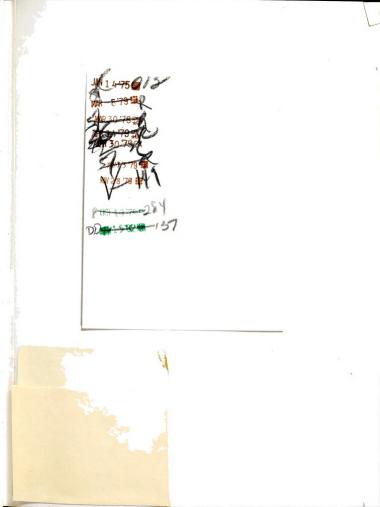
THE DESIGN AND PRELIMINARY TESTING OF A MECHANIZATION TRAINING PROGRAM FOR TRAINEES WITH LOW LEVELS OF EDUCATION

Thesis for the Degree of Ph.D.
MICHIGAN STATE UNIVERSITY
CERNYW KENNETH KLINE
1970

This is to certify that the

thesis entitled

THE DESIGN AND PRELIMINARY TESTING OF A MECHANIZATION TRAINING PROGRAM FOR TRAINEES WITH LOW LEVELS OF EDUCATION presented by


Cernyw K. Kline

has been accepted towards fulfillment of the requirements for

Ph. D. degree in Education

(Dr. Guy E. Timmons)

Date Feb. 22,1971

ABSTRACT

SHEEDING THE PROPERTY OF THE

THE DESIGN AND PRELIMINARY TESTING OF A MECHANIZATION TRAINING PROGRAM FOR TRAINEES WITH LOW LEVELS OF EDUCATION

By

Cernyw Kenneth Kline

The objective of this research study has been to plan, design, produce and pretest a machinery operator's training program tailored to meet the special needs of trainees with low levels of education and/or non-mechanical backgrounds. The resulting Basic Tractor Operators' Course used the systems engineering approach to create a modified structured learning and training environment (SLATE) to increase the effectiveness of training. It emphasizes cross-cultural transfer of advanced technology in the shortest possible time with minimum cost.

To serve the many machines in the job cluster of machine operators, a universal format was developed around the 50 to 100 horsepower diesel-engine agricultural wheel tractor. The possible generalization of this course to fit other machines was kept in mind during the development. The Basic Tractor Operators' Course for Grade I operators,

minimally qualified, is built around measurable behavioral objectives, information for trainees, practical trainee exercises, suggested visual aids and teaching techniques. The 65 lessons of the course form the basis of an Instructor's Manual developed to guide instructors in teaching the BTOC.

The BTOC was field-tested with Spanish-speaking adult migrant trainees of Puerto Rican and Mexican descent in central Michigan. The course was conducted half-time over an eight-weeks' period from April to June, 1970. Using a one-to-four instructor-to-trainee ratio in small group training activities, the course stressed "hands on" learning with instruction individualized to meet trainees' needs.

Of the 12 migrants completing the program, ten--or 83 per cent--were certified as qualified Basic Tractor Operators, Grade I.

Further testing is needed to validate the course design and training format in actual cross-cultural conditions with their unique constraints. Based upon the preliminary test with migrant laborers, the belief is that this type of performance training is applicable overseas and that it will result in a superior type of training with significantly less time and cost.

One of the most important lessons learned during the Michigan trial was that instructors, no matter how well they might appear to be qualified, must be trained to work across cultural boundaries with disadvantaged trainees. A special training program was then developed to aid teachers in effectively using the "Instructor's Manual" as a guide and basic resource. This study has helped in developing a training program which can make instructors more effective and trainees more responsive.

THE DESIGN AND PRELIMINARY TESTING OF A MECHANIZATION TRAINING PROGRAM FOR TRAINEES WITH LOW LEVELS OF EDUCATION

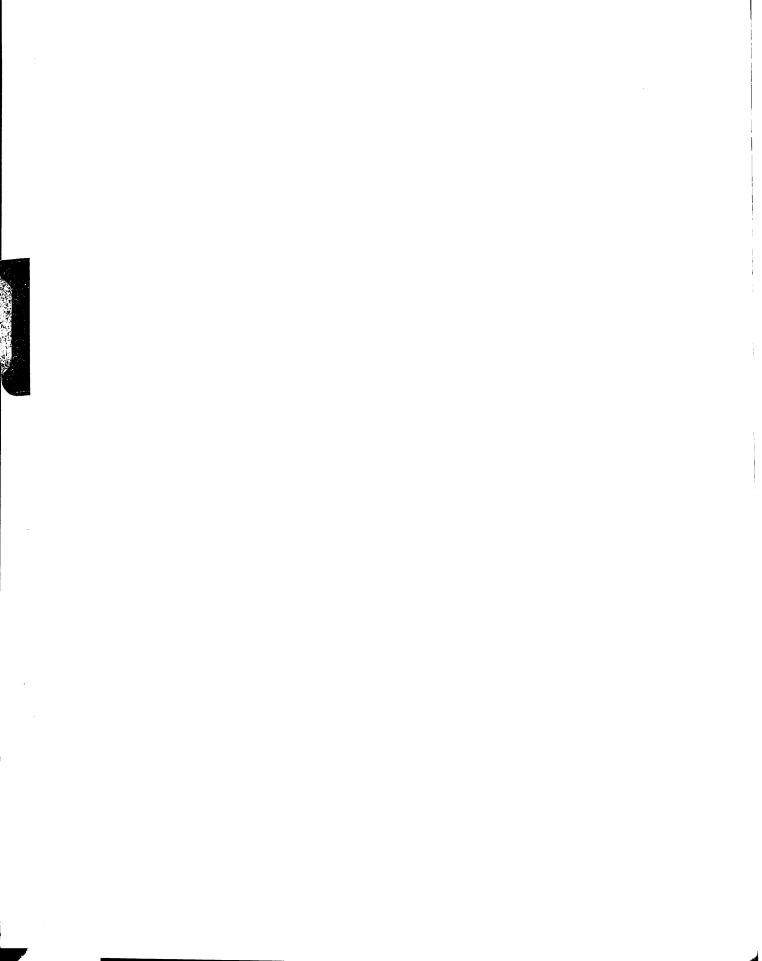
Ву

Cernyw Kenneth Kline

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY


Department of Secondary Education and Curriculum

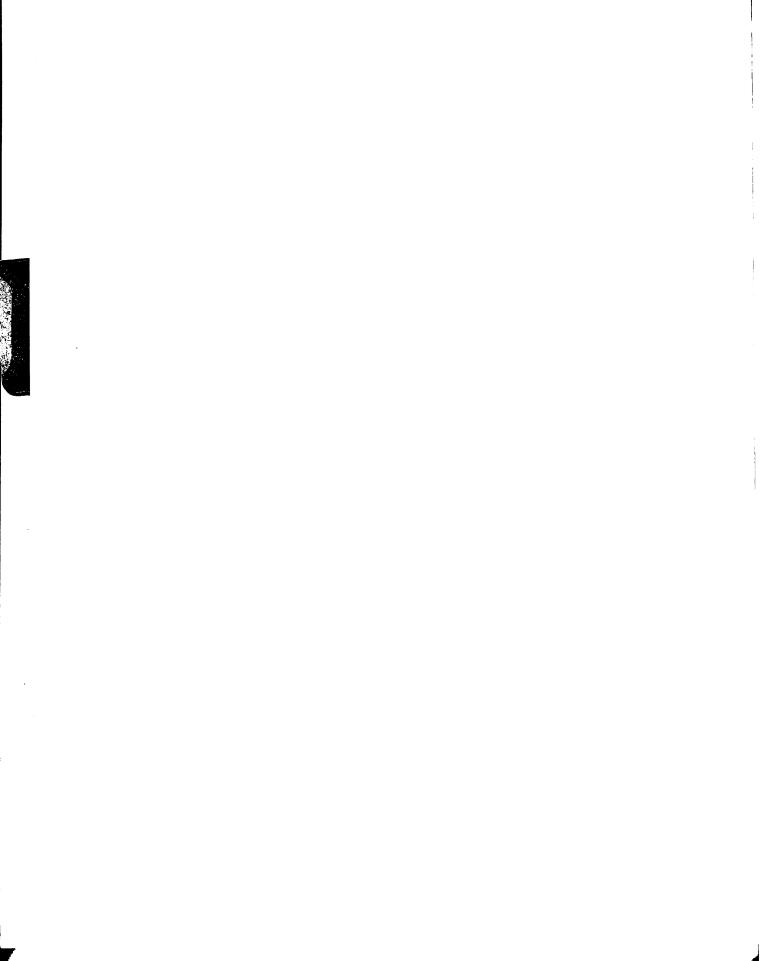
(69170

PREFACE

Attention is called to the method of footnoting used in this thesis. A newly advocated system has been used which makes scientific literature easier to read and comprehend. Each time a reference is quoted, the individual or source is mentioned and the name and date, or the date only, is placed in parentheses within the text. No footnotes are used at the bottom of the pages except for explanation or identification of a non-published source of information.

As an example, in quoting Barnes, Kenneth K., "The Quality Machine Operator," Implement and Tractor, Vol. 85, No. 6; March 7, 1970; p. 18, the notation "Barnes (1970) says that . . ." or "According to an industry spokesman (Barnes, 1970), all operators of modern tractors require . . ." is fitted into the flowing text for the reader's information. When a long direct quote is made, the page number in parentheses is inserted in the text immediately before the quote as on Page 21. In short quotes within the text, the page number may be included with the date after the author's name such as, "Maddison (1964, pp. 4-5) asserts that some African countries"

The complete reference for each quotation is given in the alphabetized bibliography at the end of Chapter VI. To find out more about a specific source the reader should turn to the Bibliography on page 310 and look for the proper name and date of the reference. The system used eliminates numerous footnotes and such terms as "Op. Cit." and "Ibid." Since some personal communications and interviews are quoted, they have been included in the bibliography in alphabetical order.


It should also be noted that only one of the 65 lessons developed for the Basic Tractor Operators' Course (BTOC) is described completely in this thesis. A few sections of two other lessons are used to show some variations in the design and concept used to teach attitudes, skills, and knowledge (ASK) to trainees with low levels of education. Items in the appendix are only partially complete and are included to illustrate the type of approach taken in developing and implementing the BTOC. The complete course for the Basic Tractor Operator, Grade I, and associated training program materials are on file with Deere and Company, Moline, Illinois; with the Agricultural Engineering Department, Michigan State University, East Lansing, Michigan; or with the writer. A universal course could be developed for the basic agricultural dieselpowered wheel-tractor, for the gasoline and LP-gas-powered units, and for other machines if the demand warrants.

Much interest has been expressed in the Basic

Tractor Operators' Course and the training program developed
in this study. It is hoped that this specific course can
be made available in printed form within the next few years
for the use of interested persons, groups, or governments.

FOREWORD

As the gap widens between the "have" and "have not" nations, and among the classes within them, the urgency of balancing manpower potential and aspirations becomes increasingly critical. The problem is not simply seeking new answers to increase the world's knowledge stockpile (which can be done by only a relatively few people), but one of more effectively applying what is already known and

available to benefit <u>all</u> of mankind. Much adaptive research is needed to fit the technology from the more developed nations to the needs and unique conditions of each developing country. The main limitation is the <u>lack of application</u> of known basic knowledge and science to the physical and emotional needs of human society. Whether it be to train a farmer to operate a tractor, a teacher to instruct the growing mind, or an extension agent to demonstrate a new idea to a mother, <u>it is the great mass of mankind that must be educated in the everyday things and ways of life.</u>

Since most nations are agrarian and cannot move ahead without agricultural development, one of the biggest hurdles of governments is transforming their agriculture from a subsistence to a market-oriented economy. This can only be done economically when man becomes a director rather than a producer of power. To become a director he must be skillfully trained--mentally, physically, and emotionally. Many nations have tried to introduce modern agricultural machines and practices without first training the ultimate user. Even today, very few programs are operating to try to accomplish the gigantic task of technically training the masses. Few such programs have been scientifically planned or adequately developed to meet the crucial demands of society and its expanding needs. Training programs to work with the disadvantaged

and illiterate youth or adults are especially lacking and limited in scope.

At first thought it seems a simple matter to teach someone how to drive a tractor--perhaps how to drive, but not how to operate it with skill and judgment to produce an economic return. This is part of the problem. appears to be so easy that few people have given it serious attention or developed the necessary techniques and programs to do it effectively and efficiently. It is easier to teach students who can read and learn than it is to instruct a trainee handicapped by lack of formal education or failure. So the tendency is to focus upon the favored and neglect the lower achievers. The cost is more to educate the latter, yet they are the ones who need the most help and who want and need work skills. The Basic Tractor Operators' Course described in this thesis was designed to serve the needs of such struggling masses, one at a time.

A further potential of the BTOC, however, is not only that it enables a person to operate a machine and thereby become qualified to seek and hold down a better job. An equally significant effect is the realization that training can provide a whole new series of opportunities. The properly trained machine operator has a different outlook on life. Using his newly acquired skills and knowledge, he can move on to other more challenging and rewarding jobs. This generates enthusiasm and encourages

him to try other more difficult tasks. He is no longer completely dependent as an unskilled worker but can now seek other jobs as he gets experience or takes additional training. Once he finds that he can do things on his own initiative, he becomes a constructive force and leader in his society. He can even help to provide new jobs and opportunities for others as he moves on up the skill ladder. Thus each newly trained person, especially within a developing society, can have a multiplier effect and improve standards of living for others as well as for himself.

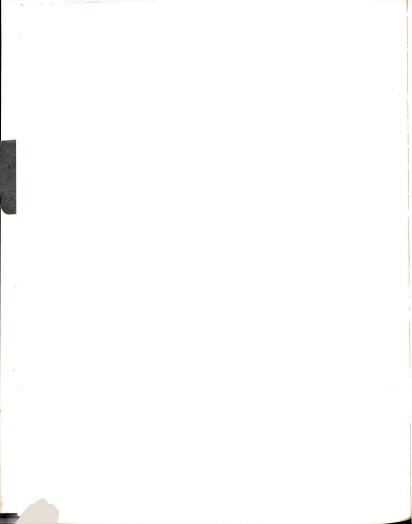
ACKNOWLEDGMENTS

Sincere appreciation is expressed to Dr. Guy E. Timmons, Professor of Secondary Education and Curriculum, Michigan State University, for his counsel and valued suggestions in planning the course of study in education and for his untiring help in writing up the research and preparing the thesis. Without his enthusiasm and constant support as chairman of the graduate committee, the task would have been more arduous and the results less appropriate.

Grateful acknowledgment is given to Dr. Chester J.

Mackson, Professor of Agricultural Engineering, Michigan

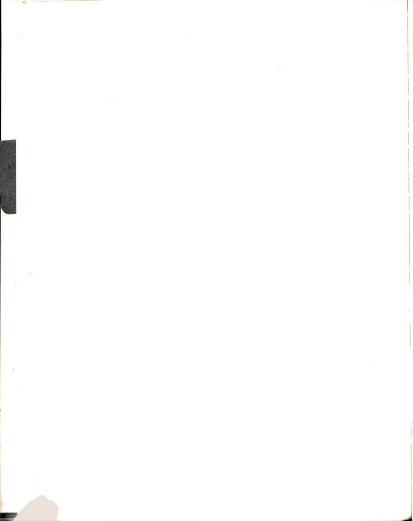
State University, for the opportunity to conduct the research study on mechanization training. Without his interest, encouragement and support, the project to develop the Basic Tractor Operators' Course would not have been undertaken.


Gratitude is also extended to Dr. Walter H. Scott, Coordinator of the Graduate Students' Affairs Office, and to Dr. Raymond A. Garner, Professor of Secondary Education and Curriculum, both at Michigan State University, for serving on the graduate committee, citicizing the thesis, and offering suggestions to improve the study.

ď

Thanks is expressed to Mr. George T. French, Senior Vice-President, and to Mr. Thomas H. Bohmker, Product Training Manager, Deere and Company, for understanding the special needs of skill training for disadvantaged persons and for providing the financial support which made this research study possible.

