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ABSTRACT

THE IMPACT OF MODAL ANALYSIS ON THE ENGINEERING CURRICULUM

By

H. Metin Nus Rizai

Modal analysis is a procedure for describing the motion of a
structure by identifying its modes of vibration. A brief des-
cription of modal analysis techniques is presented as a prelude
to a discussion of modal testing. This leads to a detailed
discussion of modal testing technology and the potential impact
of this technology on the Mechanical Engineering Curriculum at

Michigan State University.
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CHAPTER 1
INTRODUCTION

Modal analysis is a procedure for describing the motion of
a structure by identifying its modes of vibration. The motion of
the structure is assumed to be linear and a mode of vibration may be
thought of as a property of a structure. Each mode has a specific
resonant frequency, damping factor and mode shape which identifies the
mode spatially over the entire structure. Once these properties are
known, the response of the structure to any input force can be predicted
and, if necessary, modified.

This thesis will discuss several different approaches to the
determination of the motion of a structure. Chapter 2 gives a
brief overview of analytical techniques, including dynamic sub-
structuring and complications due to damping. Chapter 3 discusses'the
details of modal testing and Chapter 4 presents an example of testing
techniques. Chapter 5 is the study of the potential impact of modal
analysis on the Mechanical Engineering curriculum at Michigan State

University. Chapter 6 presents a summary and recommendations.



CHAPTER 2
ANALYTICAL APPROACH

In recent years, computer based analytical techniques to aid
in the understanding of dynamics of mechanical structures have
become more sophisticated. These techniques may be purely ana-
lytical, starting with a mathematical model and proceeding through
desired calculations. Or they can start from measured results,
and perform calculations which cast these results into more
useful form. Initially, I will discuss a common purely ana-

lytical approach, the finite element method.

2.1 The Finite Element Method

In order to get accurate results, one has to depend on an
accurate mathematical model. Since analytical techniques work
with mathematical models, modeling has become an important part
of analysis.

Because of the requirement for a generalized method for
modeling the dynamics of large, complex structures with nonhomo-
geneous physical properties, an analytical technique called the
finite element method [1] has been developed and used as a model-
ing tool. The object of the finite element method is to sub-
divide a structure into many smaller elements such as plates,
beams, etc. Then the equations describing structure are con-
structed from equations describing each of the individual ele-

ments plus all the boundary and loading conditions on the model.



When the finite element method is used for vibration prob-
lems, the model leads to a set of simultaneous second order linear
differential equations which describe the elastic motion of a
complex mechanical structure. These equations are often written

as:

[MI(x(t)} + [KIx(t)} = (F(t)} (2-1)

where:

Mass matrix {;(t)} Acceleration vector

[M]
(K]
{F(t)} = Applied force vector

Stiffness matrix {x(t)} = Displacement vector

If the system has n degrees of freedom, then the matrices
are n by n, and vectors are n-dimensional. The matrices are real

and symmetric.

2.2 Diagonalization

A common method to solve these equations is to diagonalize
them [2]. This is done by transforming the equations of motion
to a new coordinate system called generalized coordinates in

diagonal or uncoupled form as shown in equation (2-2).
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d(t) X 0. . %(t) up e £(t)
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The transformation relating the generalized coordinates to the
original coordinate system is a matrix, the columns of which are the

eigenvectors of the system.

x](t) Uyq Uypeee q](t)
X)L | upy up a,(t) (2-3)

Therefore diagonalization involves finding the eigenvalues,
Ay and eigenvectors, uij' Once the equations of motion are in
diagonal form it is much easier to understand them and to solve

for the motion resulting from applied forces [2,3].

2.3 Modal Analysis _

Modal analysis may be defined as the process of charac-
terizing the dynamics of a structure in terms of its modes of
vibration. These are the eigenvalues and eigenvectors of the mathe-
matical model. That is, the eigenvalues of the equations of
motion correspond to frequencies at which the structure tends to
vibrate with a predominant well-defined deformation. The rela-
tive deformation is specified by the corresponding eigenvector.
Therefore each mode of vibration is defined by an eigenvalue

(resonant frequency) and corresponding eigenvector (mode shape).



