALLNCLI1A0PSII

DIMENSION PSITII0II0III

'0 CALLED FRoM BYPASS

VART=IJHItHP AT

VARC=IOHCHARCE AT

VARV=IUMVOLTAOE AT

VARE=ToHCUNUTY AT

VARleonPOBER AT

YARD:IOHOONORS AT

VAR|=IOMCOND J AT

VARF=IOHDIFF 3 AT

INTA=IOHD£CHI COEF

INTB=IOHDLHI COEFF

INTC=IORCHT COEFFT

INTD=TOHCONST TERM

DO 2v T=IOII

DO 20 J=IOJJ

DO 20 K=I0JJ

(CII0J0KI3000

THETATI0J0KI3THO

C" I“ IS NET CHARhE DENSITY0ZA IS IONIZED DONOR DENSITY 0. 9°

20

lBTI0JoKI3000

PlIII0J0KI=A

[A II0J0RI=A

PHIII0J0KI3III-II/I200

UO 6 I=IOII

DO 6 J=IOJJ

O0 6 K=I9JJ

TEHPTI0J0KI3-PSITI0J0KI'OELAIPHIOI9JOKIIA

CALL CIRCUIT

RETURN

ENI)

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

‘ BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

BYPASS

o
e
g
o
m
o
u
~

 



SUBRUUTINE CIRCUIT CIRCUIT 2

C0BR0N/CUN/6ARHA0AR0A0UAHZ0GARHB0UARR2 CIRCUIT 3

COMMON/A/II0JJ0NI0NJ CIRCUIT b

COMMON/V/VR0VTH0YU CIRCUIT S

COMMON/SlU/A CIRCUIT b

COMMON/T/THU0TA0TO CIRCUIT T

CONNOR/VULTS/PRITII01I0IIT ° CIRCUIT I

COMMON/BEGA/TBETATIloIloIII CIRCUIT . 9

COMMON lATII0II0III0(CIII0II0III01AIIIOII0III CIRCUIT I0

COMMON/LIN!TSICRAA.VNAA0DELY0NA CIRCUIT II

COMMON/TuOIPzTTII0II0IIT0T£RPTII0II0IIT CIRCUIT I2

COMMON/CULSIFTIII0FTIIII0UIIII CIRCUIT I3

COHHON/H/CA0UA0EUA0LUB CIRCUIT IA

ALso suNaNI-z CIRCUIT IS,

DO 6 I3I0II0NI CIRCUIT I6

AL-KLoI CIRCUIT I1

c OBTAIN THE CURRENT AT TI030KT 0000‘ CIRCUIT In

no 2T JaloJJ CIRCUIT I9

00 22 AaloJJ CIRCUIT 20

22 FTATszATI.J.AT0T£RPTI.J.KT CIRCUIT 2T

c 0' 00 1A IS UTTF CURRENT DENSITY 0' 0' CIRCUIT 22

00 0' PZI IS CUNU CURRENT DENSITY '0 0' CIRCUIT 23

C" " F IS INTEGRATED TRON I0JJ FOR EACN J 9' '0 0' CIRCUIT 2b

2I rrTJTISInPSTrI CIRCUIT 25

' FFFSSIRPSTFFI'VR CIRCUIT 26

IFTKLoEU0II TI-I.0-FFF. CIRCUIT 21

l'IKLOEUOZ’ PZ3I90‘EFP CIRCUIT 2B

6 CONTINUE CIRCUIT 29

FAso.S-TF|0F2T CIRCUIT 30

PRINT chaorz CIRCUIT JI

PRINT 2 CIRCUIT 32

PRINT 30CNAA0YHAA CIRCUIT 33

ITTFA.GE.VBAAI FAIYBAA CIRCUIT 36

FFISI.0-fA CIRCUIT JS

TTTTFT.UL.CNAAT FrF-CRAA CIRCUIT 36

FAaT. o-TFT CIRCUIT 31

2 FORMATIIR00O RAA LIMITS ARE OI CIRCUIT 30

PRINT 3. TTT0TA CIRCUIT 39

5 CONTINUE ' CIRCUIT A0

3 F0RHATTIB00IOA0'I- 00EI2.S0I0A0'VI '0EI2oST CIRCUIT AI

00 ST J'IOJJ CIRCUIT 02

00 5| K=I0JJ CIRCUIT 03

SI PHIII0J0KI8FA CIRCUIT A“

RETURN CIRCUIT «5

END CIRCUIT to
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FUNCTION SINPST'I

..P 86 CARNAHAN

" HII TIUHIZ BaII A-I

'0 CURRUN IN RORK ARRAY

DIMENSION TTIII

COMMON/A/IIOJJQNICNJ

INITI‘LICE PARAMETCRS 9. ..

5UHEN03000 t SUMNIU‘Ooo

" EVACUATE SUHENU AND SUMMID 9'.