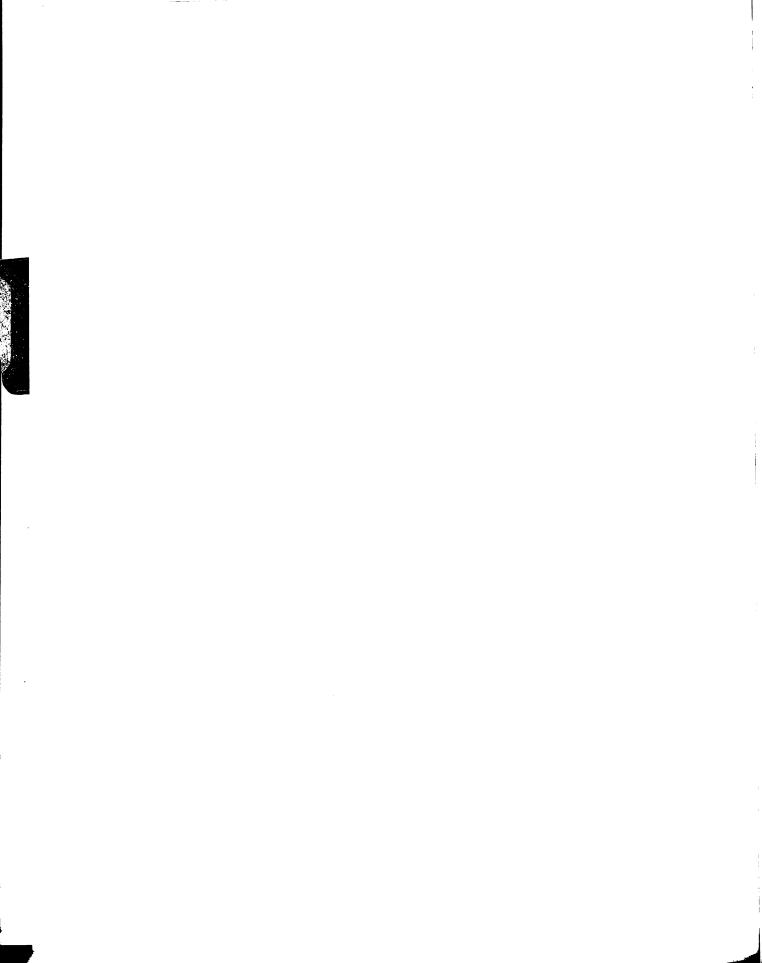
Special thanks is given to Mr. Clinton G. Bolton, former graduate assistant in agricultural engineering, Michigan State University, for his able help in developing and preparing the original text for the Basic Tractor Operators' Course and for his efforts in conducting the preliminary field test with migrant workers. His cheerful and diligent assistance on the Deere and Company project was a key factor in its successful completion.


Thanks is also expressed to Mr. David Burns, former vocational-agriculture teacher at Almont, Michigan, for his work on Section H lessons covering the use of tillage tools in the Basic Tractor Operators' Course. The help of Mr. James Farmer, Director of Continuing Education; Dr. Edward Hotchkiss, Professor of Technical Education, Grand Rapids (Michigan) Community College; Mr. Richard Carlise, Vocational Consultant with the Department of Vocational Education, State of Michigan; and Mr. Howard Doss, Mechanization Specialist, Rural Manpower Center, Michigan State University, is gratefully acknowledged in arranging for and helping to conduct the initial field

test of the Basic Tractor Operators' Course with migrant trainees.

Thanks are also due to Mr. Donald E. Gregg and Mrs. Mary Tischcavisch, agricultural extension editors, Michigan State University, for editing the final draft of the thesis and improving its clarity; to Mr. Jeffery Maddex, Michigan State University student, for helping with the drawings; and to Ann Brown and Associates who typed and prepared the finished copy of the thesis.

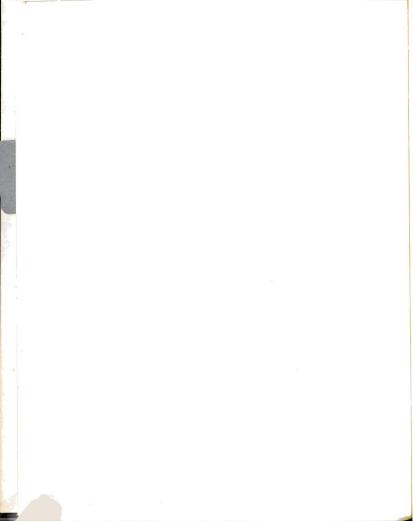
Finally, I want to dedicate this thesis to my dear wife, Morna C. Kline, for her help, patience, and understanding during the days of travail which made this achievement possible and worthwhile.


TABLE OF CONTENTS

												•					Page
PREFAC	Е.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
FOREWO	RD .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
ACKNOW	LEDG	MENT	S	•	•	•	•	•	•	•	•	•	•	•	•	•	ix
LIST O	F TA	BLES		•	•	•	•	•	•	•	•	•	•	•	•	•	xvii
LIST O	F FI	GURE	S	•	•	•	•	•	•	•	•	•	•	•	•	.x	viii
LIST O	F AP	PEND	ICE	s	•	•	•	•	•	•	•	•	•	•	•	•	хх
Chapte	r																
I.	THE	PRO	BLE	M	•	•	•	•	•	•	•	•	•	•	•	•	1
	T	he No Bac	-		đ	•	•	•	•	•	•		•	•	•	•	1
		Ana Jus	lys tif	is ica	of tio	n a	nd	Nee	d f				ona	i -	•	•	5
		Tec Agr	icu	ltu	re	•	•	•	•	•	•	•	•	•	•	•	12
		Pro												•	•	•	16 18
		ation anpor	nal	e f	or	qmI	rov	ed	Tra	ini	.ng	Pro	gra			•	
		evelor The	opi Ne	ng i ed	Nat for	ion Ad	s dit	ion	al	Tra	aini	.ng	and	•	•	•	20
		Man	ion	•	•	•	-	•	•	•	•	•	•	•	•	•	20
		The Man	woq	er :										•			
		Nat:		-	•	•	•	•	•	•	•	•	•	•	•	•	22
		Pur								Sti	ıdy	•	•	•	•	•	24
		Нур	oth	ese	s o	ft	he	Stu	ıdy	•	•	•	•	•	•	•	25
		Obj	ect	ive	s o	ft	he	Stu	ıdy	•	•	•	•	•	•	•	26
		Def:	ini	tio	ns	Use	d i	.n t	he	Sti	udy	•	•	•	•	•	28
		Objection Over	rvi	ew	of	the	St	udy	•	•	•	•	•	•	•	•	40
II.	THE	REV	IEW	OF	LI	TER	JTA	JRE									
		ne E															
	T	rain	ıng	Ne	eds	•	•	•	•	•	•	•	•	•	•		43

	Page
Agricultural Mechanization in	
Equatorial Africa	43
Mechanization Training in Europe and	
Africa	48
Training Techniques Used by the South	-10
African Sugar Industry	49
Agricultural Engineering Basic Training	47
in Africa	53
Some Current Training Programs for	33
Accelerated Development	54
Training Programs of U.N. Agencies	54
Training Interests of Regional	74
Organizations	56
Training by Private and Semi-private	50
Groups	59
Training Assisted by the Farm Equipment	33
Industry	62
Systems Engineering Applied to Instructional	02
Design and Testing	66
The Systems Approach to Training Design	66
Instructional Design Considerations	69
A Systems Model for Curriculum Design	71
	/ 1
Redesign of Army Training Programs by	7 5
Systems Engineering	73
Supportive Research to Improve Instructional	0.0
Systems	86
Estimating Student or Trainee Interest	87
Functional Job and Task Analysis for	0.7
Training Design	91
Controlling the Quality of Training	105
Research in Farm Machinery Training Courses	107
II. THE DESIGN OF A SPECIFIC COURSE FOR TRAINING	
BASIC TRACTOR OPERATORS	111
Sample Training Course and Pretest Group	111
Course Sample	111
Population Sample	112
Measures for Collecting and Analyzing Data .	113
Design of Instructional Systems Using a	
Modified Structured Learning and Training	
Environment (MSLATE)	116
The Structured Learning and Training	
Environment (SLATE) Theory of Learning	116
General System Objectives of Agricultural	
Mechanization Training	118
Specific Objectives of a Farm Tractor	
Operators' Training Program	119
A Systems Conceptual Theory of Trainee	_
Learning Using MSLATE	121

		Page
The Design of a Measurable Instructional		
System	•	124
Trainee Needs with PERT		129
Statement of Training Goals and Objectives	•	129
	•	12)
Identify the Occupational Cluster		129
"Machinery Operators"	•	129
Define Job Competencies Needed by		
Tractor Operators	•	136
Break Job of Basic Tractor Operator into		
Separate Tasks	•	140
Analyze Each Task to Determine the		
Essential Elements	•	142
State Lesson Goals in Terms of Behavioral		
Objectives		147
Evaluate the Behavioral Objectives for	•	
		148
Measurability	•	151
	•	TOT
Individualize Instruction for Trainee		7.57
Involvement and Participation	•	151
Establish a Conducive Learning Environment Some Concepts for Developing Countries and	•	151
Manpower Training	_	153
Positive Attitude Reinforcement (Lesson	•	
		156
Idealized Instructor/Trainee/Machine Ratios		120
		7 - 7
for Training Tractor Operators	•	157
Large Group Instruction (Lesson B-9:		
Servicing the Dry-Filter Air Cleaner) .	•	160
Small Group Participation (Lesson B-9:		
Trainee Activities)	•	165
Teaching Aids and Audio-Visual Materials .		170
Actual Objects		170
Parts and Components of Objects	_	170
Models and Visual Simulators	_	171
Colored Slides and Filmstrips	•	172
Motion Picture Training Films	•	173
	•	173
Other Teaching Aids	•	1/3
Program for Qualifying Low-Education Level		
Trainees as Basic Tractor Operators	•	175
IV. TECHNIQUES AND INSTRUMENTS FOR EVALUATING .	•	178
General Concept of Evaluation and Testing .		178
Won't Do Versus Can't Do		179
How Well Must Trainee Learn?		180
Aptitude Evaluation		181
Use of Occupational Tests and Test	•	~~ _
Batteries		184
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	104


	Page
Advantages of Occupational Tests	. 185
Pretraining Tests	. 185
Mechanical Aptitude Tests Currently	. 103
Available	. 185
General Aptitude Test Batteries	188
Pretests and Post-Tests for a Specific	. 100
Course of Instruction	196
Concurrent Training Tests	198
Training Activities and Exercises	198
Daily Reviews and Evaluation Rating	
	210
Post-Training Tests	215
Final Evaluation of Trainees	215
Summary	228
V. FIELD TESTING A SPECIAL PROGRAM IN MICHIGAN FOR	
TRAINING ADULT MIGRANT WORKERS AS BASIC TRACTOR	
OPERATORS	230
OPERATORS	230
Cross-Cultural Training of Spanish Speaking	
Workers	230
United Migrants for Opportunity, Inc	230
Rural Manpower Training	232
Conceptual Structure of an Operator's	252
Course	233
Training the Instructors	234
The Need for Special Training to Develop	234
	234
Qualified Instructors	234
Instructors	238
	238
Using Teaching Assistants or Small Group	242
Leaders	243
Observation and Suggestions Based on the	044
Belding Pretest Program	244
Pre-entry Characteristics of Migrant	
Trainees	256
Use of Lesson Pretests and Post-tests	258
Daily Evaluation of Trainees by Instructors	259
Summary of the Final Evaluation of Tractor	
Operator Trainees	260
Certification of Trainees as Qualified	
Basic Tractor Operators, Grade I	263
Summary	268
VI. SUMMARY CONCLUSIONS AND RECOMMENDATIONS	077
VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	271
Summary of Results of Research	271
The Use of MSLATE and Systems Analysis to	2/1
Develop Occupational Training	271
TO A CITOD OFFICIAL TEATIFIED 9 9 9 9 9	<b>411</b>



	Page
Pretesting the Basic Tractor Operators' Course with Spanish-Speaking Migrant	
Workers	. 272
Training Program	. 274
Analysis of Hypotheses	. 275
Conclusions of Study	. 282
Potential of the Basic Tractor Operator	
Training Program for Manpower Development	. 286
Possible Uses and Applications of the Study	287
Selection of Course Material to	
Individualize Instruction	289
The Concept of MechonomicsA Rational	
System of Mechanization	290
Recommendations for Further Research	294
Suggested Follow-Up and Overseas Testing	
of the Basic Tractor Operator's Course	294
Follow-Up Courses for Up-grading Tractor	
and Machinery Operators	298
Verify the Validity of Current Aptitude	
Tests in Measuring Trainee Potential	301
Develop and Prove New Aptitude Tests for	
Trainees with Low-Education and Non-	
Mechanical Backgrounds	302
Comparison of Costs Versus Benefits of	302
Untrained and Trained Machinery Operators .	304
Comparison of Total Costs of Combine and	301
Tractor Operations by Trained and	
Untrained Operators and the Effect upon	
Logistical Support	305
Improving Training Programs Offered by	505
Manufacturers, Institutions, and	
Governments	307
	307
BIBLIOGRAPHY	310
	310
APPENDICES	317

# LIST OF TABLES

Table			Page
1.1.	Future Manpower Supply and Demand Situation in Selected African Countries	•	10
1.2.	Estimated Manpower Requirements for Industrialization Programs in the East and West African Sub-region, 1965-1975	•	12
5.1.	Estimated Number of Hours to Train a Basic Tractor Operator, Grade I	•	249
5.2.	Summary of Final Evaluation Scores of Migrant Trainees Completing The Basic Tractor Operators' Course, Grade I (June 1970)	•	264



# LIST OF FIGURES

Figure	e	Page
2.1.	Strategic Areas in the Systems Approach to Total Curriculum Design (after Cyrs and Lowenthal)	73
2.2.	Sub-routine of Logic Tree Used to Determine Enlisted Eligibility Criteria for MOS Testing (after Sherrill)	80
2.3.	Flow Chart: A Strategy for Estimating Student Interest (after Yelon)	89
2.4.	A Functional Job Analysis of What the Worker Does and What Gets Done (after Bernotavicz and Wallington)	95
3.1.	Conceptual Model of MSLATE for Developing Occupational Training Programs for Educationally Deprived and Disadvantaged Youth and Adults in Developed and Developing Countries	123
3.2.	An Over-all Structure of the Design of an Instructional System (after Banathy)	126
3.3.	Designing a Measurable Instructional System	128
3.4.	Flow Chart for Lesson B-2: Daily Maintenance Services Before Operation. A Typical Job Function of the Tractor Operator Broken Down Into Task Elements for Analysis	143
3.5.	Flow Chart for Lesson B-9: Servicing the Dry-Filter Air Cleaner (page 1 of 2)	145
3.6.	Flow Chart for Lesson B-9: Servicing the Dry- Filter Air Cleaner (page 2 of 2)	146
3.7.	Selection of Training Method Based on Trainee's Background	164
	Training Levels Achieved With Various Methods of Instruction	164

		Page
3.9.	Example of Procedure for Filling Out a Trainee Daily Evaluation Form for the Basic Tractor Operators' Course	. 168
4.1.	Flow Chart for Lesson D-4: Selecting the Best Transmission Gear and Range Combination (page 1 of 2)	. 201
4.2.	Flow Chart for Lesson D-4: Selecting the Best Transmission Gear and Range Combination (page 2 of 2)	. 202

# LIST OF APPENDICES

App	end	ix	I	age
	A.	Basic Tractor Operators' Course, Grade I	•	318
	В.	Sample Pages of Several Current Aptitude Tests	•	330
	C.	Forms Used in the Basic Tractor Operators' Course, Grade I	•	343
	D.	Final Evaluation Events Used in the Basic Tractor Operators' Course, Grade I	•	355

#### CHAPTER I

#### THE PROBLEM

#### The Needs

### Background

In Asia, Africa, Latin America and the Middle East, large numbers of tractors and associated machines have been imported by host governments along with those provided by various foreign technical assistance programs. These machines have been used primarily under government supervision on resettlement schemes, cooperative farms, state farms and large-scale food production projects. A few machines are being purchased by private owners in most countries. Some large commercial plantations producing for export have mechanized their operations in whole or in part.

Surveys and studies in Asia, Latin America and Africa have reported that efficient mechanization of agriculture is still largely a pipe dream. The life of the imported machinery is extremely short and the cost of operation is disproportionately high. Some of this may be due to machine design and material, but most of the difficulty results from lack of knowledge in these countries concerning the machinery itself and its proper use

and maintenance. Tractor pools quickly become junk piles.

Once a machine is disabled, it is in danger of being

"cannibalized;" that is, parts are taken from a damaged

machine in order to repair others. Cannibalized machines

rapidly add to the number of unserviceable units.

Governments and industry recognize that training is essential to the proper use and care of agricultural machinery, yet few concrete training programs are in operation. Some existing on paper are seldom workable and train few qualified people. In addition, program graduates seldom return to agriculture but go into other forms of business or government employment instead.