A schematic diagram of the first two modes of a cantiliver beam
is shown in figure 2.1. Each of these modes corresponds to
motion at a particular natural frequency.

The natural frequencies and modes of vibration of a struc-
ture are very useful information, for they tell the frequencies
at which the structure can be excited easily and relate the
excitation to the applied forces. This information in many cases
is sufficient to indicate how to modify the structural design in

order to deal with its noise and vibration effectively.

Figure 2.1 Modes of Vibration

2.4 Damping

Of course, damping is present in every structure. However,
since the stiffness of an element is, in general, much easier to
estimate than the damping, it is often hard to deduce a reasonable
damping matrix for equation (2-1). A common technique is to add
a diagonal [C] matrix to the left hand side of equation (2-2)
such that:



a,(0) "l ece>
1 Uys,.
I %(t)= gi“:za B2 (2-4)

In this case, the Ciils are modal damping factors and are chosen
from experience with the structure as a whole, rather than a
particular knowledge of the elements that make it up. The dia-
gonal [C] assumption in equation (2-4) assumes the modes do not
interfere with each other through a viscous mechanism. This is
usually quite reasonable, especially since, in structures of
interest, the damping tends to be very small. (Complications are
discussed in [2].) Another common technique is to include a [C]
matrix in equation (2-1) which is proportional to mass and/or
stiffness matrix [3]. Such a proportional damping matrix can be
diagonalized by the eigenvectors from the undamped system.
Therefore the governing equation of the structure can still be

uncoupled [3].

2.5 Dynamic Substructuring

The dynamic analysis of structures by modal synthesis [4]
approach is a very useful analytical method for obtaining the
dynamic response of extremely large structures. The basic ap-
proach is to divide the structure into a number of smaller sub-
structures each of which can be analyzed seperately. The total
response of the system then obtained by appropriately coupling

the dynamic characteristics for each of the component structures.



This technique is very useful in design of process of a large
system since major substructures are analyzed by different en-
gineering groups or at different times. Some groups can rely on
experimental test results while other groups can use analytical
investigations. Therefore, modifications on the substructures
may proceed quite independently with later consideration given

to the complete structure.

2.6 Some Final Remarks

Finite element methods can also be used for simulation of
the dynamic response of the structure to external forces. In-
vestigations of structural response to these forces can be done
without building the prototype of the structure. But one should
keep in mind that the utility of the results depends on the
correspondence between the mathematical model and the structure
of interest. In particular, the success of the model often
depends on the ability of the analyst to procure and enter rea-
sonable parametric data and to properly estimate load and bound-
ary conditions.

There is another point which should be considered here, the
numerical burden of the finite element method. The calculations
are usually very lengthy and costly. These considerations might
lead to testing, either as a replacement to or a verification for
purely analytical work. The next chapter will discuss modal

testing.



CHAPTER 3
MODAL TESTING

The objective of modal testing is to excite a mechanical
structure by applied forces so that its natural frequencies and
mode shapes may be identified. We have already mentioned the
potential for verification of the analytical model using modal
testing. Once the mathematical model is verified, one can depend
on the analytical model and make simulations which usually take
less time than testing. In addition, modal testing can be used
for trouble shooting noise and vibration problems. These prob-
lems can occur because of less than ideal design, production
error or as a result of wearout or failure in some of the com-
ponents. Finally, modal testing can be used to construct a
dynamic model for components of a structure which is too dif-

ficult to model analytically.

3.1 Transfer Function and Frequency Response Function

The equation of motion of an undamped dynamic structure is
given by the equation (2-1). This equation, which is in the time
domain, contains useful information about the system's response
for arbitrary input forces. However, in many cases, the frequency
domain information turns out to be even more useful. To aid in the
discussion of the frequency domain, it will be useful to take a look
at the transfer function representation of the set of differential
equations in equation (2-1). Taking the Laplace transform of equa-
tion (2-1) and assuming all initial conditions are zero yields;

8



(B(s)] {x(s)} = {F(s)} (3-1)
where:

[B(s)] = [M]s® + [K]

