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ABSTRACT

A MULTIVARIATE TIME-FREQUENCY BASED PHASE SYNCHRONY
MEASURE AND APPLICATIONS TO DYNAMIC BRAIN NETWORK

ANALYSIS

By

Ali Yener Mutlu

Irregular, non-stationary, and noisy multichannel data are abound in many fields of

research. Observations of multichannel data in nature include changes in weather, the dy-

namics of satellites in the solar system, the time evolution of the magnetic field of celestial

bodies, population growth in ecology and the dynamics of the action potentials in neurons

[1, 2].

One particular application of interest is the functional integration of neuronal networks

in the human brain. Human brain is known to be one of the most complex biological systems

and quantifying functional neural coordination in the brain is a fundamental problem. It

has been recently proposed that networks of highly nonlinear and non-stationary reciprocal

interactions are the key features of functional integration. Among many linear and nonlinear

measures of dependency, time-varying phase synchrony has been proposed as a promising

measure of connectivity. Current state-of-the-art in time-varying phase estimation uses ei-

ther the Hilbert transform or the complex wavelet transform of the signals [3]. Both of

these methods have some major drawbacks such as the assumption that the signals are nar-

rowband for the Hilbert transform and the non-uniform time-frequency resolution inherent

to the wavelet analysis. Furthermore, the current phase synchrony measures are limited

to quantifying bivariate relationships and do not reveal any information about multivariate

synchronization patterns which are important for understanding the underlying oscillatory



networks.

In this dissertation, a new phase estimation method based on the Rihaczek distribu-

tion and Reduced Interference Rihaczek distribution belonging to Cohen’s class is proposed.

These distributions offer phase estimates with uniformly high time-frequency resolution

which can be used for defining time and frequency dependent phase synchrony within the

same frequency band as well as across different frequency bands. Properties of the phase

estimator and the corresponding phase synchrony measure are evaluated both analytically

and through simulations showing the effectiveness of the new measures compared to ex-

isting ones. The proposed distribution is then extended to quantify the cross-frequency

phase synchronization between two signals across different frequencies. In addition, a cross

frequency-spectral lag distribution is introduced to quantify the amount of amplitude mod-

ulation between signals. Furthermore, the notion of bivariate synchrony is extended to mul-

tivariate synchronization to quantify the relationships within and across groups of signals.

Measures of multiple correlation and complexity are used as well as a more direct multi-

variate synchronization measure, ‘Hyperspherical Phase Synchrony’, is proposed. This new

measure is based on computing pairwise phase differences to create a multidimensional phase

difference vector and mapping this vector to a high dimensional space. Hyperspherical phase

synchrony offers lower computational complexity and is more robust to noise compared to

the existing measures. Finally, a subspace analysis framework is proposed for studying time-

varying evolution of functional brain connectivity. The proposed approach identifies event

intervals accounting for the underlying neurophysiological events and extracts key graphs for

describing the particular intervals with minimal redundancy. Results from the application

to EEG data indicate the effectiveness of the proposed framework in determining the event

intervals and summarizing brain activity with a few number of representative graphs.
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Chapter 1

Introduction

Irregular, non-stationary, and noisy time-series have been observed in many fields of research

including changes in weather patterns, the dynamics of satellites in the solar system, the time

evolution of the magnetic field of celestial bodies, population growth in ecology, the dynamics

of the action potentials in neurons, and molecular vibrations [1, 2]. In engineering, irregular

and noisy time-series have been found in communications, control, pattern recognition and

measurement devices. For instance, in communication, chaotic oscillators have been used as

carrier signals for encryption of information [5] and in optics, multichannel data acquisition

techniques have been used for sensing the temperature at a number of measuring points from

optical sensors [6].

One particular application of interest is the neuronal networks which have complex dy-

namic behavior and consist of large assemblies of neurons. EEG signals reflect the dynamics

of the underlying neuronal networks and have been considered to be generated by nonlinear

time-varying systems exhibiting chaotic behavior [7, 8]. The underlying neuronal system

behaves as a deterministic chaotic attractor if the correlation dimension, a measure of com-

plexity, is found to be low. Several studies have revealed that the EEG has a finite non-integer

correlation dimension which led to the evidence that EEG is generated by a chaotic neural

process [7, 9, 10, 11]. Therefore, there has been a growing interest in applying techniques

from the domains of nonlinear analysis and chaos theory to investigate the behavior of human

brain from noninvasive multivariate time-series such as multichannel EEG signals.

1



The relationships among simultaneously recorded multichannel signals are usually quan-

tified by first evaluating the reciprocal and pairwise interactions. For this purpose, either

linear measures such as cross-correlation, spectral coherence and Granger causality or nonlin-

ear measures such as mutual information have been employed [12]. However, linear measures

are limited to quantifying only the linear relations and assume stationarity of the underlying

signals whereas most real life signals possess non-stationary behavior. Similarly, reliable esti-

mation of mutual information requires a large amount of data. Recently, tools from nonlinear

dynamics, in particular, phase synchrony, have received much attention. Phase synchrony

has been shown to be a better indicator of the statistical relationships between oscillators

than amplitude dependent measures [13]. In addition, it can account for the nonstationary

and nonlinear nature of the oscillators. Hence, one can use phase synchronization to under-

stand the interactions between irregular and non-stationary oscillators [14, 15]. Generally,

synchronization can be interpreted as the appearance of relations between functionals of

two processes due to interaction. The characteristics of the functionals is to some extent

subtle and depend on the problem under consideration. In the classical case of periodic

self-sustained oscillators, phase synchronization is usually defined as locking of the phases of

two oscillators, while the amplitudes can remain uncorrelated or independent [14].

1.1 Assessing Functional Brain Connectivity Using Phase

Synchronization

Human brain is known to be one of the most complex biological systems and understand-

ing the functional connectivity patterns to distinguish between normal and disrupted brain

behavior still remains as a challenge [16, 17, 18]. Functional connectivity is defined as the
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statistical dependencies among remote neurophysiological events indicating the integration

of functionally segregated brain regions [16] and can be inferred from different neuroimag-

ing data such as the functional magnetic resonance imaging (fMRI), electroencephalography

(EEG) and magnetoencephalography (MEG) [19]. fMRI provides a high spatial resolution

whereas EEG and MEG have more limited spatial resolution. On the other hand, EEG and

MEG offer higher temporal resolution compared to fMRI. Although the bases of the func-

tional relationships in the brain have been argued for decades, it has been recently proposed

that networks of reciprocal interactions are the key features of functional integration [20, 21].

Among the approaches to quantifying reciprocal interactions, phase synchrony has been one

of the most promising one. Classically, phase synchronization of two oscillators is the ad-

justment of their rhythmicity, or more precisely, that their phases are locked [3]. Studies of

visual binding, or the so-called perceptual ’binding-problem‘, propose phase synchrony as a

basic tool to investigate the large scale cognitive integration of the brain that is needed for

perception [22, 13]. Moreover, the relation between phase synchrony and cognition has been

studied in the concept of sensory-motor interactions and planning [23, 24], and memory [25].

Recently, large-scale phase synchronization is associated with consciousness, as an integra-

tive process in the constitution of unitary cognitive moments [26]. Similarly, during face

recognition, a consistent pattern of gamma frequency synchrony among occipital, parietal,

and frontal areas, has been reported [13]. Synchronization in the brain is also assumed to

play a role in the manifestation of various neurological diseases, such as epilepsy, Parkinson’s

disease and psychopathologies such as schizophrenia, where optimal brain network becomes

disrupted [27, 28]. This has, in turn, motivated the quest for robust methods for quantifying

phase synchrony in specific frequency bands from experimentally recorded multivariate neu-

rophysiological signals. These studies indicate both the importance of large-scale synchrony
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in the human brain during cognition and its existence within several frequency bands as well

as across frequency bands [29, 30]. For instance, modulations between neuronal oscillations

in different frequency bands have been observed for electrohysiological recordings in humans

and animals during cognitive tasks and it was found that the power of the fast gamma os-

cillations (30-150 Hz) was systematically modulated during the course of a theta (4-8 Hz)

rhythm [4].

In all of these studies, the basic form of phase synchronization analysis applies only to the

bivariate case. However, EEG data is essentially multivariate and the examination of multi-

variate data has been accomplished by the repeated application of bivariate synchronization

measures. Such applications of bivariate synchrony impose a limitation to multivariate anal-

ysis such that only synchrony between pairs of signals can be directly studied [31]. Hence,

this requires working in the computationally costly space of
(N
2

)
signal pairs of N signals.

Furthermore, in multivariate complex systems such as the brain, two processes do not have

to interact directly [32]. Therefore, bivariate analysis is often not sufficient to reveal the

correct interaction structure and there is a growing need for quantifying multivariate or

global phase synchronization in understanding the group dynamics as a whole rather than

focusing on the bivariate interactions [33, 34]. For instance, Knyazeva et al. were able to

infer a specific whole-head surface topographic synchronization landscape relevant to the

clinical picture of the schizophrenia disease by using a recently developed multivariate phase

synchrony technique [35].

A popular approach to look at the multivariate synchronization patterns has been through

the use of complex network theory which introduces graphs or networks to represent real-

world complex systems. A network is a mathematical representation of a system with rela-

tional information and can be represented by a graph consisting of a set of vertices (or nodes)
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and a set of edges (or connections) between pairs of nodes. The presence of a connection

between two vertices means that there is some kind of relationship or interaction between the

nodes. In order to emphasize the strength of the connectivity between nodes, one can assign

weights to each of the edges and the corresponding graph is called a weighted graph. In the

study of functional brain networks, nodes represent the different brain regions and the edges

correspond to the functional connectivity between these nodes which are usually quantified

by the magnitudes of temporal correlations in activity. Most of the current approaches to

quantifying functional connectivity provide a single graph to describe the network activity

within a given time interval rather than tracking the evolution of functional connectivity.

Hence, this results in neglecting possible time-varying properties of the underlying topologies

[36, 37, 38]. However, a time-invariant description of the brain connectivity using a single

graph is not sufficient to represent the communication patterns of the brain and can be

considered as an unreliable snapshot of functional connectivity. Evidence suggests that the

emergence of a unified neural process is mediated by the continuous formation and destruc-

tion of functional links over multiple time scales [39]. Therefore, there has been a growing

interest in analyzing the time-varying dynamic evolution of functional brain networks. The

extension from static to dynamic networks reveals that the processing of a stimulus involves

optimized functional integration of distant brain regions by dynamic reconfiguration of links.

1.2 Existing Phase Synchrony Methods and Extensions

to Dynamic Networks

In order to quantify the bivariate phase synchrony between two signals, in brief, two steps

are needed. First, instantaneous phase of each signal is estimated at a particular frequency
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of interest and second, a statistical criterion is employed to quantify the degree of phase

locking. In order to address the first step, two traditional approaches for estimating the

time and frequency dependent phase of a signal have been proposed. The first one is to use

the analytic signal concept through the Hilbert transform and to estimate the instantaneous

phase from this analytic form [15]. However, this method requires the bandpass filtering

of the signal to have a meaningful and reliable phase estimate. The second approach com-

putes a time-varying complex energy spectrum using either the continuous wavelet transform

with a complex Morlet wavelet [40] or the short-time Fourier transform (STFT) [41]. The

wavelet approach has an implicit non-uniform time-frequency tiling, which distorts the phase

spectrum whereas in the case of (STFT), there is a trade-off between time and frequency

resolution due to the window function. Therefore, there is a need for reliable, high resolu-

tion phase and corresponding phase synchrony estimates to quantify large-scale functional

integration within and across frequency bands in the brain. For the second step, the devia-

tion of the empirical distribution of the relative phase difference from a uniform distribution

is usually quantified using indices based on either Shannon entropy or circular variance of

phases using ‘Phase Locking Value’ (PLV) [12]. However, PLV is a measure to quantify the

degree of phase locking between only two signals and is not able to account for the group

dynamics.

Recently, multivariate measures of synchronization have been much of interest in under-

standing the group dynamics. Existing approaches to multivariate phase synchronization are

based on the computation of the whole set of bivariate synchrony values and forming connec-

tivity matrices or graphs, which leads to a large amount of mostly redundant information. In

the context of graph theory, cluster analysis has been proposed to maximize group connec-

tivity within each cluster while minimizing the connectivity between clusters [42, 43]. This
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description of the multivariate structure in the form of clusters is followed by the specification

of a degree of participation of each element within its cluster. One basic method to obtain

clusters is to threshold the matrix elements [44, 45], which is very sensitive to the fluctuation

of individual bivariate connectivity indices. Another approach is to use spectral clustering

using eigenvalues and eigenvectors of the correlation matrix [46, 47], which were motivated

by the application of random matrix theory to empirical correlation matrices. In the context

of phase synchrony analysis, a preliminary approach is the partial synchrony adapted from

partial coherence to reveal the indirect interactions among the oscillators within a network

[32]. However, this method quantifies indirect bivariate synchronization and cannot quantify

group dynamics. Allefeld and colleagues have proposed a mean-field approach to analyze

functional connectivity from EEG data. They assume that each signal within the network

contributes to a single synchronization cluster to a different extent [48], which is not legiti-

mate since the underlying clustering structure of brain networks usually consists of multiple

clusters. To address this drawback, an approach based on the eigenvalue decomposition of

the pairwise bivariate synchronization matrix has been proposed [49]. Multiple synchroniza-

tion clusters are detected, where the strength of each cluster depends on the magnitude of its

associated eigenvalue and the corresponding eigenvectors account for the internal structure

of each cluster. However, it has recently been shown that there are important special cases,

clusters of similar strength that are slightly synchronized to each other, where the assumed

one-to-one correspondence of eigenvectors and clusters is completely lost [50].

Existing approaches to dynamic network analysis are either graph theory based, such

as direct extensions of component finding, clustering coefficient [51, 52, 53] and community

detection [54] from the static to the dynamic case, or are feature based where features

extracted from each graph in the time series are used to form time-varying graph metrics
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[55, 56]. More recently, the dynamic nature of the modular structure in the functional brain

networks has been investigated by finding modules for each time window and comparing the

modularity of the partitions across time [17]. However, this approach does not evaluate the

dynamic evolution of the clusters across time and is basically an extension of static graph

analysis for multiple static graphs. Mucha et al. [54] proposed a new time-varying clustering

algorithm which addresses this issue by defining a new modularity function across time. All of

these module finding algorithms result in multiple clustering structures across time and there

is a need to reduce this multitude of data into a few representative networks or to quantify

the evolution of the network in time using reliable metrics. Therefore, these approaches

do not track the change in connectivity or clustering patterns and cannot offer meaningful

summarizations of time-varying network topology. Recently, researchers in signal processing

have addressed problems in dynamic network analysis such as detection of anomalies or

distinct subgraphs in large, noisy background [57, 58]. For instance, in [59], direction of the

principal eigenvector of a matrix based on the graph is tracked over time, and an anomaly

is detected if the direction changes by more than some threshold. [60] uses scan statistics to

track the history of a node’s neighborhood and looks for large deviations to detect anomalous

behavior. Tracking dynamic networks [61] using shrinkage estimation, or simple approaches

such as sliding window or exponentially weighted moving averaging have been proposed

for inferring long-term information or trends [62, 63]. However, these methods have some

disadvantages such as preserving historical affinities indefinitely, which makes the network

topology denser as time evolves [62].
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1.3 Contributions and Organization of the Disserta-

tion

In Chapter 2, a new time-varying phase estimation method based on a modified Rihaczek

distribution, Reduced Interference Rihaczek distribution, belonging to Cohen’s class is pro-

posed. The performance of the phase estimator and the corresponding synchrony measure

are evaluated both analytically and through simulations in comparison to existing measures

in particular to continuous wavelet transform based estimates. Both the analytical and the

simulation results show Reduced Interference Rihaczek distribution based phase and syn-

chrony estimators to be more robust to noise, have better time-frequency resolution and

perform better at detecting actual synchrony in the system, in particular for a network of

oscillators.

In Chapter 3, we propose two complementary methods to quantify nonlinear relationships

between oscillators across frequencies in terms of both phase synchrony across frequencies and

amplitude modulation relationship. The first method is based on the Reduced Interference

Rihaczek distribution and extends the Reduced Interference Rihaczek based phase synchrony

measure to quantify the phase synchrony between two signals across different frequencies.

The second method, which is closely related to the modulation frequency and modulation

spectrum in speech processing literature, defines a cross frequency-spectral lag distribution

based on the Wigner distribution to represent the modulation relationships between two

signals. The cross frequency-spectral lag distribution offers cross-frequency coupling infor-

mation and focuses on quantifying the amount of amplitude modulation between two signals.

This approach has been shown to reveal the modulation effect of the theta frequency band

(4-8 Hz) on the high frequency gamma band (40-70 Hz).
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The contribution of Chapter 4 is two fold. First, we extend the notion of bivariate syn-

chrony to multivariate synchronization by employing measures of multivariate correlation

and complexity from statistics to quantify the synchronization within and across groups of

signals rather than between pairs. The proposed measures depend on quantities such as mul-

tiple correlation and R2 and are redefined in the context of phase synchrony. In particular,

a measure of association for multivariate data sets is used to quantify the degree of synchro-

nization between groups of variables. We also exploit a global complexity measure based on

the spectral decomposition of the bivariate synchronization matrix to estimate the multi-

variate synchronization within a network. The proposed measures extend the current state

of the art phase synchrony analysis from quantifying bivariate relationships to multivariate

ones. This shift from pairwise bivariate synchrony analysis to multivariate analysis within

and across groups offers advantages for understanding functional brain connectivity where

the bivariate relationships do not always reflect the underlying network structure. The sec-

ond contribution of this chapter is a novel and direct method of computing the multivariate

phase synchronization within a group of oscillators without the need for computing bivariate

synchrony values. This new method is referred to as hyperspherical phase synchrony and

is based on extending the definition of phase synchrony from the two-dimensional space to

an N-dimensional space by employing uniform angular sampling of a unit sphere in an N-

dimensional hyperspherical coordinate system. Hyperspherical phase synchrony eliminates

the need for computing pairwise synchrony values and offers lower computational complexity

and improved performance in terms of robustness to noise compared to the existing measures.

Finally, in Chapter 5, we propose a framework for analyzing dynamic evolution of func-

tional brain networks which is based on identifying meaningful time intervals corresponding

to the underlying neurophysiological events and extracting key networks or graphs for de-
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scribing the particular intervals with minimal redundancy. The proposed framework is based

on subspace analysis using principal component analysis (PCA) to focus on signal subspace

only and to discard noise subspace. The resulting key networks contain only the information

related to the signal subspace. Results from the application to real EEG data containing

the ERN supports the effectiveness of the proposed framework in determining the event in-

tervals of dynamic brain networks and summarizing network activity with a few number of

representative networks.
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Chapter 2

A Time-Frequency Based Approach

to Phase and Phase Synchrony

Estimation

2.1 Introduction

Irregular, non-stationary, and noisy bivariate data such as chaotic oscillators are abound

in many fields of research. Observations of chaotic behavior in nature include changes in

weather, the dynamics of satellites in the solar system, the time evolution of the magnetic

field of celestial bodies, population growth in ecology, the dynamics of the action potentials

in neurons, and molecular vibrations [1, 2]. In engineering, chaotic behavior has found ap-

plications in communications, control, pattern recognition and measurement devices. For

instance, in communication, chaotic oscillators have been used as carrier signals for encryp-

tion of information [5]. The relationship between two simultaneously recorded signals is

usually quantified through either linear measures such as cross-correlation or nonlinear mea-

sures such as mutual information. Recently, tools from nonlinear dynamics, in particular,

phase synchrony, have received much attention [14, 15]. Phase synchronization of chaotic os-

cillators occurs in many complex systems such as the human brain during different cognitive
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processes. Synchronization measures have been applied to multichannel electroencephalog-

raphy (EEG) and magnetoencephalography (MEG) recordings to quantify the dependencies

between the activity of remote brain areas in humans (e.g., [15, 40]).

Classically, synchronization of two oscillators is understood as the temporal adjustment

of their rhythms, or appearance of a certain relation between the phases of two oscillators.

Weak phase locking condition at a particular frequency is defined as Φn,m(t) = |nϕ1(t) −

mϕ2(t)|mod2π < constant, where n and m are some integers and Φn,m is the generalized

phase difference and mod2π is used to account for the noise-induced phase jumps [14]. The

first step in quantifying phase synchrony between two signals is to extract the time-varying

phase of the signals. Two closely related approaches for extracting the time and frequency

dependent phase of a signal have been proposed. In both cases, the original signal x(t)

is transformed with the help of an auxiliary function into a complex-valued signal, from

which the instantaneous phase is easily obtained. The first method is based on computing

the Hilbert transform of the signal to obtain an analytic form of the signal and estimate

the instantaneous phase from this analytic form [15]. To do so, one has to ensure that the

signal is composed of a narrowband of frequencies. Thus, this method requires the bandpass

filtering of the signal around a frequency of interest and then applies the Hilbert transform

to obtain the instantaneous phase. Recently, a data dependent tool, called the empirical

mode decomposition (EMD) [64, 65], has been used as a pre-processing tool to eliminate the

need for bandpass filtering. EMD is proposed as a way to extract the individual frequency

components, called the implicit mode functions (IMFs), in the signal and thus can be used

prior to extracting phase and computing phase synchrony with Hilbert transform. However,

it has several drawbacks. First, EMD is completely data driven, thus there is no guarantee

that the extracted IMFs really represent the fundamental modes of the data. Second, there is
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no systematic uniqueness or stability theory for EMD [65]. Furthermore, in order to evaluate

the phase synchrony between two signals at a particular frequency, ω0, one needs to extract

two IMFs at the same frequency which is hard to guarantee with univariate EMD. The second

approach to phase synchrony computes a time-varying complex energy spectrum using either

the continuous wavelet transform (CWT) with a complex Morlet wavelet [40] or the short-

time Fourier transform (STFT) [41]. The Morlet wavelet has a Gaussian modulation both

in the time and in the frequency domains and therefore has an optimal time and frequency

resolution [66, 67]. It has been observed that the CWT and STFT are similar to the Hilbert

transform based methods with the prior giving higher resolution phase synchrony estimates

over time and frequency, especially at the low frequency range [3]. The main difference

between the two approaches is that the Hilbert transform is actually a filter with unit gain

at every frequency [14], so that the whole range of frequencies is taken into account to define

the instantaneous phase. Therefore, if the signal is broadband it is necessary to pre-filter it

in the frequency band of interest before applying the Hilbert Transform, in order to get an

accurate estimate of the phase (e.g., [68], [69], [70]). On the other hand, the wavelet function

is non-zero only for those frequencies close to the frequency of interest, so it is equivalent to

band-pass filtering x(t) at this frequency, which makes the pre-filtering unnecessary.

Although the wavelet and STFT based phase synchrony estimates address the issue of

non-stationarity, they suffer from a number of drawbacks. In the case of the wavelet trans-

form, a representation is obtained where the frequency resolution is high at low frequencies

and low at high frequencies. Although this property makes wavelet transform attractive in

detecting high frequency transients in a given signal, it inherently imposes a non-uniform

time-frequency tiling on the analyzed signal and thus results in biased energy representa-

tions and corresponding phase estimates. In the case of STFT, there is a trade-off between
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time and frequency resolution due to the window function. A wider window in time domain

results in better frequency resolution but poor time resolution, and vice versa. For these

reasons, there is a need for high time-frequency resolution phase distributions that can track

dynamic changes in phase synchrony over the whole time-frequency plane.

