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ABSTRACT

ESSENTIAL FIXED POINTS AND ALMOST
CONTINUOUS FUNCTIONS

by Somashekhar Amrith Naimpally

The concept of an essentilal fixed point was first
introduced by M. K. Fort, Jr. for single-valued continuous
self-mapplngs on a compact metric space with the fixed
point property. Schmidt extended the theory to a compact
Hausdorff space wlth the fixed point property. Jlang Jla-
he has extended the theory to upper semi-contlnuous multi-
valued self-mapplngs on a compact metric space. In the
first chapter of thilis thesls the theory of essential fixed
points 1s further extended to upper seml-continuous multl-
valued self-mapplngs on a compact Hausdorff space.

Almost continuous functions were introduced by
Stallings. In Chapter II two new topologles on the func-
tlon spaces of almost continuous functions are introduced.
Then the theory of essential flxed points 1s extended to
single-valued almost continuous self-mappings, first on a
compact metric space and then on a compact Hausdorff space
both having the fixed polnt property.

In Chapter III conslderation 1s restrlcted to real-

valued almost continuous functions defined on a closed



Somashekhar Amrith Naimpally

interval. The chief results are: (1) almost continuity

is equivalent to the connected graph property; (2) an

almost continuous function 1s continuous 1f and only 1f the
inverse 1image of each point 1s closed. Finally the relation-
ship between almost continuous functions and other non-
contlnuous functlons such as neighborly functlons and locally
recurrent functions 1s investigated.

In the last chapter Borsuk's concept of a retract 1s
extended to that of an almost retract. It 1s shown that
whereas almost retracts inherit the fixed point property
from the original space, they do not always inherit such

properties as local connectedness.
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CHAPTER I

ESSENTIAL FIXED POINTS OF MULTIVALUED

MAPPINGS ON A UNIFORM SPACE

Essentilal fixed points were first introduced by
M. K. Fort, Jr. in [4] for single valued continuous self-
mapplings of a compact metric space with the fixed point
property. The central result in Fort's paper was that
contlnuous self-mappings on such a space can be approxl-
mated arpitrarily closely by those which have all fixed
points essential. Schmidt [13] extended the theory of
essentlal flxed points to continuous self-mappings on a
compact Hausdorff space wilth the fixed point property.
Jlang Jia-he [7] considered upper semi-continuous multl-
valued self-mappings on a compact metric space which need
not have the fixed point property. In thils chapter we
extend the theory to the case of essentlal flxed points of
upper semi-continuous multivalued mappings on a compact
Hausdorff space, We use the technlques of Schmidt and
Jlang Jla-he.

We use the standard terminology of Hockling and Young
[6] and Kelley [9].

Let (X,T) be a compact Hausdorff space with topology
T . (X need not have the fixed point property.) Let B(X)



be the family of all open symmetric neighborhoods of the
diagonal in the product space X x X. Then B(X) 1s a base
for the uniformity U of (X, T). Let C(X) be the space of
all nonempty compact subsets of X. For each U in WU let

M) = {Ex) o) x o) | kS uED, kv §.

{M(U)} , with U in L, is a base for the uniformity 4>
of C(X). C(X) is a compact Hausdorff space with unifor-
mity GD.

Let £ ¢+ Y = C(X) be a mapping of Y into C(X),
(f 18 a multi-valued mapping on ¥ to X). Let "W be a
uniformity for Y.

Definition 1.1

f i1s upper semi-continuous at y in ¥ if and only 1if
for each U in B(X), there is a W in"W such that for all

(yo¥y'") in W, £(y") c  vulfly)] .

Definition 1.2

£ is lower semi-continuous at y in Y if and only 1if
for each U in B(X) there is a W in "W such that for all
(v,y') inWw, f(y) . vulf(y')] . £ is continuous if and
only if it is upper semi-continuous and lower semi-continu-
ous, Let D be a directed set and n be in D, It 1is well
known that f 1is upper semi-continuous at y in Y if and only
iAf yp —>V¥s X ——3 X, 0 In D, xp in f(yn), implies x
is in £(y). Let S(Y,C(X)) be the space of all upper semi-
continuous mappings on Y to C(X). For each P in ﬁ> let
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w(e) = {(r,0) | f.e tn s(v,c(x), (£0y), e(y)) n P for
all y inY z.
{W(P) z , with P in P 1s a base for the uniformity N of

S(y, c(x)).

Theorem 1.1 S(Y,C(X)) 1s complete.

Proof. This is proved by showing that S(Y,C(X)) 1is
closed in the space of all functions on Y to C(X). Let f
be a 1limit point of S(Y,C(X)). For each W [M(U)] there is
agin S(Y,C(X)) such that (f(y),g(y)) belongs to M(V) for
all y in Y where we may assume that VoVoVCT U. This
implies that g(y) CV [f(y)] and £(y)CV [e(¥)].

Now there exists a W in Wsuch that for all (y,y') in W,
g(y') < Viely)]l. Now £(y')C Vie(y')]

C Vvov [&(y)]

C VovoV [f(y)]

C v [£(y)].
This shows that f i1s an element of S(Y,C(X)).

Definition 1.3

Let f be in S(X,C(X)) and x be in X. Then x 1s called
a fixed point of f if and only if x 1s in f(x).

et 8 C S(X,C(X)) be the subspace of all f in

S(X,C(X)) which have at least one fixed point.

Theorem 1.2 T 1s complete.

Proof. Let {fng be a Cauchy net in § . Since
S(X,C(X)) 1s complete, there is an f in S(X,C(X)) such that
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fn ——> f. Since each fp 1s in S, there exist Xp In X
such that each xp belongs to fp (xpn). Since X is a compact
space there exlsts a convergent subnet of E_xn } and we can
then conslder the corresponding subnet of {fn g. So there
1s no loss of generality in assuming that the net ixn g
ltself 1s convergent. So let xp —— 3y x . Since £, — 5 f
there exists a subnet {.xnmz of %’xn} such that for any U
in QA , we can choose %nm in f (xnm) such that (?hm, xnm)
belongs to U. Then %nm ——> X and since f 1is upper seml-
continuous at x 1t follows that x belongs to f(x). This
shows that f 1s an element of §, l.e. '§ 1s complete.

