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ABSTRACT

ESSENTIAL FIXED POINTS AND ALMOST

CONTINUOUS FUNCTIONS

by Somashekhar Amrith Naimpally

The concept of an essential fixed point was first

introduced by M. K. Fort, Jr. for single-valued continuous

self-mappings on a compact metric space with the fixed

point property. Schmidt extended the theory to a compact

Hausdorff space with the fixed point property. Jiang Jia-

he has extended the theory to upper semi-continuous multi-

valued self-mappings on a compact metric space. In the

first chapter of this thesis the theory of essential fixed

points is further extended to upper semi-continuous multi-

valued self-mappings on a compact Hausdorff space.

Almost continuous functions were introduced by

Stallings. In Chapter II two new tOpologies on the func-

tion spaces of almost continuous functions are introduced.

Then the theory of essential fixed points is extended to

single-valued almost continuous self-mappings, first on a

compact metric space and then on a compact Hausdorff space

both having the fixed point property.

In Chapter III consideration is restricted to real-

valued almost continuous functions defined on a closed
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interval. The chief results are: (1) almost continuity

is equivalent to the connected graph property; (2) an

almost continuous function is continuous if and only if the

inverse image of each point is closed. Finally the relation-

ship between almost continuous functions and other non-

continuous functions such as neighborly functions and locally

recurrent functions is investigated.

In the last chapter Borsuk's concept of a retract is

extended to that of an almost retract. It is shown that

whereas almost retracts inherit the fixed point property

from the original space, they do not always inherit such

properties as local connectedness.
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CHAPTER I

ESSENTIAL FIXED POINTS OF MULTIVALUED

MAPPINGS ON A UNIFORM SPACE

P Essential fixed points were first introduced by

M. K. Fort, Jr. in [A] for single valued continuous self-

mappings of a compact metric Space with the fixed point

property. The central result in Fort's paper was that

continuous self-mappings on such a Space can be approxi-

mated arbitrarily closely by those which have all fixed

points essential. Schmidt [13] extended the theory of

essential fixed points to continuous self-mappings on a

compact Hausdorff space with the fixed point property.

Jiang Jia-he [7] considered upper semi-continuous multi-

valued self-mappings on a compact metric space which need

not have the fixed point property. In this chapter we

extend the theory to the case of essential fixed points of

upper semi-continuous multivalued mappings on a compact

Hausdorff space. We use the techniques of Schmidt and

Jiang Jia-he.

We use the standard terminology of Hocking and Young

[6] and Kelley [9].

Let (X,17) be a compact Hausdorff space with topology

1:. (X need not have the fixed point property.) Let B(X)



be the family of all open symmetric neighborhoods of the

diagonal in the product space X x X. Then B(X) is a base

for the uniformity‘LL of (X,’U). Let C(X) be the space of

all nonempty compact subsets of X. For each U in Mlet

NW)=¥LW)uMmQXCM) KCUMW,KW:WM}.

iM(U)} , with U in U: is a base forpthe uniformity {P

of C(X). C(X) is a compact Hausdorff space with unifor-

mity GD.

Let f : Y --* C(X) be a mapping of Y into C(X),

(f is a multi-valued mapping on Y to X). Let'VT‘be a

uniformity for Y.

Definition 1.1

f is upper semi-continuous at y in Y if and only if

for each U in B(X), there is a W in'VW'such that for all

(y.y') in W. ny”) c: UIf(y)] -

Definition 1.2

f is lgwer semi-continuous at y in Y if and only if

for each U in B(X) there is a w in'wv'euch that for all

(y,y') in w, f(y) CL u[f(y')] . f is continuous if and

only if it is upper semi-continuous and lower semi-continu-

ous. Let D be a directed set and n be in D. It is well

known that f is upper semi-continuous at y in Y if and only

if yn ——->y, xn ____5x, n in D, xn in f(yn), implies x

is in f(y). Let S(Y,C(X)) be the space of all upper semi-

continuous mappings on Y to C(X). For each P in GP let
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W(P) = &(f.a) ‘ f.s in S(Y.C(X)). (f(y), s(y)) in P for

all y in Y.§.

{w(1>) E , with P in (I) is a base for the uniformity JV of

S(Y, c(x)).

Theorem 1.1 S(Y,C(X)) is complete.
 

23223, This is proved by showing that S(Y,C(X)) is

closed in the Space of all functions on Y to C(X). Let f

be a limit point of S(Y,C(X)). For each W [M(U)] there is

a g in S(Y,C(X)) such that (f(y),g(y)) belongs to M(V) for

all y in Y where we may assume that VoVOVCZ U. This

implies that S(Y)CV [f(y)] and f(y)CV [S(yH-

Now there exists a W in'Mfsuch that for all (y,y') in W,

s(y')<:: VIs(yI]. Now f(y”) CZ ‘Jhs(y')]

CZ VoV [S(Y)]

C VoVoV [f(y)]

CZ U [f(y)].

This shows that f is an element of S(Y,C(X)).

Definition 1.3 ,

Let f be in S(X,C(X)) and x be in X. Then x is called

a fixedpoint of f if and only if x is in f(x).
 

let {S CZ S(X,C(X)) be the subspace of all f in

S(X,C(X)) which have at least one fixed point.

Theorem 1.2 ‘S is complete.

Proof. Let {fr}; be a Cauchy net in S . Since

S(X,C(X)) is complete, there is an f in S(X,C(X)) such that
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fn ___> f. Since each fr1 is in S, there exist xn in X

such that each xn belongs to fn (xn). Since X is a compact

space there exists a convergent subnet of 1’an and we can

then consider the corresponding subnet of' ifplg. So there

is no loss of generality in assuming that the net ixn E

itself is convergent. So let xn _; x . Since f1.1 __.> f

there exists a subnet {xnmg of S’xn} such that for any U

in QA', we can choose'xnm in f (xnm) such that (Ehm, xnm)

belongs to U. Then 3% ——7 x and since f is upper semi-

continuous at x it follows that x belongs to f(x). This

shows that f is an element of S, i.e. IS is complete.

