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ABSTRACT

AN EFFICIENT METHOD TO PREDICT

THE EFFECT OF DESIGN MODIFICATIONS

ON THE DYNAMICS OF STRUCTURES

by

H. Metin N. Rizai

Static and dynamic analyses are important tools for the improvement

of structural systems. Consider an analysis where a number of different

changes may be synthesized to improve the dynamic and static behavior

of a system. Such an analysis usually depends on numerical optimiza-

tion schemes for systems with a large number of degrees of freedom.

These analyses become computationally burdensome for redesign study.

This thesis presents an efficient method to predict the effect of

design modifications on mechanical and structural systems with a large

number of degrees of freedom. The method minimizes a cost function

which includes natural frequencies, size of design change and the

static deflections. It uses a finite element preprocessor to find

derivatives of mass and stiffness matrices and computationally efficient

techniques to find eigenvalue and eigenvector derivatives.
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CHAPTER I

INTRODUCTION

Numerical optimization methods for specifying dynamic characteris-

tics of structures require eigenvalues and eigenvectors of the modified

system for each iteration. This can be a computationally burdensome

process for systems with a large number of degrees of freedom.

This thesis presents an efficient method to determine the effect

of design modifications on the eigenvalues and eigenvectors of a system,

and uses this method to expedite design optimization. The next chapter

will review the literature in the areas of 1) numerical optimization

with dynamic constraints and 2) derivatives of natural frequencies

and mode shapes with respect to design changes. Chapter 3 presents an

efficient method to determine the effect of a single design modifica-

tion. The method improves the dynamic characteristics of structure

by removing natural frequencies from bands where excitations are likely

to occur. It illustrates the method with examples. Chapter 4 examines

design modification as a function of many possible changes and intro-

duces static deflection to the optimization. It illustrates the power

and the flexibility of the method with examples. Chapter 5 presents

conclusions and some remarks on the extension of this work.
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CHAPTER II

LITERATURE REVIEW

Dynamic response of structures in the absence of damping is typi-

cally described by a matrix equation of the form [1],

[ng + £ng - g (2.1)

where [M] and [K] are, respectively, the mass and stiffness matrices of

the structure. Their order n corresponds to the degrees of freedom of

the system. The vectors x, x and F represent the acceleration, dis-

placement and external loads respectively.

The mathematical model can be used to compute the natural fre-

quencies and the mode shapes of the system. Should these indicate that

the system is unsatisfactory, there is motivation to change the system.

This thesis develops and illustrates methods which are useful for

finding changes which improve the frequency spectrum of the system.

This review will discuss those areas of the literature which underpin

the methods developed here. The review begins with the literature

concerning optimization of the frequency spectra which result from

models of the form 2.1. Since optimization, particularly the techniques

to be developed here, makes use of derivatives of natural frequencies

and mode shapes with respect to design changes, a review of the litera-

ture in that area will also be included.



2.1 Design Optimization

Design optimization entails a search for the best set of design

variables satisfying an objective such as minimum weight or following

rules concerning the frequency spectrum. Such an optimization may be

thought of in either of two categories. The first category relies on

variational calculus to support a search for a function or functions

that will find minimum or maximum of some performance function subject

to prescribed constraints. These methods work with a continuous model

that is described by continuous functions of spatial coordinates. The

optimum.design is found through the solution of a system of equations

expressing the conditions for optimality.

Variational methods are well suited for fundamental optimization

studies. 0n the other hand, numerical methods employ iterative techniques

to seek a near-optimal design [2,3]. An initial guess is used as start-

ing point for a systematic search for better designs. The search is

terminated when criteria are satisfied that ensure the current design

is sufficiently close to the true optimum.

Frequency constraints are among the dynamic restrictions that have

been considered. Much of the research in dynamic constraints optimi-

zation applies equality or inequality constraints on the fundamental

frequency and specified frequency range of the structure. A good text

on numerical optimization is Applied Optimal Design by Haug and Arora

[4].

The computational methods with equality constraints allow less

flexibility of design than those with inequality constraints. Equality

constraints may be unnecessarily restrictive since an alternative and



more convenient design might be acceptable. But whether the problem

deals with equality or inequality constraints, the eigenvalue problem

consumes a major portion of the total computation effort. The process

may prohibitively be slow for systems with a large number of degrees of

freedom. Feng, Arora and Haug have presented a modal method which reduces

the size of the problem and thus limits the needed computer resources [5].

Starkey proposed a new method to modify an existing design to im-

prove the dynamic characteristics [6]. The approach was to select

design changes that improve the dynamic characteristics of structure

by removing natural frequencies from undesirable bands, for example,

ranges of frequency where excitation is likely to occur. This procedure

seeks to minimize a penalty function which becomes smaller as the design

improves. Starkey suggested a penalty function P(w,e) of the form

P(w,e) ‘ H(F(W). 3(6)) (2.2)

where w is n vector of natural frequencies, e is m vector that represents

design variables, F(w) is a function which is large when natural fre-

quencies are in undesirable ranges, S(e) is a function which becomes

large for undesirable size of variables and function E combines the effect

of the two functions to make up the penalty function. The best designs

are selected from local minima of the function P(w,e).

Starkey used linear approximation via first order Taylor series ex-

pansion to predict the effects of various design changes on natural fre-

quencies in the computation of the search for a minimum penalty function

[6]. He suggested that, for small systems, the eigenvalue problem might

be solved at every step of the optimization. But for the system with many



degrees of freedom, the solution of the eigenvalue problem is computa-

tionally burdensome since it requires 0(n3) calculations where n is the

number of degrees of freedom. On the other hand, the linear approximation

of the modified natural frequencies has a limited range of validity.

It is the goal of this thesis to proceed along a path laid out by

Starkey, i.e., to minimize a penalty function which is dependent on

several variables. But we proposed to attack large systems and large

changes. Thus, we seek, among other things, an improved method of

approximating eigenvalues as a function of design changes. The next

section discusses the literature in this area.

2.2 Derivatives of Eigenvalues and Eigenvectors

The eigenvalue problem associated with equation 2.1 may be written

88

[MJEUJUJ - [KJEU] (2.3)

where [U] is an nxn matrix whose columns are n eigenvectors of the

structure and [A] is an nxn diagonal matrix of the corresponding eigen-

values.

The determination of derivatives of eigenvalues with respect to a

system parameter goes back to the nineteenth century work of Jacobi

[7]. Wittrick presented an application of Jacobi's work to systems

with an infinite number of degrees of freedom [8]. Fox and Kapoor

showed the first derivative of an eigenvalue for discrete systems with

symmetric mass and stiffness matrices [9]. They also derived two



methods for determining an eigenvector derivative. Rogers has genera-

lized the second approach in reference 9 to include non-symmetric

matrices [10]. Rudisill and Bhatia used second derivatives of eigen-

values to find the role of change of the flutter velocity of an aircraft

structure with respect to structural parameters [11]. This work was

extended for general matrices by Rudisill [12]. Nelson proposed an

alternate procedure for calculating eigenvector derivatives of an

arbitrary nth order symmetric or non—symmetric systems [13]. This method

offered a significant computational improvement for sparse systems.

