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ABSTRACT
SWITCHING PROPERTIES OF ELECTROTHERMAL DEVICES
By

Dipankar Nagchoudhuri

Electrothermal semiconductor materials undergo a drastic re-
duction in band gap above a critical temperature, Tcr' Two-terminal,
bulk devices fabricated from these materials can exhibit current-con-
trolled negative resistance I-V characteristics and high-speed bidirec-
tional switching, Switching times of the order of nanoseconds have
been reportnd, thougl: associated with large storage times, often of the
otder of hundreds of microseconds,

The primary purpose of this dissertation i to study the initi-
ation of the switching process in electrothermal devices (ETD's). A
computer=based model is developed incorporating the salient features
of the ETD; e.g., the abrupt narrowing of the band gap and rise in car-
rier mobility at the critical temperature Tcr' The model consists of
a set of three coupled, nonlinear, second-order, partial differential
equations. The first of these, the Temperature Equation, is arrived at
from thermodynamical considerations of energy balance within the ETD,
In effect, the heat energy per unit time assoclated with the rate of
temperature rise at any point in the interior of the ETD is equated to
the sum of the net electrical power dissipated and the heat input by the
thermal diffusion proéess. The second, the Continuity Equation, is a

generalized form of the continuity of charge equation, which states that
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the sum of the rate of increase of charge in any differential volume
element and the divcrgence of the carrier current is zero, Here, the
carrier current is assumed to be due to electrons only and comprises
of three components, namely, a conduction current componen: due to the
presence of an electric field, and two diffusio: components, one due to
the mobile charge carrier concentration gradients and the other due to
the temperature gradients within the ETD, The third equation is the
Poisson's Equation obtained from Gauss' Law by assuming the electric
field to be conservative within the ETD.

The electrical boundary conditions for these equations are de-
termined by placing the sample between two electrodes in an electrical

circuit containing an ideal voltage source V___, a sorrce resistor Rs,

app
and a switch S, The sample geometry chosen is a rectangular parallel=-
epiped, the two oppusite surfaces being in contact with electrodes which
are assumed to be ideal heat sinks and electrical conductors. The other
four surfaces are in contact with air, which is assumed to be an ideal
thermal and electrical insulator.

To facilitate the numerical solution of the equation, the sample
is quantized into 10 x 10 x 10 identical rectangular parallelepipeds, and
finite dirrerence equations were developed for each volume element, thus
obtaining 1331 equations for each partial differential equation for each
time interval., Different algorithms are used to solve each set of equa-
tions. The Temperature Equation, which is parabolicin form, is solved
using Douglas' Implicit Alternating Direction (IAD) method in three space
dimensions., The Continuity Equation and the Poisson's Equation are solved
using Successive Over Relaxation (SOR) methods. In addition, an overall

predictor-corrector loop is employed to achieve simultaneity,
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Three methods of inducing switching in the ETD are studied using
VO2 as the prototype material--by Joule heating due to the external
biassing circuit, by the simulation of a defect within the bulk of the
ETD, and by photoswitching. The results of the simulations establish the
thermal character of the preswitching region as evidenced by the close
parallelism to the results obtained from simplified one-dimensional
analysis of the Temperature Equation. The results of the simulations
also compare well with the experimental I-V curves and the switching and
storage times observed i-. VO2 devices. The mechanism of the switching
is shown to be the propagation of the narrowing of the band gap longi-
tudinally in both directions in a line parallel to the applied electric
field, as shown by the electric field data obtained from the simulations,
The model also provides information regarding the profiles of various
experimentally inaccessible bulk variables like power density and heat
flux in the interior of the ETD. Finally, the possibility of induciug

photoswitching under suitable bias conditions is predicted by the model,
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CHAPTER I

INTRODUCTION

In the mid 1960's, a new class of bulk semiconductor switching
devices was discovered, arousing considerable curiosity and excitement
among workers in the area of solid state electronics(7). Though

. . 2
plagued initially with problems of repeatability and reliabllity(l’ ),

(3'4’5’6’7). For in-

these devices exhibited many desirable properties
stance, the switching process was fastj switching times from the high-
resistance to low-resistance state were on the order of nanoseconds even
though large delay times were always present(A). Other significant pro-
perties were the memory and hysteresis effects, their relative case of
manufacturing, and their immunity to radiation damage(s).

Since investigations indicated that electrical switching was
associated with the thermal characteristics of the device material(g’lo),
these devices will be referred to here generically as "electrothermal
devices" or simply ETD's., Initially, this switching phenomena was ob-
served in some amorphous transition metal oxides and chalcogenide glasses.
Thanks to researchers like Cohen, Fritzsche, and Ovshinsky (founders of the
C-F=0 model)(ll'lz), Sir Neville Mott(13'14’15), and Gubanov(16), rapid
progress was made in formulating a transport theory for amorphous mate=-
rials to be analysed using many of the well-established techniques used
with conventional crystalline semiconductors., More recently, however,
electrothermal switching has also been observed in crystalline materials

like cas‘??, caas(1819) 14 1e(20),



lel1. Overview

Characteristically, in ETD materials, the band gap narrows dra=-
matically above a critical temperature, Tcr' In this dissertation, a
computer-based model is developed for simulating the transport and ter-
minal characteristics of such semiconductors. The model is tested against
experimental data and then used to predict a photo-switching phenomenon,
The first few chapters are devoted to model development. The earlier
sections of this first chapter enumerate some of the properties observed
in electrothermal switches, Subsequently, theoretical formulations of
some of the major workers in the field are discussed in order to estab-
lish the need to develop a new model., In Chapter 2, the model itself
is constructed. The various electrical and thermal properties are de-
scribed in light of the assumptions and idealizations of the model, In
Chapter 3, the model is mathematically formulated, Applying the funda-
mental laws of electrodynamics and thermodynamics, a set of equations
is obtained which describe the electrical and thermal transport proper-
ties of the material under certain specified conditions., In Chapter 4,
each differential equation is re-expressed as a set of difference equa-
tions, and then the total coupled system of equations is discussed.

Chapter 5 deals with investigations of the switching phenomena.
Results of various experiments are presented., These experiments were
used to test the model against existing experimental data, as well as to
predict some as yet unobserved phenomena. An analysis and discussion of
these results are also presented in Chapter 5. In Chapter 6, some con-
clusions are drawn on the basis of the results obtained, and suggestions
are made for further model development, simulations, and laboratory

experiments.,
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1.2. Electrothermal Device Parameters

Until about a decade ago, semiconductor parameters like band gap,
charge carrier mobility, and carrier conductivity were presumed to be
reasonably slow and continuous functions of temperature, However, ETD
parameters show a very strong temperature dependence near the charac-
teristic critical temperature; in fact, some of these parameters can be
treated as step functions of temperature. This behavior is thought to
be primarily responsible for the switching effects observed in ETD'S(ZB).

In the sections immediately following, observed temperature dependences

of some important LTD parameters are noted.

l.2,1, Temperature Dependence of the Band Gap

For most semiconductors, the band gap reduces slowly with tem-
perature, as expressed by the following equation:
Es(T) = E(0) - fT (1.2,1)
In electrothermal switches, however, the band gap reduces abruptly at a
certain transition temperature, Tcr’ where Tcr is characteristic of the
specific material, as illustrated in Table 1l.1,
Table 1,1

Band Gap Data for Various Electrothermal Materials

E E
Critical Temp. T <$rcr T zercr
Material (K) (V) (V)
Vo, 341 0,45 0,045
Vo 126 0.14 0.10
T1203 450 0.04 Metallic

V50, 150 0.12 0.07



As might be expected, there is often evidence of a structural

2,27
change at the critical t:emper:at:ure(2 »27)

3 for instance, VO changes from
an orthorhombic structure below the transition temperature, 126 K, to a
rock salt structure above itj VO, changes from a monoclinic to a rutile

structure at the transition temperature, 340 K.

1.2,2, Conductivity-vs-Temperature Characteristics

If the proper range of temperatures is chosen, the electrical
conductivity is also a strong function of temperature for most semi-
conductors. This is because the conductivity 1is related to the mobile

(21)

carrier density and carrier mobility s both of which are temperature
dependent parameters, the relation beings

T = nep + Pep, (1.2.2)
where ¢ = conductivity of the semiconductor,

n = density of mobile electrons,

p = density of mobile holes,

e = charge on an electron (magnitude only),

n = electron mobility which is defined as the carrier drift veloc-

ity per unit applied electric field, and

p = hole mobility,

In electrothermal devices, the conductivity-temperature depen=-
dence is much stronger than in other semiconductors, For instance, in
Futaki's "Critical Temperature Resister"(33), it increased by as much
as three orders of magnitude at the critical temperature. Some typical
conductivity-versus-temperature curves are shown in Figs. l.la and 1,1b,

From the Eq. (1.2.2), it is apparent that a sharp increase in

conductivity is possible if the mobile carrier concentration increases

abruptly. In a doped, partially-ionized semiconductor, the mobile carrier
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Characteristic of ETD's



density is primarily determined by the ionized donor density. The
ionized donor density is determined in part by the activation energy E_
of the ionizing impurity level of the semiconductor, the activation
energy E, for a donor impurity being the energy difference between the
donor level and the conduction band edge(s).

7 (T) ~ A exp(~E,(T)/KT) (1.2.3)
where A, 1s a material constant,

k 1is Boltzmanns constant,
T 1is the temperature, and
E, is the activation energy.

The conductivity can also change abruptly due to a sudden jump
in carrier mobility. Many ETD's, in fact, do exhibit such jumps. These
*mobility gaps®” are an integral part of the C-F-0 model(ll) referred to
earlier, and are often assocliated with a structural transformation of
the electrothermal materia1(22'27). A local structural change often
introduces an increase in the free carrier concentration in the imme-
diate vicinity. The screening effect on the neighbor lattice centers
increases; in other words, the effective local binding potential reduces,
1hcrea§ing the mobility of more electrons. The effect spreads rapidly
through the material causing an abrupt increase in mobility(13).

Some ETD's also show hysteresis in their conductivity-tempera-
ture plots as shown in Fige 1.2, This feature is utilized in memory
devices(za’zg). The energy associated with the area of the hysteresis

loop is believed to be related to the energy(27’28) involved in the

structural change, that is, the latent heat of transformation.

1.3, Switching in Electrothermals

The large change in conductivity is primarily responsible for

the negative resistance region in the static I-V curves of ETD's, The
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I-V characteristics of ETD's differ markedly from junction switches in a
couple of respects, Junction diode(21) switches are directionals current
is allowed in one direction and opposed in the other., On the other hand,
electrothermal switches are bidirectional; the switching is essentially
a level-sensing and not a direction-sensing mechanism., As soon as a
certain temperature level is reached within the device, switching will
take place regardless of the direction of current in the external elec-
trical circuit,

Also, the electrothermal switches are current-controlled, nega-
tive-resistance devices, In contrast, typical negative-resistance semi~-

(21) like the Gunn diode and the tunnel diode exhibit

conductor devices
voltage-controlled negative resistances. The difference is illustrated
in Figs., 1.3 and 1.4, Because of its shape, the I-V characteristics of

the ETD are also called S-curves(S).

l.4. Principal ETD Switching Models

The S-curves are believed to be caused by "filament" formation,
which have been actually observed in some electrothermal devices(as).
The "filament"” is a thin, highly localized, conductive region extending
throughout the length of the material., In filamentary switching, the
"off" resistance is determined by the bulk conductivity of the material,
In the "on" state, the filament has already formed. The "on" resistance
is largely determined by the conductivity of the filament. From purely

(30) demonstrated that filament for-

thermodynamic considerations, Ridley
mation was possible in a current-controlled negative differential resis-
tance device, The actual mechanism of filament formation was not dealt

with, In a later chapter, an equation for energy balance will be derived

in close parallelism to Ridley's development,
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A specific equation for the system energy balance was first

(31) (34)

determined by Boer and Dohler 3 subsequently, Berglund , Fritz-

2
sche(1 ), Ovshinsky(lo)

, and others have contributed significantly to
its development. In their development, the net electrical energy input
at any point is balanced by the temperature rise and the net thermal
energy flowing out from the point. The equation forms a sound basis
for explaining many of the features observed in electrothermal devices,
A computer simulation on the basis of this equation was performed by
warren(35).

The addition of the continuity equation to the model was another
step forward towards the understanding of these devices, Using the steady
state continuity equation

V.J =0 (l.4.1,)
and the appropriate energy balance equation, Kaplan(36), and others were

able to obtain the steady-state curves of the devices with reasonable

accuracy.

1.5 The Need for a New Model

Despite these numerous modeling efforts, many deficiencies
existed, Most importantly, all the models previously developed were
essentially static in nature, The only time constant involved was in
the energy equation. This thermal time constant is of the order of a
few hundred microseconds and cannot explain the nanosecond switching
observed.,

Also, several significant features of the electrothermal switches
have not been accounted for in models to date., For instance, the “mo=
bility gap” and the reduction of the band gap’” don't play any part in

the formulation of the models, Instead, a change in conductivity, which



might include mobility in addition to other bulk parameters, is used as a
lumped parameter, explicitly dependent on the temperature,

Previously developed models do not take into account the diffusion
of charge carriers due to the highthermal and carrier concentration gra-
dients that would be inevitably set up when a thermal filament is formed,
Secondarily, carrier diffusion would cause extremely high local electric
fields to be set up, These effects have been completely neglected in
previous models,

The present model accounts for the dynamic behavior of the ETD's
by incorporating many pertinent features neglected to date by other workers.
Both the "mobility gap®” and the reduction of the "band gap* have been in-
corporated, and conductivity is treated as a function of both the mobile
carrier density and the carrier mobility. Also, diffusion effects are

included by using a more generalized form of the continuity equation,



CHAPTER II

THE MODEL

A dynamic model suitable for observing the high-speed switching
phenomenon is developed here, Due to the complexity of the phenomenon,
various simplifying assumptions are made, Each of these assumptions is
either immediately or later justified, Care has been taken :-o retain
all of the significant characteristic features of the ETD, An isotropic,
nondegenerate, homogeneous, uniformly doped *n' type electrothermal semi-
conductor is considered, the sample being initially in equilibrium at

the ambient temperature Tam Being *“n" type, it has a net donor con=

b.
centration of N atoms/m3 not all of which are ionized at room tempera-
d ’

ture,

2.1, The Band Structure

For simplicity, consider the semiconductor to be a direct band
gap semiconductor possessing a single parabolic valence band and a single
parabolic conduction band. Further, the semiconductor is assumed to be
nondegenerate in the entire temperature range of operationj in other
words, though the Fermi-Dirac statistics are applicable, the Boltzmann
distribution can be used as a reasonable approxination(ZI).

In a nondegenerate semiconductor, the Fermi level Ef lies within
the band gap, and, since the material is "n" type, Ef lies in the upper
half of the band gape Since it is assumed that the material is only

partially ionized at the room temperature, the Fermi level Ef would lie

approximately half way between the donor level Ed and the conduction
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(13)

band edge E, o The energy level diagram under these conditions is
shown in Fige. 2.la, where Ei is the intrinsic energy level.

In an ETD, the band gap Eg reduces sharply when the critical
temperature T, is reached. As discussed in Appendix G, the activation
energy Ea will also reduce correspondingly. Thus, the form of the energy
level diagram of Fige 2.1a remains the same after the transition tempera-
ture Tcr‘ Since the energy gap Eg and the activation energy Ea change
so dramatically at the critical temperature Tcr’ the continuous change
with temperature is negligable in comparison, So, the ictivation energy
E, is simulated by a step function with respect to temperature, the step

occurring at T,,.. Below and above Tcr’ it is a constant. (See Fig. 2.1b.)

2,2, Donors, Electrons, and the Net Charge Density

As stated earlier, the donors are assuned to be only partially
ionized below the transition temperature, The donor atoms ionize ther-
mally, creating one free electron per atom. lt is assumed also that
thermal ionization of the donors is the only significant process existing
within the material which can create mobile charge carriers, If Boltzmann
statistics are applicable and if E, is the thermal energy associated with
ionization, then the net density of ionized donors at any point in the
material is given bys

ng(T,t) = N, exp[-E,(T)/2KT(T,t)] (2.2,1)
where N, is the uniform donor density, n;(;;t) is the ionized donor den=-
sity, k is the Boltzmann's constant, and T(T,t) is the temperature.

This equation is developed in some detail in Appendix G. Since Ea(T) is
a step function of temperature only (refer Fig. 2.1b), and Ny is a scalar
constant for the material, n; is an explicit function of temperature,

as shown in Fig. 2.2,
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Like the donor atoms, the donor ions are stationary, but each ion
carries a charge of +e. The ionized donors are assumed to be the only
positive charges within the material; i.e., the density of holes and other
positive charge carriers are negligible, Therefore, the total positive
charge q+ at any point within the material iss

q*(E,t) = end(T,t) (2.2.2)
Similarly, mobile electrons are assumed to be the only significant nega-
tive mobile charge present., The total negative charge, q , at any point
is, therefore,

q (r,t) = -en(T,t) (2,2,3)
where n is the free electron concentration, Thus the net charge density
€ at any point (T,t) iss

e (F,t) = q*(F,t) + q"(T,t) = eny(T,t) - en(T,t) (24244)
The net charge density if not necessarily zero everywhere within the
material, because of temperature gradients and possible diffusion effects,
as will be discussed in a later section. The Eqs. (2.2,1)-(2.2.4) are
thus assumed to be valid for the entire operating temperature range.

Again, since mobile electrons are created only by donor ioniza-
tion on a one-to-one basis, the rate of generation of electrons and donor
ions are equals

+
dn(T,t) = fl_n_d_(?,t)
dt dt (24245)

So the net charge creation rate is zero everywhere as followss
U81n8 (2.2.4)’

de(T,t) = d(q'(T,t) + q"(T,1))
at at

Applying (2.2,2) and (2,2,3) to the above,

+
de(F,t) = ePd(F,t) - edn(F,t) = 0 (2.2.6)
dt dt dt
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But, due to drift and diffusion of electrons, g;g?}:) will not be zero
F)

everywhere, Instead, the equation of charge continuity applies. (See

Appendix H.)

de(T,t) = 3e(r,t) + V.J(T,t)
dt ot

Using (2.2.6) this reduces to

_b_e_(;,t) +V.3(;,t) = 0 (2.2.7)
dt

where 32;%:) in the above two equations is the net electron current den-
sity.

The time of ionization is assumed to be *“instantaneous”; this
is a reasonable assumption &ince this is an atomic process and involves

times of the order of 10-158e0537).

2.3, Carrier Mobility and Conductivity

Since the material contains only one type of mobile carrier,
namely electrons, the carrier mobility refers only to the mobility of
the mobile electrons, Also, the mobility is a scalar, since the material
is isotropics and it is a function of temperature, since "mobility gaps*
exist in such materials, But, the mobility chamge at Tcr is so drastic
that the mobility, like the activation energy, can be taken to be a step
function of temperature as depicted in Fig. 2.3. Note that this cholce
is made to simplify the mathematics of the problems any given mobility
profile could have been chosen in Fig. 2.3,

The mobility change is assumed to be an explicit function of tem-
perature only, For instance, if the temperature of the material every-
where is less than its critical temperature T,., the mobility is scalar
constsat having a value Pl if the temperature everywhere is above T,

the mobility is a constant of value Poe
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Since only n-type carriers are involved and no minority p-car-
riers are present, the conductivity relation of Eq. (1.2.2) reduces to

e (r,t) = n(T,t)epKT) (2.3.1)
The conductivity is thus not a function of temperature onlyj however, a
fair approximation can be obtained from the following considerations
Though n(T,t) is not an explicit function of temperature, ngkzﬂt) is,
Also, at any point(?}t%n; and n cannot be very radically differentj a
large difference in the two would imply a large local charge separation.
This would result in tremendously large electric fields being set up
tending to reduce the separation. Thus, for many points within the mate-
rial, the conductivity-versus-temperature plot can be obtained by using

a(T) ~ ng(T)ep(T) (2.3.2)

The product of Figse. 2.2 and 2,3 yields Fig. 2.4 which bears a
close resemblance to Futaki's experimental curve (Fig. l.la) where @,
the asymptote to the first section of the curve is Ndefh and 0,, the
asymptote to the second section is N4elpe

For purposes of the model, however, Eqe (2.3.,1) is utilized;
otherwise, the effects of the large local electric fields would not be

observed,

2.4, Electric Fields and Potential

The electric field E within a material is defined as the force
in newtons exerted on a unit charge (coulombs). In rationalized m.k.8.
units, which is used consistently throughout, E is expressed in volts/m.
There are two factors that can contribute to the existence of the elec-
tric field ii. Firstly, it could be due to the application of an external
applied field and secondly, to the creation of local fields by internal

charge separation,
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In the present model, two kinds of charged particles are present,
namely electrons and singly ionized donor atoms. Although the donor ions
are stationary, a net local charge separation may occur due to the move-
ment of the mobile electrons. Gauss's Law statess:

Y JE(r,t) = e(z,t)/e (2.4.1)
where € is the net charge distribution as defined earlier and € is the
permittivity. The only assumption in the above equation is that 1is a
scalar constant. Since the ETD has already been assumed isotropic, the
preceding statements imply that 1is assumed independent of temperature,

In addition to the above, an electric field can also result due
to a rate of change of magnetic flux in the material, Maxwell®s second

equation expresses the above statement of Faraday®'s Law mathematicallys

Y x E(T,t) = - 3B(T,t) (24442)
ot
The rate of change of magnetic fields is associated(38) with

inductive effects; it is large if1
1., the frequency of operation is large.
2, the magnetic permeability m of the material is large.
3. the current through the material is large and rapidly vary-
ing.
4, the path length of the current through the device is long
and strongly coupled to itself, as in a coil,
S5 it is coupled strongly to external magnetic fields in its
neighborhood.
In the system discussed in the next chapter, the dimensions are
kept small and the geometry simple., The electrothermal material is non-
magnetic and often disorderedj so the relative permeability p} is approx-

imately unity., Also, there are no strong externally applied magnetic
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fields in proximity to the device. Even the external circuit is chosen
such that the current is limited by an external resistor. Here the mag-
netic field effects are neglected and Eq. (2.4.2) can be rewritten as

V x E(T,t) = 0 (2.4.3)
The validity of this assumption is discussed further in Chapter 6,

From the principles of vector calculus, it is known that if the
curl of a vector field is zero, then the vector field is conservative and
can be expressed as the gradient of a scalar potential function, The
potential function corresponding to the electric field is called the
electric potential V, Hence:

E(r,t) = -9v(T,t) (2.444)
Combining the above equation with Gauss' Law, Eq. (2.4.1), Poisson's
equation is obtaineds

V WV(T,t) = =&(T,t)/e (24445)

2.5 Electrical Current Mechanisms

The electrical current mechanisms in a semiconductor can be sub-
divided into two broad classess mechanisms which involve a physical
transport of mobile charge carriers and those which do not. In the lat-
ter category is the capacitative or displacement current.

The displacement current density 3hi$p(F,t) at any point is ob-

tained from the following relations

Jdisp('r‘,c) = JE(T,t) (2.5.1)

ot
It is related to the rate of change of electric field and will be large
when the electric field varies rapidly, as may happen when switching
takes place.

The mechanisms which can result in an actual transport of the

mobile charges, i.e., electrons, are drift and diffusion., The presence
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of an electric field causes drift. This drift or conduction current
density jéond is given bys
Jeond(Tst) = o (T, E)E(T,t) (2.5.2)
where G(F,t) is the conductivity and E is the net electric field,
Electron diffusion is produced by two methodss due to thermal
diffusion caused by temperature gradients in the material and due to
concentration diffusion caused by a non-uniform distribution of free

electrons in the electrothermal semiconductor. The expression for the

total diffusion current jhiff iss

Fdiff(;’t) =4dYT(T,t) + eD¥n(T,t) (2.5.3)
and so
J(T,t) =2 YT(T,t) + eDVn(T,t) + o(T,t)L (2.5.4)

The above expression can be more rigorously obtained by a direct con-
sideration of the distribution function (Appendix Al). Xand D are pro-
portionality factors. In Appendix A2, « and D are evaluated, assuming
Maxwell-Boltzmann statistics closely approximate the actual non-equilib-
rium carrier distribution function., Hence jhiff(;’t> becomes

Taiee(Trt) = (k/eIp(T)[n(T,t)¥T(T,t) + T(T,t)¥n(T,t)]
which can be rewritten ass

J1e£(Tyt) = (k/Ju(TW[n(T,t)T(T,t)] (24545)
where the symbols have the same meanings as already defined,

The total current density J(T,t), comprising the drift and dif-
fusion components, is obtained by combining Eqs. (2,5.2) and (2.5.5):

J(x,t) =0 (T,t)E + kp(TWW[n(T,t)T(T,t)] (24546)
Substituting for ¢, the conductivity, and E, the electric field, by pre-
viously obtained Eqs. (2.4.4) and (2.3.1), the above can be expressed in
terms of scalar variables onlys

J(tyt) = ~n(T,t)ef(TIVV + kp(T)[n(T,t)T(T,t)] (2.547)
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= p(T{V[n(T,t)T(T,t)] =en(T,t]V(T,t)} (2.5.8)

In summary, the model assumes that carrier current is attribut-
able to electron motion only, which is made up of diffusion and conduc-
tion componentst

J = Jeond + Jgifs (2.5.9)
the conduction component being due to the electrical potential gradients
in the material

J

cond = -n(?.c)e,ucr)vv (2.5410)

and the diffusion resulting from both thermal and concentration gradients
Jqiff = MKV(nT) (2.5.11)
A third component, the displacement current, is also present,

which is contained in the 3¢ term of the continuity equationi

B it

2¢ +V.J =0

Jt

or

g_et_ +V.Jcond +V. diff = 0 (2.5.12)

2.6, Thermal Propertiess Heat Content and Heat Transfer

Since the particle transport in the material involved the motion
of the electrons only, the mechanisms were predominantly electrical.
The thermal parameters play an important role, too, primarily when deal-
ing with the energy transport in the material, The two important thermal
parameters for this system are the heat capacity ¢ and the thermal con-
ductivity kype

The heat capaclity c is defined as the amount of heat energy input
(joules) required to raise unit volume of the solid (1m3) through 1 K,
It is expressed in units of joules/(m3 - K)o The increase in heat con-

tent increases the lattice vibrational energy as well as the euergy of
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random motion of the mobile carriers--the conduction electrons. But
the latter is generally negligible compared to the former unless the
lattice vibrational energy is very smalls e.ge., when the temperature
approaches 0 K, At room temperature, the electron contribution can be
safely neglected. The vibrational heat capacity is usually a weak func-
tion of temperature. Over the limited temperature range used in the
model, it can be assumed to be independent of temperature. Also, the
model assumes material isotropy and allows only temperature related in-
homogeneities, Observe that the specific heat has about the same numer-
ical value for most solidsj it is very weakly dependent on the structure,
Thus, if a new structure is achieved beyond Tops the specific heat can
be assumed to remain the same., S0, the heat capacity of the solid will
also remain unaltered provided no change takes place in the overall
volume of the solid. This is in fact assumed to be the case in the model
under discussion. This assumption is discussed further in the next sec-
tion, Therefore, if the temperature of the system at any point in-
creases by an amount T, the corresponding increase in internal energy
u is

Du = cAT (2.6.1)

Of the three heat transfer mechanisms--radiation, convection,
and thermal conduction--only thermal conduction is significant here,
Radiation heat transfer is proportional to the fourth power of the dif-
ference in temperatures between the two bodies exchanging heat (Stefan's
Law)(39>. It is insignificant if large temperature differences do not
exist between the sample and a neighboring body; in other words, it is
negligible if there are no heat sources in the vicinity. Convection
implies fluid motions in a solid sample, there are no convection cur-

rents,
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In thermal conduction, the thermal flux density is related to
the temperature gradient by Fourier's Law(39)
Jq = ke 9T (2.6.2)
Kep, is the thermal coh&uctivity of the material and is expressed in units
of watts/(m - K), Like ¢ and €, it is, in general, a tensor. However,
in the model, it is assumed to be a scalar constant, Since the ETD has

already been assumed isotropic, the preceding statement implies that k.p

is assumed to be independent of temperature.

