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ABSTRACT

THE EFFICIENCY OF COMPUTER ALGORITHMS

FOR PLANT LAYOUT

by Larry Paul Ritzman

This thesis provides a comparative appraisal of

suboptimal computer algorithms for the plant layout problem.

The research objective is determining which ones output the

best solutions and whether their performances are dependent

upon the specific problem. The layout problem is viewed as

assigning centers to locations to minimize a cost function,

subject to certain constraints. Its mathematical formula-

tion recognizes three types of costs: linear, special

quadratic, and general quadratic. This formulation accommo-

dates the objectives usually attributed to a layout. Al-

though most algorithms deal explicitly with only the special

quadratic costs, the other two cost components can be

accounted for with prohibited assignment constraints and

transformations to the cost data.

The existing algorithms which are amenable to this

formulation, or can be revised to do so, are examined.

Particular attention is paid to their theory, strengths,

weaknesses, and omissions. Four algorithms are selected for
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further study: CRAFT, Hillier's algorithm, Wimmert's proce—

dure, and a random selection algorithm. Computer programs

had not been available for the last two algorithms, and so

they are written specifically for this thesis. Since several

concepts of unknown merit are added to Wimmert's original

formulation, thirteen versions of it are developed for

evaluation.

The algorithms are then applied to twenty-six realis-

tic test problems using the CDC 3600 computer. The resulting

output provides data for comparing the algorithms' computa-

tional time, abilities to satisfy constraints, and the cost-

liness of their solutions. The test results support the

conclusion that the better algorithms are consistently good,

regardless of the problem characteristics. CRAFT performs

better than any other algorithm in terms of solution feasi-

bility, solution cost, computer time, and the ability to

produce many good solutions to the same problem. Hillier's

algorithm is competitive with CRAFT; the differences are not

significant. The total performance of the random selection

algorithm is inferior, in spite of the small amount of time

it consumes per solution.

The results for most of Wimmert's versions are not

encouraging. However, two versions do provide satisfactory

solutions. In terms of average solution costs, the differ-

ences between them and CRAFT are not statistically signif-

icant. Although they require much more computer time than
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CRAFT, several modifications are suggested which may signif-

icantly improve their total performances.

The findings of this thesis offer several insights

tangential to the main research objective. Even the better

algorithms intermittently generate poor solutions to the

same problem. This conclusion underscores the need for find-

ing several suboptimal solutions to a problem, which in turn

requires some type of stopping rule. Preliminary evidence

suggests a satisfactory rule could be constructed from

information on the lower and upper bounds as well as by

monitoring output information during the actual solution

process. Another finding of interest is that alternative

criteria for computing distances between locations provide

comparable results.

Several areas for future research are described,

including: revisions to existing algorithms, satisfying

unequal area requirements, and developing new algorithms.
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CHAPTER I

THESIS OBJECTIVE AND PROBLEM DESCRIPTION

Introduction

Plant layout is defined as the arrangement of cen-

ters to meet a firm's production requirements economically.

Economic centers can be machines, groups of machines,

departments, storage areas, material handling systems, or

other types of supporting service systems. Optimal location‘

of centers has been of theoretical and practical concern for

several centuries. The ancient Greeks, for example, consid-

ered the problem of how a person could most quickly travel

between two points, both of which are on the same side of a

river, given that he must get water at some third point at

the river bank during his trip.1 The problem is to find

that point on the bank which minimizes the total length of

two lines drawn from it to the other two points. The solu-

tion was found by drawing ellipses using the origin and

destination of the trip as foci, finding the smallest

 

.lWilliam-Miehle, "Link-Length Minimization in Net-

works," The Journal of the Operations Research Society_of

America, VI, No. 2 (MarcheApril, 1958), 235.



ellipse which touches but does not cross the river, and

selecting the point where it touches as the location of the

third point.

The whole area of Spatial location theory, of which

plant layout is but one facet, has advanced significantly

since this early age. This growth of knowledge has been

uneven, however, depending on the particular problem formu-

lation of interest. The plant layout problem has defied

optimal solution by a computationally feasible procedure.

"Plant layout is largely an art today. . . . There is no

overall theory that makes it possible to relate the magni-

tude of influencing factors into a composite design."1

Fortunately, several suboptimal algorithms2 of

considerable promise have been made available in the last

decade. These contributions to layout theory come from

diverse sources--mathematics, physics, industrial engineer-

ing, computer design, management science, operations re-

search and business administration. They can be found under

such seemingly unrelated headings as the backboard wiring

problem, kitchen layout, ergonomics, parking lot design,

 

lElwood S. Buffa, Modern Production Management

(2d ed.; New York: John Wiley and Sons, Inc., 1965), p. 400.

280me authors prefer the term "heuristic" or “heuris-

tic algorithm," which Feigenbaum and Feldman define as "a

rule of thumb, strategy, trick, simplification or any other

kind of device which drastically limits search for solutions

in large problem spaces." Edward A. Feigenbaum and Julian

Feldman, Computers and Thought (New YOrk: McGraw-Hill Book

Co., 1963), p. 6.



storeroom design, quadratic assignment problem, assignment

problem, plant design, network minimization problem, link-

length minimization in networks, location analysis, and

equipment location analysis. Centers of economic activity

may not be those normally associated with the layout problem.

Centers may be knobs to be attached to a control panel or

computer components to be wired together. In a more trivial

example, centers can be people who must be seated relative

to each other to minimize some measure of conflict. All of

these problems are compatible in terms of the objective func-

tion and constraints.

Research Objective
 

The objective of this thesis is to compare the per-

formance characteristics of the most promising suboptimal

algorithms now in existence. This is to be achieved by

first obtaining computer programs for each of the procedures

selected for detailed study and by then applying them to

several realistic test problems. The resulting output pro-

vides data for comparing the algorithms' computational time,

abilities to satisfy constraints, and the costliness of

their solutions.

The most obvious reason for research along the sug-

gested lines is the important part of a good layout design

plays in efficient production operations. Material handling

costs are very much dependent on the layout design. Although



their exact magnitude is unknown, one author estimated that

they range between 10 and 40 per cent of total production

costs.1 Layout decisions often possess an irrecoverable

quality, due to the cost of relocating centers. They are

long-run commitments affecting the very design of the pro-

duction system. It is true that in some production situa-

tions mounting machines on pallet bases or using air cushion

systems can be an inexpensive means to relocate machines and

to gain the advantages of line production for large produc-

tion runs. In such a case, the layout problem is of minor

concern, giving way to a scheduling problem.2 However, this

type of production system is definitely not as prevalent as

the one of selecting a layout design acceptable over a long

time horizon.

Reaching the research objective is beneficial due to

the paucity of data on the comparative performances of exist-

ing algorithms. The main thrust of recent research is to

develop still another algorithm. Although significant con-

tributions, these efforts do little to apprise the practi—

tioner as to-which one performs best under varying conditions.

 

1Philip R. Reimert, "An Investigation of the Feasi-

bility and Cost of Flexible Plant Layout Using Movable Pro-

duction Machinery and a Computerized Scheduling Program"

(unpublished M.S.I.E. dissertation, Central Library, Arizona

State University, 1963), p. 3.

2Philip Reimert addresses himself mainly to this

technological solution in his thesis. Philip R. Reimert,

ibid.



This is not to say that no comparisons have been made. The

most rigorous comparative analysis1 now available involves

the Hillier algorithm, the Hillier—Connors algorithm, and a

Gilmore algorithm.2 However, the cost data of the sixteen

test problems were derived from random two—digit numbers——

an unrealistic assumption. Other comparisons have been

based on one or two test problems at best. At any rate,

comparative research is not available in the quality and

quantity as is true with a production problem such as line

balancing.3 The interrelated nature of computational time

and the costliness of layout design solutions is unexplored.

Sequential Stepsfito Layout Design
 

It is desirable at the outset to put into perspec—

tive the problem formulated for this study. ,Solving this

problem is actually only one of three steps necessary to

reach a satisfactory layout design.

 

lF. Hillier and M. Connors, "Quadratic Assignment

Problem Algorithms and the Location of Indivisible Facil—

ities," Technical Report No. 6, Program in Operations Re-

search, Stanford University (Stanford: By the authors,

1965), pp. 29-34.

ZAnother study, one by C. Nugent, T. Vollman, and

J. Ruml, has just been reported in "An Experimental Compari—

son of Techniques for the Assignment of Facilities to Loca-

tions," Operations Research, XVI, No. l (January—February,

1968), 150-173.

3E. Ignall offers a comprehensive analysis in "A Re—

view of Assembly Line Balancing," The Journal of Industrial

Engineering, XVI (July-August, 1965), 244-254. A comparable

study is presented by M. Kilbridge and L. Wester in "A

Review of Analytic Systems of Line Balancing,“ Operations

Research,.X, No. 5 (September—October, 1962), 626.

 

 



The first step is to gather information on: product

demand; sequences of production; alternative handling sys-

tems; relocation costs (or location costs in the case of a

new plant); economic advantages of adjacency and line produc-

tion; the flow of materials between each pair of centers;

the number, type, capacity and physical size of centers;

total area available; and the way any other of the multiple

plant layout objectives are affected by the design.

With this information on production requirements and

economic relationships, the analyst turns to the second

step--assigning centers to locations. Locations are usually,

but not necessarily, represented as equal discrete areas in
 

a Cartesian plane having the axes intersecting at one corner

of the layout. The distances between pairs of locations can

be calculated from the configuration; they are assumed to be

constant regardless of how centers are arranged in the final

solution.1 .A decision must then be made on how to assign the

N centers to the N discrete locations to meet production

requirements and yet keep the resulting costs at a satisfac-

torily low level. In this thesis, this decision will be

made using algorithms.

(With the second step completed, the analyst has an

idealized plan or block diagram to which can be added the

detailed planning necessary to reach the final design. The

 

1A three-dimensional location system can be accommo-

dated as long as this assumption is valid.



precise locations and configuration of all centers and sub-

systems within the centers must be carefully weighed.

.We shall be concerned in this thesis with only the

second step--assigning N centers to N locations to minimize

some sort of total cost function subject to a number of

constraints. This is what we consider to be "the layout

problem.”

A Formal Statement of the Layout Problem

Since the hypothesis to be tested is that existing

algorithms perform differently in solving the layout problem

and that these differences can be determined by trying them

out on realistic test problems using the computer, a more

precise formulation of the problem is in order. The advan—

tage is not that all algorithms use the formulation directly,

but that it helps conceptualize the relevant independent

variables and their linkages to the layout criteria. There

are at least three relevant costs: special quadratic,

linear, and general quadratic. They may appear either in

the objective function or as constraints. The objective

function and constraints are first to be stated mathemati-

cally. This is followed by a description of their relation-

ship with the layout objectives.

Special_Quadratic.Costs

There are layout costs dependent only on the rela-

tive locations of center pairs. Considering centers i and k,



this cost (c. ) is a function of the distance between
1jk£

locations j and E to which the two centers are respectively

assigned. If fi measures the desirability of locating
k

centers 1 and k close together and djfl is the distance

between locations j and 2, then Cijkfi is calculated as:

Cijk£= fik djfl (1)

If xij is equal to one when center i is assigned to

location j and is zero otherwise, then special quadratic

costs are expressed as:

N

1/2 (2)C.. X..X

i,j,k,£=1 13kg 13 k3

Three constraints must be imposed to assure a fea-

siblei solution. Condition 3 is an indivisibility require-

ment to prohibit the assignment of fractional centers.

_ 0 - -_
xij "' l (llj_ll2I'°°lN) (3)

Constraint 4 requires that each center is assigned

to a location. Similarly, condition 5 assures that all

locations are assigned. Taken together, they make it impos—

sible to assign a center to more than one location or to

have more than one center assigned to the same location.

N

2x.. = 1 (i=l,2,...,N) (4)

j=l 13



(j=l.2,..-,N) (5)

II
M
Z

K

II

H

Linear Costs
 

There can be a certain linear cost, call it bij'

incurred by assigning center i to location j. This cost

(positive or negative) is unaffected by the center's relative
 

location to the other (N-l) centers. Subject to constraints

3, 4, and 5, linear costs are formulated as:

N

2 b.. x.. (6)

3

Conditions 4, 5, and 6 are to be recognized as the

ordinary assignment problem, a special case of the transpor-

tation problem with unity rim conditions. There are N

sources to supply N sinks; all or none of the capacity of

source i can be assigned to sink j. The integrality prop-

erty of the transporation problem assures that all positive

Xi' values will be equal to one, thereby satisfying condi-

tion 3 automatically. .A feasible solution to this transpor—

tation problem is degenerate, since less than (ZN-l) of the

xij values are positive. This necessitates the use of a

perturbation method. Other algorithms for solving this

problem are presented in Chapter II.

It should be noted that relative location costs

which are a function of distance become linear rather than

quadratic when only one center is to be added2to an existing



10

layout. In this restricted case, there are at least three

alternative formulations (other than conditions 2 through 5)

of relative location costs. They are based on the assump—

tion that the new center can be "squeezed in" at any point

on the Cartesian plane, rather than requiring a discrete

area. In each formulation, x and y are the abscissa and

ordinate of the new center, whereas fi measures the desir-

ability of locating the new center close to fixed center i.

The centroids of the M existing centers are fixed at points

(Xi’yi)’ where i=l,2,...,M.

Formulation 7 presumes that distances between loca-

tions are best computed with the Pythagorean theorem. For

ease of solution, formulation 8 approximates costs by squar-

ing the terms in the function. Finally, formulation 9

computes distances using the rectilinear criterion.

M 2 2 1/2

1:

M

.21 £12 [(X-Xi)2 + (y—yi) 2:] (8)

1:

fi [Ix'xil + IY‘YiI] (9)

’
T
I
M
z

1
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General Quadratic Costs

A certain cost (call it Cijkz

tive location of centers, but is not strictly a linear func-

) depends on the rela-

tion of the distance between them. Let Cijkfi take on values

in the following manner:

 

( aO 1f djfl g_ 0

al 1f 0 < djz g, l

Cijkfi = < . (10)

L a if —1 < d. <p (p ) 32 p

Let the general quadratic cost term Cijkfl be com-

puted as follows:

I l = l

Cijkz Cijkfi + Cijkz (11)

Then the general quadratic cost function, subject to

conditions 3, 4, and 5, becomes:

(12)

N

1/2 E Cijkfi xij sz
i,j 2:1

Two Formulations of the Layout Problem

The layout problem which recognizes all three types

of costs can be formulated in two different ways. The most

direct formulation is given in condition 13, subject to

equations 3, 4, and 5.



 

A

St

4

"
1
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Minimize:

(13)

N 1
I C I I + — 'I '0 I O

i b X 2 Z cijkfl X13 xkfi
i,'=l 13 13 i,j,k,£=l

This formulation, although the most complete, has

several shortcomings. The foremost deficiency is that exist-

ing algorithms seldom recognize bij and never recognize

I

Cijkz

. . l .

object1ves represented by Cijkfi

ficult to quantify. The analyst may prefer to rule out cer-

in the objective function. Secondly, the layout

terms are particularly dif-

tain assignments involving large terms without formally
CijkE

including all of them in the objective function. Finally,

the objectives represented by bij do not generally represent

a stream of costs over a time horizon, as opposed to Cijkfi

and c! This necessitates present value calculations and
1jk£°

the additional complication to the solution process may not

be worthwhile.

In light of these objections to the first formula-

tion, the second one appears to be more satisfactory. This

alternative formulation, which is the one used in our study,

considers bij and c! terms only in an approximate way.
1jk£

Linear costs can be recognized by adding new constraints

requiring some xij variables to be one and others to be zero.

Consider the assignment of center 1 to location 2. There

are problem situations where b12 is so much less than other

 

1These are discussed in the next section.
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blj values that a satisfactory solution obviously must have

x12 equal to l, regardless of the effect on Special qua-

dratic costs. It is also conceivable that b12 is so much

higher than other blj values that x12 must obviously be

constrained to zero. Let Pi be the set of prohibited loca—

tion assignments for center i. The constraints1 acting in

the place of a linear cost function become:

xij = 0 1f jePi (1=1,2,...,N) (14)

The alternative way of including_cijk£ terms in the

solution process is to transform selected fik values into

arbitrarily large values. If certain Cijkfi terms make it

desirable to cluster centers one, three, four, and eight,

then f f f f f
13' 14’ 18’ 34’ 38’ 48

large. .An effective algorithm would automatically bring them

and f can be made arbitrarily

together. If it is desired to separate centers, the appro—

priate fi values can be arbitrarily small.
k

The second problem formulation, which recognizes bij

and Cijkfl terms only implicitly, is therefore subject to

transformations in fi as well as conditions 3, 4, 5, and 14.

k

It can be expressed as:

 

1Required constraints are also implied by condition

14, simply by including in Pi all locations except the one

to which center i must be assigned. However, this may not

be the most efficient procedure for an algorithm to use.



 

‘.

 

L

b

1
1
'
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Minimize:

N

1/2 2

i,j,k,£=1
Cijke Xij XkE (15)

Although it is an imperfect substitute for including

b.. and c!13 1jk£ d1rectly 1n the object1ve funct1on, it would

seem to be acceptable if the layout analyst obtains solu—

tions with and without the various constraints and transfor-

mations. The differences in the objective function values

measure the additional costs caused by the constraints and

transformations; a final selection can be reached on an

incremental cost basis.

Layout Objectives and the Problem Formulation

Traditional layout theory specifies a bewildering

assortment of objectives, the attainment of which are sup-

posed to be dependent on the solution selected to the layout

problem. This large assortment of objectives has led some

authors to suggest that their algorithms are apprOpriate

only for a pure "process" layout.l It is the purpose of

this section to show that this is an unnecessary restriction;

solving the layout problem as formulated in the previous

section can provide satisfactory designs in many types of

1For example, Elwood S. Buffa, Gordon C. Armour and

Thomas E. Vollman suggest CRAFT is applicable mainly to job

or machine shops in "Allocating Facilities with CRAFT,"

Harvard Business Review, XLII, No. 2 (March—April, 1964).
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"mixed" situations. Conceiving of layout problems as either

"pure line" or "pure process" layouts is unrealistic and not

very useful; it does nothing in terms of assigning centers

to locations. In addition, there are few instances of a

pure type in a real world application.

To demonstrate the generality of our problem formu-

lation, consider the objectives commonly cited as being

1 These objectivesdependent on the layout objectives (xij).

are classified in Table 1-1 as to the appropriate costs,

constraints and transformations. These relationships are

admittedly conjectural. Little research has been done in

the area of cost functions and it would seem that many of

the objectives are not always related to Xij' When they are,

the exact linkages are situational; the decision-maker must

be cognizant of them and tailor the problem with them in

mind.

Consider in turn each of the objectives listed in

Table l-l. Material handliaq is usually represented by

 

lTypical statements of layout objectives are found

in: Richard C. Wilson, "Evaluation of Spatial Relations and

Empirical Plant Layout Criteria by Digital Computer" (unpub-

lished Ph.D. dissertation, University of Michigan, 1961);

James M. Moore, Plant Layout and Desiga (New York: The

Macmillan Co., 1962), p. 93; James M. Apple,_ Plant Layout

and Materials Handling (2d ed.; New York: The Ronald Press

Company, 1950), pp. 7-11; and Roy D. Harris and Roland K.

Smith, A Cost-Effectiveness Approach to Facilities Layout,

Working Paper 67-22, Graduate School of Business, The

University of Texas at.Austin (Austin: By the authors,

August, 1967), p. 15.
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c.. terms in the objective function.1 The f. term is a

ijkfl 1k

measure of the flow between centers 1 and k. It should

reflect the true cost of moving the required number of loads

between the centers for each unit of distance. It can be

estimated from data on the numbercflfloads per unit time, the

characteristics of the load, time standards and labor rates.

The value of fi is zero when i and k are equal. When

k

appearing in a total cost function with linear costs, fik is

correctly expressed as the present value of the unit cost.

The djg term is a measure of the distance between locations

j and E. The distance along the actual path traveled can be

adjusted to account for modes of transportation and "impedi-

ments."2

Equipment installation is a linear cost. It includes
 

not only the actual movement of the center to its assigned

location, but also constructing foundations and providing

access to water, compressed air, gas, and electricity.

The objectives of direct labor, in—process inventory,
 

and eqaipment investment can all be related to positive
 

terms (or transformations in fi Each objective can

cijkfi k)°

 

l . . .
It 18 a l1near cost if one or more new, unrelated

centers are to be added to an existing layout.

2The calculation of d. is described by Robert J.

Wimmert in "A Quantitative Appéoach to Equipment Location in

Intermittent Manufacturing" (unpublished Ph.D. dissertation,

Purdue University), pp. 40-80.
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be affected by whether or not a series of centers are

located adjacently; i.e., in the form of a production line.

Depending on such exogenous variables as product demand,

line production may increase the efficiency of labor (due

to specialization), increase the throughput of materials,

and increase the utilization of equipment (thereby decreas-

ing the number of machines which must be purchased). Since

these savings are not realized if two of the sequentially

linked centers of the line are separated by intervening

centers, positive cijkfi terms or fik transformations are

relevant. Cases where material handling delays increase

direct labor costs or where direct laborers are used for

material handling purposes can be accommodated by the Spe-

cial quadratic cost function.

Similarly the objectives of supervisory_effective-

nessL indirect labopL motivation, job satisfactionL and

direct labor are related in the sense that all may be

affected by clustering certain centers. Traditional layout

theory suggests that, under certain conditions, grouping

centers together into a "process" layout increases the

effectiveness of a supervisor, due to his familiarity with

the workers and the technology. It may also decrease in—

direct labor costs as a result of the concomitant simplicity

in scheduling and diSpatching. Small group theory suggests

that motivation and job satisfaction can sometimes be in-

creased by clustering (or separating) certain groups of



19

employees (centers). Finally, clustering centers may permit

a worker to operate more than one machine simultaneously.

.Safety and worker convenience can be represented by
 

all three cost components. The danger of separating centers

between which many cumbersome parts must travel is recog-

nized as a general quadratic cost. It may also be dangerous

to make two centers adjacent, such as locating a painting

area emitting noxious fumes next to a center having a high

concentration of workers. This situation is accommodated

by fixing the painting center in an isolated location (con-

straint 14) or making the flow between them arbitrarily

small. ,Worker convenience is adversely affected by assign—

ing large concentrations of workers to areas remote from

service facilities. This is to be recognized as a special

quadratic cost. Most worker convenience considerations,

however, would seem to be reserved for the detailed planning

stage.

Product qaalipy_and scrap loss objectives are treated
  

in a similar fashion. If expensive, easily damaged parts

must move between two centers, the centers should be located

close together. If one center creates conditions adversely

affecting the quality of products in another center, such as

a foundry located adjacent to a "clean" room, they should be

separated. .Another possibility is to assign the foundry to

an isolated location.
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The best use of floor space seems primarily a prob-

lem for the third step in layout design--detailed planning.

How components within a center are dovetailed together can

materially affect area utilization. There is one way, how-

ever, that xij has direct bearing on area utilization.

Making centers i and k adjacent for line production purposes

eliminates the need of an area to store materials exchanged

between them.

Flexibilipy and expandabilipy are nebulous terms in
 

the context of the layout problem. The connotation seems to

be that the layout design should accommodate all future

foreseeable and unforeseeable changes in production require—

ments. In the case of special quadratic costs, a determinis—

tic model could be built after forecasting changes in fik

terms during the planning period; present value calculations

could then be made. In the case of risk, expected value

calculations would be appropriate. There is little that can

be done if the situation is one of uncertainty.

In summary, our problem formulations are quite

flexible in accommodating relevant objectives if the analyst

carefully considers how they are related to xij and revises

the problem statement accordingly. The algorithms tested in

this thesis apply to the second formulation or else can be

easily revised to this end. It must be acknowledged that it

is rare when a center or group of centers must be assigned

in a certain manner. The statement that "if they don't,
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certain costs will be incurred" is more valid than the all-

k' Unfortunately,

little experience has been reported on how several of the

or-nothing modifications made to xij and fi

objectives can be quantified in terms of one dependent vari-

able1 (dollars) and how they are related to Xij' If it is

found that not all of the objectives can be translated into

dollar values, it still is possible to handle several depen-

dent variables simultaneously.2

The inescapable conclusion is that a satisfactory

algorithm addressed to the quadratic cost component and

amenable to the suggested constraints and transformations

is a workable, but certainly imperfect tool for the layout

analyst. Judgment and nonquantitative factors are still

essential ingredients. It is necessary to "weigh and decide,

balancing quantitative and nonquantitative factors . . .

since usually, measures of effectiveness are not capable of

reflecting all aspects of performance. . . . One of the

 

lRoy Harris and Roland Smith, using a "system" and

"cost-effectiveness" approach, show how a dollar figure can

be derived for each objective. Harris and Smith, pp. 10-20.

They do not take the additional step of tying each objec-

tive to the design variables of this thesis, i.e., xi-.

Their proposal serves only to evaluate a design after it is

generated.

2One possible approach along this line is offered

by Lawrence E. Briskin; his methodology is applied to the

shipping problem where there are two objectives--minimum

cost and minimum time. "A Method of Unifying Multiple Objec-

tive Functions," Management Science, XII, No. 10 (June, 1966),

406-416.



.
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great traps in quantitative analysis is the siren song of

the optimal solutions."1

Unequal Area Requirements
 

The algorithms of this thesis can be distinguished

by whether or not they explicitly accommodate centers with
 

unequal area requirements. For those algorithms possessing

such a provision, the shape of a center is pap determined by

cost considerations; rather the center takes on any configur-

ation which meets very limited qualifications. The result

can be clearly unacceptable center shapes which are not

justifiable on the basis of costs. These algorithms do have

an important advantage in reduced computational time, since

N must not be increased to handle unequal center areas.

The algorithms not having an eXplicit provision can

still accommodate problems having unequal center areas.

Several techniques for doing so are as follows:

1. Combine small centers with large fik values into one

center before applying the algorithm.

2. Ignore small centers and "squeeze them in" after

the algorithm provides a solution. Any one of the

methods for adding centers to a layout having fixed

centers could be used.

3. Divide the larger centers into two or more subcen-

ters possessing equally shared flows. Make all

flows between subcenters arbitrarily large.

4. .Add one or more "dummy" centers and set all of the

fik values equal to zero. When the block diagram

 

lBuffa,Modern Production Management, pp. 55-56.



23

provided by the algorithm is translated into the

final floor plan, expand actual centers into the

areas assigned to the dummies.

Which approach provides the best solutions in an

equivalent amount of computer time is as yet unknown. This

question is beyond the scope of this thesis. The third

technique given above is arbitrarily chosen so that the

effective portions of each algorithm can be tested on an

equal footing. Explicit provisions for unequal areas are

simply ignored.

Obstacles to Solution
 

There are several obstacles defying an easy solution

to plant layout problems. It is important to keep these

obstacles in mind during the evaluation of existing algo-

rithms. The obstacles are the multiplicity of objectives,

the current vagueness of these objectives, changes in system

parameters over time, the cost of data collection, simplify—

ing model assumptions,l indivisibility of centers, and the

very rapid increase in computational difficulty as the prob-

lem size increases. The last obstacle is undoubtedly the

most critical one.

 

1An example of simplified model assumptions is the

discontinuity of material handling costs, due to the imper-

fect ability to hire a fraction of a material handler. A

thorough treatment of model assumptions is offered by Thomas

E. Vollman in “An Investigation of Bases for the Relative

Location of Facilities" (unpublished Ph.D. dissertation,

University of California, Los Angeles, 1964).
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Summary and Organization of Thesis
 

The main research objective is the comparative

appraisal of several promising algorithms relating to the

layout problem. The plant layout problem is defined as

assigning N centers to N discrete locations in such a way as

to satisfy all constraints and attain a reasonably low value

in the objective function. Solving the layout problem is

really the second step of a larger decision process. It

comes after information gathering and is followed by de-

tailed planning. A complete statement of the layout problem

j’ Cijkfi’ and CijkE cost terms, as well as

constraints assuring that each center is assigned, each

recognizes bi

center is indivisible, and each location is assigned.

A less complete, but more tractable statement

explicitly recognizes only special quadratic costs. The

other two cost components are built into the problem formu—

lation with additional constraints on xij and transforma-

tions of fi The computer algorithms of this thesis arek'

addressed to this latter formulation and therefore must be

recognized as valuable, but admittedly imperfect decision-

making tools.

The purpose of the remaining chapters is to select

and evaluate algorithms which fit--or can be made to fit—-

this problem formulation. Chapter II contains a summary and

appraisal of existing decision models in the area of plant

layout. These tools are divided into three groups: (1)



(
i
t

w...

L
4

14.4

.5.

‘1

I.»>‘.

1::

I.“

G..



25

visual aids to design, (2) evaluation techniques, and (3)

algorithms for the layout problem. Four algorithms are

selected for additional analysis: CRAFT, Hillier's algo—

rithm, Wimmert's algorithm and ALDEP.

Since computer programs had been available only for

the first two algorithms, they must be written for the last

two. Wimmert's procedure is the most complex and incomplete

of these two, and so Chapter III is devoted to it. Since

Wimmert's algorithm can be translated into many different

sets of decision rules, thirteen unique versions are devel-

oped for evaluation.

Chapter IV provides an analysis of the results of

applying the selected algorithms to twenty-six test problems.

This analysis places particular emphasis on computational

time, objective function values, and satisfaction of con-

straints. Other properties of the algorithms, heretofore

unknown, are offered. It is also a concern in Chapter IV

to develop more insights as to when a "satisfactory" solu—

tion is reached. This will aid in constructing a "stopping

rule."

Chapter V is set aside for the conclusions of this

thesis. Necessary revisions in algorithms and questions for

future research are presented.
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CHAPTER II

REVIEW AND APPRAISAL OF EXISTING DECISION MODELS

Introduction
 

There is a surprisingly large number of plant layout

algorithms, or concepts which could be transformed into algo-

righms, which have recently been put at the disposal of the

practitioner. Most of them have merit as long as their

assumptions describe reasonably well the problem being

solved. In searching the list for the most flexible, effi-

cient algorithms which solve the layout problem we have for-

mulated, several procedures can be deleted. These deletions

are made mainly on the basis of their assumptions or re-

ported experience with their computational effectiveness.

Of the remaining algorithms, four of them appear to be

particularly promising. The reported experience with CRAFT

and Hillier's algorithms is especially favorable. Wimmert's

procedure and a random—generating procedure are also inter-

esting, but for a different reason. Both appear to be

plausible tools and are rather strongly advocated in some

quarters on a priori grounds.

This chapter is devoted to an evaluation of relevant

layout models from all contributing disciplines. Particular

26
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attention is paid to their theory, strengths, weaknesses and

omissions. These models are grouped into three categories:

(1) visual aids to design, (2) evaluation techniques, and

(3) algorithms for the layout problem.

Reports on plant visits1 and a review of trade

journals suggest that the time-honored models of the first

two categories are the most commonly used tools in business

today. Unfortunately, none offer a basis for an algorithm

of any promise. They do not provide rigorously defined

decision rules for minimizing a cost function. The assign—

ment of centers is left to the "judgment" of the analyst

using the trial-and-error method. For this reason, none of

these models are selected for additional study. They would

appear to be most useful for small uncomplicated problems.

The value of N need not be very large, for example, before

a flow diagram becomes a mass of directed lines which are

completely unintelligible.

Perhaps the best conclusion is that models of the

first two categories have an important role to play, partic-

ularly during the first and third steps of the layout process.

In regard to the second step, they must be supplemented by

algorithms explicitly directed to the layout assignment

problem.

 

lHubert F. Lund, "Plant Planning Tools," Factory,

CXXI, No. 9 (September, 1963), 86-91.
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Visual Aids to Design

These techniques have been available in varying

forms of refinement for several decades. They emphasize the

data collection and detailed planning steps, although the

implication is that the analyst somehow uses them to gener-

ate satisfactory solutions.

The multiproduct_process chart, operation process

chart, and flow process chartl are convenient means of deter-
 

mining the sequence of operations for each product. Com-

bined with product demand information, they facilitate the

computation of the "flow" between any two centers (fik)'

The MAGnitude chart2 accounts for differences in material

handling difficulty and therefore is of value in pointing

out critical handling problems and adjusting fik terms.

Layout drawinga, machine data cards, the layout_planning

chart,3 3-D models, scale templates and isometric drawings4
  

are useful tools for data collection or detailed planning.

 

lTwo references are: John A. Shubin and H. Madeheim,

Plant Layout (Englewood Cliffs, N.J.: Prentice-Hall, Inc.,

1951), and Roy E. Elicker, "Operating Procedures Used in

Plant Layout" (unpublished M.S. dissertation, Michigan State

University, 1951).

 

2Robert S. Rice, "Three New Tools for Better Plant

Layout," Factory, XVIII, No. 6 (June, 1960), 101-103.

3Ruddell Reed, Jr., Plant Layout: Factors, Princi-

ples and Techniques (Homewood, Illinois: Richard D. Irwin,

Inc., 1961).

4Lund, Factory, pp. 86-91.
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The product-quantity chart1 is intended to help

distinguish centers to be clustered in a process layout from

those to be located in a production line. Demand, in units

per time period, is plotted on the y—axis of the graph. On

the x—axis are listed the product lines, ranked in monotoni-

cally nonincreasing order with respect to demand. When a

curve so plotted is convex, a production line is to be used

for products in the upper region of the curve, a "mixed"

design for the central region, and a process layout for the

lower region. This tool provides a primitive notion as to

what centers should be adjacent and clues as to what type of

cost data should be collected. Notable deficiencies are the

failure to specify region boundaries and the lack of an

interpretation for a line, particularly a horizontal one.

In its simplest form, the travel (cross) chart is a
 

matrix showing for a given product the volume of material

flow exchanged between centers in both directions.2 Modi-

fied versions display the combined material flows for all

products, use rating scales, use fi djfi rather than fi

k k'

 

1This chart was proposed by Richard Muther in

Systematic Layout Planning, Industrial Education Institute

(Boston: By the author, 1962). Another reference is

Robert S. Rice's "Three New Tools for Better Plant Layout,"

Factory, CVIII, No. 6 (June, 1960), 101-103.

 

2Travel charts as originally proposed are found in:

D. C. Cameron, "Travel Charts," Modern Materials Handling,

VII, No. 1 (January, 1952), 37-40 and M. L. Levy, "Let

Travel Charting Simplify Your Material Movement Problems,"

Mill and Factopy, XLVIII, No. 5 (May, 1951), 100-101.
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or transform fik and djfl to better reflect costs.1 The

usual suggestion is to use the charts as a "guide," with

alternative block diagrams being drawn by trial and error to

reduce the special quadratic costs or the sum of nonadjacent

material flows.2 One author,3 however, offers two rather

concrete decision rules for assigning centers to locations.

After a center, such as the receiving area, is fixed at the

end of the layout grid, assignment decisions are made for

locations one grid square away from it. The next stage is

to assign centers to locations two grid squares removed, and

so on. The decision rules are to make centers adjacent if

the fi value associated with them is large or if they are
k

connected by one-directional flows involving only one

product.

 

lRepresentative sources on such modifications are:

Wayland P. Smith, "Travel Charting," Journal of Industrial

Engineering, VI, No. 1 (January, 1955); James L. Lundy, ”A

Reply to Wayland P. Smith's Article," Journal of Industrial

Engineering, VI, No. 3 (May-June, 1955), 29; and Glenn E.

Anderson and Irvin L. Reis, "Relative Importance Factors in

Layout Analysis," Journal of Industrial Engineering, II,

No. 4 (July-August, 1960), 312-316.

 

2Elwood S. Buffa, "Sequence Analysis for Functional

Layout," Journal of Industrial Engineeriag, VI, No. 2 (March—

April, 1955), 12-25.

3Marshall Schneider, "Cross Charting Technique as a

Basis for Plant Layout," Journal of Industrial Engineeriag,

II, No. 6 (November—December, 1960), 478-483.
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The R§p_chartl is similar to the cross chart, except

that an ordinal rating scale is used to assign values to the

matrix elements above the main diagonal. Usually five or

six levels are used to describe the desirability of locating

adjacently each possible pair of centers. Centers with a

high "closeness" rating (rik) are given priority when assign-

ing centers to locations. Although the use of rik provides

the analyst considerable flexibility in formulating the

problem, the REL chart leaves unanswered the following ques-

tion. Let the REL values be such that:

Is a solution placing center 1 adjacent to center 2 but non—

adjacent to centers 3 and 4 a better solution than the con—

9verse one. Perhaps the use of fik djfi or even rik djE would

better reflect true costs.

A flow diagram2 is a scaled drawing of the layout
 

area for a given alternative; the location of each center is

specified on it. Directed lines are drawn between centers

 

1RichardMuther and John D. Wheeler, "Simplified

Systematic Layout Planning," Factory, CXX, Nos. 8-10 (August-

September, 1962).

2John R. Immer, Layout Planning_Technigues (New York:

McGraw-Hill Book Company, Inc., 1950).
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to represent material flows. The stringdiagraml is identi-
 

cal to the flow diagram, except that an unbroken string

represents material flows. A pin is placed at each center

centroid and a string is run between each pin. The total

str1ng length measures fik djfi'

The apiral method2 is a visual technique whereby
 

each center is represented by a node; directed lines are

added to show flow from preceding to following centers. The

branches are labelled with appropriate fik terms. The nodes

are then joined by trial and error so as to reduce the sum

of nonadjacent flows. Both the location and shape of cen-

ters are considered to be design variables.

The straight-line method3 is a visual aid which,
 

since it provides a rather specific solution procedure,

possesses some of the properties of an algorithm. However,

it is relevant only if the sequences of operations are

nearly identical for all products. Products are listed

along the y-axis in decreasing order of importance from top

to bottom. A possible sequence of centers is listed along

the x-axis. A bar chart is then constructed showing "split

1R. T. Ronan, "String Diagrams Cut Handling Bottle-

necks," Modern Materials Handliag, VIII, No. 8 (August,

1953), 67-71.

2Ruddell Reed, Jr., Plant Location, Layout and Main-

tenance, Vol. V of the Irwin Series in Operations Managament,

ed. by H. L. Timms (Homewood, Illinois: Richard D. Irwin,

Inc., 1967), pp. 85-87.

3Ibid., pp. 87-91.
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centers," which are to be eliminated when possible by chang-

ing the sequence of centers. The final bar chart is a guide

for drawing center boundaries.

Evaluation of Alternatives
 

Measures of effectiveness can be obtained from

travel and REL charts, which are discussed in the previous

section. Other simple devices for ranking alternatives in

terms of several criteria are: tally of gains and losses,

pros and cons, ranking, and value ratinga.l Alternatives
 

are ranked for each criteria and the alternative with the

highest score is deemed the best. An ordinal number system

is used as if it were cardinal when computing the total

measure of effectiveness.

.Alqorithms for the Layout Problem

There are several computational procedures purport—

ing to solve a center assignment problem similar to one of

those stated in the first chapter.

Analytic method

Numeric method

Level curves

Physical analogies

"Candidate Area" methods

LACH

Demand-position method

Enumeration of alternatives

Integer programmingL
o
o
o
q
o
w
m
b
w
w
t
—
a

 

lRichard Muther, Practical Plant Layout, (lst ed.;

New York: McGraw—Hill Book Company, Inc., 1955), pp. 239-

250.
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10. Branch and bound

ll. Steinberg's algorithm

12. Kodres' algorithm

13. Gilmore's N4 algorithm

14. Gilmore's N5 algorithm

15. Hillier-Connors' algorithm

16. CORELAP

l7. CRAFT

l8. Hillier's algorithm

19. ,ALDEP

20. Wimmert's method.

The first six techniques are addressed to the spe-

cial problem of adding new unrelated centers to an existing
 

layout. Some of these techniques can be embedded in more

comprehensive algorithms for the generalized layout prob—

lem.1 However, algorithms for the general problem (the last

thirteen listed) are more flexible. It is from their ranks

that four algorithms are selected to be applied to the test

problems of this thesis.

 

1The algorithms of Steinberg, Kodres, Gilmore and

Hillier-Connors use one or more of these techniques.
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Analytic Methodl
 

Consider problem formulations 1.7, 1.8, and 1.9,2

which treat material handling as a linear cost function.

Taking the partial derivatives of expression 1.7 yields two

extremal equations to be solved simultaneously:

l
l
h
d
z

fi (x-xi)/ [(x-xi)2 + (y-yi)2:]l/2 = O (1)

i l

f. (y-yiv [(X‘Xi’2 + (ix-3192]”2 = o (2)
1

“
M
K

1 l

Rationalizing these equations is a fundamental difficulty.

If M exceeds three, the number of cross terms created by

squaring both sides of the equations exceeds the number of

 

lMany authors address themselves to this approach,

including: R. T. Eddison, K. Pennycuick, and B. H. P.

Rivett, Qperational Research in Management (London: English

Union Press, 1962), pp. 183—185; Richard L. Francis, "A Note

on the Optimal Location of New Machines in Existing Plant

Layouts," The Journal of Industrial Engineering, XIV, No. l

(January-February, 1963), 33-40; Andre H. McHose, "A Quad-

ratic Formulation of the Activity Location Problem," Journal

of Industrial Engineering, XII, No. 5 (September-October,

1961), 334-337; James M. Moore, "Mathematical Models for

Optimizing Plant Layouts" (unpublished Ph.D. dissertation,

Department of Industrial Engineering, Stanford University,

1965); F. P. Palermo, V, No. 4 (October, 1961), 335-337; and

Roger C. Vergin and Jack D. Rogers, "An Algorithm and Compu-

tational Procedure for Locating Economic Facilities," Man-

agement Science, XIII, No. 6 (February, 1967), 240-254.

 

2The expressions 1.7, 1.8, and 1.9 reference condi-

tions 7, 8, and 9 respectively found in Chapter I.
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terms from which the radical sign has been removed. If more

than one new center is to be added (N >1), the extremal

equations become even more complex.

Formulation 1.8 lends itself to easy solution. The

optimal x and y values are found to be:

M 2 M 2
x = 2 f. x./ [2 f. ] (3)

=1 l 1 i=1 1

M

2 2

fi Yi/ [5 £11 (4)
1 1

If N is greater than one, it is possible to intro-

duce the first new center and locate it ”optimally” in rela-

tion to the M fixed centers. The second new center is then

located "optimally" with respect to M+l fixed centers, and

so on. It is yet to be determined in what order the N

centers are to be introduced and to what degree the result—

ing solution approaches optimality.

An optimal solution to 1.9 is also possible. It can

be proved that the best x value is obtained by arranging the

xi terms in monotonically increasing order and repeating each

xi by a number equal to £1“ The optimal x value is equal to

the median of the resulting sequence. The optimal y value is

obtained in the same fashion. If (1 + 2 + ..._+ M) is an

even number, the solution can be a line or area rather than

a discrete point.
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Numeric Method
 

Since the extremal equations to formulation 1.7

becomes difficult to solve as N and M become larger, a

numeric solution process must be considered. It has been

proved that the cost function for the straight-line movement

case is convex.1 Therefore the iterative, "one—direction-at-

a-timefijprocedure can be used without fear of finding a

local minimum, If N is one, this method fixes x at some

arbitrary value and varies y until the partial derivative in

respect to y is zero. The computed y is then taken as given,

with x being varied until the partial derivative in respect

to x is equal to zero. This constitutes a full iteration.

The procedure is repeated until neither x nor y change-dur-

ing a full iteration. This procedure lends itself to com-

puter solution.2 The only real difficulty is the initial

placement of-x and the size of the incremental steps. If N

is greater than one, a suboptimal solution could be generated

with the following procedure. Temporarily fix all but one of

the centers and "optimally" locate the variable center.

Select and locate successively all of the other centers in

turn. This constitutes one full iteration. Begin a new

 

1K. B. Haley, "The Siting of Depots," International

Journal of Production Research, II, No. 1 (March, 1963),

41-45.

ZAn optimal solution to a problem having M equal to

100 was solved in seven seconds on the IBM 7094. Vergin and

Rogers, Management Science, p. 242.
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iteration unless no assignment changes were made during the

last full iteration.

Two problems are associated with this suboptimal

procedure. Suboptimization is possible if fik is partic-

ularly large and center k is introduced for relocation

immediately after center i. The second problem is that

centers could cluster together. Clustering is avoidable if

constraints are imposed on the distance between center pairs

using the Lagrange multiplier. If a.. is a given distance

1]

parameter, the constraint is as follows:

(Xi'xj’2 + (yi-yj)2 - aij = o (5)

Level Curves

This method1 provides a graphic solution to the one

center addition problem by computing the total cost of

locating the machine at several points on the layout grid.

All points having equal values are connected to form isocost

curves. The center is then assigned to a feasible location

on the lowest possible isocost curve; in this way, center

area requirements can be considered in the analysis.

 

1James M. Moore, "Level Curve Approximation for Lay-

out Analysis" (unpublished paper, Department of Industrial

Engineering, Stanford University, 1960); Andre E. Bindsched-

1er and James M. Moore, "Optimal Location of New Machines in

Existing Plant Layouts," Journal of Industrial Engineering,

XII, No. l (January—February, 1961), 41—48.



39

Formulas were developed to calculate the slope of

the curves in various segments of the graph. This made it

possible to program the procedure for the IBM 1620 computer.1

This procedure is reportedly being programmed for the IBM

7090 so that problem size (M) can be increased.

Level curves are most attractive if only one center

is to be located. If N is greater than one, it is still

possible to use them by successively introducing one center

at a time and locating it "optimally" in relation to the

centers already assigned.

Physical Analogies

There are at least three physical analogies relating

to the addition prOblem: the soap-film solution, mechanical

link-length minimizer, and the analogue computer method.

The first method2 exploits that propensity of soap

film to take a shape minimizing its potential energy (and

therefore its area). .A scale model of plexiglass sheets

(representing the grid) and brass posts (representing the M

centers) is constructed. After being submerged in a soap

solution, the optimal network is observed as a film on the

 

1James M. Moore and Martin R. Mariner, "Layout

,Planning: New Role for Computers," Modern Materials Han-

dling, XVIII, No. 3 (March, 1963), 38—42.

2Miehle, The Journal of the Operations Research

Society of America, p. 239.
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plexiglass. Unfortunately, N cannot be specified in advance

and the links cannot be weighted with fik values.

The second method1 consists of a scale layout, pegs,

pulleys and strings. One unbroken string is looped around

all movable and fixed pegs (representing centers) in such a

way as to represent total material flow. Applying tension

to the string locates the N centers Optimally if friction

does not become an insurmountable complication.

The analogue computer method2 allows the analyst to

locate one center optimally in relation to the other (N+M-1)

centers. The analyst varies x and y values while the ana—

logue computer is operating. When N is greater than one,

the new centers can be located sequentially in the same

manner suggested for level curves.

"Candidate Area" Methods
 

If N new centers are to be assigned to N discrete

"candidate areas" and if the material flows between these

new centers are negligible, the layout problem takes the

form of the ordinary assignment problem. There are several

 

1Ibid., p. 240.

2Edward L. Brink and John S. deCani, "An Analogue

Solution of the Generalized Transportation Problem with

Specific Application to Marketing Location, Proceedings of

the First International Conference on Operational Research

(Baltimore: Operations Research Society of America, 1957),

pp. 123-137; and Samuel Eilon and D. P. Dexiel, "Siting a

Distribution Center, An Analogue Computer Application,"

Management Science, XII, No. 6 (February, 1966), 245-254.
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optimization algorithms available, including the tranSporta—

tion method, Kuhn's Hungarian Method, Munkres' algorithms,

Flood's technique, and the Ford-Fulkerson model.1

If the assignment of fraction centers is permitted

as a rough approximation, the problem can be reformulated as

a zero-sum two-person game or as a linear programming prob-

lem. Considering the latter approach, let bij be the cost

of assigning center i to location j. The linear programming

formulation in N2 unknowns is as follows:

Minimize:

(6)

N

z x.. = 1 (j=l,2,...,N) (7)

N

Z x.. = 1 (i=l,2,...,N) (8)

 

lFour references to these techniques are: Richard E.

Beckwith and Ram Vaswani, "The Assignment Problem--A Special

Case of Linear Programming," Journal of Industrial Engineer-

ipg, VIII, No. 3 (May-June, 1957), 167-172; H. W. Kuhn, "The

Hungarian Method for the Assignment Problem," Naval Research

Logistics Qaarterly, II, Nos. 1 and 2 (March-June, 1955),

83-97; James Munkres, "Algorithms for the Assignment and

TranSportation Problems," Journal of the Society for Indus—

trial and Applied Mathematics, V, No. 1 (March, 1957), 32-38;

and A. Yaspan, "On Finding a Maximal Assignment," Operations

Research, XIV, No. 4 (July-August, 1966), 646-651.
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xij 2.0 (1,3=l,2,...,N) (9)

An integer linear programming problem is obtained by

replacing 2.9 with 1.3.

919E

Location.assignment by Qost of Handling is a dynamic

programming approach1 for assigning N new centers to k candi—

date areas in a layout already having M fixed centers. Each

of the new centers are introduced sequentially for analysis,

with the centers having the highest kgl fik values intro—

duced first. The first center ignores the interaction with

the other (N-l) new centers, the second one ignores the other

(N-2) new centers, and so on. After all new centers (stages)

are considered, the assignment is selected which has the

minimum operating costs and does not violate the budget con-

straint on the purchase of material handling equipment.

LACH is unique in its attempt to integrate decisions

on layout assignment with decisions on handling equipment

purchases. It has not been programmed and data are not

available on its computational efficiency. Some of its

assumptions and information requirements are somewhat unreal-

istic. Hewever, it may be a useful tool when additional

 

lDavid W._Willoughby, "A Technique for Integrating

Facility Location and Materials Handling Equipment Selection,‘

(unpublished M.S. dissertation, Department of Industrial

Engineering, Purdue University, 1967).
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materials handling equipment must be purchased for the new

centers and there are several alternative handling systems.

When any of the other algorithms in this chapter are used,

it is assumed that equipment purchasing decisions have

either already been made or are to be finalized when a

feasible layout solution is obtained.1

Demand-Position Method
 

This unprogrammed procedure is the most primitive

and probably the least satisfactory one of those listed.2

Assume a unidirectional grid is given, with N discrete loca—

tions numbered consecutively from left to right. Determine

the production sequence for each product or part, with the

sequence being a permutation of centers. Compute the total

flow passing through each center. For center i, the total

flow is equal to:

N

2: f .

k=l 1k

The next step is construct a matrix agof the N x N

order, with element sij being the sum of flows for all

products having center i as the j Ilstep in their production

sequences. The "demand-position" is then calculated for

 

1 . . .
For example, buy1ng a conveyor to link centers 1

and k would require a solution having them located adjacently.

2Peter C. Noy, "Make the Right Plant Layout--Mathe-

matically," American Machinist, CI, No. 6 (March, 1957),

76-78.
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each center using the moment analogy of mechanics. If pi is

the demand-position of center i, then:

s.. (10)
pi= 1 13I

I
M
Z

I
I
D
G
Z

1 (sinjvj

j

The final step is to take each center in order of

its total flow and assign it to the unassigned integer loca-

tion closest to its demand-position. This process is con—

tinued without duplication until all N centers are assigned.

The limitations to this method are four. It is

limited to a one-dimensional grid——a very restrictive assump-

tion. It cannot accommodate centers of unequal size. In

addition, if the number of centers in product sequences vary,

a solution is more difficult to obtain. Finally, the solu-

tion is not generated or evaluated by a cost function. For

these reasons, this method is not selected for further study.

Enumeration of Alternatives

This method1 guarantees an optimal solution; all

permutations of centers are considered and the one with the

least cost is selected. There are certain steps common to

any enumerative procedure:

 

1There are at least two programs producing an exhaus-

tive search. Listed in the order of program generality, the

references are as follows: George Conrade, "Computers:

Impartial Judge of.Kitchen Layout," Institutions Magazine,

September, 1967, pp. 119-122; and P. Giles et al., Facilipy

Allocation Project, Department of Industrial Engineering and

.Administration, Cornell University Library (May 22, 1962),

p. 8. '
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1. Read in f. and d. matrix elements.
1k jE

2. Generate a permutation of centers (a solution).

3. Determine if the cost of the permutation is lower

than that of any solution generated previously. If

it is, put the solution and its cost in temporary

storage.

4. Return to step two until all N! permutations have

been considered.

5. Print out the best solution found.

Conrade's procedure, which was programmed in Fortran

for the CDC 3600 computer, also includes an option for

computing internally the distances between locations. It

also prints out a permutation each time a solution cost is

found to be lower than any previously generated.

The fundamental problem with these programs, one

that rules them out as workable tools if N exceeds 10 or 11,

is the rapid growth of computational time as N is increased.

There are 20! or 2.43x1018 permutations of centers to be

generated when N is equal to twenty. It is true that if the

layout grid is rectangular, the number of really different

permutations is one-fourth as great; if the grid is square,

there only one-eighth as many solutions. This characteris-

tic derives from the ability to flip a permutation matrix

about its diagonals, to convert to its mirror image, or to

rotate it 180 degrees. If constraints are imposed on some

xi. values, the number of permutations is reduced by an

unknown amount. Unfortunately, an enumeration algorithm--

even one taking into account identical solutions to limit
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the search of the solution space--is computationally in—

feasible for larger values of N. If N is set equal to

twenty and a computer evaluates one combination each micro—

second, working eight hours per day and each day of the year,

it would take one-quarter of a million years to reach the

final solution.1 Experience with Conrade's program indi-

cates that computer time when N is 10, 11, and 12 would be

approximately 4, 44, and 528 hours of computer time

respectively.2

Integer Programming_

Integer programming procedures for qaadratic cost

functions and linear constraints are of only theoretical

interest in solving the layout problem. Even for small

problems, "a significant increase in computing efficiencies

is required for integer programming to become as practical a

tool as linear programming."3 Even suboptimal algorithms,

which combine intelligently directed and random search pro-

cedures, "require computer time per iteration which increases

at an increasing rate as the number of variables increases.

. . . The class of problem is also a major determinant of tO

 

IWimmert, "A Quantitative Approach to Equipment

Location in Intermittent Manufacturing," p. 95.

2Conversation with George Conrade.

3Donald Blessing Rice, "Discrete Optimizing Solutions

to Linear and Nonlinear Integer Programming Problems" (unpub-

lished Ph.D. dissertation, Purdue University, 1965), p. 2.



47

[time] since adding quadratic forms increases geometrically

the number of calculations required at any stage of the

procedure."1

Since the layout problem has a quadratic cost func-

tion and an enormous number of variables and constraints,

integer quadratic programming must currently be discarded

as a practical solution to the layout problem.

Another possibility is to convert the layout problem

into an integer linear program by defining Yijkfi to be

xij xk£°2 The following integer linear program is then

appropriate:

Minimize:

N

Z c. . y.. (11)
1,j,k,£=1 1.ka :ijfi

Subject to constraints 1.3, 1.4, 1.5 and:

N 2
2 y.. = N (12)

ijkE 13kg

.. + - .. ' ' = ,...,xlj ka Zyijkfi Z_0 (1,j,k,£ 1,2 N) (13)

y. = O (i j k 2:1 2 N) (14)
ljkfi l I I I I I'°°I

Ibid., p. 49.
 

