THE ROLE OF MICROORGANISMS IN THE REDUCTION AND OXIDATION OF MEAT PIGMENTS

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
Donald Lowis Robach
1959

This is to certify that the

thesis entitled

The Mole of Microorganisms in the Meduction and Cxidation of Meat Firments

presented by

Donald Lewis Robach

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Microbiology & Pub. F.

Major professor

Date Oct 16, 1959

O-169

THE ROLE OF A ICRODACH TORO IN AND AND ONIDATION OF MEAT PICKEARS

Ξy

Donald Lewis Robach

AN ABSTRACT

Submitted to the School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF FHILOSOPHY

Department of Microbiology and Fublic Health

ABSTRACT

heat color is due to myoglobin, an iron porphyrin pigment. In the reduced form, the iron of the heme is in the ferrous state, and the color is purple. Upon exposure to chygen the pigment becomes only, enated, but the iron remains in the ferrous state and the color is bright red. Under certain conditions mpoglobin may be oxidized to methyoglobin, a brown pigment. The iron portion of this compound is in the ferric state. The protlem of discoloration then involves the loss of only, ento term reduced myoglobin (purple) and exidation to form metmyoglobin (trown).

Various investigators have shown that bacteria are instrumental in the discoloration of fresh beef; however, the exact method or methods involved are not known.

This investigation was an attempt to elucidate the actual role of microorganisms in pigment changes.

Initial studies of a number of species of bacteria and of a yeast showed that only those organisms which metabolize aerobically (possess the hreb cycle enzymes) would bring about the oxidation of myoglobin to metmyoglobin. Further, only those aerobic organisms which were able to metabolize at low temperatures were shown to cause this reaction at refrigeration temperatures.

Plate counts and ranometric studies with homogenates of tissue slices from the surface of steaks showed a direct correlation between numbers of microorganisms, oxygen uptake rate, and color changes. Various bacteriostatic agents applied to steak inhibited bacterial growth and resulted in lower organ uptake rates and prolonged color retention; however, the same correlation between the three variables was again noted upon extended storage.

Cell-free extracts prepared by sonic oscillation of heavy cell suspensions of <u>restdonous servainoss</u> and <u>Pseudomonas sericulata</u> were found to bring about the oxidation of myoglobin to methyoglobin on meat surfaces, and any substance inhibiting of year uptane by these enzymes also inhibited signent oxidation.

Tissue removed from beef muscle and placed in reduced chysen atmospheres using sterile techniques underwent pigment oxidation at chysen tensions from 8 mm to 20 mm (measured by a mercury manometer) without the presence of bacteria. In an all k2 atmosphere only reduction occurred. At higher 02 tensions, exidation occurred only after bacterial contamination was evident. These data along with experiments involving plucose exidase, perenidase, and specific enzyme inhibitors led to the conclusion that the role of lacteria in meat pigment changes is simply that of lowering the dissolved exygen level in the surface tissue. The level may be reduced

to the point where natural charges in the meat cause pigment oxidation, and further limitation results in pigment reduction.

THE LODE OF MICHOCAGA, ISAS IN THE REDUCTION AND ONIDATION OF HEAT FIGHENTS

ĽУ

Donald Lewis hobach

A TILSIS

Submitted to the School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Microbiology and Public Health

A.Cr. 1.O was ab GET Land To

The author is indelted to Dr. A. A. Costilow, Associate Professor of Licrobiology and Public Health, for his genuine interest, auidance, and suggestions during this investigation. Dr. Costilow's valuable criticisms during the preparation of the manuscript are also sincerely appreciated.

The author wishes to express thanks to Dr. H. L. Sadoff and Dr. H. L. Ejerrum for their critical reading of this manuscript. The many helpful suggestions of Dr. Sadoff are also acknowledged.

To his wife, Dorothy, the author wishes to express his deepest gratitude for the innumbrable sacrifices and encouragements which have made this study possible.

The financial assistance of Nerck and Company in the form of a Graduate Research Assistantship is gratefully acknowledged.

TABLE OF CONTLATS

																			ŀ	-εε:∈
InTho	DUCT	. 401			•		•	•		•	•	•	•	•		•	•	•	•	1
KEVII	HO W	LITE	kATUk	E.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	4
•	Chemi	istry	of in	yo£]	lot	in	•		•	•	•	•	•	•	•	•	•	•	•	5
	Physi	iclog:	ical	hole	e c	of in	yοε	10) Li	n	•	•	•	•	•	•	•	•	•	11
	React	tions	of h	yogl	lol	in	•	•	•	•	•	•	•		•	•	•	•	•	11
	The C	Color	of F	resh	al.	.eat	•	•	•	•	•	•	•	•	•	•	•	•	•	13
		ors In			TE		Сc •	1c	r	of •	•	re •	sh •	•	•	•	•	•	•	14
y		Cxyg	en Te	nsid	on	εnā	Te	al J	er	'a t	ur	e	•	•	•	•	•	•	•	14
		Packa	eging	mat	ter	ial	•	•	•	•	•	•	•	•	•	•	•	•	•	18
		Ci.em:	icals	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	20
		Effe	ct of	Lac	cte	ria	er.	id	ĪΤ	ei	r	ĽΥ.	Zy	m∈	s	•	•	•	•	22
	Meat	Enzyr	nes		•		•	•	•	•	•	•	•	•	•	•	•	•	•	28
EXPLI	k II i II l	lai Fi	nOCED	UKE	•		•	•	•	•	•	•	•	•	•	•	•	•	•	31
	Heat	Sour	ce .		•		•	•	•	•	•	•	•	•	•	•	•	•	•	31
	Metho	od of	Hand	lir.é	; C	iul ti	ur e	s	•	•	•	•	•	•	•	•	•	•	•	31
	Intra	celli	ılar	Enzj	уше	Fr	eps	ra	ti	lon	l	•	•	•	•	•	•	•	•	31
	Keası	iremei	nt of	Lac	cte	ria	1 (rc	wt	h	•	•	•	•	•	•	•	•	•	32
	Prepa Deter	eratio mina	on of tion	So]	Lu t	ion	s í	or	• F	i:ِ •	m∈ •	nt.	•	•	•	•	•	•		33
	Metho	oā of	Pi _ö m	ent	Dе	ter	niı.	ıet	ic	n	•	•	•	•	•	•	•	•	•	34
		Spec	troph	o toi:	net	ric	Ar	al	.ys	es		•	•	•	•		•	•	•	34
		Munse	ell D	isk	Co	lor	ime	tr	v	•				•		•		•		3,8

The Effects of Microorganisms and Cell-Free Extracts on Leat Figurents		Page	
Extracts on Leat Figments	RESULTS	• 39	
Leat Homogenates		• 39	
Auscle Fighent Extracts	Steak Surface	• 39	
Correlation of Co Demand of the Surface Tissue of heat and Figment Changes	heat Homogenates	• 42	
Tissue of heat and Figurent Changes	huscle Figment Extracts	. 46	
Steaks Held at hefrigerated Temperatures . 51 Steaks Held at hoom Temperature	Correlation of Co Demand of the Surface Tissue of Neat and Figment Changes	• 47	
Steaks Held at hoom Temperature		• 51	
Huscle Pigment Extracts Held at Room Temperature	Steaks Held at hefrigerated Temperatures	. 51	
Temperature	Steaks Held at hoom Temperature	. 60	
Eeef Tissue Slices	m	• 62	
Effects of H ₂ O ₂ , Peroxidase, and Glucose Oxidase	Mest Homogenates	. 66	
Effects of Clucose Oridase	Eeef Tissue Slices	• 70	
Effects of Peroxidase	Effects of H_2O_2 , Peroxidase, and Glucose Oxidase	• 72	
Effects of O ₂ Tensions	Effects of Clucose Oxidase	• 74	
Steak Surface Pigments	Effects of Peroxidase	• 76	
Effects of Antioxidants	Effects of 02 Tensions	• 79	
Effects of Antioxidants	Steak Surface Pigments	• 79	
Effects of Ascorbic Acid and of a Minture of Ascorbic Acid and Sodium Micotinate on the Color of Frepachaged Steaks	Muscle Pigment Extracts	• 93	
Ascorbic Acid and Sodium Ricotinate on the Color of Frepachaged Steaks 100	Effects of Antioxidants	. 96	
	Ascorbic Acid and Sodium Licotinate on the	7(0	
14.1.31.41.3.3.11.419			

																							Page
SULMARY	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	113
APrENDIX	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	116
neferenci	ت	•		•	•	•	•	•	•	•	•	•	•	•	•			•	•		•	•	160

LIST OF TABLES AND FIGURES

		Page
Figure 1.	Chemical structure of myoglobin	6
Figure 2.	Effects of intracellular enzymes and cells of <u>Ps. reniculata</u> on prepackaged beef held at room temperature.	41
Table 1.	The effects of Ps. geniculata, Ps. geruginosa, and a cell-free preparation of the intracellular enzymes of these organisms on the color of fresh prepackaged beef	43
Table 2.	Effects of <u>Ps. geniculata</u> and aureomycin on meat homogenates held at 30°C	45
Table 3.	The effects of the intracellular enzymes and cells of Ps. geniculata and Ps. aeruginosa on the rate of pigment change of oxymyoglobin extracts	48
Figure 3.	The effects of Ps. geniculata on prepackaged beef held at 40°C	50
Figure 4.	Effects of various levels of aureomycin applied to the surface of prepackaged beef held at 4°C	52
Figure 5.	Effects of aureomycin on fresh prepackaged beef held at 4°C	54
Figure 6.	Comparison of effects of sodium malonate and aureomycin applied to prepackaged beef held at 4°C	5 5
Figure 7.	Effects of iodoacetate on inoculated prepackaged beef steaks held at 4°C	56
Table 4.	Effects of kCm and Ps. geniculata inactivated with kCm and NaN3 on fresh prepackaged beef held at 4°C	58
Figure 8a. and 8b.	The effects of iodoacetate and sodium azide on inoculated prepackaged steaks held at room temperature	63

Table 5.	Effects of active and inactivated cells of <u>Ps. geniculata</u> on myoglobin pigment extracts held at room temperature	61 ₁
Figure 9.	Effects of sodium fluoride and iodo- acetate on the respiratory activity of cells and intracellular enzymes of Ps. geniculata	67
Figure 10.	Effects of sodium malonate and sodium azide on the respiratory activity of cells and intracellular enzymes of the soliculate	68
Figure 11.	Effects of sodium fluoride and sodium malonate on the respiratory activity of cells and intracellular enzymes of FS. Leniculata	69
Talle 6.	The effects of h.Ch. on the O2 uptake by cells of Fs. geniculata at various oxygen tensions	71
Talle 7.	Effects of sodium azide and potassium cyanide on the respiratory activity of beef tissue	73
Table ϵ_{ullet}	Effects of hydrogen peroxide on fresh and aged myoglobin extracts held at room temperature	75
Table 9.	The effects of hydrogen peroxide, glucose oxidase, and a combination of both on the surface color of unwrapped steaks held at room temperature	77
Table 10.	Effects of active and heat-inactivated glucose oxidase and peroxidase on myoglobin extracts held at room temperature	78
Table ll.	Effects of nitrogen and oxygen atmospheres on uninoculated prepackaged beef held at 4°C	60
Table 12.	Effects of Litrogen and oxygen atmospheres on inoculated prepackaged beef held at 4°C.	٤1

		Page
Figure 12.	The effects of various oxygen tensions on the color of prepackaged beef held at 4°C	83
Table 13.	The effects of reduced oxygen atmospheres on sterile excised muscle tissue held at 4°C	90
Table 14.	The effects of reduced oxygen atmospheres on sterile excised muscle tissue compared to aseptically handled steaks held at 4°C	92
Table 15.	Effects of various oxygen tensions on oxymyoglobin extracts with and without the presence of bacteria	97
Table 16.	Effects of ascorbic acid and ascorbic acid plus sodium nicotinate treatments on the rate of discoloration and bacterial growth on steaks	102
Table 17.	Effects of ascorbic acid and ascorbic acid plus sodium nicotinate treatments on the rate of discoloration and bacterial growth on steaks	103
Figure 13.	Comparison of effects of a mixture of ascorbic acid and sodium nicotinate on inoculated and uninoculated prepackaged beef held at 4°C.	104

INTRODUCTION

The discoloration of fresh prepackaged beef items is of great economic importance. Voegeli (1952) has shown that almost 26% of the prepackaged meat was removed from self-service cases due to discoloration. This results in financial losses due to the labor of reworking the product which terminates in cheaper cuts as well as weight losses. ball et el. (1957) stated that shelf life of prepackaged fresh meat is only slightly over 48 hours and that the product seldom has a satisfactory appearance for as long as 72 hours. To lengthen the period of marketability, color retention must be prolonged.

Discoloration is called "loss of bloom" by the trade. This means that the meat loses its bright red appearance. Meat color is due to myoglobin which is a pigment resembling hemoglobin in that it is an iron porphyrin, and the heme prothetic group is attached to a globin protein fraction. In the reduced form, the iron of the heme is in the ferrous state and its color is purple. Upon exposure to unlimited oxygen the iron remains in the ferrous state but the pigment is oxygenated. This pigment called oxymyoglobin is bright red. The heme portion of myoglobin may be oxidized by various methods to metmyoglobin, a brown pigment. The iron portion of this compound is in the ferric state. The problem of discoloration or "loss of bloom" involves the loss of oxygen to form reduced

myoglobin (purple) and oxidation to metmyoglobin (brown).

There are three factors to consider when one thinks of discoloration of meats. The factors are physical, chemical, and biological. Physical factors include oxygen tension, temperature, and humidity.

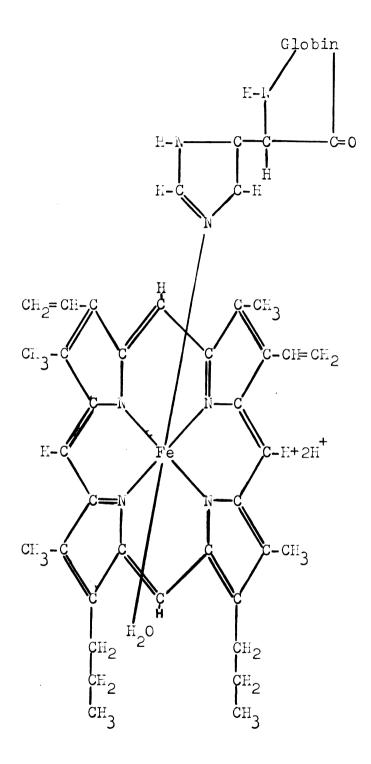
The maximum rate of reduction of myoglobin occurs in the absence of oxygen, but Brooks (1933) found that maximum oxidation occurs at an oxygen pressure of about 4 mm Hg. at 0°C. He further found that as the temperature increased, the rate of the above reactions also increased. Landrock and Wallace (1955) have observed that packaging materials which were coated to prevent excessive loss of moisture resulted in color preservation.

Chemical factors affecting pigment changes include hydrogen ion concentration, antioxidants (ascorbic acid), reducing agents, and oxidizing agents. At a pH of 5.5 and above the surface pigment of meat becomes darkened while at a pH between 4.5 and 5.4 the pigment is a lighter red color. Various authors have observed that ascorbic acid in dilute solutions may preserve "bloom," but in high concentrations it brings about oxidation and discoloration. It is known that reducing agents such as sodium dithionate (Na₂S₂O₄) reduces all myoglobin derivatives to reduced myoglobin, and oxidizing agents, such as potassium ferricyanide (K₃Fe(CN)₆) oxidize all myoglobin derivatives to metmyoglobin.

A third group of factors which must be considered is the biological. This includes the active meat enzymes and the effects of bacteria and their enzymes. From the results obtained by various authors it appears that in fresh meat the full complement of alycolytic enzymes are present in active form as well as the Kreb cycle enzymes. There is little doubt that at least some of these enzymes are important in color changes. Several investigators have suspected that tacteria and bacterial enzymes influence the color of fresh meats; however, the mechanism(s) involved is not understood. Organisms telonging to the Pseudomonas-Achromobacter group have been associated with fresh beef discoloration and Butler et al. (1953) indicated that these organisms may bring about discoloration of fresh prepackaged beef by lowering the available oxygen to a critical pressure where the formation of metmyoglobin is optimum. metabolic formation of H₂O₂ by organisms without immediate destruction has also been postulated as causing metmyoglobin formation. It was thought that respiring organisms cause discoloration of fresh prepackaged beef by lowering the oxygen tension; however, other systems may also be active.

The present study was undertaken to determine the actual role of bacteria in the discoloration of fresh prepackaged beef.

REVIEW OF LITERATURE


A knowledge of the chemistry of the muscle pigment myoglobin is essential to understand the effects of various factors on the color of meat. The color of prepackaged beef is due to the chemical state of pigment myoglobin. Many interesting theories as to the true character of this pigment have been set forth. The first theory was that the red color of meat was due to blood and could be washed away (Boerhave, 1739). Bichart (1803) agreed, but believed that the muscle obtained its color from the blood which was deposited in the tissue rather than from circulating blood. In the latter part of the nineteenth century much work was done, but it was not until the early part of the twentieth century that Gunther (1921) suggested the term myoglobin for muscle pigments rather than hemoglobin. He was thoroughly convinced that muscle pigment was not identical with the blood pigment hemoglobin.

whipple (1926) employing many extraction techniques, estimated the myoglobin content of various muscle tissue. More comprehensive analysis of the occurrence of myoglobin and its chemical characteristics occurred during the next few years. It was the contributions of Theorell (1932, 1934) which gave the researchers new grounds for continued investigation, for he succeeded in crystallizing myoglobin. Schenk et al. (1934) working with beef rib eye muscle found no parallelism between the myoglobin content and hemoglobin

content. In more recent jears, research has made available a more clear understanding of the chemical nature of this pigment and the reactions it undergoes in the muscle.

Chemistry of Lyoglobin

Myoglobin, the principal pigment of red meats, is a chromoprotein belonging to the group of hemo-proteins. The prosthetic group is protoporphrin, and the protein fraction is globin. The prophyrin family includes two other very important members, chlorophyll and hemoglobin, both essential for life. Lemberg and Legge (1949) wrote a book dealing with this family of compounds and cited 3,182 references. The prosthetic group of myoglotin, protophorphrin, consists of four pyrrole rings which are coupled to a central iron atom through the nitrogen atoms. This then is an iron porphyrin, and it is the iron atom which makes possible its function as a respiratory pigment; i.e., it can form a dissociable compound with oxygen, the iron remaining in the ferrous state. According to kendrew (1949), the four valences of the iron atom are connected with the nitrogen of each of the pyrrole rings, and the other two seem to be bound to the protein component. However, according to Schwiegert (1956), the fifth valence of the iron molecule is attached to the imidazole ring of histidine (Figure 1). This ring is bound to the other four pyrrole rings through the iron molecule. The protein

Heme Structure of Myoglobin

Figure 'Schweigert, B.S., 1956. Proc. of the Eighth Research Conference, Univ. of Chicago, Chicago, Illinois, P. 61-64

fraction is attached to histidine and not to the iron molecule. The sixth valence of the iron molecule is satisfied by a water molecule, and this seems to be the active site of the heme structures.

Hemoglobin, the blood oxygen carrier of mammals, has a molecular weight of 66,000 - 68,000 according to Haurowitz (1950), and consists of four "units" of the protoheme-globin complex. He observed myoglobin to have a molecular weight of 17,000 and consists essentially of one of the "units" of hemoglobin, except that the globin or protein fractions differ.

Myoglobin was isolated, crystallized, and characterized by Theorell (1932), and he offered absolute proof that hemoglobin and myoglobin are two different pigments. This proved that Kennedy and Whipple (1926) were wrong when they indicated the pigments were identical compounds. Theorell (1932, 1934, and 1947) elaborated the chemistry of myoglobin showing among other things that the iron content of myoglobin and hemoglobin was identical, 0.345%.

The spectrophotometric studies of Hill (1933) demonstrated that the sharpest absorption band for myoglobin was 5800 Å while hemoglobin was 5700 Å. Under more precise conditions Hill (1936) found the absorption bands for hemoglobin were sharpest at 5770 Å and 5420 Å, compared to 5815 Å and 5446 Å for myoglobin, and that myoglobin had a greater affinity for oxygen than did hemoglobin. He also noted that myoglobin

gave a hyperbolic oxygen dissociation curve compared to a sigmoid curve for hemoglobin. Millikan (1939) substantiated the oxygen dissociation curves of the two pigments as found by Hill, and related the hyperbolic shape of the curve to the physiological oxygen storing function of myoglobin.

Shenk, Hall, and King (1934) noted that myoglobin gave maximum absorption at 582 mm. This was substantated by Bowen (1949) and others. Bowen (1949) also observed that myoglobin gave a second absorption peak at 544 mm. The work of Bowen appeared to be the best of all the literature reviewed on spectrophotometric analysis of myoglobin, so his data for extinction coefficients are used in this study for determinations of percent myoglobin and percent metmyoglobin. Austin and Drabkin (1935) published similar information for hemoglobin. Mangel (1951) in her study of myoglobin used the procedures of Austin and Drabkin.

The advantages of using metmyoglobin cyanide as a reference standard for spectrophotometric analysis in preference to gasometric techniques was demonstrated by Drabkin and Austin (1935). They gave evidence that the reagents used for conversion of the pigments to the cyanide derivative had no significant effect on the absorption spectra of the derivatives at the critical wave lengths.

Generally, there is some blood residue in meats, but Shenk et al. (1934) found that 90% of the meat pigments is usually myoglobin, and hemoglobin was not usually over 10%. They also set up a method for estimating the percentage of these two pigments in a muscle extract by use of the ratio of the optical density measured at wave lengths of 577 my and 582 my.

Drabkin et al. (1950) studying the distribution of myoglobin concluded that the concentration of myoglobin is not correlated with body size but is more concentrated in the muscles of animals that run fast or work hard such as the dog or the horse. Lawrie (1950) found that a high concentration of myoglobin is usually found in muscles of high physiological activity. Using the figures of Drabkin et al. (1950), Butler et al (1953) calculated the concentration of myoglobin in the skeletal muscles of the heifer to be about 0.40 to 0.47%.

A physical structure for myoglobin was proposed by Kendrew (1949). He states that it consists of two disks, 9 Å thick and 57 Å diameter, parallel to each other and perpendicular to their axis, separated by a layer of liquid of crystallization 6.6 Å thick. Each of the disks is formed by one polypeptide chain, folded on itself in four equal sections. The prosthetic group is perpendicular to the plane of each disk and extends above and below it. The thickness at either point is about 15 Å greater than the disk

itself. He obtained a sedimentation constant for myoglobin of 2.0 x 10^{-13} in Svedberg's ultra centrifuge.

Myoglobin was first found to have a molecular weight of 3200 by Theorell (1932). However, other workers have obtained different molecular weights for myoglobin. Bowen (1948) in his review states that workers have found the molecular weight of myoglobin to be from 16,850 by osmotic pressure to 17,600 by the rule of simple multiples. He found the molecular weight of myoglobin to be 17,300 and have an average iron content of 0.323%. Rossi-Fanelli (1950) states that the iron content is 0.34%. The isoelectric point of myoglobin was found to be at pH 6.99 by both authors.

The composition of the globin fraction of myoglobin of different species of animals has been analyzed by Rossi-Fanelli (1940, 1941, 1942, 1947, 1948, 1954, 1955 and 1956). He noted that myoglobin has isoleucine but no cystine as contrasted with hemoglobin which contains cystine but no isoleucine. Comparing human myoglobin and hemoglobin, (1955), he noted that myoglobin is richer in glutamic acid, lysine, glycine, and methionine; poorer in threonine, alanine, valine, and arginine. In general, the data showed that the proteins are formed by a significantly different mixture of amino acids.

It was observed by Rossi-Fanelli (1950) that myoglobin forms a hyperbolic dissociation curve which is only slightly affected by pH. The pigment has a large affinity for oxygen and is very easily oxidized to metmyoglobin, and it demonstrates a large resistance to denaturation by alkali. He

also states that hemoglobin has an isoelectric point of 6.78, a molecular weight of 68,000, forms a sigmoid dissociation curve which is moderately affected by pH, has a moderate affinity for oxygen, less easily oxidized to the "met" form than is myoglobin, and has only a small resistance to denaturation by alkali. Thus, the physiochemical constants of the two pigments differ also.

Physiological Role of Myoglobin

The basic facts as to the physiological function of myoglobin were presented by Theorell (1934) and Hill (1933, 1936). Millikan (1936, 1939) and Biorick (1949) have elaborated these basic facts. Summarizing their findings, it appears that myoglobin becomes oxygenated at the expense of the oxyhemoglobin in the peripheral capillaries. The myoglobin as oxymyoglobin transports the oxygen to the cells where it is used in oxidative enzymatic activity. Thus myoglobin acts as an intermediate between the circulatory system and the actively metabolizing cells. The reduced myoglobin may then be reoxygenated to complete the cycle.

Reactions of Myoglobin

Since the reactions of hemoglobin and myoglobin have been found to be similar, the reactions of both will be discussed.

According to Haurowitz et al. (1950) hemoglobin is an "aqui-compound" and forms a coordinate bond with water

and not oxygen. He also indicates that oxyhemoglobin does not dissociate into hemoglobin and oxygen in the absence of water and postulates that the following equation demonstrates the true pathway.

$$Hb_{\bullet}(H_20) + 0_2 \longrightarrow Hb0_2 + H_20$$

This may be postulated for myoglobin also.

Much of the early work on the changes of pigments in meat was performed by Erooks (1929, 1931, 1933, 1935, 1936, 1938, 1948, and 1955). He demonstrated that myoglobin was oxidized by oxygen, for in an all nitrogen atmosphere (essentially free of oxygen) the oxidation of myoglobin to metmyoglobin did not occur to any appreciable extent. He postulated the reaction to proceed in the following manner:

The four nitrogen atoms represent the pyrrole rings which form porphyrin. The protein fraction is connected through histidine to the iron molecule. This reaction is essentially as given by Brooks with formula modifications by Schweigert (1956).

By potentiometric studies, Conant (1923) showed that hemoglobin followed the same pathway. This pathway has met with some disagreement, but the work of George and Stratmann (1952 a,b) tends to validate it. The reduction

of oxymyoglobin to myoglobin or the reverse reaction involves no electron transfer, but the oxidation of myoglobin
to metmyoglobin or the opposite reaction involves electron
transfer. The iron in myoglobin is in the ferrous state,
but the iron in metmyoglobin is in the ferric state.

The Color of Fresh Meat

As stated previously some of the early workers (Boerhave (1739), Bichart (1803)) believed that the red color of meat was derived from the blood which remained in the tissue. However, since the work of Gunther (1921) it is generally accepted that the color of fresh meat is due to myoglobin. The meat of animals which have been properly thed contains myoglobin (purple), oxymyoglobin (bright red), and metmyoglobin (brown). The color of the meat depends upon the relative amount of each of these three compounds present, which depends upon the storage conditions of the meat (Rickert, 1957 a).

Brooks (1933) and Winkler (1936 b) have observed that the discoloration of fresh meat was caused in general by two factors; viz., desiccation and oxidation of myoglobin to metmyoglobin. The darkening effect due to drying was caused primarily by a concentration of pigments at the surface, with the optical properties of the desiccated tissue perhaps being altered. If the meat is prepackaged and moisture loss is minimized, the reaction which would account for the primary changes in the meat color would then be myoglobin oxidation.

The desired color of fresh prepackaged meat is the bright red of oxygenated myoglobin (MbO₂). Freshly cut meat when first exposed to air is a shade of purple, and the myoglobin is primarily in the reduced state (Mb). Upon exposure to air, oxygenation occurs, and as the myoglobin is changed to oxymyoglobin, the meat becomes a bright red. Mackintosh and Hall (1936), Allen (1948) and Eratzler (1955) pointed out that oxygenation or "blooming" of meat occurs very rapidly within the first 30 minutes after cutting and is accelerated by reducing the temperature.

Pactors Influencing the Color of Fresh Prepackaged Meat

Oxygen tension and temperature: The papers by Brooks

(1929, 1931, 1933, 1935, 1938) go to great lengths in an

effort to discover and explain the factors which influence

the reactions of myoglobin. He noted that both the

oxygen tension and temperature are very important factors.

Temperature is of importance because as it is increased the

reaction rate is increased and also the oxygen becomes less

soluble, and consequently the partial pressure of oxygen

in the meat decreases. To cite a specific example, Brooks

(1931) noted the rate constant for Hb —> MHb to be about

four times as great at 25°C. as at 15°C. Brooks (1933)

demonstrated that at 30°F. oxyhemoglobin dissociates

rapidly to hemoglobin when the oxygen pressure drops below

80 mm of mercury. However, at this reduced oxygen tension

the hemoglobin is soon oxidized to methemoglobin. He also observed that metmyoglobin formation proceeds more rapidly at low oxygen tensions. Neill and Hastings (1925 a,b) have obtained similar results using hemoglobin solutions. They observed maximum oxidation to take place at an oxygen tension of about 20 mm of mercury. Brooks (1938) discovered that the maximum rate of oxidation of Hb occurred at an oxygen pressure of about 4 mm Hg. at 0°C. This estimate by Brooks was made by noting the rate of color change in a tissue section by use of a microspectroscope.