Whitesell presented a method to calculate the eigenvector derivatives

using only 0(n2) calculations independent of the sparsity of the con-

stituent matrices [14,15].

Since Whitesell's work is a key element of the work presented in

this thesis, it will be useful to present some details. Consider mass

and stiffness matrices which are functions of only one variable. Equation

2.3 can be written as follows

[M(e)][U(e)]D(e)] = [K(e)][U(e)] (2.4)

.where [M(e)] and [K(e)] are real symmetric on eeR, furthermore [M(0)]

is positive definite and [A(0)] are non-repeated. Assume that equation

2.4 can be expanded with power series:

on i as

( 2 ei([K](i) - 2 Iii’k) [u](k)))( z e1 11:11)) = o (2.5)

i=0 k-O 1=o —



where a superscript in parentheses denotes power series coefficient,

a superscript without parentheses denotes the ith power of that variable,

and subscript m specifies the mth eigenvalue and mth eigenvector. Also

in this analysis, (e) is dropped from each term for convenience. Collect-

ing terms in e in equation 2.5 yields

a i . i-J

z e1 z ([x](1‘J) - z A(i-J-k) [m]<k)) 0(J) - o (2.6)
1-0 J=0 kao m .2

Each coefficient of e1, 1 :_1, must vanish

i i-J

2 ([K](1_J) - 2 A(i-J-k) [m](k))u(J) = o (2.7)

J=0 k=0 “1 J2

Substracting the i - j term

i-l

([K] -. Ammo) utff’ -- - z (EKI‘H’
——- J=0

i-J

(i-J-k) (k) (J)
2 Am [M] ) Um (2.8)

kxo .—

Multiplying both sides of equation 2.8 by 0:, where T denotes the trans-

pose of the vector Um’ will result in zero on the left hand side of the

equation since U§([K] - Am[M]) is an eigenvalue problem. Therefore

1 ii- -J

0 I U:( E (,[K](i-J) _ Z xii-J‘k) D1300) (J)
U (2.9)

— J-O k=0 —m



If the j-O term is separated from equation 2.9 and the k=0 term is carried

to the left hand side,

i

(1) T T (i) (i-k) (k)
,Am UmEMJUm - Umttxl - killm [M] )Um

i—J1-1

+ 01% 2 <ExJ‘1‘” -

1‘- J=1 k=0

(J)
:13 ) (2.10)

Therefore equation 2.10 is the formulation of the power series coeffi-

cients for the mth eigenvalue where m-i,....n. The derivatives of eigen-

values with respect to a design change e can be calculated with a simple

substitution

1

i O

 

(2.11)

de

Equation 2.8 can be written in the following form to calculate deriva-

tives of the mth eigenvector [16],

1-1

0:1) - -<[KJ - Amtml)I X ([KJ‘i'J)
J30

i-J
z . A11(11-.I-1c)[M](k))

U (2.12)

k-O m

(J)

32 ”i

where the superscript I denotes a generalized inverse of the singular

matrix ([K] s AmEMJ) such that



U:[M]([K] - AmEM])I - o and ([K] e AmEM])I[M]Um - o (2.13)

Whitesell [14]showed that the generalized inverse matrix in equation

2.12 can be computed as follows

([K] - meMI>I =- ([1] - EcIEMbcth - ‘i'mEMIrltm - [MJEGD

(2.14)

U UT

where [G] -‘=%}-£l-- , I = a unit matrix

U [M]U

.12 .JE

and

I - A + e

m m

The term Ci in the equation 2.12 can also be written as

i-l i-J

c1 - - z ( z 11‘1”Jk) T[M](k))U(J) (2.15)

J-O k-0-—-

Thus the derivatives of eigenvectors with respect to a single design

change e, can be calculated with the following substitution.

d1 H
—J . 1' [1(1)

1 ° m

(2.16)

de --
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In the solution for the derivative of eigenvalues and eigenvectors,

the only term that is candidate for 0(n3) calculations is the inverse

in equation 2.12. But if the eigenvalue problem for A and U is solved

with the inverse iteration method [17], the matrix ([K]—im[M]-1) is cal-

culated in the process. Thus the calculations of the derivatives of the

eigenvalue and the eigenvectors of the system with size n are 0(n2).

The next chapter illustrates the use of such a Taylor series in

support of the optimization procedure offered by Starkey. At this

stage, we will limit ourselves to one design change to facilitate the

use of equations 2.10 and 2.12. Later chapters will present a technique

to remove this restriction.



CHAPTER III

DESIGN OPTIMIZATION WITH ONE DESIGN VARIABLE

The traditional optimization methods for specifying dynamic

characteristics of structures have important limitations. In particular,

the methods which search for particular changes for natural frequencies

and/or mode shapes as a function of the size of a given change are unduly

restrictive since the designer must select an exact value for frequency

modification out of a large variety of acceptable modifications.

A less restrictive method that removes unwanted natural frequencies

from specified ranges was presented by Starkey [6]. The strength of

this procedure lies in the fact that the designer needs only to specify

what is not wanted, for example, a natural frequency occurring in a

certain frequency band. References [18] and [19], which illustrate the

effectiveness of the procedure, deal with problems in which a linear

approximation relating natural frequency to design change was adequate.

In this thesis, we will be concerned with economical methods for

the redesign of large structure via changes which may themselves be

large. The implications of the size of the system and the size of the

changes are these: We wish to deduce changes which will improve the

system with as few eigenvalue solutions as possible. Thus a major step

in this work is to improve upon the linear approximations used in

[18] and [19]. Of course, to be effective, whatever approximations are

used must be more economical than re-solving the eigenvalue problem.

11
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This chapter presents an efficient method to determine the effect

of a single design modification. The proposed method is intended to

remove unwanted natural frequencies from the specified frequency ranges

in structures that have many degrees of freedom. The chapter includes

some examples which illustrate the procedure. Subsequent chapters will

deal with design modification as a function of many possible changes.

3.1 Cost Function

The optimal design is the best choice of the feasible designs. The

method presented in this chapter considers 'best' to be the design which

minimizes cost function C(w,e), which decreases as the design improves.

The form of C(w,e) to be used here was developed by Starkey [6],

cm» 4:607). S(e)) (3.1)

where w is an nxl vector of natural frequencies of the modified system,

n is the size of the system, F(w) is a function that is large when

natural frequencies are in the undesirable range, e is an mxl vector

of design variables, S(e) is a function that becomes large when design

variables begin to exceed prescribed limits. Figure 3.1 shows the

characteristics of the cost function.