2Eugene L. Lawler, "The Quadratic Assignment Problem,

Management Science, IX, No. 4 (July, 1963), 586-599.
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Unfortunately, and xij involve N4 and N2 vari-
Yijkz

ables respectively. This condition and the erratic nature

of integer programming mean that it is now an impractical

tool for solving the layout problem.

Branch and Bound
 

There are several versions of branch and bound which

guarantee an Optimal solution.l Most of them are amenable

to both linear and Special quadratic cost components. The

versions possess an identical philosophy which can be

described in the following manner. Let the assignment prob—

lem be viewed as a tree containing all possible permutations.

Move out along the branches in stages, eliminating those

branches which need not be investigated further. This is

ascertained by computing the lower bound of the branches at

each stage and eliminating all those having lower bound

values higher than the cost of a known solution. Continue

 

lThese versions are discussed in: Paul C. Gilmore,

"Optimal and Suboptimal Algorithms for the Quadratic Assign—

ment Problem," Journal of the Society_for Industrial and

Applied Mathematics, X, No. 2 (June, 1962), 305-313; Eugene

L. Lawler, "The Quadratic Assignment Problem," Management

Science, IX, No. 4 (July, 1963), 586-599; Eugene L. Lawler

and D. E. Wood, "Branch-and-Bound Methods: A Survey,"

Operations Research, XIX, No. 4 (July-August, 1966), 699-719;

A. H. Land, "A Problem of Assignment with Interrelated Costs,"

Operational Research Quarterly, II, No. 2 (June, 1963), 185-

199; J. W. Gavett and Norman V. Plyter, "The Optimal Assign—

ment of Facilities to Locations by Branch and Bound,"

Operations Research, XIX, No. 2 (March-April, 1966), 210-232;

and J. D. C. Little et al., "An Algorithm for the Traveling

Salesman Problem," Operations Research, II, No. 6 (November-

December, 1963), 972-989.
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in this manner until all but.one of the branches have been

"pruned." This is the optimal solution. The branch-and-

bound technique systematically searches only a portion of

the solution space to find the optimal solution.

The several branch-and-bound versions differ on two

counts: (1) the order in which partial permutations are

introduced for consideration and (2) how the lower bounds

are calculated. The first source of difference is not to

be considered here, since branch-and-bound methods have the

same deficiency as the other Optimization techniques; i.e.,

they are computationally infeasible for larger problems.

The version of Gavett and Plyter has been programmed in

Fortran II for the IBM 7074. The computing times for five

different values of N are given in Table 2—1.

Table 2-1. Computing times for the branch-

and-bound methoda

 

N_ Computing Time

4 . . . . . . . . . 3 sec°

5 . . . . . . . . . 15 sec.

6 . . . . . . . . . 45 sec.

7 . . . . . . . . . 14 min.

8 . . . . . . . . . 42 min.

aGavett and Plyter, Operations Research,

p. 228.
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The rate of increase in time is too great to select

it as an algorithm for further study and there is no reason

to believe the other versions will significantly reduce com-

putational time. This is particularly true when the costs

of various permutations are nearly equal. Perhaps the

greatest promise for this technique would be when an excel—

lent subOptimal solution is already known, but it is desir-

able to find the optimal solution. Using the suboptimal

solution as a starting permutation may eliminate so many

branches in early stages as to make it computationally

feasible.

The second source of difference in the versions--

computing lower bounds—-does justify additional comment.

One of the methods will be applied to the test problems in

conjunction with selected suboptimal algorithms. There are

at least five methods of computing the lower bound.

The first method1 uses the matrix g:of the

N(N-l)/2 x N(N-l)/2 order, which is computed by multiplying

vector f_by the transpose of vector a. The lower bound is

equal to the sum of column (or row) minima which are still

allowed (not as yet constrained to zero in the solution

process). If vectors f and a_were monotonically ranked in

opposite order before computing O, lower bound would be the

sum of the elements in the first column and last row of O.

 

lLand, Operational Research Quarterly, p. 186.
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The second method1 is take the sum of the elements

in the main diagonal of the ranked 9 matrix. This is equiv—

alent to adding the product of the largest fik and smallest

d. values with the product of the second largest fik and
33

second smallest djfi' and so on. The permuted dot product so

obtained can be added to the lower bound of linear costs

(which is found by solving the ordinary assignment problem)

to get a lower bound accounting for both linear and quad-

ratic costs.2 This technique is also appropriate for the

case of a partial permutation having some, but not all of

the N centers are already assigned. It is superior to the

first method since its lower bound can never be less than

the one produced by the first method.

The third method, purported to give an even more

realistic lower bound value,3 computes the lower bound using

a matrix g:of the N x N order. The matrix 2 is the sum of

matrix 2 and matrix 2; The elements ofig are the familiar

bij values. Calculating the g matrix is more complicated.

To compute the element c12, rank all elements of vector p

which reference center one; rank all elements of vector d

which reference location two in the reverse order. Set c12

equal to the permuted dot product of these two vectors.

 

lGavett and Plyter, Operations Research, p. 217.

2Gilmore, Journal of the Sociepy for Industrial and

Applied Mathematics, p. 307.

3Lawler, Management Science, p. 5900
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The element t obtained by adding b12 to C12’ is the lower
12’

bound of the cost contributed by assigning center one to

location two. After all N2 elements of g are computed in a

like manner, the total lower bound is found by treating 2

as an ordinary assignment problem.

The fourth method1 is to solve the integer linear

program of the preceding section by eliminating the integer

requirement; i.e., substitute xij Z_0 for xij = <2. The

fifth method2 is to enter the Yijkz variables of equation

2.12 into a matrix of the N2 x N2 order and partitioning it

into N2 minors in such a way that each minor becomes a

linear assignment problem.

Since little experience has been reported as to

which procedure provides the best lower bound (the one with

the highest value), the second method is chosen for use in

this thesis. The reason for this choice is mainly the ease

in computing it.

Ste inberg ' 3 Algorithm

This is a many—staged algorithm;3 at each stage the

layout problem is viewed as an ordinary assignment problem

having a linear cost function.

 

lIbid., p. 591. 2Ibid.

3Leon Steinberg, "The Backboard Wiring Problem: A

Placement Algorithm," Society for Industrial and Applied

Mathematics Review, III, No. 1 (January, 1961), 37-50°
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There are two unique concepts in the algorithm. The

first is to generate a family of unconnected sets of centers;

i.e., centers having no materials flowing between them. It

is preferable to have all centers mentioned at least once in

the family. One set is introduced at each iteration for

assignment. The second concept is to treat the assignment of

such a set as the ordinary assignment problem, using any of

the existing algorithms which give an optimal solution.1 If

the resulting solution is feasible, it becomes the starting

solution for the next iteration. A solution is feasible

when none of the centers in the set occupy the locations

already assigned to the (N-M) centers not in the set.

The main steps in the algorithm are specified by the

flow chart of Figure 2-1. This suboptimal procedure was

originally programmed on the Univac I system, but is cur-

rently being rewritten in Fortran.2 The final assignments

are dependent on the initial solution, the unconnected sets

considered, and the order in which they are listed.

 

1These algorithms are mentioned in the section on

"candidate area" methods. Steinberg uses James Munkres'

algorithm, which is found in ”Algorithms for the Assignment

and TranSportation Problems," Journal of the Society for

Industrial and Applied Mathematics, V, No. 1 (March, 1957),

32-38.

ZA Univac representative reports that the algorithm

was originally written in machine language for the Univac I

computer. It was then reprogrammed in assembly language

(SALT) for the Univac II. It is now being written in Fortran

for the Univac 1107 and is somewhat of a proprietary nature.
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Generate a family of

p unconnected center

sets. Mention each

center at least once,

if possible.

I
List the sets in any

arbitrary order.

I
Generate or input the

starting solution.

I
Select the next set to

 
 

 

 

 

 

 

 

be checked.

I
Fix the (N-M) centers

not in the set at the

locations specified by

the current starting

solution.

I
Find the least—cost

placement of the M

centers in the set.

I
Is the solution fea-

sible; i.e., is each No

center assigned to only

one location?

1
Make the new assignment

  
 

 

  
 

 

  
 

 

 

 

 

Figure 2-1.

the current starting

solution.

  
 

 
 

1L

Have p consecutive

No sets been considered

without producing a

new starting solution?

 

 

Yes

  

Print out the current

starting solution as

the final assignment.

  
 

Descriptive flow chart of Steinberg's algorithm.

(Sets are chosen in order from the top to the

bottom of the list. After the p set is checked,

the algorithm returns again to the first set in

the list.)
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This dependency is more of an advantage than a disadvantage,

Since it provides three ways of "perturbing" a final solu-

tion in the search for an even better solution. Computa-

tional time has never been reported, although computational

feasibility is a safe assumption.

There are three weaknesses in applying this algo-

rithm to the layout problem. The first one is that con-

straint 1.14 is not recognized, nor is the linear cost com-

ponent included in the problem formulation. This problem is

of a minor nature. Linear costs could be added to the data

matrices prior to finding the least-cost solution at each

stage. Constraint 1.14 could be imposed with an additional

.infeasibility step. The second problem is also minor; some

problems may have few fik values which are zero. This could

drastically reduce the number of possible unconnected sets.

The chances of this occurrence are rather remote for realis-

tic problems of sufficient size. If it does occur, it is

possible to include centers 1 and k in a set if fik is non—

zero but negligible, such as two standard deviations below

the mean. A third point, also of a minor nature, is letting

the M centers of a set to be mapped into any of the N loca-

tions, rather than restricting them to the M locations not

already occupied. There is no apparent justification for

such a provision.

The most important problem, however, is the apparent

failure of the algorithm to produce a solution close enough
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to optimality. Reported eXperience with this algorithm is

limited to one test problem (problem number five of Appendix

IX). CRAFT and the algorithms of Gilmore and Hillier pro-

duce answers of substantially lower cost.1 Although one

test problem provides only preliminary evidence, it is

deemed sufficient to select other algorithms for more

detailed study.

Kodres' Alggrithm

Kodres2 considers a subclass of the layout problem

by squaring the distance between location pairs in the

objective function. Let xi be the abscissa of the location

assigned to center i. Let yi be the ordinate of its center

location. The layout problem can then be formulated as

follows:

Minimize:

if (-)2+(-)2 (15)
i k=l ik Xi Xk Y1 Yk

Subject to:

(x-x)2+(y-y)2>o (173k) (16)
i k i k

 

lSee Appendix XII.

2U. R. Kodres, "Geometrical Positioning of Circuit

Elements in a Computer," Conference Paper 1172, AIEE Fall

General Meeting, October, 1959.
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xi an integer and

(17a)

0 g_xi g_P

yi an integer and

(17b)

0512,30

Kodres demonstrates how several types of constraints

can be built into the objective function to assure, for

example, that a center is located on a particular line in

the layout grid or that two centers are made adjacent and

located along the same line.

To obtain an intermediate solution, drop the con—

straints stated in his original formulation. Minimize the

positive definite quadratic function by setting all partial

derivatives equal to zero and solve the resulting set of

Simultaneous equations with the Gauss-Seidel interation

technique.1

The final solution is constructed manually by using

the relative location of centers in the intermediate solu-

tion as a guide. "The assumption on which the construction

is based is that in the complete solution the points will

retain approximately the same relative positions of the

. . . . 2
1ntermed1ate, non-integer solution."

 

lKodres reports that "a representative lOO-variable

system.was solved in less than five minutes on the IBM 704."

Ibid., p. 6.

2Ibid., pp. 7-8.
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The deficiencies of this algorithm are obvious. The

squared distance criterion is not the one normally used.1

More importantly, the intermediate solution can leave much

to be desired. Locations are points rather than discrete

areas. ,Several centers can be assigned to the same point.

If no constraints are built into the objective function to

fix centers in certain grid areas, "bunching" can occur. It

is also noteworthy that the flow matrix of his test problem

is extremely simple. All but a few of the fi values are

k

zero, simplifying the last phase of the solution process.

Gilmore's N4 and N5 Algorithms

Gilmore offers two versions of a suboptimal proce—

dure embodying an (N-l)-stage decision process.2 At each

stage an unassigned center is matched with one of the remain-

ing locations. The solution procedure involves 3! a matrix

used in the third method of computing lower bounds as

described in the previous section on branch-and—bound tech—

niques. Let k be the number of centers already assigned and

T be of the (N-k) x (N-k) order when the (k+1) center is to

2k

be assigned. This assignment choice is made by picking one

 

1This thesis provides substantial evidence that

such changes in d.£ values do not materially affect the qual-

ity of solutions generated by a satisfactory algorithm.

See the discussion in Chapter IV on alternative distance

criteria.

2P..C. Gilmore, Journal of the Sociepy for Indus-

trial ang_Applied.Mathematics, pp. 310-313.
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of the elements in 2k'

be assigned to location j.

If it is tij’ then center i is to

Gilmore suggests two decision rules for making this

choice. The first decision rule (for the N4 algorithm) is

to make a max-min choice, i.e., pick the maximum element

from the minima of all lines. The second decision rule (for

the NS algorithm) requires more computational effort. It

calls for the maximum element to be chosen from that set of

cells obtained by treating 2k as an ordinary assignment

problem.

These two versions were programmed on the IBM 7090

and applied to a test problem, with the N4 algorithm sur-

prisingly providing a better answer than the N5 algorithm.

Gilmore explains that this was due to the arbitrary way of

breaking ties when implementing the decision rules. The N4

algorithm took less than one minute of computer time and the

N5 algorithm took less than three minutes when N was 36.1

Both versions are very efficient and explicitly recognize

linear costs.

However, recent comparative tests based on random

test data indicate that a slightly different algorithm,

although somewhat slower, provides better solutions than

 

1Ibid., p. 312.
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. 4 . . .
Gilmore's N vers1on.l For this reason, G1lmore's algo—

rithms are not among those selected for further analysis.

The Hillier-Connors Algorithm

This algorithm3 retains the philosophy of Gilmore's

algorithms, differing only in how to choose an element from

Ti.

tion Method for the transportation problem in linear pro-

The new criterion was suggested by Vogel's Approxima—

gramming.4 Determine the arithmetic difference between the

smallest and next smallest elements in each line of ER“

"This quantity provides a measure of the proper priorities

for making allocations to respective rows and columns since

it indicates the minimum cost penalty incurred by failing to

make the assignment to the smallest cost cell in that row or

column."5 Select that element of g for assignment which is

the smallest cost cell in the line having the largest differ—

ence.

This algorithm, which is programmed in Fortran for

the IBM 7090, seemingly performs better than Gilmore's N4

 

lHillier and Connors, pp. 27—34.

2Another reason is that it was learned that Gilmore's

computer programs "are no longer available in any form."

Letter from P. C. Gilmore, January, 1968.

3Hillier and Connors, pp. 15-20.

4Nyles V. Reinfeld and William R. Vogel, Mathematical

Programming (Englewood Cliffs, New Jersey: Prentice-Hall,

Inc., 1958).

5

 

Hillier and Connors, p. 17.
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version. Computational times should be comparable if both

are programmed equally well. However, a comparison of it

to Hillier's earlier algorithm using random number flow data

with no linear costs indicates that Hillier's version is

somewhat superior in terms of solution costs. The Hillier-

Connors algorithm also has the disadvantage of producing

only one suboptimal solution; this is also true with

Gilmore's versions.

CORELAP

This computer algorithm1 translates a REL chart into

an assignment solution. Inputs to the program are the REL

chart,2 the area requirements of each center (expressed in

terms of the total number of units squares), the total num-

ber of unit squares for all centers, N, and the maximum

length to width ratio allowable for the layout grid boundary.

The algorithm begins by assigning the center with

the highest closeness rating to a location in the center of

the grid. This center is called a "winner." The "total

closeness rating" for center i is equal to:

 

1This procedure was initially made available in

Robert C. Lee's thesis. "QOmputerized RElationship Egyout

Planning" (unpublished M.S. dissertation, Northeastern

University, 1966). A more recent reference is: Robert C.

Lee and James M. Moore, "CORELAP-OOmputerized RElationship

Egyout Planning," Journal of Industrial Engineering, XVIII,

No. 3 (March, 1967), 195-200.

2The REL chart is discussed in an earlier section of

this chapter.
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(i # k) (18)

I
I
M
Z

r
1

ik

The list of unassigned centers, presumably ranked by

total closeness ratings, is then searched for a victor. A

"victor" is an unassigned center having the maximum possible

REL value (call it "A") with the winner. If the victor also

has an "A" rating with another center located near the win-

ner, the victor is immediately assigned to a location as

close as possible to the winner. An attempt is made to make

the overall shape of the center as square as possible.

The search then begins for another victor. If one

is found, the same procedure is followed. If one is not

found, all victors are checked for an "A" rating with an

unassigned center. If such a victor is found, it becomes

the new winner and the center having an "A" rating with it

is made the victor. If no victors qualify as winners, the

victors are searched again for a relationship with an

unassigned center having a next to the highest rating. This

process continues until all centers are assigned.

This [solution process] results in the apparent

"growth" of several crystals in a loosely con-

nected fashion. The center of each crystal is a

Winner with it's Victors around it, but several

Winners may share a single Victor which provides

the logical tie between the growing "crystals."

 

1Lee and Moore, Journal of Industrial Engineering,

p. 196.
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This algorithm is computationally efficient. A

Fortran program for the IBM 7090 computer took 2.46 minutes

for a problem having an N of forty-five. It generates a

common-sense sequence of events which would seem to resemble

the sort of thought process a layout analyst would have if

relying solely on his judgment and a REL chart.

There are several a priori judgments as to the

relative worth of CORELAP which seem relevant. Firstly, the

assignment of a center is made by considering the relation-

ships of it with only two other centers. If a center has

more than two high REL values, they would be ignored in

making the assignment.

A second consideration is the use of a REL chart

rather than the objective function provided in the first

chapter. Lee and Moore consider this an advantage, since

otherwise it is not possible to "take into consideration the

problems involved in placing service facilities, such as

washrooms, cafeterias, maintenance shops, and the like."1

The validity of this statement can be questioned. It can be

concluded, however, that the use of a REL chart prohibits

the calculation of the usual total measure of efficiency

unless the following two assumptions are made:

1. A nonzero closeness rating between two centers

implies that, ceteris paribus, the closer they are

located, the better is the solution. Likewise, the

 

1Ibid., p. 195.
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further away they are located, the worse is the

solution.

2. The analyst can construct a scale that cardinally

reflects the importance of each relationship.

If these two assumptions are met, then the algorithms

of this section are compatible with CORELAP and the total

measure of effectiveness would be:

1/2 . . z _ rik djg (19)

Other considerations relevant to CORELAP are: (1)

its current inability to generate more than one solution,

(2) its ability to handle centers of unequal size, (3) its

inability to handle constraints necessitating or ruling out

the assignment of a center to a particular area, and (4) the

individual and collective shapes of centers which are output.

Since any suboptimal procedure is capable of produc-

ing a relatively poor solution, the first consideration is

important. It could be remedied rather easily, however, by

listing all potential victors (or winners) which meet all

other qualifying requirements and selecting from this list

randomly. This would reduce the possibility of generating

only one answer. Provisions for constraint satisfaction are

also possible, although this is complicated by the way cen-

ters of unequal size are handled.
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The authors cite the last consideration as an advan-

tage, since the grid boundaries provide a basis for design-

ing the building which will house the centers.1 Hewever,

CORELAP can produce very unconventional center and building

shapes. It is even possible to have holes in the solution

grid. Although the analyst can adjust the shapes to obtain

a realistic solution, he may unwittingly eliminate some of

the relationships which make the unadjusted solution a low-

cost one. If production requirements are perceived to be ag

constant over time that a less conventional (and flexible)

building shape is desired, it has been pointed out that

CRAFT2 (as well as all of the other algorithms of this sec-

tion) is also amenable to building design simply by adding

dummy centers and an equal number of locations.

The disadvantages of CORELAP seem to outweigh its

advantages when compared with several other algorithms. In

addition, research3 is now underway to compare CRAFT with

CORELAP. Since CRAFT is tested in this thesis, a common

yardstick is available to compare the research of this

thesis with CORELAP at a future date.

 

lIbid., p. 200.

2Elwood S. Buffa, "Reader Comment," Journal of

Industrial Engineering. XVIII, No. 8 (August, 1967), 502.

3James M. Moore, "Author's Comments," Journal of

Industrial Engineering, XVIII, No. 8 (August, 1967), 502.
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CRAFT

This algorithm, apparently an outgrowth of Glaser's

concepts,l has been developed into a comprehensive computer

program.2 The bulk of it is written for the IBM 7094 in

Fortran.3 A flow chart of CRAFT is found in Figure 2-2.

Given an initial starting solution, the algorithm

executes successive exchanges of center locations which

reduce the value of the objective function. For each itera-

tion, the exchange leading to the greatest apparent cost

reduction is selected. Recyling continues until no exchange

reducing costs can be found. Only those centers having

equal areas or centers of unequal area sharing a common

border in the previous solution are considered for exchange.

 

lMurphy suggests that Armour was aided by Robert H.

Glaser, whose research dealt with "airborne digital computers

where the purpose was to avoid high frequency signal loss due

to excessive inductive reactance and stray capacitance."

Daniel J. Murphy, "Machine Location Patterns for Facility

Analysis" (unpubliShed M.S.I.E. dissertation, University of

Pittsburgh, Pittsburgh, 1957), p. 87.

2Buffa, Vollman, and Armour appear to be the major

authors of CRAFT: Gordon C. Armour, "A Heuristic Algorithm

and Simulation Approach to Relative Location of Facilities"

(unpublished Ph.D. dissertation, University of California,

Los Angeles, 1961); Thomas E. Vollman, "An Investigation of

Bases for the Relative Location of Facilities" (unpublished

Ph.D. dissertation, University of California, Los Angeles,

1964); and Elwood S. Buffa, Gordon C. Armour, and Thomas E.

Vollman, "Allocating Facilities with CRAFT," Harvard Business

Review, XLII, No. 2 (March-April, 1964). Another program for

the algorithm is found in P. Giles et al., FacilityyAlloca-

tion Project.

3This program is in the SHARE Library of computer

programs (SDA 3391).
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Figure 2-2. Descriptive flow chart of CRAFT.
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If all centers require equal areas and the search is re-

stricted to pair Switches, the total number of exchanges

investigated per iteration is:

N! 2
2,(N_2) = (N -N)/2 (20) 

The evaluation of an exchange requires computation

of two vector dot products, switching the two vectors,

recomputing the dot products, and computing the difference

between the two products. If center area requirements are

unequal, actual cost reduction after an exchange need not be

what is expected. This is because new center centroids are

computed after the algorithm is committed to the exchange.

The program is amenable to three types of alternatives;

two-center exchanges, three-center exchanges, or the best of

the first two alternatives. The effective portion of the

CRAFT program is a small part of its total length. Most of

the program is concerned with allocating unit squares after

an exchange is selected.

Since the authors1 of CRAFT feel it has considerable

promise, CRAFT is selected for additional study.

It would seem that the CRAFT model should yield results

superior to those obtained by Hillier's model since the

 

1It is reported that "Gordon Armour is currently

working on the inclusion of relayout costs to generate

changes based on a return on investment capital run-off

criterion." Vollman, "An Investigation of Bases for the

Relative Location of Facilities," p. 28.
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former considers more possibilities and is not

restricted to adjacent single step moves.

Hillier's Algorithm

This computer algorithm2 is also an iterative scheme;

a flow chart for it is given in Figure 2-3. At each itera-

tion a pair exchange is selected which, according to an a

priori indication, will reduce the objective function the

most. Only rectilinear and diagonal pair exchanges which

are k units separated are considered. The value of k can be

initialized to any integer number equal to or less than the

maximum distance between any pair of locations in the layout

grid. AS soon as no more exchanges are found to reduce the

objective function, k is reduced by one and the algorithm

recycles. When k is one and no cost-reducing pair exchanges

are thought to exist, the algorithm terminates.

The criterion providing an a priori indication of a

favorable interchange is called a "k-step move desirability

 

1Thomas E. Vollman, "An Investigation of Bases for

the Relative Location of Facilities" (unpublished Ph.D.

dissertation, University of California, Los Angeles, 1964),

p. 37.

2A listing and description are found in Hillier and

Connors, "Quadratic Assignment Problem Algorithms and the

Location of Indivisible Facilities," pp. 20-73. Other

sources are: Frederick S. Hillier, "Quantitative Tools for

Plant Layout Analysis," The Journal of Industrial Engineer-

ipg, XIV, No. l (January-February, 1963), 33-40; and

Frederick S. Hillier and Michael N. Connors, "Quadratic

Assignment PrOblem Algorithms and the Location of Indivisible

Facilities," Management Science, XIII, No. 1 (September,

1966), 42-57.
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Figure 2-3. Descriptive flow chart of Hillier's algorithm. (A'Tast

pass" sets k back to its original value; therefore the

whole solution process is repeated once more.)
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table." This matrix is of the N x 4 order. The rows repre-

sent centers and the columns represent the four possible

rectilinear directions--up, down, left, and right. An ele-

ment in the first column, for example, is equal to the cost

reduction of moving the center under consideration k units

of distance up on the grid without changing any other center

assignments. It is therefore a measure of the center's

"desire" to move up. Diagonal move values are equated to

the sum of horizontal and vertical move values.

At each iteration, the matrix is searched for the

largest cell not yet considered. Each of the three alterna-

tives associated with this cell are investigated. If the

element represents a center to be moved to the right,

exchanges are considered with centers k steps to the right,

k steps up and k step to the right, and k step down and to

the right. If cost approximations indicate the exchange is

favorable, it is made. Otherwise, the next largest positive

matrix element not yet considered is evaluated for inter-

change. Since it is suggested that "applying the Hillier

algorithm once yields a better solution on the average than

1
any other available suboptimal algorithm," Hillier's

approach justifies further study.

 

lHillier and Connors, pp. 27-34.
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ALDEP

The Automated payout QESign‘grograml is an IBM 7090

Fortran program generating random solutions and evaluating

them with the REL chart. All solutions having a certain

minimum score are stored on magnetic tape to be later output

in the form of line drawings using a CALCOMP plotter. The

score of any solution is the sum of the REL values for all

adjacent center pairs. It is therefore a measure of savings

rather than cost, with maximization being the objective.

The authors suggest two variations on this theme:

A variation . . . allows the first layout to be

developed randomly and proceeds to permute pairs

of units randomly and retains the new layout only

if the score improves. . . . This method . . .

converges much more quickly to a maximum score.

The better technique would be several randpmly

generated layouts used as starting points.

The second variation would be a modified random—

selection technique.

Initially, any available department is randomly

selected. (After the selected department is

processed, the preference table REL chart for

that department is searched to find any depart-

ment with a demand preference, that is, the

preference of highest priority. If an avail-

able department is found with demand preference,

this department is processed next. If no avail—

able department is found, a department is selected

randomly. This procedure is repeated until all

departments are processed. -

 

lJerrold M. Seehof et al., "Automated Facilities Lay-

out Program," Proceedings-A.C.M. National Meeting, 1966,

pp. 191-199.

2Ibid., p. 1920 3Ibid., p. 194.
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This computer program handles unequal center areas,

but not linear costs or constraints on Xij' The probability

that a completely random selection process would generate a

good solution at any one iteration is small. However, a

solution is generated so quickly that it could conceivably

reach a satisfactory solution in less time than other algo-

rithms. It is also of interest in providing a measure of

the average solution costs which act as a sort of upper

bound. For these reasons, a random selection procedure is

tested in this thesis. Since ALDEP is "not generally

available outside IBM,"l a very simple version is written

expressly for this thesis. It uses the more conventional

measure of costs based on f. d. values.

1k jfi

Wimmert's Method

The manual computational scheme2 originated by

Wimmert, when made operational and extended, provides the

basis for several computer algorithms. However, the essence

of any version is as follows: select successive elements in

 

lIbid., p. 191.

2Relevant references are: Robert J. Wimmert, "A

Quantitative Approach to Equipment Location in Intermittent

Manufacturing" (unpublished Ph.D. dissertation, Purdue

University, 1957); Robert J. Wimmert, "A Mathematical Model

of Equipment Location," Journal of Industrial Engineering,

IX, No. 6 (November-December, 1958), 498-505; and David N.

_Willoughby, "A Technique for Integrating Facility Location

and Materials Handling Equipment Selection" (unpublished

M.S. dissertation, Department of Industrial Engineering,

Purdue University, 1967).
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matrix 23 eliminate the quadraplets implied by these ele-

ments with the use of the tally matrix T_until only one

feasible diad remains for either a center or location; enter
 

this diad into the final solution by using the g matrix; and

continue this process until N diad assignments have been
 

made. The versions can be thought of as ruling out solu-

tions involving the largest Cijkfl terms until this cannot

be done any more without eliminating the last possible fea-

sible solution. A flow chart of Wimmert's method is given

in Figure 2-4. Definitions for the new terms used in this

paragraph are as follows:

O_or COST.--This ranked matrix is of the (NZ-N)/2 x

 

(NZ—N)/2 order; its elements are c. as defined in equation

1jk£

1.1. Each row of the matrix refers to a different set of

centers [i,k}, where i # k. Each column refers to a differ—

ent set of locations {j,£}, where j # B. The matrix is

unique in the way c. elements are arranged. Let:
1jk£

= a' f (21)

H
0

The column vector Q} has (NZ-N)/2 d. elements,

32

where j # 2, which are ranked in non-increasing monotone

order from top to bottom. The row vector p consists of

(NZ-N)/2 f. terms, where i # k, which are ranked in non-

1k

decreasing monotone order from left to right. Our computer

algorithms never store O_in memory, since a and §_can be

used directly; however, the matrix is of value for expository

purposes.



Figure 2-4.
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Quadraplet (i,j,k,£).--This term refers to the four
 

labels (i,j,k,£) implied by each element of g” When we

Speak of eliminating (i,j,k,£) from the final solution, this

means that all of the following conditional assignments are

to be disallowed:

xij = 1 if Xkfi = l

Xifi = 1 if xkj = 1

Xkfi = 1 if xij = l

xkj = 1 if X12 = 1

However, eliminating quadruplet (i,j,k,£) need not rule out

any of the following conditional assignments:

xij = 1 if Xkfl = 0

xifl = 1 if xkj = 0

Xkfl = 1 if xij = 0

xkj = 1 if Xifi = 0

Diad (i,j).-—This term refers to the assignment of

center i to location j. .It is used synonymously with the

xij variable defined in Chapter I. Four diads derive from

quadruplet (i,j,k,£): diads (i,j), (k,£). (1,2), and (k,j).

For this quadruplet, let the "complement" of diad (i,j) be

taken to mean (k,£). Similarly, the complement of (1,2) is

(k,j). There are two "diad sets" for this quadruplet:

[(i,j), (k,£)} and ((1,3), (k,j)}. Diad (i,j) is said to be
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"infeasible" if it has been equated to zero; it is "assigned"

after being equated to one.1

Egor Tally.--A quadruplet is eliminated by incre-
 

menting up to four elements in this matrix. The incremented

elements are the derivatives of the eliminated quadruplet.

Since each element in 2 references a diad, the element's

value is the number of the diad's complements which have

been tallied. There are limits to the number of complements

which can be tallied without ruling out all feasible solu-

tions not involving the quadruplets already eliminated.

Since these limits are specified by XOUT, g:is used with

XOUT to determine when diads are to be made infeasible.

This system therefore is intended to prevent tallied qua-

druplets from entering the final solution. The size oft;

varies, depending on the algorithm used.

XOO£.--This is either a parameter or a vector of

(NZ-N) elements, depending on the version used. The purpose

of XOUT is to judge when a TALLY element (tij) increases to

the critical value where diad (i,j) is deemed infeasible.

fiLcu'SOLUTION.--This (N+1) x (N+1) matrix provides
 

the current feasibility status of each diad. Let the follow-

ing scheme be used in giving Sij a numeric value. At the

start of the solution process, initialize §Iat zero. After

 

1This refers to the problem formulation of Chapter I.

Different conventions are adopted for the SOLUTION matrix in

our computer programs.
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a sufficient number of quadruplets have been eliminated to

make a diad infeasible, the element in g corresponding to

the infeasible diad is equated to one. If either of the two

lines passing through this element now have (N-l) elements

which are nonzero, the zero element must be equated to two.

This means the "open" diad has been assigned; i.e., entered

into the final solution. All other (ZN-2) elements in the

lines passing through the assigned diad are equated to three

to show that they can no longer be assigned. The (N+1) col—

umn stores the total number of nonzero elements in each row

and the (N+1) row stores the number of nonzero elements in

each column.

The order in which elements in g are selected is

prescribed by Wimmert to begin with the northeast corner of

the matrix, then the elements in the minor diagonal next to

the northeast corner, then the elements in the minor diago-

nal two steps from the northeast corner, and so on. This

particular order greatly simplifies infeasibility testing,

k

1

but does not guarantee that fi djz values are selected in

the order of their magnitude. This possibility, which was

recognized by Wimmert, led some authors to conclude that

the procedures have been "disproved."2 Conway and Maxwell

 

1R. W. Conway and W. L. Maxwell, "A Note on the

.Assignment of Facility Location," Journal of Industrial

Engineering, XII, No. 1 (January-February, 1961), 7-13.
 

2Armour and Buffa, Management Science, p. 294.
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suggested an alternative approach would be better, that is,

searching systematically in the neighborhood of the main

diagonal for feasible solutions. This alternative has been

attempted, but with very poor results.1 However, mathemati-

cal criticisms of Wimmert's original procedure, which is

admittedly suboptimal, are not appropriate. There is no

assurance that optimal solutions will be generated even if

Cijkfi values are selected in the order of their magnitude.

Wimmert's method had never been programmed for the

computer and never compared with other approaches. Propo-

nents describe it in rather glowing terms; it is selected

for further analysis in this thesis.

In general, Wimmert's method will result in an

optimum solution for n machines in n possible

locations. However, the optimality of the solu—

tion using successive diagonals . . . does not

necessarily hold. An optimal or near optimal

solution may be obtained by eliminating the high

value cell and its dependents before the lower

diagonal value.

 

lP. Giles et al., Facility Allocation Project.

2Reed, Plant Location, Layput and Maintenance, p. 100.
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CHAPTER III

ALGORITHMS FOR WIMMERT'S METHOD

Introduction
 

In this chapter, the computer algorithms derived

from Wimmert's original scheme are described. There are

. 1

nine stages

*1.

*2.

*3.

*4.

5.

6.

*7.

*8.

9.

to each algorithm:

Selecting quadruplets

Entering tallies

Updating CRITERIA

Infeasibility testing

Revising SOLUTION

Making diad assignments

Detecting post—assignment infeasibility

Recycling

Deducting the last diad assignment.

These stages provide the organization of this chapter; each

stage is taken in order as a separate section. For the

stages marked by an asterisk, several alternative decision

rules of unknown merit are used. All decision rules are

explained and matched with the versions which use them.

It is convenient to adopt a set of terminology for

describing the algorithms. The more frequently used terms

are defined in the last section of Chapter II. Additional

 

1As Shown in Figure 2-4, Wimmert's original scheme

recognizes only six stages and therefore is not completely

specified.

80
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terms are defined as needed in this chapter. A more compre-

hensive list of definitions is given in Appendix I.

Selecting Quadrupiets

Quadruplets are selected for elimination indirectly.

The choice is made by first selecting a c.. element and
ijkfi

then eliminating the quadruplet implied by it, that is,

quadruplet (i,j,k.£). There are three decision rules for

selecting g elements.

Rule 1—1. The first element chosen is the one in the north-

east corner of the matrix. The next two elements

belong to the diagonal next to the northeast corner

element. The next three elements belong to the

second diagonal closest to the northeast corner

element, and so on. Elements in a diagonal are

introduced one at a time, beginning with the one

directly south of the northeast corner and proceed-

ing up along the diagonal until reaching the element

in the same row as the northeast corner element.

Rule 1-2. Select diagonals in the order specified by rule

1-1, but eliminate all diagonal elements before

searching SOLUTION for diad assignment demands.

Rule 1-3. Select the largest element in g not previously

chosen. Break ties with a random choice from a1;

tied elements.

Rule 1-1 is suggested by Wimmert to simplify infeasi-

bility testing. Rule 1-2 is a modification of it. It should

be noted that neither rule guarantees the selection of cijkE

elements in the order of their magnitude. Rule l-l implies

that all terms in a minor diagonal are greater than any

element in diagonals to the west. It also assumes all CijkE

values in a diagonal are ranked in nonincreasing size moving
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northwest from the southeast corner. Rule 1-2 does not make

the latter assumption, but instead assumes that all diagonal

elements are of equal value. All of these assumptions can

be violated. This is particularly true when the variance of

(fi-fi-l) is large or when (di-di-l) var1es cons1derably as

1 increases from 1 to (NZ-N/Z).

There 1a one property of O (not fully eXploited by

any version) which is always true. Element Cijkfi can never

be less than that portion of the matrix partitioned with two

lines drawn from it. The first line is drawn from Cijkfl

directly south and the second directly east.

The computer routine for implementing rule 1—1 or

1-2 is simple. KOUNT7 is the index of the minor diagonal

being considered, where KOUNT7 is one for the first diagonal

(northeast corner element). The row and column indices

(KOUNTlO and KOUNT9) are incremented to consider each ele-

ment in the KOUNT7 diagonal. On the other hand, the routine

for implementing rule 1-3 can be described as follows;

1. If KOUNT 27 is greater than zero, go to step 3.

KOUNT27 indicates the number of the quadruplets

stored in matrix CELLTIE.

2. Of the elements in the first row of O which have

not yet been selected (their SCORE vglues are

zero), identify the element(s) with the largest

value. Store its (their) labels in CELLTIE.

Discontinue the search if all elements have

already been eliminated or as soon as an element

is found having a value less than one to its east.

Search the succeeding rows the same way, discard—

ing all previous CELLTIE elements when an element

is found with an even larger value.
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3. Choose a quadruplet randomly from the KOUNT27

rows of CELLTIE. Strike out the row selected

in CELLTIE, move up all following rows by one

notch, reduce KOUNT27 by one, and set the

corresponding SCORE element to one.

Entering Tallies
 

The way tallies are recorded depends on the size

of the 3 matrix as well as the particular quadruplet being

eliminated. The Tlmatrix takes on one of three sizes in

this thesis: N x N, (NZ—N) x N, or N2 x N2. The rows of

the first matrix refer to centers; the columns reference

locations. There is only one tij element for diad (i,j).

The columns of the (NZ-N) x N matrix also refer to locations.

However, the row pairs {1,2}, {3,4}, ..., {(NZ-N-l), (NZ-N)}

reference the center labels of fik values which have been

ranked in nonincreasing monotone order from top to bottom.

This arrangement simplifies infeasibility testing. There

are (N-l) tij elements for each diad. If quadruplet (i,j,

k,£) is selected for elimination and corresponds to the p

I
row of C, the relevant TALLY elements are t ., t .

= ZED-1,] 2p!)

t , and t . Each element in the N2 x N2 TALLY

2p-ll£ 2p1£

matrix references a complement of a diad, with every comple-

ment of each possible diad being allotted an element in the

matrix. There are (N2) tij elements for each diad. When

this matrix is used, a supplementary tally matrix (MINTALLY)

of the N x N order is used to make infeasibility testing

more efficient.
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There are two alternative decision rules for tally

entry. Rule 2-1 is implied by Wimmert, whereas rule 2-2

seems superior on a priori grounds.

Rule 2-1. Always add one tally to each possible TALLY

element (t. ,t. ,t . and t ).
13 1E kj k2

3219 2-2a. If any of the four derivative diads of the

quadruplet are already assigned, enter no tallies.

Make the complement of the assigned diad infeasible

in SOLUTION, if this has not already been done. The

reason for this rule follows from the definition of

quadruplet elimination.

Rule 2-2b. If rule 2-2a is not evoked and at least one diad

in a set is already infeasible (equal to one in

SOLUTION), enter no tallies for the set. The justi-

fication for this rule is that if a diad is already

infeasible, its complement should not be "penalized."

The diad and its complemen cannot both enter into

the final solution anyway. This rule is applied

separately to both diad sets: ((i,j), (k,£)} and

{(i1£)1 (klj)}°

_Rule 2-2c. For each diad set not evoking rules 2-2a or

2—2b, enter two tallies. If tallies are to be

entered for both sets, for example, add 1 to tij’

tiZ’ tkfl' and tkj'

gpdatinquRITERIA
 

When searching SOLUTION, it is possible to find one

OI? more lines containing no assigned diad, but at the same

tiine having no zero element. Another possibility is that

Serveral lines have only one nonzero element. One cause of

1This need not be true if the infeasible diad

bfiElongs to a SOLUTION line having no assigned diad and has

all its elements "closed" (nonzero).
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this "conflict" is that, even if only one quadruplet is

eliminated at a time (rule 1-2 is not used), up to four

diads are tallied. This may make more than one of them

infeasible simultaneously. Another cause is that when a

diad is assigned, all of the other (ZN-2) elements in its

two orthogonal lines are simultaneously made infeasible.

The possibility of conflict is not recognized in

Wimmert's original procedure and therefore some technique

must be developed to resolve conflicting diad assignment

demands. One possible alternative is to select the diad

with the smallest lower bound. This approach is like

Gilmore's algorithm but is not eXplored in this thesis. The

approach we do use involves a matrix called CRITERIA. There

is one element in this matrix for each possible diad. The

value of this element provides an approximate measure of the

costliness of the corresponding diad assignment. The mea-

sure is necessarily approximate, because the cost of an

assigned diad depends on which of the other diads also enter

into the final solution. This is known only after a solu-

tion is reached, not during the solution process.

Four decision rules seem promising on an a priori

lDasis. All four of them record the number (or cost) of

Eireviously eliminated quadruplets which will be disqualified

Iif the diad is made infeasible.
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Rule 3-1. Add one to CRITERIA values corresponding to the

four derivative diads of the quadruplet eliminated.

Rule 3-2. .Add one to the CRITERIA values of each diad in a

set which has not evoked rule 2-2a when the quadru-

plet was tallied.

Rule 3-3. Add a given fraction of f- - to CRITERIA

values of the four diads derivinggfrom the quadru—

plet being eliminated.

Rule 3-4. Add a given fraction of fm dag to CRITERIA

values of each diad in a set lwhi has not evoked

rule 2-2a when quadruplet (i,j,k,Z) was tallied.

Infeasibility Testing

A diad should be made infeasible for either of three

reasons. The first reason is that one of the diads in a set

belonging to an eliminated quadruplet has already been

assigned. This type of infeasibility is accounted for in

rule 2-2a. The second reason is that its center has already

been assigned to another location (or vice versa).

The third reason is that quadruplets involving the

right "mix" of diad complements have been eliminated so as

to make it impossible for all complements to satisfy condi-

tions 1.3, 1.4, and 1.5 if the diad is assigned. The logic

3behind this third type of infeasibility is developed with

“the examples of the following sections and the TALLY matrix

c>f Table 3-1. This matrix is identical to the N2 x N2 TALLY

Inatrix described in the section on tally entries except that

ciiad sets having i=k or j=£ are excluded. There are

3
(N4-2N +N2) matrix elements, one for each diad complement.

Since there are four derivative diads to each quadruplet,
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Table 3-1. TALLY matriX*

j l 2 3 4 N

1k1234...N 134...N 124...u 123...»: 1234...

:2 It'll!» a a a a c c

3 b b b b

1 4 d b d b b b

N

l a c a c ace

3 c c c c

2 4 d c c d c c

£1

1 b b b b

2 c c c c

3 4 d d

N

b

b

2
0
0
0
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*Circled groups of tallies indicate an infeasible died for the various examples.
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four tally entries are appropriate per quadruplet. No qua-

druplet is tallied more than once, making it impossible for

a matrix element's value to exceed one.

The question to be answered is how many of a diad's

complements can be tallied before a diad becomes infeasible.

Example A jN=4).--If N is equal to 4 and three com-
 

plements of a diad have been talliedl which all reference

the same center, the diad must be made infeasible to assure

that none of the quadruplets enter into the final solution.

Consider the following quadruplets involving diad (1,1):

(l,l,2,2), (l,l,2,3) and (l,l,2,4). Their elimination means

that if center 1 is assigned to location 1, center 2 cannot

be assigned to any of the remaining locations.

Example B (N=4).--If four complements of a diad have
 

been tallied which reference the same two centers and two

locations, the diad is infeasible. Consider quadruplets

(1,3,3,2), (l,3,3,4), (l,3,4,2) and (l,3,4,4). If they are

to be eliminated, diad (1,3) must be made infeasible. Other-

wise, only location 1 is left for centers 3 and 4. This

violates conditions 1.3, 1.4, and 1.5.

Example C (N=4).--If the following six quadruplets

are eliminated, diad (2,4) is still feasible: (2,4,3,3),

(2,4,3,1), (2,4,4,2), (2,4,4,1), (2,4,1,2), and (2,4,1,3).

 

1The tallies for example A are indicated by the

letter "a" in Table 3-1.
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For example, one feasible solution which includes none of

the quadruplets in the final solution when diad (2,4) is

aSSigned would be: xll=l; x24=1, x32=1; and x43=1. This

example demonstrates that the number and type of quadru-

plets both bear on infeasibility.

Example D jN=4).--If three complements of a diad are
 

tallied which reference the same location, the diad is infea-

sible. Let quadruplets (4,3,3,l), (4,3,2,1) and (4,3,1,1) be

eliminated. Since it is not possible to assign centers 1, 2,

and 3 to only two locations (2 and 4), diad (4,3) is infea-

sible.

Generalized Case.—-Let the number of centers (N)
 

take on any positive integer value and O take on integer

values from 1 through (N-l). Then the rule for the gener-

alized case is:

Rule 4—1. A diad is infeasible when at least (¢N_¢2) of

its complements have been tallied which reference

the same o centers and (N-¢) locations.

 

The number of tallied complements required to make a diad

infeasible is therefore variable. It depends on the center

and location labels of each tallied complement. The minimum

number of tallies is (N-2). When the number increases to

(N-l), infeasibility becomes possible; i.e., the case where

4 equals 1 or (N-l). The maximum number (NZ/4) occurs when

4 equals N/2, with fractional values truncated when N is an

odd number.
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6 = ¢N—¢2

Siti— _

carp—NM

¢* = u/z

2
It is impossible to eliminate (N /4+1) diad complements

without also making the diad itself infeasible.

ProgrammianRule 4-1

Only one version implements rule 4-1 when rule 1-3

is also used. The version's two limitations make it only of

academic interest. First of all, there is an enormous com-

puter storage Space problem for the 2 matrix. Even if.l

is a logical array and the matrix is reduced to have only

3
one element for each quadruplet rather than four, (N4-2N +N2)

/128 words are required.

Secondly, the storage space and computational time

required to make an infeasibility test becomes forbidding.

This is evident when analyzing how rule 4-1 can be programmed.

Let (N-A) be the number of centers yet to be assigned before

reaching the final solution and diad (1,1) be tested for

infeasibility. Take each possible combination of ¢ centers

not involving center 1, where O = 1,2,..., (N-A-l). Each

combination provides the center labels to a set of comple-

ments to be checked. Determine if at least one combination

references the same (N-O) locations, other than location 1.

If one is found, diad (1,1) must be made infeasible. In our

version, each center label of a combination is stored in a
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separate word. The number of combinations grows very

rapidly as N increases. If N is 40, 1.1 x 1012 combinations

must be generated and the number of computer words required

is 2.2 x 1013. The number of combinations is the sum of

coefficients of the binomial distribution; it is equal to:

N-l

z N: = N_

¢=1 e: (N-¢)1 2 2

 

Not only are storage space requirements excessive,

but the time spent generating, storing and reading them is

also significant. A routine has been written to generate

combinations, store them on the drum, and then read them.

This routine is given in Appendix II. The computer time for

varying levels of N is given in Table 3-2. Even though the

time can be reduced by buffering and blocking the data, it

is excessive. Each quadruplet requires four tests2 and the

number of quadruplets to be eliminated ranges from 15 to 35

per cent of the total number of elements in g;

 

1Approximately 100,000 unblocked words can be stored

on the drum and 280,000 words on a tape. If blocked, the

number which can be stored on tape is increased to only 1.6

million‘words.

2Version 5-B uses MINTALLY to cut down on the number

of tests. If a diad's value in MINTALLY is less than (N-l),

a test is not made.
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Table 3-2. Time to generate, store, and read combinations

(in seconds)

N Generation and Storage Reading

2 .10 .04

3 .12 .07

4 .16 .13

5 .30 .21

6 .44 .43

7 .84 .81

8 1.66 1.69

9 3.22 3.26

10 6.45 6.67

11 12.96 13.31

12 26.05 26.51

13 50.51 50.70

 

Wimmert's Test

If quadruplets are introduced by the size of their

Ciij values, the order of which differ for each problem,

rule 4-1 must be discarded as impractical. Fortunately,

another testing procedure is available; it is suggested by

Wimmert. Quadruplets are selected for elimination with

rule 1-1 and TALLY is the one of the (N2xN) x N order. XOUT

is a column vector with (NZ-N) elements, there being one

element correSponding to all elements in each TALLY row.

XOUT is computed with rule 4-2a and rule 4-2b governs the

actual test.
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Rule 4-2a. Equate each XOUT element to N minus A minus ¢.

,A is the number of diads already assigned. (¢-1) is

the number of times ti' appears in previous TALLY

rows. ¢ takes on values of 1,2,...(N-1).

Rule 4-2b. If a tij is equal to or greater than the value

of its correSponding XOUT element, diad (i,j) is

infeasible.

 

Rule 4-2 yields the same result as rule 4-1, glyan

the specific way quadruplets are introduced. Since this is

not obvious, three examples are given to demonstrate this

equivalency; a proof for the generalized case is then given.

Example A (N=4).—-Let the problem be such that the

first quadruplets eliminated are (l,2,2,3), (l,2,3,3),

(l,3,2,4), (3,2,4,3) and (l,3,3,4). The relevant COST and

TALLY matrices are given in Tables 3-3 and 3-4, where num-

bers in parentheses depict the order of their elimination.

Table 3-3. COST matrix for example A

 
 

 
 

    

Location

Pairs

Center

Pairs . . . 3 - 4 2 - 3

1 - 2 (3) (l)

1 - 3 (5) (2)

3 — 4 (4)

W M

1The discussion of the generalize case shows that

this 9 is identical to the one of rule 4—1.
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Table 3-4. TALLY matrix for example A

 

 

 

 

ations

l 2 3 4 XOUT ¢

Centers

1 (l) (1) (3) (3) 3 1

2 (1) (l) (3) (3) 3 1

l (2) (5) 2 2

. . (2) GER-P? (5) 3 1

3 (4) (4) 2 2

4 (4) (4) 3 1

 

         . W

WWW“ “W Num

The elimination of quadruplets (l,2,2,3), (l,2,3,3),

(l,3,2,4), and (l,3,3,4) evokes rule 4-1, making diad (1,3)

infeasible (the case where ¢=2). Infeasibility is also

detected using rule 4-2, since t13 in the fourth row is

equal to two and this is the value of the corresponding XOUT

element.

Example B jN=5).--Using rule 1-1, the order of
 

quadruplet elimination for a hypothetical problem is shown

in the COST matrix of Table 3—5. The corresponding TALLY

matrix is given in Table 3-6.

The elimination of quadruplets (l,l,2,2), (1,1,3,2),

(l,l,2,3), (l,l,3,3), (l,l,2,4), and (l,l,3,4) evokes rule

4-1 when 9 equals 2, making diad (1,1) infeasible. The in-

feasibility is also detected in the third row of the TALLY



matrix where tll

95

 

 

  

 

 

    

equals the value of the corresponding XOUT

 

 

 

 

 

 

 

 

element.

Table 3-5. COST matrix for example B

ocations g i

. 4-5 1-4 1-3 1-2

Centers

1-2 (10) (6) (3) (1)

1-3 (9) (5) (2)

4-5 (8) (4)

3-5 (7)

N’NM

WW

Table 3-6. TALLY matrix for example B

ocations

l 2 3 4 5 XOUT ¢

enters

l (l) . (3) . (6) (l) (3) (6) , (10) (10) 4 l

2 (l) . (3) . (6) (l) (3) (6) , (10) (10) 4 l

l (2) . (5) . (9) (2) (5) (9) 3 2

3 2 , 5 , 9 (2) (5) (9) 4 l

4 (4). (8) (4) (8) 4 1

5 (4).(8) (4) (8) 4 1

3 (7) (7) 3 2

5 (7) (7) 3 2

W'Wv—JNWNMWN        
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Example C (N=§).-—If quadruplets (l,l,2,2), (l,l,3,2),

(l,l,2,3), (l,l,4,2), (l,l,3,3), and (l,l,4,3) are eliminated,

diad (1,1) is infeasible. Rule 4-1 is evoked when ¢ equals 3.

Tables 3-7 and 3-8 Show that rule 4-2 also detects this

infeasibility.

Table 3-7. COST matrix for example C

 
 

 
 

      

Locations

. . . 3-5 4-5 1—3 1-2

Centers

1-2 (10) (6) (3) (1)

1-3 (9) (5) (2)

1—4 (8) (4)

4-5 (7)

KW “AM-aw
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Table 3-8. TALLY matrix for example C

 

 

 

 

 

 

         

ocations

1 2 3 4 5 XOUT ¢

Centers

1 (1).(3) (l) (3).(10) (6) (6).(10) 4 l

2 (l).(3) (l) (3).(10) (6) (6),(10) 4 l

l (2).(5) (2) (5) (9) (9) 3 2

3 (2).(5) (2) (5) (9) (9) 4 1

1 _ (4) (s) 2 3

4 (4),(8 (4) (8) 4 1

4 (7) (7) 3 2

5 (7) (7) 4 1

Generallzed case.--Let the value of a tij element be

(N-¢). If A is zero, this makes diad (i,j) infeasible if

rule 4-2 is used.11 It must be proved that rule 4-1 would

also make xij infeasible.

Consider the provision of rule 4-1 which stipulates

that ¢(N-¢) of a diad's complements must be tallied which

reference the same (N-e) locations. Let: fik > fiu’ where

i¢k and i#u.

 

1There is no loss of generality by equating A to

zero. If A is not zero and no tallies are entered for a

quadruplet if one of its derivative diads is already assigned,

N can be Simply redefined as the number of unassigned centers.
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Due to the arrangement of elements in g! Cijkfi is

always in a diagonal closer to the northeast corner than is

cijufi' This means quadruplet (i,j,k,£) is always tallied

before (i,j,u,£). Furthermore, since center pairs are

associated with TALLY rows in the order of the flow between

them, tallies for quadruplet (i,j,k,£) are always entered in

higher TALLY rows than the rows in which quadruplet (i,j,u,£)

is tallied. Therefore, for each tally entered in a tij ele-

ment, there must also be at least one tally in each tij ele-

ment of the ¢ previous rows. The complements of this diad

must also reference the same location in each such row.