George and Stratmann (1952 b) employing a more refined gasometric technique observed that the maximum rate of metmyoglobin formation occurred between 1.0 and 1.4 mm oxygen pressure at 30°C. The fact that the rate of oxidation of myoglobin was 4.25 times faster than that of hemoglobin was also noted by these authors. Brooks (1931) suggested that at a constant oxygen pressure the rate of oxyhemoglobin formation is monomolecular with respect to hemoglobin concentration. Neill (1925 c) noted that no oxidizing agent that he used could oxidize hemoglobin to methemoglobin in the absence of molecular oxygen. Both Brooks (1931) and Neill (1925 d) noted that hemoglobin was not oxidized to methemoglobin in the absence of molecular oxygen. From the data of Brooks (1929, 1931) it is evident that at a temperature of 30°C. and an oxygen pressure of 20 mm Hg, the oxygen concentration is low enough to permit

the dissociation of oxyhemoglobin into hemoglobin and yet high enough for oxidation of hemoglotin to methemoglotin. Neill (1925 d) demonstrated further proof of the effect of oxygen tension on hemoglobin when he found that in a pure oxygen atmosphere the concentration of oxyhemoglobin increased and therefore the formation of methemoglobin was retarded. Mangel (1951) stored frozen meat samples under atmospheres of nitrogen, oxygen, and carton dioxide, with air as a control. She found no significant difference. However, the metmyoglobin formation tended to be slower when the samples were stored under oxygen.

Brooks (1938) found that muscle retains a residue of respiratory enzymes long after slaughter of the animal, and when exposed to air a steady state is reached where the depth to which the oxygen penetrates is determined by the relative rates of its diffusion and uptake.

The following formula for determining the oxygen penetration has been given by Brooks (1938):

$$d = \sqrt{\frac{2Co D}{A}}$$

where

d = depth of oxygen penetration

Co = pressure of oxygen at the surface of tissue

D = coefficient of diffusion of oxygen through tissues

A = oxygen consumption

The value of A for the muscle of fresh beef as reported by Brooks (1929, 1936) is roughly 10^{-4} cc per gram per minute at 0° C.

Brooks (1935) found the depth of oxygen penetration increased slowly with time, and it decreases with increasing temperature. He found that the depth of oxygen penetration varied from 2 to 5 mm. He also showed that discoloration was confined to the layers where oxygen was present, and metmyoglobin was formed rapidly in the inner surface of the oxymyoglobin layer where oxygen pressure was lowest. The myoglobin in the interior portion of the muscle remained in the reduced form, unchanged. It was estimated by Brooks (1938) that the surface color was affected by about a 2 mm layer of tissue, for no light was reflected from layers deeper than this.

The effect of temperature and vacuum on fresh meat was tested by Rickert et al. (1957 c). They found that meat stored under a vacuum of 20 inches or more underwent an initial loss of redness and returned to redness more rapidly than meat stored under a vacuum of less than 20 inches. Increasing the vacuum under constant storage temperature or increasing the storage temperature while maintaining a constant vacuum increased the rate of initial darkening and shortened the time for the subsequent return to redness. They state that vacuum appears to be necessary for the return to redness, but not for the initial darkening. A lower vacuum resulted in the formation of a gray color which turned red upon increased vacuum.

Rickert et al. (1958) working with atmospheres containing various amounts of $\mathbf{0}_2$ and \mathbf{N}_2 , noted that increased \mathbf{N}_2 caused an increased rate of discoloration of fresh beef. However, the return to redness was faster than at lower \mathbf{N}_2 tensions and higher $\mathbf{0}_2$ tensions. Further, they noted that low pressures of $\mathbf{C0}_2$ proved to be more effective in maintaining good color, from both the standpoint of retarding initial discoloration and from the standpoint of holding color thereafter.

Packaging Material: Various wrapping materials were tested by Lavers (1948). He found that as oxygen permeability of the material decressed, metmyoglobin formation increased. He noted that MSAT cellophane, which is oxygen impermeable, caused rapid browning of the meat. ASADT cellophane, which is oxygen permeable, caused less discoloration. The rate of discoloration could be lessened even more by moistening the MSADT cellophane which increases oxygen permeability. He hypothesized that the development of an oxygen permeable transparent sheet which was moisture proof would solve the problem. Landrock and Wallace (1955) performed a detailed study on the relationship of the oxygen permeability of films and discoloration of fresh red meat. They state that cellophanes used for packing fresh meat are unique in that they are coated with a moisture-proof coating on the side to be kept away from the meat. The inner side

then becomes wetted by the mest juice and consequently increases oxygen permeability sufficiently to maintain bloom. The coating prevents excessive loss of moisture, thus, minimizing desiccation. The great oxygen permeability of MSAT 80 cellophane paralleled the increased bright red color of the mest as compared to other less permeable wrapping material. They postulated that the minimum oxygen permeability requirement is about 5000 ml 02/sq. met./24 hr/atm. at 75°F.

Vinylidene copolymer (cry-o-vac) and MSAT 80 cellophane (coated side out) were found to be superior to all other wraps tested in preserving the flavor and organoleptic quality of fresh meat by Clauss et al. (1957). However, no color observations were recorded.

Reflectance spectrophotometry was employed by Pirko and Ayres (1957) to study the influence of different packaging materials on the discoloration of fresh meat. They observed that films with highest gas permeability (300 ksAT 80-cellophane, polyethylene 0.0015 inches and 80 FM-1 pliofilm) resulted in maximum metmyoglobin formation on the 6th day of storage. As permeability decreased, the rate of metmyoglobin formation increased; however, after one day's storage, the total amount of metmyoglobin was reduced. They consider films of high oxygen permeability to be inferior to films of very low oxygen permeability. It appears that they wish to sacrifice the bright red color of oxymyoglobin for

the purple color of myoglobin to obtain an increased sales life.

Vinylidene copolymer (cry-o-vac) was found to be the best of the various packaging materials used for maintaining good color in lean ground beef by Rickert et al. (1957 a). They determined redness by the Hunter color and colordifference meter. The author doubts if these authors made a distinction between the brith redness of oxymyoglobin and the purple-redness of myoglobin.

Rickert et al. (1958) substantiated the results of hickert et al. (1957 a). They explain that MSAT 80 cellophane and cellulose acetate both of which have high gas permeability resulted in high redness of the packaged meat for 2 days, then discoloration followed. Steaks wrapped in cellophane-pliofilm laminate film which has low oxygen transmission properties were higher in redness than steaks wrapped in the highly permeable films except for the first few days.

Rickert et al. (1957 a, 1958) and Pirko and Ayres (1957) believe that good color of fresh beef could be maintained by packing it in a completely impermeable film in the absence of oxygen.

Chemicals: The chemistry of the red meat color change having been fairly well characterized, many workers began trying to influence the change. Winkler (1939 b) studied the effects of lowering and raising the pH of meat. He

found that a pH above 5.5 caused darkening and a pH between 4.5 - 5.5 caused lighter colors. This agrees with the findings of Hall, Latscher, and Mackintosh (1944) working with dark cutting beef. However, they believe that the main reason for dark cutters is that the oxygen demand is greater than can be supplied by normal transfer into the tissues, resulting in oxymyoglobin being reduced to myoglobin. The fact that muscle tissue darkens with increased pH was noted by Hill (1928) and Bate-Smith (1948 a,b).

Some chemicals have been shown to effect the oxidation of myoglobin to metmyoglobin. Stilles and Foster (1922), Brooks (1930, 1931, 1936) were among the first to observe that salt increased the rate of oxidation of oxymyoglobin and oxyhemoglobin, and/or myoglobin and hemoglobin to the brown metmyoglobin and methemoglobin respectively.

Ascorbic acid has been shown to bring about the rapid oxidation of hemoglobin solutions (Chang and Watts, 1949) and reduce methemoglobin to hemoglobin (Gibson, 1943). However, watts and Lehman (1952 a) state that ascorbic acid protects hemoglobin solutions when it is added in low concentrations and at a low temperature. But at high concentrations and high temperatures, it brings about oxidation and discoloration. In another paper (1952 b) they state that ascorbic acid may be useful in preserving the red color at the surface of refrigerated prepackaged meat.

These results have been confirmed by Costilow et al.

(1955). Studying the degradation of hemoglobin in living tissue, Garner, Mills and Christman (1951) concluded that ascorbic acid catalyzes the degradation of hemoglobin to choleglobin. This has been substantiated by Lemberg and Legge (1949), Chang and Watts (1949), and Watts and Lehmann (1952). Nicotinic acid has been reported by Coleman (1951) to transform the interior color of meat from purple to a bright red.

Studying the effects of ascorbic acid on meat color, Clauss et al. (1957) noted that when ascorbic acid crystals were added to beef samples they caused an immediate darkening which remained throughout the storage period. The addition of 0.005% solution of ascorbic acid had better color preserving properties than did a 0.01% solution. These results were substantiated by Rickert et al. (1957 b). They also noted that NDGA (Nordehydroguaiaretic acid - 0.05%) had no beneficial effect on surface meat color.

Broumand et al. (1958) in their study of myoglobin reported that sodium dithionite (Na₂S₂O₄) reduces all myoglobin derivatives to myoglobin, and potassium ferricyanide (K_3 Fe(Ch)6) oxidizes all myoglobin derivatives present in meat extracts to metmyoglobin.

Effect of bacteria and their enzymes: The influence of bacteria on the color of fresh mests has been demonstrated by several investigators, but their role in

discoloration has not been clearly defined. Neill (1925 a) and Neill and Hastings (1925) have observed that washed Pneumococcus cells do not have the ability to reduce methemoglobin to hemoglobin unless other substances such as glucose or mest infusion are added to the system, but the cells have oxidizing ability without the addition of these substances. They also noted that cell-free extracts of Pneumococcus had both the ability to oxidize and reduce hemoglobin solutions. Another series of experiments performed by Neill (1925 c) demonstrated that anaerobic bacilli brought about the oxygen dissociation of oxyhemoglobin. Urbain and Greenwood (1940) compared dilute hemoglobin solutions treated with toluene to inhibit bacterial growth to untreated controls. Doth sets of tubes held at 10°C were shaken daily for maximum aeration. They noted after 60 days' storage the bacteria-free tubes contained no methemoglobin, but contaminated (control) tubes showed reduced oxygen capacity after two weeks, which was further reduced to about 50% at 60 days. The loss of oxygen capacity coupled with color change of the solution (turned brownish) was proof of methemoglobin formation. The authors believe microorganisms have similar effects on the sensitive heme pigments of meat.

Jensen (1945) was of the opinion that microorganisms both living and dead, as well as their enzymes may oxidize myoglobin to metmyoglobin. He further stated that desiccation intensified this reaction. Allen (1948) stated that

there is a type of meat discoloration where a gray brown color develops when the coloring matter is destroyed by bacteria. Further work by Allen (1949) showed that bacterial growth on prepackaged boneless round steaks held at 34° - 40°F. increased rapidly until the ninth day, after which it remained essentially unchanged.

Further evidence of the oxidation-reduction capabilities of bacteria was presented by Eddy et al. (1952) when they demonstrated that Escherichia coli had the ability to reduce dehydro-ascorbic acid to ascorbic acid. This substantiated the work of Hewitt (1950). Hewitt noted that generally the cultures of bacteria caused reducing conditions which were greatest during the logarithmic growth phase. He noted the lowest O/R potentials when metabolic activity was the greatest. He further explained that once growth is established in a culture, oxygen donators and hydrogen acceptors are taken up by the cells as they carry on their normal metabolic activities. After the log growth phase, metabolic activity decreases and as the oxygen from the air diffuses back into the culture, the O/R potential begins to rise.

Kraft and Ayres (1952) noted that meat samples held at 40° F. generally discolored before any other evidence of spoilage became apparent. They employed surface swabbing techniques and demonstrated that when the count reached about 2 x 10^{6} organisms per square cm. the first detectable

off odor appeared. They concluded that discoloration could not be correlated with organoleptic or microbiological evaluations as a means of determining storage end points.

Initial contamination as well as the temperature of the self-service case have a great influence on storage life of prepackaged meat (Ayres, 1951 a,b). Short steaks could be stored four days longer when the bacterial count was very low. Initial counts on meat cuts prepared in accordance with good sanitary practices had far lower bacterial counts than similar items purchased from local retail outlets. He urged that studies which not only determine the number of organisms present, but also their contributions to its ultimate spoilage, be made.

Achromobacter-Pseudomonas types of organisms were associated with spoilage of fresh beef by Ayres (1951 a). He stated that since the revision of Eergey's Manual, some of the strains previously reported as Achromobacter would be classified as members of the genus Pseudomonas. The majority of strains isolated from spoiled ground beef belonged to this group. At spoilage time in one test, more than 98% of the flora belonged to the Achromobacter-Pseudomonas group. He used off-odors as the principal criterion for spoilage detection, and observed it correlated with slime production and increase in CO2 production.

The <u>Achromobacter-Fseudomonas</u> type accounted for about 85% of the population during the early storage of meat (first 2 weeks) at 34-38° and 40-50°F. (Halleck et al 1958). During the latter part of storage

<u>Pseudomonas fluorescens</u> type organisms constitute approximately 80% of the total count. During the entire storage period lactobacilli accounted for about 5% of the total population.

A slippery condition on poultry due to spore-forming capsulated bacilli closely resembling Bacillus mesentericus was described by Mallman (1932). Sulzbacher (1952 a) compared the generation time for Pseudomonas-type organisms in ground beef and ground pork held at 7°C. A rather heavy inoculum was added to the mest before grinding. He noted the generation time in ground beef to be 4.5 hours and 4.81 and 5.99 hours in ground pork. Kirsch et al. (1952) working with commercial hamburger found initial counts varied from 1.4 x 10⁶ to 9.5 x 10⁶ per gram. Upon subsequent storage (0-2°C.) the organisms multiplied rapidly so that after 6 days' storage 5 x 10 or more organisms were present, and after 8 to 12 days off odors were apparent. Maximum counts ranged from 5×10^8 to 1×10^{10} per gram. In general the off odor was nonputrefactive but typically stale and sour. A taxonomic study of the isolates demonstrated that the great majority belong to the Pseudomonas genus.

It has been reported by Butler et al. (1953) that bacteria commonly found on meat cuts caused discoloration due to increased rate of methyloglobin formation and caused the production of off odors and slime formation. They state that the changes usually happen in the order mentioned. Shelf life of prepackaged meat was significantly prolonged by lower initial bacterial contamination, and by reducing the storage temperature. They indicated that the organisms (Fseudomonas sp.) may bring about discoloration by lowering the oxygen to a critical pressure where methyloglobin formation is ideal. The metabolizing organisms lowered the oxygen tension still further which resulted in reducing conditions and the methyloglobin was reduced to myoglobin.

Myoglobin solutions held at 45°F. were studied by Broumand et al (1958). They noted that nonsterile water extracts contained 100% metmyoglobin within 8 hours while the sterile extract did not become 100% metmyoglobin until about 28 hours. All solutions were in hermetically sealed cuvettes. After 28 hours storage at 48°F. the cuvettes were stored at 95°F. for an additional 148 hours. Within 60 hours the nonsterile cuvette contained all myoglobin, but it took 120 hours for the sterile extract to become entirely reduced. They used spectrophotometric analysis to calculate the amount of various pigments. Their conclusion was similar to that proposed by Butler et al.

(1953); i.e., microorganisms increased the rate of formation of metmyoglobin and upon subsequent holding increase the rate of myoglobin formation.

MEAT ENZYMES

Lemberg and Legge (1949) state that the metabolic formation of $\rm H_2O_2$ without immediate destruction, leads to metmyoglobin formation. However, Brooks (1938), Lavers (1948) and Urbain (1951) believed that the mere lowering of oxygen tension, without peroxide formation will lead to the same results.

Employing manometric techniques, Schneider and Potter (1943) demonstrated the presence of cytochrome oxidase in beef muscle. They also proved the presence of succinic dehydrogenase by methylene blue reduction.

According to Bate-Smith (1942) beef contains about 0.005% cytochrome-C which is about 0.4 micromoles per 100 grams. Grant (1955 a) substantiated the results of Schneider and Potter (1943). He found high alpha-glycerophosphate dehydrogenase activity in steer muscle, but it was absent in cow muscle. Using various enzyme inhibitors in conjunction with frozen ground beef, he noted that only malonic acid of the enzyme inhibitors used provided a bright red interior color. This indicates that succinic dehydrogenase is active in beef. He further found by the use of inhibitors that the following enzymes may show

a limited activity, phosphoglucomutase, phosphatase, enolase, lactic dehydrogenase, malic dehydrogenase, Co-A system and enzymes converting citrate to oxalosuccinate, citrate to malate, alpha-ketoglutarate to succinyl Co-A, and succinyl Co-A to succinate. He presumed L-glutamic acid oxidase, catalase, phosphorylase, and glucose, fructose and formate dehydrogenases to be inactive in frozen ground beef.

In another study Grant (1955 b) inspected the stability of succinoxidase (succinic dehydrogenase plus cytochrome oxidase) in beef tissue. He found that the enzyme is better preserved if the tissue is frozen, is more stable in ground as compared to unground muscle, and is readily destroyed by heat.

Andrews et al. (1952) demonstrated that adenosinetriphosphate, succinic dehydrogenase and glycolytic system enzymes were active in beef muscle, (Longissimus dorsi and Semitendinous). The enzymes within the meat remained active after 4 weeks' storage at 2°C. and only aldolase was found to lose part of its activity. After four weeks its activity was but half that of the original. The aldolase system was shown, therefore, not to be the limiting enzyme in the glycolytic system, since the stabilities varied independently. They concluded that the lack of available substrates in the intact muscle tissue

is the limiting factor in excised muscle tissue metabolism, rather than the instability of specific enzyme systems.

The enzymatic activities of cytochrome oxidase and succinic-oxidase in various excised muscle tissues from a variety of animals were shown by Lawrie (1953). He also found correlation between the percentage of myoglobin in the muscle and the activity of the corresponding enzyme preparation and both were related to the extent of muscle exertion.

PLOCEDURE

Steaks used in this study were from the <u>Longissimus</u>

<u>dorsi</u> muscle of U. S. Good grade beef ribs. The muscle was

removed from the ribs and cut into 1/2 inch thick steaks.

The wrapping material employed was DuPont cellophane 300 MSAT-80 which is for fresh meat packaging.

Cells of <u>Ps. geniculata</u> were grown in nutrient broth shake cultures or on nutrient agar slants. All cells were washed in saline before being inoculated on steak surfaces by the use of sterile atomizers. Washed cells were used for intracellular enzyme preparations also. Cells were broken in a Haytheon, 50 watt, 90 kilocycle sonic oscillator type R-22-3. The suspension was centrifuged to remove cellular debris, and the supernatant was applied to steak surfaces by means of a small brush.

The various enzyme and bacterial inhibitors which were used on the steak surface were applied by sterile atomizers.

Most myoglobin solutions were prepared from Longissimus dorsi muscle; however, some solutions were prepared from beef trimmings. The myoglobin solutions were prepared exactly as the pigment solutions used for spectrophotometric analysis. This procedure which consists of making a water extract of the meat tissue will be discussed in detail later.

Initial studies determining bacterial growth on steak surfaces demonstrated that a surface slicing technique gave more reproducible results than did the conventional swabling technique. The surface slicing technique consisted of cutting a 3 mm slice from the surface of the experimental steak with a Hobert 50 slicing machine. The machine was cleaned and sterilized before each cutting as follows: washed thoroughly with hot detergent, rinsed with distilled H₂O, followed by hypochlorite (HOCL, 500 ppm), finally rinsed with sterile distilled water, and the rotating blade was allowed to spin dry. Swabbing the machine at various times demonstrated that the portion which came in contact with the meat slice was essentially free from tacteria.

The thin slice from the surface was placed on MSAT 80 wrapping paper, weighed and placed in a sterile, chilled Waring Blender. Refrigerated sterile distilled water was added to give a 1:5 dilution. After blending for 30 seconds, a sample of the homogenate was plated out in tryptone glucose extract agar (TGE) (Difco) and observed for bacterial growth. The rest of the homogenate was used for determining oxygen uptake by the Warburg method and for determining the pigments present by spectrophotometric analysis.

Two incubation temperatures for the TGE agar plates were tested, and it was noted that similar results were

obtained from platings held at 4°C. for one week and at 20°C. for three days. For the sake of convenience the shorter time, higher temperature of incubation was used for all bacterial counts.

Refrigerated meat used in this study was stored in a walk-in cooler at 4°C. (± 1°C). Shelf life was noted to be similar to that obtained in a household type refrigerator.

A sample of the homogenate was prepared for pigment determinations as follows:

- a. The suspension was centrifuged in a Servall SPX centrifuge at full speed for 10 minutes.
- b. The supernatant was filtered through Whatman No. 40 filter paper.
- c. The filtrate was diluted using 7 ml. of filtrate to 3 ml of distilled water.
- d. The diluted material was then subjected to spectrophotometric analysis. A Beckman DU with blue filter and a slit width of O.l mm was employed.

For some spectrophotometric analysis a Bausch and Lomb spectronic 20 colorimeter was used employing optically matched Thunburg tubes rather than cuvettes. For this procedure the filtrate obtained in b. above was not further diluted.

Two methods of analysis have been tried based on the Lambert-beers Law which follows:

$$Log \ \underline{Io} = A = a b c \tag{1}$$

where Io = intensity of the incident light

I = intensity of the emergent light

A = absorbancy or optical density from
the spectrophotometer

a = molar extinction coefficient

b = length of light path through the
 solution in cm.

c = molar concentration

$$c = A \quad \text{when} \quad b = 1.0 \text{ cm} \tag{2}$$

The first method was essentially that of Eutler et al. (1953). The optical density was measured in a Beckman Model DU spectrophotometer at wave lengths of 544 and 582 millimicrons. The total pigment concentration was obtained by conversion of the pigments to the CN derivative by adding a drop of 4% solution of potassium ferricyanide and a drop of 1% potassium cyanide to each cuvette after readings were obtained. The resultant metmyoglobin cyanide derivative was measured to 544 millimicrons and the millimolar extinction coefficient of 11.3 given by Eowen (1949) for metmyoglobin cyanide was used to calculate the concentration by the following formula:

$$c = \frac{A}{11 \cdot 3 \times 10} 3 \tag{3}$$

To estimate the percent metmyoglobin, the difference between the extinction coefficients of oxymyoglobin and

metmyoglobin at 544 and 582 millimicrons was taken as the maximum possible change at these wave lengths. These figures were 9.6 at 544 mm and 12.1 at 582 mm as given by Bowen (1949). At each wave length, the change due to metmyoglobin was equal to the molar extinction coefficient (a) of oxymyoglobin minus that of the sample. By dividing the figure obtained by the total change in (A) from oxymyoglobin and metmyoglobin and multiplying by 100, an estimation of the percent myoglobin was obtained. The estimations of the percent metmyoglobin at 544 mm and 582 mm were averaged to obtain the final estimate of the percent metmyoglobin.

The second method of analysis used was that of Broumand (1956) which is as follows. According to Bowen (1949) the millimolar extinction coefficient for oxymyoglobin and myoglobin are the same (5.6) at a wave length of 507 mp while that of metmyoglobin is 9.9 at this wave length. At a wave length of 573 mp both oxymyoglobin and myoglobin have a millimolar extinction coefficient of 10.6 while that for metmyoglobin at this wave length is 3.0. Theoretically, at these two wave lengths, if the percent metmyoglobin remains constant, so does the millimolar extinction coefficient of the solution; that is, at these wave lengths, the millimolar extinction coefficients of the extract are independent of the relative percent of

myoglobin and oxymyoglobin as long as their combined percentage is constant. Therefore, at 507 mm, if the millimolar extinction coefficient (E mm) is 9.9, then the extract is 100% metmyoglobin and 0% oxymyoglobin and myoglobin or if at 507 mm the E mm is 5.6, then the extract is 0% metmyoglobin and 100% oxymyoglobin and myoglobin. If E mm at 573 mm is 3.0, then the extract contains 100% metmyoglobin and 0% oxymyoglobin and myoglobin or if the E mm is 10.6, then the extract is 0% metmyoglobin and 100% oxymyoglobin and myoglobin. If E mm is greater than 9.9 or less than 5.6, another pigment must be present, but if E mm is equal or greater than 5.6 and equal to or less than 9.9, then the extract contains X% metmyoglobin and 100-X% oxymyoglobin and myoglobin.

A graph for the determination of metmyoglobin and the of the combined pigments, oxymyoglobin and myoglobin, can be constructed. Value of (a) at 507 mm of a (a) at 573 mm

solution containing 100% myoglobin and oxymyoglobin and 0% metmyoglobin is $\frac{(100 \times 5.6) + (0 \times 9.9)}{(100 \times 10.6) + (0 \times 3)} = \frac{5.6}{10.6} = .528$

A solution containing 75% (oxymyoglobin and myoglobin) and 25% metmyoglobin would equal:

(a) at
$$507 \text{ m}\mu = \frac{(75 \text{ x } 5.6) + (25 \text{ x } 9.9)}{(75 \text{ x } 10.6) + (25 \text{ x } 3)} = \frac{6.675}{8.70} = .767$$

50% (oxymyoglobin and myoglobin) and 50% metmyoglobin

$$\frac{(50 \times 5.6) + (50 \times 9.9)}{(50 \times 10.6) + (50 \times 3)} = \frac{7.75}{6.68} = 1.140$$

25% (oxymyoglobin and myoglobin) 75% metmyoglobin

$$\frac{(25 \times 5.6) + (75 \times 9.9)}{(25 \times 10.6) + (75 \times 3.0)} = \frac{8.825}{4.9} = 1.801$$

0% (oxymyoglobin and myoglobin) 100% metmyoglobin

$$\frac{(0 \times 5.6) + (100 \times 9.9) = 9.9}{(0 \times 10.6) + (100 \times 3.0) = 3.0} = 3.3$$

Results of the above calculations for all percentages of metmyoglobin from 0 to 100 can be put into graph form in which (a) at 507 mm is plotted versus relative concen(a) at 573 mm

trations of metmyoglobin and oxymyoglobin plus myoglobin. Thus, by finding the ratio of absorbancy (0.D.) at 507 mm and 573 mm (0.D. at 507 mm and referring to the (0.D. at 573 mm

graph, the relative percent of metmyoglobin can be obtained.

Bowen (1949) found that the E mm for metmyoglobin and oxymyoglobin are both 7.6 at a wave length of 473 mm and the E mm of myoglobin is 4.4; also, the E mm of metmyoglobin and oxymyoglobin are both 3.0 at a wave length of 597 mm and that of myoglobin is 5.1. By following the procedure as outlined just previously, a second graph can be constructed in which (a) at 473 mm is plotted (a) at 597 mm

versus relative concentrations of myoglobin and metmyoglobin plus oxymyoglobin.

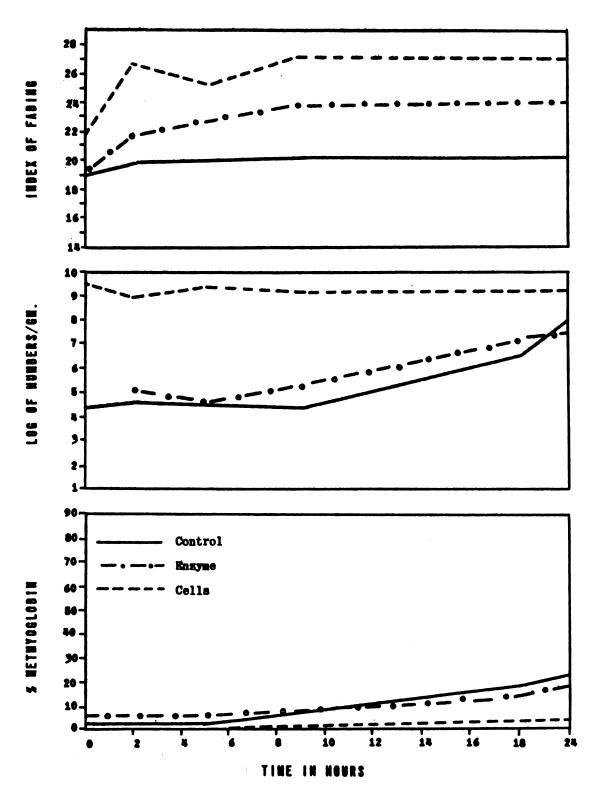
From these two graphs the relative percentages of metmyoglobin and myoglobin can be determined. Fresuming not more than 3 pigments are present, the percent of oxymyoglobin can be determined by adding the percent myoglobin and percent metmyoglobin and substracting from 100.