DO I H=I05 '

Rae'M-I

bUHENUSbUHtNUOFIKI

bUMHIU=SUHHID°FIROIT

CONT INUL

'0 R£TUNN ESTIMATED VALUE OF INTEGRAL "'

5|HPS=(2.0959MENU0R.0'SUHHID-FTIIOFIIITT/Joo

NITUHN

[NU

SIHPS

SIRPS

SIHPS

SINPS

SIHPS

SIMPS

SIMPS

SIHPS

bIHPS

>IHPS

SIHP5

SIMPS

SIHPS

SIMPS

5IHP§

SIHPS

SIHPS

SIHPS

O
C
I
~
i
O
I
fl
l
>
h
H
U
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SUHNOUTINE PSSNIITERI

COMMON lAIIIoIIoII)oAHTIIIoIIoII)OZCIIIQIIIIII

COMMON/VOLTS/AROIIIoIIoII)

CONNON/CON/OAMMA.AMUAIOAHZoGANNBoOANNZ

CONNON/VAN/VARToVARCoVANVoVAREvVAHPIVARDoVARIIVAN?oINTAoINTBoINTCo

IINTU

CUNNON/A/IIoJJcNIoNI

COMMON/OAHS/OAMU

COMMON/VIVRIVTHoVO

CONNON/LOOP/KOUNToTINt

COMMUN/AN/ITMAXQEPSMAXOUI

COMMON/TITNOoTAoIU

CORRUN/SIU/A

EOUIVALENLETNIoNJ)

FORNATIIHO.‘ Eps:

IT£R=0

EPS=C.00

5UH=300

ITtR=ITEN0I

UO'S J=IoJJ

LI=J-I

L2=JOI

U0 5 K=IOJJ

HI=K-I

M2=KOI

IFIJ.EO.II

.obII.5o. EPSNAX. .OGIIQSO. TA. 'IGIIoSI

GO TO I2

60 TO I3

IFIK.tOoI) 60 TO I“

IFIK.EO.JJI GO TO I5

00 T0 I7

LI32

00 TO Ib

L2=NI

GO TO I6

NI=Z

GO TO I7

H2=NI

CONTINUE

UO 5 ISZONI

TEMP:AR6II9J0KI

ARoIIoJoKI=ANbIIkoKI'IIoO-IIIOUI'

0IANSIIOIOJIKIOAHOII-IOJOKIqGANNA.

9IANbIIoLIoKTOARbIIoLZoKTO

9AN6II9JOMIIONHOIIIJQMZIIO

9NH7TIOJ0KIIIGAND

SUN=SUM0AHSIARSII0JIKII

EPS=EPSOAHSIAH6IIoJoKI-TENPI

EPS=EPS/SUH '

IF IEPSoLfiofiPSNAAI GO TO 6

STOP ITER IF CONVERCENT UR EAESSIVE ITER

IFIITER‘ITHAXI “0“98 .

NHITEIOIOZOZIITEHoEPSoTINE

FORMATIIHOo'NO CONVERthCE AFTCR'OIQOP ITERATIONS UITH EP58.0

IENZIQ' AT TIME =PoGIIo4I-

DO TO I55

NHITtIfiIoZOII ITENotPSoTINE

FONMATIIHOo'CUNVLRUtHLE HAS HEtN "CACHED AFTER'OIQO'ITERATIONS

lulIH LPs=0o

IL’IOIO. AI TIME 3.0TJIII‘OI

LIHITIiHIL '

HA=8

I)” I "oI—IQ’N i,

. I.

I . ' A

, V--~o-—‘————-'— —.

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

-POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

'POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

T"II‘.'--MI

o
q
u
m
a
u
w
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I)“ I TO I‘d. O“.

00 I70 J'ZoNJ

ALL RIURT NANO PTS ARE CORRI DEFINED "

ANOIIOJIKLI'ANOIIOJONT

ARoIIoRLcJIcARCTIoRoJI

CONTINUE

R EDGES OF THE CONE REMAIN .'

U0 ITI I'ZONI

APNTIOIoItitARbIIoIoNI

ANbIIoJJoNLISANbIIoJJoNT

ANOIIOKLCII'ANSIIONOII

APbIIoNLoJJItANbTIoNoNJI

CONTINUE

CONTINUE

PRINT OZJOEPSQEPSNAAOSUN

RETURN

ENU

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON

POISSON'

61

69

7.

TI

72

13

TA

75

To

77

70

79

O.

GI

82
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SUNNOOTINE TRIOAG

CONNON/AIIIOJJONIONJ

CONNON/L/LAON

CONNON/COLS/OHIIIToAAIIIToGOTIII

CONNON/OORK/ANITIIToANJIIIIOAPSIIIIOANOIIII

C SUHNOUTINE TNUG EON.SOLVING LINEAR SIRULTANEDUS EUNS.