An alternative approach to estimating phase synchrony is through parametric modeling

such as the polynomial phase model [71]. The idea is to estimate the parameters of the

polynomial phase function instead of directly estimating the time-varying phase. Some of

the approaches for estimating the parameters of the polynomial phase signals (PPSs) are

high-order ambiguity function (HAF) [72], which provides good results for high signal-to-

noise ratio (SNR) but is not robust against high noise variance and cross-terms occurring

for multicomponent signals, and the multilag HAF. The use of multilag concept in the

computation of HAF and multiplying the HAFs obtained for different lag sets is proposed to

address these problems [73]. Both of these approaches are parametric and thus suffer from

inaccuracies in determining the order of the polynomial function. Quantifying the phase

relationship between two signals has also been a topic of interest in nonlinear dynamics

literature. Recurrence plot analysis (RPA) has been introduced to analyze the dynamics

of phase space trajectories of nonstationary and relatively short signals [74]. An extension

of the recurrence plots to cross recurrence plots has been proposed to compare the phase

space trajectories of two signals in the same phase space [75]. A synchrony measure called

correlation probability of recurrence (CPR), which is based on the recurrence probabilities,

has been proposed to quantify the phase synchrony between two signals [76]. However, unlike

nonstationary signal processing based methods, CPR cannot quantify time and frequency

dependent phase synchrony for time-varying signals.

Recently, we have introduced a new time-varying phase estimation method based on a
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modified Rihaczek distribution, Reduced Interference Rihaczek distribution, belonging to

Cohen’s class [77]. In this chapter, the statistical performance of this new phase estimator is

quantified by deriving the Cramer-Rao lower bound and the bias for a signal in additive white

noise model. The derived Cramer-Rao lower bounds are evaluated for simulated signals and

compared to the variance. After evaluating the statistical properties of the phase estimator,

the bias and properties of the corresponding phase synchrony measure are also evaluated.

It is important to note that although the proposed phase estimator has lower variance than

existing measures, due to its bias it is more appropriate for the estimation of time and

frequency dependent phase difference or phase synchrony between two signals since the

initial phase of the signal will be lost through the time-frequency transformation. Finally,

the different properties of the proposed phase estimator and the corresponding synchrony

measure, such as resolution and robustness to noise, are compared with the existing methods

for different simulated models including a large set of coupled oscillators.

2.2 Background

2.2.1 Measures of Phase Synchrony

Phase synchrony is defined as the temporal adjustment of the rhythms of two oscillators while

the amplitudes can remain uncorrelated. In order to quantify the phase synchrony between

two signals, first the instantaneous phase of the individual signals must be estimated around

the frequency of interest. As discussed in the introduction, the two major approaches to

quantifying the instantaneous phase of the signal are the Hilbert transform and the complex

wavelet transform. Both methods aim at obtaining an expression for the signal in the form

of x̃(t, ω) = a(t)exp(j(ωt + ϕ(t))), where a(t) is the time-varying instantaneous amplitude
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and ϕ(t) is the instantaneous phase at the frequency of interest ω. This formulation can be

repeated for different frequencies to obtain a time and frequency dependent phase estimate.

The relationship between the temporal organization of two signals, x and y, can be quantified

through the difference of their instantaneous phase estimates, Φxy(t) = |nϕx(t)−mϕy(t)|.

Once the phase difference between two signals is estimated, it is important to quantify

the amount of synchrony. The most common scenario for the assessment of phase synchrony

entails the analysis of the synchronization between pairs of signals. In the case of noisy

oscillations, the length of stable segments of relative phase gets very short; furthermore, the

phase jumps occur in both directions, so the time series of the relative phase Φxy(t) looks like

a biased random walk (unbiased only at the center of the synchronization region). Therefore,

direct analysis of the unwrapped phase differences Φxy(t) has been seldom used. As a result,

phase synchrony can only be detected in a statistical sense. Two different indices have

been proposed to quantify the synchrony based on the relative phase difference, i.e. Φxy(t)

wrapped into the interval [0, 2π), and are defined as follows [12]:

1. Information theoretic measure of synchrony: This measure evaluates the distribution

of Φxy(t) by partitioning the interval [0, 2π) into L bins and comparing it with the

distribution of the cyclic relative phase obtained from two time series with independent

phases [15]. This comparison is carried out by estimating the Shannon entropy of

both Φxy(t) for the original signals and Φxy(t) for a pair of independent signals. A

normalized phase synchrony index,

ρ = (Smax − S)/Smax (2.1)

is obtained where S is the entropy of the distribution of the phase difference for the
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original signals and Smax is the maximum entropy for the same number of bins, i.e. the

entropy of the uniform distribution. Normalized in this way, the index is constrained

as 0 ≤ ρ ≤ 1. ρ = 1 indicates perfect phase synchronization, whereas ρ ≈ 0 indicates

independent oscillators. One drawback of this measure is that ρ depends on the number

of bins used to calculate the histogram of Φxy(t). This might result in low values of

ρ values even for perfect phase synchrony. One can expect to use Smax = logL for

independent phases. However, the distribution of the phase differences is not uniform

even for uncorrelated series due to finite size effects [78]. Hence, Smax should be

estimated constructing a surrogate data set, i.e, a set of independent signal pairs

obtained by randomly shuffling one of the phases while keeping the other unchanged

[12].

2. Phase Synchronization Index: This index is also known as ‘mean phase coherence’

(PC), or ‘phase locking value’ (PLV),

γ =
√

< cos(Φxy(t)) >2 + < sin(Φxy(t)) >2 =

∣∣∣∣∣∣ 1N
N−1∑
k=0

ejΦxy(tk)

∣∣∣∣∣∣ (2.2)

where the brackets denote averaging over time and N is the number of time points.

This index is a measure of how the relative phase is distributed over the unit circle. If

the two signals are phase synchronized, the relative phase will occupy a small portion

of the circle and mean phase coherence will be high. This measure is equal to 1 for

the case of complete phase synchronization and tends to approach zero for independent

oscillators. This measure can be applied by either averaging phase differences over time

or multiple realizations of the same process. When the phase differences are averaged

over trials, it is referred to as the phase locking value (PLV) and can quantify the
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consistency of response-locked phase differences across trials as follows:

PLV (t, ω) =
1

N

∣∣∣∣∣∣
N∑
k=1

exp(jΦk
1,2(t, ω))

∣∣∣∣∣∣ , (2.3)

where N is the number of trials and Φk
1,2(t, ω) is the time-varying phase difference

estimate between two signals for the kth trial. If the phase difference varies little

across the trials, PLV is close to 1 which indicates high phase synchrony pair signals.

2.2.2 Continuous Wavelet Transform

One commonly used approach to extract time-varying phase information is the continuous

wavelet transform (CWT) with complex wavelet functions. The phase spectrum of the signal

can be extracted from its wavelet transform, which is the convolution of the signal with a

complex wavelet:

Wx(t, f) =

∫ ∞

−∞
x(u)Ψ∗

t,f (u)du (2.4)

where Ψ∗
t,f (u) represents the complex conjugate of the wavelet function [3]. In particular,

Morlet wavelet is used for phase extraction and is defined as follows:

Ψt,f (u) =
√

fej2πf(u−t)e
− (u−t)2

2σ2 (2.5)

where Ψt,f (u) is a Gaussian window centered at time t with variance σ2 modulated by a

complex exponential at frequency, f . The phase spectrum of x(t) can be evaluated as follows:

Φx(t, ω) = arg

[
Wx(t, f)

|Wx(t, f)|

]
(2.6)
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Similarly, the phase difference between two signals, x1(t) and x2(t), can be computed as:

Φ12(t, ω) = arg

[
W1(t, ω)

|W1(t, ω)|
W ∗

2 (t, ω)

|W2(t, ω)|

]
(2.7)

The spread of the window, σ, is inversely proportional to f and determines the frequency

resolution of time-varying phase estimates [3].

2.2.3 Cohen’s Class of Time-Frequency Distributions

Bilinear time-frequency distributions (TFDs) belonging to Cohen’s class can be expressed

as 1 [79]:

C(t, ω) =

∫ ∫ ∫
ϕ(θ, τ)x(u+

τ

2
)x∗(u− τ

2
)ej(θu−θt−τω)du dθ dτ, (2.8)

where ϕ(θ, τ) is the kernel function and x is the signal. TFDs represent the energy distribu-

tion of a signal over time and frequency, simultaneously. The kernel completely determines

the properties of its corresponding TFD. Some of the most desired properties of TFDs are

the energy preservation, satisfying the marginals, and the reduced interference. Energy

preservation and satisfying the marginals are defined as:

∫ ∫
C(t, ω) dt dω =

∫
|x(t)|2 dt =

∫
|X(ω)|2 dω,∫

C(t, ω) dω = |x(t)|2 ,

∫
C(t, ω) dt = |X(ω)|2.

(2.9)

1All integrals are from −∞ to ∞ unless otherwise stated.
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For multicomponent signals, bilinear TFDs suffer from the existence of cross-terms or inter-

ference, i.e. if x(t) =
∑N

i=1 xi(t) then C(t, ω) =
∑N

i=1Cxi,xi(t, ω)+
∑

i̸=j 2Re(Cxi,xj (t, ω)),

where Cxi,xi and Cxi,xj refer to the auto-terms and cross-terms, respectively. The cross-

terms introduce time-frequency structures that do not correspond to the time-frequency

spectrum of the actual signal. For real signals, the cross-terms might contaminate the spec-

trum of the auto-terms since the individual signal components may not be disjoint in the

time-frequency plane. Hence, the cross-terms should be filtered out using an appropriate

kernel function. Any TFD given by equation (2.8) can be equivalently written as:

C(t, ω) =

∫ ∫
ϕ(θ, τ)A(θ, τ)e−j(θt+τω)dτdθ (2.10)

where A(θ, τ) =
∫
x(u+ τ

2 )x
∗(u− τ

2 )e
jθudu is the ambiguity function of the signal. Since the

ambiguity function tends to group the auto-terms close to the θ− τ axis, the kernel function

is usually designed as a lowpass filter. In this chapter, reduced interference distributions

(RIDs) will be used to address the problem of cross-terms, with |ϕ(θ, τ)| << 1 for θτ >> 0,

to concentrate the energy around the auto-terms [80]. The major advantages of Cohen’s

class of TFDs over other time-frequency representations such as the wavelet transform are

the nonlinearity of the distribution, energy preservation and the uniform resolution over

time and frequency. Most of the members of Cohen’s class, such as the spectogram and the

Wigner distribution, are real valued energy distributions describing the energy of the signal

over time and frequency, simultaneusly. However, since these distributions do not have phase

information, they cannot be used for estimating the phase of an individual signal and the

phase synchrony between two signals. Therefore, there is a need for high resolution complex-

valued TFDs that carry both the energy and the phase information of the underlying signals.
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2.3 Rihaczek Distribution

Rihaczek derived the signal energy distribution in time and frequency by application of the

complex signal notation. If two complex signals at the same frequency, x1(t) and x2(t), are

considered where x1(t) may be interpreted as the voltage and x2(t) as the current generated

in an impedance, the total complex energy is defined as
∫
x1(t)x

∗
2(t)dt. Rihaczek extended

the idea of complex energy to define the interaction energy at a frequency of interest, ω,

within some frequency band and at a given time, t, within an infinitesimal time interval as

[81]:

C(t, ω) =
1√
2π

x(t)X∗(ω)e−jωt, (2.11)

where x(t) is the signal and X(ω) is its Fourier transform and measures the complex energy

of a signal around time t and frequency ω. A geometric interpretation of the Rihaczek

Distribution was developed in [82]. The Rihaczek distribution can be expressed as a complex

Hilbert space inner product between the time series and its infinitesimal stochastic Fourier

generator, which results in an illuminating geometry [83], wherein the angle between the

time series and its infinitesimal stochastic Fourier generator for a given frequency component

and time instant is characterized by the Rihaczek distribution. The complex energy density

function provides a fuller appreciation of the properties of phase-modulated signals that is not

available with other time-frequency distributions. While the time-frequency resolution of the

STFT or the wavelet transform is determined by the window function or the basis functions

used to expand the signal, for the Rihaczek distribution, the time-frequency resolution is

determined by the rate of change of the instantaneous frequency which provides better

localization for phase-modulated signals.

Similar to other members of Cohen’s class of distributions, the Rihaczek distribution
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is a bilinear, time and frequency shift covariant time-frequency distribution that satisfies

the marginals, preserves the energy of the signal with strong time and frequency support

properties [81]. With these properties, the Rihaczek distribution is a complex TFD that

provides both a time-varying energy spectrum as well as a phase spectrum with good time-

frequency localization for phase modulated signals.

2.3.1 Reduced Interference Rihaczek Distribution (RID-Rihaczek)

For a multicomponent signal such as, x(t) = x1(t) + x2(t), the Rihaczek distribution is:

C(t, ω) =
1√
2π

(x1(t)X
∗
1 (ω)e

−jωt + x2(t)X
∗
2 (ω)e

−jωt

+ x1(t)X
∗
2 (ω)e

−jωt + x2(t)X
∗
1 (ω)e

−jωt, (2.12)

where the last two terms in Eq. (2.12) are the cross-terms. These cross-terms are located at

the same time and frequency locations as the original signals and will lead to biased energy

and phase estimates.

In order to get rid of these cross-terms, we have recently proposed a reduced interference

version of the Rihaczek distribution by applying a kernel function to filter the cross-terms in

the ambiguity domain [77]. Different kernel functions such as the Choi-Wiliams (CW), Born-

Jordan or binomial kernels can be used to address the issue of cross-terms with similar results

[79]. In this chapter, we employ the Choi-Williams kernel where the resulting distribution

can be written in terms of the product of the CW kernel and the kernel for the Rihaczek
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distribution as:

C(t, ω) =

∫ ∫
exp

(
−(θτ)2

σ

)
︸ ︷︷ ︸
CW kernel

exp(j
θτ

2
)︸ ︷︷ ︸

Rihaczek kernel

A(θ, τ)e−j(θt+τω)dτdθ. (2.13)

where ej
θτ
2 is the kernel function for the Rihaczek distribution. This new distribution, which

will be referred to as RID-Rihaczek, will have an equivalent time-frequency kernel ϕ(θ, τ) =

e−
(θτ)2

σ ej
θτ
2 . Since this kernel satisfies the constraints, ϕ(θ, 0) = ϕ(0, θ) = ϕ(0, 0) = 1,

the corresponding distribution will satisfy the marginals and preserve the energy, and is a

complex energy distribution at the same time. The value of σ can be adjusted to achieve

a desired trade-off between resolution and the amount of cross-terms retained. Fig. 2.1

illustrates the effect of the kernel function on the magnitude of the Rihaczek distribution for

a multicomponent signal.

2.3.2 Implementation of the Proposed TFDs

The time-frequency distributions employed in this chapter for phase estimation, i.e. Rihaczek

and RID-Rihaczek distributions, have been implemented using MATLAB. The discrete-time

discrete-frequency Rihaczek and RID-Rihaczek TFDs, are implemented as follows [81, 84]:

• Compute the local autocorrelation function R[n, τ ]: R[n, τ ] = x∗[n]x[((n+τ))N ], where

n = 1, 2, . . . , N is the discrete time, τ = 1, 2, . . . , N is the discrete lag variable, and

(·)N refers to the mod N operation.

• Compute the ambiguity function by taking the N point FFT of R[n, τ ]: A[θ, τ ] =

FFT{R[n, τ ]} =
∑N

n=1R[n, τ ]e−j(2π/N)nθ, where θ = 1, 2, . . . , N is the discrete Doppler

lag variable.
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Figure 2.1: Effect of filtering: Magnitudes of the original and the Reduced Interference

Rihaczek distributions for the sum of two signals, x(t) = e−
(t−100)2

2 ej0.2t+e−
(t−200)2

2 ej0.8t.
For interpretation of the references to color in this and all other figures, the reader is referred
to the electronic version of this dissertation.

• Discrete time-frequency Rihaczek distribution is obtained as:

C[n, k] = IFFT {FFT{A[θ, τ ]}} =
∑N

θ=1

∑N
τ=1A[θ, τ ]e

j(2π/N)θne−j(2π/N)τk.
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• RID-Rihaczek distribution is obtained by first multiplying the ambiguity function with

the kernel function and then computing the IFFT and FFT:

C[n, k] = IFFT

{
FFT{A[θ, τ ]e−

(θτ)2

σ }

}

=
N∑
θ=1

N∑
τ=1

A[θ, τ ]e−
(θτ)2

σ ej(2π/N)θne−j(2π/N)τk

where k = 1, 2, . . . ,M is the discrete frequency variable, M is the number of frequency

bins and σ = 0.001 in our implementations. Discretization of different kernel functions

are explained in detail in [85].

2.3.3 Time-Varying Phase Estimation and Phase Synchrony

In this section, we will define a time and frequency dependent phase estimate and a corre-

sponding synchrony measure using the proposed complex TFD. For a signal x(t) = A(t)ejϕ(t)

with Fourier transform X(ω) = B(ω)ejθ(ω), the time-varying phase estimate based on the

Rihaczek distribution can be defined as 2 [77]:

Φ(t, ω) = arg

[
C(t, ω)

|C(t, ω)|

]
= arg

[
A(t)ejϕ(t)B(ω)e−jθ(ω)e−jωt

A(t)B(ω)

]
,

= arg
[
ejϕ(t)e−jθ(ω)e−jωt

]
,

= ϕ(t)− θ(ω)− ωt, (2.14)

where ϕ(t) and θ(ω) refer to the phase in the time and the frequency domains, respectively.

Once the phase estimate in the time-frequency domain is obtained, the phase difference

2In this section, all of the derivations for time-varying phase spectrum and phase syn-
chrony will be based on the original definition of Rihaczek distribution for purposes of sim-
plicity. Similar computations for RID-Rihaczek can be done numerically.
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between two signals, x1(t) and x2(t), can be computed as:

Φ12(t, ω) = arg

[
C1(t, ω)

|C1(t, ω)|
C∗
2(t, ω)

|C2(t, ω)|

]
,

= arg
[
ej((ϕ1(t)−ϕ2(t))−(θ1(ω)−θ2(ω)))

]
,

= (ϕ1(t)− ϕ2(t))− (θ1(ω)− θ2(ω)), (2.15)

where ϕ1(t) and ϕ2(t) correspond to the phases of the two signals in the time domain, whereas

θ1(ω) and θ2(ω) correspond to the phases of the two signals in the frequency domain.

For a real-valued signal, the phase difference between a signal x1(t) and its shifted version

x1(t− t0) is given by:

Φ12(t, ω) = arg

[
x1(t)X

∗
1 (ω)e

−jωt

|x1(t)||X1(ω)|
x∗1(t− t0)X1(ω)e

−jωt0ejωt

|x1(t− t0)||X1(ω)|

]
,

= arg

[
x1(t)

|x1(t)|
x∗1(t− t0)e

−jωt0

|x1(t− t0)|

]
,

= −ωt0, (2.16)

which is a linear function of frequency as expected 3. In most applications where a bivariate

relationship between two signals is desired, the time-frequency dependent phase estimates

are not directly useful. In order to further quantify the bivariate relationship or the coupling

between signals, a measure of phase synchrony needs to be defined. In this chapter, phase

locking value (PLV), described in Section 2.2.1, will be used. The phase synchrony estimate

based on the RID-Rihaczek distribution will be referred to as RID-Time-Frequency Phase

Synchrony (RID-TFPS) measure. Similarly, the phase synchrony estimate given by the CWT

will be referred to as Wavelet-TFPS measure.

3Φ12(t, ω) = −ωt0 with modulus of π.
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2.4 Cramer-Rao Lower Bound for the Phase Estimator

In this section, the Cramer-Rao lower bound is derived to quantify the efficiency of the

proposed time-varying phase estimators based on Rihaczek and RID-Rihaczek distributions

in discrete time, θ̂[n] = Φ[n,w(n)] where w(n) is the instantaneous frequency of interest for

a particular time n. Let z be a complex signal with additive complex white Gaussian noise

e:

z[n] = x[n] + e[n] (2.17)

where e ∼ CN (0,C), C is the covariance matrix and x[n] = A[n]ejθ[n] is a function of

the unknown time-varying phase, θ = θ[n], which will be denoted as a deterministic vector

parameter θ for n = 1, 2, . . . , N . From the properties of the complex Gaussian pdf, z ∼

CN (x,C) and the covariance matrix C does not depend on θ. For any parameter estimator,

θ̂, for θ, the Fisher’s information matrix for a complex Gaussian pdf is given as [86]:

[I(θ)]kl = tr

[
C−1 ∂C

∂θk
C−1∂C

∂θl

]
+ 2Re

[
∂µH

z

∂θk
C−1∂µz

∂θl

]
(2.18)

where k, l = 1, 2, . . . , N and µz = x. Since C is independent of θ, equation (2.18) reduces

to:

[I(θ)]kl = 2Re

[
∂µH

z

∂θk
C−1∂µz

∂θl

]
. (2.19)
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For the complex signal x[n] = A[n]ejθ[n], with θ = [θ[1] . . . θ[N ]],

µz =



A[1]ejθ[1]

A[2]ejθ[2]

...

A[N ]ejθ[N ]


⇒ ∂µz

∂θk
=



0

0

A[k]jejθ[k]

...

0


(2.20)

and the Fisher’s information matrix for the time-varying phase estimator can be derived as:

[I(θ)]kl = 2Re



[
0 . . . (−j)A[k]e−jθ[k] . . . 0

]
C−1



0

...

(j)A[l]ejθ[l]

...

0




(2.21)

where, C−1 = 1
σ2

I, is a diagonal matrix since e is assumed to be complex white Gaussian

noise and σ2 is the variance of the complex noise and I is the identity matrix. Therefore;

[I(θ)]kl =


0, if k ̸= l

2A2[k]

σ2
, if k = l

(2.22)

and the CRLB for the unbiased estimators is written as:

COV(θ̂) , C
θ̂
≽ [I(θ)]−1 = CRLB (2.23)
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In order to account for biased estimators, the Cramer-Rao lower bound (CRLB) for the

biased vector parameter estimator of the phase of a complex signal with additive white

Gaussian noise should be modified as follows [86]:

COV(θ̂) , C
θ̂
≽ ∂Ψ(θ)

∂θ
[I(θ)]−1

(
∂Ψ(θ)

∂θ

)T

= CRLB (2.24)

where Ψ(θ) = b(θ) + θ and b(θ) = E[θ̂] − θ is the bias. The expression for the CRLB in

Eq. (2.24) is also valid for the unbiased estimators since b(θ) = 0 and
∂Ψ(θ)
∂θ = I, where I

is the identity matrix. Therefore, since the Fisher’s information matrix is diagonal:

Tr
(
C
θ̂

)
≥ Tr (CRLB) (2.25)

which means the total variance of the phase estimator is lower bounded by the total CRLB.

In order to find the lower bound in (2.24), the gradient, ∇b(θ), needs to be computed.