Voegeli (1952) has given detailed instructions for the measurement of the surface color of meats by the use of Munsell spinning disks. The same procedure and similar equipment was used in this study.

The standard color employed for calculations of the index of fading (I) by the formula of Nickerson (1946), as applied by Voegeli (1952) was 7.0 red in hue, 4.0 in value, and 8.0 in chroma. The standard selected for the plotting of color readings of the fresh prepackaged meat was the color of steaks which had been oxygenated under an oxygen pressure of 30 pounds per square inch for one This color was believed by Eutler (1953) to approximate closely the color of fully oxygenated myoglobin. Ιt was then possible to find the position of subsequent sample readings in relation to the standard by using the Nickerson (1946) formula. Thus, as the steaks discolor, less pigment is in the oxygenated form, and the index of facing (I) increases in numerical value. Lower values for the index of fading indicates that the steaks have a color more close to the standard steak which was presumed to have its surface pigment fully oxygenated.

RESULTS

The Effects of Microorganisms and Cell-Free Extracts on Neat Pigments


Steak Surface

Pure cultures of <u>Pseudomonas fluorescens</u>, <u>Pseudomonas aeruginosa</u>, <u>Archromobacter liquefacians</u>, <u>Flavobacterium rhenanus</u>, <u>Lactobacillus plantarum</u>, <u>Saccharomyces cerevisiae</u> and two strains of <u>Pseudomonas geniculata</u> were tested for their effect on the surface color of wrapped beef steaks at room temperature. All the aerobic strains of bacteria tested, including three untyped strains isolated from discolored meat, caused rapid discoloration as did the one strain of yeast. These bacteria are active in meat discoloration at refrigerated temperatures also. <u>L. plantarum</u>, a strain which is microaerophilic and does not contain the Kreb cycle enzyme system, caused no discoloration.

In all subsequent experiments <u>Ps. geniculata</u> was used since it was shown to cause discoloration of fresh prepackaged meat by Butler <u>et al.</u> (1953). Various levels of inoculum of <u>Ps. geniculata</u> were tested for effects on prepackaged meat at 4°C. Data demonstrated that as the bacteria level increased, so did the rate of discoloration. However, the steaks which discolored most rapidly became the purple color of myoglobin with only little evidence of metmyoglobin formation. As the initial level of organisms decreased, so did the rate of discoloration, but these

steaks became brown before turning purple. In all cases the initially bright red steaks became dark red before turning purple or brown.

The effects of intra- and extracellular enzymes of a strain of Fs. geniculata on the pigment of beef steaks were studied. At refrigeration temperature up to nine days there was little or no difference between control steaks and steaks treated with an extracellular enzyme preparation, but those treated with an intracellular enzyme preparation darkened slightly. Initially, the steaks treated with the intracellular enzymes and cells were slightly darker, but at the end of two days only the inoculated steak had discolored completely. A preliminary experiment using the above four treatments conducted at room temperature (23-24°C.) demonstrated that after 15 minutes the inoculated steaks were visually darker, and within one hour those treated with intracellular enzymes were also darker. Both the inoculated steaks and the steaks treated with the intracellular enzyme preparation turned a definite purple after 2 hours. At 24 hours the control steaks and steaks treated with extracellular enzymes began to turn brown. The inoculated steaks remained purple, but the steaks treated with intracellular enzymes were purple-brown at the 24-hour interval. A repeat of this gave similar results. (Fig. 2) Visual observations of steaks held at

EFFECTS OF INTRACELLULAR ENZYMES AND CELLS OF PS. GENICULATA ON PREPACKAGED BEEF HELD AT ROOM TEMPERATURE

30°C. indicated that the changes were similar to those obtained at room temperature.

cell-free extracts and cells of <u>Fs. aeruginosa</u> also have the ability to cause the discoloration of fresh prepackaged steaks held at room temperature. From the data in Table 1 it can be seen that cells of <u>Ps. aeruginosa</u> cause discoloration at about the same rate as do cells of <u>Ps. geniculata</u>. Cell-free extracts of both organisms bring about discoloration at equal rates but slower than the intact cells.

Attempts were made to determine if Ps. geniculata or a crude preparation of intracellular enzymes of this organism could cause discoloration of unwrapped steaks at room temperature. No color differences were noted after 1 hour. Even after 2 hours, no clear differentiation could be made. However, at 3 hours the inoculated steak was slightly darker than the control or enzyme treated steaks, but darkening due to desiccation was quite advanced and only a slight differentiation could be made. Wrapped steaks which had been inoculated with cells or treated with the same enzyme preparation discolored within 15 to 30 minutes.

Mest Homogenates

Four hundred ml of sterile distilled water was added to 80 grams of mest in a sterile Waring blendor and blended for 1 minute. One hundred ml. of this homogenate

Table I

The effects of Fig. Leniculate, Fig. Eeru, inosa, and a cell-free preparation of the intracellular enzymes of these organisms on the color of fresh prepackaged keef*.

Time in Hours	Control	Fs. <u>coniculata</u>	<u>Fs. serv, inosa</u>	Enzymes of Fs. Leniculata	Enzymes of Fo. seruginosa
0	bright red	bright red	briekt red	bright red	Lricht red
Н	bright red	bright red	čerk reč	clight ásrí reá	sli _k ht derk red
N	red	derk red	čerk red	ásrž red	dark red
12	red	purple-brown	parble-red	dark red	derw red
18	red	purple	purple-brown	dark red brown ereas	derk red brown ereas
54	1/3 red 2/3 brown	purple	purple-brown	3/4 brown 1/4 purple	2/3 brown 1/3 purple

* Experiment was performed at room temperature.

was placed in each of 4 - 500 ml Erlenmeyer flasks and plugged with cotton. Three flasks--inoculated. untreated. and treated with aureomycin (final concentration of 100 prm) -- were placed on a rotary shaker, and the fourth was held as the untreated, unstirred control. Ten ml samples were taken at different intervals, spun down, filtered, and the percent metmyoglobin and percent myoglobin determined spectrophotometrically. At zero time, all samples contained some metmyoglobin, and at 6 hours. samples from the 3 shaken flasks had increased in percent metmyoglobin. The untreated sample which was not shaken was essentially unchanged. No myoglobin could be determined. The percent metmyoglobin in the three flasks which had been shaken increased from about 35% at 6 hours to about 50% at 9 hours. After 2 days shaking, the control had 15% metmyoglobin and 1% myoglobin, and the inoculated had 24% metmyoglobin and 18% myoglobin, but the sample with aureomycin added contained 90% metmyoglobin and no myoglobin. The standing untreated sample contained 27% metmyoglobin and no myoglobin. Upon further shaking the inoculated sample and control developed a green color typical of choleglobin while the aureomycin-treated sample turned straw color and had developed mold growth. The unstirred untreated meat homogenate developed high populations of bacteria and after 4 days contained 17% metmyoglobin and 34% myoglobin but no choleglobin.

Effects of Es. Ecniculats and aureomycin on reat homogenates held at 30°C. Table 2

Time in		Slaten	en				Standing	ing
Hours	Cortrol	rol	Inocu	Inocula ted	grae	Aureonycin	Con	Control
	% met.	, E.YO.	% met•	, v Y VO.	, ret.	, N.YO•	, met.	o IIVO
0	77	Т	15	П	19	‡	19	N
9	35	0	35	0	7,0	0	16	0
6	7+6	0	51	0	56	0	1,1	0
78	15	П	24	ಗ	06	0	27	0
Visual observations at 48 hcurs	green	u e	e r	£reen	straw o	straw colored	Ţ	r ed

From this data (Table 2) it would appear that bacteria did not play an important role in the change of pigments of shaken meat homogenates until after 2 days at which time they began to increase the myoglobin content. Aureomycin seemed to make conditions ideal for the formation of metmyoglobin.

Attempts to measure the oxidation-reduction potentials of inoculated and uninoculated meat homogenates were made. The extracts were placed in cotton plugged flasks into which a platinum electrode and salt bridge were inserted. The salt bridge extended into a beaker containing saturated hCl and the reference electrode. Variance in potential was measured by a galvanometer to which both electrodes were connected. No significant difference between the inoculated and uninoculated extracts was observed because the differences between replications were quite large. However, the Eh of all extracts decrease rather rapidly.

Muscle Figment Extract

The addition of <u>Ps. geniculate</u> to a solution of oxymyoglobin held at room temperature caused an initial formation of metmyoglobin. However, within five minutes the percent myoglobin was twice that of metmyoglobin, and this ratio existed until all the pigment was a mixture of these two forms. At the end of 3 hours the ratio remained unchanged.

Cell-free enzyme preparations of Fs. geniculata and Ps. aeruginosa were tested for their effects on oxymyoglobin solutions at normal atmosphere and at room temperature (Table 3). It appeared that both enzyme preparations caused an initial increase in metmyoglobin formation; however, it is quite probable that the enzyme preparation absorbed in the range used for measuring metmyoglobin as indicated by the O-time reading giving false results. The cells probably affected both the range for measuring metmyoglotin and the range for measuring myoglobin for at O-time an increase in both metmyoglobin and myoglobin was observed. Assuming that after the initial absorption the enzymes and cell no longer interfere, the following observations were made: first, the enzymes of Ps. geniculata showed some action up to 4 hours while the enzymes of Fs. seruginosa caused a steady increase in both metmyoglobin and myoglobin, and second, the cells of Ps. geniculata reduced oxymyoglobin to myoglobin at a faster rate than did Fs. aeruginosa but demonstrated less ability to oxidize oxymyoglobin to metmyoglobin in a 4-hour interval.

Correlation of O2 Demand of the Surface Tissue of Mest and Pigment Changes

These studies were undertaken to see if there was a correlation between the activity of the respiratory enzymes present and discoloration. Manometric studies

Table 3

The effects of the intracellular enzymes and cells of Fe. geniculate and Fe. serutinese on the rate of pigment change of oxymyoglobin extracts.*

Time in	Cor	Control	Ps. Fen	Eenicula ta	Fs. gerl	eeru, inosa	Enzymes Fs. ceric	Egricoleta	Enzymes Es seru	Enzymes of
minutes	% Met.	% Eyo•	/o het.	,5 1550 •	% Net.	70 MYO.	> let.	. 1.yo.	λ Net•	≥ NYO•
before	8	0	0	0	O	0	0	0	1	0
0	0	0	22	25	1 5	77	16	0	19	0
\mathcal{L}	0	0	8	28	5 ∤	28	15	0	22	11
10	0	0	21	28	27	56	12	0	22	12
15	0	0	28	49	31	746	1,4	Н	77	12
30	0	0	36	09	39	50	11	0	27	2
45	\mathcal{L}	0	35	63	1 7	64	13	0	25	17
09	m	0	35	65	1 , 1 ,	5.5	13	#	53	17
120	6	0	W 52	65	ተተ	52	19	2	38	19
180	12	0	35	65	7+2	51	28	10	14	16

*Oxymyoglobin solutions were held at room temperature

were employed in addition to visual observations, index of fading, and bacterial counts. Various lots of steaks inoculated and uninoculated were tested over a period of ll days. After visual observations and Munsell disk notations were made, a 3 mm. slice from the surface of each steak was placed in a sterile Waring blendor, diluted 1 to 5 with sterile distilled water and ground for 30 seconds. Two and eight tenths ml. of this homogenate was used to determine µl of 00 uptake by the conventional Warburg manometric method. Results (Fig. 3) demonstrated that the number of bacteria of the inoculated steaks did not increase greatly, but as the steaks discolored (fading index increased) the μl of 0_{0} uptake increased. There was a lag in the oxygen uptake by the bacterial cells since even though the counts were high initially, the µl of 0, uptake was no more than that of the uninoculated control. However, as the steaks discolored, the oxygen uptake rate increased.

A good correlation between the number of bacteria present, rate of discoloration, and oxygen consumption was obtained from the uninoculated group of steaks, i.e. as the bacteria increased in numbers and the oxygen uptake increased, steaks discolored. From these data, it appears that there is good correlation between respiratory activity measured by oxygen uptake and steak discoloration.

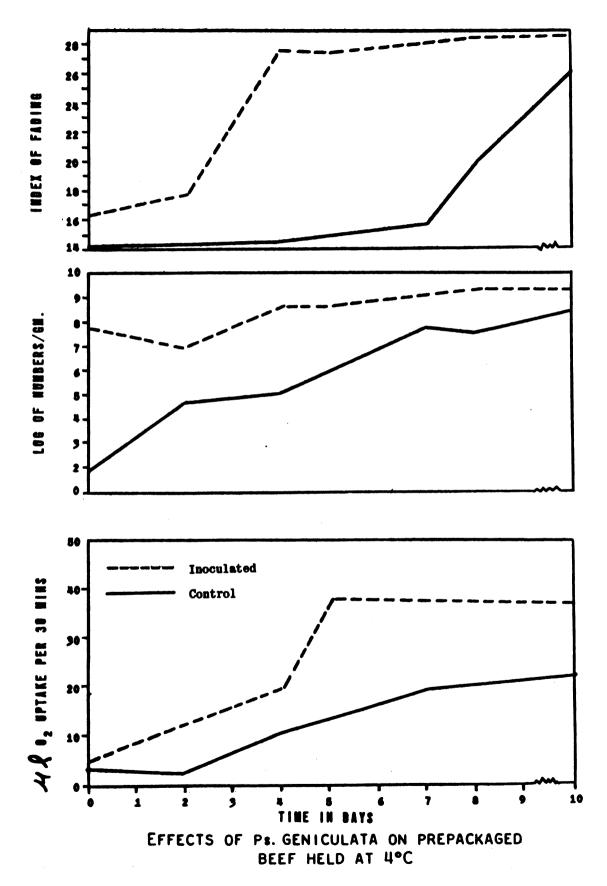
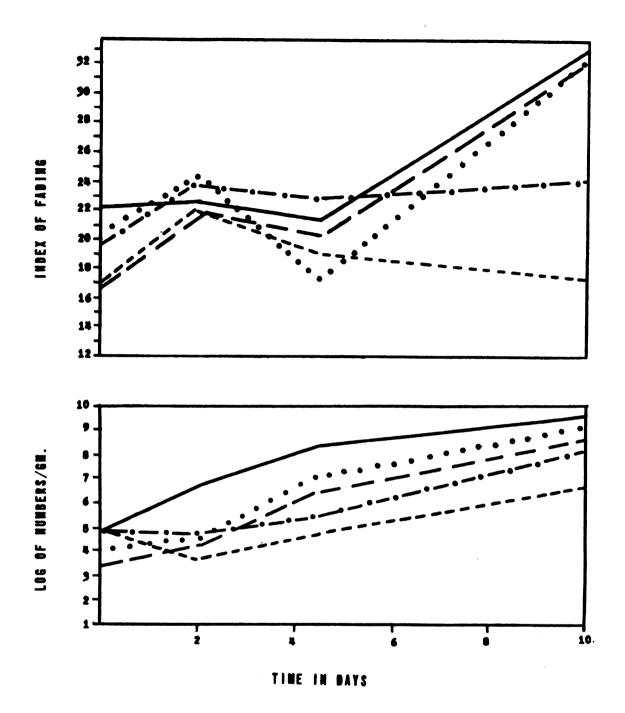


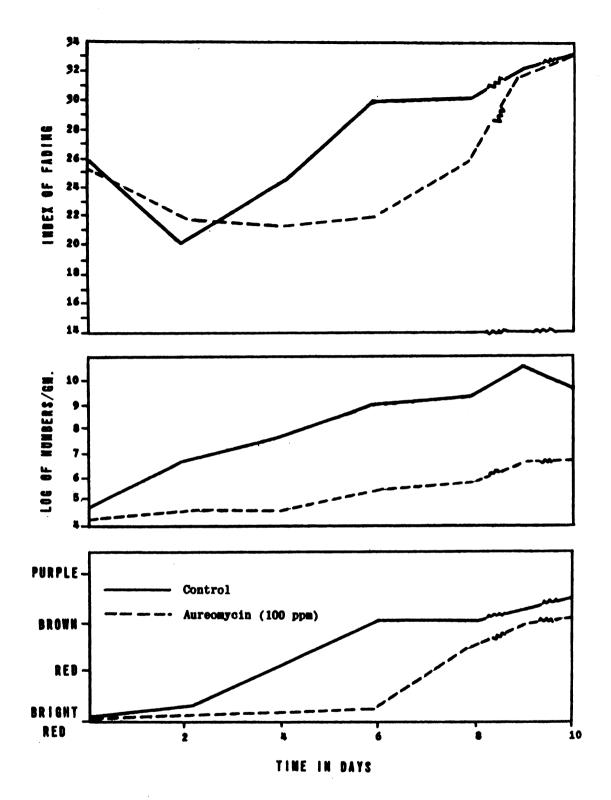
FIGURE 3


<u>Influence of Respiratory Enzyme Inhibitors on Figment Changes and Respiratory Activity</u>

Steaks Held at Refrigerated Temperatures

To study the fundamental principles of discoloration of fresh meat by bacteria, various inhibitors were applied to the surface of beef steaks. Various concentrations of aureomycin ranging from 5 to 100 ppm were sprayed on the surfaces of the steaks. From Figure 4 it can be seen that as the concentrations were increased, the bacterial growth was controlled more completely, and the bright red color of oxymyoglobin was retained longer. Further experimentation using aureomycin at 100 ppm demonstrated good control of bacteria as compared to the control and resulted in preservation of a desirable color 3 or 4 days longer than the control (Fig. 5).

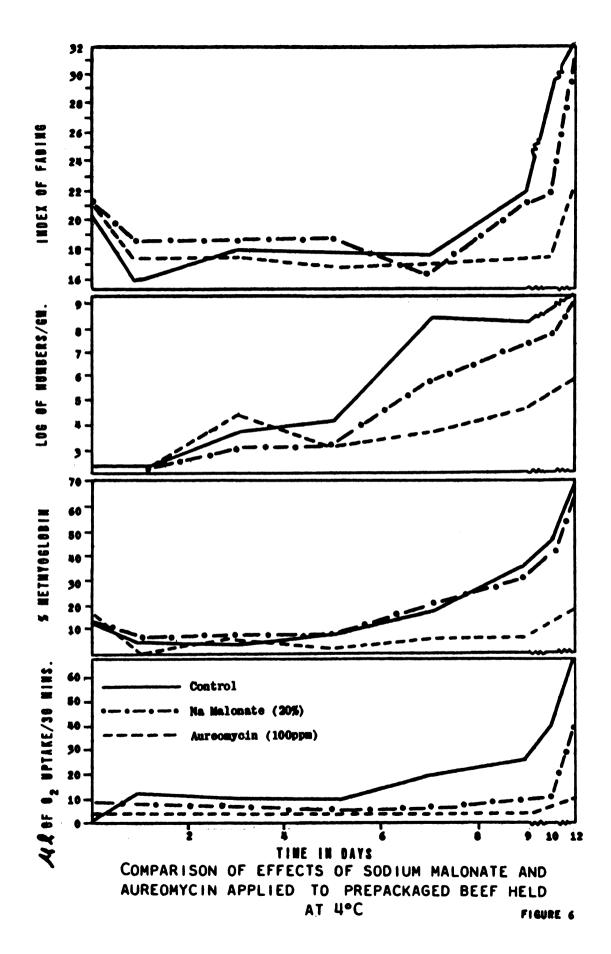
One percent solutions of both sorbic acid and sodium sorbate were sprayed on the surface of the beef steaks. Neither form had any effect on color, nor did they control the bacteria. However, preliminary studies using cellophane impregnated with sorbic acid as a wrapping material showed that color retention could be extended somewhat.

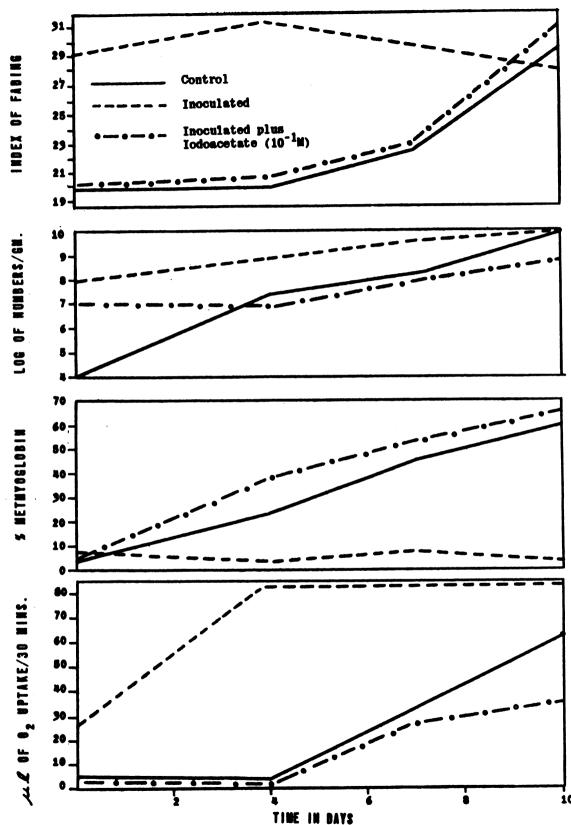

Sodium malonate is a competitive inhibitor of succinic dehydrogenase. To test the effect of this respiratory enzyme inhibitor on color retention, a group of steaks was treated with sodium malonate and compared to an

EFFECTS OF VARIOUS LEVELS OF AUREOMYCIN APPLIED TO THE SURFACE OF PREPACKAGED BEEF HELD AT 4°C

***************************************	Con	trol	
	100	ppe	Aureomycin
	50	ppm	Aueromycin
	25	ppm	Aureomycin
• • • • • •	5	DDm	Aureomycin

FIGURE 4




EFFECTS OF AUREOMYCIN ON FRESH PREPACKAGED BEEF HELD AT 4°C

aureomycin (100 ppm) treated group and a control group. The steaks treated with aureomycin had low bacteria counts, low meth yoglobin formation, low 02 uptake, and low index of fading. Sodium malonate demonstrated some bactericidal or bacteriostatic activity, and the index of fading and oxygen uptake were less than the control. However, the percent methyoglobin formed was practically the same. (Fig. 6). The results illustrated that sodium malonate had some effect on the microflora and color retention of prepackaged beef, but its action was inferior to aureomycin.

Iodoacetate (0.1M) sprayed on steak surfaces proved much more effective than the 20% malonate. The iodoacetate was applied to inoculated steaks and compared to inoculated untreated and to uninoculated steaks. The inoculated steaks having high bacterial counts and high respiratory activity discolored within 2 days. (Fig. 7). The inoculated steaks sprayed with iodoacetate had a low bacterial population, low respiratory activity, and prolonged color retention. In fact, the action was so pronounced that the inoculated steaks treated with iodoacetate gave counts, respiratory activity, and color notations very comparable to the uninoculated control.

Warburg data demonstrated that cells treated with NaN_3 and ACN had far lower respiratory activity on meat

EFFECTS OF IODOACETATE ON INOCULATED PREPACKAGED BEEF HELD AT 4°C

FIGURE 7

substrate than did untreated cells of Ps. geniculata. Cells treated with NaN3 (0.01 M and kCN (C.1 M) spun out washed, and resuspended in sterile saline, showed about 73% inhibition. NaN3 and kCN added to the meat substrate before the addition of bacteria resulted in complete inhibition of the respiratory enzymes. Final concentration of NaN3 was 1 x 10^{-3} molar and kCN was 1 x 10^{-2} molar. (3.3 x 10^{-3} M hCN gave similar results.)

Cells treated as above were sprayed on the surface of steaks and these compared to steaks treated with the inhibitors and inoculated, treated but uninoculated, and to a control lot of untreated steaks. All steaks were then packaged and held at 4°C. for visual observations. Results presented in Table 4 indicate that cells pretreated with kCN or NaN, as well as cells added in conjunction with these inhibitors caused no discoloration. This demonstrates that respiratory enzymes play an important role in the discoloration of fresh prepackaged It was observed, however, that NaN, per se caused discoloration of the meat. This might be expected for NaN3 reacts chemically with porphyrins and the prosthetic group of myoglobin is a porphyrin. The exact reaction involved was not studied in this investigation. When kCh was added to steaks without inoculation, a bright red color was still present after 10 days.

Table 4

Effects of kCh*, NaNy** and Ps. <u>geniculata</u> inactivated with kCh and NaNy on fresh prepackaled beef held at 4°C.

Time in Days	Control	kcn haw ₃	helv3	Ps	geniculata plus kCN	Ps	Feniculata Flus Nav3	Ps. Feniculata kCm inactivated	Fs. Feniculata Naiva Inactivated
0	bri£ht red	bri£ht red	bright rea		bright red		brigh t red	bri£ht red	brigh t red
Н	bri _e ht red	${f bright}$	dark red	,	bri _£ ht red	0 , ,	dark red	bright red	bright red
7	red	bright red	purple red		bright red		purple red	bright red	bright red
<i>‡</i>	áark red	bright red	purple brown		bright red		purple brown	derk red	derk red
9	dark red	bricht red	purple brown	. ,,	bright red		purple brown	1/2 dark red 1/2 brown	l brown
10	brown	bri£ht red	purple brown	. , , =	red brown edge		purple brown	1/2 brown 1/2 purple	1/3 brown 2/3 purple

**0.1 moler kCN **0.01 moler NaW3

Further studies were completed comparing the activity of treated and untreated cells of fresh prepackaged meat at various oxygen tensions held at 4° C. The various oxygen tensions were obtained by drawing a vacuum in dessicator jars and readmitting N_{2} and O_{2} . Eefore admitting the final gas mixture the jars were flushed twice with nitrogen gas. Steaks of the various treatments described above plus inoculated untreated steaks were placed in the dessicators at the various oxygen tensions. atmosphere of nitrogen all the steaks became purple within an hour. At oxygen tensions between 20 mm and 40 mm $\mathbf{0}_2$ all steaks turned brown between 3 and 6 days. The surface pigment of steaks inoculated with dilute suspensions of actively metabolizing cells was oxidized at a slightly faster rate than that of uninoculated steaks; however, the metmyoglobin of the inoculated steaks was reduced to myoglobin within 1 day after formation. The surface metmyoglobin of the uninoculated steaks was more stable, remaining at least 3 days before being reduced. treated with aureomycin, iodoacetate, and cells inactivated with ACM gave results similar to the untreated, uninoculated controls. In a normal atmosphere, no metmyoglobin formation could be observed during the first 7 days except for the steak inoculated with active cells. This steak began to discolor after 2 days and within 5 days had become purple with only a slight evidence of browning. The results

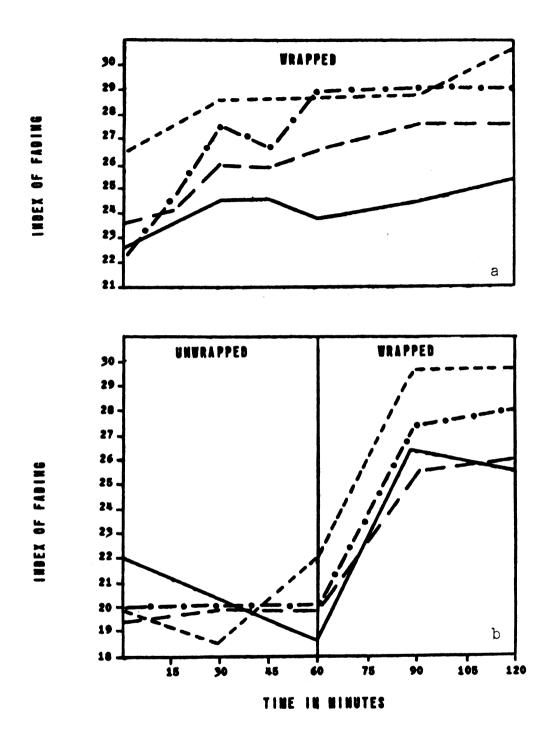
indicate that under reduced O₂ tensions surface pigment oxidation is accelerated, and the reaction is not inhibited by either sureomycin or iodoacetate. Also dilute suspensions of Fs. geniculata increase the rate of pigment change only if their respiratory enzymes are active. Steaks Held at Room Temperature

Early work demonstrated that at room temperature crude intracellular enzyme preparations of <u>Ps. geniculata</u> caused surface discoloration of wrapped beef steaks while extracellular preparations did not. The action of the intracellular enzymes, however, was less pronounced than that demonstrated by intact cells. Preliminary work using crude enzyme extract in conjunction with sodium fluoride (0.01 molar) applied to steak surfaces gave no significant information. That is, at room temperature this enzyme inhibitor had little or no effect on the enzymes causing discoloration. The data indicate one of two things:

(1) the concentration of the fluoride was too low to be effective, or (2) the enzymes which fluoride inhibits are not involved in meat discoloration.