The frequency content function, F(w), is largest near the center

of the undesirable frequency band since the center of the frequency

range is the most critical frequency. Its magnitude drops as natural

frequencies move away from the center of the function toward the edges

of the band.
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Figure 3.1 Frequency content and size-of—change functions.
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The size of change function, S(e), becomes larger as the size of

the change increases. The total cost function is

k

C(w,e) I A S(e) + 2 Bi Fi(w) (3.2)

iIl

The parameter B weighs the relative importance of each critical fre-

i

quency band and A is a factor that weighs the importance of the size of

change.

To minimize C, it is necessary to relate the changes e to the

natural frequencies w. This can be done by reIevaluating the eigenvalue

problem as a function of the changes or by developing functions which

approximate the natural frequencies as a function of the change. For

example, one might use a Taylor series:

..2 .2.2 .ng
   

J 1 J 2 1 3

WiP W50 +~ de e + 2: 2 e + 3: 3 e + ... (3.3)

de de

The total cost function is then

k

C(e) I A S(e) + 2 B1 Fi(w(e)) (3.4)

iIl

and C can be minimized as a function of e.

Starkey minimized C(e) via the linear terms of the Taylor series.

Since we expect the w, e relationship to be fundamentally nonlinear, it

is clear that the range of usefulness of the linear series is limited.

In this chapter, we will show how the higher order terms can be used to

advantage.
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3.2 Prediction of Eigenvalues and Eigenvectors

Numerical optimization is an iterative process which searches for

the best design. It requires eigenvalues and perhaps eigenvectors at

every iteration. But since each eigensolution requires 0(n3) calcula-

tions, recalculation of eigenvalues and eigenvectors computationally

burdensome.

In the method presented in this chapter, eigenvalues (square of

natural frequencies) and eigenvectors (mode shapes) of the modified

structure are approximated with a Taylor series including higher order

terms. The approximation is based in large part on theory developed

by Whitesell [14], which is summarized in some detail in Chapter 2. The

derivatives of eigenvalues have the form

1

1(1) [UT([K]<1)_ , x(1‘k’EMI‘k’)uk

 

[UM]Uk kIl

1-1 i-J _

+ U:( z ([K](i-J) - z 1(i-J-k)[M]<k))U;J)] (3.5)

_J.0 k=0 —

(i) 1 dixk (1) 1 diEK]
where; Ak .F-T , [k] '11" i ,

' de ° de

(1) 1 dint] (J) 1 dJ'Uk

[M] '1‘" 1 ’ Uk “3" J
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and derivatives of eigenvectors have the form

1-1 i-J

(1) _ I (i-J) (i-J-k) (R) (J)
Uk -([K] - Ak[M]) J20([K] - 2 Ak [M] )Uk + C1 Uk

— 8 keno _.._

(3.6)

where;

1-1 i-J

.T-o k-O — —

([K] - Aktml>1 = ([11 - [G][M])([K] - ikrmi>'1<ExI - [M][G])

U UT

[Gj-lé-k 1:) +5

EEFMJEE

 

Equations 3.5 and 3.6 require derivatives of mass and stiffness

matrices with respect to the design variable. It is unwieldy to con-

struct mass and stiffness matrices with analytical functions in their

entries which are appropriate for the modeling of a wide variety of

potential design changes. Therefore, it is difficult to obtain deri-

vatives of these matrices via differentiation with respect to a design

variable. However, these derivatives can be approximated with finite

difference methods. For example, the first derivative of a mass matrix,

[M(e)], and a stiffness matrix, [K(e)], with respect to a design

variable e, can be approximated with the central finite difference

method as:

d[M(e)] = [M(e')] - [M(re')]
(3 7)

de 28'
.



l7

d[K(e)l [KQE'L] - [K(-e')]

de " 2e' (3‘8)

[K(e')], [M(e')] and [K(-e')], [K(-e')] are mass and stiffness matrices

that are perturbed by e' and -e' respectively. These matrices can be

constructed with a finite element preprocessor. Higher order derivatives

of mass and stiffness matrices can also be calculated via finite dif-

ferences. The central difference formulations for these derivatives

is given in Appendix A.

To illustrate the power of the procedures presented here, it will

be instructive to consider an example.

3.3 Example

Consider the horizontal beam of Figure 3.2. The legs are twice

as thick as the horizontal part of the beam. The design variable is

the thickness h of the horizontal beam. The objective is to remove

any natural frequency from the frequency range of 400 Hz - 580 Hz.

3.3.1 Initial Design

The initial design is modeled with the six beam finite elements

(four horizontal, two vertical) via the ANSYS finite element preprocessor.

Each beam element has two nodes with three degrees of freedom (two

translation and one rotation) at each node [20]. Figure 3.3 shows the

elements and nodes of the beam. Table 3.1 lists the fifteen natural

frequencies that correspond to the fifteen degrees of freedom. These

were obtained by solving



18

2.4'.’ A

 

ALL

.25"

 

 
  )

*
|

\\\\\\\

Figure 3.2 Beam with legs fixed.

a .g
, m S (a) (4) L (s) (2)

Figure 3.3 Finite element representation of the beam.
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Table 3.1 Natural frequencies of the beam at hI.25 inches

Beam Frequencies (Hz)

1. 88

2. 245

3. 490

4. 918

5. 1520

6. 2323

7. 2782

8. 5197

9. 7721

10. 10260

11. 14054

12. 19394

13. 20694

14. 44783

15. 44921
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([K] - {DIME = o (3.9)

where [K] and [M] are the stiffness and mass matrices respectively, w1

is the ith natural frequency of the system and U1 is the associated

mode shape.

3.3.2 The Design Change

The only admissible design change is assumed to be the thickness h

of the horizontal part of the beam. The derivatives of the eigenvalues

and eigenvectors with respect to h are calculated using equations 3.5

and 3.6. The derivatives of the mass and stiffness matrices were

obtained via the ANSYS preprocessor and the central difference method

as discussed in section 3.2.

3.3.3 The Cost Function

The penalty function C(e) can be minimized with routinely available

software [21]. In this example, there is one undesirable frequency band

which is in the band 400 Hz - 580 Hz. A frequency content penalty that

meets our needs is

m

F(w) I Z (l - cos(21r(wJ - p)/(u-p)) (3.10)

J=l

where p and u are lower and upper bounds of the frequency band respec-

tively, m is the number of modes in the finite element model and wj is

the jth modified natural frequency.
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We assume that the size of change of the penalty function is

quadratic in e

S(e) a e2 (3.11)

and the linear combination of equations 3.10 and 3.11 with scaling

factors A and B at l and 100, respectively, becomes the total cost

function as indicated in equation 3.2

3.3.4 The Procedure

An optimal design for this example is sought according to the

following procedure.

1. Construct the stiffness and mass matrices for the orignial

design via a finite element preprocessor.

2. Extract the dynamic characteristics of the system, that is,

the natural frequencies and mode shapes.

3. Calculate mass and stiffness matrix derivatives as shown in

Appendix A.

4. Calculate eigenvalue and eigenvector derivatives using

equations 3.5 and 3.6.

5. Input the scaling parameters A and B in equation 3.2.

6. Minimize the total cost function C(e) as it is defined by

equation 3.4.