However, for the estimator proposed in this chapter, exact computation of the bias gradient

is not possible. Hence, an unbiased and consistent sample mean estimate of ∇θb(θ) is

exploited, which is given by [87]:

∇̂θb(θ
k) =

1

L− 1

L∑
i=1

θ̂ki − 1

L

L∑
j=1

θ̂kj

∇θ ln fz(zi;θ)−∇θk (2.26)

where {zi}Li=1 is a set L of i.i.d realizations of the signal model given in eq. (2.17), fz(zi;θ)

is the complex Gaussian pdf evaluated for the ith realization and θ̂ki is the phase estimate

at time instance k, computed from the ith realization. The N × N matrix
∂Ψ(θ)
∂θ can be
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written as:

∂Ψ(θ)

∂θ
=


[∂b(θ)]1
∂θ1

· · · [∂b(θ)]1
∂θN

...
. . .

...

[∂b(θ)]N
∂θ1

· · · [∂b(θ)]N
∂θN

+ I, (2.27)

where the kth row is computed using the gradient of the bias for the kth time point, from

∇̂θb(θ
k). The bound in Eq. (2.24) indicates that even though the signal’s phase is inde-

pendent from its amplitude, for a noisy signal the estimator variance depends on the noise

power.

2.5 Evaluation of the Statistical Properties of Phase

Difference and Phase Locking Value

In order to understand the performance of the phase synchrony measure corresponding to

the RID-Rihaczek phase estimator, it is important to quantify the statistical properties of

the underlying phase difference. However, finding analytic expressions for the statistical

properties of the phase difference between two arbitrary signals, such as the distribution

of phase difference (or phase) and phase synchrony (e.g., PLV), is not possible since these

properties depend on the underlying signals. Thus, a simulation model involving a low-

synchrony signal pair, consisting of two independent white Gaussian noise sequences with

equal variance (σ2), is used for quantifying the distribution of phase difference and PLV

under the null hypothesis, i.e. for the case where the signals are independent [40, 88]. As

long as the two noise sequences are independent, the amount of the noise variance does not

have any effect on these distributions.
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Figure 2.2: Experimental and theoretical distributions of the phase difference for a low-
synchrony signal pair

2.5.1 Distribution of the Phase Difference

The distribution of the phase and phase differences for the proposed estimation method

are evaluated using a simulation model with low-synchrony signals. The phase difference

Φ12(t, ω) between the two signals is expected to be distributed uniformly over [−π, π] since

the phase differences between two white noise sequences are randomly distributed between

[−π, π]. Fig. 2.2 illustrates the theoretical and experimental distributions of the phase

difference, where the signal length is 180 and the number of simulations is 20000. The

experimental distribution is close to a uniform distribution as shown by the Chi-square

goodness-of-fit test at the 5% significance level where the null hypothesis that the data is

from a uniform distribution over [−π, π] can not be rejected (p = 0.1486 > 0.05).
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2.5.2 Bias of the Synchrony Measure: Dependency of Phase Lock-

ing Value on the Number of Trials

Once the distribution of the phase difference is determined, the distribution and bias of PLV

estimates can be found. PLV in Eq. (2.3) can be expanded as:

PLV (t, ω) =
1

N

∣∣∣∣∣∣
N∑
k=1

exp(jΦk
1,2(t, ω))

∣∣∣∣∣∣
=

1

N

∣∣∣∣∣∣
N∑
k=1

(
cosΦk

1,2(t, ω) + j sinΦk
1,2(t, ω)

)∣∣∣∣∣∣
=

1

N

∣∣∣∣∣∣
N∑
k=1

cosΦk
1,2(t, ω) + j

N∑
k=1

sinΦk
1,2(t, ω)

∣∣∣∣∣∣
=

1

N

√√√√√ N∑
k=1

cosΦk
1,2(t, ω)

2

+

 N∑
k=1

sinΦk
1,2(t, ω)

2

=
1

N
[N + 2

N−1∑
i=1

N∑
k=i+1

(cosΦi
1,2(t, ω) cosΦ

k
1,2(t, ω)

+ sinΦi
1,2(t, ω) sinΦ

k
1,2(t, ω))]

1/2 (2.28)

Since cosΦi
1,2(t, ω) cosΦ

k
1,2(t, ω) + sinΦi

1,2(t, ω) sinΦ
k
1,2(t, ω) = cos(Φi

1,2(t, ω) − Φk
1,2(t, ω)),

Eq. (2.28) can be rewritten as:

PLV (t, ω) =
1

N

√√√√N + 2
N−1∑
i=1

N∑
k=i+1

cos Φ̃ik
1,2(t, ω) (2.29)

where Φ̃ik
1,2(t, ω) = Φi

1,2(t, ω)− Φk
1,2(t, ω).

In particular, the phase difference, Φk
1,2(t, ω) for k = 1, 2, . . . , N , between two low-

synchrony signals is modeled as a uniformly distributed random variable over [−π, π]. Then
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the difference, Φ̃ik
1,2(t, ω) = Φi

1,2(t, ω) − Φk
1,2(t, ω), will have a triangular distribution since

the sum of two independent identically distributed random variables results in a new random

variable, whose probability density function (pdf) is the convolution of the two initial pdfs

(convolution of two uniform distributions results in a triangular distribution). Hence, the

pdf of Φ̃ik
1,2(t, ω) is:

f
Φ̃
(Φ̃) =



2π+Φ̃
4π2

if − 2π ≤ Φ̃ ≤ 0

2π−Φ̃
4π2

if 0 < Φ̃ ≤ 2π

0 otherwise

Making the substitution, Υik
1,2(t, ω) = cos Φ̃ik

1,2(t, ω), Eq. (2.29) can be written as:

PLV (t, ω) =
1

N

√√√√N + 2
N−1∑
i=1

N∑
k=i+1

Υik
1,2(t, ω) (2.30)

Two solutions of Υ = cos Φ̃ exist for Φ̃ in [−π, π], Φ̃1 = cos−1(Υ) and Φ̃1 = − cos−1(Υ).

Differentiation of Υ with respect to Φ̃ leads to d
dΦ̃

(cos Φ̃) = − sin Φ̃ and the pdf of the random

variable, Υ, can be computed as:

fΥ(Υ) =
1/2π

| − sin(cos−1(Υ))|
+

1/2π

| − sin(− cos−1(Υ))|
=

1

π sin(cos−1Υ)
for − 1 ≤ Υ ≤ 1

(2.31)

To further simplify the expression in Eq. (2.30), a new random variable, ξ, is introduced as:

ξ =
1

N2

N−1∑
i=1

N−i∑
k=1

Υik
1,2(t, ω). (2.32)
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Hence, PLV can be written as:

PLV (t, ω) =

√
1

N
+ 2ξ, (2.33)

and the expected value of the PLV can be evaluated as follows [89]:

E
[
PLV (t, ω)

]
=

∫ 1

0

√
1

N
+ 2ξ fξ(ξ) dξ (2.34)

The random variable ξ can be numerically approximated as a shifted exponential random

process with probability density function [89]:

fξ(ξ) = Ne
−N

(
ξ+ 1

2N

)
, (2.35)

Fig. 2.3 shows the empirical pdf of ξ and the hypothesized distribution in Eq. (2.35).

Empirical pdf is obtained from 100000 independent random variables generated in accordance

with Eq. (2.32). The empirical distribution is close to the hypothesized pdf as shown by

the Kolmogorov-Smirnov goodness-of-fit test at the %5 significance level, where the null

hypothesis that ξ follows the pdf in Eq. (2.35) can not be rejected (p = 0.3281 > 0.05).

Once this approximation is made, it has been shown that the expected value of the phase

synchrony is governed by [89]:

E
[
PLV (t, ω)

]
≈ 1√

N
(2.36)

Based on these results, the expected value of the phase synchrony for a low synchrony signal

pair is not exactly equal to zero due to the limited number of trials and has a bias which is

inversely proportional to N .
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Figure 2.3: Empirical and the hypothesized distributions of ξ in Eq. (2.32): Empirical pdf
is obtained from 100000 independent random variables generated in accordance with Eq.
(2.32).

This result is experimentally validated through 200 simulations for different number of

trials, N , for signals with 128 samples. Fig. 2.4 indicates that the average PLV value for a

low-synchrony signal pair has a bias for small number of trials. Furthermore, average PLV

follows the rule given in Eq. (2.36).

2.6 Simulation Results

In this section, we will illustrate the accuracy of the proposed phase estimator and corre-

sponding phase synchrony measure through simulations and comparisons to CWT based

methods. We will also evaluate the derived CRLB and compare with estimator variance for

simulated signals.
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2.6.1 Performance of the Rihaczek Distribution in Estimating Time-

Varying Phase and Phase Difference

In order to test the performance of the proposed method in tracking the time-varying phase

difference, two chirp signals with exponentially decaying amplitudes are considered:

x1(n) = e−ne
j
(
2π
(
−10
5.12n+12

)
n
)
,

x2(n) = e−ne
j
(
2π
(
−8
5.12n+12

)
n+π/2

)
for 1 ≤ n ≤ 256 (2.37)

The two signals, x1 and x2, have different linear chirp rates resulting in a time-varying

phase difference. As seen in Fig. 2.5, the actual and the estimated phase differences using

Rihaczek distribution overlap at the instantaneous frequency. Therefore, the phase estimator

can track the evolution of changing phase difference as a function of time. This example can
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be generalized to any signal pairs.
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Figure 2.5: Performance of Rihaczek distribution in estimating the time-varying phase dif-
ference between two chirp signals: (Left) Magnitudes of the two signals, (Right) Actual and
estimated phase differences (in radians) as a function of time.

2.6.2 Effect of the Kernel on Phase Estimation

Although the kernel function is useful for removing the cross-terms for multicomponent

signals, it has a smoothing effect in the ambiguity domain. Hence, the time varying phase

estimation will be influenced by the kernel function. The effect of the kernel on the bias

and variance of the estimator are shown in detail in Section 2.6.3. In this section, we want

to illustrate the effect on the actual phase function as a function of time. The following

signal is considered to illustrate the effect of the kernel function on the time-varying phase
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estimation:

x1(n) = ej2π
40
100n for 1 ≤ n ≤ 100. (2.38)

Fig. 2.6 shows the actual and estimated phase at the instantaneous frequency for the Ri-

haczek and RID-Rihaczek distributions in the absence of noise. Rihaczek distribution is able

to track the time-varying phase, whereas the phase estimated by the RID-Rihaczek deviates

from the actual phase slightly. This is the effect of the kernel on the phase estimation oc-

curring due to the convolution of the original spectrum and phase with the kernel function.
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Figure 2.6: Actual and estimated unwrapped time-varying phase at the instantaneous fre-
quency for the Rihaczek and RID-Rihaczek distributions in the absence of noise: The signal
in Eq. (2.38) is considered with 100 Hz sampling frequency.
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2.6.3 Statistical Evaluation of the Phase Estimator: Comparison

of CRLB and Variance

In order to assess the statistical performances of the phase estimators, a signal set consisting

of two constant amplitude chirp signals with different chirp rates is considered:

z1[n] = ej(0.1n+
0.3
256n

2) + e1[n]

z2[n] = ej(0.1n+
0.8
256n

2) + e2[n] for 1 ≤ n ≤ 128 (2.39)

where e1 and e2 are complex white Gaussian noise sequences. SNR values from 0 dB to

30 dB are considered with 1600 simulations for 128 time points. For both signals, using the

relation in Eq. (2.25), the total variance of the RID-Rihaczek and CWT phase estimators

are compared with the total CRLBs computed at the frequency of interest, i.e., the instanta-

neous frequency. Furthermore, to examine the bias-variance trade-off of the two estimators,

averaged normalized bias is plotted as a function of SNR.

Figs. 2.7(a) and 2.7(b) show the total variance and total CRLB as a function of SNR for

the signals, z1 and z2 for both RID-Rihaczek and CWT, respectively. Similarly, Figs. 2.8(a)

and 2.8(b) show the normalized bias as a function of SNR for the two methods. First, the

CRLB is always less than the variance for both of the phase estimators as expected. Similarly,

as the SNR increases, CRLB and variance decrease for both methods. However, for the signal

z1, the decrease in the variance is faster for RID-Rihaczek compared to CWT. Second, the

CRLB for RID-Rihaczek is lower than the CRLB for CWT when SNR is between 0 and

25 dB. In addition, the variance of RID-Rihaczek is also lower than the variance of CWT

when SNR is between 3 and 26 dB. This indicates that the RID-Rihaczek is more robust
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to noise and is a more precise phase estimator than the CWT for a wide range of SNRs.

This improved performance of RID-Rihaczek in terms of variance comes at the expense of

increased bias as shown by Figs. 2.8(a) and 2.8(b). On the other hand, for the signal z2, the

CRLB for RID-Rihaczek is lower than the CRLB for CWT when the SNR is between 0 and

10 dB and the variance of RID-Rihaczek is lower than the variance of CWT when the SNR

is between 5 and 10 dB. However, the normalized bias for RID-Rihaczek is lower than the

normalized bias for CWT for all SNR values. The increase in the variance and the decrease

in the bias for RID-Rihaczek are due to the faster rate of change of the frequency spectrum.

When the signal covers a broader band of frequencies, CWT has a harder time discriminating

between the different components thus leading to a higher bias. RID-Rihaczek, on the other

hand, offers uniform resolution resulting in lower bias at the expense of increased variance.

Therefore, Figs. 2.7 and 2.8 illustrate the bias-variance trade-off when the chirp rate of the

signal is varied.

2.6.4 Evaluation of the Time-Frequency Resolution of RID-TFPS

The performance of the RID-TFPS measure is compared to the Wavelet-TFPS measure for

signals with time-varying frequency content. The goal of this comparison is to illustrate

how the two methods differ in the way that they track phase synchrony across time and a

range of frequencies. For this purpose, two linear chirp signals are considered with constant

phase difference, i.e. x1(t) = exp(j(ω0t + βt2)) and x2(t) = exp(j(ω0t + βt2 + θ)), where

ω0 = 0.5, β = −0.00117 in terms of the normalized frequency for 128 time samples. The

parameters ω0 and β were chosen such that the signal covers a broad range of frequencies,

i.e. it is not narrowband, and that there is no aliasing in frequency. 200 simulations of this

signal model are performed with uniformly distributed random phase difference and additive
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(a) Total variance and total CRLB for the signal z1
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(b) Total variance and total CRLB for the signal z2

Figure 2.7: Comparison of the performance of RID-Rihaczek with the performance of CWT
in tracking the time and frequency varying phase: (a)-(b) illustrate the total variance and
total CRLB for both of the phase estimators as a function of SNR. 1600 simulations are
performed for 128 time points.

white Gaussian noise at a SNR value of 10 dB.

Fig. 2.9 shows that around the instantaneous frequency, which is the derivative of the

instantaneous phase and shown by the black lines, RID-TFPS is close to 1 (the maximum
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Figure 2.8: Comparison of the performance of RID-Rihaczek with the performance of CWT
in tracking the time and frequency varying phase: (a)-(b) illustrate the normalized bias for
both of the phase estimators as a function of SNR. 1600 simulations are performed for 128
time points.

synchrony is equal to 0.9942) and smoothly tapers off as the frequency moves away from

the instantaneous frequency. On the other hand, Wavelet-TFPS has a larger spread around

the instantaneous frequency (the maximum synchrony is equal to 0.9586) compared to the
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spread of the RID-TFPS. The difference in the concentration of the PLV values around

the instantaneous frequency can be quantified by computing the mean squared error (MSE)

between the ideal PLV profile and the computed ones. The ideal PLV profile is a time-

frequency surface with ones at the instantaneous frequency and zeros everywhere else, and

can be easily obtained by computing the Wigner distribution and estimating the instanta-

neous frequency. For RID-TFPS, MSE is equal to 0.2427 whereas for Wavelet-TFPS it is

equal to 0.3682, indicating a larger deviation from the ideal case. It is also important to note

that for the Wavelet-TFPS, the bandwidth around the instantaneous frequency increases as

the instantaneous frequency increases. This is due to the fact that at high frequencies the

wavelet transform has high time resolution at the expense of low frequency resolution.

2.6.5 Robustness of RID-TFPS to Noise

The robustness of the RID-TFPS measure in noise is evaluated and compared to the perfor-

mance of the Wavelet-TFPS measure. In order to evaluate the robustness in noise, a high

synchrony signal pair consisting of two sinusoids with constant phase difference is considered:

x1[n] = sin(16πn) + e1[n]

x2[n] = sin(16πn+ π/4) + e2[n] (2.40)

where e1 and e2 are independent white Gaussian noise processes at different variance levels,

with SNR varying in the range of −20 dB to 30 dB. 200 simulations with 200 trials of the two

signal models for 64 time points are considered to evaluate the distribution of the synchrony

values.

Ideally, the synchrony value between the two signals with constant phase difference is
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Figure 2.9: RID-TFPS vs Wavelet-TFPS: Phase synchrony in the time-frequency plane for
two chirp signals with constant phase shift

expected to be equal to one. Fig. 2.10 illustrates the performances of the RID-TFPS and

Wavelet-TFPS in estimating the true phase synchrony for different SNR values. The average

synchrony values are plotted with increasing SNR values and the bars indicate the standard
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deviations. When the SNR is less than −10 dB and greater than 10 dB, performances of

both methods are almost the same. However, RID-TFPS is larger than the Wavelet-TFPS

for −10 dB ≤ SNR ≤ 10 dB. Furthermore, for all of the SNR values, a Welch’s t-test is used

at 5% significance level to test the null hypothesis that the synchrony values from RID-TFPS

and Wavelet-TFPS are independent random samples from normal distributions with equal

means, against the alternative that the means are not equal. At all SNR values, the p-values

provided by the t-test are less than 0.05. Hence, the null hypothesis is rejected at all SNR

values. This indicates that the RID-TFPS is significantly larger than the Wavelet-TFPS and

outperforms the Wavelet-TFPS, especially for the case −10 dB ≤ SNR ≤ 10 dB.
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Figure 2.10: Comparison of noise robustness: Performances of the RID-TFPS and Wavelet-
TFPS in estimating the true phase synchrony between a signal pair with constant phase
difference for different SNR values, bars indicate the standard deviations.
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2.6.6 Kuramoto Model: Comparison of RID-TFPS with Wavelet-

TFPS for Multiple Oscillators

In order to assess the performance of the RID-TFPS measure in representing the true phase

synchrony and to compare it with the Wavelet-TFPS in a multiple oscillator setting, a well-

studied model of globally coupled limit-cycle oscillators, introduced by Kuramoto [90], is

used. A detailed overview on Kuramoto model can be found in [91, 92, 93].

The model describes the phase dynamics of a large network of M globally coupled limit-

cycle oscillators [94]. Based on this model, phase dynamics are given as follows:

dϕi
dt

= wi +
K

M

M∑
j=1

sin (ϕj − ϕi) (2.41)

where ϕi represents the phase of the ith oscillator, with the natural frequency wi distributed

with a given probability density g(w), and K denotes the coupling strength (strength of

the contributions from the other oscillators to the phase of the ith oscillator). Hence, the

time-varying phase of each oscillator is determined by its natural frequency and the average

influence of all other oscillators. In other words, each oscillator tries to oscillate indepen-

dently at its own frequency but the coupling tends to synchronize it to the other oscillators

in the network [92]. A common choice of the distribution, g(w), of the natural frequencies

is the Lorentzian distribution with center frequency w0 and width γ and is given by:

g(w) =
γ

π
[
γ2 + (w − w0)2

] (2.42)

When all the oscillators are running independently, the magnitude of the phase synchrony

goes to zero and tends to increase in synchronized states. When the network is perfectly
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phase-locked, the phase synchrony is equal to 1. Kuramoto showed that there is a phase

transition from a desynchronized to a partially synchronized state at a critical K value,

K = Kcrit. When K < Kcrit, the network is not synchronized and when K > Kcrit, a

cluster of synchronized oscillators emerges and expands with increasing K. Kuramoto also

showed that if the natural frequencies are collected from the Lorentzian distribution in Eq.

(2.42), the critical value of K is as follows:

Kcrit = 2γ (2.43)

Hence, the phase transition of the network is determined by the width of the distribution of

the natural frequencies.
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Figure 2.11: Mean RID-TFPS and mean Wavelet-TFPS (PLV, averaged over all possible
pairs of 16 oscillators) as a function of the coupling strength K, where the number of trials,
N = 200. Error bar indicates the standard deviation. Center frequency of the oscillators is
w0 = 200 rad/sec and the distribution width γ = 60 rad/sec which results in Kcrit = 120.

Model Simulations: In the simulations, a system of M = 16 oscillators is used. For

each oscillator, Eq. (2.41) is numerically integrated using the Runge-Kutta method with
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a time step of ∆t = 1/128 sec corresponding to a sampling frequency of 128 Hz and thus,

the time-varying phases of all oscillators are obtained. The time series corresponding to the

oscillator i is formed by sin (ϕi(t)) +ni(t) for i = 1, 2, . . . , 16, with 128 samples, where ni(t)

is additive white Gaussian noise at a SNR of 10 dB. The natural frequencies are collected

from the Lorentzian distribution given by Eq. (2.42) with the center frequency w0 = 200

rad/sec and the width γ = 60 rad/sec. Hence, the critical K value is Kcrit = 2γ = 120.

Simulations are performed for increasing K values from 0 to 540, in steps of 60.

For each value of the coupling strength K, RID-TFPS and Wavelet-TFPS values, aver-

aged over all pairs of 16 oscillators, are computed using Eq. (2.3) where the number of trials,

N = 200, and are plotted as a function of K. For each oscillator pair, a single synchrony

value is obtained by computing two PLV values at the two different natural frequencies of

the two oscillators and calculating the mean of the two values. Averaging over all pairs, a

single PLV value is obtained for each K value. Fig. 2.11 illustrates how the mean RID-

TFPS and Wavelet-TFPS change with increasing coupling strength. First, in the absence of

synchrony (K = 0), Wavelet-TFPS is larger than 0.35 indicating a bias in the wavelet based

measure. For K = 0, ideally phase synchrony should be equal to zero but Wavelet-TFPS

gives a spuriously high synchrony value at this level and stays at about a synchrony of 0.4

for K < Kcrit = 120. In contrast, RID-TFPS is almost equal to zero at K = 0 which

represents the true synchrony and it stays low for K < 120. Second, when K = Kcrit, the

model starts to generate partially coupled oscillators and RID-TFPS is very sensitive to the

increase in the coupling strength of the system. This can be seen by the sudden increase

in the RID-TFPS from K = 60 to K = 120. The Wavelet-TFPS also increases at this K

value but the sensitivity of it in detecting the partial synchrony in the system is smaller

compared to RID-TFPS. Thus, RID-TFPS performs better in tracking the true changes in

49



the coupling strength, especially for low K values and is more reliable than Wavelet-TFPS.

Finally, both of the methods perform well in estimating the true synchrony, which should be

close to 1, for large values of K. From all these results, it can be stated that RID-Rihaczek is

a more efficient and reliable method than Wavelet-TFPS in estimating the underlying phase

synchrony in a large network of oscillators and it tracks the real synchrony better than

Wavelet-TFPS. The degradation in performance of the Wavelet-TFPS is due to the fact

that the time-frequency resolution of the wavelet transform is lower than the resolution of

the RID-Rihaczek distribution. The wavelet transform produces a larger bandwidth around

the natural frequency of the oscillators and although the spread of the natural frequencies

of the oscillators is large, γ = 60 rad/sec, this causes an overlap between the time-frequency

energy distributions of the oscillators. This overlap results in a large Wavelet-TFPS value

even for small coupling strengths.