In order to obtain further knowledge as to the mechanisms of discoloration of beef at room temperatures, four steaks were treated as follows: (1) untreated control; (2) inoculated, but no further treatment; (3) inoculated and sprayed with 0.1 molar iodoacetate; and (4) inoculated and sprayed with 0.01 molar sodium azide.

All steaks were wrapped with M.S.A.T. 80 cellophane. hesults (Fig. 8-A) indicated that both enzyme inhititors slowed down discoloration up to 45 minutes. At this time, the steak treated with sodium azide turned a dark purple and remained such for the rest of the experiment. At 2 hours, based on final index of fading values, iodoacetate resulted in about a 50% color preservation. That is, the index of fading value lay midway between the index of fading for the untreated control and the index of fading for the inoculated control. Upon refrigeration, all the steaks turned bright red except for the steak treated with sodium azide. This would indicate that sodium azide forms a stable complex with the myoglobin which seems very probable since sodium azide reacts with metalloproteins of which myoglobin is one.


Steaks treated as above, but not wrapped until one hour after treatment, discolored only slightly for the first hour. Only the inoculated control had begun to darken sufficiently to be observed by index of fading values. The index of fading of the uninoculated control was only slightly less than those of the steaks treated with sodium azide and indoacetate at one hour. After wrapping, all steaks discolored (became purple) rapidly as indicated by visual observations and index of fading values. The inoculated control steaks discolored most rapidly. Sodium azide slowed down the discoloration only very slightly before forming the stable dark purple pigment.

Iodoacetate seemed to be very effective in that it reduced the rate of discoloration to that of the uninoculated controls. (Fig. &-I).

<u>Muscle Figment Extracts Held at hoom Temperature</u>

Cells of Fs. geniculate have shown the stility of toth reduce and oxidize myoglotin solutions. These results were obtained by spectrophotometric analysis of the solutions containing the organisms using a water suspension of the organisms as a blank. Studies comparing treated cells (kCm, NaN3 and heated) with untreated cells by the above method gave false results, for treating the cells gave them different optical properties which could not be compensated for by a cell suspension blank. The results indicated that cells which were inactivated, as demonstrated by Warburg studies, had the stility to oxidize and reduce the pigment.

A subsequent study was undertaken to note the effects of cells inactivated with kCk. In this study a sample was taken and centrifuged before spectrophotometric analysis. Visual observations of the solutions were also taken. After 30 minutes the myoglobin solution containing the active cells was a definite purple while the solutions containing cells inactivated by heat (35 minutes at 75°C.) and kCk (10⁻¹ k) remained red; however, spectrophotometric analysis demonstrated essentially no difference (Table 5).

EFFECTS OF IODOACETATE AND Na AZIDE ON INOCULATED STEAK HELD AT ROOM TEMPERATURE

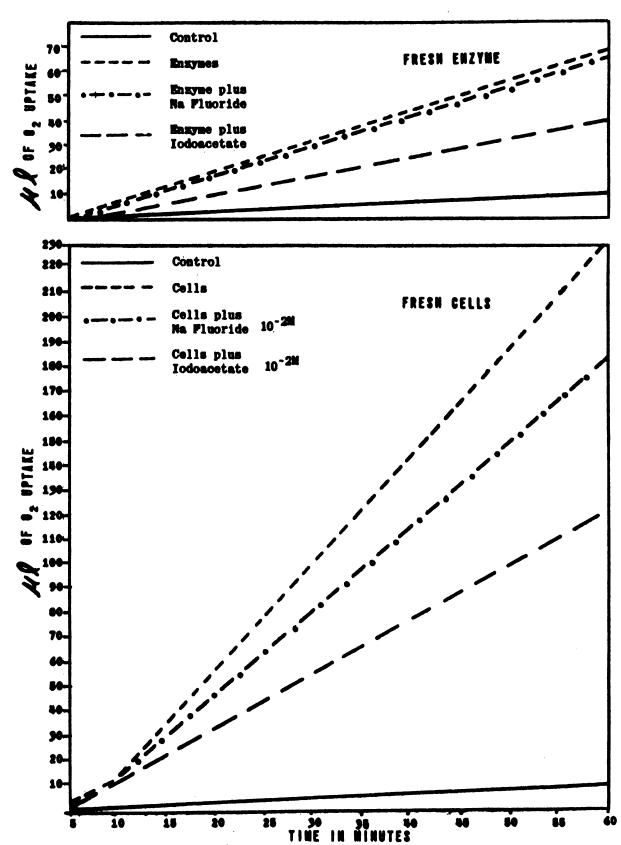
 Control	
 Inoculated	
 Inoculated + Iodoacetate	(10 ⁻¹ M
Inoculated + Na Azide	_

Table 5

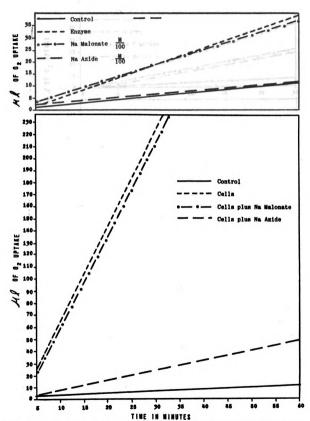
Effects of setive and inactivated cells of <u>Ns. canculate</u> on myoglobin pigment extracts held at room temperature

Tine in	Con	Control	Active	Cells	Cells Ins	Insctivated V Test	Cells Insett	Insctivated
ी <u>चेत</u> ्र •	No. Hot	• O 2017 50	(†) (†) (†)	130	S Note	• O M	: Tet	1.370
0	13	0	13	Ö	13	0	13	0
10	10	0	F 7	O	C/L	0	10	0
02	† 1	O	16	Û	C.	Ů	10	0
0	11	Ö	16	Ο	C/	C	10	0
5	, † L	O	1.6	0	⊅ ⊓	C	בו	Ü
09	7,1	0	23	0 1	17	Ø	70	ω
\$p+0*	C H	0	01 FJ	63	ሆ\ I	2	17	rU IU
* 3008	C)	O	(A)	ተ)	19	C١	19	M

* Centrifuse tukes were stopy ered in order to have planeart solutions from coming in contact with sir.

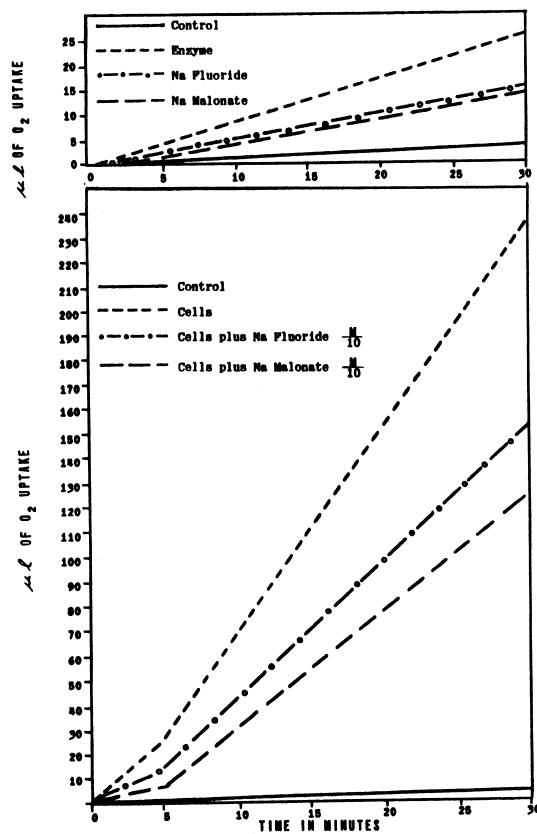

At one hour a centrifused sample of the inoculated myoglobin solution showed a slight increase in metmyoglobin
and myoglobin content, but not nearly as much as visual
observations would indicate. At 4 hours samples of the
various solutions were placed in centrifuse tubes and
rubber stoppers were inserted. The tubes were filled so
as to overflow when the stoppers were inserted so that no
free air was present in the tube. After centrifusation
the solutions were placed in the colorimeter tubes
carefully, and spectrophotometric determinations were made.
The data demonstrated that active cells had increased the
percent metmyoglobin slightly, but primarily the action
was reducing the pigment to myoglobin. Treated cells were
essentially inactive.

From these results it is evident that one must be careful in his work with myoglobin solutions, especially if spectrophotometric analyses are to be made. The data demonstrate that cells of Ps. geniculata which have cyanide inactivated cytochrome systems are unable to reduce a solution of oxymyoglobin to myoglobin. This is in agreement with the results observed in previous work with myoglobin solutions in which the cells were left in the solution used for spectrophotometric analysis.


Meat Homogenates

Meat homogenates were used as a substrate in Warburg experiments testing the effects of various enzyme inhibitors on cells and cell-free preparations of Ps. geniculata. Sodium fluoride at a concentration of 0.01 M had no inhibitory effect on the enzyme preparation and only a slight inhibitory effect (18%) on the cells (Fig. 9). However, from the data in Fig. 10, it is evident that 0.1 molar sodium fluoride inhibited the respiratory activity of both whole cells and enzyme preparations. This inhibitor brought about a 50% inhibition of the enzymes and 38% inhibition of the cells. A O.Ol molar solution of sodium malonate was also found to be inactive (Fig. 10), but 0.1 M sodium malonate caused a 50% inhibition of the respiratory activity of the enzyme preparation and the intact cells (Fig. 11). Iodoacetate (0.01 M) reduced the respiratory activity of the cells and cell-free intracellular enzyme preparations by about 50%, and sodium azide (0.01 M) completely inhibited the oxygen uptake by the enzyme preparations and caused virtually complete inhibition of the cells of Ps. geniculata (Fig. 11). One-tenth molar kCN gave results similar to those obtained with sodium azide.

In order to find out if cells of <u>Ps. geniculata</u> utilized an alternate aerobic metabolic pathway at reduced oxygen tensions, the following Warburg experiment



EFFECTS OF No FLUORIDE AND IODOACETATE ON THE RESPIRATORY ACTIVITY OF CELLS AND INTRACELLULAR ENZYMES OF PS. GENICULATA

EFFECT OF Na MALONATE AND Na AZIDE ON THE RESPIRATORY ACTIVITY
CELLS AND INTRACELLULAR ENZYMES OF Ps. GENICULATA

FIGURE 10

EFFECTS OF Na FLUORIDE AND Na MALONATE ON THE RESPIRATORY
ACTIVITY OF CELLS AND INTRACELLULAR ENZYMES OF PS. GENICULATA
FIGURE 11

was undertaken: cells treated with kCN were compared to untreated cells at various reduced oxygen tensions which were obtained by allowing mixture of $\mathbf{0}_2$ and \mathbf{N}_2 to flow through the system prior to starting the Warturg analysis. The atmospheres used were: (a) all \mathbf{N}_2 , (b) $\mathbf{1} \approx \mathbf{0}_2$ (99% \mathbf{N}_2), (c) 5% $\mathbf{0}_2$ (95% \mathbf{N}_2), and (d) $\mathbf{10} \approx \mathbf{0}_2$ (90% \mathbf{N}_2). These were compared to normal atmospheres. The \mathbf{pl} $\mathbf{0}_2$ uptake was determined for a 30-minute interval (Table 6). The respiratory enzymes of cells treated with kCN were essentially inactive at all atmospheres. The activity of respiratory enzymes of the untreated cells increased as the oxygen tensions increased from 0 to $\mathbf{10} \approx \mathbf{0}_2$. The enzymatic activity at 5 and $\mathbf{10} \approx \mathbf{0}_2$ oxygen was similar to that at normal atmospheres.

Beef Tissue Slices

Eeef tissue homogenates had very low oxygen uptake activity; therefore, tissue slices were tested for respiratory activity. Both myoglobin solution and Ringer solution were used as suspending media in the Warburg flasks. Both gave similar results, so Ringer solution was used for its constituents are defined and controlled.

The tissue slices showed active metabolism as measured by oxygen uptake, and gave essentially the same activity at reduced oxygen tensions as at a normal tension. It was noted that NCN and NaN3 at final

The effect of hCW* on the θ_2 uptake by cells of Fs. Leniculata at various oxygen tensions Table 6

Time	Normal	nal	Ν2		1%02 + 99/N2	99,0N2	5,02 + 95,N2	95/N2	10,002 + 90,0N2	90%N2
in min.	Cells	Cells + kCM	Cells	Cells + kCN	Cells	Cells + hCw	Cells	Cells + KCM	Cells	Cells + ACN
Ŋ	3.42**	1.46	7.	1.54	0	0	74.4	0.0	6.1	0
10	16.19	5.84	4.2	3.08	1.59	0.0	22.37	3.08	24.28	0•0
15	21.05	5.84	5.6	4.62	1.59	0.0	25.35	3.08	31.88	0
20	30.77	7.2	4.8	6.16	7.2.4	0.0	40.25	3.08	47.08	0.0
25	37.25	7.2	12.6	7. 6	6.36	0.0	47.7	4.62	59.23	0.0
30	43.73	7.2	14.0	7.6	6.36	0.0	56.65	4.62	69.83	0.0

* Final concentration of hCN was 6.6x10-3 moler ** µl of 02 uptake are recorded

concentration of 10^{-2} M greatly inhibited the respiration action of the slices both at normal atmospheres and at an atmosphere of reduced oxygen content. The inhibitory action was essentially the same under both conditions (Table 7).

Effects of $\rm H_2O_2$, Peroxidase and Glucose Oxidase $\rm H_2O_2$ (0.3%) added to the surface of fresh steaks held at room temperature or at refrigerated temperature, wrapped or unwrapped, resulted in no methylelobin formation. bubbling occurred indicating catalase activity, but no evidence of pigment oxidation was visible. However, a steak which had been held at a reduced oxygen tension (80 mm $\rm O_2$) became brown when peroxidase was added to its surface at room temperature under normal atmospheric conditions. In fact, the oxymylelobin on the surface of most aged steaks was oxidized to methylelobin on addition of $\rm H_2O_2$.

Both fresh and aged solutions of myo ξ lotin pigments were partially oxidized by the addition of ${\rm H_2O_2}$. However, from the results in Table 8, it can be seen that the aged solutions of myo ξ lobin were oxidized much more readily than fresh preparations.

Meat extracts gave a positive test for peroxidase using orthophenylene diamine (0.P.D.A.) indicator. To further verify the evidence of peroxidase, KCN, which is known to inhibit this enzyme, was added to the extract

Table 7

Effects of sodium azide and potassium cyanide on the respiratory activity of beef tissue

Control			T' Oxygen	L, Oxygen and 99% Litrogen	rogen
	ivelv ₃	hCM	Control	Ne%3	LCE
μ1 0 ₂ /hr./0.1 εm. 23.8 6.	6.36	5.87	54.6	3.53	ς+•+ ₁

and compared to an untreated control. It was noted that as the concentration of the kCh increased, the peroxidase activity decreased. When compared to a heat-inactivated control, kCh completely inhibited the heat sensitive activity. Fotassium iodide plus starch, benzidine, and gum guaiac all failed to give a positive reaction for the presence of $\rm E_2O_2$ in or on steaks whose pigments were undergoing oxidation. Thus the presence of peroxidase has been shown, but no free $\rm E_2O_2$ could be detected. However, any $\rm E_2O_2$ produced would probably be very fleeting due to the presence of catalase in high concentration. Therefore, it is not likely that the tests used are sensitive enough to detect the level of $\rm E_2O_2$ which might be present.

Effect of Glucose Oxidase

Glucose oxidase when applied to the surface of steaks wrapped or unwrapped, caused the formation of metmyoglobin within five minutes at room temperature. However, the discoloration reaction did not stop at this point but proceeded to the choleglobin stage. Refrigeration did not stop this reaction though it was somewhat slower than at room temperature.

A second trial using dilute solutions of glucose oxidase proved that this enzyme preparation could oxidize the surface pigment of steaks to metmyoglobin without the formation of choleglobin. The results in Table 9 also demonstrate that the heat-treated glucose oxidase was inactive. This would indicate that oxidation caused by

Table 8

Effects of Lydrogen peroxide on fresh sud aged myollobin extracts held at room temperature

Time in Min•	Freps:	Freparation	Fresh	Fresh reperation ⁺ H ₂ 0 ₂	Frepa	Leed Freparation	AE Preparat	Aged Preparation+ $ m N_z C_2$
	% met•	/e myo.	ž met.	jó myo.	% met•	ok:n o/	, met	, r.30.
before accition	m	0	m	0	9	Ü	Y)	0
0	6	0	12	0	21	0	50	0
15	10	0	19	0	C\	Ö	68	0
30	2	0	22	0		0	4	9
09	6	0	19	0	12	0	0,4	0

glucose oxidase was enzymatic. E_2O_2 had no effect on the surface pigment of steaks when added alone or in conjunction with flucose oxidase inactivated by heat. Comparing the effects of E_2O_2 , glucose oxidase and peroxidase on oxymyoglobin solutions (Table 10), it was observed that E_2O_2 caused some oxidation but was far less active than dilute flucose oxidase. The fact that heated glucose oxidase was active would suggest that some of the activity of the unheated sample was nonenzymatic, but the difference in activity was great enough to show the enzyme system did cause oxidation of oxymyoglobin. Glucose oxidase when more concentrated caused the formation of choleflobin.

Effect of Peroxidase

Peroxidase was obtained by filtering a commercial unpasteurized horseradish preparation. Peroxidase added to the surface of fresh steaks caused no discoloration, nor did 0.3% solution of $\rm H_2O_2$ at room temperature. However, when added together the steak surface turned brown within 10 minutes; and after holding at $\rm H^cC$, overnight, the brown pigment became a green-brown color. $\rm H_2O_2$ added to steaks previously treated with peroxidase turned brown almost immediately.

It was noted that some nonenzymatic ozidation takes place on steaks. Peroxidase solutions inactivated by heat still caused some surface oxidation when used in conjunction with $\rm H_2O_2$, but the reaction was slower than that of

Table 9

The effects of hydrogen peroxide, glucose oxidase, snd a combination of both on the surface color of unwrapped steaks held at room temperature

Time in	74.77 2000 Ca (74.71)		+ 00000.50	1.00+-Twoo+1.00	1.202+
l.in.	Peroxide	Oxidase	Indrocen Peroxide	Glucose Oridase	Glucose Oxidase
before addition	red	r G	ភូមិ	red	red
0	red	dark red	dark red	red	red
15	red	red Lrown	brown	, red	red
90	red	dark brown	ćark brown	reč	rec
09	red	dark brown	derk brown	ಗಿಕಿದ್ದೆ	red
120	чед	dark brown	dera brown	red	reâ

Table 10

Effects of active and heat-inactivated glucose oxidase and peroxidase on myoglobin extracts reld at room temperature

Eested Peroxidese	/ Net. / Fyo.	0	O	0
Ee Pero	, Let	Ċ	1 0	7,0
idase	ν Eyo.	٥	Ö	0
Perovidase	W liet. W Myo.	(V	93	<u>ထ</u> ဤ
Tested Glucose Oxidase	o het. pliyo.	0	0	Ü
Head Glus Oxt	o het.	Ü	19	46
Glucose Oxidase	, o Eiyo	ت	11	بار
Glud Oxid	% Net. % Myo.	U	86	${\mathfrak S}$
20	، Piyo	0	0	ന
) [1]	, Met.	Μ	19	M M
trol	hins. / Met. / Myo. / Met. / Lyo.	O	O	0
Cont	% Met.	0	N	0
Time in	hins.	0	30	9

the active preparation. The nonenzymatic reaction was shown to interfere far more greatly in myoglobin solutions, causing rapid oxidation (Table 10).

Effects of Co Tensions

Steak Surface Figments

A series of experiments was designed to show the influence of different oxygen levels on the color changes of both inoculated and uninoculated steaks. In the first experiment atmospheres used were oxygen, nitrogen, and air. The wrapped steaks were placed in desiccating jars, a vacuum drawn with a water aspirator, and the jars flushed with the gas to be used. This process was repeated three times.

The results of this study are presented in Tables 11 and 12. The steaks held under an oxygen atmosphere developed a trighter color (lower index of fading values) and maintained it longer than the steaks held in air; however, inoculation with Ps. geniculate greatly reduced the time necessary for a color change to occur in both air and oxygen. The steaks in the nitrogen atmosphere never returned to a bright red, but remained dark red until discoloring further. The uninoculated group held in the N₂ atmosphere developed a brown color and high metmyoglobin percentage. This may have been the result of a low residual oxygen level in this atmosphere. The failure to observe a brown color or a high metmyoglobin percentage in the inoculated group under nitrogen was

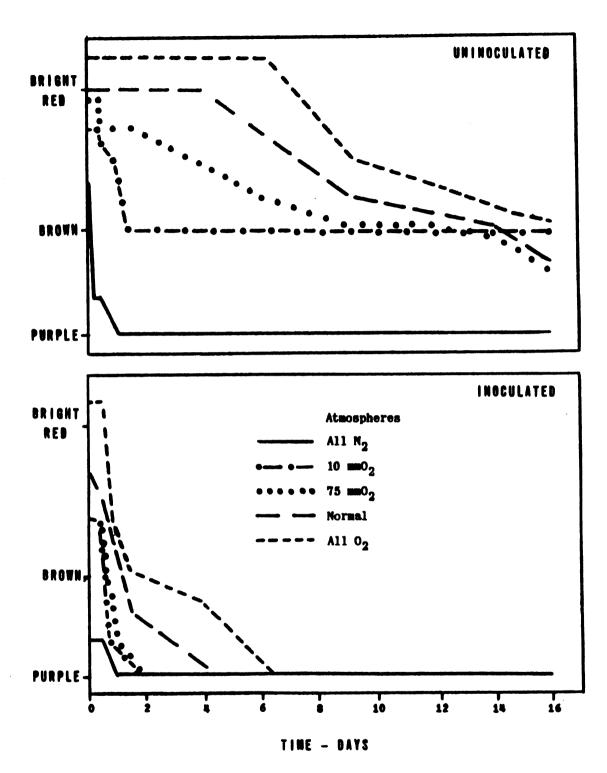
Effects of nitrogen and oxygen atmospheres on uninoculated prepackaged beefiteld at 40 C. Table 11

Atmospheres and					
			Time in days		
observations	0	2	†	9	11
NORMAL					
Visual observation	britht red	bright red	bright red	red	2/3 brown
Index of fading	19.5	17.3	18.0	20 • 3	1/3 purpre 29.1
% Metmyoglobin	21.3	7.	32.2	3 ? • N	35.6
Log ko, bacteria	5.3	3.0	4.5	7.6	6.7
OXYGEN					
Visual observation	very bri _é ht red	very bri _k ht red	very bri _b ht red	britht red	1/3 brown 1/2 purple
Index of fading	! !	16.2	15.9	15.9	1/0 rea 30•9
% Metmyoglobin	!	20 • 5	19.4	24.7	32.2
Log No. bacteria	1	3.0	ф ,	6.7	10.4
N ITI OGEN					
Visual observation	dark red	purple	brown-purple	brown	purple-brown
Index of fading	!!!	25.6	27.9	26.8	25.4
% Metmyoglobin	!	26.8	28.2	50.3	16.8
Log No. becteria	1	3.0	, γ	7.3	8.5

Tatle 12

Effects of nitrogen and oxygen atmospheres on inoculated* prepachaged beef held at 4°C.

Atmospheres and observations			Time in days	Ø	
	0	2	ተ	9	11
NORMAL					
Visual observations	bri _E ht red	britht red	5/6 brown	brown-purple	purple
Index of fading	17.3	17.4	1/o dark red 25•2	31.6	29.1
% Metmyoglobin	22.8	10.9	31.6	25.6	3.6
Log No. bacteria	6.5	7.4	9.2	9•6	10.1
OXYUEN					
Visual observations	very britht	very britht	red	brown-purple	purple
Index of fading	7 I	14•3	3.31	28.5	31.8
% Metmyoglobin	i i t	19.3	17.9	20•3	7.4
Log No. bacteria	1	∀• ८	9•3	6•6	10.3
i Ilino gen					
Visual observations	dark red	purple	purple	purple	purple
Index of fading	! !	24.2	သ သ လ	27.4	23•3
% Wetmyoglolin	t t	5h•9	20.8	14.3	6. 7
Log No. bacteria	E 8 8	7.2	7.2	6°3	9.2
				المساركية والمسترين والمسترين والمسترين والمسترين والمسترين والمسترين والمسترين والمسترين والمسترين	


*Inoculated with <u>Eseuconouss Fericulata</u>

probably due to the rapid utilization of residual oxygen by the bacteria.

To get further information on the influence of various oxygen levels on fresh meat color, a more comprehensive experiment was designed. This involved storing prepackaged meat at various oxygen tensions. Control steaks inoculated steaks, and steaks treated with cell-free extracts of Fs. geniculate were stored under each atmosphere. The atmospheres were obtained in vacuum desiccator jars by pulling a vacuum with a "hi-vac" pump, measuring in the desired oxygen pressure by the use of a mercury manometer, and bringing the internal pressure near atmospheric pressure with nitrogen. Visual observations of color were made during the 12-days' storage under refrigeration. Observations of the control and inoculated groups of steaks are shown in Figure 12.

All steaks held in the absence of $\mathbf{0}_2$ turned purple within 1-1/2 hours and remained purple throughout the experiment.

The steaks held at 10 mm of 0₂ demonstrated some differences as to treatments. The uninoculated steaks began to darken within 12 hours, and at 36 hours became a definite brown and remained brown. The steaks which were inoculated turned dark red immediately, and after 24 hours became purple without the formation of a brown pigment. The steaks treated with the intracellular enzymes gave results similar to the inoculated steaks,

THE EFFECTS OF VARIOUS OXYGEN TENSIONS ON THE COLOR OF PREPACKAGED BEEF HELD AT 4°C

but before turning purple, browning was observed.

The inoculated steaks and those treated with the enzyme preparation held at 75 mm O₂ gave results similar to those obtained at 10 mm O₂; however, discoloration caused by the enzymes was less pronounced. The uninoculated steak was a bright red up to 2 hours and then became a dark red turning brown within 6 days and finally began to turn purple after 16 days. It should be noted that up to this point only the uninoculated steak held at 75 mm O₂ was bright red initially.

Inoculated steaks held at normal atmosphere began to darken within one hour and within 24 hours turned purple. The steak treated with enzymes demonstrated a slight darkening for the first 2 hours, but then returned to a bright red. Subsequent discoloration of the steaks treated with enzymes was probably due to bacteria and not to the enzyme preparation rer se. Results of the enzyme-treated steak were similar to the results of the uninoculated steak except for the initial darkening.

All the steaks in the oxygen atmosphere were very bright red for the first few hours. The inoculated steak was first to discolor, having a brown periphery and a dark red center by 24 hours. At 4 days the steak was partially purple, and after 6 days it was all purple. The steak treated with enzymes and the uninoculated steak began to discolor after 6 days, probably due to bacterial action.

Two experiments were completed in desiccator jars testing the effects of iodoacetate, aureomycin, and hCh. In the first test, steaks wrapped in MSAT 80 cellophane were used. In the nitrogen atmosphere, all steaks turned purple after 2 days and remained as such until the experiment terminated. All the steaks which were exposed to an atmosphere containing 10 mm 02, except that treated with kCh, began to turn brown at 3 days and remained brown to the tenth day at which time the steaks became a mixed brown-purple color. The steak treated with KCN began to turn purple after 3 days. The surface pigment of the steak treated with ACN was completely reduced after 5 days, but at no time was the brown color of metmyo¿lobin observed. Steaks exposed to 75 mm 0, became red upon refrigeration, but not the bright red that was observed on steaks held at normal or complete oxygen atmospheres. The control steak was first to discolor. Iodoacetate afforded about 1 day of color preservation and the aureomycin about 4 days as compared to the control. The kCh-treated steak retained its red color for about a day longer than the aureomycin-treated steak and then became a dark red and finally purple. Again, all the steaks except that treated with kCN became brown before turning purple.

The color changes observed with steaks held at normal atmosphere were similar to those held at 75 mm $^{\rm O}_2$ except that the initial color was bright red. Steaks

held in an atmosphere of oxygen retained the bright red color 3 days longer than at normal atmosphere. It was also noted that these steaks turned a purple color with only little evidence of metmyoglobin formation.

The various bacterial inhibitors did show some color retention, but only at atmospheres containing high amounts of oxygen. In an atmosphere of all N_2 and 10 mm 0_2 , they were inactive. It should be noted that at no time was the formation of metmyoglobin clearly defined on those steaks treated with NCN except in an atmosphere of all oxygen.