7. Verify the results by solving eigenvalue problem for the

modified model with the proposed design change.
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3.3.5 Results

The algorithm used for this example approximates the modified fre-

quency with 9 terms in the Taylor series. Figures 3.4 through 3.8

illustrate the approximation. The figures show clearly that the first

five frequencies of the example do not have linear relationships with

the design variable.

The results of the minimization are shown in Table 3.2. The

optimal thickness of the beam found was to be .056 inches less than the

original .25 inch design, and the corresponding frequencies are out of

the unwanted frequency band. Note that the approximated frequencies

for the new thickness agree with the eigensolution of the new design,

indicating that the series has satisfactorily replaced the re-solution

of the eigenvalue problem.

3.4 The Convergence of the Series

The eigenvalues and eigenvectors of a modified system are approxi-

mated with the Taylor series. This approximation is accurate only

within the radius of convergence of the series. For example, consider

the following 2x2 matrix

1 Z..[z 2]

for this case, the eigenvalues are

A - 321+ %- /—2__ (3°13)
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Table 3.2 Comparison of the predicted natural

frequencies and the frequencies from the eigenvalue

solver at hI.194 inches

PREDICTED ANSYS

FREQUENCIES EIGENVALUE

(Hz) SOLVER (Hz)

1. 69.5 69.5

2. 192.6 192.6

3. 383.1 383.2

4. 721.6 721.8

5. 1193.1 1193.5
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where z is variable. The eigenvalues are complex and the matrix A has

a double root at

z I :32; i where i I [:1- (3.15)

The magnitude of this 2 value is the radius of convergence of the Taylor

series about zIO. This simple example illustrates that the radius of

convergence of the series may depend on complex values of the design

parameter. Figures 3.9 and 3.10 are plots of 12 and 12 for real values

of 2.

Of course, in a large complicated problem, this radius is not at

all obvious and may, in fact, have to be dealt with via rather ad-hoc

methods. In section 3.3, for example, the series had a large enough

radius of convergence to cover frequencies of the problem. But, in

the same example, if the unwanted frequency range is set to 2000 Hz -

3000 Hz, then the frequency penalty includes sixth and seventh frequencies.

Figures 3.11 and 3.12 indicate that the radius of convergence of the

Taylor series for these two frequencies is smaller than for the first

five frequencies. Therefore, the usefulness of the Taylor series

approximation of these frequencies will be limited.

To illustrate the consequences of this limitation, consider Table

3.3, which presents the results of an attempt to drive frequencies out

of the range of 2000 to 3000 Hz. The predicted frequencies in Table 3.3

show that the frequencies are removed from range. However, when these
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Table 3.3 Comparison of the predicted frequencies

and the frequencies from the eigenvalue solver

at hI.1732 inches for the frequency band of 2000 Hz-3000 Hz

PREDICTED ‘ANSYS

FREQUENCIES EIGENVALUE

(Hz) SOLVER (Hz)

1. 63.8 63.8

2. 176.9 177.0

3. 351.6 351.9

4. 663.1 663.7

5. 1096.3 1097.2

*6. 1905.7 *1759.2

87. 3172.3 *2885.7

8. 5537.2 5539.2

9. 8065.3 8067.6

10. 10780.0 10782.9

11. 14771.0 14776.2

12. 20875.0 20882.6

13. 21777.0 21784.9

14. 47545.0 47555.0

15. 47669.0 47678.7
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results are compared with the eigensolution at the indicated thickness,

it is obvious that the approximations of the sixth and seventh frequen-

cies are inaccurate at the proposed thickness, and that, in fact, the

seventh frequency has not been moved from the unwanted frequency range.

The next section presents a method to deal with the series con-

vergence problem.

3.5 Restart

Restart is a re-evaluation procedure used when resolution of the

eigenvalue problem indicates that the Taylor series did not converge

for a frequency of interest. In short, the fact that the eigenvalue

problem has been redone to check the accuracy of the series allows new

derivatives to be calculated to expand about the new operating point.

The example from Section 3.4, with an objective of a removing

frequencies from the 2000 Hz - 3000 Hz range, yielded a design which,

according to the approximation, drove all frequencies out of the unde-

sirable range. But re-evaluation of the eigenvalue problem at the new

design point indicated that the series did not faithfully represent the

eigenvalues at the indicated minimum. Figures 3.13 and 3.14 verify

that the next step in the optimization, which is an expansion about the

new design point based on the eigenvalue check solution, results in

locally accurate solutions. With this new starting point the optimizer

found a design change that met the objective. In this case, re-solution

indicated that the series remained in an accurate range. (See Table 3.4).

The steps of the algorithm that are explained in this chapter can

be summarized as follows:
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Table 3.4 Restart Results

hI.1351 inches

PREDICTED ANSYS

FREQUENCIES EIGENVALUE

(Hz) SOLVER (Hz)

1. 50.2 50.3

2. 139.6 139.6

3. 277.1 277.2

4. 523.6 523.7

5. 865.5 865.8

6. 1392.6 1393.0

7. 3061.9 3061.3

8. 5856.7 5855.4

9. 8389.1 8387.8

10. 11124.0 11122.5

11. 15179.0 15178.6

12. 22101.0 22097.1

13. 22788.0 22785.4

14. 49235.0 49228.8

15. 49349.0 49342.8
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- Generate the Finite Element Model of the original design

- Obtain the eigensolution of the model

- Assess the results

- Set up the cost function

- Calculate derivatives of mass and stiffness matrices via the

finite element preprocessor and finite difference methods

- Calculate derivatives for eigenvalues and eigenvectors for the

natural frequencies of interest

- Execute the minimization algorithm to find a new design

- Solve the eigenvalue problem at the new design point

- Compare the solution of the eigenvalue problem with the

series approximation

Restart if necessary.

This chapter dealt with design optimization using one design

variable and a cost penalty which is a simple function of the size of

the design change. The next chapter deals with the multi-variate

design optimization and introduces static deflection to the cost function.



CHAPTER IV

DESIGN OPTIMIZATION WITH MULTIPLE DESIGN VARIABLES

This chapter presents an efficient method for predicting the

effects of design modifications which may be dependent on several

variables. The particular problem of interest here is to find an ime

proved design, as indicated by eigenvalues and eigenvectors and by

static deflection. We assume that the finite element analysis finds

the eigenvalues and eigenvectors of the initial design, and that this

analysis indicates a need to improve the system.

Additional eigenvalue analyses for optimization purposes are com-

putationally burdensome process for systems with a large number of

degrees of freedom. Thus the procedure presented here seeks to avoid

resolution of the eigenvalue problem. To avoid unnecessary resolutions,

the eigenvalues and eigenvectors of the modified system are approxi-

mated using the Taylor series expansion about the original design

point. Since the series will require only 0(n2) calculations, as

opposed to 0(n3) for an eigenvalue problem, the optimization procedure

requires only 0(n2) calculations to find the improved design.

Initially, the design analysis for several variables will be

developed without static deflection as part of the design criteria.