This must be true regardless of whether an element has one

tally or (N—¢) tallies. The reason is that a died and its

complement are tallied simultaneously; therefore, a diad

with (N-¢) tallies must have at least ¢(N-¢) of its comple—

ments tallied. Furthermore, these complements must refer-

ence the same (N-¢) locations.

The other condition of rule 4—l is that all of these

¢(N-¢) tallied complements reference the same ¢ centers.

Each pair of center labels in a diad set are associated with

a different pair of TALLY rows. Since one of the center
 

labels in the ¢(N-¢) quadruplets producing these tallies is

always the same (center i), all of the complement center

labels must be different. Since there are only ¢ rows of

complements being considered, there must be exactly ¢ dif-

ferent labels.
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It is therefore concluded that rule 4-1 makes diad

(i,j) infeasible in the same instances as rule 4-2, provid-

ing Wimmert's method of quadruplet selection is followed

(rule l-l).

XOUT as a Parameter

Rule 4—2 is not appropriate if quadruplets are

selected with rule 1-3. One alternative pursued in this

thesis is to combine rules l-3 and 4-2 anyway as an approx—

imate testing approach. The assumption is that rule l-l

does not lead to an order of c. values that is signif—

ijkfl

icantly different from the order produced by rule 1-3. If

this assumption is true, rule 4—2 should provide a good

testing criterion.

A second approach is to make XOUT some arbitrary con-

stant and use the N x N TALLY matrix in the following manner:

Rule 4—3. Diad (i,j) is to be made infeasible when ti' is

equal to or greater than (N-l). 3

 

 

Rule 4-4. _Diad Xi' is to be made infeasible when tij is‘1

equal to or greater than (N+N2/4)/2.l

Infeasibility testing for versions using rule 4—3 or

4-4 takes on a new meaning. After tallying ”enough" undesir-

able quadruplets, all of which have diad (i,j) as one of

 

l(N-l) is the minimum number of tallies which can

make a diad infeasible and (NZ/4+1) is the number which

always will make it infeasible. The value of XOUT in rule

4-4 is therefore an average of these two numbers.
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their derivatives, there is good reason to believe that the

diad will result in a costly solution and does not justify

further consideration. It is therefore made infeasible.

Revising SOLUTION

When it is decided to make a diad infeasible, its

new status is recorded in the SOLUTION matrix. The manner

of making this change is the same for all versions. If diad

(i,j) is to be made infeasible, the value of sij is checked.

If it is not zero, no change in SOLUTION is needed. If it

is zero, sij is set equal to one. Furthermore, and

SN+1.j

si N+l are incremented by one, since the (N+1) element of a

I

line indicates the number of infeasible diads in it.

Makinq Diad Assignments

After revisions have been made to the SOLUTION

matrix, it must be searched for conditions dictating diad

assignment, that is, unassigned lines having either zero or

one remaining feasible diads. The routine governing this

search, handling conflicting demands, and reaching an

assignment decision is the same for all versions:

STEP A. Make a random choice as to whether rows or columns

are~searched first. Let ROW be zero to indicate

that rows are to be searched first. A value of

one calls for a column search.
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STEP B. Search SOLUTION for closed or open lines.1 A

search for open lines cannot take place unless

unsuccessful searches for both closed rows and

columns have just been completed.

STEP C. If the (N+1) element of one or more lines is equal

to N (or (N-l) in the case of an open search),

store all unassigned center and location labels

implied by each line in CONFLICT.

STEP D. If the search is unsuccessful, go to STEP I.

STEP E. Transfer selected CRITERIA element values into the

appropriate CONFLICT elements, as determined by

the labels already stored in CRITERIA.

STEP F. Find among the set of elements which received new

values in STEP E the ones with the minimum value.

Store the center and location label of each such

diad in a SELECT row.

STEP G. Choose a diad from SELECT at random.

STEP H. Update SOLUTION to reflect the new diad assignment

by equating the appropriate elements to either 2,

3, or 1,ooo,ooo.3 Go to STEP I if less than (N-l)

diads have been assigned.

STEP I. Determine where to go next with the following rules:

1. If a closed search by rows was successful, go

to STEP B for another closed search by rows°

2. If a closed by rows was unsuccessful:

a. Go to STEP B to search for Open rows if the

next to the last search was for closed

columns and was unsuccessful.

 

1A closed line has N infeasible diads; an Open line

has (N-l) infeasible diads and no assigned diads.

2The adjective “unsuccessful" means that the search

did not result in a diad assignment.

3The (N+1) element of a line having an assigned diad

is equated to 1,000,000. The assigned diad element is set

equal to 2, while all other elements are equated to 3.
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b. Otherwise, go to STEP B for a closed search

of columns.

3. If an open search by rows was successful, go to

STEP B for a closed search by rows.

4. If a search for open rows was unsuccessful, then:

a. If the next to the last search was for open

columns and unsuccessful, return to the por—

tion of the program where the next quadru—

plet is selected for elimination.

b. Otherwise, return to STEP B for an open

search by columns.

5-8. These rules are identical to rules 1, 2, 3, and

4, respectively, with the exception that the

words "rows" and "columns" are substituted for

each other.

Detecting Post-Assignment Infeasibility

Due to the possibility of closed lines, even infeasi-

bility testing with rule 4-1 need not prevent all previously

eliminated quadruplets from actually entering into the final

solution. This problem would seem particularly critical for

versions using rules 4-3 or 4-4. This possibility can be

reduced by making another infeasibility check after a diad

is assigned. This test, as described in rule 7-1, applies

only to those previously tallied quadruplets which have the

newly assigned diad as a derivative. Since Wimmert's orig-

inal scheme did not recognize the possibility of conflict,

some of our versions do not include rule 7—1, that is, they

use rule 7-2.
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Rule 7-l. _When a diad is assigned, make all of its tallied

complements infeasible if this has not been done

previously.

Rule 7-2. .Continue the solution process without evoking

rule 7-l.

Recycling

Whenever a diad is made infeasible (equated to one

or three in SOLUTION), all of the tallies recorded for its

complements should be erased, since all of the quadruplets

that they derive from can not enter the final solution any-

way. This also means that all sij elements equal to one

should be reconfirmed and CRITERIA should be adjusted after

a diad is made infeasible. These provisions are not included

in any versions of this thesis and are not recognized by

proponents of Wimmert's method. However, a recycling scheme

is employed for two versions to reduce the possibility of

obsolete sij and tij terms. This is done by clearing the

matrices after each diad assignment. The assignment problem

therefore is broken up into (N-l) separate stages. It should

be noted that rule 8-1 is appropriate for versions having

XOUT as an array, whereas rule 8-2 is relevant when XOUT is

a parameter. Furthermore, any versions combining either

rule 8-1 or 8-2 with rule 2-2a will indirectly satisfy

rule 7-1.
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Rule 8-1. Reduce XOUT by one. Set all elements in SCORE,

CRITERIA and TALLY equal to zero. Set all Si'

values now equal to one back to zero. Revise the

(N+1) line elements as required.

Rule 8-2. Let XOUTLOG be a logical (NZ-N) x l array, with

one element corresponding to each row in XOUT. When

no diad has yet been assigned, all XOUTLOG elements

are zero. When xi' is assigned, examine each pair

of rows in TALLY to see if either reference center i.

If one does, set the corresponding two rows of

XOUTLOG equal to one. XOUTLOG is then used to reset

selected XOUT elements. Other necessary changes are

setting all CRITERIA and TALLY elements back to zero

and adjusting sij values as specified in rule 8-1.

 

Rule 8-3. Continue the solution process without recycling.

Deducting the Last Diad Assignment
 

As soon as (N-l) diads have been assigned, the solu-

tion is fully specified. The center label of the last diad

is that of the SOLUTION row having no assigned diad. The

location label belongs to the SOLUTION column having no

assigned diad. The same routine for deducting this last

assignment is used for all versions.

Rule Combinations for Each Version

Thirteen unique versions of Wimmert's procedure have

been programmed: 12A, l-B, 2-A, 2-B, 3-T, 3-A(L), 3-A(H),

3-B, 3-C, 4-A, 4-B, 4—C, and 5-B. Each version incorporates

a different set of rules as specified in Table 3-9.

The most important differences between versions are

few. Version 4-A is patterned after Wimmert's concepts,

except that it accommodates conflicting assignment demands
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in SOLUTION. Version 4—A differs from l-A only in that the

latter version eliminates all quadruplets in a diagonal

before searching SOLUTION for possible assignments. Ver-

sions l—B and 4-B also differ only in this respect. All

“B" versions, as opposed to "A" versions, use rule 7—1 for

post-assignment infeasibility checks. All "C" versions

recycle after each diad assignment. All "B" and "C" ver-

sions have provisions to assign some diads in advance. .All

"1" and "4" versions use the diagonal elimination approach

of Wimmert‘s, whereas "2" and "3" versions select the

largest cijk

ence between 3-T and 3-A(L) is that SCORE is stored on the

2 element not yet considered. The only differ-

drum for the former version. Versions 3—A(L) and 3-A(H)

differ only in the given value of XOUT.

Figure 3-1 is a descriptive flow chart which is

generalized for all Wimmert versions. The branches taken

for each procedure are shown. Program listings for 3-C,

4-A, 4-B, 4—C, and S-B are found in Appendices III, IV, V,

VI, and VII, respectively. Listings of all other versions

are found in a supplementary volume.
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Summary

Wimmert's original concepts have been augmented to

develOp thirteen unique algorithms for the layout problems.

Each algorithm contains a different assortment of decision

rules. The eighteen different rules pertain either to Cijkfi

selection, tally entry, CRITERIA revision, infeasibility

testing, or recycling. Version 3-T is designed to store the

SCORE matrix on the drum (or magnetic tape), whereas all

others use core storage. Generally, the versions use almost

all of the core storage space in the CDC 3600. Even then,

the maximum value of N ranges from only 27 to 52. This

limitation can be relaxed in several ways. One way is to

reduce the problem size by combining several highly inter-

related centers into one module. Another alternative is to

use overlays. A third possibility is to pack several values

in one computer word. A fourth alternative is to use the

drum or magnetic tape to store the larger matrices with

appropriate buffering and blocking provisions. None of

these alternatives are pursued, since the versions handle

problems of sufficient size to reach the objective of this

thesis.



CHAPTER IV

ANALYSIS OF FINDINGS

This chapter contains additional remarks on the five

algorithms not described in Chapter III which are also to be

included in this study. The main intent, however, is to

analyze the computer output and judge the relative perfor-

mances of all eighteen algorithms. After examining the test

problems used as well as the types of variables included in

the analysis, the following topics are considered: solution

quality, constraint satisfaction, computer time requirements,

and findings tangential to the main research objective.

Additional Algorithms Analyzed
 

Five algorithms, in addition to the thirteen ver-

sions of the previous chapter, are to be compared. A com-

puter program, referred to as RDM, is listed in Appendix

VIII. This computer algorithm generates random solutions,

thereby approximating the ALDEP algorithm of Chapter II.

Centers one through N are assigned sequentially. Center k

is assigned a location by randomly selecting from a list of

the k unassigned location labels. The newly assigned loca-

tion is then removed from the list so that only (k-l) un-

areassigned locations remain. The values of fik and djfl

109
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read in and the solution cost computed in the same way as is

done for Wimmert's versions. RDM has no provision for con-

strained diad assignments.

Computer programs for Hillier's algorithms are

derived from his original program listing.l Two versions of

this algorithm, as discussed in Chapter II, are compared.

The first one implements the rectangular distance criterion

in computing the distance between centers. This version,

referred to as H—R, is identical to Hillier's listing with

two exceptions. It is modified for compatibility with the

CDC 3600 computer. Secondly, provisions are added to output

the time spent on a solution and the number of trials (iter-

ations) that were required.

The second version, referred to as H—S, calculates

the straight-line distance between locations. In addition

to the modifications in H-R, it also is changed to assure a

cost reduction after each trial.

Hillier's versions contain three options. The

alternatives chosen for our purposes are as follows:

1. Always make a "last pass."

2. The order of the first "Move Desirability Table" is

the maximum grid dimension (length or width) minus

one.

3. The minimum allowable decrease in the objective

function is zero.

 

lHillier and Connors, pp. 65-73.
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Versions C-R and C-S of CRAFT use the rectangular

and straight-line distance criteria respectively. These

versions differ from the original program1 on only three

counts: changes for compatibility, calculating the computer

time per solution, and recording the number of iterations.

CRAFT has options as to how many centers can be involved in

an exchange. The option selected for this thesis is to

choose the best of two or three center moves at each iter—

ation.

Test Problems
 

Test problems can be secured either from field

research or from data existing in the literature. Since

plant visits would be necessary for field research, time

constraints would drastically limit our sample size. For

this reason, the twenty-six test problems used for our

analysis are derived from the literature. Several of them

appear to be "hypothetical" in the sense that they do not

have an empirical basis. However, the implication is that

the problems are similar to those actually found in industry.

The authors of several problems provide only fik values. In

such cases, a reasonable lattice configuration is arbitrarily

defined to compute djfi' Appendix IX provides problem infor-

mation relevant to the source, fik terms, constraints, and

 

1The program is in the SHARE Library (SDA 3391).
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lattice configurations. For layout configurations with

unequally spaced locations, djfi values are also provided.

Random starting solutions used for versions H-R, H-S, C-R,

and C-8 are provided in Appendix X.

Desired Information on Variable§_

Solution quality (cost eXpressed as a per cent of

the lower bound), constraint satisfaction, and computer time

represent output information bearing directly on the thesis

objective. A summary of these output variables is found in

Appendix XII. Computer time is divided into two components.

"Phase I" for Wimmert's versions is the time taken to input

data, initialize matrices, compute XOUT and calculate the

lower bound. In the case of version S—B, it also includes

the generation and storage of center combinations. Phase I

for versions RDM, H-R, H-S, C-R, and C-S is the time taken

to input problem data and initialize matrices. Program

segments relating to Phase I time never need be repeated for

a problem, no matter how many solutions are generated.

Phase II time which is all execution time not included in

Phase I, must be repeated for each solution.

Several other output variables are also of interest:

solutions diversity, number of iterations, penetration and

instances of conflict. Solution diversity is defined as the

ability of an algorithm to produce many satisfactory solu-

tions. If an algorithm produces the same suboptimal solution,
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it is of much less value than one producing many solutions,

even if the average solution cost is unchanged. "Penetra-

tion" is defined as the per cent of quadruplets eliminated

by Wimmert's versions before reaching a solution. In regard

to the recycling versions (3-C and 4-C), information is

obtained as to the average per cent eliminated for all (N—l)

cycles as well as the maximum per cent eliminated in any one

cycle. Whether the penetration remains relatively constant

for all types of problems is of interest as well as whether

the degree of penetration affects the cost of the solution.

2

3+N ), where k is the num-Penetration is equal to 4k/(N4—2N

ber of quadruplets eliminated.

Three types of conflict are output for Wimmert's

versions, primarily to determine if the decision rules deal-

ing with it adversely affect solution costs. The three

types of conflict are as follows:

1. More than one line (open or closed) is encountered

dictating an assignment.

2. One or more closed lines are found.

3. Conflict must be resolved with a random choice

among diads with the same minimum.CRITERIA value.

These several output variables can be tested on how

they are related to certain independent variables. The

independent variables are either the algorithm or problem-

related characteristics. The most obvious problem char—

acteristic is N and powers of it. Other easily computed
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statistics, which would seem to be related to the dependent

variables, are:

The coefficient of variation (Vf) of fik values.

The coefficient of variation (Vd) of d. values.

33

The per cent (Z) of fi values that are equal to

zero. k

These statistics are given for each problem in

Appendix XI.

Solution Quality

The quality of solutions (cost expressed as a per

cent of the lower bound) produced by the algorithms is

analyzed in one or more of the following five ways:

1.

2.

A ranking is given for the average cost to a set of

problems, where there are four solutions per problem.

Solution diversity is measured by ranking the algo-

rithms in relation to the least-cost solutions to

the problems. The difference between the average

and least-cost values measures solution diversity.

Another measure of it is given by the standard

deviation of costs generated to the same problem.

The hypothesis of equal cost means is tested for

each pair of versions with a two—tailed ”t" test.

This is done for both the average and least cost

rankings. The level of significance is taken to be

.05. This test is based on the assumptions that the

standard deviations are unknown and not necessarily

equal for both cost distributions. Since it is also

assumed that both distributions are normally dis-

tributed, the significant differences should be

considered with caution. Another reason is that

enumerating and testing all possible pairs in this

manner overstates the differences which are signif-

icant. The large number of pairs can cause some

significant differences to be fictitious.
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The hypothesis that mean values produced by any two

versions are equal is also tested using analysis of

variance for a one-way classification. More pre-

cisely, the null hypothesis is that the separate

category (version) means do not account for any of

the sum of squared deviations from the overall mean.

This hypothesis is rejected only if the significance

probability of the F statistic is less than or equal

to .05. Since this form of testing provides, in our

case, results identical to those of the "t" test,

the statements on significant differences in this

section apply equally well to either test.

The regression model is also used to measure the net

effects of the decision rules used in Wimmert's ver-

sions. Since our concern was more to develop a good

algorithm rather than to test the effects of each

rule, our experimental design is not very efficient.

The best design would be a factorial experiment.

Since our design (see Table 3-9) is not orthogonal

and since the factors are not independent, the

regression data must be viewed with caution. How-

ever, the critical rules are fairly obvious and

several direct comparisons are possible, that is,

some versions differ only in respect to one rule.

Although these five forms of comparisons are imper-

fect in themselves, they all support the same conclusions;

their use seems well justified. One other preliminary

remark is in order. Several versions were not applied to

every test problem. The reasons are storage problems,

excessive computer time requirements, or the inability of

H-R, H-S, C-R, C-S to accept d. values not specified by a

32

rectangular lattice. It is therefore necessary to use

several problem sets in comparing versions.

Wimmert's Versions and RDM
 

The rankings of these versions are given in Tables

4—1 and 4-2. Table 4-2 restricts the number of problems to

include 3—C and 3-A(H) in the comparison. The approximate
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effects of each rule used in Wimmert's versions are shown in

Table 4-3. On the basis of these three tables, several con—

clusions are evident.

Firstly, the only pairs of means found statistically

significant always involve the RDM version. In reference to

Table 4-1, versions 4—C, 3-B, and 3-A(L) are statistically

superior to it in terms of average costs, whereas versions

4—C and 3—A(L) are superior to it in terms of least-cost

solutions. In regard to Table 4—2, only 3—C and 4—C are

superior to RDM when considering the average cost criterion;

in terms of the second criterion, only 3-C is different in

the statistical sense. All of these versions use rule 1-3

except version 4-C, although 4-C has the additional advan-

tage of recycling.

A second conclusion is that RDM produces the greatest

solution diversity. The best of Wimmert's versions in this

respect employ rule 1-3. This becomes apparent after observ-

ing the "reduction in mean values" of Tables 4-1 and 4-2 as

well as the standard deviations within problems shown in

Table 4-2. The reason is that for the typical test problem,

the random selection provision of rule 1-3 for breaking ties

is evoked about 90 per cent of the time. This tends to

generate a different order of quadruplets for elimination

each time the test problem is solved. If rule 8-1 is used,

however, the diversity is reduced substantially.
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119

a

 

 

 

 

 

 

 

 

 

Significance

Rule Group

Group Description Rule Cost Effectsb Rule Groups

1 0.0 ....

l Quadruplet 2 7.4 .641 .636

selection 3 2.8 .356

Tally 1 0.0 ....

2 entry 2 -6.2 .205 “205

l 0.0 ....

CRITERIA 2 —8.7 .297

3 revisions 3 -3.1 .698 '658

4 -7.6 .360

. . . 2 0.0 ....

4 Infigzéggllty 3 -7.3 .611 .328

g 4 4.3 .204

7 Post-assignment l -6.3 .205 205

infeasibility 2 0.0 .... '

1 -16.9 .007

8 Recycling 2 —16.6 .008 .004

3 0.0 ....

 

aThese data are based on problem set II of Table 4-2. The

mean cost is 136.8.

bThe values in this column are the regression coefficients

when each rule is introduced as a dummy variable equal to

either zero or one. The values relate to average rather

than least-cost data. Rules can be compared by computing

the net difference between their respective cost effects.

It should be emphasized, however, that the effects of all

other rules are confounded in such comparisons, due to the

eXperimental design.

cWhen a rule group is introduced in the least squares equa—

tion, these values provide the approximate significance

probabilities that the coefficients are simultaneously zero

for the independent variables. It is computed using the F

test that they account for none of the squared deviations

from the mean cost.
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Thirdly, the group of rules most affecting solution

costs involves recycling. The significance probability of

this group in explaining the deviations from the mean is

.004, as shown in Table 4-3. If a version recycles, its

costs are reduced significantly. Of all Wimmert's versions,

3-C and 4-C show the most promise.

It can also be concluded that the better the version,

the smaller the standard deviation between problems. The

conclusion must be that the better versions are more consis—

tent in their performance over the whole range of test

problems.

A fifth conclusion is that combining rule l~3 with

Wimmert's method of infeasibility testing (rule 4—2) is not

particularly fruitful, such as is done with the "2" versions.

Another important conclusion is that the value of

XOUT has an important bearing on solution quality. Table 4-3

as well as a direct comparison between 3-A(L) and 3-A(H) show

rule 4—3 to be definitely superior to rule 4-4. Since both

values of XOUT are arbitrary, there is reason to believe

that values even lower than (N-l) would produce better

answers in less time for 3-A, 3-B, and 3-C.

The last conclusion is that rules involving tally

entry and post—assignment infeasibility are not particularly

important. On the surface, it appears that rules 2-2 and 7-1

are much better than their counterparts. It should be noted,

however, that both recycling versions use rule 2—2. The
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least squares equations for Table 4-3 consider that these

two versions also use 7-1, even though the rule is implicit.

If the opposite assumption were made, the cost effect for

rule 7-1 would be (4.1) rather than (-6.3). This suggests

that effects attributed to rule groups 2 and 7 stem mainly

from the confounding of the recycling rules.

Hillier's Versions and CRAFT

A comparison of Hillier's and CRAFT versions is

found in Table 4-4.

Table 4-4. _Solution cost rankings for problem set IIIa

 

 

 

 

Ave. Cost Criterion Min. Cost Criterion

Reduction

Stand. Stand. in Mean

Rank Version Mean Dev. Version Mean Dev. Values

1 C-S 123.2 14.0 C—S 119.3 10.9 3.9

2 H—S 125.5 12.1 C—R 119.4 12.4 6.6

3 C-R 126.6 14.6 H-S 120.0 10.6 5.5

4 H-R 130.4 14.7 H-R 123.3 ‘12.1 7.1       
 

aThis problem set consists of 17 problems: 2,4,5,6,7,9,10,

12,l3,14,15,18,21,22,23,25,27.

The CRAFT versions perform slightly better than

Hillier's versions. However, the differences in means are

not statistically significant. Since most test problems use

the straight-line distance criterion, it is interesting that
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the algorithms incorporating this criterion perform only

slightly better than their counterparts computing rectangular

distances. The differences are particularly small in terms

of the second criterion. One must conclude that any of these

versions provide comparable answers regardless of which dis-

tance criterion is chosen by the analyst to describe a layout

problem. This conclusion is also supported by the slight

change in solution costs if a squared rather than linear

distance criterion is used.1 All four versions possess the

ability to output many suboptimal solutions, particularly for

the larger problems where the optimal solution is more diffi-

cult to attain. This diversity in solutions is apparent from

the computer output as well as the reductions in mean values

given in Table 4-4.

Wimmert'sL_Hi11ier's and CRAFT Versions
 

The last problem set, given in Table 4-5, serves

to compare Hillier's versions, CRAFT and the best two

Wimmert versions.

The null hypothesis for each pair of versions must

be accepted in regard to the average cost criterion. How—

ever, the results are different for the second criterion,

owing to the tendency of 4-C to produce the same solution to

a problem indefinitely. The following versions are

 

lSee problem five in Appendix XII. Steinberg's and

Gilmore's versions provide solutions of equivalent cost for

either criterion.
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significantly different from 4-C: C-R, C—S, H—R, and H-S.

Hillier's versions and CRAFT provide more diversity than 3-C,

but the differences in their means are not significant.

The relative worth of the eighteen versions in terms

of solution quality for our test problems can now be sum-

marized. CRAFT and Hillier versions are superior, with

CRAFT having a slight advantage over Hillier's versions.

Of Wimmert's versions, only 3-C provides sufficiently good

answers to not reject the hypothesis that its mean is equal

to those of H-R, H-S, C—R, and C-S. Of the other Wimmert

versions, 4—C is the best. Ignoring computer time, all of

Wimmert's versions are superior to RDM in regard to the

typical solutions produced.

Constraint Satisfaction
 

Of the twenty-six test problems, only seven of them

involve constraints (problems 8, 10, 13, 15, 16, 21, and 24).

Wimmert's versions are applied to all of these problems,

whereas Hillier's versions and CRAFT are not tested with

problems 8 and 16.1 Almost all of the constraints are

imposed by making selected fi values arbitrarily large.
k

None of Wimmert's versions consistently satisfies

constrained problems, particularly when the number of con-

straints is large. The best Wimmert version in this respect

 

lOnly problems with a lattice configuration are

accepted by Hillier's versions and CRAFT.





125

is 3—C, which satisfies the constraints of three problems.

Versions 2-B, 3-A(L), 3-B, and 4-C do this for only two

problems. All other versions are even less successful. The

failure to satisfy constraints is understandable for all

versions not using rule 1-3. Since no version penetrates

to the main diagonal of g! many of the arbitrarily large

Cijkfi terms are never selected for elimination. For ver-

sions using rule 1-3, this failure can be excused only in

the case of problems 8 and 16. As is explained in Appendix

IX, the distance between locations defined by the authors

as "adjacent" is not the minimum djz terms. Failure with

the other problems, however, suggests the need for addi—

tional routines to guard against constraint Violation.

Although H-S and C-S produce at least one solution

satisfying all problems, versions H-R and C-R fail in the

case of problem 24. It must be concluded that CRAFT and

Hillier's versions are superior in terms of constrained

problems, but even they do not always place centers i and k

adjacently when fi is arbitrarily large.
k

Computer Time Requirements

Phase I Time

Phase I time observations are reported in Appendix

XIII. With the exception of 5-B, which combines rules 1—3

and 4-1, the time expenditure is nominal. Projecting Phase

I time for higher levels of N makes it clear that version
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5-B is computationally infeasible. For the other Wimmert

versions, Phase I time can be expected to average about 115

seconds when N equals forty. This is considerable higher

than the time required for RDM, H-R, H-S, C-R, and C-S. The

main reason for this divergence is that Wimmert's versions

must rank fik and djz values as well as compute the lower

bound; other versions do not perform these functions. It

must also be true that the versions programmed for this

thesis are less efficient, since RDM is more time consuming

than Hillier's versions.

Appendix XIV shows that Phase I time is very pre-

dictable when N is known. The coefficient of determination

of each regression equation is very satisfactory. Since the

number of fik and djg terms is a function of N2, the rejec-

tion of the hypothesis that the nonlinear coefficients

explain none of the squared deviations from the mean comes

as no surprise. However, Phase I time is still acceptable

if a forty-center problem is considered to be one of the

larger ones encountered in industry.

Phase II Time

Phase II time data are reported in Appendices XV and

XVI. Phase II time's functional relationship with powers of

N is statistically significant for each version. The non-

linear coefficients are also significant, except for ver-

sions 2-A, 2-B, and 3-B. For these versions, the fit of the
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regression equations is particularly poor. The importance

of the nonlinear coefficients derives from the size of the

matrices manipulated. The order of the largest matrix

manipulated by all versions is at least related to N2. For

versions using rule 1-3, g must also be searched. The order

of this matrix is a function of N4.

The time requirements are nominal for RDM, H-R, H—S,

C-R, and C-S, as well as for Wimmert's versions not using

rules 1-3, 8-1, or 8-2. RDM is the most efficient routine,

as is to be expected. If N is forty, RDM would require less

than one minute of Phase II time. Versions H—R, C-R, and

C—S require slightly more time, consuming about 2.2 minutes

for a forty-center problem. Versions l-A, l-B, 4-A, 4-B,

and H-S require approximately five minutes for such a prob-

lem.1

All of the remaining versions (Wimmert versions

using rules 1-3, 8-1, or 8-2) are much more time consuming.

The adverse effect of these rules on computer time is

 

lVersion H-S consumes more time than H-R due to the

added provision assuring a cost reduction at each iteration.

This provision is desirable since, as can be detected in

Appendix XII, H-R rather frequently gets into an infinite

loop producing the same set of solutions indefinitely. The

reason for this loop is that the "move desirability table”

is used to approximate the cost reduction stemming from a

center exchange rather than the true cost function. Al-

though the probability is small for any one iteration that

a cost change deemed negative by the move desirability table

is actually positive, the large number of iterations neces—

sary to reach a solution makes the problem a serious one.



128

demonstrated in Table 4—6, which is derived from the regres-

sion model in the same manner as Table 4—3. The version

which uses rule l-3 and also recycles (3-C) is particularly

time consuming. As they are 29w programmed, the use of

recycling versions (3-C and 4-C) must be restricted to

smaller problems unless they provide excellent solutions

not duplicated by other algorithms (which is not the case).

This is made apparent in Appendix XV. Versions 3-T and 5-B

are clearly out of the question. Storing and updating a

matrix which is so often used as TALLY on a sequential

access medium (such as is done with 3-T) is too costly.

Table 4+6. Phase II time effects of decision rulesa

 

 

 

 

 

 

 

 

Significance

Rule Group

Group Description Rule Time Effects Rule Group

1 0.0 ....

1 Eiiiifiiiit 2 -0.9 .828 .243

3 4.4 .185

Tally l 0.0 ....

2 entry 2 2.4 .410 '410

l 0.0 ....

3 CRITERIA 2 0.9 .812 222

revisions 3 3.0 .442 '

4 7.6 .081

. . . 2 0.0 ....

4 Infiastplllty 3 5.8 .081 .197

es ing 4 2.3 .615

7 Post-assignment l 2.4 .410 410

infeasibility 2 0.0 .... '

1 14.5 <.0005

8 Recycling 2 0.5 .771 <.0005

3 0.0 ....

 

aThe mean time is 4.17 seconds. See the footnotes to

Table 4-3 for additional information on the column headings.



 1.
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The versions requiring the least amount of Phase II

time (RDM, H—R, H-S, C-R, C-S, l-A, and 4-A) also have the

most predictable relationship to powers of N. The coeffi—

cients of determination (R2) are at least .99 for their

computed regression equations. The fit of the regression

equations is much less satisfactory for the other versions.

In the case of B versions, R2 can be increased considerably

by recognizing the number of problem constraints as another

explanatory variable. As the number of constraints in—

creases, the penetration decreases which in turn reduces

Phase II time. Recognizing this additional variable in-

creases R2 for versions l-B and 4—B to .95 and .98 respec-

tively. Similarly, the value of R2 increases by .18 for

versions 2—B and 3-B.

However, versions based on rule 1-3 still have an

additional variability in Phase II time which is unexplained

by powers of N and the number of constraints.l For example,

less time is required for the test problems with an N of 23

or 24 than is consumed for twenty-center problems. Intro-

ducing other problem statistics as explanatory variables,

particularly V improves somewhat the fit of the regression
dl

equations. Even then, the value of R2 is relatively low,

 

1The coefficient of determination is high for 3-A(H),

3—T and 5-B. However, the main reason is the smaller sample

of test problems to which they were applied.
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supporting the conclusion that at least part of the routine

implementing rule 1-3 is particularly inefficient.

In summary, Phase II time is nominal and predictable

for RDM, H-R, H-S, C—R, C-S, l-A, l-B, 4-A, and 4—B. Ver-

sions 2—A, 2-B, 3-A(L), 3-A(H), and 3-B require considerably

more time as they are now programmed and the time expendi-

ture is much less predictable. Versions 3-C and 4-C do not

seem to justify consideration for large problems unless they

can be revised to provide better solutions in less time.

Versions 3-T and 5-B are computationally infeasible for

moderately sized problems.

Combining_Cost and Time Considerations

Since Computer time requirements vary considerably

between versions, the most relevant question is how a ver-

sion compares with the others in terms of the solutions it

outputs for an equal amount of computer time. One way of

analyzing this total performance is provided in Figures 4-1

and 4—2. These two—way charts show the average quality

produced and computer time required for problem sets II and

IV.

.A second way of answering the question of total

performance is to make two assumptions:

1. RDM produces solutions with costs normally distrib-

uted about its mean.

2. The sample statistics of Appendix XVII adequately

represent the population mean and standard deviation

of the RDM solution costs.
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The question then can be answered probabilistically

by using RDM as a yardstick to compare other versions of

interest. For each problem, let t be the Phase II time of a

version being considered divided by the correSponding Phase

II time of RDM. This ratio eXpresses the number of random

solutions which can be generated in the time required to get

one solution from the version of interest. Let Pl be the

probability that RDM will produce a solution with a cost

less than or equal to the average cost of the version being

evaluated. Then P the probability that at least one of
ti

the t RDM solutions will be of equal or less cost, can be

calculated as:

_ t
Pt — 1-(1-Pl) (1)

The probability statements for the test problems are

given in Table 4-7 for H-R, H-S, C—S, 3-C, and 4—C.

The probability that RDM will produce a solution as

good as C-S in the time C-S requires for one solution is

extremely small. On the other hand, the large amount of

computer time consumed by 3-C makes it almost probable that

RDM will produce better results in the time 3-C requires for

one solution. The conclusion therefore is that C-S performs

much better than 3-C when both solution costs and computer

time are considered. The second line of averages in the

appendix shows that the versions ranked by their total per-

formance are: C-S, H-R, H-S, 4—C and 3-C.
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This analysis allows RDM to be compared with other

versions only if we assume that the analyst is constrained

as to computer time usage. If computer time is allowed to

take on an arbitrarily large value, the probability that RDM

will equal or surpass any version approaches 1.00. However,

there are three reasons why C-S (and to a lesser extent H-R,

and H-S) seem superior to RDM for a reasonable amount of

4
computer time. The value of Pt is usually less than .0 100

for most of the test problems. To the extent Pt is related

to N, the relationship is inverse.l Finally, C-S is not

I“frozen" to any one solution. It can not be concluded that

RDM is inferior to 3-C and this is less likely to be valid

for 4—C, owing to the latter versions' tendency to output

only a few different solutions to a problem.

Findings Tangential to the Research Objective
 

There are several interesting findings which relate

less directly to the research objective. They are the

topics of the remaining four sections of this chapter.

Incidents of Conflict
 

It is interesting to know the number of times ”con-

flict" occurs in the SOLUTION matrix of Wimmert's versions

 

lFor H-R, H-S, C-S, and 4-C, the simple correlations

between P and N are negative, but not statistically signif—

icant. Tfie correlation for 3-C is positive, but not signif-

icant.
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and the effect this has on solution costs. Data on three

types of conflict were output. The first type occurs when

more than one line (open or closed) is found which dictates

an assignment. The second type occurs when one or more

closed lines are found. The third type of conflict results

when more than one of the diads qualifying for assignment

have the same minimum value in CRITERIA, thereby necessi-

tating a random choice. These three types of conflict are

reported as percentages in Table 4-8. Since only (N-l)

decisions determine N assignments, the percentages are set

equal to the number of occurrences divided by (N-1)/100.

The averages apply to the same mix of test problems.

Table 4-8. Occurrences of conflict as percentages

 

 

 

 

TYPgoggliCt Type 1 Type 2 Type 3

Stand. Stand. Stand.

Version Mean Dev. Mean Dev. Mean Dev.

1-A 13.7 16.8 25.2 18.8 13.6 20.1

l-B 40.6 30.2 59.7 23.1 10.9 12.2

2-A 12.2 11.4 30.9 20.7 15.1 17.3

2—B 8.7 10.2 20.0 17.8 10.6 13.0

3-A(L) 4.1 7.7 19.2 16.5 15.9 15.5

3-B 3.2 9.4 9.0 13.7 4.5 6.8

3-C 0.5 2.1 1.8 4.0 1.4 3.4

4-A 5.1 7.4 8.4 9.8 3.2 7.5

4-B 8.7 13.7 13.8 16.0 3.8 9.5

4-C 0.0 0.0 0.7 2.8 0.0 0.0
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Incidents of conflict are surprisingly numerous for

some versions. For example, over one-half of the decisions

made with l-B involve closed lines and over 40 per cent

involved more than one line (closed or open). However con-

flict does not appear to affect solution costs. It is true

that versions 3-B, 3-C, and 4-C produce the best solution

and also encounter the least number of conflicting diad

assignments. However, this does not mean that they are

better because conflicting demands are fewer. The question

of interest is whether a version outputs better solutions as

an accompaniment to reductions in conflict. The answer is

obtained by examining the simple correlations between aver-

age solution costs and the three types of conflict. With

the exception of l-B, none of these correlations are statis-

tically significant.l Some of them are even negative. Con-

flict and the routines available to handle conflict do not

seem to change solution costs in either direction. Even for

l-B, the fit of a regression equation having average cost as

the dependent variable improves only slightly with the addi-

tion of conflict types as explanatory variables.

 

1The significance test used in this chapter for a

correlation coefficient is equivalent to testing whether the

regression coefficient of the independent variable is equal

to zero. _A "t" test is used with the level of significance

set at .05.
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Penetration and Iterations

Data on the penetration of Wimmert's versions,

defined as the per cent of quadruplets tallied before reach-

ing a final solution, are supplied in Table 4-9.

Table 4—9. Penetration of Wimmert's versions eXpressed as

 

 

 

percentages

Version Average Penetration Standard Deviation

(%)

l-A 39.6 5.2

l-B 30.9 7.3

2-A 29.6 8.4

2-B 27.8 9.7

3-A(L) 22.8 10.5

3-A(H) 31.3 7.6

3-B 22.2 8.8

3-Ca 17.8 6.1

4—A 39.1 4.6

4-B 30.3 6.8

4-cb 28.5 4.2

 

aThe reported statistics are for the cycle (out of (N-l)

cycles) which had the maximum penetration. The average

cycle penetration and standard deviation are 12.3 and 4.7

reSpectively.

b . . . .
These statistics also apply to max1mum penetration. The

average penetration and standard deviation are 17.7 and 4.3

respectively.

The relatively small standard deviations suggest

that a versions' penetration varies little between the test

problems. The penetration does tend to be correlated with



139

N and V but the reason is that penetration is mostf.

affected by the number of constraints, which in turn are

more characteristic of larger test problems.

It is interesting that,of all the versions, penetra-

tion is significantly related to solution costs only for 3-C

and 4—C. The correlation is negative. Penetration's rela-

tionship to computer time is described in a previous section.

The number of iterations preceding convergence to a

final solution for CRAFT and Hillier's versions is provided

in Table 4-10.

Table 4-10. Iterations before convergence

for H-R, H—S, C-R, and C—S

 

 

 

Version Mean Standard Deviation

H-R 22.3 20.8

H-S 19.6 17.6

C-R 7.2 7.3

C-S 7.5 7.2

 

The number of iterations possesses a very signif-

icant positive functional relationship with N. The simple

correlations with N are approximately .96 for all four ver—

sions. For this reason, variables related to the number of

 

1In regard to V , the simple correlation is negative

and significant for all versions except l-A and 4-B. A sta-

tistically significant negative correlation also exists for

1-B, 3—C, 4—A, 4-B, and 4-C.
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iterations, such as solution costs and computer time, can

also be predicted with knowledge of N.

Relating Problem Statistics to Solution Costs

The simple correlation between average solution

costs and either N, Vf, or Vd is statistically significant

and positive for every version.1 The simple correlations

range from .53 to .85, with .70 being the average. For

Wimmert's versions, the value of R2 averages about .75 for

regression equations having average costs as the dependent

variable and the problem statistics as eXplanatory variables.

However, the hypothesis we are most interested in is whether

an algorithm's relative performance depends on the type of
 

problem. This hypothesis receives little support, at least

f’ Vd’ and Z.

The better algorithms provide consistently good solutions

when the "type of problem" is measured by N, V

for the whole spectrum of test problems. Average solution

costs are related to the problem statistics in the same way

for all versions.

Recognizing a Satisfactory Solution

The findings of this thesis show that it would be

unwise to base a final layout decision on only one solution

generated by an algorithm. Even CRAFT or Hillier's versions

 

1A significant simple correlation between average

solution cost and Vf exists only for unconstrained problems.

When several fik values are made arbitrarily large, the cor-

relation is not significant.



141

often provide both good and poor solutions to the same prob-

lem, depending on the starting solutions. For example,

pairs of centers having arbitrarily large flows between them

were not located adjacently in several instances. Generat-

ing several solutions to a problem would therefore be pru-

dent. This reduces the danger of accepting a costly assign-

ment. This multi-solution approach introduces the question

of knowing when to stop the solution process. Of course,

whether a solution is "good" is a question having a defini-

tive answer only when the optimal solution is known. Fortu-

nately, the data generated for this thesis suggest several

ways of recognizing a good solution without knowing the

optimal one.

A workable "stopping rule" can be based on at least

three types of information. The first source of information

is the solution cost, expressed as a percentage of the lower

bound. Appendix XVIII, which provides the least-cost solu-

tions for each problem, shows that the cost percentages of

"good" solutions1 do not differ widely, particularly when

problems of equivalent size are compared. The cost percent—

ages are significantly and positively correlated with the

 

1We assume that the least-cost solutions are reason—

ably close to Optimality. This is not proved except for the

five problems having a known optimal solution. In these

cases, the least-cost solution in the appendix is also

optimal.
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l . . . . .

d' The coeff1c1ent of determination is

.74 for a regression equation having N and V

problem size and V

d as eXplanatory

variables. The fit is not as good when constrained problems

are included in the analysis, perhaps because the lower

bound was computed without recognizing constraints. At any

rate, our preliminary findings suggest a cost which is 150

per cent of the lower bound is suspect, even if N is as

large as forty. Similarly if it is only 105 per cent,

additional computer time will probably be of little value.

A second indicator of a solutionsi acceptability is

its comparison to the average RDM solution. RDM acts as a

type of upper bound; it gives every assignment, good or poor,

an equal chance of selection. Cost considerations play no

part in the solution process. The difference between the

cost of a solution and the average cost of random solutions,

when each is expressed as a per cent of the lower bound, is

defined as the "random mean increment" in Appendix XVIII.

The data in this appendix suggest that, for unconstrained

problems, a solution is not attractive if its random mean

increment is less than 20 per cent. The random increments

of the appendix are significantly correlated with both N and

Vd' _As the value of these problem statistics increase, the

 

1It is not known whether this correlation exists

because the difference between the Optimal solution and the

lower bound widens as N increases or because the quality of

our best solutions is less at higher values of N.
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random mean increments of good solutions also tend to in-

crease. Since the increments of a good solution are reason-

ably predictable and since they can be easily derived from

the starting solutions of H-R, H-S, C-R, and C—S, the random

mean increments could be of value in constructing a stopping

rule.

A stopping rule could also involve an analysis of

the solutions during the solution process itself. The num-

ber of solutions so far generated, the average cost, and the

standard deviation could be particularly enlightening. For

example, if CRAFT uses random starting solutions and the

best solution so far generated has a cost more than a spec-

ified proportion of the standard deviation below the mean,

the solution process could be terminated. A similar stop-

ping rule could determine after specified time intervals

the difference in cost between the best known solutions

after interval k and interval k—l. If this difference is

less than a specified value, the solution process could be

terminated.



CHAPTER V

SUMMARY AND FUTURE RESEARCH

The first part of this chapter is devoted to a brief

synopsis of this study, including its overall conclusions.

The second portion contains a description of the future

research needs which seem most important.

Summary and Conclusions
 

The problem of assigning centers to locations to

minimize a specified cost function has been the subject of

several suboptimal algorithms. Optimization techniques are

not now possible due to excessive memory requirements and

computational time, as is true with several other combina—

torial problems. Plant layout is often termed the "quadratic

assignment problem,“ which is usually taken to refer only to

material handling costs. Recognizing only material handling

costs is an unnecessarily restricted view of the problem,

particularly when one recalls the many objectives tradition—

ally cited as being affected by center assignments. .Although

the precise relationship between several of these objectives

and center assignments apparently has never been clearly

ascertained, the costs accompanying the more predictable

144
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relationships seem to fall into at least one of three cate-

gories: linear, special quadratic, or general quadratic

costs. Even though computationally feasible algorithms are

addressed only to Special quadratic costs, the other two

cost components can be taken into account with prohibited

and required assignment constraints as well as modifications

to the appropriate fik values. These represent rather triv-

ial changes to existing algorithms. An algorithm which

solves the special quadratic cost problem is a valuable tool

for the layout analyst.

In light of this conclusion, some of the most press-

ing research questions seem to be: (1) which of the recent

alternative algorithms best solves the quadratic cost func-

tion and (2) whether the best one provides consistently good

answers regardless of the type of problem. An examination

of the total array of decision models indicates four algo-

rithms to be of particular interest: random selection,

Hillier's version, CRAFT, and Wimmert's tally system. These

models are tested in this study for one Of two reasons. Pre-

liminary reports suggest two of them (CRAFT and Hillier's

version) have considerable promise. In regard to random

selection and Wimmert's system, comparative studies are not

available. However, both possess a certain logic which is

attractive and there is no a priori reason why they should

not perform well.
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Each of these four algorithms are translated into

computer programs compatible with the CDC 3600 computer.

In the cases of Wimmert's system and random selection, pro—

grams are developed Specifically for this thesis. Since

several concepts of unknown merit are added to Wimmert's

original formulation, thirteen variations on his theme are

tested.

The test results indicate the better algorithms are

consistently good, regardless of the problem type. CRAFT is

superior to any of the algorithms in terms of solution feasi-

bility, solution cost, computer time, and the ability to

produce many good solutions to the same problem. Hillier's

version is competitive with CRAFT; the differences between

their performances is not significant. In comparison, the

random selection algorithm seems inferior in terms of its

total performance. This last conclusion must be qualified

with the assumption that a layout analyst is constrained by

the amount of computer time he can economically justify.

Although the amount of justifiable time is situational, this

study's findings indicate it is very improbable that a ran-

dom search will provide better answers than CRAFT in a

typical industrial setting.

The results for Wimmert's versions are not partic—

ularly encouraging. The incongruity between this study's

findings and the optimistic statements by proponents of the

algorithm can be explained. All of Wimmert's versions,
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including the one most resembling Wimmert's manual tally

system (4-A), perform very well for small problems. Since

Wimmert's system was manual, it was tested only for problems

having N equal to four or five. Unfortunately, as the size

increases to the point where manual solution is out Of the

question, a marked decline in performance occurs with most

of Wimmert's versions. This could only be detected with

a computer algorithm. This is not to say that Wimmert's

framework is without merit. Versions 3-C and 4—C return

very satisfactory answers. In terms of average solution

costs, the difference between them and CRAFT is not statis-

tically significant. Furthermore, Wimmert's versions are

amenable to layout configurations not in the shape of a

lattice, whereas CRAFT and Hillier's version are not able

to do this.

The comparison of CRAFT with Hillier's algorithm has

recently been made in two other studies. Hillier and

Connors, on the basis of one test problem, found the Hillier

algorithm superior to CRAFT in terms of solution quality,

although it required considerably more computer time.1 On

the other hand, Nugent, Vollman and Ruml found, on the basis

of eight problems, that "CRAFT seems to produce solutions of

somewhat higher quality . . . , but the experimental results

 

lHillier and Connors, "Quadratic Assignment Problem

Algorithms and the Location of Indivisible Facilities,”

Technical Report No. 6, p. 26.
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have not firmly established that fact."1 For some reason,

the authors found Hillier's algorithm to be much less time-

consuming than CRAFT. In our study, we found CRAFT to be

slightly better in respect to both solution quality and

computational time.

The findings of this study offer several insights

tangential to the main research objective. One important

conclusion is that even the best algorithms can generate

intermittently poor solutions to the same problem. A second

finding is that, except for the Wimmert versions using rule

1-3 for quadruplet selection, computer time is very predict-

able. It bears a strong functional relationship with powers

of N. The nonlinear coefficients of a least-squares poly-

nomial equation are statistically significant, indicating a

limit to problem sizes for even the most efficient routines.

However, this limit is well beyond a problem with forty

centers, which is by no means a small problem.

A third insight indicates that for version 3-C, solu—

tion costs are inversely related to the size of the XOUT

parameter as well as to the per cent of penetration. Pene-

tration, in turn, is directly related to XOUT. Another find-

ing relating to all of Wimmert's versions is that incidents

of conflict do not adversely affect solution costs, even

though they are surprisingly numerous for some versions.

 

lNugent, Vollman, and Ruml, Operations Research,
 

p. 164.
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It has also been found that the per cent of pene-

tration is reasonably constant over a whole range of test

problems for each Wimmert version. In general, "C" versions

require less penetration than their "B" counterparts; the

"A" versions require the most penetration. In respect to

CRAFT and Hillier's versions, the number of iterations gen-

erated before convergence to a final solution is definitely

related to N.

Two other tangential findings are interesting.

First of all, the choice of a distance criterion is rela-

tively immaterial, be it straight-line or rectangular.

Secondly, preliminary evidence suggests a very satisfactory

stopping rule can be constructed from information on the

lower bound,1 from data on the upper bound (mean cost of

random solutions), and by monitoring solution costs during

the solution process itself.

Future Research Needs

The findings of this study point to several areas

which are particularly in need of additional research:

revising existing algorithms, unequal area requirements, and

new algorithms.

 

lNugent, Vollman, and Ruml also found a significant

correlation between N and the best solution cost expressed

as a per cent of the lower bound. Operations Research,

p. 164.
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Revising Existing Algorithms
 

Of Wimmert's versions, 3-C most justifies additional

research. .Several modifications to it are imperative. The

first change is adding a routine to satisfy prohibited and

required assignment constraints. This change involves the

input of the SOLUTION matrix to reflect all assignment

constraints. Later, if a closed line is encountered, all

locations or centers in it which violate the original con-

straints are disqualified. Lastly, when a diad xij is

assigned, center i is checked for arbitrarily large flows

with other unassigned centers. The diads placing such cen-

ters at locations not adjacent to location j can be disqual-

ified with appropriate entries in SOLUTION. This routine

should reduce significantly the chance of a final solution

violating the constraints.

A second mandatory revision is to find ways of reduc-

ing Phase II time requirements. One way is to write a more

efficient routine for nominating quadruplets for elimination.

Exploiting the unique properties of the ranked matrix 2 and

breaking ties arbitrarily rather than randomly should net a

substantial time reduction. Another avenue leading to time

savings is to store the ordered list of nominated quadru-

plets on a sequential storage medium (either on drum or

magnetic tape) rather than generating a new list for each

cycle. In this way,.g must be searched only once, no matter

how many solutions are desired, rather than (N-l) times for
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each solution. The disastrous results using the drum.with

3-T and 5—B will not occur, since the records will always be

read sequentially.

.A third revision to 3-C is to eXperiment with vary-

ing levels of XOUT. There is good reason to believe that the

algorithm's performance will be improved (both in terms of

solution cost and computer time) if XOUT values are made

less than (N-l). There is another reason for experimenting

with XOUT levels. If the second revision already cited is

implemented, the main source of solution variability in 3-C

is lost. .An average of 90 per cent of the quadruplet selec-

tion decisions involves ties and therefore random choices.

The result is a different quadruplet ordering for each cycle

and a variety of final assignments. Fortunately, it seems

likely that initializing XOUT at different values will have

the same beneficial effect.

A final revision in 3-C which may have value is to

use a different rule to resolve conflicting assignment

demands. Picking the diad with the smallest lower bound is

one alternative. It certainly would reduce storage and

computational requirements. Due to the relatively few

incidents of conflict for 3-C and the fact that existing

rules seem to perform well, this revision has a lower pri-

ority than the previous ones.

Several revisions to CRAFT and Hillier's versions

are suggested by this study. The first change is to make
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them amenable to problem constraints. CRAFT accepts only

required assignments, whereas Hillier's versions accept

neither required nor prohibited assignment constraints.

These changes are not only easy to make, but both algo-

rithms can be adapted to explicitly recognize linear costs.

A second change, also rather trivial, applies only to

Hillier's version. As was demonstrated by H—R, approximat—
 

igg_cost reductions can cause indefinite looping. This

should not be allowed. A third change is to add to both

algorithms a random selection routine which is modified to

satisfy constraints. In this way, starting solutions could

be generated internally. The final change suggested by this

study is to add a stopping rule. Our findings suggest that

a satisfactory rule can be developed.

Unequal Area Requirements

As is discussed in Chapter I, there are two distinct

alternatives for accommodating unequal area requirements.

The first alternative, which is embodied in CRAFT and CORE-

LAP, is to assign unit location blocks according to a few

specified rules. This alternative has several disadvantages.

The shape of a center is constructed without considering its

effect on the objective function. Secondly, in the case of

CRAFT, the number of exchanges per iteration is limited to

centers of equal area or centers sharing a common border.

Finally, unreasonable and unconventional shapes are a dis-

tinct possibility. It can be said that what constitutes a
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reasonable shape is situational and this is a decision best

left to the analyst when he enters the detailed planning

stage.

The other alternative accommodating unequal area

requirements also has a disadvantage, as it usually involves

an increase in N. Even if area requirements are levelled

only approximately, increases in N and the concomitant

computer time may make the first alternative more desirable.

Which of the alternatives is best provides an excellent

topic for future research.

New Algorithms
 

Although CRAFT possesses demonstrated effectiveness,

it certainly does not rule out the possibility that new

algorithms can surpass it in total performance. Three

algorithms would seem, a priori, to provide solid bases for

additional research. One possible algorithm is analogous to

Tonge's heuristic program for the assembly line balancing

problem.1 The key idea of his approach is to simplify the

combinatorial problem until a problem is obtained which can

be solved through direct means. Detail is reintroduced

later in the solution process. In terms of the layout prob—

lem, an algorithm could group highly related centers together

 

1Fred M. Tonge, A Heuristic Program for Assembly

Line Balancing_(Englewood Cliffs, New Jersey: Prentice-Hall,

Inc., 1961).
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into a "module" and locate the modules with one of the

optimization techniques. The centers within each module

could then be arranged in a similar fashion. This signif—

icantly reduces the problem size and makes optimization

techniques feasible.

A second approach has also been applied to the line-

balancing problem.l Decisions are made by selecting ran-

domly from a group of competing rules, by "learning" which

rules provide the best answers, and then by increasing the

probability that they will be chosen for future decisions.

A third algorithm on which no information has been

reported, would be to assigned centers by chance, but in-

crease the probability that certain selections are made with

the use of a few decision rules. This synthesizes little

computational effort with logically derived decisions.

Answers to these research questions would enhance

the theory as well as the practice of plant layout. Hope—

fully, they will help close the apparent gap between theo—

retical formulation and actual industrial application.

 

1Fred M. Tonge, "Assembly Line Balancing Using

Probabilistic Combinations of Heruistics,‘I Management

Science, XI, NO. 7 (May, 1965), 727-735.
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ASSIGNL

BOUND —

APPENDIX I

GLOSSARY OF TERMS FOR WIMMERT VERSIONS

- The center label of a diad just selected for

assignment.