Q.E.D.

Definition 1.4 For f in‘S let Fifi = the set of all

fixed points Of f. Then F is a function on‘S to C(X).

Theorem 1.; F is in s('§,c(x)).

£1922. Clearly for r in “s’, F(F) is in c(x). Let

fn ——)f, x1.1 ___9 x where xn is in F(fn). Choose Ynm

in f(xnm) such that (inm, xnm) is in U for given U in QL>,

Ynm _; x. Since f is upper semi-continuous at x, x is

in F(f).

Q.E.D.

Definition 1.5 x in F(f) is essential if and only if

for each U in B(X), there is an N in\)/ such that whenever

(f,g) is in N, x is in U [F(g)].

Definition 1.6 f in'S is an essential fixed point map if

and only if all fixed points of f are essential.
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Theorem 1.4 f in'S is an essential fixed point map if
 

and only if F : S __..>C(X) is continuous at f.

Prggf. Let f in'S be an essential fixed point map.

For U in B(X) let v be in B(X) such that v o vc: U. Since

F(f) is compact there is a finite subset Z;xl , x2 , . . .xn}

of F(f) such that F(f)(: LJQZl V [x1]. Since Xi in

F(f) is essential for each i=1 , 2 , ... n , there is an

N in .N such that for (f,g) in N, g inAS’,

x1 is in V [F(g)], i = 1 , 2 , . . . n.

Therefore, F(f) C U121 V[xi] CUigl V o V [F(g)]

C U121 U [F(g)] which shows that F is lower semi-

continuous at f. But F is upper semi-continuous by

theorem 1.3. It follows that F is continuous at f.

Next let F be continuous at f. Let U be in B(X)

and x be in F(f). Since F is lower semi-continuous,

there is an N in VN” such that for g in‘S, (f,g) in N

implies 5110 c: v [F(g)], i.e. x is in v [F(g)], which

means that x is essential for f. This shows that f is an

essential fixed point map.

Q.E.D.

Theorem 1.5 If f in‘S has a single fixed point then this
 

fixed point is essential.

£3293. Let i p} = F(f). For any U in B(X) there

is an N in \A/‘such that whenever g is in‘S , (f,g) is in

N, F(g) c: v [F(f)] = v [ p ] which means that p is in v

[F(g)]. Therefore, p is essential.

Q.E.D.
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Theorem 1.6 Let f be in S and U, V be in B(X) such that

V 0 VC. U. Then there is an N in Wsuch that if g is in

"s’ and (r , g) is in N then v [F(g)] C U [F(f)].

2322:. Since F is upper semi-continuous at f, there

is an N in VN'such that if g is in‘S, (f,g) is in N then

F(s) C V [F(f)]-

If p is in V [F(g)], then p is in V [q] for some q

in F(g) and q is in V [r] for some r in F(f). Therefore,

p is in v o v [r]C U [r], that is v [F(g)]C U[F(f)].

Q.E.D.



CHAPTER II

ESSENTIAL FIXED POINTS OF ALMOST

CONTINUOUS FUNCTIONS

In this chapter we extend the theory of essential

fixed points to almost continuous self—mappings on com-

pact metric and compact Hausdorff spaces respectively.

Stallings first introduced almost continuous functions in

[14] and proved that an almost continuous self—mapping of

a Hausdorff space with the fixed point property has a fixed

point. In order to consider the theory of essential fixed

points for almost continuous functions, we introduce two

new topologies on function spaces of these functions. We

shall show that these topologies agree with the usual

topologies for function spaces of continuous functions.

We then prove that the theorems of Fort [4] and Schmidt

[13] hold when the functions under consideration are almost

continuous.

Let X and Y be tOpOlogical spaces. Let f:X ___) Y be

a function. Let the graph of f be denoted by

F(f) == £(x,f(x))| xinXE C XXY.

Let X x Y be assigned the usual product topology. The

following definition is due to Stallings [14].



Definition 2.1 f :IX.___; Y is almost continuous if and

only if for each open set N in x x Y containing rI(r),

there is a continuous function g : XZ____5pY'such that

[7(a) CZ No

Definition 2.2 X has the fixed point prOperty if and

only if every continuous function f on X to X has a fixed

point, i.e. there is a p in X such that f(p) = p.

The following proposition due to Stallings [14]

shows the existence of fixed points for almost continuous

functions.

Proposition 2.1 Let X be a Hausdorff space with the

fixed point property. Then every almost continuous func-

tion f on X to X has a fixed point.

We not investigate the "essential" character of the

fixed points of almost continuous functions. The main

result is that if X has the fixed point property and f is

an almost continuous function on X to X then f can be ap-

proximated, in a certain sense, by an essential fixed

point map.

We first study metric spaces (up to Theorem 2.4)

and then uniform spaces.

SO let X and Y be compact metric spaces with metrics

d , d' respectively and let X x Y be assigned the product

metric D((x1 . Y1): (X2 . y2)) = d(xl . x2) + d'(y1 . y2)-

Let H be the Hausdorff metric (see [9] page 131) on the

hyperspace of all non-empty closed subsets of X X Y.
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We introduce a metric Q in YX. This was used by

Kuratowski [10] in discussing continuous functions defined

on X as well as on subsets of X.

Definition 2.3 For f and g in YX we define Q1351

= H (TITO. W >.

Clearly (YX, Q') is a pseudometric space. We make

it into a metric space by agreeing that f §_g if and only

if rrrf7 = ‘Tfi‘tg7 for f, g in Yx and then passing to

the quotient space with respect to this relation.

Let S(X,Y) be the set of all continuous functions on

X to Y and for f, g in S(X,Y) define Q1(f,g) = Sispéx

d'(f(p),g(p)) where d‘ is the metric for Y. It is easily

[seen that Q1 is a metric on S(X,Y). The next theorem

relates the metrics g and Q1 .

Theorem 2.1 The metrics Q and Q1 are equivalent for

s(x,y).