Then in section 4.5 static deflection function will be added to the cost

function. The following sections explain these steps in detail. The

power of the method will be illustrated with examples.

40
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4.1 The Cost Function

As in previous chapters, the cost function is

C(w,e) foo). S(e)) (4.1)

where w is an nxl vector of natural frequencies of the modified system,

F(w) is a function that is large when natural frequencies are in an

undesirable range, e is an mxl vector of design variables, S(e) is a

function that becomes large when design variables begin to exceed

prescribed limits. The methods given in chapter 3 allow efficient

minimization of such penalties as a function of one change. This

chapter presents an efficient minimization procedure which includes

many changes.

4.2 Calculation of Optimum Design Changes

The calculation of optimum changes require a search for the minimum

specified cost function. The key issue in the total cost function is

determining eigenvalues and eigenvectors of a modified system for the

frequency content function. This can be done in two steps, 1) a

linear approximation of the eigenvalues of interest, a procedure which

can handle multiple design variables while using only 0(n2) calcula-

tions, and 2) nonlinear approximation which improves the results of the

linear calculations. In the first step, the design variables are deter-

mined based on the assumption that the rates of change of eigenvalues

are constant. For the second step, the ratios of the design variables

with respect to each other are kept constant and a new variable that
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scales the magnitude of the variables is determined. In this case, the

Taylor series, including higher order terms, is used to estimate the

eigenvalues of interest. The next two sections explain the steps in

detail.

4.2.1 Linear Approximation

The penalty function can be computed as a function of the modified

eigenvalues. As a first step, the approximations of the eigenvalues are

based on a linear expansion, therefore, the predictions of the natural

frequencies of a modified system are

m 3w2

62 - 6:04. 2 $1,} (4.2)

JIl J

where w and w are the modified and the original ith frequencies,

1 10

2

respectively, and awi is the rate of change of the ith frequency with

8e

J

respect to the jth design variable. For distinct eigenvalues, the

derivative can be computed as follows [9],

  

2
3w

1 _ T 8[K] 2 3[M]

eJ U1( aeJ ‘ “I aeJ )Ui (4'3)

T

where 11$[M]U_i- 1

This procedure has 0(n2) calculations, where n is the number of degrees

of freedom. The first derivatives of stiffness and mass matrices can

be approximated via the central difference method as explained in

chapter 3. Therefore, the final solution becomes a combination of the

design variables that best removes the unwanted natural frequencies

under the constraint of the size-of-change penalties.
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4.2.2 Nonlinear Approximation

If design variables have a linear relationship with the natural

frequencies of the structure, the linear approximation will give the

correct solution. But since the natural frequencies are, in fact, non-

linear functions of the design variables, the linear results have a

limited range of validity. The use of higher order terms can lead to

accuracy over a much wider range of changes. The method that is presented

here uses the Taylor series including the higher order terms to improve

the linear results.

An initial set of design variables e£* is found using linear appro-

ximations of the natural frequencies. This is followed by a nonlinear

optimization using the methods of chapter 3. The single design variable

for the nonlinear optimization is E; where

(4.4)

The natural frequencies of the system are now a function of the scale

variable 3. Since 3 scales the change along the path indicated by the

linear analysis, this may be viewed as a steepest descent procedure.

Equations 3.5 and 3.6 yield the higher order terms in the Taylor series

for approximation of the modified natural frequencies and mode shape

vectors with respect to E: In particular,

  

61w2 d2w2 d3w2

w2Iw2+—1;+—1, 1E2+—1, i;3+... (4.5)

i 10 _ 2. .2 3o -3

de de de

_.*

The solution is a set of design variables eeJ which minimize the

total cost function under the constraint that the design variables

retain the ratio to each other that was indicated by the linear
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calculations. Thus there remain two questions, namely 1) does the

Taylor series yield an adequate representation of the penalty along

* k

the path indicated by the e , and 2) did the eJJ indicate a path that

led to a minimum of C(w,e).

To answer the first question, it is necessary to find the eigen-

_.*

solution of the system modified by the changes eeJ, a procedure which

requires 0(n3) calculations. If the eigenvalues and eigenvectors at

*

J

then it is apparent that the series representation inadequate. In this

28 do not closely match the values predicted by the series expansion,

case it is necessary to use the restart procedure. If the eigensolution

_.*

at ee matches the predicted eigenvalues, it remains necessary to verify

J

_.*

that the eeJ indicate a minimum penalty. This also invalues the restart

procedure.

4.3 Restart

This procedure entails finding the optimum design variables by

minimizing the cost function based on linear approximations of the eigen-

values. Then, these variables are scaled according to the minimization

procedure of the total cost function with the estimation of the eigen-

values via the Taylor series including the higher order terms. This

process assumes constant ratios of the design variables and improves

the optimization of the variables by scaling. But this enhancement may

be inaccurate if the direction that is assumed constant is incorrect.

*

In this case, the optimization requires a new ratios of eJ.
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Thus for the initial step of the restart the eigenvalues become

2

2 2(" *) + I; W“ A (4 6)w . W 83 _ e o

k J J J31 BeJ J

_.*

If the linear optimization about eek returns the solution AekIO, this

minimizes C(w,e). Consider, on the other hand, the

*

k

case wherein one or more of the Ae

indicates that 28

I *

k are non-zero, say they are Aek.

Then ratio of Aek must be established, and nonlinear optimization

is again used. During the nonlinear approximation analysis, the new

design variable size function becomes

*

e ‘+ e Ae (4.7)

where Z is now the single nonlinear design variable.

Figure 4.1 presents a pictorial explanation of the restart proce-

dure in the case of an incorrect direction for the search of an optimum

result with one variable. Again, this can be viewed as optimization via

steepest descents.

The next section illustrates the power and the flexibility of the

analysis with an example problem.

4.4 Example

In this section, the method is applied to the design of a fixed-

fixed beam (see Figure 4.2). The design variable is the height of the
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Figure. 4.1 Schematic Representation Of The Restart.
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top of the beam. The objective is to remove natural frequencies from the

frequency band of 450 Hz - 550 Hz. The size of design change is included

in the cost function.

4.4.1 Initial Design

The fixed-fixed beam is modeled with ten beam finite elements

using ANSYS finite element preprocessor. The beam elements each have

two nodes and each node has three degrees of freedom (two translation

and one rotation). Figure 4.3 shows the element and the nodes of the

beam. The eigensolution from.ANSYS finite element processor found

the frequencies which correspond to twenty-seven degrees of freedom

(Table 4.1).

To facilitate the redesign of the shape of the top of the beam,

we write the height of the beam, h, as a function of four cubic para-

metric equations. Figure 4.4 shows the four parametric equations that

model each half of the fixed-fixed beam [22]. The redesigned beam will

remain symmetric about the mid point.