{x(s)} = Laplace transform of displacement vector

{F(s)} = Laplace transform of applied forces.
The [B(s)] matrix is referred to as the system matrix. The
matrix [H(s)] is defined as the inverse of the system matrix

[8(s)], that is,

[H(s)] = [B(s)] (3-2)
Therefore [H(s)] satisfies the following equation,

{x(s)} = [H(s)] {F(s)}. (3-3)

Equations (3-2) and (3-3) indicate that [H(s)], which is a
function of the complex variable is the ratio of the output
of the system to the input of the system in s domain. For an n-
dimensional system [H(s)] matrix is an nxn matrix. It is called

a transfer matrix, and can be written as,

hyp(s)-.-hy (s)
)= | - -
hop(s).ooh (s)
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The transfer matrix may be evaluated along the frequency
axis of the complex Laplace plane using Fourier transforms. In
case, the transfer matrix [H(s)] becomes the frequency response
matrix [H(jw)]. Each element of the matrix is a transfer func-
tion where hij is the transfer function which relates the re-
sponse of the ith point to an input at the jth location.

There are several different forms of frequency response
functions which are useful for modal testing. They all contain
the same information and they are obtainable from each other.

They are summarized in Table 3.1.

this

The frequency response matrix [H(s)] contains all the neces-

sary information to characterize the modal parameters. If the
roots of Det[B(s)] are distinct in equation (3-2), [H(s)] can be

expanded into a partial fraction form [5] as follows,

n Ak Ak
(H(s)] = & (gt —=) (3-5
k=1 Pk $=Py
where
_ th
P = k7 root of Det[B(s)]

*
Pk
[A] = Residue matrix for the kPN root

Complex conjugate of Py
[Ak*] = Complex conjugate of [Ak].

The roots of Det [B(s)] can be written as:

)



1

Py = =9 * iwk P = =0 - iwk (3-6)

where

9y = modal damping W = damped natural frequency

Equation (3-5) yields two of the three modal parameters, the
resonant frequency and the damping. The modal vectors (eigen-
vectors) are also needed. They are the solution to the homo-

geneous equation:

[B(pk)]{uk} =0 (3-7)

The eigenvectors are proportional to the residue matrix in
equation (3-5) [6], and the modal vectors represent a deformation
pattern of the structure for a particular frequency. The de-
flected deformation of a structure which describes a natural mode
of vibration is defined by known ratios of the amplitude of the

motion at the various points on the structure.

TABLE 3.1
DIFFERENT FORMS OF TRANSFER FUNCTION FOR MECHANICAL STRUCTURES

Dynamic Compliance = Disp/Force Stiffness = Force/Disp
Mobility = Vel/Force Mech. Impedance = Force/Vel
Acceleration = Acc/Force Dynamic Mass = Force/Acc
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3.2 Digital Signal Processing

The main function of modal testing is to analyze the fre-
quency response functions of mechanical structures. The general
scheme for measuring frequency response functions consists of
measuring simultaneously an input excitation and response signal
in the time domain, Fourier transforming the signals and then
forming the transfer functions by dividing the transformed res-
ponse by the transformed input. This procedure is based upon the
use of digital signal processing. The development, within the last
decade, of both digital hardware and computer algorithms for the
various transform techniques has made digital signal processing
practical for the solution of structural dynamics problems.

The area of digital signal processing is very broad. Here
the focus is limited to those topics which are useful for es-
timating the frequency response and modal properties. These
topics are (a) inter-relationship between the time, frequency and
s-domain [7], (b) Fourier transform, discrete Fourier transform
[8,9], (c) signal sampling [8,10], (d) Correlation and Power

spectrum [8,10], (e) Transfer Function and Coherence Function.

3.3 Excitation Methods

There are various types of input excitation methods in-
cluding random (pure, pseudo, periodic), sinusoidal, transient
(impact, step relaxation). They each have their advantages and
disadvantages. Reference [11] discusses each method in some detail.