£3993. Let 1,70 be arbitrary and let U(f, a) =

‘Lg |f,g in s(x,y) such that Q(f,g) < a; , U1(f, e. )

={g ‘f,g in S(X,Y) such that Qt(f,g) 4 L; . It is

easily seen that U1 (f, i ) (:2 U(f, z ). We now show that

there is a 5 >0 such that U(f, 5 ) C. Ul(f, i ). Since

f is continuous on a compact set X, f is uniformly con-

tinuous. Therefore, there exists a 8>o which we can, with-

out any loss of generality, assume to be < t/3, such that

for all x, y in X d(x,y) < 8 implies d'(f(x),f(y))< i .
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Now let g be in U(f, 5 ) and let p be an arbitrary point

in X. Then there is a q in X such that d(p,g) + d'(g(p),

f(q))<8- Now d'(f(p). 8(a)) 5 Man) + d'(S(P):f(Q))

+ d(p.q) + d'(f(p):f(q)) ’4 2 5 + ‘/3<‘--

This means g is in Ul(f, 2 ). Therefore, Q and Q1

are equivalent for S(X,Y).

Q.E.D.

Let (04,?) be the space of all almost continuous

functions on X to X where X is a compact metric space with

the fixed point property. Let C(X2) denote the space of

all non-empty closed subsets of X2== X x X with the Haus-

dorff metric H. Let A = i(p,p) \ for p in ch x2 be

the diagonal in X2. We modify the definition of essential

fixed points to suit their study in relation to almost

continuous functions.

Definition 2.4 For f in ()4 we define ngz =1 r|[f5(\Z§.

Clearly F is a function on we to C(Xe).

Definition 2.5, p in F(f) is an essential point of f in

J4 if and only if corresponding to each open set V in

X2 containing p, there exists an open set W in I14 contain-

ing f such that for all g in w , F(g) n V .é ¢'

Theorem 2.2 F :fl ___) C(X2) is upper semi-continuous.

Proof. Let g>o be arbitrary. Let 8 be the

Hausdorff distance between [X and FIZf) - U(F(f),£. ) if

"p" (ff 5; U(F(f), a ) and let 5 = 1 otherwise. If g is
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in a? such that guys) <5 then F(g) C U(F(f), a ).

Therefore, F is upper semi-continuous.

Q.E.D.

Theorem 2.3 If F(f) is a single point p then it is an
 

essential point for f.

Proof. By Theorem 2.2 for e>O there exists a 870

such that for all g in A such that Q(f,g)<5, F(g)

c: U(p, a ). That is F(s) nU(p, a) :4 4). Therefore,

p is essential for f.

Q.E.D.

Definition 2.6 f in 64 is an essential fixed point map
 

if and only if all points of F(f) are essential for f.

Theorem 2.4 F is lower semi-continuous at f in 64 if and

only if f is an essential fixed point map.

lggggf. Let F be lower semi-continuous at f in ufl .

Then for all £7 0, there is a 57 0 such that for all g

in A. Q(r.s)<8 implies an: U(F(s). a )- Let p

be in F(f). Then p is in U(F(g), E ), implies F(g) (I)

U(p, g ) 1‘ ¢ . Therefore, p is essential for f. Thus f

is an essential fixed point map.

Next let f be an essential fixed point map. Then

every point in F(f) is essential for f. Let £7 0. For

each p in F(f), there is a 8p > 0 such that for all g

in ‘54 , Q(f,g) < 5p implies F(S) n U(p, t/2) a4 4D .

Since F(f) is compact a finite number of U(p, 8/2) cover

F(f). Let 5 be the minimum of all the corresponding
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8p's- Now if masks then each p in F(f) is in

U(F(g), g ). Therefore, F(f) c U(F(s). e. ). This

implies F is lower semi-continuous at f.

Q.E.D.

Theorem 2:5 For f in é4 and 23> O, there is an
 

essential fixed point map g in a" such that “(g)

c U( Tfl—L a I.

“£3292. Since f is in 54 , there is a continuous

function h on X to X such that fl(h) C U( TIT—f7, i ).

Since ['1 (h) is compact, there is a 5'7 0 such that

U( ['1 (h), 5 ) C U(T‘TT—I, é. ). By Fort's theorem [4],

there is a continuous function g on X to X, which is an

essential fixed point map and Q1(g,h) <8 . Then clearly

F(s) c: U( F(h). 5 I: U( DTT. 2 )-

Q.E.D.

It should be noted that we have actually proved that g can

be chosen to be continuous.

Next we consider the essential points of almost

continuous functions on X to X where X is a compact Haus-

dorff space with the fixed point property.

Lat 54 be the space of all almost continuous functions

on X to X and let S be the subspace of J4 containing only

continuous functions.

We introduce a topology '1: for 5Q by defining the

Kuratowski closure operator for a subset B of .99 (see [9],

p. 43).
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Definition 2.1 f is in B' (the set of limit points of B)
 

if and only if for each open set Vc: X2 containing [1(f),

there is a 804 f) in B such that F(S)C V.

Let BC = B LJ B'. We shall now prove that the

Operator '0' satisfies the conditions (a) to (d) of the

Kauratowski closure operator ([9], page 43).

in

is

in

in

If

(a)

(b)

(0)

(d)

in B ,

1

Clearly (to = ch .

For each B c: 54 , obviously B :2 BC.

We want to show that BCC = Bc for each BC354.

Clearly B0 C BCC. Suppose f is in B00 but

not in BC. Then for each open set V containing

r1(f) there is a g in BC different from f such

that [1(g) C:’ V, If g is in B‘ then clearly

there is an h in B different from f such that

[7(h) C: V. Therefore, f is in B'. If g is

in B then f is in B'. In both cases f is in Be,

a contradiction, therefore, BCC - BC.

Let B1 and 32 be subsets cd'd4. we wish to show

0 c

that Bl (J 32 a (El L.) B2)c.