C'°"APP. NON. METHODS --PP-D .

IFsLAOI

‘IRIILAI-RRIIAI -

ARSILATaARJILAT/ARIILAT

00 TOT I'IEON

ARIIII'OOIII-AAIII'UUII-II/ARITI-IT

IfIARSIARIIIII.LE.I.0E-2JT ARIIIT-I.OE-2J

IOI ARSIIIaTARJIII-AAIII'ARSII-ITIIARIIII

ARJINI-ARSINI

LAST-N-LA ,

no In: R-IoLAST

c TRIOAO EON SOLVING SIRULTANEDUS E

I'N-K

I02 ARJIIT-ARSTII-GUTII'ARJIIOIT/ARIIII

RETURN

END

TNIOIO

TPIOAO

TRIOAO

TNIOAO

TNTOAO

TRIDAC

TNIOAO

TNIOAO

TNIOAG

TNIOAO

TNIOAO

TRIOAO

TPIDAG

TNIOAO

TNIOAO

TNIDAO

TNIOAO

TNIDAG

TNIOAO

TNIOAO

TNIOAb

TNIOAO

0
.
6
0
.
0
9
”

’
5
9
”

 



 “_—



OEIMR

“EUR

222

333

SS

53

33

35

JT

Ii

QJ

65
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IONCTION UELITUoIoJoIT

UTNENSION ”IIIOIIOIIT

CONNOR/A/IIIJJONIONJ

CONNON/CON/OANNAOANDAOOANZOOANNOQOANNZ

CONNON/SIU/A

CUNNUN/V/VNOVTHOVO

CONNOR/ATRA/FE.RIoIAUR

ITIlotOoIT DO TO III

IT IIoEOoIIT DO TO 222

OILASIUIIoIoJoKT-UII'IOJOKTT/ZoO

00 T0 JJJ

DEL‘.-905.TJO°.UTSUJUKT-“OO.USO.NUJOKP.u‘NOZUJOK’.

UU T0 333

OEan o.S-IJ.o-UII.J.RI-~.00UII-IoJoKIoUII-2.J.KII

CONTINUE

RETURN

ENTRY DELV

ITIJ.LO.IT 00 TO SS

IEIJ.LO.JJI 00 TO 55

ULLX:EE°TUIIOJOIONT-UTIOJ'IONTT

OO TO SJ

UTLK‘OAO

CONTINUE

RE TURN

ENTRY DELI

ITTKoTUoIT 00 TU 55

ITIK.LO.JJT GO TO SS

OtlefE'IUIIOJQNOII-UIIOJOR-ITI

RETURN

ENTRY DAV!

IFTIAKGOIT 00 T0 N3

IEIIoEUoIIT DO TO $5

OELASUTIOIOJOKTOUII-IOJOKT

RETURN

ENTRY OAVT

IEIJ.EO.IT GO TO 33

IFIJ.EO.JJT GO TO 35

OELAabANNA'TUIIoJ'IoKTOUIIoJ.IoKTT

UO TO 37 ~

OELAIGARHA'TUIIOJOIOKTOUIIOJQNTT

00 TO 37

UELKSOARNA'TUIIOJ'IOKTOUIIOJOKTT

CONTINUE

RETURN

ENTRY UAVl

IFIK.E0.IT GO TO I2

IFIR.EO.JJI 60 TO It

ULLXSOARRA'TUIIOJOKOIIOUIIOJQN'ITT

RETURN

UELA=OANHA'TUIIoJoKOIIOUTIoJCKTT

RETURN

ULLA=OANHA'IUTIoJoI-ITOUTleoKTT

RETURN

UELIIJoO'UTIOJOKT'doO'UIIOIOJoKT0UTI°ZQJ9KT

RETURN . ‘

OELA:J.O'UTIIJ9KI'ZIO.UII-IOJOKIOUTI'ZQJQKT

RETURN

LNO

UELA

UELA

UCLA

UCLA

UELA

UCLA

UELA

OLLA

OELA

OELA

UELA

UELA

UELA

OELA

UELA

OELA

OLLI

OELA

OLLA

OLLA

OELA

OELA

UCLA

OLLA

DELA

UELA

UCLA

OLLA

OELA

OELI

OELA

UELA

UELA

DELA

UELA

DLLA

OELA

OLLA

DELA

UELA

DLLA

DELA

UELA

UELA

OELA

UELA

OELA

UCLA

UELA

DLLA

UELA

DLLA

OELA

IIELA

ULLA

DLLA

UELA

UELA

O
C
Q
O
G
O
U
N

PAP

 

 



APPENDIX C

THE DONOR IONIZATION EQUATION

The n type semiconductor modelled in Chapter 2 is assumed to

be only partially ionized at any temperature T in the operating tem-

perature range. In this section, an expression for the ionized donor

density at any specified temperature is derived using Fermi statistics

and the sample band model of the semiconductor outlined in Chapter 2.