Q.E.D.
Definition 1.4 For £ in § let F(f) = the set of all

fixed points of f. Then F is a function on S to C(X).

Theorem 1.3 F 1s in S(5,c(X)).

Proof. Clearly for £ in 3, F(F) 1s in C(X). Let
fn —>f, Xy ——% X where x, 1s in F(fp). Choose i'nm
in f(xnm) such that (xnm, xnm) is in U for given U in U ,
ﬁhm ——> X. Since f 1s upper semi-continuous at x, x 1s

in F(f).
Q.E.D.

Definition 1.5 x in F(f) 1s essentlal if and only if

for each U in B(X), there is an N in NN such that whenever

(f,8) 1s In N, x 1s in U [F(g)].

Definition 1.6 £ in‘g 1s an essentlal fixed point map if

and only 1f all fixed polnts of f are essential.
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Theorem 1.4 £ in'S 1is an essential fixed polnt map 1if

and only if F : § 3 C(X) 1s contlnuous at f.

Proof. Let f in S be an essential fixed point map.
For U in B(X) let V be in B(X) such that V o V£ U. Since
F(f) 1s compact there 1s a finite subset Z’xl sy Xo oy o . .xn}
of F(f) such that F(f) C L,Qn voo[x4]. Since x4 1n

1
F(f) 1is essential for each i=1 , 2, ... n , there 1s an
N in N such that for (f,g) in N, g in '3,

xi iS in V [F(g)], i = l 3 2 F] . . . N

Therefore, F(f) C (')121 V[xi]CfL)igl VoV [F(g))]
C U418, U [F(g)] which shows that F is lower seml-
continuous at f. But F 1s upper semi-contlnuous by
theorem 1.3. It follows that F 1s continuous at f.

Next let F be continuous at f. Let U be in B(X)
and x be in F(f). Since F is lower semi-continuous,
there 1s an N in N such that for g in S, (f,g) in N
implies F(f)C V [F(g)], 1.e. x 1s in V [F(g)], which
means that x 1s essentlal for f. Thls shows that f 1s an

essentlial fixed point map.
Q'E.D'

Theorem 1.5 If f in S has a single fixed point then this

fixed polnt 1s essential.

Proof. Let { p} = F(f). For any U in B(X) there
1s an N in W such that whenever g is 1in S , (f,g) 1s in
N, F(g) C V [F(£f)] =V [ p ] which means that p is in V

[F(g)]. Therefore, p 1s essential.
QoEcDo
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Theorem 1.6 Let £ be in S and U, V be in B(X) such that

V oV U. Then there 1s an N 1n \/fsuch that 1f g 1s 1in
T and (£, g) 1s 1n N then V [F(g)] U [F(f)].

Proof. Since F 1s upper seml-continuous at f, there
is an N in JY such that 1f g 1s in ¥, (f,g) 1s in N then
F(g) C V [F(£)].

If p is in V [F(g)]), then p 1s 1in V [q] for some g
in F(g) and q is in V [r] for some r in F(f). Therefore,
pls iInV oV [r]C U [r], that 1s V [F(g)]l ¢ U[F(f)].

Q.E.D.



CHAPTER II

ESSENTIAL FIXED POINTS OF ALMOST

CONTINUOUS FUNCTIONS

In this chapter we extend the theory of essential
fixed polnts to almost continuous self-mappings on com-
pact metrlic and compact Hausdorff spaces respectively.
Stalllings first introduced almost continuous functions in
[14] and proved that an almost continuous self-mapping of
a Hausdorff space with the fixed point property has a fixed
polnt. In order to consider the theory of essential fixed
polnts for almost continuous functlons, we introduce two
new topologles on functlion spaces of these functions. We
shall show that these topologles agree wlth the usual
topologlies for functlon spaces of continuous functlons.

We then prove that the theorems of Fort [4] and Schmidt
[13] hold when the functions under consideration are almost
continuous.

Let X and Y be topological spaces. Let f:X —35 Y be
a function. Let the graph of f be denoted by

N(g) = {(x,f(x)) | xmx{C xxv.

Let X X Y be assigned the usual product topology. The
following definition is due to Stallings [14].



Definition 2.1 f ¢ X —> Y 1s almost continuous 1f and

only if for each open set N in X X Y containing [1(f),

there 1s a continuous function g : X —> Y such that
MN(s) C N.

Definition 2.2 X has the flxed point property 1f and

only 1f every continuous function £ on X to X has a fixed
point, 1.e. there 1s a p in X such that f(p) = p.

The following proposition due to Stallings [14]
shows the existence of fixed polnts for almost contlnuous

functions.

Proposition 2.1 Let X be a Hausdorff space wlth the

fixed point property. Then every almost continuous func-
tion f on X to X has a fixed point.

We not investigate the "essential" character of the
fixed points of almost continuous functions. The main
result 1s that 1f X has the filxed point property and f 1s
an almost contlnuous function on X to X then f can be ap-
proximated, in a certaln sense, by an essential fixed
point map.

We first study metric spaces (up to Theorem 2.4)
and then uniform spaces.

So let X and Y be compact metric spaces with metrics
d , d' respectively and let X X Y be assigned the product
metric D((xl » ¥1)s (%0, y2)) = d(xl ’ xg) + d'(Yl ’ Yg)'
Let H be the Hausdorff metric (see [9] page 131) on the

hyperspace of all non-empty closed subsets of X X Y.
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We introduce a metric @ in YX. This was used by
Kuratowski [10] in discussing continuous functions defined

on X as well as on subsets of X.

Definition 2.3 For f and g in YX we define Q(f:8)

= H (—_r_-' (f): I" (S) )°
Clearly (vX, Q) is a pseudometric space. We make

1t Into a metric space by agreeing that £ = g 1if and only
if rl (f) = fi (g) for f, g in Yx and then passing to
the quotlent space wlth respect to this relatlon.

Let S(X,Y) be the set of all continuous functions on
X to ¥ and for f, g in S(X,Y) define Q (f,g) = sup

1 PEX

d'(f(p),e8(p)) where d' is the metric for Y. It is easlly
‘seen that Q, 1s a metric on S(X,Y). The next theorem

relates the metrics Q and Qi .