Farm machinery manufacturers are aware of the need for training, the limited resources and success of most programs. In some instances they have cooperated with governments in sponsoring special schools or even in establishing regional training centers. This has been done, for instance, by Massey Ferguson in cooperation with FAO (Food and Agriculture Organization; Rome, Italy) and the Columbian government in Buga, Columbia. Other manufacturers send a training team out occasionally to train their dealer personnel and maintenance people in sales and service. However, little has been accomplished.

In 1969 a cooperative research study was set up between Michigan State University and Deere and Company to develop a program to train machinery operators; namely,

A Basic Tractor Operators' Course, Grade I (Kline, Bolton, and Mackson, 1970). This course could serve also as a model for machines other than tractors in training programs for agricultural machinery operators and technicians. Using techniques developed by systems engineering, the ideas of educational psychologists and methods used by learning systems institutes, this Basic Tractor Operators' Course was formulated, written, evaluated, pretested, refined and field-tested with Spanish-speaking low-education level trainees.

The program was designed to train workers of various educational levels to operate a complicated machine such as a diesel-powered wheel tractor. With this course it is believed that qualified operators—whether migrants or farmers—can be trained effectively and relatively quickly. It is a common belief that good operator training is indispensable and will result in longer engine life, fewer breakdowns, reduced repairs, increased field efficiency, greater tractor and operator productivity and increased quality of work. A worker may gain knowledge and skills and develop a positive attitude toward work and responsibility. However, he must understand why he should do certain things in a specific way and he must be taught.

This training program should have widespread application even in highly developed countries such as the United States, where many untrained potential workers with unsalable skills need new skills or retraining.

Examples of these are unskilled rural workers, disadvantaged people in both metropolitan and rural areas, migrant or transitory workers in agriculture and seasonal industries and school drop-outs inadequately trained for employment. Such mechanization training need not be restricted to tractors or agricultural machinery alone. All of these people have one thing in common: inherent but undeveloped talents and abilities, with little or no opportunity to develop and employ them.

Despite long association with the gasoline-engine tractor, few American farmers know much about the proper care and operation of the large diesel-engine tractor which today produces the power for much of American agriculture. These farmers depend, for the most part, on a strong, well-equipped and trained dealer service organization to keep their machines properly maintained and to bail them out when they get into trouble.

Overseas, the problem of introducing and utilizing modern agricultural machinery is much more acute. Dealers are scarce and generally too distant and often indifferent to the needs of the farmer-user to adequately support him. More importantly, the machine is no better than its operator. This situation leaves practically everything to be desired. All new operators, including hired employees, their supervisors and owner-operators, must be thoroughly trained if the farmer tractor and its associated equipment

are

Ana

Afi

bed

for

al:

a j

de

tra

une

mer

sk

Win

Mai

bec

(19

0£

.

are to approach their potential in the UN Campaign for Freedom from Hunger.

### Analysis of the Problem

This study emphasizes the needs and conditions of Africa and, to a less extent, those of Southeast Asia because of the author's extensive recent personal experiences there. The same urgent conditions and general needs for practical training and manpower development apply to all of Asia, Latin America and the Middle East.

The initial objective of this study was to develop a program of training especially suited to the needs of developing countries, but it soon became apparent that the developed countries, as well, have similar problems in training hard core unemployables and the disadvantaged unemployed. All nations, regardless of state of development and level of education, face the need to upgrade the skills and capabilities of the majority of their workers. With more knowledge and power and the great need for rational and humanistic thought and concern, such training becomes increasingly vital with each scientific advance if mankind is to survive problems of its own making.

The Importance of Skilled Workers. -- In emphasizing the importance of the skilled technician's role, Wilson, (1968, p. 9), Chief of The Agricultural Education Branch of FAO, states:

nic

a n

001

edi teo

is

The

for bee

int

not tha

It would be difficult to overestimate the importance of the intermediate-level agricultural technician to agricultural progress in the developing countries. . . through whose work the results of research and technological progress are conveyed to the farmer and incorporated in agricultural enterprises of every kind. If intermediate level staff are inadequate in numbers or of low competence, then much of the expenditure on the professional staff of the agricultural services is wasted. Depending upon the stage of development and the principal types of agriculture practiced there is probably a need in developing countries for 5 to 10 times as many agricultural technicians as agricultural scientists. . . . the technician's training is fundamentally one of practical application. Not only must be able to perform efficiently a number of skilled techniques associated with the various aspects of modern agricultural production, but he must understand the basic principles which underlie them. . . . (underlining by author)

The practical know-how of the agricultural technician is something much more than the mere acquisition of a modicum of skill in the manual processes of traditional farming and related agricultural business and industry.

The Low Prestige of Agriculture. -- In many developing countries agriculture is a low-status occupation. General education is the basic foundation upon which all vocational, technical and professional education and training is built. The major problem which most developing countries now face is that of modifying and adapting their general educational systems to meet the aspirations, needs and local conditions for national progress and development. Many attempts have been made in the past to introduce an "agricultural bias" into systems of rural education. On the whole, these have not been successful. Wilson (1968, pp. 4-5) points out that:

As

re

edi

fo

The most important has little to do with the educational system; it is that agriculture, as it exists at present in many countries, enjoys so little prestige and offers such poor incentives and limited possibilities of improved farming that it is not worth entering as a career if any alternatives are available. Thus, until there are government policies aimed at the development of a modern, and progressive agriculture, offering reasonable security and rewards to the farmer, there is little point in trying to use the school system to prepare young people for farming.

As a result, there is an equally important need for the regular revision and adaptation of technical education and training to meet the requirements of change and development of the agricultural industry. This change must take place all the way down from the ministers of agriculture and education to the "lowly" farmer and laborer.

There is a great need for intermediate technical training in agriculture. Wilson (1968, p. 7) made a strong plea for special-skill-training with adequate recognition for those who are qualified:

. . . Agricultural scientists, technicians of many kinds and the skilled producer and manager complement each other's work in raising the efficiency of agricultural production. . . . The types of education and training required to produce efficient persons in these three major categories are different in purpose and character and should not be confused. Far too often intermediate level agricultural training is the 'pale shadow of a University degree course' taught by young graduates from their own university course notes. Seldom is the teaching staff . . . adequately supported by the services of skilled technicians to supervise practical training. Intermediate technical training in agriculture is meant to develop real skills in farm management, and the modern techniques of crop and animal production, the use of machinery and irrigation, etc. Let us aim to produce the skilled technician who stands in his own right as one of the indispensible

/

اً: ع<u>ن</u>ا

ţa

th

elements of the agricultural profession and is not (author's italics) someone who is inferior to the graduate in agricultural science. Likewise, vocational training for the farmer, for rural women, for village craftsmen and others needs to be accorded its distinctive character and dignity.

Manpower Crisis in Africa .-- In 1968, the Economic Commission for Africa commented: "African countries currently face a manpower crisis. Middle and high-level technical, scientific, professional and managerial skills are in acute short supply, whilst surpluses of unskilled workers abound" ECA (1968, p. 10). Maddison (1964, pp. 4-5) further asserts, "Some African countries are so short of skills that a good deal of their capital aid receipts are not properly used and their capacity to use larger investment funds is limited." To alleviate the manpower shortages, developing nations are placing increasing reliance on the importation of foreign skills through bilateral and labor market arrangements. In 1963, for instance, Maddison reported (pp. 21-22 and 92) African countries received over 66,600 technical assistance personnel, mainly primary and secondary school teachers. Multilateral and bilateral technical assistance sources provide several countries with top-level expert personnel for the public service, while private foreign investments bring top-level management and technical personnel. Notwithstanding the rapid advances in "Africanization" and "localization" over the past decade, African countries continue to rely heavily

on ed

st

to

COI

ali

cat tec

Afı

Afr Mar

est

at

wil Tab

sho:

sci

ind

tota tech

on external sources for the skilled manpower which their educational systems have been unable to produce.

The Economic Commission for Africa (1968, p. 10) states, "Manpower requirements for the 1970s would have to be of a higher magnitude in terms of numbers and of more complex 'skill mix' in terms of quality, if African countries really mean business with the task of industrialization and agricultural modernization. A better educational profile in the labour force is a necessity for technological progress and structural transformation in African economies."

1

There is insufficient regional data to indicate Africa's future quantitative requirements for trained manpower. However, data from several countries with established manpower programs generally indicate that acute, trained manpower shortages over the next decade at the middle-level of skilled operators and technicians will constitute a very severe constraint on development. Table 1.1 shows the relative degree of future manpower shortages in a number of African countries (ECA, 1968).

The future shortage of teachers, engineers, scientists and technicians will be critical. In the industrial sector a United Nations survey in 1965 indicates that "Africa would require by 1975 an estimated total of 33,000 engineers and scientists and 83,000 technicians. Of these some 31,000 engineers and scientists

Table 1.1

(Adapted from ECA data, 1968)* Future Manpower Supply and Demand Situation in Selected African Countries,

		Additiona	dditional demand and anticipated supply	ipated supply	Net o	Net difference S	Shortage (-) Surplus (+)
Country	Plan period		Manpower category	A	Manpowe	Manpower category	[e+c
		н	II	III	I	III II	
Algeria Cameroon	1966-73	23,000-5,000	70,000-20,000 7,004- 5,111	16,756-16,211	- 18,000 - - 1,629 -	50,000	68,000
Lanomey Ethiopia Ghana	1968–72 1968–72 1963–70	7,131-3,640 12,000-9,050	6,515- 4,232ª/	2,415- 9,000 79,499- NA 151,500-104,100	+ 600 - 3,491 - - 2,950	2,283 NA - 47,400	+ 8,700 (6,774) - 50,350
lvory Coast	1963-70	6,904-1,156		44,991- 15,249	- 5,748 -	11,160 - 29,742	- 46,650
Kenya Lihwa	1964-70	7,300-6,600	39,900–36,500	26,900- 3,500	700 -	3,400 - 23,400	27,500
Nigeriab	1963-68	18,000-8,894	1 1	44,400- 15,146	7 9,106	- 29,254	- 38,360 - 38,360
Sudan	1961-73	7,300-6,549		39,300- 12,738	751	- 26,562	- 27,313
Tanzania Tunisia	1965-69 1965-68	2,905-1,962 4,500-4,000	16,500–12,000	17,262- NA 45,500- 76,500	- 943 -	1,154 NA 4,500 + 31,000	(2,097)
UAR		634,734-	1,4	690,905-262,550		. 7	3
Zambia	1965–70	588,050 2,000- 650	214,650 3,750- 4,800	9,900- 6,390	- 1,350 -	2,810 - 5,100 -	- 9,260
Sources	Compiled by EC	by ECA secret	A secretariat from published national development plans and manpower survey reports.	ed national devel	opment plans	and manpower surve	y reports.
	E/CN.14/WP.6/1	WP.6/18		Manpower	Manpower category:		

Upper target - excluding teaching and research staff. Adde.: 88,000 administrative, clerical all levels. Excluding administrative and clerical. ৌ

Not available.

vocational or technical training. III - Persons with secondary school education, apprenticeship or craft training.

I - Persons with university education, professional training or equivalent experience. II - Persons with 1 - 3 years' post-secondary,

ne

r

re

tì

do ar

Th by

pe ve

дŊ

if

th

nei

ĎΟ

and 73,000 technicians would have to be trained by 1975" (UN report pp. 26-29). Very significantly, at the time these estimates were made, the scope of African industrialization was just beginning to be visualized. This UN report (p. 27) goes on to say, "Allowing for some underestimates in the survey, it is probable that the training requirements by 1980 will be about half as much again as that indicated by the survey."

requirements for implementing proposed industrial programs in East and West Africa (ECA, 1968). The training bottleneck and greatest need is for skilled and semi-skilled operators of machinery and related processes. This survey does not include projects in vast undeveloped geographic areas and for countless unknown needs yet to be defined. The need for skilled and semi-skilled operators exceeds by over three times all other demands. And these are the people who actually do the work! Moreover, they are the very group which no country could afford to import, even if it were physically possible. They must be local people and they must be trained locally.

In qualitative terms, future development programs will require a labor input of a far better "skill mix" than thus far necessary. In industry, agriculture, transport, commerce or education, skilled operators and managers need to know more about the application of science and

ty id

TA

Te

Cl Sk *S

gr

in Po

th gr July

in

11

TABLE 1.2.--Estimated Manpower Requirements for Industrialization Programs in the East and West African Sub-region, 1965-1975.*

Level of Manpower	Sub-region	
	East Africa	West Africa
Senior Management Personnel	34.6	48.7
Engineers and Scientists	7.1	11.7
Technicians	19.0	34.5
Clerical	84:0	120.8
Skilled and Semi-skilled Operators	453.5	666.1

^{*}Source: Data calculated by ECA secretariat (estimates subject to further revision as more refined information becomes available on industrial program proposals). E/CN.14/wp.6/18 (p. 13).

technology to their operations. Each year, a host of new types of skills will be required to cope with resource identification and exploitation. To produce these skills locally, new courses must be included in educational programs. Furthermore, if the present sociocultural and attitudinal restraints on the acceptance of change and innovation are to be eliminated and development attitudes positively enhanced, a completely new orientation toward the objectives and value of vocational educational programs will be needed.

## Justification and Need for Vocational-Technical Training in Mechanized Agriculture

Many developing areas of the world have adequate natural resources for food and fiber production. The inhabitants of these areas, however, face severe

cor nec

> Eve cu:

> and

dr:

po

ne

ma an

> to to

> tio

sy:

tr

me

ca:

Шđ

constraints imposed by very limited knowledge and the necessary muscle power available to exploit these resources. Even if adapted and well-designed and manufactured agricultural machinery is made available, government agencies and farmers are often unable to apply it economically to agricultural production tasks. Inexperienced and untrained drivers, tractors and associated equipment not only do poor, but negative, work. Equipment often wears out or breaks down prematurely requiring high allotments of sorely needed foreign exchange for maintenance and expensive repairs.

Effect of Technology on Educational Needs.--Improved machinery must be complemented by improved skills. Farmers and their employees require special training to learn how to operate modern farm machinery effectively and safely, to adjust it properly and to keep it in serviceable condition. In a culture with few, if any, mechanical devices, the people must learn the basic mechanics of machine systems, the requirements for lubrication and cleanliness, the need for regular service and the attitudes and judgments necessary for intelligent operation. Without adequate training, machine operators cannot produce good work or carry out practices which prolong machine life and protect equipment from abuse and damage. They will be unable to use improved power and implement systems along with other major improved inputs of production, management and

distribution to exploit the potential natural and human resources of the nation for the benefit of society. Thus, the farmer who uses more power, improved power-and-implement systems, must be a better-than-average farmer to make farming pay. The higher cost of this new capability must be compatible with and complement the increased economic return resulting from the application, management and exploitation of these resources.

The Industrial-Agricultural Development Dilemma.—With reference to the industrial-agricultural development dilemma causing the slow progress made within developing nations and the poor showing being made by the industrial sectors, ECA (1968, pp. 6-8) made these comments about African nations:

- . . . When all is said and done, however, the pace of economic progress is critically dependent on agriculture and industry (including mining); and due weight must be given to this fact in any consideration of a strategy for economic development in Developing Africa.
- . . . In the last analysis, an adequate supply of well-trained persons is the basic requirement for development. Because of previous neglect of education and training, developing African countries in their first years of independence--were desperately short of skills; and this shortage was undoubtedly a strong contributing factor to the generally slow ratio of growth. A graphic if somewhat impressionistic measure of the shortage of skills may be obtained by considering enrollment in primary schools. On the basis of the most recent information for 52 African countries and territories, the percentage of the 5 to 14 age group in total population in primary schools was less than 50 in 31 countries; less than 25 in 17 countries; less than 15 in 9 countries; and less than 10 in 6 countries.

In the African region the bulk of the labour force is made up of persons without formal education. . . . Resources of scientists and engineers constitute less than one-tenth of one per cent of the labour force in most African countries. . . . Excepting the United Arab Republic (Egypt) and the Republic of South Africa, a relatively high proportion, ranging from under 30 per cent to over 80 per cent of the limited high-level manpower resources is of foreign origin. Furthermore, the labour force has too thin a veneer of science and technology based disciplines to be able to cope adequately with the technological requirements of modern development, without which the desired transition from traditional to modern economic structures will be difficult to achieve.

The Magnitude of the Training Task.—With reference to the magnitude of training needed from another viewpoint, the prospective population increase in the 0-14 age group will accentuate strains in the deployment of material resources. This age group, estimated to account for some 45% of the total African population, will increase in absolute numbers from 155 million by 1970 to around 205 million by 1980 (ECA, 1968). These children and young persons must be fed, clothed and schooled better than their predecessors a generation ago. Increased school enrollment, at all levels, will cause severe strains on public and private financial resources. An increasing proportion of the national income must be devoted to training facilities to satisfy the growing demand for education.