The n type semiconductor chosen has been assumed to have neg-

ligible acceptor attoms, i.e.,

Na«é<.Nd

Further, the semiconductor has been assumed to be a nondegenerate semi-_

conductor. Those donors are incompletely ionized in the temperature

range of operation. Thus, at T a OK, the valence band is full, and the

conduction band is empty. In the operating temperature range, some of the

electrons from the donor states are thermally excited into the conduc-

tion band, leaving behind ionized donors. Since, as shown in Fig. 2.1a,

the valence level lies much further away below the conduction band than

the donor level, only a negligible number of electrons acquire sufficient

energy to be excited from the valence band to the conduction band.

Thus, if p(Ec) be the probability of finding an electron in the

conduction band, then, applying Fermi statistics

use) .- (1 + exp(Ec - 1~:f)/k1')"1 ((3.1)
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Also, if n be defined as the number of ionized donors per unit volume

and p(E ) be the probability of occupation of a donor state, then,

n; a Nd(l - p(Ed)) (0.2)

BLt, p(Ed), the probability of occupation of a donor state can

be obtained by applying Fermi statistics:

p(Ed) = (1 + exp(Ed - Ef)/kT)‘1 (0.3)

From Fig. 2.1, E is greater than Ed, measured from the valence band

f

edge. Also, it has been assumed that the operating temperature range

is low enough such that only partial ionization takes place and so

kT Ed’ E The quantity (Ed - Ec)/kT is thus negligible compared tof.

unity. Under equilibrium conditions, charge neutrality is maintained

everywhere within the sample. Since both acceptor density and hole

concentrations have been neglected in the model, then, in equilibrium,

_+

n — nd

Ndexp((bf - EC)/kT) - Ndexpuhd - bf)/kT) (0.4)

Hence,

hf = (BC + Ed)/2

Note that this is true only under equilibrium conditions. Under operating

conditions, it is only approximately true. Eq. (0.2), therefore, reduces

to the simple expression

n; a Ndexp((Ed - Ef)/kT (6.5)

Similarly, using Eq. (g.1), the number of electrons per unit

volume under equilibrium conditions is given by

n a Ndp(EC)

n Nd
(Gob)

1 + exp((Ef - HOS/kt)

Also, in the selected temperature range,

RT (‘1 EC - Ef
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Hence,

exp((Ec - Ef)/kT)>> 1

and so,

n - Ndexp((Ef - Ec)/kT) (6.7)

Defining E, the activation energy, by the relation

Ea - EC " Ed (608)

and substituting back in the relation Eq. (6.5) for Nd'

4.

nd a Ndexp(Ea/kT) (6.9)

This is the relation stated in Eq. (2.2.1). There is an approxi-

mation involved since equilibrium conditions are utilized in the deri-

vation. Since considerable diffusion effects are expected to be encoun-

tered, the equilibrium expression for n cannot be used. However, the

ionized donors are stationary, and the equilibrium expressions are here

as an approximation.

.
_’

“
-
e
“
—
I
a
9
1
7

 



APPENDIX H

THE GENERALIZED CONTINUITY EQUATION

The various dependent variables, like , the charge density,

are functions of space and time and often occur as total differentials.

In this section, the total differential is expressed in terms of par-

tial derivatives and the divergence operator, both of which can be di-

rectly evaluated by finite difference techniques.  
Consider a real function defined in a region R. The function

represents any real physical pr0perty. It is, therefore, finite, bounded,

and continuously differentiable, and a function of Space and time. In

cartesian co-ordinates,

f 2 f(x, y, z, t)

Taking the total derivative of this function with reSpect to

time,

df - ggh+ afdx +‘3fdz + afdz

3'1:- at axdt aydt azdt

£133, dz, and 13 represent the velocities with which the property in x,

dt dt dt

y, and 2 directions reSpectively. Writing vx, vy, and v2 for the re-

Spective velocities,

£-2£+?£.V +2;v,.+?_f.v
dt 3: ex x ay )2 2

v , vx , vz are the components of the velocity vector 3; Consider

y

the vector Emotion f3. Since V is the velocity associated with the

property f, the quantity fvrrepresents the current or flux density

139
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associated with the property. Performing the divergence operation on th

this function,

V. (f?)=fv.v'+v.Vf

But V. V I 0. Also,

v .‘7f I v f + v f + v f

x—— y—— z—

x y 2

Hence,

(it at

“if-+VOJf

3t

where 3f is the current density associated with the property f.

The above equation is utilized in arriving at the continuity

equations for charge and energy flow in Chapters 2 and 3 reSpectively.
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