Theorem 2.1 The metrics Q and Qt are equivalent for
sS(X,Y).

Proof. Let ¢ 9o be arbitrary and let U(f, &) =
(Lg l f,8 1n S(X,Y) such that Q(f,g) < f,% » Ui(f, &)
={g l f,g in S(X,Y) such that Qz(f,g) < t% . It is
easily seen that U; (f, &€ ) € U(f, & ). We now show that
there 1s a & » & such that U(f, 8 ) < Uy(f, & ). Since
f 1s continuous on a compact set X, f 1s uniformly con-
tinuous. Therefore, there exlsts a 5>o which we can, with-
out any loss of generallty, assume to be < &/3, such that
for all x, y in X d(x,y) € & 1implies d'(f(x),f(y)) < ¢ -
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Now let g be in U(f, & ) and let p be an arbitrary point
in X. Then there 1s a q in X such that d(p,g) + d'(&(p),
f(a))«§. Now a'(f(p), g(p)) <« d(p,a) + d'(&(p),f(a))
+d(p,a) +a'(f(p),2(a)) <2 O + §/3<s.

This means g 1s in U;(f, & ). Therefore, @ and <,

are equivalent for S(X,Y).
Q.E.D.

Let (aﬂl,q ) be the space of all almost continuous
functions on X to X where X 1s a compact metric space with
the fixed point property. Let C(X2) denote the space of
all non-empty closed subsets of X°= X x X with the Haus-
dorff metric H. Let A = %_(p,p) \ for p in ch X2 be
the diagonal in X2. We modify the definition of essentlal
fixed poilnts to sult theilr study in relation to almost

continuous functions.

Definition 2.4 For £ in A we define F(f) = TT(EINA.

Clearly F is a function on Jq to c(X2).

Definition 2.5 p in F(f) 1s an essential point of f in

J4 if and only if corresponding to each open set V in
X2 containing p, there exlsts an open set W in J4 contain-
ing f such that for all g in W , F(g){\ V # ¢

Theorem 2.2 F :04 _— c(x2) is upper semi-continuous.

Proof. Let § »0 be arbitrary. Let & be the
Hausdorff distance between & and [V (f) - U(F(f), & ) if
M (f) ¢C U(F(f), & ) and let & = 1 otherwise. If g is
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in A such that @ (f,g) <® then F(g) & U(F(f), & ).

Therefore, F 1s upper semi-contlnuous.
QOE.DD

Theorem 2.3 If F(f) is a single point p then it is an

essential polnt for f.

Proof. By Theorem 2.2 for & >0 there exlsts a dv 0
such that for all g in 4 such that Q(f,8)<s, F(g)
C U(p, € ). That is F(g) M U(p, &) # ¢ . Therefore,

p 1s essentlal for f.
Q.E.D.

Definltion 2.6 f 1n 64 1s an essentlal flxed point map

if and only 1f all poilnts of F(f) are essential for f.

Theorem 2.4 F 1s lower semi-continuous at f in $# 1if and

only if f 1s an essential flxed polnt map.

Proof. Let F be lower semi-continuous at f in A .
Then for all € O, there 1s a 57 O such that for all g
in o , Q(f,8)<d tmplies F(f) C U(F(g), & ). Letp
be in F(f). Then p is in U(F(g), ¢ ), implies F(g) M)
U(p, ¢ ) # d> . Therefore, p 1s essential for f. Thus f
is an essentlal fixed point map.

Next let f be an essential fixed point map. Then
every point in F(f) 1s essential for f. Let £ 0. For
each p in F(f), there 1is a &p > 0 such that for all g
in dﬂ s Q(f,g) < &p implies F(g) M U(p, &/2) # 4b .
Since F(f) 1is compact a finite number of U(p, £€/2) cover

F(f). Let & be the minimum of all the corresponding
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Sp's. Now if Q(f,g)<8 then each p in F(f) 1is 1in
U(F(g), & ). Therefore, F(f) C U(F(g), € ). This

implies F 1s lower semi-continuous at f.
Q.E.D.

Theorem 2.5 For £ in d4 and &> O, there 1s an

essential fixed point map g in JA such that M(g)
c u T, £ ).

Proof. Since f 1s in dﬂ s there 1s a contilnuous
function h on X to X such that [(h)C U( P (f), £ ).
Since [1(h) 1s compact, there is a > O such that
u( P (h), &) C U(_rTT_f, £ ). By Fort's theorem [4],
there 1s a continuous function g on X to X, which 1s an
essentlal fixed point map and Ql(g,h) <& . Then clearly

Ng) c Uu( N(n), & )cC u( Pile), £ ).
Q.E.D.
It should be noted that we have actually proved that g can
be chosen to be contlnuous.

Next we consider the essentlal polnts of almost
continuous functions on X to X where X 1s a compact Haus-
dorff space with the fixed polnt property.

Let & be the space of all almost continuous functions
on X to X and let S be the subspace of 54 containing only
continuous functions.

We 1ntroduce a topology T for 54 by definlng the

Kuratowskl closure operator for a subset B of J4 (see (9],

p. 43).
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Definition 2.7 f 1s in B' (the set of limit points of B)

1f and only i1f for each open set VC X° contalning n(f),

there 1s a g(# f) in B such that [ (g)c V.

Let B® = B (U B'. We shall now prove that the

operator 'c' satisfies the conditions (a) to (d) of the

Kauratowskl closure operator ([9], page 43).

in
1s
in

in
If

(a)
(o)
(c)

(a)

in B,,

1

Clearly &° = ¢ .

For each B @ , obviously B — BC.

We want to show that BSC = BC for each BC 4.

Clearly B® ¢ B®®. Suppose f is in BCC but

not in B®. Then for each open set V contalning
[1(f) there 1s a g in B® different from f such

that [1(5) cC V. If g is in B' then clearly

there 1s an h 1n B different from f such that
M(h) € V. Therefore, f 1s in B'. If g 1s

in B then f is in B'. In both cases f 1s in B,

a contradiction, therefore, B®C = BC.

Let B; and B, be subsets of dq. We wlsh to show

c c
that B, U B, = (B; U By)C.