- The location label of a diad just selected for

assignment.

The lower bound of a problem. If f- refers to the

ranked values of FLODATA, d- refers to the ranked

values in DSTDATA, k equals (NZ-N)/2, and j equals

(k-i+l), the lower bound is calculated as:

k

2 f. d.

i=1lJ

All arbitrarily large (9999) and arbitrarily small

(-9999) values are assumed to be zero in this

calculation.

CELLTIE(300,2) - This matrix stores the indices (for the

FLODATA and DSTDATA arrays) of the quadruplets

nominated for elimination. If more than one pair

of indices are stored in it, a selection is made

randomly.

Complement - Considering the quadruplet (i,j,k,£), diads

(i,j) and (k,£) are complements of each other.

Taken together, they are a "diad set.‘l

CONFLICT(M1+1,M1+1) — This matrix is used to resolve con-

COST(or

flicting diad assignment demands. Up to M1 such

diads can be handled at one time. The first row

and first column store location and center labels.

The elements of conflicting diads are assigned

values from.CRITERIA.

Q) - This ranked matrix is of the (NZ-N)/2 x (NZ-N)/2

Order. Its elements are the special quadratic cost

terms. The matrix is never stored in the computer,

as the algorithms work directly with FLODATA and

DSTDATA arrays.

155
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CRITERIA(N,N) - An element of this matrix stores the number

or cost of all eliminated quadruplets having the

diad implied by the element as a derivative.

Derivative - Derivatives of the quadruplet (i,j,k,£) are

diads (i,j). (k.£). (1.3) and (k,j)-

Diad(i,j) - This term refers to the assignment of center i

to location j.

Diad Set - See "complement."

DSTDATA((N2—N)/2) — The array containing ranked d- values.

There is no value greater than that of DSTéATA(1)

and none less than that of DSTDATA((N2—N)/2).

DSTL1((N2-N)/2) - The array storing the smaller location

label for the corresponding element in DSTDATA.

DSTL2((N2-N)/2) — The array storing the larger location

label for the corresponding element in DSTDATA.

FINAL(N+1,N+1) - This matrix shares storage space with

SOLUTION. After (N-l) diads are assigned, the last

column is used to store the permutation of locations

specified by the final solution.

FLOWCI((N2-N)/2) - The array storing the smaller center

label for its FLODATA counterpart.

FLOWC2((N2—N)/2) - The array storing the larger center label

for its FLODATA counterpart.

FLODATA((N2-N)/2) - The array containing fik values ranked

in the same fashion as DSTDATA elements.

I,J,K - Multipurpose indices.

Infeasibility - This term applies to a diad which has been

disqualified from entering into the final solution.

Diad (i,j) can be infeasible due to any of four

reasons: (1) center i has already been assigned to

another location, (2) location j has already been

assigned, (3) quadruplet (i,j,k.E) has been elimi-

nated and complement (k,£) is already assigned, and

(4) a sufficient number of quadruplets having (i,j)

as a derivative have been eliminated.

KOUNT - This variable name takes on different meanings,

depending on the number appended to it. Some of the

most important KOUNT variables for understanding the

computer programs are:
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KOUNTl: The name number of the problem being solved.

It is used later by the programs as a general purpose

index.

KOUNT2: The number of solutions requested to be gener-

ated for a problem.

KOUNT6: The name number of the solution being generated

to a problem.

KOUNT7, KOUNT9, KOUNT10: If rules 1—1 or 1—2 of Chapter

III are used, KOUNT7 stores the number of elements

to be eliminated in a g'diagonal. KOUNT9 and KOUNT10

store the indices of the diagonal element being con-

sidered. If rule 1-3 is used, KOUNT9 and KOUNT10

store the indices of a quadruplet selected for

elimination.

KOUNT8: This variable stores the number of diads deemed

infeasible by the tally system since the last time

SOLUTION was searched.

KOUNT14: A variable equal to zero if SOLUTION is being

searched for closed lines. It is equal to one if

the search is for open lines. Unassigned lines hav-

ing one or none nonzero elements are referred to as

"open" and "closed" respectively.

KOUNTlS: This variable takes on the value of one if a

diad assignment has just resulted from a row search

of SOLUTION. Otherwise, it is zero.

.KOUNT16: A variable equal to one if a diad assignment

has just resulted from a column search of SOLUTION.

Otherwise, it is equal to zero.

KOUNT19: The number of diads assigned so far is stored

in this memory location.

KOUNTZO: The variable detects whether two consecutive

searches of SOLUTION (one by rows and the other by

columns) have failed to produce a diad assignment.

KOUNT27: The number of quadruplets currently stored in

CELLTIE for future elimination.

.M - A parameter Specifying the number of rows of SELECT

which can be used.

MINTALLY(or M) - This N x N matrix is used for infeasibility

testIng in the case of version 5-B. Element mi-

gives the number of times (i,j) has been a derivative
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of tallied quadruplets. An infeasibility test is

not continued for (i,j) if the value of mij is less

than (N-l).

Ml - A parameter Specifying the portion of CONFLICT to be

used.

N — The number of centers (and locations) for the problem

being solved.

NUMBER - The number of problems to be solved for the current

run.

PHI - If rules 1—1 or 1-2 are used, this variable stores the

number of previous rows in TALLY which repeat the

center label of the TALLY row being considered. It

is used to calculate XOUT. For 5—B, PHI is given

meaning by rule 4-1 of Chapter III.

Quadruplet (i,j,k.£) - This term refers to the four labels

(i,j,k,£) corresponding to an element in 9, Labels

i and k refer to centers, whereas j and Z-refer to

locations.

Quadruplet Elimination - When we Speak of eliminating qua—

druplet (i,j,k.£) from the final solution, this

means that all of the following conditional assign—

ments are to be disallowed:

Xij = 1 if XkE = 1

Xifi = 1 if xkj = l

xkg = 1 if xij = l

xkj = 1 if Xifi = 1

However, eliminating (i,j,k,£) need not rule out any

of the following conditional assignments:

xij = 1 if Xkfi = 0

xil = 1 if xkj = 0

Xkfi = 1 if xij = 0

xkj = 1 if Xifi = 0

ROW - If this variable is equal to zero, the rows in SOLUTION

are searched prior to columns for conditions requir-

ing a diad assignment. If it is equal to one, the

columns are searched first. Each time a new search

of SOLUTION is initiated, the value of ROW is deter-

mined randomly.
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SELECT(M,2) - This matrix stores for a random selection the

diads having the lowest values in CONFLICT. The

first column stores the appropriate index to the

FLODATA array and the second column stores the index

needed to enter the DSTDATA array.

SCORE((N2-N)/2, (NZ-N)/2) - This logical array is used to

record which quadruplets have already been elimi-

nated. An element equal to one means the corre-

Sponding quadruplet has been tallied. Otherwise,

it is equal to zero. SCORE is used only for ver-

sions incorporating rule 1-3.

SOLUTION(or S) - This (N+1)x(N+l) matrix provides the cur—

rent—Status of each diad in terms of whether it is

assigned or infeasible. The following scheme is

used to give sij a numeric value. At the start of

the solution process, initialize §_at zero. After

a sufficient number of quadrupletS has been elimi-

nated to make a diad infeasible, the corresponding

§_element is equated to one. If either of the two

Iines passing through this element now have (N-l)

nonzero elements, the zero element is to be equated

to two. This means the "open" diad has been assigned.

All other (ZN-2) elements in the lines passing

through the assigned diad are equated to three to

Show that they can no longer be entered into the

final solution. Therefore, the numbers zero, one,

two, and three are used to reflect the current

status of each diad. For convenience, (N+1) column

stores the total number Of nonzero elements in each

row and the (N+1) row stores the number of nonzero

elements in each column.

TALLY(or 2) - A quadruplet is eliminated by incrementing up

to four elements in this matrix. The incremented

elements represent the derivatives of the quadruplet

eliminated. The T matrix is then used in conjunc-

tion with XOUT to-prevent the tallied quadruplets

from entering the final solution. There are three

possible sizes of T, depending on the version used.

One T matrix is Of-the N x N order, where rows

refeEence centers and columns represent locations.

Only one ti' element is allotted to a diad. The

second matrix is of the (NZ—N) x N order. Each

column again references one location. However, a

pair of rows corresponds to a pair of centers. The

center pairs are ordered according to the size of

their fik values, as given in FLODATA. There are

(N-l) tij elements for each diad in this matrix.
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The third matrix has N2 rows and N2 columns. Each

row corresponds to a pair of centers and each column

corresponds to a pair of locations. There are (N2)

tij elements for each diad.

XOUT - If the N x N TALLY matrix is used, XOUT is a param-

eter. For our purposes, it is arbitrarily set at

either (N-l) or (N+N2/4)/2, depending on whether

rule 4-3 or 4-4 is used. Diad (i,j) is made infea-

sible when ti' is egual to or greater than the value

of XOUT. If She (N -N)xN matrix is applicable, XOUT

is a one-dimensional array. Each element corresponds

to a row in TALLY. XOUT is computed on the basis Of

rule 4-2a and implemented with rule 4-2b. If the

N2xN2 matrix is used, rule 4-1 is evoked and XOUT is

not relevant.



APPENDIX II

LISTING OF COMBINATION GENERATOR

 

PROGRA” Leona

DIMENSION COMBIN(201

INTEGE4 PHI.PIVOT.COHBIN

RE‘DioVUqBER

1 FORMAT<12)

REHIND 20 ' ’ ‘ " ” “” ”“”"

TOLD:T1MEF(4)

    o“ - .. _-

 

DOZIHEBP‘laNUMBER

READSIV ‘0UNT19

PRINT 149N, KOUN719 9"” "1‘ 'M ”‘w"”‘”"‘_m”"“”"”'"‘”""”"

149 FORMAT(1H ,. IN THIS PRoaLEH 0 _IS 9124*100Kpu~719!§_3-123_

'KO'N-l'KDuN119 ‘“

3 FORMAT(12,!2)
 

DOSOiUPRI%1.Kb s FIVUTsPRI

0030111=1191V0T

3011 COMBIN(IISI“ " ”""" “ I’ ” "' ” ”“"”””’"’m’"”""'“”"”

GO To 3012 ‘

3013 COMBINKPHI)sCOHelthH1141

301? CONTINJE

““‘WTTE‘T‘AWC‘WI’WJTTJEE PHI Y

IF(COM51N(PH!) .Lr. N100 10 3013 5 K-O

IF(PHI .LE. PIVOT>GO To 3014

3015 K3 K+1 5 IF(COMBIN(PHI' K) .66. N'K)GO TO 3016 5 KPBPHI-K

" INDExiso S JTEHP:COHBIN(KP)

0030171=KP. PHI 3 [NDEX181NUEXI*1

 

 

““‘3017 COMBINfrJaJTEMP+TNDEX1

GO To 3012 .

’3016"CONTINUE“E‘IF(PHI-K .GYz'PIVUTIGO’To’3015“ ‘“’ "”“”'"”M” -1-

3014 CONTINJE S IF(COHBIN(P!vor) 9LT. N-PH19P1807360To3918

'"‘ PIVoTaPIVoT--1 S IFprVoT .LE. UIGo 10‘3010 “' “ ""““‘”"““"’

3018 INDEx1=0 S JTEHPaCOMBIN(Plv0T)
 

1‘1

301° COMBIN(I):JTEMP¢INDEX1
. GO To 3012 1 -1- -.“11 -.._.__ .11_11_-l-_-,wrll-_

3010 CoNTINJE

REHIND 20

TNEH:T1MEF<4) S T: (TNEH TOLD)/1000. S PRINT 1472?

'_—_I—I7—TUWHTTT"W—T?*TTNE—SPENT“UENE”ITINEHCUHUTNITTUNSIWTl—_TTFTTTTVRHHNNT-”"

1DS:*)

TOLD-TVEH

003021PHI=1,K0 s IOTAL181 s TOTAL201

0030221811PH! S TOTAL1ITOTAL191'5 Y'N'l*1

302? TOTAL2'TOTAL24Y

NCUHBI°=TUTILZITUIAL1

0030231=1,NCOMBIN

' 3023 READ TAPE 201(COHBINIJY.J=1.PHI)

3021 CONTINJE
. H 1

'HM’ REVIND20 "“' I ‘4’" ' _" "”""" ' ‘ ‘ "'3 '

TNEH-TIMEF(4) S Y: (TNEH--70LD)/1000. S PRINT 148:?

140 FORMATT1H .4 TIME SPENT—RETDTNU‘TREH‘WIS“TTFIFTETTIEUUNDS.t)

TOLD-TVEN

"2’ CONTINUE ’ -1-,__,-___.__- " " 9 ---_ " ..-“-.- ' “7 ' " ”"7"" "mm." b '

END
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APPENDIX III

LISTING OF 3-C

 --—— . fl -—_.. a--, ,___.- .

PROGRAWPRocsc

DIMENSION FLODATA15951.FL0R01(5951.FLORczts951IOthNEICBIaORIGN02(

18IIORIGND(8IoTALLv(35.35IIUSTDATA(595I:DSIL1(595).DSIL2CS95IoSOLUT

20N(36.36>.CRITENAI35535IIC0NFLCT(365363ISELECT(SsgéIIEINILT35.3611’

3UNRANKU(595.3)ICELLTIE(300!2)'SCOREl‘SO'sgs)'SCORE2(501595)OSCORE3

4(50 595). scuREA(su.¢3oY'SCURE5(50.S9SI SCONEEISOIS9SI;SCORE7I50’59

'55)ISC0dE8(500595), SCORE9(50,595) SCORE1Q(SQ.595ISCORE11(59.595) S

6CORE12‘50 595IJIFIXCIS3)IIIIXC(33)

EQUIVA ENCE (FINAL SOLUTONI

INTEGE'I ASSIGNL.ASSIGNC, ORIGN01.0RIGN02

LoGICA. Sr0RE1.F‘CuRE2.Sc0Rt3oSCQREASCORE5. SCUREbo SCORE7oSCORE8 SC

1ORE9. SOQEIUOSCORhillSCORElz

TOLD=T1MEF(4I

XsTIMEE(5)

CALL RANFsevcx)

RANDN0=RANF(-1)

READ 600.NUMB&R

600 FORMAT<I2>

C [TERATE FJR A TOTAL IF NUMBER PHOGLEMS.

00601 «0JN199= 1 NI-MRER '

C NCAD ANn RANN FLOR ACND DISTANCE DATA.

READ 12M N,M1,KOUNT10KOUNI2

1 FORMATISISI

C READ IN SPECIFIED VALUE OF XOUT.

READ 515.x0uT

51R FORMATIFS. o)

TMPXOUI=XQUT a

D0 2 KJUNT3 = 1, 2 S I: 0

3 READ 4.(ORIGNc1<J).oRIGchcJI.URIGND<JI.J;1.011I

4 FoRMAT(8(12.12oF6. 1))

00 5 J=118 N I=I*1

'1r(onluN01(J) .LT 0R10N02(J1)G0 106 S UNRANKOCI.11309IGNC2(JI

UNRANK0(I 2>=0R16Nc (J) $ 00 10 7 ,

UNRANRU<1 1I=ORlthl(J1 s UNRANKD(I.2Ia0RIGN02<JI ‘

UNRANKU(I.3I=0RIGN0<JI

IF(1.(V««2-NI/2I5.8.8

CONTINJE

GO To 5

9 1:0 S *OJNT4=<N¢*2- NI/2

9 J20 9 dIGNO:-99999999.

19 J: J+1 s IF(UNRANKncJa3I-BIGNUI12.12.11

1g PIGNO=JNRANRD(J. 3) $ KOUNT5= J S xisuNRANKncJolI S X2=UNRANKDIJ:2

1? CONTINJE

IFIJ .LT. KOUNT4>GO To 10 ‘

I=I+1 s IF(ROUNT3.EO.1)GU TO 13 s DSTDAIAIII-BIGNQ sDSTL1<11§X1

05TL2(II=X2 $ Go :0 14 w “ '

13 FLODATA(1)=RIGNO 3 FL0N01(II=-X% S FLOWCQ‘II:X2 .”"w_2.-

14 CONTINUE $ 1F<K0UNT5 .EG. KOUN 4IGO TO 15 " ‘ ' ’

16 UNRANK0(KQUN15.11UNRANRD(K00NT5+&41) S UNRANKotKOUNf§.2I=UNRANKDI

1K0UNT5’192) $ UIRANKD(KOUNTSI )SU RANKD(KOUNT§¢103) '

KOUNT5=KOUNTS+1 _ M,.q2 r, "_W

IF(KouVT5+1.KoUNTq)16.16.15

15 KOUNT4'KOUNT4~1

IF<R00114*;0T. 1I00 T0 9

1:101

17 CONTINUE $ IF(KOUNT3 .EG. 1IGO TO 18 S DSTDAYA(I,=UNRANKD‘1JS)
H,“

—-—- . *2

"¢-,-|a-«o ' - "' ...)“ - ""‘.".1u

71- ,

N
9
9

‘
J
I

.-»~,W op _..,. uvvo‘. ~ -fiu A. I.. .~ .
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DSTL1(1)-UN~ANKL(.,1) $ DSTL2(I)=UNRANKD(1.2) 3 GO TO 2

19 FLODATA(I)=UNRANKU(JI3S $ FL090111)=UNRANK6(L1) " "‘

FLUNC2(I)=UNRANKD(1.2)

9 CONTINJE '

COMPUTE LJNER BOLND. '

=(~.ta-v>/2 $ 1:1 3 J=L $ KUNT=os BOUanfi. ”””“"”"

990 CONTINJE 9 IFcFLOOATAct) .bo. 99999. .OR. FLODATA(1) .50. «9999. .

1AND. 0510ATA(J>‘.t91”99999.‘.0H.'DSTDATA<J) .to. ~9999.SGO To 959

IF<FLOOATA<1) .NE. 99999. .ANU. FLODATA(I) .Nh. ~9999.)GO T0 988

I=I+1 5 GO TO 957 ' ' ” '““ ‘ " ”

08° CONTINJE 9 1F(U5TOATA(J) .NE. 99999. .AND. DSIoATA(J) .NE. -9999.)

100 T0 980 % J: J~~1 $ GO TO 987 '" ‘

98* POUND: SOJND+DsTNA A(J)tFLUUATA(I)

959 I=I+1 t J: J- 1

987 KONT=KJNT+1 s Ir(60NT .LT. L>BU To 990

PQINT OUT MATRIX SthS AND PROBLEM NUMBER.

J: M1+1 3 PRINT 21 KCUNT1.N M1J180UN0

21 FoRMAT(66X.. PRUBLEM NUMBtR * 13///. THE SIZE OF IHIS PROBLEM IS N

1 EQUALS 1,13,..1/1 THERE ARE 1,13,. RUNS ALLOITED TO THE SELECT MA

2TRIX.t/* THE CCN*LItT MATRIX IS UP THE *aisa*“SOUARED ORDEkgt/t

3THE LONE4 RQUNU FOR.[H}S PHOupgn [$19.517.2)'H

PRINTZU.XOUT

pn FORMAT(1H ,1XOUT IS ‘9F800)

READ 1001.NHRFIX 1 I=o

I .1. .- m. u-v- u . 1 - A "an IQ : 1

s .‘vu--,-."-'1 »

1601 FORMAT (12)

IFtNBRFix .EO. n)90 T0 1004

1noa =l+1 » QEAD 1093.1r1x0(1>.1+1x1(1)

in”! FORMAT(212)

IF(I .;T. NNRFIX)GO T0400z

lfiod CONTINJE

TNEN=T1MEF(4)

T=(TNEN'TULD)/130N,

PRINT 14o,T _~_ _

146 FORMAT(i TIME SPENT 0N PHtLlMINARY NORA WAS io?16.3.¢ SECONDS.*)

TOLDETVEJ

GCNERATE A TOTAL OF KOUNTZ- SOLUTIONS FOR THE PHoaLtM;

U032KOJNTO=11KOUNI?A‘ 2 ‘1

xoUTarwpxour 9 LAsTDEPzg S MAXUEP='99999o

PANDN0=RANr<-1> $ PHINT 999.NAN0N0 ‘ _

999 FORMAT(1H ,. THE FIRST RANDOM NUMBER GENERA?ED“NAS'.IF18.151“

KOUNT24= 0 S PRINT SSaKOUNTb 3 KOUNT19=O 5 KOUNT25=a

KUUNT30= 6's KOUbT51:d $ KOUNT27=O

INITIALIZ: aAThICES nT ZERO.

31 FORMAT(/I/1H 55x. 9 SOLUTION NUMBER 9.13)

KOUN72°= o $ RELUP=6

KoUNT1=N+1

D038181 ‘OUNTl

n039J=1.KuUNT1

39 SOLUTUV<I.J)=U.

39 CONTINJE

. v' ~~v| - . - > u-vwv- -

ZnUR CONTINJE

D034121}N ' t "m‘

Do 35 J=1,N

55 TALLY(1,J)=0.

54 CONTINJE

DO 36 1:1:N



C

(
7
0
0
0
0

1005 I=I91 b IFC21FIXCII) $ IFL= IIIXL(1)

996 CELLTIEII. 2)=CELLIEII‘192

603 CONTINJE

604 CONTINJE

698 CONTINUE

60‘ CONTINJE

807 CONTINUE

164

P0 37 J=1,M

37 CRITERAII,J)=0.

IA CONTINUE ,

KOUNTl‘INo929N)/2'

00124131050

00125J=1 KouNTl

SCOREl‘T J>=o $ SCORE2II. JI=O S SCORESII sto 8 SCOREQII J390

SCORESII. J):0 $ SCOREOII. J): 0 s SCORE7I1141=O s SCOREBII 41:0

SCURF9IIoJ)=0 $ SCOR§10(1:4)3O S SCORE11II.J)§QY .

195 SCOREIZII.J)=U

124 CONTINJE

RFVISE THE SOLUTION MATRIX TO RELECT CWXED CENTERS.

IFIRELUP .EQ. 1>Gu T0.90

IFINBRFIX .eo 61uo To 40 1 1:0

‘0'-

‘ "-

D010 06J=1,M 1 IFISOLUTON(JoIFL) .NE. 35’50 TO 10066“

SOLUT0V(J N‘l):50LUTON(J.N*1)+;

1006 SOLUTONIJ, IPL)=3

DOloo7J=1.N $ lFIsOLUTONIIICIJ) .NE. 3160 TO 10B7

SOLUTOVIN+1. J)=SOLUT5N(N+1aJ)+1

1on7 SOLUTOVIIIC, J):3.

SOLUTOVIIFC.IFL)=2. S SOLUIUNIIFCaN¢1I31000000.*S EOLUTONIN¥1.IFL)

1=1oooouo. S KOUNT19=K0UNT19+1 $ IFIKOUNT19I.GE. N-1IGOTo 32

IFII .LT. NBRFIX)b0 To 1005 s 60 TO 836

SELECT NE“ QUADRUpLEi FOR ELIMINATION FROM THE CELLTIE* MATRIX IF

ANY ARE SIORED IN IT. I? THERE ARE NONE. FIND ALL nuADRUPLETE NoT

YET ELIMINATED HAVINu THE LARUEST FLOR-DISTANCE PRODUCT. STORE THE

LABEL5 OF THESE QUADIUPLETS IN THE CELLTIEv MATRIX AND MAKE A

RANDOM CHOICE.
~

4n KOUNT8=U

KOUNTZIS‘UUNH727 1 $ IFIKOUNT27 ._LE. OIGO To 997

00996I=IVDICAT KOUNT27 S CtLLTIE(Ipl)=CELLTIEII*1 1)

IFIKOUVT27 E0. 1IGO T0 995 .uwmv T _ ”.mw.wuuwr.1

GO TO 135

997 CONTINUE

BIGN0=-99999. I KUUNTl'IvaZ'N)/25 I90 3 KOUNT27=Q

12R 131615 J:-1 S L: 0

129 CONT1NJE

IFII .LE. 50960 TO 603'

IFII .LE. 100160 IO_604

IFII .LE. 150)GO TO 305

IFII .LE. 200180 To 606

IFII .NE. 250160 10 607

IFII .EE. SUOIGO *0 608.

IFII .CE. 350)GO ID 609

IFII .;E. 4ODIGO .o 610

IFII .LE. 450160 10 611

IFII .LE. 500160 I0 612

IFII .LE. 550160 [0 613

IFII .LE. 600160 614

IFISCOHEiII JIIGO TU130 s 60 To 139

1F¢Sc0HE2(l-509J))GU T0 131 5 60 TU 139

1F¢Sc0RE3II-1ooaJ)IUO To 130 5 GO 15 139

[FISCORE4II-150oJIIGO TO 130 5 60 IO 139

'1F¢S(;0NE5II-200.J))Go’TO 136 5 Go TO 139"fi
t
fi
é
fi
é
fi
i
fl

Iv '--- ~ . r a ' I v - n



C

Aug

609

,‘19

611

619

613

614

13°

131

13‘

130

131

995

135

136

616

517

61R

619

620

621

622

623

524

623

62*

627

14?

ENTER TALLIES RHERE APPROPRIAIE.

1026
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IFISc0NE6(I-250aJIIbU TO 130 3 GO '0 139CONTINJE 1

CONTINJE 1 IFISCOKE7(I-3000J))GU T0 :30 I GO «0"139 "

CONTINJE I IFISCOMEB‘IYZSOOJ’IEU.J0.130 *nGO I0 139. 1. , V

CoNTINJE 1 IFISc0NE9(I-4oopJIIGO To 130 s so 50 13b ' ’""

CONTINJE $_IF(SC0HE10(I~45DJJ)IGO To_1§g S GO TO 1 9

CONTINJE s IFISCOHE11II~500.J)IGO To 130 I GO TU"1 ”"

CONTINJE s IFISCOEE1ZII-SSOIJIIGO To 130 3 GO TO 139

CONTINJE 1 1F¢FL0uATAII)iDSTUATAIUI'.LI. BIGNOTCd"?U”131'

IFIFLOUATAII)*DSTUATA(J)I.EQ. UIGNO)GQ r0 132 H

KOUNT27§1 1 816N0=FL00ATAII)*usIDATA<JI 3’30 10 133‘"‘

CONTINQE s IF(KOUMT27.’GE- SUUIGO To 133

N0UNTZ/=K0UN727+1 '

CELLTltIKUUN727,1):I s cELLTlEIKOUNTz7.2);J S L=L+1

IFIL .VE. 1)Go TO 134'I'xs=FLOUATAIIIvDSTDATAIJI 5 GD 70 13 '

CONTINJE 1 IFIFLOIATA(I)*DSTDATAIJI .LT. X3IGU To 131 3 60 I0 130

J3J*1 I 1FIJ’.LE. KOUNT1IGU 70'129""““ '“” “1' " ‘

CONTINJE s IFII .LT, IN.«2-N)/2>Go TO 128

IF(KOUVT27 .NE. 1)GO TO 135

1:1 I 50 T0 136 _

RANDN0=RANFI'1) s X=KOUNT27 s x=xiRANoN0 S I'ij

K0UNT29=IUUNT26+LW 1111. . 1.,11 , ,.L 1 A...

KOUNT10=CELLTIEII.1) S KOUNT9=CELLTIEII.2I s INDICATSI

IF<KOUVT10 ,LE. Suggo To 616

IF<NOUVT10 .LE. 1uo)eo T0 61/

IFIKOUVTIU .LE. 150,99” 0 #18

IFIKOUVTIU .LE. 2u0)GO T0 619

IF(K0UVT1U .Le. 250)GO 70.620,

IFIKOUVT19 .LE. San)GO T0 621

IFIKouVTlo .LE. 350)GO_IO 622

IF¢K0UVT1u .LE. 4Ufl)GO T0 623

IFIKOUVTID .LE. 450)GO To_924

IF(KOUVT1H .LE. 500)GO T0 625

IFIKOUVTiu .LE.550)GQ IQ 926

IFIKOUVTIU .LE. 610160 To 627

SCORElIKOUNTICIKOUNT9I31 S GU T0 142

SCORF2(KOUNT1G-50.K0UNT9)=1 3 GO To 142

1 .'--fPA"k—-v ‘ I‘ Qr' t . I I- v .- w I —'

ScORE3IKOUNT10-1009K0UNTQI=1 3 GO TO 142

SCORE4(K3UNT10'150.KOUNT9)=1 5 GO To 142

SCORES(KOUNT10'200.K0UNT9)=1 3 GO To 142

SCORE6(KOUNTlo-25UIKOUNTDI91'S so 70 112 ’ '

SCORE?IKDUNT10-303.KOUNT9)=1 3 GO To 142

SCOREBIK0UNT10-55”,k0UNT9)=1”s‘Go Y0 112 ”" "'

SCORE9IK0UNTIo-4ou.KOUNT9I=1 3 GO To 142

SCORE10(K0UNT10f4bngKbUNT9)=1 3 GO To 142‘"

SCORE11I<0uwT10—500.KOUNT9)=1 5 GO To 142

scoRE12I(ouNTlo—SbDQKOUNT9321"("Go'10 142

CONTINJE

MHC1BFL04C1(KOUNT10I S NHC2=FLUNCZIKOUII103 _ r . __m. I

MMLéaDSTL1IKOUNT9) s NML2=USTL2IK0UNI9I ‘

IFI OLJT9~<~Mc1+MMLIIL:EO- as :Hfi- SQPUT°I£""91INNEI?.1E9;.iiG° I0_- ”on.“

1 1020

IFISOLJTONIMMc1,MHL2)“:EO. 2...qRI.soLUIONINNp1.NNL2II,Eq.IQIGO 70

1 1020

IFISOLJTJNIMMC2.MML1I oEQo 2o 00R. SOLUIONIMNCZaHMLl) .50. 3’60 TO
1020 . .--q _ _ .-.. .. W

*-.- ..- ...-..._n
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IF(SDLJT3N(NMCZ.MNL2) .50. 2. .UR. SOLUTONcnflczaMMLZ) .EO. 3360 TU

1 1020

41 CONTINJE $ 1F(SQL,T0N(MKC1oMML1) .NE. 0’9°.T9“92 A

IFISOLJTON(NMC2. MMLZ) NE 0160 To 42 "' ”""

TALLY<*MC1.MML1)=IALLY3MMC1 MML1)+1.

TALLY(UMCg.MML2)= ALLY(MM02oHML2)+1.

49 CONTINJE s IF<SOLuTON<NMcloNHL2) .NE. o)GU T0 1c51

IF‘SOLJT3U(4M02 MML1>'.NE. 0160 T0'1051 “ ‘

TALLY(MMC1.TMT2) IALLYCHMCInHMLZI+1.

TALLY(WMC 2.MML1):TALLY<MMC2.MML1)+1.

c UnDATE cKITERIA MATRIX AND CMECK FOR INFEASTBLE DIADS DUE To IALLYc ScanS -“m,. 11 “mnflq._<

1n51 JIO s <0JIT11 DSTL2(K0UNT9) s KOUNT12=FLUNc1CKOUNT1OI

KOUNTisaFLONC2(K0uNT10) ' ‘”"

4x CRITEKA<<DUNT12, KNUNT11)&CNI1EKA(K0UNT120K0UNI11)+FLOQATA(KOUNT15)

1*DgTD ArA(<0UNT9)i.0000001 s IFTTALLY(KOUNT12.K0UNT11).LT. xour)oc

2 T 44

IF(SOLJT3N(KOUNT12oK0UNT115 .NE;“OIiGO’TO 44 ”WW””"' ”“ ' “

soLUTOV<<0UNT12,KUUNT11)=1.

SOLUTOV(<OUNT12, N+1)isoLUTUNTKUUNT127N§1)o1;”5‘SULUTON(N*i.KUuNT11

1)BSOLUTOV(N+1.KQU:VT11) +1. 3 KUUNTazKDUNT8+1

44 CRITERA<<JUNT13 KJUNT11)zCHITERA(KouNT13.Kon[11)orLODATAtK0UNTloS

1*03TD;IA(‘OUNT9)*.0009001 S 1F(IALLYIKOUNI13aKOUNT11) .LT. xquT)GO

2 T 4

IrcsnLJrochOUNT1s.K0UNT11) .NE. 0.360 T0 45

SOLUTOV(<3UNT13. KUUNT11)=1. S SOLUTON<KOUNT13:N*1)ISOLUTON(KOUNI15

1 N211+1

SOLUTOV(N+1.KOUNT13)'SOLUTUN(N*1aKUUNT11)*1. s KOUNTBBKOUNTB*1

45 J8J+1

IFtU .VE. 1260 T0 1020 s KOUNT11:DSTL1(KOUNT9:'S GO To 43

C CHFCK FOP UIAD INFEASIBILITY DUE TU THE ELIMINATIUU OF A QUADRUPLET

C I\VOLVING A PREVIOUSLY ASSIGNED DIAD.

102n CONTINJE S U010091=1p2 $ 001010U=312

IF(SOLJT3N(MM01,MML1) .NE. 211011 s rrcsoLUToN(MMc2.MNL2> .N

15. 0.)JO TO 1011i SOLUTON(MH02:NHL2 )31

SOLUTOV(MM02.N+1)= SOLUTON<MMCZaN*1)*1

SOLUTOV(V+1 MML2>= SOLUI0N(N+1:HNL2)¢1 s KOUNTB-KOUNT8+1

1011 TARYIMUCZ $ MMC2=MM01

1nln MMClaTARY

TARY=NWL2 $ MML2=MML1

1009 MML1:TARV

KOUNT24=KOUNT24+1 s IFTKOUNTB .eo. CIGU To 40 ‘

SEARCH TH: SOLUTION MATRIX FOR CONDITIONS DICTATING ONE OR KORE UIAI

AQSIGNFENTS.

non KOUNT14=o $ KOUNT15=1 s KOUNT16=1 s KOUNTzozo

MAKE A RAVDOM CHOICE ASWTO WHETHEH'RONS'OR COLUMNS'IRE'SEARCHED"

FIRST. LOOK FOR AND RECONclLE DEMANDS MADE av CLOSED} LTNES PRIOR

TO SEARCHING FOR LINES HITN ONLY ONE REMAINING FEASIBLE DIAD."

RANuNosnAvrt-1)

IranNDNO .GT. .49160 To 47 s Nou=o. s GO TO 43“

.47 R0‘“1- _ w .. . a. .1 _ . ,;1“E”M-
48 1:0 " ' 1

0049K0JNT1=1.M

Do5oJ= 1 2

5n SELECTKKOUNT1.U)=U.

49 CONTINJE ' ‘ "‘ "““

.~ n-u- - \ ll .. _ v' A- A ~ 0'. --« -. ~ ‘_ » «‘1 «n: n. “o l— c ' -V- ' n. ”'1. »- n‘ - so a ,..v ~ .5 .' «.5‘ " *V

_ ... ...,. ....

og-A

0
0
0

D
C
)
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L=H1+1

DO51KOUNT1=1,L

0052J312L _

52 CONFLCT(‘OUNT10J)=D.

51 CONTINUE .

STORE CENTEQ AND LOCATION LABELS UF OIAOS REQUIRING"ZSSIGNMENT'IN

THE CONF.ICT MAIHIx. TRANSFEN INTO IT Tug'nlAOs1flyALues As sroaen

IN THE ‘CilTERIA' NAIRIX. ""

Jaofls LABELH=0 s LABELC=O $ IFFRQNW.NEe 09269'1Q153.

54 181*1 3 IF(SULUTON(I:N*1) 0E0. 10000000)GO TD 55

IrcN-SJLOTON¢;.N+1> ,NE. KOONTL4190 TO 55 s LABLLBpLABELR*1.

IF(LAB:LR ,NE. 1 .AND. KOUNT14 .NEu'1)GO To 56 5 Lin 3 LABELC=U

IF‘KOUVT14 .Ne. OIGO TO 57 I. 1. M _ .1 -.WW_W-2 -.H

5“ L=L+1 3 IF(SOLUT0N(IaL) .Nh. 1’60 T0 59 $ LABELCILABELC+1

CONFLCI‘thABELc+1??L.$ IF‘LABFLC yGE-.H1>90 IO 26 w”

50 CONTINJE s IFcL .LT.‘N)eo TO sfi-s so re So “

57 L=L+1 5 IF(SOLUT0N(IOL"QEUO ooIGO TO 60

IFCL ..T. N)Go TU 57 3 GO ID 56

6n CONFLCVLLABELR92)=L $_coNFLCI<LABELR-1l=l T 39 T°.11°.
5A CONFLCT(LABELR+1.1)=I

11a CONTINUE % IF(LABtLRWQGEo "1189 To 61

56 CONTINUE s 1F¢I .LT. N) GU TU 54

61 CONTINJE S IF(K0UNT 4 .EO. 1IGU T0 11* 3 lF<CUNPLCT(1o2)_.NE 0.)U

10 To 6a ‘ IF‘CONFLC%K201) 0N5. oc)GO 0 62 3 KOUNT15I0 5 GO *0 63

111 CON‘INYE 5 1F<CON*LCTS1'1’ QNEA~Q:’G°.70.62 ‘ IF‘QQNFLFTK192’.-NEA

1 o.>Go To 62 m K0UNT1580 3 GO To 63

53 J=J+1 t IF<$OLUTON<N+1aJJ .EU. 1000000.>60.TQ,642, ,.NH-.1

IF(N.SJLUTON(N+1:U) .NE. KUUNI14)GO TU 64 3 LABELCILABELC¢1

IFILABELC ,NE, 1 .AND. KOUNT14 ;Ne,-1gso To 65 3.L'0 s LABELR;0

Ir<Kouvr14 .Ne. o>eo T0 66

b7 L'L*1 5 IF(SOLU10N(L2J? [NF. 1300,10 63.3 LABFLBELABELR*11.

CONFchILABELR*1a1)=L S IF<LABELR .GE. MIIGO'IO 65

69 CONTLN4E1$,1FLL .LTL.N>60 TO 6713.60 TO 65.

as L=L+1 A TFtSOLUTON(L.U> .EU. o.)GO To 69

IF‘L QFTOLN)GO T0 66 5,60 '0 65 _ “1 H . . q._.1..__ H,..

6O CONFchcLABELc.1)=L s CONFLCT1LABELC.2)=J 3 GO TO 112

as CONFLcr<1,LABELc+11=U M "U

112 IF<LAB=LC .GE. M1)GO T0 70

64 CONTINJE s 1F<J .LT._N160 T0 56 , ~,- ., ”W _. “I M

7n CONTINJE $ IF<K0UNT14'.EO. 1IGU T0 113 S lr(CUUFLcT(1.23 oNEv o.)G

10 TO 62_$ IF(c0NFLCT(2.1I .NE. 0 )GO TO O2 5 KOUNT 6:0 3 GO To 63

113 CONTINJE $ 17(C0NFLCT(1,1) .NE. 5.>GO TO 63 3 IF(CUNFLcT(1.2) .NE,

1 O.)GO TO 62 $ KOUNT16'O S GO TO 63

62 1:1 s IF<KOONT14 .EO. 1)GO T0 71"-”

79 Isl+1 x K0ON717=cuNrLCT<I. > $ J'1 .

71 J=J¢1'$ KOUNY18:CUNFECT(1A‘) E'EONFLCTlIoJVzCRITERXKKOUNT17$KOJN11

8) ‘

1IFCJ {LT} LABELC+1YGU”T0‘73 S‘[F11'.LT§'LABELR31IGO’TO'72

KOUNT31t‘0UNT31+1 s IF(I .LE. ZIGO T0 114 s KOUN1303KOUNT30¢1
.60 To 114 m _,hqfl,fiufiwm.--u Hnw__~,, ”._1 u,.flwfluflnu.qufl L

71 CONTINUE s IF(ROH .60. 1.)60 I0 116 s K=LAaeLN 5 GO TO 117
11~K=LARELC” 1“ - .-Wmngrmmu. .w,"u ,.“M.-mfl-m,hw-wwwww-au,

1 1 7 com my; -§~.12011,5.1_.=12L§_ towniscszmcu 14.1’,-£.-§.9.UNI.1.§!C.9.NEEFT5 1.:2
1)

115 CONFLCT(I.33=CRITEPA(K0UNT17oKUUNT18)

IF(I“;LE§'1)GO'TO'114 S'KOUNTSOEKOUN730+1"

J‘C" ..

a..-p. . -

‘-I .~- .I— .‘ - ~- - . .vw .-o. ”3" ., -.- a..." 9 ;-Q\~"1 ~ .. . t. . . ..~~.-~ . .4 - 7“" "v
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H(:umcll: C3NFLICIINU DIAD ASSIGNMENTS BY CHOOSING_THAT DIAD NITH THE

I_“NEST CilTERlA VALUE, BREAK IIES RANDOMLY. ‘ “M” ”' " "

114 SMALLNJz 99999999999. 5 It; 8 L=Q

IFIKOUVT14 .Eo. 1,00 T0"118

7Q I:I+1 i J: 1 I .

79 J2J+1 s IFICONFLCIII J) .GT. SMALLNOIGU TU 76"! IVYCONFLCTIIIJ) 3L

1T. SMA- LVO)GO TU 17 S IFIL .GE. HIGO TO 76 S LIL¢1

SELECI‘L01)=CONFLUTIID1I S SELECTILazItcONFLC|I%oJI 8 60 IO 76

77 L-1 m DMALLNOBCONP LCT(I J) S SELECTI1 1I'CNNFLC IIL1I

SELECTI1. 2):CONFLUT(1 J)

76 CONTINJE_$ 1F<J .LT. LABELC+1>uo To 75 s lrcl .LT. LABeLR+1IGo r0

174 S IF(L .EO. 0’60 T0 197 S IFIL .GT. 1IGn TU 79

ASSIGNJ:SELECTI1 1) s ASSIGNL=-SELECT(1.2I 1 EU T9 106

119 CONTINJE S IF(R0H ,E0.1)uu ID 119 S KcLABELR 3 Go To 120

119 K‘LAREECM. , I ... _. . ...

12h CONTINJE $ u01211= 1, K s IFICUNFLCTIlaSI ,Gf; SNAELNOIEO To 12'

11 $ IFICDNFLCTIIas) .LT. SHALLNOIGO T0 122

IFIL .SE. 8:60 T0 121 s L= L+1 S SELECT(LI1)=c0NFLCY(1,1)

SELECTILo 2):CONFLCT(I 2) 8 GU T0 121

129 L31 $‘sNALLN03coNILcTiI;3) s SELECTIIo1I=€oNFCCTTIIiIWS"SELECTIIo2

‘1):CONFEQIII,2)

121 CONTINJE

IFtL .20, 0)60 To 197

IFIL .ST. 1)Go T0 79 3 ASSIGNC=SELECTI1 13

ASSIGN.=SELECT(1.2) s GO to 106

7Q RANDNO= NAur(-1) $ x=L s x: XwHANDNO s 1-x+; s ASSIGNCISELECTII 1)

ASSIGNL= SELECT(1.2) s KOUNI2beoUN12§+1. ‘ _

106 CONTINJE

REVISE TH: SOLUTION MATRIX T0 REFLECT THE NEH UIAD ASSIGNMENT.

00801:1. N ' " '“' ' ' ‘ ‘”

-IFISOLJTON(I: ASSIGNLI .NE. ooIUO TO‘EU S bOLJloNII N+1)850LUION(IA

1N+1)¢1. $ IFIASSIHNL .NE, IIGU T0 80

SOLUT0‘(N+1,I)= SOLUTQN(N*1AII+1I

8n SOLUTOVII ASSIGNL)=3o '

D081J= 1. N $ IF‘SOLUIONIASSIGNCOJ) .NE. g.)co lo 81 S SOLUT0N(N+1.4

1)=SOLUT0N(N¢1,J)+1. "“ ' '"‘”‘” ‘”' ‘ ”

81 SOLUTOVIASSIGNC J)=3.

SOLUTOVIASSIGNC. ASSIGNL)= 2. $ bOLUIONIASSIGNCoN+1Ilf6

_SOLDTOV(“+1'ASSIGUL)=JDDOUUO' 3 K0UNT193KUUNTl9f1 3 I

SUBTRACT JNE FROM x007. PREPARE SOLUTION MATRIX FOR RECYCLING.

XOUT=X3UT.-1 $ ReLUP=1S KOUNT2730 """

D0200 OI:-1,N $ 002 001J=-1,N 5 IFISOLUTONIIOJI oNEo 1IGO To 2001

SOLUTOVII: JI‘D S SOLUTONIIAN*1I= SOLUTONIIpN+1Icl

SOLUTov<N+1,J)-so.u10N(N+1oJ>-; ._l

" A‘ ' " "".—r .o--.. ~' In. on - -\_ - \ ,-.’ -,-.~.1 9..

o g. u

""9.“ ‘U ""':v v - ‘1 I

00000-

E‘KOQQI19 :55

2mg] CONTINJE

2000 CONTINJE

DEPTH=«0JIT24. LASIDEP {’LASTDEP=KOUN72A

IFIDEPIH .LE. MAXHFPIGU To 2002 s MAXDEP‘DEPTH

2n0? CONTINJE

Go To £008

63 CONTINUE s IF(KOUHT14 . 0. .OR RON NE ogIGO TO 83 '

IFIKOUVT15 .EO. 1)GO T6 48 s KOUNTzoaKOUNT2001 s IFIKOUNTZO oGE. 2

1)GO T0 84 S Rod=1.$ GO TO 48

84 KOUNT14E1 $ K0UNT20= o S GU TU 48

81 CONTINJE $ IF(K0UNT14 .NE- 0 .UR. RON .NE. 1IGOVT0 85

I...- -~



as

8%

an

87

169

IFIKOUVTIO .Eo. GO TO 48 $ KUUNTZDIKOUNIQDPl S [FIKOUNT20 06E. 2 V

l)GU TU 86 $ ROW: 0. 3 GO TU 48

KOUNTl4=1 $ KOUNT20= o 9 GO To 48

coNTINJE s ITINOUNTix“;NE. 1 “.OR; Row 1N5; c;930“Yb'§7“"“ “

IFIKOUVT 9 NE. )GO To as s KUUNT;QIC s Go To 45 .

KOUNT20=NOUN120+1 s IFIKOUNTZD. 2590 To InI Rbfli1. s*co To 46

CONTTNJE 9 IFIKOUNT16 .NE. 116a To 39 : KOUNI14co 3 GO To as

MIKE THE EAST DIAD ASSIGNMENT BY DEDUCTION AND PRINT OUT ALL

RESULTS R: LEVANT TO THIS SOLUTION.

59

82

123

91

9?

9P

94

93

93

97

9:

10“

101

99

10?

103

Dana;

2004

Znofi

KOUN720=KOUNT20+1 1 IFIKOUNTZD .GE. 2>GO TH 40S Rowan. S 60 To 48

CONTINJE 5 DO 193 I=1aN

FINAL(1 V91)=-0

D0 90 1:1. N

no91J=1;N s'IFISOLUTONIIQJ) ,Eu

CONTINJE

KOUNTzléI 9 GO T0 96

FINAL‘I N+1)3J

CONTINJE

1.093121 V

D094J319V $ !F(FIHAL(JON*1) 0E“. 1’50 T0 93

CONTINUE ‘

GO T0 95

CONTINJE

FINALIKOUNT21,N+1)=1"

pRINT 96 _ . _ ,. 9-. a

FORMATI/I1H .SSXIECENTERS LOCATION ASSIGNED')

D0971=1, N

PRINT 98 I I1:uAL(1.N.1)

FORHAT<14 .57x912 10X F3.0)

COSTSUo S KOUNT1=(Nw*2-N)/2

00991=11K0UNT1

K0UNT2¢=FL0N01II>

KOUNT2§;FL0NC2(1)

DO100J=1.N0DN71

ITIDSTL1<JI .EQ.F1NAL(KQUNT22:NP1’ .ANo. DSTLZIJ) .Eo. I;NAL<NUUN

--."U"Pn..r '.- -.‘.-~..,_..

2,)GO TO 92111”.

...p-a. .. 4

a. urv.."<‘o.. .

I PV\~.PT¢1' P ‘ P > ~. ' of. . -- ~Ir

1T26.N+1) .OH. DSTL2(J) .Eu. FINALIKOUN1229N+15 .AND. DSTthJ) .60.

2 FINALIKDUNT239N+1))GO To 101

CONTINJE

so To ?9.

CONTINJE

IFIFLOQATAII)..EQ. 99999, .OH. FLODATAIII .EO; .9999, )00 To 99

IFIDSTUATAIJ) .Eu. 99999. .oR. DSTDATAIJ) .ED. -9999.)ao To 99

COST:CUST¢FLUDATAII)tDSTDAIA(JI

CONTINJE '”""”'

PRINT }D2.CD§T _ ‘9, E .. T .
F0RMATI1H ,/9 THE TOTAL COST OF THIS SOLUTION TS 53F23I1)

PRINT 103 K0UNT24 ‘

-‘«

x.--aw.

x-KouN124 s YEN 1 s 1:_X/Y

RRINT2003.Z

FoRmATI1H ,tTHE AqERAGE EklMlNATED IS'OF20,1_)_

PRINT2UO4.MAXDEP

FORMATI1H ..TNE MAXIMuM PENETRATIONAFTER N--2ASSIGNMENTSISP I16)

nePTN=«ouNT24LASIDEP '

PRINT 2005 DEPTH

FoRMATI1H ..PENETRATION FOR THE NEXT To LAST ASSIGNMENT ISN.F15PO)

u“..- ~.~-~~ ., -. ......w—7 1.- . .. ‘1, .I. -...

1 . m9"- ,-v-.- o'

.- - » . , v -..;.-..- -. . ..,. ,.. ~ .. ..‘. -. 0‘ . .n .- '9‘
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...—.__———-.——_._- . -7

PRINT ’39.KUUNT$0

739 FORMATI1H o'THE CRITERIA MATRIX HAS USED To HAKE A PARTIAL ASSIGNM

1ENT A IOTAE.0F PIIEE!HTIN§§o1)H

PRINT 105.K0UNT25

505 FoRMATI1H ..A TOTAL DE #91200* TIEs_IN TNQ SEEQQTHNATRIX ARE RESOL

1VED BY RANDOM CHOICE.9) ' ” ”

PRINT_974{KOUNT31 v-“ ”-4 . ,V.‘.,_ ,

974 FoRMATI1H ,.cLoseo LINES NERE ENCOUNTERED I TUTALsoF 9.155511NESPI

PRINI.L45:KOUNT26 N“. - ,1 , . I , . .-I.L”.D.W.I.I.. . ,

146 FORMATI1H ,, A TOTAL OF 9.19.9 TIES HERE BROKEN RANDOMLY NHEN SELE

1CTING pAIR ASSIGNMENTS FUR ELIMINATION.*)

x=KOUN126 9 Z:X/Y “ * ""’” '

PRINT 2006.2 N

anos FoRNATI1N ,9THE ATERAGE NUMBER 15 95F22.19

TNEngIMEF(4)_NB .Iw.mc

TEITNEN—TOLc>/1coo.'

PRINT 147.T . .

147 FORMNTIPTIME SPENT oN'TRIS SOEUTION‘NASNIP1e;s;iSE60NDs;PI

TOLDgTVEN

3? CONTINJE

Go T0W901

197 PRINT 198

199 FORMAT(1H ,.CRITENII VNLUES ARE TDO LARGE To IEST..I

601 CONTINJE "' '" '"” *"" ”"'“’"'“”'

END

agw -" nw -‘~'0- ‘ ~I' v ’ cv- ~ vsv'w - - rs ,...,-“-pI-pgu ar

' I

.—L-I-.-m1..i

v'V' Ix~m .. an -0 9".» v ,v , - ad‘Q‘



APPENDIX IV

LISTING OF 4-A

PRUIIFIA‘I PROCAA

DIMENSION‘FLODATAISSI){FLDNCIISSIIIFLUDCZISSITIURIENCIIB).DRTGNCEI"

18IAORIBND(8).TALLYI702.27).DSTUATAISSII.DSTL1I351I.DSTL2I351>.SOLU

'2T0NI28P28){XOUTI7fi2)SCRITERAIZVC2713CUVFCCYIQBAQH){SELECTI5712).FI'

“On

0' ITERATE FOR A TOTAL OF BNUNBERA PROBLEMS

C' READ AND 2ANK FLow AND DISTANCE DATA

1

3

4.

1D

. 11

12

13

14

16

15

17

1A

?

’C' COMPUTE LUNER BOUND

09”

SNALI?8:28).UNRANKDI702,27)

EQUIVALEVCE (UNRAquiTALLYW,IFIN
[L“50LUTQN5"“”F ~~w~a~rw-~www 1

INTEGE-I ASSIGIL.ASSIGNC ORIGNC1 URI
GNCZ

TOLD: TIMEFIA)

XzTIMEFISI

CALL'RANFSETIXI

RANDNU=RANF(.1)

READ 600.NUN85R

FORMATIIZI

D0°01 ‘0UNT99=1:NU"BER I“. I 1,mm.mmw,.,u

READ 1 M. N. N1.K0UNT11K0UNI2

FORMATIBIBT

DO 2 KJUNTS = 1. 2 $ 1: 0

READ 4:(ORIGNC1IJ).0RIGNC2IJ).URIDNDIJIAJ91.8o1)

PORNAT58<12.12.T6.1)) .“.,

DO 5 J=1l8 5 131*1

IFIORIJNC1IJ) .LT. DRIGNCZIJIIHO TO 6 S UNRANKDII.1)IORIGN02IJ)

UNRANKUII.2)= 0916”c(J) 6 Go TO 7'

UNRANKDII.1)=ORIGNC1IJI s UNHANKDII2I¢0RIGNCgIJI

UNRANNDII.3)=ORIGND(JS

IFII-IYP*2 MN)/2)5 8,9

CONTINJE

GO TO 6

1:0 9 «OJNT93(NwPa-N)/2

J:0 9 519Noz-99999999.

J: J+1 n IF(UNRANNJI4.3)IBIEN0112{12I11"'

816N0=JNRANrucd 3> $HKOUNT5=QW$.K119836NKDI9'I! 5.szNNBANNDIJ:2>..
CONTINJE

IFIJ ..T. KOUNT4IGO T0 10

1:111 1 IFIKOUNT3 .EO1)GO TO 13”!"DSTDATAIIIiBIGNO S DSIL1III=x1'

DSTnglszz $ 60 T0 14" " - . N“ . . - .

FLODATAIII=BIGNU A FLOHC1II)'X1 $ FLOH02III=X2

CONTINJE $ IFIKOUNTS .EO. KOUNT4)GO TO 15

CM‘ .‘u‘fl I'I’ “t ‘A'\‘ " 0‘1. / ‘u.’ 9 VIA‘P'O‘ I. ".1 .I‘H ."9"lOL T

UNRANKD<<OUNTS.1)= UNRANKDIKOUNT961.I S UNRANKOINOUNTB 21=UNRANNOI”'”

1K0UNT5*1:21 S UNRANKDIKOUNT593)=UNRANKDIKUUNTD+;,3)

KoUNT5=-KOUNT5+1

IF(KnUVT591nK0UNT4)16316L1?