2.7, Entropy and Energy Transfer

All material variables can be conveniently divided into two
classes(39’46). The first class, called extensive variables, depend on
the mass of the material, typical examples being volume V, internal
energy U, number of carriers N or P, total charges Q, etc. On the other
hand, intensive variables do not depend on the mass of the material,
Typical examples are temperature T, chemical potential K, pressure p, and
electrical potential V. Similar classifications exist in other fields
of studys extensive variables are closely related to "flux'" used in
physics and engineering or the "through" variables of systems science,
whereas intensive variables resemble the "potential®” or *across” vari-
able. A frequently used extensive variable in thermodynamics is "entropy".
It is a measure of the order of the system, and, for a totally closed
system, it always increases with time., For ideal, perfectly reversible
processes, the entropy for the system remains constant.

Each extensive variable in the system is linked to a specific
intensive variable; for instance, the entropy S is usually linked to the

temperature T, the electrical potential V with Charge Q, etc. To des=-

cribe a system of variables completely, a complete set of extensive
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variables is required, together with the set of corresponding intensive
variablces,

The total internal cnergy U of the electrothermal sample is a
function of all other relevant extensive variables §, V, N, P, Q.

U= US, Vv, N, P, Q) (2.7.1)

Taking the total time derivative of the above equation

du = au as + 3y av + U dN
dt SS|v, N, P,Qdt 3V|S, N, P, Qdt DON|S, V, P, Qdt
+ U dP + U dQ (247.2)
SpP|s, v, N, Qdt 2Q|S, V, N, P dt

The partials in the above expression correspond to the associated

intensive variables as followss

oU/v, N, P, Q = T (the temperature) (2.7.3a)
AL
3U/s, N, P, Q = p (the pressure) (2.7.3b)
sV

2U/S, N, P, Q = K, (chemical potential for electrons) (2.7.3c)
N

32/8, V, P, Q = Kp (chemical potential for + charges) (2.7.3d)

3P
3u/S, V, N, Q = V. (electrical potential) (24743e)
3Q
Eqe (2.742) can therefore be rewritten ass
+

dN
dU=Tds +,dv +K dN +K _d+VdQ (2.7.4)
dt dt dt dt dt dt

The above equation has the general forms

du = Zp; Eil’
dt i dt

where qi is a general extensive or flux variable of the system and Py
is the general intensive variable, or the potential responsible for the
flux qio

In view of the various assumptions made, Eq. (2.7.4) can be sim-

plified considerably., The second term is disregarded since the volume
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of the system is assumed to remain constant. The term dV is the mechan-
dt
ical work done by or on the systemj; the model assumes that no mechanical

work is being done,

_(1!. 0 (207.5)
dt

Also, the only kind of mobile charge carriers present in the system are
electrons. Thus, the term V dQ can be rewritten as:
V dQ = -eV dN * (2.7.6)
dt dt
Using the above simplifying assumption and dividing the Eq. (2.7.4)

by the volume of the system V, it becomess
+

du=Tds + K, dn+ K % -ev dn (2.7.7)
dt dt dt dt dt

where u, s, n, n; refer to the internal energy, entropy, number of free
electrons, and number of ionized positive charges per unit volume of the
sample.

The energy associated with the chemical reaction causing ioniza-
tion is also neglected. The implications of this statement will be ap-
parent in a later chapter,

Eqe (247.7) is an expression of the energy balance of the system.

The overall rate of change of internal energy du is equal to the sum of
dt
the various energy components of the system. The first term, T ds, is
dt
a measure of the increase of disorder in the system; it can be looked

upon as a loss term. In an idealized, reversible system, this term is

zero, The term K, dn is the energy associated with the mobile electrons
dt

n due to the chemical potential K . It is thus the energy involved in

the creation and transport of mobile electrons by thermal and concentra-
+
tion diffusion, Kp dnd is the energy associated with the creation of the
dt
ionized donors. Lastly, the term -eV dn is the energy associated with
dt
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the transport of electrons due to the presence of the electrical poten-
tial V. In other words, it accounts for the drifting of conduction elec-
trons due to the electric field E., Each of these energies contribute

to the overall rate of increase of internal energy of the ETD.



CHAPTER III

MATHEMATICAL FORMULATIONS OF THE MODEL

The previous chapter dealt with the various properties of the
electrothermal material and how they were affected by the idealizations
and assumptions of the model., In this chapter, a specific geometry is
chosen, and the sample is placed in an electrical circuit, comprising
a battery B, a resistor Rg, and a switch S, Using the material pro-
perties discussed in Chapter 2, a set of equations describing the over-
all system is obtained, together with the necessary initial and bound-

ary conditions,

3.1. Sample Geometry

Experimenters have commonly used three kinds of geometries in
studying the electrothermal switching device(AI), namelys: a) The Bead
or Pellet Configuration; b) The Planar Structure; c) The Sandwich Con-
figuration., The three types are illustrated in Figs. 3.1, 3.2, and 3.3
respectively,

Electrothermal switching was perhaps first observed in sintered
metal-oxide complexes(33). The sintering was done under pressure using
two half-ellipsoidal molds, with the electrodes laid as rods across the
middle and protruding at either end. The resultant beads, however, had
one major practical disadvantage=--they had poor thermal contact with the

heat sink, which, of course, was the electrode itself., Moreover, the

mathematical analysis of such ellipsoidal structures is quite complex.

23
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The planar geometry, obtained by thin-film deposition techniques
and used by Berglund(3a), Duchene(ao), and numerous other WQrkers(41’42’43’34),
proved experimentally far more satisfactory, particularly because of the
large contact area with the heat sink., But the structure was asymmetric,
and so, the analytic solution of such a geometry was not very simple,

The sandwich structure is the simplest to analyze, especially
if a simple geometrical shape, like a cube, cylinder, or rectangular
parallelepiped, is selected as the semiconductor geometry. It also pos-
sesses the advantages of the sandwich structure in that there is good
thermal contact with the heat sink. The advantages of the various geoin-
etries have been discussed at some length by Yu(al). Nevertheless, the
underlying principles governing the operation of the ETD remain the same
regardless of the geometry chosen,

For purposes of this model, the material geometry is selected
to be a rectangular parallelepiped with a square cross section. For
mathematical analysis, a Cartesian co-ordinate system is chosen with
the origin at one corner of the sample,* such that the y and z -axes
lie almost along the cdges forming the square face, and the x-axis lies
along the other edge. Thus, the sample is located entirely in the posi-
tive octant of the co-ordinate system., (See Fig. 3.4.)

The semiconductor is assumed to have the dimensions of Ly ,#**

Ly, and L, along the x, y, and z -axes respectively, Since the material

is assumed to have a square cross sections Ly = Lz. As pointed out

earlier, this choice of a square cross section has been

*Actually, the origin is chosen to lie a distance within the
sample where § > 0 and § <<< Lx' This is convenient because of the
boundary conditions,

**More accurately, L + 28 where S<<< L_., This is discussed in
detail when discussing the bound:ry conditions af the semi-electrode in-
terface in Section 3.5.
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made merely for mathematical convenience; the model would work equally

well even if Ly # L,.

3.2, The External Electrical Circuit Configuration

The external circuit, connected between nodes 1 and 2 of the
sample (refer Fig. 3.4), comprises of the followings

a) an ideal d-c voltage source of Vapp’

b) a series resistor Rg, assumed to be independent of tempera-

ture and the current through it,

c) an ideal single pole single throw switch S which is initially

off and which is turned on at some time t = 0, and

d) two highly conducting electrodes at nodes 1 and 2 between

which the sample is connected and which is turned on at some
time t = 0. Also, the electrodes make ideal ohmic contacts
with the sample at each node. Thus, there is no voltage

drop either at the electrode or at the interface of the elec-
trode and the ETD,

The circuit diagram is shown in Fig. 3.5. Node 2 is grounded,
and node 1 is the live terminal of the ETD,

In addition, the following assumptions are made regarding the
systems (a) The electrodes are assumed to be ideal heat sinks. (b) Air,
which surrounds the ETD on four sides, is assumed to be an ideal thermal
insulator and dielectric., (c) Initially, before the switch S is turned

on, the ETD is in equilibrium, Let the equilibrium temperature be Tamb
(d) In comparison to the various circuit parameters, cable capacitances
and lead inductances are assumed negligible. (e) The switch S is turned

on at time t = 03 i.e., all times t are measured with reference to the

instant the switch is turned on. (f) In this model, the various variables
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associated with the sample are evaluated at different times, starting
from a time At after the switch S is turned on. The time Aty is chosen
large enough such that the initial transients due to the switching im-
pulse have died down. But, Axo is chosen small compared to the thermal
time constant ¥_ . (This time constant is discussed in more detail in
Section 3.4.) (g) The ETD is assumed to be electrically neutral at all
points in the sample before t = O, In other words,

n(r,0) = n;(;,O) = Ndexp[-Ea/kTamb] (3.2.1)

6(t,0) = 0 (3.2.2)

3.3, The Static D=-C Characteristics

When the switch S is turned on at t = 0, the entire system is
in thermal equilibrium, and the semiconductor is uniformly at the ambient
temperature T, .. If 0 is the conductivity of the sample at the ambient

temperature, then its d-c resistance R, at this time is given by

Ry = _x (343.1)
Oy

where all surface effects are assumed to be negligible,

Consider the ETD at a timeAt, .At; is a time large enough such
that the initial switching transients due to turning on the switch S have
died out, However,z§t0 is much smaller than the thermal time constant
th associated with the ETD.* At this time, the direct current Io+ at

node 1 is given bys
+

0 =
If Rs is chosen to be a fraction f(f <») of R

I (R, + Ry) (3.3.2)

vaPP/

0 such thats

+
Rg < fRo ohms, then the current I, can be rewritten ast

+ ,
10 = vapp/RO(l + f) (3.3.3)

*This is discussed further in Sections 3.4 and 3.5.
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Substituting the expression for R, from Eq. (3.2.1), the current

measured at node 1 at t =07 is
2
Io+ = vappdbLy e 1 .A (3.3.4)
Ly 1+f
The voltage appearing across the sample at t = ot is, therefore,
+ +

0
Substituting Eq. (3.2.3) in the above equations

0 -_22& (30305)

Because the conductivity of the semiconducting sample is finite,
power is dissipated due to the current in the semiconductor. The dis-
sipated power is converted to heat; therefore, the temperature of the
sample will rise. Increased temperature implies increased ionization,
and so the conductivity will also increase., The conduction current will
increase with time until a final steady state is reached. llence, the
voltage Vo+ and current Io+ are the static maximum terminal voltage and
minimum terminal current at node 1 of the sample respectively and so are
designated hereon as Voax @nd Imin'

To obtain the 1limits of maximum static current Imax and minimum
static voltage Viin? it is assumed that the semiconductor is completely
and uniformly ionized at some temperature T o Since the material is uni-
formly ionized, no thermal or concentration gradients exist, and the only
component of current in the sample is conduction current. The conduc=~
tivity of the sample at this time is (using Eq. 2.3.1)

Tnax = NaePb (3.3.6)
Note that in the above expression, the electron concentration is taken
to be the donor concentration. This is because the model has only one
mechanism for creation of electrons, namely donor ionization, Conse-

quently, at any instant, the total number of ionized donors exactly equal
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the number of mobile electrons. Hence,

- Na®% (3.3.7)
Ndexp(-Esa/kTamb)e a

a&axﬁro

If the mobility gap ratio is represented by s

r
Tmax = prexp(Ega/kTamb) (3.3.8)
0—
0
Hences oﬁax = Oprexp(Ega/kTamb)
and so3
R = Lx = RO (3.3.9)
min 2 (E__/xT_ )
r L FrexP ga' “amb

max y

Thus, the maximum external circuit current Lax iss

v
Iax = vapp/(Rs + Rmin) - app (3.3.10)
RoLf + 1 exp(-Ega/kTamb)J
r

Similarly, Vmin is given bys

v R
Vnin ® Inax®min = app = X OE
Rolf + 1 exp(_"ga)] poexp(__ga )
r 1(Tamb amb
\') .
= app (3.3,11)

1+ fprexp(sga/kramb)J
Summarizing and using the symbol IO to represent current Vapp/Ro'
i.e., I0 = Vapp/RO’ the maximum limits of the static voltage and current

that are allowed by the external circuit configuration are

Vmax ™ —2PP s (3.3.12)
1 +f
\')
vmin = app ’ (3.3.13)
1+ frrexp(ké;7kf)
I
I . = 0, and (3.3.14)
S X
I p_exp(E _/kT)
.[max 0”1‘ “Ra (3.3.15)

1+ frrexp(E8;7kT)
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The above expressions are the limits of the static terminal cur-
rents and voltages. As will be discussed further in the coming section,
these can be used as tests indicative of the stability of the results
obtained; if the terminal variables were to lie outside the range defined,
the ETD would be in an oscillatory state or even a physically unrealiz-

able situation.

3.4, Energy Storage Mechanisms and Time Constants of the ETD

In spite of the apparent simplicity of the circuit, its dynamic
behavior involves more than just two resistances in series., This is
because of the variou: energy storage mechanisms present in the system,
each of which can bLe associated with a distinct time constant,

First, there is the thermal time constant, T

a? due to the encrgy

storage associated with the heat capacity of the ETD., If c is the heat
capacity, k., the thermal conductivity and sz the cross-sectional area

of a uniform cube of the material, then T; is given by
2
T = X (3.4.1)

kth

For the ETD sample chosen, the time constant associated with
unit cube of the material is computed below.

The relevant material parameters are

kep = 640 W/(m = K)
5 3
c = 3.3x 10 J/(m~ = K)
L, = 1074
Ta = 550rs

This time constant plays a significant role in the energy balance
equation which is discussed in detail in a later section. Since Ken
and ¢ have been assumed constant, this time constant TA is a constant

characteristic of the ETD in this model,



30

A second time constant ?; is associated with the thermal and
concentration diffusion of the conduction electrons, and is related to
the mobility of the electrons.

2
tb = Lx (3.402)

,T(Tsk'r

Unlike ?;, Tb is a function of temperature and so is not a con-
stant for the material. The value of ?b is evaluated at two character-
istic temperatures Tomp 3nd T, for easy references

a) T = 300 K

amb
P, =43 % 1078 m2/v - s
tb = 9008 ms

1

b) T = 341 K
cr
-5

Po = 4,3 x 10 m2/V - s
tb = 7,88 ms

2

This time constant is an important factor in the continuity
equation that is developed in Section 3.8,

A third important time constant is that associated with the per-
mittivity € of the ETD giving rise to bulk capacitance effects., There

again the time constant tc

TC = (3 (3.4.3)

¢ (E,t)
is not a constant for the material., Since is a function of the free
electron density n and mobility M, tg is a fairly complex function of
(r,t).
Good estimates of 7,6 can be obtained by using the approximations
discussed in Chapter 2,
o~ n:(T)er(T) (from 2,3,2)

Thus for the two characteristic temperatures, the approximate
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values of Z; ares

a) = 300 K

11

= 44425 x 10~ F/m

T
€
Ub = 800 mhos/m
zé = ,055 ps

1
b)

-3
[ ]

341 K
4
= 6,15 x 10 mhos/m

0.00717 ps

o™ 1
"

2

In addition to these three, there are other time constants which
have been neglected in the model. For instance, the time constants due
to lead inductances and capacitances have been neglected in the formula=-
tion of the external circuit equation; and so has the inductive time con-
stant due to the time rate of change of magnetic field in the material.

The limiting values of the terminal current and voltage can be
assumed to be the maximum limits, even when the dynamic characteristics
of this model ETD are studied., Thus, the relationships (3.3.12) = (3.3.15)
for the limiting terminal current and voltages hold for the entire time
spans of observation; they are used to test that the overall solution
obtained at any t is a physically realizable one.

The time constants obtained in this section are summarized in

Table 3010
Table 3,1
- 550
?h ms
T - 90,8 ms
bl
tbz - 7 .88 ms
tc - 0.055 ps
1
TE - 0.,00717 pPs
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3.5, The Thermal Boundary Conditions

Looking back on to the circuit diagram of Fig. 3.5, observe that
the rectangular semiconducting block, i.e., the ETD is in contact with
perfectly conducting electrodes at two of its surfaces x = - and
x = L+ §, and with air, which is assumed to be a perfect insulator,
on the other four surfaces, In the above statement, the terms "conduct-
ing” and "insulator" refer to both thermal and electrical conduction,
Because the electrodes are ideal heat sinks, the temperature at each
of these electrodes will remain at the ambient temperature Tamb for all

time. Thus, for all time t,

T(=$, ¥y 2, t) = T__ (3.5.1)

b

T(L. + & t T .

(X » Yy 2, ) = amb (3e502)
Since $<< L , the temperature at a distance inside the material

can be expected to be not significantly different from the temperature

at the electrode interface at all times t. Thus

T(O, y’ Z’ t) = Talnb (3.5.3)

T(Lx, Y, 2, t) = Tam (305.4)

b
Since the surfaces y = 0, y = Ly, z=0, and z = Lz are assumed
to be in contact with a perfect insulator, there is no heat flowing out
of these surfaces(39); the normal component of the heat flux density is
therefore zero everywhere on these surfacess
qu = 0at y = 0and at y = Ly (3¢545)
Jq, = 0 at z = 0 and at z = LZ (3.546)
Hence, applying Fourier's Law (Eq. 2.6.2)

kt ag = 0at y = 0 and at y = Ly

kth:T = 0at z = 0 and at z = Lz
z
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Thermal conductivity being a finite non-zero scalar constant,

the boundary conditions becomes

?l(x, 0’ Z, t) = 0' (3.5.7)
3y

§_’_I‘_(x, L}” z, t) = 0, (3.5.8)
3y

3T(x, y, 0, t) = 0, and (3.5.9)
2z

ﬂ(x, Y, Lz’ t) = Oe (305010)
oz

3.6, The Electric Potential at the Electrode-Semiconductor Interface

Consider the ETD at a timel&to after switch S has been turned
on. Recall that timelkto is large enough such that the initial tran-
sients due to closing the switch have died down; yet, it is small com-
pared to the thermal time constant a discussed in the previous section,
Ato is the first observation time; for the model, this has been taken
to be 10pms

Since this time is small compared to the thermal time constant,
the resistance of the ETD is assumed to be not significantly different
from R, where R, has been defined as the ETD resistance when it is uni-
formly at the ambient temperature Tamb' Hence, the voltage at node 1
at t, is given by Eq. (3.3,5). Hence,

v,ae) = v " Voop/ (L + ) (3.6.1)

Also, since node 2 is grounded,

V,8t) = Vy(t) = 0 (3.6.2)

Again, since the electrodes are highly conducting and make ohmic
contacts with the ETD at the interfaces, the potential at each point on
a face in contact with an electrode will have the node voltage corres-

ponding to the electrode, Hences



34

v(-§, vy, z,AtO) = Vl(AtO) (3.6.3)

V(Lx +8, y, z,A tO) = 0 (3.6.4)

Obviously, the above is true not only for t nAtO, but for all
values of t.

V(-8, y, z, t) = Vl(t) (3.6.5)

V(Lx +6, vy, 2z, t) =0 (3.646)

The distance & has been chosen such that it is smaller than the
grid spacing,* but larger than the Debye length associated with the
sample. The Debye length for the semiconductor Rl) is obtained from the

relation (48) (36667)s

D= ~ KT (3.667)
4Tne?

For the present simulation, the minimum grid spacing x and the
Debye 1ength'kD are compared below.

p = 3.334 x 10™8n at T = 300 K

Xx=1x10 m
A value of § of 5 x 10-6m is therefore appropriate. Since $ is much
smaller than the space dimensions, i.e., & << Lx' Ly the potential at
points near either electrode within a §-neighborhood of the electrode
interface can be assumed to be equal to the voltage at the electrode,
Consequently, the Eqs. (3.6.6) and (3.6.7) for any time become

V(0, y, 2, t) = Vl(t) (3.648)

V(Lyy ¥y 2, t) = O (3.6.9)

Specifically, at Ato, the relations become (using Eqe. (3.6.1))s

v(0, y, z,Aty) = vapp/(l + f) (3.6.10)

V(Lx, Y, 2, Ato) = 0 (3.6011)

*The grid structure is discussed in Chapter 4,
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Vi(t) for all other times t >At, is evaluated in a subsequent
section,

Because of the power dissipation in the ETD due to the electri-
cal current, the temperature of the ETD will rise. However, this tem-
perature rise will not be uniform due to the thermal boundary condi-

tions of the ETD,

3,7, Net Charge Density at the Electrode-Semiconductor Interface

Once the switch § is turned on, a surface charge of -¢; and
+0g is built up at the semiconductor surfaces x = =6 and x = Lx + &,
the magnitude of which is determined by the bulk capacitance of the ETD.
If € is the permi;tivity of the semiconductor, 7, at Ato is given by

T = e_LLZ_. Vl(At) coulombs (3.7.1)

X
However, at a distance & within the semiconductor from an elec=
trode, there is no surface charge density, since ® has been assumed to
be much larger than the Debye length. The volume charge density ¢ at
such a point can be obtained from a consideration of Gauss' Laws
Q =¢V.E
Consider the semiconductor at the instant At, where
to << t;, the thermal time constant
ty >> 1%, the time constant

associated with the turning=on of the switch, Hriting the continuity

equation at this times

3¢ + Vo cE]= 0 (3.7.2)
3t

which after a little algebraic manipulation and applying Gauss' Law,
yields
?fg_ =03 +EWr =0 (347.3)
t €
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Now E,Ve = 90 E_ + 3 E_ + 3 E_ where E_, E_, and E_ are the electric
— X sT 2 x? Ty z
ox Ay z
field components along x, y, and z directions respectively. But, near
the metal electrodes, the tangential components of the E-fields must be
zero, because the tangential component of the E-field must be continuous
across a boundary, and, in a metal, there can be no electric fields,

Hence, Ey and Ez are zero and so, Eq. (3.7.3) becomes

él*’fﬁ"'kEx.o (3.7.4)
ot € 9Ix

Hence, at the boundaries, can be obtained by assuming E, to be a con-

stant with respect toUF. The solution for § is approximately,
?=?O+Be--é-t

Thus, for all t >>€/r, § =»90 at x = 0 and x = L . For this model, it

is assumed that the above statement is true for all times t >Atg. It

may be noted that this is not strictly true, since, in the above argu-

ment, the material was assumed to be homogeneous. Lence,

$C0, y, 2z, t) = 8 (347.5)

?(Lx, Yy, Zy, t) = 90 (3.746)

3.3. Boundary Conditions at the Air-Semiconductor Interfaces

Consider now the conditions existing at the four surfaces of
the semiconductor exposed to air, for instance, at the plane y = 0, At
this boundary, Ex in air is non-zero since the tangential component of
the electric field is continuous across the boundary, This is the
"“fringing” field. The normal component Ey is responsible for the normal
conduction current,

J E

cond y =TE,
Since air is assumed to be a perfect insulator, there canuot be any con-
duction currents if surface charge effects are neglected, Within the

semiconductor, 0, the electrical conductivity is non-zero; hence, Ey
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at the surface y = 0 is zero. This is similarly true for all four sur-
faces y = 0, y = Ly, z=0, and z = Ly. Using the relation E = =9V
developed in Chapter 2, the boundary conditions can be written mathe-

matically ass

?_Y_(x, 0’ Z, t) = O,
3y

?l(x’ Ly' Z, t) = 0,
3y

V(x, y, 0, t) = 0, and
dz

é!(x, y’ Lz, t) = 00
oz

The volume charge density is related to the electric field by
Gauss' Law ¢ = €V, E,

The tangential components Ex and Ez are continuous across the
interface y = 0, and also, there is no conduction current across the
interface. Constructing a pillbox of infinitesimally small thickness
4, it can be shown that

V. E at y = 0,

Hence, by Gauss' Law

¢(x, 0, z, t) = O,
Similarly,

¢ (x, Ly’ z, t) = 0,

9(x, y, O, t) = 0, and

Q(x, vy, Ly’ t) = 0.

3,9, The External Circuit Equations

So far the terminal voltage Vl(t) has only been evaluated at the
first observation time At, (refer to Eq. (3.6.1)). The terminal voltage

Vl(t) and the terminal current i(t) measured at node 1 are functions of
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time and are related to each other by Kirchhoff's vVoltage Laws

Vl(t) =V, p " i(e) . R (3.9.1)

P
This is the load line equation.

Obviously, this terminal current is equal to the total current
at x = O, The current at x = 0 is comprised of three components:

a) Conduction Current,

b) Dviffusion Current, and

c) Displacement Current.