2.7 Conclusions

In this chapter, a new time-varying phase estimation method based on the RID-Rihaczek

distribution is proposed. The performance of the phase estimator and the corresponding

synchrony measure are evaluated both analytically and through simulations in comparison

to existing measures in particular to continuous wavelet transform based estimates. Both the

analytical and the simulation results show RID-Rihaczek phase and synchrony estimators

to be more robust to noise, have better time-frequency resolution and perform better at

detecting actual synchrony in the system, in particular for a network of oscillators.

Future work will concentrate on exploring different complex time-frequency distributions,

such as multivariate empirical mode decomposition [95], to develop more statistically sta-
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ble and computationally efficient time-varying phase estimates for non-stationary signals.

Applications of the developed measures to real signals include determining the functional

connectivity networks of the brain from EEG and MEG signals through time-varying phase

synchrony analysis.
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Chapter 3

Joint-Frequency Representations for

Cross-Frequency Coupling

3.1 Introduction

Electrophysiological brain oscillations in various frequency bands, ranging from delta (1-4 Hz)

to gamma (30-150 Hz) and beyond, have been linked to a range of cognitive and perceptual

processes. Recently, cross-frequency (CF) coupling has been suggested as a plausible mecha-

nism in neuronal computation, communication and learning [30, 29, 4]. CF coupling can be

defined as a phenomenon where the basic activity resources defined by distinct frequencies

might cause a more complex regulatory structure through interactions between different fre-

quency bands. These interactions transfer information from large-scale brain networks to the

fast, local cortical processing, thus integrating functional systems across multiple spatiotem-

poral scales [96]. Although oscillations in different frequency bands may remain independent,

statistical relationships among neuronal oscillations in different frequency bands have been

observed for electrohysiological recordings in humans and animals during cognitive tasks

[4, 96, 25]. There are several manifestations of cross-frequency coupling including power-

to-power modulation where the power (or amplitude) of the high frequency oscillations is

modulated by the power of the low frequency oscillations and phase-to-power modulation

where the phase of the low frequency oscillations modulates the power of the high frequency
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oscillations. For instance, Canolty et al. investigated the relationship between theta and

gamma oscillations and found that the power (or amplitude) of the fast gamma oscillations

was systematically modulated during the course of a theta cycle [97]. However, little is

known about the nature of interactions among oscillations in various frequency bands.

Theoretically, cross-frequency interactions might occur in multiple ways (Fig. 3.1 [4])

and among these, two principal forms of CF coupling have been recognized: (n : m) or CF

phase synchrony, which indicates phase locking between n cycles of one oscillation and m

cycles of another oscillation [15], and systematical amplitude modulation (AM) of the power

of high frequency oscillations by the phase of low frequency oscillations, which is known as

the modulation effect [4]. Palva et al. used neuromagnetic recordings to investigate whether

the human cortex exhibits (n : m) phase synchrony among oscillations and quantified this

synchrony using the continuous wavelet transform (CWT) with a complex Morlet wavelet

to estimate the time and frequency dependent phase of recordings [29]. Cohen, on the other

hand, investigated the modulation effect using phase synchrony by first narrow band-pass

filtering EEG recordings in combination with the Hilbert transform. In the first step, the

power series corresponding to the gamma band is extracted. In the second step, a lower

frequency band that the upper frequency power time series might be synchronized with is

empirically identified. Finally, the phase of the two time series are estimated using the

Hilbert transform and phase-to-power coupling is quantified [30]. Similarly, Voytek et al.

[98] used phase synchrony to identify the modulation effect of theta and alpha phase on the

gamma amplitude [98].

The similarities or differences between the two forms of CF coupling remain subtle and

have not been addressed before. Although the two forms are not directly related to each

other, one can not claim that the two approaches to CF coupling are independent. For
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Figure 3.1: Principal Forms of Cross-Frequency Interactions [4]: (a) A slow oscillatory signal
in the theta band (e.g., 8 Hz): the frequency remains fairly constant whereas the amplitude
(red line) of the signal fluctuates. The different ways in which faster oscillatory signals (e.g.,
gamma oscillations) can interact with such a signal are: (b) the fluctuations in power of
the faster oscillations are correlated with power changes in the lower frequency band. This
interaction is independent of the phases of the signals; (c) (n : m) phase synchrony occurs
between slower and faster oscillations. In each slow cycle, there are four faster cycles and
their phase relationship remains fixed which indicates a phase locking between the signals; (d)
the frequency of the fast oscillations is modulated by the phase of the slower oscillations; and
(e) the power of the faster oscillations is modulated by the phase of the slower oscillations.

instance, the instantaneous frequency of a signal x3(t) = x1(t)x2(t), where x1(t) is the

amplitude modulator and x2(t) is the carrier, depends on the frequency of the modulator.

Hence, the instantaneous phase of x3(t) is affected by the modulator and this might cause

a CF phase synchrony between the modulator, x1(t), and the signal, x3(t). For example, if

x1(t) is a sinusoid at 20 Hz and x2(t) is a sinusoid at 60 Hz, there will be (2 : 1) and (4 : 1) CF

phase synchronization between the signals x1(t) and x3(t). Thus, for this example, amplitude

modulation results in a CF phase synchrony. However, the same CF phase synchrony can

be observed between the signals x1(t), a sinusoid at 20 Hz, and x3(t), sum of two sinusoids

at frequencies 40 Hz and 80 Hz. Therefore, despite the fact that amplitude modulation

might lead to a CF phase synchrony, one can not uniquely identify the cause of the observed
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phase synchrony. Thus, CF phase synchrony does not provide direct information about the

generating signal interaction model. Moreover, if the modulating signal, x1(t), or the carrier,

x2(t), are not narrowband, it will be hard to learn any information about the modulation

relationship from the CF phase synchrony since one will observe phase synchrony values

at a large range of frequencies. In summary, CF phase synchrony is not a direct way of

quantifying the modulation relationship between signals and one needs a more precise and

direct approach to identify the modulation effect.

In this chapter, we propose two complementary methods to quantify CF phase synchrony

and modulation effect. The first method is based on the RID-Rihaczek distribution and is an

extension of Palva et al.’s Morlet wavelet based CF phase synchrony measure. The second

method is based on defining a cross frequency-spectral lag distribution that is focused on

quantifying the amount of amplitude modulation between signals. Both methods can be

employed to quantify both phase-phase locking and amplitude-phase locking. The major

difference between the two proposed methods is that the first method does not imply any

particular form for the underlying signal model whereas the cross frequency-spectral lag based

approach assumes an AM generating model for the signals. The organization of this chapter

is as follows: In section 3.2, we present the first approach and demonstrate the accuracy of

the CF phase synchrony estimator through simulations. In section 3.3, we propose the second

approach which is closely related to the modulation frequency and modulation spectrum in

speech processing literature. The performance of the proposed distribution is illustrated for

simulated signals as well as for electroencephalogram (EEG) signals. Finally, in section 3.4,

we discuss and summarize the similarities and differences between the two approaches for

investigating CF interactions.
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3.2 Cross Frequency Phase Synchronization

In this section, we will extend the RID-Rihaczek based phase synchrony measure to quantify

the CF phase synchrony between two signals across different frequencies. As illustrated in

chapter 2, RID-Rihaczek distribution offers time and frequency dependent phase information,

ϕ(t, ω), of a signal x(t). In this section, we exploit this property of RID-Rihaczek distribution

and modify the definition of (1 : 1) phase locking value (PLV) to define (n : m) or CF phase

locking value (CFPLV) between signals, x1(t) and x2(t), as follows:

CFPLV1,2(t, ω1, ω2) =
1

N

∣∣∣∣∣∣
N∑
k=1

exp

(
j

(
ω2
ω1

ϕk1(t, ω1)− ϕk2(t, ω2)

))∣∣∣∣∣∣ , (3.1)

where N is the number of trials and ϕk1(t, ω) and ϕk2(t, ω) are the time and frequency depen-

dent phases of signals, x1(t) and x2(t), for the k
th trial. According to the classical definition

of (n : m) phase synchrony, n and m have to be integers [15, 29]. However, this is not a

necessary condition for the CF phase synchrony to evaluate phase locking due to the fact

that at least one period of the slower oscillation, which is phase locked to multiple periods

of the faster oscillation, provides sufficient information about the signal’s characteristics and

is adequate for tracking the phase locking between the slower and faster oscillations. In Eq.

(3.1), n corresponds to
ω2
ω1

, any arbitrary positive value, whereas m = 1. Similar to the PLV,

CFPLV is in the range [0, 1] where 1 indicates perfect CF phase locking and zero indicates

no coupling between the two signals. CFPLV can be considered as a 3-dimensional CF phase

synchrony measure which has the axes, time, ω1 and ω2, respectively. Since it might be hard

to inprete these three-dimensional synchrony values for the CF coupling, in this section, we
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will integrate the CFPLV and compute the mean along the time axis:

CFPLV (ω1, ω2) =
1

T

T∑
t=1

CFPLV1,2(t, ω1, ω2) (3.2)

where T is the number of time points. Therefore, CFPLV will be represented as a two-

dimensional function of ω1 and ω2. By looking at the CFPLV, one can identify the CF

phase synchrony at all possible frequency pairs. For example, for a signal set consisting of

two sinusoids, x1(t) = sin (ω1t) and x2(t) = sin (ω2t), the only nonzero element of the 2-D

CFPLV should be at (ω1, ω2) since the two signals have constant instantaneous frequencies.

3.2.1 Accuracy of RID-Rihaczek Distribution in Estimating CF

Phase Synchrony

In Chapter 2, it was shown that the phase estimate from the Rihaczek distribution is not un-

biased. Hence, the accuracy of the proposed distribution, which depends on the Rihaczek dis-

tribution, in quantifying CF phase synchrony needs to be evaluated. The time and frequency

dependent phase from Rihaczek distribution was estimated as ϕ(t, w) = ϕ(t) − θ(ω) − ωt,

where ϕ(t) and θ(ω) refer to the phase in the time and the frequency domains, respec-

tively. However, finding analytical expressions for the frequency domain phase of signals

with arbitrary phase in the time domain is not possible since these expressions depend on

the underlying signals. Therefore, we consider a simpler signal set consisting of two second
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order polynomial phase signals:

x1(t) = ejϕ1(t) = ej(βt
2)

x2(t) = ejϕ2(t) = ej(
β
2 t

2+K) (3.3)

where K is the constant phase difference and the instantaneous frequency of x1(t), ω1(t) =

2βt, is two times the instantaneous frequency of x2(t), ω2(t) = βt. Since ϕ1(t) = 2ϕ2(t), (1 :

2) CF phase synchrony exists between the two signals since |Φ1,2(t) = ϕ1(t)− 2ϕ2(t)| = 2K

is constant. Therefore, the ideal CF phase synchrony is equal to one. θ1(ω) and θ2(ω) need

to be computed from the Fourier transforms, X1(ω) and X2(ω):

X1(ω) =
1√
2β

e
−j

(
ω2

4β
−π
4

)

X2(ω) = ejK
1√
β
e
−j

(
ω2

2β
−π
4

)
(3.4)

as

θ1(ω) = −(
ω2

4β
− π

4
) (3.5)

θ2(ω) = K − (
ω2

2β
− π

4
)

Note that the instantaneous frequency of x1(t), ω1(t) = 2ωt, is two times the instantaneous

frequency of x2(t), ω2(t) = ωt. Hence, the time and frequency dependent phases, ϕ1(t, w)
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and ϕ2(t, w), are computed as:

ϕ1(t, w) = βt2 +
(2βt)2

4β
− π

4
− 2βt2

ϕ2(t, w) =
βt2

2
+

(βt)2

2β
− π

4
− βt2 (3.6)

Finally, the phase difference between the two signals is obtained as:

|Φ1,2(t, w)| = |ϕ1(t, w)− 2ϕ2(t, w)| =
π

4
(3.7)

One can see that the Rihaczek distribution provides a constant phase difference for the signal

model in Eq. (3.3), which results in an ideal CF phase synchrony value. Therefore, Rihaczek

distribution can be used to quantify the CF phase synchrony since the bias is removed due to

the CF interactions as in Eq. (3.7). In fact, this example signal model does not provide an

analytical proof that the Rihaczek distribution is an unbiased CF phase synchrony estimator,

but it provides some inspiration for the use of the proposed method in estimating CF phase

synchrony.

3.2.2 Simulation Examples

In order to evaluate the performance of the proposed method in estimating CF phase syn-

chrony, we consider a signal set consisting of two sinusoids with constant phase difference:

x1(t) = cos (2π20t) + e1(t)

x2(t) = cos (2π70t+ π/3) + e2(t) (3.8)
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where e1(t) and e2(t) are complex white Gaussian noise sequences. SNR value of 10 dB

is considered with 200 trials for 256 time points and the sampling rate is 256 Hz. The

two signals are (3.5, 1) phase synchronized and ideally, the only nonzero element of CFPLV

should be at (20Hz, 70Hz) point. Fig. 3.2 shows the CFPLV for the signal model in Eq.

(3.8). As expected, CFPLV (20, 70) has the largest synchrony value of 0.802. There is some

spread around this point due the smoothing filter in the ambiguity domain.
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Figure 3.2: CF phase synchrony for the signal model in Eq. (3.8). CFPLV (20, 70) has the
largest synchrony value and the CFPLV is concentrated around this point.

The second signal model we consider is a signal set consisting of two constant ampli-

tude chirp signals, x1(t) and x2(t), with constant phase difference where the instantaneous

frequency, ω2(t), of x2(t) is a function of the instantaneous frequency, ω1(t), of x1(t):

x1(t) = ejϕ1(t) + e1(t) = ej2π(20t+15t2) + e1(t)

x2(t) = ejϕ2(t) + e2(t) = ej2π(40t+30t2+π/3) + e2(t) (3.9)
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SNR value of 10 dB is considered with 200 trials for 256 time points and the sampling

rate is 256 Hz. The instantaneous frequency f1(t) = 1
2π

∂ϕ1(t)
∂t , is initially equal to 20 Hz

and increases up to 50 Hz which is the final value. f2(t) is two times the value of f1(t)

and therefore, it is initially equal to 40 Hz and increases up to 100 Hz. Fig. 3.3 shows

the CFPLV for the two chirp signals. The dashed black line indicates the ideal CFPLV

profile, where CFPLV is equal to one on this line and zero everywhere else, and represents

both the range of instantaneous frequencies, f1 and f2, and the relationship between them.

The slope of the line is constant and equal to two. As one can see, CFPLV is highest
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Figure 3.3: CF phase synchrony for the signal model in Eq. (3.9): The dashed black line
indicates the ideal CFPLV profile, where CFPLV is equal to one on this line and zero
everywhere else, and represents both the range of instantaneous frequencies, f1 and f2, and
the relationship between them, f2(t) = 2f1(t). f1 has the range [20, 50] Hz and f2 has the
range [40, 100] Hz.

(0.7283) and concentrated on this line. For this example model, the relationship between

the instantaneous frequencies of the two chirp signals is linear. The spread around the black

line or the deviation from the ideal CFPLV profile is because of the residual cross-terms and
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the noise effect.

Finally, we consider a signal model where the relationship between instantaneous fre-

quencies is nonlinear:

x1(t) = ejϕ1(t) + e1(t) = ej2π(10t+55t2) + e1(t)

x2(t) = ejϕ2(t) + e2(t) = e
j2π
(
260
160 t+

3960
320 t2+12100

480 t3+π/3
)
+ e2(t) (3.10)

where f1(t) = 10 + 110t, is initially equal to 10 Hz and increases up to 120 Hz and f2(t) =

f1(t)
10 +

f21 (t)
160 = 260

160+
3960
160 t+

12100
160 t2 , is initially equal to 1.625 Hz and increases up to 102 Hz.

Fig. 3.4 shows the CFPLV for the model in Eq. (3.10). The dashed black quadratic curve

indicates the ideal CFPLV profile. CFPLV is highest (0.4937) and concentrated around this

nonlinear curve. Hence, RID-Rihaczek distribution performs well in estimating CF phase

synchrony between signals whether the relationship between their instantaneous frequencies

is linear or nonlinear.

3.2.2.1 Evaluating Amplitude Modulation Through CFPLV

As discussed in the Introduction, modulation effect and CF phase synchrony are interrelated

approaches to quantifying CF coupling between signals. Here, we consider an amplitude

modulation model consisting of two sinusoids to evaluate the modulation effect through

CFPLV:

x1(t) = cos(2π40t) + e1(t)

x2(t) = x1(t) cos(2π60t) + e2(t) (3.11)

62



f
1
 (Hz)

f 2 (
H

z)

CFPLV

 

 

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3.4: CF phase synchrony for the signal model in Eq. (3.10): The dashed black
quadratic curve indicates the ideal CFPLV profile. The relation between the two instanta-

neous frequencies is f2(t) =
f1(t)
10 +

f21 (t)
160 , where f1 has the range [10, 120] Hz and f2 has the

range [1.625, 102] Hz.

where x1(t) is the amplitude modulator of x2(t) and SNR value of 10 dB is considered with

200 trials for 256 time points and the sampling rate is 256 Hz. From Fig. 3.5, one can

see that x1(t), at frequency 40 Hz, is phase synchronized with x2(t), at both 20 Hz and

100 Hz. This is caused by the modulation of x2(t) by x1(t). For this example, amplitude

modulation results in a clear CF phase synchrony since the modulator and the carrier signals

are sinusoids. However, for wide-band modulating and carrier signals, one will observe CF

synchrony values at a large range of frequencies.
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Figure 3.5: CFPLV for the signal model in Eq. (3.11): x1(t), at frequency 40 Hz, is CF
synchronized with x2(t), at both 20 Hz and 100 Hz. This is caused by the modulation of
x2(t) by x1(t) and shows that AM might result in a CFPLV between signals.

3.3 Joint Frequency Spectral Lag Representation for

Cross-Frequency Modulation Analysis in the Brain

Until recently, modulation between different frequency ranges has been quantified using phase

synchrony measures. However, CF phase synchrony does not provide direct information

about the nature of the interactions, i.e. it’s not clear from CF phase coupling whether

there is an AM relationship between the two signals. Therefore, we define a new distribution

which can directly identify the existence and the amount of amplitude modulation between

signals and is closely related to the modulation frequency and spectrum in speech processing

literature. Modulation spectrum contains both short-term and long-term information about

the signal representing patterns of time variation and is generally computed by first applying

a Fourier transform on short-time windows of the signal, and then taking a Fourier transform
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of the sequence of short-term magnitude spectrum features.

The concepts of modulation frequency along with modulation spectrum are originally

encountered in acoustics, speech and audio processing. The joint frequency analysis has

been important in speech and audio recognition and classification applications and has been

referred to as joint acoustic and modulation frequency representation. This joint represen-

tation was inspired by the observation that very low frequency modulations of sound are the

fundamental carrier of information in speech of timbre in music, i.e. low bandwidth pro-

cesses modulate higher bandwidth carriers [99, 100]. Augmenting the conventional concept

of system function frequency analysis, Zadeh first proposed joint acoustic and modulation

frequency analysis, a separate frequency dimension for representing system variation [101].

Kailath performed the first analysis of this bifrequency system function and showed its ap-

plication to modulation-based systems [102]. More recently, Gardner extended the concept

of bifrequency analysis for cyclostationary systems, and these cyclostationary approaches

have been widely applied in parameter estimation and detection [103]. These studies do

not focus on decomposing a signal into its modulators and carriers. Recently, Atlas et al.

proposed modulation spectrum analysis and modulation filtering for separating out the low

frequency temporal envelope from the high frequency carrier signal [104, 99]. Modulation

filtering is defined as the process of modifying an analytical subband signal by filtering its

modulator and recombining the result with the original carrier [105]. Interest in modulation

filtering arises from the observation that envelope fluctuations in speech tend to be low-pass

in nature with a peak around the syllabic rate, or 3-4 Hz. However, modulation filtering,

which is based on the modulation spectrum, much like time-frequency distribution, is limited

to identifying the modulator and carrier of an individual signal, rather than investigating

the modulation relationship between signals. In this section, we introduce cross frequency-
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spectral lag representation based on the Wigner distribution to represent the modulation

relationships between two signals. The cross frequency-spectral lag distribution offers cross-

frequency coupling information and it focuses on amplitude modulation between two signals.

Furthermore, we define a measure of entropy and use some existing symmetric information

divergence measures to quantify the amount of modulation observed in the cross frequency-

spectral lag distribution.

3.3.1 Joint Frequency-Spectral Lag Distribution

Joint frequency representation, also referred to as joint frequency-spectral lag distribution,

can be defined based on the bilinear class of joint time-frequency distributions [79]. The sim-

plest joint frequency distribution for a signal x(t), Px(η, ω), where ω is the actual frequency

and η is the spectral lag or the modulation frequency, is defined as 1:

P (η, ω) =
1

2π

∫ ∫
x∗(t− τ

2
)x(t+

τ

2
)e−jωτe−jηtdτdt,

= X∗(ω − η

2
)X(ω +

η

2
) (3.12)

and is based on theWigner distribution of the signal,W (t, ω), since P (η, ω) =
∫
W (t, ω)e−jηtdt.

Similarly, P (η, ω) can be expressed as the 2-D Fourier transform of the signal’s local autocor-

relation function or time-varying correlation, R(t, τ) = x(t+ τ
2 )x

∗(t− τ
2 ). Bispectrum, which

is defined as the third order spectrum or the first member of higher-order spectra and is an

efficient way of capturing non-Gaussian correlations [106], resembles this joint representation

since it is the 2-D Fourier transform of the third-order cumulant sequences. However, there

is no direct connection between bispectrum and the joint frequency representation discussed

1All integrals are from −∞ to ∞ unless otherwise noted.
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here [104]. Due to the quadratic nature of the representation, cross-terms or interference

may occur. For real life signals, the effects of the cross-terms are reduced by two-dimensional

smoothing similar to the spectrogram. First, a two-dimensional smoothing function with an

appropriately chosen window length is used to estimate a joint time-frequency representation

and then a Fourier transform is applied along the time dimension yielding an estimate of

the modulation spectrum, PSP
x (η, ω) = Px(η, ω) ∗ Ph(η, ω), where Ph is the joint frequency

representation of the window function h.

3.3.2 Cross Frequency-Spectral Lag Distribution

Previous work in modulation spectrum analysis has focused on understanding how low fre-

quency information modulates high frequency carrier within a signal. However, for the

analysis of modulations between neural oscillations, the modulation spectrum defined above

is inadequate. For this reason, in this section we introduce cross-frequency-spectral lag

distribution to quantify the modulating effect of one signal, x1, on another one, x2:

Px1x2(η, ω) =
1

2π

∫ ∫
x∗1(t−

τ

2
)x2(t+

τ

2
)e−jωτ e−jηtdτdt,

= X∗
1 (ω − η

2
)X2(ω +

η

2
) (3.13)

This cross frequency-spectral lag distribution is closely related to the Cross-Wigner distribu-

tion of x1 and x2 through the Fourier transform. Similarly, Px1x2(η, ω) can be expressed as

the 2-D Fourier transform of the local cross-correlation function, x∗1(t−
τ
2 )x2(t+

τ
2 ). When

η = 0, this distribution reduces to cross-spectral density, X∗
1 (ω)X2(ω), and for non-zero η

values it quantifies the cross-spectrum for different frequency lags.