Let f be in BE LJ BC. Then either f is in B: or f is
2

BS. Suppose f is in BE. Then f is in E1 or Bi. If f

then f is in Bl\;j B2. If f is in B' then f is
1

(Bl LJ B2)c.

Therefore, Bi L) B; c: (Bl L) B2)c. Next let f be

(131 L) B2)°. Then f is in B1 L) 32 or in (131 L) B2)'.

f is in 31)») B2, then f is in El or B2, i.e. f is in
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B: or BS, i.e. f is in BE L) 3;. If f is in (El LJ B2)'

then clearly f is Bi or Bé. Therefore, '0' is the

Kuratowski closure operator.

It is easyto see that the tOpology 13 of J4 induced

by 'c' is the same as the one generated by the basis con-

sisting of sets of the form flV = {f l f in 64 such

that U(f) C V E for V an open set in X2.

Theorem 2.6 If X is a compact metric space then (fl ,6 )
 

is equivalent to (04 , T ).

2329:. Let f be an element of [99 and let V be an

Open subset of X2 containing 'TTCF). Since _TTTTT' is

compact there is a positive 5 such that U[ WT), 5 ]C. V.

Now if g belongs to U(f,5 ) then Q( WT), W)<B.

This implies that W: v, i.e. U(f, 5 )Cflv.

Next corresponding to an arbitrary positive £ ,

choose a positive 8 < U2. Let V = U [ WT), 5 ].

If g is an element of [94V then clearly W C

MW, 5 ] and W?) C U[ TIT—5,25 ]. This

implies that q( TIT)”, W)< 2 8 < c, i.e. 54V

C U(f, 8 ).

Q.E.D.

We shall now prove that the topology generated by

the basis 54V (for V in X2) for S is equivalent to the

tOpology of uniform convergence. We use the notation of

Kelley([9),p. 226). Let u be the uniformity for X. The

family of sets W(U) = S(f,g) I (f(x), g(x)) e U for U
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in ‘LL, form a basis for the topology of uniform conver-

gence of S.

Theorem 2,1, The subspace topology induced on S by q:

is equivalent to the usual topology of uniform convergence

on S.

uggggf. Let V be an open set in X2 and let f be in

S such that [‘(f) CI V3 Since f is continuous and X is

compact, [W(f) is compact. Therefore, there is a U in 1L

such that xLIE)X x x U [f(X)] CI V. If g is in

W(U) [f], then (f(x),g(x)) belongs to U for all x in X.

Therefore, FI(S)C: V. This means W(U) [f] Cfsfv. Next

consider W(U)[f] where U is in %L and f is in S. Let U2

be in IA such that U2 0 U2c: U. Since f is continuous on

the compact set X, it is uniformly continuous on X.

Therefore, corresponding to U2 there is a U1 in Qi.(we

may suppose U1, U2 to be symmetric) such that for all p,

q in X, (p,q) in U1 implies (f(p) , f(q)) is in U2. Now

consider the open set V = xLIH’X Ul[x] x U2 [f(x)] in X2,

and let g be in s such that [1(a) C v. Let p be any

element in X. Then there is a q in X such that (p,g(p)) is

in Ul[q] x U2 [f(q)], i.e. p is in Ul[q] and g(p) is in U2

[f(q)]. Therefore, f(q) is in U2 [f(p)]. This means g(p)

is in U2 0 U2 [f(p)], i.e. g(p) is in U[f(p)], i.e. g is in

W(U) [f]. Therefore, 54": W(U) [f]. This proves the

equivalence.

QOEODO
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Definition 2.8 For f in a? let F(f) = P (f)flAcx2.

The next theorem generalizes theorem 2.2.

Theorem 2.8 Corresponding to each open set V containing
 

F(f), f in 54 , there is an open set W containing [1(f)

such that for all g in 54 , F(g)C W implies F(g)C V.

Prggf. X is compact Hausdorff implies X2 is compact

Hausdorff (see [6], Exercise 2-7, p. 40). Therefore, X2 is

normal (see [6], p. 41). Also [3 is closed in X2 ([6],p.39).

Therefore, to each p in [W(f)'-[; , there exists an Open

2
sethCX such thatwpmA_¢. Letw_vupkrnJ

W

f)p-A

( W is an open set containing [1(f) and clearly

g is in such that ['1(g)C N then F(g) C v.

P

if

Q.E.D.

Definition 2.9 p in F(f), for f in 54 , is called an
 

essential pgint for f, if and only if for each open set V

containing p, there is an open set W containing rl(f) such

that if g is in 54 such that p (g): w then F(g) NV #4:.

The following theorem generalizes theorem 2.3.

Theorem 2.9 For f in 54 if F(f) consists of a single point

then it is essential for f.

33%. Let F(f) a {pfi . By theorem 2.8 correspond-

ing to each open set V containing p, there is an open set W

containing F(f) such that for all g in J], F(g): W implies

F(g)CV, i.e. F(g) m V a4 O. Therefore, p is an essential

point for f.

Q.E.D.
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The next two theorems generalize theorem 2.4.

Theorem 2.10 Let f be in 64 and let for U in 1L there

be a V in ii such that for all g in E4 , [1(g) C: V []7(f)]

implies F(f)<:: U[F(g)]. Then f is an essential fixed point

map.

P_ro_oi_‘. Let p be in F(f) and let U be in M. Then

there is a v in ‘LL such that for all g in d , F(g) C.

V[ P (f)] implies EXT? c: U[F(g)]. This means that there

is a q in F(g) such that p is in U [q], i.e. q is in U [p].

Therefore, p is essential. This proves that f is an

essential fixed point map.

QeEeDe

Theorem 2.11 Let f in 54 be an essential fixed point map

and let F(f) be compact. Then corresponding to each U in

21,, there is a V in 24 such that for all g in a4 such

that P (s)C V I P (f)]. F(g): U [F(f)] and F(f) C U

[F(sH.