¢ c c

Let £ be 1n B] (U B;. Then either f 1s in B; or f is
Bg. Suppose f 1s in Bi. Then f 1s in Bl or Bi. If ¢
then f 1is in By U B2. If £ is in Bi then f is

c
c

Therefore, By \U By C (B; U By) . Next let f be
(B; U Bp)®. Then f is in By \U By or in (B; U Bp)'.
f is in B, W, B,, then f 1s in B, or By, 1.e. f 1s In
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B, or BS, l.e. £ is in BS (U By. If £ is in (B (U Bp)'
then clearly f 1is Bi or Bé. Therefore, 'c' 1s the
Kuratowskl closure operator.

It 1s easy to see that the topology T of H induced
by 'c' 1s the same as the one generated by the basils con-
sisting of sets of the form uﬂv = '{f ' f 1in ¢ such

that [W(f) C V E for V an open set in X2,

Theorem 2.6 If X 1s a compact metric space then (J4 ,€ )

1s equivalent to ( A , T ).

Proof. Let f be an element of @9 and let V be an
open subset of X° containing T(f). Since p(f) 1s
compact there is a positive & such that U[ T1(E), & lc V.
Now if g belongs to U(f,é ) then Q( EIF _r‘(g))<8.
This implies that 1 (g) C V, i.e. U(f, & )c:dﬂb‘

Next corresponding to an arbitrary positive & ,
choose a positive & « &/2. Let V=1U [ P(LJ), & 1.

If ¢ is an element of \94v.then clearly ['(g) C

Ul (), &) and TI(E) C Ul (8,28 ]. This
implies that Q( [ (%), (&))< 2 S<t, Le. #)V
c u(g, &).

Q.E.D.
We shall now prove that the topology generated by
the basis . (for V in XZ) for S is equivalent to the
topology of uniform convergence. We use the notation of
Kelley([9),p. 226). Let U be the uniformity for X. The
family of sets W(U) = {(Iug) ’ (£(x), g(x)) €U for U
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in QA form a basls for the topology of uniform conver-

gence of S.

Theorem 2.7 The subspace topology induced on S by ‘T

1s equivalent to the usual topology of uniform convergence
on S.

Proof. Let V be an open set in X2 and let f be 1n
S such that [(f) < V. Since f is continuous and X is
compact, [1(f) 1is compact. Therefore, there 1s a U in U
such that xLTnJX x X U [f(x)]C V. If g is in
W(U) [f], then (f(x),g(x)) belongs to U for all x in X.
Therefore, [1(g)c V. This means W(U) [f] Cg’v. Next
consider W(U)[f] where U is in 9L and £ 1s in S. Let U,
be in U such that Us o UpC U. Since f 1s continuous on
the compact set X, 1t 1s uniformly contlnuous on X.
Therefore, corresponding to U, there 1s a U; in U (we
may suppose U;, Uy to be symmetric) such that for all p,
q in X, (p,q) in U; implies (f(p) , £(q)) 1s in U,. Now
consider the open set V = xLIﬁ,X U, [x] x Uy [f(x)] in X2,
and let g be in S such that [1(g) C V. Let p be any
element in X. Then there 1s a q in X such that (p,g(p)) 1is
in U;[q] X U, (f(q)], L.e. p 1s in U;[q] and g(p) is 1in Uy
(f(q)]. Therefore, f(q) 1s in Us [f(p)]. This means g(p)
o U, [f(p)], L.e. g(p) is in U[f(p)], 1.e. g is 1in

2 2
W(U) [f]. Therefore, 64\,C: W(U) [f). This proves the

;s inU

equlvalence.
Q.E.D.
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Definition 2.8  For f in & let BP(f) = [ (£)NACX°.

The next theorem generallzes theorem 2.2.

Theorem 2.8 Corresponding to each open set V contailning

F(f), £ in 54 , there 1s an open set W containing [1(f)
such that for all g in gf , [ (g)C W implies F(g) < V.

Proof. X 1s compact Hausdorff impliles X2

is compact
Hausdorff (see [6], Exercise 2-7, p. 40). Therefore, X% is
normal (see [6], p. 41). Also A 1s closed in X2 ([6],p.39).
Therefore, to each p in [I(f) - A , there exists an open
set Wy C X° such that W N A =& - LetW=vupki_nJ
f7(f¥p-£5 . W 1s an open set containing r‘(f) and clearly
if g is in ¢4 such that [1(g)cj W then F(g) C V. G.E.D

Definition 2.9 p in F(f), for £ in & , 1s called an

essential point for f, if and only if for each open set V

contalning p, there 1is an open set W containing F (f) such
that if g 1is in a4 such that [1(g)C W then F(g) NV £¢ .

The following theorem generallzes theorem 2.3.

Theorem 2.9 For f in ¢ 1f F(f) consists of a single point

then 1t 1s essentlal for f.

Proof. Let F(f) = {.pi . By theorem 2.8 correspond-
ing to each open set V containing p, there 1s an open set W
containing [V (f) such that for all g in g, M(8)C W implies
F(g) C V, 1.e. F(g) M V # 0. Therefore, p 1s an essential

point for f.
Q.E.D.
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The next two theorems generalize theorem 2.4.

Theorem 2.10 Let £ be in A and let for U in U there

be a V in U such that for all g in A , [ (g) C V [[(£)]
implies F(f) C U[F(g)]. Then f 1s an essential fixed point
map.

Proof. Let p be in F(f) and let U be in YU . Then
there 1s a V in QL such that for all g in & , MNig) C
V[ M (f)] implies F(f) < U[F(g)]. This means that there
is a q in F(g) such that p 1s in U [q], 1.e. g 1s in U [p].
Therefore, p 1s essential. This proves that f 1s an

essentlal fixed point map.
QR.E.D.

Theorem 2.11 Let f in 64 be an essential fixed point map

and let F(f) be compact. Then corresponding to each U in
U , there 1s a V in Y such that for all g in 04 such
that [1(g)C vV [ [ (£)], F(e)C U [F(f)] and F(f) & U
[F(g)].