In order to illustrate the behavior of the proposed distribution, we consider a simple
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amplitude modulation (AM) model:

x1(t) = A cosωmt,

x2(t) = m(t)c(t) = (A+ A cosωmt)B cosωct (3.14)

where m(t) = A + x1(t) is the modulator, c(t) = B cosωct is the carrier of x2(t) and ωm

and ωc are the modulation and carrier frequencies, respectively. The corresponding cross

frequency-spectral lag distribution is:

Px1x2(η, ω) = X∗
1 (ω − η

2
)X2(ω +

η

2
) (3.15)

where

X∗
1 (ω − η

2
) =

A

2

{
δ(ω − η

2
− ωm) + δ(ω − η

2
+ ωm)

}
︸ ︷︷ ︸

Auto terms

(3.16)

and

X2(ω +
η

2
) =

AB

2

{
δ(ω +

η

2
− ωc) + δ(ω +

η

2
+ ωc)

}
︸ ︷︷ ︸

Auto Terms

+
AB

4

{
δ(ω +

η

2
− ωc − ωm) + δ(ω +

η

2
− ωc + ωm)

}
︸ ︷︷ ︸

Modulation Terms

+
AB

4

{
δ(ω +

η

2
+ ωc − ωm) + δ(ω +

η

2
+ ωc + ωm)

}
︸ ︷︷ ︸

Modulation Terms

(3.17)

Fig. 3.6 shows the magnitude of the cross frequency-spectral lag distribution of the modu-

lation model in Eq.(3.14), which consists of 12 impulse functions on the (η, ω) plane located

at the line crossings. Since, |Px1x2(η, ω)| = |P ∗
x1x2

(−η,−ω)|, it is symmetric with respect to
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the origin, the first quadrant will be adequate to analyze the distribution. Therefore, only

the six impulses in the first quadrant are enumerated and their coordinates are shown on

the (η, ω) plane in Fig. 3.6.
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Figure 3.6: Cross frequency-spectral lag distribution of the modulation model in Eq.(3.14),
which is symmetric with respect to the origin. 2 and 5 are caused by the auto terms, whereas
impulses 1, 3, 4 and 6 are caused by the modulation terms.

Impulses at 2 and 5 refer to the products of the two spectra at their center frequencies,

X∗
1 (ωm)X2(ωc) and X∗

1 (−ωm)X2(ωc), respectively. These terms would appear regardless of

whether there is any modulation between the two signals or not. The impulses at 1 and 4

refer to the products, X∗
1 (ωm)X2(ωc − ωm) and X∗

1 (−ωm)X2(ωc − ωm), and measure the

amount of modulation between the modulating signal, x1, at ωm and the modulated signal,

x2, at ωc − ωm. Similarly, the impulses 3 and 6 refer to the products, X∗
1 (ωm)X2(ωc + ωm)

and X∗
1 (−ωm)X2(ωc+ωm). If there is no modulation between the two signals, X2(ωc+ωm)

and X2(ωc−ωm) will be approximately zero for narrowband signals and there won’t be any
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activity at locations 1, 3, 4 and 6.

3.3.2.1 Quantification of Modulation

Once the magnitude of cross frequency-spectral lag distribution, |Px1x2(η, ω)|, is obtained,

one needs to quantify the amount of modulation between signals. For this purpose, we will

consider both the entropy of |Px1x2(η, ω)| and symmetric information divergence measures:

1. Entropy:

Applying entropy to time-frequency distributions for quantifying the number of signal

terms has been previously suggested [107]. For the case that there is no modulation

between signals, the distribution will be concentrated around two impulses (2 and 5 in

Fig.2.1) corresponding to the difference and sum of the frequencies, ωm and ωc. On

the other hand, when there is some modulation, side lobes or extra terms will appear

in the distribution (impulses 1, 3, 4 and 6 in Fig.2.1). Therefore, one can expect the

entropy of |Px1x2(η, ω)| to be higher if there is any modulation between signals since

the distribution of |Px1x2(η, ω)| will be closer to a uniform distribution. This fact will

be exploited to determine whether there is any amplitude modulation between the two

signals, using the entropy defined as:

H(|Px1,x2 |) = −
n∑

i=1

pi(|Px1,x2 |) log pi(|Px1,x2|) (3.18)

where pi(|Px1,x2 |) is the n bin histogram of |Px1,x2 |.

2. Symmetric Information Divergence Measures:

The impulses at 2 and 5 in Fig. 3.6 refer to the cross-product of the two spectra
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at their center frequencies and appear regardless of whether there is any modulation

relationship between the two signals or not. However, the remaining four impulses

would appear if and only if there exists a modulation between the signals. Therefore,

we can claim that the impulses at 2 and 5 belong to the same class, corresponding

to the case there is no modulation effect, and the remaining four impulses belong

to another class, corresponding to the information about the modulation. For real

signals which still have to be narrowband, instead of impulses, one would observe a

spread or distribution around the impulses as illustrated in Fig. 3.9. Hence, these

distributions can be represented by 2-D Gaussian functions. In order to cluster these

distributions into two different classes, we use a Gaussian mixture model to describe

the 2-D distribution, |Px1x2(η, ω)|, such that the distribution is represented by multiple

2-D Gaussian functions. A Gaussian mixture model is defined as a weighted sum of

M component Gaussian densities:

p(x|θ) =
M∑
i=1

wig(x|µi,Σi) (3.19)

where x is a D-dimensional vector, wi and g(x|µi,Σi), i = 1, . . . ,M , are the mixture

weights and component Gaussian densities, respectively. Each component density is a

D-variate Gaussian function of the form:

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x− µi)

TΣ−1
i (x− µi)

}
, (3.20)

with mean, µi, and covariance, Σi. The mixture weights must satisfy the constraint

that
∑M

i=1wi = 1 and the complete Gaussian mixture model is parameterized by
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θ = {wi,µi,Σi}.

As long as the analyzed signals are narrowband, one will observe six distributions where

the power or magnitude of these distributions depend on the strength of modulation.

Therefore, in this section, we can assume that D = 2 and M = 6. We use the two

parameters, mean and covariance, of the two Gaussian distributions corresponding to

the impulses at 2 and 5, to generate a 2-Dimensional distribution, Q(η, ω), which then

will be compared to the original distribution, |Px1x2(η, ω)|. If there is no modulation

between the two signals, one expects to see a low divergence between |Px1x2(η, ω)|

and Q(η, ω). In contrast, the divergence between the two distributions will increase

as the amount of modulation increases since side lobes or extra terms will appear in

|Px1x2(η, ω)|. In order to use information divergence measures for quantifying the

amount of modulation, we first normalize the two distributions and update them as:

P (η, ω) =
|Px1x2(η, ω)|∑

η
∑

ω |Px1x2(η, ω)|

Q(η, ω) =
Q(η, ω)∑

η

∑
ω Q(η, ω)

(3.21)

such that they are valid joint probability distributions. In this section, we will use sym-

metric Kullback-Leibler (K(P ||Q)), Chi-square (χ2(P ||Q)) and Arithmetic-Geometric
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(T (P ||Q)) divergence measures which are defined as [108]:

K(P ||Q) =
∑
η

∑
ω

(P (η, ω)−Q(η, ω)) log

(
P (η, ω)

Q(η, ω)

)
(3.22a)

χ2(P ||Q) =
∑
η

∑
ω

(P (η, ω)−Q(η, ω))2 (P (η, ω) +Q(η, ω))

P (η, ω)Q(η, ω)
(3.22b)

T (P ||Q) =
∑
η

∑
ω

(P (η, ω) +Q(η, ω))

2
log

(
P (η, ω) +Q(η, ω)

2
√
P (η, ω)Q(η, ω)

)
(3.22c)

3.3.3 Simulation Examples

In order to illustrate the performance of the proposed distribution in determining the AM

modulation between signals, we consider two example signal models. The first model consists

of sinusoidal signals:

x1(t) = cos(2π10t)

x2(t) = cos(2π60t)

x3(t) = (1 + x1(t)) cos(2π60t) (3.23)

and the second model consists of Gabor logon signals centered at the same frequencies as

the sinusoidal signals:

y1(t) = exp

(
−(t− 50/256)2

2σ2

)
cos (2π10t)

y2(t) = exp

(
−(t− 50/256)2

2σ2

)
cos (2π60t)

y3(t) = (1 + y1(t)) exp

(
−(t− 50/256)2

2σ2

)
cos (2π60t) (3.24)
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Figure 3.7: For the model in eq. (3.23), (a) shows the cross frequency-spectral lag distribution
when there is no modulation whereas (b) shows the distribution when modulation exists.
Entropies of the distributions are: H(Px1,x2) = 0.0428, H(Px1,x3) = 0.0677.

where 0 ≤ t ≤ 1, σ = 12.8 and the sampling frequency is 256 Hz. In both models, modulation

is only between the first and third signals, whose carrier is the second signal.

Figs. 3.7 and 3.8 show the magnitude of the cross frequency-spectral lag distributions
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Figure 3.8: For the model in eq. (3.24), (a) shows the cross frequency-spectral lag distribution
when there is no modulation whereas (b) shows the distribution when modulation exists.
Entropies of the distributions are: H(Py1,y2) = 0.1189, H(Py1,y3) = 0.2465

for the two example models, which are consistent with Fig. 3.6. Because of the modulation

between x1 and x3, and y1 and y3, entropies and the divergence values of the corresponding

distributions in Fig. 3.7(b) and 3.8(b), are higher. From Figs. 3.7 and 3.8, it can be con-
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cluded that as long as the analyzed signals are narrowband, energy of the cross distribution

will be concentrated around the same locations as the location of the impulses in Fig. 3.6,

which depend on the center frequencies, ωm and ωc. However, instead of observing impulses,

one will observe a distribution spread around the location of the impulses as seen in Figs.

3.8(a) and 3.8(b).2

3.3.4 Application to EEG Data

The proposed measure is applied to a set of EEG data containing the error-related negativity

(ERN). The ERN is a brain potential response that occurs following performance errors in

a speeded reaction time task [109]. EEG data from 63-channels was collected in accordance

with the 10/20 system on a Neuroscan Synamps2 system (Neuroscan, Inc.). A speeded-

response flanker task was employed, and response-locked averages were computed for each

subject. In this section, we have analyzed data from 46 subjects.

The proposed cross frequency-spectral lag distribution is used as a novel tool to determine

the strength of the modulation between theta-gamma and alpha-gamma bands of EEG. For

each subject, three channels which have the maximum power for theta (4-8 Hz), alpha (8-12

Hz) and gamma (40-70 Hz) bands are identified, respectively. Then all trials of the selected

channels are bandpass filtered around the frequency band of interest, so that they are only

composed of the relevant frequency bands. In this section, the interactions between the low

frequency bands, theta and alpha, and the high frequency band, gamma, are investigated

using both power-to-power and phase-to-power modulation of EEG.

2This is validated using several simulation models but only Gabor logon signal model is
included in this section.
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3.3.4.1 Power-to-power Modulation

Power-to-power modulation is the phenomenon where the fluctuations in the power of the

faster gamma oscillations are modulated by the power changes in the lower frequency band.

For each subject, the three electrodes having the highest power in the theta, alpha and

gamma bands are identified. For all trials, cross frequency-spectral lag distributions for

theta-gamma and alpha-gamma bands are obtained and the modulation strength between

the frequency bands are quantified using both the entropy measure in Eq. (3.18) and the

symmetric information divergence measures in Eq. (3.22).

Among the 46 subjects, 44 subjects yield higher entropy values for the theta-gamma

modulation compared to the entropy values for the alpha-gamma modulation. Using the

Wilcoxon rank sum test, the null hypothesis that the entropy values come from identical

distributions with equal medians, against the alternative that they do not have equal me-

dians, is rejected at %5 significance level (p-value = 0.00023). Moreover, the divergence

measures provide much better results where all of the subjects yield higher divergence values

for the theta-gamma modulation compared to the divergence values for the alpha-gamma

modulation. Using the Wilcoxon rank sum test forK(P ||Q), χ2(P ||Q) and T (P ||Q), the null

hypothesis is rejected at %5 significance level with p-values, 5.7759× 10−16, 1.7958× 10−14

and 4.7636×10−16, respectively. Therefore, the modulation strength between the theta and

gamma bands is significantly larger than the modulation strength between the alpha and

gamma bands as observed previously in the literature [30]. Fig. 3.9 shows the magnitude of

the cross frequency-spectral lag distributions for the theta-gamma and alpha-gamma bands

of sample EEG data. The regions with the highest energies are enumerated such that one

can clearly compare the strengths of the modulations. Regions 1, 3, 4, and 6 have higher
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energy in Fig. 3.9(a), which indicate stronger modulation effect between theta and gamma

bands. Furthermore, the coordinates of the regions in both figures are consistent with Fig.

3.6, which shows the locations of auto and modulation terms as functions of ωm and ωc

(ωm(theta) ≈ 6 Hz, ωm(alpha) ≈ 10 Hz, ωc(gamma) ≈ 45 Hz).

3.3.4.2 Phase-to-power Modulation

In phase-to-power modulation, the power of the fast gamma oscillations is systematically

modulated during the course of a theta cycle [4]. In other words, there is a strong correlation

between the phase of theta oscillations and the power of gamma oscillations. The same

procedure described in section 3.3.4.1 is followed but this time the time-varying phase of

the low frequency bands, theta and alpha bands, is extracted to quantify phase-to-power

modulation between low frequency and high frequency bands. Hilbert transform is used to

estimate the phase of the theta and alpha bands. Among the 46 subjects, 30 subjects yield

higher entropy values for the theta (phase)-gamma modulation compared to the entropy

values for the alpha (phase)-gamma modulation. Wilcoxon rank sum test is used and the

null hypothesis is rejected at %5 significance level (p-value = 0.0489). On the other hand,

the divergence measures provide better results where 45 out of the 46 subjects yield higher

divergence values for the theta phase-gamma modulation compared to the divergence values

for the alpha phase-gamma modulation. Using the Wilcoxon rank sum test for K(P ||Q),

χ2(P ||Q) and T (P ||Q), the null hypothesis is rejected at %5 significance level with p-values,

1.8029 × 10−16, 9.1633 × 10−15 and 1.4821 × 10−16, respectively. Hence, the modulation

strength between the theta phase and gamma bands is significantly larger compared to alpha

phase and gamma bands.
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Figure 3.9: (a) and (b) show the cross frequency-spectral lag distributions for the theta-
gamma (H(PTheta,Gamma) = 0.4362) and alpha-gamma (H(PAlpha,Gamma) = 0.3635) bands
of sample EEG data, respectively.

3.4 Conclusions

In this chapter, we proposed two complementary approaches to quantify CF phase synchrony

and modulation effect. The first approach is based on the RID-Rihaczek distribution and
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has been applied to simulated signals. Simulation results demonstrate that the proposed

approach performs well in quantifying the phase synchrony across frequencies. The second

method is based on a new cross frequency-spectral lag distribution which can determine the

cross-frequency modulation between two signals and has been applied to both simulated sig-

nal models and EEG data. Simulation results and EEG applications show that the proposed

method performs well in identifying the modulation effects. In particular, the hypothesis

that the power of the gamma oscillations is modulated by the phase of the theta band in

EEG has been supported by this new approach.

Although the two approaches are not directly related to each other, they are not indepen-

dent either. Both methods can quantify phase-phase and amplitude-phase locking. However,

the major difference between the two proposed methods is that the first method does not

imply any particular form for the underlying signal model whereas the cross frequency-

spectral lag based approach assumes an AM generating model for the signals. Moreover,

the first method is based on the individual signal analysis using phase estimate from the

RID-Rihaczek distribution, whereas the second method is based on the Fourier transform of

the cross Wigner distribution or the two dimensional Fourier transform of the local cross cor-

relation of two signals. Hence, the first method depends on the phase spectrum of individual

signals, whereas the second depends on the cross-energy density of two signals.

Future work will concentrate on the application of the approach based on the RID-

Rihaczek distribution to EEG signals and exploring different measures to quantify the

amount of modulation. We will also investigate methods for determining the low frequency

bands that modulate high frequency oscillations in EEG signals without a priori knowledge.
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Chapter 4

Methods for Quantifying Multivariate

Phase Synchronization

4.1 Introduction

Cooperative dynamic behavior of complex systems is relevant in many fields of research,

from climactic processes and geophysics to economics, human cardio-respiratory system and

neuroscience. In many cases, this complex dynamics is to be conceived as arising through

the interaction of subsystems which can be observed in the form of multivariate time series

reflecting the measurements from the different parts of the system. Usually, the degree of

interaction of two subsystems is quantified using bivariate measures of signal interdepen-

dence such as traditional cross-correlation and spectral coherence techniques or nonlinear

measures such as mutual information [12]. More recently, tools from nonlinear dynamics,

in particular, phase synchronization have received much attention since they offer a way of

extracting information on the interdependence of weakly interacting systems that cannot be

obtained by traditional methods [14, 15, 110]. Phase synchronization of a network of oscil-

lators occurs in many complex systems including the human brain, where both linear and

nonlinear dependencies are quantified though bivariate phase synchrony using noninvasive

measurements such as EEG data [77]. The current phase synchrony measures are limited

to quantifying bivariate relationships and do not reveal any information about the global
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connectivity patterns which are important for understanding the underlying oscillatory net-

works.

Recently, phase synchronization of a group of oscillators, which is referred to as global

or multivariate phase synchronization, has been of interest for understanding the group

dynamics and characteristic behavior of complex networks [33, 34]. Contrary to the bivariate

phase synchrony, which is limited to pairwise relationships, multivariate synchrony captures

the global synchronization patterns quantifying the degree of interactions within a group of

oscillators. The current application of bivariate measures to multivariate data sets with N

time series results in an N × N matrix of bivariate indices, which leads to a large amount

of mostly redundant information. Therefore, it is necessary to reduce the complexity of the

data set in such a way to reveal the relevant underlying structures using multivariate analysis

methods.

Recently, different multivariate analysis tools have been proposed to define multivariate

phase synchronization. The basic approach used for multivariate phase synchronization is

to trace the observed pairwise correspondences back to a smaller set of direct interactions

using approaches such as partial coherence adapted to phase synchronization [32]. Another

complementary way to achieve such a reduction is cluster analysis, a separation of the parts

of the system into different groups, such that the signal interdependencies within each group

tend to be stronger than in between groups [42, 43]. Allefeld and colleagues have proposed

two complementary approaches to identify synchronization clusters and applied their meth-

ods to EEG data [48, 49, 111, 112]. In [48], Allefeld et al. have proposed a mean-field

approach to analyze EEG data, where each signal is contributing to a single cluster to a

different extent [48]. The existence of a single synchronization cluster is not a reasonable

assumption since the underlying clustering structure of brain networks, which usually con-
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sist of multiple clusters, cannot be inferred. This method has the disadvantage of assuming

a single cluster and thus cannot identify the underlying clustering structure. In [49], an

approach that addresses the limitation of the single cluster approach has been introduced

using methods from random matrix theory. This method is based on the eigenvalue decom-

position of the pairwise bivariate synchronization matrix and appears to allow identification

of multiple clusters. Each eigenvalue greater than 1 is associated with a synchronization

cluster and quantifies its strength within the data set. The internal structure of each cluster

is described by the corresponding eigenvector. Combining the eigenvalues and the eigenvec-

tors, one can define a participation index for each oscillator and its contribution to different

clusters. This method assumes that the synchrony between systems belonging to different

clusters, i.e. between-cluster synchronization, is equal to zero and requires an adjustment for

proper computation of the participation indices in the case that there is between-cluster syn-

chronization. Despite the usefulness of eigenvalue decomposition for the purposes of cluster

identification, it has recently been shown that there are important special cases, clusters of

similar strength that are slightly synchronized with each other, where the assumed one-to-

one correspondence between eigenvectors and clusters is not realistic [50]. Other alternative

measures that quantify multivariate relationships include the directed transfer function and

Granger causality defined for an arbitrary number of channels [113, 114]. Both of these

methods have been applied to study interdependencies and causal relationships, however,

are limited to stationary processes and linear dependencies.

The contribution of this chapter is two fold. First, we extend the notion of bivariate syn-

chrony to multivariate synchronization by employing measures of multivariate correlation

and complexity from statistics to quantify the synchronization within and across groups of

signals rather than between pairs. The proposed measures will depend on quantities such
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as multiple correlation and R2 and will be redefined in the context of phase synchrony. In

particular, Rv, a measure of association for multivariate data sets introduced in [115] will

be used to quantify the degree of association or synchronization between groups of vari-

ables. Rv is a particularly attractive measure for quantifying the similarity between groups

of variables since it has been shown to be a unifying metric that when maximized, with

relevant constraints, yields the solutions to different linear multivariate methods including

principal component analysis, canonical correlation analysis and multivariate linear regres-

sion [115]. We also exploit a global complexity measure based on the spectral decomposition

of the bivariate synchronization matrix similar to the S measure defined in [33], in order to

complement the findings of Rv by quantifying the synchronization within a network. How-

ever, these approaches depend on the estimation of bivariate phase synchrony values and

offer an indirect and a limited way to estimate the multivariate synchrony within a network.

Therefore, the second contribution of this chapter is that we propose a novel and direct

method, which will be referred to as hyperspherical phase synchrony (HPS), to compute

the multivariate phase synchronization within a group of oscillators. The proposed method

is is based on extending the definition of phase synchrony from the two-dimensional space

to an N-dimensional space by employing a uniform angular sampling of a unit sphere in

an N-dimensional hyperspherical coordinate system. This approach offers a new definition

of multivariate phase synchronization since the network dynamics are characterized using

the whole ensemble of phase differences in a multidimensional space rather than considering

the pairwise relationships. Hence, the proposed methods in this Chapter will be useful for

applications such as EEG signals where the synchronization within or across regions is more

important than individual pairwise synchrony to characterize the functional networks.
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4.2 Bivariate Synchrony Dependent Multivariate Syn-

chrony Measures

4.2.1 Measures of Multivariate Synchronization

In the proposed work, we will develop measures of association based on bivariate phase

synchrony in an attempt to capture multivariate synchronization effects. One measure of

interest is R2 like measure of association proposed by Robert and Escoufier [115], which is

a multivariate generalization of Pearson correlation coefficient, defined as:

Rv =
tr(RxyRyx)√
tr(R2

xx)tr(R
2
yy)

(4.1)

where x and y refer to groups of variables, Rxy,Ryx,Rxx,Ryy are the auto- and cross-

correlation matrices between the variables and Rv quantifies the association between the

variables x1, x2, . . . , xq and y1, y2, . . . , yp. This measure has been shown to be equivalent to

a distance measure between normalized covariance matrices and is always between 0 and 1.

The numerator corresponds to a scalar product between positive semi-definite matrices, the

denominator is the Frobenius matrix scalar product [116] and Rv is equivalent to the cosine

between the covariances of the two data matrices. The closer to 1 it is, the better is y as a

substitute for x. It has been shown that the major approaches within statistical multivariate

data analysis, such as principal component analysis, canonical correlation and multivariate

regression, can all be brought into a common framework in which the Rv coefficient is

maximized subject to relevant constraints [115]. In the case of multivariate synchronization,

the matrices Rxy,Ryx,Rxx,Ryy are formed by computing the pairwise bivariate phase
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synchrony across different groups of variables and within each group, respectively.