The above experiment was repeated using steaks which were not wrapped. The kCN treatment was omitted. The results were similar to those of the previous experiment.

From this information, it appears that the oxygen present at the steak surface plays an important role in the rate of discoloration. At lower oxygen tensions (10 mm 0₂), metmyoglobin is formed within 3 days while at higher oxygen tensions (normal) metmyoglobin is not produced until the fifth day. It would appear that at the lower oxygen tensions tacteria play only a small part, if any, for the addition of bacterial inhibitors (excluding kCk) does not slow down the metmyoglobin formation. At higher oxygen tensions, however, the opposite is true, that is, bacteria do play an important role in metmyoglobin formation for the addition of bacterial inhibitors, especially

aureomycin, slows down metmyo $_{\epsilon}$ lobin formation considerably.

To check the effect of temperature on these color changes, steaks wrapped and unwrapped, with and without the addition of iocoacetate were placed in atmospheres of all nitrogen, nitrogen plus 10 mm $\mathbf{0}_2$, nitrogen plus 75 mm $\mathbf{0}_2$, normal, and all oxygen. Storage was at room temperature.

Steaks in the nitrojen atmosphere became purple immediately and remained so through the experiment. In the other atmospheres browning occurred within 2 days. The steaks held in the normal and all-oxygen atmospheres developed a large amount of metmyoglobin as did the unwrapped steaks and the steaks treated with iodoacetate held at 10 mm O_2 . The other steaks turned purple without becoming a definite brown. Thus, at room temperature the formation of metmyoglobin was accelerated, but the reduction to myoglobin was also accelerated. In the all oxygen atmosphere, steaks were all brown at 2 days, while at refrigerated temperature no definite browning could be observed. Iodoacetate did not decrease metmyoglobin formation, but in all cases tended to increase its formation.

The second experiment in this series was the same as the first except that various oxygen levels were obtained by drawing partial vacuums in desiccating jars.

Considering that air contains approximately 20% oxygen, and knowing the barometric pressure, a vacuum can be pulled to the point where the gas left in the desiccator jer would contain the amount of oxygen desired. (For example, if the barometric pressure is 740 nm of mercury and a vacuum of 640 mm of mercury is drawn, 100 nm of gas would be left in the jer of which 20% or 20 mm is oxygen.) Results indicate that at room temperature metmyoglobin formation proceeds at a maximum rate near an oxygen tension of 20 mm O₂. Again, steaks treated with iodoacetate tended to form metmyoglobin more completely except in an atmosphere containing 20 nm O₂ where all steaks became brown about the same time.

The third experiment in this series was undertaken to test the effect of Ps. geniculate on steaks held in partial vacuum with various oxygen levels. Again various oxygen levels were obtained by pulling partial vacuums in desiccator jars. All the inoculated steaks at the various oxygen levels turned purple within one-half hour and remained purple. The uninoculated steaks exposed to oxygen levels of 20 mm and 40 mm demonstrated some browning on the second and third day, but the rest of the steaks turned purple without browning. Ps. geniculate hastened the formation of the purple color at 20 mm O2, 40 mm O2, and 60 mm O2 and kept the pigment of steaks in the reduced form. The pigment of the

uninoculated steaks was partially oxidized to metmyoglobin before being entirely reduced to myoglobin.

It has been shown that at reduced atmospheres especially at atmospheres containing 10 nm 0_{\circ} the formation of methyoglobin from oxymyoglobin on steaks is accelerated. This occurs even when the bacterial inhibitors are added, but it was not known if all the bacteria had been inhibited. The following experiment was conducted to see if metmyoglobin could be produced on pieces of meat without bacterial growth by reducing the amount of available oxygen. To accomplish this, pieces of meat were extracted by sterile technique, placed in sterile petri dishes, and in turn placed in a sterile desiccator jar at which time petri dish covers were removed. Each jar contained three meat samples. The various oxygen tensions were obtained by adding mixtures of ${\rm N}_2$ and ${\rm O}_2$ to the jars after they had been evacuated. All gases were run through a sterile glass wool filter to keep conditions within the desiccator jars free of microbial growth. All jars were refrigerated. Results (Table 13) show that at reduced oxygen tensions the pigment of muscle tissue can be oxidized to metmyoglobin within 36 hours without the presence of bacteria. Spectrophotometric analysis as well as visual observations bears out this fact. The rate of metmyoglobin formation was essentially the same at oxygen

Table 13

The effects of reduced oxy_{ℓ} en atmospheres on sterile excised muscle tissue held at $\text{h}^{\text{o}} \text{C}_{\bullet}$

Time in Hours	8 mm• 0 ₂	10 mm• 02	15 nm• 0 ₂	20 rm. 0 ₂
Lefore	bri _t ht red	bright red	bri _e ht red	bri _e nt red
0	dark red	dark red	dark red	dark red
12	dark red	derk red	derk red	dark red
77	brown-red	brown-red	brown-red	brown-red
36	brown	brown	brown	brown
7,8	brown	brown	brown	brown
	• NO %	• ON %	% % No.	• NO ·
	met. myo. bact.	met. myo. bact.	met. myo. bact.	met. myo. bact.
	75 0 0	0 0 44	0 0 11	0 0 49

tensions of 8 mm, 10 mm, 15 mm, and 20 mm. Eacterial counts made by plating with tryptone glucose extract agar (Difco) demonstrated no significant growth.

A second investigation (Table 14) was performed using a wider range of $0_{\mathfrak{I}}$ tensions comparing excised tissue to aseptically handled beef steaks. hesults showed that steaks did not react to the various atmospheres as readily as the excised tissue. At 10 mm 0_2 and 25 mm 0_2 the excised tissue turned brown within 48 hours, and the steaks did not become entirely brown until 96 hours at 10 mm 0, and 120 hours at 25 mm 02. The important thing is, however, that the steaks did become brown without the presence of a significant number of bacteria. At 50 mm 0, the steak turned brown after 144 hours while the excised tissue began to turn brown at 48 hours. Counts indicated that the tissue was without bacterial growth, and the steak had insignificant numbers of bacteria present at the time of browning. However, the steak held under a normal atmosphere and at an atmosphere containing 75 mm 0, became brown after 12 days' storage, and counts revealed high numbers of bacteria (1 x 10^8). This would indicate that the discoloration was caused by the bacteria. The excised tissue became brown, but after only 6 days.

Table 14

The effects of reduced oxygen atmospheres on sterile excised muscle tissue compared to aseptically handled steams held at $\Psi^{\bullet}\,C_{\bullet}$

Lours Steek Tissue Tissue	Time in	10 11	10 mm 0 ₂	25 m	mi: 0 ₂	50 mm	ш• 0 ₂	75 1:	75 min. 0 ₂	Normal	ia]
bright bright bright bright bright red	Hours	Steak	Tissue	Steak	·H	Stesk	Tissue	Sterk	Tissue	Sten	Tissne
dark reddark reddark reddark redred redbricht redbricht redbricht redbricht redbricht redbricht redbricht redbricht redbricht reddark redred brownred brownbricht red brownred brownbricht red brownbricht red bricht redbricht red red red brownbricht red red redbricht red red red	before	bricht red		bri _c ht red	bri _c ht reč	bri _e kt red	bri _k ht red	brijht reá	bri _e nt reč	bright red	bri _s ht red
dark redbright redbright redbright redbright redbright redbright redbright redbright redbright redred brownbrownredbright redbright brownbright redbright redbrownbrownredbright redbright redbrownredbrownbright red	0	dark red	derk red	dark red	áark reč	reç	ásrk rec	bri _c ht red	dark. red	bri ht red	dark red
derkredredbrightdarkbrightredbrownredbrownredbrightbrownbrownredbrownredbrightbrownbrownredbrightredbrownredbrownbrightbrownbrownredbrownrec		dark red	dark red	brieht red	dark rec	bri _c ht red	red	bri _c ht rec	ω	bright red	red
red brown red brown red rec bridit brown brown dark brown red brown bright red brown red brown red brown red brown brown red brown red brown rec	54	derk red	red brown	red	red brown	bri _c ht red	dark red	bri ht red	red	rriert red	red
brown brown dark brown red brown bright red red brown red brown red brown red brown red brown rec	87	red brown	brown	red	brown	reò	reć brown	briout red	a	bri_ht red	reà
brown brown red brown red brown	72	brown red	irown	dark red	umouq	r ec	brown rec	bri _c ht red	Φ	${ m cri}_{ m cht}$ red	red
	96	brown	brown	red	brown	r e c	Lrown	Φ	der. red	bricht red	čark red

Muscle Pigment Extracts

The importance of oxygen levels and bacteria on discoloration of fresh prepackaged and unpackaged beef steaks having been demonstrated, it was thought that further information could be obtained by subjecting oxymyo; lobin extracts to various oxygen levels with the addition of bacterial suspensions and various bacterial inhibitors. The oxymyoglobin solutions were placed in Thunburg tubes, and the bacterial suspension or bacterial inhibitor was placed in the side arm of the top of the tubes. The top having been put in place, a vacuum was pulled with a vacuum pump. Various oxygen levels were obtained by pulling partial vacuums or by pulling a vacuum and readmitting various oxygen and nitrogen mixtures. Before removing the Thunburg tube from the vacuum system, the top was turned so as to close the internal gas system from the external air. Change in pigment was determined spectrophotometrically. All of the Thunburg tubes used were of the same optical nature, i.e., at a given wave length the tubes filled with water gave similar optical density values. Also, before this method of pigment measurement was used, its accuracy was tested using myoglolin solutions treated with sodium hydrosulfite and potassium ferricyanide. Sodium hydrosulfite reduces the pigment to the myoglobin form, and potassium ferricyanide oxidizes the pigment to the metmyoglobin form. Excellent

results were obtained in both cases.

Oxygen tension was found to have only a slight effect on inoculated pigment solutions; that is, oxygen tensions from near zero to 150 mm gave comparable results.

Eaker's yeast under atmospheric conditions caused little or no change of the pigment oxymyoglobin, but at a partial pressure of 10 nm 0₂ the yeast apparently had changed about 80% of the oxymyoglobin pigment after 2 hours. The pigment mixture was found to contain the following relative percentages: 27% methyoglobin, 54% myoglobin, and 19% oxymyoglobin. Glucose (0.1%) was added to the pigment solution to enhance the metalolism of the yeast cells.

Oxygen tension had no effect on pigment solutions inoculated with Fs. geniculata. Therefore, an attempt was made to see if reduced oxygen atmospheres had any effect on "sterile" pigment solutions. Aureomycin was added to the oxymyoglobin solutions in an attempt to render them bacteria free. The solutions held at various oxygen tensions from 10 mm 02 to normal atmosphere demonstrated no essential difference after 3 hours. Each solution was considered bacteria free for no bacterial growth was observed when 1 ml of each solution was plated out in TGE agar and incubated for 1 week.

These data would tend to minimize the importance of oxygen tension in the reaction of oxymyoglobin being

either reduced to Myoglobin or oxidized to methyoglobin with or without the aid of bacteria. However, an equilibrium between the gas phase and liquid phase within the Thurlurg tubes may not have been reached. difficulty was partially alleviated by placing the tubes wrapped in cheesecloth on a shaker between the readings. An oxymyoglotin solution containing cells of Ps. geniculate was compared to oxymyoglobin solution containing aureomycin (10 ppm) to inhibit microbial growth. The solutions were placed at oxygen levels of C, 5, 1C, and 20 mm 02. Results in Table 15 indicate that as the oxygen levels are lowered, metmyoglobin and myoglobin formation is increased in both lot 1 (sureomycin treated) and lot 2 (inoculated). In an atmosphere containing no oxygen at 40 minutes, both lots contained 80% myoglokin and metmyoglobin at a ratio of 2:1. In the reduced oxygen atmospheres (5, 10, and 20 nm C_2) there is essentially no difference in metmyoglobin formation between lot 1 and 2; however, the organisms in lot 2 increased the myoglolin content substantially. This would indicate that the bacteria caused an increase in the reduction of oxymyoglobin but had no significant oxidative ability under these conditions. Further data at 02 tensions between 20 mm $\mathbf{0}_2$ and normal demonstrated results similar to those obtained at normal 0, tensions.

Pigment chan, es of oxymyoglobin solutions caused by reduced oxygen tension and bacteria are slowed down

by refrigeration (4°C.), but are not inhibited by it. At 4°C. Fs. geniculata demonstrated greater sigment reducing and oxidizing ability in a partial vacuum than at normal atmospheric conditions compared to uninoculated pigment controls which were subjected to the same conditions. A day was required for the cells of Fs. sericulata to change 80% or more of the pigment from oxymyoglobin to a mixture of myo, lolin and methyo, lolin. Once more the ratio was about 1 part metmyo, lobin to 2 parts myo, lobin. The two pigment solutions treated with aureomycin demonstrated no myo, lobin formation after 12 days, yet the sample reld in a vacuum contained 81% metmyoglobin. and that held at normal atmosphere contained 66% metmyo; lolin. At 3 weeks the measurements indicated 90, and 71% metmyoglobin respectively. No myoglobin was observed. Plating in TGD agar demonstrated no growth. This would indicate that metmyoglobin can be produced in extracts without bacterial activity. However, the role of sureomycin in the reaction (s) is unknown.

Effect of Antioxidants

Three samples of antioxidants from the Griffith Laboratories were used: G-4 containing vegetable oil, lecithin, propylgallate, and citric acid; G-15 containing vegetable oil, lecithin, butylated hydroxytoluene, propylgallate, citric acid, and butylated hydroxyanisole; and G-16 containing vegetable oil, monoglycerides,

Table 15

Effects of various oxygen tensions* on $\text{oxymyo}_\epsilon lobin$ extracts with and without the presence of becteria.

Shaking							02.ygen	Levels				
Time in Winutes	Lot No.**		0 mm 0 ₂	02	5 um	ит 0 ₂	10 mm	1 0 2	20 mm	1 0 2	Norma	1
		્ર	% Met. % Myo	Myo.	% Net.	% Nyo.	3 Net.	, okiyo.	% Ket.	» Ыўо.	% Met.	% E30.
Lefore	Lot	7	нε	00	010	00	ma	00	2	00	നന	00
0	Lot Lot	н г	9	0 ח	rt 2	00	m.t	00	3	00	നന	00
20	Lot Lot	1	25 21	09	16 16	13 35	1.1 1.4	10 13	13	3	6	00
04	Lot Lot	7	30 23	62 67	19 21	12 46	14 16	50 50	15 10	55 7	13	00

Equilibrium * Oxygen tensions were obtained by pulling partial vacuums in Thunburg tubes. was hastened by shaking the tubes between readings.

** Lot 1 contained 10 ppm aureomycin to inhibit bacterial activity. Lot 2 was inoculated with Fs. Reniculate.

butylated hydroxytolueme, propylgallate, citric acid, and lutylated hydroxyanisole. All were in liquid form.

Three samples from the Eastman Chemical Products, Inc. were also used. Tenox II, a liquid, contained butylated hydroxyanisole, propylgallate, citric acid, and propylene glycol; Tenox EHA, crystals of butylated hydroxyanisole; and Tenox PG which was propylgallate crystals.

The three samples from the Griffith Laboratories were dark solutions, and initially slightly masked the red color of the mert. All 3 gave similar results in that they caused uninoculated fresh prepackaged beef steaks to discolor about 3 days before control steaks. The treated steaks became frown (methyoglobin) and remained brown for about 2 weeks before turning purple (myoglobin). The control steak turned brown (methyoglobin) 3 days later than the treated steaks, yet it remained frown only a day before becoming partially purple; within 2 days the surface pigment of control steaks was completely reduced.

Tenox II gave results similar to the criffith products, but when the solution was first added to the meat, a milk-like precipitate formed.

Tenox PG and Tenox LEA did not fully dissolve, and, therefore, a portion remained as white crystals on the meat surface. Tenox PG gave similar results to the Griffith

products, i. e., browning after 3 days and preservation of the brown color for about 2 weeks. Tenox LLA gave slightly different results. The steak treated with Tenox bhA did not turn brown until after the control steak, but it retained the brown color for a longer period of time than the control steak. However, the pigment of the steak turned purple about a week before the other antioxidant-treated steaks.

All of the antioxidants used slowed down the initial rate of discoloration of steaks inoculated with Ps.

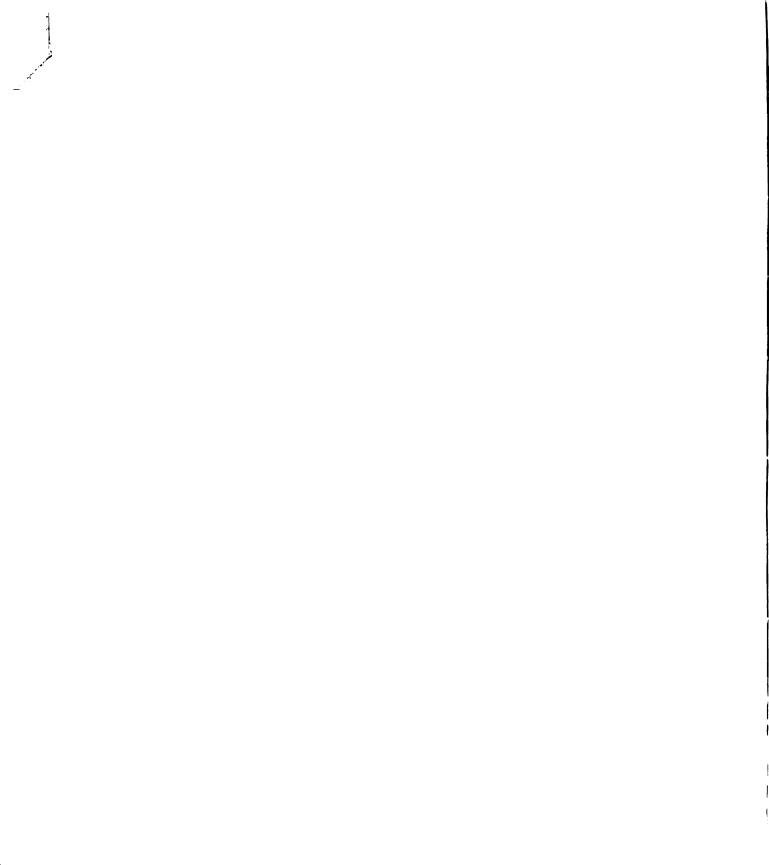
geniculate; however, the steaks treated with the antioxidants retained the brown color of methyoglobin for a longer period of time than did the inoculated control steak.

In general, the antioxidants used did not delay the formation of metmyoglobin, but after its formation did tend to keep it from being reduced to myoglobin.

A 1% solution of sodium isoascorbate was compared to a 1% solution of ascorbic acid as applied to the surfaces of inoculated and uninoculated steaks. Data observed indicated that neither solution had any apparent effect on the bacteria present nor on the parenty nethnyoglobin formed. The ascorbic acid solution did slow down discoloration of both the inoculated and uninoculated steaks somewhat, but sodium isoascorbate was ineffective.

Comparing the results obtained on uninoculated steaks treated with 1,3 solution of isoascorbic acid and a 1% solution of ascorbic acid, it was observed that

there was no significant difference in regard to bacteria counts and p methyoglobin formed. Each demonstrated some color preservation. Steaks which were inoculated and treated with the two antioxidants gave similar results, but the color preservation was less pronounced.


The application of 10% sodium ascorbate, 10% sodium isoascorbate, or a mixture containing 5% sodium ascorbic and 5% ascorbic acid applied to steak surfaces resulted in no final color preservation and initially caused a slight discoloration which remained for about 2 days. Ten percent ascorbic acid when applied to a steak surface also caused this initial discoloration (slight dark red) which remained about 2 days but resulted in color preservation of 4 days beyond that of the control.

Effect of Ascorbic Acid and of a Mixture of Ascorbic Acid and Sodium Micotinate on the Color of Prepackaged Steaks

A series of experiments were run comparing the effect of 1% ascorbic acid (A.A.) solution and a solution containing 8% sodium nicotinate (N.N.) and 2% A.A. on the surface pigment of meat. Visual observation, index of fading, and bacterial counts were performed on the treated steaks and on untreated steaks after various storage intervals.

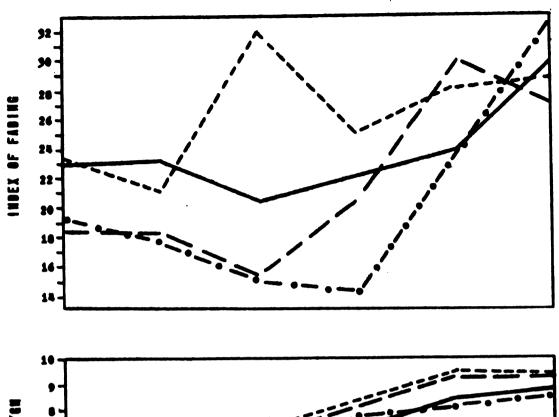
The results of these studies are presented in Tables 16 and 17. It was obvious that the N.A. plus A.A. mixture resulted in a brighter red color initially and maintained this color for a much longer period than that

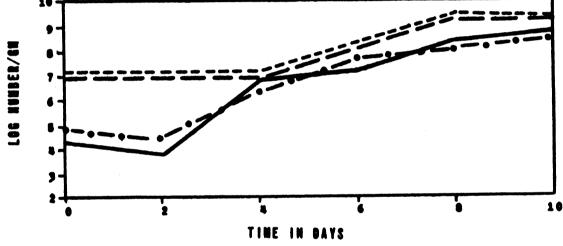
of either the control group or the A.A. treated group of steaks. This was true even when the steaks were inoculated with a suspension of <u>Fs. geniculate</u> (Fig. 13). No effect of the treatments on the bacterial growth was evident.

Tatle 16

Effects of ascorbic acid and ascorbic acid plus sodium nicotinate treatments on the rate of discoloration and bacterial growth on steaks.*

	Treatment and			Tì	Tine in deys		
red bright 22.3 20.0 3.3 3.9 3.9 3.9 red bright red bright red bright red bright			5	+7	9	ယ	10
22.3 20.0 3.3 3.9 red britht red britht red britht red britht		ಶ	bri _k kt red	red	red, brown edge	1/2 trown 1/2 purple	3/4 brown 1/4 purple
red britht 22.9 17.6 4.2 4.0 red britht red britht		m m	20°C	21.3	3°61	30.4 7.6	31.2
h.2 h.c red briεht rec 20.7 17.4		رة • م	bright red 17.6	bri£ht red 17.9	derk red 23•3	2/3 brown 1/3 purple 25.0	brown 33.8
red bright red 20.7 17.4	bacteria	2	O• 7	6.1	2.9	2.3	7.8
20.7 17.4		rø	britht red	very britht red	very bright red	bright red	1/5 brown 4/5 red
ia 3.8 3.5	fading bacteria	<u>د</u> ع	17.4 3.5	10.4 6.6	15.7	19.6 4.3	ν ς ν . ν .


*Experiment conducted in a household type refrigerator.


Table 17

Effects of ascorbic acid and ascorlic acid plus sodium nicotinate treatments on the rate of discoloration and bacterial growth on steaks*.

Treatment and			Time	e in áeys		
observations	0	2	†	9	ထာ	10
COLTINO L						
Visual observations	bright rec	very bright	Very Eright	reo, brown tin	reć, brown tin	2/3 brown 1/3 purple
Index of feding Log. No. becteria	17.5	114.00	15.5	m v.	7.61	27.8 9.1
ASCORDIC ACID TRIBATED						
Visual observetions	bright red	very bri£ht red	red	2/3 brown 1/3 red	5/6 brown 1/6 purple	brown
Index of facing	20.6	16.5	20.2	o•3₹	33.1	31.9
Log. No. becteria	3.7	5.0	7.1	8.7	9.1	9.3
ASCOREIC ACID PLUS Na NICOTINATE TREATED						
Visual observations	bright red	very bright red	very bri _£ h.t red	very bri _t ht red	red, brown tip	2/3 brown 1/3 red- purple
Index of fading	19.4	15.0	15.5	15.0	18.3	t. 29.
Los. No. bacteria	3.8	ж У•	9•9	7•3	₽•3	ω <i>ι</i> ν

*Experiment conducted in a self-service meat case.

COMPARISON OF THE EFFECTS OF A MIXTURE OF ASCORBIC ACID AND SODIUM NICOTINATE ON INOCULATED AND UNINOCULATED PREPACKAGED BEEF HELD AT 4°C

-	Control
	Inoculated
	Mixture
	Inoculated + Mixture

DIGGLOSICK

The fact that of the various organises tested only those organisms which have the a ility to respire serobically caused test discoloration would indicate the importance of this system in pigment oxidation and reduction. Further, only those serotic organisms which grow readily at low temperatures were found to cause discoloration of refrigerated propachaged leef. These findings are in agreement with Ayres (1951s), Tutler et al. (1955), and Hallech et al. (1958). These authors attributed nest discoloration to psychrophilic organisms belonging to the ichronologic Freedomonas group. The assumption that the respiratory engines of the bacteria are active in causing pigment change is substantiated by two findings. First, the extracellular enzymes of Es. geniculate and Fo. geruginose were found to be inactive, but the intracellular enzymes of these organisms brought about the discoloration of fresh rest at room temperature. The intracellular enzymes of both organisms also hastened the change of oxymyo, lobin solutions. In both cases the action of these enzymes was primarily reduction, and only slight oridative action was noted.

The second finding which helps to prove this assumption is that good correlation between steak discoloration and respiratory activity of the organisms present

on the steck surface was observed. As the number of organisms and their serolic respiration increased, the steaks lost the bright red color of organyoglobin in favor of a dark red color. Upon further increase in respiration the next righent become brown. At this point the myoglobin pigment was in the oxidized form, but as the respiratory activity continued to increase, the oxidized righent, methyoglobin, has been reduced to myoglobin. Figment changes in this order have also been reported by butter et al. (1953) and Halleon et al. (1958). Butter and his coworkers further observed correlation between surface discoloration of fresh propachaged beef and the number of bacteria present, but they did not attempt to measure respiratory activity.

Various known enzyme inhibitors were employed in order to obtain better knowledge of which specific enzyme systems of Fs. geniculate are active in the reduction and cridation of oxympoglobin. The inskility of 0.01 k sodium fluoride to inhibit the respiration of Fs. geniculate as measured by the barburg was expected since at low concentrations sodium fluoride inhibits enclase only. This enzyme is not critical in respiration by this organism since it follows the pentose-shunt pathway. The instility to inhibit respiration was correlated with its insbility to inhibit the action of Fs. peniculate on test color. Sodium fluoride at a concentration of 0.1 k decenstrated 50, respiratory

inhibition and also decreased the rate of discoloration of leef steaks as caused by bacteria. Since phosphokinases are inactivated by sodium fluoride at higher concentration, this was as predicted. Sodium malonate, iodoacetate. sodium azide, and potacsium cyanide caused inhibition of the respiratory enzymes of Ps. geniculate. The degree of of inhibition by each eyeat was well correlated with the ability of the inhibitor to preserve the bright red color of . est with the exception of sodium szide. Though sodium szide completely inhilited the orygen uptake of both cells and cell-free extracts of Iz. peniculate, it afforded no a protection of orygio lobin. Fowever, the pigment change which occurs in the presence of sodium spide is not due to bacteria, but is due to a chemical reaction between the globin giamont and this agent. This statement is made in light of the fact that bacteria treated with sodium agide and subsequently rashed were unable to either reduce or oxidize orymyo, lobin.

The ability of sodium malonate (50,) to partially inhibit the respiratory enzymes of <u>Fs. peniculate</u> was well correlated with its ability to preserve the bright redness of prepachaged meat. Grant (1955a) noted that of the various inhibitors he tested, only nalonic acid provided a bright red interior color of frezen ground beef. Since he neglected to make observations for bacterial activity and in light of the above observations, it is possible he

was observing one inmilition of lactorial engines as well as meat engines.

From the results obtained by the use of various enzyme inhibitors it is apparent that the enzymes involved in the serolic respiration of he. periodists are also involved in rest discoloration. The rate of microbial respiration which depends on the number of organisms under a given directance was found to be important not only in determining the rate of rest discolor tion, but also in determining the type of discoloration reaction. That is, largu jobulations of sotively respiring or anisms caused rapid color change on steal surfaces, but the change was primarily the resuction of engryo, lotin to ago; lotin. smaller populations of the same organism coused discoloration st a slower rate but resulted not only in reduction but also in the olication. Thus, as respiration shoreased, the onygen avails le at the surface of the prepackaged steals became limited, one the steam discolored. It appeared that the limitation of only as not only responsible for pigment change, but also the type of change which occurred; i.e., oxidation or reduction. hesults of various tests indicated that maximum righent reduction occurred at storage oxygen pressure near 10 to 0, at 5°C. The pigment of west tissue and small steaks handled aseptically was oxidized at oxygen tensions of 10 nm to 50 mm without the presence of bacteria. Due to the observation that the presence of bacteria did not lasten the oxidation process, it was

believed that they were inactive in this reaction. As the temperature increased, the maximum rate of oxidation was found to occur at higher oxygen tensions. These results agree with those of Brooks (1931, 1933, and 1938).