The parameter t ranges from 0 to l on each of the plots. The

first two plots, B and B

1 2’

have non-zero coordinate only at tIO for B1 and tIl for B2. B3 and B4,

on the other hand, have zero coordinate at each end and non-zero slope

have zero slope at each end point, and

3 and t=l for 34'

The design variable h, which is the top surface of the beam, may

only at tIO for B

be written for each half of the beam as
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Figure 4.2 Fixed-Fixed Beam.

 

Figure 4.3 Finite Element RepreSentation Of The Fixed-Fixed

Beam.



49

Table 4.1 Natural frequencies of the fixed-fixed

beam at hI.25 inches

FREQUENCY (Hz)

2. 248

3. 487

4. 806

5. 1208

6. 1695

7. 2271

8. 2937

9. 3651

10. 4226

11. 4867

12. 5099

13. 7172

14. 8557

15. 8683

16. 10462

17. 12529

18. 13098

19. 14842

20. 17195
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Table 4.1 Continued

FREQUENCY (Hz)

21. 17953

22. 19096

23. 23205

24. 28874

25. 34798

26. 40446

27. 44757
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e e

l 3 2 2 3 2

11 1'10 ‘1' 76(2t - 3t '1' 1) + EEK-21: ‘1' 3t )

e3 3 2 3 2
+3-(t - 2t + t) + e4(t - t ) (4.8)

The variables e1, e2, e3 and e4 are the design variables which determine

the top surface of the beam. The design parameters are scaled such that

elIl corresponds to a 20% change in height at the end of the beam, and

e2Il corresponds to a 20% change in height at the mid point of the beam.

The slope scaling is such that e3Il corresponds to a maximum of 15%

change in height at an interior point fairly near the ends of the beam

(t ..%9. To ensure slope continuity at the mid point, e4 is set to

zero. Thus for the left hand side of the beam, h may be written as

e e

l 2 l 3 3 3 2 2

h'h0+ (26'1'6+353)t + (70e1+2‘092‘333)t

1 e1

and for the nonlinear approximation, h may be written

* *

e e

- 1 2 I * 3 3 * 2 * 2

h ho+e[(‘1'6"'f6+3'e3)t +("'2'0‘31'3‘23)t

*

1 * e1] 410+(333)t+-2_0-
(°)

*

where eis are the values of the design which result from the linear

approximation.
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4.4.2 The Design Change

The approximation of the natural frequencies and mode shapes of

the modified design requires the first derivative of mass and stiffness

matrices with respect to the e and the high order derivatives of the

i

mass and the stiffness matrices with respect to :2 They are computed

via the central finite difference method as explained in section 3.2

using ANSYS finite element preprocessor.

4.4.3 The Cost Function

The cost function is seperated into two functions. First, the

frequency content function is represented by the following mathematical

form,

In

F(w) I Z (l - cos(21r(wi - p)/(u - p))) (4.11)

JIl

where p and u are lower and upper bounds of the frequency band, respec-

tively, m is the number of modes in the finite element model and W1

is the ith natural frequency. The w1 are found by the linear approxi-

mation at each design change. The design change size functions are

quadratic functions of e where iIl,2,3. That is,

i

3 2

S(e) I 2 e1 (4.12)

i=1

Figure 4.5 summarizes the cost functions for this example.
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Figure 4.5 Frequency Content And Size-Of-Change Functions For

The Example Problem.
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4.4.4 The Procedure

The procedure for this example is as follows:

1. Construct the Finite element model

2. Extract the natural frequencies and mode shapes of the

initial design

3. Calculate the first derivative of mass and stiffness matrices

with respect to each design variable e at the initial design via the

J

ANSYS finite element preprocessor

4. Calculate the first derivative of the natural frequencies

with respect to each design variable eJ

5. Minimize the total cost function in equation 4.1 using the

linear approximation for the frequencies. This yields e:

6. Formulate the new design variable E.by defining the design

change in terms of e: and 3 according to equation 4.4

7. Calculate the higher derivatives of mass and stiffness

matrices with respect to 3 via the central finite difference method

using finite element preprocessor

8. Calculate the higher derivatives of the natural frequencies

and the eigenvectors with respect to 2; according to equations 3.5

and 3.6

9. Minimize the total cost function to find 3

10. Resolve the eigenvalue problem at 26:

11. Repeat steps 1-5 with the modified design

12. If the eigensolution matches the predicted results from step

10 and if AekIO at the completion of step 11, then the procedure is

completed
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13. If AekIO, use the restart procedure

14. Do a restart until AekIO, which indicates the minimum solution

for the given cost function.

4.4.5 The Results

Table 4.2 shows the results obtained by linear approximation. It

also shows the natural frequencies that are computed with the suggested

design changes via eigenvalue analysis. The table indicates that the

predicted natural frequencies deviate considerably from the correct

solutions. In fact, the proposed design failed to remove the natural

frequency from the specified frequency range of 450 Hz - 550 Hz.

Table 4.3 shows results after the nonlinear optimization. It

scales down the change considerably from the linear-based analysis.

This proposed design does not have any frequencies in the specified

frequency range of 450 Hz - 550 Hz. The table indicates that the eigen-

value analysis with this proposed design matches the predicted natural

frequencies.

Further linear approximation with the modified design as an

operating point results AekIO. This means that the path that is taken

with the linear approximation lead to the minimum cost function.

Figure 4.6 shows the shape of the beam with the new changes.

The analysis and figure 4.6 indicate that the design change has

thinned the beam. Thus, while the design objective with regard to

frequency spectrum has been met, the designer might well be concerned

with the static strength of the new design.
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Table 4.2 Comparison of the predicted

natural frequencies via linear approximation

and the natural frequencies via the

eigenvalue solver at

*- 262 * 2 * 1 3012

MODE FREQUENCY VIA (Hz) FREQUENCY VIA (Hz)

LINEAR APPROXIMATION EIGENVALUE SOLVER

1. 63 66

2. 151 170

3. 279 324

4. 441 522

5. 643 770

6. 890 1068

7. 1188 1419

8. 1570 1848

9. 1896 2277

10. 2519 3043

11. 3138 3755

12. 3706 4457

13. 4394 4541

14. 4431 5478

15. 5273 6567

16. 6224 7845

17. 7208 9066

18. 7620 9221
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Table 4.2 Continued

MODE FREQUENCY VIA (Hz) FREQUENCY VIA (Hz)

LINEAR APPROXIMATION EIGENVALUE SOLVER

19. 8770 10276

20. 8886 11461

21. 13266 13347

22. 18043 18075

23. 23205 23205

24. 28769 28732

25. 34584 34483

26. 40049 39839

27. 44629 44581
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Table 4.3 Comparison of the predicted

natural frequencies via nonlinear approximation

and the natural frequencies via the eigenvalue solver at

_a _a * * *

e I.2799 Design Change-e f(e1,e2,e3)

MODE FREQUENCY VIA Hz FREQUENCY VIA Hz

NONLINEAR APPROXIMATION EIGENVALUE SOLVER

1. 83 83

2. 226 226

3. 441 441

4. 727 727

5. 1086 1086

6. 1522 1522

7. 2038 2038

8. 2641 2641

9. 3275 3275

10. 4278 4278

11. .4366 4366

12. 5306 5306

13. 6436 6437

14. 7784 7784

15. 8660 8660

16. 9369 9369

17. 11208 11209

18. 13150 13150

19. 13253 13254
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Table 4.3 Continued

MODE FREQUENCY VIA Hz FREQUENCY VIA Hz

NONLINEAR APPROXIMATION EIGENVALUE SOLVER

20. 15255' 15256

21. 16975. 16977

22. 17980 17980

23. 23205 23205

24. 28842. 28842

25. 34732. 34732

26. 40323 40323

27. 44718 44718
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One way to codify the loss in load carrying capacity is to calculate

the deflection of the new and the original designs under a static load.