For a network consisting ofN nodes, a second closely related measure that will be adapted

for multivariate synchronization is the S-estimator [33], which exploits the eigenvalue spec-

trum of the N ×N bivariate synchronization matrix to quantify the amount of synchroniza-

tion within a group of oscillators:

S = 1 +

∑N
i=1 λi log(λi)

log(N)
(4.2)

where λis are the N normalized eigenvalues. This measure is an information theoretic

inspired measure since it is complement to the entropy of the normalized eigenvalues of the

correlation matrix. The more disperse the eigenspectrum is the higher the entropy would

be.

In this chapter, this estimator will be applied to the bivariate synchronization matrix

instead of the correlation matrix. If all of the oscillations in a group are completely syn-

chronized, i.e. the entries of the pairwise synchrony matrix are all equal to 1, then all of the

eigenvalues except one will be equal to zero and the value of S will be equal to 1 indicating

perfect multivariate synchrony. This measure can quantify the amount of synchronization

within a group of signals and thus is useful as a global complexity measure.

4.2.2 Proposed Approach

Let N be the number of oscillators or channels in a system. The proposed multivariate phase

synchronization measures can be computed from data as follows:

1. Compute the RID-Rihaczek distribution and the corresponding phase spectrum for the

N oscillators, xi(tm), m = 0, 1, . . . ,M − 1, using Eq. (2.13).
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For each oscillator xi:

2. From the RID-Rihaczek distribution, find the frequency, ωimax, having the maximum

energy and extract the time-varying phase, Φi(t, ω
i
max), from the phase spectrum.

3. Compute the pairwise synchrony (bivariate synchrony) between ith and jth oscillators,

γi,j :

γi,j =

∣∣∣∣∣∣ 1M
M−1∑
m=0

exp(j(Φi(tm, ωi
max))− Φj(tm, ω

j
max)))

∣∣∣∣∣∣ . (4.3)

4. Form the bivariate phase synchrony matrix R as

R =



1 γ1,2 . . . γ1,N

γ2,1 1
. . . γ2,N

...
...

. . .
...

γN,1 γN,2 . . . 1


. (4.4)

5. Using R, compute S for the whole network by finding the normalized eigenvalues of R

and computing the expression given by equation 4.2.

6. The measure Rv quantifies the degree of association between two oscillator groups and

can be computed for any groups of oscillators from the nextwork. For example, consider

two oscillator groups, x and y formed by oscillators {1, 2 . . . , N ′} and {N ′+1, . . . , N},

respectively. Rv between these two groups can be computed using equation 4.1 with
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matrices Rxx,Ryy,Rxy,Ryx computed as follows:

Rxx =



1 γ1,2 . . . γ1,N ′

...
. . . . . . γ2,N ′

...
. . . . . .

...

γN ′,1 γN ′,2
. . . 1


,

Ryy =



1 γN ′+1,N ′+2 . . . γN ′+1,N

...
. . . . . . γN ′+2,N

...
. . . . . .

...

γN,N ′+1 γN,N ′+2
. . . 1


,

Rxy =



γ1,N ′+1 γ1,N ′+2 . . . γ1,N

...
. . . . . . γ2,N

...
. . . . . .

...

γN ′,N ′+1 γN ′,N ′+2
. . . γN ′,N


,

Ryx =



γN ′+1,1 γN ′+1,2 . . . γN ′+1,N ′

...
. . . . . . γN ′+2,N ′

...
. . . . . .

...

γN,1 γN,2
. . . γN,N ′


. (4.5)

The procedure described above can be extended to the case of computing synchrony across

realizations instead of across time. This modification would require the computation of RID-

Rihaczek distribution for each realization and computing the phase coherence by taking an

average over realizations instead of time.
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4.2.3 Simulation Results

4.2.3.1 Rossler Oscillator Model

In this chapter, in order to evaluate the performance of the proposed multivariate measures,

a well known model of nonlinear oscillators, called Rossler oscillators, is used. These chaotic

oscillators, investigated by [14, 117], form a system that is known to have characteristic

phase synchronization properties and to exhibit clusters of phase synchronization depending

on the coupling strengths within the system. The model consists of a network of multivariate

time series coupled in a way to form synchronization clusters of different size as well as

desynchronized oscillators. The networks considered in this chapter consist of N = 6 Rossler

oscillators which are coupled diffusively via their z-components:

ẋj = 10(yj − xj),

ẏj = 28xj − yj − xjzj ,

żj = −8/3zj + xjyj +
N∑
i=1

ϵij(zi − zj). (4.6)

The coupling coefficients, ϵij , are chosen from the interval [0, 1] to construct different net-

works. The differential equations are numerically integrated using the Runge-Kutta method

with a time step of ∆t = 1/25 sec corresponding to a sampling frequency of 25 Hz, where

the initial conditions are randomly chosen from the interval, [0, 100]. The first 2500 sam-

ples are discarded to eliminate the initial transients. In the remaining of this chapter, the

z-components of the Rossler oscillators are used for the procedure described in section 4.2.2.
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4.2.3.2 Performance of Multivariate Synchrony Measures In QuantifyingWithin

and Between Cluster Synchrony

In this example, the dependency of the multivariate synchrony measures on the coupling

strengths in a Rossler network is evaluated using 500 samples. The network in Fig. 4.1 is

formed and the coupling strengths ρ1 = ϵ1,4 = ϵ4,1 and ρ2 = ϵ2,6 = ϵ6,2 are increased from

0 to 1 in steps of 0.2, with ϵ1,2 = ϵ2,1 = ϵ1,3 = ϵ3,1 = ϵ2,3 = ϵ3,2 = 1, ϵ4,5 = ϵ5,4 = ϵ4,6 =

ϵ6,4 = ϵ5,6 = ϵ6,5 = 1 and all other coupling strengths set to zero.

1

2

3

4

5

6

r
1

r
2

Figure 4.1: Rossler network for evaluating the dependency of the multivariate synchrony
measures on the coupling strengths. The coupling strengths ρ1 and ρ2 are increased from 0
to 1 in steps of 0.2.

Figs. 4.2 and 4.3 show the dependency of the Sg, Sy, ST and Rv on the coupling

strengths ρ1 and ρ2, in the absence of noise. When both ρ1 and ρ2 are equal to zero, Sg

and Sy have the highest values, which is equivalent to the network in Fig. 4.4(a). In this

case, there are two completely separate clusters and each cluster has the maximum phase

synchrony, with no between-cluster synchrony. This result is expected since the S values

represent the within-cluster phase synchrony and increasing the coupling coefficients ρ1 and
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Figure 4.2: Dependency of the multivariate synchrony measures, Sg and Sy, on the coupling
strengths ρ1 and ρ2

ρ2 synchronizes the two of the oscillators from each cluster to the other two oscillators in the

other cluster, which destroys the within-cluster phase synchrony. Thus, maximum within-

cluster synchrony is achieved when ρ1 = 0 and ρ2 = 0 and increasing either or both ρ1 and

ρ2 results in the reduced within-cluster phase synchrony values, shown by Figs. 4.2(a) and

91



ρ
2

ρ 1

Dependency of the S
T
 on the coupling strengths

 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0.3

0.4

0.5

0.6

(a) ST

ρ
2

ρ 1

Dependency of the R
v
 on the coupling strengths

 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
0.1

0.2

0.3

0.4

(b) Rv

Figure 4.3: Dependency of the multivariate synchrony measures, ST and Rv, on the coupling
strengths ρ1 and ρ2

4.2(b).

ST , which shows the within cluster synchrony for the whole network, has the maximum

value when ρ1 and ρ2 are both equal to 1. This is also an expected result since these two

coupling strengths try to synchronize the two clusters with each other. Reduction in either

or both of ρ1 and ρ2 results in a reduced ST value which is shown in Fig. 4.3(a).

92



Fig. 4.3(b) shows that Rv, which represents the between-cluster synchrony, is directly

proportional to ρ1 and ρ2. An increase in only one of the coupling strengths is not enough to

increase Rv. However, when both of these coupling strengths increase, Rv also increases and

reaches its maximum value when ρ1 = 1 and ρ2 = 1. This is an expected result since both

ρ1 and ρ2 are responsible for the increased between-cluster synchrony. Moreover, by looking

at Figs. 4.3(a) and 4.3(b), one can say that there is a strong positive correlation between

ST and Rv. The reason for this is that Rv represents the between-cluster synchrony and ST

represents the synchrony of the whole network, both of which increase with the increasing

coupling strengths, ρ1 and ρ2.

In order to evaluate the performance of the S and Rv-estimators in estimating the within-

cluster and between-cluster synchrony in detail, 12 different Rossler networks, shown in Fig.

4.4, consisting of 6 oscillators are generated. Each connection represents two symmetric

coupling strengths, equal to 1, between two oscillators. For each network, 200 simulations

are performed with additive white Gaussian noise at a SNR value of 5 dB.

Table 4.1: Means and standard deviations of Rv, Sg, Sy and ST for the networks in Fig. 4.4
Rv Sg Sy ST

Network 1 0.1834± 0.1482 0.7844± 0.0431 0.7921± 0.0728 0.5682± 0.0681
Network 2 0.1209± 0.0870 0.4005± 0.2133 0.4882± 0.2379 0.3293± 0.1241
Network 3 0.1689± 0.1198 0.6135± 0.1246 0.5983± 0.0972 0.4339± 0.0763
Network 4 0.6451± 0.2255 0.6692± 0.1352 0.6832± 0.1354 0.6239± 0.1392
Network 5 0.9671± 0.0239 0.7789± 0.0433 0.7831± 0.0594 0.8203± 0.0387
Network 6 0.7642± 0.2923 0.4340± 0.2249 0.4462± 0.2103 0.5253± 0.2251
Network 7 0.6824± 0.2261 0.4849± 0.1448 0.4976± 0.1927 0.5379± 0.1466
Network 8 0.2452± 0.1556 0.3358± 0.1809 0.3144± 0.1771 0.2848± 0.1430
Network 9 0.4475± 0.1228 0.4202± 0.0783 0.4317± 0.0779 0.4358± 0.0982
Network 10 0.7871± 0.0562 0.4156± 0.0946 0.4141± 0.0862 0.5411± 0.0632
Network 11 0.3378± 0.1185 0.4168± 0.0669 0.4146± 0.0728 0.4096± 0.0582
Network 12 0.4234± 0.1334 0.4174± 0.0724 0.1754± 0.0822 0.3358± 0.0423
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(a) Network 1 (b) Network 2 (c) Network 3

(d) Network 4 (e) Network 5 (f) Network 6

(g) Network 7 (h) Network 8 (i) Network 9

(j) Network 10 (k) Network 11 (l) Network 12

Figure 4.4: 12 different Rossler networks for evaluating the performance of the S and Rv-
estimators in estimating the within-cluster and between-cluster synchrony. Each node rep-
resents an oscillator and each connection represents the two symmetric coupling strengths,
which are equal to 1, between two oscillators.
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Table 4.1 shows the mean and standard deviation values for all 12 networks. Networks

1 and 5 have the largest Sg and Sy values, which indicates that the within-cluster phase

synchrony is very strong for these networks. Strong within-cluster synchrony, or high S

value, is usually obtained when all possible within-cluster connections exist and the between-

cluster connections are either very strong or non-existent. Networks 1 and 5 satisfy these

conditions with network 1 having no between-cluster connections and network 5 having

strong connections between the two clusters. On the other hand, networks 3 and 4 have

all possible within-cluster connections but they have smaller Sg and Sy values compared

to network 5 since the small number of between-cluster connections are not adequate to

synchronize the two clusters and are also disruptive to the within-cluster synchrony.

The largest Rv value, or between-cluster synchrony, is observed for network 5 which

results from the three connections between the two clusters, forcing the two clusters to

be highly synchronized with each other. Networks 6 and 10 also have a large number of

connections between the two clusters but they lack some of the within-cluster connections,

which results in reduced Rv values for these networks. Network 6 has a larger Rv value

compared to network 7 but has smaller S values since there are 3 connections between the

clusters. Networks 8, 9, 11 and 12 all have small Rv and S values since the within-cluster and

between-cluster synchronies are both weak due to the lack of connectivity in these networks.

ST , on the other hand, measures the within cluster synchronization when all six oscillators

are assumed to form a big cluster. Network 5 has the largest ST value because there is one big

cluster which is formed by multiple smaller clusters with strong within-cluster connectivity.

Since the connectivity in the whole network is strong, the eigenvalues of the synchrony matrix

tend to be better concentrated, which results in a low entropy value and a high ST value. On

the other hand, networks 2 and 8 have small ST values since the within network connectivity
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is not strong.

4.2.3.3 Significance Testing For the Multivariate Synchrony Measures

Determining the statistical significance involves hypothesis testing and requires the formation

of a null hypothesis. In some cases, it may be possible to derive analytically the distribution

of the given measure under a given null hypothesis. However, in the case of the multivariate

synchronization measures this proves to be a very difficult problem, therefore this distri-

bution is estimated by direct Monte Carlo simulations. For this purpose, an ensemble of

surrogate data sets are generated [118]. The surrogate data set is generated by first comput-

ing the Fourier transform of the data and then randomizing the phase. Finally, the inverse

Fourier transform is taken to obtain the surrogate data which has the same power spectrum

and autocorrelation function as the original data. This operation preserves the amplitude

relationships while randomizing the phase dependencies. For each surrogate data set, the

procedure described in section 4.2.2 is followed to compute the multivariate measures. From

this ensemble of statistics, the distribution is approximated. A robust way to define sig-

nificance would be directly in terms of the p-values with rank statistics. For example, if

the observed time series has a Rv or S value that is in the lower one percentile of all the

surrogate statistics, then a p-value of p=0.01 could be quoted. For the networks in Figs. 4.2

and 4.3, 100 surrogate data sets are formed and all multivariate synchrony measures, Rv,

Sg, Sy and ST , are found to be significant at p = 0.05. The surrogate testing demonstrates

that our simulation results are not likely to occur by chance.
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4.2.4 Application to EEG Data

The proposed multivariate phase synchronization measures were applied to a set of EEG data

containing the error-related negativity (ERN). The ERN is an event-related brain potential

that occurs following performance errors in a speeded reaction time task [109, 119] and is

observed as a sharp negative trend in EEG recordings which typically peaks from 75-80 ms

after the error response. Previous work indicates that there is increased phase synchrony

associated with ERN for the theta frequency band (4-8 Hz) and ERN time window (25-

75 ms) between frontal and central electrodes versus central and parietal [120, 121]. EEG

data from 63-channels was collected in accordance with the 10/20 system on a Neuroscan

Synamps2 system (Neuroscan, Inc.) 1. A speeded-response flanker task was employed, and

response-locked averages were computed for each subject.

In this chapter, we analyzed data from 11 subjects corresponding to the error responses

from five electrodes corresponding to the areas of interest, i.e., two frontal electrodes (F3

and F4), one central electrode (FCz) and two parietal electrodes (CP3 and CP4). All five

electrodes were analyzed by RID-Rihaczek distribution and the phases in the theta frequency

band are extracted to compute the pairwise synchrony values. After the 5 × 5 bivariate

synchronization matrix was formed, we computed S and Rv values considering two groups

of electrodes, F3, F4 and FCz and CP3, CP4 and FCz.

For all 11 subjects, S value of the electrode group, F3-F4-FCz, is larger than the S value

of the group, CP3-CP4-FCz. A Wilcoxon rank sum test is used at %5 significance level

to test the null hypothesis that the S values of the group F3-F4-FCz and the S values of

the group CP3-CP4-FCz are independent samples from identical distributions with equal

1We would like to acknowledge Dr. Edward Bernat from Florida State University for
sharing his EEG data with us.
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medians, against the alternative that they do not have equal medians. The p-value provided

by the test is 0.0187, which is less than 0.05. Thus, the null hypothesis is rejected at 5%

significance level, which shows that the S values of the group F3-F4-FCz are significantly

larger than the S values of the group CP3-CP4-FCz. This result indicates that the frontal

(F3 and F4) electrodes are more strongly coupled to the central electrode (FCz), compared

to the coupling between the parietal (CP3 and CP4) and central electrodes, which is shown

by the significantly larger within-cluster synchrony values. Moreover, Rv value between the

central-frontal and Rv value between the central-parietal electrode groups are computed.

Rv value between the central-frontal electrodes is larger for 10 subjects out of 11. Using

the Wilcoxon rank sum test, the null hypothesis is rejected with p-value = 0.0122, which

demonstrates that the synchrony between the frontal (F3 and F4) electrodes and central

electrode (FCz) is larger compared to the synchrony between the parietal (CP3 and CP4)

and central electrodes, which is shown by the significantly larger between-cluster synchrony.

These results are consistent with the previous work in [122].

4.3 Hyperspherical Phase Synchrony

Bivariate phase synchrony is based on the circular variance of the two-dimensional di-

rection vectors on a unit circle (1-sphere), obtained by mapping the phase differences,

{Φk
1,2(t, ω)}k=1,...,L, between the two time-series onto a Cartesian coordinate system. If

the circular variance of these direction vectors is low, the time-series are said to be locked to

each other. In this chapter, we propose an extension of this idea to the multivariate case and

define {θk1(t, ω), θ
k
2(t, ω), . . . , θ

k
N−1(t, ω)} as the (N − 1) angular coordinates at time t and

frequency ω for the kth trial, where θki (t, ω) = Φk
i (t, ω) − Φk

i+1(t, ω) is the phase difference
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between the ith and (i + 1)th time series within a group of N oscillators2. We map these

(N −1) angular coordinates onto an N -dimensional space by forming direction vectors in an

N -dimensional hyperspherical coordinate system. The resulting direction vectors cover the

whole (N − 1)-sphere, which is a generalization of an ordinary sphere to an arbitrary dimen-

sion3. For any natural number N , an N − 1-sphere of radius r is defined as the set of points

in (N)-dimensional Euclidean space which are at distance r from a central point, where the

radius r may be any positive real number. The set of coordinates in N -dimensional space,

γ1, γ2, . . . , γN , that define an (N − 1)-sphere is represented by:

r2 =
N∑
i=1

(γi − ci)
2 (4.7)

where c = [c1, . . . , cN ] is the center point and r is the radius. In this Chapter, r = 1 and the

center point is the origin. Fig. 4.5 shows an example of a 2-sphere where the 3-dimensional

direction vectors are shown by the line crossings.

Using the N − 1 angular coordinates, {θk1(t, ω), . . . , θ
k
N−1(t, ω)}, we define the set of N

Cartesian coordinates on a unit N − 1 sphere which forms a direction vector, Γk(t, ω) =

2Note that the sequence of the phases when computing the angular coordinates does not
have any effect on the circular variance of the resulting direction vectors.

3To generate a suitable set of direction vectors, unit hyperspheres are sampled based on
uniform angular sampling methods.
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Figure 4.5: Line crossings, such as the black dots, indicate the sampled 3-dimensional direc-
tion vectors based on uniform angular sampling of a 2-sphere.

[γk1 (t, ω), . . . , γ
k
N (t, ω)], as:

γk1 (t, ω) = cos (θk1(t, ω)),

γk2 (t, ω) = sin (θk1(t, ω))× cos (θk2(t, ω)),

γk3 (t, ω) = sin (θk1(t, ω))× sin (θk2(t, ω))× cos (θk3(t, ω)),

...

γkN−1(t, ω) = sin (θk1(t, ω))× · · · × sin (θkN−2(t, ω))× cos (θkN−1(t, ω)),

γkN (t, ω) = sin (θk1(t, ω))× · · · × sin (θkN−2(t, ω))× sin (θkN−1(t, ω)),

(4.8)

Therefore, for N signals, we define the hyperspherical phase synchrony (HPS) as:

HPS(t, ω) =
1

L

∣∣∣∣∣∣
∣∣∣∣∣∣
L∑

k=1

Γk(t, ω)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(4.9)

where HPS(t, ω) is the multivariate synchronization value at time t and frequency ω, ∥.∥2 is
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the l2 norm and L is the number of trials. Note that HPS is equivalent to PLV for a network

consisting of two signals. In the case of perfect multivariate phase synchronization of the

network, HPS is equal to 1 and equals to zero when the oscillators are independent.

The proposed hyperspherical phase synchrony measure is calculated through the com-

putation of N Cartesian coordinates, which requires N2−N−2
2 multiplications, and L2 norm

of an N -dimensional vector which requires N multiplications. Therefore, the computational

complexity of the proposed measure is O(N2). On the other hand, S-estimator is obtained

by the computation of
(N
2

)
bivariate synchrony values, which has O(N2) complexity, and

the computation of eigenvalues which requires the eigenvalue decomposition of the bivariate

synchrony matrix, using one of the many iterative algorithms which utilize a large class of

fast recursive matrix multiplication algorithms, such as the ‘Rayleigh quotient iteration al-

gorithm’ [123] and the QR algorithm. It has been shown that the computational complexity

of the eigenvalue problem for a N × N matrix is O(N3) [124]. Therefore, the proposed

measure is computationally more efficient than the S-estimator especially for large group of

oscillators.

4.3.1 Simulation Results: Robustness of HPS to Noise

The robustness of the hyperspherical phase synchrony measure in noise is evaluated and

compared to the performance of the S-estimator in quantifying multivariate synchrony. In

order to evaluate the robustness in noise, a group of oscillators, {x1(t), . . . , x16(t)}, consisting

of highly synchronized sinusoidal signals having constant phase differences is considered:

xi(t) = cos

(
2π40t+ π

(i− 1)

16

)
+ ni(t), i = 1, 2, . . . , 16 (4.10)
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where nis are independent white Gaussian noise processes at different variance levels, with

signal-to-noise ratio (SNR) varying in the range of −30 dB to 30 dB, in steps of 2 dB. 200

simulations of the group of oscillators for 1024 time points are considered to evaluate the dis-

tribution of the synchrony values. RID-Rihaczek distribution introduced in Chapter 2 is em-

ployed to estimate time and frequency dependent phase estimates, {Φ1(t, ω), . . . , ϕ16(t, ω)}.

Ideally, the multivariate synchrony value for a group of signals with constant phase shifts

is expected to be equal to 1. Fig. 4.6 illustrates the performance of the hyperspherical phase

synchrony and S-estimator in estimating the true multivariate phase synchrony for different

SNR values. The average multivariate synchrony values over time are plotted with increasing

SNR values and the bars indicate the standard deviations. From Fig. 4.6, for all SNR values,

one can see that the multivariate phase synchrony provided by the hyperspherical phase

synchrony measure is always larger than the one given by the S-estimator, especially for

low SNR values. Furthermore, using the Wilcoxon rank sum test, the null hypothesis that

the multivariate synchrony values come from identical distributions with equal medians is

rejected at %5 significance level for all of the SNR values. Hence, the multivariate synchrony

values from hyperspherical phase synchrony measure are significantly larger than the ones

provided by the S-estimator. Therefore, HPS is more robust to noise and outperforms the

S-estimator in quantifying the multivariate phase synchrony.

4.3.2 Application to EEG Data

4.3.2.1 EEG Data

In order to evaluate the performance of the proposed measure in quantifying the multivariate

synchronization across different brain regions, we use a set of EEG data containing the
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Figure 4.6: Comparison of noise robustness: Performances of the hyperspherical phase syn-
chrony and S-estimator in estimating the true multivariate phase synchrony within a group
of oscillators consisting of highly synchronized sinusoidal signals having constant phase dif-
ferences for different SNR values, bars indicate the standard deviations.