In this thesis, the emphasis will be put on impact testing.
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Impact testing is fast, easy to perform and requires less
time for the setup than the shakers which are used in other
methods. The steps used in impact testing are shown in Figure
3.1. The figure illustrates a hand-held hammer with a load cell
mounted to it to impact the structure. The load cell measures
the input force and an accelerometer mounted on the structure
measures the response. The frequency content and duration of the
input force can be altered by using a softer or harder hammer
tip. In general the longer the duration of the force impulse the
lower the frequency range of the excitation. Therefore a hammer
with a hard tip can be used to emphasize higher frequency excita-
tion whereas a softer tip can be used to emphasize lower fre-
quency excitation. Figures 3-2 and 3-3 present the force impulse
of different hammer tips in the time and frequency domain. .

Figure 3.1 also illustrates the accelerometer which measured
the instantaneous acceleration of a vibrating structure.
Reference 12 gives a good explanation of the use of accelero-
meters in these measurements.

The process of measuring a set of responses (i.e. transfer
functions) may be either mounting a stationary accelerometer
on the structure and moving the input force from point to point,
or exciting the structure at one location and moving the accel-
erometer from point to point. In the former case, a row of the
transfer matrix is being measured, whereas in the latter case,
column of the transfer matrix is being measured. Either a row
or a column contains enough information to construct the rest

of the transfer matrix [5].
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The impact testing has some advantages. It is easy to use
and fast. It gives good accuracy and it can have very good
frequency resolution. But it also has some drawbacks. The
amplitude of input force is not easily controlled. It's energy
density may not be high enough to excite the entire structure.
More energy can be provided by hitting the structure harder but
damage may result.

Despite these disadvantages, impact testing provides fast
solution for trouble shooting vibration problems. For large
variety of mechanical structures this method gives satisfactory

results.

3.4 Modal Data Identification

When a structure is excited by a broadband input force, many
of its modes are excited simultaneously. Since the structure
is assumed to behave linearly, its transfer functions are the
sum of the resonance curves for each of its modes as shown in
Figure 3.4. Therefore at any given frequency the transfer func-
tion represents the sum of motion of all the modes which have
been excited. The response in a certain frequency range can be
approximately described in terms of the "Inertia Restraint" of
the Tower modes of vibration, the modes of vibration which are
resonant in that frequency range, and the "Residual Flexibility"
of the higher frequency modes (see Figure 3.5). The effects of
lower and higher modes can be represented in additional stiffness

and mass matrices [13].
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The amount of overlap from one mode to another depends
on (a) frequency separation, (b) damping of the structure and
(c) nonlinear effects. Figure 3.6 shows transfer functions
for the difference between 1ight and heavy damping. In cases
where modal overlap is 1ight the transfer function data can
be treated in the vicinity of each peak (resonance) as if it
were a single degree of freedom system. In other words it
is assumed that the contribution of the tails of adjacent
modes near each modal resonance is negligibly small. In
these cases, single degree of freedom curve fitting algorithms
may be used to identify the characteristics of each resonance.

Figure 3.7 presents alternative forms of single degree of
freedom curve fitting. The first method is the so-called co-
quad method where the modal frequency can be obtained by simply
taking the frequency of the peak of the imaginary part of the
transfer function or the frequency where the real part of the
transfer function is zero. And the residue can be estimated by
using the peak value of the imaginary part of the transfer func-
tion.

The second method is magnitude phase technique, where the
modal frequency is the frequency of the peak of the transfer
function magnitude or it is the frequency where the phase angle
is 90 degrees.

The third method, so called "circle fitting", gives the most
accurate results. It is a way of estimating the modal parameters

by least squared fitting of the parametric form of a circle to
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the measurement data in Nyquist form. These methods are ex-
plained detail in references [15] and [16].

If the modes are closely spaced, then multi-degree of free-
dom techniques give much more accurate results [17]. These
techniques involve curve fitting a multiple mode form of the
transfer function to a frequency interval of measurement data
containing several modal resonance peaks. In the process, all
the modal parameters for each mode in a given frequency range are
simultaneously identified. Figure 3.8 shows the polynomial form
of the transfer function which can be used for curve fitting and
an illustration of it on a transfer function data. The coef-
ficients of the polynomials in the numerator and denominator are
identified by curve fitting, and roots of the polynomials which
contain modal parameters are found by a root finding routfne.
This and other multi degree of freedom methods are explained in
detail in references [16], [17], [18]..