Implications for Educational Development.--As a result of their study of the manpower requirements of developing countries and the implications for human

development, ECA, OAU and UNESCO (ECA, 1968, pp. 14-15) foresee the following needs:

Increased school enrollments at all levels requiring more teachers, school buildings and teaching aids, furniture and laboratory equipment, higher wages and increased maintenance bills.

Substantial expansion in secondary teacher training and university enrollment to cope with the shortage of middle and high-level manpower, including skilled operators. To improve the "skill mix" of the labor force, expanded programs of science and technical education at both levels will be required to attain the 60 per cent target for students enrolled in science and technology by 1980, envisaged by the Addis Ababa Plan and the Tananarive Conference.

Expanded training programs employing modern teaching aids will be required since teachers are the key to qualitative and quantitative improvements in educational programs, and in the local production of trained manpower.

Orientation in primary education toward vocational training and rural education. New corps of rural teachers to demonstrate agricultural practices, impart skills in particular rural crafts and trades and serve as animators must be developed.

#### Problems of Cross-Cultural Training

Some common beliefs in developing countries that constrain training:

- 1. Education "implies" the right to or desirability of a "white collar" job without the need to do manual work, to work with the hands or to get them soiled.
- Few people have the mechanical background for working with or understanding mechanical devices, machines or gadgets common to the life of more-developed countries.

- 3. Lack of opportunity has prevented most young people from developing mechanical skills and aptitudes taken for granted in developed societies.
- 4. Lack of training and inexperience has kept people from learning the need for proper care and the value of preventive maintenance of machines.
- 5. Judgments and inate abilities regarding the use, selection, application, capability and capacity of machines or devices are undeveloped in the non-industrial societies.
- 6. Few skilled people are available locally who can teach mechanics, the practical metal arts like welding, blacksmithing or machinery operation.
- 7. Very few people are available outside major metropolitan areas to service and repair agricultural machinery, tractors, engines and motorized equipment. Very few garages or repair shops exist to serve the automobile; and practically none are found outside the larger cities to support agricultural tractors.
- 8. Supporting services such as service stations, petroleum distributors, electrical service, agricultural extension services and credit organizations are very limited, and few offer education or in-service training for businessmen, farmers or agricultural workers.

Social and Cultural Problems Affecting Agricultural
Mechanization. -- Under the present system of "shifting"


agriculture, Coulthard (1969, p. 46) points out that in West Africa:

the father of a family selects a plot for cultivation and performs the clearing operation. He may also plant the seed, but it remains for the women and children to perform the weeding, cultivation and harvesting of the crop. Mechanization will, therefore, require a major change in family patterns. Even religious belief and traditions have an influence on areas which may be cleared and put under the influence of the 'plough.' The family structure of a matriarchial society, the welfare of relatives, and the pattern of communal living, will require education for the next generation or two, to develop a pattern conducive to large-scale mechanized farming. . . .

Animal power and complementary tillage implements have not progressed to any useful stage in West Africa. The Africans now believe they can make the step from the hand hoe directly to the farm tractor.
... [However] Tractors and farm equipment are not manufactured in the region and export currency must be earned to balance off such importations. Dealers of farm machinery are not suitably situated throughout the country and even in the large centres, long delays in obtaining import permits and the process of importing, coupled with the low parts inventories, discourage the use of machinery.

### Value of Practical Training

Africa's requirements for scientists, technical men and operators call for people able to use both head and hands to apply laboratory results and acquired knowledge in solving the practical problems of industry and agriculture. Teachers must be able to give reality to their subjects by drawing on their own practical industrial, business or agricultural experience in applying the theory to real problems.



ECA (1968, p. 3) stresses that theoretical education divorced from practical experience breeds only misfits:

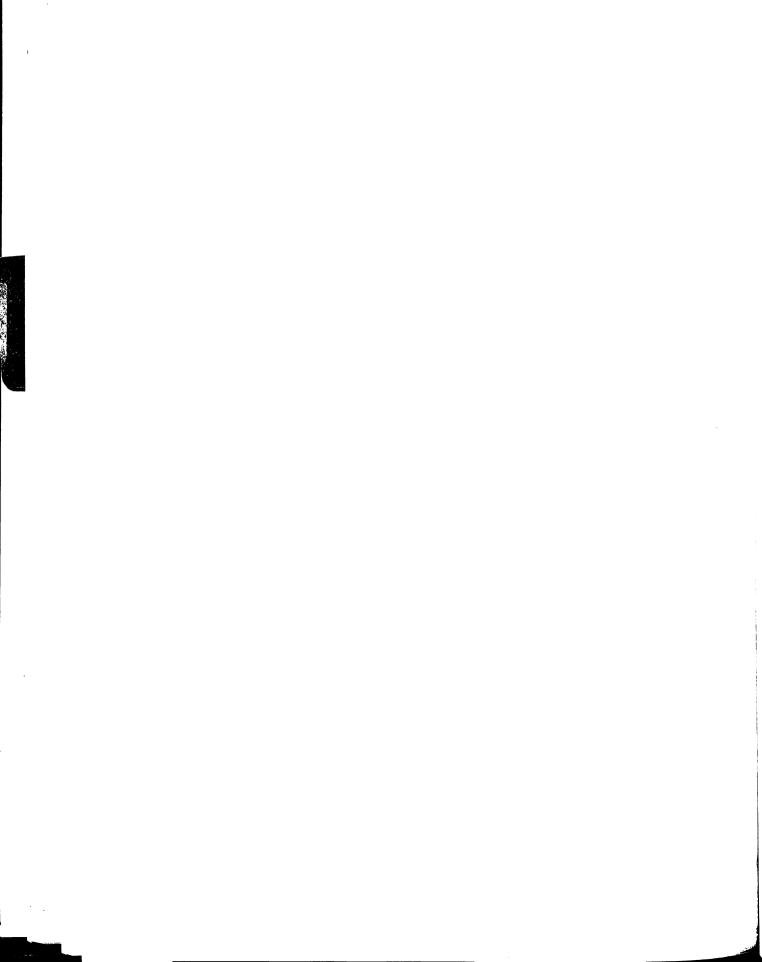
Those who have had the opportunity of this type of education consider themselves only as the elite and are rather reluctant to enter occupations involving manual work. Furthermore, there is a tendency for many technical school graduates to seek employment in the better-paying high-status clerical occupations. Such an attitude of mind and flight from vocational training derive from the fact that the environmental setting in which they live has failed to accord adequate recognition and pay to technical vocations.

Technical and skilled personnel may be trained by actually observing and participating in the working pro-They can move from apprentice to engineer or from trainee to skilled operator, on the factory floor, or on the farm field, through apprentice training or by taking specialized cooperative work-study training. The advantage of early exposure to practical work experience is (1) it facilitates the theoretical comprethreefold: hension of some abstract subjects; (2) once graduates have finished school, they need less time to adapt themselves to the real world of work; and (3) they will not belittle manual work when entering employment for the first time. As Williams remarked, "No system of technical education is sufficient on its own to create an adequate and efficiently trained work force. A system of technical education must be supplemented by a strong system of industrial [business and farm] training as there are many aspects for which no formal education system can provide

the most suitable and effective circumstances for training" (Wilson, 1968, p. 4).

# Rationale for Improved Training Programs and Manpower Development in Both Developed and Developing Nations

# The Need for Additional Training and Manpower Development in a Developed Nation


In the United States, for example, the increasing rate of introduction of new technology makes it imperative to give much more attention to the development and evaluation of specialized training programs designed to impart new skills or to upgrade outdated skills. No individual can learn a skill or trade today and expect to be able to practice it without change during his working lifetime. For the new recruit or unskilled laborer this means assessing his natural abilities and aptitudes and selecting or designing a training program to match his current needs, interests and discernible abilities. Training, therefore, becomes a continuous task since all of these factors are undergoing constant change. This applies to large groups of urban and rural forgotten or disadvantaged adults, as well as youth seeking their first full-time jobs. Unfortunately there are many such persons in the United States who cannot compete or qualify for better jobs because they have no saleable trade, industry or service skills.

Training the Disadvantaged Rural Worker. -- One example of minority disadvantaged are the Spanish-speaking

American migrant workers of Mexican or Puerto Rican descent. They have traditionally helped to hand weed, thin and harvest much of the commercial fruit and vegetable crops and special field crops such as sugar beets and cucumbers. Because of legislation and inefficient methods, they are already displaced in many cases by intricate and expensive agricultural machinery. With rapid and complete conversion inevitable, these farm workers must acquire new skills essential to the safe and efficient operation of advanced agricultural machines if they are to remain employed in agriculture; and advance into better, more satisfying jobs.

A Classic Example of Training Need.—Few American farmers know all they should about the proper use, care and operation of the large diesel tractor, and few are adequately trained to operate the sophisticated farm machinery demanded by large volume commercial farming. Yet these same farmers are willing to turn over expensive machinery to untrained employees. Their appreciation of the need for training is often lacking. Barnes (1970, p. 18) tells of a farmer who:

^{. . .} was willing to turn his \$25,000 cotton picker over to an [untrained] employee whom he would not trust with his \$4,500 automobile. How little attention is often given to the selection and training of a machine operator! Operation of agricultural machines demands the same skills which the construction, manufacturing and transportation industries require of their operators. These operator skills are an important factor in machine performance.



The skilled machine operator . . . detects trouble before a serious problem develops. The premium wage of a skilled operator can be quickly paid if an efficient harvest brings in extra dollars. A skilled operator who can bring in only an extra ten pounds of lint per acre is bringing in an extra \$2.00 per hour.


Extra pay will not guarantee extra skill. Training is needed. . . . In the years ahead three factors,

- (1) higher wages, (2) year round employment, and
- (3) higher quality, more expensive machines, will combine to make <u>formal training</u> to provide skilled machine operators an essential part of production agriculture. (underlining by author)

# The Need for Improved Training and Manpower Development in a Developing Nation

The problem of developing a qualified source of manpower for agricultural and industrial development in developing countries is even more acute since the need for skilled machinery operators is directly related to food shortages, inefficient agricultural production and rising food costs. Low educational standards, non-mechanical background, traditional beliefs, undeveloped abilities and social customs impose still further restrictions. These factors make special demands on the type and nature of training programs required to acquaint workers with the more advanced scientific and industrial occupational skills and attitudes.

The Plight of Middle-School Leavers. -- In many developing countries today a growing body of middle-school leavers with some general education are unable to qualify for skilled or semi-skilled work. They cannot go on with their formal education because there are insufficient



secondary schools, vocational or technical institutes or other curriculums. The chances for one of these higher education programs are practically nil for the vast majority of primary school graduates or middle-school leavers. These students are in essence overly educated for work but under-educated to perform useful work in society. All nations recognize the seriousness of this situation.

Planning Essential for Manpower Development.--To use available resources to the best possible advantage to achieve the maximum rate of economic and social development, manpower development must be planned. Wilson (1968, p. 16) states:

. . . the assessment of the needs, short-term and longer-term, for trained manpower in all sectors of the agricultural economy, and at all levels, is seen to be a most important continuing process to provide the framework of institutional planning. It is impossible to devise appropriate curricula and to provide essential facilities for agricultural education and training in the absence of detailed specification of many technical and professional duties for which trained people are required.

"Job specification," therefore, is also an important component in planning technical education and training for agricultural and rural development, within the context of national development planning.


Agricultural education and training broadly falls into three categories: higher, intermediate and vocational agricultural training. Each level has different objectives and serves different needs in agricultural development.

Wilson (1968, p. 16) reiterates, "It is most important that this fact be recognized in curriculum planning. Of equal importance is to appreciate that all levels need to be developed as an integrated whole, each level complementing the others and contributing to their effectiveness. most vital aspect of developing the whole structure is teaching staff: their selection, professional training, technical support and periodic in-service training." is also an urgent need for a supply of adapted and relevant textbooks, manuals and teaching materials for use, at all levels, in developing countries. These need to be based Jupon local needs, local research and experience, and the actual economic and social conditions of each country. The universities, with their excellent staff and facilities, have a challenging role to play in meeting these needs for updated and pertinent textbooks and teaching materials.

## Purpose of the Research Study

To increase the effectiveness of training programs for teaching low education level trainees in developing countries and disadvantaged people in developed nations by providing a standardized course of instruction based upon needs.

To design a basic program for training machinery operators that can be adapted to the individual resources, requirements and aspirations of a nation.



### Hypotheses of the Study

A different type instructional program is required to adequately train disadvantaged or low-education level personnel to operate complex machinery in both developing and developed countries.

A properly structured training program will significantly decrease the time it normally takes to train qualified machinery operators.

A meaningful final evaluation of illiterate or low-education level tractor operator trainees can be made by using specially designed performance tests and visual observation procedures.

From a cultural mix it is possible to select trainees more receptive to training by a series of pretests to identify those with higher than average aptitudes and states of trainability, irrespective of literacy level.

With relevant behavior tests to identify and compare mechanical aptitude and general learning perception, it is possible to predict which trainees of various cultural backgrounds are most likely to become good tractor and machinery operators.

Trainees given a specially designed program of instruction based on structured learning, will learn faster and remember longer than those given the usual lengthy random course or brief and unorganized training.

ı ,  The bilingual local leader, adequately trained as an instructor, can more effectively train local people of his own language and background.

By providing an instructor with a detailed training program and a definite period of in-service training to learn how to use it, a superior type of uniform instruction will be presented to trainees.

Uneducated trainees can learn to become good machinery operators capable of exercising basic judgments and decisions by completing a practical course of "hands on" real life training.

Tractors and machinery used and cared for by trained tractor operators will last longer, require fewer repairs, have lower operating costs and have a higher hourly productive output than machinery driven by tractor drivers who are untrained or trained by traditional haphazard methods.

## Objectives of the Study

To establish minimum levels of knowledge and skills needed by a basic tractor operator (Grade I) to perform satisfactorily in the field.

To develop the format for a basic universal tractor operator's course which will provide the learning environment needed to convert an illiterate or low-educational level trainee into a qualified "Grade I" tractor operator.

To determine the length of training program needed to train people with varying entry behaviorial characteristics, to a given level of expertise as a "qualified" tractor operator.

To determine the best learning sequence and methods of presentation to minimize boredom and motivate machinery operator trainees to accept responsibility through the development of proper attitudes.

To develop lesson pretests for evaluating entry behavior characteristics of illiterates and others with low-education achievements.

To develop a total course evaluation procedure for measuring the effectiveness of the training program and the relative ability of the trainees on a continuous basis.

To develop a method of performance testing to measure trainee achievement fairly and accurately and to act as a basis for certifying that the trainee meets prescribed standards as a qualified tractor operator.

To develop an "instructor's manual" to act as a guide and reference for instructors in teaching trainees in a practical non-verbal and verbal "hands on" and "learning by doing" approach emphasizing individualized instruction and learning.

To develop an effective training program to teach prential instructors how to use the prepared "instructor's

manual" and guide to train trainees in their local language in familiar surroundings.

To develop simple teaching aids which could be easily reproduced in local languages and used to remind trainees of the important maintenance services, safety precautions and judgment factors which make a good tractor operator.

To determine if it is possible to use a standardized general-aptitude test developed in a developing country to pretest and predict which applicants are most suitable for training or most likely to make good tractor operators.

To determine if it is possible to preselect and weed out trainees unsuited for training as machinery operators or to identify those who are most likely to fail or to make unsatisfactory tractor and machinery operators.

## Definitions Used in the Study

Terms used in the Systems Approach to Mechanization
Training Programs with Structured Learning and Evaluation
are defined as follows:

Aptitude. -- The human capacity to learn and modify behavior as the result of selected stimuli and internal and external influences.

Aptitude Tests. -- Carefully designed and administered tests to help students and trainees, parents, teachers and counselors to better understand the trainee's inherent and natural abilities, limitations and weaknesses so that the

trainee can more wisely choose a satisfying occupation or career.

Behaviorial Objectives. -- A desired change in human behavior stated in measurable terms of attitudes, skills or knowledge (ASK) and used to satisfy an instructor that a trainee can perform a task defined as a desired outcome of a course of instruction. They are approximations of the system objectives.

<u>Certification</u>.--A statement issued by the training officer vouching that the holder has graduated from a training program upon the attainment of certain standards of achievement and performance.

Conference-discussion. -- A method of instruction involving the active participation of the trainee in a learning process using as many human senses as possible, in a practical and stimulating group experience with questions and trainee performance.

Daily Maintenance. -- A series of services habitually performed daily by the trained machinery operator to prepare his equipment for field operation with the objective of prolonging the life of the machine, preventing unnecessary breakdown and reducing both repair costs and unproductive downtime.