The conduction current density in the x = 0 plane is:

Jcond(o' Yy 2, t) = -0, y, 2, )7 V(0, y, 2z, t) (3.9.2)

However, at x = 0, the temperature T remains the same for all t and, also
no significant charge separation takes place here.®* Hence,
~ ot
(0, y, z, t) = n(0, y, 2z, t)sh(ramb) ~ nd(Tamb)s“(Tamh) =70
Thus, the Bq. (3.9.2) reduces to

Jcond(o’ Yy 2, t) = -, «oV(0, y, z, t) (3.9.3)

The diffusion current density at x = 0 is given by (refer Sec.
2.5)'

jaiff(oy Ys 25 t) zxx(T)kV(n(O, Ys 2z, t)eT(0, y, z, t))

Since the temperature at x = 0 is T p for all T5/4(T) 1§K“a and so

am
Ta1£C0s ¥s 25 £) = 0 kWN(O, ¥, 2, £).T(0, y, 2, £)) (3.944)

The displacement gurrent density jhiff is given by

Jdiff(o’ Y, z, t) -eao_g(o, Yy 2z, t) (3.9.5)

In Sec. 3.8, it was assumed Ex did not change with time.* Hence

3&iff(0’ Y, Zy t) = O (3.9.6)

The total current density JT at x = 0 is therefores

3}(0, Yy Zy t) = -vbvv(o, Yy Zy t) f/*ak (n(0, y, 2z,t)

oT(Op Y, 2, t)) (349.7)

*Surface charge effects are neglected in this model,
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The total current can be obtained by integrating the above ex-
pression (3.9.7) over the face of the semiconductor at the x = 0 plane

i(t) .IF ° d;n (3.9.8)
surface of semi

Resolving the carrier current density J into three components,
Jx Jy, and J, along the three axes

J= Jx§ + Jy§ + Jzé.
Also,

ds = ydy x zdz = xdydz,
Hence,

J.ds = J drdz.

Thus, the total current i(t) is given by

L, rL

1e) = LY %500, v, 2, e)ayde. (3.9.9)
L
Z

i(t) = {L y f0 (pmk[vcnr)]x- g)dydz. (349.10)

The above is obtained by substituting Eq. 2.5.8) in the Eq.

(3.9.1). The subscripts (x, y, z, t) have been omitted for the sake of

brevity.
Substituting this expression back into the load line Eq. (3.9.1)

ly
vl(t) = V;lep - R, ..() fo ,.aks%(nr)- %) . dydz (3.9.11)%

In subsequent sections, equations for the voltage V and temperature T

will be obtained,

3,10 The Continuity of Charge

The charge continuity equation was obtained for the ETD in tq.
(2.207)0

*Note that M(T) can be treated as a constant in the above ex-
pression, since the semiconductor surface, being in contact with an
ideally thermally conducting electrode, is assumed earlier.
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3¢ + Ve J =0 (3.10.1)
ot

Where J is the current density, the current density J is given
by Eqe (2.5.10)3

J = ¢E + kp(T)V(nT). (3.10.2)
Substituting Eqe (2.4.4) and Eq. (2.3.1) in Eq. (3.10.2)

J = kW(T)[V(nT) - neW] (3.10.3)

Computing the divergence of the above expressions

V.J = k/u(T)[Vz(nT) - ne¥%v - eVn V] + k Vu, [V(nT)

- nevv] (3.10.4)

where T = T(T,t).

2V = -9/€ (Eqe 2.4.5)s Substituting this into

Also, recall that V
Eqe (3.10,4) yields
VeJs= kp(T)[Vz(nT) +nefl - en NV] + [kV,u «V (nT) - kne
VAR (3.10.5)
Also, recall that in Eqe (2.2.4) ‘
Q= enZ(T) - en,
Rearranging terms in the above yields
en = en;(T) -9 (3.10.6)
Substituting for n in Eq. (3.10.5) and working the algebra (see
Appendix C), a parabolic partial differential equation for the volume

charge density is obtained as shown belows

1 3¢ +9%¢ . (KT) + W. @V = 27T = KT 1np) +g [-kv'T

ZZET) it e e e e
RO (v - kD] + 1[kv2(n’T) - epntyv
= €_+ np.v = kY (n,y epn |V
+ Inp(-en WV + k¥(n3T))] = 0 (3.10.7)

The differential equation obtained requires six boundary con-
ditions on each face and an initial condition to be completely solvable,

all of which have been arrived at in the previous scctionse.
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3.11, The Poisson Equation

Once the net charge density ¢ is known at every point in the semi-
conductor, the electrical potential V(x, y, z) within the semiconductor
can be directly evaluated by using Poisson's Eq. (2.4.5).

VU V(x, ¥, 2) = =8(x, y, 2)/€ (3.11,1)

Since ¢(x, y, z) has been completely evaluated at each time
step in the previous section, the above elliptic partial differential
equation is solvable provided a complete set of six boundary conditions
are known,

Two of the boundary conditions have been obtained by consider-
ing the external circuit in Sec. 3.3. The other four boundary condi-
tions were arrived at when discussing the air-semiconductor interface

in Sec. 3.8,

3,12, The Temperature Equation

The equation for the temperature at any point in the sample is
obtained by considering the energy balance within the sample., Rewriting

the Eqe (2.7.7) yields

Tds = du + K dn + K dp - eVdn (3.12.1)
dt dt dc dt dt

(@) (®) (o) (d) (e)

Each term of the above expression is considered in turn belows

(a) Tds -- This represents the rate of creation of entropy in
the system, Sg;ce the system has been idealized, such that no less
terms have been included, this term is zero.

(b) du -- Since u, the internal energy per unit volume, is a

dt
function of space and time, it can be expressed ass (see Appendix H)

du = du(r,t) + Y. J (T,t) (3.12,.2
F 5t ’ u'-? )

(£) (8)



42

Considering each of the terms separately, 3u represents the ex-
2t
plicit rate of change of internal energy per unit volume at each point

in the system. This must correspond to the explicit energy increase
due to the rise in temperature of the material. Hences

u(T,t) = ¢ 3T (3.12.3)
ot t

Ju represents the energy flux crossing a unit cross-sectional

(%]

area in the material per sec and is expressed as J/m2 - S8). The energy
flux in the semiconductor is composed of electrical and thermal, all

other forms of energy flow having been assumed absent in the model.

JU = Ja + Jelec (3.12.‘5)

where Ja and jélec are the thermal and electrical energy per unit area
per second, respectively.
Taking the divergence of both sides,
VeT, = V.o + Ve Tatec (3.12,5)
(h) 3
Recalling Fourier's Law as stated in Eq. (2.6.2), (h) reduces
to

Y. 33’ -kthVZT (3.12.6)

Again, the electrical energy flux density, Jelecr 15 glven by

Jelec ® Jeond" (3.12.7)

Computing the divergence of the aboves

v.J

elec Jcond «VV + VYV, Jcond (3.12.8)
and SUbBtitUting Eqs. (2.4.4) and (2.506) Yields
V. Jelec = -FE E+VvV, Jcond (3012.9)

Substituting Eqse (3.12.9) and (3,12.6) back into Eqe. (3.12.5)

- 2 = T =
Vold, = kg NT -€E . E+ VYV J (3.12.10)
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Substituting back Egs. (3.12.3) and (3.12.,10) for terms (f) and

(g), the term (b) becomess

du=c T -k V°T- E.E+VV.7J (3.12,11)
dt ot

Thus Eq. (3.2.1) with terms (a) and (b) evaluated now becoumess

+
2 - = = dn
¢ -k WT=- E.E+VV. Ty +K d+K dn
[ 2t J dt dt
(b) (k) (c) (d)
- eVdn =0 (3.12.12)
dt
(e) (a)

Consider now the last four terms in the expression (k), (c),
(d), and (e)s The term (d) represents the energy associated with the
creation of electrons at any point in the sample due to the chemical
potential Kn, which is responsible for thermal and concentration dif-
fusion in the semiconductor. Using the now familiar technique outlined
in Appendix H and remembering that the electron (particle) has a charge

of -e,

<. Jdiff) (3.12,13)

(d) K dn = K ®n -1
T N3t e
Similarly, expanding the term (e)

(e) -eV dn = -eVQ@n = 1V, J) (3.12.14)
dt at e

Combining Eqe. (3.12,13 and (3.12.14) with (k), we obtains

Kn(ﬂ’. -1V, Jdiff) +VV. Jcond -evVan+VV,J
dt e ot
.= (k) + (d) + (e) (3.12,15)

Recalling that the current density J due to electron motion is the sum
of diffusion and conduction components,
J = Jeond T Jairs (2.5.14)

Eqe (3.12,15) reduces, after a little algebraic manipulation, to
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(K, = eV)dn = (k) + (d) + (e)
dt
But, (l(n - eV) corresponds to the net electrochemical potential

acting on the electrons., Hence, combining this with term (c)s

+
(c) +(d) + (e) + (k) = G dn +K d_“g (3.12,16)
dt dt

Moreover, recall that the net creation rate of donor ions and
electrons is everywhere equal in the model. Hence using Eq. (2.2,5)3

(e) + (d) + (e) + (k) = (N + K )dn
P'dc

are opposite in sign, and the expression glves the net

rL and Kp

energy involved in the ionization process. In the present model, this
energy of ionization is neglected, The equation for temperature can
therefore be written as

c3l = kthva +0E . E (3.12.17)
3t

This equation is identical in form to the equations used by
Berglund and other investigators(31’34'36). However, the approach used

here closely parallels Ridley's thermodynamic argument, thus (demonstra-

ting the consistency between the two,

3.13, Summarz

In this chapter, three partial differential equations have been
obtained, together with the necessary boundary conditions for T, the
temperature, V, the potential, and §, the charge density, Since all

+
other variables Eg, Ngs Ny, Ev,d‘, Jeond? Jdiff

terms of these three, the system is completely known if these three equa-

can be expressed in

tions are solved. The numerical solution of these three partial differ-
ential equations by computer simulation forms the subject of the next

chapter,
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For easy reference, the relevant equations together with their
boundary conditions are recapitualated belows
a) Voltages

v(x, y, 2, t) = =8(x, ¥, 2z, t)/e
Boundary Conditions:

9v(x, 0, z, t) = 0; 3V(x, Ly, zZ, t) = 0
3y Ay

3V(x, y, 0, t) = 0; 3V(x, y, L, t) = 0
3z dz z

V@0, y, z, t) = V,(t); V(L, y, 2z, t) = O

Also,
by L,
vie) = v =R S [y % ok aa(x;r) -0, ggl(_)dydz
At t =8t .,
+ \'f
V.(at,) = V_ = "app
L S
b) Charges
g(Ato) = 0
2¢ +V g . (-kT) + V¢ o (VV = 2k VT - kT ¥1np)
p(TSét 3 e
+
+ 9. (-szT + M4 - £ +¥mp, w(v - k1))
e € € e

+ (sz(n+T) - éVn+VV + Vinp(-e +VV + kV( +T)))
d 4 M -eng "4
Boundary Conditionss
9(0’ Y, 2 t) = go’ f(Lx, Yy 2, t) = go
$(x, 0, z, t) = 0; ¢(x, Ly, z, t) = 0
$(x, y, 0, t) = 03 «x, y, L, t) = 0
c) Temperatures

cgg-khvz'rq-fr:.s
5t
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Boundary Conditionss
T(oi Y, 2, t) = Tamb; T(Lx’ Y, 2, t) = Tamb
EI(XQ 0, z, t) = 0; QE(X, L,z t)=0
y y y

El(x’ ¥y, 0, t) = 03 3T(x, vy, Ly’ t) =0
2z oz



CHAPTER IV

A NUMERICAL APPROACH TO THE SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

In the previous chapter, we developed a set of three partial
differential equations, each associated with a complete set of boundary
conditions. For convenience, these equations are listed again belowp
the subscripts (x, y, z, t) have been omitted for brevity:

a) QZV +8g=0

b) _1 3@ +VR(=KD) + Vp. (6 - Q2T ~ KT gInp(T))
p(T) 9t e e

e
+
+?(:‘£V2T + &‘_Ti - § +VInp(T) (Y - KT))
e € ¢ e

+ l(kvz(n;'r) - eVn;(T)VO + VIQ'A . (kV(n;T) - enJVt)

= 0 (4.0.2)
c) ¢ T = k_.Q°T +ePV WV (4.0.3)
b‘—t th

The three dependent variables used to describe the system are V, the
electric potential; @, the charge densitys and T, the temperature at
any point in the semiconducting material, If V,@, and T are known for
all points (x, y, z) in the semiconductor at all times t, the system
is completely described, In the three equations, the only other vari-
ables are n; and p . However, both of these depend explicitly on tem-
perature T, which is separately evaluated in Eq. (c). For easy refer=

+
ence, the expression for (T) and ny

P(T) =p, == T<T [See Fig. 2.2]

are recalled belows

=g == T 2T, (4e044)

47
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n+(T) = N.exp(=E _/2kT) =- T < T [See Fig. 2.2]
d d ga cr
= Ndexp(-Egb/ZkT) -T2> Tcr (4.0.5)
The set of Eqs. (a), (b), and (c) are nonlinear and coupled, and
hence are too complex to handle in a closed form analytically. An ap-

proach to numerically solving these equations is presented in the re-

mainder of the chapter,

4,1, The Formation of Finite Difference Equations

The finite difference technique is perhaps the most convenient
and frequently-used method to solve a partial differential equation
(PDE) together with its associated initial and boundary conditions. In
this method, a network of grid points is first established throughout
the region of interest occupied by the independent variables. In this
case, the independent variables are x, y, z, and t; and the region
occupied by the spatial operators is the sample space which has dimen-
sions of Lx' Ly’ and Lz in the x, y, and z directions respectively,
Next, the partial derivatives of the original PDE are approximated by
suitable finite-difference expressions involving x, y, and 2z. The
finite difference expressions are obtained by using Taylor's scries ex-
pansions of the function., The only types of spatial partial derivatives
that occur in our mathematical formulations are the gradient, diver-
gence, and Laplacian operators, Thus, in Cartesian co-ordinates, no
mixed partial derivatives of the form Bzf are involved. The finite
are involveds The finite difference exggzgsions for these partial de-
derivatives are developed in Appendix B,

There are two major types of errors associated with this tech-

nique, namely the discretization error and the round-off error,
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The discretization error, e, is the departure of the finite dif-
ference approximation from the solution of the PDE at any grid point;
i.e., if f, be the solution of the PDE and f, the solution of the alge-
braic equation, then

e-fl-fz

£
The discretization error plays an important role in the sclection of the
grid as discussed in the next section,

Also, the computational procedure is assumed to be capable of
an exact representation of the solution of the finite difference equa-
tion. As only a finite number of digits can be retained by the computer,
round-off error is introduced. Round-off error is minimized if

a) the number of arithmetic operations at any given location
is minimized,

b) the numbers on which the operations are performgd, as well
as the result obtained, are of the same order of magnitude,
and

c) all variables are of the order of unity,

The first criterion depends largely on the algorithm used in
the solution as well as the grid size involved.

The useful technique to reduce errors of the types (b) and (c)
is by "normalization"”., Here, the dependent variable is transformed by
suitable additive and scaling factors to a dimensionless quantity lying
between zero and one, For instance, consider the temperature equation

@’T =P

c 3T - kyy

M
obtained in the last chapter., In this model, we are interested prima-
rily in the preswitching region, where the temperatures within the ma-

terial would lie between the temperature Tamb and Tcr' Consider therefore



50

the transformation

Uus I = Tamp (4.1.1)
Ter = Tamb

Here u is a dimensionless variable lying between zero and one. Using

this transformation, the temperature equation becomess

[o] ‘._2 - kthvzr =» P (40102)
3t T _-T

cr amb

Note that this transformation is useful only in the preswitching
region. Once switching takes place, the temperatures in the filament
region can be expected to be much larger than the critical temperature
Tcr'

The other transformations used are as followss

Ax-LxQ;Ay-hQ:Az-f_z_'z\;
10

10 10
eV (T -T )
VeV p# 8= agzg;u T=""cr ‘amb’ 6, (44142)
L .
X

where , , and 6 are the normalized dimensionless dependent variables
corresponding to V, , and T and x, y, and 2z are unit vectors in the
X, ¥, and z directions respectively, The transformed equations thus
obtained from (a), (b), and (c) are

(a) Davi?g + DaV9f + Daviilr 'de +X =0,

(b) ?t_(+ [F « ¥ . n¥(§6) - F4¥ « qv(x8) - F1V . n§ve

+F'V . (nv$] = 0, and

(c) 20 - |[ Dav.® + Dav.® + Dav,0 - ¥, , 8] = PF!
$2 W[ Vs av9 Vo D ] Pd’

where
Davef = f(x +Ax, y, z) + f(x =~AX, y, z)

Dav9f -'r[f(x, y +4y, 2) + f(x, y - Ay, z)]
Davf = Y[£f(x, ¥, 2 +A2) + f(x, y, z ~A2)]

Delﬁf = f(x +A%, ¥, 2) - f(x =AXx, Y, 2z)
2



51

Del f = JY£(x, y +Ay, z) - f(x, y -Ay, z),
2

Del f = .,/‘?f(xj_y, z +4z) - f(x, y, z -82),
2

Tp =2 +47,
hT = C ’
Ken
t. n’(T)
NdexP(Egbﬁcr) = Ndexp(f;ana.mbj
Y = n(T) R
Ndexp(Egbr'f;_.) - Ndexp(Esaﬁamb)

= ¥# n % [(De1,0)° + (Del $) + (Del 9)7], and
Yo = %0 = §(Typ)e
These transformations are formulated using n)=n, =ng= 10 in Appen-
dix C. The choice of Ny, Nyy Ny is discussed in the next section. In
the equations and relations listed above, the gpatial subscripts have
been omitted; i.e., %, Il”’ ¢,¥, 6, §, and ) are all functions of
space and Davx, Delx, Davy, Dely, Dav,, Delz denote special spatial

operators, The terms Fa, Fb’ Fc, Fd,T ’YD’ hT’ and Kr are all dimen-

sionless constants,

4.2 Selection of the Grid Structure

In the last section, it was pointed out that the round=-off error
could be minimized by a suitable choice of algorithm and by normalizing
the variables to dimensionless quantities of the order of unity. But
this has little or no effect on the discretization error,

The discretization error depends largely on the nature of the
grid structure chosen, For computer applications, it is preferable to
use as uniform and regular a grid structure as possible, since this re-
duces the memory storage requirements and the number of operations on

the computer. Thus, this entails not only a saving in terms of computer
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time and money, it also minimizes the round-off error, which, as was
pointed out earlier, depends on the number of ovperations performed.
Hence, a cubic or a rectangular grid are the obvious choices., Recall
that a rectangular parallelepiped with a square cross section had been
chosen for the semiconducting sample.* To minimize round-off error,
an equal number of points are chosen along each axis. Obviously, the
mesh spacing in the three directions is not the same; in fact, it is
proportional to the dimensions of the sample in the three directions,
In other words, if Lx’ Ly’ Lz are the sample dimensions and ny, Ny, Ng

are the number of points along the x, y, z directions respectively, then

the grid spacings Ax, Ay, Az are given by

L L
Dx = _I_'y Ay = y;Az = 2 (4.2.1)
nl n2 n3
Since
Ly = L,
and
n,=n, =ng=n
X = f&: y = Ez; z = fg (4.2.2)
n n n

The number n is selected from the following considerations,
First, it is desirable to minimize the discretization error. Since all
the differential equations are of second onder, consider the discretiza-

tion error involved in obtaining azf. From Appendix B, for an interior

sz
point (xo, Yor zo)

*Another logical choice, from symmetry considerations, would
have been a cylindrical sample, However, this choice leads to program=-
ming complications because of the singularity of the Laplaciar opera-
tor at r = O,
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aZf - f(xo + ZAX, yO’ zo) - zf(xo +Ax' Yo, Zo) + f(xoi Y0’ zo)

3x2 sz
2 3
+ X af"' s e

2] 3x3

The discretization error e is hence given by

¢

e _53_'3x3

21 3%

2
X

o v

Thus, e is minimum when Ax =« 0, and hence when n = o,

However, there is a lower limit of Ax determined by the nature
of the problem., While discussing the boundary conditions for the charge
distribution, it was required that the spacing be much larger than the
Debye length A to be able to neglect surface charge effects., Thus

X >> RD’
Hence

L
£x

D

n=

Since

am and D" 3.34 x 10-6m, n << 30,

L =1x10

However, practical considerations limit the choice of n even
further, Since a number of arrays (at least one for each dependent vari-
able) of size n x n x n have to be simulataneously stored in the computer
memory, the core memory requirements and costs increase very rapidly
with n A compromise choice of n was 10, which required an operating

computer core memory of 100 k.*¥* In Appendix C, the normalizations are

performed with n = n) =n, = 10,

*%At the time, the maximum allowable core memory on the CDS 6500
computer used was 120 k.
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443, The Equation in &

For the equation in j‘, X is assumed to have been already eval-
uated, and so it is a second order elliptic partial differential equa-
tion, in three space dimensions with X as a forcing function. Typically,
elliptic PDE's are solved by some kind of relaxation method; in this case
the Successive Over Relaxation (SOR)(aa) method is used to speed up the
converging process, Briefly, this method consists of initializing each
element of the matrix to some convenient value., In this specific simu-
lation, the value obtained at the previous time step is used, A new
approximation to the value of an element is obtained using the governing
Eq. (b) and the relaxation parameter w, and the current value immediately
replaces the previous value of the element in the matrix.

For instance, for an interior point, the equation for #§ is:

Davx¢ + Davy¢ + Davzﬁ - TDQ +X=0 (4'3'1).
Expanding the above by using the definitions of Davx, Davy, and Dav,

P(x +4x , y, z) + B(x - A%, y, z) + B(x, y +Ay, z)

+ f(x, y =8y, z) + PB(x, y, 2z +Az) + P(x, y, z -Az)

- ‘bﬁ(x, Yy 2) +X(x, ¥y, 2) = O (44342)
Rearranging termss |

A(x, y, 2) = 1 B(x +4x, y, z) + (x -Ax, y, z) + B(x, y +4y, z)
T

D

+ #(x, y -4y, 2) + #(x, y, z +42) + #(x, y, z -Az)

+ K(x, y, z) (443.3)
In the SOR method, a new value ¢*(x, y, z) is obtained by

ot (x, y, z) = B(x, Y, z) +w * [#°(x, y, z)

- #(x, y, 2)] (44344)
where #'(x, y, z) denotes the right hand side of Eq. (4.3.3). Similar
expressions for #'(x, y, z) can be obtained for points lying on the edge

as shown in Appendix E.
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The relaxation parameter w determines, to a large extent, the
rate of convergence. If chosen too small, the solution tends to converge
slowly; if too large, the successive inerations may not converge at all,

(45)

Forsythe and Wasow recommends an optimal choice of w of 1.5,

Convergence is determined by the relative deviation R

Rp = £l 1 (x, yo 2) - B(x, ¥, 2) | (4.3.5)
over ol 0(x, vy, 2z) |
all
elements

when Rp drops below a specified value Eps, convergence is attained, and
the solution is acceptable, As before § and #* stand for the older and
newer approximations to the solution respectively. For the complete pro-

gram listing, refer to Appendix F.

4,4, The Equation is 6

The normalized equation for 6 iss

:_tq - 1 [pavee + Dave® + Davy@ -¥,8] = rF,

This is a parabolic partial differential equation in three spa-
cial dimensions. However, the equation is non-linear, the non-linearity
arising from the nature of the forcing function PAFD. From a knowledge
of the conductivity and the electric field E, the forcing function P is
first evaluated for each time interval; the differential equation is then
solved assuming the forcing function to bte invariant during the evalua-
tion process,

The boundary conditions on the six boundaries, as ennumerated
earlier, are of the von Neumann type(QS). In normalized form, these
are

o= 90 at x = 0 and at k = Lx

98 = 0 at y = 0 and at x = L
3 y

gg,n Oat z = 0 and at z = Lz
o2
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Two standard methods exist for solving this kind of equation;
i.e., explicit methods and implicit methods. In explicit methods, to
obtain a solution at time t, 4+ 1» all space derivatives are evaluated
at the instant t,+ Though this implies that the calculation procedures
are inherently simpler, it requires that very small time steps be taken
relative to the space grid size; i.e.

0< t/ x2 <%
This is undesirable particularly because thermal time constants are
usually large and hence would place severe restrictions on the size of
the sample and the space grid structure,

Implicit methods overcome this difficulty at the expense of a
somewhat more complicated algorithm, Lt consists of representing the
spatial derivatives sz, Syz, etc. by a finite difference form evaluated

at the advanced point of time t , instead of t, as in the explicit

n+1
method,

There are, however, two serious drawbacks to the standard im-
plicit method in three dimensions, For the one dimensional case, the
scheme is stable and is independent of A, where

2
A = At/Ax
(45)
But, in three space dimensions, the method is unstable for A > 3/2 .
Furthermore, it requires an inversion of a fairly complex matrix, which
takes considerable computation time,

The implicit alternating direction method, developed by Peaceman

44 44,45,49 )
and Rachford( ) and Douglas( »45049) avoids these disadvantages and
manages to use a system of equations with a tridiagonal coefficient ma-
trix which can be solved by fairly straightforward methods (sce Appendix

D). Essentially, the principle is to employ three difference equations

for each time step, the solution of the first two being intermediate
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values denoted by u* and u** as followss

(,z.xt Y(u* - u) = 1 s (u* + un) +15y2un + Yszzun + FpP (40441)

Ax(u**-u)-ls (u'-u)+TS (un+u**)+ Szzu

At 2

+ F_ P (4.4.2)
D

sz(u -u)=18§ 2(u?'f+u)-k‘tl'gz(u"‘"if‘+u)

it D + 1 n 5 X n 5y n

+¥8 2 +4u)+FP (4e443)
z n+1 n D °e

In the above difference equations, the time subscripts are n and
n + 1, The space-subscripts have been omitted for clarity. Leaving
Eq. (4.4.1) as it is, subtracting Eq. (4.4.2) from Eq. (4.4.1) and Eq.
(4.4,3) from Eq. (4.4.2) and rearranging terms, we obtain

2 2
RKu* - 1 § “ux =Au_ + x2 u +T78 “u +74 2u + F P
7 X n 5 n Yy n Z n D

xu**-tszu**.xu*-ts u
7y n

-Y ek - 2
ST 5’%& Ui = Au %: 2z U

In the above set, the right side is a known column matrix,
whereas the left side is a tridiagonal matrix., The algorithm for solving
such a system is shown in Appendix D. The actual implementation is done

in subroutines TEMPEQN and TRIDAG (see listings in Appendix F).