2332;. Corresponding to U in TA let U' be in Q1.

such that U' o‘U'C: 'U. Since f is an essential fixed

point map, corresponding to each p in F(f), there is a Vp

in U. such that for all g in H , ['l (g) C Vp [F(f)],

implies F(g) Fl U'[p] i d) . Since F(f) is compact, there

is a finite set 1 pl, p2 . . ., pm? C F(f) such that

F(f)C Elm U' [pk]. Let V - [1:5 Vpk. If g is

in .54 such that P(g) 5 v [ [I (f)], then F(g)CL{-? U'ka]

C? U [F(f)]. To each pk corresponds a qk in F(g), such
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that pk is in U' [qk]. Therefore, F(f)<:'LE£T U' [pk]

CLszT U! OU' [qKIC LJKS U [qu C U My) QE D

The following theorem shows that any f in J4 can be

approximated by a g in 54 which is an essential fixed point

map. This generalizes Schmidt's theorem [13] to almost

continuous functions.

Theorem 2.12 Let f be in 54 . Corresponding to each

open set W containing [W(f), there is an essential fixed

point map g in (9f such that F(g) C W.

2322:. Since f is almost continuous, there is a

continuous function h in 94 such that F(h) C W. Since

h is continuous it follows from Schmidt's theorem [13]

that there is an essential fixed point map g (in fact con-

tinuous) such that [7(g) (Z W.

Q.E.D.



CHAPTER III

PROPERTIES OF ALMOST CONTINUOUS FUNCTIONS

As it was mentioned earlier, almost continuous func-

tions were first defined by Stallings in [14]. Stallings

proved a few properties of almost continuous functions and

also raised a few questions which remained unanswered.

Inspired by an interesting article in the American Mathe-

matical Monthly by Marcus [l2[, we shall investigate the
 

prOperties of real valued almost continuous functions de-

fined on a closed interval [a, b]. We shall find an equiva-

lent condition for almost continuity and answer a question

of Stallings in a special case. Next a necessary and

sufficient condition for an almost continuous function to

be continuous will be given. Finally we shall investigate

the relationships between almost continuous functions and

other non-continuous functions such as neighborly functions

(see Bledsoe [1])and locally recurrent functions (see Marcus

[12]). The following proposition is due to Stallings [14].

Progosition 3.1 (Stallings) If X , Y are tOpological

spaces such that X X Y is completely normal and X is con-

nected then f : X ———)Y is almost continuous implies F(f)

is connected.

19
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It follows that the graph fl(f) of a real valued almost

continuous function f on [a,b] is connected. The question

naturally arises as to whether this property characterizes

an almost continuous function. The following theorem

answers this question in the affirmative.

Theorem 3.1 If f is a real valued function defined on
 

[a,b] such that the graph [7(f) is connected then f is

almost continuous.

3322:. Let U be any Open set in [a,b] X R1 containing

[1(f). It is sufficient to show that there is a set of

points Spig i=1, 2,...,nsuch thata=pl<p2<

.<,pn = b and the straight line segments Joining

(Pi: f(p1)), (pi+1, f(pi+l)) lie within U for i = l, 2,

. . , n - 1. For if such a set exists then the resulting

polygonal arc in U joining (a, f (a)) and (B, f(b)) is

obviously the graph of a single-valued continuous function,

since each vertical straight line meets the arc in at most

one point.

Let X be the subset of [1(f) such that for each

(x, f(x)) in X, there is a set of points {'91 g i = l, 2,

. . , m such that the segments Joining (p1, f(pi)),

(p1+1, f(pi+l)) i = 1, 2, . . . , m - 1 lie within U and

a=pl< p2< . . . (pm-x. Xisnotemptyforif

Sa is any open disc within U containing (a, f(a)) there is

a point (p, f(p)) of r7(f) (p £ a ) such that (p, f(p)) is
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in Sa. This shows that (p, f(p)) belongs to X. (The exis-

tence of the point (p, f(p)) within Sa follows from the fact

that since [W(f) is connected no point of [W(f) is an

isolated point.) I

Let c be the supremum of all x in [a,b] such that

(x, f(x)) belongs to X. If c = b we are done. So let us

assume thatccb. Letwl= i(x, y) la 3 x (cg ,

W2 = {(x, y) I c < x 5 b E . W1, W2 are disJoint open

subsets of [a,b] x R1 and (a, f(a)) 5 WI, (b, f(b)) e we.

If (c, f(c)) is not a limit point of X then there exists

an Open disc Sc within U containing (c, f(c)) and not con-

taining any other point of X. In this case W1 and Scl_)W2

separate [1(f), a contradiction. This shows that (c, f(c))

is a limit point of X and there is a point x in [a,b] such

that x < c and (x, f(x)) e X n so. Since the segment

Joining (x, f(x)), (0, f(c)) lies within U, it follows that

(c, f(c)) is an element of X. In this case So cannot contain

any point (x, f(x)) with c < x g b for this will con-

tradict the construction of c. Then W1 USC and W2 separate

r'(f), again a contradiction. Thus c = b.

, QoEoDo

The above theorem provides us with the following

equivalent statements.

Theorem 3.2 Let f be a real-valued function on a closed

interval. The following statements are equivalent:

(a) f is almost continuous.

(b) r1(f) is connected.
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Definition 3.1 A real-valued function f defined on [a,b] is
 

said to be Darboux continuous if and only if for every [c,d]

(2. [a,b], f(x) takes every value between f(c) and f(d) in

the open interval (c,d).

The following prOposition is due to Stallings [14].

Proposition 3.2 If f : x.____9,Y is almost continuous and
 

C (Z, X is closed then f \C : C.____9.Y is almost continuous.

Theorem 3.3 A real-valued almost continuous function f

defined on [a,b] is Darboux continuous.

£3392. Let f be almost continuous on [a,b] and let

[c,d] c:'[a,b]. By proposition 3.2 f is almost continuous

on [c,d] and by proposition 3.1 the graph of f restricted

to [c,d] is connected. This shows that the image of [c,d]

under f is connected and therefore, f is Darboux continuous.

Q.E.D.