Having shown that oxidation occurred at lower oxygen tensions, two possible mechanisms were postulated. Both were based on the theory that bacteria cause pigment changes by lowering oxygen tensions. It is possible that at a critical point oxidation occurs, but on further aerobic metabolism the available 02 is lowered still further and results in a strictly physiochemical pigment reduction. In short, this simply involves either a physical or biological limitation of $\mathbf{0}_{\mathfrak{I}}$ which results in nonenzymatic pigment oxidation or reduction depending upon the degree of limitation. The second possibility is that the pigment is enzymatically oxidized at the reduced 0_2 tension. reduced oxygen atmospheres the activity of the cytochrome system of both the bacterial cells and the meat tissue would be greatly reduced while the action of any flavin system present would not be so greatly reduced. Thus, one might expect an accumulation of H₂O₂ which in the presence of peroxidase would oxidize the pigment.

Sodium azide and potassium cyanide poison the cytochrome system but have no inhibitory effects on flavin systems. Thus, if there was appreciable flavin enzyme activity in either cells or meat tissue slices at low oxygen tension, either NaN3 or KCN would not inhibit respiration to the same entent as at the higher onygen levels. Acsults of such studies demonstrated that this was not the case with either cells of <u>Fs. peniculate</u> or with meat tissue slices. This, plus the fact that nCh treated cells would not cause either oblidation or reduction of prepackaged steaks held in normal or reduced on pen atmospheres, casts considerable doubt on the validity of the enzymatic theory proposed.

Since catalase also acts as a peroxidase, it is possible that at reduced ony, on tensions catalase loses its ability to break down 1_2C_2 to molecular ony, en and water, yet the peroxidase activity remains active. The peroxidase could then decompose 1_2O_2 to water and atomic oxygen utilizing myoglolin as an electron donor. This action would result in the formation of metmyoglolin. Lowever, as the oxygen is further limited, no 1_2O_2 would be formed, and no further oxidation would then occur. Also, the oxidized pigment would be reduced in the absence of cxygen. Neat extracts were shown to have peroxidase activity, but all efforts to demonstrate the presence of 1_2O_2 in meat undergoing oxidation were unsuccessful. However, 1_2O_2 may be produced and subsequently broken down without being detected.

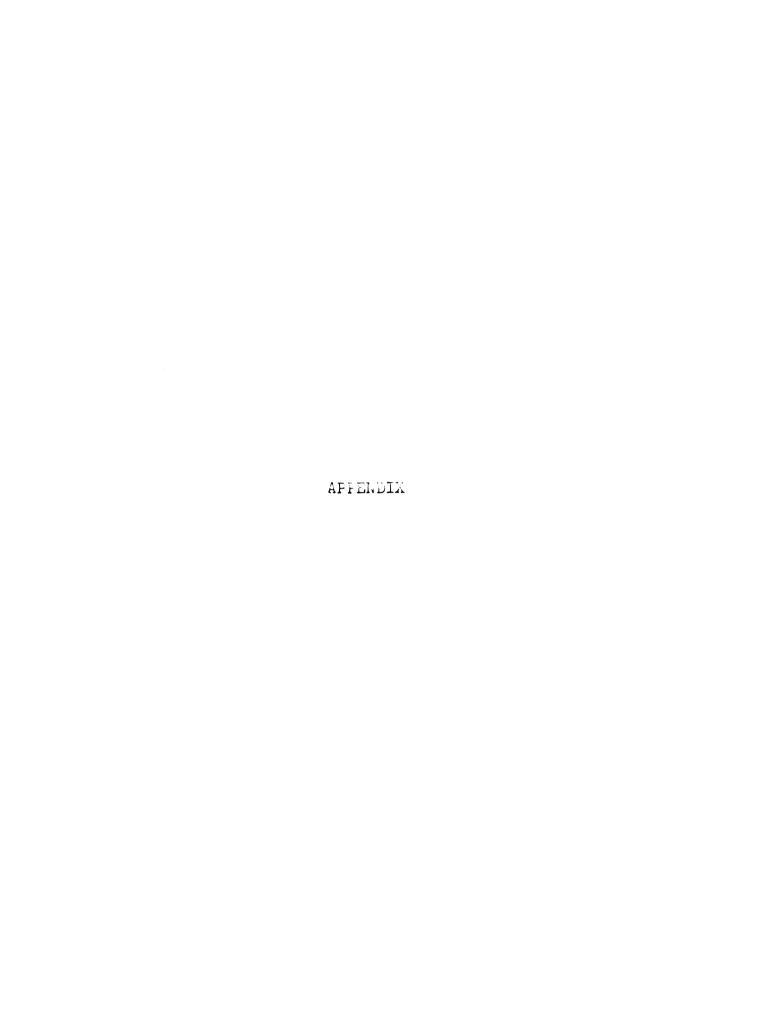
Glucose oxidase in dilute solutions brought about the oxidation of the surface pigment of steaks. However, in more concentrated solutions the pigment was changed to

choleglobin. This enzyme system produces 1/00 from the oxidation of ¿lucose and has an active catalase present to break it down. Hydrogen peroxide (0.3%) was inactive on fresh steeks, but the gignent at the surface of aged steaks was readily emicized to methyoglokin. Dilute solutions of peroxidase crused we exidation of nest pigments. This reaction could be hastened by the addition of LoOp; however, inactivated peroxidase solutions were also active. The rate difference has large enough to show that the engine was active in the exidation reaction. Lore concentrated solutions of peroxidase plus HgOg caused choleglobin formation. These results demonstrate the possibility of a peroxidace system causing pigment oxidation, but the instillity to show the presence of free HyOp in tissues where the pigment was undergoing oxidation or of enhanced flavin enzyme activity at low oxygen tensions made it impossible to conclusively prove that this mechanism was active. The study of this reaction was not pursued further since the purpose of this investigation was to study the role of bacteria in pigment oxidation and reduction, and this reaction was not directly caused by the bacteria.

There can be little doubt that the primary role of the bacteria in the color changes of fresh meat tipsue is in the reduction of the obygen level in the surface tissue. This is supported by a number of facts; viz., (a) pigment oridation

and reduction can be controlled by physical adjustment of the oxygen level in the storage atmosphere in the absence of a significant number of tacteria, (t) the oxygen level in the storage atmosphere greatly affects the rate of pigment changes on both inoculated and uninoculated steaks. (c) oxygen uptake rate of the surface tissue of neat is directly correlated with color change; thus, the higher the numbers of serokic organisms on a given piece of mest, the greater the oxygen demand and the more rapid the color change, (d) at intermediate levels of oxygen demand of surface tissue, oxidation to methyo; lobin occurs while with higher restination rates, reduction to myoglobin occurs; and this is correlated with similar changes under controlled oxygen atmospheres, and (e) any agent inhibiting respiration will result in color preservation providing it does not chemically react with the pigment itself.

Yahardo


all the serolic organisms tested which included strains of <u>Fseudomonas</u>, <u>Flavolacterium</u>, <u>Achromolacter</u>, and one yeast, <u>oscolarorycas corevisiae</u> had the ability to recuce onympoglobin at room temperature; however, only those organisms which grow readily at low temperatures were found to cause discoloration of refrigerated prepachaged beef. At room temperature, the intracellular enzymes of <u>Is. remiculate</u> and <u>ls. scrusinose</u> caused discoloration of fresh meat, but the extracellular enzymes were inactive.

Cood correlation between steek discoloration, number of bacteria present on the steek surface, and respiratory activity of these organisms was observed. The ability of various enzyme inhibitors to inhibit the respiratory activity of Fs. renignable as measured by conventional warburg techniques was correlated with the ability of these agents to preserve the "bloom" of both inoculated and control fresh prepackaged beef steaks. Codium azide did not inhibit changes of exymyoglobin even though it completely inhibited the respiratory enzymes of Fs. renignable. This pigment change was considered to be due to a chemical reaction between exymyoglobin and sodium azide and not due to bacteria.

The results show conclusively that bacteria lower the oxygen tension at the surface of steaks, and the lowering of oxygen tensions results in the discoloration of the steaks. The type of pignent charge which can be observed depends upon the rate of free oxygen removal from the surface area; i.e., slow reduction of oxygen tensions resulted in pigment oxidation, and fast reduction resulted in pigment reduction. The pigment of meat tissue was found to be oxidized at reduced oxygen tension (10 mm to 50 mm Hg.) without the presence of bacteria. Therefore, it appears that the main function or the bacteria is to lower the oxygen level, and the pigment is then oxidized or reduced either by non-enzymatic or enzymatic reactions which may occur in the absence of microorganisms.

A study of the possible mechanisms involved in pigment oxidation demonstrated that there was not a high activity of flavin enzyme system at low oxygen tensions resulting in the formation of $\rm H_2O_2$ either with cells of Ps. geniculate, beef tissue slices or homogenates. Catalase and peroxidase activity was shown to exist in meat and meat homogenates. Hydrogen peroxide (0.3%) was essentially unable to oxidize the pigment at the surface of fresh beef steaks, or oxymyoglobin solutions obtained from fresh meat; however, when added to a ed steaks or oxymyoglobin solutions from aged steaks, oxidation was apparent. Dilute glucose oxidase had

the stility to exiding or population to return latin, but more concentrated plucese cricace caused the formation of cholegiolin, a green pigment. Lest inactivated plucese exidese trought short righer exciten, but the reaction was much abover than with the sective engine. Dilute solutions of perchiforce caused the oriention of mest pigments and this reaction was hastoned by the addition of hgO2. Inactivated perchifose solutions were also found to have seen activity. As applied to steel surfaces the rate difference was large anough to show that the enzyme was settive in the exidetion reaction. Here concentrated solutions of perchicase plus C.D. IgO2 cause cholegichin formation. These results indicate the possibility that perchicase may be important in pigment emission. Further work is indicated on this phase of the problem.

Aprendix

The Effects of Various Organisms on the Figuent of Frepachaged Beef Relatioom Temperature Tatle 1

Time in Eours	0	1/2	Ţ	C)	m
Cr. enisms					
Fseudomonss aeruginosa fluorescens geniculata	rright red bright red bright red bright red	cark red-purple red purple dark red purple cark red purple	purple-trown purple-trown furple-trown	Lrown Turfle Furfle	brown-rurple purple rurgle
Achromobseter liquefaciens	bri ht red	eldınd-bər kısp	mort elim	rurrle	purple
Flavobacterium rhenanus	brijht reč	čerk red	ંદમ્ય મહળ	ंडम्थ प्रस्ट	purple-brown
Lactobacillus plantsrum	bricht red	ing rec	red	74.6	reč
Saccharomyces cerevisiae	bright red	derk red-purple	eldzni-dnoij	iurle	elini
Control	brijht red	red	FeC	reč	rec

Appendix

Table 2

The Liffects of Various Organisms on the Figurat of Frepschaged Leef Held at $\mathbb{L}^{\bullet}\,C$

Time in Deys	0	1/2		C)	CT)	4
Organisms						
Fseucomonas serutinosa fluorescens teniculata species	brown-purple purple turple	cerb red derk red derk red derk red	trown reo-purple red-purple	brown-purple red-purple brown-purple brown-purple	purple purple-brown purple	purple rurple purple
Achromobacter <u>licuefaciens</u>	eraina	ंहारे प्रखे	cari red	्डा है	uasiq-əfdini	eliui
Flavobacterium rhenenus	ंडग्रे मुख्य	? હવે	ਮ ਵਹੇ	derk red	red-purple	rurrle
Lactobacillus plenterum	rec	۲۱ ون	lri lit rec	brith red	britht red	Luicht red
Jaccharomyces cerevisiae	elgrud-gyord	rec-m rale	rec-purple	red-purple	ogrk red	red
Control	, H	7.6¢	britht red	brickt red	rec	red

Aprendix Table 3

Eifect of Verious Levels of Py. remiculate on Frepackaged beef Held at 400.

slightly red bright red derk red derk red derk red derk red derk red derk red bright red derk red derk red bright red derk red bright red bright red derk red bright	Time		nooul	Inoculation levels 1		
slifitly red tright red derk red derk red derk red derk red bright red derk red bright red derk red bright red burple-brown purple-brown purple-brown purple-brown purple brown purple brown purple brown purple	Days/Hrs.	7	C.5	C.25	12	Control
derk red derk red bright red derk red derk red derk red bright red bright red burple-brown purple-brown purple-brown purple-brown purple brown purple brown purple brown purple brown purple brown purple	J	sli£i.tly derk red	red	tright red	tright red	bright red
derk red derk red bright red derk red derk red bright red brown purple-brown purple-brown purple brown purple	1/2 hr.	dark red	reā		bright red	bright red
derk red derk red bright red burple-brown purple-brown purple-brown purple-brown derk-red brown purple brown purple	l hr.	derk red			bright red	brith red
derk red- purple-brown purple-brown purple-brown purple-brown purple	4 kr.	dərk red			bright red	bright red
dayspurple-brownpurple-brownreddayspurple-brownpurple-brownbrowndayspurplejurplejurpledayspurplejurpledayspurplepurpledayspurplepurplepurplepurplepurplepurplepurplepurplepurple	12 i.r.	derk red- purple-brown	cerk red- purple-brown		bright red	bright red
dayspurple-brownpurple-brownaerk-reddeyspurplepurple-browndayspurplejurpledeyspurplepurpledeyspurplepurpledayspurplepurpledayspurplepurple	1 dey	rurle-brown	purple-brown	red	bright red	brieht red
deyspurplepurplebrowndayspurple3/4 purpledayspurplepurpledayspurplepurpledayspurplepurple	a'ay	purple-brown	rurle-brown	derk-red Trownish	dera-red brounish	bricht red
dayspurplejurpledayspurplepurpledayspurplepurpledayspurplepurple		purple	purple-brown	brown	brown	bright red
days purple purple turple days purple purple purple purple		purple	purple	3/4 purple 1/4 brown	1/2 trown 1/2 purple	bright red
days purple purple purple days purple	day	purple	purple	erdini	1/4 brown 3/4 purple	red
days purple purple purple	åey	purple	purple	purple	purple	dark red
		purple	purple	purple	purple	dark red- trown

 $^{
m l}_{
m A}$ cell suspension was diluted before inoculation to give the relative levels noted.

Appendix

Table 4

Effects of Cells and Intracellular Enzymes of 15. teniculata on Frepackated Beef Held at hoom Temperature

zyr.e	ر . ن ن ق	.v	ن. ه•	6.03 • 03	7.85	19.9	17.45
Intracellular Enzyme	Ţ	19.6	21.5	63.65	3•43	27 • 4 • 40 • 40	25.56
scell	LOE FO• Pect•	ł	7•7	_1 • ΓΟ	7.	*	Z•7
Intr	Visue 1	brieht red	ologans red	derk red sl.	derk red purrle	ī	
	/ Let	1.63	:) • : ⊣	1.16	0	ر ن•ر	2.15
leted	ì. · Ĭ.	22.3	27.72	£6.3	۲. دن دن	7 3 7	16.37
Inoculeted	LOE NO. Lact.	7. ₹	. ∠ . ∠	.	ლ ა	ر د.	\. .>
	Visual	sl. dark reć	uarr red- rurrle	derk red- purple	purple	purple	purple
	ن i.et	J•C	.7	7.5°T	ý. 13	50.05	28.23
Control		4.5 19.5	19.9	D•0Z	57.05	50°4'	30.02 6.7
Con	Los No. Eset.	4.5	/• 1	1 V	ر ن ن	†• 9	7.9
	Los ko. Visuel Eact.	bri _e ht red	bright red	bri _e ht red	red	red brown- edfes	red brown- ed es
írestmert	Observations						
Time	in Fours	ပ	⊘ J	N	6	1 0	1 2

Appendix

The Effects of Ps. geniculate, Ps. seruginose, and a Cell-free Preparation of the Intracellular Enzymes of These Organisms on the Color of Fresh Prepackaged Leef*.

N

Time in Hours	Control	Ps. Feniculata	Ps. seruginosa	Erzymes of Ps. <u>teniculata</u>	Enzymes of Ps. gerulinosa
0	bri _k ht red	bright red	britht red	bri _t ht red	britht red
ч	bright red	bright red	dərk red	slight ôark red	slight àsrk red
Q	red	åerk red	dark red	dark red	dark red
12	red	purple-brown	purple-red	dark red	dark red
18	red	purple	umord-eldrud	ásrk reá brown sress	âark ređ brown areas
77	1/3 red 2/3 brown	purple	purple-trown	3/4 brown 1/4 purple	2/3 trown 1/3 purple

* Experiment was performed at room temperature.

Appendix

Effects of Ps. Reniculata and Aureomycin on Meat Homogenates Held at 30°C.

Table 6

T'ime in		Shaken	(en				Stending	ling
Hours	Control	rol	Inocı	Inoculated	Aure	Aureorycin	Con	Control
	% ret.	• OK 11 <i>e/</i>	% met.	<i>20.</i> 1€37.0 •	% met	% E.yo•	o met.	• MYO •
O	17	Н	15	ч	19	t	19	N
9	35	0	35	0	9	0	16	0
6	94	0	51	0	56	0	1+1	0
8 +	15	Н	77	18	06	0	27	0
Visual observations at 48 hours		green	<u>-</u>	£reel.	stra	straw colored	T.	red

Table 7 Appendix

The Effects of the Intracellular Enzymes and Cells of Es. Reliculate and Es. serunthoss on the hate of Figure of Change of Cha

Time in	COL	Control	73 · Cel	entount te	5 5 6 7	Serve inoss	Inaymes of	68 05 100 100 100 100	It. sem	Zymes of
minutes	, whet.	• O&'' • (, jaret	· Oğu c'	, Net	· oka v	, j.ot.	1.30.	1.6	, i.yo.
before	2	C	0	O	Ü	C	Ċ	Ü		0
0	0	Ö	22	(A 7V	4	43	70	0	10	C
Ŋ	Ö	0	50	23	42	S	Н	0	24	11
10	O	0	21	0	27	97	72	O	CA CA	12
۲\ ا	0	O	(A 0.)	64	r E	746	7,7	П	7	12
30	O	0	36	0)	6) C)	0	דד	0	23	2
7,7	r	0	N N	63	1,1	() ()	13	O	N	† H
09	m	0	35.	65	[†] 7 [†] 7	un	13	7.	5.0	17
120	6	0	35	65	† ,†	N	19	2	38	19
180	12	0	3,7	65	75	L L	ت س	10	Τħ	97

*Cxymyolobin solutions were held at room temperature.

	*
	·

Table 8Appendix

Iffects of Es. teniculate on Prepachaged reef held at 4° C.

		Control	7			Inoculated		
Time in Days	Visuel Chservation	iog no. Eacteria	Fedir.g Index	ul Og Upteke Per 30 mins	Visuel Observation	Los no. Lecteria	Pading incex	ul 02 Uptere per
0	bright red	\	14.1	3.63	bri _e ht red	9.6	16.5	2,62
0	bright red	.	1,48	24.5	bright red	ر 9 9	17.5	11.79
#	bright red	∑• N•	74.4	% % % %	brown euge brown-purple	ຕ •	27.75	19.65
77	1 1	!	!	;	brown	5.3	27.50	35.72
7	bright red	8.√	15.9	19.36	!!	1	1	!
∞	trown enges	7.3	19.5	18.1	1/3 brown	2. 0.	57 57	1
11	brown-purple	?; ~		20.57	turile surviva	†. ∵	25.9	35.38

Appendix

Table 9

The liftects of Various Levels of furecayein applied to the Surface of Fregacias edleef fald at $e^{\xi}\, U_{\bullet}$

11. Ony 1-11				in r e	lureomycin				Cortrol	Н
)	100 ppm			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 17 m			
Lays	Lays Visual FeI. Jact	LOS LO.	Loc Loc Visuel Pere Becte		Log Naguel Pere rect.	100 to 0 t		108 504		30 T
0	brisht 17.3 rea	1, .75	bright 19.0 red	4.77	bright 17.3 red	() ()	lricht 20.3 red	10 00 00	iright 22.1 red	4.71
~	brijat 22.9 red	2.0	tright 25.7 rec	7. 5.	bright 23.1 red	. 11	Pright 24.3	~; ~; ~;	Pricht 23.3	†(c)
rv.	bright 19.0 red	84.1	britht 22.3 red	₹ •	brith 19.0	\$\frac{1}{2}\$	bright 16.7 red	66.	kritht 21.1 red	0) ri tu
10	britht 15.7 (red brown tip	6.64	2/3 red 24.2 1/3 brown	8.14	brovn 23•3	12.3	Provin 31.9	© ⊙` ∴	brown 33.1	· · ·

Apjendix

Telle 10 Effect of Aureo yein (100 ppn) on Press Frepschaled Beef leld at 190.

Line	5u3	reomycin			Cor.trol	
in USVS	Tana į	• <u> </u>	los 10. Escteris	C.) C.) 	F-1	ios no. Protemis
0	red	59 •	2.4	red	2.93	7. 20.
C V	britht red	2.2.1	٢.٠٠	bright red	U• ○H	49•9
†	bricht red	21.3	्र स	si. Ted	(V)	35°2
Ø	brizit red	(A)	ار ب ب	derk roc- brown	₹ . 000	\$\\ \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \cdot \cdot \\ \cdot \c
w	1/3 derk red 2/3 brown	26.33	J.	Time	2.00	95.
12	provi	ΟV • • •	6,65	breun	()•38	10.31
r L	пусла	W .	ਨ • • •	Lrown	31.05	92•5

Aprendix Falle 11

Effect of 1, colution of corbic acid for continuorbote on Fresh Preparated Leef Jeld of 4.0.

TO S S SS			
	Z S	5 rec 1 brown	30.20 8.65 red 34.6 9.51 bro

Co.perison of Effect of Aureomycin (100 yrm) and is Malonate (20,)* applied to Irapscrafed Leef Talà at 4°0. Telle 12 Appendix

, i				Control	प थ ा	ne netonete	D)				.ureo	ureomicin	
Days Obse	in Days Observations	100 100 100 100 100 100	• } ⊶ } }	42 0 14 7	L1 02 LOE LO.	LOE LO• Ect•	1-1	, c.,)102 Jet. Trise	100 100 100 100 100 100 100 100 100 100	►++ 	(c.	11 02 [rtc]
0	4	7	٠ 9	10.0	<1	۲>	20.74 11.6	11.6	6.55 <	~ 7	9•33	3. 24	1.65
Н	•	7	15.8	† • ≥		⋾	18.75	F.) ; • ;	7	17.3	24.0	23.2
\sim		3.70	3.70 17.76	⊢ (-)	† ₁ 3°† ₁)• ()	19.1	6.7	(A)	7	17.6	(·) • (·)	2).2
ĸ		¹ / ₁ 0° ¹ / ₁	4.04 17.6	τ• 1	7.22	3.17	19.1	ار د د	S. 53	3.95 3.17 16.7	16.7	1.7	2.62
2		63.7	7.89 17.38	16.5	19 . 30	5.70	16.1	17.2	0)•		3.70 16.54	7.1	22•2
о х		7.65	(1.	3740	25.1.1	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21.0	の) ・ パ	() · ()		4.71 34.4	6.0))•j
10		2.4.3	1, 3 21,3	(a)	36.72	7.7c	· 12);(•	08.3		35.71.35.7	10.7	77.
12		93.6	9.26 31.55	65.3	26.30	○ ○`	3C • 0	67.3	0).60		33.12.33.2	16.9	2)•2

* hoth Aurechycin on is islonete were luftered so pl 5.8 with 0.1 hosgrate luffer

Table 13 Aprendix

Effect of Iodoscetate (L/10) on Proculated Franckaged Leef Steaks Hale at 4°C.

	<u>3</u>	Control				IIIC	Inoquir ted	ುಲರ		Li.o.	Incendeted +		Todoscetste	ر ا ا
_ 111	Visugl F.I. let.		11 02 Uptshe per 30	LOC LOC	Victor II at a second	F-1	. ,,	Lytzke Cytzke ner 30	l di	10.0 0,000 0 0,000 0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Vi C Uptale rer 30	시 * * * * * * * * * * * * * * * * * * *
بب	bright 19.9 red	. ‡	5.52 1	۲\ ط	001k	& ∴ ∴ ∴		26.1	0	112 2t 20.4 1 6	₹C• 7	× _s >		· ·
bricht rea sl. asra edges	brickt 19.9 red sl. cara edges	()	(3) (5) (4)	5.01	as a constant of the constant	1aN 	7	LN • N	es 6, 6	CCTP Ped	() ()	C) (*)	7. J. J. J. J. T. S.	biv Civ
derk red brown edee	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.5	5 -		origine 23.0	0 €.	Ů.	>• -£:7	H	CETE Tec Trec Trec Trec Cec	ر د ک	· · · · · ·		<u> </u>
lrovn	3 × 30 × 3	0.3 7. x	62	0, 5,	rirle st. t	£6.52	O')	T 6 1	C\ C\	trom	21.3 (5	5	57.3 3.48	

Appendix

Table $1^{laph}$

Effects of hCh*, hely ** and Fs. <u>seniculata</u> Inscrivated with hCh and hely on Presh Frepachaged beef Held at 4°C.

Time in Days	Control	Cortrol kCi.	йайз	Fs. Fenicalsts plus hC.	Fs. genicuista plus Web3	Fs. <u>fericulate</u> i.C., inscrivated	Fs. chiculats hen hending ted
O	bri _e ht red	bright reá	bri _e ht red	bri _k ht red	brijit red	lrijit reč	bright rea
Н	bri _e ht reá	bright red	derk red	bri _e ht red	ásr. red	bri _k ht red	bright red
\sim	rea	bright red	purple red	bri _g kt red	purple red	bri _. kt red	kright red
ナ	darl. red	bright red	purrle trown	kri _{eli} t red	iurple brown	dari. red	dark red
9	derk red	bright red	purple	bri _l ht red	purple brown	1/2 dark red 1/2 trown	1 trown
10	brown	brijht red	purple	red brown edge	rurple brown	1/2 trour 1/2 purple	1/3 trown 2/3 purple
				·			

* C.l moler ach ** C.Cl moler helv3

Apendix

Talle 15

The Effects of Cells of Fs. <u>Landaulate</u> Trested with MC. on the Color of Frepschaled Leef at verious Cayyen mensions fald at 400.

Fine		lo mm 02	2		20 TE 05			Lornel	
J.n Deys	ຕາໄຮ	Cells ICL	Cox.trol	다 다 다	Cells Cells	Control	5) [1]	Cells LC:	
before	brijkt red	britht red	lright red	bri, ht red	Linguist Personal	े के के किया किया के किया के किया के किया के किया के किया के क 1900 के किया के किया किया के किया किया के किया किया किया किया किया किया किया किया	lricht red	bright red	tricht red
Ü	derk. red	red -	360 <u>.</u>	rec	<i>्</i> क स	් ව සි	+2 -4 (5) -4 (6) -4 (6) -4 (7)	ir. red red	Pright red
Н	red- purple	red- purrae	red- purple	'0 0 H	ن و بخ	(c) (d) (d)	;3 ; 4 ; 3 ; (3) ; (4) ; (5)	त्र प्रत् १९०६	lright red
C/1	purple- brown	purple- brown	uacan Paana	Cari	cerr Service S	Ger. red	3 0 6 5 8 6	रेष्ट्रोत् स्ट	lrickt roo
ന	rerate	perglo	9[%:0]3	red- Kurrle	ped- gravie	700- 707.10	7 € Č 7 7 . 7 1 .	lrajkt red	rater red
ın	in ple	purple- brown	guryde- bresn	อะณะางไ	rurile- erova	rurrae- troun	red- troun	irit reč	rrickt red
9	ಕ್ಷಸ್ವ	parnis- broun	Urewn	ezāinī	rurple- Proun	, Pota	® 런 주민 건 주민	े हें इ.स. इ.स. इ.स.	Ted Ted

Talle 16 vipue:17

The diffects of locoscetate shame aside on modulated Frapschaped and the diffects of terms that experience

Time .		Incen o	Index of Feding	
in Lin.	Control	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TROCUTE TOG	Inochited Thospited The Indiana
0	0.47 0.	9•97	, 1 , 1 , 0	5.52
H	S. •	7. 4 5. 7	## ** *********************************	UV • • • • • • • • • • • • • • • • • • •
30	₹•!₹₹)• 3?	27.6	£ 7 € 7 € 7
17	4.42	3°5%)• 9:	6.33
09	3. €3	3.32	.0	9• 27.
05	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	وي نه (۲	0,	7. • 7. 1 7. • 7. 1
120	حا. الم	9•00	C \	2.2.5

The Effects of Lodoscetate suchs africe on Inoculsted Stembers Industrial stembers ture Table 17 Appendix

Time		Index	Index of Pading	
in Lin.	Contract	inoculated Flus Inoculated	inocule ted Flus f (1150	Inocule ted Plus Infoecete to
poddeumun				
0	5.2 • O	19.0	50°1	⊕ © •
00	20.1	ੱਠ () ਜ	20.1	20.1
0)	16.7	[· 33	19.9	10,00
wrspjec				
06	2.C. • 14	7.627		₹ • 150
120	25 Q	₹ •02	o• 37	∑ • ⊙

Table 18 Appendix

Effects of Active and Inactivated Cells of Es. cericulate on Myolobin Pilment Latracts Held at hoom Temperature

Insctiveted thanch	- PAO -	0	0	0	O	O	€J	H L	2
Cells Inactively With ACM	2 i.et.	13	10	10	10	11	J.Ć	17	C\ C\
activated Leat	5 1 TO.	Ũ	0	O	O	0	Ø	£ >	5
H	y list.	13	12	13	C١	14	17	년/ 더	13
Cells	_ N.YO	0	0	0	0	0	10	(3	†?)
Active	% Met.	13	13	16	16	16	(N)	7.7	22
rol	٠٠١٠٠ در	0	0	O	Ċ	0	0	Ö	O
Coltrol	N Met.	13	10	14	11	7,7	77	19	2 23
Time	Kir.	0	10	50	30	なった	60	*042	300*

* Centrifuge tubes were stoffered in order to keep the pigment solutions from coning in contact with sir.