<u>Disadvantaged Person</u>.--Anyone entering a training program in a position inferior to his classmates or other similar individuals in the population because of a lack

of or a deficiency in some area; or one who has an inferior concept of his ability because of prior experience with prejudice or bias due to race, creed, color, culture or education.

<u>Deficiency of Training.--Any</u> substandard performance in the acquisition or evaluation of Attitudes, Skills or Knowledge (ASK) which is correctable by additional training.

Educational Effectiveness. The attainment of desired changes in student and trainee behavior within the context of adequate performance in the least time with minimum cost based on feasible allocation of resources without imposing unacceptable constraints on any other elements in the total system.

Educational System. -- A rational, controlled set of relationships among various elements interacting in a specific environment at a particular time with motivational factors to produce stated behavioral changes in individual learners. It includes the whole process of students, teachers, curriculum content, instructional materials, instructional strategy, physical environment and the evaluation of objectives.

Entry Behavior. -- The attitudes, skills and knowledge held by an individual at the time of entry into a training program which form the base upon which further training and change in behavior must be built.



Evaluation of Learning. -- Any form of assessment or analysis of a present condition or experience which permits a continuous reevaluation or refinement of some action which took place in the past, is currently in operation, or may take place in the future.

Environment. -- The total setting and background in which the messages, man and resources interact to acquire known facts or develop new ideas and concepts.

Failure in Learning. -- A condition which occurs when a teacher has failed to teach so that the learner has been unable to learn or benefit from the educational process.

Feedback Evaluation. -- The technique of continually taking stock of current events and using the analysis and resultant data to modify, correct or otherwise improve on-going or future processes.

Flow Chart. -- A visual means of programing a sequential series of actions which at the same time may be concurrent, straight line, repeatable, divisible, terminal or continuous. (Sometimes called Critical Path Method, Program Evaluation Review Technique or Logic Tree.)

Formal Learning Experience. -- Any set of predeterined structured conditions which produces a desirable
hange of behavior in an individual.

General Aptitude Test Battery or GATB. -- A combination of four verbal and eight nonverbal general knowledge

and performance tests developed by the U.S. Federal Employment Security Service to assist qualified counselors to measure certain characteristics which help to identify natural talents or capacities to learn in humans.

"Hands On" Instruction. -- All types of conference-discussion, laboratory or field practical exercises in which the trainee experiences a "live" personal involvement with his hands, head and total being.

Hardware. -- Various devices used by instructors to store, transmit, compile, analyze and perform routine functions with training resources to assist the learner and reinforce the learning experience.

Individualized Instruction. -- Any teaching technique to tailor the course material, the rate of learning and the instructor's presentation to the needs of the individual learner, including counseling, motivating, listening, etc.

Instructional System.—A method of teaching conceived around the formulation of objectives, the development of test criteria based on the objectives, an analysis of the learning tasks, the design of a specific course, the implementation and testing of the learning output and the continuous evaluation of inputs and outputs to improve the educational process by changing or modifying components in part or total, similar to the techniques used in the systems engineering approach.

tq (2

M

re

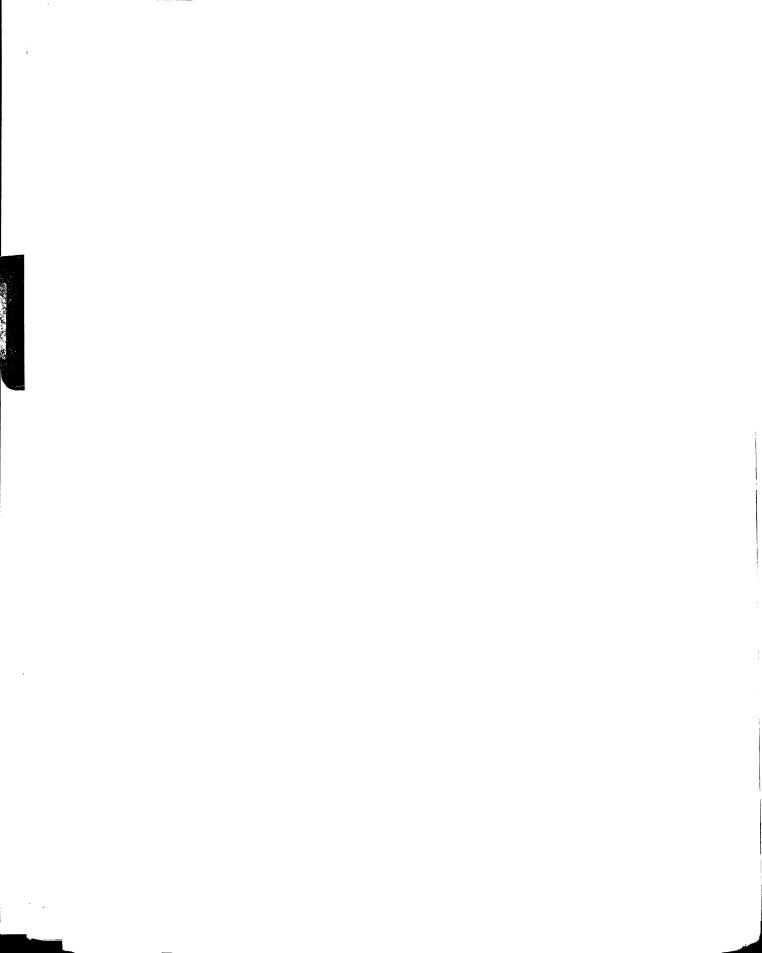
W

te

ť

1

Ŋ


Instructional System Components. -- All of the resources which can be designed, stored, applied, controlled, combined and utilized in a systematic manner with the intent and purpose of changing behavior in a positive way to bring about learning.

Instructor in Charge. -- A professionally-trained teacher possessing special qualifications in technical competence and methods of instruction who has, in addition, been trained in a specific Instructor's Training Program aimed at improving his capability in teaching mechanization to trainees of all education levels.

Instructional Technology. -- The development (including research, design, evaluation and production, pretest, support and supply, utilization) of instructional system components (including messages, instructors, trainees, materials, resources, devices, environment, techniques) and the management of that development (including organization, information, personnel) in a systematic manner with the goal of solving instructional problems and providing an effective learning system.

Job Description. -- A set of statements which define the general nature of a job and its related duties and responsibilities.

Large Group Activities. -- Instruction presented to larger groups of trainees up to 20, or possibly 30 in number, by the head instructor, helped by his assistants,



utilizing primarily the conference-demonstration type of presentation, including slides, charts, models, chalk-board or other inexpensive visual and audio aids that can easily be heard and/or seen by the entire group.

Mechonomics. -- A relatively new term describing or denoting the relationship between man, his machines, their management and economical use for the ultimate benefit of mankind and his environment; in this case concerned specifically with the problems of accelerating the development of rational and selective mechanization of agriculture and of vocational-technical education to bring about this change in the most effective manner.

Migrant Worker. -- Any class of transient worker, usually but not always, of foreign origin, not permanently employed in any one community, who generally works at or near the minimum wage level as a hand laborer in the fields or processing plants serving agriculture.

Modified Structured Learning and Training Environment or MSLATE. -- A series of carefully planned and controlled preconditioned learning situations and experiences specifically designed to train low-education-level trainees to become qualified machinery operators in a minimum time with maximum utilization of resources and carefully structured inputs, including a training program for instructors to insure maximum competence.

Occupational Cluster. -- A grouping of occupations or jobs having a common core of basic skills and knowledge which permit a person possessing these to qualify for entry with little or no additional training.

Para-professional. -- A person qualified by experience, technical training and developed expertise to work or perform in a skilled trade or craft (which may or may not be licensed, unionized or controlled by apprenticeship, examination and a governing body or bodies) who can act as an instructor or teaching assistant.

<u>Performance Activities</u>.--All types of human mental and physical activities which can be measured and rated by comparison with agreed-upon standards.

Pretest Evaluation. -- A preliminary test of mental knowledge or attitude or manual skill given prior to training to help establish entry level behavior and guide the instructor in adapting his techniques and course material to the needs of the trainees, individually and collectively.

Post-test Evaluation. -- A follow-up test of mental attitude, manual skills and knowledge given after training is completed to determine what and how much the trainee has learned and how well the instructor has taught.

Practical Exercise. -- A learning activity conducted n an atmosphere of MSLATE in which the trainee is actively nvolved, on his own, under minimum supervision, in the

Program Evaluation Review Technique or PERT. -- A

laboratory or field, with emphasis on learning by doing through participation in "hands on" activities.

technique—developed by the Defense Department, since adopted by most large corporations, and now popular with educators, administrators and professional people of all types—designed to simplify, control, review, analyze and expedite the discharge of management and administration associated with increasingly complex and structured organizations; with greater assurance of making rational and intelligent decisions based on known facts, calculated risks and considered judgments.

Qualified Tractor Operator. -- Any trainee who has successfully completed a course, such as the Basic Tractor Operator's Course described in Chapter III of this dissertation, as evidenced by passing the Final Evaluation and being subsequently certified as qualified by the training officer as a Basic Tractor Operator: Grade I (Minimumly Qualified); an Advanced Tractor Operator: Grade II (Semi-qualified); or Certified Tractor Operator: Grade III (Fully Qualified).

Rational Selection and Control. -- The identification and management of elements in one complete system uch that the results of the interacting components are elatively predictable in producing clearly defined and ttainable goals.

Resources of Education. -- All ideas, funds, programs and other items commonly called "software," which facilitate r store messages, information and data for transmission, ompilation or analysis in the total process of teaching and learning.

Special Aptitude Test Battery or NATB. -- A battery

f eight nonverbal capacity and performance measuring ests developed by the U.S. Federal Employment Security ervice to detect or estimate the degree of vocational echnical skills posessed by low-education-level trainees. This test is not yet available for general use but was cheduled for introduction in selected areas of the U.S. In the fall of 1970.

Structured Learning and Training Environment or ATE. -- A carefully planned, structured and controlled ries of learning situations designed as part of an vironment conducive to learning based on the research educational psychologists.

Small Group Activities. -- Any training activity or arning experience best handled on an individualized basis the a maximum group size of 4 to 5 trainees for effective reticipation and individual evaluation and practice, with ecial emphasis on "hands on" or practical learning-by-ing training.

Standards of Training. -- A precisely defined set criteria based on the behavioral objectives of ASK

attitude, skills and knowledge) training used as a basis or comparison with the trainee's record of performance o determine the degree of proficiency attained in or hrough training for the basis of certification.

System Objectives. -- General goals of an educational ystem such as the value judgments of its people, national pals of literacy and technological advancement. They expresent the value judgments made about a system's detrable goals.

Task Description. -- A set of precise statements ich describe in brief each key specific detail element king up a task as a part of a larger task or job analysis. sks have a discrete beginning and end which can be parated from other tasks--they can be looked at from at gets done and what the worker does.

Teaching Aids. -- Any form of audio, visual, olfactory other type of sensory materials, including actors, which e used to increase the realism or the effectiveness of learning and training environment, with special phasis on visual aids with moving or dismountable parts able by the trainees in self-instruction.

Teaching Assistant. -- A qualified instructor, who
be a para-professional, specially selected to work
the head instructor and assume responsible charge
a specific group of trainees and their activities;
ther qualified to work with low-education-level trainees

.

as a graduate of some type of Instructor's Training Program such as that outlined in Chapter V.

Techniques of Instruction. -- Routine or special procedures for modifying, adapting, applying and evaluating educational resources involving man and any combination of software and hardware devices to bring about learning.

Tractor Hire Service. -- A public or privatelyoperated service business specializing in contract and
custom work for farmers or farm production corporations
in which specific services such as plowing, harrowing,
planting, cultivating, mowing, threshing, irrigating,
grinding, etc., are performed for a specified price and
terms.

Training Sponsor. -- Any public or private group or individual giving support or providing training for applicants, with or without tuition, scholarships or subsistence grants, to permit them to enroll in a specific course and receive training for occupational or vocational sechnical qualification.

Trainee Attitudes. -- The invert and overt thoughts and feelings of an individual that cause him to develop conscious and unconscious responses to specific stimuli and experiences which may be generally described as Positive (+), Neutral (0) or Negative (-), and condition his expacity to learn or change to benefit from a learning sperience.

Universal Course. -- A specially designed course developed to train machinery operators and based on MSLATE, whose format and application can be adapted to teach any education-level trainee how to properly operate, care for and maintain any model of any make or type of machine; with special emphasis upon the use and care of diesel-powered agricultural wheel tractors and their equipment.

Weekly Maintenance Services. --All preventive maintenance and lubrication services habitually performed at the end of 50 hours, or once a week, by the trained tractor operator to prolong machinery life, reduce costly breakdowns, minimize repairs and increase the productive output of man and machine.

World-wide Operator Symbols. -- Symbols used in place of words to promote the international understanding and ready identification of operator controls without need for language translation.

World-wide Traffic and Road Signs. -- International symbols and standardized sign shapes used with a minimum of words to instruct all motorists and machinery operators in the safe and proper operation of engine-powered vehicles in roads, highways and streets of cities and rural areas.

## verview of the Study

The remainder of this dissertation will present he effect of technology on education and training.

elected cases of training will be reviewed. In addition,

some supportive research to improve Instructional Systems and the Systems Approach to Instruction System Design and Testing will be discussed.

Taking the concept of a Modified Structured Learning and Training Environment (MSLATE), a unique training program was developed to train unsophisticated low-educationlevel trainees to use, care for, maintain and make judgments on very sophisticated machines--products of high-level technology and education. The "systems approach" of problem analysis developed by engineers was used to define job specifications, analyze task descriptions and prepare a detailed program of training based on the achievement of a minimum proficiency or standard of training. qualifications as measured by performance testing then became the minimum acceptable level of training for a Basic Tractor Operator, Grade I. Then, with the special needs of overseas countries and of all disadvantaged trainees in mind, a training course was designed tailored to the constraints of cross-cultural teaching, limitations of time, the low-entry levels of unskilled workers and the limitations of training resources, including qualified instructors.

Using a typical lesson from the Instructor's Manual for a Basic Tractor Operator's Course, the rationale and lesign of this universal type course for training machinery operators will be explained. Examples will show the use

of behavioral objectives, information for the trainees, special teaching techniques where applicable, and large and small group instruction to individualize learning and stress trainee involvement. The method of evaluating trainee competence and performance will be emphasized based on the original statement of the behavioral objectives through to the final evaluation of the trainee's certification. Illustrations will show how emphasis was placed on the development of proper attitudes along with the acquisition of skills and knowledge.

The proposal for pretesting the tractor operators course will be presented along with the results of a preliminary testing program with Spanish-speaking migrant workers in Michigan. Finally, the implications for improved cross-cultural training and the cost effectiveness of this type of training will be reviewed.

#### CHAPTER II

#### THE REVIEW OF LITERATURE

# The Effect of Technology on Education and Training Needs

# Agricultural Mechanization in Equatorial Africa

Governments have tried to organize training programs to spur lagging agricultural economies but few have been even moderately successful. Many skilled and technical education programs are pursued half-heartedly turning out poorly qualified, unmotivated workers. During a study by the African Mechanization Team in Equatorial Africa, only three programs were found making headway in training local nationals to assume responsibility for the proper care, upkeep and operation of modern agricultural machinery (Kline, Green, Donahue, and Stout, 1969).

Two of these programs, the Kenya Ministry of Agriculture Maisai Wheat Scheme and the Ivory Coast "Motoragri" agricultural development organization, were government operations assisted by an outside technical staff to do specific tasks. Training was only a complementing function to facilitate a larger mission. Most training took place in on-the-job experiences under well-qualified foreign supervisors and instructors who acquainted the trainee with

e real work world. Concrete achievements to reinforce trainees' success experience resulted from this train-

The Narosurra Farm Mechanization Training Scheme s conducting the only course strictly tailored to meet he needs of Kenya's native farmers and operators of rivate tractor-hire services. Details on these programs re given in the MSU/AID Research Report No. 6, cited nove.

In West Africa, Coulthard (1968, p. 42) reports

nat:

Trained operators and operators with mechanical "sense" are in short supply for the operation of tractors and machinery on present State and Research Training schools will need to be established for operators and servicemen prior to any large-scale mechanization program. . . . Education at all levels is one of the basic needs in all of the developing countries. . . . The elementary and secondary schooling requires considerable expansion and there is a great need for qualified teachers at this level. . There is a great need for technical scientific supplies and educational aids. . . . At the advanced level of education there is a great need for skilled technicians and university trained scientists. At the present time the greatest need is for technicians to operate the current scientific equipment, and that which is about to be introduced. Research scientists find much of their valuable time is consumed in performing routine tasks which could be carried out by skilled technicians, if they were available. . . One could frequently note the lack of technical training in farm mechanization, in industry. . . . Many more schools offering science training at the secondary level and vocational or technical institutes at the advance level are required.