It might be conJectured that the converse of theorem

3.3 is true. But the following counter example shows that

this is not the case. It is a modification of an example

constructed by Halperin [5, p. 117].

ExamplejJ Let a1, a2, . . ., a“, . . . (o( < JL) be

a Hamel basis for the real numbers. Every real number x can

be expressed uniquely as x as E 4 y“ ax with rational

coefficients ‘Kg of which only a finite number differ from

zero. Such a basis can be rearranged into a two-fold sequence
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b1, b2, 0 o o , ta, 0 o o (h((fl )3 01’ C2, 0 o o , 0*,

(tx <.FL). Now we define the function h(x) by setting

h(X) = E.‘Y‘ 0* forx; ZdYCLbd-F ZFSP CF

For any interval (c,d) and any u = 2“ Y‘ a‘ we shall

have h(x)=uifx=E‘ 7‘5“ +2PSPCP for any

choice of Sr» 3 in particular if only one sf, £ 0, say SF. ,

and it is chosen so that c - Z‘Y.‘ b‘< smcp' < d -

:‘Y‘ b‘ . Hence h(x) will equal u for uncountably many

x in (c,d).

For each x in [0, l] for which h(x) = x, we define

f(x) = x + 1 and for all other x in [0, l] we define f(x)

h(x). Then for every real u and every (c,d) C: [0, 1],

f(x) will equal u for uncountably many x in (c,d). This

shows that f is Darboux continuous in [0, 1]. But the

diagonal [5_ in [0, l] x R1 is closed and does not contain

any points of r1(f). Consequently the disJoint open sets

U and V of [0, l] x R:L defined by U = {(x,y)‘ y > x i ,

V = i(x,y) I y < xi each contain points of F(f)

and together contain the whole of r7(f). This shows that

F (f) is not connected and so by theorem 3.2 f is not

almost continuous.

The function f constructed above is unbounded, in

fact 'P (f) is dense in [a,b] x R1. The question naturally

arises as to whether there is a counter example with a

bounded Darboux continuous function. Such a function can

be easily constructed by modifying an example given by
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Lebesque [11]. Let every x be written as a non-terminating

decimal I . a1 a2 . . . an. . . . If the decimal . a1 a3

. a2n-l . . . is not periodic, set g(x) = 0; if it is

periodic and the first period commences with a2n-l’ set

g(x) = .a2n a2n + 2 a 2n + 4. . . . The function g takes

on every value between 0 and 1 inclusive in every interval,

no matter how small and O 5 g(x) g l for all x. Now if

g(x) = x for any x in [0, l] we change it to another value

different from x but still lying between 0 and 1. In this

case g takes on every value between 0 and l countably many

times in every non-degenerate subinterval of [0, 1] and so

g is Darboux continuous. But g is not almost continuous as

its graph [\(g) is not connected.

The function f constructed above is Darboux contin-

uous but P (f) is not connected. The question arises as

to whether there is an example of a Darboux continuous

function whose graph is totally disconnected. The answer

is in the affirmative and this can be done by modifying the

function f such that [7(f) has no points on the countable

collection of straight lines {—y a‘r x I where V’ is

rational g . Then given any two points P, Q of [1(f),

there exists a straight line y =‘r x whose complement contains

[1 (f) and such that P and Q lie in the disJoint open com-

ponents of that complement.

We now give a few examples of almost continuous func-

tions to serve as illustrations.
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Example 3.2 Let f(x) sin % (x £ 0)
 

=O(X=O)

where -l g x g 1.

Clearly [1(f) is connected in [—l, l] X R1. Therefore, by

theorem 3.2 f is almost continuous but clearly f is not

continuous.

Example 3.3 We now give an example of an unbounded almost
 

continuous function.

sin -% (x £ 0)

0)

where -l e x < 1.

f(x) =

O
>
<
|
+
—
J

(x=

Example 3.4 Stallings [1M] asked the following question
 

if f : X ___.;Y and g : Y ————> Z are almost continuous

then under what conditions is gf : X -———e> Z. almost con-

tinuous? Clearly if we restrict ourselves to real-valued

almost continuous functions and X = [a, b] then by theorem

3.2, gf is almost continuous if and only if r7(gf) is con-

nected. As a special case the following function is almost

 

 

continuous.

l -l l
h(x) = sin [ (sin ; ) ] (x i n7? )

=O(X=nlw )0

-l ‘E: x :5 1.

Here h = f2 where f is the function of example 3.2.

Jones ([8] p. 117) has constructed an example of a

real-valued function f whose graph is connected but which



26

is discontinuous everywhere. By theorem 3.2 it follows that

there exist almost continuous functions which are not Riemann

integrable.

Suppose {fr}; is a sequence of almost continuous

functions and fr1 ___) f, then the question arises under

what kind of convergence will f be almost continuous. The

answer is obvious from the topology used in the function

space 59 namely : for each open set U containing [7(f) there

is a positive integer m such that P (fm) C U.

Next we give a necessary and sufficient condition for

an almost continuous function to be continuous.

Theorem 3.4 A real-valued almost continuous function f
 

defined on [a, b] is continuous if and only if for every

1 (x) is closed in [a, b].real number x, the set f-

ggggf. If f is continuous then f"1 (x) is closed for

each real x.

On the other hand if f is almost continuous then f is

Darboux continuous by theorem 3.3. Let c be any point in

[a,b] and let L be any arbitrary positive number. The sets

U = f'1 [f(c) + i ] and V = f'1 [f(c) - t ] are disJoint

and closed in [a, b] and c does not belong to either set.

Therefore, there is a positive ‘5 such that the open

interval (0 - 5 , c + 5 ) is disJoint from both U and V.

Also f(x) does not equal f(c) + i or f(c) - t in

(c -' S , c + S ). This shows that for all x in

(C ' 8 : C + 5 ) f(x) lies between f(c) -i and f(c) +5,
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for if not f(x) must equal f(c) - E or f(c) + i since f is

Darboux continuous. This means that f is continuous.

Q.E.D.