KOUNT4= KOUNT4 1

IFIKOUVT4.,GT. 1’901T9.3-u.-

1:191 -

CONTINJE $ IFIKOUNT:I .50. 1)60 I0 13 S DSTDATAIIISUNRANKDI1.S)

DSTL1I1)IUNRANKDI1.11 I DSTLeIISaUNRANKDI1.2I 3 GO To 2

FLODATAII)=UNRANKUI1.3) S ILUH01III=UNRANKDI1 1)

FLOAC2I1)=UNRANKDI1.2)"”“

CONT I rJJE .9. ...,... ....“ ...,.._.. I. ... ...,. L . .1 -» . . .. ...... , ..

L.<N..2-N)/2 5 [=1 6 J-L 9 AUNT: o s BOUNDso. ...-

CONTINJE s 1F(FLOUATAII) .ED. 99999. .OR. FLODATAII).EO. -9999. .'

1AND. DSTDATAIJ) .EO. 99999. .ON. DSTDATAIJ) .Ea. ~9999.>GO To 969

IFIFLODATAII) .NE.“99999..ANDIFLDDATAII) .NE.'-9999 )GU TO 988_.

171 '
.._—___.—__-..--.-__.._. . ... m_—_____-___-—__ _L- I..- - __ ....-‘—_.___—_...‘ -- . -m—n ... _ .——o .-x , r- . - ..1... m-0 A'I'N “nan-v4

...... -»...—-.
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I:I+1 t GO TO 957 .

969 CONTINJE s’IFIDsTuATAIJI"}NE- 99999; (AND. OSIOAYXIJI'.Ne;“39999.I

160 To 986 S J=J-1 S GO TO 987 H , ,.

956 BOUNO=30JND+D3TOATAIJIarLODATAIII "”" '” ' ”'““"”"““ W”' "

989 I=I+1 3 J=J-1 '

937 KONTzKJNfil S IF(KONT .LT.'LIGU TO 990””""

J:Ni*2‘N

DOZOI=1,J

2n XOUTII)=0 . fl . _h

c PQINT OUT MATRIX SIZES AND PROBLEM NUMBER.

J=M1+1 S PRINT 21, KOUNT1.N MIJOBOUND

21 FORMAT(60X.t PROBLEM NUMBER *.13///a THE 5125 OFTHI§ PROELEK 15 N

' 1 EQUAL: t,13;*.*/t THERE ARE *91399 R023 ALLOITED 70 THE SELECT MA

2TRIX. */. THE CONFLICT MATRIX 13 OF THE 9.13.- SOUARED ORDER ./.

3THE LONE? BOUND FIIR THIS PROBLEN 18 99717.2)

c 'cnmpuTE x3uT VECTOR. '

KOUNTl‘IN..2-N)/2
‘

O022L=1.<UUNT1 N J:L s K: 2.4--1 s DUMMY1-FLONC1ILI’

0023K6=12 $ K7: N1 S PHI:-0 S IFIXOUTIKI .NE. 0.IGO To 24

0025K5‘10K7

26 K82*J’ l S DuMMY2=+L0w01IJI .

0027K9=1I2 $ IF(DUMMY1 .NE. DUHNY2IGO To 23 S EHIEPHI31

xoUTIKI=N~PH1 $ GU T0 29

29 K:2.J ‘ ’ ‘"

27 DUMMY2=FL0NC2IJI I J3J*1 9 GO [0 26 .

29 CONTINJE S IFIJ .uT.KUUN11)UU T0 137

25 J=J*1 ..M.. .. .Iflfl , “.1” 6.“-6 “I"

24 JsL s UUHMY1= FLoNI2IJI

21 K=2tJ .

29 CONTINJE

TNEN=TIMEFI4I

TaITNEN-TOLDIIIOOI

PRINT 146.T .H .2_ 16221 , . x
146 FoRMAT‘t TIME SpENT 0N PRELIMINARY NORK HAS *-F16.3.t SECONDS.*)

C GENERATE A TOTAL OF KOUNT2 SOLUTIONS FOR THE ENOULen.

TOLflsTVEN

DOSZKOJNT6=1AKOUN|2

KoUN724=o s PRINT 33.N0UNT6 $ KUUNT1930 S KOUNfésso'

KOUNT60=-0 $ KOUNT61= 0

31 FORMATI/I/1N .beX. w SOLUTION NUMBER 9.13)

C INITIAL12= “ATRICES AT ZERO.

' KOUN71=N992-N " H.

00341=1.K0UNT1

DO 35 J=1 N

35 TALLY(IJ)-OI

34 coNTINJE

DO 36 1:1, N

D0 37 ngnN

57 CRITERA(I:J)=OQ

36 CONTINJE

KOUNT1=N+1 I

noSer=I;60UNT1

D039J.10K0UNT1

39 soLUTONII.JI=c.

3i CONTINJE

KOUNT7=0

..,. . . ......A .. ‘- . ..v ~ ‘4 .- - .. T,.,-. >---.

n’ V~9-'-<§r0 40., a—
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907 K0UNT24= KOUNT24 + 1 S IF(KUUNT8 ONE. 0360 TO UOé.yr

173

SELEcT NEXT DIAGQNAL 0T OUADHUPLETS FOR ELIHINATION.

4n KOUNT7=K3UNT7+1'T KOUNT6: o S KUUNT9=1'$‘KGUNTI63KOUN77MTJ

ENTER FOU< TALLIES FDR EACH UUAURUPLET ELIMINATEU.

41 J:0 $ KOUNT11= DsTE1(KDUNT9) ’ " ” "‘“

49 TALLY(gtKDUNTlo 1KOUNT11)=TALLY(2tKOUNTV11oKOUNT 1)+1. S TALLY(Z

1*K0UNT10 KOUNT11):TALLY(2*KOUN710 K0UNT11T .1.I KOUNT11-DETL2(KOUN

2T9) T J= J+1 N . -1 1 .

IFTJ .50. 1:50 To 42 1 Jan 3 NUUN112=rLowci(KUUNi1bT'i‘KOUNT1gusLo

1NCZ(KOJeroT

uonATE 'CTTTERTA TATRIX AND CHECK'FDR'INFEASIBLE“DTXDS DUE To TALLY

SPDPES.

43 CRTTFRA(K0UNT12, KUUNT11)BURITEHA(KOUNT120KDUVT11)+1. S IF(TALLY(2v

IKOUNT1U-1..K0UNT11) .LT. XOUT(2*KOUNT1O'1’)GO '0 44 5 IF(SOLUTON(KU

2UNT12.‘OUNT11).NE. n. )6” T0 44 S SOLUTON"OJerzfiKOUNT11’.1Q ‘

SOLUTOV(KOUNT12,N+1)=SOLUIUNTKUUNT12,N*1T+1. S SOLUTONTN+1TK0UNT11

1)=SOLUTOV(N+1.KOUNT111) +1. T KUUNTaaKOUNTdti

44 CRITFRA(KDUNT13, KUUN )=CHITEHA(KOUNT131K0UNI11)+1.s IF(TALLY(2t

1KOUNT1U.KOUNT11) .LT. XOUT(2*KUUNT1Q ))GO TO 4: s 1F(SOLUTON(K0UNT1

23.K0UN111) .NE. 0. )GO To 45

SOLUTO:(KOUNT13KOUNT11)=1. 3 bOLUTON(KOUNT13-N+1TISOLUTON(KOUNT13

1 N*1)*

SOLUTOV(N*1. KOUNT11)=SOLUTUN(N+1;KOUNT11)¢{, $KOUNTBtKOUNT8+1

AS J=J+1

IF(J .VE. 1)60 10 807 $ kOUNT11=DSTL1TKDUN79T s 60 T0 43

If NO CHAVGE IN SOLUTION HAS OCCURRED BY ELIMINATING THIS QUADRUP-

LFTo ELIMINATE THE NEXT ONE IN THE DIAGONALg"DTHERdlsE. BEGIN

IMFEASIBILITY TESTINN. a“ , ‘1

IFTKOUVTIU - 1 .LE, 0)GO TU 40 sKOUNT10=K0UNI10 7’1 _ ”,1 ,

KOUNTV=NOUNT9*1 T 60 T0 41 ' "'

SEARCH TH: SOLUTION MATRIX FOR CONDITIONS DICTATING ONE OR MORE DTAD

AQSIGNMENTS. ’ ‘ ' ' ' ' ' ‘

909 KOUNT14: 0 T KOUNT15= 1 $ KUUNle=1 S K0UNT2030

MAKE A RANDOM cHoIcE AS TO NHETHER RUNS 0R COLUMNS ARE SEARCHED

FIRST. LOOK FOR AND RECONCILE DEMANDS MADE BY CLOSED LINES PRIOR

In SEARCHING FDR LINES NITH ONLY ONE REMAINING FEASTBLE DIAD.

RANDN03RANF(-1)

IFTRANUND .GT. .49130 To 4/ A Huw=o. s so To 45

47 ROW=1o

48 T30

0049K0JNT1=11M

0050J=152

5n SELECTTKDUN11.J)=U.

49 CONTINUE ‘

L8M161

D051KOJNT1:1,L

0052J=1JL _ 1‘

59 coNFLcTTKOUN71.1)=n;'

51 CONTINJE

STORE CENTER AND LOCATION LABELS OF DIADS‘REDUIRING’KSSIGNMENT IN“

Tue CONF.ICT MATRIX. TRANSFER INTO 1T THE DIAUS- VALUES AS STORED
I“ THE ”CQITERIA" hAiRIX Wm WM E .W, waflflmwpmnm“w-WHWLEL...

Jao $ LABELRBO s LABELC: o s IF(RON .NE. 0.)GO To 53

54 Isl¢1 f TFTSOLUTONTITN61) .EO.'1000OOU.)GO TO 55 ””"”"

IFTNoSJLUTONTITN¢13 .NE. KUUNT14)OO TO 55 S LABELRILABELH*1.

IF(LABELR .NE. 1 .AND.fNOUNT14 .NE. 1)Go Th 56 $"qu s LABELCid

-- - ..."...--~.~ rm .. .- . _F-v‘lrn-J . n - .. .--. . . ---s . .. . fl! , \_ .r 11-..!1 ,. .4 ... 1 1 -I- max '- -'§. ‘0.

. . -‘fiu . - . r- q. u--\ a . 1.»: - 90

...- ..— ~
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IFCAOUVT14 .NE. OTGD TO 5/

5q L=L+1 5 TF(SOLUT0N(IIL) .NE. 1>Go To 59FS’LABELCianeLc11

CONFLCT(1.LABELC+1)=L s TFTLAUELC .GE. H11G0 To 56

59 CONTINJE s TFTL .LT.'NTGO'T0 58‘s GO TO 56 ‘”'*”“

57 L=L+1 s IFTSOLUTOTTI L) .EU. 0.)Go TO 61

IFTL ..T. N)Go TO 57 3 GO T0 56 '

61 CONFLCTTLABELR.2)= L 3 coNFLCTTLABELR.1)=T 9 GD To 110

56 CONFLCTTLABELR+1.1T=T

11m CONTINJE T IFTLABELR .GE. M1TGU TO 61

59 CONTINJE s 1F(T .ET.'N) GO TO 54

61 CONTINJE T IFcKouNr 4 .EO.1)GU TO A IFTCUNFLCTT172) .NE. o.>u

10 TO 62 T IFTCONFECTT2T1) .NE. 9.)G$ To 62 G KOUNT1580 3 Go To 63

111 CONTINJE i [FTCONFLCT(1 1) NE. 90. )GO TO 62 5TFCCONFLCT(1.2) NE,

1 0 )GO TO 62 s KOTNT1530 3 GO TO 63 ‘

53 JsJ+1 t TFTSOLUTONTN+1au> .EU 000060.)Go TO 64 '7

IF‘N'SJLJTON(N+10J) .NE. KOUNT1TTGO TO 64 9 LABELCILABELC+£“”

IFtLAchC NE 1 AND KOUNT14 ,NE1 1TGO To 69 s LIO S LABELR=U

IF(KOUVT14 .Né. 0360 To 66 1" ' """ “ ” '”‘

b7 L=L+1 * IFTSOLUTON(Lo J) .NE, 1)G0 T0 68 S LAEELR‘LABELRTI

CONFLCTTLABEL9+1 1)=L s TFTLABELP .GE. H1300 To 65

69 CONTTNJE s IFTL .-T. NTGO To 67 $ Go TO 65 .

6‘ L:L+1 i IT(SOLUTO (LaJ) .EU. 0. )60 To 69

IFTL ..r. N)GD T0 66 5 GO TO 65

go CONFLCTTLABELCa1): L's CONFLCTTLABELC.2T:U 1 GO To 112“’

66 CONFLCTTT LABELC+1T=J _

119 TFTLAB=LC .GE. M1)G0 T0 70

64 CONTINJE s IF(J .TT NTGO T0 56 w.

7nC0NT1NJE S IF(KOUNT14 .EO. 1)GU TO 113 S TFTCUNFLCTT1T2) .NE, o.>fi

10 To 6: s IFTCONFL CT<2.1) .NE. o.)GO T6 62 s Kou~116uo 5 Go To 63

113 CONTINJE 1 IrccoN LcT(1 1) .NE. 0.350 To 67 s TFTcoNrLcTc1.2) .N5.

1 0.)GU TO 62_$ KOUNT16‘O s GU To63 1““ , ..

69 1:1 3 TFTROUNT14 .Eo. 1>GO To 71 ‘

7? I 1+1 A KOUNT17-CUNFLCT11 1) 3 J: 1

73 JaJ+1 S KOUNT18: CUNFLCT(1:J) 3 CONFLCT!I.4)=CRITEKA‘KOUN717AKOUNT1 ”

8)

11FTJ .-T. LABELc+1TGOT0 73 s IFtI .LT. LAGELR11TGG'TD'72

KOUNT31=KOUNT31+1 $_TET1 .LEo2TGOT0 114 s KUUNtsoéNDUNang1

GO TO 114

71 CONTTNJE 3 IFTRDN .EQ-1TTGU TU 116 S K=LARELR5 GD To 117

116 KsLABELC ”

117 CONTINJE 5 001151: 1 K s K0UNT17sco~FLCT<Ta1T S KOUNTiacCONFLCTTInd

)

1151C0NFLCT(I.3)ECRITERATKOUNT17AKUUNT18)

IFCI .-E. 1)GO T0 114 3 KOUNT302KOUNT30*1

RECONCILE CONFLIcTINj DIAD ASSIGNMENTS BY CHOOSING THAT DlAD HITH THE

anesT CRITERIA vAIU5.' BREAK TIES RANDONLT.

114 SMALLNJ= 99999999999. 3 I=1 s Lag

IFTKOUNT14 .ED. 1160 T0 118

74 Isl+1 a J: 1

7s JIJ+1 t IF<c0NFLca(1.J3 .GT. SMALLNOTGO To 76‘: lFtCONFLCTTIoJ) .L

1T. SMALLVOTGO TD /7 3 IFTL .GE. MTGO TD 76 3 LIL¢ - ,

SELECTTL.1)=C0NFLET(T.1T 3 SELECTTL.2>xCONrLCI(1.53'S GO 10'76’

77 L31 5 5MALLN0= CONTLCT(T J) 3 SELECT(1T1TECONFLCT(191)

SELECT‘1,2)8CONTLTT(1 J)

76 coNTTNJE $ IF¢J .ET. LABELC+1)GO To 75 s IFTI .LT. LABELR91TGO To

174 s IFcL .EO. O)UO T0 197 3 IFTL .GT.‘1;G6.TO 79 ‘ ”

rA-c 1 ‘r T , . ,h ... -. ,...,AL .1

l



C

C
175

A5319NU=SELECTTJTET T ASSTUNLz SELECT(1TZT 4 EU TO 106

119 CUNTINJE 1 IF(ROH ,EU.1TGU TU 119 s KnLAUELR s 60 To 120

119 KELAREL C . 1.. , ‘

120 CONTINJE s u0121l 1. K T TTTCUNTLCT<T.3T oGT. SHALLNOTGO‘TU"12‘

11 5 IF‘CONFLCT(ITTT .LT. SMALLNUTGO T0 122

IFTL 43E. MTGo To 121 3 L:L41 3 SELEETTLTITECUNFLcTTIT1)

SELECTTLT2T:CONTLUT(IT2) 5 GO TO

129 L81 T SMALLNoz-CUNTLCT<1.3T 3 SELEETT1T1T=CGNFLETTT}1T‘s SELECTT1.2

1):CONFLCT(I 2T ‘ '

121 coNTTNJE

IFTL -=01 OTGO T0 197 ‘ .-

IFTL .ST. 1TGO To 79 3 ASSIGNC=SELECT(1.1T

4 ASSIGNL=SELECTT1T2T 3 60 TU 106

76 RANDN0=RANF(-1T T XH‘L'T‘X XtRANLNO 3 13x21 3 ASSIGNCHSEEECT(1{1T

ASSIGNL=SELECTTITQT TKUUNT25=-KUUNT25+1

10's CONTINJE
.- , ”-...-. 1m”... .. .

REVISE THE SOLUTION MATRIX To REFLECT THE NEH UIAD ASSIGNMENT1

0080131.N " ‘ ”" ' “ “'”“ ”“‘““'

IF(SOLJT3N(ITASSIGNLT .NE. 0- T80 To 86 $ snLUToNTT._N-1TzSOLUTON(1.

1N41T41. 3 IF(ASSIUNL .NE. XTGO TO 80

SOLUTOVTV11,ITSSOLUTONTN41oIT+1svUFO

8n SOLUT0V(T.ASSIGNLT=3,

0081J81.N 3 IFTSOLUT0N(ASSIGNCTJT .NE. 5.100 To 31 s SOLUT0N(N¢1,J

1T:SOLU70N(N+1,J)41. 7 ' “ ‘“ "‘""“ ’

81 SOLUTUV(ASSIGNC.JT=3.

SOLUT0V(ASSIGNC.AUSIGNLT'Zo 5 SOLUTON(ASSIGNCTN*1TI10 00000

SOLUTQT<V+1TASSIGNLT=1 oonoo- 9 KOUN719= KOUNT1931 S I.ETKO9.T19 o8§_.
1. N'l) GO TO 82 $ KOUN920=‘U 3 KOUNT15=1 S KOUNT16=1

6x CONTINJE T IF(KOUHT14 .NE, 0. 90R. RON s”E-.nfl’9°-T9 83~ _

IF(K0UVT1S .EG. 1TGo TD 48 s RUUNTZOERBUN120~1 s TrTKOUNTzd .GE. 2

1TGO To 84 3 Row-.1. $ GO TO 487 .-.

84 KOUNT14:1 3 KOUNT20= o T GO TU 45.

83 CONTINJE T 1F(KQUT14 .NE. 0 .UR, RON .NE. 1TGo To 85

IFTKOUVT16 E0. 1TG0 To 48 T KOUNTéc-KOUNT2oéi s irTKDUNTzn as. 2

1TGO T0 86 3 Row: 0. $ GO TO 48

86 KOUNT14=1 T KoUNT2d=O‘§“GO T0 43"

85 CONTINJE T TFTKOUN114 .NE. 1 .UR. RON .NE. 0.760 To 87

IFTKOUVT1S .NE. 1TGU To 88 s KUUNT14-c 5 Go TU 48 T” “

“" - ' ‘ - ' “ ’ J - - 5. .-,\. nu J

v I." ‘ . ‘l Cd'- .

--.'—- ~-—.. .... 1 “A. -...._ .... ....

an KOUNTQUEKOUN720+1 s IFTKOUNTZO .GE. 2TGo Ta 46 s RON! . 8 so T048__

a7 CONT NJE S IFTKOUNT16".NE. 1760 T089 S KOLNT14=O S G T0 46'

89 KOUNTZU=K0UNT20+1 T IF(KOUNT20 .GE, ZTGO To 46 S Rowco 3 GO TO 48

MAKE THE LAST DTAD ASSIGNMENT BY DEDUCTION AND PRINT OUT ALL '” "

RESULTS RELEVANT TU «HIS SOLUTION.

89 CONTINUE 3 Do 123 1:1.N ' ”“

123 FINAL<1-\+1T'o

GO TO 906

46 KoUNT1UENOUNT10 . 1 3 KoUNT9=KUUNT941 3 KOUNTEIO

IF‘KOUVT10.GT6 0TGO T0 41 3 GO TO 40

806 cONTINJE

Do 90 1:1, N

, 9091J=1 N T TF(SOTUT9N(I J) '&”t 2.TGO TU_92

91 CONTTNJE ” ""' "

KOUNT21:I 9 60 T0 90

9? FINAL(1,N+1T=J

90 CONTINJE
0093101,” _ _ , - . .- .1, ,6 . .1111611

U’A' o -— .4 o ~.~- . .. \- ,..~v v‘

,_.1,. -..-u...- .. — - — . . , o- T- . u

.-.. - T 1 . .. . 1... .» .... v v ......v. -—~cv--..



94

9s

9s

97

93'

100

101

99

..102.

103

105

739

974

147

3?

197

198

601

107

10°

10%

176

0094J= 1 N N IFIFINALIJ N‘l) .EU. 1160 To 93

CONTINJE '

GD 70.95"

CONTINUE

FINAL(*OUNT21.N+1)=I Hm

PRINT 96

F0RMAT(//1H .55x..ceNTERs LOCATION ASSIGNED!)

0097131 N

PRINT v8.1 FINAL(1.N+11

FORMATIIH :57X012 10X9F30)

COSTag. s KOUNT1=(Nt*2-N)/2

0099131.K0UN71'

K0UNT22=FLONC1III

KOUN723=FLONC2(I)

00100J=1.KOUNT1

IFIDSTCiIJ) .50; TINAE<k0UNT225NJ11 gAND.'bSTL§TJ)'£EUC"FINAL(KOUN

1T23, No1) .OR, DSTLQIJ) .Eu. FINAL(K0UN122.N¢11.AND. DSTthJ) .E0,

2 FINALIKOUNT23.N*1))GO T0 101 ' ”"""'""”'W‘ '

CONTINJE

GO To 99'

CONTINJE 2.‘ n. . ._ , _ .A,,‘
IFTFLODATA(I)“.EO. 99999;".0R;'FLOUATAIIJ'iEDG"?b§99;TEO'To 99 "'

IF(DSTUATA(J) .20. 99999. .oH. DSTDATAIJ) .eo. -9999.)ao To 99

COSTxCJST+FLODATAtI)*DSTDATA(J) " “"“””“"“ ‘”“"mm’ ' "

CONTINJE‘ , W

PRINT 102.CUST

FORMATIlfiAq/t THE,TQTAEMCUST.QF.Tfll§.$°L91I0le$ *9F23-1I.»Auu..,

PRINT 103 KOUNT24

FoRMATI1H .9 A TOTAL OF *9190* PAIR ASSIGNMENIS HERE ELIMINATED-t)

PRINT 105. KuUNT25

FORMAT‘1H .« A TOTAL OF tal9otTIE§_IN TR5_SELECT.MATR1x_NERE RESOL,

1VED BY RANDOM CHOICE.')

PRINT ’39 KOUNTSO

: . wnv Oat.’ , 1, ~-.wu 7.- ~ ~ . y, , ~- in -- ”....p. «a... ~- q - ~ ..1 ~,- ,. . fir. —

_u-‘vv -.-. .- .. .1 “A. .r..

FORMATK1H .9THE CRITERIA MATRIX HAS USED TO MAKE A PARTIAL ASSIGNM ”

1ENT A TOTAL OF *"5z*.71"551*),

PRINT 974.KUUNT31 T ‘

FORMATI1H .wCLOSEo LINES NERE ENCOUNTEREU A TUTAL or ..15..11Res.;

TNENITIMEF(4) ' '

T:(TNE~-TOID1/1001. . , H

PRINT 147.T ‘ ”" ' " I ‘ ‘ '

FORMATIATIME SPEN» ON THIS SOLUTION NASE.F16.5.ysEc0an,{T

TOLD:TNEN "“ "' ' ‘ '

CONTINJE

GO TO 001

PRINT 198 T

FoRNATT1R';.CRITERIA VALUES ARE T00 LARGE To TEST;.)

CONTINJE

GO TO 103 '

PRINT 109

FORMATIr AN ERROR WAS MADE READING 1N FLOR DATA.a3

CONTINJE

END

VRr--v-....~- . ...-

- .-. -. y
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APPENDIX V

LISTING OF 4-B

PRUNRAT PRCC43

DIMENSION FLOSATA(351).FLONCIK651)aFLUHCZCSSII.ORIGNCITBIAORIGNCZI

18).L915NU(8).TALLYt702.27).DbTUATA<351).DSTL1(351).DSTL2<351).SOLU

2T0N198128TIAONT(7U?)1CRITERA(27;27))C0NFLCT(28?§BTASEEECTIZ732)AFT

3NAL(9d228),uNRAMKuI702n27IIIVIXCIZSTIIFIXLIzs’

FQUIVAQENCE IUNHANKB.TALLY), (FINAL,SOLUTUN)

INTEGET ASSIGNL,AbSIGNC, ONIGN61 ORIGN02

TULU=T1MEFIAI

Y=T1Mcf(5)

CALL RKNFSET(x)

RANDNU=RANF<-1)

REAL éuolJUUBER

FURTATII2) '

gRgTE FJR'A TOTAL UF NUFBEH PROBLEMS. ‘ ” ""“””“‘

00091 ‘OJNT99:1,NUMHEN

An ANN RANK {LAW AND DISTANCE DATAC‘

REAU 1 Ma”, U1.KUUNT1.KUUNT2
FORMATISIS) .19, ..A-._ .AAAJHPVA

no 2 AJUNTs = 1.2 T I=n

pEAE A.(3RT§NC1(J>.ORIGN62‘J’:URIGNDIJ’5J31'3‘I"

F09N4T16<I?.12.r6.1))

D0 5 J=1.8 5 I=1*1 '

IFIURIJhClIJ) .LT. URIGNC ZIJ))UU T0 6 3 UNRANKDIIa1)IORIUNC2‘JT

HNRANNU(I,2):URIGNC1IJ) $ 60 10 7

UNRAwnU(I.1T=nRIGNC1(J) $ UNHANKD(!.2)80HIGN02(J)

UNRANKUII,3):UHKGND(J) ' '

IF(I-(N9*2-H)/2)5.H.8

FUNTINJE "

GU TR 5

I30 N <0JNT4=(Nttz-N)/2

J=U T 513wnz'99999999.

J:-J+I f IF(UNRAKD(J.3)-BIGNU)12)12;11

Plfihng JNRANr31J, 3) $ KUUNlsz m X1:UNRANKD(J01) 3 X23UNRANKDIJ92)
fxrvTIIJE n.... . A - ..H., _._. A . A.

ITIJ .-T. KLUNT4TGO T0 10

I=I+t S IF(AOUNT3”.EQ. 1)UU IO 13 S'DSTDATA(I)RBIGND S DSTL1(I)8X1

DSTL?(|)=X2 T GO TO 14 '

FLnbATA(T)=EIGNU $ FIONC1II)=X1 S FLONC2II):XZ W

CONTINJE N JF(KOUNT5 .EQ. KUUNI4IGO TU 15

UNHAJKD(K0U1T5,1): UFRANKUIKGUNT5+1.'11 S UNRANKUIKOUNTSAZ’“UNRANKDI

1KOUNTBT1.2) A U:RANN0(KOUNI5:5)-UNRANND(K0UNT591.5)

KOUhng“KOUNT5+1 ’

1r(rnuv15+1 KoUNT4116 16.15

KourT4=NJUNT4-1

If<nUuNT4 .NT. 3)u0 To 9

I=I+1 ‘M ' A . "

CONTINJE 1 1F(KuUNT3 .EG. 1190 T0 15 T DSTHATA<113UNRANKD(1.5)

DsTLTIIJ=UNAATKU(1,1T x 081L2(1)=UNRANK011,2) % 30 TU‘2

FLUDITAII)=1NMANKU(13) $ TLUNU1TIT=UNRANKn111)

FLOT.C2 (I)=UIRANND(12)

CONTTHJE

NPUTE LJNER EUUND ‘ '" ' '“ " ”"W ' "“ ‘ '”'"””“

L=(chd- N1/2 T I=1 $ J=L S KUNI=0 s HOUN9=0.

CONTINJE {‘IrcFLODATACT) .tu. 99999. .URp rLODITth)’.En; 99999. .

1ANU. DSTDATAIJ) .ED. 99999. .0“. USTUATAIJ) .ta. -9999.)Go T0 989

’IFIFLDUATA(I) ,AE; 999993 ;AUU,'FLOUATKIIO",NE;39999;)GO”T0'988
1H"

. ‘- .- .~ ,, 1 ...)..‘n

--. .--



'ka

‘WOBK

980

987

Pt"

21

178

I:l+1 s 30 TC 957 .

CONTINJE $ IF(DSTDATA(J) .WEo 99999. .ANU. DSTDATAIJT'JNE} '9999.)

. *— ..., ...

r- ”...-_. ..—~_-.‘-r-_—.a

lnn TU 955 y JzJ-1 x 60 TO 957

ROUWU=303NU¥USTDATAIU)‘FCUUATA(I)‘“”“””””T “”"”"”’”“*”“””“‘“

131+: h JSJ-l

KONTaKUNT¥1 $ IF(KONT".LT.'E)GU T0'99U

J=Nrr2'N
- “02372.1..-I. 9...- , -...-_Y 9 __, -. V ..."-....- ...... . - .'.w,-- v, ,. .. 9.777-"-..__,7 ”,...," H, -.. -

YOUTII)=0.

PQINT “WT MATRTX SIZES KNUfipRUBLEMHNUHBFRQ” WV. g.._ m «WWW ”Fv‘” .\-,1

J=M1+1 $ PRINT 21.KUUNT1;NaMoJoBOUND

FORVAT(60X;1 PRCBLEM NUMBER *JISIIIi THE SIZE OF THIS PROBLEH 15 N

. 1 EQUAL: *.13.*../. THhRE AHt .,13,. RUNS A LUITED To THE 52 EcT 9A

2m

27

I ~

2?

24

2?

F9

1901

1909

1n03

19u4

146

3THt [CNER BUUUU FUR WHIS PHODLtM 15 *,F1].2)

C'WMPUTE XJU'T‘ VEtTUR' , “...,."m- "...,...N...” ,. ma”..- ... ..1 ..7 W. . ...,. .....-x .,..... .-. ”.94-........?.,.,.,, a, -.

KOUh11=(9w+2-N)/2

“02?L=1:KOUFT1 s ‘J=L s K=2wJ-1 s DUPHYliFLoA01(L9

D023P6=1.2 & K7:N-1 3 PHI=0 5 1F(XOUT(K) oNEc 0.,50 T0 24

D025y5=1‘K7fl1. ..um".“. ”I W.,W4u.q.- , ,-u. r, h

K:2.J-l % DUMMY2=FLOVC1(J)

DOZ7V9=132 i IF(UUMWYK :NE. DUMMY2)hO To 23'; leipHI¥ium”

XOUT(K)=V-Pkl 9 GO TO 29

K=2.J " - '"~~~-w«~~--w-« ~ ,WWW- w . . 1.”.‘ mm

DUMNYZ=FLOWC2(J) $ J=J+1 $ BU 10 26

CONTINJE'SHIFIJ {GT;”KUUNT1)GU'TUMIJ7“ ~ ~ '- ‘m' '~~wu~»~

J:J+1

J=U i DUMMY1=FLLNC9(UW

K=21g

CoNTIUJE

PEAR 1U01.NHRFIX $ I=0
FORPAT (123 . . ,WHM_“””1

IF‘hPRFIX .EQ. 9’60 10 1004

=1*1 i QEAU 1003.TFTXC(I).TFLXL(I)

FORPAT(212)

]F(I 0;To NPRFIX)GO TO 1002.

CONleJE

TNEy=T1MEF(4)

T=(TNE~—T0LL)/1100.

PRIFT 145,T““1 .Junm-_ .r _.W., -u,mhu

FORMAT‘* TIPE SPENT CN PRtlelwARY WORK HAq t,flb.3,g SECONDS.')

ToLLéTVE» *' ~~~ .-1.-, -~~mw an 171.1

‘-n‘. ..23- . ~. n- ‘a‘: .,-r “I. ‘ - U‘ I‘.“ ’.' (4'- ' .u t' OJ \ ‘ . I..." III .‘CVPFJ‘J'Y t0

. .— . -.. >0 --.--w' -.-—-_'.- 1 - , « —- ,7. ...1- v - < . . -..rvr...-,,_, ...,, w v-7 ..

c GcNERATF « YUTAL 0r KOUN12- SULuTIONS FOR THE PROBLEM.

DUSZVOJ
NT6:1,k

UUNr2
» ~-

‘ KOUNT24=0‘$‘PRINT”33{KUDNT5 Y KOUNT19=D'$’ROUNT25=0

33

C IvITIALI£= “ATFICES AT_2ERO.

39

34

KoUhT3u=0 $ KOUNT33=C

FoRpATK/l/ih’,53x,w‘$0[UTIUN NUMBERm95I3’

KOUFT1=N*w?.
N‘ -»~~-- ._ -m

00641=1,KOUI
I1

‘DO 35 J=T;MHWV.W wwvnnw"r .

TALLY(loJ)=Oo

CONTINJE 7'

no 36 1:1,N

DO 37 J:1,M



179

$7 CRIIFRA(I,J)=C.

5A CONTINJE‘

KQUMT1=N¢1

DOSEI=IL‘OUFT1‘

- D069J81.‘0Uw11

$0 SOLUTOV(1.J)=0.

3" CONTINJE

KOUkT7=0 ; HCUNT102'1 t DETECT=O $ KOUNT9:-1

C REVISE SJLJTOH MA THIX IO REFLECT FIXED CE~1gRs.

IF(wFHFIK .EC n)u0 T0 an$ 1:0 “ '”“'“‘ "““‘f" “

1mm; Izl+1 r IFC:IF1XC(I) i IFL= 1*1XL(I)

D01006J¢1,N $ IF(SOLLTON(J ILL) .NE.”0.)GO TO‘1005””

SoLLTOV(J. N+J)-QULU10N(J,N+1)+1

1mg SOLUTUV(J. IFL)=5

DOlun7J=1 ~ $ IF(SOLUION(IFCaJ) .NE. G)Gu TO 1007

SnLLTUV(V31;J)£SOLUTCNFN+1aJ)¥I ' "“ '”' ""’"j””“”'””"

1QU7 SOLUTUV(IFC:J)=3O ‘

SOLLTOV(IFC;IFL):2. s SOLUTONIIFC;N;1)biooooonj"s“soLuvoN¢n;1 {FL}

1=10000U0. $ KOUmT19=KOUL119+1 i IFCKOUNI19 .Gt. N-~1)Go To 52

‘ IF‘I ;LT. NBPFIX)uO 10'1005 i 60 To 808 "‘“”““““ “

C SFLECT NEKT DIAGONAL 0F QUAUHUPLETS FOR ELIMINATION.

' 4r KUUhT7=KOUNT7+1 $‘KUUNT8=U S'KUUNTqii'S‘KOUNleEKUUNT7““ “‘ ""

lflza MMcleLONC1<K0UnT10) S MM02= FLUNC2(KOUNT10) ,

HMleDSTL1(LOLNT9) s HML2=USlLZLK0UNT9) ' '”““"““'*‘ ”‘

IF(SDLJTON(:HC 1 MML1) .t0 2. .ORSOLUIUNLMHC1owML1) .50. 3’60 T0
1 1020 , LL”.HLM.. m-“ rm", L,.ML up L

IF‘SOLJTQN(LHC1 MML?).L0. 2. .OR.SOLUTUN(MML1,MML2) .50. 3:30 To
1 1020 PM". --, .H,.WMMKM “..

IF(50LJTDM(VVC2, MML1) .EU. 2. .UR. SOLUTDNCMM02:MML1) .EU. 3’60 TU
1 1020 L- L” "W ,. ““w‘ Lu. .- ,Lw , .

IF‘SOLJTON(.NC2, Man) .LO. 2. .0R. SOLUTUNLMnCZoMHLZ) .50. 3’60 To
1 1020 v . .-h-.. . -. "w_p-.m“u_ ...w.-

C ETFR TALLIES LHERE APPROPRIATE.

4f CONTINJE K 1F(SOLUTOK(H%C15MML1) 3NE; “’50 TU 12”" “4.-” fl,“ .

IF‘SDLJT0N(MM52,MML2) .NE. U)GU T0 42

TALLY(ZwKOUnTlo-l.MML1)=TALLY(2tKUUNTIU31.MMLIT*17‘”"’” "

TALLYLZiKOULTIC.MML2)=TALLY(2*KOUN710:HHL2)*1o

49 CONTINJE $ IF(SDLU70N(MHC1:HML2)"{NE} UIGo‘Ta”1n51“*"“

IF‘SULJTON(MMC2,MML1) .NE. 0>Gu TO 1051

TALLVLZLKouuTl“LignnL21:TALth2¢KUUN716‘12MML27¥1'"

TALLY<dt40UL710,MML1)=TALLY(2tK0UNT10aMHL1)+1 L

1051 Jao s KOUNT11:DSTL9(KOULT9) S KUUNTithLowc1CKDUNT10)""“7””'*

KoUwT153FLOLCQ(KOUN110)

g UDDATE ‘C‘ITEPIA NATRIX AND CHECK FOR"!NFEASIBLE‘UIADS DUE To TALLY

SCORES.

K

- r-‘v o—r>\-oO--_.— . ...-- . .-

4? CRITFRKIKDUNT12.KOUITII)‘CRITEKA(KDUNT123KUUVTf1711. 3IVVTILLYK2*'

1KOUNT1U'1:KOUNT11) .LT. XUUI(2*K0UNT1Cr1))co lo 44 s lF‘SOLUTON(KU

2UNT12.&UUNT11) .NE. U.760 TO 44 s SOLUTONKKOUNleiK0UN711)t1, '

80LUYUV(<ourT12 N+1)8SOLUTUN(KUUNT12.N+1)+1, s soLuToN(N¢1,K0un711

1):SOLUTUV(N+1. KOUNT1T)+1. $ KUUNTB:KOUNTB¢1 "“‘

44 CRITER“(‘OUFT13, KUUN111)ICRITEHA(KOUNT130KUUNI11)+1. s IF(YALLY(2¢

' 1K0UNT1UIYOUMT51) {LTTmXOUT1Q*KUUNTEUTTGO"TU"45“$"TPVSULUTDNIKUUNT1”‘

23.KOUNT11) .NE. 0.)GO To 45

‘ SOLUTOVTKUUNT13;KOUNTIIYEIV"$ SUEUTDN(KOUNT13?N+1TISULUTUNIKOUNT13

le’1)*1u

SOLUTDVtV+I.VDUHTliTiSOLUTUNtN¢13KOUNT111VI;“s"xannrasxaunraol‘-

- 1..-: “*fl W"‘I§"U" a. \ - - '0 , ..~r-..- 0 -‘~.- ._~1.t4 .' .1 'xV'Vno an. Q. tn I. ~l : - .- In. a" v o-t-fi- flu~~'--M'h b" IHW‘
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4‘ J=J+1 '

IF(J’.ve; 1)Go T0'1020K ”KOUNTlfiDSTLifKUUMTUT'S Go'TO 13' ’"“

C CHECK FfR DIAD INFEASIBILITY UUt To THE ELIHI~ATION OF A GUADRUPLET

'c‘ InvoLVIKG‘K‘FWEVIUUSLY"ASSTGNED“DT1U“”““"'"”“""“”“”“'"“””““‘”" ‘ ‘“‘

1n2n DL1=DS'L1(KOUNT9) s DL2= DSIL2(n0UNT9) s F03=FLON01(KOUNT10)

’ F02: FLJkC2lkCUNT10) SDO1U09T=1;2’$ D010103=152'""'”“'""‘ "’”“'

IF¢SCLUTONth1oDL1) .NE. 2)GU TO 1011 S IF(SOLUTON(F02aDL2) gNE. 0

1;)GO'T?”TUII i SOLUTCN1FCZVDL2931 " "“' ’W“”* ”'“”'”

SOLUT0V(FC2,N¢1)SSOLUT0N(FC2IN*1)*1

‘*'SOCUTUVT931“DL2733OEUTUNTNTITUC2T¢1‘$“KGUNTifiKDUNT3+I“*”““““““W““'”

1n11 TARY:F02 $ FC2= FC1

 

 

, 1’11“ FC1=TAqy . ...,...m--- .--.-. ”-..-.W .. “,-..,-..WW- -- -....7--.._._..,.--fi ---,... -

TARY=DL2 $ uLZ‘DLl '
,.-1000 UL1= THKVY “.-.“- -. ._ 7. ,- m..- - ., _ ..- -- _. ,....w-.-_-...- ...-...-.w.- -

C If No CHAVGE [h 3L;LUTICN HA5 UCUURRED 3' EL! MINATING TH!S.QUADRUPH

C 'LFTo ELIMINKTF THEL’NEXTUNF‘INTHEWUIAGUNAE.
$229,, ,

n(17 KOUN724=KOUITZ4 + 1 5 IF(KUUNT5 .NE. 0)Go TO 808

' IF(KUUV710 -’1'.LE.2UYGUwTU‘40 $”KOUNT103KQUNT16“-21‘

K0UFT9‘K0UNT9+1 3 GO TO 1026

 

c sgAncH THE" SOLUTIUNV“MATRIXWVOR CONDIT1OIS'DICTITING”UNE“UR“HORE"DIAD'

C ARSIGNbENis. '

' Rb" KOULT14:0"§”KOUET15£I"¥"KUUNT165TM§”KUUNT26§U”mWW”‘M""”Vmm”‘"fi"w"'

C MAKE A PAVDOM ChelcE AS TO HHtThEH Rows 0R COLUMNS ARE SEARCHED

‘0 “FIRST. ‘EUUK'FOF”AND‘RE?ONCILE UEHANUS'FADE BY” CLOSEUr LTNES PRIOR ““

c T2 SEARCHING FOR LINES LITH ONLY UNE REMAINING FEASIBLE DIADo

"“ WANDAO-RAFF1-1) '“‘""”"’"‘ W'“"”””"'”'”“’w“"""

IF(RANUNO .GT 49)GC To 47 s HOHBO.5GO To 45
-- if fiOWEiT- -..-. .ma- 2,- -Enn.n.w‘nmflumvwwumwmwwu

4“ 1:0
”"‘Do49KOJNTI=15»; I H..WWMWHWW.M.-WWWM-,._WN”11-IWHMW«MM wmvflwmmm_w,wM19.

D050J3112 1

5n”SELEcT(kDUNT1;J5=u;'"”“"”“'”'“""""’”“”‘""”*‘"”“"”"‘”'*‘””""”'”””’”

4o CONTINJE
EL§M1;IWW

0051k0JNT1f1 L '

’D052J=1,L m " “‘“1' "' ' '*“"“”“‘”' ""”"”‘"'M"'

59 CONFLLT(KOUNT1oJ)—n. ,
51 CONTINJE ,“w"1 . ..- .-muumhquph. . .Jflh-u-.fl_.yfl wmpw-

J80 V LABELR‘O $ LABELC=O $ lF(ROH .NE. 0o)GO T0 53

'“C” STORE CFNTER Irsn'IUUATTUN"tABELS"UF*DIAUSREQUIRTVG A331GNHENT”1N'"“'

c THE CONFLICT MATRIX. IRANSFtH INTO 11 THEplAus VALUESAS STORED

C” In THE' CWTTERIA MATRIX“"""*“"“‘"““ *"" "2” "M’ “““”"'"““ '

54 I=I+1 i IFtSOLUTON(IaN+1) .EU 10000003)GO T0 55

‘ “'IFAN-SULDTomtIim¥17“7N6?“KUUN714)GO“TU”55”$'KABELRICIBEtR*1;m

IF‘LABELR .NE. 1 .ANU. KOUNT14 .NE. 1360 In 56 S LID S LABELS-O
. 1.1 ... , .. ._ "WW,“09T1 2F"; NET .“mm,"...". w_._,“...,... .... ...,- ,. “.m»

59 LsL¢3 A IF<SULUTON(1 L) .N&.1IGO To 59 5 LABEL0: LABELC+1

“ ‘ CONFFCTFI'EABECC+1TIF”$'TFTEWBELC.UE- HITBOFU’EG" ‘“” "””""'

59 CONTINJE $ IFtL .LT. N)GO 10 55 3 GO To 56

57“LhL&1 Y”TFFSULUTUNTFTET”YEU” UVTGU"TU“BU”*"‘ “*”"*“'“”“”"””“””’“

IF(L .-T. N)Go T0 57 3 GD 10 so

 

”"p"6F'UONF[CT(EAREIR 275LT"CUNFECTTCWBEURaIY:I3'30TU'iIU'“"“"””W"”“*”"

58 CONFlC‘(LABELR*1:1)=l

"11n‘CONTINJE $'IF(LABELR”;GE}"NIJGU”TU”Ef"‘“' ”W' ’””‘"”””“'W”"

55 CONTINUE s IF(I .LT. N) GU TU 54 .

61 CONTINUE s IFIKOUNT14”FEGT'ITGU”YU“I11 S IFICUNFLCT(1;2)‘:NE.’0.)G"

‘ .
r .... ..u, -. ~.. p--~‘ ......- ' . n wflfi- . ~- -- -. n «1,. -.rruon -.....p 4.1-pl Mnnm-un-qwqp‘m-4 -~...- -.Q'- - --¢-\ Mh‘tr‘h‘ we on»... an-ooa. ‘V'VW-“A ' ~-*' "w " "V” l-"""““""‘" " ' "

“- "'-.'-‘!.-"t' 0 -., " \o~



C
C
)

‘114 SMALLNJ=99999999999. 3 1=-1 N L: 0

181

.-A-..“

10 Tu 64 3 Ip<r0: FLCT(2.1) .Nt. 0.160 T0 62 3 KOUNT15=O 3 GO To 53

111 CUNTINJE 3 IF((nNrLcT(1 1) .NE. 0;)GO‘T0 62'3 IF<CONFLcT(1.2’"oNEo

1 0.)no To 62 3 KOUNleSO 3 Gb To 63

53 J3J¢3 3'IFisoLUTON<N41}JN”.Eu;'1006000.)GO"TO 64”“““‘“"

IF<N~SJLJT0NIN+1, J‘ .NE. KUUNT14)GO TO 64 5 LABELCsLABELC+1

IF(LLNELC .NF. 1.ANHJ'KOUNT14“}NE:"“ ' " ' ‘“ ‘

IF(KHUVT14 .NE. 0)GO TO 66

67 L:L+1 N lFtSULUTONtLaJ)‘.NE; 1)G0 TO 68 $ LABELR'LABELR+1"

CONFLUI(LARELN+1.1):L 3 IF<LA6ELR .Ge. M1150 To 65

69 CONTINJE 3 IrkL .LT.‘N)GO”TO 67's eu'Te 65 “"“' ”

63 L:L+1 3 IF($ULUION(L.J) .EU. 0.)Go TO 69

IF<L .LT. N)GU r0 66 3 60 To 65 “ 'i'

60 CONFICT(LABELC 1)=L s CONELcltLABELc,2)= J g GU r0 112

63 COVFlCT<1 LARELC*1)=J ' ' -

117 IF(LAE:LC .GE H1)GO IO 7U

64 CONTINJE 3 1ch .LT. NWGO T0 53

7r CONTINJE 3 IF(KOUNT1“ .Eo. l)UU TU 113 3 1r(cuNELCT(1.2) .Ne. 0.)G

10 T0 62 3 IF‘CONFLCT(251) .Nt 0. )Go 10 623 KOUNribao 3 GO 76's;

113 CONTINJE 3 IF<00NFLCT<1,1) .NE. 0.)GO1u 62 3 IF(CUNFLCT(1,2) .NE.

1 o.>60 TD 62 3 ROUNT16=G 3 GU T0 63 '*

62 I: 1 V 1F(KOUNT14 .EQ, 1)GU T0 /1

79 1: 1+1N (0UN717zCONF[CT(I1) 3 J:.1 ‘ ’ "

73 J: 4+1 3 <OUIT18= CUNFl.CT(1:J) 3 CDNELL1(I33-0N1rsR11KOUNT17.NouNr1

18> ""““

IF(J .aT. LAHELC+1)GU T0 76 N IFCI .LT. LARELR+1TGO To 72

KOUNT31=30UNT31+1 $"TFII ;LE. 2160 T0 114 s KUJNTJO‘KOUNT30+1'

GO Tn 114

71 CONTfNJE’3‘IEiR0N .EU.Mf})GU TUW116'3"K=LAEELR 3 GO Td'iil”

116 KaLAHELC

117 CONTINJE 3 D01151=1;K“$ KOUNT17=CONFLCT(I.1) 3 KOUNT18-CONFLCT(I.Z

1) .

11% CONFLCT<I.3)=CRITERA(KOUNT11.KUUNT16)

IF‘I .sE. 1)Go T0 114 3 K0UNI3U=KUUNT30+1

RECONCILE CONFLICTING DIAD“ASSIGNMENTS'9Y cHonSINa THAT DIAD NrTH THE

LnNEST CVITENIA VALUE. BREAK 1153 NANponLv,

~_-_1 "‘F ,

...;u-vm ...

IF(KOUVT14 .EQ. 1)Go To 116

74 186+]. t J=1 _ ...-w--—.. I

75 J=J+1 N IF‘CQNFLCI(IIJ) .GI. SMALLNO)GU T0 76 i IF(CONFLCf(IIJ) ,5

"1T. SHALNOYGU TO 77 $”TF(L.GE. HTGU T0 76 3 E=L*1 ‘"“'

SELECT(L.1):C0~FL0T(I 1) 3 StLtCT(L 2)=CUNFLCI(1 J) 3 GO TO 76

77 L: 1 3 SMALLNU_ CONFLCTTIJ) $ SELECTI1:1)8CONFLCT(I. 1)

SELErtT<1.2>=r:0NFLCT(1 J)

76 CONTINUE 3 IF(J .LT; LABELC+1)GU'TO75 S IF(I 3LT;”LABELR+1)GO TO

174 3 IP(L .EN. Q)Gn T0 19! 3 [N(L oGT. 1’60 TU 79

ASSIGNCESELECT(1 1Y S’ASSTGNt:SELECT(1:2) 3 SU T0 106" “‘

119 CONTINJE 5 1F(R0N ,Eu. 1)GU To 119 3 KaLAeELR 3 Go To 120

11c KaLAREC ’”"‘””' ' "' ”' ‘"

12" CONTTNJE 3 U()]211:1,K S IECCUNELCTHN3) gGT. SWALLNO)GO TD 12

11 3 Ir1caurLr27c1. 3) .LT:‘SMALLNU)GO'T0 22 - * *

IF‘L .aE. M)GO T0 123 3 L¢L+1 N SELECT<L113360NFLCT(131)

SELECT(L32):CONFLCT(I 2) 3 GU TO 121

129 L31 q SMALLunz-CONFLCT(133) 5 SELECT(13 1)3CQNFLCT(1.1) $ SELECT‘laZ

1)=COMFLCT(I 2)

121 CONTJTJE

IF<L .tu. n>fio T0 197’
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IF‘L ,JT. 1)H0 TO 79 3 ASSINNu=SELECI(1.1)

ASSIf4-=SELE(‘T(1.2) N GU TU 106

7a RaNIWMJ RANF(-1) $ x=L.1 X= XthANDNO 5 18x11 S ASSlGNCISELECY(l1)

' ASSIGN-=SELECT(I}27 $‘KUUNT25YKUUNT§S+f‘””WW “*W*"’””'”‘

10* CONT'NJE

C"R‘VISE Tfic‘ SOLUTIUN ‘HATRIXWTO REFLECT“THE‘NER“DIAD“ISSIGNnEn11~

00501=1,M

" ' IF‘SOLJT3N(I.ASSTGNL7‘INE.‘0i)GU”TU‘EU'S”SOLUTDNtliNéifaSOKUTUVI1.

1N¢1)*1o 1 IFfASSIGNL .NE. Ijhu T0 ac
SOLUTOV(N+1 W)'50LUTHNIN+1 IT+I.' ,2 " _”1 21,,“ , ,-_uapwwmw"2.h

8n SOLUTUV(I. ASSIGNL):3.
1

0081J=1,V s,IF(SOLUTDN(ASSIGNCaU)'}NE;'0;)60‘13‘51 S SUEUTUNTN*11J

1)=SQLUFOV(N+1,J)*1.

a1 SOLUTQV(ASSIGc J)- 3.1“..2- -W-'~K ~ -—»- ~w~~»m-uv..www_fl-n-m._,~

SOLUT'~<ASSIHNC.ASSIGNL)=—2.
1 bOLUTUNCASSIGNC:N+1).1°0000

0.

'SOLUTNV‘V11aASSIGNL)=1000000.
$‘KOUNT192KDUNT1nN1 g‘fptKQUNflgw.GE

1- N-liéo TO N? N K9=fl 1 1F‘KUUNT7 .EN. 0)Gn To 808

EYAHINF A.L PREVIOUSLY FLININATtu UUADRUPLETS INVOLVING THE NEHLY‘

C AQSIGNtn UIAD YO DETERMINE IF ANY or :15coHPLEHtNTS ARE To BEMADE

C INFFASINLt, " ~~w~

1fi21 DETEnrzo

1N1? KR'KP+1 3 Dt3n25KC=1.KR 3 lT=~KK-KC¢1 ‘"‘

IF‘ASS‘G*C “E- FL‘W‘l‘lTWSU '0 1014 1 IC-FLU~02<IT> s 60 TO 1015

1n14 CONTthE s IFcAsSIGNt' .Nt. rLuwcz(1T);go 7D 1015 S IC'FLDWCItIT) ”2.

1016 CONT}JE $ IF(ASSIGNL .NE. 05 [L1(KC))GO TO 1017 3 IL'DSTL2(KC)

' no Tn 1515 ‘~ ~-» .
.2"

1N17 CONTINJE S 1F<ASSIGN1 .NE. 051L2(KC))GU I0 1013 5 1L=DSTL1(KC)

M1R CONTINJE S IF(SOLJTUH(IC.IL) .NE. O)GO ID {015* '5 ~

SOLUTUV(ICOIL)=1 S SULUTUN‘IL'N*1)‘$OLUTU
N(1C5u+1)¢1.