Proof. Corresponding to U in U let U' be in WU
such that U' o U'C U, Since f 1s an essentlal fixed
point map, corresponding to each p in F(f), there 1s a Vp
in U such that for all g in .?( , N(g) C ve [ [(£)],
implies F(g) M U'[p] ¥ @ . Since F(f) is compact, there
18 a finite set { P1s Pp + + +» Pm{ € F(f) such that
F(f) C Hlm U' [pg]. Let V = q_’: Voo IfE1s
in @ such that N (g) C V [ [1(£)], then F(g)C L{_T U' [py ]
C U [F(f)]. To each py corresponds a q, in F(g), such
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that p, is in U! [qk]. Therefore, F(f) CftiiT U! [pk]
CUT vov gl Yl vie) < v R .

The following theorem shows that any f in J4 can be
approximated by a g in &4 which 1s an essential flxed point
map. This generalizes Schmidt's theorem [13] to almost

continuous functions.

Theorem 2.12 Let f be 1n 54 . Corresponding to each

open set W containing [W(f), there 1is an essential fixed
point map g in 54 such that [1(g)C W.

Proof. Since f 1s almost contlnuous, there 1is a
continuous function h in g such that [1(h) € W. Since
h 1s continuous 1t follows from Schmidt's theorem [13]
that there 1s an essential fixed point map g (in fact con-

tinuous) such that [1(g) ¢ W.
Q.E.D.



CHAPTER III
PROPERTIES OF ALMOST CONTINUOUS FUNCTIONS

As 1t was mentloned earlier, almost continuous func-
tions were first defined by Stallings in [14]. Stallings
proved a few propertlies of almost continuous functlons and
also raised a few questions which remalned unanswered.

Inspired by an 1nteresting article in the American Mathe-

matical Monthly by Marcus [12[, we shall investigate the

properties of real valued almost continuous functions de-
fined on a closed interval [a, b]. We shall find an equlva-
lent condition for almost contlnulty and answer a question
of Stallings in a speclal case. Next a necessary and
sufficlent condition for an almost contlnuous functlon to

be continuous will be given. Finally we shall investigate
the relationships between almost continuous functions and
other non-continuous functions such as neighborly functions
(see Bledsoe [1])and locally recurrent functions -(see Marcus

[12])). The following proposition 1is due to Stallings [14].

Proposition 3.1 (Stallings) If X , Y are topological

spaces such that X X Y 1s completely normal and X 1s con-
nected then f : X ——3 Y 1s almost continuous implies rl(f)

1s connected.

19
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It follows that the graph [1(f) of a real valued almost
continuous function f on [a,b] 1is connected. The question
naturally arises as to whether this property characterizes
an almost continuous functlion. The following theorem

answers this question in the afflrmative.

Theorem 3.1 If £ 1s a real valued functlion defined on

[a,b] such that the graph [1(f) 1is connected then f 1s

almost continuous.

Proof. Let U be any open set in [a,b] X Rt containing
M(f). It is sufficlent to show that there is a set of
points gpiz 1=1,2, .. ., nsuch that a = p; & P«
.« e <_pn = b and the straight line segments Jolning
(p1, £(p1)), (pi+l’ f(p1+l)) lie within U for 1 = 1, 2,

« « y n =1, For if such a set exists then the resulting
polygonal arc in U joining (a, f (a)) and (B, £(b)) 1is
ébviously the graph of a single-valued continuous function,
since each vertical straight line meets the arc in at most
one point.

Let X be the subset of [1(f) such that for each
(x, £(x)) in X, there is a set of points {,Pi % 1 =1, 2,
.+« « , msuch that the segments Joining (py, f£(py)),
(P41 f(pi+l)) 1=1,2, ..., m=-11lle within U and
8@ =p; £ Pp € + .. &Py=x. X 1is not empty for 1if
Sag 1s dny open disc within U containing (a, f(a)) there 1s
a point (p, f(p)) of [1(f) (p # a ) such that (p, f(p)) 1s
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in S;. This shows that (p, f(p)) belongs to X. (The exls-
tence of the point (p, f(p)) within S; follows from the fact
that since [1(f) 1s connécted no point of [I(f) 1s an
isolated point.) |

Let ¢ be the supremumof all x in [a,b] such that
(x, £f(x)) belongs to X. If c = b we are done. So let us
assume that ¢ & b. Let Wy = {(x, ) |a € x <c § ,
Wo = {(x, y) I c £ x% b % . Wy, Wy are disjoint open
subsets of [a,b] x Rl and (a, f(a)) & Wy, (b, £(b)) & W,
If (c, f(c)) 1s not a limit point of X then there exists
an open disc S, within U containing (c, f(c)) and not con-
talning any other polnt of X. 1In thls case W; and S, U Ws
separate [1(f), a contradiction. This shows that (c, f(c))
1s a limit point of X and there is a point x in [a,b] such
that x £ ¢ and (x, f(x)) € X /N S,. Since the segment
Joining (x, £(x)), (e, £(c)) lies within U, 1t follows that
(c, f(c)) 1s an element of X. In this case S, cannot contain
any point (x, f(x)) with ¢ € x & b for this will con-
tradict the construction of c¢. Then W; U S, and Wy separate

[7(f), again a contradiction. Thus ¢ = b.
Q'E.DO

The above theorem provides us with the following

equivalent statements.

Theorem 3.2 Iet £ be a real-valued function on a closed

interval. The followlng statements are equivalent:
(&) £ is almost continuous.

(b) Y1(f) 1s connected.
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Definition 3.1 A real-valued function f defined on [a,b] is

said to be Darboux continuous if and only 1f for every [c,d]

C [a,b], £(x) takes every value between f(c) and f(d) in

the open interval (c,d).
The following proposition 1s due to Stallings [14].

Proposition 3.2 If £ : x ____4>Y’is almost continuous and

C C X 1s closed then ¢ \C : C ——>3Y 1is almost continuous.

Theorem 3.3 A real-valued almost continuous function f

defined on [a,b] 1s Darboux contlnuous.

Proof. Let f be almost continuous on [a,b] and let
[c,d] C [a,b]. By proposition 3.2 f 1s almost continuous
on [c,d] and by proposition 3.1 the graph of f restricted
to [c,d] 1s connected. This shows that the image of [c,d]
under f 1s connected and therefore, f 1s Darboux continuous.
Q.E.D.
It might be conjectured that the converse of theorem
3.3 1s true. But the following counter example shows that
this 1s not the case. It 1s a modification of an example

constructed by Halperin [5, p. 117].