4,5, The Equation in ¢

The equation for § in normalized form has been written out in
Section 4,2, This also is a parabolic partial differential equation in
three space dimensions, but with birichlet boundary conditions at the
boundaries., However, this equation is considerably more non-linear than
the temperature equation, and so, though the alternating-direction
scheme developed there could be applied, considerable computational time

is involved in merely evaluating the tridiagonal coefficients,
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Instead, an iteration scheme based on the SOR method discussed
earlier is used. This method is particularly advantageous because of
the numerical values of the constants F;, FB, Fé, and Fé. Typical values
of these constants are illustrated in Table 4.1 for a V0, sample.
Table 4,1

Normalization Constants Fj, F{, Fé, Fa

F! 7.96 x 107 n’/s
Fl 1.63 x 10° m°/s
F? 6.58 x 10 2m>/s
P 1.29 x 10 °m2/s

Since F5 and Fg are so much larger than either Fé or Fg, and all
quantities 3¢ 6, #, etc, have been normalized, the terms contaiuing the
coefficients Fj and Fé can be neglected to a first approximation. Thus,

the equation in ¢ reduces to

7‘Tfm - X, - F! V. (r;!.v.ﬁ)- Fp Ve (qv(§€)) (445.1)
At

and hence

n

Xp& X, _q+ % (F! 9. (q§v8) - F§ V. (qv(§6))] (44542)

The right side of the equation is known, and so the first ap-
proximation to X, to start the iterative process is obtained from Eq.
(4.5.2)s Because of the dominance of this term, the iterative process
converges very rapidly. As in the Poisson equation, a relaxation para=-

meter w Of 1.5 is used,

4.6, Gestalt of the Logic Flow

In the preceding sections, we have developed schemes to solve
each of the three differential equation--in 6, #, and¢ --with the ap-

propriate boundary conditions. But, the three equations are mutually
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coupled to each other; therefore, solving each of the variables 8, §,
and § in turn assuming the other two known does not imply simultaneous
solution,

To correct for this error, a predictor-corrector loop is employed,
its logical flow chart being illustrated in Fige 4¢1ls The method uti-
lizes the feature that the thermal time constant is long; in other
words, of the three dependent variables 8, #, and § , the temperature
would vary least within a time step. As the flowchart indicates, an

estimate of the terminal voltage?‘: t is first made by solving the

n+1
circuit equation using the values obtained at e This is then used as
a boundary condition to solve for the matrix @ for all elements of the
space grid. Using this value @* and the temperature at tn’ the conti-
nuity equation is solved to obtain *, The electron density n is then
computed, and, applying Simpson's Rule, the new estimate of terminal
current i:(t) is obtained. The circuit equation is used again to obtain

a new estimate of the terminal voltage ﬂg*. The new estimate is tested

against the older estimates; the looping is terminated if

|¢“:;¢#l<eL
n

where € is a preset positive real number. When the above convergence

test is satisfied, the current estimates of § and § are taken to be the

true values at time t These are then used to solve the tempera=

n+1°

ture equation for time o+ The time is then stepped up and the pro-

cess is repeated for the next time interval,
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CHAPTER V

RESULTS OF THE SIMULATL[ONS

Now that the model has been translated into a computer program,
it is possible to demonstrate its utility. This is best achieved by
simulating the behavior of the ETD's under various biasing and other
external conditions to verify its "goodness® and then making some pre-
dictions regarding the device based on the outcomes of the simulations,
Of course, the 'goodness" of a model is relative, It has meaning only
in relation to the objectives of the model, In other words, while there
are various aspects and facets to an experiment, a model seeks to ex=-
plain and make understood those aspects which are of primary interest
to the investigator., Thus, the model has to fit the objectives and
goals set by the investigator, and the "goodness" criteria of the model
is determined by how well it is able to attain these objectives., There-
fore, in order to be able to judge and criticize the efficlency of the
model, it is necessary to delineate clearly the purpose of this study,

From a panoramic viewpoint, the goal of this thesis is to under-
stand the physical nature of the switching process in electrothermal
devices. Experimental evidence to date(ao'AI'az) indicates that the
electrical switching process must involve a complex combination of phys-
ical phenomena., For instance, the thermal nature of the device has been
clearly established, yet, obviously, its extremely fast switching time
cannot be accounted for by thermal processes alone. So, a primary ob-
jective is to study and develop a better understanding of the physical

processes related to the initiation of this fast switching process.
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A change in band gap and mobility gap has been presumed to be
involved in the switching process, For simplicity, in this model, both
of these were assumed to be abrupt step functions of temperature, the
step occurring at the critical temperature, Tcr' It is proposed to show
that such a change does indeed initiate a fast switching mechanism coupled
with a change of state, The *"goodness” of the model will be judged on
the basis of comparisons of the switching times from actual experimental
data.,

The terminal I-V characteristics of the device also form a focal
point of interest, since it forms the interface between the device phys-
icist and the applications engineer. A typical I-V curve for a current
negative resistance, shown in Fig. 1.4, is reproduced here in Fig. 5.1,
For convenience, this curve is split up into four regions.

The first or low current region extends from the origin to the
switching or threshold voltage Venre The associated terminal current
at this point is called the threshold current Ithr‘ As shown in Fig. 5.1,
this is a stable region with a positive resistance coefficient. When
operated here, the semiconductor will act as a non-linear resistor.

The dynamic properties of a device operating in this region are studied
in the next section. Since all points in the region are stable, all
bulk dynamic characterists should tend to approach a steady state value
with time.

The next region is termed the transition region for obvious
reasonsj it is a highly unstable switching region with a non-linear
negative resistance coefficient., Being unstable, this region cannot
be obtained as solutions to a static model, Adler and Kaplan's solu=-
tion(36) of the static equations for energy flow and continuity of charge
closely resembles Fig., 5.2a which was obtained as a solution of this

more dynamic model.
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The third important region of the curve, the post-switching
region shown in Fig. 5.1, is called the unstable high-current region.

It exhibits a slight negative slope; i.e., a negative resistance coef-
ficient implying that the region is still unstable, In fact, as other
subsequent experiments show, the device is in a *thermal runaway" con-
dition., Many of the earlier experimental failures with the ETD re-
sulted from a failure to control this post=-switching phenomenon.

Though the temperature and hence the conductivity increases very
rapidly in this region, the power dissipation, given by’tﬁﬁE, reduces,
due to the decrease in the electric field E. This reduces the rate of
temperature rise and effectively increases the terminal dynamic re-
sistance of the device, until finally the resistance coefficient becomes
positive, This fourth region is called the "high-current' region. Con-
trolling the length of the third region such that this roll-over takes
place before the temperature attained is too high and the device burns
out is a current problem in device design.

This dissertation, however, concentrates on the preswitching
region; it is of interest here to observe the onset of the switching
process rather than the postswitching stabilization process. Hence, it
is the first two regions, namely the low=-current and transition regions,
that are of interest here,

Another subject of interest are the methods of inducing switch-
ing in the ETD. Four distinct types of simulated experiments are per-
formed.s In the first class of experiments, the external battery vol-

tage V, p is small; so that in the final steady-state condition, the

p
ETD remains in the low-current zone, Therefore, in this class, no
switching is expected to occur., This type of simulation is useful both

in the construction of the low-current zone of the I-V characteristics
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as well as in the study of the development of steady=-state conditions
within the sample,

. The other three methods are attempts to induce switching by vari-
ous mechanisms. The first obvious method is to apply a "large” applied
voltage such that at least some points within the sample reach or exceed
the critical temperature, In the other two methods, switching is attempted
by locally applying a power pulse and an optical ionization pulse, The
switching characteristics observed, if any, sometimes provide a basis for
correlating with existing experimental data, providing further vindica-
tions for the goodness of the model,

Other characteristics provide a basis for making useful pre-
dictions regarding the behavior of the ETD as a switching device. After
all, the model's validity and usefulness is dictated not only by its
ability to explain observed phenomena, but also in its ability to pre-
dict and foresee phenomena not yet observed. It then becomes a useful
tool with which to guide future experimental research,

In this set of simulations, the experiments are performed using
the data of VO2 as a prototype material. The selection is so partly
because, in the past decade, VO2 has been widely experimented with by
various investigators. Thus, the documentation on them is fairly good.
Correlative work is also much easier, since the switching characteristics
of V02 have already been observed., Predictions regarding this material
is also likely to be more than merely academically useful, since opti=-
cal effects in vo, is a matter of current research, In this chapter,
the first few sections concentrate on establishing the goodness of the
model, while the later sections deal with the predictive aspects of the

model,
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Seloe Terminal I-V Curves

The I-V curve obtained by this simulation (Fig. 5.2a) is in
agreement with published experimental results in the following sense,
Although the magnitudes of currents obtained by the simulation is very
much higher than experimental data would indicate, the current density
normalized to a unit volume sample is of the same order of magnitude,

An experimental curve obtained by Duchene et, al.(ao) is reproduced in
Fige 5.2b for comparison. The discrepancy is therefore due to the large
sample size chosen, Recall that the choice of a large sample size was
dictated by the Debye length for the material; in order to neglect the
surface effects at the metal-semiconductor interface, the grid size, and
hence the sample size must be chosen much larger than the Debye length,

The current densities at the threshold voltage Vt and sustaining vol=-

hr

tage V are compared with experimentally-obtained figures in Table 5.1,

sus
The sustaining voltage obtained from the simulation is 0,85V
which is in excellent agreement with the experimental data; the break-
down or threshold voltage Vthr is, however, about an order of magnitude
smaller, This is attributed to the oversimplification involved in com-
puting the volume charge densities at the boundaries., In actuality,
the diffusion current component due to thermal and concentration dif-
fusions result in much larger charge densities near the ends. One would
therefore expect large electric fields to be set up near the electrodes,
and, therefore, considerable voltage drops would occur near the ends,
Recall, however, that the sustaining voltage obtained compares very well
with the experimental data (see Table S5.1)s ASs borne out by the other
cxperiments discussed later, the switching observed is indeed with fila-

ment formation. Once the filament extends from one end of the material

to the other, the large electric fields at the ends can no longer exist;
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thus, the error involved in the boundary conditions of the volume charge
density does not have a significant contribution.
Table 5,1

Constants of the I-V Curve Depicted in Figs. 5.2a and 5.2b

Experimental Simulated
4,, 2 4, , 2
Isus/cross-sectional area 3.1 x 10 A/m 3,20 x 10 °A/m
VSus 0.8V 0,85V
I 3.1 x 10%A/m2 1.27A/m?
thr/cross-sectional area ol x m . m
Vehr 13 v 1,39V

5.2, Steady-State Conditions in the Preswitching Region

In this simulation, the voltage of the battery shown in the cir-
cuit diagram of Figs 3.5 is small., The power dissipation at any point
as described by the temperature is given by #E . E; hence, the larger
the battery voltage applied, the larger is the expected power dissipated
at any point, so the final temperature attained would be expected to be
larger., By a small battery voltage it is meant that the voltage is suf-
ficiently small so that no point within the material attains, in the
steady=-state, the critical temperature Tcr beyond which switching is
expected to occur,

As evidenced by the I-V characteristics discussed in the pre-
ceding section, the preswitching region of the ETD is stable, So, for
small voltages, the ETD should reach a steady state in a time t large
compared to the thermal time constant of the systemj all variables of
the system--V, ¢, n, T, etc.~-should tend to a final steady state value,
That this is indeed the case is evidenced by the curves (Fige 5.3) ob-

tained from a simulation of the model.
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In Fig. 5.3, the potential V, dissipated power density P, temper-
ature T, and free election density n are plotted with respect to time for
a representative point in the sample., As expected, all of the above vari-
ables tend to approach their respective steady-state values, The temper-
ature T starts from the initial ambient value Tamb to the final value
T3 the rise can be approximated by an exponeutial laws

T =T, + (T - Tamb)(e't/tl)

The time constant can be computed from the plot., The value of this time
constant’bi is compared in Table 5.2 with the thermal time constant Th.

It is also interesting to note that the other variables V, n,
etc. exhibit the same exponential nature. Whereas the potential V re-
duces with time, decaying to the final steady-state voltage Ve¢s the power
density P and electron concentration n for representative points in-
crease with time, But, in each case, the approximate law is exponential;
typically, for voltage V and the electron density n for a representa-

tive point, respectively, the relations ares

V=ayV +(Va

- -t/T
£ Vf)e 2

e—t/t3

pp
n=n; + (nf - no)

Note that the time constants ti, Té, and ?5 are approximately the same
and close to the thermal time constant ?k.
Table 5,2

Time Constants Computed from Fig., 5,3

T, 7208

Ta 550 s



67

Therefore, in the preswitching region I, the thermal properties
are primarily responsible for the transport phenomena in the ETD. This

is why the sample Berglund mode1(36)

» which utilizes only the equation
of energy balance as discussed in the introductory chapter, works so
well in the preswitching region.

Consider also the temperature-current curve shown in Fig. S5.4b.
This curve is obtained by varying the input current in the simulation
runs., More precisely, referring to Fig. 3.5, this is the curve obtained
by keeping the battery voltage constant and varying the external resis-
tance R to alter the current through the device. The curve (Fig. S5.4a)
shows that the time required to reach the switching temperature Tcr de-
pends on the input current, This is reasonable since the power dissi-
pated in a volume element of the sample depends on the square of the
current density, It was also observed that the time required t. to
attain 952 of the final steady state value depended on the input current;
the larger the input current, the larger the final temperature and also
the shorter it took to reach the final steady state value, the latter
relationship being approximately linears

i = Ci1tr *+ €

The values of t. for various input terminal currents are tabu-
lated in Table 5.3, A simplistic consideration of the energy balance
equation lends substance to this observation. Neglecting the diffusion
term, the energy balance equation can be written ass

cd =¢E . E (5.2.1)

ot

Since the electrical conductivity @ can be written as

T-neﬂ

and n, the free electron density can be approximated by the ionized

charge density, it can be written as an explicit function of temperatures
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~ Nde/&exp(-ESIZkT)
The above relation uses the donor ionization equation developed earlier,
Table 5.3

Data Plotted in Figs, S5.4a and 5.4b

\' t
i Final app o
Terminal Current Temperature Battery Voltage Rise Time
(mA) (x) 4] (mS)
1000 328.3 1,875 1.80
1100 333,7 1.875 1,70
1150 338,1 1,875 1,64
1300% 35645 1,875 1,50

#No band gap switching was simulated in this case,

The approximation n*~'n; is particularly good in the preswitching region
because of the absence of temperature and free electron concentration
gradients in the y and z directions (see Fig: 5.6). Returning to Eq.
(5.2.1), and substituting for the electrical conductivity

T = Ya®P exp(-E_/2kT)E . E
& 8

Since both Es and p are step functions of temperature (refer Figs. 2.1lb
and 2.3), and assuming the electric field E to be a constant also in
this preswitching region, the Eqs (5.2.3) can be integrated. Note that,
although no physical justification is given, the assumption that the
electric field E is constant in the preswitching region has been used

extensively by many experimenters(10’31)

with considerable success.
To simplify the integration involved, consider conductivity to be a
linear function of temperature given by

g™ Toll +4T) = Agep(1l +4T)
Extensive examples of this kind of linear approximation to o can be

found in the literature(31’3a)o
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Rearranging termss

T
I aT = fot“oe/‘ g2t

amb 1 + dT c
Integratings
2
11n(_1 +XT -5 ¢
oL 1 + «T 3 r
amb

Hence for constant V

im= cltr +c

Since the voltage applied is kept constant, the time t. is pro-
portional to the terminal current i, Thus, by adjusting the external
circuit parameters, it is possible to exceed any known switching tem-
perature Tcr for a specified material. Thus, by using high enough applied
voltages, switching to the high-conducting state can be induced, Ex-
perimental data on this kind of simulation is discussed in a later sec-

tion.

5.3, Spatial Distribution of Temperatures in the Preswitching Region

For a small applied battery voltage, the ETD reaches a final
stable steady state in the preswitching region T, The temperature dis-
tribution along the axial line joining the midpoint of the two elec-
trodes is plotted in Fige 5.5 for various instants in time, Starting
from an initially flat distribution (when the sample is uniformly at
the ambient temperature Tamb)’ the temperature profile becomes parabolic
in shape with the peak occurring at the geometrical center of the device,
The plots along the y and z axes remain flat throughout, This is con=
sistent with the thermal boundary conditions for the ETD, At the elec-
trode semiconductor interfaces, the metal electrodes act as heat sinks
and so the temperature at these ends remain at the ambient temperature.
Since power is being dissipated due to the external circuit, the tem=-

perature is bound to increase,
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Thus, because it is constrained at the ambient temperature at the two
ends, a parabolic profile is only to be expected. Furthermore, the
thermally insulating boundaries on the other sides of the semiconductor
prevent any thermal currents in the lateral directions, which is borne
out by experimental data.

The Spétial distribution of the power density is of interest.
(See Fige 5:12a.,) As discussed in a later section, the power density
curve is also approximately parabolic with a minima at the center,
This contributes to the stabilizing process in the semiconductorj while
the boundary conditions tend to force the temperatures to be higher at
the middle than at the ends, the power density curve séeks to balance
this by dissipating more power at the ends than near the moddle. In
the y and z directions, the temperature distribution is flat and, con-
sistently, so is the power distribution. The steady state profile in
the x-direction is readily understandable from the following simplified
analysis. The energy balance equation of the system (also referred to
in preceeding chapters as the temperature equation) can be written as

3T - “th T = P
ot Cc C

where P is the power dissipation in a unit volume element of the sample,
Considering only a one-dimensional variation in the x-direction,

w-Sn¥rap
qn c ‘xz c

In the steady state, the partial derivative with respect to time
vanishes, and so,
-kt]dzT = P
2
dx
For simplicity consider the power dissipation in the steady state

to be uniforms i.e.,, independent of X, Hence,
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23% 2 = _r;_ (5.301)
dx Ken

The boundary conditions for the above equation are
TwT, ,at x=0and (5¢3.2)
T = Tomp 8t x = L (5.3.3)
Solving the above,

21 = - P x+c

dx kth 1
and so,
Tw- P x2 +c1x + c, (5.3.4)
Zkeh

Here, the constants c, and c, represent the temperature at the origin
and the temperature gradient at the origin respectively. Applying the
boundary condition (5.3.2),

02 = Tamb (5.3.5)

Applying the remaining boundary condition (5.3.3) to evaluate c;

- 2
T = P Lx + cle + Tam

amb b
2kth

and consequently,

CI- X

2kth
The temperature profile T(x) at the final steady state is there=-

fore,

T(x) =T, - PX(:k- Ly)
th

which is parabolic in form. The maxima for the above occurs at the mid-
point x = f!_which agrees with the curves drawn in Fige 5.5. Further-
2

more, the final steady-state temperature at the midpoint x -'fg can be
2
estimated from the Eq. (5¢3.7) as
2
PL
Tnax ® Tamp ¥ X
Bkth
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Using the data from the simulation run,
P = 1.7345 w/n°
-4
L =1,0x10 m
X
kth = 6,0 J/(n - K)
T = 300 K
amb

the computed value of the maximum temperature is

Tmax = 336,14 K
This is in good agreement with the value of 337.2 K obtained from the
curve of Fige 5.5,

A noteworthy feature of this analysis is that the maximum steady
state temperature attained at any point is independent of the specific
heat c3 this is rcasonable since the specific heat merely determines
the rate at which the temperature rises and not the final steady state
condition,

The experimentally obtained steady state temperature distribu-
tion was fitted to a parabolic curve, the results obtained being shown
below in Table 5.4,

Table 5.4

Comparison of Simulated Experimental Data with Analytic Data

A 2 B C D
Coeff of x Coeff of x Const Term T
max
2
Math formula Pkth PLx T T + PLx
- 7" amb amb K
1 th th
Best fit parameters 1445 x 10 1445 x 107 300 K 336.1 K
Experimental values ,146 x 1011 o145 x 107 300 K 337.2 K

As can be seen from the above data, the curve fit is excellent, The
constant term Tamb is determined by the electrode temperature. Here the
correlation is exact. The coeff of x and x% are related to the slope

at the ends}
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dT = Ax + B (5.3.8)
dx

At x = 0dT = B
dx

Here the correlation, though good, is not exact. Thus, we can conclude
that the final shape of the temperature profile is parabolic with the

end points exactly as constrained; both the maxima and the slopes at the
ends are, however, slightly lower than that predicted from the one dimen-
sional analysis., This is due in large part in assuming the power den-

sity to be a constant instead of the concave shape observed.

Se4s Switching Times

In these simulations, two distinct methods are utilized to in-
itiate switching in the ETD. In the first method, a large battery vol=-
tage is applied such that the temperature at a point within the material
exceeds the critical temperature Tcr’ whereas in the second method, a
small battery voltage is applied such that the temperature reaches a
steady state value just below the critical temperature. A "power pulse"
is then applied to switch the device to the "on" state, Here, a "“power
pulse” means that excessive power is being dissipated at some randomly
chosen local point in the ETD, In physical reality, local power dissipa-
tion may be caused by the presence of local inhomogeneities in the ETD,
e.ge, dislocations, crystal disorder, etc, because of its added resis-
tance to the current, In effect, this simulates the effect of a random
defect in the material., The results are in agreement with observed fact}
a local defect can induce switching in these devices. In each case,
there are two distinct switching times associated with the ETD. The
first time is a storage time and is related to the heat capacity of the

semiconductor and the external circuit parameters. It is the time taken
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for any one point in the sample to reach the critical temperature, Ob-
viously, from Table 5.3, this time is much smaller in the first method
since a larger current is being applied. In either case, the time is
of A~100ps. Though this time is large, it can be controlled and em-
pirically determined. The storage time can be considerably reduced by
operating at ambient temperatures closer to the critical temperature
Tcr' For example, in the power-pulse switching method, a storage time
of the order of only 506 is required if the pulse is applied after
steady-state conditions have been reached at a temperature of 33,9 K,
After at least one point in the sample has crossed the critical
temperature, the switching occurs with great speed in both cases; this
actual switching time is only 2ns as shown in Fig. 5.6« This is slightly
faster than the switching times reported in such devices, This small
discrepancy is easily explained. First, the experimental devices are
not honiogeneous and, as such, are liable to contain a number of defects
and inhomogeneities in the material. This could cause the band gap re-
duction at slightly different temperatures creating an overall effect
of a smoother transition than the step function variation for E8 assumed
in the model, Second, the model neglects inductive effects, which may
exist due to two reasons. In the first place, the model neglects mag-
netic field effects which could be large during switching when the cur-
rent is varying so rapidly. Also, the effect of stray capacitances and
lead inductances due to the external circuit configuration have not been
considered, Last, but not least, there is a distinct possibility of

experimental error; at such fast switching times, the response time of

the measuring circuit may well effect the measurement.,
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5¢5. Filament Formation in the Switching Process

Figures 5.7, 5.8, and 5.9 are sets of plots showing the tempera-
ture variation along the various directions x, y, and z at different
times. The filament formation is very easily observed in the lateral
plots; i.e., the plots along the y and z directions. In the preswitching
region, these curves are absolutely flat; no gradients exist in the y
and z directions, and there are no diffusion currents due to either ther-
mal or concentration gradients in these directions. Observe that this
is true even 2ns before the switching actually occurs, However, once
the temperature crosses the critical temperature threshold, the tempera-
ture at that point rises very fast to produce a localized hot region--
the filament. The phenomenon can best be observed in Fig. 5.8b, which
is the plot of T(28x, y, 40%) at various times. Once the filament for=-
mation has started, the temperature in the region seems to rise without
limit, Though this post-switching instability due to thermal runaway
lies outside the scope of this present dissertation, it is interesting
to recall Ridley's(30) discussion in this context. He pointed out that
this can be controlled by limiting the power dissipation through the
device. In the circuit configuration used, this can best be done by
increasing the external circuit resistance Rge When switching occurred,
the current through the device would be limited by this resistance; the
power dissipation in the device would reduce, thereby reducing the rate
of temperature until a final steady state is reached. The axial tem~-
perature profiles (Figs. 5.7a, b, and ¢) demonstrate the propagation of
the switching phenomenon. Once the first point has switched, the neigh-
bor points in the axial direction also switch; within two nanoseconds,
this phenomenon propagates, and the entire axial line reaches a temper-

ature above the critical value. (See Fig. 5.7b.) Points not lying in
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this axial 1line (e.g. Fig. 5.7a) are not affected, and the temperature
profile remains as if no filament existed within the sample,

An interesting feature is the point of initiation of the switch-
ing process, When the switching is induced by the power dissipated due
to the electrical current through the device, the switching occurs, as
may be expected, in the geometrical center of the device. If, however,
a power-pulse is applied to an eccentric point, e.g., (2Ax, 34y, 4az),
the switching does not originate either at the "power point” which simu-
lates a local defect or at the geometrical center; in fact, it occurs
at (48x, 3Ay, 4Az) (see Figs 5.9b), a point located between these two
points. A moment's consideration will, however, show that this is en-
tirely reasonable and logical,

At first glance, it might seem that the temperature distribu-
tion should have a double-humped characteristic with peaks at (5Ax, 5Ay,
SAz), the geometrical midpoint and at (2Ax, 3Ay, 44z), the latter peak
possibly being larger depending on the power input there., However, such
a situation is physically impossible unless there are two heat sources
within the device. For, if such was the characteristic, it would imply
the existence of a valley between the peaks with a minima somewhere in
between the two. The temperature gradients are now such that heat should
flow from the peaks into the valley, causing the temperature to rise,
For every other point outside this region, there are two thermal forces
balancing each other. There is heat imput to each point due to the elec-
trical power dissipation, and there is an established temperature gra-
&ient tending to conduct heat away to the nearest electrode, But, for
points in the hypothetical valley, both forces tend to add to the heat
content, and there are no forces tending to conduct heat away from this

region. Consequently, the temperature in this region may be expected
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to rise more rapidly until the direction of the temperature gradients

is reversed. Thus, it is logical to expect that the hottest point would
lie here, between the supposed peaks at the midpoint and the dafect
point and so will be the first to reach the critical switching temper-
ature Tcr and initiate switching.