In East Africa Denike (1969, p. 42) states that: anything more than survival is basically foreign to the African and the practice of affluence is strictly of . ġ European or Asiatic importation. Such words or phrases as 'mechanization,' 'economic production,' 'rotation,' 'crop sequence' and the like are unknown or wholly without meaning to East Africans. . . . the practical application to different crops, soils, districts, etc., is a baffling and frustrating experience for them. Without rudimentary educational advantages, the African is unable to apply his native skills to even the most basic or rudimentary techniques of modern advances.

Strangely enough, Denike (1969, p. 44) points out, "there has been an almost universal acceptance of some of the most technologically advanced mechanical devices, such as, the self-propelled, combined reaper-thresher!" He does not say, however, that the successful introduction of such machinery depends on the availability of well-trained local operators and the essential infrastructure of supporting services.

Denike (1969, p. 45) goes on to say, "too little interpretive guidance has been offered or accepted. One of the prime needs at the present time is to provide 'push' required to launch or activate the programmes of production which have been studied and recommended for the areas under consideration . . . short-term projects must be started and corrected or the long-term projects will never become activated." Basic to all such projects and the main theme of this dissertation is the need for man-power development and the activation of adequate training programs for the systematic development of human resources.

.

The Africa Mechanization Study Team made the ollowing recommendations and suggested general guidelines oncerning development training:

Recommendation to Develop Facilities for Training in the Use of Farm Implements and Power Units (Kline, et al., 1969, pp. 1-62).

The adoption of improved farming practices, including new forms of farm power generally depends upon the availability of improved tools which require well-trained and careful operators. Such training also plays an important role in reducing repair and maintenance costs. It is recommended, therefore, that extension services be regarded as the most appropriate training medium for small farmers, and that extension agents be provided with adequate training in agricultural mechanization. The training facilities can then be made available to farmers with adequate backgrounds to benefit from the experience.

Facilities for training both farmers and farm operators are generally inadequate. Moreover, very few training programs are designed with due recognition to the farmer's traditional background or level of literacy, their lack of disciplined organization, or their lack of training in mechanical arts. Often, extension workers are inadequately familiar with the farmer's way of life and have, themselves, insufficient knowledge about or proper training on improved mechanization tools and techniques.

Again it should be emphasized that training facilities in these areas can be efficiently grafted onto the operational organization of already established institutions. The burden of expensive administration can be avoided wherever an appropriate institution already is functioning.

Guidelines: Establishment of General Training Facilities (Kline, et al., 1969, pp. 1-76 to 78).

The availability of capable instructors sympathetic to farmers' problems is vital to developing a mechanized agricultural technology. In the contemporary situation, few farmers would be able to enter agricultural training institutions; most teaching would be undertaken in the field by extension workers who must be adequately schooled in the relevant practical skills of agriculture.

In order to strengthen training facilities in agriculture, the following are guidelines for policy-makers:

- l. Present extension workers should have ample opportunities, through regular refresher courses, for practical training on the selection, application, use and maintenance of improved implements and farm power units. Foreign-based local farm machinery agencies can provide information and training facilities;
  - 2. Agricultural extension services should be expanded by choosing personnel well qualified in agricultural mechanization, and services should be concentrated in areas of greatest agricultural potential;
  - 3. Time allotted to practical training and selection of improved implements and machinery should be expanded;
- 4. Curricular content of all training institutions should be carefully reviewed regularly to eliminate unnecessary or irrelevant theoretical courses, and to keep skills related to practical problems of farmers;
  - 5. Training for farm-equipment advisors and technicians should emphasize the interrelationship between improved equipment and improved cultivation practices;
  - 6. Training schools for agricultural mechanization should be considered as appropriate adjuncts to agricultural colleges and/or research institutions;
  - 7. More manuals and instructional literature for the training of extension agents written in appropriate languages are needed, and special techniques for instructing illiterate farmers;*
  - 8. A comprehensive training program in the use, operation and maintenance of farm machinery can be a required part of any agreement for purchasing farm machinery under loan or on credit. The cost of this training should be included in the terms of the loan, and training should be completed satisfactorily before the equipment is delivered. Farm machinery dealers should be encouraged, or even required to offer training courses;

It is possible to use agricultural literature, achinery manuals and other literature in local schools here the children of many illiterate or semi-literate armers are students. Students may then help their parents o understand what is written in their own language. . . .

- 9. Loan applicants should be tested for mechanical aptitudes and responsible attitudes. Any training given to loan applicants should (a) be specifically related to the equipment being purchased and demonstrations [should] take place in the location of intended use, (b) include after-training through visitation of the user on his farm by extension agents of the equipment dealers, (c) insure that extension agents are familiar with the content of any courses taken by farmers in their own location;
- 10. Where foreign specialists or advisors are employed, the host country should supply at least two nationals to be trained similarly to take over major responsibility for the program at the earliest possible date.

### Mechanization Training in Europe and Africa

Another study by Mackson (1969) for Deere and

Company in Europe, the Middle East and North and East

Africa, found that people and governments talk about

training machinery operators, but very few viable programs

were in operation and none had detailed lesson or course

plans. Furthermore, few courses stressed the basic

fundamentals of tractor care and maintenance. In general,

the tractor-hire services, farmers institutes and the so
called "mechanization schools" taught tractor driving only,

which is a minor part in developing qualified tractor

operators. Note that a distinction is made here between

a "driver" and an "operator." Farm machinery dealers

overseas typically trained a new tractor operator by

asking a salesman to demonstrate the equipment and per
haps spend a few hours with him.

Mackson's study indicated a great need for trained sechnicians in all aspects of agricultural mechanization


n developing countries. This need included not only dequately trained tractor owners and operators but lealer personnel, government officials and others working in mechanization. Mackson (1969, pp. 1-2) concluded:

there is a serious lack of the most basic training aids, textbooks, and other teaching materials. . . . Training is one of the most important factors affecting market penetration in developing countries. An indepth investigation of the ways in which industry can help the already large number of teachers of mechanization to do a better job seems desirable. Common teaching materials can be used despite wide variations in physical conditions and teaching proficiency encountered at the various levels of training.

Training of illiterates can best be accomplished by 'on the job training,' on an individual basis. Training of these people except in special cases should be the responsibility of the respective governments. . . . While agreeing that a completely different approach for each country or regions is almost certainly unnecessary, it is important that programs fit the areas and needs of the particular group—perhaps not vice versa. The approach recommended is to take selected areas and develop suitable teaching techniques and materials for those situations and then proceed to universality.

# Training Techniques Used by the South African Sugar Industry

In developing countries, large commercial farming operations have successfully trained the manpower they need for specialized operations. The large sugar plantations show what can be done to tailor skill training to the trainees' background and needs and the job to be done. They have gained considerable experience and expertise forking with local people who with proper training, have ecome qualified tractor and machinery operators.



In answer to specific questions, Bartlett, formerly irector of Training for the Experiment Station of the ugar Association of South Africa, made these comments:

What type(s) of Training are needed? If it is illiterate peasant type labour which has had no previous contact with our mechanised society, then the training should cater to teach the operator the basic elements of operating the machine only. Very elementary maintenance procedure should be taught, e.g. to watch tyre pressures, water and oil levels, grease-points, etc. I feel that to take the training beyond this point at the early stage of the individual's development will meet with much frustration due to the individuals' limited knowledge, ability, experience and appreciation of things mechanical. Make no mistake, you can take a primitive African and train him to become an expert machine operator in the sense of operation only. But do not expect him to understand the niceties of listening for mechanical breakdowns, such as hearing 'knocks,' loose chains, load limits, etc.

master gear changing, operation of equipment, reversing, steering, etc. Once he has mastered the basic operation of the equipment, he will probably surprise you with his ingenuity when operating under difficult conditions, and in his attempts to get the job done, albeit that it might be at the expense of the machine.

Once the primitive operator has gained the practical operating experience, and the experience of having a frustrated boss yelling and cursing at him for wrecking the machine, he will have reached the stage where he appreciates that the machine is not indestructable and that it displeases his boss when he wrecks it. At this stage, he becomes more susceptible to further training. This limited period, naturally will be lengthened or shortened depending on the degree of sympathetic supervision and training given. Training must take the form of constant repetitive instruction with the trainee repeating, parrot fashion, the instructions given until gradually the point sinks home.

Letters to C. J. Mackson, dated 25 November 1969, d to C. K. Kline, dated 29 June 1970, from George Bartlett, rector of Operations for Illova Sugar Estates, Natal., uth Africa (Underlining by author) pp. 1-3.

Once you have an experienced operator who has seen a wrecked engine and gearbox, etc., the training becomes more effective and can be carried further to include minor repairs, implement adjustments and the 50 or 100 hour servicings. Once again, he is keen to learn and is trainable but it must always be remembered that he is illiterate and has, believe it or not, no earlier experiences such as closing a car door, tightening nuts, using a screwdriver, etc., and as such has his limitations. You might find it hard to believe that I know of a young tractor driver who within his first week of employment on a farm, and when closing a pick-up door, slammed it while holding tightly the door's window frame. The result was broken fingers. When asked why he did such a stupid thing he replied that he didn't know it would hurt him. He had never closed a car door before.

On the other hand, the laborer may be literate and from a more civilised background. Under these circumstances, the practical training should run parallel with formal instruction of such subjects as why it is important to have clean air, fuel and oil, why the correct clutch and brake adjustments are necessary, etc. This should be done by repetitive type instruction and practical demonstration.

The ultimate, of course, is to have some form of training amongst the youngsters at school in preparation for the eventual driver and operator training.

Who should give training? A qualified person who is fluent in the language of the trainees and preferably of their same race. The latter is important because some people believe that since it is the white man's machine, only he can really understand it. In Natal, for instance, our Bantu (African) instructors are able to motivate Bantu drivers far better than can White instructors, primarily because of the above fact and because they understand the thinking of their people more fully. . . .

What training should manufacturers or importers provide? The local dealers should be able to have both their sales and service staff properly trained by the supplying company. They in turn should be in a position to pass the information down the line. This training should follow the normal maintenance, operational and service manuals provided by the manufacturers. (See translated instruction A and B which were produced by the South African Sugar Association from the tractor handbooks, and used

as instruction material and given to all literate drivers).

What assistance [does the] Government need? The backing and pushing by both suppliers and users of machinery to get on with the job, with the suppliers supplying the basic instructional material and the users using their influence to emphasise the need for action.

Who should receive training? First the suppliers, Second their instructors, thirdly the owners and fourthly the operators.

Where should the training be given? For Operators: In the first instance on the farms. Groups of drivers (10-15) should be brought to a central farm. As the idea of training becomes more acceptable to all concerned, centralised schools could be established.

Once he has acquired his drivers license or that level of competency, then periodic refresher courses should be held, lasting from 3 to 5 days and repeated every 9-12 months; and scaled upwards as his know-ledge increases, until he [trainee] reaches the desirable level.

What language should be used? Can English be Used? In South Africa, the native language should be used for the drivers. The instructors can be taught in English.

What type of written material should be prepared? See enclosed material. [Simple manuals on tractor servicing written in the native language.]

How many people need to be trained by category?
In South Africa we should train about 10,000 per year to catch up.

What makes the best visual aids? Actual objects.

Do Government farmer training or vocational training schools now exist where tractor operators, etc. can be trained? Limited, but a lot of plans are in progress for this to be extended.

Should purchases of machinery by governments include a certain per cent to cover costs of training? Yes.

When is the best time of the year to give training?
During the slack period, e.g. in the sugar industry—
during the off-season i.e. when harvesting is not in progress.

How should a training programme be conducted? In a garage, with benches, boards, visual aids, etc. set up with the tractor in the foreground and all the tools, etc. neatly and correctly arranged. I feel it is best to place the trainee in an atmosphere with which he is acquainted and feels at home. Practical work is done in the garage and outside when driving.

# icultural Engineering Basic ining in Africa

In a special study made in Africa for FAO, Boshoff Corbett emphasized that for any practical courses it important to limit classroom instruction to that necesty for the trainee to understand what he is doing. For ctor operators, typical class instruction involving lanations from diagrams and taking notes, should be t minimal (Boshoff and Corbett, 1965).

Davis, in 1954 suggested a syllabus for a novice rator's course, lasting four weeks in which 25 hours e devoted to lectures and demonstrations, and 110 hours practical and field work. He suggested breaking the edule into distinct phases and periodically assessing a trainees' progress (Davis, 1954-64).

In their report, Boshoff and Corbett (1965) also essed in both general and option courses the instructors see that time devoted to practical work in the workor field is spent in the most useful way. This means sing the trainees carry out the operations themselves, er than watching it being done. Similarly, periodic ssment of each trainee's progress can be obtained by

aring test cards to test the individual accomplishs and attainment of the training objective.

In their conclusions and recommendations for traintractor and machine operators, Boshoff and Corbett 5, pp. 24-25) state:

Courses for novice tractor drivers over two months long should be reviewed to cut out non-essential material. . . . More emphasis should be given to provide short refresher or improvement courses for tractor drivers. . . . In-service, or on-the-job training should be used as much as possible. . . . High priority should be given to supervisor and instructor training. . . . Tractor and machinery manufacturers should be encouraged to assist in instructor training and to provide relevant instructional aids in the local language. More attention should be paid to training local instructors who give ad hoc and regular courses in machinery operation at the Farmer Training Centres and Farm Institutes.

## Some Current Training Programs for Accelerated Development

### ining Programs of U.N. Agencies

The Food and Agricultural Organization (FAO)

2. --Downing (1970) reported that FAO is currently doing

7 little in direct training projects. While most

1. Ining is incidental to special fund projects, FAO is

1. Derating with a farm machinery manufacturer at a

1. Ining center at Buga, Columbia and with the Tunisian

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training

1. In the per class at the Columbian school where training



to train farmers and extension agents. About 40 per cent of the students come from other Latin American areas but the majority come from Venezuela, Ecquador and Peru. This program is part of a larger training scheme called SENA which covers all basic vocational skills.

The training school at Majes Al Bab near Tunis as been operating for 10 years after being initially upported by an United Nations Development Project (UNDP). pecializing in agricultural mechanization of semi-arid and irrigated lands of North Africa, it has concentrated an training supervisors and extension agents to work ore effectively with farmers. Basic tractor operator raining has been taught but the content of the program or number of graduates were not available.

International Labor Organization (ILO) Geneva.—
ne ILO is also concerned about the need for improved
ystems of training to produce qualified workers for
ndustry and agriculture (Charles, 1969). They are
opperating with many regional organizations, such as
ne East Africa Community headquartered in Arusha, Tanzania,
nd the Economic Commission for Africa and the Organiza—
on for African Unity, both headquartered in Addis Ababa,
chiopia. To prevent the concentration of industry and
ochnical skills in the capitals and strategic areas,
ch as seaports and railheads, the ILO is trying to
velop rural industries that can train local people

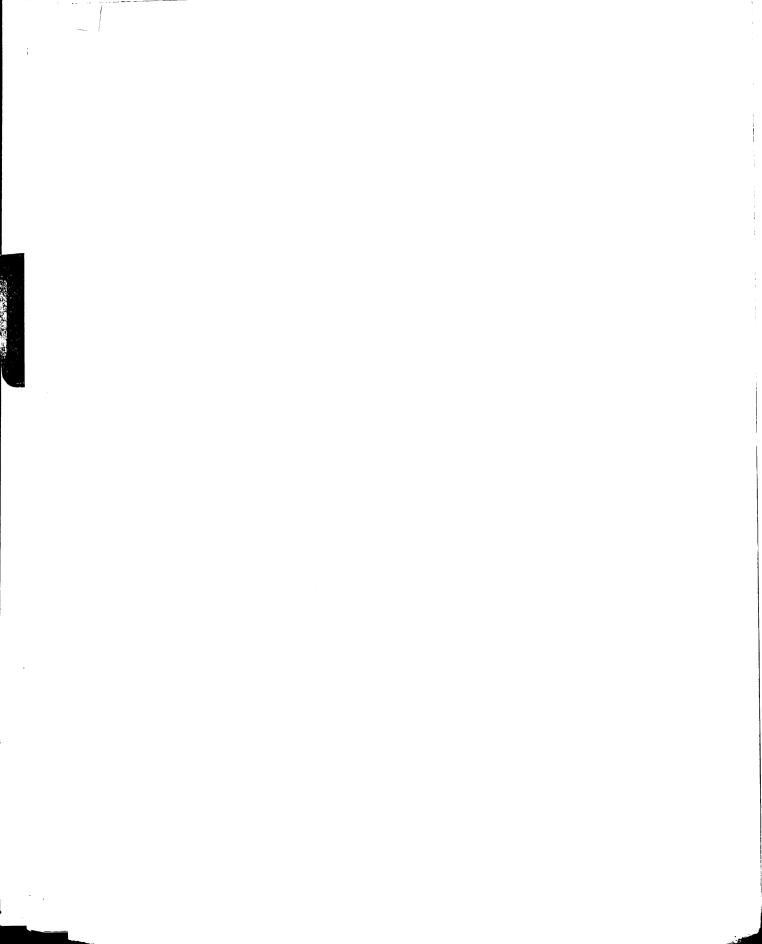
地域で大きる。

The Organization for African Unity (OAU), the East

without skills. They recognize that training minimally educated people is a difficult job requiring special techniques and a different approach to training than is generally followed in most developed countries.