ERN. Cavanagh et al. have shown that lateral prefrontal cortex (lPFC) activity is phase-

synchronous with medial-frontal theta, supporting the idea that medial prefrontal (mPFC)

and lPFC regions are functionally integrated during error processing [122]. Recent work has

also supported the hypothesis that mPFC regions are highly integrated with other prefrontal

areas during control processing [121]. Therefore, in this Chapter, application of the proposed

measure to EEG data is based on the hypothesis that the medial-frontal region will play a

central functional role during the ERN, and will have significant integration with frontal areas

within the theta frequency band. Therefore, multivariate phase synchronization is expected

to be higher for frontal and central electrode group compared to parietal and central one.

In this Chapter, we analyzed 62-channel EEG data collected from 32 subjects correspond-

ing to the error responses4. Before applying the proposed measure, all EEG epochs were

4We would like to acknowledge Dr. Jason Moser from Michigan State University for
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converted to current source density (CSD) to accentuate local activity and distal activity

(e.g. volume conduction), using published methods [125, 126].
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Figure 4.7: The mean HPS values computed over all subjects at each time and frequency
point within the ERN interval and theta band for the two electrode groups.

sharing his EEG data with us.
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Figure 4.8: The mean S-values computed over all subjects at each time and frequency point
within the ERN interval and theta band for the two electrode groups.

4.3.2.2 Results

The proposed hyperspherical multivariate synchrony measure is applied to both the frontal

(F1, F2, F3, F4)-central (FCz) electrode group and the parietal (CP1, CP2, CP3, CP4)-

central (FCz) group. For each subject, we focused on the ERN interval, [ta, tb], and theta
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frequency band, [ωa, ωb], and compared the mean HPS value,

HPS = 1
T×Ω

∑tb
t=ta

∑ωb
ω=ωa HPS(t, ω), where T and Ω are the total number of time and

frequency bins, respectively, to identify if the frontal-central group has stronger multivariate

synchronization compared to the parietal-central group. For all subjects, frontal-central

electrode group resulted in significantly larger HPS values compared to the parietal-central

group using a Welch’s t-test at 1% significance level. This result is consistent with previously

observed interactions in the theta band between medial prefrontal cortex (mPFC) and lateral

prefrontal cortex (lPFC) during error-related negativity [122]. Figs. 4.7(a) and 4.7(b) show

the mean HPS values computed over all subjects at each time and frequency point within

the ERN interval and theta band for the two electrode groups. Moreover, we compared

the performance of HPS with the S-estimator in discriminating between the multivariate

synchronization of the two groups. Figs. 4.8(a) and 4.8(b) show the mean S-values computed

over all subjects. We found that the HPS values for frontal-central group in Fig. 4.7(a) are

significantly larger compared to parietal-central group in Fig. 4.7(b) with p < 0.01. On the

other hand, the S-values in Fig. 4.8(a) are significantly larger compared to parietal-central

group with p < 0.05. Therefore, the proposed measure yields more significant differences

and outperforms S-estimator in discriminating between the multivariate synchronization of

the two groups.

We also compare our proposed measure with S-estimator for detecting significant multi-

variate synchronization for the frontal-central electrodes using an ROC curve. ROC curves

were developed in the context of signal detection [127], and have been widely used for EEG

analysis purposes in neuroscience [128, 129]. ROC curves describe the full trade-off between

detection and false alarm rates and allow one to compare two methods over the complete

spectrum of operating conditions. Each point on each curve corresponds to a different thresh-
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old for signaling an alarm. In general, if one curve lies entirely above another curve, then the

corresponding method is considered to be superior in that it handles the trade-off between

missed detections and false alarms better.

In this Chapter, for each subject, a true positive (detection) is determined when the mean

multivariate synchrony value within the ERN interval and theta band for the frontal-central

electrodes is larger than the threshold, whereas a false alarm is defined when the mean

multivariate synchronization for the parietal-central group is larger than the threshold. Fig.

4.9 shows the ROC curves for HPS and S-estimator. One can clearly see that HPS performs

better than the S-estimator in detecting frontal-central multivariate synchronization since

the area under the ROC curve of HPS is much greater compared to the ROC curve of

S-estimator. Including more subjects in the current EEG data analysis could improve the

performance of our proposed approach and enable the ROC curves to approach to the optimal

upper left corner.
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Figure 4.9: ROC curves for HPS and S-estimator
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4.4 Conclusions

In this chapter, we first introduced an approach consisting of two complementary measures,

S-estimator and Rv, for quantifying multivariate phase synchronization within a group of

oscillators as well as between groups. The proposed approach is based on the application of

RID-Rihaczek distribution for extracting time and frequency dependent phase information,

and adapting measures of correlation from statistics to multivariate analysis. The proposed

approach extends the current state of the art phase synchrony analysis from quantifying

bivariate relationships to multivariate ones. Second, we proposed a novel and direct method,

called hyperspherical phase synchrony, to compute the multivariate phase synchrony within

a group of oscillators coupled through either direct or indirect relationships, such as the

global coupling across different brain sites. Simulation results and application to real EEG

data show the effectiveness and superiority of hyperspherical phase synchrony compared to

the existing methods. This shift from pairwise bivariate synchrony analysis to multivariate

analysis offers advantages especially for complex system analysis such as the brain where the

bivariate relationships do not always reflect the underlying network structure.

Future work will focus on the extension of S-estimator and Rv measures using different

multivariate analysis techniques such as cluster analysis and canonical correlation to obtain

a more detailed understanding of the synchronization networks as well as the application of

these measures to a large number of signals as is the case with EEG. For the hyperspherical

phase synchrony measure, we will concentrate on exploring different sampling point-sets such

that the resulting direction vectors are distributed uniformly on the N -sphere since the set

of direction vectors based on uniform sampling in the angular coordinate system results in

nonuniformly distributed direction vectors as shown in Fig. 4.5. In the current application
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to EEG data, one limitation of the proposed measures is that the groups of oscillators to be

analyzed have to be identified a priori with known synchronization patterns and an exhaus-

tive search to find synchronization clusters would be computationally complex. Therefore,

it would be valuable to first use preprocessing methods, such as eigenvalue decomposition

or measures of association and complexity, which can help us to discover the underlying

networks. Furthermore, we will extend the application of the proposed measure to compare

the dynamic nature of functional brain networks for error and correct responses to get a

more complete understanding of cognitive control.
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Chapter 5

Time-Varying Graph Analysis for

Dynamic Brain Network Identification

5.1 Introduction

In recent years, there has been a growing need for quantifying multivariate relationships

across multiple brain regions to provide an understanding of the collective behavior of func-

tional brain connectivity. A popular approach to look at the multivariate synchronization

patterns has been through the use of a new, multidisciplinary approach to the study of com-

plex systems based on graph theory. Graph theory provides a way to capture the topology of

the functional networks and to quantify the multivariate relationships among neuronal acti-

vations across brain regions [130]. It also suggests models for functional brain networks which

may allow us to better understand the relation between network structure and the processes

taking place on these networks. One such model is the ’small-world’ network introduced by

Watts and Strogatz [131], that demonstrates both clustered (’cliquish’) inter-connectivity

within groups of nodes (like regular lattices) and a short path length between any two nodes

(like random graphs). This is an attractive configuration for the functional architecture of

the brain, because small-world networks are known to optimize information transfer, increase

the rate of learning, and support both segregated and distributed information processing.

Recently, there have been multiple functional network studies using graph theory based on
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fMRI [132, 133], EEG [134, 135], and MEG data [136, 137] which have shown small-world

patterns in functional networks of healthy subjects. Several studies have also shown how

brain pathology, such as schizophrenia and Alzheimer’s diseases, may interfere with the nor-

mal small-world architecture [138, 139, 140, 136, 135]. Furthermore, the development of

neurobiologically meaningful and easily computable measures, such as graph theory based

clustering coefficient and characteristic path length, have been shown to reliably characterize

functional brain connectivity [141, 139, 140, 136, 142]. These measures also offer a simple way

to compare functional network topologies between subject populations and reveal presumed

connectivity abnormalities in neurological and psychiatric disorders [135, 143].

Currently, topological features of functional brain networks such as clustering coeffi-

cient, path length, small world parameter [39], modularity, global and local efficiency are

defined over long periods of time, thus focusing on static networks and neglecting possible

time-varying properties of the topologies [36, 37, 38]. However, evidence suggests that the

emergence of a unified neural process is mediated by the continuous formation and destruc-

tion of functional links over multiple time scales [39]. Hence, a single graph is not sufficient

to represent the communication patterns of the brain and can be considered as an unreliable

snapshot of functional connectivity.

In recent years, there has been an interest in characterizing the dynamic evolution of

networks. Most of the existing approaches to dynamic network analysis are either graph

theory based such as direct extensions of component finding [51, 52, 53] and community

detection [54] from the static to the dynamic case, or are feature based where features

extracted from each graph in the time series are used to form time-varying graph metrics

[55, 56]. The analysis of time-varying features of the functional connectivity reveals that the

processing of a stimulus involves optimized functional integration of distant brain regions
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by dynamic reconfiguration of links. More recently, the dynamic nature of the modular

structure in the functional brain networks has been investigated by finding modules for each

time window and comparing the modularity of the partitions across time [17]. However,

this approach does not evaluate the dynamic evolution of the clusters across time and is

basically an extension of static graph analysis for multiple static graphs. Mucha et al. [54]

proposed a new time-varying clustering algorithm which addresses this issue by defining

a new modularity function across time. All of these module finding algorithms result in

multiple clustering structures across time and there is a need to reduce the multitude of

data into a few representative networks or to quantify the evolution of the network in time

using reliable metrics. Therefore, these approaches do not track the change in connectivity

or clustering patterns and cannot offer meaningful summarizations of time-varying network

topology.

Recently, researchers in signal processing have addressed problems in dynamic network

analysis such as detection of anomalies or distinct subgraphs in large, noisy background [57]

and tracking dynamic networks [61]. Simple approaches such as sliding window or exponen-

tially weighted moving averaging have been proposed for inferring long-term information or

trends [62, 63]. However, these methods have some disadvantages such as preserving histor-

ical affinities indefinitely, which makes the network topology denser as time evolves [62]. In

Chapters 2, 3 and 4, we focused on quantifying the functional brain connectivity within a

given time interval and did not provide an understanding of time-varying evolution of these

functional networks. Therefore, in this Chapter, we will contribute to the line of dynamic

network analysis by finding the event intervals in functional brain connectivity patterns,

revealing the most relevant information for each interval and summarizing brain network

activity with a few number of representative networks. This is similar to data reduction
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in signal processing where the ideal summary should conserve the minimum redundancy in

representing the dynamics of the particular interval.

In this Chapter, we first construct time-varying graphs, which are needed to describe

the brain activity across time for a given frequency band, by quantifying the time-varying

phase synchrony between different brain regions defined through EEG data [110]. Then, a

framework for summarizing or reducing the information in dynamic brain networks into a

few representative networks will be proposed by using subspace analysis based on principal

component analysis (PCA) to focus on signal subspace only and to discard noise subspace.

We compute the angular similarity between subsequent graphs in signal subspace to deter-

mine the event boundaries and finally, we form a key network for each interval such that this

key network captures only the information belonging to the signal subspace.

5.2 Background

5.2.1 Notation

We use uppercase bold letters, such as X, to denote a matrix and lowercase bold letters,

such as x, to denote a vector, where X(t) and x(t) represent the matrix and vector at time

point t, respectively. Xi,j(t) represents the entry of matrix X(t) at the ith row and jth

column, whereas xi(t) denotes the ith entry of vector x(t). ∥x(t)∥p = (
∑k

i=1 |xi(t)|p)1/p is

the lp norm of a k-dimensional vector x(t).
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5.2.2 Network Change Detection Using PCA

PCA is a dimensionality reduction technique that results in a compact representation of a

multivariate data set by projecting the data onto a lower dimensional subspace defined by

a set of new axes called principal components (PCs) and each PC points in the direction of

maximum variance remaining in the data, given the variance already accounted for in the

preceding components. Lakhina et al. were the first to use PCA as a tool to detect network

traffic anomalies, in particular for computer network data streams, and PCA based network

wide anomaly detection has been extensively investigated in [144, 145, 146].

Let X = [x(1), . . . ,x(m)] be a n × m time-series data matrix, centered to have zero

mean, where x(t) is an n-dimensional data vector at time point t. Then, the set of n

principal components, {vi}ni=1, are defined as:

vi = arg max
∥v∥2=1

∥∥∥∥∥∥
X −

i−1∑
j=1

Xvjv
T
j

v

∥∥∥∥∥∥ (5.1)

Solution of Eq. (5.1) is given by the eigenvectors of the covariance matrix, C = 1
mXXT ,

which form an n×n matrix V = [v1, . . . ,vn] having associated eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λn arranged in decreasing order.

It has been observed that although the original data spans a high dimensional space,

normal traffic patterns lie in a low dimensional signal (normal) subspace spanned by the

first l PCs corresponding to the l largest eigenvalues and anomalous behavior lies in a noise

(anomalous) subspace spanned by the remaining (n− l) PCs [144]. Hence, the data at time

point t, x(t), can be decomposed as:

x(t) = xSig(t) + xNoi(t) (5.2)
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where xSig(t) and xNoi(t) correspond to the signal and noise components, respectively, and

can be computed as:

xSig(t) = PP Tx(t) and xNoi(t) = (I − PP T )x(t) (5.3)

where P = [v1, . . . ,vl] consists of the eigenvectors with the largest l eigenvalues and I

is the identity matrix. When there is a large change in the noise component, xNoi(t), an

anomalous network wide behavior is declared [144]. Thus, by performing statistical testing

using a Q-statistic on the squared prediction error, ∥xNoi(t)∥2, one can determine whether

an anomaly is observed or not [147, 144].

5.3 Methods

5.3.1 Forming Time-Varying Graphs via Phase Synchronization

In order to identify event intervals and infer the evoked network activity within each interval,

we first need to obtain time-varying graphs representing the interactions across different brain

sites. Let {G(t)}t=1,2,...,T be a time sequence of matrices where G(t) is an N ×N weighted

and undirected graph corresponding to the functional connectivity network at time t for a

fixed frequency or frequency band, T is the total number of time points and N is the number

of nodes within the network. The nodes in the network correspond to different brain regions

and edges correspond to the connectivity strength quantified by the average phase locking

value (PLV) within a frequency band and at a certain time as:

Gi,j(t) =
1

Ω

ωb∑
ω=ωa

PLVi,j(t, ω) (5.4)
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where

PLVi,j(t, ω) =
1

L

∣∣∣∣∣∣
L∑

k=1

exp
(
jΦk

1,2(t, ω)
)∣∣∣∣∣∣ (5.5)

is the phase synchrony between nodes i and j at time t and frequency ω, L is the number of

trials and Φk
i,j(t, ω) = |Φi(t, ω)− Φj(t, ω)| is the phase difference estimate for the kth trial.

The time and frequency dependent phase, Φi(t, ω), of a signal, si, is estimated using the RID-

Rihaczek distribution introduced in Chapter 2. Gi,j(t) ∈ [0, 1] represents the connectivity

strength between the nodes i and j within the frequency band of interest, [ωa, ωb], and Ω is

the number of frequency bins in that band. Since the graphs are undirected and symmetric,

we create vectors, {x(t)}t=1,2,...,T , to equivalently represent these graphs where x(t) is an(N
2

)
-dimensional column vector obtained by stacking the columns of the upper triangular

portion of G(t). In this Chapter, our focus is to evaluate the dynamics of the networks

over time and the proposed framework is designed accordingly. However, one can extend

this framework to consider each time and frequency bin separately to evaluate the network

changes over both time and frequency.

5.3.2 Event Interval Detection

Once the time-varying graphs and corresponding column vectors, [x(1), . . . ,x(T )], are ob-

tained, we need to identify network-wide changes to determine time intervals which may

correspond to the underlying neurophysiological events such as evoked potentials. We define

an event interval as a time window during which the similarity in terms of edge strength be-

tween the consecutive time-varying graphs is maximized. Change detection in time-varying

data streams has usually been performed by using distance functions or similarity metrics

[148]. One approach is to use information theoretical measures, e.g., KullbackLeibler or
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Jensen-Shannon divergence, as distance functions to compute dissimilarity between subse-

quent time-varying graphs [149]. However, this requires a large amount of data for the

reliable computation of empirical histograms. Another most commonly used similarity mea-

sure is the lp norm, such as Euclidean, l1 and l∞ norms, of the difference between subsequent

column vectors consisting of the graph edges [150]. Although these metrics are relatively

straightforward and easy to implement, they might impose a loss of information in revealing

important features of the difference between graph edges. For instance, l∞ norm focuses

only on the maximum absolute valued difference between the edges and discards the rest of

the information in the remaining elements. On the other hand, Euclidean and l1 norms con-

sider the total energy of the difference, which results in emphasizing the importance of the

elements having larger magnitude and neglecting the contribution of the ones with smaller

absolute values. Alternatively, correlation of subsequent time-varying graphs has been used

as a similarity index [151], which also emphasizes the elements with larger absolute values.

Therefore, we propose to track the angle of time-varying direction vectors, formed by the

edge values, to detect event intervals depending on the change in the angular similarity over

time. Furthermore, since the edge values could be suppressed by the effect of the noise sub-

space, we propose to analyze the dynamic network in the signal subspace, which is similar to

spatial filtering of multivariate time-series. For this purpose, we define the set of direction

vectors, [y(1), . . . ,y(T )], as:

y(t) =
P Tx(t)

∥P Tx(t)∥2
(5.6)

where P is formed with the l eigenvectors of the covariance matrix,

C = 1
T [x(1), . . . ,x(T )][x(1), . . . ,x(T )]

T , corresponding to the largest l eigenvalues such
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that: ∑l
j=1 λj∑(N2 )
j=1 λj

× 100 ≥ 90 (5.7)

Note that y(t) is an l-dimensional direction vector on a unit l − 1 sphere at time t and lies

in the signal subspace. Then, we define the angular similarity at time t as:

at = yT (t− 1)y(t) (5.8)

Note that this method is similar to the cosine similarity and does not depend on the magni-

tude of the edge values, which results in an equal contribution of each edge value in defining

a network-wide change. If there is an abrupt decrease in the angular similarity between

the subsequent direction vectors, this would indicate a significant change in the network

patterns. Hence, we detect event intervals as follows:

Et =


1, if at < µt − 3σt

0, if at ≥ µt − 3σt

(5.9)

where we propose to employ a change detection algorithm based on adaptive threshold-

ing. An event boundary is detected, Et = 1, depending on the decrease of at, 3σt =

3
√

1
δ

∑δ
k=1(at−k − µt)2, from µt =

1
δ

∑δ
k=1 at−k. The length of the moving average win-

dow, δ, can be chosen based on the sampling frequency and total number of time samples,

T .
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5.3.3 Summarizing Signal Subspace for Key Graph Estimation

After determining the event intervals, our goal is to form key graphs which best summarize

the particular intervals. An ideal key graph should describe the particular interval with

minimal redundancy. In this Chapter, we propose to discard noise subspace and consider

only signal subspace by projecting the original data onto the signal subspace.

Let [x(i), . . . ,x(i+m−1)] be the set of m vectors obtained from the time-varying graphs

that compose a detected event interval we try to summarize. The corresponding projection

matrix, Pi, is computed such that l eigenvalues capture 90% of the total energy as described

in section 5.3.2. For each time point within the particular event interval, signal subspace

component is extracted as:

xSig(t) = PiP
T
i x(t) t = i, . . . , i+m− 1 (5.10)

Hence, the new set of vectors contains only the information related to the signal subspace

and conserves 90% of the total energy within the particular event interval. For each event

interval, we compute a weighted mean vector:

xSig =

∑i+m−1
t=i SNRItxSig(t)∑i+m−1

t=i SNRIt
(5.11)

where we define a time-varying signal-to-noise ratio index, (SNRI), which is a measure of

how the relative energy captured by the signal subspace compared to the noise subspace

evolves over time, as follows:

SNRIt =
∥PiP

T
i x(t)∥2

∥(I − PiPi(t)
T )x(t)∥2

=
∥xSig(t)∥2
∥xNoi(t)∥2

(5.12)
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The corresponding key graph is obtained by reshaping xSig such that it constitutes the

upper triangular part of the symmetric key graph for the particular interval. The proposed

framework is summarized in Fig. 5.1.
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Figure 5.1: Flow chart describing the proposed framework for extracting key graphs using
subspace analysis
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Figure 5.2: Angular Similarity for MIT Reality Mining Data Set: Five event intervals are
detected by the change detection algorithm

5.4 Results

5.4.1 Application to Social Networks

Before applying the proposed framework to functional brain networks, in order to evaluate

the performance of our framework in inferring the evolution of dynamic networks, we em-

ployed the time-varying network data set collected by the MIT Reality Mining Project [152].

The data set is obtained between 2004 and 2005 by recording cell phone communication of

94 students, including graduate and undergraduate students, laboratory staff and profes-

sors within a major research institution. Each subject had a phone with built-in Bluetooth

devices and recorded the Media Access Control addresses of nearby phones at five minute

intervals. We constructed a weighted adjacency matrix by utilizing the physical proximity

data for each week within the nine months from August 2004 to June 2005, which results in
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a dynamic graph consisting of 46 discrete time steps1.

Fig. 5.2 shows the angular similarity between subsequent graphs where the event in-

terval detection algorithm recognized five different intervals separated by the vertical lines.

Detected event intervals are consistent with the academic calendar of MIT since the second

and fourth intervals correspond to the Fall and Spring semesters, respectively, whereas the

remaining intervals correspond to the winter and summer breaks.

After detecting the intervals, we extracted five key networks which are shown in Fig. 5.3.

We see that the network connectivity is denser within the Fall and Spring semesters where

we observe communication between students, undergraduates and graduates, staff members

and professors. On the other hand, the network density decreases during the breaks where

we observe some connections between graduate students (nodes 1 to 36), first year graduate

students (nodes 37 to 51) or laboratory staff members (nodes 52 to 57). This is expected

since almost all of the staff members and some of the graduate students continue working

in the MIT Media Laboratory whereas undergraduate students (nodes 58 to 66) and Sloan

Business School students (nodes 67 to 93) leave the campus during the breaks.