Consider a simple steady-state one-dimensional analysis similar
to the preceeding ones, Let Xq be a point lying between 0 and Lx/2 where
such a defect is localized, Representing the power pulse by a Dirac
delta function, the relevant heat equation becomes

2
k., 4T = -(p + P 4(x = %)) (5.5.1)

dx2

where Pl is, as before, a constant power dissipated in the material and B

is the *"power pulse’”. Solving this ylelds

2 - -
T = =(F1X 4 Bp(Xx = xJulx = x0)) | e x + ¢ (5.5.2)
2,y K

th

Using the boundary conditions that T = Tam at x = 0 and at x = Lx’ the

b

constants ¢,y and c, can be evaluated

CZ = Tamb and (505.3)
c, = Ple + PZ(Lx - xO) (5.5.4)
Zkep Kenlx

Notice that Cy» which represents the slope of the temperature
distribution at the origin, has increased.s And so the temperature pro-

file is given by

2 _ 2
r o LXB _ (x = xulx = xR, _PL
Zkep Keh Zkep
- B, - X )] + T (5.5.5)
——~—§E———— amb
Ly2kep

-

The maxima can be localized by differentiating the above and is given

by the simple expression

max = ._2)_(. - 270 (50506)
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. L
As discussed earlier, Xpax OCCurs neither at Xonor _X, but dis-

L
placedfrom the center x towards Xq®
2

is preceeded by switching, no numerical correlation is possible,

However, since the steady state

Once switching has taken place, thermal runaway occurs, As seen
from Fige 5.8b, the temperature rise is now much greater near each end
than at the middle., This is due to the speed of switching. The temper-
ature rise is now so rapid that the thermal diffusion forces that tended
to inhibit valley formation in the interior of the device can no longer
keep pace, Since the spatial distribution of the power dissipation
(Figs. 5.,12 and 5.13) tends to be higher at the ends than at the center,
the temperature rise will now be much faster at the ends and cause hot
spots to be visible near each electrode, This situation is, however,
unstable; a post-switching mechanism should re-establish the thermal
diffusion effect, and the temperature of the valley in between the hot
spots should rise. This is consistent with visual observations wherein
during filament formation, hot spots have been observed near each end
before forming the hot line or filament extending along the length of
the sample, which is the final stable state,

In Fige 5.10, the carrier current densities are plotted versus
x and y at various instants of time in similar fashion to the temperature
profiles plotted earlier, The filament formation is best observed in
the lateral plot of_Jx(ZAx, Yy, 44z) vs y; note the peak occurring at
(24x, 38y, 4Az), In the axial plots, combinations of diffusion effects
blur the picture. However, the phenomena of thermal runaway near the
two electrodes can easily be seen,

Another method of observing the mechanism of the switching pro-
cess 1s by observations on the local electric field and the carrier cur-

rent densities along the axaes at various times,
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Figure 5.11 depicts the variation of the magnitude of the elec-

tric field |f|, where

IEl- Ex® + Ey> + Ez°
along the x-direction in the z = 5Az plane.

This coded representation consists of two codes; E, represents
a relatively low field which exists almost uniformly in the preswitching
region, E, represents a field an order of magnitude lower; this is the
field once the switching process has commenced. Note how in the first
of the three time intervals, it is Ea everywhere except at one point,
where switching is originating. In the second, Ej has spread axially
to its neighbor points but not laterally. In the third, it has spread

axially through the length of the sample,

5¢6. Power Dissipation and Energy Flux Density

It has already been established that the switching phenomenon
in the ETD has a pronounced thermal character, and the nature of energy
balance (as embodied in the temperature equation) plays an important
role, But important energy variables, like power dissipztion density
and the energy flux density in the interior of the sample, are diffi-
cult to observe experimentally, On a computer model, however, such ob=-
servations are relatively simple and of tremendous value to the device
and applications engineer,

Figure 5.,12b is a set of plots showing the variation of dissi-
pated power density with time. In the preswitching region, for any
point within the sample, the dissipated power density increases until
a steady state is reached. The plot is similiar to the temperature
plots discussed in Sec. 5.2. The rise is exponential, and the rise time

is the same as the corresponding temperature profile, However, if
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switching occurs, the power dissipation increases tremendously; this
follows logically, too, since the dissipated power is proportional to
the square of the electric field which is also increasing rapidly as
noted earlier. This, in fact, is the cause of the thermal runaway
phenomenon; the rate of power dissipation increases so rapidly that it
more than offsets any reduction in the rate of increase of the electric
fields Outside the filament region, the power dissipation reduces slightly
during this time, Along the x-direction, the profile is roughly the
opposite of the temperature profile. Starting from an initially flat
profile, the power density tends to show a minima at the center and the
highest power dissipations at the two ends. When a power pulse is super-
posed, the power density profile tends to shift showing a maxima at both
the point of impressed power (2Ax, 34y, 4Az) and the displaced "hot"
point (4Ax, 34y, 4Az), which is consistent with the observations made
in Sec, 5.5.

The heat flux resembles the power dissipation profile., (See
Fige 5413,) The maximum heat energy flows out at either end via the
conducting electrodes; the minimum occurs at the center. Once switch-
ing occurs due to the occurrence of a "power pulse®, the heat flux den-
sity is low both at the defect point (24x, 3Ay, 44z) and the displaced

hot point (44x, 3Ay, 4Az).

5.7, Optical Switching of the ETD

In this experiment, a random interior point--chosen again to
be the point (24x, 38y, 48z)--is locally excited by a continuous exter-
nal light source such that the point is totally ionized. In the com=-
puter model, this is simulated by setting the ionized donor density n+

d
at the point equal to the total donor density Nd' The effect is almost
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immediate; the device switches to the unstable high-current region and
proceeds, as in the previous switching methods, to experience thermal
runaway.

Some interesting observations can be made with regard to this
experiment., In this experiment, the external bias voltage Vapp is 1low
such that the ETD reaches a steady state just below the critical tem-
perature, The light pulse is now applied, and switching is almost im=-
mediately observed. Note that in the case of a defect forming in the
device, there is still a fairly large ( 50ms) storage time assoclated,

In this case, however, it is much, much less than 10ps, and hence opens

up very interesting lines of application for the device. For one, since

the thermal runaway is controlled by device design and external circuitry,

there is a very fast photosw#tching device available., Furthermore, the
switching can be originated at will anywhere within the sample; this

can be developed into a fast read/write unit which would have increasing
applications in interfacing with computers and other high-speed equip-

ment.



CHAPTER VI

CONCLUSION

The objective of this research effort was primarily to gain an
understanding of the physical principles underlying the initiation of
the switching phenomenon in the ETD. Experimental evidence(G’B) and
literature surveys(s) indicate that this is a complex phenomenon, and a
number of interdependent variables--like V, Pr Ny T--play important
roles in determining the switching characteristics of this device. To
understand the mechanisms involved in its switching behavior, it is
necessary to understand the interrelationships between these variables
and be able to analyze the significance of the contribution of each.

The means chosen to assist in achieving this objective was to
construct a computer-based model of the ETD., The model embodies all
the available physical information known or held to be true regarding
the ETD, and is based on well-known physical laws, It is used to simu-
late the behavior of the ETD in order to study the mechanisms involved
in the switching process within the bounds of the model; in other words,
the scope of the model is limited to the study of the initiation of the
switching process so as to be able to develop a more comprehensive under-
standing of the physical principles associated with it,

Some of the results obtained from those simulations were compared
with available experimental data in order to verify the goodness of the
model, The model is useful in understanding the distributed bulk pro-

perties of the ETD. This information is not available experimentally,

R?
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but is important in understanding the overall behavior of a given device
under various electrical and thermal boundary conditions. In addition,
the model possesses the capacity to simulate conditions which have not,
as yet, been experimentally investigated, thus giving it a predictive
aspect, This feature enables the model to be used to design optimal

devices and understand the practical limitations of existing ETD's,

6.1, Accomplishments of this Research

The major accomplishment of this research project lay in the
physical principles that were uncovered and the generalizations that were
made regarding the behavior of the ETD. This project has focused on the
preswitching region and the processes involved in the initiation of
switchings In relation to the I-V characteristics of the device, the
stable low-current region and the unstable transition region described
in Fige 5.1 form the primary areas of interest.

The thermal character of the preswitching region was firmly es=-
tablished by the model, In the stable low=-current region, the thermal

parameters like the thermal conductivity k_. and the specific heat c,

th
and the thermal boundary conditions alicost completely determine the tem-~
perature profile as was shown by the excellent co-relation with the

solution of the one-dimensional steady state equations

dZT a -P
dxz c

where P, the dissipated power density of the sample is assumed constant,
Also, the time constant associated with reaching a steady state was in
close accord with the theoretical thermal time constant th as compared
in Table 5.2. Therefore, both the final steady-state temperature pro-
file and the time constant involved in reaching this steady state were

associated with thermal parameters. Also, the other dependent variables
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of the device show an exponential time dependence, the time constant
1nv01ved.being again close to the same theoretical time constant T;.
This agrees with the expectations of numerous theoretical workers in the
area like Boer(lo), Dohler(31), Ovshinsky(lz), and others,

The thermal time constant is also associated with the large
storage time observed in the device. However, the switching time in
the device is very fast--of the order of nanoseconds--and cannot be
attributed to thermal diffusion effects. In this transition region,
the model succeeds in describing the simulated behavior of the ETD in
close parallelism to actual experimental observations made on these
devices, The model describes the switching mechanism as the propagation
of a band gap reduction through the length of the material, Such a re-
duction caused a change in the local electric field which propagated
along the length as the switching progressed, as illustrated in the
electric field snapshots at succeeding time steps depicted in Fig. 5.1l1.

The model is also able to simulate the switching behavior of the
ETD induced by different methods. Consider, for example, the phenom=-
enon of switching induced by the introduction of a defect in the mate-
rial., In the first place, the results agreed with the experimentally
observed fact that the switching first occurred along an axial line
containing the defect, But, that is not all, It also localizes the
point of origin of the switching process at a point away from the de=
fect, From hindsight, this is readily understandable and reasonable
since thermal diffusion prevents the formation of a double-~humped char=
acteristic with humps at the defect point and at the midpoint. Hence,
the competing forces result in a maximum forming in between the two

points,
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The combination of these two regions, the low-current and the
transition region form part of the static and dynamic I-V curves to-
gether with the unstable and stable high current regions which lie out-
side the scope of this present model. The overall agreement of this
curve to the experimentally observed I-V characteristics of the ETD is
further testimony to the validity of the model. Thus, the model is not
only capable of providing an understanding of the interactions in the
interior of the device; it is also able to relate to the easily observ-
able static and dynamic terminal I-V characteristics. Since the I-V
characteristics form a crucial interface between the device engineer
and the circuit designer, the ability of the model to depict these charac-

teristics give it considerable value,

6.2, Predictive Aspects of the Model

The predictive aspects of the model are useful guides to further
material and device development, This is largely due to the capability
of the model to present experimentally inaccessible data regarding the
nature of the variables in the interior of the semiconductor material,
and so contribute significantly to understanding the physical processes
in the ETD, Thus, using the model, one can predict the nature of the
electrical potential and charge distribution in the interior of the
material; one can also predict the temperature profile, the power dis-
sipation density and the magnitude of heat flux density at various points
in the interior in both the low-current and transition regions. It is
thus possible to study the interrelationships that exist between the
various electrical and thermal variables,

For instance, the power dissipation curve predicted Ly the model
provides a vital link between apparently unrelated experimental observa=-

tions. The switching times observed in the ETD's are of the order of
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nanoseconds(Sa). This is in agreement with the simulated results of

the models in fact, the switching mechanism can actually be observed
progressing through the device by studying the electric field and tem-
perature profile snapshots of the interior. Also, it has been experi-
mentally observed that, prior to filament formation, thermal hot spots
appear near each electrode. The ETD simulation also projects similar
results as shown by the temperature profile of Fig. 5.8b, The simula-
tion predicts that the power dissipation curve (see Fige. 5.12) is approxi-
mately an inverted parabola., Since the thermal time constant is so much
larger than the switching time, thermal diffusion is practically non-
existent once the switching process has been initliated. Hence, the
power dissipation accounts for the excessive temperature rise near the
electrodes resulting in the experimentally observed hot spots.

Simulations were also made to study various methods of initiat-

ing switching within the device. Switching was initiated

a) 1if the external circuit parameters were such that the tem-
perature at a point within the sample exceeded the critical
temperature,

b) by simulating a defect wherein excessive power was dissipated
resulting in local temperatures greater than the critical
temperature, and

c) by simulating a light pulse focused at a point on the ETD
operating under suitable bias conditions,

These first two methods agree with experimental observations;

the third method has considerable predictive value. In this case, the
temperatures at all points within the device were below the critical
temperature Tcr' The incidence of the simulated light beam creates local

donor ionization, and this is sufficient to initiate switching in the
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device, The simulation results therefore predict that under suitable
bias conditions, any energy source capable of causing local ionization
is suitable to switch the ETD., Thus, radiant energy of various fre-
quencies and even acoustical waves may be used to initiate switching

in ETD's under suitable bias conditions,

6,3. Limitations and Deficiencies of the Model

By virtue of the stated objectives of the model, its scope is
limited to simulating the ETD behavior in only the low-current and tran-
sition regions of the terminal I-V curves, The third region, namely
the unstable high-current region is portrayed to some extent., Thereafter,
thermal runaway occurs, and excessive temperatures are generated in the
device., The fourth reglion, the stable high-current region, is thus never
reached,

Ridleycao) has pointed out that the stability of the ETD depended
heavily on the external resistance Rge This would limit the current
through the device and hence the power dissipation. In the model, the
iteration scheme* is such that, for large Rs’ the scheme is divergent,
The iteration scheme referred to is the Inner Loop* elucidated in Chapter
4, Here, the terminal current i8 computed by integration near the edge
of the device, and the terminal voltage is computed therefrom by apply=-
ing Kirchhoff's voltage law, In such a scheme, the limiting effect is
not obtained since a negative voltage would still satisfy the voltage
law, and the current continues to increase, Obviously, for simulation
of this region, a revision in the iteration scheme is required.

Although such a revision would limit the power dissipation, it

still may not limit the temperature to realistic values. The crux lies

*See Fiso 4,1,
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in the assumptions that the thermal variables kth' the thermal conduc-
tivity, and ¢, the specific heat, remain constant beyond Tcr' For sta-
bility to be achieved within a reasonable temperature, both ¢ and kth
should increase; i.e., the material should require more heat input to
raise its temperature and should also conduct heat away faster,

In addition to this, there are other deficiencies in the model,
For one, there is a discrepancy between the experimentally observed thres-
hold voltage and the vthr observed in the simulation runs. As pointed
out earlier, this is because the assumption that the net charge density
remains constant is not strictly valid due to the external circuit con-
figuration., One way of correcting for this would be to reconstruct the
circuit so that a charge source instead of a voltage source supplies
energy to the semiconductor, An alternative method would be to re-
evaluate the charge density at the ends at each time step and use this
variable charge density as a boundary condition., Another sdurce of
numerical disagreement is in the magnitudes of currents; however, this
can be adjusted by using sample dimensions closer to the sample sizes
used in experiments. There is also a quantitative error between the
switching times observed in the simulations and experimental data,.
Though several reasons for this have been discussed earlier, one pos-
sible explanation is that it is due to a breakdown in an assumption of
the model. In the model, all magnetic field effects were neglected,
However, in the transition region of the I-V curve, the current in the
filament region changes very rapidly. By neglecting the magnetic field,
the induotive effects of this change i8 neglected, too, which may affect
the switching time, though the extent is difficult to determine, Incor-

porating the magnetic field in the equations is difficult, as a wave

equation 1s to be solved instead of the Poisson's equation. The wave
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equation is a vector equation and thus is comprised of three scalar equa-
tions, and both computer time and memory requirements is increased tre-
mendously. Obviously, when modifying this model, a balance or compro-
mise has to be readhed; there is a definite tradeoff here between the
accuracy and numerical predictability on the one hand and simplicity,
ease of interpretation, computer memory requirements, and costs on the

other,

6.4, A Possible Simplification of the Model

Because of the existence of this tradeoff, it is worthwhile to
consider schemes to simplify the model and reduce the computer costs
of simulation. One such example is outlined here,

In the preceding chapter, the temperature equation,

c 3T -U2T=pP

Hpd t
was reduced to a simple one-dimensional steady state equation
dzT = ‘_E_o
dx2 N

The analytic solution of the above indicated that the tempera-
ture distribution should be parabolic in shape. Then the axial tem-
perature distribution obtained by simulating the low-current steady state
condition was fitted to a parabolic curve, and the best~-fit parameters
obtained were very close to the analytic solution., This indicates that
reasonable accuracy of simulated results (say within 5Z) can be obtained
by considering only the temperature equation in this region of operation
where the temperatures lie well below the critical temperature,

Let the starting ambient temperature be Tamb’ Tcr the critical
temperature, and TD the temperature difference defined by

Tp = Tor = Tamb



¢
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If T is the highest temperature tested at any time, then as long as

)

where f is a preset positive real number less than unity, only this sim-

T<T, +£(T =T

amb amb

plified model needs to be solved., At higher temperatures, however, the
other parameters will begin to play a more significant role, and the
more complete set of equations will have to be solved.

The preset factor f is a function of the material parameters of
the ETD, and a good estimate can be obtained by preliminary runs with
the present model. For example, for VO,, a good value for f is 0.9,
Using the simplified model, the temperature at the maximum is identical
to that obtained from the one-dimensional analysis, as P would be assumed
constant, Thus, for f = 0,9, the expected error in the maxima estimated

from Table 5.5 is less than 5%,

6.5, Suggestions for Future Research

From the results obtained in the simulation runs thus far, some
suggestions for future areas of research can be seen and are presented
belows
1) An extensioa and broadening of the objectives of the model
to include the final stable steady state of operation is a
prime area for research. This would probably necessitate
a revision of the computing scheme as discussed., Such a
revised model would be able to simulate the behavior of an
ETD in all four regions of the I-V curve,

2) Some of the assumptions of the model need to be relaxed to
incorporate more of the characteristics of the real device
and thus obtain closer numerical agreement, In this regard,

the two suggested targets are the assumption of constant
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4)

5)

6)
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charge density at the electrode interfaces and of neglect-
ing the effects of magnetic field., For the former, an
iterative scheme to compute the charge density at the inter-
face at each time step is suggested., For the latter, the
Poisson equation VZV = -%/c which uses the relation E = - VV
should be replaced by an appropriate wave equation., Since
such modifications would represent a substantial increase

in computer time and memory requirements, simplifying modi-
fications of the type outlines in Sec. 6.4 could also be
simultaneously made,

A single defect in an otherwise homogeneous material has
been simulated on this model, A possible extension would

be to observe the switching phenomena when a statistical
distribution of defects exist in the material,
Individual material parameters of the device, like Keps ©
Ny» etce, could be varied in the existing model with a view
to isolating and analyzing the effect of each parameter on
the device switching characteristics. This could provide
considerable impetus to material development and guide ex-
perimentation in that area,

Environmental parameters like the ambient temperature and
boundary conditions could be varied. Such studies would

be of importance to both the circuit designer and the device
engineer. To the circuit designer, a study of the device
characteristics under various electrical circuit bias con-
ditions would also be of interest,

The model predicts that local ionization by the ipinging

of an external energy would cause the device to switch
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under suitable bias conditions, Optical, u-v radiation, or
other radiations could be tried, Acoustic waves could also

be tried,
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APPENDIX A

Derivations Using the Boltzmann's Transport Equation

In Sece. As1l, we shall derive the basic charge carrier transport
equation used in Chapter 2 from the Boltzmann's equation. Subsequently,
in Sec. A.,2, we arrive at expressions for the transport parameters,
namely @, the electrical conductivity, D, the concentration diffusion

coefficient, and & the thermal diffusion coefficient,

A.1. The Transport Equation

Let f, be the equilibrium distribution function for the electrons
in the semiconducting material for all temperatures T in the operating
temperature range. Under the application of forces during operation,
the perturbed distribution is f, where f is a function of ;'Space and
velocity space

f = f(tr, v)

Using a first-order perturbation theory, f can be written in

terms of the equilibrium distribution fo as

f=f,+%f, . ve+ Rf, . %gr (A.1)

where T is the net time constant assocliated with the perturbation, This
is known as the Boltzmann transport equation.

Consider a unit volume of the sample., The carrier current den=-
sity due to the flow of electrons is given by:

Ji = ne<v> (A.2)

93
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where < v > is the expectation value of the electron velocity. The
expectation value < v > is defined, for a given statistical distribu-

tion f, as:

<v>m gzvfdv (A.3)

[, fav
v
where v’/ is the total velocity space.

USing (l‘\.l),
e — 2 —
T
[V, + TEOE) + (Vv £ )T
v Jiav

<v >=

Hence
5 o ne([odv +[RIVedodi + [T V£ o« ¥ dav)
l:{dv

Defining the root-mean-square velocity by the expression

w2 - |72
and, in cylindrical co-ordinates,

x
fv_gv = foabfo jézthsinededﬁdw

The expression for the carriet current thus reduces tos

J = +[ne(fvf dv + ! .f fozxtw + “Ef sinadadpdw

b fO »g ‘Cv(vrfo .« VW sinededﬂdw]
Jofodv

For simplicity, it is assumed that, in the model, the equilibrium

distribution is Maxwellian,
3/2 ~MW_
fo =n(_m_) e 2kT
2XkT
Since there are n free particles per unit volume, the integral

of the denominator is obviously n, Also, the first integral in the

numerator is zero. Thus,
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J = [fomfx fOZK -Ce wiVer

o $1n6dedpdw

0
(a)
eT\.r(vaO . 7)w25'med9dﬁdw]

(b)

0 "0 70

[ ]
Consider the term (b). The term v simplifies as followss

t

F

<te
Q.IQ.
r|<i
g~
[oX fo

1
m

where F is the applied force. Since the force in this model is due to
the presence of the electric field E

a -eE

|

E

<|e
n
!
3|o

The term (b) thus becomess

() = [-ef " L7 £ Fe (Rt o PwsineasapanTE
Obviously, this component of current is the conduction component Fcond’
since it is proportional to the field E. The quantity within paren=-
thesis must therefore be the electrical conductivityd@ ; the integral is
evaluated later in this section,

The other term, (a), is the diffusion term Fdiff; it comprises

of the concentration diffusion component and the thermal diffusion com-

ponent. Consider the quantity %fo.

%ty = 2Toyn + Hovr
on oT
Since 2
3/2 -%gi‘
f0 =n( m )
2XkT
Hence 'ﬂz
Sf 3/2 RT
= (m e =
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and _ 2 2

o 32 . T 2 R
" 0=n(m ) [<3e KTy m® o 1 e ZkT]
oT 2Xk 21’ S/22 2kT2 T 3/2

= n( m 3/2 Zle:

2 kT 2kT T
= fOI
2kT

Substituting the above relations back into term3d:

(a) = 3 = [fw-/ fz 4 f0 sinededﬂdw]e n
n

(c)
0o 2
+ [fo fox fo ge w“fo( mw22 - %)sinededﬁdwm
2kT
(d)

From the form of the equation, it is apparent that the quantities (c)
and (d) enclosed in parenthesis are the proportionality factors D and

o, the concentration and thermal diffusion coefficients respectively.