Appendix Table 19

The Effects of Sodium Fluorice* and logoscetate** on the Kespiratory activity of Cells and Intracellular Enzymes of Is. Legiculate

U F F							
in Lin	Control	E. 27776	ν [] Ο	nzyne Flus Lef	Cell Flus Flus Ferrance	Luzyre I lus Iodoscetzte	Cells Flus Inceretete
<i>:</i> \	0	±0.0	23.7	4.72	7.7	;	ئ ا ا
10	0,0	ω ω	17.27	75.	16.28	15.1	15.24
15	1.56	15.62	30.07	75.57	31.08	~ ~ ~	24.12
0.3	1.56	22.72	54.91	5.C • 14.2	(i)	10.77	37.42
23.	3.12	20 %	75.3	36.76	63.63		40.22
30	7.68	00 10 10 10	8.75	43 ° 63	67.5	19.6	58.1
32	6.42)•34	119.3	37.69	97.7	22.65	6.69
07	42.9	7°.	141.	1+2 • 2+1	11 ¹ ,•0	25.67	78.78
77	42.9	52.54	166.4	69*3'(131.7	30.02	0.58
S	6.2 ¹ +	96 • •	191.5	53.41	149.4	31.61	94.66
بر کر	7.80	62,48	213.5	61.26	165.7	36.14	109.9
60	0° 0	46.99) - 148	67.54	167.9	1.0.67	120.3

¹³⁴

Appendix Table 20

Azide** on the hespiratory Activity of Cells and Intracellular Days as of is. Essiss late

Line			3 E M. MO	اب د ـ	ors of C2 Truck	Φ	
व्या प्रमृ	C ()	0 11 17	0 Fi 5 5 5	11.287.0 11.00 11.00 11.00		0.52 21 9.42 4 9.45 8.1	
N	1.50	1.42	23.6	£1.	19.2	1.51	i
J.C	H • •	7. 3.	70.	2.53	00.	(1) (1) (2)	2.59
L J	0.12	40.0	103.7	0.4°	○•\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21.	7.4C
20	21.•0	11,36	11,10,	(S•)H	N • () ()	(^) •	10.36
20	(C) (A)	14.2	J(0•Ç	15.7	76.0	5.3.	16.2C
30	79.4	94°31	341.8	17.27	233.7	70.	2.52
35	₽ , 63	21.3C	277.9	21.5	\$ 0.00 M	7.55	25.16
7,0	3.	25.56	336.0	۱. ۱ ش ش	£•)00	90•0	31.68
45	9.36	Z3•63	0.88.0	69.)3	の か で	10.57	ω • • •
50	0°.36	32.66	5,44,4)1.4C	112.9	10.57	95.68
55	98.6	34.08	7.56.1	32.97	1,60.3	75. JE	75.57
ć0 0	10 SE	76 76	7.78.3	E-1	2017	10.52	36.74

* Jodius lelonate ven 10-2 John oler ** Jodius leide ven 10-2 Noler

if endix

The Iffect of Sodium Malonate* and Josium bluoride** on the Mespiratory Activity of Cells and Intracellular Luzymes of I. Lenichats

Tine			Toon.	uletive incrol	Accumulative Dicroliters of 02 Uptake	otske	
in Lin.	Coutrol	9 Z Z 11	Ce l Is	lazyse Flus Fg Plucrice	Cells lus lus	12.12.13.14 2.12.15.14 3.10.15.14	Cells Lus Jelonete
N	C	†ঃ•°≀	25°-1	1,51	10-1	() :t	တ ယ ယ
10	0	3 43.	67.5	জ খু ই	(c)	(;) (V) •	26.63
15	1.56	75.78	JCS*9	+(O*)	69.1)Z•,	1.7.33
50	1 - どら	० २ • १ त	1,521	्र ट्रेन •		10 00 ·	57.
25	3.12	22.25	191.5	13.16	N N	10.99	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
30	(2)	25.50	6.442	15.18	154.0	12:013	131.7

* Jodium Relonste was IC-1 iolar ** Jodium Fluorice was IC-1 Polar

Appendix Table 22

The Effect of LCL* such Labor* on the Legitratory Activity of Cells of Legiculate

Tine	runoo;	Accumulative Microliters		
in inin	snone šoprig	Cells	0011s 11us 108ig	Cells Flus A.C.
N	1.62	59	O• O	0
1C	93 ° 4	o) •	<u>ن</u> ن	့ ပ
151	ට†• බ	150.4	97.9	1.46
2C	12.96	210.9	36.75	+13.€
25	16.2	Q. SZ2	Z € 3 Z	7.30
000	17,82	(N (1.	22.5
との	21.06	342.6	16.91	11.68
7:C	24.3	4.800	30°07	्) - (त
いさ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2,41,8	H ()	30.01
50	25.16	1:94.	31.)3	17.52
ど	36.05	0.242	27.2	85°
0) *	2	529.6		23.6
	4.470 . 24 . 8.27 1.470 . 27 . 8.27			

Appendix Talle 23

The Effect of KCN* on the O2 Uptake by Cells of PS. Fericulata at Various Oxygen Tensions

Time	Normal	nal	N ₂		1202 + 998N2	99%N ₂	5,002 + 95,6N2	95%N2	10%02 + 90%N2	90%N2
in min•	Cells	Cells + hCN	Cells	Cells + hCN	Cells	Cells + kCN	Cells	Cells + FCN	Cells	Cells + 1.CN
<i>1</i> C	3.42**	1.46	7.	1.54	0•0	٥ ٥	4.47	0.0	6.1	0
10	16.19	£8.8	7	3.08	1.59	0.0	22.37	3.08	24.28	0.0
15	21.05	£3.5	5.6	4.62	1.59	0	25.35	3.08	31.88	0
50	30.77	7.2	π •3	6.16	4.77	0	40.25	3.08	47.08.	0.0
25	37.25	7.2	12.6	9.6	6.36	o •	47.7	4.62	59.23	0
30	43.73	7.2	14.0	5. 6	6.36	0.0	56.65	4.62	69-83	0•0
							The second secon			

* Final concentration of hCN was 6.6x1C $^{-3}$ molar ** μl of 0_2 uptake are recorded

Appendix Table 24

Effects of Sodium Azice and Potassium Cyanide on the hespiratory Activity

of Beef Tissue

	Norma	Normal Atmosphere	Э.	1,0 Oxygen and 99, Witrogen	end 99, W	itrogen
	Control	lvelv3	ьск	Control	ักะโง -	ЬСIV
μ1 0 ₂ /'nr./0.1 εm.	23 . 8	6.36	5.87	24.6	3•53	54•4

Arrendix

Table 25

Effects of Eyarogen Peroxiae on Fresh sha Aged Myoglobin Extracts Held at Koom Temperature

before addition 3 0 3 0 21 0 5 15 10 0 12 0 21 0 50 30 12 0 21 0 50 15 10 0 12 0 50 30 7 0 22 0 42 60 9 0 12 0 42 50 7 0 42 42 60 9 0 12 0 42 60 9 0 12 0 42	Time in Min.	Fregar Prepar	Freparation	Fresh Preparation ^{+H} 202	sh ion+E ₂ 02	£. Prepsi	£Eed Preparation	AE Preperet	$\frac{4\epsilon ed}{Preperation^{+}H_{2}^{0}}$
3 0 3 0 6 0 9 0 12 0 21 0 10 0 19 0 9 0 7 0 22 0 7 0 9 0 19 0 12 0		్ల met•	% myo•	% met•.	% шуо•	% met•	jo myo.	% met.	% n.yo.
9 0 12 0 21 0 10 0 19 0 9 0 7 0 22 0 7 0 9 0 19 0 12 0	before addition	m	0	m	0	v	0	ſŲ	0
10 0 19 0 9 0 7 0 22 0 7 0 9 0 19 0 12 0	0	6	0	12	0	21	0	50	0
7 0 22 0 7 0 9 0 19 0 12 0	15	10	0	19	0	0	0	39	0
9 0 19 0 12 0	30	2	0	22	0	2	O	75	9
	09	0	0	19	0	12	O	9	0

Appendix

The Effects of Hydrogen Feroxide, Glucose Oxidase, and a Combination of Eoth on the Surface Color of Unwrapped Steaks Held at hoom Temperature Table 26

Time in Min•	Hydrogen Ferozide	Glucose Oxidase	Glucose Oxidase + Eydroten Feroxide	Heat-Inactivated Clucose Oxidase	Hest-Inactivated Clucose Oxidese
before accition	reč	red	red	red	r bed
0	red	derk red	dark red	red	red
15	red	red trown	brown	red	red
30	red	derk brown	dark brown	red	red
09	red	derk brown	dark brown	rec	red
120	reá	dark brown	áark brown	ಗ ೧	red

Appendix

Effects of Active and Heat-Inactivated Glucose Oxidase and Peroxidase on Myoglobin Extracts Held at koom Temperature

ed oase	> Nyo.	0	0	0
Heated Ferovidase	% Let. > Myo.	0	25	04
.case	, oryo	O	Ö	0
Peroxiĉase	ы меt. ы муо.	CV.	56	∞ M
ed ose ase	p Met. pryo.	0	0	0
Heated Glucose Oxicase	p Met.	0	19	34
0 S e	% Nyo.	0	11	17
Glucose Oxidese	whet. % hyo.	0	93	83
)2	% Myo.	0	0	т
E.C	/ let.	M	19	23
rol	% N.yo.	Ü	0	0
Cont	Mins. whet. Whyo. Whet. whyo.	0	5	6
Time in	Mins.	0	30	09

Table 28 Appendix

Effects of Nitrogen and Oxygen Atmospheres on Uninoculated Prepackaged Beef Held at 4°C.

Atmospheres and			Time in days		
observations	0	2	. ‡	9	11
NOFMAL					
Visual observation	bright red	bright red	britht red	red	2/3 brown
Index of fading	19.5	17.3	18.0	20•3	1/3 Furpre 29•1
% hetmyoglobin	21.3	5.4	32.2	32.5	35.6
Log No. bacteria	ν. Μ•	0 8	7.	7.6	9.7
OXYGEN					
Visual observation	very bright red	very bright red	very britht red	britht red	1/3 brown 1/2 purple
Incex of fading	! ! !	16.2	15,•9	15.9	
% Metmyoglobin	!	20.5	19.4	24.7	32.2
Log No. Decteria	1	3.0	6 * †	6.7	10.4
N I I I I O G E N					
Visual observation	dark red	purple	brown-purple	brown	purple-brown
Index of fading	!	25.6	27.9	26.8	25.4
% Metmyoglobin	!	26.8	28.2	50•3	16.8
Log No. becteria	1	3.0	4.5	7•3	L

Appendix Table 29

Effects of Nitrogen and Oxygen Atmospheres on Inoculated* Prepackaged Leef Held at 4°C.

Atmospheres and			Time in days	Ø	
observations	0	5	. †	9	11
NOKMAL					
Visual observations	bright red	bright red	5/6 brown	brown-purple	purple
Index of fading	17.3	17.4	L/o dark red 25.2	31.6	29.1
% Metmyoglobin	22.8	10.9	31.6	25.6	3.6
Log No. bacteria	6.5	7•4	9.2	9.6	10.1
ONYGEN					
Visual observations very bright	very bright	very bright	red	brown-purple	purple
Index of fading	D 1	14.3	18.8	28.5	31.8
% Metmyoglobin	! !	19•3	17.9	20•3	ተ• ረ
Log No. becterie	1	7•1	٥ •	6•6	10,3
NITHOGEN					
Visual observations	dark red	purple	purple	purple	purple
Index of fading	!!!	24.2	88 88 87	27.4	23.3
й меtmyoglobin	!!!	54.9	20.8	14.3	7.9
Log No. bacteria	1	7.2	7.2	6.3	9.5

*Inoculated with Fseudomonas geniculata

Fel. 1's	: ii:e			94 : TI30. T	∵. ∵	
ث	in Fours (Deys)	Lo Osyy en	10 12. 02	77 110	T.3. C.5.	2. C.
•		Ġ83	rec	t red	ہۃ جہ	very intitu
1/2		der red-jurite	() () ()			
-		5年 1年 8年3日時20日	() E	1.5 (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		
1-1/5		⊖ह्दाः र	ر ن د د د د د د د د د د د د د د د د د د د	1994 P. 1974		
12	(7/5)	ELTY14	Cari red	(j) (1)	lricht red	very loight red
47	(1)	ગા હિંદા	dark red	J 0 1	Prijt red	very bright red
36	(1-1/2)	purple	tronu	red	bri:kt red	very bright red
96	('-')	Purrle	Lrown	ರಣಾ. ಸಕರ	lyizt rec	very ladentated
7,7	(9)	ertini	Town:	1/2 derid rud 1/2 troun	3.00	very liftered
216	(6)	ar Ta	Lron	lran	1/2 (135) eC 1/2 lyon.	Corn red Lronn edge
1 02	(11)	rus le	Lrovi	4 5 81	1/6 rec, 1/6 recm. 1/6 reside	1/6 seel from 1/6 from
9 9 9	(17:)	10372C		Trough	rein	1/3 Cers 166 1/3 trovs.
7 0)	(77)	O red ced ced ced ced ced ced ced ced ced c	6-4 + 7 	1/3 Wate 1/3 1/3 Le	1/2 Prop. 5	970 0710 11100

•	

4]; encix

diffect of Verious Olygen itmospheres on the Color of Enculried* Fregeom, ed leef Steens Held of $4^{\circ}\,C_{\bullet}$

 	다. 하다. 한다.			Source on the	So	
Lours	Hours (Lejs)	50 05	<u> </u>	©0 ~ €2	13467	20 E.S
U		ČETA TEĞ		C125. 200		, -
1/2		jurgle-čark red	Cork red	ઉદાય ૧૯૦	7.6.C	very intilityee
Н		Turle-Gerb	Garn rec	्ट्रा प्रदेश	(57) Yes	very ledible red
1-1/2		Lurra	GCP4. red	े स्याप्त	CEIP TOC	very ir introd
2	(1/2)	Furra	Ç839 208C	ંદામ ૧૯૯	C (32) C G C	voly hright red
54.	(1)	⊕ F ぶんりょ	pur lo-ceri rec	Ted Teach Property Pr	sursto-dark red	vary langua res
96	(1-1/2)	rurrle	Political Control	e de la companya de l	purle-lion	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.
Ş	(+)	at the	T. T.T.	T. D. C. J.	117176	Tengle-cost red
٦ <u>-</u>	(Ç)	Turrio	शत अस्थात्य स	े कार्य क	ortani	rurle
) 17	(S)	purple	Turre	etrat	⊕[युट्र]	95.7.1
264	(11)	runge) <u> </u>	973513)	lumile
336	(14)	burkte	erdini	purle	eliind	lurle
<u>+</u>	(16)	อ ะสมาร	क्ट्राहर	क्ट्यूट्राट्ट	3) [] []	e File of the control
F	- - -					

* Incontried with Fource ones toldedate

Aprendix

Table 32

Effect of Litrogen and Cxyren Atmospheres on Uninoculated Fregaciaged reef steaks Treated with Various Escherial Inhibitors and Exlost Ψ^c C.

Time				thospinres		
Lin Deys	υ Π [A11 1,2	lo um O ₂	75 mm 0 ₂	ì.oj∷al	211 O ₂
0	i Ci.	derh rea	ris 2.6	er re	(U)	right re
	furechycin	erk re	derk red	dark red	rea	brillt red
	0000	rh re	rk re	fro re	Φ	raght re
	Control	rk red	rl. re	S.T. T.E.	eā	TILL LE
1/2	मान्य	प्रम्य	ra re	ec ec	right r	riiru je
	Lurcomycin	rk reo-purpl	rn re	Θ	rifit re	riert re
	Iodoacetate	rk red-purgl	ri. re	Φ	rigit re	right re
	Control	rk red-purel	rk rec	0	richt re	Tilla re
<i>i</i> —і	, i O 1.	I'M T'eu-	rk rec-purpl	T)	Till Te	riche re
	Aureomycin	rk red-purgl	rk red-pur	\odot	ri ht re	rijlit re
	Iodoscetate	rk red-	rh red-rurgl	3)	rich re	riert re
	Control	ri rod-	ri red-ruril	Ü	大 は に に に に に に に に に に に に に	r. r.t.re
د ب	NO.	rple	Tana-per wr	(L)	rient re	right re
	G	rūr	rrle-bro	Ð	ri, it re	right re
	Iodoacetate	H	rrle-tro	()	right re	right re
	Control	된		(0)	71 1 T	Tillian Te
r.	non-	rpi	rplo-red	O	eđ	TI, ET 1'6
	Ş		own-purbl	D	Φ	ri kt se
	Iodoscetate	rici	durd-unc	W	0ದೆ	right re
	Control	1771	Der-purli	Œ	\	ri, let re
				<u>,C2</u>		

4. pencix

Table 32 (Continued)

GETA TOLINATION red-irona spots h purple (0) 02 ri, lt red lright red lright red 5/4 jurile क्षेत्रस्य प्रति उधारा प्रति वहास अस्ट £.11 0777 rurle islle urple red tin rec red red 160 7,c0 rec ti ucrk red krijl red krovn-dora r krovn 1/2 brown 1/2 pargle 1/2 lroun 1/2 lurile lurile lurile Lenrel red-broun rec-11.0. 0.1.1.1 marile turile purple rurrie Purrae DIT CO FUCES 7.7 atrospieres Proum-purple lroun 2/3 lrown 1/3 jurnle 75 ru 02 ر ر red 1/3 red 2/3 lroun russige_____ row.-red čera red derin rud T.M.T.P.L.S. rerple reres LIVIA lrour ್ರ រៈឲ្ 1.CC (mande ed e) purple-red irovn-purple brour-purple purple-froir irerr-remile rurrle-broun rurple-troum purple-trem 10 10 02 purple-red brown Purrie-rod ात्यात्र purple 917.573 lroun Prown POLI Pror. A11 1:2 purple inrple rurple inrple purple purple rurrie purrle ı 1 1 1 ı ı ı ı 1 ı ı Indoscetate Iodoscetate Iodoscets te Iccorcetate Todoscetste Aureorycin hreo yein Treatments .ureomycin urechicin aureomycin Cor.trol Control Cortical Cor. 1376.1 Co. tro Tine ปัลร์: ธ iii 7 07 17

Appendix

Table 33

Liffect of witrogen sud Caygen Atrosymeres on Uninoculated, Unrecassed leef atechs frested with Verious Lecterial Inhibitors and Let $\theta^{\rm C}G_{\rm e}$

Time in Doys	Tres tuents	611 1/2	10 74 02	75 EN 02	icrel	7.11 02
Ö	reonfe coscet ntrol		Gayli red Girli red Girli red		12; 14 30 12; 14 30 12; 14 30	rill re rill re rill re
1/2	Aureomycin. Togoscetste Control	نعية	r re F re F re	000		hritat red britat red britat red
ᅼ	kureonysin lodoscetste Control	rurpie rurie rurie	red red red	rrizat rec hrizt red brizat red	trict red bricht red bricht red	richt re richt re richt re richt
ന	iureomycin lodoscetste Control	derk jurple derk jurple derk purple	čark reč čark reč-brownis čark reč	bri _e lit red n krijut red trijut red	Cht re Lit re	right rening to the rening to
N	lureomycin Iodoscetste Vontroi	re purg re jurg re jurg	្រុ	trijit red red red	richt richt richt richt	ال المارية المارية المارية المارية
~	iureon cin Iodoscetate Control	čerk purple čerk purple čerk purple	brovn brown brown	hrijit rec čerk red čerk red	lricht red red Gerk red (broun edge)	richt richt re richt re

Appendix

Istle 33 (Continued)

Time						Linospheres		
in Leys	Treat_ents	A11	F 2	10 22 02		75 cm 0 ₂	1,07%;5,1	20 11 4
∞	omycin scetst rol	Gerk Gerk Gerk	φφφ	rowi rowi		t red red red-iro	t red	lrijt red red rea
6	Aureomycin Iodoacetste Control	าน ระยา เลือน การ เลือน การ	rarre urrle garre	trown Prown-purple brown-purple	ອີດ ເດືອ	red Grf. red 1/3 red-1/3 purple 1/3 brown	tright red deri red 2/3 derm red 2/3 turrle	lrigit red red Garb red
10	aureomycin Iodoscetste Control	derk pu derk pu derk pu	purrle Furrle purple	trown troum-purple brown-purple	မ လို့ (၁) (၁) (၁) (၁)	red Gerk red-tronnish 1/2 rurrle 1/2 trota		lrifit red Gark red Gark red
12	Aureomycin Iodoscetste Control	cark pu dark pu dark pu	rurrie l Furrie l	troun broun-purgle broun-purgle	မ ႏွာမ တေ့ဘုမ	red purple-brown purple-brown	fr. red sr. red /2 ofr. /2 purpl	lifelt red Carl red Carl red-lronn eche
17,4	Aureomycin Ioaoacetrte Coltrol	derk fu derk fu derk fu	rurple l purple l purple l	trown trown-rungle brown-purgle	မ မ (၁ ကြ (၁ ကြ (၁)	trown red brown-jurple edge purple	rk red Jula eda rk rurle	red purple-broun cark purple

7. Prencix

Telle 34

Effect of Litrogen and $\operatorname{Cyy}_{\operatorname{C}}$ and thospheres on Facinged and University are stilled and Litrogen factors with

1.1.3e	0 + 0 · · · · · · · · · · · · · · · · ·			thest eres	S	
Lours	الــــــــــــــــــــــــــــــــــــ	2 ما 113 ا	10 str 02	75 :: C2	T 9 12 0 1	SIT 62
0	wrer ed niwrer ed iodoscetete + wres ed iodoscetete + unwren ed	crrle rurle lurre lurre	den red den red den red den red	CETA TEG CETA TEG CETA TEG CETA TEG	krisht red lrisht red lrish red krish rec	Lrept red lrept red lrittred lrittred
- ⊣	Wrsy ed unwrfpped iotoscotrte + wrspyed iotoscotrte + urwrsyyed	्य य या	1-1 L: L4 F1	red Tec Tec	bright red bright red bright red bright red	hriph red brith red lr. it red trith red
(V	wrsped unwrsped iogoscetate + wrsped ionogeatate + benreped		red-jurjje red-jurjje red-jurjje	derk red Cerk red Cerk red Cerk red		tricht red briebt red briebt red
ന	wrspyed ulwrchyed iotoscettte + wrspyed iotoscettte + ulwrspyed	##### ################################	CITIC-F CITIC-F CITIC-F		\ \pu \o \o \o \o	. 그 24 24 24 24 2 ()) () () () () () () () () (
ህነ	wreited urbreited iodoedatete † wreptad iodoedetete † urwreited	TELLANG TA	LTPLO-T LTPLO-T LTPLO-T LTPLO-T		rea roj red red	ပြောပ္ပြင္ မေမမ

Arrendix

Talle 34 (Continued)

=	Tire				atues; heres		
Þ.	in Fours	Trestments	311 1.2	10 m. 62	75 cs 0 ₂		.11 62
l	1	wrerjed unnrepjed 1.: wrefjed I.a. unwrepjed	derk jurple derk jurple derk jurple derk jurple	rerrle jurple-red rurle-red čera-kurje	turite cerk rec inrito-lacin Gera jonite	rec rec c:r.r.red der.red	
l 15	6	wrapi ed unwrep: ed I.t. wrep: ed I.t. unwrep: ed	derk jurple derk jurple derk purple derk purple	iurile jurile-red purile-troun derk jurple	jurile cerk bed kroun-jurile derk kurile	red red Cari red dark red	red red cara red dari red
	77	wreijed unwrered I.t. vrerjed I.t. unvrened	Cork purple derk purple derk purple derk purple derk purple derk purple	rurile rurile-red rurrle-kroun čerk rurile-broun	rrle rrle- cur-r our-	derk red cork red rurrle-bronn cork red-trown	derk red Cerk red Furile-frown Cerk red-troyn
' '	30	wretred unvrepred I.t. wrepred I.t. unvrepred	derk jurple derk rurple derk jurple derk jurple	purple purple-red purple-lrown derk purple-brown	1111	rurple rurple krovn brown	desk red esr. red purple-broun turple-brown
)	ω	wregred urwregred I.t. wregged I.t. urwregged	1 1 1 1	purfle-brown brown-furfle edge brown-purfle brown	1111	1111	brown brown brown trown

kppencix

Effect of Verious Gaygen Levels on Inoculated* and Univoculated Prejackaged Leef oteaks Held at hoom Temperature

1 ine	+ 30 s4+ 30 s = -		Oxygen Levels	Levels]
Lours	דו פש היופווים	10 mm 0 ₂	20 101 02	30 /4 / 0/3	60 nm 02
Û	inoculsted	dsrk red	čark red	derk red	red
	uninoculsted	Gerk red	Cark red	detk red	red
1/2	inoculated	rurrle	rurilo	reč-rurrle	rurrle
	uninoculated	Jurple	Furfie	reč-rurrle	Carl red
Т	inoculated	rurrle	jurrle	inrile	inrile
	uninoculated	rurre	jurrle	surile	Grile
3 [†] t	inoculated	jurple	purple	purple	rurle
	uninoculated	rurple	Furfle	purple-trown	purle
72	inocule ted	purple	purple	rurrle	rurrle
	uninocule ted	purle	purple-trown tip	1/2 trown 1/2 jurple	rurrle
96	inoculated uninoculat e d	ordind erdind	purfile purfile	purile purile	purple
<u> </u>	inoculeted	purple	purple	purple	erini
	uninoculated	purile	gurfle	rurple	Enije

* Inoculated with Issuado ones geniculate

Tatle 36 Appendix

Time in Hours	8 mm• 0 ₂	10 mm 0 ₂	15 mm • 0 ₂	20 mm• 0 ₂
before	bri _{&} ht red	bright red	bri _k ht red	bright red
0	dark red	dark red	dark red	dark red
12	dark red	dark red	derk red	derk red
54	brown-red	brown-red	brown-red	brown-red
36	brown	brown	brown	brown
∞ †	brown	brown	brown	brown
	• OM % %	% % NO.	o No	% %
	• myo. ba	• myo. be	ed •oym •	• myo. ba
	45 0 0	0 0 ++	0 0 11	0 0 +9

Appendix

The Effects of heduced Caygen Atmospheres on Sterile Excised Muscle Tissue Compared to Aseptically Handled Steaks Held at $\mu^{\bullet}C_{\bullet}$

1a1	Tissue	bri£ht reá	ásrk reá	red	red	red	red	dark red
Normal	Steak	bri£ht red	bri£ht red	bri _£ nt red	bri£ht red	bright red	brigh t red	britht red
75 mm. 0 ₂	Tissue	bright reá	dark red	rec	red	геç	red	derk red
75 m	Steek	bright red	bri _e lt red	bright red	bright red	bright red	bright red	red
50 mm 0 2	Tissue	bri£ht red	darh red	reû	áeri. red	red brown	brown red	brown
50 m	Steah	bright rec	red	bright red	bright red	red	red	rea
mm • 02	Tissue	bright red	dark rec	dark red	red trown	brown	brown	brown
25 n	Stesk	bright red	dark red	bright red	red	reg	dark red	red brown
10 mm. 0 ₂	Tissue	bright red	dark red	dark red	red brown	brown	brown	trown
10 π	Steak	bri _E ht red	dark red	dark red	dark red	red brown	brown red	brown
Time in	Hours	before	0	†	54	8	72	96

Appendix

Tatle 38

Effects of Verious Oxygen Tensions* on Oxymyoglobin Extracts with and Without the Fresence of Lacteria.