Finally we discuss the relationships between almost

continuous functions and other non-continuous functions.

Definition 3.2 A real-valued function f of a real variable

is neighborly at a real x if and only if for every positive
 

g , there exists an open interval I such that for all y in

I, |x-y| + [f(x) - f(y)] < z (Bledsoe [1]). Clearly if

I contains x then f is continuous. We say that f is

neighborly if f is neighborly at all real x. Example 3.1

shows that there exist non-continuous neighborly functions.

Defintion 3.3 A real-valued function f of a real variable

is locally'recurrent at x if and only if every deleted

neighborhood of x , N(x), contains an element y such that

f(y) = f(X) (Bush [3])-

Definition 3.4 A real-valued function f of a real variable

is almost locally recurrent at x if and only if there is a

sequence {xni such that xn ———§ x and f(xn) ———+f(x).

If in definition 3.4, xn ‘7' x(xn <1 x) for all n

then we say that f is almost locally recurrent from the

right (left) at x.

Obviously a locally recurrent function is almost

locally recurrent but the converse is not true (see

example 3.6).
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The following theorems are easy consequences of the

definitions and so we omit the proofs.

Theorem 3.5 If a real-valued function f of a real
 

variable is neighborly at x then it is almost locally recur-

rent at x.

Theorem 3.6 If a real-valued function f on [a,b] is

almost continuous then it is almost locally recurrent for

all x in [a,b].

(Example 3.5 The Dirichlet function f(x) = 0 when x is
 

rational, f(x) = 1 when x is irrational, shows that even

a function which is locally recurrent everywhere need not

be neighborly or almost continuous.

H

 

Example 3.6 Let f(x) = x sin , (x A l)
l-x

where O ‘3. x g 1.

Here f is almost continuous, neighborly and almost

locally recurrent but f is not locally recurrent at 1.

Example 3.7 Let f(x) = O for 0 g; 3c 4; 1

f(x) - l for 1 <1 x g; 2

Clearly f is neighborly at all x in [0, 2] but since the

graph of f is not connected, f is not almost continuous.

So a neighborly function need not be almost continuous.

Bledsoe [1] has shown that the points of discontinuity of

a neighborly function form a set of the first category.
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On the other hand, as remarked earlier, there exist almost

continuous functions which are discontinuous everywhere.

This means that an almost continuous function need not be

neighborly.

Now we prove a theorem which gives sufficient condi-

tions for an almost continuous function to be neighborly.

Theorem 3.7 If f is a real-valued almost continuous
 

function on [a,b] and f has only one point of discontinuity

then f is neighborly.

3322:. Let p in [a,b] be the point of discontinuity

of f. At all other points f is continuous and so f is

neighborly. By theorem 3.6 f is almost locally recurrent

at p, therefore, corresponding to any positive 2 there is

a q in [a,b] different from p such that [p - q]'<.E/4 and

I f(p)-f(Q) ] <3 i/4. Since f is continuous at q,

there is a positive 8 (less than i/4) such that for

all y in [a,b] such that [y - q I <8, [f(y) - f(q)\<‘/4.

Therefore, for all y in the open interval (q - 5 , q + 5 ),

lp-yl + [f(p)-f(y)]S IP'CI] +]C1"Y]

+ [f(p) - f(q)] + [f(q) - f(y)](g. This shows that

f is neighborly at p.

Q.E.D.

Corollary 3.8 It is easy to see that the conclusion of
 

theorem 3.7 holds even if f has an infinite number of dis-

continuities which have a finite number of limit points.
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Corollary 3.9 An almost continuous function cannot have
 

a removable discontinuity.

Next we prove a partial converse of theorem 3.6.

Theorem 3.10 Let f be a real-valued function continuous

at all points except at p in the interior of [a,b] and let

f be almost locally recurrent from the right and from the

left at p. Then f is almost continuous.

.grggf. The conclusion easily follows from the fact

that the graph of f is connected but we give a direct proof

below. Let V be any Open set containing r1(f). There

exists a positive 2 such that the Open disc S((p,f(p)), i )

lies in V. From the given conditions we know that there

are x1 , x2 in [a,b] such that xl <; p <1 x2 and

(x1 f(xl)) and (x2, f(x2)) lie in S((p, f(p)), E, ). Let

g be a function on [a,b] as follows.

g(x) - f(x) for x in [a,b] - (xl , x2)

(x-xl) f(x2) + (x2-x) f(xl)

: for x in [xl,x2].

x2'xl

 

Clearly g is continuous and P (g) C V which shows that f

is almost continuous.

Q.E.D.



CHAPTER IV

ALMOST RETRACTS

Following Borsuk [2], we shall study almost retracts

which are "retracts" under almost continuous functions. We

shall show in this chapter that almost retracts inherit the

fixed point property as do retracts but that they do not

always inherit some other properties such as local connect-

edness. We construct a non-locally connected set with the

fixed point prOperty.

The following propositions are due to Stallings [l4].

Pr0position 4.1 If f : X ——9Y is almost continuous

and g : Y ___)z is continuous then gf : X——-> Z is almost

continuous.

Proposition 4.2 Let X be a compact Hausdorff Space, Y

a Hausdorff space and Z any topological space. If f :

X ————€>Y’is continuous and g : Y'————§>Z is almost contin-

uous then gf : X —_) Z is almost continuous.

We now give a counter example to show that theorem 3

page 91 of Kelley [9] cannot be extended to almost continu-

ous functions. This answers negatively a natural conJecture.

31



32

Example 4.1 Define f : [0, 1] ————€>[ -l, l] x [ -l, 1]

by setting f (0) = (o, o)

f (x) (sin %-, cos %.) for x £ 0.