A.2, The Proportionality Constants

(a) Tha Electrical Conductivityo

The required integral is

F 2 X -2 -

Joond = 'E_.j;”]b .GZF (beo e V)W sinededpdwE
and so

T=-e f 0 5 foz[ (WE, « V)w?sin6dedpdw

mn

Expanding beo in spherical co-ordinates,

>F A
% =09 +1%0%+ 1 °fop

O sv w9 wsin 5P

Since a spherically symmetric Maxwellian distribution has been chosen,

the partials in 8 and @ are zero. Hence
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<>
°
<l

(] V@f =

<

Assuming T to be a constant, the integrations in 6 and # can be performed:

fx
0 $in6de = 2
L7ap = 2%
Since the other terms are independent of @ and @, the integrations in

6 and § ylields:s

¢ = 4K _e_2_f0°° T w3 4y

m ow
Since -mwz
2 Sr=
£, = n(_n )3/ o 2KT
2XkT
2
W _
0 wn(_n )% *T o
3w 2%kT kT
Therefore 2
-~
= + (%o f”_ryn_( m )3/Z?w4e mdw
m kT 2KkT
Substituting
U= (_E_)I/ZW
2kT
wl' = u"(Zk'JI‘)2
m
dw = (ZkT)l/zdu
mn
Hence
2
3/2 =-u 1/2
ra+4re?n "2 _m'% er)? &) au
kT Ka/z(zm)ﬂz n2 m
2

= + Mezn rooo 2T uaeau du
m?\‘372
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From Tables

2
fowure'u du = 1/2 (r - 1) soe _S_ . 2 °

1.Jr
2 2 2 2
Assuming T to be a constant,
0”+axeznxl.2.l.JI—'. 21
2 2 2 mx3/2
= 3nezz
m

Defining the average electron drift mobility by

/“e = 3 e_t (A.4)

m
the expression for the electrical conductivity becomess

T'= nep, (2.3,1)
This is the expression arrived at in Sec. 2.3. Thus

= ¢E

= ne/b,f

Jcond

(b) The Concentration Diffusion Coefficients D

The current density due to concentration diffusion has been

obtained earlier as

n

© K 2K 4
TR OAT A Ry
T iefe (/0 fo 0 0 sinBdedp)eVn

and so D, the concentration diffusion constant for the mobile electrons,
is given by

X o 4
D= f0°°f0 fo - T 5 ¢ inededpdw
n

Since the Maxwellian distribution is spherically symmetric and T, the
perturbation time constant, is assumed constant, the integra‘'ion in 6
and § can be separately performed, Since

‘rZ

K
0 dff = 2K
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and

X
_6 $in6de = 2

Hence -mwz

D = f;ntatwa( m )3/2e ZETAW

2KkT

Substituting
me - u2
2kT

U= J m_w
2kT

du= . m dw
2T

Thus
2
oo 3/2 -u 1/2
D = fb &Tf(gﬁl)zua( m ) / 1 e (2kT) du
m 2kT x3/2 in
2
= 4 (D) [7de™ du
JEom

Using the Tables as before, this integral reduces tos

Dw2kT & 1.3.1.J%
m JK 2 2 2

'-"'1_(103
m

Recalling that e, the electron mobility, had been defined ass

Me = 3eT
m

the diffusion coefficient becomess

D = kT

e

which is the well-known Einstein relation,

(c) The Thermal Diffusion Coefficients

The carrier current density due to thermal diffusion is

T X x 2
Jaifea ™ [f(;mro /(-)2 eTwafo(-mw‘ - 1)sin@dedfw v
k1t T
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and so,

o = fomfoxfozxefwafo( mw2 - 1) sin8dedpdw

2k'l'2

Evaluating the integrals in 6 and @ as before yields

1
T

™ Axorooe‘('wafo(mz - _3_)dw

kgl 2T
Recalling that 2
12 T
3
£, = n(_n_) kT
2KKT

and making the substitution
W= (2k'l‘)1/2u
m

the integral becomes

2
o = ax [Teru(am?_n ()%™ (o - 3)JT au

m 27:3/2 2kT T 2T m
0o - 4 -
= 8kne ([ uwle™du -3 Tu'e " du)
== 0 =0
N 2
Using the Tables as before

m8kne (1 e5¢61J% ~3+3¢1.447 1)

i 2 21 TTTT 7
= 8kne . 6 %X

mJ.‘i(_ 16
= kn o 3el

m

= pkn

The net diffusion current density 3diff is therefores

Jdiff = eDyn +«VT

= e ukTvn +’1an'1‘
e

= ﬁkV(nT)



APPENDIX B

The Finite Difference Equations

Consider a continuously differentiaMebounded function f(x, y, z).
Using a Taylor's series expansion about a point(xo, Yo zo) an adjacent
point f(x0 +4x%, yq, zo) can be expressed ass

f(x0+-Ax, Yo zo) = f(xo, Yo zo) + Ax f
x| x = x

0

Y'yO

Z'ZO

3
+Ax2 32 +Ax3 ‘af + o0 (Bnl)
27 2 37

IXT | x = X Ox” | x = x
0
Y'YO Y'yO
ZBZO 2-20

Consider first the point (x Yo zo) to be in the interior of

0’
of the material. In such a case, both points f(x0 + Ax, Yor zo) and
f(x0 - AXx, Yo zo) exist, Expanding f(x0 - Ax, Yo zo) about (xo, Yo? zo)

using the Taylor's series as befores

2 2
f(xo = A%, ¥ zo) = £(xq, Yor zo) -Ax f +4x_ 2 f
X 29 2
ox
3
~AX O f 4 eee (Boz)
[]
3: Bx3

all partials being assumed to evaluated at (xo, Yor zo), the subscripts
having been omitted for conciseness,
Subtracting (B.2) from (B.1) yields the followings

. 3
f(xg + 4%, y4s 2) = £(xg = 8%, y» 2() = 2Ax 3f + 2 &x jig + oo

=2V
A% 3. ax3

101
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Rearranging terms:s
B_f'- = f(xo + AXx, yo, 20) - f(xo -AXx, VO’ ZO)

X | x = Xq 26x

Yy = Yo
z-zo

- ax® 33 (B.3)
31 3x3
As discussed in Sec. 4.1, a discretization error of Ocsxz) is tolerated,

So, the truncated expression for 3f is obtained. For an interior point,
ax
= f(xo +Ax, yop 20) - f(xo = DX’ YO' zo)

X = X4 24x

Yy=Y%q
Z’ZO

of
X

of can be similarly obtained ass

)
y 3F = f(xo, Yo + Ay, ZO) - f(xop Yo ~ Ay, 20)
oy | x = Xo 28y
Y=Y
z = 20

To obtain the second derivation Ggf, add equations (B.1) and

sz
(B,2) to obtains

f(x0 +Ax, Yo zo) + f(xo = 8%y Yo zo) = 2f(x0, Yo zo)

+ Xz azf + 2 Ax“ ;l‘f + oee
sz Ge P-2%4
Rearranging terms and dividing throughout by xz,
Zf - t‘(xo +8%, Yo zo) + f'(xo =B X, Yo» zo) - 2f(x0, Yor zo)
xz X = xo sz
y= yO
z =z,
4
+ 2 Ax aaf + e0e (B.S)
e
¢ dx

Discretization error terms of order sz or higher is neglected as befores
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ﬁ = £Cxg +A%y v, 2) + £(xy =A%, ¥ 20) = 2£(xgs Y 2)
x> X = X, x?

Y=Y

2= 20 (B.6)

Similarly, the second order derivative in y iss
ng = £(Xgs Yo +Bygs 8g) + £(x5, yo =Aygs 2g) = 2f(xgs ¥Yqs 2()
Byz Ay2

(Bs7)
Consider now a point on the edge x = 0, In this case, the point
(xo -Ax, Yo zo) does not lie within the domain of the semiconductor,
But, (xq +4x, yq» zo) does, and f(xO + 24x, Yor zo) can be expanded
by Taylor's Series about (xg, Yor zg) to yields

f(xo + 2Ax, Yor zo) = f(xo, Yor zo) + 44x Xf + SZAxZZ 331

X 2: axz
+ 28x)° P+ oue (8.8)
3T 5.3
X
Multiplying (B.1l) by 4 yleldss
2 2
éf(xo + 4x, YO’ zo) - l‘f(xot YO' zo) + 4ax if_ +4 .4.’."_3.5
X 24 S 2
X
+4AC DE 4 e (B49)

37
3T 5.3

Subtracting (B.8) from (B.9) and rearranging terms:
- -3f(x°’ yo' zo) - ‘lf(xo +Ax’ yo, 20) - f(xO + 2Ax| yO' zo)

3
X|x=0 2A%
Y=Y,
Z= zo
+ 4 x3 33f + o0 (B.10)
'3‘."3"'3
X

2

Neglecting terms containing Ax® or larger power of Ax, the equation be-

comes?
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of o IE(xgs Yor 2) + 4E(x ¥ +AY, 24) = £(x) + 2%, ¥, 2Z()
X|x=0 2Ax

Y=Y,

2 = zo (Boll)

Similarly, the partial derivatives and at y = 0 and z = 0 respectively ares
- -3f(xo, Yor zo) + af(xo, Yo + Ay, zo) - f(xduj 2y, zo)

x-xo 24y

of
3y

Z = 2 (8012)

0
. -3f(xo, Yor zo) + Af(xo, Yo 2 + Az) = f(xo, Yo 2o + 24z )

0
X = X 242

Y=Y,
z=0 (B.13)
The second partial derivatives for this family of points is ob-
tained by multiplying (B.l) by 2 and subracting it from (B.12). Per=-

forming the above mentioned operation and rearranging termss

32f - f(x0 + 2Ax, Yo zo) - 2f(x0 +AX%, Yo zo) + f(xo, Yo zo)
2 2
99X x =0 X
+ x2 el
23 3
x

Neglecting second order tesms, the second partial derivations are:s

Zf - f(xo + 2Ax, yo, zo) - Zf(xo +AXx, YO. 20) + f(XO’ yOl zo)

x2 Ax

2f . f(XO' Yo * 2Ay, zo) - 2f(x0, Yo +4y, zo) + f(xo, Yo zo)
2 2

y Ay

zf e £(Xgs Yoo 2o + 242) = 2£(xgs Y0 2o +82) + £(Xgs Y 2()
2 2

g 43

The third type of point is one tying on the edge x = L., wherein
the point (x0 + 4%, Yoo zo) is not defined within the semiconductor, but

(xo - 28X, Yor zo) is. Similar Taylor's series truncations can be made
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by utilizing the expansion of f(x0 - 2Ax, Yor zo), the method proceeding

along similar
the first and

of

ox

X

lines to the previous case. Neglecting second order terms

second partial derivatives are written below:

3 - - -
. f(xo, Yo zo) af(xO Ax, ¥ , zo) + f(xo 2Ax, Yy zo)

0
= L 2Ax
X
= yo
= zo
o 3E(Xge Yor 20) = 4E(xg o =8y, 2)) + £(xgs ¥y = 2Y, z()
=X, 24y
= L
y
= zo
= X 282



APPELDIX C

NORMALIZATILON

In Chapter 1, it was pointed out that round=-off error could be
minimized by normalizing variables and reducing the equations to dimen-
sionless form. The details of such transformations are worked out in
this section,

The normalizing variables ares

Ax = Lx?(;dy-_l_‘l};Az= Lz%; Vay gx
10 10 10 ap
V [ ] 100 .e - ‘r-
$ = a . X T=(T -T Je+T in=p¥;
L
X

where

©

o
]
2
®

o

M =Pl
Y = In’L
Using the truncations discussed in Sec. 4.1, the relevant equa-
tions are transformed as followss

1) Poisson's Equations

'vzv = -’/6

a%v + 2%V + v +8/ =0

x? Oyz 22
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Now
azv = V(x +Ax, y, z) + V(x ~=AX, y, z) - 2V(%X, ¥, Z)
sz 2
Ax
\' o« 100

= ‘app . [A(x +48x, y, 2) + 8(x -4, y, 2) - 208(x, y, 2)]
L
p'e

The other derivatives can be similarly obtained. Substituting

back into the Poisson Equation and using the relationships bav,, Dav,,
Dav,, and Yydefined in the text, the final relation is obtained belows
Davx¢ + Davyﬁ + Dav,§ - ’fdﬁ +X =0

2) The Continuity Equations

a_e-"’ V.3.0
ot

3 + V. (-nepwv +MKV(nT)) = 0
at
Using the charge neutrality relationship to express the equation
in terms of § , yields
?S’F + Y. (- enIVV +SPVY +pmk¥g(nT - 8/e)T) = 0
The above equation is now re-expressed in terms of X by using the trans-

formations used earlier in the text,

2
3y +Paepnbva22 sz . (-959p) + 100RE Ve, Vo ¥v9)

ot 100V, € 100Vapp
+ KTq kaePnp sz V.qT(%6) + Fa KTql00€Vapply g . no(te) = 0
100 Vape 1006v. L Ze
app x

Defining the following constants for conciseness

iy = ¥Ta
e
V.p ep LZ
Fl')- oMa""nb “x
1006V,
ep L2
F'= "nb x
100 ¢
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]
l:.c = Pavapp
[}
Fd 'Pa"o
we obtain

B - FIT. (090 + FL V. QFTH) + FL V. (WER)) + F] V. e)
t

=0

3) The Temperature Equations
2

oST + k VT =¢E . E

ot

3T - *th 9T = neplv LWV
ot c

Applying the same transformations used earlier in this section
and considering the equation term by term, we obtain

2T =Ty38
3t 3t

Keh @2T = XenTd y2e
C (o]

Using the truncation sceme developed in Appendix B, the righthand side

of the above equation reduces to
2 2
V'@ = (Dav,@ + Dav 6 + Dav,8 -¥,8) . 100/L

y
and defining F, and ll. as
F, = P EAV, 100
L2
X

7\’1‘ - ktthIOO
c:l.x5

the
Tenpex-a pyre equation becomes

26 -
5 = (Davx6 + Davye + bav,8 d9)/ T + PFd



APPENDIX D

ALGORITH FOR SOLVING A SET OF TRIDIAGONAL EQUATIONS

In Chapter 4, the partial differential equation for temperature
was reduced to a set of tridiagonal equations by using finite difference
techniques. To solve such a system, consider a linear set of n tri--
diagonal equations whose subdiagonal, diagonal, and superdiagonal coef-
ficients are a bj, and ey respectively, the righthand side'is dl' and

u; 1s the ith variable. The ith equation, therefore, reads

a4uy_y +byug +cguy L, = dy (D.1)

A recursion solution of the form

u =k, - %4t 4 (D.2)
Ay

is found to be valid, The coefficients o« and M4 obey backward recur-
sive relations of the form
« =9 " 4% (Ds3)
A i
= b, -21% -1 (D.4)
Py=b - 1=l

Since rewriting the first equation of the tridiagonal set ylelds
d

c
U= 1- "1u
1 q .rl 2
by COmparing coefficients, 41 and /51 can be evaluated.
Ay =b

), =d,/p,
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From the recursion relations (D.3) and (D.4), all coefficientso(i and

Pi can be evaluated, and, employing the applieable boundary conditions

to obtain u; and U, all ui's can be obtained,






APPENDIX E

TREATMENT OF THE ENGE PUINTS BY THE SOK METHOD

In Secs 4.3, a finlte difference scheme was outlined for solving
the electrical potential distribution in the interior of the semicon-
ductor,

The behavior of the edge points is governed by the boundary
conditions as outlined here, Consider first the edges in contact with
the metal electrodes, These edges, as discussed in the boundary condi-
tions in Chapter 3, are constrained to have

V(Lx, Yy, 2) =0
Normalizing,

#(L, y, 2) = 0

This takes care of all points on the surface x = L. For points
on the surface x = 0, the boundary conditions are obtained from a con-
sideration of the circuit equation

L L
Vo, y,z, )mv, -[7f Y(-€ 3V + p, k(nT) )dydz
ox

pp
z=0 y=0 3x
Normalizing the above equation and using the truncated grid structure

discussed in Chapter 4

20 n
$C0, y, z, t) = 1 +70 app 10L is.(vosx(ew -8 (8, x

L 100 Y =1 k=1

where

&f = ax of
X|x=0

In the computer, the double summation is performed using the Simpson's

integration rule.

111



112

Consider next the surface y = 0, Here,

=0
y

and so

#(x, 0, z) = #(x, Ay, 2z)
where the righthand side 18 an interior point which is evaluated by the
SOR method. The other three surfaces in contact with air can be simi-

larly evaluated,

I

T

s



APPENDIX F

LISTING

This section o ntains a complete listing of the computer pro=-
gram used in the simulation runs and consists of a main program and
thirteen other subroutines, The MAIN program controls the overall
logic flow and the Outer Loop referred to in Chapter 4,

The MAIN program calls TENPEQN which sets up the tridiagonal
2quations corresponding to the Temperature Equation that is solved by
TRIDAG. It also calls CONTEOL, which controls the Inner Loop. CONTROL,
in t rn, calls the subroutines CIRCUIT, PSSN, and LMATRIX which solves
the Circuit, Poisson, and Continuity of Charge Equations respectively.,

The remaining subroutines perform auxiliary functions. BYPASS
8ets up the initial conditions, PRINT is concerned with all output
prints, and RHP computes the power dissipation density required for the
8olution of the Temperature Equation. The function subprogram SIMPS

performs the integrations required in the Circuit Equation using
Simpson's Rule, and DELX evaluates the truncated difference operators,
Finally, BUFFIN and BUFFOUT control the flow to and from auxiliary
memory locations on tape enatling data at any intermediate times to be

8tored, The actual listing is given in the following pages.
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Cceoe

4

C oo
Ceoe |
o8 |
C .e

147
C oo

C we
C oo

C oo

777

87

114

PRUGRAM MATN(IMPUT+OUTPUT s TAPECO=INPUT ¢ TAPEGLI=0UTPUT s TAPELTAPL2)

1TAME D)

KEAL LAsLY

CUMMON/A/Z 11 vJJeNTeNY

COMMUN Za(llellell)ozbillodloll)ecCtllelloll)
COMMON/ZLUVP/RUUNT o T IME
COMMON/TAU/PLZI (Lol lell)ePP(Ll]lsllsll)
COMMON/ZRST/KRST(LLlellol))
COMMON/ZULEGK/Z/THETACLILe110]))
COMMON/ZVULTS/PHI(L s laod])
COMMON/ZLULSZDTAG(LY) oSUB(1]1)eSPR(1])
CUMMON/MAT /P heF R

COMMON/PP/FA+ INUAYLZ PR
CUOMMON/ATKAZFR R [ o T1AUB

COMMON/S10/A

CUMMUN/H/CAsGAsEASE LD
COMMON/V/VKeVIHIVO

CUMMON/GAMS/ GAMD
COMMONZOUN/GAMC e ALAMDA

COMMON/L IMITS/CMAX sCMINIUELVINA
COMMON/VU/VA

COMMON/N/NDATA

COMMON/MU/GMU» TODEVSHeNAX
CUMMON/HEADER/HEAD) +HEADZYHEAD 3
COMMON/VUT/COIsCDENS+PF o CH
COMMUON/UVDIR/ZA (I IAL2) 9 JA(2) oKALLZ)

COMMON/ VAR/VAKT s VARC s VARV 9 VARE s VAKF ¢ VARU s VAR 1 o VARF o INTA9 INTRo INTCoe

1INTD

CUMMON/ L TEPS/EPSMAX )¢ ]l TMAX]
COMMUN/CUN/GAMMA « AMDA s GAMZ2 ¢« GAMME o LAMMC
COMMON/FACTURS/FA'FBFCHFD
COMMON/ A9/ I TMARsEPSMARy W
COMMNON/T/THOSTAS TV
COMMON/CUNDTY/RAT IV
COMMON/ZPULSE/TIMESoTIMEF

LOUIVALENCF (DELVPK)
SET INLV]AL CONDITIONS wee

FORMAT (1H0s L (ELL 40 ) X))

IBUFF=0r NU HUFFLR UUT e«
NUEX DETERMINES INIVIALIZING INPUT @w

IS TAPE NUe ON WHICH INITIAL INPUT 15 RECURDEDL ee

HEAD(60«717) INDEXsIHUFF oL
CUMPUTER TIME CONSTANTS oo
READ (600 747) WeDELTTIMARIEPSMARICX
FORMAT (5E16.7)
GRID SETS AND UNJVEKSAL CONSTANTS we
READ (69 eT47) LASLYIDEPSeBLTKIELH
VARIABLE PARAMETER SET oo
KEAD (byeTwT) EMUAEMUBICLHIEGL 201
CUNSTANT PAKA SLT ee
READ (600 747) THR4SPRT 4 TAMBsTCRSIOO
INTEGER CONSTANTS eeo
READ(600717) IT1eJJeNToNJo1TMAXIKMAXINAIND
READ(6JeT8T7) UELVINXA
READ (60 747) TIME Lo T IMel
READ(OUeT1T) (LA(K) e JA(R) eKA(IK) sKk=]sNU)
READ(60¢777) EPSMAX)s]1TMAAL W]
FONMAT(EL2.4%+110)
PRINT TT7¢EPSMAK]) o1 TMAX]
Al))=lHA $X(2)=zlhYy A(3)=INLZ
HEADL=1OHDISTRIBUT]
HEADZ2=]10"UN ALUNG
HEADJI=1ORLIKECT IUN
FURMAT(F)0,J-110)

MAIN
MAIN
MAIN
MAIN
MAIN
MALN
MALIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MALIN
SIND
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
JULY%
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MALIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
JULYe
MALN
JULY4
MAIN
JULY4
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

VENZ2UVSWUN
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JHA
987

C

C

965

115

FORMAT (B110)
HAT JO=EMUB/EMUA
PRINT 9H7
PRINT 983 e1AeNAKeRINIToKF INy JTMAXoKMAX
FONMAT( JHUAK(SKe10))
FORMAT (1A +®THE FOLLOWING VARBLES ARt NASNAXsKINLToRE INo I TMAXoKHAX
*®)
seee  CONSTANTS UF TEMPERATURE eese
TO=TCR=TAMH
TazTCK/TL
IHO=TAMH/TD
vusHL ke TD/7ECH
eses  TIME CONSTANTS eee
ALPHAS((1]1=1)/LR)®*2
JETA =((JU=1)/LY)®e2
TAUAZ (SPHT/THK) /7ALPHA
TAUB=Z1.37 (ALPHACLCAUA®VL)
TAUC=DEPS/S 16V
osavae  CUNSTANTS UF TeMP tuly eeees
OGAMMAE (LA/LY) ®e2,
OGAMZ2zZ.,02GAMMA
CAMMEB=] ,9/GAMMA
GAMM2Zy 5 *HAMMH
LAMD=22:0°4 . V*OCAMMA
LLAZ=EOLH/ (VO*ECH®2,0)
LOM==EGL/Z (VO®*eCH®*2,.0)
RIzLA/Z (5L0%LY*®2)
RS=0.2*R]
Crz=CxeLYy®op
VAPP=aCX® (KSer])
VIiH=VAPP/VU
VR=RS®SIGO®([l-1)/(sLTA®LK)
FCsLX/LY :
FtsFC/2.v
FOE=GAMMA/Z o\
F”=FE/2.
POST60O/ (EMUA®ECH)
PNAZPUSCAP (=LLA/TRO) *LAF(EOGB/TA)
PNH=PNA=FU
=P0/PNA3
SIGB=PNH*E CH®*EMUA
S161=PNA*ECHeEMUB
VELVEPNA/PO
PRINT 56%5¢SI10)DELYV
FORMAT (1HQ«®*SIG13 ®etl0eBe® DELVS ®otibel)
LVASA®EAP (=EOLA/Z THO)
A=GA®EXP (EGA/THU)
FU=S10BOVAPP®®2/ (T)®THK)
CC==VAPP/RS ’
PF=THK® U ALPHA
W2EALPHASNEPS 2 vaApPP
FASTAUR/ (A®TAUC)
FH=FA/VTH
FC=GAML® THO )
CAzW]l/ (FA®A-FL)
AMDA=VEL T/ TAUA
FC=TAUR/ZVELT
VARVAPP/Z2,
GAMC=] ,0°0AMMbB/ nMVA
ALAMDA=] ¢ ./7AMDA
KMU=E GR/ELA
PI23,1615926535897Y
LLv=,91
TODEVSO=2,0°DEV*OEV
OMUS (RMU=1.0) 7 (SURT (2. 0*P1 yeutv)
LMUZGHMU®E (A

MAIN
MAIN
MAIN
MAIN
MA LN
MAIN
MAIN
MAIN
MALIN
MAIN
MAIN
MA LN
MAIN
MAIN
MAIN
MAIN
MalN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
mAIN
MAIN
MAIN
4AIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
JULYe
JULYS
JULYe
JULYe
MAIN
MAIN
“MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
JUL Yo
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MATN

116
115
116
117
118
119

9
121
122
123
126
125
126
127
128
129
130
131
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coe

C
556

357

«75
wTa

7

ere

Coe

21

e
=
<N

®e  LIMITING VALUES UF Trt CIKCULT CURKRENTS AND VULTAGES eee
CMINa I/ (K] eRDS)
8=P0/PNA
CMAX=0.27 (H/RATIUL*0,2)
PRINT sso.LuL.Eun.fuun.tﬁuu.svnl.cx.Ph
*8  pPRINT INPUT DATA ®¢ oo
FORMAT (1) e29Xe® [INPUT LATA IN RAT HKS UNlTS'v//o
CPELL = ®eG10.30104Ae®LOM = #4Gl0e30//0
3 EMUAS 2401 0.309A¢%EMUN =2 ®4G10,30// 0
LaSEHT = 4Gl 0s T CUKRENT DENSITY =2401vede®Pr= ® (610,3)
PHINT SSOTeLAGLYsNEPSeBL IR sECHeTHR 9 TAMB o TCH TIMAX
FORMAT (LHOe
IVLX = ®4510e3010ALY = ®¢010,30//0

COEPSR =2 24610630 l0Xe®BLIA 5 23Gl0.391UXKe®E = ®4G1043940402KTH = @

301V.30V0K0// 0

GoTAMB = ®46l0e30JUXs®TICK = ®,G103010A9®TIMAA = #4010.3)
PRINT 55Y

FUKMAT(LHO® Tt FOLLUWLING INTLOUEKR VARIABLES AKE ®*4/.

2% STARTK e 1BUFF ¢ TAPENO o 119 JJePSSHITMAASKMAXSNR (MAX ITER OF INNER LP

6)e®9/e® NAK(CONVOLI JTER CRITN) 9RNOLTMARL®)

PRINT Tl7 INUEACJHUFF ol ol 1o UJe LTMAAoRMAASNKONXXo I TMAX )
FiME=¢ )

AOUNT=¢{

PRINT 3:VAPF o TDeSIOGB W2 ePNR

FORMAT (LH) o///77024R9® CONVERSLUN FACTUKS®,

177+ VOLTAGE =% 1PE13.5e® VULTS®,

2/7/¢® TEMPLRATURL e lrPE1ISe® DEOLK®Y

2/7/¢® CONDUCTIVITY «=®lPELJ,5¢® MHUOS/METER®,

2/77¢® CHARGE DEMSILITY ~=®,lPL13e5e® COUL PER METER CUBE®S

3 //7e® CARKIEK DENSTTY==®, [PE13e5¢® Pe METER CUHE®)
PrINT 1eCC

FONMAT (1H0 ¢ ®CURNKENT =@ JPL13eHe® AMPS*®)
COENS=E  SIGO®([l=l)®VarPPr/LA

CO=A®CLENS

CH=THR® DOl /LA

PRINT 2¢CGeCH

PRINT 475¢CDLNS

FURMAT (1HDs® CURRENI DLNSITY ==®,]1PE13,5+® AMPS PER MTR SQUARE®)

PRINT 474 PF
FONMAT(LIHO«® POWER LENSITY <=<«®4]1PE)3,5¢® WATTS PER METER CUHE®)

PRINT TO7+SI00sPOEMUAS [AMY

FUPMAT ()1 10e® SCalt ADUERS ®a///7¢® S10U = ®43E 12,40 0Re® PO = ®,ElCc,

laolORe

©0///9® MUAS BiEL2,4eBA*TAMUE ®9E12.4)

PRINT 2172

FORMAT (IH]l e 35X¢® OTHEX VARLABLLS®)

LIST VARLAHLES®®

PRINT 275¢THOsTATD oYK eVIHeYUILLAIELBIPNAIAIR] 9RY
JOAYCAFDIANDAYGAMC o

JALAMDA e GAMMA ¢ UAM2 s GAMMB s GAMM2 s GAMD s FusF HoF AsFRoF Co TAUAS TAUB e TAU®

FORMAT(HOo® THUS® ot J2eeDNe® TAZ® 9t 12e% 95K 9/ ¢ HO
le TN3Y4EL2eaoSA0 VKSR eEL2,495A0/0lHV0

e VIHZ® E 1 2.4095K @ VOE®,EL12.%eSAv/0 INH0
Je EUASOElebonAr® CLORIO®GEL2eweSA9/0)H00
“e PNAZ® E12e095N0® AZ® o E 12.405A0/91H00
e RIZ®EL2e0eS5K0* RS=®EL12.495A0/0¢)H0
e LAZ® ot 124 eShe® CAZ® £ 12.49bA¢7elNH0
o FOZ®eE12e0e5A0® AMDAZ® ot [ 2,405A0/ 0[N0
le OAMCZ®eE 1 995A 1 PALAMDAZ® oL 12,4050/ 0100
o AMMUZ® oL 12,4 05K e® LAMCE®EL2 ,09b5A0/7 0100
YO GAMMH=® .t 12e4e5A 0 2LAMME =84k 12.webHRe/ 0 )10
1®  GAMD=® it 12,4500 FO=®0gEL2e% oSy /0lH00
P44 FH® E12%eSRe/0 i)

Je FAZ® Lo oSN, ® FOZ®E12e¢9eS5Re/01HO
e FC2®eElZeaeSAr® TAUAI®GEL2.495Re¢/¢]1HO0

56 TAURZ®,EL12.4958¢% TAUC=2.E12.44¢51)

MAIN
MAIN
MAIN
MAIN

. MAIN

JULYe
JULYe
MAIN
MAIN
MAIN
JULYé
JULYS
JULYS
JULYe
JULYe
JULY®
JULYG
JULY&
JULYG
JULYe
JULYe
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
JULY&e
MAIN
MAIN
SIND
SIND
SIND
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MalN
MAIN
MAIN
MALIN
MAIN
MAIN
MAIN
MAIN

132
133
136
135.
136

11
139
1640
le]}

12

13

14

15

16

17

18

19

20

ec
162
143
166
165
(L1}
167
168
149
150

23
152
153

156
15
156
157
158
159
160
161}
162
163
164
165
166
167
168
169
170
171
172
173
17«
17
176
177
178
179
180
181
182
1843



C..