Many times, modal coupling or noise on the measurement may
make it difficult to identify the number of modes and and their
parameters from any single measurement. In these cases a curve
fitting procedure that identifies modal parameter from the mul-
tiple set of measurement should be used. In other words, mul-
tiple row or column of transfer matrix should be measured by
mounting more than one accelerometer to get more accurate re-

sults. This technique is discussed in more detail in Reference

[19].
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3.5 Noise and Distortion

Another important matter in modal testing is the extra-
neous noise which is included in the measurement along with the
desired signal. Since we are interested in identifying modal
parameters from measured input and output, the reliability of
the parameter estimates is reduced in proportion to the amount of
noise in the measurements. In general, we measure input and
output signals and obtain an estimate of transfer function.
However, since there is always noise to be considered, the trans-
fer function is obtained in more accurate fashion as shown in
Figure 3.9 [16]. The effect of noise is reduced as the number of
averages grows (the noise term in the Figure 3.9 gets smaller)
and the ratio of output to input more accurately estimates the
time transfer function. This effect can be quantified in the
coherence function.

The coherence function is the ratio of response power
caused by applied input to measured response power. As the
number of averaging goes up, the coherence function becomes much
smoother (see Figure 3.10). Whenever transfer functions are
measured on a digital Fourier analyzer, the coherence function
can also be calculated in terms of averaged input and output
autopower and crosspower spectrums [8,9]. The coherence function
indicates whether the response is being caused by the input.
Values of coherence function less than 1 indicate that an amount
of extraneous noise is being measured with the signal. Coherence
is used to determine how much averaging is necessary to effectively

remove the effects of noise from the measurement.
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Distortion or nonlinear motion is another important subject
to consider in vibration measurements. Since modal analysis
techniques are based on assumed linearity of the dynamic model,
the measurements should not reflect any nonlinear motion. Power
spectrum averaging does help to reduce this kind of an effect
[16]. In addition, different types of excitation techniques to

use for testing in order to reduce nonlinear effects [11].

3.6 Measurement Resolution

Since the accuracy of modal parameters depends on the ac-
curacy of the transfer function measurements, frequency resolu-
tion is extremely important. In addition, curve fitting al-
gorithms are heavily dependent on adequate resolution.

In the past, many Fourier analyzers have been limited to
Base Band Fourier Analysis (BBFA), i.e., the Fourier transform is
computed in a frequency range from zero to some maximum frequency
Fmax' This digital Fourier transform is spread over a fixed
number of frequency lines which limits the frequency resolution
between lines. Therefore BBFA provides uniform frequency reso-

lution from 0 to Fma and the frequency resolution can be ex-

X

pressed as Af = F___/(N/2), where N is the number of sampling

max
points. From a practical point of view, in many structures modal
coupling is so strong that increased frequency resolution is a
necessity for achieving reliable results. In BBFA, the only way
to obtain better resolution over this bandwith is to use a larger
memory, collect more data and compute the spectral functions

using more points which would increase the processing time.
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More recently the implementation of Band Selectable Fourier
Analysis (BSFA), the so-called "zoom" transform, has made it
possible to perform Fourier analysis over a frequency band whose
upper and lower frequency limits are independently selectable.
The resolution obtained in the frequency band of interest is
approximately aAf = BW/(N/2) where bandwith is the frequency
region of interest. Therefore a narrow region of interest would
increase the frequency resolution without increasing the number
of spectral lines in the computer. However, the processing time
gets longer as the bandwith gets narrower. Figure 3.11 shows the
comparison between BBFA and BSFA. Reference 20 gives a good

discussion about both BBFA and BSFA.

3.7 Some Other Considerations in Modal Testing

There are several factors that contribute to the quality of
actual measured transfer and coherence function estimates. I have
already discussed several important ones such as the excitation
method, noise, distortion and frequency resolution. There are a
few more considerations to be mentioned in modal testing. They

are:

3.7.1 Aliasing

Sampling a signal at discrete times introduces a form of
amplitude distortion called aliasing that converts high frequency
energy to lower frequencies. If the sampling rate for an in-
coming signal is not greater than twice the highest frequency of

any component in the signal, then some of the high frequency
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components of the signal will be effectively translated down to
be less than one half of the sampling rate [8]. This translation
may cause serious problems with interference between high and low
frequency components.