For example, calculations would indicate that under centerpoint loading

the new design deflects about 302 more at the center than the original

design.

To deal with these concerns, the next section considers static

deflection as a design criterion. It seeks for an improved design

indicated by static deflection as well as eigenvalues and eigenvectors.

4.5 Static Deflection Function

The changes which produce a desirable frequency spectrum may so

weaken the structure that it will not withstand expected static loads.

The static deflection penalty to be presented here is meant to prevent

the formulation of such a structure.

The static deflection cost function, D(ds), reflects the relative

desirability of all values that static deflections can accrue. That

is, reasonable values of static deflection should be associated with a

small cost and less desirable ones should have larger cost.

Since it is an goal here to limit the number of calculations, we

will use the solution to the vibration problem to determine the static

deflections. Then the economical series approximation for eigenvalues

and eigenvectors can be used to determine expected changes in static

deflection as a function of changes in the system.
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The determination of the static deflections of a modified system

is given by the following method. The system is defined by

[MJg + [K]x - E (4.13)

where

[M] I mass matrix (nxn)

[K] I stiffness matrix (nxn)

F. I force vector of static loads (nxl)

g. I acceleration vector (nxl)

x. I displacement vector (nxl)

If the eigenvalues are distinct and non-zero, equation 4.13 can be

uncoupled by the following transformation

5 I [U]y (4.14)

[where y is an nxl generalized coordinate vector and U is the nxn modal

matrix with columns which are eigenvectors. Assume the eigenvectors

are normalized such that [U]T[M][U] I [I], and premultiply by UT. Equa-

tion 4.13 becomes

[1]): + £sz = In?“ I (4.15)

where [A] is a diagonal nxn matrix of eigenvalues.
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In the static case, that is, y=o, equation 4.15 becomes

E111 = Inf 1: (4.16)

01'

z = [AJ'IEUJT 3 (4.17)

where [A]1 is the inverse of the diagonal matrix [A].

The generalized coordinate vector y can be obtained from equation

4.17 for the modified system. The entries of U]-1 and [U] are the

reciprocal of the modified eigenvalues and the modified eigenvectors for

a given design change. The static deflection can then be found from 4.14.

4.6 Total Cost Function

A total cost function can be written as a linear combination of

the size, frequency content and static deflection functions:

k r m

C(w,e,d ) I Z A.F (w) +- X B S (e) +. 2 E D (d ) (4.18)

s J=l J J J31 J J J=1 J J s

where k is the number of unwanted frequency ranges, r is number of design

variables, m.is the number of sections of the structure where static

deflections are of concern, dS is the static deflection of a point on

the structure under a set of prescribed static loads and D(ds) is a

function that becomes large for undesirable static deflections of the

system. Coefficients of each function weight the relative importance

of each frequency, size and static deflection.
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As indicated in chapter 3, the frequency content function is a

function of design variables,

w1 I f(eJ) J I 1,2,...m (4.19)

where wi is modified ith natural frequency and the m eJ

variables. The static deflection is also a function of design variables

are design

eJ as indicated in equations 4.17 and 4.14. Therefore, the total cost

function becomes a function of the design variables.

k r

C(e ) I Z A F (w(e )) + 2 B S (e

J J31 J J J ng J J J

m .

+ J51 EJ(DJ(eJ)> (NO)

4.7 Example with Static Deflection Function

In this section, the beam example from section 4.4 is considered

to illustrate an application of the static deflection penalty. In

this case, the static deflection penalty is included in the cost func-

tion. In particular, a linear static deflection function for the mid

point of the beam under mid-point loading is used. The linear equation

is

(4.21)

*

where Z is a scale factor, dS is the static deflection of the middle
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node of the original design under a give external load at that node,

and d is the static deflection of the middle node for the various

designs. The total cost function is the linear combination of the

three functions of equation 4.20. For this example, the scaling factors

A, B and Z are set to 1000, l and 125, respectively.

4.7.1 Results

The results of this example show the behavior similar to the last

example. The linear approximation eigenvalue results deviate from

the eigensolution of the modified design (Table 4.4). However, the

nonlinear approximation procedure with constant ratios of design

variables yields deign that does not have an frequencies in the range

of 450 Hz - 550 Hz and the predicted natural frequencies agree with

the eigensolution of the design (Table 4.5). Figure 4.7 shows the

modified beam after the nonlinear approximations. A further linear

approximation with the modified design as an operating point yields

AekIO, which indicates that the given set of design changes for this

example lead to the minimum cost function.

Although this example is similar to the previous one, the analysis

synthesized a remarkably different design modification. In this case,

this modified beam has mid-point a static deflection only about 13%

higher than the original design, whereas, the previous example lead to

a static deflection about 30% more than the original design. Figure

4.8 shows the final design for each case. Clearly, the particular

deflection chosen here lead to increased thickness in key areas of the

beam.
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Table 4.4 Comparison of the predicted natural

frequencies via linear approximation including the

static deflection and the natural freequencies via

the eigenvalue solver at

s * *

e =2.1646 e I-2.3705 e I-3.2625
1 2 3

MODE FREQUENCY VIA (Hz) FREQUENCY VIA (Hz)

LINEAR APPROXIMATION EIGENVALUE SOLVER

1. 82. 71

2. 176 177

3. 300 326

4. .442 504

5. 612 733

6. 685' 1055

7. 758 1294.

8. 823 1659

9. 1088 1984

10. 1494 2640

11. 1686 3384

12. 2209 4164

13. 2915 4829

14. 3213 5078

15. 3690 5983

16. 4196 7053

17. 4663 8897

18. 4705 9842



Table 4.4 Continued

MODE

19.

20.

21.

22.

23.

24.

25.

26.

27.

68

FREQUENCY VIA (Hz)

LINEAR APPROXIMATION

4834

9361

13517

18178

23205

28610

34255

39442

44377

FREQUENCY VIA (Hz)

EIGENVALUE SOLVER

10002

10153

13662

18180

23205

23611

34087

38895

44281 .
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Table 4.5 Comparison of the predicted natural

frequencies via nonlinear approximation including the

static deflection and the natural frequencies via the

._*

eigenvalue solver at e I.2964

_* * * *

Design ChangeIe x f (e1,e2,e3)

MODE FREQUENCY VIA (Hz) FREQUENCY VIA (Hz)

NONLINEAR APPROXIMATION EIGENVALUE SOLVER

1. 87 87

2. ‘ 230 230

3. 442 442

4. 721 721

5. 1072 1072.