If [7(f) denotes the graph of f, then [W(f) = §;(x, f(x))

\x 6 [o,1]§ C [0, 1] x [-1, 1] X [-l, 1]. Since

(0, 0, o) is a point on r](f) and for x £<Jthe distance

between (0, o, o) and (x, sin % , COS'% ) is greater than

one, the closed sphere S of radius % with center at

(o, 0, 0) does not include any other point of [1(f). This

shows that r](f) is not connected and by proposition 3.1,

f is not almost continuous. This example shows that a func-

tion f : Y —9 {GPA Xa is not necessarily almost contin-

uous when Paof is almost continuous for each proJection Pa'

Stallings [14] remarked that the composition of two

almost continuous functions need not be almost continuous

but did not give an example. By employing a technique

similar to that used in example 4.1 we give below an example.

Example 4.2 Let Y a [-1, 1] and Yn denote the product of

Y with itself n times. Define r : Y2 ——9Y2 by

f (0: Y) " (0: Y)

f (x, y) - (sin %., y) for x i 0.

Let U be any open set in Y“ containing rl(f). There is a

positive real number r such that the sphere Sr (with

center at (o, o, o, o) and radius r ) lies within U. There

is a positive integer n such that -l-- <L r. Let F be a

n7?

function defined by
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1

- (O: Y) for IXI 4; E7?

f(x,y) for [x] 77 1

n'K

'
1
1

E
?

i
i

I

 

Then F is a continuous function and [7(F) lies within U

which shows that f is almost continuous. Next let g be a

function on Y2 into itself defined by g (x, y) = (x, cos %).

Then g is almost continuous. Now consider the composition

of f and g namely fog on Y2 to Y2 given by fog (x, y)

= (sin %, cos %). If fog were almost continuous, then its

2 would be almost con-restriction to [i the diagonal in Y

Itinuous by proposition 3.2. But by using arguments similar

to those used in example 4.1 we see that fog : £§ .___fi>

2 l 1

defined by fog (x, x) = (sin — COS'E) is not almostY X.

continuous. This example shows that the composition of

two almost continuous functions is not necessarily almost

continuous.

Definition 4.1 Let Y be a subset of a topological space

X. Y is called an almost retract of X if and only if there

is an almost continuous function f on X onto Y such that

for all y in Y, f(y) = y.

The following theorem states an equivalent condition

(Cf. Borsuk [2] page 154). The proof is omitted as it is

simple.

Theorem 4.1 Y C; X is an almost retract of X if and only

if there is an almost continuous function f on X onto Y such

that for each x in X, f(f(x)) - f(x).
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Theorem 4.2 If X is a Hausdorff space with the fixed
 

point property and Y is an almost retract of X then Y has

the fixed point property.

£3293. Let f be an almost continuous function on X

onto Y such that for all y in Y, f(y) = y. Let g be a con-

tinuous function on Y to Y. ,By pr0p0sition 4.1, gf :

XZ__—_:> Xiis almost continuous and by proposition 2.1, gf

has a fixed point p in X, i.e. gf(p) = p. Clearly p is in

Y and so f(p) = p. This implies g(p) p which means that

g has a fixed point in Y. Therefore, Y has the fixed point

property. Q.E.D.

Example 4.3 Let X by the square [-1, l] X [-l, l]; and

let Y = g(x, f(x)) I f(x) = sin % (x 74 O) and f(0) = O for

x in [-l, l] g . Let A be the diagonal of X. The

function g on X onto A defined by g(x, y) = (x, x) is

continuous. The function h on X into X defined by h(x, y)

= (x, f(y)) is almost continuous. Also since [5, is closed

in X the function h 'L; : [5 .————;,Y is also almost continu-

ous by proposition 3.2. By proposition 4.2 the function hg

on X onto Y is almost continuous and for each p in Y, hg(p)

= p. This shows that Y has the fixed point property. How-

ever, Y is not locally connected and is not closed. In case

of retracts the property of being closed and locally connected

is preserved (see Borsuk [2] page 155).

A retract of a retract of a set X is a retract of X

but as the composition of two almost continuous functions
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need not be almost continuous (example 4.2), we cannot

extend this result to almost retracts. However, proposi-

tions 4.1, 4.2 provide us with the following theorems the

proofs of which we omit.

Theorem 4.3 If Y is an almost retract of X and Z is a

retract of Y then Z is an almost retract of X.

Theorem 4.4 If Y is a retract of a compact Hausdorff
 

space X and Z is an almost retract of Y then Z is an almost

retract of X.

Definition 4.2 Let X and Y be any topological spaces and
 

let X1 be a subset of X. Let f be a continuous function on

Xl to Y. We say that f admits an almost continuous exten-

sion to X if and only if there is an almost continuous func-

tion F on X to Y such that for all x in X, F(x) = f(x).

Theorem 4,5 X1 is an almost retract of X if and only if

every continuous function f on X1 to Y (Y arbitrary) admits

an almost continuous extension to X.

23233, Let X1 be an almost retract of X, and let r :

X ‘)X1 be the almost retraction. 

Then F = fr is an almost continuous function (proposi-

tion 4.1) on X to Y and for all x in X1, F(x) = fr(x) = f(x),

i.e. f admits an almost continuous extension to X. On the

other hand if f : X1 ...—9 Y admits an almost continuous

extension F : X -—-4> Y, then choosing Y = X1 and f the
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identity map on X1 we find that F is an almost retraction

of X onto X1.

Q.E.D.

Theorem 4.6 If B, a closed subset of a compact metric
 

space A, is homeomorphic to an almost retract R of the

Hilbert cube I” then B is an almost retract of A.

£3223. The homeomorphism h on B onto R admits a

continuous extension H on A to I (see Borsuk [2] page

158). By theorem 4.5 there is an almost continuous exten-

sion of h'1 : H ——9B say f : I” ___)B. By proposition

4.2, fH is an almost continuous function on A onto B and fH

is the identity function on B. This means that B is an

almost retract of A.

Q.E.D.

Definition 4,3 R is called a metric absolute almost

retract if and only if X is any metric space and R' is a

closed subset of X that is homemorphic to R, then R' is an

almost retract of X.

The following theorem is obvious.

Theorem 4.7 The property of being a metric absolute
 

almost retract is invariant under a homeomorphism.
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