85

97
y9
10

PRIND wonpUN) o] LML
NDATA=]

KLAD IN FROM HUFFEK ON UPTION e

CALL HYPASS

1F (INDEX) 95099497

CALL SPECINCINWDEX L)

60 TO 99

CALL BUFFIN(INDEK L)
CONTINUE

TIME=TIME«DELT
ROUNT=KUUNT ¢}
ALF(TIMELVELTIMEL) NDATAaND
PRINT 4oeKOUNToTIME

FORMAT (LIH)Ys///7¢® ROUNT = ®,]13,*
1F (ROUNT .LT .KMAX) GO TO )2
CALL CUNTROM

CALL PRINT(PHLoVARY)

C *® A) RIGHT HAND SIDE == POWER

¢

17

le
19

888 p) LEFT HAND SIDE === TEMPEQN

CALL KHU

CALL PRINT(ZAsVARE)

CALL PRINT(LZCeVARP)

1F CIRUFF) 74940

CALL SPECOUT (IBUFF» INDLX)
w0 T 9

CALL HBUFFOQUT (LIBUFF)

CONT INUE

CALL TEMPEQN

JF (JRUFF) 10elYel?

CALL SPECOUT (1BUFF ¢ [INUEX)
60 TO 1y

CALL UBUFFOUT (IBUFF)
CUNTINUL

Cese SET UP MATKICES wee

Coe

12

STURE AND PRINT OQUTPUTS #se
IF(TIME.LT,TIMAX) GU TO 10
CUNTINUE

END

TIME = #,IPE12.5¢®% SECS*®)

MAIN
MAIN
MAIN
SIND
SIND
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
LUMMY
MAIN
MAIN
MAIN
JULY4
JULY4
MAIN
MAIN
MAIN
JULYG
JULYS
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
JULYS
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

18«
185
186

188
189
192
193
194
195

197
198
199

26
202
203
204

28
205
206
207
0B
209
210
21l
2le
213

29
215
2le
217
218
219
220



i



(8

S0

Sa

on

~cHco

SUSROUT INE TEMPELN

VIHENSTION USTST (1141001 1)

CUMMOM USTCRLo)lolldoAChlolledtdsulllnliell)
COMMON/ZDE LR/ HIREYREERE)
COMMON/TawU/P/ZLtLLoddol ) ePlllellotd) .
CLOMMUN/VAR/VART s VARL ¢ VARV s VARE s VAKP 9 VAR o VAK L 9 VARF 9 INTA9 INTR« INTCo
LINTD

COMMON/ WUKRKZA(LL) sD(BL)eCtL))entl])
COMMON/LULS/Z7VIALIIL) oDUBILLD) sUPR(LD)
CUMMUNZDUN/ZGAMC o AL AMDA
COMMOM/TIMES/TAUL s o TAUR o3¢
COMMON/V/ VKoV [He YU

COMMON/ZA/Z LT eJJeivl ey
CUMMON/ZCUN/ZGARMA « AMDA s HAAL e LAMMIS s LAMMCZ
CUMMON/L/L AL O

COMMONZT/Z/THOSTACTD

LUUIVALENCE tUSTUSTST)

LUULIVALENCE (JJeRK)

00 Jy I3lell

SUKH(])==y,S

SPR(])==0,5

CONT IHLE

SPKR(l)==].0

SUH(l))2=],0

#ese  SOLVE IN [=DIRECTIUN oy

L0 Su I1=leid

DO Sv J=led)

V0 SO0 K=leyJ

UtleJeRISU(LleJer)=THO
PlledeK)zulleJeK)oU(Lousn)/7AMDA

COnTINUE

LAS2 ) LHaNY

V0 S¢ Is]4])

V1AL (] ) sALAMUA

CONT INUE

V0 S K=]leuy

VO S usl.

VO & I=2eN])

AUl elodeX)oUlI=10JdoR)=2.UPU(LeJeR)) 205
IF ((JeNEo)) e AND e (JeNE e JJ) )

IH(I)s (Ul edol oK) oU(Lod=1eR)=2.0%)(]eJeiN)) ®GAMMA
IF(JdetU,l)
eH(1)stU(leJejoK)=Ul]ledon) ) ®LAMZ

1F (JEVJ) HEl)=(Uutfed=1on)=U(]eusK))2GAaM
IF (UK eNE o)) e AND e LK NE oRKDIC I =L o JeR L) *U(Lodon=1)=2.%U(1eJ2"))
*OGAMMA .

IF(KEQel) CUEIZIUCT oo L)=U(]lsJeK))20AMZ
IF(KLEQerR) CULII3(U(TvJeR=))=ul]oeJeK))®LAMc
V(1) =RAS TEKMDS

DUI)sPlsdeK) U (] oJeK)/LAMDA
PlloJoK)2P(LeJdeK)¢ALL)eid())eCl])

D(I)sPlledeK)

RMAND IS COMPLETE

NO CORRECTIUN weEUUIKED AT HOUNUARIES SINCE HOUNDAKY VALUES AREZTRO
SOLVE HY TrIDAG MATRIA At THUL

CALL TKRIVAOG

SULUTJON RETURNED g L)

UST(leJden)=0,0

UST(LleJeK)=0,¢

VO S LalenN|

UST(LeJeR)=D (L)

CUNT INVUE

PART ¢ o=« CINSTRUCTING USTST MATKIX

LAw] LUENJe ]

TEMPEUN
TEMPLUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPLUN
TEMPLUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPLUN
TEMPEQN
TEMPEUN
fEMPEUN
TEMPLUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPLUN
TEMPEUN
TEMPLUN
TeMPLUN
TEMPEON
TEMPLUN
TEMPLUN
TEMPEUN
TEMPEUN
TEMPLUN
TEMPLUN
TEMPEUN
TEMPEUN
TeMPEUN
TEMPEUN
TEMPLUN
1EMPLUN
1EMPEQN
TEMPEUN
IEMPEUN
TEMPEUN
TEMPLUN
TEMPEUN
TEMPEUN
TEMPEUN
IEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMTEUN
TEMPLEUN
TEMPEUN
TEMPLUN
TEMPEUN
TEMPEUN
TEMPEUN
1EMPEUN
1EMPEUN
TeMPEQN
TEMPLQON

CENCVEIWN



56

15

119

VO S6 usleJy
DIAG(J) =0AMC
[DIVEE ) =21
VO 1S K=]leJJ
LO 1o J=i+JJ
LF(GJeNEo]) e ANDN G (JNL o JJI) )
IR0 edoel k) eUlLoJd=deR =2, 00U (] eJeR))®0,>
1Flu,. Q. 1)
2u(J)sUtledel o) =UlloJeR)
1F (Jebe V)
(N au(led=leR)~=ulloJen)
A E(UST(IoLo o) osUST (L= eJeh)=2.0%05T (1eJsK))®GaMM2
PlloJdeR)=LAMMBEP ([oJon)=r(J) va ()
DJ)3PLeJeR)
KHS 1S  CUMPLETE
CORRECT FOUR HUUNDAKIES
CALL TRIUAG
SOLUTION RETURNED In D)
VO 1S L=]eJJ
USTST (feLen)=D(L)
LU 25 J=isJJ
V0 25 [I=2sn]
J0 26 K=2leJ9
IF(Ko.tlle])
ICIMIsU(Todenel)=U(TvJeK)
IF(KoeUe JJ)
CC(K)=U(ledeRel)=u(loeJeRr)
IF((KeNEel) e AND o (KoNL e JJ))
ICURIZ (UL edoRe1)eU(LodeK=1)=2.0%U(1eJeK))®0,5
IF(J.EUG ) )
IH(R)=USTST UL eJeloR)=USTST (T sJeK)
IF(J.EQeJN)
18RI =USTST(led=lsn)=USTST (1 eJen)
IFCGJeMNE L) e ANDe (JeNL o JJ))
I (KIS (ULTST(LoJed o) USTST(Lod=boRh)=2,0%USTST(LeJeK))
PlleJeR)aP([eJden)=C(K)eb(K)
DIR)=P(leJeK)

é
C eo®e RHS ]o CUMPLLTIE ®we
C

sewe  CONKECT FUK BUUNDAKIRS oSeed

220
Lee

<év

CALL TRivaL
SOLUTION RETUKNED IN  OIK)
D0 25 L=leJy
UST(JedeL)=0(L)
dOUNDARIES ®e®
DO 229 K=)JJ
D0 22v Jz)eJd
Ulleder)=TrU
UllTedeK)sTHY
CUNT INUE
ALL INTERIUK PTIS e
DO 22% [3¢ZeN}
DU 22> Js2+4)
DU 225 R32NY
UtledsK)2uST (I eJder) eIV
MA=/?
VO 7 rL=1edJeMNY
M=MA
JF(RLebuell) M=w0

C @& ALL FACES o

sy

-~

DO 253 132+N]

DO 2453 J=CleN

UllederL )=t ) e o)
UGl eRLeJIzUL] eMe))
CONT INUE

(WU ARU S

C oe ALL EDES 0w

TEMPLUN
1EMPEUN
TEMPLUN
TEMPEUN
TEMPLON
TEMPLUN
TEMPEUN
TEMPEUN
TEMPEON
TEMPLUN
TEMPEQN
TEMPLUN
|EMPEUN
TEMPLUN
TEMPLUN
TEMPEUN
TeMPLAON
fEMPEUN
IEMPEUN
TEMPLUN
TEMPEUN
TEMPLUN
TEMPLUN
TEMPLUN
TEMPRUN
TEMPLUN
1EMPEUN
TEMPLUN
TEMPLUN
TEMPEUN
TEMPEUN
TEMPLUN
TEMPLUN
1EMPLUN
TEMPEUN
TEMPEUN
TEMPEON
TEMPLUN
TEMPEUN
TEMPLUN
TEMPLEUON
TEMPLUN
TEMPEUN
TEMPEUN
TEMPLUN
1EMPLUN
TEMPEUN
TEMPLUN
TEMPLUN
TEMPEUN
EMPLEUN
TEMPEGUN
tEMPEUN
FEMPEUN
TEMPLUN
TEMPLUN
TEMPELUN
IEMPEUN
TEMPLUN
1t MPLUN
TEMPLUN
TeMPEUN
1EMPLEUN
Tt MPLUN
It MPLUN
TEMPE QN

67
68
69
70
71
72
13
Te
75
76
17
78

89
]
82
LX)
86
85
86
87
8s
89
90
9
92
93

96
97
98

- 99

100
101
102
103
104
105
100
107
108
109
110
11
112
113
lle
115
116
117
ilb
1y
120
121
122
123
126
125
126
127
128
129
130
131



235

VU 239 J:ledUeNJ

N0 235 1=x2.N1
Liledol)=U(lede2)
Ullededd)=U(TeJsNJ)
Ulleled)zU(]420J)
UlledJed)zU(LleNJeJ)
CUNT INUE

CALL PRINT(UsVART)
KETURN

END

IEMPEUN
TEMPEUN
TEMPEQN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUN
TEMPEUWN
TEMPLQN

13¢

133

134
135
136
137
138

139.

140
141

,m
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SUHROUT InE PRINT (VeVAK)
COMMON/N/NDATA
COMMON/AZ 1 9sJJeNIoNY
COMMON/DIR/ZX(3)e1A(2)9JA(2) 9KA(R2)
COMMON/HEADER/HEAD] yHEAD2 yHEAD I
DIMENSION V(llellell)
DO S I=1.3
PRINT 1eHEAD]I sHEAD2 A (1) sHEAD]
VO S K=1eNDATA
IX=1TA(K)
1vy=JA(K)
[/=KA(K)
GO TO (He9s10)
PRINT JeVAKOA (L) sJA(KR) sKRA(K)
PRINT SolViLolYeld)oL=10ll)
oV To 6
PRINT GoVAKRSTA(K) o X(])sKA(K)
PRINT 2etVIIXoLo1Z)oL=100U)
Ll TO &
PRINT 7oVARJITA(K) o JA(K) X (1)
FORMAT (1HO oSXsAL00 2R ol o®e®sAlo®e®y]))
FORMAT (LHOsSAsAL002Rs[1lo®e®9]]0®e®yA))
PRINT 2o (VIIXelYol)oL=10JJ)
CONTINUE
CONTINUE
FOKMAT (1HO 240X 9 2A109A20A10)
FURMAT L 1HUOSAAL002XsAle®e®g[le®y®e]])
FORMATULIHO 11 (ELL ool X))
RETURN
END

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

-
-
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70
Con

85

Cee

Coe
80

15

76
Cee

100

SUBROUT INE CONTROL
COMMON/L IMITS/CMAXAsCMINJUELVINX
COMMUN/MU/UOMU TUDEVSUWINXX
COMMUN/ZA/ZTIT9JJeNToNY
COMMON/RST/RST (11911 01l)
COMMON ZA(llellol))alB(lledloll)edClidelloll)
I TeER=1 =0 N=0
LU 70 I=l.11
VU 70 J=leJ
V0 70 R=leJJ
RST(ToJeR)=ZRB(]eJeK)
THUS RST CUNTAILINS OLD CHI FOR ENTIRE INNER LOOPee
N=N+1
M= ]| TEKR
CALL LMAIR]IA
CALL CIRCUIT
LALL PSSNILTER)
IFLITER=M) HBO.80990
®e  TENDENCY TO DIVEKRLEL ®o oo
L=L1
o TENDS TO CUNVERGE ®e& oo
PRINT 4olTERMoLON .
IFCITeReLESNXX) GO TO 75
1F (NJOE o NX) GV TO 75
60 T0 85
CONT INUE
VO 76 1=1,11
VO 76 J=1eJJ
DO 76 K=14JJ
RST(TeJeR)=LC(I0oJeK)
RST STURES DIFFN CURRENT UENSITY ee
RETURN
PRINT 4o ITERsMoL N
PRINT S
CALL eXIT
FORMAT (1HO+® JTER = ®9]3¢% Mz ®,]13¢® (= ®p]3,®
FORMAT (1HOs ®*THIS IS TENDING TO DIVERGE @)
END .

N = #,]13)

CONTROL
CUNTKOL
CONTROUL
CUNTROL
CONTROL
CONTRUL
CUNTROL
CONTROL
CUNTKOUL
CONTHOL
CONTROL
CUNTKRUL
CONTROL
CONTROL
CONTRUL
CONTROL
CUNTRUL
CUNTRUL
CONTROL
CONTRUL
CUONTKRUL
CUNTKOL

CUNTHOUL’

CONTKOL
CONTRUL
CUNTROL
CUNTROL
CONTROL
CONTROL
CONTRUL
CONTRUL
CUNTROL

CUNTRUL .

CONTROL
CONTROL
CUNTKUL
CUNTROL
CUNTRUL

-
COENOVEWN

-
=

- s G oo Bt Bme G
CENTUSWN

LVEA VI VIV
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Cees THE ABOVE ENSURES THAT LABELLED AND UNLABELLED BLUCKS ARE BUFF.D ALT

90
9]
14
36
15
37

72
717

on
(X J
L 2 ]

*e
L X

SUBROUTINE HBUFFOUT (1HUFF)
COMMON ZA(L1olloll)eZstlholloll)eZCllisllsoll)
COMMON/LUUP/KUUNT o T I ME
COMMON/TWU/PZ2I(11911021)sCONDU(L]L01]0]l])
COMMON/RST/RST (LLolloll)
COMMON/DELK/THETA(L) o110l ))
COMMON/VOLTS/PHI(11911011)
L=}

IF(IBUFF.LT.0) GO TU S0

IBUFF IS o

BUFFEK OUT UNLAHELLEL BLOCK ®e ea oe

®e  IN URUERe STOMAIKHUIPOWER @@
CONTINUE

IF (UNITeL) 73063474475
BUFFER UUT(LeLl) (ZAGLels))e2CULlsllold))
w0 1O 60

TBUFF IS =

*®  HEFFER OUT LABELLED BLOCKS)

IN ORDEX o KUUNToTIMEONToJCONDOJUIFF sUgV @@
CONT INULE

IF (UNIToL) S5Ce5507407>
BUFFER OUT (L)) (KUUNToPHI()10ll0ll))
IBUFF == 1dUFt
PRINT 717+ I68UFF oL o KQUNT

CUNTINUE

1F (UNKToL) 90991eTas 7S
CONTINULE

RE TURN

PRINT 36 :
FORMAT (® EOF ON LAST OPERATION ®,//,® ISKIPs]®)
PRINT 717¢18UFF oL s KOUNT

CALL EXIT

PRINT 37

FURMAT (®* PAR]TY ERROR #)
CALL EXIT

FORMAT( ® UNIT NOT READY @)
FORMAT(B110)

END

BUFFOUT
BUFFOUT
BUFFOUT
BUF FOUT
BUFFOUT
BUFFOUT
BUFFOUT
BUFFOUT
BUF FOUT
BUF FOUT
BUFFOULT
BUFFOUT
BUFFOUT
BUF FOUT
BUFFULUTY
BUFFUUT
BUF FOUT
BUFFOUT
BUFFUULT
BUFFOUT
BUFFUUT
BUF FOUT
BUFFOUT
BUF FOUT
BUF F OUT
BuFFOUT
BUFFOUT
BUFFOUT
BUF FOUT
BUFFOUT
BUFFOUT
BUFFUUT
BUFFOUT
BUFFOUT
BUFFUUT
BUF FOUT
BUF FOUT
BUFFOUT
BUFFOUT

Gt Gt Put Gt Gme Pub put Gur Pue o
VENOC UVEWN=OCENGUNEWN
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Ne=OLl®NOT VELN=O
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(s NaN gl

C oo
52

53
S0
527
Coe
73

65
60
S
(X ]
)

70

77

T4
36

15
KR}

72
nz7

129

SUHBROUT INE BUFF IN(IRECNOSL)

COMMON ZA()1lellsoll)eZb(llellell)eZClllollell)
COMMON/LUOP/KOUNT o T IME
COMMON/TWO/PZ1(11911010)9CONDJI(LL0110]1)
COMMON/RST/RST(119ll01l1)
CUMMON/DEGK/THETA(LLoll0l])
COMMON/VULTS/PHI(1191)011)

INDEA OETER MINES THt STARTING POINTsL IS THE
REQUIKED TAPE NU, RELAU IN MAIN

®e L IS THE REWUIKEDL TAPE NU ®e

REWINO L

ISKIP=1RECNU®Z=-2

1COUNT =0

IF(ISKIP.EW.0) GO fU S27
®® SKIP TU THE REQUINED RECOKD ®e es
DO SO 1=1e15x1P

TCUUNT=1COUNT « )

IF (UNITel) 52453974075

HUFFER IN(Lol) (XeX)

CONTINUE

PRINT 717+ JCOUNToISKIPs IRECNOWL
*e  QHUFFER IN ALL ARRAYS ®ee

CONT INUE

IF (UNLToL) 73465+74075

CONT INUE

HBUFFER IN (Lel) (ZA(Llolel)elClllellell))
CONTINVLE

I (UiNLToeL) 5488474075

BUFFEKR IN(L91) (KOUWToPHI(L1911011))

FOKMAT (LH] +® KOUNT = ®5]4o® INUEX = ®o]4o® TIME =%k 14.7+* VAPP =

1%.E1447)

READ (6O 717) LL
CONT INUE
IF(UNITosL)T0e7T70T74475
CONTINULE

KK=KOUNT-LL

PRINT 69KOUNTe IRECNOTIMEoPHI(10]l0])
1F (KK eNE. IKECNU)  CALL EXIT

KE TURN

PRINT 36 :

FORMAT(® EUF ON LAST OPERATION ®¢//9® [SKIPsl®)
PRINT 71741SKIPs]

CALL EXIT

PRINT 37 :

FORMAT (® PARITY ERROR ®

CALL EXIT

FORMAT( ® UNIT NOT KLALY @)

FORMAT (B110) -

END

BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFFIN
BUFFIN
BUFFIN
BUFFIN
HBUFFIN
BUFFIN
BUFFIN
BUFF IN
BUFFIN
BUFFIN
HBUFFIN
BUFFIN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFFIN
BUFFIN
BUFFIN
BUFF IN
BUFF IN
BUFF IN
HUFF IN
BUFFIN
BUFFIN
BUFF IN
BUFFIN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFF IN
BUFFIN
BUFF IN
BUFF IN
BUFFIN
BUFFIN
BUFF IN
BUFFIN
BUFF IN

CEeE~NOVNE&EWN




Coe
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120

130

125

SUHROUT INE LMATRIX
®e THIS IS CALLLD HY LMATRIX T) £VALUATE .RHS OF CONTINULTY EQN eee
COMMON/CUNZGAMMA » AMUA 9 GAM2 s GAMHE s GAMMZ
COMMON/UEOGR/THETA(LMel10)])

CUMMON/VULTS/PHI(L1e) 10l )

COMMON/LUOP/ROUNT o T IME

COMMON/PULSE/ZTIMET o TIMEF

COMMON/LIMITS/CMAX s CHMINIVELVINA
COMMON/TWO/PZI( Lol )ol)) o TEMP(LLel]eid)

COMMON/®ST/K5T (11elleld)

COMMON PST(L1e11ol1)ethl(lYedisl)oLI(L]ellsll)
COMMON/A/Z1IeJJeN1NJ

COMMON/VAR/ZVAKT s VARC o VARV e VARE s VAKP ¢« VAKU ¢ VAK L s VARF « INTA« INTR INTCo
1INTD )

COMMON/FACTORS/FAsFBFCoFUL

COMMON/S (0/A

COMMON/HB/CA2GAEGAsELN

COMMON/V/VReVTHIVO

COMMON/ GAMS/GAMD

COMMON/CONDTY/RATIO

COMMON/T/THOLTALTD

COMMON/ L TEPS/EPSMAR s | TMAX

COMMON/VD/VA

COMMON/XTRA/FL ol o TAUb

FA=2,0°FC

CUNT I NUE

00 1 1=1s11

VO 1 U=led)

V0 \ r=ledJ

JIF(THETALT oJeK) oLT.TA) OULU TO 12V

DZL (L oJeK)2ALOGIRATIV)

EusEoLH

PSI(JeJeK)B=FC/RATIO

600 TO0 13 '

EG=EGA

PS1(Teden)z=FC

VZI(1eJeR)3),

TEMP ([ oJdeR)=PST(L1eJeR)®RST (10D eN)
P2ZI(14JeK)=OA*ERP(EG/THETA (L9 JeK))
IFCOTIMECOToTIMEL) e ANV (TIMEGLETIMEF))  PFZI(30445)=PL)(30445)0
1DELV

CHICJeJoK)I=PLLI (] oJsK)*THETA(]9JsK)

CONT INUE .

DO 3 I=lell

LY 3 Js=teJ

DO 3 KE)leJJ

TEMP (Lo JoK)STEMP (JeJden) eFH® LDAVA(LHE e T o JaR D) sDAVY (CHIo 1 0JeR)
oDAVZ(CHI v eeRK)=LAMLCHE(loJeN) )

TEMP(J o doR)ZTEMP UL e JoR) oFR® (DELA(DLZL o o JoRI®DELA(CHL 0 I 0 Jek)
CoDELY(CHlel e oK) O®DELY (D2 ol o deK) ¢LELL(CHTL o L0 JsK)®UELZ(DZL s T 0de™ "))
TEMP(JoedoeK)BTEMP (L odoR)=FA*PLL (Lo JeK)®( DELAIUZAv Lo JoR)*DELX(PH]W]
0o oK) *DELY (D21 o JoJdoer)®DELY (PHEv1oJeR)eOELZ(PHL 0 b o JoK)IPVELZ(DZL 010y
*eK))

TEMP (Lo JoR)ETEMP (Lo en) =FA® (DELA(PZIv o JsK)POELA(PHLI 0l 0 Joi)
JoDELY(PLL ol o doRIROELY (FHI ol 0 oK) ¢VELLIPZI I 0 oK) SDELZ(PHIo10Js°"))

Cee® PSI 1S THE CUEFF UF =CH]l *e

POl (1eJeK)ZVAVRITRETAs I 0 JeN) ¢DAVY (ThETAs L 9JeK)
1eDAVZ(THETAs ] e JoK ) =CAML*THE TA (L 0 JeK)

1924 VTHERST (L eI ePST (] e Jen)

C=FA®PL]l (JoVeK)
PSI(TeJoR)IZPST(1eJdoK)=(UVELA(DZIeToJoR)®(OLELX(PHL v 10 JeK)®VTH
¢eDELA(THETA L o JoR) ) eDELY (D719 Lo JeK)®(DELY (PHI oo JosK)O®VTH=-

COELY (THETAsloeJon) ) oDELLZ(VLY 09 JeK)®(VELZ(PHI 0T o dsR)OVIH=VDELZ(THZTA
solodenr)))

LMATRIX
LMATRIX
LMATRIX
LMATKRIX
LMATRIA
LMATRIX
JUuLYée

JULY®

LMATRIX
LMATRIA
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIA
LMATRIX
LMATKIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATREX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX

LMATRIX |

LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIR
LMATKIX
LMATK]A
JULYS

JUL Y4

LMATREX
LMATKEIX
LMATRIX
LMATKIA
LMATRIA
LMATRIX
LMATKRIR
LMATRIX
LMATRIX
LMATRIA
LMATKLR
LMATKIX
LMATKLX
LHMATRIA
LMATRIX
LMATRIX
LMATKIX
LMATKRIX
LMATKRIX
LMATRIX
LMATHIX
LMATRIX
JUL Y&

w W
CErO~NGNEWN






3

Cee

373

33

C
C
C

126

CONTINUE

®e  INITIALIZATION UF VARIAHLES **

LV 33 I=].11

VU 33 J=1l+JJ

LO 33 K=l

1F ( 'loEU-".U“o(JoEQ.".UR.‘K.EU.l)) oV TO 373
IF (U] EWa 1) JUR, (U kUeJJ) UR, (KEWeJUJ)) GU TO 373
CHI(T «JoK)ISTEMP ([0 JeK)/PST(19JeK)

00 10 33

CHI(leJonN)=ue0

00 T0 33

CONTINUE

*ee5TART  OVERKELAXATION, ®ee
eve FCz200+DR®*VI), ©oe
o®  WR=w/FC=CA

177

2

1
C

)
202
]
0l

59

PRINT T7T.EPSHAXeITMAR

FORMAT (1HO«® LMATKRIA®IELOLToIIV)

LTER=D

EPS=0.90

LTER=ITER.]