SOLUT01<V+1$1L1=SOLUTUN(N+1;ILJ+
1;'s'DETecre1. $"eo T0 808 "”“*'"

1“13 CONTINJE $ 1F<KN .Eo. Kou~u7 .AND. KC .65. KOUNT9)GO To 803

C
"
)

.1n2; CONTIHJE M- . r.w_ ”ML . ,2-.-hiwfi .nfld. W-_W‘“ N flmw.1mmw‘w --

IF<KR .LT. KOUNF7)GO T0 1012 3 GO TO 808

61 CONTINJE 3’lFtKUUNTi4 .Nto 0o }0R““RDNWQNEI'UFTGU“TU'B3wuwu'WMW'M‘

IF(KhUVT15 .Pc. 1)n0 In 4d 1 KUUNTZO‘KUUNT?O.I 3 IF<KOUNT20 .55, 2_¢

1)GO To 84 $ Powzt. N GO TO 4b

84 KOUNT14:1 3 KOUNTgnz f 3 b0 TU 48

83 CONTINJE 3 IF(K0UNT1“.NF. 0 .UR. RON .NE.1)GO TO'BS

IF‘KUUJT16.FQ. 1)GO 10 48 5 KUUNT203KBUN120*1S IF<KOUNT20 .GE. 2

1160 T0 85 m FIN: 0. N‘BO’TU48 ”“‘” ”““”““ ”‘“””

88 KUULT14= 1 3 rnUNT20= c s GU 1U 45

85 CONTIHJE fi IFtKOUNTifl ,NF. 1 .UR, ROW'3NE. 0.150 T0 87

IF(KDUVT15 .NE. 1)Gu T0 85 3 KUUN114tU 3 Go 1U 46

an KOUNTZU=KounT7n+1 t ]F(K0UNT20 .GE. 2)GO tn 46 S R0H=1. 3 GO TO‘dB

37 CONTJNJE , 11(K0UNT1L .Nt. 1>uU TU 69 1 KOUNT14=0 $ GO TO 48 1

89‘K0U1T20=K0ULT20;1 W“IF(KOUNT20 {GE5'?)GO TO 46 S RHKKU. S 80 TD 18"

C MAKF THF LAsr DIAD ASSluNNEN1 bY DEDUcTIBN AND PRINF OUT ALL

C RcsuLTs RtLEVANT To wasSOLUfIUN. '

89 CONTIINJE 3 b0 123 1:1.N

123 FINAL(1,V+1)=C - ww-v » ~ ~-‘-L A. . .,_1222

“0 Th bob

4* CONTIIJE 3 IFIUFTECT ;EQ§‘1)GU‘TU'1r21“3'KOUVTlU‘KnUNTIU' 1"

KOUNT9: KOUNT9+1 3 KULNTgso 3 1*(KUUN710: 067. 0)GO To 1026

G0 TN 40
---_-, «~—

RO-f‘ CONT111JC

7
1

DD 90 1:1;N ’ ‘ ' ‘ 7 ~ .1 ,1 , 1-22..Mb

... -.-. .. .. .« . ..- .. 1....-1.-." .- .-~... . ..A ._.'_. fl , V __, ., __1 P _ .1 . _,,__. _ ‘1fi1__ ..._ _ *1 . 1,-A_.-,1, V”. '1‘
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91 CONTINJE‘
‘”"‘””----

- ...A._ _ _

KOU1T2l=l R (0 To 901

9? F I NAL( I V'T'iw)..J W... .- rm ...T .. ...”. - .1. . “.....-“ ..- “L...“ --...AW... -, , , N

9n CONTINJE
'

DO9SI=I}V H .H. me_hwu .4 "Th__qn- _flh .UMWTML-VA

"094JEIAV $ IFIFINALIJANvl) AEU, 1150 10 93

94 (HUNTIIJJEMW“ V'Mfi" ‘”" ””“' ' ~~--w~»- wu--w «mwmiquLw.wfl- _ -W.“A 7,.“

9? CoNT1qJEMWV. ML.N.AMLH.MW,. .,..WWN.NWW.,A,HW.NMLE.1“,-JA,U-LAH

9s FINALI‘OJNT¢J.N+1A=I
‘PRIAY 96 -U-,-u..ww,nw.p -..1Lw-.L“,.AL--H. A , 7,-

9A FoRAATI/llHA55AAAC5ATER5 LOCATION ASSIGNED.)

00971811“7* - ~ ~ .. -,.. - ~ A -- - ... - - . -~ -—~r-r~—. - --- -> -.~... ~~-1. 9----..........A.-. T1.

97 PRINT 98A1AF11A1IIAN611

99 FoRHATIIR”;S7xA12.157”F3;g)‘ ““'"“”‘ “ ’"'““ ”""“*"*“““"

coSng. $ K0UNT1=1N¢*2-N)/2

no991=1, KOUAT1 ”—

K0U1122=FL0AC1111

KOUN1253FL0LC2(1) -~W~-~ - ~ ~A-. -~ - ~~ --.d-m-.~~

DUiUOJ’laKOLNTl ’

”“IFIDETL113Y'iEO.”FINALIRUUNT223N¥1) 1ARDA nSTLé<JTWIEOT"F1NAL(KOUN

1123 191) .OR. USTL2(J) .EQ. PINALIKOUN722AN+1A.AND. DSTL1IJ’ AER.

'2 FIIALIKOUNTzsANt15160TO101 " '””’

109 CONTINJE ‘
,GO.TC.gqmwwmq‘Aflnnw-m,“mwm- -L-w.u- --mf.wm11- A” A-m,.,pn-u.

1101 CONTINJE qum,mm.1.h.w “mm,wuq I‘LL,” .w.--w;wmAwwww.m .7"

1F<FLUUA1A(I>'.EU. 99999. Auk; FLODAYAII) .EUo -9999.>co To 99' "

IFCDSTUATA(J) .[0. 99999. A0h. DSTDAVAIJ} .EQo -9999A)GO 10 99

COST:CJSTZFLODATA(1)¢DSTUATA(J)”“‘"" ""””*M””M"m'""”""””""

99 CONTINJE

" PRINT 102 CuST

109 FORHATI1H ,/¢ THE TOTAL COST orTHIS SOLUI10NIS w,F23A1)

”’ PRINY 1033KuhnT24 '” "' " "

103 F0R1A111H ,A A TOTAL OF*AI9At PAIRASSIGNMENIS HERE ELIMINATEdoi)

' PRINT 105KOUNT25 ”“' "

105 FOHAATIIH ,9 A TOTAL OF «A19AtT1ES 1N THE SELEcT HAIRIXHERE RESQL

1ve0 RY RAVDUN CHOICEAA) ” ”

PRIIT 139, KoUAT30

739 FORIATIlq AiTHE'cRITERTAMATRIX‘HAS"USBD To “A‘E A PARTIAL ASSIGNH

lFNI A TOTAL 0? oAISA‘ TIMESA')

PRIAY 974 KUINT31 ”“"'" "‘

974 FoR1A111R ,ACLUSED LINES NERE ENCOUNTERED A TUTAL of wAISAaTINES-A

TNfivsTIMEFIA) '"' "”"

T=(TNt~-TOLU)/1f00o
PRINT 147,T ,WWML”.. _1H_TW.H.H._N_ L. -w_.‘mw -fl,wh-

147 F0R1AT1tTIME SPENT0A1A1$ SHLUTIONHASVIFjb AA-becowus.*1

‘ TOLDETVEJ‘" "

39 CONTINJE
1 G0 11y SDI _“ .w .. ”LL "WWW“, ,A ”A M,m_w- _ 1"",,.-wnm-m

197 PRINT 198

' 19R FORIATT1H”59CRITERIAVALUES ARETOU LARGE 70 TEST.9) '“‘w

601 CONTINJE

Go To 108m“-1 m..._flv.wmmw ”9 Am - - - - .- . ”A .- .

107 PRILT 109

100 F0R1AT1A AN ERROR WAS MADE READING 1N FLUN DATA. *1

10R CONTIHJE """
. . F [\J D . . --. ,. - .-.._ ..- -..,... ...“ ___ .. _ .. -_ .7 . ‘ . .

—- ---«cwo-m. -—-~._.._ . 4— - - _ 9--.. -..--—— ...-A _ . . ,, “71». . ,. . --- _ ...,, .. . __ __,-

hrwr--v-r~- “aw-n A 1’ -



APPENDIX VI

LISTING OF 4-C

PRUGPA‘ 3R0C4c _

nlnenSIOV FLODATA(351).FLUHC1(6S1).FLOHCZ(351).OQIGNC1(8)aORIGMcz(,

18)o0RIJND(8)aTALLY(7n2027)onTUATA‘SSL’o057L1‘351’aDSTL2(35 ).SOLU

2T0N(?8o28).XOUT(702)aCRlTERA(21327)iCONFLCT¢28p28).SELECT‘2;12);FI

smaL(28.2a),UNRAhKuc7o2.27)aIfIxc(25).IEIXL¢25)aXOUTLOG(702)

EQUIVAgEVCE (uNHANKD.TALLY).(F1NAL.SOLUTON) ”‘

INTEGE* ASSlGNL,ASSIGNC.0HIGN01,ORIGNCZ

LOGICAs XOUTLUG .

TOLD=T1MEF(4)

X=TINEE(5)

CALL RANFSET(X)

RANDN03RANF(-1)

PEAD 6U0.NUanH

son FoRmaT‘IZ)

C [TERATE FJR A TOTAL OF NUMBER PROBLEMS.

nobg1 <0JNT99s1,NUMbER

C RFAD AND *AVK FLUw AND DISTANCE DATA.

READ 1nMaN.H1,KOUNT1;KOUNT2

FORMAT(515)

no 2 Kduvrs's 1.2 9 1:n

PEAD 4:(ORIBNC1(J).OHIGNC2(J):URIGNUCJ).J=1.8o1)

FORMAT{8(I?.12aF6.1))

DO 5 J3108 m I=I*1 _

Irconxawcch) .LT. ORIGNC2tJ))uu To 6 s UNRAVKO(I:1)BORIGNCZ‘J’

UNHANKU(I,2):QRIGN01(J) $ 50 IU 7 .

UNRANKU<I.1)=0RIGNC (J) $ UNKANKD(!o2):0HLGNCz(JJ

UNHANKU(I.3)90RIGND J)

IF(l-(V**2-N)/2)5.fl,8

CONTINJE

Go Tn a

1:0 Q *0 MT4=fN**2'N)/2

9 J30 % 51690:-99999999.

1n J=J+1 s 1F<uNnAnKch.3).BxuNU)12,12,11 . _ f _

11 BIGNOIJNRANKD(J.3) s KOUNT5=J s x1-UNRANKD¢4.1) s XZIUNRANKDCJaz)

19 CONTINJE

IFCJ .uT. KOUhT4)GO TU 10

I=I+1 t IFtKOUNTS .50. 1)UU I0 13‘s DSToa{A(I)aanN0 s nSTL1(1)=x1 .

DSTL2(1)=X? $ 80 T0 14

13 FLODATA<I>=BIG~0 s FLowc1(1)=x1 s FLowczcx)=xzf

14 CONTINUE $ IF(K0UNTS .EO. KOUNI4)GO TO 15 '

1A UNRAMKU(<0UnTS.1)=UNRANKD(K0UNI591.1) $ UNRAVKDCKOUNTS.2’IUNRANKD(

1K0UNT5¢ ,2) S UNRANKD(K0UNTSo5):UNRANKD(KOUNY5¢1,3) '

KOUNT5= OUNT5+1

IFfKnUVT5«1-KOUNT4)16:16:15

1S KOUNT4=KDUNT4.1

IF<K0UVT4 .GT. 1’90 To 9

131¢1

17 CONTINUE s 1F(KOUN73 .EO. 1)50 T0 18 s DSIDATA(1).UNRANKD(103)

DSTL1(1)3UNRANKD(101) $ US'LZ(I)IUNRANKU‘1p2) 5 Go TO 2

1° FLODATACI)=UNRANKU(1a3) S FLUwCi(1)aUNRANKn(1o1)

FLOkCZ‘I)'UNRANKD(1a2) “

9 CONTINJE ‘ " "'"

c CfiMPUTE LJNER BOUND.‘

La(N.«e-V)I2 s 1:1 5 J8L $ KUNIao S BOUang.

ogn CoNTtNJE 9 1F(FL0DATA(I) .tu. 99999. .OR- FLODATA(1) .EQ. ~9999. .

1AND. DSTDATA(JY'.EQ; 99999. .UR.‘DSTDATAtJ) ,Ea; 69999;)65'10 939

‘ 184 .

A
b
a
d

\
J
)
‘

J
!

I
)
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IF(FLUUATA(I) .uE. 99999. .ANU. FLODATA(1) .Nt. P9999.)60 TO 988

1:101 8 GO TO 987 6 .

08“ CONTINJE $ l‘tUSTDATA(J) .NE. 99999. oANU- DSlongtJ) .NE. ~9999o)

160 T0 936 $ JsJ- 1 $ GO TO 93]

03‘ BOUhnxdodND¢DsTDATA(J)*FLUUATA(I)

089 I=I¢1 5 JlJ-l

987 KONTBKJNTtl S IF‘KONT .LT. L)uu T0 990

pDINT ouT MATRIx SIZtS AND PHUBLEM NUMBER.

J: H161 3 PRINT 21, KOUNT1gNoMIJnd0UND

2, FORPAT(6nX.c PROBLEM NUMBhH * ial/Iv THE SIZE OF THIS PROBLEH [S N

1 EUUALa '.Ia.w.«/¢ THERE ARE *Il3v* ROMS ALLO|TED TO THE SELECT HA

2191x,«/. THE CONFLICT MATRIX 15 OF THE *axsut SQUARED ORDEth/c

3THE L0~EQ BOan FOR THIS PROBLtM ls 'tFl/iZ’

4mg“

2”

4n07

4004

KOUNTb‘O

RELupsu S KOUNT19=0 s KOUNF6=KUUNT6*1

JuNéfiZ'N ‘ '

00201‘10J

XOUT(I)IO.

KOUNT1=N~(N-1)

0040071=1.Koun11

xoUTL05(I)=o

K7=N-1' KOUNT19 m KOUNT1:(N*(N-1))/2

C CDMPUTE XJUT VECTOR.

2‘s

27

29

25

24

23

2?

1n01

1n0?

1003

1004

14s

4000

33

0022L31,K0UNT1 3 JcL s K:2*J-1

IF(XOU[LDG(K))GU 10 22 s DummvlsrLowc1(L2 .

0023K6'1a2 & PHI=0 s IF(XUUT(K) .NE. 0.)uo TO 24

0025Kd‘lofi7

K329J-1 5 DuMMYgeFLOHC1(J)

0027K9-1.2 $ 1F(DUMMY1 .Dg, uunnvzxeo To an

IF‘XOUILDG(K))GO I0 28 5 PHxspH1.1

xour(K)av.PHI.KoUNT19 s 69 TU 29

Ksth

nu~M¥2= FLONc2(J) s J=4¢1$ GU 1o 26

IFCRFLJP .EU. 1)GO To 25 s 1F<J .67. KOUN11)GU T0 107

J8J¢1 .

JaL $ UUWMYlgFLUHCZ(J)

Kath

CONTINUE

IFCKouvT19 ,GT. 0)Go To 2008

IF(K0UVT6 .GT. 1’60 TO 4009

READ 1001.NBRF1x 5 I30

FoRmAT (12)

IFCNRRFIX EC 0)GO T0 1004

121.1 5 READ 1003.1rtxcxx) IFIXL(I)

FORMAT(Z[2)

1r(1 .LT. NBRFIX)GO TO 1002

CONTINJE

TNEH:T1MEF(4)

T.¢7~Ed-70Lu>/1ooo, W

PRINT 146,T

FORMAT‘t TIME SPENT QNHERngmlfiARY HORK was '.§1¢.3qrnsgpqnu§,-1

TOLDITVEH

LASTDE’sfl $ MAXDEP0299999,’ 7 4*

KOUN724IU s PRIHT33,KOUN76 s KUUN72530

FURNATSIKI1H asaxaf‘SQEUTIUN Npflfiéfinf'16’

KOUNTSUIO $ K0UMT31:0

.. ... ”..—
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c {VITIALIZB NATNIcEs AT ZERO.

30

2009

35

34

37

36

C REVISE TH; SOLUTION MATRIX T0 HELECT FIXED celeRs.

1n05

1n06

1007

C SFLECT NEXT DIAGONAL OF QUA

4n

1n26

KOUNT1'N+1

D038121,KOUNT1

D069J=1,KUUNT1

SOLUTOVIISJT=CT

CONTINJE

CONTINJE

KOUNT13Nit2-N

0034191o<0UNT1

DO 35 J'loN

TALLY(T JT'Qa

CONTINJE

D0 36 1:1, N

no 37 JI1,N

CRITERA‘I; J)=09'

coNTINJE

K0UNT730 S KOUNTloa-i $ KUUN|9=91

IFTRELUp .EQ. 1)GU T0 40

...-..

IrtNRRle .to. oTGO T0 40 S 1:0

121.1 s 1rc=1r1xc<1) S IFL8IF1XL(IT

001006J=1,N {S iF<SnLUTON(J:IFLT .NE. 0.)Go TO1006

SOLUTUV(J N¢1T=SOLUTON¢JTN+1T+1

SOLUTUV<J IFLT¢3

Do1oo7Js1. N S Ir(soLUTON(I+C:JT .NE.0390 T91907

SOLUTOV(N+1.J)‘SULUTON(N*1aJ’+1

SOLUTOV(IFC JT‘US UPS . S .m. V.Hmw.1 1

SOLUTOVCIFC. IFLT=2 S SOLUTUNTlrcoNo1T81000000. S SOLUTONTNci IFLT

igloooouo, s KOUNT193K0UNT1941 S !F(K9UNT_19 .GE: N-1T99 TO82

Ir<1 .LT. NBPFIXTGO To 5 S no To 6

1BBUPLETS FOR gLIMINATION.

KoUNT7=KOUN77¢1 S KoUNTe=0 S KOUNT9-1 S KOUNTSOIKOUNT7

MMClaFLONC1(KCUNTm ) § NM02=TLUNCgtKoUNT 01l.h1. ,

?ML1.QSTL1(KOUNT9)0 S HML2=USTL2(K0U§Y93 SUNT24=K0UNTZ4¢1 ’ "

fiESOLJTON((MMcl, N+1) .EU, 10000003190 T0.10?°.1_Hm-fluwwwm11”q- W_

FsoLJTON¢NMc2 N+1) .‘Eo. 1000000.TGO To 1020

IFTSOLUTONtN¢1ahfiL1T .EQ. 10009go.)90 T0 SQZD _

IrcsoLUT0N<No1.NNL2) .Ed. 10000007760 TO1029”

-_.-. . ..- ~1.w—.-. I... .- _.,. _ .

C ENTER TALLIES wHERe APPROPRIATE.

41

47

1051

CONTINJE'S"TF(SOLUTONTHNCSFHMLST"}NE."UTGO“YU"12U "”“'"‘W‘“”V”

IFTSOLJTON(NMC2,MNL2) .NE. OTGU T0 42

TALLYT2-K0UNT10 1,MML1)aTALLY(2aKUUNT1o- 1SNML1T01.

TALLY(2-KOUNT10,HML2):TALLY(2*KOUNT1OSHHL2)¢1.

CONTINJE S 1F<SOLUTON(NMC1TMML2T JNE. OTGO TO 1051

IFTSOLUTONtNMcg,HML1T ,NE. OTUU T0 1 ,3 _ 3,,h."

TALLY(ZtKOUhT10 1. NNLZTSTALLY(2-KUUUT1U'10MML2101

TALLY(ZtKOUN11O MML1TIIALLY(2*K0yN710oHHL1191

J30

c UDDATE CRITERIA» MATRIX AND CHECK FOR INFEASTBLE DTADS DUE To TALLY

C ScoRES
"“"*" w~~--~w ~ m -HM. .1 ,.,MUM” _

43

44

CRITERA(UMC1 NML2)acK1TERA(HM61 HHL2)+1

!r(TALLy(2-KOUNT1o-1.MHL2T .LT. XOUT12SK0UNT16-1TTGO T6 ‘4

IFCSOLJT0N(NMc1. MML2) .NE. 0.TGO T9 44 S SOLUION(KMC1,KHL2TI1._

«V‘sdn ~'-" 9

'SOLUTOVtNMc1.N+;)-SoCUT0N(MN01.N3

SDLUT0V(No1.MML2):SOLUTONCNS1TMMLUT11. S KOUVTBBKOUNTatz

CRITFNI<MM62.MML2)acRTTERATHNc2UML2T01. "

.srt—v'r-r-‘ .1‘* -— M u
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IFTTAL-Y(2*KOUNT10.MML2) .LT. XOUT(2*KOUNI10TTGO To 45

IFKSOLJTOUTMMC2,MML2T .NE. o-TUU TO 45

SOLUTuN<NNC2.NNL2)=1. S SULUTUN(MMC2.N+1’=SOLUTON(HHCZ.N*1T*1.

SOLUTuvc9+1,NNLZT=30LUT0N<N¢1.NNL2141. S KOUNTBBKOUNT8+1 ‘

45 J=J¢1

I

IF‘J .VE. 1)Gb T0 807 S TAHY=MML2 $ MHLZ‘HWLI S ‘HL13TARY

GO TO 93

Hch FUR UIAD [NFEASIHILITY DUE TU THE ELIMlNaTIUN OF A OUAURUPLET

IvVnLVINU A PREVIOUSLY ASSIGNED UIAD.

29 D010091=1.2 S 001010J=1, 2

IFCSnLJTON(rMC1,MML .NE. ZTUU TU

IF($OLJTDN( MMCQ'MMLU) .NEO OoTUQ To 11Ui1 S SOLJTONCMMC2IMML2’3 1

SOLUTUV(%MC2.N+1)_ SOLUTON1MML23w+1)+1

SOLUTUV(N91.MNL2T=SULUT0N(N+1. HMLZT¢1 S KOUNTU=KUUNTB¢1

11 TARYEMWCZ S MNC2=MM01

1' HMC12TARY

TAHvemfiLz 9 MLL3:MML1

MMthTARY

IF(KnUVTB .LE. NTUO T0 808

IFTKOUVTIU - 1 .Lt. OTGO TU 4a S KOUNT10=K0UVI10 - 1

KOUNT9=KDUNT9+1 S GO TO 1026

SEARCH TH: SOLUTIUN MATRIX L0H CONDITIONS UTCTATING ONE OR MORE UIAH

ASSIGNNENES.

#
3

O
D

\
l

909 KOUh71430 S KnUmT15=1 S KOUNT1631 S KOUNTZOSO

0
0
C
)

0
0
0

MaKE A RAVUDM CHOICE AS TO WHETHER Rows 0R COLUNNS ARE SEARCHED

FIRST. LJOK FDR ALU RECONCILE UENANUS MADE av SLUSED LINES PRIOR

T“ SEARCHING FUR LINES NITH UNLY UNE REMATNINQ FEASIBLE DIAU.

RANDNU=RAUF('1)

IF(RANUNO .GT .49)GO To 41 S Houso, s GU To 45

47 RONI1.

4° 1:0

”049KUJN71=1,H

DU’OJSITZ

Sn SELECTKKOUNT1.J)=0,

40 CONTINJE

L=M1+1

U051KOJNT1:1,L

DODZlepL

S? CONFLCTT<UUNT1TJT=n.

51 CONTINJE ,

J=U T .ABELH=O S LABELCEO S lf<HOH .NE. USTGD T0 53

STORE CENTER AhD LOCATION LABELb UF DIADS REQUIRING ASSIGNMENT 1N

TJE CONF-ICT MATRIX. TRANSTEK INTO 1T THE hlAUS VALUES AS STORE“

In THE CTITERIA LATRIX. -

54 131*1 3 IF‘SOLUTONTISN*1) OE“. 10000006)UU TU 55

IF<N~SJLUT0NCITL+1T .NE. KUUNlquGO T0 55 9 LABELRILABELHti.

IF<LABCLQ .NE 1 .AND. KOUNT14 .NE. 1’60 10 56 S LIO S LABELC¢O

IFTKOUVTI9 .Né. 0:90 In 57

SR L=L¢1 ” IFtSOLUT0N(IoLT .Nt. 1’60 To 59 5 LABELCaLABELc+1

CONFLC‘(1TLAFELC+1T=L $ TF(LABELC .GE. M1TGO TO 56

59 CONTTNJE S IF(L .LT. NTGO T0 59 S GO TO 56

57 L: L41 S IF(SOLUTUN(I LT .EU. U.)GU To 60

IF<L ,-T. N)60 TU 57 S GO To 56

6n CONFLCTTLABELRTETz L $ CONFLCT(LABELR01T=I 9 GU T0 110

SA CONFLCT(LAHELH+1T1T=I

11v CONTINJE S IF(LABELR .GE, M1TUU TU 61



C

C
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SR CUNTI~JE 5 IF(I .LT. N) GO TU 94

b1 CONTINJE s 1F¢K0Um114 .EU. 1>uU T0 111 S 1F(CUNFLCT(1o2) .NE9 0o’G

10 Tu 64 ‘ IF‘CUNFLCT‘le) .Nt. o.)Go T0 62 s KOUNTlsfo S Go 10 63

111 CONTINJE $ IF(CUNFLCT(1.1) .Ntu 0.)GO T0 69 5 IF‘CONFLCT‘1azJ .NE.

1 00’60 T3 62 $ KOUNT1530 S GU '0 63

51 J=J+1 t IF<sOLUTONCN+1.J) .EU. 1000000.)60 TD 64

IFCN-SJLJTON(N*1aJ) .NE. KUUNT14)GO TO 64 ; LABELCILABELC*1

IF(LAB=LC .NE. 1 .AND. KOUNT14 .NE. 1160 In 65 3 L00 3 LABELH'O

IF(kOUVY}4 .Ne. 0>Go T0 66

67 L=L.1 t F‘SOLbroNtL'J) .Nto 1’b0 To 68 3 LABt R. ‘8ELR‘1

CONFLC'(LAHELR+1:1)3L S lF(LABtLR .GE. M1)no I. 6

69 CONTINJE 3 IF(L .LT. N)GO I0 6/ 5 GO TO 65

66 L=L+1 h IF(SOLUTON(L.J) .EU. U.)GU T0 69

IrtL ,-T. N)Gu TU 66 3 GO '0 69

6° CONFLC?(LABELC:1)=L $ CONFLCI(LABhLC02):J t GU T3 112

65 CONFLC'(1aLABELC*1)=J

51? IF<LAB=LC .bE. M1)GO T0 70

6a CONTINJE $ 1F(J .LT. N)GO T0 56

70 coNTINJE 3 IF(K0U4114 .EU. 1’GU T0 113 3 IF(CUNFLCT(1o2) .NEp 0"“

10 TO 64 i IF(c0MFLCT(2o1) .Nt. 0.)GO T0 62 S KOUNT 630 8 GO TO 63

113 CONTINJE $ IFCCUNFLCT‘lal’ ONE. 00,60 TO 6? f {F‘caNFLCT(102, ONE.

0.)GU TO 62 $ hUUN116=0 S GU [U 63

69 1:1 5 1F(KOUNT 4 .EO. )GO TU I

79 1:101 t (OUle =CUNFLC (1:1) $ =1

71 J=J.1 t KOUNT18=CUNFLCT(1;J) 3 CONFLCT(I:J)=CHITERA(KUUNT170KOJNT1

18)

IF‘J .sT. LABELc+1)GO TO 76 & litl .LT; LAaegko1)Go T0 72

KOUNTSIBKOUWT31+1 W IF‘I OLE. ZJGU T0 114 3 KUJNtsogKOUNT30*1

60 TO 114

71 CONTINJE $ IF(Rnw .eU. 1.)Go Iu 116 s K=LAHELK 3 Go To 11?

11A KgLARELC

117 CONTINJE $ 301161=1,K $ KUUNll/=CUNFLCT“:1) b KOUNT18.CONFLCT(1.2

1)

115 CONFLCI(I.3)=CRITtkAtKuuNtlloxu0NT1a)

1&(1 .ht. 1)60 10 114 $ KUUN160=KOUNT30+1

RECONCILE CONFLICTING DIAD ASbleHENTS BY CHUHSING THAT DIAD HI1H 1Ht

anpsr CilTEPIA VfiLUEo BREAK fits RANDOHLY,

114 SmALLNJ=99999999999. $ 1:1 S L=0

IF¢h0UVT14 .Eu. 1)GO T0 11a

74 I=I¢1 3 J31

7s J=J+1 n IF(CONFLCI(IaJ) .GI. SMALLN0)GO T0 76 s 1F{CONFLCT(11J) .L

1T. SMA.Lv0)uc To /7 $ 1F(L .ut. M)GO 10 7b 5 L8L+1

SELECT(L.1)=C0NFLCT(I.1) S StLtCT(Lo2)8cUNrLCI(1.J) 5 GO To 76

77 L:1 s amALLM0=CLNFLcT(I.J) $ StLECT(1.1)=CnNFLCT<I.1)

SELECT(1.2):CoNchT(1,J)

7A CONTINJt $ 1F(J .LT. LABELC+1)bU T0 75 S Ir(l .LI. LABELR*1)GO Y0

174 & IE<L .EO. p>uo To 97 s Ir<L .GT. 1>un To 79

ASS GNu=SELECTt1o1) $ A S UNL=5ELECT(102’ ; GU 10 106

11g CON INJE $ 1F(Ruw .F0. 1) U IU 119 s KxLAbELR 5 GO To 120

11° KzLARE-C

12n CONTINJE $ p01731:1,x s IF(cUNrLCT(1.3) ,GT. SWALLNO)GO T0 12

11 $ 1F(CDMFLCT(I:5) .LT. SMALLNU)GO T0 122

IrcL ,se. M)GO To 121 s L2L+1 3 ShLECT¢La1)=CUV£LCT(lo1)

SELECT‘L.2)=CCNFLCT(I.2) s GU Iu 121

12? L=; % DMALLh0=CLNPLCTCIa3) $ StLECT(1o1)=CONFLCT(l.1) s ShLECTtloz

1)=L0NFLCT(I.2)
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121 (HNVTINJt

IF‘L .=0. 0)GU T0 197

IF‘L .JT. 1)Gg TO 79 S AsSIGNc=SELEcY
(1.1)

79 RANDNO=RANF(- G X:-L $ XSXtKANUNU S I¥x*1 6 ASSIG~C=SELECT
(!.1)

ASSIGNL=SELEC%(I.2) $ K0UNI25=nou~725.1

104 CONTINJE

C REVISE TH: SOLUTION MATRIX l0 REFLECT IHE NEH DIAD ASSIGNMENT.

P05 131,\1

lF‘gOLJTON(IpASS
IUNL)

.NE. 0.)uo T0 80 s SOLJIDNCI;N¢1)I
SOLUTON([p

1N+1)+1. i I$(ASSIGNL .NE. 1)b0 to 60

SOLUTUV(V.1 I)=30LUT0N(N¢1 I>+1

80 SOLUTUVtt. ASSIGHL):3,

DOU1J=1,V $ IF(SOLUTON(AS
SIGNCoJ)

.NEo oo)GO '3 81 S SOLUTON(N*1oJ

1)=SOLUIOV<N¢1.
J)+1c

31 SOLUT0V(ASSIGNC, J:=3.

SOLUTOV(ASSIGN
C,

ASSIGNL)=20 3 bULUYONtASSI.N
C:V+1)'100000

00-

SULUTUV(V¢1
,ASSIGJ¢1)

10000000 $ KOUNT19: KOINT19*1 * ‘F‘K“UNTlg .Gt

’JU T0 52

C paéPAHE THE SOLUfILN MATRIX AND XUUTLOG VECFOQ FUR RECYCLING.

RELUPII

n02000121 N $ UL2001J=1,N $ IFtSULUTON(1aJ) .N5. 1300 TO 2001

SULDTOV(11J)=(
.1

aULUTOI(IaN*1)
=SULUT0N(IoN+1

)-1

SDLUTOVtV¢1,J)=sU
u_UT0N(n+1.J)-1

2001 CONTINJE

2000 CONTINJE

DEPTHS‘OJNT24-L
ASIHEP

LASTDE"B‘OUNT?4

IF¢DEPIH .LE. MAXUEF)GO TU Zuuz

HAXDEP=DEPTH

200? KOUN71=(Vt(N'1
))/2

D04oo1ls1.KuUM
T1

IF‘ASSIGVC .EQ. rLokcl H1 :00 ru 4002

IF<ASSIGVC .EG. ‘LUKCZ H! )b0 IU 4002

GO TO “001

4009 XOUTLOa(2-I)=1

XUUTLOd(2*I-1)
=1

KOUNT1=N*(N-1
)

1 U040031= 1 KUUNTl

IF‘XnU'LDG(I))Gn i0 4003 S XUUI(1)s°

4n01 CONTINJE

GU T0 “004

61 CONTINJE S 17(KCUPT14 .LE. 0. oUH. RON .NE. 0o)GO T0 83

IFKKOUVTIS .Fu. 1)no To 43 s KUUNTZOBKOUN190*1 S IF‘KOUNTZO ,GE. 2

1)Go To 84 $ ncwgn. s so To 46

34 KOUNT1431 m KOUhT2030 5 GO TU 46

51 CUNTINJE E IF(KuuuT14 ,NE, 0 .UR, Row .Nt. 1:00 T0 85

IF(K0UVT16 .EQ. 1)no T0 46 5 KUUNT20=KOU6190
*1

8 IP‘KOUNTZO oGEo 2

)uo TO 86 s RON20. 5 GO TO 46

3a KoUNT1431 $ KoUwTanao s 60 TU 4b

85 CONTINJE s 1F(KOUNT14 wt. 1 UR RUN NE :90 T0 87

IF(KOUVT15 .NE. 1>no T6 88 s KUUNT14=0 5 GO 010 4a -

an KoUN7203<0ULT, 0»1 $ IF(KOUNT .GE. 2)GU in 46 S R0H81. $ 00 T0 48

37 CONTINJE s 1F<KcU~716 .NE.1§GU To 59 s KOUNT14=0 s 60 T0 43

80 KOUNTZUgKOUm
TZU

1 a 1F(K0UNTZO GE 2)GO 1n 46 S ROHIO 3 60 T0 46

C MAKE THF LAST DIAU ARSIGNMENI bY DEDUCTION AND PRINT OUT ALL



C RESULTS RELEVANT To THIS SOLUTIUNQ..--..M

190

a? CONTINJE 9 00 123 1310N.

123 FINALIIIV+1IF0owww,, “mm“wV..TWEEE_WWEE-EHHIwwwwndflna‘um_m.u,mq.

GO TO 606

45 KOUNTlUcKOUNTlo- 1 “ NEH_EEEM,-E..HM ,

K0UNT93K0uNT9¢1 $ KoUNTaeo s IFIKQUNTIS .GT. OIGO TO 1026

‘ GO TO _SL 9,... ., . ,-..---..--_ h. ..-..I,...,.-..._..._.._._.----_-..-.,...” -.., I-

806 CONTINJE
.

DO 90E9”: . .1 .,-,.-,....._ .-u ,. -.....W,..,...,...-._. .,.

0091J:1 N SIFISOLUTONII J) EU..2.IGO T0 92

91 CONTINJE . E_.... .“.W _MJ __q' “1-1-m_wmfln -

KOUNTZIIIS 60 T0 90

92 FINALIEIVF1IEJEUE _ME-E-E. _HELEEHE.WWM_,-EUEME_WE_M_EEWHEEWENE

9n CONTINUE

00931'E V _EEMME-__E ..Ihflflnflnm,n- -

0094J-1.NS IFIFINALIJ.N*1’ .Eu. IIGO 90 93

94 CONTINJEE EEWEE. Em.m.wumfln ,--WN. EEE_EHE_.

Go To 95

93 CONTINJE . ‘ mm_®__ *

95 FINAL(*0UNT21.N*1)‘I

PRINT 96 I ,-.E.AL....W.W ,.-- . .n n. m-wnwmu-~ .-

96 FDRMATI/I1H .55x..ceNTERS LOCATION ASSIGNED*)

00971'EaV - , .M,-mw_m EEEHN,U

97 PRINT 98 I FINALII.N*1I

9a FORMATI1H .57x.12 1gXF3.g! - __ E

COSTIOA S KOUNT13(N**2'N)/2

00991¥11$0QIVT1M .. .. .I .. r. .... ,, ..-“ -« .. A. ... , w u...

KOUNwzzsrLowclcx)

KOUNTZEFFLOEC2<11 _fln AEIE,EEWWE-.M, FEHWEEEEWE~_EHEM"H-E-..Eu

DO1UOJ‘11K0UNT1

IFIDSTLin) LEO. FINALIKOUNTzzaNglI ,AND- DSTLgIJIWL§0. FINEL‘KOUN.

1723,N¢1) .OR. DSTL2(J’ .EU. FlNAL‘KOUNIZZENfii, I‘NDO DSIC1tJ’ 9609

.. . 2 F l MLS.K9..U.NIZ.§.IN?1).I.§9...I (LED 1W-..” ,_-u...m......,...___....,._.

100 CONTINJE

GO T0.99-_"E. . _E _W._HI,E ,-H‘ J__M.E, .-- -w.__w“ww,"EMm_n

101 CONTINUE

IFIFLOUATAII) .69. 99999. OR.FLQDATAII) E0. r9999;I80 To 99

IFIDSTDATAIJI .EO. 99999. .UR. DSTUATAIJ) .Efi.~9999.I00T0 99 ’

FOSTICJST+FLODALALIIPQSTDA7A(J’ \"HEEMNM,-I,MmM “”M~.,_,

99 CONTINJE

. PRINT 102 cosT *

10? FORMATI1N ,/A THE ToTALCOST OF THISSOLUTIONIS *.F23.1)

PRINT 10L KuUNT24
H

103 FORMATI1H .cA szIAL 0F 9.12019PAIRASSIGNMENISARE ELIMINATfiootI

. 'xsKouNTgA9YEN-1 1 ZaALY_11.-"Mm.«hwr.-m-,EE*.WE “WWW w-u_wuu,n

PRINTZUosoZ

2003 FORMATI1H .yTHE AVERAEEHEEENENETEDWISY!F2011{m»~m~~-
,E-_M..E--

PRINT2u04 MAXDEP

2004 FoRMATI1H ..THE MAXIMUM PENETRATIONAFTgf N- 2ASSIGNMENTS 189.116IV

DEPTH-KOUNT24 LASTDEP

PRINT €005 DEPT ..... w -_ I;
2005 FoRMA'HlH ,.PENETHATTWFORTHEHER-I TUtAgT ASSL§NHENI{5.0:}.600’

PRINT 739 KpUNng
“Q."-~

739 FO‘TMTHH' IiTRE CRITERIANATHIX HAS USEDrdNAKE":“pgafyxg7;5516~fi~

.1ENT A IOTAL OF «115.! TIMESt)

PRINT 105KOUNT25

v --r.'.A-R---o u” —-«. - .2 - - - .—.. ...-_. , .- .-.. 1.. _ ' t 7.- .- . a- _ v

o

~-~..~ .- - .w».. .- ~.-.-. “I 9 v" ~-- . .. -'v-D‘q.-v .-.‘.~,-.v ..-.'.., 7. 'v~~..—A~V I A-“ A . ago.»
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105 FORMA7119 0" TOTAL OF «IIZDIHTIES IN THE SELECT KATRIX ARERESOL

1VEU RY RANDOM CHOICEI*} .

PRINT 974,KQUNT31 ,

974 FORMATI1H .tCLOSED LINES HEREENCOUNTEREUATOTALOFt.I5o*TIHEbt)

TNEN-TINEFI4I_ -WH

TaITNEH-TOLDIIIOOO.

PRINT 147.T

147 FORMATCtTIHE sPeNT 0NTHISSOLUTIONHAS.:F,5.J.9SECONDS.*I

. TOLD-TVEH , H.“ -w m, ,1,- _m"".- 11mm ._m_”vrwr

IFIKOUVTe .LT. KOUNTZIGD TU 4008

GO TO 901

197 PRINT 198

198 FORNA.I‘.,1_1...11CQHEBIAJAL‘UES‘ ”5199-11.89? -.TQ. -[§§.I_!!._l-..._,

o
. M— —.-.‘.v-. ,1-— - . «...-... 1..-. 4 .. ....r» . mm~ - vgm—~.M-..m vvv . ...—

‘Q—u ... v pV-Q>.

601C0NTINJE

GO TQ 108
1 ' v0 u 'vvvm» .--r' v - 1 —~ v-v‘wiavnv- Inn-- =er—‘vv'riw ' - - Jam '-‘mr”.‘0” -v\. w.~--vr w ~- w—u—q ...,... .¢-. ‘ u

107 PRINT 109

109 FORMATIA AN ERROR WAS MADE READINGIN FLOR DAIA.')

NTINJE108 co

END
- ...

a- ‘ o ‘.« 4" N-V‘ 1. “D 0' “mi "

L. ~— - ... ow - '-

.. .. ' h .. .. _ Q .... .— ..- ... - ...— -

A "lv’ cw" .nvv :va wwn- H "vb. l-n-wv-II~Onr‘-fl' -‘ ' r ' VFW-V9 v‘n'mflWHQO-vn’ ‘13-.me .It-1 'fl.‘<"‘"fin finooovzv‘fir'“: n'~ A- l'

. n _v ...- ’ “ w "I ... -~— “5. W ' .. - 4 -

... ' _.._ ..- - - ...... C. ... ._ ~.._ _ _, - m .. _1 .. ,

-. .r'u— - a ,5- ... tux: - "l-‘p‘t‘.A - . my... -. g- . -—.-~u -—-- v1, 1.. 1-‘1'.\1r~—~«' up r04. - Iv “ ‘pr-vvw-Huw-‘ 'EC'A'CV'.‘ vr -—:—~ I C ‘v' "Htic'. .a- ct -.u!I-v - -v

- q ., . .—..._.

\

- .. - .. - ..

a u ur- p an - m n v- wrnl‘ “ o ‘P H n. r' —- ‘ no w~

«...,... ,. _.__, _ .. .... ..

_ Q -7 ,. ,.-.,-.1

m ~10 - u-uv- o m y"\ In ‘ -4I"-~« *‘C” a w ‘0 “I Q; “0“ <\ II.— a.

-... -1 _. ;

.... ’7 .... I 7.-“ . . 1...- ..-... .... .....- _-. I ....~ .--—1.»..- V ...... MW.-~....~ V. -v~~,--‘ ”...-...... ...-.---.... v. .— ~— ”...... “...-..-...- _v o -

" vr‘ our '- w an . In“! ' raw m. '9'! a..-n ct " 3' 4.71"“ ill v- n a" ‘4' h - a -\-1

a _ ... ...... ... .... - .. .. ...,... ...... .. .. .... .... ...f V

—- — - n.

_. n. s. ...-...,. nan: ~m" -.-—“1.1, r~ ,. . 41- o ' ,.».'.-.“ - no , a... A L . -7 - .. ,v.. «...---1 .u...‘—..- ...‘.-.“.~ ... - . .11. 1‘. .
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APPENDIX VII

LISTING OF 5-B

PROGRA* pROCSB

”DTfiEfi§7fifififofiifITKEYTFCOWCIK6673FC6WC§T63$I3RIGNC1(8).OWIGN02(8)o‘"

10RIGND(8).TALLY(144,144).DSTUATA(66)aDSTL2(66’oSOLUT0N(13a13’oDSYL

21(66).CRITERA(12.12).CONFLCTc13.13).SELECTc12.2).FINAL(13.13).UNRA

3NK0(66o3).CELLTIEtaoo.2)oItIXC(1a)aIFIXL‘10)aHlNTALY(12a12)oCOHBIN

4‘11).SCORE(66.66)oSTORE(3a300)oINDX(4012’

EQUIVALEVCE (FlNAL.SOLUTON)

'INTEGE?"ISS[GNC;ASSIGNE;ORIGNCi.ORIGch.PHI}PIVUT)cUH§YNWWWW

LOGICA; TALLY.5C0HE

TOLD:T1MEF(4)

X:TIME€(5)

CALL RANFSET(X)

RANDN0=RANF<-1)

w‘WETD'"SUD—{NU}?!E3E17W W ‘ ’ "

60¢ FORMAT‘IZ)

c IYERATE Fun A TOTAL or NUMBER PROBLEMS.

00601 *0UNT9931.NuMaER

C READ AND RAVK FLOW AND DISTANCE DATA.

RE‘D 1aM. N. M1. KOUNT1.KOUN|2

”iTOWHITTm)”“““”” " W”

DO 2 KJUVTS = 1.2 $ [=0

3 READ 4a(ORIGNC1tJ).ORIGNCZ(J).URIGND(J).J31.B.1)

4 FORMAT‘8(12.12:F6.1))

DO 5 J31.8 S I‘i‘l

IF¢0R16N01(J) .LT. ORIGNC2(J))b0 To 6 s UNPAVKD(lp1)IORIGN02(J)

UNRANKD(T72):0RIGNC1(JT I GO TO 7'“ '”‘

a UNRANKU(I.1)=0RIGN61(J) s UNHANKD(!.2)IOR|GNCZ(J)

7 UNRANKU(I 3)=0RIGND(J)

IF¢I.<V*t2.N)/2)5.8.8

CONTINJE

GO TO 3

'T50”§”KUUNT35(N962iNY/2'

J30 s dIGNO-u99999999.

1n JBJ+1 5 IF(UNRANKD(J03’-BIGN0)12012011

11 BIGNO=JN9ANKD(J.3> s KOUNT5=J S x1IUNRANKntJo1) S xzaUNRANKD(J02)

1; CoerNJE '

H IF‘J onT. KOUNT4)DO TO 10

“'“‘”‘ TiT?I'$“TFTKUUNT3“'EUT'ITGO TOTT5DSTDITA(IIiBTBflU—UmvsTEITT7€XI

057L2(1)=X2 3 GO To 14

1x FLODATA(I)=BIGN0 s FLOHC1(I)= x1 5 FLOH62(I)=XZ

14 CONTINJE S 1F¢K0UN75 .Eo. KOUNT4)GO 10 15 .

16 UNRANKU(KOUNTS:1)=UNRANKD(KOUN15¢1.1) s uuaANKo(KouN15.2’suNRANKDc

_- 1KOUNTS*1.2> S UNRANKD(K0UNYSo5’8UNRANKD(K0UNY561a3)

WWWW'WUUNTSVKUUNT591 “”“”””“

IFtKOUVT5¢1.KoUNT4)16.16.15

15 K0UNT4=K00N14.1

IFCKOUVT4 .GT. 1)60 70 9

18101

17 CONTINJE s IF(K0UN73 .Eo. 1)GU TO 13 s DSIDATA(I)8UNRANKD(1:3)

‘”“ ’“DSTEIITTEUNRINKDri;fT“$“DSTL21IIiUNRINKDK;;2T"I"RU”TU"§"“'“”““““”

1“ FLODATA(I):uNRANKU(1.3) S FLUHC1(I)IUNRANKD(1a1)

FLOKC2(I)=UNRANKD(1.2)

a CONTINJE

C CfiHPUTE LDHER BOUND.

L=(N**Z- V)/2 S I=1 s JIL S KUNT=O S BQUNDso.

W99n CGNTINJE I‘( FLUDKTI<!$"TEU}99999 OR.fEUUAAli!!! E0. 9799?

192
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1ANO. D5TDATA(J) .tO. 99999. .OR. DSTDATA(J) .ea. -9999.)GO T0 989

”“Irk?IBDXWAYTT“.NE. 99999T"IA~0;“FE601TA(I) .v:. 99999.)GO to 986 ' ’

13191 5 GO TO 987

939 CoNTINJE s chnsTUATA(J) .NE. 99999. .AND. DSIDATAcJ) .NE. ~9999.)

160 T0 986 s J=J-1 s 60 TO 987 ‘

93‘ BOUNDsSOUND.DSTDAIA(J)orLouAIA(1)

9989 1.1.1 1 JaJ-“1

987 KONTIKJNY+1W1XF(KONT TLT. L)GO to 99o

P91NT OuT MATRxx SIZhS AND PROBLEM NUMBER.

J=H191 s PRINT 21. KOUNTipNaN J.Bou~0

2, FORMAT(60X.9 PROBLEM NUMBER -.13///. THE 5122 or runs PROBLEM 15 N

'1 EQUALS w 15... ./. THERE ARE *113.9 ROHS ALLOITEO 70 THE SELEcY HA

2TRIX.9/9 THE CONkLICT MArHIX 18 OF THE '9!39* SQUARED ORDER:*/-

 

 

ETHE'CUWEV’BOUNU~FU§THTSPROBLtH IS“{K17.2)

READ 1001.NBRFIX 1 1'0

1n01 FORMAT (12)

IF(NBR€IX .EO. o)uo TO 1004

1907 13191 i READ 1003.!FIXC(!):IFIXL(I)

100‘ FORMAT(212)
 

.1.M_ YF(TWTCTTwfigfifTYYEUTYUWIUO2 “ ”"”“""‘w“"‘"”“" ”I M

1004 CONTINUE

GCNERATE AND STORE 0N LOGICAL UNIT 20 ALL COHQINAYIONS OF N CENTERS

TIKEN 10209.90(N'1) '1MESO

PENIND 20

KOIN.1

'"DO3OiUVHfE1;Kb‘$“HYVOTEPHI""

0060111319PIVOT

3011 COMB!N(I)=I

GO TO 6012

391! COMBIN(PHI)cCOMBINCPHI)91

3019 CONTINJE

’"W'WETTE lA’E'5U77cUMQYflTJTIJ51}PHIY"wuflwn'-

IF‘COM51V(PHI) .LT. N)GO 10 3013 S KIo

IFtPHI’9LE. PIVOT)GO TO 3014

3015 K:K+1 s IF<COMBIN(PHI- K) .66. N-K)GO I8 3016 3 KP-PHI- K

INDEX 180 S JYEMP350M81N(KP) '

003817I=KP..PH1 $ lNDEX131NUEX191

 

 

Go In 6012

3016 CONTINJE s 1F<PHI'-K .GT. PIVOT)GO 70 3015

3014 CONIINJE s IF(COHdIN(PIVOI) .L]. NsPuI9Plvoriuo to 3013

PIVOTSPIVOT 1 s IF(P!VOT .LE. o>co TO 3010

shin INDExlf JTEHP= COMBIN(PIVOT)

IMP+ITyDEYiW
W‘ ""” -1. " -— -—---~--—-«-~-~.——-.....-~..

 

3n19 COMBIN(I)=JTEMP+INDEX1

GO TO 3012

3010 CONTINJE

TNEH:T1MEF(4)

T:(TNEd-TOLD)/1QOU,
 --- ~~mm-~..—.P_.T——Wg;—T-c ..— m-~ -———_.. . --.- 7 ..,- --.—... ---_—. ~—- -.....___--._.. n.—

146 FORMATtt TIME SPENT ON PRhLIHINHQY HORK HAS 9.!16. 3.9 SECONDS. 9)

TOLDBTVEJ

GENERATF h YOTAL 0F KOUNT2 SOLUI;0NS FOR THE PROBLEM.

0032K0JNT6=1,K0uN12

_ KOUN724=0 s PRINT 33¢KOUNT6 $ Kcuuv13a9-sKQJNT2530

_KOUNT3080 S KOUNT_;=OWS KOUN72/30m

  



194

_w

33 FORMAT‘///1H .58X,9 SOLUTION NUMBER0953)
 

C” INITIALtzt MATRTCES AT ZERO

KOUNTza-o

“KdUNTiiN31”"

0038131 KOUNT1

00394.1.K00NT1

39 SOLUTOV(I JTIQ.

1‘.

. —_.__.__.—_.._.__..AH ._..._._ _, ___,._ ..-...___-- -..—

 

 

. H. .-1.._.‘ _-__.......-“W— .--.V.

 

3! CONTINUE

KOUNT1'N992
  

00341-1.K6UNT1

_00354-1, KQUNT1

W39TALLY(I JTIo

34 CONTINUE
 

D0 36 181 N

1 DO 37 Jul, N H1

MINTALV(IJ)'O

37 CRITER‘(!. J)_'Oo

’” 35chNTTNUE““

KOUNT1'(N9-2-N)/2
 

00124x=1 KOUNT1

DOiZSJ'iaKOUNTlufi
 

'125SCORE(I*J)-o’

W124 CONTINUE
 

n~UETECTiU SKOUNT7T=

TFTNBREIK .20. 0100T0 40 8Tag
 

C REVI§E THE‘ SOLUTION Hilllx '0 REEECT FIXED CEH'ER‘A

 
1005 III¢1 9 IFCIIFIXC(! 5 IFLPIFIXLTI

”w""w*m”UUIOOBJiITN“S“TFTSO UTUNIUTIFLT". (”UTTGDWTUW1UIS

_ SOLUTOVTJ.~-1T-spLUT0NTJ.N9LT+_L

10 06SOLUTOVKJYFL)'3

 

0010074-1 N s !F(SOLUTON(IFCaJ) .NE. 0100 TO 1997
 

SOLUTUV(N91.J)'SULUT0N(N31{JT*1

- 1007 SOLUTOV(IFC J)-3.

“”“SOLUTOV(TFC IFL>-2. ISOLUTON(lFUiN91D31000000- 3 80LUT°NTV*t'!FL°
_1I1pngpo. s KOUNT19aK0UNT19+1 s TrcKougT196E. N-1)go T002 V

IFTI .ET.NBRFIXTGOTTO1005 5 Go To a

c SELEcT NEN OUAuRuPLET FOR ELIMINATION Pngn THE CELLTIE MATRIX IF

AVY A " i N I . "- "N a D

c yer ELIMIVATED HAVING THE LARGEST FLOW-DISTANCE Paooucr.

”F11BELY‘OF'THESEW—oUHJ‘R‘UFUETFTN‘THEW‘_CU'LI’TTE
c RANDOM CHOICE.

"“‘“**”36‘K0UNT020“3“K00NTTE1
    

 

 

L"UA"'PL N07

0. H _ u-_1 W «STQEEMI!§_-11

MATRIX AND flfiKE A

».__._.-.._..—.._—.—w.—.__........_.._.- 1, . 24 ._..- .

 

KOUNTzluKOUNT27-1 s TTTKOUNT27 .LE. 00 To 997

009961‘TVDICAT9KOUNT27 s CELLTIE‘I013;iELLTlETTK191)

996CELLTIETI.2)-CELLTIETI .2!