In Figure 3-12, cosine waves with two different frequencies
are shown in the frequency domain. Since sampling frequency was
not greater than twice the highest frequency, it caused that
frequency to appear in the lower frequency region. To avoid
these interference effects, the signals can be sampled at a
sufficiently high rate and/or a low pass filter can be put to
reduce the amplitude of the higher frequency component so they
are not longer large enough to be troublesome. References [8],

[9] and [10] give more detail about aliasing and filtering.

3.7.2 Leakage

When a signal of finite length is sampled and Fourier trans-
formed, the resulting transform is representative of a periodic
signal for which the sampled signal is one period. If the origi-
nal signal before sampling was not periodic, it will cause a
smearing of data in the vicinity of peaks in the spectrum, which
introduces another type of distortion called leakage. A simple
example of what can happen is shown in Figure 3.13, where a
sinewave has been sampled. The discontinuity at the ends leads
to set of components in the analysis that may interfere with the
components of interest. Several techniques have been developed
to reduce the effects of "leakage", one of which is Hanning

window. Reference [10] gives a good discussion of leakage.
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3.7.3 Windowing

The purpose of windowing is to remove unwanted character-
istics of the signals. The most commonly used windowing tech-
niques are Hanning and exponential [9,10]. '

When Hanning is used, the data at the ends of the window are
ignored since they are multiplied by a value near zero (Figure
3.14). It is important that the data window be wide enough to
ensure that the important behavior is centered within the window.

Another commonly used technique is exponential weighting,
which multiplies both the input and output signals by an ex-
ponentially decaying envelope (see Figure 3.14). In the case
of impulsive excitation, in which the signal/noise ratio is
greater at smaller values of time, the weighting rejects most of
the noise. This procedure leads to more consistent determination
of resonant peak amplitudes. But it also makes the determination

of closely spaced modes more difficult. Therefore "zoom" trans-
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form analysis may be required in some cases to allow sufficient

resolution of closely spaced modes.

3.8 Summary

Modal testing is based on frequency response information of
the structure. The general scheme for measuring frequency res-
ponse functions consists of measuring simultaneously an input
excitation with a load cell mounted to a hammer in impact testing
or a shaker in other methods of excitation, and the response
signal with a transducer, preferably accelerometer, mounted to
the structure. Digital signal processing techniques are applied
to these signals. Then the modal parameters such as resonant
frequency, damping and mode shapes can be obtained with using
single degree-of-freedom or multi degree-of-freedom curve fitting
algorithms.

There are several factors that should be considered to
obtain accurate test results, including (a) the selection of
input excitation method, (b) the selection of curve fitting
algorithm, (c) noise and distortion, (d) Measurement resolution,

and (e) aliasing, leakage and windowing.



CHAPTER 4
AN EXAMPLE OF MODAL TESTING

Modal testing was performed on a Z shaped aluminum beam (Z-
Beam) using Gen-Rad 2508 Structural Analysis System [21] uti-
lizing the SDRC MODAL PLUS software. The Case Center for CAD
(Computer-Aided Design) at Michigan State University has a Gen-
Rad 2507 [21] which is very similar to Gen-Rad 2508. SDRC MODAL
PLUS is a joint software product of SDRC (Structural Dynamics and
Research Corporation), Cincinnati, Ohio and Gen-Rad, Inc. AVA
Div., Santa Clara, California. The Modal Plus software is also
included in Gen-Rad 2507, Structural Analysis System.

This chapter uses the Z-Beam as an example to demonstrate
the procedure of modal testing. The implementation of the methods
in MODAL PLUS requires the following steps:

definition of the geometry of a structure,
excitation of the structure and data acquisition,
computation of the frequency response function,
estimation of modal parameters, and

generation and display of mode shapes.

Each of these subjects is covered in this chapter.