Example 3.i Let @y, 8ps « « vy By v v o (X € JL-) be

a Hamel basls for the real numbers. Every real number x can

be expressed uniquely as x = E " Yy 8« with rational
coefficients Yiu of which only a finite number differ from

zero. Such a basls can be rearranged into a two-fold sequence
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bl,be,...,b°<,...(a(<.ﬂ..);cl,02,...,c_‘,.
. . (<o), Now we define the function h(x) by setting
h(x) = E.(Y" G for x = 2¢Y¢5“+ ZF‘ SpCp -
For any interval (c,d) and any u= 2 Y, &, we shall
have h(x)=uifx=i* Ya by +2FSPCP for any
cholce of Sp in particular if only one sp # 0, say sp,
and 1t 1s chosen so that ¢ - Z,(Y.( b.< sp, o, < O -
Z.{Q b_‘ . Hence h(x) will equal u for uncountably many
x in (c,d).

For each x in [o, 1] for which h(x) = x, we define
f(x) = x + 1 and for all other x in [o, 1] we define f(x) =
h(x). Then for every real u and every (c,d) C (o, 1],
f(x) will equal u for uncountably many x in (c,d). This
shows that f 1s Darboux continuous in [o, 1]. But the
diagonal A in [o, 1] X R! 1s closed and does not contain
any points of [1(f). Consequently the disjoint open sets
U and V of [0, 1] x R defined by U = {(x,y) \ y>x g ,
V= i(x,y) I y < x.i each contain points of [1(f)
and together contain the whole of [1(f). This shows that

M (f) 1s not connected and so by theorem 3.2 f 1is not
almost continuous.

The function f constructed above 1s unbounded, 1n
fact [V (f) is dense in [a,b] X RY. The question naturally
arlses as to whether there 1s a counter example with a
bounded Darboux continuous functlon. Such a function can

be easlly constructed by modifying an example glven by
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Lebesque [11]. Let every x be written as a non-terminating
decimal I . a; ap . . . ap. . . . If the decimal . a; ag .
. . @p-1 + . . 1s not periodic, set g(x) = 0; 1if it is
perlodlc and the flrst period commences wilth as,_;, set
g(x) = .o, 8o 4 08 op 4 4 e o The function g takes
on every value between 0 and 1 1nclusive 1n every 1nterval,
no matter how small and 0 € g(x) < 1 for all x. Now if
g(x) = x for any x in [0, 1] we change 1t to another value
different from x but still lying between O and 1. In this
case g takes on every value between O and 1 countably many
times 1n every non-degenerate subinterval of [o, 1] and so
g 1s Darboux continuous. But g 1s not almost continuous as
1ts graph [V (g) 1s not connected.

The functlon f constructed above 1s Darboux contin-
uous but [V (f) is not connected. The question arises as
to whether there 1is an example of a Darboux continuous
function whose graph 1s totally disconnected. The answer
1s in the affirmative and thils can be done by modifying the
function f such that ]7(f) has no points on the countable
collection of stralght llines Y=Y X | where v 1s
rational g . Then given any two points P, Q of [V(f),
there exists a stralght line y =¥y x whose complement contalns

r'(f) and such that P and Q lle 1n the disjolnt open com-
ponents of that complement.

We now glve & few examples of almost continuous func-

tions to serve as 1lllustrations.
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Example 3.2  ILet f(x) = sin % (x £ 0)

0 (x =0)

where -1 & x < 1.
Clearly [1(f) is connected in [-1, 1] X Rl. Therefore, by
theorem 3.2 f 1s almost continuous but clearly f 1s not

continuous.

Example 3.3 We now glve an example of an unbounded almost

continuous function.

£(x) =5 sin X (x #£0)
=0 (X=O)

where -1 &£ x < 1.

Example 3.4 Stallings [1l4] asked the following question

iIff: X—yYand g : Y ——» Z are almost continuous
then under what condlitions is gf : X —>» Z almost con-
tinuous? Clearly 1f we restrict ourselves to real-valued
almost continuous functions and X = [a, b] then by theorem
3.2, gf 1s almost continuous if and only if [1(gf) is con-
nected. As a speclal case the followlng function 1s almost

continuous.

)

n(x) = stn [ (sin 2) 1] (x # 5

=0 ( x =
-1 £ x £ 1.
Here h = £e where f 1s the function of example 3.2.
Jones ([8] p. 117) has constructed an example of a

real-valued function f whose graph 1s connected but which
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is discontinuous everywhere. By theorem 3.2 1t follows that
there exist almost contlnuous functlons which are not Riemann
integrable.

Suppose ifni 1s a sequence of almost contlnuous
functions and fp > f, then the question arises under
what kind of convergence will f be almost continuous. The
answer 1s obvious from the topology used in the function
space a@ namely : for each open set U containing [1(f) there
is a positive integer m such that I7 (%n)c: u.

Next we give a necessary and sufficient condition for

an almost contlnuous function to be continuous.

Theorem 3.4 A real-valued almost continuous function f

defined on [a, b] 1s contlnuous 1f and only if for every
real number x, the set £ * (x) is closed in [a, b].

Proof. If f is continuous then £71 (x) 1s closed for
each real x.

On the other hand if f 1s almost continuous then f 1s
Darboux continuous by theorem 3.3. Let ¢ be any point 1n
(a,b] and let & Dbe any arbitrary positive number. The sets
Ue 2 [f(c) +¢ Jand V= £"1 [f(c) - & ] are disjoint
and closed in [a, b] and ¢ does not belong to elther set.
Therefore, there 1s & positlve 5 such that the open
interval (¢ - O , ¢ + S ) 1s disjoint from both U and V.
Also f(x) does not equal f(c) +8& or f(c) - ¢ 1in
(¢ - S .+ 8 ). This shows that for all x in
(¢ - ) , ¢+ 6 ) f(x) lies between f(c) -$% and f(c) + &,
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for if not f(x) must equal f(c) - € or f(c) + & since f is
Darboux continuous. Thls means that f 1s contilnuous.
Q.E.D.
Finally we discuss the relationships between almost

continuous functions and other non-continuous functions.