“ IFTK6UVT27 .Eo. 1)66’ 995

00 TO 135

 

  

---—RE-2,_ -__-._,__.~.—..._.._.9,___,_.,___.._ ._ ,..._.1- _ _. ..1 . -.._-

 

“M"“VWCUNTWUE

BIGNoI-99999. S KOUNT19(N992-N)/2 8 Tue S KOUNT27sg
 

125—T'I‘1 T’J814I:L=-0

129 IF‘SCOKE(10J))GO T013

m139 CUNTINUE SIF(FLUDATI(97‘D8TDATA-IJ’W .L'o BTG~0)GU 7°“151

IF(FLUUATA(I)tDSTDATl(J) oEQI 510N0380 T0

M'HMFKOUN7278ffls BIGNO:FLODKTI‘I)*DSTUAY‘(J,'s 30210-133 11.-

132 CONTINJE S IF(KOUNTZ7 .659 300,00 T0133
 

K0UNT27:K0UNT27.1

-. H.___~-_ ... ..._. ___m--—_H - .‘_..._..._._._. -2-.._ —-—-—_.-.--. .... _ --- - - -92-... ...-1. - -22- . .. 1... . .. ._ .... .1. ..-2- o-o . .- ...—...,
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3333 CELLTI=CK9UN727 1)=1 s CELLTIE(KOUNT2732)tJ s 1:131

C

1(128 HMCIIF.O
¢JC1(KOUNY1"

) s ""62- FLUHCZ
‘KOUNTID)”,

1,“

C

C

C”

C

 

 

IF‘L .VE. 1)GO T0134S X53FLUUATA(I)'DSTDATA(J) 5 GO TO 130

134 CONTINJE s IF(FLOUATA(I)*DSIDATA(J) .LI. x3>au Ia 131_s GO TO 130

130 Jgd¢1 t IF(J .Le. KOUNT1)GU to 129

131 CONTINJE 5 IF(1 .LT. (Nch-N)/Z)GO TO 128

IF‘KOUVT27 .NE. 1)GO T0 135

995 1:1 3 no T0 136
 

 

{3a RKNDNoaRANF(.1T 3XEROUNTET S XixcRANfiROS Tix.1

KOUNYzb- KOUN726+1

136 KOUNT1086ELLTIE(I 1) S KOUNT9: CELLTIE(I 2) S INDICATSI

SCORE(‘0UNT10.K0UNT9)=1

KOUNT248KOUN724¢1

ENTER TALLIES RHERE APPROPRIATE

HMLlnDSTL1(KOUNT9) S HHL2= USYL2(K0UNT9)

IF(SOLJTON(MMC1,N+‘)‘.EG. 1000000.)GO V0 1020

IFCSOLJT0N(MH02.N+1) .Eo. 1000000.)GO 10 1020

IF(SOLJTON(N¢1,MML1) .EQ. 1000000. )60 To 1020

IF<SOLJTON¢N¢1.MHL2).EQ.1000000.)Go To 11g_o_

003034*LUP1E1. 2

D05033*LUP281 2

 

3...--H...7_ .... ——-..-. .. A

....-r‘ c fl-..—~—..—. ..w .-..... --.—...... n. A- M ,,

UDDATE CRITERIA NAIRIX AND CHECK FOR lNFEASIBLE DIADS DUE To TALLY

SPORES.

CRITERA(*MC10MHL1)=CRITERA(MM61MHL1)*9LODATA(K0UN?10)tDSTDAYA(KOU

-1NT9)¢.U000001
m‘v‘D—D .- --H‘—-r-- -..— ... —-o-.- H..— ...- ... r... ...w—m”.—.-¢-- 

I§fkRTC=4S(MNc11)¢1

IsTARngdcchL1 1)¢1

Jc=ISTARTc+NNc2- 1 s JLIISTARTL¢MHL2~1

TALLY(JC JL)=1

MINTALY(NNC1.NHL1)=NINTaLY(NNc1. HHL1)¢1

IF(SOLJTON(MMC1,HNL1) .NE. o)GU TO 3037

'MXRFWTF§_TNTEISTEIETTY“YEST ONLY [F'T‘HE’ECORRE‘SPUN‘DTNG’w HTNTIIVMW

1: EQUAL TO OR GREATER THAN (N-1-K0UNT19).

]F(M]NTALY(HMC1,MML1) .LT. N-l-KOUNT19)GO Y0 5037

PENIND 20

K0=~~1~ KOUN719

003021PH1=1.K0

‘TAncéTaN:oRRI ‘ ”

TOTAL1=1 s TOTAL2:1

0030221:1,PH!

TOTAL1=T0TAL1tI S Y=N~I+1

302? TOTAL23TOTAL2wY

a
?

McGMBIVSYOTALZ/[Oi_AL1
 

3
.

N a

“..-—«9.—---

CECL“E

 ~— -— --- m-.. --—--.«.. 7-. 3-» ..-- - .-.-.- ..V ...—a. _,,- _ 7-. v . .. 4 ...-“<.—

0030231:1. NCOMBIN

READ TAPE 20otcoHaIN(J).J=1.PHI)

005024431,PH1 ‘

IKEEP=COHBIN(K)

Ir<SOLJTON¢IKEEP. N91) .50. 1000000.)eo T0 3026

IF‘IKEEP .Eo. MN01>GO_To5926
 

 

CONTiNJE ”“ "”""*”””m”"'”“

HIT:0

DOSOQB‘L'loN

IF!SOLJTON(N¢1»KL) .EO. 1000000.)GO To 3023

IF‘KL .EO. MML1)GU TO 3028

0050291631,9H1

"TCOMEC?EEH§TN(KEY-

...- v v . . , , . . . . « .. ,~ . ., '-~--wv—-’ ...--- ---
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JC‘ISTARTC+ICONPL-1

JL'I§TKRTT¥RL41""M

IFITALEYIJC.JL))GU TO 3029

IFISOLJTONIICOHPL.KL) {NE.,0)GU YO 3029

Go To 3028

3029 CONTINJE

HITzHII¢1

“‘"”“TfrFTT_TGET’TIRGETSGU"T6”3036”””""’“'"”” *'

302R CONTINUE

3023 CONTINUE

3021 CONTINJE

GO TO 3037

3035 KOUNTBIKOUNTBSl S SOLUIONIMH011NHL1I'1

“”""“'SUEUTUVTVHU“.N3fi'7 SUCUTONTHHC13N91T31 ““ “”“”

SOLUTOV(V¢1,MML1)= SOLUTONIN+1:MHL1)¢1

3037 TARVEchz 3 MMC2= NN01 ‘

3033 MNClaTARY

TARYaMWLZ S MMLZ'MMLl

3034 HMLlarfiRY '

'C""TFWNUWCWTVCE’IN SOLUYIUN "HKSWUCCURREDFBY'EEiHINTTTNEETNTgfiaUKUWUFS*”m

C LET. ELIMINATE THE NEXT ONE IN THE DIAGONAL;

IF‘KOUVTB .Eo, 0)GO To 40 S 80 To 808

C CHECK FOR UIAD INFEASIBILITY DUE [0 THE ELIMINATION OF A OUADRUPLEI

C IVvoLVING A PREV10usLY AssIGNED DIAD.

1020 CONTINJE s 0010091-1.2 5 001010J-1.2

""””IFTSU“UTDNTNHc1HMLET-.NET2IGO“YU’1011 3 1FI$OCUTONIHNC2INHE23

1E. o.)50 TO 1011 $ SOLUIONIHM02;HHL2)=1

SOLUTOV(VM62.N31)= SOLUTONIHH620N01)01

SOLUTOVIN¢1,MmL2)= SOLUTONIN+1:HHL2)¢1 S KOUNTBIKOUNTBO1

1n11 TARYBH‘CZ S MMC2=MMC1

101nMMHC18TARY

' ’"ffim{$4311.23MELT” """’ ’"‘"

1n09 MMLlcT‘RV

IFIKOUVTB .EO. 0)u0 T0 40

C SEARCH TH: SOLUTION MATRIX FOR CONDITIONS DICIATING ONE OR MORE DIAD

c ASSIGNMENTS.

_ Rn? KoUNTl430 $ KOUNT15=1 S KOUNT16=1 S KOUNT20=0

”U"“FZKF"I'RIVUUNMEFBTEE“T§“TU‘RHETHER‘RUW§—UR"CUEUWN§"TRE'SEARCHEfi

C FIRSY. LJOK FOR AND RecONcILE DEMANDS MADE BY CLOSED LINES PRIOR

C Tn SEARCHING FOR LINbS NIYH ONLY ONE REMAINING FEASIBLE DIAD#

RANDN0=RANF(-1) .

IF(RANUNO .GT. .49)GO Yo 47 S House. I GO TO 40

47 R0W=1.

”‘75”51” .....- """""”""" ""“” ' W"

PRINT I78,Row

77R FoRMATI1H .F5.0)

0049K0JNT121.M

DO5OJ31. 2

Sn SELECTIKOUNT1 J’gfl'

“IB’CENTTNUE”””"’ "“"“""” ' ”‘ ’“‘“”""'“‘”“‘”"”

L:"1¢1

DO51k0JNTl=1oL

0052J310L

52 CONFLCTIKOUNT13J):0.

51 CONTINUE

...- -- _— 4.. -1 .- . . -. .7- . A771. -... .. -1.1. - V I .. “av—.... -—-———_A——‘1--.- ~nw¢—.-_—-.—.—¢“ A..- .-A ...-
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T4E CQNE&!CI"_N518159fnlfififl§f§§mlfli9wllwlfi§.DIQEEMLYALUESH*5 S'OREDW_

Iv THE C<ITERIA MAIRIX.

J30 $ LABELR'O $ LABELC=0 5 IF(ROH .NE. 0.,50 To 53

54 131.1 8 IF<SOLUTON¢I.N¢1) .EU. 1000000:)GO T0 55

IF‘N-SOLUTONtloNtl) ,NE. KOUNF14)GO TO 55 s LABELRILABELR*1.

IFILABEL? .NE. 1 .AND. KOUNI14 .NE. 1)GO To 56 5 L80 8 LABELCIO

--lfifiKOU‘Tlfi»Lflfiyfln1§9.12_§l-A...”....

 

 

W

’”Sd LIL+1 t IF(SOLUTON(InL) 3NE. iSGO’WO'EéflswCXOEIC'LIBELC‘1
CONFLCT(1.LA8ELC*1)=L s IFtLABtLC .GE, H1)GO no 56 _2

59 CONTINJE S IFCL .LT. N)GO T0 55 5 GO TO 56

57 L8L+1 ) IF(SOLUTON(11L) .Eu. ou)GO TO 60

IF‘L .LT. N)GO T0 57 5 GD 70 56

an CONFLCNLABELMM s CONEECI‘HEE-‘kfiojlil...LEH 19mm"...w.-. ‘-   

52“C'0'~“i1‘CT<—EKB’ELR‘1' 1" =’
110 CONTINJE s IF(LABELR .05. "1)60 10 61

58 CONTINUE $ IF(I .LT. N) 60 T0 54

61 CONTINUE $ IF(KOUNT14 .50. 1)60 TO 11} s 1r<cunFLcr(1,21 oNE 0.13

10 T0 62 s IF(c0NFLCT(2.1) .NE. o.)ao o 62 s KOUNT15IO 5 co ‘0 53

111 chtgggg 5 IFQCONerTgij1) oNE. 0.190 to ¢2_s lgjcpufgc1§;.gl_,~e,

1 0.160 TO 62 s KOQNT{5-o i 60 go 63" " ' ‘ ' ”"'"“ ""“'

51 J:J+1 t IFtsoLUTONtN¢1nJ) .EU. 1088098.’Go TO 64

IF(N-SJLUTON(N*10J) .NE. KOUNI14) 64 s LABELC¢LABELC+1

IFCLABCLC .NE. 1 .AND. KOUNI14 .NE. 1’60 TO 6: s Lao s LABELR-o

IF(KOUVT14 .Ne. o)GO TO 66

.6] L=L!1_* IE£SPLQT°fl5LoJ122NE~ 1’50 TQ 9!“!-LABELB£L‘BELP‘1 2” a“-

CONFLCT(LABELR+1o1)=L S IF‘LABELR .GE. H1)ao IO 65

6° CONTINJE s 1F¢L .LT. N)co To 67 s 00 To 69

6‘ LaL¢1 i IF(SOLUTON(LcJ) .EU. og)GD T0 69

IF(L ..T. N160 T0 66 s so to 65 L

69 CONFLCT(LABELCo1)=L s CONFLCT<LABELC.2)=J s so to 112

65 poNFLc1(1.LABELco11=J
,.L-,_.,“__ mun-— _._-- .— -.-. .-. 4‘ '. _w.—v.-—-—.— —q-- --.-...“; ~0.— ,_ 7 cans—.- — ,-

 

64 CONTINJE S IF(J .LT. N)GO TO 53

7n CONTINJE s IF(KOUNT 4 .E0- 1160 70 13 s IF(CUNFLCT(1n2) .NE Oo’G

10 To 62 s IF<CONFLC (2.11 .Nt. 0.163 to 62 s nounrtbuo 5 GO *0 63

111 CONTINJE s IF(CONFLCT(1.1) awe. 0.100 70 62 s IF!CONFLCT‘1.2) .NE.

1 01>602192922$.K99NT1£!0 5 09 F0 63” .+ _. . r
6? [:1 i lF<KOUNT14 .E0. 1160 [0 71

7? Ialfii 2 ‘OUNT173CUNFLCY(101) 3 J81

73 J8J¢1 s KOUN718=CONFLCT(1:J) s CONFLCT‘[04!=CKITERA(K0UNT17aKOUN71

13)

IF‘J .bT. LABELC01)GO T0 73 3 1F(l .LT. LARELH61)GO T0 72

-m.FOP~731=KOUN*33:L~EMLEEL.1L52w31§9m[92;14u!-5932131i599512n3;_2n_m.
GO To 11‘

71 CONTINJE S IP¢ROH .Eop 1.>GO F0 116 s K=LA9ELN 5 GO To 117

116 KaLABEBC ‘

117 CONTINJE s 001151=1.K_s K0UNT12=CONFLCT(I.11 s KOUNT18-CONFLCT(I;2

1 .

1131C0NKLCV(Io3)IcRthRA(KOUNT17aKUUNT18)

... .7.-, , _ .....- -.-—.-.

 

  

Irtx .55. 1160 TO 114 s‘ROUNTSUEkounfioo1 "

RECONCILE_CONFLIcTING DIAD ASSIGNMENTS BY CHOOSING_IHAT DIAD HITH THE

LouEST C<ITERIA VALUE. BREAK TIES RANDOHLY,

114 SMALLN3899999999999. 5 1:1 5 L80

1rcxou1t14 .Eo. 1)GO TO 113

74 III+1 3 J31

“hw7é"UiJ31"T-T?TEONVICTYTTUY“}OT."SKILLNOSGO'TUh76 §m~ETEOwaCTTT7mT—TCW'
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1T. SHA-LVO)GO T0 77 S IFIL .95. "’60 T0 76 S LIL21
 
 

SELECTTE11-chrLcr<I.11 S SELECTYL123960N7LCII19J1 5 GO TO 76"

17 L81 S 5MALLNO:CONFLCY(I. J) S ShLECTC1o1)'CONFLCT(Io1)

SELECT(102)ICONFLCY(19J )

7A CONTINJE s IFIJ ,Lr LABEL09IIGO TO 75 s 191! .LT. LABELR¢1IGO T0

“119CONTTNJE S 17(R0

174 1 IFIL .EO. 0100 TO 197 s IFIL .91. 1160 to 79

ASSIGNCISELECTC1) s ASSIGNL=5ELECTI112’ 1 so To

u1;§U1160 TO 119 s KnLABELRi601%6120”
.... .. ...V.. H .

110 KzLABELc

1?." CONTINJE S 001211=1.K S IFICONFLCTI113) .07. SNALLNOIGO TO 12

11 5 IFICONFLCT<1131 .LT. SHALLNOIOO TO 122

IFIL .3E. MIGO T0 121 S L=L*1 5 SELECTIL111=OUNFLCYII91I

SELECTIL921cCONFLCT(I92) 5 GO To 12

" ‘1‘. ‘2 9 E Efr‘a‘HTEITITUECUNFFCTTTIS'T ‘ s “SELECT‘I; .‘11‘W0NVE'CTT’ITIT'8'WIA 2

121

,-m_w7©2

756

1):CONFLCT(I¢2)
7 __

CoNTINJE ' 2 ‘ ' " ‘mv , W“ ”'

IFIL .30. 0’60 T0 197

IFIL .UT. 1150 T0 79 S ASSIGNC=SELECYI1919

ASSIGNLBSELECTI112’ 3 60 T0 106

RIWUNU'RINVTEI7"S"Y?E‘S“XaxiRINUNU“I”1TX*§“I—ISSTGNC7SEEECTTTTI7
"""""" ‘

PRINT 736 I

FORMATI1H .181 '”

ASSIGNLISELECTII921 S KOUNI25=KOUN725*1

05 CONTINUE

c R:

" C‘"‘I_:v

C A?

C [v

VISE TH: SOLUTION MATRIX To REFLECT THE NEH 0110 ‘SSIGNHE~1.

ANINEmitt'PREVIOUSLY”EETHTNATEU OUIURUPceTs xvvathN0“THE"NEWEY"”“““

SIGNED UIAD To DETERMINE IF ANY OF ITS COHHLEHENTS ARE TO BE MADE

FEASIBLE

00801=1, v

IFISOLJTON(I ASSIGNL) .NE. 0.100 To so 5 SOLUION‘;.N¢1)gsoLuyo~‘1,

1N*1)91o S IPIASSIbNL .NE. 1100 To 50
 

““”'"w” SUCUYUVTV31.TI=§ULUTUNTN+1117+1{'~' " " ”M’WHH

80

81

SOLUTOV(I,ASSIGNL)=3.

nos1Js111 1 IF(SOLUTON(ASSIGNC1J) .NE. 0,100 To 81 5 SOLUTONIN*1AJ

11:50LUTONINt1 J111.

SOLUTOVIASSIGNC 11.3, ' " '
soLUTONLASSIGNC. ASSIGNL1829 5 SOLUTONIASSIONOoN913'1000OOO.

‘““““"SGEUYUVTN21.K§510\E1=1Too0000- S'KUUNTIO=KUUNY1§*13‘17TKUUFTI6“.GE

1. N-1)¢0 TO 82 S IFIKOUNT7 .50. 0’60 T0 508

 

 

1030 [1'0 S 1230

1n31 11-1191 5 11(rLowc1(I11 .EU. Assxc~c1co To 1062

IFIFLOW02(111 ,NE. ASSIGNCIGO TO 1033 S 1231291

INUXI19121811 S INDXI21IZI‘FLOHC1II2) 5 GO TO 1033

“I03?"T2'TYTT—VmTNUYTTTTZTETI”¥“INUXT27T7737tOWC27IZY’ “ "’“’

1031 CONTINJE s IF112 .LT, N.1)GO ID 1031 3 I180 3 12-0

1034 11.11.1 s IFIDSTLttli) .EO. ASSIGNL’GO TO 1035

[FIDSTL2II11 .NE. ASSIGNLIGO To 1036 5 1291261

INDXI31121811 S INDXI4912)'DSIL1II1I S 60 TO 1036

1035 1231291 S INDXI3912)'I1 s INUXI4912)IDSTL2¢I11

‘”1336CONTINUE"SIF?!§‘?ET7“N31IBO TO1631 "”*‘ ”"“”'“ ”””“

1037 1:0 S UETECTao

1039 18191 5 420

1030 JaJ+1 S IZIINDX(1 I) S I4SINDXI3,J)

1060 IFISCOQEIIZ. 141160 To 1042 5 GO TO 1043

1042 ISIINDX(2 I) S 15= INDXI49JI 3 IFISOLUTON(139I21 .NEo 0.160 TO 1043
 

I Mm’""“—"WETEUT?UETECT:1"S"TTTUETEUT”.GT. SooYUU"TU”1044 h.“ -
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STOREI1.DETECT)=16 s STOREI29DETECTIIIS

STURFI6aDETECT)=FLODATA(ISIwUSTDATA(15)

1n43 CONTINJE s IFIJ .LT. N-1IGU '0 1039

19(1 .LT. ~.1,co TO 1033 s IFIUETECT .LE. o1su To 808

1044 BIGVa-99999999. 5 1:0 .

1n45 lsl+1 5 IFISTORE(3.I) .Lh. BIGVIGO TO 1046 S 118510REI191)

IZISTOSELgLL) s 13.1 s BIGV=SIUREIS9II
...—..-fl-u.’ -- ...—... 

......“ . -—v“.-- _, .— --- ...—......— ...—”.....—

 

1bké”bo~TINJE s If}: .LTT"DereéT1GO“T6"i61§"s ShEUTBNFI19I21=1

_”1355ASTORF(69!)ISTORELQLL1+%W”W “2-,

803

SOLUTOVS110N‘1)SSULUTON(110N*1)61.1

SOLUTOVIV21912’=SULU70N(N*1912’*1

IFIIS 9E0. DETEcT160 TO 1047 S I4=DETEcT-3 S 0010481313914

STORE(191)ISTORF(111*1) S STORECZAI)ISV0RE(20101)

 

1n47 OETEbTéfiETEET:{“s so

61 CONTINUE s 1F¢K0U~T14 .NE. 01 .OR. RON .NE, 0.160 To 83

. ---»).V

IFCKOUVT1S .EO. 1)GO TO 48 s KOUNTzdIKOUN120¢1 S IFIKOUNT20 gas. 2

1)GO TO 84 s 909:1. s so TO 48

84 KOUNT1481 S KOUNT2080 S 60 T0 48

__ g} CONTINJE S 1F(KOUN714 ONE. 0 90R. RON .NE. 1’60 '0 85

..----..

C

C

‘A. .
—-‘.-_.-.~-

“‘97 pRINT VE.I.?INAL(I.N¢11

~.——...—..V _.....

"MIffkouVTIK"gE5}w13éb"T6*4§MSWKUUNT§BFROUNTzoAS—S‘TFTROUNT§F"IEET‘Zr"

1160 TO 86 s RON:O. 5 GO TO 48

86 KOUNT1431 S KOUNT20=O S GO TO 48

as CONTINJE s IFIKOUN714A.NEo 1 .UR. RON «NE. 0.100 To 57

IFCKOUNT15 .NE. 1160 To 88 s KOUNT1480 3 Go To 48

 
99 KOUN7203K0UNsz+: 9 Irtxouurzo .GE. 2160 To 467$ noun . s 90 TO 48
 

é? CONTINJE S IFIKOUNT16 {WETmI3GUSVO 89'S KOUNTITIO S 6 10'48

... .-.—A,

89 KOUNTZU=KOUNTZO+1 S IFCKOUNTZO .GE, 2300 10 46 S ROHQO, 5 BO TO'SB

MAKE THE LAST DIAD ASSIGNMENT BY DEDUCTION AND PRINT OUT ALL

RESULTS RtLEVANT TO THIS SOLUTION.

. a? CONTINJE S 00 123 IaigN" '

.123 FINAL(19V*1)'Q__
 -...- -.—.-~...—..—---_--—.-._.-_- ‘Lr-‘.-~..

Go To 1049

46 IFIDETECT ,37. 0160 To 1044 s so TO 40

1n49 CONTINJE S

no 90 ‘31.”

0091191.» 5 lF<SOLUTON(I.J) .50. 2.190 TU 92

-.QQQTINJE -L__M-H

KOUNTZIII S 50 T0 90

FINAL(I,NO1)SJ

CONTINJE

po931-1.v

DO94J'19V 3 1F‘FIN‘L‘JIN*1) DE”. [’60 T0 93

94 CoNTINJE

‘
C

l
‘

'

 

O
V
O

3
“

-... ...—-....-aw-u- .9 no-.— . I. . — .'~ -._. - .- .9 n . . .-~--~—— - m— - .L- ....” a --m,--b—r .-*.—.——.——o~-m.~v~o

  - -- —-~ -~. — -. -.--u —.—‘..-o-—-u—-o.-—-- .—. ..- p“- 

‘66”10 $5

93 CONTINQE

96 FINALI‘OUNT21.N+11II

PRINT 96‘

96 roRnATI/IIH .55x.9ceNTERS LOCATION ASSIGNEO*)

00971-1,N
    ,_.,_.... ...-o .-.—....“ --

99 F0RMATI1H ,57x.12,1oX9F3.a)

COSTIO. 5 KOUNT1'(NO*2'N’/2

no991=1,(0UNT1

K0UNT22=FLONC1III

KOUNTZGSFLOhQ2(I,_
 

 mfi~m ,..., < , . L -.. v . , .. V. , V __.-.-... » L__~..,L..,.‘ ---. .

“‘VOOSOOJ'laKOUNTi"" "“
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IFIDSTLlIJ) .EQ. FINALIKOUNI220N*1I .ANDo DSILZIJ) oEQ. FINAL(KOUN
 

"”"1753?“317—75RTJD§IE§TJTMIEU} FINICYROUNI227N31) .AND- DSIll(JI .E0.*w

2 FINALIKOUNTZSoN*1))GO I0 101

109 CONTINJE

GO To 99

101 CONTINJE

IFIFLOUAYAII) .EO. 99999. cOR. FLODAIAIII .ER- v9999.)GO IO 99

‘”TVID§TUTTKIJI"IEOT”999991'i09. DSTDATA!JI'AEOT”39999.IGO ID 99

COST-COSTorLODArA(I)'DSTDAIAIJ)

9o CONTINJE

PRINT 102. COST

107 FORMAII1H .I* THE TOTAL COST OF IHIS SOLUTION IS 9.F23.1)

PRINT 103.KOUNT24

  

"303TORFTTTTR‘.£ A TOTALUF“*.I4:*PKIRASSIGNMEVTS“HEREEIIFTWTTED}3I'"‘

PRINT 105.KOUNT25

105 FORMAT(1H .9 A TOIAL 0F fi;l4o*TIES IN THE SELECT MATRIX HERE RESOL

1VED 8V RANDOM CHOICE.-)

PRINT 145 KOUNI26' '

145 FORMATI1H .. A TOIAL or *oI4a' TIES HERE BRoKtN RANDOHLY HHEN 5ELE_

'"“itTTN9'V“IRES§IGNHFNTS'FOR ELIMINAIIUN.*""- "

PRINT 139. KOUNTSO

739 FORMAII1H*,cIHE CRITERIA MATRIX HAS USED To NAKE"£’PARIIAL'ASSIGNM

1ENT A TOTAL 0: ..15.- TIHhS.*)

PRINT 974. KOUNI31

974 FoRMATI1H ,.CLOSEU LINES HER: tNCOUNIERED AIUIAL 0F 9.15.9TIHE50)

 

  

~'TNEHI‘TTHEF'T'IT” '“."””""“" ‘*_""""’"

TsITNEd--IOLDI/1000o

PRINT 147.7

147 FoRMATIoTIME SPENI 0N IHIS SOLUTION HASOOF1696.*3ECONDSo'I

TOLflgTVEH

39 CONTINJE A
WW'GOMTm”—‘MMM"M” fl --.--- _. - -- . I-“ M“ m A M-,-.-I---___.._--_“Mm---”I-

197 PRINT 198

198 FORMATI1H .wCRITERIA VALUES ARE TOO LARGE TO IESIit’

601 CONTINJE

END

.-- . ,_._ __,_-______,_,___ _._——. ~.——.——-- -_A --. ~ , » - -7 — -o -— ---... ——-. —._.--—---.-—..———-—-—v--—

  

-c--..-.<»» “7---.—A. V‘V'm_~.’ . ..7,.. < 7-vw‘.—~.- a».. -__,,,. , 7 --....

 

79... ——.~—... .__—-—- “9- ...,, ,, -....- n... .- ...—.g
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APPENDIX VIII

LISTING OF RDM

PROGRA‘ RANDOM

'“DINENSTUV”FEODATI(EzflTTFLUAC1(6301IFLDQC2I63UTTURTENCITETTDRIGNfiffm’

18).0RISND(8).DSTL1I530).DSIL2(630I. DSTDAIAchUIa IFINAL(2:36)

INTEGEI ontc~c1 Onlchz ‘ "' " ‘

XsTIMEFISI

CALL R‘NFSETIX)

READ buonNUMBER
wMWTmmnTnTMWJWWWMWWMHWINA WI- "W_WWMMW_MMWMMM

TDLDITIHEFI4)

C [TeRAIE FJR A TOTAL UF NUMBER PROBLEMS.

Dobo1KJUNT99I1aNUMRER

C RFAD FLOH AND DISTANCE DATA.

READ 10" N. M1. K0U~T1.KOUNI2
.{rmmrnyfin.wmmeum , w ”A “*rflw. WW “WWW“

DOZKOUVT3=1, 2 S I=0

3 READ 4a(ORIGNc1(J).oRICNC2IJ).0RIGNDIJ).J:1.8o1I

4 FDRHAI(8(12.I2:F6.1)I

IFIKOUVTS .50. 2)60 TD 5

DOOJSIIB S 131*1

“W“““FEUWCITTTEURTCNCifJI“3”F£UH02IIIiURIUNliTUI””” """““’”’

FLODATA(I)IORIGND(J)

IFII .3E. (Ntt2vNII2IGO To 2

A CONTINJE

GO TO 5 ‘

5 CONTINJE S DO7J= 1 8 S I:I+1

"“"“'USTE'TTT"URTUNC"TUI”Y“DSTL2(IT'URTUNUEIJI‘""“ ’”“””

DSTDATAII)=0RIGND(J)

IFII .GE. (N't2- N)/2)GD IO 2

7 CONIINJE

60 To a

2 CONTINJE
PRINTZFIKUUNT‘I" . - _ . . ..--..._. ---,-.. , _-

26 FORMATIboX.t PROBLEM NUHBtR *.13)

TNEH:IIMEF(4I s I- (TNEH.IOLDI/1000.

PRINT 13.T

13 FORMATIt TIME SPENT ON’PRELININARY uoan was tof16.3o¢SECONDS,tI

TOLDsIVEd

’C“"GFN£R¢TE""TUTTE"OF"¥KUUNT2i“SOLOTTONS“FOR‘TRE"PRUFIEH’ “"

0052K0JNT6=1.KDUNI2

0014!:10V

14 IFINAL‘laIIII

18N$ J80‘

“15 J3J+1

fiKWUNUVRTWFT"13 5 X: I I‘XEXERINDNU”!KiX‘I"*

IFINALIzoJ):IFINAL(1. K)

IFIK .Eo; I)Go T0 16

12-1-1

DOI7I3‘K012

17 IFINAL‘1:ISI'IFINAL(1aI3‘1’

“11'I§I¥1*3mTFTT“TGT. O)BU‘TO”15 ‘ "' ”"' "” ‘”""”"”“"”'” ”’ ""'

C CDMPUTE INE COST OF IHIS SOLUTION AND PRINT OUT UAIA RELEVANT TO II.

1? COSTIO S KOUNT3:(N992' N)/2

DO18I310‘0UN73

K1'FL0dC1HI

‘ K2sFL0~02<II “fl",

“I‘DBI9UiITKUUNT3‘“”“‘”"““”'*“”“""“”*“'“" "”' ‘“

 

 

 

 

 



202

”_w IF£D§I9IIJI .EQ. IFINAEIEIEII .AND. DSTL2(JI 'E°1_151E!L<2'K3) .OR

1. DSTL£(JI .Eo. IFINALIZIKlI .AND._DSTL1IJI .eo. IFINAL(2IK2IIGD T

20 20

19 CONTINJE

GO TO 18

29 CONTINJE

2IFIFL0951511992F0_99999. 20R. FLODATAIII ,EQ. ~9999. IGO T_oIa

1F(DSTUATA(JI .60. 99999. 90R. DSTDATAIJ’ .EO- .9999 I60 To 18

COST-CJST+FLODATA(I)*DSTDATA(JI

1R CONTINJE

PRINT zloKOUNTb

21 FORMATI/II1H .58X.tSOLUTION NUMBER «.IBI

PRINT 22 ~

‘fl55"FDRNATT77IW"755X73CENTERSM""LDCATTUNMASSIGNED‘INW H

0023181,V

23 PRIN724.I.IFINAL(2.II

24 FORMAT(1H ,57x,12,10x.I2I

PRINT 28 COST

2a FORMATC1H ,. cos? IS c.r25.1I

TNEUETTHEFIJI W‘“‘““'“’ ”“”W”'”“”“’ “‘m” ’ ‘"”“"”m”“‘”“"

TscTNEd--TOLDI/1000.

PRINT 250T

25 FORMAT‘t TIME SPENT ON THIS SOLUTION HAS*IF16-SI¢SECONDSItI

TOLDsTVEH

_ 32 CONTINJE-

"A‘ifij‘i"“CoNTfiJJE"""*"‘ " ‘ ’ “ ‘ "W”“"” ‘

“£19..”
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APPENDIX IX

 

Prgblem la

PrOblem 2b

‘i E. fik
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Problem 16p (continued)
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Problem l§p (continued)
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Problem l7q (continued)
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Problem 24x (continued)
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Problem 24X (continued)

 

3— 1‘. £11: .1. 11 f ik .1. .15.. f 1k

11 17 2 13 21 2 16 21 2

11 13 x 13 22 2 16 22 2

11 19 7 13 23 p 16 23 p

11 20 2 14 1§ 99999 17 18 99999

11 21 x 14 16 -n 17 19 '0

11 2? ; 14 17 -n 17 20 9

11 23 z 14 14 -n 17 21 2

12 13 2 14 19 -u 17 22 7

12 14 2 14 20 7 17 23 2

12 12 2 14 21 2 18 19 99999

12 15 P 14 22 9 16 20 2

12 17 P 14 23 9 10 21 2

12 1R 2 15 16 99999 18 22 2

1; 19 2 15 17 -g 18 23 2

12 20 7 15 18 -n 19 20 2

12 21 2 15 19 .n 19 21 2

12 22 2 15 an 9 19 22 2

12 23 2 15 21 2 19 23 2

16 14 99999 15 22 9 20 21 3

13 15 -n 15 23 2 20 2? 2

15 16 -r 1b 17 99999 ?0 23 2

15 17 -, ie 18 .9 21 22 2

1s 18 -c 16 19 -n 21 23 2

13 19 -n 16 20 9 ?2 23 2

13 20 2

Problem 25y
 

1. E. fik i. 5- £15. 3- 3' £592

1 2 5 2 11 -n 5 b 1n

1 3 y 2 1?. "fl 5 7 "n

1 4 4 3 4 'a 5 8 ”B

1 5 1 3 5 '9 5 9 “0

1 6 -c 3 6 '0 S 10 5

1 7 -c 3 7 ’0 5 11 1

1 R b 3 8 5 5 12 1

1 9 2 3 9 5 6 7 b

1 10 1 3 10 2 6 8 1

1 11 1 3 11 2 6 9 1

1 12 1 3 12 2 6 10 5

2 3 5 4 5 5 6 11 4

2 4 -c 4 6 7 6 12' ’0

2 5 2 4 7 ? 7 8 10

2 6 ? 4 8 1n 7 9 5

2 7 2 4 9 -n 7 1o 2

2 8 ‘0 4 10 ’n 7 11 3

2 9 4 a 11 5 7 12 3

2 1o 5 4 1’ 5 a 9 -n
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13
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11
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Problem'ZSy (continued)

fik

-n

10

1o

problem 26z

0.561

1.683_

0.054

0.091

1.419

0.027

0.429

“00000

0.270

0.650

6.831

1.155

1.039

0.330

0.216

0.697

0.001

0.606

0.027

0.330

0.660

0.525

0.054

'00000

0.021

0.135

0.650

0.528

0,693

0.108

0.027

0.132

0.866

“00000
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0,495

.0.000

.0.000
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0.0?7
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-0.000
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.00000
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-0.000.
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0.216
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-0.000

-0.000

0.363
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0.216
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'00000
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’00000

.00003
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fik

0.330

0.381

-3.000

-0.000

0.199

0.135

0.330

-0.000

0.270

0.495

'0.000
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0.330
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Footnotes to Appendix IX

aRelevant references to problem 1 are: Robert J.

Wimmert, "A Quantitative Approach to Equipment Location in

Intermittent Manufacturing," p. 95; Robert J. Wimmert, "A

Mathematical Model of Equipment Location," Journal of Indus-

trial Enqineerinq, IX, No. 6 (November-December, 1958) 500-

501; and James M. Moore, Plant Layout and Design (New York:

The Macmillan Company, 1962), p. 180.

 

The hypothetical problem is not based on a lattice layout

grid. All four centers require equal areas; no constraints

are specified°

bThis hypothetical problem is provided by Peter C.

Noy, American Machinist, p. 58. There are no constraints;

either distance criterion is appropriate, since the follow-

ing one-dimensional lattice is specified:

 

       
 

The numbers in the grid specify the location labels.

CProblem 3 is offered by Gavett and Plyter, Opera-

tions Research, pp. 212-213. It is hypothetical, imposes no

constraints and is based on the assumption that all center

areas are equal.

dGeorge Conrade supplies problem 4, Institutions,

pp. 12-121. This hypothetical kitchen layout problem

specifies equal center areas and no constraints. The author

computes d. terms using the straight—line criterion and the

following iéttice:

 

 

l 3 5 7

 

2 4 6 8

      

eProblem 5 is Steinberg's backboard wiring problem,

Society for Industrial and Applied Mathematics Review,

pp. 43-44. .A 4 x 9 lattice is used, with centers 35 and 36

added as dummies to make the lattice rectangular. Distances

are calculated using the straight—line criterion.
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10 ll 12 l3 14 15 l6 17 18

 

19 20 21 22 23 24 25 26 27

 

28 29 3O 31 32 33 34 35 36          
 

fTwo sources of problem 6 are: Smith, Journal of

Industrial Engineering, p. 14 and Gerald Nadler, Work Design

(Homewood, Illinois: Richard D. Irwin, Inc., l963), p. 224.

No constraints are imposed and centers are assumed to be of

equal area. The fik values are empirically derived. The

author's assumption that backtracking is twice as costly as

forward movement is discarded for our purposes. The rectan-

gular and straight-line distance criteria provide the same

results, as the author specifies the following one-dimen-

sional lattice:

 

 

 

l 2 3 4 5 6 7 8 9 10

            

9Problem 7 is also based on an actual case study,

Smith, Journal of Industrial Engineering, p. 26. All other

information in the preceding, footnote also applies to this

problem, including the lattice.

hThe source of problem 8 is: Wimmert, "A Quantita-

tive Approach to Equipment Location in Intermittent Manu-

facturing," p. 152. This problem is derived from an actual

case, with distances Specified without a lattice configura-

tion. The author specifies four constraints:

1. Center l5 must be assigned to location 15. This

constraint is imposed for "A" procedures by creating

dummy center 16 (and location 16). The term flS,l6

is made arbitrarily large. The term d15,l6 is

equated to zero, whereas all other dj,l6 values are

made arbitrarily large.

2, Centers 12 and 13 must be adjacent.

3. Centers 12 and 14 must be adjacent.

4. Centers 13 and 14 must be adjacent.

Since the first constraint can be handled without adding a

dummy center, the problem statistics vary. It should be

noted that the given layout configuration will not permit

the last three constraints to be satisfied simultaneously.

The author intended centers 12, 13, and 14 to be assigned
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‘to locations 5, 6, and 7 or else 12, 13, and 14. However,

the distances between these "adjacent" locations are signif—

icantly larger than several other d'g values. As a result,

the algorithms do not produce a feasible solution. This

dilemma is best solved by equating to one all diads involv-

ing centers 12, 13, and 14 which reference locations other

than 5, 6, 7, 12, 13, or 14 at the beginning of the solution

process.

The layout configuration is as follows:

Q-. 7

\\\\\ 2 l

\

 

    
 

/
/
/
/

 

 

  
 

 

 

 

 

 
 

         

3

\\\i

5 8 10 \\ \

12

6 9 11
\ 13

\§ 1 l.
7 R \ 5 

1Problem 9 is taken from two sources: Reed, Plant

Layout: Factors, Principles and Techniques, p. 210 and

Daniel J. Murphy, "Machine Location Patterns for Facility

Analysis" (unpublished M.S° thesis, Department of Industrial

Engineering, Engineering Library, University of Pittsburg,

1957), p. 24. The problem is hypothetical and only fik

values are provided. For our purposes, center areas are

assumed to be equal and a 3 x 3 lattice is specified.

Center 9 is a dummy added to make the grid square and dis-

tance is computed with the straight—line criteria.

 

 

 

l 2 3

4 5 6

7 8 9     

JThis hypothetical problem was also taken from

Reed, Plant Layout: FactorerPrinciples and Techniques,

p. 210. Center 16 is a dummy and the following pairs of

centers must be adjacent: {1,2}, {3,4}, {7,8}, {9,10},

{11,12}, and [13,14]. The following lattice is constructed,

with distances computed on a straight-line basis:
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5 6 7 8

 

9 10 ll 12      

kThis hypothetical problem of Lawler, Management

Science, p. 593, imposes no constraints; distances are

specified without a lattice configuration. The author's

linear costs are ignored for our purposes. Centers are

assumed to require equal areas.

EProblem 12, Reed, Plant Layout . . . , p. 391) is

hypothetical and no constraints are imposed. The following

lattice is used, with distances computed with the straight—

line criteria:

 

 

l 2 3

 

   
4 5 6

  

mThis problem is equivalent to problem 12, except

that dummy centers are added to level the area requirements.

Two sets of centers must be adjacent: {1,2} and {5,6}. The

lattice is as follows:

 

 

 

l 2 3

4 5 6

7 8 9      

nProblem l4, Reed, Plant Location, Layout and

Maintenance, p. 93, is hypothetical and has no constraints.

A 3 x 3 lattice is arbitrarily chosen for our purposes, with

distances computed using the straight-line criterion.

Center 9 is added to complete the grid.
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OProblem 15~is equivalent to the previous problem,

except that three dummy centers are added to level area

requirements. The following pairs of centers are con-

strained to be adjacent: {3,4}, {6,7}, {8,9}, and {10,11}.

 

 

 

l 2 3 4

5 6 7 8

9 10 ll 12      
 

pKase and Nishiyama provide this hypothetical prob-

lem in "An Industrial Engineering Game Model for Factory

Layout," The Journal of Industrial Engineering, XV, No. 3

(May-June, 1964), 149-150. The fik values are based upon

discounted present value calculations with an annual rate of

return of 7 per cent. Linear and backtracking costs are

ignored. A modified rectangular distance criteria is used

to compute djg. Fourteen dummy centers are added to equate

center area requirements. The following constraints are

imposed:

1. x11 must be assigned.

2. x24 must be assigned.

3. The following pairs of centers must be adjacent:

{1,2}, {3,4}. {4,5}. (7.8}. {8.91, {9.10}. {11.12}. {13,14}

{15,16}, {16,17}, {17,18}, {19,20}, {22,23}, and {23,24}.

Adjacency is defined to occur when a distance value is 16.5.

Since some distance values are less than 16.5, the algo-

rithms need not necessarily return feasible answers.

The layout configuration is as follows:

 

            

 

  

l3 14 15 l6 17 18 19 2O 21 22 23 24

\ \ \\\\\Aisle \\\\\\\\

12 ll 10 9 8 7 6 5 4 3 2 l

           
 

qProblem 17 is derived from an actual case study,

Armour and Buffa, Management Science, p. 297. For our

purposes,area requirements are assumed to be equal. The

following 5 x 4 lattice is arbitrarily chosen, with the

straight-line criterion used to compute distances.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20      
rThe fik values of problem 18 were derived empiri-

cally by Muther in Systematic Layout Planning, pp. 4-18.

The following lattice is chosen for our purposes, with the

straight—line criteria used to compute distances. Center 16

must be added as a dummy for versions C-R, C-S, H-R, and H-S.

 

 

1 2 3 4

 

5 6 7 8

 

9 10 ll 12

 

13 14 15 16      
5Problem 19 is supplied by Armour, "A Heuristic

Algorithm and Simulation Approach . . . ," p. 32. The f-

and d'fi values of problem 1 were changed to demonstrate the

inadequacy of Wimmert's quadruplet selection procedure.

tThis hypothetical problem of Land, Qperational

Researchpggarterly, pp. 181-198, specifies no constraints

and center areas are assumed to be equal. The author pro-

vides djg values without a lattice grid.

 

uProblem 21 is hypothetical and Reed specifies a

2 x 3 lattice in Plant Location, Layout and Maintenance,

p. 106. Constraints are imposed to make two pairs of

centers adjacent: {1,2} and {3,4}. The straight-line

distance criterion is used, with the distance between

adjacent centers being 30 (rather than 1).
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vThis problem is adapted from a case study found in:

Arch R. Dooley et al., Operation Planning and Control (New

York: John Wiley and Sons, Inc., 1964), pp. 212-213. There

are no constraints and all centers are assumed to require

equal areas. The following lattice is chosen for our pur—

poses, as is the straight-line distance criterion:

 

 

 

1 2 3

4 5 6

7 8 9      

wProblem 23 is hypothetical. No constraints are

imposed and the centers require equal areas. The layout

grid is suggested by the configuration of Schneider's recom-

mended solution, Journal of Industrial Engineering, p. 480.

Straight-line distances are computed.

 

 

 

 

 

l 2 3

4 5 6

7 8 9

10 11 12

l3 14 15      
xThe problem was presented by Charles G. Haskins to

the Computer Aided Plant Layout Institute, Milwaukee, Wiscon-

sin, 1967. The problem is empirically derived and originally

has eighteen centers. The f- terms are REL values. Two

small centers are dropped from the analysis, since they can

be added later with an "addition" algorithm. One very large

center has been broken into seven centers (13 through 19) to

level area requirements. The fik values are adjusted to

link these seven centers sequentially in the final solution.

A 4 x 6 lattice is chosen, with center 24 being a dummy.

This is needed for H-R, H-S, C-R, and C-S to complete the

grid. Straight-line distances are computed. Seven pairs of

centers are constrained to be adjacent: {11,12}, {13,14},

{14,15}, {15,16}, {16,17}, {17,18}, and {18,19}. The lattice

is as follows:
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l 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24        
yThere are two sources of problem 25: Frederick S.

Hillier, "Quantitative Tools for Plant Layout Analysis,"

The Journal of Industrial Engineering, XIV, No. 1 (January-

February, 1963), 35; and Vollman, "An Investigation of Bases

for the Relative Location of Facilities," pp. 28-35. The

authors specify for this hypothetical problem a 3 x 4 lat-

tice, no constraints, equal center areas, and the rectangu-

lar distance criterion. The lattice is as follows:

 

 

 

 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16       
2This problem was empirically derived by Vollman,

"An Investigation of Bases for the Relative Location of

Facilities," p. 85. It is modified for the equal center

area assumption, although no constraints are imposed.

Distances are computed with the straight-line criterion.

The grid used for our purposes is as follows:

 

 

 

 

 

   

 

l

2 3 4

5 6 7

8 9 10

ll 12 13 14

15 16 17

18 19 20     



APPENDIX X

RANDOM STARTING SOLUTIONSa

 

 

Prob- Solution

lem Numbers Permutation of Locations

 

2 02,03,01,05,04,06

05,01,03,02,06,04

02,04,06,05,03,01

03,06,04,05,01,02

05, 08,03, 06, 07, 01,04, 02

01,04,08,06,03,02,07,05

01,07,03,06,04,05,08,02

03,05,02,01,04,08,06,07

08,34,05,l7,01,32,16,31,26,18,25,12,21,13,11,

33,22,36,23,04,07,27,09,24,06,20,10,03,14,35,

28, 19,30, 15, 02,29

2 25,19,16,26,11,12,35,34,18,02,07,33,05,17,22,

03,30,09,23,29,06,20,28,04,01,32,10,15,14,31,

l3,36,08,21,27,24

3 12,22,20,l7,04,10,30,25,11,24,07,34,33,28,0l,

03,05,36,09,16,14,02,26,31,32,06,08,29,18,21,

l9,26,23,35,l3,15

4 36,03,06,29,32,05,34,01,23,19,09,22,15,l3,35,

10,14,04,08,12,26,24,16,28,25,31,02,20,07,18,

33,21,17,27,30,11

07,03,0l,08,06,02,09,10,05,04

02,07,05,01,09,06,08,10,04,03

02,04,01,09,05,10,06,08,03,07

06,04,08,10,05,07,02,03,09,01

06,04,08,09,05,07,01,10,02,03

04,05,07,01,08,03,09,02,06,10

04,09,03,10,02,08,05,07,06,01

03,09,10,02,01,04,07,06,08,05

04,01,07,09,08,05,02,06,03

01,03,04,05,08,09,06,07,02

06, 05, 02,01,03, 08,09, 07, 04

07,06,02,03,08,01,04,09,05

04,02,03, 10, 05, 16, 06, 13, 14,01,08, 10, 09, 15,07,

11

15,01, 10, 12, 06, 14, 08,07, 16, 03, 02, 13,09,05, ll,

04

b

w
a
N
w
a
w
p
—
a

w
a
N
w
a
N
w
a
w
l
—
a

10

N

 

aThese are the random starting solutions used for

H-R, H-S, C-R, and C-S. A permutation of locations specifies

the sequence of locations assigned to centers l,2,...,N.
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Prob- Solution

lem Numbers Permutation of Locations

 

3 01, 16, 15, 08, 14, 13, 07, 12, ll, 09, 05, 04, 03, 10, 06,

02

07, 08, 04, 14, 12, 11, 15, 09, 02, 06, 03, 10, 16, 13, 01,

05

04,03,06,01,05,02

06, 01, 05, 02, 03, 04

01,03,05,06,02,04

05,04,02,06,03,01

05,04,01,06,03,02,09,07,08

09,04,03,06,02,07,01,05,08

04,08,02,01,09,06,07,03,05

06,04,09,02,07,08,03,01,05

09,02,05,03,08,01,07,04,06

08,02,04,05,06,03,09,07,0l

09,05,04,03,01,06,02,07,08

02,04,06,07,03,08,01,05,09

05,11,07,04,03,08,01,06,09,12,02,10

11,09,04,02,12,05,01,08,06,03,10,07

12,01,11,08,10,09,07,04,03,06,05,02

03, 04, 10, 08, 05, 09, 07, 06,02, 12, 01, 11

17, 14, 05, 01, 18, 15, 07, 08, 20, 02, 13, 03, 04, 12, 06,

16,09,19,1l,10

04, 06, 01, 11, 13, 03, 10, 20, 08, 17, 15, 07, 19, 12, 18,

09,16,14,02,05

3 13, 06, 12, 16, 15, 07, 08, 05, 14, 19, 10, 11, 09, 01,20,

04,02,17,03,18

4 02, 11, 17,05, 13, 20, 10, 12, 08, 03, 01, 09, 19, 14, 18,

15,07,04,06,16

18 1 01,10,11,08,06,05,07,03,14,04,09,13,02,12,15,

16

2 05,04,10,12,08,15,02,09,03,11,13,14,01,06,07,

16

3 08,07,06,02,05,14,10,12,03,04,11,15,01,09,13,

16

05,10,12,11,03,01,08,14,06,02,07,15,09,13,04,

l6

05,02,04,06,01,03

02,04,01,03,06,05

03,02,01,06,04,05

05,06,04,0l,02,03

01,09,07,05,04,02,03,06,08

03,07,05,02,06,04,01,09,08

07,05,03,08,04,06,02,09,01

09,06,02,07,03,01,05,08,04

.
b

12

13

14

15

H
I
b
W
N
H
t
h
N
H
-
P
W
N
l
-
‘
n
w
a
l
-
J

17

N
.
}
>

21

22

u
w
a
I
—
I
o
w
a
H
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Prob- Solution

lem Numbers Permutation of Locations

 

23 13, 04, 09, 05, 12, 11, 14, 07, 10, 02, 03, 01, 08, 15, 06

12,15,03,07,06,11,13,08,10,02,04,01,09,14,05

13,04,05,07,08,1l,12,14,01,09,02,10,15,03,06

10,15,04,01,08,09,05,l3,1l,07,03,12,06,14,02

12,06,13,04,10,16,17,08,01,03,09,19,23,11,05,

22,20,07,18,15,14,21,02,24

22,09, 19, 15, 16, 04, 05, 01,08, 13, 02, 12,06, 17, 10,

18,21,14,20,07,03,23,1l,24

3 l4,11,10,03,09,12,04,22,l9,13,17,20,02,16,06,

18,05,21,23,01,07,15,08,24

20,08,23,02,l4,10,11,06,22,07,05,18,15,03,17,

13, 04, 09, 01, 21, 12, 16, 19,24

07,12f10,09,08,06,11,01,02,04,05,03

ll,04,07,01,08,05,03,09,02,10,12,06

12,04,09,03,10,02,07,01,08,1l,05,06

11,03,12,07,08,01,06,09,04,05,02,10

k
d
h
c
n
k
J
H

24

N
4
:
.

25

w
a
H

 



APPENDIX XI

PROBLEM STATISTICS

 

 

 

a. b c Number of

Problem N Z Vf Vd Lower Bound Constraints

1 4 0.0 52.3 44.8 86,540.0 0

2 4 33.3 90.4 53.5 2,250.0 0

3 4 0.0 45.6 49.3 389.0 0

4 8 46.4 165.5 42.3 6,661.2 0

5 36 72.4 394.2 52.6 3,002.9 0

6 10 44.4 215.1 60.3 455.5 0

7 10 4.4 124.1 60.3 3,049.0 0

sd 15 66.7 564.2 58.9 1,023,132.o 4

9 9 38.9 108.0 35.0 690.0 0

10 16 42.5 435.4 39.9 799,2 6

ll 7 14.3 75.8 57.4 454.0 0

12 6 33.3 82.3 33.0 481.0 0

13 9 50.0 411.4 35.1 485.2 2

14 9 75.0 166.4 33.9 552.4 0

15 12 50.0 393.1 39.7 644.8 4

16 24 15.9 431.8 232.4 40,529.6 6

17 20 66.0 246.9 42.8 396.6 0

18e 15 60.0 248.8 40.1 13,769.0 0

19 4 0.0 72.6 30.4 155,830.0 0

20 5 0.0 74.5 27.5 1,246.0 0

21 6 13.3 254.9 33.5 1,212.0 2

22 9 27.8 154.9 35.0 502.2 0

23 15 86.7 300.8 44.3 92,000.0 0

24 23 6.0 592.3 45.1 1,288.8 7

25 12 32.0 107.8 46.2 243.0 0

26 20 44.0 235.8 47.2 66.4 0

 

aZ is the number of zero fi terms divided by (NZ—N)/200.

It is expressed as a per cent.

bV is the coefficient of variation for fik terms and is

expressed as a per cent.

ch is the coefficient of variation expressed as a per cent

for dj}; terms.

dFor "A" versions: N=l6, Z=70.0, Vf=525.3, and Vd = 266.7.

eFor C—R, C-S, H-R, and H-S versions: N=l6 and Z=65.0.
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APPENDIX XII

SUMMARY OF COST AND TIME OUTPUT FOR TEST PROBLEMSa

 

 

 

 

Average Average

CostC Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

1 Wimmert's ... 100.8** ... ...

RDM 130.0 125.7 0.061 0.104

1-A 103.9 100.8** 0.169 0.209

1-B 102.4 100.8** 0.232 0.235

2—A 100.8 100.8** 0.159 0.505

2-B 100.8 100.8** 0.176 0.504

3-T 100.8 100.8** 0.210 2.758

32A(L) 100.8 100.8 0.161 0.653

34A(H) 100.8 100.8** 0.182 0.726

3-B 100.8 100.8** 0.183 0.596

3-C 100.8 100.8** 0.192 1.513

4-A 100.8 100.8** 0.172 0.236

4-B 100.8 100.8** 0.168 0.251

4-C 100.8 100.8** 0.179 0.314

5—B 100.8 100.8** 0.278 1.280

2 Noy's ... 133.3 ... ...

RDM 161.7 151.1 0.113 0.143

l-A 131.1 131.1 0.223 0.445

1-B 137.8 137.8 0.223 0.474

2-A 151.1 128.9 0.225 1.190

2-B 156.7 131.1 0.232 1.438

3-T 148.3 126.7 0.200 17.251

3-A(L) 154.4 126.7 0.214 1.555

3—A(H) 174.4 155.6 0.223 1.714

3-B 142.2 126.7 0.226 1.348

3-C 113.2 113.2* 0.224 5.996

4-A 131.1 131.1 0.220 0.531

4-B 126.7 126.7 0.234 0.536

4-C 126.7 126.7 0.238 0.944

S-B 153.3 144.5 0.606 16.600

H-R 113.2 113.2* 0.162 0.760

H-S 113.2 113.2* 0.121 1.325

C-R 113.2 113.2 0.498 0.367

C-S 113.2 113.2 0.504 0.351

3 Gavett's 103.6 103.6** ... ...

RDM 129.4 118.3 0.061 0.102

1-A 104.4 103.6** 0.121 0.210

l-B 122.9 122.9 0.132 0.235

24A 103.6 103.6** 0.124 0.470

2-B 113.2 103.6** 0.136 0.492

3-T 106.3 103.6** 0.128 2.704
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c Average Average

Cost Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

3-A(L) 103.6 103.6** 0.135 0.656

3-A(H) 103.6 103.6** 0.140 0.728

3—B 103.6 103.6** 0.142 0.564

3-C 103.6 103.6** 0.138 1.502

4-A 114.4 114.4 0.140 0.232

4-B 110.0 103.6** 0.129 0.245

4-C 116.2 116.2 0.139 0.308

S-B 113.2 103.6** 0.217 1.414

4 Conrade's ... 113.0** ... ...

RDM 154.0 141.7 0.192 0.221

l-A 126.8 126.8 0.423 1.036

l-B 121.6 116.9 0.442 1.078

2-A 134.1 118.9 0.428 3.852

2-B 134.9 125.0 0.442 3.461

3eA(L) 131.8 122.8 0.397 4.043

3-A(H) 136.7 135.5 0.437 6.447

3-B 140.0 130.9 0.412 4.284

3-C 126.2 114.7 0.404 17.377

42A 129.2 126.7 0.422 1.204

4-B 136.5 136.5 0.441 1.294

4-C 135.8 135.8 0.448 2.739

5-B 137.1 133.8 1.954 36.200

H-R 118.2 114.8 0.123 1.500

H-S 115.0 113.0** 0.131 4.074

C-R 116.3 113.7 0.669 0.529

C-S 116.0 113.0** 0.663 0.580

5 Steinberg-l ... 165.5 . . ...

Steinberg-2 ... 162.8 ... ...