## Training Interests of Regional Organizations

African Community (EAC), and the Economic Commission for Africa (ECA). -- These groups all encourage public and private investment in education and training programs. Working with the World Bank, the Bank for Reconstruction and Development, Agridev (Israeli), Canadian External Aid, the U.S. Agency for International Development and similar technical assistance programs, these coordinating organizations foster regional cooperation and encourage participation by member nations. They normally do not operate any kind of training programs except to fulfill their staff needs. hey act as clearing houses for information and work with fficials in the various planning and policy-making levels f government in cooperating countries, including donor nd receiver. In turn they request and receive help from he larger UN agencies such as FAO, ILO, and UNESCO, and rom other bodies, such as, The International Bank for econstruction and Development (The International Bank . . **366).** 


ħ

The Asian Productivity Organization (APO).--Acting on a multilateral basis to strengthen and improve their national productivity, several Asian governments established the APO in May, 1961. Originally focusing on all sectors of the national economy, the APO has also included agriculture in its programs since 1966. Close coordination is maintained between the productivity policy followed by APO and the National Productivity Organizations and economic development program of each country. Since 1969 two themes have been promoted annually in management and technology, with 1970 designated as the Asian Productivity Year.

Over-all objectives of APO are (1) establishing linkage between productivity and economic planning,

(2) hastening and strengthening the productivity movement in the entire region, (3) fostering mutual help, (4) dissemination of knowledge, and (5) assisting national organizations' activities. To accomplish these objectives, APO organizes study missions, dispatches technical experts, conducts training meetings, supports seminars in member countries, undertakes research and maintains information activities.

The APO recognizes that education and technicalrocational training is one of the major limiting factors
preventing faster and greater economic and social developnent. The rapid trend to engine-powered agriculture
corces these countries to re-assess their long-range plans



and to find new ways of developing human skills and utilizing the natural resources of the nation.

Present membership of APO includes the governments of Ceylon, Republic of China, Hong Kong, India, Indonesia, Iran, Japan, Republic of Korea, Nepal, Pakistan, the Philippines, Thailand and the Republic of Vietnam.

Membership is open to all Asian countries who are members of the Economic Commission for Asia and the Far East (APO Expert Group Meeting on Agricultural . . , 1968).

The Central Treaty Organization (CENTO).--This coordinating and educational body has supported practical training and agricultural development since its inception to assist Iran, Turkey and Pakistan. In 1966 a special seminar traveled throughout the region and made these observations about training for the introduction and use of farm implements and power units in CENTO (1968, p. 147) countries:

- l. Farmer training is needed in machinery application, operation, maintenance and simple repairs;
- 2. Facilities for farmer training are both lacking and deficient;
- 3. The most efficient way to reduce maintenance and repair costs is to use well-trained and careful operators;
- 4. Investment in training is one of the least costly inputs of increased economic agricultural production;
- 5. There is a paucity of manuals, teaching aids and publications in languages and forms understood by the illiterate or foreign-language farmer;
- 6. Very few training programs start at the farmer's or trainee's level and consider his traditional

non-mechanical background and lack of disciplined training;

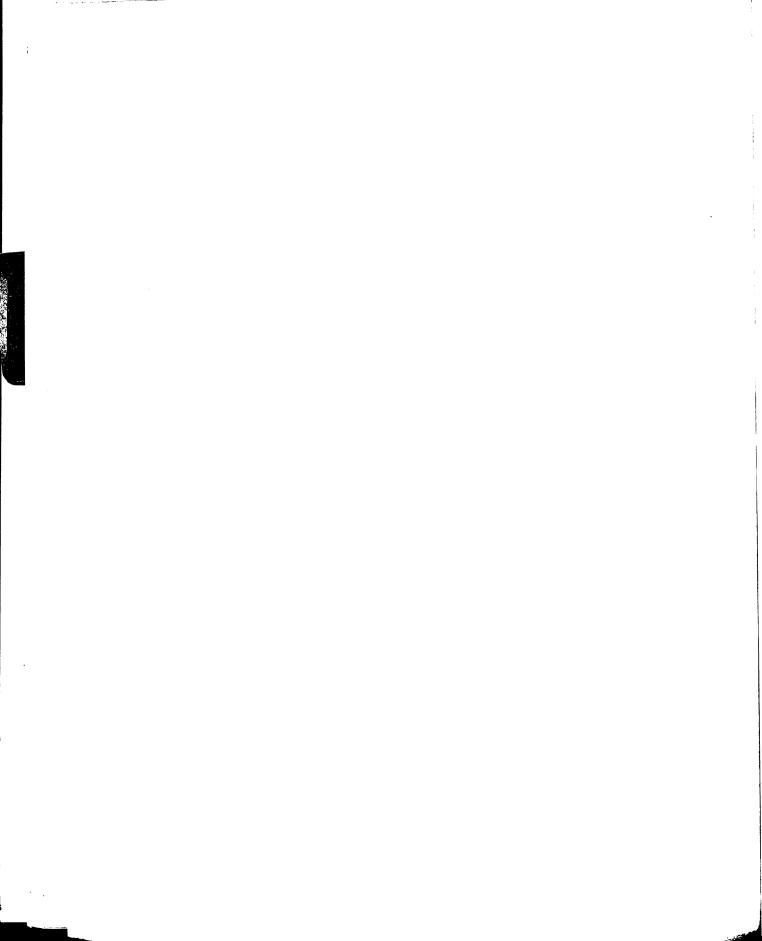
- 7. Present extension workers need practical in-service training on the selection, application and maintenance of farm implements and power units;
- 8. Courses in vocational and technical schools should be reviewed and the unnecessary theoretical material replaced with practical information and skills related to farmers needs;
- 9. Establish farmers and contractors schools dealing with the problems and practical aspects of using, managing and caring for production farm machinery;
- 10. A comprehensive training program on the use, operation and maintenance of farm machinery purchased under loan should be required in any agreement to purchase;
- 11. Farm machinery importers and distributors should be encouraged to offer a course on machinery operation and management lasting a minimum of one to two weeks to any purchaser.

## Fraining by Private and Semi-private Groups

Gezira Irrigation Scheme (Sudan).--In North Africa, Pothecary (1967, p. 63) states that:

the Agricultural Engineer in collaboration with other authorities, should plan and direct specialist training facilities for managerial staff, supervisors, agricultural mechanics and tractor drivers. This field is of fundamental and vital importance to any mechanization programme. Although there are many born operators, the complexity of the tractor driver's job soon reaches the stage where formal training pays off. Properly trained agricultural mechanics are equally essential. . . . As mentioned earlier, properly trained supervisors and managerial staff are a basic necessity and the relative absence of training facilities for this class of personnel is a feature not only of the Sudan but of many other countries. It may be argued that training facilities exist in advanced countries for this class of personnel, but quite often the prevailing conditions there are very different from those encountered in the trainee's country of origin. (Underlining by author)

South African Sugar Association. -- These notes are or the guidance of instructors when giving a three-day refresher tractor driver training course. They are read in conjunction with the syllabus and the program schedule. Booysen, (1969, pp. 1-12) makes these candid comments to new instructors. (Underlining by author)


The Objective. To take existing tractor drivers and convert them into RELIABLE and CONSCIENTIOUS OPERATORS who have to possess a POSITIVE ATTITUDE towards the work.

- METHODS 1. Cast out the NEGATIVE ATTITUDE men and those with NO CONCEPT OF MECHANICS, ruthlessly.
  - 2. Use the TRAINING SYLLABUS well to develop and guide the remainder towards the objective.

SERIAL NO. I: "WELCOME AND ADMINISTRATION" This is the opening of the course. The senior instructor or his deputy will do the welcoming of the students to the course. He will explain to them the reason why they have been sent on the course, why they are important people to the Sugar Industry, why it is important they know how to drive a tractor and why they should know how to maintain the tractor properly.

He may include further reference to the importance of the role which the tractor driver plays in the agricultural business. The tractor drivers must at all times be encouraged to feel that they are important, that if they do their job properly they are helping their employers to earn more money and consequently they can expect to earn more themselves.

SERIAL NO. 2: "DALLY MAINTENANCE" This period is done by the students under the guidance... instructors must be wide awake to see that everybody gets a chance at going over the tractor. There is half an hour allocated to this period and you will find that the keen drivers will jump onto the tractor and do all the work, whereas the lazy man will just stand behind and look on. The lazy man is the man you want to catch to do it, because he may think he knows it but in actual fact he does not...



SERIAL NO. 8: "PRACTICAL DRIVING: THREE POINT" Instructors must be alert at all times to the fact that students get bored very quickly unless they are occupied. During these practical driving and skill tests it happens all too often that the instructor is busy with one man on the tractor and the rest of the class has to stand round or sit around doing absolutely nothing. The instructor must organize his class in such a manner that while he is busy checking one man on a tractor the others are occupied. You can do this very easily when you have more than one tractor on the site. You give the other group a chance to carry out their practical work. You explain to them that whilst they are not being called out by you to do certain jobs they are free to get onto the other tractors, to drive and test their own ability. . . . You will find that they will probably enjoy this because they are free from your supervision, they're amongst themselves, maybe joking and laughing, but at the same time they'll be doing a job of work and keeping themselves busy. Encourage them to change over often so that everybody gets a chance to get on the tractor before he comes to you for testing or checking on his ability to do what he claims he is able to do THIS IS MOST IMPORTANT. UNDER NO CIRCUMSTANCES MUST ONLY PART OF CLASS EVER BE OCCUPIED AND THE REMAINDER SIT AROUND DOING NOTHING. . .

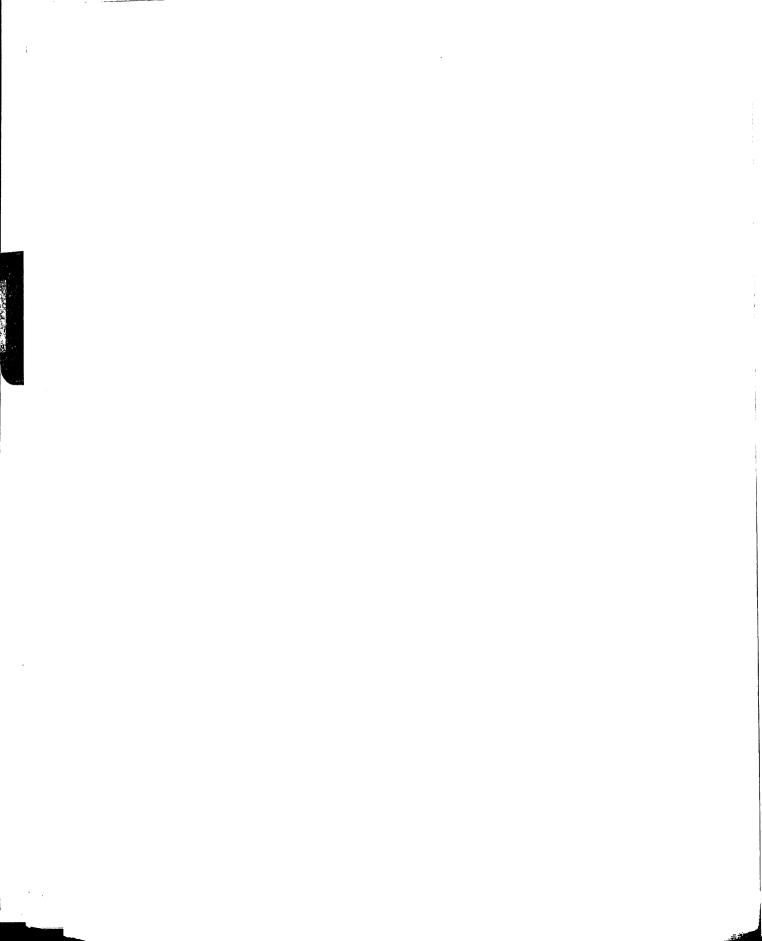
SERIAL NUMBER 3: "SUMMARY OF THE COURSE" . . . Your course finally closes down by having an hour of final maintenance and clean up. This is a full hour and it is essential, as it is most important, that all equipment used on the course must be returned to their owners in tip top condition. There is no point in teaching drivers how to look after their tractors well and then allow them to go home with dirty tractors, badly serviced. All equipment must be checked and must be shining and clean. This is one of the most important periods of the course. . . . When summarising, as at the end of Day 1 and Day 2, called revision, it will take the form of a runthrough of the complete syllabus. No questions will be asked of students. If students ask questions they must be answered, of course, but they must not lead to another lecture or talk. . . . When you have finished that part of the programme your course is virtually at an end except that as the instructor, you will say thank you to the class for having attended, thank you to them for having listened, thank you to them for having been prepared to learn.

### aining Assisted by the Farm uipment Industry

South American Farm Mechanization Training Centre. -November 1967 the South American Farm Mechanization
raining Centre (SAFMTC) was established at Buga, Columbia,
der an agreement between a Columbian Government agency,
revicio Nacional de Aprendizaje (SENA), the Masseyreguson Company (MF) and the Food and Agriculture Organration of the United Nations (FAO). SENA assumed overall
responsibility for the Centre while MF consigned instrucconal staff and equipment to FAO's "Freedom From Hunger"

The project is designed to help Latin America vercome major problems in the shortage of skilled agriultural mechanization technicians. Attempting to fill this ap, the Centre is training candidates from Latin America to, upon return home, will serve as instructors in farm chanization, as supervisors on agricultural development ojects or as government farm machinery extension officers.

Dr. Carlos Lleras Restrepo (MF View, 1968, p. 7),
esident of the Republic of Columbia said, "It is not
ough to bring machines into the fields. The farmers
st know how to use and maintain them. Much of our
sources have been lost for want of proper training.
us this centre will make a great contribution to the
Dnomy of this and other countries."


To provide the training, large numbers of instructors in agricultural machinery operation and maintenance will be required. Lars Stenstrom (MF View, 1968, p. 7) with FAO said, "the three parties contributing to this project have clearly seen the importance of training and FAO is most gratified that SENA and MF have dared to embark on a scheme so untraditional."

Operating at full capacity, the Centre can house and teach 500 students at one time in a variety of specialized courses in mechanization. Trainees are chosen on the basis of recommendations received from South American Government departments or educational institutions.

Siertsema (1970) project manager of SAFMTC reported that
60 candidates will be enrolled for the second semester. In the
1970 first semester courses, of the 23 students who
finished the course on Operation, 17 received certificates
as Supervisor/Instructor, 4 as Operators, and 2 Certificates
of Attendance. Twenty-eight students completed the course
on Repair with 12 awarded certificates as Supervisor/
Instructor, 7 as Mechanics, and 8 Certificates of Attendance.

In a 1970 Progress Report for the second quarter,

Special short courses on the operation and repair
of machinery were offered in addition to the regular
residence courses. Three groups (82 specialists) attended
one-week courses in June 1970 covering Information on
Operation of Tractors and Machinery. Another group of 15



officials took part in a seven-day course on Instruction on Operation, Maintenance and Repair of Combines. Siertsema (1970, p. 6) says they are more convinced that "The theoretical instruction is going to have [to have] a more practical nature."

A summary of the course, student and instructor hours for the 1970 Semester I courses showed that the Operation and Maintenance Course required 880 class hours and 1600 instructors hours with an average of 12.65 student hours per instructor hours. The Repair Course took 1010 class hours and 3044 instructor hours for an average ratio of 9.29 student to instructor hours, indicating the higher cost of detailed supervision. The overall average student to instructor hours was 10.82, including non-scheduled courses which had a student to instructor ratio of 17.80 hours (Siertsema, 1970, p. 7).

African Operator and Management Training Centres.—
Attempts are underway to gain support for the operator and management training centres at various African locations.