Lot 1 Wet. % Myo. 5 mm 02 10 mm 02 20 mm 02 Norm 02 Norm 02 Lot 1 3 0 2 0 3 0 3 % Met. % Myo. % Met.	Shaking						0xygen	Levels				
Lot 1 1 2 0 3 0 2 0 3 <td>Time in Minutes</td> <td></td> <td>и 0</td> <td>m 0₂</td> <td>5 mr</td> <td>n 0₂</td> <td>10 mm</td> <td>1 02</td> <td>20 mm</td> <td>1 02</td> <td>Norm</td> <td>18</td>	Time in Minutes		и 0	m 0 ₂	5 mr	n 0 ₂	10 mm	1 0 2	20 mm	1 02	Norm	18
Lot 1 1 0 2 0 3 0 2 0 Lot 1 2 0 3 0 2 0 2 0 Lot 2 2 0 3 0 3 0 3 0 Lot 2 2 60 16 13 11 10 7 0 Lot 2 2 60 16 13 11 10 13 13 10 Lot 2 23 67 21 46 16 29 16 29 16 29 1			% Met.	% Myo.		% Myo.	Met.	% Myo.	% Met.	% Myo.	Met.	% Myo.
Lot 1 9 1 4 0 3 0 7 0 Lot 1 25 60 16 13 11 10 13 3 Lot 2 30 62 19 12 14 4 4 15 4 1 Lot 2 23 67 21 46 16 29 16 29 16 22 1	Lefore		нм	00	O O	00	ma	00	21	00	നന	00
Lot 1 25 60 16 13 11 10 13 3 Lot 1 30 62 19 12 14 4 4 15 4 1 Lot 2 23 67 21 46 16 29 16 22 1	0		6	г О	h 7	00	mæ	00	3	00	നന	00
Lot 1 30 62 19 12 14 4 15 4 Lot 2 23 67 21 46 16 29 16 22	20		25	09	16 16	3. L 5. S	17,	10 13	133	3	66	00
	91	3	30 23	62 67	19 21	12 14 14	14 16	76 70	15	75 75	H T	00

Equilibrium * Oxygen tensions were obtained by pulling partial vacuums in Thunburg tubes. was hastened by shaking the tubes between readings.

** Lot 1 contained 10 ppm sureomycin to inhibit becterial activity. Lot 2 was inoculated with Ps. <u>fericulate</u>.

Aprencix Talle 39

Effects of Ascorbic Acid and Ascorbic Acid Plus Sodium Nicotinate Treatments on the Rate of Discoloration and Eacterial Growth on Steaks.*

Treatment and			Time	in deys		
observations	0	2	+1	9	8	10
CONTROL						
Visual observation	red	bri _£ ht red	red	red, brown	1/2 brown 1/2 purple	3/4 brown 1/4 purple
Index of fading	22.3	50°0	21.3	eαεe 10.€8	30.4	31.2
Log. No. bacteria	3.3	3.9	6.3	7.6	7.6	7.7
ASCUREIC ACID TREATED						
Visual observation	red	britht	bright	dark	2/3 brown	brown
Index of fading	22.9	17.6	17.9	23.3	1/3 curpre	33.8
Log. No. bacteria	4.2	0• 4	6.1	6.7	8.7	7.8
ASCORBIC ACID FLUS Ne NICOTINATE TREATED						
Visual observations	red	bri _e ht red	very bright	very britht	bri _k ht reà	1/5 brown 4/5 red
Index of fading	20.7	17.4	10°4	15.7	19.6	25.2
Log. No. becteria	3.8	ω •	9.9	7.3	ત • α	∞

*Experiment conducted in a household type refrigerator.

Effects of Ascorbic Acid and Ascorbic Acid Plus Sodium Nicotinste Trestments on the kate of Discoloration and Escterial Growth on Steaks*. Table 40 Appenuix

Twations bright very very red, tip ding 17.5 14.6 15.5 22. Thatted 5.0 4.5 7.1 8. Thatted red bright very red 2/3 red bright very red 2/3 red 1/3 red 2/3 red 1/3 red 1/3 red 1/3 red 1/3 red 1/3 red bright bright bright bright red red ding 19.4 15.0 15.5 15.0 cteria 3.8 3.5 6.6 7.	Trestment and			T T me	in deva		
ons bright very very red, red red bright brown red red red tip l7.5 l4.6 l5.5 22. TED Ons bright very red 2/3 red bright very red 2/3 red bright very red 2/3 red bright bright bright bright bright red	3111			- 1			
ons bright very very red, tro, red bright bright tro, tip 17.5 14.6 15.5 22. 14.6 15.5 22. 15.0 4.5 7.1 8. 15.0 16.5 20.2 22. 22. 20.6 16.5 20.2 22. 22. 20.6 16.5 20.2 22. 22. 20.5 16.5 15.0 15.5 15.0 15.5 15.0 15.5 15.0 15.5 7.0 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	observations	0	2	†	ę	သ	10
ons bright very very red, red bright brown red red bright bright brown red bright bright brown red bright very red 2/3 co.6 l6.5 20.2 22. 22. 20.6 l6.5 20.2 22. 20.0 l6.5 20.2 22. 20.0 l6.5 20.2 22. 20.0 l6.5 20.0 l6.5 20.0 l6.5 l6.6 l6.6 l6.6 l6.6 l6.6 l6.6 l6.6	CONTROL						
a 5.0 4.5 7.1 8. TED ons bright very red 2/3 red bright very red 2/3 red 16.5 20.2 22. a 3.7 5.0 7.1 8. ED ons bright very very very red	Visual observations	bright red	very bright red	very bright red	red, trown	red, brown tip	2/3 brown 1/3 purple
a 5.0 4.5 7.1 8. TED ons bright very red 2/3 red bright very red 2/3 red 16.5 20.2 26. a 3.7 5.0 7.1 8. ED ons bright very very very red	Index of fading	17.5	14.6	15.5	22.3	19.4	27.8
TED ons bright red	Lo€• No• bacteria	5.0	4.5	7.1	8.2	7.9	9.1
ons bright very red 2/3 red bright red 1/3 red 1/3 red 1/3 red 1/3 co.6 l6.5 co.2 cc. cc. cc. cc. cc. cc. cc. cc. cc. c	ASCORLIC ACID TREATED						
a 3.7 5.0 7.1 ED ons bright very very red red red red 15.0 15.5 a 3.8 3.5 6.6	Visual observations	bright red	very bright red	red	2/3 trown 1/3 red	5/6 trown 1/6 purple	brown
a 3.7 5.0 7.1 ED ons bright very very red red red red red 19.4 15.0 15.5 a 3.8 3.5 6.6	Index of fading	20 . 6	16.5	20.2	26.0	33.1	31.9
ED ons bright very very ons red bright red red red red red red red red a 15.0 15.5 a 3.8 3.5 6.6	Log. No. Lacteria	3.7	5.0	7.1	£•3	9.1	9•3
ns bright very very red bright red 19.4 15.0 15.5	ASCORLIC ACID FLUS NANICOTIMATE TREATED						
19.4 15.0 15.5 3.8 3.5 6.6	Visual observations	bri£ht red	very bright red	very bright red	very bright red	reā, brown tip	2/3 brown 1/3 red- purple
3.8 3.5 6.6	Index of fading	19.4	15.0	15.5	15.0	18.3	4.63
	Log. No. bacteria	න ෆ	3.5	9•9	7•3	ϯ•3	હ•5

*Experiment concucted in a self-service mest case.

Chrendia

Effect of Ascertic Acid Flus Socius Nicotinste on the Aster of Liscelos fion sud Lacterial (rowth on Inconfated Steaks

Telle 1,1

Trestments end Chagrations	ت	C-1	۱,		u,	C
Uniconfilm Columbia Visuel observation	bri _e ht red	krije reč	14 14 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	r e.c	1/3 lrr.	7/8 lrs.
Feding index Loteron becterie	22.07	& ω (a, α)	20°C	22.2 7.3	0. 60 6. 60	0.00
ULINGOURANTE VIIII A. A. M. A. A. Visuel observetion	tri _k ht red	brigl.t red	very britht red	very Eright red	7/8 red 1/8 trn.	.uni 3/1
Facine index Log no. Pecteria	3°31	17.3 \\	15•2 6•1	11. 7 7. 6	21, 0 6, 3	0.00 0.00 0.00 0.00
LOUGHTED CONTINCE Visual observation	red	red	5/4 lrn. 1/8 red	1/2 lrn. 1/2 red-rur.	• : 7 (E	1.11.
reding index Log. Lo. becterie	\$ 5 C	21.0 7.2	30° H	17 m m m	6. 5. 2. 0.	이 소 의 의
I OCULILED LIER A. C. L. L. L. Visual observetion	ाम् प्रकृतिस्	rright red	Programment to the contract of	i Sec	[:Pl.	pur-hor.
Facir, infer Lo. 10. Decteria	10.1	17.7 7.0	15.00 0.00	10°7	0°. 0°. 0°.	27.0

REPTALL:CLS

- ALLEA, N. 1948 Color changes in fresh meat. Fre. Fack Age, Nov. pp. 22-24.
- ALLEN, N. 1949 Color changes in fresh meat. Modern Packaging, 22, 134-137.
- AnDhems, w. h., GUTHLER, D. T., McERIDE, B. H. and SCHWEIGERT, D. S. 1952 Stability of certain respiratory and glycolytic enzyme systems in animal tissues. J. Eiol. Chem., 194, 715-719.
- AUSTIK, J. H., and DRAEKIK, D. L. 1935 Spectrophotometric studies III methemoglobin. J. Fiol. Chem., 112, 67-88.
- AYRES, J. C., OCILVY, W. S., and STEWART, G. F. 1950 Post mortem changes in stored meat. I microorganisms associated with development of slime on eviscerated cut up poultry. Food Tech., 4, 199-205.
- AYRES, J. C. 1951 Some bacteriological aspects of spoilage of self service meats. Iowa State College of Science, 26, 31-48.
- AYRES, J. C. 1951 Some bacteriological aspects of spoilage on self service meat. From conf on research, Council on research, Am. Meat Inst., Univ. Chicago, 3rd. conf., 39-53.
- BALL, C. O., CLAUCS, W. E. and STIER, E. F. 1957 Factors affecting quality of prepackaged meat. I physical and organoleptic tests. A. general introduction E. loss of weight and study of texture. Food Tech., 11, 277-283.
- BATE-SMITH, E. C. 1942 The chemical composition of mammalian and avian meat. Chem. Ind., 61, 373.
- EATE-SMITH, E. C. 1948 Observations on the pH and related properties of meat. J. Soc. Chem. Industry, 67, 83-90.
- BATE-SAITH, E. C. 1948 The physiology and chemistry of rigor mortes with special reference to the aging of beef. Advances in Food Research, $\underline{1}$, 1-34.
- EICHART, X., 1803 Allgemeine anatomic, angewandt auf the Physiologic and arzneywissens-schaft., 11, 1 translated by C. H. Pfaft, Leipzeig.

- BIOLCK, G. 1949 On myoglobin and its occurrence in man Acta Medical Scan., Supplement, 226, 915.
- BOERHAVL, H. 1739 Indstitutions de Medicine, I, 275.
- EOWER, William J. 1949 The absorption spectra and extinction coefficients of myoglobin. J. Eiol. Chem., 179, 235-245.
- BOWER, William J. 1949 The absorption spectra and extinction coefficients of myoglotin. J. Biol. Chem., 179, 235-245.
- ENATZLLE, L. J. 1955 Technical problems in prepackaged, fresh, and frozen meats Froceedings of the 7th research conference, Univ. of Chicago, Chicago, Ill. 62-64.
- BhOORS, J. 1929 Post-mortem formation of methaemoglobin in red muscle. Eiochem. J., (London) 23, 1391-1400.
- EMOORS, J. 1931 The oxidation of haemoglobin to methaemoglobin by oxygen. Proc. Roy. Soc., (London) (B) 109 35-50.
- BhOOkS, J. 1933 The effect of carbon dioxide on the color changes or bloom of lean meat. J. Soc. Chem. Industry, 52, 17T-19T.
- Bhooks, J. 1935 The oxidation of haemoglobin to methaemoglobin by oxygen II the relation between the rate of oxidation and the partial pressure of oxygen. Proc. Rov. Soc., (London) 118, 560-577.
- BROCKS, J. 1936 The oxygen uptake of pork and bacon. A factor in the production and preservation of the colour of bacon. J. Soc. Chem. Industry, 55, 12T-14T.
- ERCORS, J. 1938 Color of mest. Food Research, 3, 75-78.
- BLOCKS, J. 1948 The oxidation of haemoglobin to methaemoglobin by oxygen. J. Physiol., (London) 107, 332-335.
- BhCOAS, J. 1955 The colour of meat. Institute of Meat bulletin. London.
- EMOURAND, H., EALL, O. C., STILK, E. F. 1958. Factors affecting the quality of prepackaged meat. II E. Determining the proportions of heme derivatives in fresh meat. Food Tech., 12, 65-77.

- BUNN, C. G. 1934. Fost mortem bacterial invasion. J. Infect. Dis., 54, 388-394.
- BURN, C. G. 1934b Fost mortem bacteriology. J. Infect. Dis., 54, 395-403.
- The effects of bacteria on the color of prepackaged retail beef cuts. Food Tech., 7, 397-400.
- CHANG, I., and WATIS, E. M. 1949 Antioxidants in the hemoglobin catalized oxidation of unsaturated fats. Food Tech., 3, 152.
- CLAUUS, W. E., EALL, C. O. and STIER, E. F. 1957 Factors affecting quality of prepackaged medt. I physical and organoleptic test. C. organoleptic and miscellaneous physical characteristics of product. Food Tech., <u>11</u>, 363-373.
- COLEMAN, h. M. 1951 Mechanism of meat-pigment oxidation; effect of solutes on the hemoglobin 0_2 equilibrium. Food Research, 16, 222-229.
- CONANT, JAMES D. 1932 An electrical chemical study of hemoglobin J. Biol. Chem., 57, 401-414.
- COLART, J. B. and FIESER, L. F. 1925 Methemoglobin I quantative reduction of methemoglobin to hemoglobin. J. Eiol. Chem., $\underline{62}$, 595-621.
- CONANT, J. B. and SCOTT, N. D., 1926 The so called oxygen content of methemoglobin. J. Biol. Chem., 69, 575-587.
- CONANT, J. B., SCOTT, N. D. and DOUGLAS, W. F. 1928 An improved method of determining methemoglobin. J. Eiol. Chem., 76, 223.
- COSTILOW, R. R., BATSLOW, D. A., BRATZLET, L. J. and ROBACH, D. L. 1955 Interaction between ascorbic acid and psychrophilic bacteria associated with the discoloration of prepackaged beef. Food Tech., 2, 560-563.
- DeDUVE, CHRISTIAN 1948 A spectrophotometric study of myoglobin and hemoglobin in extracts of human muscle. Acta chemica Scandinavica, 2, 264-289.
- DNABAIR, R. L. and AUSTIR, J. H. 1932 Spectrophotometric studies I Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. J. Biol. Chem., <u>98</u>, 719-733.

- Dhabala, D. L. and AUSTII, J. H. 1935 Spectrophotometric studies II preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. J. Biol. Chem., 112, 51-67.
- DRAERIR, D. L., POURER, P., FETSRO, J., DYCH, A. H., GLAUSER, C. and RARDALL, J., 1950. The distribution of the chromoproteins, hemoglotin, myoglotin, and cytochrome C, in the tissue of different species and the relationship of the total content of each chromoprotein to body mass. J. Biol. Chem., 182, 316-333.
- EDDY, B. P., INCNAM, M. AND HAPOON, L. W. 1952. Reduction of dehydroascorbic acid by bacteria. 2 role of cytochrome in hydrogen transport. Eiochem. J., (London) 51, 375-379.
- EMPEY, W. A. and SCOTT, W. J. 1939 Investigations on chilled beef. Fart I microbial contamination in the meat works. Australia, counc. sci. ind. res. bul. 126.
- EMPEY, W. A. and VICKERY, J. K. 1933 The use of carbon dioxide in the storage of chille keef. Australia, Jour. Coun. Sci. Ind. hes., 6, 233-243.
- GARLLA, R. L., MILLO, C. C. and CHLISTMAN, A. 1951 The degradation of hemoglobin by tissue extracts and by ascorbic acid. Abstract only. Federation Proc., 10, 187.
- GIONGE, P. and STRATRAND, C. J. 1952a The oxidation of myoglobin to metmyoglobin by oxygen I. Biochem J., (London) 51, 103-108.
- GEORGE, P., and STRATMARK, C. J. 1952b. The oxidation of myoglobin to metmyoglobin by oxygen 2. the relation between the first order rate constant and the partial pressure of oxygen. Eiochem J., (London) 51, 418-425.
- GILCON, O. L. 1943 The reduction of methaemoglobin by ascorbic acid. Biochem. J., (London) 37, 615-618.
- GRANT, N. M. 1955a The respiratory enzymes of meat. I identification of the active enzymes. Food Research, 20, 250-253.
- GRANT, N. H. 1955b The respiratory enzymes of meat. II the temperature stability of beef and pork suffinoxidase. Food Research, 20, 322-325.
- GULTHIER, H. 1921 Uber der muskelfarbstoff. <u>Virchowes</u> arch., <u>230</u>, 146-178.

- HALL, J. L., LATSCAR, C. E. and MACKIMICSH, D. L. 1944 Quality of beef part IV characteristics of dark-cutting beef. Survey of preliminary investigations. Kan. Agr. Exp. Sta., Manhattan, Tech. Bull. 58.
- HAIRES, R. 1. 1931 The growth of microorganisms on Chilled and frozen meat. Jour. Soc. Chem. Industry, 50, 223T-227T.
- HAUROWITZ, F. 1950 Chemistry and biology of proteins. Academic press inc., New York.
- HEWITT, L. F. 1950 Oxidation reduction potentials in bacteriology and biochemistry 6th ed. E. and S. Livingstone LTD., Edinburgh.
- HILL, A. V. 1928 Diffusion of oxygen and lactic acid through tissues. Proc. hoyal Soc., (London) 104, 39-96.
- HILL, R. 1933 Oxygen affinity of muscle haemoglobin. Nature, 132, 897-898.
- HILL, h. 1936 Oxygen dissociation curves of muscle haemoglobin. Froc. of hoyal Soc., (London) 120, 472-483.
- JLRSEN, L. b. and HESS, W. R. 1941 A study of ham scouring. Food Research, $\underline{6}$, 272-326.
- JERSER, L. B. 1945 Microbiology of meats. 2nd. ed. The Garrand press, Champaign, Ill.
- KENDREW, J. C. 1949 <u>Heemoglobin</u> Eurrerworths Scientific Publications, London p. 149.
- KEMMEDY, R. P. and WHIFFLE, C. H. 1926 The identification of muscle hemoglobin and blood hemoglobin. Amer. J. Physiology, 76, 685-692.
- KIRSH, R. H., BERRY, F. E., BALDWIR, C. L. and FOSTER, E. M. 1952 The bacteriology of refrigerated ground beef. Food Research, 17, 495-503.
- khaff, A. A. and AYRES, S. C. 1952 Fost-mortem changes in stored meat. IV effect of packaging materials on keeping quality of self service meats. Food Tech., 6, 8-12.
- kkaft, A. A. and AYRES, S. C. 1954 Effect of display case lighting on color and bacterial growth on packaged fresh beef. Food Tech., $\underline{2}$, 290-295.
- LANDROCK, A. H. and WALLACE, G. A. 1955 Discoloration of fresh red mest and its relationship to film oxygen permeability. Food Tech., 9, 194-196.

- LAVELS, C. C. Discoloration of packaged red mest. 1948 Modern Packaging, 21, 125-127.
- LAMAIL, A. A. 1950 Some observations on factors affecting myoglobin concentration in Muscle. J. of Agricultural Science, 40, 356-366.
- LAWRIE, h. A. 1953 The activity of cytochrome system in muscle and its relation to myoglobin. Biochem. J., (Longon) 55, 298-305.
- LEADLAG, A. and LEUGE, J. W. 1949 Hematin compounds and bile rigments. Interscience publishers, inc. New York.
- HACKINTOSH, D. and HALL, J. L. 1936 Some factors related to color of meat. Amer. soc. animal prod., 28, 281-286.
- MALLMAN, w. L. 1932 Eacteriological studies of dressed poultry. I preliminary investigation of bacterial action at chill temperatures. Sci. Agr., 15, 756-770.
- MALLMAN, W. L., ZAINOWSKI, L. and RUSTER, M. 1940 The effect of carbon dioxide on bacteria with particular reference to food poisoning organisms. Mich. agr. exp. sta. jour., 469, 25-40.
- MANGEL, LARGARET 1951 The determination of methemoglobin in beef muscle extracts. 1. a study of spectrophotometric methods. 2. Factors affecting methemoglobin formation in frozen beef. U. of Missouri, hes. Bull. 474 Columbia, Mo.
- MILLIAM, C. A. 1936 The role of muscle hemoglobin. The kenetrics of muscle hemoglobin. Proc. of royal soc. of London series B. vol. 120, 366-388. J. of Physiology, <u>87</u>, 38-39.
- MILLEAN, C. A. 1937 Experiments on muscle haemoglobin in vivo- The instantaneous measurement of muscle metabolism. Proc. Royal Soc., (London) 123, 218-242.
- MILLIMAN, C. A. 1939 Muscle haemoglobin. Physiological review, 19, 503-523.
- NEIL, J. M. 1925a Studies on the oxidation- reduction of hemoglobin and methemoglobin. I The changes induced by Pneumococci and by sterile animal tissue. J. of Exp. Med., 41, 299-313.
- NDILL, J. M. 1925b Studies on the oxidation-reduction of hemoglobin and methemoglobin. III The formation of methemoglobin during the oxidation of autooxidizible substances. J. Expt. Hed., 41, 551-560.

- NEILL, J. M. 1925c Studies on the oxidation-reduction of hemolobin and methemolobin. IV The inhibition of "spontaneous" methemolobin formation. J. Expt. Med., 41, 561-570.
- hETLL, J. h. and HASTINGS, A. h. 1925 The influence of the tension of molecular oxygen upon certain oxidations of hemoglolin. Studies on the oxidation-reduction of hemoglolin and methmoglobin I II ITI IV. J. Hiol. Chem., 63, 479-492. J. Expt. Med. XLI, 299-313, 535-570.
- NICKLHOOK, LOROTHY 1946 Color measurements and its application to the grading of agricultural products. U. S. Dept. of Agr. Misc. publication No. 580.
- PERROD, E. E. and EARTH, M. 1954 Effect of storage conditions on drying and discoloration of beef. Engineering experiment station bulletin, U. of kentucky College of Engineering.
- FILLO, P. C. and AYRES, J. C. 1957 Figment changes in packaged beef during storage. Food. Tech., 11, 461-467.
- heITH, A. F. 1926 Bacteria in muscular tissue and blood of apparently normal animals. J. Bacteriol., 12, 367-361.
- Fight, J. A., Ball, C. O. and STILK, E. F. 1957a Factors affecting quality of prepackaged met. II color studies A. effect of package characteristics upon color of product. Food lech., 11, 520-525.
- NICKERT, J. A., ERECCEDA, L., BALL, C. O., ARD STIER, E. F. 1957b Factors affecting quality of prepackaged meat II color studies b. effects of storage time, storage temp., antioxidents, tacteria, light, freezing, and fat upon color product. Food Tech., 11, 567-573.
- RICKERT, J. A., ERESSLER, L., BALL, C. O., AND STIER, E. F. 1957c Factors affecting quality of prepackaged meat. II color studies C. Effects of air and oxygen under different pressures upon color of product. Food Tech., 11, 625-632.
- RICKERT, J. A., Tall, C. C., and STIER, E. F. 1958 Factors affecting quality of prepackaged mest. II color studies D. Effects of nitrogen and carbon dioxide under different pressures upon color of products. Food Tech., 12, 17-23.
- HOUSI-FARELLI, A. 1940 Sulla constituzion chemica dell mioglobina Arch. 6i. sc. biol., 26, 244-264 (support in English).

- ROSSI-Familie, A. and Travia, L. 1941 Specified e composizione chemica di mioglobina di specie diveise. Nata I ball. d. soc. Ital. biol. sperum., 16, 768-770.
- ROSUI-FARELLI, A. and VEGICA, A. 1942 Specificata e composizione chemica di misglolina e emoglobine di specie diverse. Rata II Ball. d. soc. Ital. sporum., 17, 291.
- MODDI-FAMBLE, A., VEDICA, A. and FERRI, C. G. 1947 Mioglobina u mona cristallizzate. I Forma cristallina solubilita, contenite in Fe in R. ball. d. soc. Ital. biol. sperum., 23, 1-2.
- ROUSI-FARLLI, 1. 1948 Crystalline human myoclobin some physiochemical properties and chemical composition. Science, 102, 15-16.
- MOSSI-FAMELLI, A. 1950 Les pigment muscularies. Physio rathologie (French translation with summary in English), 21-26.
- RODDI-FARELLI, A. 1954 Amino acid composition of crystallized human ajoglobin and haemoglobin. Experientia, 10, 72.
- ROSSI-FARELLI, A. 1955 Le mioglobine, Giornate Biochemiche. Italo-franco-elretione, 43-95 (summary in English).
- ROSSI-FARELLI, A. 1956 Heterogeneity of human myoglobin. Arch. Liochem. and Eiochys., 65, 587-590.
- SCHMEIDER, W. C. and POTTER, V. h. 1943 The assay of animal tissue for respiratory enzymes. II Succinic dehydrogenase and cytochrome oxidase. J. Biol. Chem., 149, 217.
- of the 5th. research conference, Univer. of Chicago, Chicago, Ill. pp 61-64.
- SIEMA, J. G., HALL, J. L. HING, H. F. 1934 Spectrophotometric characteristics of hemoglobin I beef blood and muscle hemoglobins. J. Biol. Chem., 105, 741-752.
- STILES, W. and FOSTER, D. L. 1922 The preservation of food by freezing with special reference to fish and meat. Report of the food investigation board, Gt. Britain, special report no. 7, 161.
- SULZDACHLA, Wm. L. 1952a Effect of freezing and thawing on the growth rate of bacteria in ground meat. Food Tech., 6, 341-343.

- THEOREM, I. 1932 kristallinisches myoglolin. I kristallisteren and reinigung des nyoglolin, sowie verlaufige mitteilung über sein nolekular gewicht. Liochem - zeitschr., 252, 1-7.
- Thiorible, F. 1934 Aristallinisches myoglobin III. Dieabsolute lichtabsorbtion von ory-, co-, meta-und reduz myoglobin. Liochem. seitchr., 200, 55-63.
- THEOREM, A. and DUNE, C. 1947 Crystalline human myoglotin from heart-muscle and urine. Arch. Tiochem. 12, 113-124.
- Uhhain, W. h. 1952 Facts about hest color. oxygen is key to the color in mest. The National Provisioner, 140-144.
- UNBAIN, W. M. and GAMMACCD, D. A. 1940 The heme pigment of cured neats. II an application of Van Slyke Reill nanometric gas apparatus to the determination of oxygen capacity of dilute hemoglobin solutions. Food research, 5, 007-616.
- VCLCELI, M. 1952 The measurements of fresh teef nuscle color change by dish colorimetry. Unpublished Fh.D. thesis, h.o.U.
- VOLGELI, M., IMATZLEM, I. J. and Malladk, W. L. 1952 Flow sheets on prepackaged fresh mests. Jour. article No. 1390 Mich. agr. exp. sta.
- WATIS, D. M. and LEMBAR, 1. 1. 1952a The effects of ascorbic acid on the oxidation of hemoglobin and the formation of nitric oxide hemoglobin. Food hesearch, 17, 100-108.
- WATTU, L. M. and LEMMARK, D. T. 1952b Ascorbic acid and meat color. Food Tech., 6, 194-196.
- WHIFTLE, G. H. 1926 The hemoglobin of stricted muscle I variations due to age and exercise. II variations due to anemia and paralysis. Amer. J. Thysiology, 76, 693-707 and 76, 707-714.
- With LLR, C. A. 1939a Colour of met. I apparatus for its measurement and relation between pH and colour. Can. J. Research, 17, 1-7.
- WIMBLE, C. A. 1939b Colour of mest II effect for desiccation on the colour of cured pork. Can. J. hesearch, 170, 29-34.

ROOM USE ONLY