SUM=0,.9Q

U0 6 [=2sN1

UV 6 U2

VDO 6 NR=22+NJ

STORE= Crl(]leJeK)

CHI(loedeK)aLHI(TvJeK)=CA®(
ICHE (Lol odok) @ (VARUELA(PHI ol o JoRD=DELA(THETAT o JoK)=THETA(LoJeK) ®
U1 eCe0S*DELA (DL} o JeK)))
JeCHI(L=1o0JoR)®* (VELA(THETAS o JoR)=VA SDELX (PHL eI 9 UeK)
GoTHETA(LoJoR)® () o=0H5PVELX(LLI 1 eJdek)))
SeCHI (oo oK) S (FA®(VACDELY (FHL o 1o Jok)=ULLYITHETAs o JeK))
6=THETA(LoJoR) ® (LAMMA*FECDELY(DZfeleJeK)))

ToCHE(LoJd=) oR)I®(FA®(DELY(THETACT s Jok)=VA® DELY(PHIe10JeK))
B=THETA (L eJoeR)® (GAMMA=FE®VLIL Y (DZLoloJeK) )
QeCHI (Lo JoRe ) (FAC(VATDELZ(PHL o J e JeR)=DELL(THET AL e JoK))
A=THETA(T 0 JeR) P (GAMMASFE®DELZ(DZ el eJeRN)))
BeCHI(LoJoR=1)®(FA®(DELZ(THETAsl s JoK)=VA® DELZ(PHI«TeJeK))
C=THETA(L o JoK)® (GAMMA=FE®VDELZ (UZIelsJeRh)))
U=CHE(JeJeR)®PST ([ eJeK) e
BIEMP(leJder))

EPSIEPSeAHS(CH] (19J9K)=5TURL)

SUMESUMARS (CHI(feJeK))

CUNTINUE

IFISUMEW,0.0) SUM=],.0E-]10

EPSEEPS/>5UM

PRINT CetPSeSUM

LF (EPS.LELEPSMAR) GU TV 9

LF (ITER=-1TMAX) Yoot

PRINT  2J2¢ITERVEPSSUM

FONMAT (1HQe®NO CONVERGANCE AFTEX ®9lae® ITERATIUNS WITH EPS=e,
JtBele®ANU  SUMz® L]l ,.@)

w0 T 15% '

PRINT 201 ITEREPSISUM

FORMAT (1HQ«®CUNVEKRGENCE HAS KEACHED AFTER @#4l4eoITERATIUNS wiITH
JEPS S®eEHese ® AND DSUM 3 ®4(Gl).0)

CONTINUE

oS HTAIN CONDUCTIVLITY, ®®

LU 1) I=}l.]1

00 11 J=leJy

VO 1) n=)ey

K=],

LF(THETA(J eJeK) oL TA) R=KRAT]IV

PSI(LeJon)IaPZl (JeJdeR)=CHI(1eJoR) /Y

PLLI(LeJoR)I=THETA(LeJoR)I®PST (] 9JeK)
PSI(Lleden)ER®*PST () eJeK)

CONT INUE

LMATRIX
LMATRIX
LMATKRIR
LMATRIX
LMATRIX
LMATREIX
LMATKIA
LMATRIX
LMATRIA
LMATRIX
LMATRIX
LMATRIA
LMATRIR
LMATRIA
LMATKIX
LMATRIX
LMATKIX
LMATRIX
LMATRIA
JULY«

LMATKREX
LMATNIX
LMATKRIA
LMATKIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATKIX
LMATREX
LMATHIX
LMATRIA
LMATRIA
LMATRIA
LMATKIR
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMNATRIX
LMATRIR
LMATRIX
LMATKIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATHIX
LMATNEX
LMATRIX
LMATRIX
LMATKIX
LMATRIX
LMATRIX

63
65

(14
68
69
TV
71
712
73

75
76
7
78
79

35
82
83
b
85
86
a7

1
90
91
92
9

. 99

9%
9
98

100
101
102
103

‘104

10
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
126
125
1206
127



(s ¥ aN oV o

12

®ers]  CONTAIND SEuMA o IHETA CUNTAINS NUKMALLIZED TEMP oo
®82COMPUTE CURKRENT IN +CURRENT OQUT FOUR LOOPINGe®®
*8e)21=DIFF CURRENT DENSITY +PZ1=CUNDe CUNRENT UENSITY.®®
*eo)ZzDIFF CUKRRENT DENSITY +PZI-CONDe CURRENT DENSITY IN X DIRT,®
LO 12 I=1.11
VO 12 J=1+JJ
VO 12 nr=leJy

TEMP (19JeK)=2=PST(1eJsh) *VELA(PHIs 19 JsK) /A
VDZLI T JoR)=DELX(PZYol0JeK)/ (A®VTH)
CONTINUE

FORMAT(1H00 11 (E1de4sln))

RE TUKRN

ENL

LMATKIX
LMATRIX
LMATKIX
LMATKIX
LMATKIX
LMATRIX
LMATRIX
LMATKIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX
LMATRIX

124

129

130
131
132
133
134
135
136
137
138
139
140




SUHRIUT INE RO

COMMON/ CUNZUOAMMA ¢ AMDA ¢ GAMZ ¢ GAMME ¢ LAMMZ
COMMON/AZ1100JeNIoNY

CUMMON ZAGI3ellold) o8¢ 0edleldlide Pellellol )
COMMON/VUOLTS/PHI (L0800l ))

COMMON/S IU/ZA .
CUMMUN/T/T1HOsTASTD

COMMON/V/VReVIHeVU
" COMMON/F AC‘QR:/'Q.?H.'C of L
COMMON/TIMES/TAVL U] o TAUF 0 Q2
COMMON/LUUP/RUUNT o ) I ME

9 FORMAT (1Ol 10eFlv.d) .
Cee o0 p CONTAINS SIUMA=E=3UUARED
LD S I3l.41

DO S J=ledJ
UV S Keledd |
PUlodeK)=FO® (DELA(PHI ol o JdoK) 02 .
LeUELY(PHIo 0o JoK) 982 oD LLZ(PHI910JeK)®92)
C%/A(leJon) .
S CONTINUE .
KE TURN
END

R0
RHO
RnO
R0
RHO
RHO
R0
L

L]
RO
L]
NHO

ko -

L
RHO
NHO
Rrt0
RO
KHO
RO

OB NPV IWN
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JUHROUT INE BYPASS
COMMON/HB/CAsLALLAIL LY

COMMON/A/KS
COMMON/CON/GAMMA s AMDA s GAM2 s GAMMY » LAMM2
COMMON/AZTTeJJeNTINY
connon/l-o/PZl(ll-ll-ll).!tnvtl}oll-ll)
COMMON/UDEGK/THETA (110l 01))
COMMOIS/STUZA

CUMMON/VAR/ZVART s VARC s VARY o VARE ¢ VAKP g VARD o VAR L o VARF ¢ INTA 4 INTH, INTC,
1INTD

COMMUN ZACILo o) o2l loldolddedClllodloll)
COUHMONZVULTS/PHE (Lo )0l )
CUMMUN/ I /7THUTAS D

COMMON/ZV/ VR eVTHIW VO
COMMONZATKAZFE o)1 o TAUL

EQUIVALENCE LZAWPS])

DIMENSTION PST(LLeldol))
*e  CALLED FROM BYPASS

VART=1 )1 It MP AT

VARC=10HCHARGLE AT

VARY=10HVOL TAGE AT

VAKE=10HCONDTY AT

VARP=z 1 0HPOWER AT

VAKD=19HUOONUKS AT

VAKL=10HCOND J AT

VARF=10HDIFF J AT

AINTA=1QHD2CNH] COEF

INTB=19HUCH] COEFF

INTC=191CH] COEFFT

INTO=1QHCUNST TERM

VY 2y I=1,11

DU 20 J=)eJJ

VO 2v K=1eJJ

LCU{eJeR)=0,0

THETA(L o JoKk)aTHO

Con 74 IS NET CHARGLE DENSITYeZA 1S IONIZED UONOR DENSITY ee oo

20

dB(LeJdeK) 30,0
PLI(LeJdeR)=A

LA (1oeJdeR)=A

PHI(L oK)= (11=1)/12.0
VO 6 I=1411]

DO 6 J=)edy

V0 6 nR=]eJy

TEMP (1 00eR)3=PST(LeJeK)TVELX(PHE 10 JoK)/A
CALL CIxCulY

RETURN

tND

BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
HBYPASS
HYPASS
BYPASS
BYPASS
HYPASS
HYPASS
HYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS
HBYPASS
BYPASS
BYPASS
BYPASS
BYPASS
BYPASS

- HYPASS

HYPASS
HYPASS
HYPASS
HYPASS
BYPASS
HYPASS
BYPASS
BYPASS
HYPASS
BYPASS
BYPASS
BYPASS
HYPASS
HYPASS
BYPASS
BYPASS

- e G S GO as B G g
CENOCVEWLN=~ODENCVIWLUN
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L

WeLWWwbWwWwWNANNNNNANN
EVNOUVESEILAN~OOET~NEG VW

& rw
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SUHROUT INE CIRCULT
COMMON/CUN/GAMMA « AMDA s GAM2 s GAMME ¢ GAMM2
COMMON/AZ I T 9JJeNl oNJ

COMMON/V/VReVTIHOVY

COMMON/STUZA

COMMUN/T/1MU«TATD

COMMON/VUL IS/PrL (1101001 D) *
COMMON/ULGR/THETACLLL o1 0) )

COMHON ZA(IDolloll)e2CtlLol)ed)eZAtdlellol))
COMMON/L IMITS/CMAR s VHAX 9 DELV o NX

COMMUN/ TWO/PZI 1 el dodi)oTEMP(LL0l0)))
COMMON/CULS/F LD oFF (LD ob(1))
COMMON/H/LCAsLAELAL LY

AL=0 SHNNZN] =2
[V ) I’loll'Nl
RLsKkL )

C oo OHTAIN 'Nt CURKRENT AT (loJdeK)
00 21 JzlédJ
V0 22 KRzl dY
2 FIR)SZAGLoJok) e TEMP (10 JeK)
C &0 ee A IS DIFF CURKENT DENSITY @0 oo
C ®o ea P21 |S COND CUKKENT DENS]ITY ®e oo
Cee o0 [ IS INTEOGKATED FRUM LleJdJ FOR EACH J ®0 00 oo
2] FF (D) =SIMPSIF)
: FFFaSIMPS (FF) *VNR
IF(KLeEWe]) Fl=) 0=FFF
IFIKLEU.2) F2=),0-FFF
6 CONT INUE
FA2Q.,5® (F)eF2)
PRINT JoF})oF2
PRINT 2
PRINT JeCHMAXsVMAR
IF(FAGE s VMAR) FAsVYMAR
FFES) . 0=rA
JF(FFF o uk sCMAX) FFFaCMAR
FAz),0-¢FF
2 FORMAT (1r0e® MAX LIMITS ARE o)
PRINT Jo FFFoFA
S CONT INUE )
3 FONMAT(IH0 1 0Re®Ia @42 12:.50)10K9%Va ®4E}12,5)
VO S1 JUsleJd
DO S K=)edy
S1 PHI (L oJeK) =FA
KETURN
EnD

(XXX 1]

CIRCULTY
CIRCUIT
Clkcult
CiNCcuUll
CIRCUIT
CIKCUlY
CIRCULY
CinCult
ClikCuly
ClkCULY
CIRCULY
CIRCULT
Circult
CINCULT
CIRCULT
CInCUlY
CIRCUL I
CIkCuly
Cinculr
CIRCULT
CluCull
CIRCULT
CIRCULT
Cikcull
CiIrCullY
CInCuUlt
CinCuilty
CIRCuUIlTY
CIRCULY
CIRCuLT
CIRCULT
CIRCULT
(J LIV}
CIRCULTY
CIRCUlY
CINCULT
CIRCUlY
CIRCuUlT
CIRCULT
CIRCULT
CIRCULT
CIRCULY
CIRCU§T
CIRCULY
CIRCUITY

P PP PP PCLWLPWRWWWWWNNRNNNRNANRR oo oo e o w
e eRNZ e P e Bl P R LN P I N, e 0T NT VIR COE NV & UN
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FUNCTION SIMPS(F)
*ep 46 CAKNAHAN

®®  Hxl TWUns=2 Ba)]) A=)
®®  CUMMUN IN WORK ARNAY

DIMENSIUN F (1))
COMMON/AZ11eJJeNIeNY

INJITIALLLZE PARAMETERS oo ae
SUMEND=¢.0 » SUMMIU=0,.0

®e®  EVALUATE SUMEND AND SUMMID eee

VO 1 M=1eb
K=220M=)
SUMEND=SUMENU *F (R )
SUMMID=SUMMLD*F (Re])
CUNT INUL
®e NETURN ESTIMATED VALUE UF INTEGRAL eee
SIMPS=(2.005UMEND o4 0*SUMMID=F (1) *F(11)) /3.0
NE TURN
END

S1MPS
S1MPS
SIMPS
SImMPS
SIMPS
S1MPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS
SIMPS

OCE~NGVSWN
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SUHKQUT INE PSSN(ITER)

COMMON ZA(L1elloll)oART(L1edledl)e2C(l2eldlrll)
COMMON/VULTS/ARG (119110 11)
COMMON/CUN/GAMMA ¢ AMDA » GAM2 ¢ GAMMB s GAMM2

COMMON/VAR/VART ¢ VARC o VANV ¢ VARE 9 VAKP ¢ VARD o VAR T o VAKF 9 INTA9 INTR INTC

1INTD
CUMMON/AZ119JJeN]eN]
COMMUON/ULAMSZ GAMD
COMMON/V/VRIVIHeVO
COMMON/LUVP/KUUNT o TIME
COMMUN/A4/ 1 TMAX «EPSMAX oW )
COMMON/T/Tn0es A TD
COMMON/SI0/A
CUUIVALENWLE (W]l enNJ)
FORHAT (JHOe® EPS= ®4011e50® EPSMAXS #,Gl1.Se® TAs #,G611,.5)
1TER=D

£P5=C vl

SUM=9%,.0

JTER=1ITER])

VO 'S uU=1lsWJ

Li=U-1

L2=Je]

V0 S K=1eJJ

Mlz=K=]

M2=Ke]

Ity EQ.,1) GO T0O 12

TIF (J.EQGJI) GO TO 13

1IF (K, tu.]) 60 70 )4

IF(K,EQeJU) GU TO 15

vl 10 17

L1=2

u0 T0 Yo

L2=N1

GO 71O 16

M]=2

GO0 TO 17

M2=N)

CONTINVE

VO S 1=2eN]

TEMP=ARG (] +JeK)

ARO (I eJsR)=AROG (I 9 JsK)® (L e0=W])eW]®
(ARG (J*1eJeK)¢ARO(TI=10JoK) ¢GAMMA®
¢ (ARG (Lol Y oK) ¢ARD (1 oL2eK)*
CARG(JoJoM)) ARG (T o JsML2) ) @

SART (I9JeK))/GAMD
SUM=SUM+AKRS (ARG (1eJeNR))
EPS=EPSeABS (AKO6 ([ o Jok) =TEMP)
EPS=EPS/SUM :

IF (EPS.LE.EPSMAX) GO TO 6

STOP ITER 1F CONVERGENT UR EXESSIVE ITER

IF(ITER=1TMAX) Gyuo8 .

WRITE(6)e202) LTERIEPSTIME

FURMAT (1HO+*NU CONVEROENCE AFTER®914o® JTERATIONS WITH EPS=®,
1ES . 1e® AT TIME =%4Gllea) -

w0 TO 15

WRITE(610201) TTERIEPSeTIME

FORMAT (1HU s *CONVLEROLEICE HAS HEEN REACHED AFTER®9 J49*ITERATIONS
IWlIH LPS=e,
ltrnele® Al TIME =%elioew)

Lot TauL

MA=2

Y 4 orl o e te i)

oo
. .
\ o e e e e

PO1SSON
POISSUN
POISSON
PUOISSON
PO1ISSUN
POISSUN
POISSON
POISSUN
POISSON

- POISSON

PUISSUN
PUISSUN
POISSON
POISSUN
POISSUN
POISSUN
POISSON
POISSON
PUISSON
PO1SSUN
POISSUN
POISSUN
POISSON
POISSUN
POISSON
POISSOUN
POISSON
POISSOUN
PUISSUN
PUOISSUN
POISSUN
POISSUN
POLSSUN

‘POISSUN

PO1SSON
POISSUN
POISSON
POISSUN
PO1SSON
POISSUN
POISSON
POISSUN
POISSUN
POISSUN
POISSUN
POISSON
POISSUN
POISSUN
PUISSUN
POISSUN
PO1SSON
POISSON
PUOISSUN
PO1SSUN
POISSON
POISSUN
PO1SSUN
POISSON
PUOLISSUN
POLISSON
POJSSUN
Pl

e e
OCENOCUVSEWN-OODINOCTVEWN

NNV
S WA =~0O

VWLWwWwhnrRNN
SFLWN-OCLCET~NO WV

WVWWWwWw
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&
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IR EXERES
CENGCUVEWN

uuoununern
CVNSEWN=O

coouvunwn
N-—owo~

6



133

DO 20 Lagend)
VO 170 JUs2.NY
ALL RIUHT HAND PTS ARE COMR] DEFINED ®e
ARG L s JonL)2ARG (T 0o M)
ARG (J oRL s J) =ANO (I oMo J)
CONT INWE
o EDGES OF THE CudE REMAIN ®o
U0 171 1=32,N]
AR (Lol oRL)SARG (s o M)
ARG ([ o JJoRL ) 3ARO () 0 JJeM)
AKO (T oKL ol )sARG(JoeMel)
ARG (T oRL 2 JJ) ARG () e MoNJ)
CONIT INUE
CUNTINUE
PNINT B2I+EPS+EPSMAXR s SUM
KE TUKRN
ENVL

PULSSUN
POISSUN
POISSON
PUISSUN
POISSUN
POISSUN
POLSSON
POISSUN
PO1SSUN
PULISSUN
POISSON
PUISSUN
POISSUN
POLISSON
POLISSUN
POLISSUN

POISSUN’

(1)

70
T
L
LA
74
s
Jo
77
78
79
s
8l
8z
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SUHROUT INE TRIDAG

COMMON/AZLLvJJeNTLoNJ

COMMON/L/LACN
COMMON/COLS/BH 11D sAALLD) oGLLLD)
COMMON/WURK/ZAKE (30D o ARI(11) oARS (11D oAKB(LY)

C SUHROUT INE TRUG FOK .SULVING LINEAR SIMULTANEOUS EUNS.
Cooe APP, NUM, METHODS ==pPusd .

IF=LAe)

"ARD(LA) sl (LA) .

ANS (LA) sARIILA) Z7AK]D (LA)

DO 161 I=JFeN

AR (1) sUBLI)=-AALL)®6LII=1)/7ARL(]=])

JF (AU (AR (1)) oLEe 1 0E=2]) AR1(l)=) . 0E-2]
10} ARS () (ARI(I) =AACL)®AKS (1=1))/AR] (1)

AR3 (N) =ARS (N)

LASTanN=LA

DO 102 K=]oLADT
C TRIDAG FUR SOLVING SIMULTANEOUS €

IshN=K
102  ARI(II=ARS(I)=GLII)*ARI(1 1) /7AR] (1))

RETURN

End

TRIDAG
TRIDAG
IR10AG
110AG
TRIDAL
TRIDAG
1R10A6
TRIDAL
TR1DA6
1R10AG
TRIDAG
TRIDAG
IR10A6
TRI0AG6
TRI0AG
TRIDAG
TRIVAG
IKIDAG
TRIVAG
TRIDAG
TRI0AG
TRI0AG

CONOCRIOWN

oy -1

- v
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YPUNCTLUN VELR(UeloJen)

UIMENSION i(ibedlod )
COMMONZAZ Ll s JJeNl oNY
COMMUNZCUNZGAMMA o AMDA o GAMZ ¢ GAMMU ¢« bAMMZ
CUMMON/STO/ZA

COMMON/Y /YR eV Ire VO

COMMUNZATRAZFE +R 1o 1 AUM .
IFtl.tuel) G0 10 1))

IF (le.Euel)) U TO 222
VELAS(U(lelodeK)=Uti=lode))/2.0

L0 10 JJ)

DELAS=2.52(J,0% (1eJeR)=0.0%(1e)edeK)eU(]e20JsK))
L0 10 33)

DELX3 0e59(3:,0°U(1oJeR) =440t 1I=10JoK) eU(1~20J4K))
CONT UL

HE TURN

ENTRY DELY

IH(Jetuel) LU TU 5

1IF(J.£Q..00) LO TO 85
DELXFE® (UL oJo) oK) =U(foeJd=]eK))

L T 53

VLLAz0.0

CUNT INUE

KE TUKRN

ENTRY DELZ

It ,tuel) LU Tu S5

1R LRJII) GO 1O S
ULLA=FE®(U(LoeJdoRe ) )=UlloJoRk=]))
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APPENDIX G

THE DONOR IONIZATION EQUATION

The n type semiconductor modelled in Chapter 2 is assumed to
be only partially ionized at any temperature T in the operating tem-
perature range. In this section, an expression for the ionized donor
density at any specified temperature is derived using Ferml statistics
and the sample band model of the semiconductor outlined in Chapter 2,

The n type semiconductor chosen has been assumed to have neg=-
ligible acceptor attoms, i.e.,

Na'4<'Nd
Further, the semiconductor has been assumed to be a nondegenerate semi-
conductor, Those donors are incompletely ionized in the temperature
range of operation. Thus, at T = 0K, the valence band is full, and the
conduction band is empty. In the operating temperature range, some of the
electrons from the donor states are thermally excited into the conduc-
tion band, leaving behind ionized donors., Since, as shown in Fig. 2.la,
the valence level lies much further away below the conduction band than
the donor level, only a negligible number of electrons acquire sufficient
energy to be excited from the valence band to the conduction band,

Thus, if p(Ec) be the probability of finding an electron in the

conduction band, then, applying Fermi statistics

P(E,) = (1 + exp(E, = E)/kT)} (G.1)
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Also, if n be defined as the number of ionized donors per unit volume
and p(E ) be the probability of occupaticn of a donor state, then,

ng = N,(1 = p(E,)) (G+2)

But, p(Ed), the probability of occupation of a donor state can
be obtained by applying Fermi statistics:

p(Eg) = (1 + exp(Ey = Eg)/kT)™} (G.3)

From Fig. 2.1, E. is greater than Ed’ measured from the valence band

f

edge, Also, it has been assumed that the operating temperature range
.

is low enough such that only partial ionization takes place and so

kT Eyr E The quantity (Ed - E.)/kT is thus negligible compared to

f.

unity., Under equilibrium conditions, charge neutrality is maintained l
everywhere within the sample. Since both acceptor density and hole

concentrations have been neglected in the model, then, in equilibrium,

NyexpC(E, = E)/KT) = Ny2xp((Ey = E)/KT) (Ges)
Hence,

b‘f = (Ec + Ed)/Z
Note that this is true only under equilibrium conditions. Under operating
conditions, it is only approximately true. Eq. (G.2), therefore, reduces
to the simple expression

+ = s -

ny  Njexp((E4 - Ef)/kT (G.5)

Similarly, using Eq. (g.1), the number of electrons per unit
volume under equilibrium conditions is given by

n= Ndp(EC)

= Nd (G.())

1 + cxp((ﬁf - Eéj7kf)

Also, in the selected temperature range,

KT << E, - Ef
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Hence,
exp((E, = Eg)/kT)>> 1
and so,
n= Ndexp((Ef - Ec)/kT) (G.7)
Defining E, the activation energy, by the relation
Ea = Ec - Ed (G.8)
and substituting back in the relation Eq. (G.5) for N,
+
ny = Nqexp(E,/kT) (Ge9)
This is the relation stated in Eq. (2.2.1). There is an approxi-
mation involved since equilibrium conditions are utilized in the deri-
vation. Since considerable diffusion effects are expected to be encoun-
tered, the equilibrium expression for n cannot be used, However, the

ionized donors are stationary, and the equilibriur expressions are here

as an approximation,




APPENDIX H

THE GENERALIZED CONTINUITY EQUATION

The various dependent variables, like , the charge density,
are functions of space and time and often occur as total differentials, -
™
In this section, the total differential is expressed in terms of par-

tial derivatives and the divergence operator, both of which can be di-

rectly evaluated by finite difference techniques,

Consider a real function defined in a region R. The function
represents any real physical property. It is, therefore, finite, bound:d,
and continuously differentiable, and a function of space and time, In
cartesian co-ordinates,

f=f(x, y, 2o t)

Taking the total derivative of this function with respect to
time,

df = 3f + fdx + 3fdy + 3fdz
dt 3t 3xdt 3ydt azdt

dx, dy, and dz represent the velocities with which the property in x,
dt dt dt

y, and z directions respectively, Writing Voo vy, and v, for the re-
spective velocities,

df = of + gg'v +f v +3¢f v

dt 3t 3x X 3y 5z 2

Vs Vys V, are the components of the velocity vector v. Consider

the vector function fv. Since v is the velocity associated with the

property f, the quantity fv represents the current or flux density

139
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associated with the property. Performing the divergence operation on th
this function,

Ve(fV) = f9.V+v ., Vf
But V. v = 0, Also,

v.Vfav f4+4v f+v
Xx— y—
X y

Z-—

Hence,

gi-a_f'i' v. (f;)
dt ot

sa_f.'l' V.Jf
ot

where jf is the current density assocliated with the property f.
The above equation is utilized in arriving at the continuity

equations for charge and energy flow in Chapters 2 and 3 respectively,
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