4.1 Geometry Definition

The implementation of modal analysis depends on the geometric
definition of the structure. That is, a coordinate system must be
selected and several points on the structure must be defined.

36
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Additional points yield better estimates of mode shapes, but more
points require that more data must be collected.

The structure in this case was a "Z" shaped aluminum beam
(Z-Beam) which was modeled with a 28 points. The base of

the Z-Beam was clamped to the ground (see Figure (4-1).

Figure 4-1 Z-Beam with the points that define its
geometry.
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4.2 Excitation Technique

In order to estimate frequency response function from mea-
sured data, one must supply an excitation function which is rich
in energy at all frequencies of interest. In this case, the
impact method was used with the hammer kit shown in Figure 4.2.
The kit includes the hammer, a load cell attached to the hammer
and an accelerometer.

In this experiment, the accelerometer remained at one loca-
tion and the hammer was used to impact the 28 points (see Figure
4.3). A nylon tip was used for the hammer (medium tip). A time
history and the corresponding frequency function of a hammer

impact are shown in Figure 4.4.

Figure 4-2 Typical Hammer Kit for Modal Analysis.
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4.3 Frequency Response Data Analysis

After preliminary calculations it was decided that 0-1000 Hz
frequency was adequate. Data was for accelerations in the ver-
tical direction. Data was taken at each point with 5 averages
and the coherence function was analyzed before accepting transfer
function data. Figure 4-5 illustrates the difference between
good and bad transfer function data with the aid of coherence
function.

Frequency response functions such as Figure 4-6 were in-
spected for resonant peaks to determine at what frequencies modal
estimates should be obtained. The numbers on the peaks indicate
the use of a digital cursor to obtain the frequency and magnitude
values listed on the left side of the plot. Inspection of this
plot resulted in the selection of the frequency bands listed in
Table 4.1 as the probable location of significant modes of vibra-

tion.
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4.4 Modal Parameter Estimation

Two methods were employed in MODAL PLUS in extracting modal
parameter; (1) Circle fit (2) Multiple degree of freedom curve
fit.

Figure 4-7 and 4-8 are two examples of circles fitted to
data. Figure 4.7 presents data in the frequency range from 360
to 500 Hz. The points are quite dense, indicating a well re-
solved spectral analysis. However, in Figure 4-8, which is in
the frequency range of 600 to 700 Hz, there appears to be a
second mode of smaller magnitude at the right hand side. Con-
sidering this point, circle fit was used in the frequency range
of 550 to 650 Hz and 655 to 720 Hz, and two seperate modes were
found between 550 and 700 Hz. (See Figure 4-9.)

Multi degree of freedom curve fitting method was employed in
the frequency range of 500 to 1000 Hz and 10 to 1000 Hz (see
Figure 4-10), the mode which was noticed in Figure 4-10 was also
noticable in the 500 to 1000 Hz frequency range.

Table 4.2 shows the modal parameters for the modes of Z-Beam

from Figure 4-6.
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TABLE 4.2
MODE PARAMETERS

MODE FREQUENCY DAMPING AMPLITUDE PHASE
1 33.831 0.007358 10.33 1.7396
2 82.246 0.043136 179.7 -1.1411
3 98. 664 0.74359 134.3 -2.6723
4 439.221 0.013872 507.0 -1.4423
5 658.719 0.015534 2542.0 -1.8938

4.5 Mode Shape Display and Interpretation of Results

Once the modal parameters are estimated for all points on
the geometry of a structure, then these parameters may be asso-
ciated with the structural geometry. This facilitates the dis-
play of animated mode shapes and global visualization of the
structural vibration.

For the Z-Beam, the mode shape display task software in
MODAL PLUS was employed. Figure 4-11 shows four mode shapes of
the Z-Beam.

Figure 4-11a presents three frames of a mode at 32.3 Hz.
This mode has a modal node very close to the position where the
accelerometer was attached which causes it to almost disappear
from the "driving point" frequency response data. This is illustrated in

Figure 4-12.
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4.6 The Validity of the Modal Data

The validity of the modal data can be assessed by syn-
thesizing various response functions, an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>