In order to evaluate the performance of our framework, we compare the subspace analysis

approach with averaging the networks within each event interval to summarize network

dynamics. For each interval, we computed the normalized Frobenius inner product of the

key graph with each weighted adjacency matrix within the event window and compared it

with the same inner product for the averaging approach. Table 5.1 shows the mean and

standard deviation of the normalized inner product values for both approaches. For each

interval, subspace analysis approach results in a larger inner product value compared to

1We would like to thank Kevin S. Xu for providing the affinity matrices of MIT Reality
Mining data.
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Figure 5.3: Extracted key graphs for the MIT Reality Mining Data (Diagonal entries are
made zero for contrast purposes): (b) and (d) show the key graphs for Fall and Spring
semesters, respectively, whereas (a) and (e) show the key graphs for the summer break and
(c) shows the graph for the winter break

sample averaging and differences are significant at α = 0.05 level with Wilcoxon rank sum

test. Therefore, the proposed approach offers more representative key graphs compared to

sample averaging approach.
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Table 5.1: Mean and standard deviation values of the normalized Frobenius inner products
Interval 1 Interval 2 Interval 3 Interval 4 Interval 5

Subspace Analysis 0.72± 0.05 0.68± 0.06 0.73± 0.11 0.76± 0.04 0.65± 0.08
Mean Network 0.44± 0.04 0.52± 0.11 0.46± 0.12 0.58± 0.03 0.47± 0.14

5.4.2 Application to EEG Data

5.4.2.1 Data

To evaluate the performance of the proposed measure in summarizing the event intervals with

biological data, we use a set of EEG data containing the error-related negativity (ERN). The

ERN is an event-related potential that occurs following performance errors in a speeded reac-

tion time task [119, 153]. The ERN is observed as a sharp negative trend in EEG recordings

which typically peaks from 75-80 ms after the error response. Previously reported EEG

data from 62-channels were utilized [109]. This study included 90 (34 male) undergradu-

ate students (two of the original 92 participants were dropped due to artifacts rendering

computation of the PLV values problematic). Full methodological details of the recording

are available in the previous report [109]. The task was a common speeded-response letter

(H/S) flanker, where error and correct response-locked trials from each subject were utilized.

A random subset of correct trials was selected, to equate the number of errors relative to

correct trials for each participant. Before computing the phase-synchrony measures, all EEG

epochs were converted to current source density (CSD) using published methods [125, 126].

This was done to accentuate local activity and to attenuate distal activity (e.g. volume

conduction).

There has been longstanding interest in time-frequency representations of the ERN [154,
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155, 156]. It has now been established that the time-frequency energy in the ERN occurs in

the theta band (4-8 Hz) of the EEG, occurring medial-frontally. This activity has been shown

to have primary sources in the anterior cingulate cortex (ACC) [157, 158, 159]. Observations

of similar theta activity across a number of different tasks has been reported, suggesting that

midline frontal theta activity may serve related roles across a number of cognitive processes

[120]. New attention has been focused on the functional connectivity occurring during the

ERN, to better understand the role of medial-frontal theta activity in functional networks

subserving cognitive control. Cavanagh and colleagues [122], for example, found evidence

that lateral prefrontal cortex (lPFC) activity was phase-synchronous with medial-frontal

theta, supporting the idea that medial prefrontal (mPFC) and lPFC regions are functionally

integrated during error processing. By assessing medial-frontal regions active during the

ERN in relation to diffusion tensor imaging (DTI), new work has also helped demonstrate

how mPFC regions are highly integrated with other prefrontal areas during control processing

[121]. Together, advances in this area support the view that medial-frontal sources serve as

a central region of activity during error-processing, and that phase-synchrony measures of

theta activity can index this functional integration. At the same time, work in this area

is nascent, and new research into the nature of this functional integration are important.

The proposed approach is a graph-based data-driven approach to characterizing functional

connectivity, and can offer a new look at network patterns occurring during the ERN. Thus,

while the primary aims of the current work are methodological (i.e. developing a method for

characterizing time-varying graphs), we hypothesize that the medial-frontal region will play

a central functional role during the ERN, and will have significant integration with frontal

areas, including lateral-frontal. Such findings can offer support that the proposed time-

varying graph approach produces effects consistent with current theoretical and empirical
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work in the field.

5.4.2.2 Network-wide Change Detection

In this Chapter, we analyzed data from 90 subjects corresponding to the error responses. For

each subject, time and frequency dependent phase synchrony between all possible electrode

pairs is computed by RID-Rihaczek based PLV measure and time-varying graphs, G
(q)
t , t =

1, . . . , 256, for the qth subject are constructed using Eq. (5.4) where the number of nodes,

N , is equal to 62, the frequency band of interest is the theta band (4-8 Hz) and the sampling

frequency is 128 Hz. Furthermore, a mean time-varying graph sequence, Ḡt, is computed

over all subjects as:

Ḡt =
1

90

90∑
q=1

G
(q)
t (5.13)

and the event interval detection algorithm is applied to this average sequence, Ḡt, where the

length of the moving average window, δ, is chosen as 5% of the sampling period. The value

of δ is selected such that the window length is able to both detect the abrupt changes in

the connectivity patterns and prevent over-smoothing. Different values of moving average

window can be chosen depending on the sampling frequency or the application type. We de-

tected 6 event intervals using Eq. (5.9) which roughly correspond to the stimulus processing

(-1000 to -179 ms), pre-ERN (-178 to 0 ms), ERN (1 to 94 ms), post-ERN (95 to 281 ms),

Pe (282 to 462 ms) and inter-trial (463 to 1000 ms) intervals, respectively, as shown in Fig.

5.4.

The detected event intervals are consistent with the speeded reaction time task as the

subjects respond to the stimulus at time 0 ms. The first interval indexes complex processing

of the imperative stimulus before making a response. The Pre-ERN and Post-ERN intervals,
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Figure 5.4: Event interval detection: 6 event intervals are identified which correspond to
the stimulus processing (-1000 to -179 ms), pre-ERN (-178 to 0 ms), ERN (1 to 94 ms),
post-ERN (95 to 281 ms), Pe (282 to 462 ms) and inter-trial (463 to 1000 ms) intervals,
respectively. The subjects respond to the stimulus at time 0 ms and the red lines indicate
E(t) = 1.

just before and after the ERN, index activity around the incorrect motor response. Impor-

tantly, the ERN interval and Pe interval are detected successfully by the event detection

algorithm. The Pe (error-positivity) interval corresponds to a P3-like component observed

subsequent to the incorrect response [160, 161]. However, measures of P3 energy generally

show activity in lower frequency delta bands (e.g. [162, 163, 164, 165]), rather than the

currently measured theta activity.

5.4.3 Significance Testing for the Key Graph Estimation

Since the distribution of the interactions under the null hypothesis which form a key graph

for a particular interval cannot be obtained analytically, we resort to generating random
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networks to derive this distribution. For each key graph extracted for a given time interval,

we derived an ensemble of 2000 surrogate time-varying networks by randomly reshuffling

the edge weights [143]. The key graph estimation algorithm is applied to each surrogate

time-varying graph set in each interval which resulted in 2000 surrogate key graphs. In

order to compare the original key graphs with the ones obtained from the surrogate data

sets, we selected two different P-values, p < 0.01 and p < 0.001, to determine the significant

interactions at 99% and 99.9% significance levels, respectively.

Figure 5.5: Stimulus processing interval: A key graph is obtained using the framework
described in section 5.3.3. We compared the extracted key graphs with the ones obtained
from the surrogate time-varying graphs and identified the interactions which are significant.
The interactions which are found to be significant at two different levels, p < 0.01 and
p < 0.001, are represented in blue and red colors, respectively.
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Figure 5.6: Pre-ERN interval: A key graph is obtained using the framework described in
section 5.3.3. We compared the extracted key graphs with the ones obtained from the
surrogate time-varying graphs and identified the interactions which are significant. The
interactions which are found to be significant at two different levels, p < 0.01 and p < 0.001,
are represented in blue and red colors, respectively.

5.4.3.1 Key Graph Estimation

For each interval, subspace summarization approach described in section 5.3.3 is employed

to estimate xSig, which construct the corresponding symmetric key graph. We compared

the extracted key graphs with the ones obtained from the surrogate time-varying graphs

and identified the interactions which are statistically significant. For each event interval,

Figs. 5.5-5.10 show the interactions which are significant at two different significance levels

where the interactions with p < 0.01 and p < 0.001 are represented in blue and red colors,

respectively. As one can see from Figs. 5.5-5.10, ERN interval has much more significant
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Figure 5.7: ERN interval: A key graph is obtained using the framework described in section
5.3.3. We compared the extracted key graphs with the ones obtained from the surrogate time-
varying graphs and identified the interactions which are significant. The interactions which
are found to be significant at two different levels, p < 0.01 and p < 0.001, are represented in
blue and red colors, respectively.

connections compared to the Pre-ERN and Post-ERN intervals as expected because of the

complex activity associated with the error commission. In particular, the frontal electrodes

(F5, FZ, F2 and F4) have significant connections with the central electrode (FCz) with

p < 0.001, consistent with previously observed interactions in theta band between medial

prefrontal cortex (mPFC) and lateral prefrontal cortex (lPFC) during error-related cognitive

control processes [122], whereas the other event intervals do not include such interactions

among frontal and central sites. During the Pe, on the other hand, we observe significant

connections only among the parietal and occipital-parietal electrodes with p < 0.01 and p <

0.001. Hypotheses about theta activity during the Pe are underdeveloped in the literature,
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Figure 5.8: Post-ERN interval: A key graph is obtained using the framework described
in section 5.3.3. We compared the extracted key graphs with the ones obtained from the
surrogate time-varying graphs and identified the interactions which are significant. The
interactions which are found to be significant at two different levels, p < 0.01 and p < 0.001,
are represented in blue and red colors, respectively.

because P3-related activity generally occurs at lower frequencies (e.g. 0-3 Hz, as described

above). Thus, while the observed pattern of effects could be interpreted, it is more reasonable

to note that this interval contains the fewest connections between nodes among the identified

intervals.

We also focused on the change in connectivity for FCz electrode with the remaining 61

electrodes within the key graphs for Pre-ERN, ERN and Post-ERN intervals and compared

these connectivity values to identify if FCz has stronger connectivity during the ERN in-

terval compared to the Pre-ERN and Post-ERN intervals. We used a Welch’s t-test at 5%

significance level to test the null hypothesis that the connectivity strengths from different
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Figure 5.9: Pe interval: A key graph is obtained using the framework described in section
5.3.3. We compared the extracted key graphs with the ones obtained from the surrogate time-
varying graphs and identified the interactions which are significant. The interactions which
are found to be significant at two different levels, p < 0.01 and p < 0.001, are represented in
blue and red colors, respectively.

key graphs are independent random samples from normal distributions with equal means.

For both comparisons, Pre-ERN vs ERN and Post-ERN vs ERN, the null hypothesis is re-

jected where FCz has a larger mean connectivity for the ERN interval indicating that the

central electrode has significantly larger connectivity with the rest of the brain during the

ERN interval. Moreover, we compared the connectivity values for Pre-ERN and Post-ERN

where there is no significant difference between the connectivity values from these intervals.
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Figure 5.10: Inter-trial interval: A key graph is obtained using the framework described
in section 5.3.3. We compared the extracted key graphs with the ones obtained from the
surrogate time-varying graphs and identified the interactions which are significant. The
interactions which are found to be significant at two different levels, p < 0.01 and p < 0.001,
are represented in blue and red colors, respectively.

5.5 Conclusions

In this Chapter, we proposed a new framework to describe the dynamic evolution of brain

networks. The proposed approach is based on finding the event intervals and revealing the

informative component of each interval by considering the signal subspace and discarding

the noise subspace such that the key graph would summarize the particular interval with

minimal redundancy. Expectable results from the application to real EEG data containing

the ERN supports the effectiveness of the proposed framework in determining the event

intervals of dynamic brain networks and summarizing network activity with a few number
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of representative networks.

Future work will concentrate on exploring alternative decomposition techniques for sub-

space analysis, which may result in an improved performance in summarizing dynamic net-

works. Furthermore, the proposed framework will be extended to compare the dynamic

nature of functional networks for error and correct responses to get a more complete under-

standing of cognitive control. In addition, we will employ the proposed framework to analyze

data in other frequency bands including delta, which may be more central to activity dur-

ing the Pe interval. Future work will also consider exploring single dipole [159, 166] and

distributed dipole [167] source solutions to the inverse problem for extending our proposed

dynamic functional connectivity analysis framework to the source domain. Finally, we will

explore different group analysis methods to consider the variability across individual subjects

and possibly reveal the distinctive network features for each subject rather than averaging

the time-varying graphs from all subjects.

134



Chapter 6

Conclusions and Future Work

In this thesis, a new time-varying phase estimation method based on the RID-Rihaczek

distribution is proposed. The performance of the phase estimator and the corresponding

synchrony measure are evaluated both analytically and through simulations in comparison

to existing measures. Both the analytical and the simulation results show RID-Rihaczek

distribution based phase and synchrony estimators to be more robust to noise, have better

time-frequency resolution and perform better at detecting actual synchrony in the system

compared to existing measures. Second, we proposed two complementary approaches, based

on the RID-Rihaczek distribution and the cross frequency-spectral lag distribution to quan-

tify the cross-frequency modulation between two signals, namely the CF phase synchrony

and modulation effect, respectively. CF phase synchrony is based on the Reduced Inter-

ference Rihaczek distribution and extends the Reduced Interference Rihaczek based phase

synchrony measure to quantify the phase synchrony between two signals across different

frequencies. The cross frequency-spectral lag distribution offers cross-frequency coupling in-

formation and it focuses on quantifying the amount of amplitude modulation between two

signals. Simulation results and EEG applications show that the proposed methods perform

well in quantifying the phase synchrony across frequencies and identifying the modulation

effects. In Chapter 4, we introduced methods for quantifying multivariate phase synchroniza-

tion within and across groups of signals. The first method was based on two complementary

measures of multivariate correlation and complexity, S-estimator and Rv. RID-Rihaczek

135



distribution is used to extract time and frequency dependent phase estimates and measures

of correlation are adapted from statistics to multivariate analysis. The proposed approach

extends the current state of the art phase synchrony analysis from quantifying bivariate

relationships to multivariate ones. We then proposed a novel and direct method, called hy-

perspherical phase synchrony, to compute the multivariate phase synchrony within a group of

oscillators coupled through either direct or indirect relationships, such as the global coupling

across different brain sites. Hyperspherical phase synchrony offers lower computational com-

plexity and improved performance in terms of robustness to noise compared to the existing

measures. Also, application to real EEG data show the effectiveness of the proposed mea-

sure in quantifying functional connectivity across different brain sites. Finally, we extended

from bivariate analysis to multivariate connectivity through construction of connectivity

graphs. Most of the current literature on using complex network theory to study functional

connectivity focuses on constructing a single graph that describes the static relationships

and neglect possible time-varying properties of the underlying connectivity patterns of the

brain. Hence, in order to account for the changes in these connectivity patterns, we intro-

duce a framework for understanding dynamic evolution of functional brain networks. The

proposed approach is based on detecting key event intervals corresponding to the underlying

neurophysiological events and inferring key networks or graphs for describing the particular

intervals with minimal redundancy. We employ the RID-Rihaczek distribution to compute

time-varying functional brain networks and then use subspace analysis based on principal

component analysis to separate the edges belonging to the signal subspace from the back-

ground edges similar to extracting signal from noise. The resulting key networks contain

only the information related to the signal subspace. Results from the application to real

EEG data illustrates the effectiveness of the proposed framework in determining the event
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intervals of dynamic brain networks and summarizing underlying network activity with a

few number of representative networks.

Future work will concentrate on exploring different generalized complex time-frequency

distributions to develop more statistically stable and computationally efficient time-varying

phase estimates for non-stationary signals. These new measures will be applied to real sig-

nals including the quantification of functional connectivity in the brain from EEG signals.

Moreover, the CF phase synchrony measure based on the RID-Rihaczek distribution will

be applied to EEG signals and different measures will be explored to quantify the amount

of amplitude modulation. Methods for determining the low frequency bands that mod-

ulate high frequency oscillations in EEG signals without a priori knowledge will also be

investigated. Furthermore, the proposed approaches for multivariate synchrony analysis will

be extended. An important limitation of the proposed multivariate synchrony measures is

that the groups of oscillators to be analyzed have to be identified a priori with known syn-

chronization patterns and an exhaustive search to find synchronization clusters would be

computationally complex. Therefore, it would be valuable to first use preprocessing meth-

ods, such as eigenvalue decomposition or measures of association and complexity, which can

help to discover the underlying synchronization clusters. Thus, future work will focus on

developing statistical measures and methods for quantifying multivariate synchrony. Af-

ter obtaining the information about the synchronization clusters, one can use the proposed

measures to compute multivariate phase synchronization to quantify the within and between

cluster relationships. Finally, different decomposition techniques for subspace analysis will

be explored, which may result in an improved performance in understanding time-varying

functional brain networks. The proposed framework will be employed to analyze EEG data

in other frequency bands including delta, beta and gamma. Different group analysis methods
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will be explored to consider the variability across individual subjects and possibly reveal the

distinctive network features for each subject rather than averaging the time-varying graphs

from all subjects.
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background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and
central tendency measure,” Medical engineering & physics, vol. 28, no. 4, pp. 315–322,
2006.

[129] M. Le Van Quyen, J. Soss, V. Navarro, R. Robertson, M. Chavez, M. Baulac, and
J. Martinerie, “Preictal state identification by synchronization changes in long-term
intracranial EEG recordings,” Clinical Neurophysiology, vol. 116, no. 3, pp. 559–568,
2005.

[130] E. Bullmore and O. Sporns, “The economy of brain network organization,” Nature
Reviews Neuroscience, vol. 13, no. 5, pp. 336–349, 2012.

[131] D. Watts and S. Strogatz, “Collective dynamics of small-world networks,” Nature, vol.
393, no. 6684, pp. 440–442, 1998.

[132] K. Supekar, V. Menon, D. Rubin, M. Musen, and M. Greicius, “Network analysis of
intrinsic functional brain connectivity in Alzheimer’s disease,” PLoS Computational
Biology, vol. 4, no. 6, p. e1000100, 2008.

[133] M. Rubinov and O. Sporns, “Weight-conserving characterization of complex functional
brain networks,” Neuroimage, vol. 56, no. 4, pp. 2068–2079, 2011.

[134] C. Stam, M. Breakspear, A. van Walsum, and B. van Dijk, “Nonlinear synchronization
in EEG and whole-headMEG recordings of healthy subjects,” Human Brain Mapping,
vol. 19, no. 2, pp. 63–78, 2003.

[135] C. Stam, B. Jones, G. Nolte, M. Breakspear, and P. Scheltens, “Small-world networks
and functional connectivity in Alzheimer’s disease,” Cerebral Cortex, vol. 17, no. 1,
pp. 92–99, 2007.

151



[136] D. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive
reconfiguration of fractal small-world human brain functional networks,” Proceedings
of the National Academy of Sciences, vol. 103, no. 51, pp. 19 518–19 523, 2006.

[137] L. Douw, M. Schoonheim, D. Landi, M. Van Der Meer, J. Geurts, J. Reijneveld,
M. Klein, and C. Stam, “Cognition is related to resting-state small-world network
topology: an magnetoencephalographic study,” Neuroscience, vol. 175, pp. 169–177,
2011.

[138] C. Stam, T. Montez, B. Jones, S. Rombouts, Y. Van Der Made, Y. Pijnenburg,
and P. Scheltens, “Disturbed fluctuations of resting state EEG synchronization in
Alzheimer’s disease,” Clinical Neurophysiology, vol. 116, no. 3, pp. 708–715, 2005.

[139] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A resilient, low-
frequency, small-world human brain functional network with highly connected associ-
ation cortical hubs,” The Journal of Neuroscience, vol. 26, no. 1, pp. 63–72, 2006.

[140] D. Bassett and E. Bullmore, “Small-world brain networks,” The Neuroscientist, vol. 12,
no. 6, pp. 512–523, 2006.

[141] O. Sporns, D. Chialvo, M. Kaiser, and C. Hilgetag, “Organization, development and
function of complex brain networks,” Trends in Cognitive Sciences, vol. 8, no. 9, pp.
418–425, 2004.

[142] O. Sporns, C. Honey, and R. Kötter, “Identification and classification of hubs in brain
networks,” PLoS One, vol. 2, no. 10, p. e1049, 2007.

[143] C. Stam, W. De Haan, A. Daffertshofer, B. Jones, I. Manshanden, A. van Cappellen van
Walsum, T. Montez, J. Verbunt, J. de Munck, B. van Dijk, H. Berendse, and P. Schel-
tens, “Graph theoretical analysis of magnetoencephalographic functional connectivity
in Alzheimer’s disease,” Brain, vol. 132, no. 1, pp. 213–224, 2009.

[144] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” in
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, 2004, pp. 219–230.

[145] ——, “Mining anomalies using traffic feature distributions,” in ACM SIGCOMM Com-
puter Communication Review, vol. 35, no. 4, 2005, pp. 217–228.

[146] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft, “In-network
PCA and anomaly detection,” Advances in Neural Information Processing Systems,
vol. 19, p. 617, 2007.

152



[147] J. Jackson and G. Mudholkar, “Control procedures for residuals associated with prin-
cipal component analysis,” Technometrics, vol. 21, no. 3, pp. 341–349, 1979.

[148] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data streams,” in Pro-
ceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30,
2004, pp. 180–191.

[149] R. Veldhuis and E. Klabbers, “On the computation of the Kullback-Leibler measure
for spectral distances,” IEEE Transactions on Speech and Audio Processing, vol. 11,
no. 1, pp. 100–103, 2003.

[150] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying and
mining of time series data: experimental comparison of representations and distance
measures,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1542–1552, 2008.

[151] P. Rosin, “Thresholding for change detection,” in Sixth International Conference on
Computer Vision. IEEE, 1998, pp. 274–279.

[152] N. Eagle, A. Pentland, and D. Lazer, “Inferring friendship network structure by using
mobile phone data,” Proceedings of the National Academy of Sciences, vol. 106, no. 36,
pp. 15 274–15 278, 2009.

[153] W. Gehring, B. Goss, M. Coles, D. Meyer, and E. Donchin, “A neural system for error
detection and compensation,” Psychological Science, vol. 4, no. 6, pp. 385–390, 1993.

[154] E. M. Bernat, W. J. Williams, and W. J. Gehring, “Decomposing ERP time-frequency
energy using PCA,” Clinical Neurophysiology, vol. 116, no. 6, pp. 1314–1334, 2005.

[155] P. Luu and D. Tucker, “Regulating action: alternating activation of midline frontal
and motor cortical networks,” Clinical Neurophysiology, vol. 112, no. 7, pp. 1295–1306,
2001.

[156] L. Trujillo and J. Allen, “ThetaEEG dynamics of the error-related negativity,” Clinical
Neurophysiology, vol. 118, no. 3, pp. 645–668, 2007.

[157] E. Hochman, Z. Eviatar, Z. Breznitz, M. Nevat, and S. Shaul, “Source localization of
error negativity: additional source for corrected errors,” NeuroReport, vol. 20, no. 13,
pp. 1144–1148, 2009.

[158] W. Miltner, C. Braun, and M. Coles, “Event-related brain potentials following incorrect
feedback in a time-estimation task: Evidence for a generic neural system for error
detection,” Journal of Cognitive Neuroscience, vol. 9, no. 6, pp. 788–798, 1997.

153



[159] S. Dehaene, M. Posner, and D. Tucker, “Localization of a neural system for error
detection and compensation,” Psychological Science, vol. 5, no. 5, pp. 303–305, 1994.

[160] H. Leuthold and W. Sommer, “ERP correlates of error processing in spatial S-R
compatibility tasks,” Clinical Neurophysiology, vol. 110, no. 2, pp. 342–357, 1999.

[161] T. Overbeek, S. Nieuwenhuis, and K. Ridderinkhof, “Dissociable components of error
processing: On the functional significance of the Pe vis-à-vis the ERN/Ne.” Journal
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