6. 1496 1496

7. 1989 1989

8. 2596 2596

9. 3208 3209

10. 4278 4279

11. 4383 4383.

12. 5232 5233

13. 6329‘ 6331

14. 7639 7640

15. 8831 8831

16. 9175 9176

17. 10957' 10959

18. 12920 12921



Table 4.5 Continued

MODE

19.

20.

21.

22.

23.

24.

25.

26.

27.

7O

FREQUENCY VIA (Hz)

NONLINEAR APPROXIMATION EIGENVALUE SOLVER

13233

146801

16262

18022

23205

28793

34626

40120

44637

FREQUENCY VIA (Hz)

13233

14681

16263

18022.

23205

28794

34627

40121

44638
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CHAPTER V

CONCLUSIONS

Design modifications to improve the frequency spectrum.of large

systems often requires many solutions of large eigenvalue problems.

Thus, this has been computationally inefficient. This thesis develops

a more efficient approach to the problem.

The procedure developed here uses a finite element preprocessor and

series approximation to develop an approximation for eigenvalues and

eigenvectors as a function of design changes. Thus, the iterations which

lead to the optimal redesign take only 0(n2) calculations. Examples

indicate that the approximations are useful over a wide range of design

changes.

Future work should include applications of this method to systems

with damping and the investigation of the possibility for use of a more

sophisticated choice of direction of the change vector in restart appli-

cations.
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APPENDIX A

The central finite difference formulations for the various deriva-

tives involve values of the function on both sides of the x value at

which the derivative of the function is desired. By utilizing the

appropriate Taylor series expansions, one can obtain expressions for

derivatives as follows:

3: *(X)

 

934 9; 9:94

    
 

Figure A.l Approximation of the derivative at x‘
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The Taylor series for a function y=f(x) at (x1+Ax) expanded about x1 is

.Y;(Ax)2 yi"(AX)3

y(xi + AX) ‘ yi + yi(AX) + 2: + 3: + ... (A.1) 

where yi is the ordinate corresponding to x and (x1+Ax) is in the
1

region of convergence. The function at (xi—Ax) is similarly given by

yg<Ax)2 y;"<Ax>3
y(xi - Ax} - yi - yi<Ax) + 2: - 3!. + ... (A.2) 

Using only the first 3 terms of each expansion, we can obtain an expres-

sion for y; by substracting equation (A.2) from (A.1), yielding

y(xi + Ax) - y(x1 - Ax)

y; ' 2(Ax) ' (A'3)

 

Equation (A.3) is called the first central-difference approximation of

y' at x Graphically, the approximation represents the slope of the1.

dashed line in Figure A.l. The actual derivative is represented by

the solid line drawn tangent to the curve at x If we add equations1.

(A.1) and (A.2), the second derivative can be approximated as

y(xi + Ax) - 2yi(Ax) + yi(xi - Ax)

 

y" a
(A.4)

i (Ax)2

The four terms on the right hand side of each equations (A.1) and (A.2)

can be used to obtain an expression for the third derivative. Sub-

stracting equation (A.2) from equation (A.1) yields
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2 1" 3

y1 .(Ax)

Yi(xi + Ax) - yi(xi - AX) - 2yi(AX) + 3: (A.5) 

If we expand the Taylor series about x to obtain expressions for

i

y-f(x) at (xi+2Ax) and (xi-2Ax), respectively, we obtain

yg<2Ax)2 y;"(2Ax)3
 

y(xi + 2Ax) = y1 + yi(2Ax) + 2! + 3: (A.6)

n 2 I”

Y (2Ax) Y1 (ZAX)

y(xi - 2Ax) - yi - yi(2Ax) + ——2—!— - T— (A.7)

Substracting equation A.7 from equation A.6, and using just the 4 terms

of each expansion shown, gives

y (x + 2Ax) - y (x - 2Ax) - 4y'(Ax) +‘-8--y"'(Ax)3 (A 8)
i i i i i 3 i '

The simultaneous solution of equations (A.5) and (A.8) yields

"' yi(xi + 2Ax) - 2yi(xi + Ax) + 2yi(xi - Ax) - yi(xi - 2Ax)

y1

 

““03 (A.9)

Equation (A.9) gives the central difference difference expression for

the third derivative of y at xi.

Successively higher derivatives can be obtained by this method,

but, since they require the solution of increasingly larger number of

simultaneous equations, the process becomes quite tedious. Derivations

for the higher derivatives are accomplished with much greater facility

and far less labor by using difference, averaging and derivative
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operators [ ]. Central-difference expressions, however, are more

accurate than either forward or backward difference expressions. The

following is a summary of the differentiation formulas which may be

obtained from Taylor series expansions.

. _ y1+1 ' yi-l

yi 2(Ax)

 

" . y1+1 ' 2V1 + yi-l
 

 

 

y
i (Ax)2

y - 2y + 2y _ - y _
yin . 1+2 1+1 3 i l i 2 (A.10)

2(Ax)

y.... . y1+2 ' 4y1+1 + 6Y1 ’ 4y1-1 + y1-2

1 (Ax)4

where

y1+1 ' y1(x1 + A“)

y1+2 ' y1(x1 + ZAX)

yi-l ' y1(x1 ' AX)

yi-2 ' yi(xi ‘ 2Ax)

Similarly the derivatives of mass and stiffness matrices may be for-

mulated via central difference method. The following is a summary of

the derivatives of mass matrix [M] and stiffness matrix [K] with

respect to a design variable e.

' [M]1+1 ‘ [MJi-l

[M] a 2(Ae)
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" _ [M]i+l ' ZEM11 + [MJi-l
[M]

we)2

 

... . [M]1+2 - ZEMJi+1 + 2EM]1_1 - [M]i_2

 

[M]

2(Ae)3

I!!![M] . [u]i+2 - 4[M]1+1 + etuji - 4EM11_1 + [M11_2

(Ae)4

 

where

[M]i+l - Mi(ei + Ae)

[M]i+2 = M1(e1 + 2Ae)

[MJi-l = Mi(ei - Ae)

[MJi-Z I Mi(ei - 2Ae)

' [K]1+1 ' [KJi-l

[K3 ‘ 2(Ae)
 

EX)" g E§]1+1 ' ZEKji + [KJi-l
 

(Ae)2

[K]... . [K]1+2 - 2EK11+1 + 2EK]1_l - [K]i_2
 

2(Ae)3

HM a [K]i+2 ' 4EK11+1 + GEKJi - AEKji-l + [KJi-Z

[K]

(Ae)4

 

where

E“1+1 . Ki(ei + Ae)

[K]1+2 - Ki(e + 2Ae)

[K]i_l = K1(ei - Ae)

[KJi-Z = Ki(ei - 2Ae)
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