Definltion 3.2 A real-valued function f of a real varlable

1s nelghborly at a real x if and only 1f for every posltive

§ , there exlists an open interval I such that for all y 1n
I, |x-y| + |£(x) - £(y)] €« & (Bledsce [1]). Clearly if
I contalns x then f 1s continuous. We say that f 1s
nelghborly if f 1s neighborly at all real x. Example 3.1

shows that there exist non-continuous neighborly functions.

Defintion 3.3 A real-valued function f of a real varlable

1s locally recurrent at x if and only if every deleted

neighborhood of x , N(x), contains an element y such that

f(y) = £(x) (Bush [3]).

Definition 3.4 A real-valued function f of a real variable

is almost locally recurrent at x 1f and only if there 1s a

sequence {xni such that x, — x and f(x,) —3 f(x).
If in definition 3.4, x, > x(xn & x) for all n

then we say that f 1s almost locally recurrent from the
right (left) at x.

Obviously a locally recurrent function 1s almost
locally recurrent but the converse 1s not true (see

example 3.6).



28

The followlng theorems are easy consequences of the

definitions and so we omlt the proofs.

Theorem 3.5 If a real-valued function f of a real

varlable is neighborly at x then 1t 1s almost locally recur-

rent at x.

Theorem 3.6 If a real-valued function f on [a,b] 1is

almost continuous then 1t 1s almost locally recurrent for

all x in [a,b].

Example 3.5 The Dirichlet function f(x) = O when x is

rational, f(x) = 1 when x 1s 1irrational, shows that even
a function which 1s locally recurrent everywhere need not

be neighborly or almost continuous.

Example 3.6 Let f(x) = x sin 1_; , (x ¥ 1)
=1, (x=1)
where 0 £ x < 1,
Here f 1s almost continuous, nelghborly and almost

locally recurrent but f 1s not locally recurrent at 1.

Example 3.7 Iet f(x) = 0 for 0 & x £ 1

f(x) =1 forl &£ x £ 2
Clearly f 1s neighborly at all x in [0, 2] but since the
graph of f 1s not connected, f 1s not almost continuous.
So a nelghborly function need not be almost continuous.
Bledsoe [1] has shown that the points of discontinulty of

a nelghborly functlon form a set of the first category.
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On the other hand, as remarked earller, there exist almost
contlinuous functlons which are discontinuous everywhere.
Thls means that an almost continuous function need not be
neighborly.

Now we prove a theorem which glves sufficlent condi-

tions for an almost contlinuous function to be neighborly.

Theorem 3.7 If £ 1s a real-valued almost contilnuous

function on [a,b] and f has only one point of discontinulty
then f 1s nelghborly.

Proof. Let p in [a,b] be the point of discontinulty
of f. At all other polnts f 1s continuous and so f 1s
neighborly. By theorem 3.6 f 1s almost locally recurrent
at p, therefore, corresponding to any positive ¢ there 1is
a q in [a,b) different from p such that |p - q| < &4 and

| £(p)-f(a) | € €/4. Since f is continuous at g,
there 1s a positive o (less than ¢/4) such that for
all y in [a,b] such that |y -a| <®, |f(y) - £(a)|<e/n.
Therefore, for all y in the open interval (g - & , 4 + & ),
lp =yl + |fp)-fy)l < Jp-a| +|a-y)

+ | £(p) - f(q)l + |f(q) - f(y)|<:g. This shows that
f is nelghborly at p.

Q.E.D.
Corollary 3.8 It 1s easy to see that the conclusion of

theorem 3.7 holds even 1f f has an 1nfinite number of dis-

continulties which have a finlte number of limilt points.
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Corollary 3.9 An almost continuous functlion cannot have

a removable discontlnuity.

Next we prove a partial converse of theorem 3.6.

Theorem 3.10 ILet f be a real-valued function continuous

at all points except at p in the interior of [a,b] and let
f be almost locally recurrent from the right and from the
left at p. Then f 1s almost continuous.

Proof. The conclusion easily follows from the fact
that the graph of f 1s connected but we give a direct proof
below. Let V be any open set containing [1(f). There
exlsts a positive ¢ such that the open disc S((p,f(p)), & )
lies in V. From the glven conditions we know that there
are X3 , X, in [a,b] such that x; £ p & xp and
(x; £(x;)) and (x5, f(xz)) lie in S((p, f(p)), & ). Let

g be a function on [&a,b] as follows.

g(x) = £(x) for x in [a,b] - (x7 , xp)

(x-x7) f(xg) + (xe-x) £(xq)
- for x in [xl,xz].
X2=X3

Clearly g is continuous and rT(g)c:: V which shows that f

1s almost continuous.
Q.E.D.



CHAPTER IV
ALMOST RETRACTS

Followling Borsuk [2], we shall study almost retracts
which are "retracts" under almost continuous functlons. We
shall show in thls chapter that almost retracts inherit the
fixed point property as do retracts but that they do not
always inherlt some other properties such as local connect-
edness. We construct a non-locally connected set with the
fixed point property.

The following propositions are due to Stallings [14].

Proposition 4.1 If £ x._——ﬁ>Y'is almost continuous

and g : ¥ ——» Z 1s continuous then gf : X— Z 1s almost

continuous.

Proposition 4.2 Let X be a compact Hausdorff space, Y

a Hausdorff space and Z any topological space. If f :
X ——>Y 1s continuous and g : ¥ —>Z 1s almost contin-
uous then gf : X ——> 2 1s almost contlnuous.

We now glve & counter example to show that theorem 3
page 91 of Kelley [9] cannot be extended to almost continu-

ous functlions. Thils answers negatively a natural conjecture.

31
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Example 4.1 Define f : [0, 1] —> [ -1, 1] x [ -1, 1]

by setting f (o) = (o, o)
f (x) = (sin % » COS % ) for x £ 0.

If J1(f) denotes the graph of f, then [I(f) = {(x, £(x))

\ x € [o,1]§ c lo, 1] x [-1, 1] X [-1, 1]. Since

(o, 0, 0) 1s a point on [1(f) and for x # othe distance
between (o, o, o) and (x, sin % , Cos % ) 1s greater than
one, the closed sphere S of radilus % with center at

(o, o, o) does not include any other point of [1(f). This
shows that P (f) 1s not connected and by proposition 3.1,
f 1s not almost continuous. This example shows that a func-
tion £ : ¥ —> rFD Xg 1s not necessarlly almost contin-
uous when Pgof isa:iggst continuous for each projection Pg.