Steinberg-3d ... 163.5 . .

Steinberg-4 .. 162.9 . ..

Gilmore's-N ... 151.1 ..

Gilmore's-N ... 155.8 ... .

Gilmore's-N d ... 154.6 ... .

Gilmore's-NSd ... 164.9 ... ...

RDM 303.1 278.9 3.392 35.894

H-R (3-R) 153.8 148.7 1.312 155.927

H-S 150.1 145.2 1.263 1324.784

C-R 156.8 150.0 8.890 86.532

C-S 151.1 144.5* 8.894 84.453

6 Smith'se ... 165.1 ... ...

RDM 306.7 236.5 0.269 0.362

l-A 255.9 255.9 0.744 2.108

1-B 209.5 193.6 0.771 2.561

2-A 223.5 201.5 0.760 11.648

2-B 275.5 240.3 0.797 13.448
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c Average Average

Cost Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

3-A(L) 203.1 145.4 0.683 10.436

3-A(H) 266.0 192.0 0.660 13.323

3-B 196.5 185.8 0.706 9.848

3-C 163.8 163.8 0.700 45.986

4-A 281.9 281.9 0.738 2.228

4-B 220.3 200.4 0.781 3.110

4—C 159.2 159.2 0.798 9.702

H—R 142.1 121.0* 0.194 3.282

H-S 142.1 121.0* 0.155 8.276

C—R 146.0 124.9 0.870 0.841

C-S 146.0 124.9 0.863 1.002

7 Smith'se ... 201.8 ... ...

RDM 252.9 228.6 0.277 0.364

l—A 182.1 182.1 0.759 2.274

l-B 200.1 196.2 0.788 2.456

2-A 181.7 158.1 0.783 18.250

2-B 198.9 188.6 0.812 16.272

3-A(L) 172.1 166.3 0.690 9.556

3-A(H) 178.5 173.4 0.672 13.496

3-B 179.2 179.2 0.714 12.163

3-C 150.4 150.4 0.705 53.995

4-A 183.0 183.0 0.763 2.600

4-B 183.0 183.0 0.783 3.216

4-C 157.8 157.8 0.813 8.748

H-R 143.0 141.0 0.167 3.318

H-S 143.0 141.0 0.157 8.435

C-R 143.1 136.6* 0.884 1.102

C—8 143.1 136.6* 0.886 1.126

8 Wimmert'sf 224.3 224.3 ... ...

RDM U U 0.667 1.595

l-A U U 3.201 14.263

l—B U U 2.770 14.636

22A U(l) U(l) 3.476 476.232

2-B U U 2.854 419.602

3-A(L) U U 2.981 560.641

3—B U U 2.460 323.446

3-C U(l) U(l) 2.509 1196.874

4-A U U 3.279 15.796

4—B U U 2.814 14.939

4-C U U 2.826 66.508

9 RDM 132.9 126.6 0.235 0.282

1-A 153.0 153.0 0.570 1.358

1—B 148.6 131.3 0.595 1.918

2-A 140.8 133.3 0.576 3.700

2-B 147.3 141.0 0.603 6.337
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c Average Average

Cost Phase I Phase II

Problem b Time in Time in

Number Procedure .Average Minimum Seconds Seconds

3-T 143.8 141.8 0.483 186.978

3-A(L) 132.8 127.5 0.517 4.210

3-A(H) 132.1 124.0 0.549 4.685

3-B 140.7 137.0 0.566 4.553

3-C 123.7 123.7 0.537 24.165

4-A 153.0 153.0 0.567 1.708

4-B 120.6 120.6 0.604 2.321

4-C 117.5 117.5 0.611 5.849

S-B 151.2 144.1 3.720 597.252

H-R 115.4 112.1 0.146 1.760

H-S 116.3 115.8 0.139 5.070

C—R 113.1 100.2* 0.755 0.782

C-8 101.3 100.2* 0.759 0.802

10 RDM U U 0.686 1.581

1-A U U 3.246 12.770

l-B U U 3.515 19.147

2-A U U 3.432 26.703

2—B U U 3.578 19.114

3-A(L) U U 2.911 17.862

3—B U U 3.031 20.600

4-A U U 3.566 15.273

4-B U U 3.768 21.692

4-C U U 3.532 83.387

H—R(2—R) 138.2 131.7 0.326 21.751

H-S 135.0 124.2 0.312 36.682

C-R 143.0 120.5* 2.070 3.262

C-S 132.2 127.5 2.057 3.551

11 Lawler's ... 122.0 ... ...

RDM 173.8 159.9 0.144 0.174

1-A 120.3 120.3 0.305 0.677

l-B 149.3 144.9 0.325 0.802

2-A 143.1 132.2 0.311 1.897

2-B 142.5 133.9 0.327 2.095

3-T 149.2 135.7 0.280 37.453

3-A(L) 147.1 145.8 0.288 2.176

3-A(H) 137.9 127.3 0.282 2.521

3—B 129.8 129.8 0.303 2.202

3-C 141.5 135.4 0.300 10.355

4-A 120.3 120.3 0.304 0.749

4-B 135.7 135.7 0.320 0.890

4-C 117.0 117.0* 0.330 1.614

5-B 152.8 137.8 1.050 45.837
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c Average Average

Cost Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

12 RDM 133.1 129.7 0.109 0.149

leA 125.7 117.5 0.217 0.421

l-B 129.4 124.0 0.235 0.518

2-A 116.2 107.0* 0.222 1.144

2-B 137.1 132.2 0.235 1.310

3-T 128.7 126.1 0.201 21.346

3-A(L) 123.2 114.6 0.213 1.653

3-A(H) 126.4 112.4 0.215 1.908

3-B 131.4 121.0 0.225 1.543

3-C 113.2 113.2 0.223 6.123

42A 116.8 116.8 0.217 0.496

4-B 120.8 112.4 0.238 0.613

4—C 114.2 112.0 0.240 0.998

5—B 134.5 126.5 0.600 15.471

H—R 114.2 111.1 0.112 0.523

H-S 109.5 107.0* 0.091 1.379

C-R 109.5 107.0* 0.504 0.304

C—S 108.3 107.0* 0.491 0.339

13 RDM U U 0.230 1.125

l-A U U 0.567 1.318

l-B U U 0.597 2.124

24A U U 0.582 3.890

2-B 159.0 159.0 0.602 4.537

3-A(L) 143.5 143.5 0.517 4.424

3-A(H) U U 0.511 5.236

3-B 153.4 153.4 0.544 4.838

3—C 143.0 138.8 0.533 21.818

4-A U U 0.567 1.741

4-B U U 0.597 2.470

4-C U U 0.607 5.379

H-R(1—R) 122.8 120.2 0.148 2.377

H-S 120.0 117.8* 0.136 3.765

C—R 121.2 117.8* 0.757 0.584

C-S 120.2 117.8* 0.762 0.626

14 RDM 158.4 143.7 0.233 0.280

12A 164.7 161.9 0.569 1.376

l-B 164.2 155.9 0.595 1.840

2-A 145.1 124.0 0.580 4.547

2-B 158.1 153.9 0.605 7.882

3eA(L) 156.0 141.6 0.522 4.529

32A(H) 149.0 142.5 0.512 7.263

3-B 142.7 140.8 0.540 6.066

3-C 123.9 117.5 0.530 27.235

4eA 164.7 161.9 0.569 1.612

4-B 145.6 145.6 0.738 2.368
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c Average Average

Cost Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

4—C 117.3 117.3 0.609 5.174

H-R 118.2 112.5 0.144 1.384

H-S 114.8 109.2* 0.133 4.054

C-R 115.0 112.3 0.765 0.687

C-S 113.2 112.3 0.762 0.822

15 RDM U U 0.409 0.603

1-A U U 1.311 4.215

1-B U U 1.384 6.042

2-A U U 1.368 11.988

2-B U U 1.402 10.040

3-A(L) U U 1.179 9.430

34A(H) U U 1.151 17.992

3-B U U 1.198 12.607

3-C 156.7 145.7 1.209 63.866

42A U U 1.314 5.026

4-B U U 1.412 6.830

4-C 122.0 122.0 1.396 23.318

H-R(4—R) 153.8 146.1 0.239 ...

H-S 133.2 119.2* 0.211 12.198

C-R 137.5 124.6 1.405 1.361

C-S 126.2 124.6 1.401 1.639

16 RDM U U 1.509 7.214

1-A U(2) U(2) 13.946 65.056

1-B U(2) U(2) 18.027 25.208

2-A U(2) U(2) 15.194 516.901

2-B U(2) U(2) 15.879 440.166

3—A(L) U(2) U(2) 13.248 507.734

3-B U(2) U(2) 14.282 399.499

4-A U(2) U(2) 14.162 70.236

4-B U(2) U(2) 14.951 31.730

17 RDM 247.9 237.0 1.196 4.275

1-A 221.8(2) 221.8(2) 7.232 30.792

1-B 206.0(2) 193.0(2) 7.613 46.964

22A 196.5(2) 195.2(2) 7.600 538.387

2-B 203.5(2) 194.7(2) 8.132 500.046

3-A(L) 188.0(2) 179.8(2) 6.572 271.851

3-B 196.2(2) 195.7(2) 6.940 255.168

4—A 223.2(2) 223.2(2) 8.525 40.702

4—B 214.4(2) 214.4(2) 8.987 53.335

4-C 168.5(2) 168.5(2) 7.741 213.732

H-R(2-R) 144.0 129.0 0.482 26.195

H-S 133.8 130.9 0.437 92.549

C-R 137.5 130.0 2.822 9.865

C-S 135.0 126.2* 2.820 9.189
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c Average Average

Cost Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

18 RDM 197.7 169.9 0.616 1.274

leA 180.5 180.5 2.617 9.572

1-B 176.5 175.2 2.789 14.136

2-A 154.5 144.3 2.797 125.173

2-B 157.9 153.6 2.893 115.052

3-A(L) 157.7 148.6 2.439 111.160

3-B 141.2 135.0 2.536 104.174

44A 180.5 180.5 3.106 11.304

4-B 159.8 159.8 2.836 15.178

4-C 147.1 147.1 2.843 59.391

H-R(2-R) 137.0 122.5 0.498 10.201

H-S 125.0 122.5 0.302 39.031

C-R 125.7 122.1 1.992 3.350

C-S 123.0 120.6* 2.040 3.244

19 Armour's ... 100.2 ... ...

RDM 130.5 116.4 0.066 0.102

14A 100.2 100.1* 0.127 0.217

1-B 117.0 116.4 0.130 0.235

2-A 100.2 100.2 0.127 0.475

2-B 100.2 100.2 0.129 0.510

3-T 100.2 100.2 0.123 2.493

3-A(L) 100.2 100.2 0.130 0.654

3-A(H) 100.2 100.2 0.139 0.714

3-B 100.2 100.2 0.139 0.558

3-C 100.2 100.2 0.136 1.458

4-A 116.5 116.5 0.128 0.232

4-B 116.5 116.5 0.137 0.252

4-C 116.5 116.5 0.135 0.312

S-B 100.1 100.1* 0.243 1.336

20 Land's ... 108.1** ... ...

RDM 122.3 114.4 0.105 0.120

1-A 115.5 114.3 0.179 0.283

1-B 111.5 111.5 0.188 0.327

2-A 113.1 109.5 0.183 0.800

2-B 116.9 114.2 0.187 0.855

3-T 111.0 109.2 0.169 9.166

3-A(L) 118.0 109.2 0.183 1.077

3-A(H) 120.2 115.9 0.188 1.110

3-B 120.2 115.9 0.192 0.972

3-C 110.0 108.1** 0.186 3.180

42A 114.3 114.3 0.184 0.316

4-B 114.3 114.3 0.191 0.343

4—C 111.5 111.5 0.192 0.431

S-B 113.2 108.1** 0.358 2.147
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Cost Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

21 Willoughby's ... 118.3 ... ...

RDM 137.0 137.0 0.109 0.142

1-A U U 0.219 0.409

l-B 113.9 113.9* 0.237 0.520

2—A U U 0.252 0.987

2-B 123.1 123.1 0.232 1.056

3-A(L) 123.1 123.1 0.215 1.488

3-A(H) U U 0.212 1.578

3-B 123.2 123.2 0.220 1.296

3-C 121.5 121.4 0.224 5.482

4-A U U 0.219 0.464

4-B U U 0.232 0.541

4-C 113.8 113.8* 0.242 0.904

5—B U U 0.593 4.122

H—R(1-R) 114.0 113.8* 0.118 0.999

H-S 119.0 113.8* 0.102 1.356

C-R 116.2 114.0 0.494 0.334

C-S 116.2 114.0 0.490 0.351

22 RDM 134.7 115.9 0.224 0.282

1eA 142.2 136.2 0.566 1.590

1-B 134.3 125.6 0.588 1.901

2~A 134.3 120.7 0.582 6.064

2-B 127.9 125.6 0.605 5.440

3-A(L) 127.8 119.4 0.514 6.065

3wA(H) 127.3 124.9 0.512 7.282

3-B 110.3 110.0* 0.538 6.560

3-C 126.0 125.2 0.534 26.239

4-A 142.2 139.2 0.567 1.828

4-B 120.1 120.1 0.599 2.096

4-C 111.3 111.3 0.611 6.092

H-R(1-R) 118.1 114.8 0.146 2.211

H-S 113.5 110.0* 0.138 6.690

C-R 115.0 111.2 0.771 0.732

C—S 111.2 110.0* 0.763 0.820

23 Schneider's ... 140.8 ... ...

RDM 220.3 204.7 0.613 1.268

1-A 150.1 150.1 2.611 11.551

1-B 140.7 136.9 2.785 9.843

2-A 188.4 163.4 2.753 41.226

2-B 163.7 158.2 2.870 47.149

3-A(L) 148.3 132.5 2.452 46.605

3-B 160.5 143.3 2.530 47.281

3-C 128.9 118.0 2.546 287.719

44A 150.1 150.1 2.866 12.256

4-B 158.1 158.1 2.830 12.522
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Cost Phase I Phase II

Problem b Time in Time in

Number Procedure Average Minimum Seconds Seconds

4—C 159.5 159.5 2.836 59.078

H-R 132.2 119.0 0.298 5.200

H-S 122.0 113.9 0.269 12.360

C-R 118.0 104.3* 1.872 2.259

C-S 114.8 113.4 1.856 2.214

24 RDM U U 1.437 6.202

1-A U(2) U(2) 12.304 59.144

1-B U(2) U(2) 13.466 67.822

2-A U(2) U(2) 12.777 208.992

2—B U(2) U(2) 13.595 178.283

3-A(L) U(2) U(2) 11.446 118.504

3-B U(2) U(2) 11.568 149.672

4—A U(2) U(2) 12.691 67.109

4-B U(2) U(2) 12.840 71.075

4-C U(2) U(2) 13.009 476.156

H-R(3-R) U U 0.728 ...

H-S 111.3 111.3 0.670 297.057

C-R U U 4.459 14.823

C—S 111.9 111.1* 4.480 17.738

25 RDM 163.8 154.0 0.438 0.668

1-A 172.6 160.0 1.306 3.956

1-B 180.6 178.2 1.409 6.008

2-A 158.2 151.5 1.340 11.020

2-B 165.2 161.0 1.423 13.653

3-A(L) 156.1 145.1 1.143 8.624

3-B 160.0 151.1 1.265 9.530

3-C 142.0 130.0 1.262 73.096

4-A 184.8 184.8 1.553 5.732

4-B 150.1 149.5 1.629 7.972

4-C 130.0 130.0 1.392 18.784

H-R(1-R) 147.2 124.0 0.238 5.488

H-S 128.8 121.9* 0.204 15.549

C-R 128.8 127.5 1.423 1.572

C-S 124.0 122.8 1.400 1.906

26 RDM 215.0 206.0 1.169 3.998

l-A 150.0 150.0 7.123 32.902

1-B 181.0 180.5 7.774 52.858

2-A 151.8 148.1 7.515 971.584

2-B 161.3 160.2 7.975 1029.603

32A(L) 153.5 151.5 6.567 943.000

3-B 151.8 150.0 6.837 979.177

4-A 151.0 151.0 8.435 44.070

4-B 153.9 152.7 9.159 59.688

4-C 137.8 137.8* 7.724 290.968
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Footnotes to Appendix XII
 

aDots indicate that the data is not appropriate or

not available.

bHillier's original algorithm (H-R) does not guaran-

tee that solution costs are reduced after each iteration,

since cost reductions are only approximated. For this rea-

son,the solution produced by the final trial can have a cost

higher than that of a previous one. Furthermore, it is pos-

sible for a set of solution to be generated repeatedly with—

out over reaching the final trial. If two such recycling

incidents occurred for a problem, this information is noted

by "2—R" in the second column. Version H-S is modified to

assure that solution costs are reduced at each successive

trial, thereby avoiding the recycling problem but increasing

Phase II time.

CUnless otherwise noted by a number in parentheses,

each cost value is derived from four observations per prob-

lem. The cost is expressed as a per cent of the lower bound.

When computing the lower bound, all arbitrarily large fik

terms are equated to zero. The letter "U" indicates that no

feasible solution was generated. The minimum cost column

applies to the solution having the least cost. Cost values

are given only for solutions satisfying all constraints.

One asterisk singles out the best solution for a problem,

whereas two indicate a known optimal solution.

dThis solution was generated on the basis of a cost

function having distance squared between each pair of loca-

tions.

eThe author's solution procedure was based on the

assumption that backtracking is twice as costly as forward

movement. .Although this assumption has been severely crit—

icized in the literature, the important consideration for

this analysis is that Smith's solution is not strictly

comparable to the other solutions generated.

fIt is not clear how Wimmert arrived at this solu-

tion if his manual solution process was followed without

deviation. First of all, many of the quadruplets with

arbitrarily large costs would never be selected for elimina-

tion. Secondly, several types of conflict would be encoun-

tered in the SOLUTION matrix. Finally, several distances

between locations, which he considers to be adjacent, are

significantly greater than those he considers not to be

adjacent.
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gWimmert reported that his solution required 24 man-

hours.

hThe author's solution is optimal when linear costs

are included in the cost function.



A
P
P
E
N
D
I
X

X
I
I
I

A
V
E
R
A
G
E

P
H
A
S
E

I
T
I
M
E
a

A
S

A
F
U
N
C
T
I
O
N

O
F

N
(
I
n

S
e
c
o
n
d
s
)

 

 

  
 

V
e
r
s
i
o
n

1
-
A

l
-
B

2
-
A

2
-
B

3
-
T

3
—
A
(
L
)

3
-
A
(
H
)

3
-
B

3
-
C

4
-
A

4
-
B

4
-
C

S
-
B

R
D
M

H
—
R

H
-
S

C
—
R

C
-
5

1
.
1
4

.
1
6

.
1
4

.
1
5

.
1
5

.
1
4

.
1
5

.
1
6

.
1
6

.
1
5

.
1
4

.
1
5

.
2
5

.
0
6

.
.
.

.
.
.

.
.
.

.
.
.

I
.
1
8

.
1
9

.
1
8

.
1
9

.
1
7

.
1
8

.
1
9

.
1
9

.
1
9

.
1
8

.
1
9

.
1
9

.
3
6

.
1
1

.
.
.

.
.
.

.
.
.

.
.
.

I
.
2
2

.
2
3

.
2
3

.
2
3

.
2
0

.
2
1

.
2
2

.
2
3

.
2
2

.
2
2

.
2
4

.
2
4

.
6
0

.
1
1

.
1
3

.
1
0

.
5
0

.
5
0

.
3
0

.
3
2

.
3
1

.
3
3

.
2
8

.
2
9

.
2
8

.
3
0

.
3
0

.
3
0

.
3
2

.
3
3

1
.
0
5

.
1
4

.
.
.

.
.
.

.
.
.

.
.
.

.
4
2

.
4
4

.
4
3

.
4
4

.
.
.

.
4
2

.
4
2

.
4
1

.
4
0

.
4
2

.
4
4

.
4
5

1
.
9
5

.
1
9

.
1
2

.
1
3

.
6
6

.
6
6

.
5
7

.
5
9

.
5
8

.
6
0

.
4
8

.
5
1

.
5
2

.
5
3

.
5
3

.
5
7

.
6
3

.
6
1

3
.
7
2

.
2
3

.
1
5

.
1
4

.
7
6

.
7
6

.
7
5

.
7
8

.
7
7

.
8
0

.
.
.

.
6
8

.
6
7

.
7
1

.
7
0

.
7
5

.
7
8

.
8
1

.
.
.

.
2
7

.
1
8

.
1
6

.
8
8

.
8
7

.
1
.
3
1

1
.
4
0

1
.
3
5

1
.
4
1

.
.
.

1
.
1
6

1
.
1
5

1
.
2
3

1
.
2
3

1
.
4
3

1
.
5
2

1
.
3
9

.
.
.

.
4
2

.
2
4

.
2
1

1
.
4
1

1
.
4
0

I
2
.
6
2

2
.
7
8

2
.
7
8

2
.
8
7

2
.
4
4

.
.
.

2
.
5
1

2
.
5
2

2
.
8
8

2
.
8
3

2
.
8
4

.
.
.

.
6
1

.
3
0

.
2
7

1
.
8
7

1
.
8
6

'
3
.
2
2

3
.
5
2

3
.
4
5

3
.
5
8

.
.
.

2
.
9
5

.
.
.

3
.
0
3

.
.
.

3
.
4
2

3
.
7
7

3
.
5
3

.
.
.

.
6
8

.
4
1

.
3
1

1
.
0
2

2
.
0
5

2
0

I
7
.
1
8

7
.
6
9

7
.
5
6

8
.
0
5

3
.
5
7
*

6
.
5
7

1
1
.
4
2
*

6
.
8
9

6
.
5
9
*

8
.
4
8

9
.
0
7

7
.
7
3

3
6
1
.
9
8
*

1
.
1
8

.
4
8

.
4
4

2
.
8
2

2
.
8
2

2
3

l
1
2
.
3
0

1
3
.
4
7

1
2
.
7
8

1
3
.
6
0

.
.
.

1
1
.
4
5

.
.
.

1
1
.
5
7

.
.
.

1
2
.
6
9

1
2
.
8
4

1
3
.
0
1

.
.
.

1
.
4
4

.
.
.

.
.
.

.
.
.

.
.
.

2
4

I
1
3
.
8
2

1
8
.
0
3

1
5
.
1
9

1
5
.
8
8

.
.
.

1
3
.
2
5

.
.
.

1
4
.
2
8

.
.
.

1
4
.
1
6

1
5
.
0
0

.
.
.

.
.
.

1
.
5
1

.
7
3

.
6
7

4
.
4
6

4

3
6

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

3
.
3
9

1
.
3
1

1
.
2
8

8
.
8
9

5
.
8
9

4
0

9
5
.
8
4
*

2
4
2
.
6
2
*

1
2
4
.
6
5
*

1
1
4
.
9
5
*

1
7
.
4
7
*

1
0
8
.
0
1
*

4
3
4
.
1
8
*

1
3
2
.
8
1

6
9
.
7
0
*

7
2
.
0
8
*

1
9
6
.
2
4
*

1
1
6
.
6
1
*

1
0
,
3
6
2
.
1
9
*

4
.
2
4
*

1
.
6
7
*

1
.
3
1
*

1
0
.
0
9
*

1
0
.
3
4
*

 

a
.

.
.

.
.

.
.

.
.

.
.

.
.

T
i
m
e

v
a
l
u
e
s

a
c
c
o
m
p
a
n
i
e
d

b
y

a
n

a
s
t
e
r
i
s
k

a
r
e

e
s
t
i
m
a
t
e
d

W
i
t
h

t
n
e

r
e
g
r
e
S
S
i
o
n

e
q
u
a
t
i
o
n
s

i
n
A
p
p
e
n
d
i
x

X
I
V
.

O
t
h
e
r
W
i
s
e
,

a
c
t
u
a
l

t
i
m
e
s

a
r
e

g
i
v
e
n
.

D
o
t
s

i
n
d
i
c
a
t
e

n
o

o
b
s
e
r
v
a
t
i
o
n

w
a
s

m
a
d
e
.

247



.
.
.
I
I
N
H
’
.
I
!

 



A
P
P
E
N
D
I
X
X
I
V

C
O
E
F
F
I
C
I
E
N
T
S

A
N
D

S
T
A
T
I
S
T
I
C
S

O
F

R
E
G
R
E
S
S
I
O
N
E
Q
U
A
T
I
O
N
S

F
O
R

P
H
A
S
E

I
T
I
M
E

(
I
n

S
e
c
o
n
d
s
)

 

 
#
-

 
 

R
e
g
r
e
s
s
i
o
n
C
o
e
f
f
i
c
i
e
n
t
s
a

S
t
a
t
i
s
t
i
c
s
b

 

.
2

-
2

.
P
r
o
c
e
d
u
r
e

b
1

b
2

b
3

b
4

b
5

S
i
g
.
F
1

R
R

S
S
i
g
.
F

 

l
q
A

-
.
1
2
6

.
0
8
5
2
0
6
0
0

-
.
0
0
8
4
6
3
3
3

.
0
0
0
5
9
9
3
9

.
0
0
0
0
2
6
4
6

<
.
0
0
0
5

.
9
9
9
7

.
9
9
9
6

.
0
7
4
6

<
.
0
0
1

1
-
B

2
.
9
0
0

-
1
.
2
8
6
3
9
0
4
7

.
1
9
7
8
9
3
3
1

-
.
0
1
1
7
9
1
3
2

.
0
0
0
2
8
4
8
4

<
.
0
0
0
5

.
9
9
7
8

.
9
9
7
4

.
2
2
9
6

<
.
0
0
1

2
2
A

.
5
5
5

-
.
2
1
6
0
5
6
0
7

.
0
3
4
9
8
2
2
7

-
.
0
0
1
8
6
6
0
9

.
0
0
0
0
7
6
6
4

<
.
0
0
0
5

1
.
0
0
0

.
9
9
9
9

.
0
2
9
3

<
.
0
0
1

2
-
B

.
0
6
7

.
0
0
4
9
7
6
5
8

.
0
0
2
7
3
6
3
0

-
.
0
0
1
8
6
6
0
9

.
0
0
0
0
7
6
6
4

<
.
0
0
0
5

1
.
0
0
0

.
9
9
9
9

.
0
3
2
9

<
.
0
0
1

3
-
T

.
3
7
1

-
.
1
0
7
8
1
7
1
7

.
0
1
3
3
8
5
3
2

0
0

.
0
0
1

.
9
4
7
8

.
9
2
6
9

.
0
3
1
3

.
0
2
5

3
4
A
(
L
)

.
3
4
6

-
.
1
1
9
8
0
4
3
7

.
0
2
1
2
1
3
3
4

-
.
0
0
1
1
8
0
4
2

.
0
0
0
0
6
0
1
8

<
.
0
0
0
5

.
9
9
9
8

.
9
9
9
8

.
0
5
1
0

<
.
0
0
1

3
q
A
(
H
)

1
.
0
9
6

-
.
5
7
0
3
1
4
4
8

.
1
1
8
1
6
3
3
7

-
.
0
0
9
9
5
0
7
2

.
0
0
0
3
4
1
2
8

<
.
0
0
0
5

.
9
9
6
7

.
9
9
5
6

.
0
1
8
1

(
.
0
0
1

3
-
8

.
9
0
5

-
.
3
6
6
4
2
9
3
9

.
0
5
7
5
1
0
9
6

-
.
0
0
3
2
9
0
9
0

.
0
0
0
1
0
3
5
8

<
.
0
0
0
5

.
9
9
9
6

.
9
9
9
5

.
0
8
3
2

<
.
0
0
1

3
-
C

.
0
9
8

.
0
2
2
8
3
2
1
2

-
.
0
0
5
8
1
7
3
6

.
0
0
0
8
8
8
2
8

.
0
0
0
0
0
7
8
7

<
.
0
0
0
5

.
9
9
9
5

.
9
9
9
4

.
0
1
7
9

<
.
0
0
1

4
2
A

.
5
4
1

-
.
1
0
1
3
9
6
3
0

.
0
0
0
2
3
5
9
4

.
0
0
1
1
7
5
2
8

0
<
.
0
0
0
5

.
9
9
7
4

.
9
9
7
0

.
2
1
8
1

<
.
0
0
1

4
-
8

.
6
7
7

-
.
1
4
4
1
6
7
8
9

.
0
0
3
9
5
6
7
5

.
0
0
1
1
2
8
8
9

0
<
.
0
0
0
5

.
9
9
5
9

.
9
9
5
4

.
2
8
3
8

<
.
0
0
1

4
-
C

.
3
2
9

-
.
1
1
0
1
3
3
0
2

.
0
1
9
3
9
9
9
4

-
.
0
0
0
9
3
8
4
3

.
0
0
0
0
5
8
4
8

<
.
0
0
0
5

1
.
0
0
0

1
.
0
0
0

.
0
1
0
3

<
.
0
0
1

S
-
B

5
.
2
6
9

-
3
.
8
6
9
9
8
4
7
6

1
.
0
9
4
8
5
1
8
9

-
.
1
3
7
7
8
5
4
0

.
0
0
6
8
6
5
3
2

<
.
0
0
0
5

.
9
9
9
8

.
9
9
9
7

.
0
1
9
8

<
.
0
0
1

R
D
M

.
1
1
6

-
.
O
3
4
1
6
2
9
5

.
0
0
6
2
5
8
7
6

-
.
0
0
0
1
3
5
8
9

.
0
0
0
0
0
1
6
3

<
.
0
0
0
5

.
9
9
8
4

.
9
9
8
1

.
0
3
1
7

<
.
0
0
1

H
-
R

.
3
2
4

-
.
0
7
1
7
2
5
0
8

.
0
0
7
7
7
8
1
6

-
.
0
0
0
2
3
6
6
4

.
0
0
0
0
0
2
7
0

<
.
0
0
0
5

.
9
8
3
5

.
9
7
8
4

.
0
4
4
1

.
0
0
5

H
-
S

-
.
0
1
0

.
0
2
9
0
5
5
2
1

—
.
0
0
2
6
4
7
4
8

.
0
0
0
1
6
7
5
6

-
.
0
0
0
0
0
2
4
7

<
.
0
0
0
5

.
9
9
8
9

.
9
9
8
5

.
0
1
1
2

<
.
0
0
1

C
-
R

-
.
2
2
0

.
1
3
7
0
7
0
6
7

-
.
0
0
7
0
7
0
6
3

.
0
0
0
5
8
9
0
4

-
.
0
0
0
0
0
8
4
2

<
.
0
0
0
5

.
9
9
7
8

.
9
9
7
1

.
1
0
9
3

<
.
0
0
1

C
-
S

-
.
2
1
8

.
1
3
7
0
1
3
5
7

-
.
0
0
7
2
5
4
2
7

.
0
0
0
6
0
5
6
7

-
.
0
0
0
0
0
8
7
4

<
.
0
0
0
5

.
9
9
7
9

.
9
9
7
3

.
1
0
7
3

<
.
0
0
1

 
 
 

0
1

2
3

4
1
N

+
b
2
N

+
b
3
N

+
b
4
N

+
b
5
N

.

"
S
I
G
.

F
“

i
s

t
h
e

a
p
p
r
o
x
i
m
a
t
e

s
i
g
n
i
f
i
c
a
n
c
e

p
r
o
b
a
b
i
l
i
t
y

t
h
a
t

t
h
e

l
e
a
s
t

s
q
u
a
r
e
s

c
o
e
f
f
i
c
i
e
n
t
s

a
r
e

s
i
m
u
l
t
a
n
e
o
u
s
l
y

z
e
r
o

f
o
r

i
n
d
e
p
e
n
e
n
t

v
a
r
i
a
b
l
e
s

N
,

N
2
,

N
3
,

a
n
d

N
4
.

I
t

i
s
b
a
s
e
d

o
n

t
h
e

F
t
e
s
t

t
h
a
t

t
h
e
s
e

i
n
d
e
p
e
n
d
e
n
t

v
a
r
i
a
b
l
e
s

a
c
c
o
u
n
t

f
o
r

n
o
n
e

o
f

t
h
e

s
q
u
a
r
e
d

d
e
v
i
a
t
i
o
n
s

f
r
o
m

t
h
e

m
e
a
n

P
h
a
s
e

I
t
i
m
e
.

T
h
e

c
o
e
f
f
i
c
i
e
n
t

o
f

d
e
t
e
r
m
i
n
a
t
i
o
n
,

R
2
,

i
s

t
h
e

p
r
o
p
q
g
t
i
o
n

o
f

t
h
e

s
u
m

o
f

t
h
e

s
q
u
a
r
e
d

d
e
v
i
a
t
i
o
n
s

f
r
o
m

t
h
e

m
e
a
n

P
h
a
s
e

I
t
i
m
e

a
c
c
o
u
n
t
e
d

f
o
r
b
y

t
h
e

i
n
d
e
p
e
n
d
e
n
t

v
a
r
i
a
b
l
e
s
.

R
2
,

o
n

t
h
e

o
t
h
e
r

h
a
n
d
,

i
s

t
h
e

m
u
l
t
i
p
l
e

c
o
r
r
e
l
a
t
i
o
n
c
o
e
f
f
i
-

c
i
e
n
t

a
d
j
u
s
t
e
d
b
y

t
h
e

d
e
g
r
e
e
s

o
f

f
r
e
e
d
o
m
.

3
i
s

t
h
e

s
t
a
n
d
a
r
d
e
r
r
o
r

o
f

t
h
e

e
s
t
i
m
a
t
e
.

L
e
t

M
‘
b
e

t
h
e

n
u
m
b
e
r

o
f

o
b
s
e
r
v
a
t
i
o
n
s
,

K
‘
b
e

t
h
e

n
u
m
b
e
r

o
f

i
n
d
e
p
e
n
d
e
n
t

v
a
r
i
a
b
l
e
s
,

a
n
d

S
S
E

b
e

t
h
e

s
u
m

o
f

t
h
e

s
q
u
a
r
e
s

f
o
r

e
r
r
o
r
.

T
h
e
n

S
i
s
c
a
l
c
u
l
a
t
e
d

a
s

f
o
l
l
o
w
s
:

S
=

S
S
E
/
(
M
-
K
-
l
)

"
S
I
G
.

F
2
“

i
s

t
h
e

a
p
p
r
o
x
i
m
a
t
e

s
i
g
n
i
f
i
c
a
n
c
e

p
r
o
b
a
b
i
l
i
t
y

t
h
a
t

t
h
e

g
r
o
u
p

o
f

n
o
n
z
e
r
o
,

n
o
n
l
i
n
e
a
r

c
o
e
f
f
i
c
i
e
n
t
s

(
b
3
,

b
4

a
n
d

b
5
)

a
c
c
o
u
n
t

f
o
r

n
o
n
e

o
f

t
h
e

s
q
u
a
r
e
d

d
e
v
i
a
t
i
o
n
s

f
r
o
m

t
h
e

m
e
a
n

P
h
a
s
e

I
t
i
m
e
.

a
T
h
e

r
e
g
r
e
s
s
i
o
n

e
q
u
a
t
i
o
n

i
s

t
h
e

f
o
l
l
o
w
i
n
g

p
o
l
y
n
o
m
i
a
l
:

t
=
b

b

248



A
P
P
E
N
D
I
X

X
V

A
V
E
R
A
G
E

P
H
A
S
E

I
I

T
I
M
I
-
I
a
A
S
A

F
U
N
C
T
I
O
N

o
r

N
(
I
n

S
e
c
o
n
d
s
)

 

 

V
e
r
s
i
o
n

  

l
-
A

.
2
1

.
2
8

.
6
8

1
.
0
4

1
.
4
1

2
.
1
9

4
.
0
9

1
0
.
5
6

1
3
.
5
1

3
1
.
8
5

5
9
.
1
4

6
5
.
0
6

4
2
4
.
6
9
*

1
-
8

.
2
4

.
3
3

.
5
0

.
8
0

1
.
0
8

1
.
9
5

2
.
5
1

6
.
0
2

1
2
.
8
7

1
9
.
1
5

5
4
.
9
1

6
7
.
8
2

2
5
.
2
1

1
7
6
.
7
0
*

Z
-
A .
5
2

.
8
0

1
.
1
1

1
.
9
0

3
.
8
5

4
.
5
5

1
4
.
9
5

1
1
.
5
0

8
3
.
2
0

3
9
3
.
4
7

7
5
4
.
9
9

2
0
8
.
9
9

5
1
6
.
9
0

1
,
7
3
2
.
2
7
*

2
-
B .
5
0

.
8
6

1
.
2
7

2
.
1
0

3
.
4
6

6
.
0
5

1
4
.
8
6

1
1
.
8
5

1
9
3
.
9
3

1
9
.
1
1

7
6
4
.
8
2

1
7
8
.
2
8

4
4
0
.
1
7

1
,
6
4
9
.
3
4
*

2
9
,
0
4
5
:
8
3
.

8
7
6
,
7
0
9
.
8
8
*

3
-
A
(
L
)

.
6
5

1
.
0
8

1
.
5
7

2
.
1
8

6
.
5
2

5
.
6
9

1
1
.
4
4

9
.
0
8

7
8
.
8
8

2
8
9
.
2
5

6
0
7
.
4
2

1
1
8
.
5
0

5
0
7
.
7
3

1
,
5
2
9
.
2
3
*

3
9
A
(
H
)

.
7
2

1
.
1
1

1
.
7
3

2
.
5
2

6
.
5
2

6
.
1
2

1
3
.
4
1

1
7
.
9
9

7
6
2
8
1
*

4
2
4
.
2
1
*

 

3
-
B

.
5
7

.
9
7

1
.
4
0

2
.
2
0

4
.
2
8

5
.
5
0

1
1
.
0
1

1
1
.
0
7

1
8
5
.
3
6

2
0
.
6
0

6
1
7
.
1
7

1
4
9
.
6
7

3
9
9
.
5
0

1
,
4
3
5
.
3
3
*

3
-
C 1
.
4
9

3
.
1
8

5
.
8
7

1
0
.
3
6

1
7
.
3
8

2
4
.
8
6

4
9
.
9
9

6
8
.
4
8

7
4
2
.
3
0

1
,
8
4
2
.
3
8
*

1
2
,
0
8
6
.
1
8
*

 

 

e
r
s
i
o
n

  

4
-
A

.
2
4

.
3
2

.
5
0

.
7
5

1
.
2
0

1
.
7
2

2
.
4
1

5
.
3
8

1
1
.
7
1

1
5
.
5
3

4
2
.
3
4

6
7
.
1
1

7
0
.
2
4

3
8
9
.
9
4
*

4
-
B

.
2
5

.
3
4

.
5
6

.
8
9

1
.
2
9

2
.
3
1

3
.
1
6

7
.
4
0

1
4
.
2
1

2
1
.
6
9

5
6
.
5
1

7
1
.
0
8

3
1
.
7
3

1
9
6
.
2
5
*

4
-
c .
3
1

.
4
3

.
9
5

1
.
6
1

2
.
7
4

5
.
6
2

5
.
2
2

2
1
.
0
5

6
1
.
6
6

8
3
.
3
9

2
5
2
.
3
5

4
7
6
.
1
6

5
,
2
2
7
.
6
2
*

4
2
6
,
7
4
8

1
5
,
0
5
1
,
0
2
0
.
4
8
*

.
.

1

.
.

1

1
6
*

4

.
.

6

.
.

7

.
.

3
S

R
D
M

.
1
0

.
1
2

.
1
4

.
1
7

.
2
2

.
2
7

.
3
6

.
6
4

.
2
7

.
5
9

.
1
4

.
2
0

.
2
1

.
9
0

5
4
.
9
9
*

H
-
R

.
7
6

1
.
5
0

1
.
9
3

3
.
3
0

5
.
4
9

5
.
2
0

1
5
.
9
8

2
6
.
2
0

1
1
5
.
9
3

1
3
5
.
0
9
*

H
-
5

1
.
3
5

4
.
0
7

4
.
9
0

8
.
4
0

1
3
.
8
7

1
2
.
3
6

3
7
.
8
6

9
2
.
5
5

2
9
7
.
0
6

9
8
0
.
9
7

1
,
0
3
2
.
3
7
*

.
3
3

.
5
0

.
7
0

1
.
0
4

1
.
4
7

2
.
2
6

3
.
3
1

9
.
8
6

1
4
.
8
2

8
6
.
5
3

1
3
9
.
8
6
*

.
3
5

.
5
8

.
7
7

1
.
0
6

1
.
7
7

2
.
2
1

3
.
4
0

9
.
1
9

1
7
.
7
4

8
4
.
4
5

1
2
3
.
1
0
*

 

a
T
i
m
e

v
a
l
u
e
s

w
i
t
h

a
n

a
s
t
e
r
i
s
k

a
r
e

e
s
t
i
m
a
t
e
d

f
r
o
m

t
h
e

r
e
g
r
e
s
s
i
o
n

e
q
u
a
t
i
o
n

i
n
A
p
p
e
n
d
i
x

X
V
I
.

D
o
t
s

m
e
a
n

n
o

o
b
s
e
r
v
a
t
i
o
n

w
a
s

m
a
d
e
.

a
r
e

g
i
v
e
n
.

O
t
h
e
r
w
i
s
e
,

a
c
t
u
a
l

t
i
m
e
s

249



A
P
P
E
N
D
I
X

X
V
I

C
O
E
F
F
I
C
I
E
N
T
S

A
N
D

S
T
A
T
I
S
T
I
C
S

O
F

R
E
G
R
E
S
S
I
O
N

E
Q
U
A
T
I
O
N
S

F
O
R

P
H
A
S
E

I
I

T
I
M
E
a

(
I
n

S
e
c
o
n
d
s
)

  

R
e
g
r
e
s
s
i
o
n
C
o
e
f
f
i
c
i
e
n
t
s
b

S
t
a
t
i
s
t
i
c
s
C

 

P
r
o
c
e
d
u
r
e

b
b

b
b

b

l
2

3
4

5
$
1
9
.
?
1

S
i
g
.
F
2

 

-
2
.
7
8
3

1
.
2
9
6
5
3
3
0
4

-
.
1
8
6
4
8
7
1
9

.
0
1
0
5
3
1
2
0

<
.
0
0
0
5

.
9
9
7
9

.
8
8
8
9

<
.
0
0
1

dflldalfi

H—amcvm 3
—
A
(
L
)

3
-
A
(
a
)

3
-
3

3
-
c

4
-
A

4
-
3

4
-
c

S
-
B

R
D
M

H
—
R

H
-
S

C
-
R

c
-
s

 

.
3
4
3

-
7
4
.
9
9
2

-
4
5
.
7
9
8

4
2
5
.
4
4
2

-
3
9
.
4
0
1

6
.
4
0
3

-
2
6
.
9
1
0

4
9
1
.
8
7
1

3
.
3
0
1

.
1
9
0

-
1
4
.
5
4
7

1
2
8
4
6
.
1
2
0

.
5
2
8

-
.
0
3
1

-
2
2
3
.
8
4
7

4
.
0
5
2

-
3
.
2
4
4

.
1
3
2
9
5
7
8
3

1
.
0
3
7
8
7
7
6
3

1
.
0
8
6
3
6
1
1
2

9
7
.
5
0
5
3
7
7
7
8

1
.
0
1
5
5
4
0
4
5

.
3
0
8
3
4
9
2
9

.
9
9
3
4
8
6
9
1

1
1
.
1
1
6
5
9
7
5
4

-
.
0
0
7
4
1
3
5
0

.
1
4
6
5
3
6
5
1

-
.
6
7
8
8
8
0
4
9

2
3
8
0
.
3
8
4
8
6
9
6
9

.
0
1
8
7
6
1
0
5

-
.
0
9
7
0
6
5
0
9

-
8
.
4
9
8
3
2
9
1
6

.
1
4
2
1
1
7
8
3

-
.
1
1
8
4
9
9
7
9

-
.
9
0
9
4
0
6
3
8

3
.
6
6
6
4
0
7
7
6

-
1
.
0
7
6
0
5
9
3
4

-
3
5
5
.
7
7
9
4
5
0
0
0

-
1
.
4
0
5
8
3
8
9
9

-
2
.
6
4
6
4
4
5
6
5

-
3
.
1
8
3
5
9
4
3
5

—
1
5
4
.
8
0
6
2
7
4
5
4

-
.
7
0
6
0
7
7
5
8

—
.
9
6
0
0
3
5
2
7

6
.
0
0
1
4
4
9
8
1

-
9
1
3
3
.
3
0
1
8
1
7
1
8

-
.
l
6
2
2
8
3
1
8

.
3
8
6
1
8
0
0
8

7
5
.
6
8
1
8
0
9
8
0

-
1
.
2
5
7
0
4
5
9
0

1
.
1
3
3
8
8
5
7
7

0 0 0

-
1
2
.
3
8
0
7
1
6
6
7

0 0 0 0

.
0
0
6
6
6
6
4
1

0

.
0
0
9
1
1
7
9
5

-
2
7
0
.
0
6
6
6
3
2
9
7

-
.
0
0
0
7
3
1
4
5

.
0
1
0
1
6
7
7
5

.
3
7
1
9
2
6
6
0

-
.
0
0
6
2
9
8
1
1

.
0
0
4
9
1
1
5
4

.
5
9

OOOOOOOOOOO

.
0
0
2
1
5
0
3
0

1
1
.
2
8
0
9
1
9
9
8

.
0
0
0
0
3
0
3
7

-
.
0
0
0
1
4
6
7
8

0
.
0
0
4
6
7
8
5
3

.
0
0
0
1
4
1
3
2

-
.
0
0
0
0
1
7
0
9

1
2
2
2
2

 <
.
0
0
0
5

<
.
0
0
0
5

.
0
0
1

<
.
0
0
0
5

.
0
0
1

<
.
0
0
0
5

.
0
0
2

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

<
.
0
0
0
5

.
7
8
3
1

.
5
0
5
3

.
4
8
9
4

.
9
9
9
7

.
4
5
8
9

.
9
2
6
1

.
4
3
9
7

.
6
2
8
7

.
9
9
3
7

.
8
1
2
4

.
9
8
9
9

.
9
9
4
7

.
9
9
9
7

.
9
9
0
7

.
9
9
8
7

.
9
9
9
2

.
9
9
9
8

.
9
9
9
0

.
9
9
9
8

8
.
9
2
7
3

1
9
6
.
2
8
7
9

1
8
0
.
6
6
5
4

1
.
6
7
5
7

1
7
7
.
5
8
6
3

1
.
5
6
0
3

1
6
7
.
5
3
6
3

1
7
6
.
8
6
1
1

1
.
7
4
2
2

9
.
1
0
5
1

1
2
.
6
7
3
2

2
5
.
4
9
8
5

.
1
3
8
7

3
.
2
1
6
3

9
.
5
5
4
7

.
6
4
8
3

.
3
0
3
9

.
0
2
5

A
C
C

A
C
C

<
.
0
0
1

.
0
2
5

<
.
0
0
1

A
C
C

.
0
0
5

<
.
0
0
1

.
0
2
5

<
.
0
0
1

<
.
0
0
1

<
.
0
0
1

<
.
0
0
1

<
.
0
0
1

<
.
0
0
1

<
.
0
0
1

 

a
T
h
e

l
e
a
s
t

s
q
u
a
r
e
s

f
i
t

i
s

p
o
o
r

f
o
r

P
r
o
c
e
d
u
r
e
s

2
-
A
,

2
-
B
,

3
-
A
(
L
)
,

3
-
B
,

a
n
d

3
—
C
.

r
o
u
t
i
n
e

t
o

n
o
m
i
n
a
t
e

q
u
a
d
r
u
p
l
e
t
s

f
o
r

e
l
i
m
i
n
a
t
i
o
n
.

r
o
u
t
i
n
e

i
s

e
s
p
e
c
i
a
l
l
y

i
n
e
f
f
i
c
i
e
n
t
,

A
l
l

o
f

t
h
e
s
e

p
r
o
c
e
d
u
r
e
s

u
s
e

t
h
e

s
a
m
e

I
t

i
s

p
r
o
b
a
b
l
e

t
h
a
t

a
t

l
e
a
s
t

o
n
e

b
r
a
n
c
h

s
e
l
d
o
m
e
n
c
o
u
n
t
e
r
e
d

i
n

t
h
i
s

c
a
u
s
i
n
g

t
h
e

l
a
r
g
e

v
a
r
i
a
b
i
l
i
t
y

i
n

P
h
a
s
e

I
I

t
i
m
e
.

250

A
b
e
t
t
e
r

f
i
t

f
o
r

t
h
e
s
e

p
r
o
c
e
d
u
r
e
s

i
s
p
o
s
s
i
b
l
e

b
y

i
n
t
r
o
d
u
c
i
n
g

s
u
c
h

p
r
o
b
l
e
m

s
t
a
t
i
s
t
i
c
s

a
s

V
f
,

V
d
,

a
n
d

Z
a
s

i
n
d
e
-

p
e
n
d
e
n
t

v
a
r
i
a
b
l
e
s
.

I
f

o
n
l
y

V
d

i
s

i
n
t
r
o
d
u
c
e
d
,

R
2

i
n
c
r
e
a
s
e
s

b
y

a
b
o
u
t

.
2
5
0
0
.

=
o

l
2

3
4

t
b
l
N

+
b
Z
N

+
b
3
N

+
b
4
N

+
b
S
N

.

C
T
h
e
s
e

s
t
a
t
i
s
t
i
c
s

a
r
e

e
x
p
l
a
i
n
e
d

i
n

t
h
e

f
o
o
t
n
o
t
e

o
f
A
p
p
e
n
d
i
x

X
I
V
.

T
h
e

l
e
t
t
e
r
s

"
A
C
C
"

i
n

t
h
e

l
a
s
t

c
o
l
u
m
n

i
n
d
i
c
a
t
e

a
n

a
c
c
e
p
t
a
n
c
e

o
f

t
h
e

h
y
p
o
t
h
e
s
i
s

t
h
a
t

n
o
n
l
i
n
e
a
r

v
a
r
i
a
b
l
e
s

h
a
v
e

n
o

e
f
f
e
c
t

o
n

t
h
e

s
q
u
a
r
e
d

d
e
v
i
a
t
i
o
n

f
r
o
m

t
h
e

m
e
a
n

P
h
a
s
e

I
I

t
i
m
e
.

b
T
h
e

r
e
g
r
e
s
s
i
o
n

e
q
u
a
t
i
o
n

i
s

t
h
e

f
o
l
l
o
w
i
n
g

p
o
l
y
n
o
m
i
a
l
:





APPENDIX XVII

SOLUTION COST STATISTICS OF RDM FOR

ALL UNCONSTRAINED PROBLEMS

 

 

Problem Number Average Cost Standard Deviation

 

 

1 130.0 3.2

2 161.7 11.7

3 129.4 13.7

4 154.0 10.1

5 303.1 19.6

6 306.7 72.0

7 252.9 32.5

9 132.9 5.6

11 173.8 4.4

12 133.1 2.9

14 158.4 10.9

17 247.9 11.3

18 197.7 27.7

19 130.5 9.9

20 122.3 8.0

22 134.7 8.2

23 220.3 11.9

25 163.8 9.9

26 215.0 10.0

MEAN 182.5 14.9
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APPENDIX XVIII

LEAST-COST SOLUTIONS AND RANDOM MEAN INCREMENTS

 

 

Problem Least-Cost Random Mean

 

Numbera Solution IncrementC Procedure

1 100.8* 29.2 1-A,1-B,2-A,2-B,3-T,3-A(L),

3-A(H),3-B,3-C,4-A,4-B,

4-C,5-B

2 113.2 48.5 3-C,H-R,H-S,C—R,C-S

3 103.6* 25.8 1-A,2-A,2-B,3-T,3-A(L),

3-A(H),3-B,3-C,4-B,5-B

4 113.0 141.0 H-S,C-S

5 144.5 158.6 C-S

6 121.0 185.7 H-R,H-S

7 136.6 116.3 C-R,C-S

8 U U ...

9 100.2 32.7 C-R,C-S

10(C) 120.5 24.2 C-R

11 117.0* 56.8 4-C

12 107.0 26.1 2-A,H-S,C-R,C-S

13(C) 107.8 22.5 H-S,C-R,C-S

14 109.2 49.2 H-S

15(C) 119.2 32.6 H-S

16 U U ...

17 126.2 121.7 C-S

18 120.6 77.1 C-S

19 100.1* 30.4 1-A,5-B

20 108.1* 14.2 3-C,5-B

21(C) 113.8 10.3 4-C,H-R,H-S

22 110.0 24.6 3—B,H—S,C-S

23 104.3 116.0 C-R

24(C) 111.1 9.7 C-S

25 121.9 41.9 H-S

26 137.8* 4.8 4-C

 

aThe letter "C" designates constrained problems.

bThe cost of the best solution produced in this study is

expressed as a per cent of the lower bound in this column.

A "U"

tions.

indicates the failure to generate any feasible solu-

An asterisk designates those problems for which no

solutions are available from Procedures H-R, H-S, C—R, and

C-S.

CThis value is equal to the mean cost of RDM solutions minus

the corresponding value in the second column of this

appendix.

dIn this column are listed all procedures producing the

least-cost solution at least once.
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