Stallings [1l4] remarked that the composition of two

almost continuous functions need not be almost contlnuous

but did not give an example. By employing a technique

similar to that used in example 4.1 we glve below an example.

Example 4.2 ILet Y = [-1, 1] and Y denote the product of

Y with itself n times. Define f : Y2 — 35 Y2 by

£ (o, y) = (0, y)

£ (x, y) = (sin % , y) for x ¥ O.
Let U be any open set in yh contalning r1(f). There 1s a
posltive real number »r such that the sphere Sp (with

center at (o, o, 0, o) and radius r ) lies within U. There

1
nwRk

1s a positive 1nteger n such that < 1r. Let F be a

functlon defined by
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1
(o, y) for |x| € nw

f(x, for |x| > 1
(x,¥) l —=

F (x, y)

Then F 1s a contlnuous function and r1(F) lies within U
which shows that f is almost contlnuous. Next let g be a
function on Y° into itself defined by g (x, y) = (x, cos %).
Then g 1s almost contlnuous. Now consider the composition
of £ and g namely fog on Y2 to Y2 given by fog (x, y)

= (sin %, cos %). If fog were almost continuous, then 1its

restriction to A\ the diagonal in Y°

would be almost con-
:tinuous by proposition 3.2. But by using arguments slmilar
to those used in example 4.1 we see that fog : A —>

2

defined by fog (x, x) = (sin 3 cos %) is not almost

Y o’

continuous. Thls example shows that the composition of
two almost contlnuous functions 1s not necessarily almost

continuous.

Definition 4.1 Let Y be a subset of a topological space

X. Y is called an almost retract of X 1f and only if there

is an almost contlnuous function f on X onto Y such that
for all y in Y, f(y) = y.

The following theorem states an equivalent condltion
(cf. Borsuk [2] page 154). The proof 1s omitted as 1t is

simple.

Theorem 4.1 Y C X is an almost retract of X if and only

1f there 1s an almost continuous function f on X onto Y such

that for each x in X, f(f(x)) = f(x).
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Theorem 4.2 If X 1s a Hausdorff space with the fixed

point property and Y 1s an almost retract of X then Y has
the fixed point property.

Proof. Let £ be an almost continuous function on X
onto Y such that for all y in Y, f(y) = y. Let g be a con-
tinuous functlon on Y to Y. By proposition 4.1, gf :

X —— X 1s almost contlnuous and by proposition 2.1, gf

has a fixed point p in X, 1.e. gf(p) = p. Clearly p is in

Y and so f(p) = p. This implies g(p) = p which means that

g has a flxed polint in Y. Therefore, Y has the fixed point

property. Q.E.D.

Example 4.3 let X by the square [-1, 1] X [-1, 1]; and

let ¥ = i(x, £(x)) I f(x) = sin % (x #0) and £(0) = O for

x in [-1, 1) 3 . Let /\ be the diagonal of X. The
function g on X onto A defined by g(x, y) = (x, x) is
continuous. The function h on X into X defined by h(x, y)
= (x, f(y)) is almost continuous. Also since A 1s closed
in X the function h |£; : A ——> Y 1s also almost continu-
ous by proposition 3.2. By proposition 4.2 the function hg
on X onto ¥ is almost continuous and for each p in Y, hg(p)
= p. This shows that Y has the fixed polnt property. How-
ever, Y 1s not locally connected and 1s not closed. In case
of retractstthe property of being closed and locally connected
is preserved (see Borsuk [2] page 155).

A retract of a retract of a set X 1s a retract of X

but as the compositlion of two almost continuous functlons
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need not be almost continuous (example 4.2), we cannot
extend this result to almost retracts. However, proposi-
tions 4.1, 4.2 provide us with the following theorems the

proofs of which we omit.

Theorem 4.3 If Y 1s an almost retract of X and Z is a

retract of Y then Z 1s an almost retract of X.

Theorem 4.4 If Y 1s a retract of a compact Hausdorff

space X and Z 1s an almost retract of Y then Z 1s an almost

retract of X.

Definition 4.2 Let X and Y be any topological spaces and

let Xl be a subset of X. Let f be a continuous function on

X4 to Y. We say that f admits an almost continuous exten-
sion to X if and only i1f there 1is an almost contlnuous func-

tion F on X to Y such that for all x in X, F(x) = f(x).

Theorem 4.5 X1 is an almost retract of X 1f and only 1f

every continuous functlon f on X; to ¥ (Y arbitrary) admits
an almost continuous extension to X.

Proof. Let X; be an almost retract of X, and let r :
X —— X, be the almost retractlon.

Then F = fr 1s an almost contilnuous function (proposi-
tion 4.1) on X to Y and for all x in X;, F(x) = fr(x) = f(x),
l.e. f admlts an almost continuous extension to X. On the
other hand if f : X; —— ¥ admlts an almost contlnuous
extension F : X ——> Y, then choosing Y = Xl and £ the
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ldentity map on X; we find that F 1s an almost retraction
of X onto X;.

Q.E.D.

Theorem 4.6 If B, a closed subset of a compact metric

space A, 1s homeomorphlc to an almost retract R of the
Hilbert cube I® then B 1s an almost retract of A.

Proof. The homeomorphism h on B onto R admits a
continuous extension H on A to I (see Borsuk [2] page
158). By theorem 4.5 there 1s an almost continuous exten-
sion of h™1 : R —> B say f : Iw ——5 B. By proposition
4.2, fH is an almost continuous function on A onto B and fH
is the 1dentity functlon on B. This means that B is an
almost retract of A.

Q.-E.D.

Definition 4.3 R 1s called a metric absolute almost

retract 1f and only if X 1s any metric space and R' 1s a
closed subset of X that 1s homemorphic to R, then R' 1s an
almost retract of X.

The followlng theorem 1s obvious,

Theorem 4.7 The property of beilng a metric absolute

almost retract 1s 1nvarlant under a homeomorphism.
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