These centres want to train African operators and managers or small and large holdings, but too many things must be aught. Thus a real struggle for financing and survival exists. The end result has been the teaching of primary outine to tractor operators hoping they will meet the most imple functional demands for motive power operation.

i			
1			
			1
	•		:
			,
			1
<b>1</b> 5.			
<b>-</b>			
			<u> </u>
-			
•			

Progressive design of modern tractors has reached the point where only elementary servicing is necessary; but all advanced servicing must be undertaken by well-equipped shops manned by factory or local technically-trained personnel. In the training schools, Denike (1969, p. 43) reports "management factors are essentially given only the lightest brushover because most students have not progressed beyond Grade 4 or 5 in elementary schooling and could not assimilate anything beyond the most simple recordings." Furthermore he points out most students are encouraged to return to their native zones and "the normal wage for a trained and skilled operator is one shilling (14 Canadian cents) per day . . . something for social and economic experts to cogitate upon."

Graduates are trained to perform the daily, weekly and periodic services on tractors and/or tractor-drawn farm tools. An effort is made to impress the students with the grave responsibility they carry when vested with the "care and feeding" of important farm tools. They are trained in simple and essential skills with respect to maintenance--soldering, flame welding, some arc welding, metal shaping, care and use of fuels, lubricants, and greases, inflation of tires for traction and/or loading--and many other basic service functions.

Denike (1969, p. 43) observes, "It becomes abundantly evident that these schools are well-intended, the

staff management and trustees motivated by the most worthy and sincere desires—but 30 years out of date and two generations ahead of their time!" The cost—effectiveness of these schools is very low because they spend one to three years teaching a course which can be completed in four to eight weeks. Performance testing is not used and no one can certify for sure that learning has actually taken place, that the trainee will actually practice his new ability and that it measures up to a definite set of standards.

### Systems Engineering Applied to Instructional Design and Testing

#### The Systems Approach to Training Design

The systems approach is being used and misused with increasing frequency from solving missile problems to developing better educational processes. In education researchers have devoted attention to the learning process, out primarily on a theoretical basis. Lee (1970) reviews several instructional systems models for the application of the systems approach to education.

Gagne (1962) offers a system, with the human factors rack having three major parts—the design, the development, and the testing stages. Before preceding with the design the purpose of the system must be defined. Included in the design stage are task description, task analysis and ob design. The development stage includes job aids,

personnel selection and classification, individual training, training devices and performance measures. Team training precedes the testing stage, followed by systems training, system evaluation and finally system operation.

Smith (1965-66) goes on to apply the system approach to the feedback function and comes up with the following important steps in a quality control sub-system: a detailed statement of training objectives based on job requirements, accurate and appropriate proficiency measures, effective communication concerning the performance of students in tests, effective procedure for any corrective action and supervisory support. Smith's system emphasizes the student, performance, knowledge, student management and quality control.

Eraut (1967) demonstrates the relevance of the systems approach to the instructional design process, particularly in course development. He views a course as an instructional system—the learners, instructors, materials, machines and technicians. Input is the learner's initial knowledge, and output is the learner's final knowledge and skills. Attitudes are not emphasized.

Kaufman (1968) includes the following steps in the systems approach: define "what is," and "what is required;" select an appropriate process for achieving "what is required;" implement the process; determine the validity of solution; and re-do if necessary. In order to synthesize

a system using these steps, additional major-level tasks must be performed: select and implement solution strategy, determine performance effectiveness and revise the system as necessary.

Lave and Kyle (1968) acknowledge the nine steps of their model--goals, scope, objective function, conceptual framework, analysis model, measurement model, testing, alternative solutions and implementation--need not occur in the order stated, nor be performed independently.

Lehman (1968) suggests that the systems approach to education consists of eight steps: need, objectives, constraints, alternatives, selection, implementation, evaluation and modification.

Merrill (1968) treats the final task of revising as the most distinctive feature of the systems approach. Major components of his system are the learner, the environment and the instruction. Inputs to the system environment include learner traits, all instructional materials, objectives and feedback; outputs are knowledge of results, response record and display to the learner.

A relatively new system component termed "presentation form" was suggested by Tosti and Ball (1969). They tate "Presentation form is designed to be independent of edia and content so that media forms may be paired to ducational requirements and theories in a rigorous nner." Failure to recognize the distinction between the sign elements of medium, presentation form and content the major fault of instructional design today.

#### structional Design Considerations

Unfortunately, the trend in higher education has afted from teaching teachers how to teach toward greater eject matter competency. An individual is hired at the clege level on the basis of an advanced degree in a eciality, with little thought given to his teaching ectiveness, psychological and philosophical outlook.

In need for human understanding and a philosophy of ief as a factual basis for presenting scientific or alogical ideas still exists.

The systems approach ascertains what the instructor hes to teach and helps him achieve those goals through various methods and media at his command. In addition knowing purely engineering aspects, the instructor must as on the human element in adopting a process for each cicular problem. Gilpin (1962) suggests some humanizing mences. The relevant capabilities of the particular ent group must be known and specified in the same er as the instructional behavioral objectives; measginstruments are needed to detect entering students do not have the necessary capabilities; relevant pabilities (such as physical defects) must also be mated; and the practical aspects of facilities,

personnel, equipment, and maximum training time must be considered. Gilpin (1962) adds: "These things all have to be specified exhaustively so that the instructional system designer can know both what resources he has and the limitations within which he must work."

The philosophic approach is pointed out by Churchman (1965), who uses the term "housekeeping approach" to characterize the part-to-whole method of system design as opposed to the whole-to-whole system principle which examines the problem for whole costs and benefits. According to Churchman (1965), "The good system designer is one who listens carefully to the debate between these two sound principles."

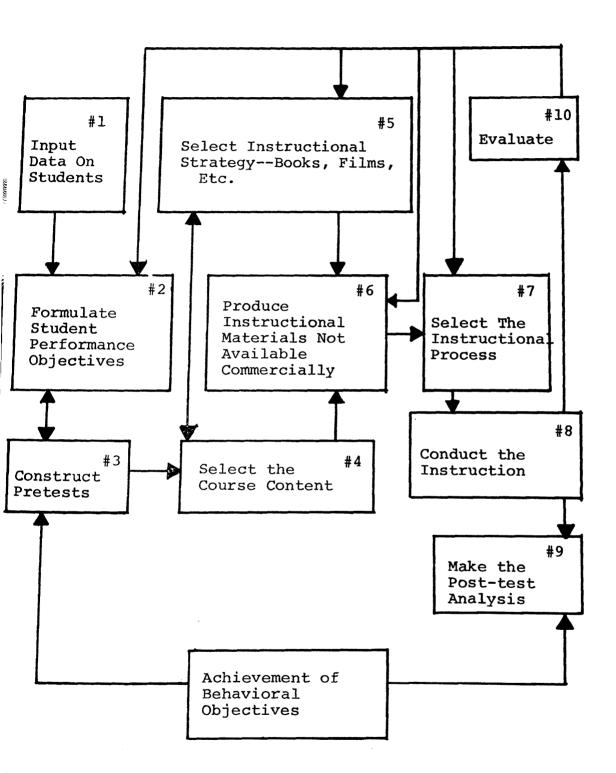
Psychological bases of instructional systems design are suggested by Glaser (1966). Although the basic design components of analyzing the characteristics of subjectmatter competence, diagnosing pre-instructional behavior, carrying out the instructional process and measuring learning outcomes are similar in most design approaches, their implementation differs. For example, in analyzing the characteristics of subject-matter competence, Glaser (1966) states "the instructional designer would do so in terms of the stimulus characteristics of the content, the roperties of the responses the students make to the content, and the structure characteristics of the approriate domain--probably in terms of its conceptual iterarchies and operating rules."

Prior to any attempt to implement the system aproach, the instructional designer and systems user should
salize there may be several systems or approaches that
ill work. Each must decide what he wants the system to
o; and select, adapt or produce a new system that will
est do the job, with adequate consideration for all
ost-benefit factors involved.

A systems approach is a rational, problem-solving

### Systems Model for Curriculum Design

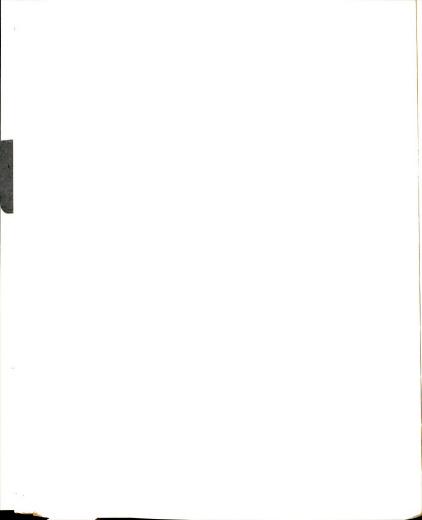
ethod of analyzing the educational process and making it one effective. The educational system includes students, eachers, the curriculum content, the instructional aterials, the instructional strategy, the physical navironment and the evaluation of system instructional objectives, learner's performance and program effectiveness. Educational effectiveness is defined and tested in terms of desired changes in student behavior. To be effective Cyrs and Lowenthal (1970, p. 16) emphasize that these changes will be achieved within the context of unimal cost and feasible allocation of resources without posing unacceptable limitations on any other elements thin the total system."


Systems analysis can increase educational effectivess by clearly stating desired behavioral objectives, and signing the total learning process to ensure student or mainee attainment of these objectives. The curriculum bjectives must be stated in terms of anticipated change n learner behavior so the trainee and the teacher both now exactly what is expected at the end of the course. Irpose becomes operational only when specified as desired shavioral changes in skills, attitudes, knowledge and tudent values.

More accurate trainee evaluation can take place en trainees are assured that all tests will reflect the ills, knowledge and concepts developed in the course. en reworded, clearly written behaviorial objectives tually become test items. Furthermore, the most suitable structional materials and teaching strategies can be lected to achieve the stated objectives.

Cyrs and Lowenthal's (1970, p. 17) flow chart, milar to Figure 2.1, illustrates the "Strategic Areas the Systems Approach to a Total Curriculum Design."

No. 1. Gather input data on students. What is known about the population of students or trainees? New tests should be developed to supplement information provided by currently standardized tests and school records. Tests results enable course designers to realistically establish skill attitudes and knowledge levels.


No. 2. Formulate student performance objectives. All lesson, unit and course objectives must be stated in terms of individual performance. The student must know what is expected of him and how he will be evaluated. The objectives concentrate on skill development in listening, speaking and viewing (if trainees are low level or illiterate), reading and writing (if students possess these basic tools); on knowledge of thematic concepts developed, as Cyrs and Dowenthal (1970, p. 18) puts it, on "self-identity,



'igure 2.1.--Strategic Areas in the Systems Approach to Total Curriculum Design (after Cyrs and Lowenthal).

the family, the family of man, the hero and the future." However, they do not mention change in attitudes as a separate goal—a crucial task when working with disadvantaged and low-education trainees.

- No. 3. Construct pretests. Each student should be pre-tested to determine how well he already knows lesson objectives. Proper pre-tests permit teachers to diagnose learning requirements and the instructional package needed to achieve course objectives.
- No. 4. Select course content. Select course content after the objectives have been clearly determined. Content is judged in terms of helping the student or trainee attain the objectives.
- No. 5. Select the instructional strategy. Once content has been selected, media most appropriate for its presentation are chosen. For low-education trainees, this would consist of objects supplemented by pictures, charts and possibly slides. More sophisticated education and training systems might use printed materials, books, films, audiotapes, programmed texts and other audiovisual media.
- No. 6. Produce instructional materials not available commercially (or economically). Many instructional materials commercially available cannot be used in specific teaching objectives. In larger schools and training centers, a media production and duplication center should be established to help develop the materials necessary to achieve instructional objectives.
- No. 7. Select the instructional process. The most effective instructional processes are chosen for the learning environment such as large group instruction, small group activities and individual instruction and investigation.
- No. 8. Conduct instruction. The new teacher role is to develop an adequate learning environment, diagnose learning problems, prescribe the best learning sequences, conduct effective small group activities, and assist trainees in individual conferences.
- No. 9. Analyze post-test. After completion of the instructional units and consultation with the teacher, the student is tested. If a significant gain between pre-and post-test scores was achieved he proceeds to the next learning experience.
- No. 10. Evaluate. Every phase will be evaluated so more effective procedures and strategies can be developed. Constant evaluation is the key element in the learning process. It provides the necessary data to revise the course, the unit and lesson objectives—



through interviews, attitude surveys, questionnaires and direct observation.

Pre-test each student before beginning a study

nit. Based on his score, one of several learning packages of different difficulty levels can be selected for him. ach package will tell the student what to expect, and rovide the sequence he will follow to meet the stated bals. Post-tests will help determine achievement and hether the trainee is ready for the next lesson. In difficult cases the teacher will prescribe alternative earning sequences and help individual students. Cyrs and Lowenthal (1970, p. 18) suggest that "initially the tudent will spend about 50% of his time working individually or with a partner on the packet materials. The emainder of class time will be devoted to large group instruction and small group interaction."

## edesign of Army Training Programs y Systems Engineering

Of all the training organizations, probably none as as great a task as that undertaken annually by the nited States Armed Forces. The U.S. Army has a vast and implex establishment whose sole job is to train recruits well as experienced soldiers in the art and science of idern peace-keeping and warfare technology through intinuous manpower development. The U.S. Army training tablishment consists of 45 agencies that conduct over 0 courses. These range in length from one to 40 weeks

d have a total average <u>daily</u> attendance of over 200,000 udents. The army, like other groups concerned with aining is constantly reviewing its policies, procedures, tionale and results. As a consequence of an intensive vestigation since World War II, the U.S. Army decided me major changes were needed. In February 1968, the intinental Army Command issued a 108-page regulation titled "Systems Engineering of Training (Course Design)." is has become the "Bible" for training policy and requires a Army Service Schools to redesign their training courses recording to these new concepts by 1973.

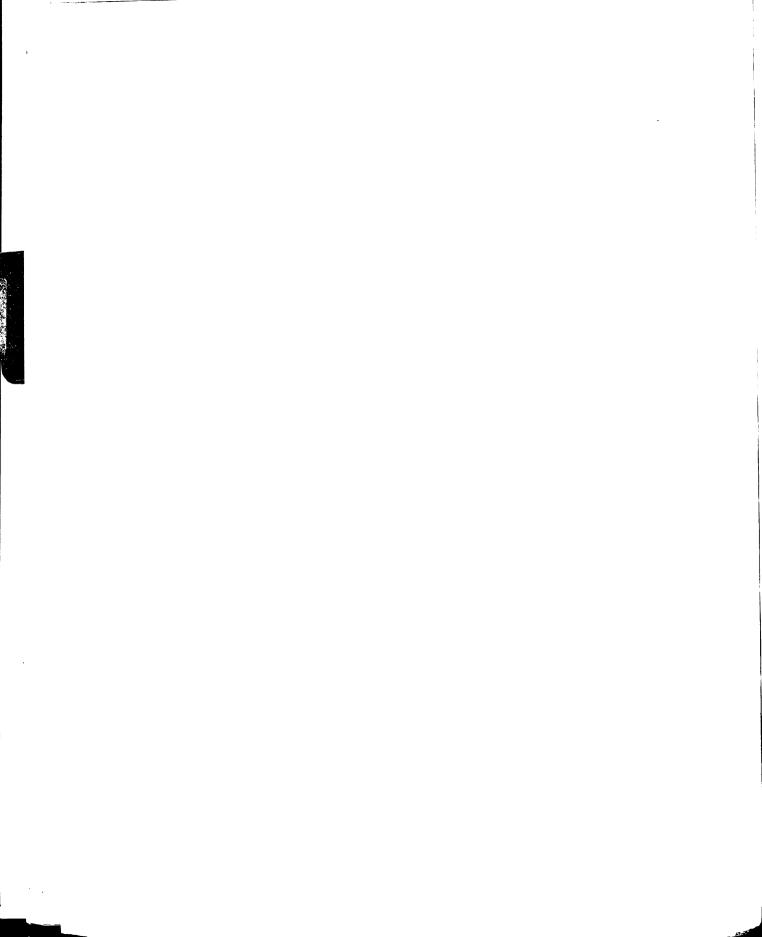
A recent article by Sherrill (1970) describes how the Adjutant General School, located at Fort Benjamin arrison, Indiana, is converting its training by the stems Engineering Approach. A single example is used show the basic steps needed to train enlisted personnel perform as "personnel specialists." This represents er 260 hours of redesigned training now more effectively ministered and controlled. All training is aimed at alifying individuals at a particular entry level in a litary Occupational Specialty (MOS).

<u>Job Identification.</u>--"Job identification" according Sherrill (1970, p. 43):

is to describe the particular MOS in terms of typical organizations to which job incumbents are assigned, various job titles applied, major job functions performed, typical internal organizations, areas of specialization, major Army systems supported by the job incumbents, relevant official publications, and

other similar information. The purpose is to establish a framework within which subsequent training decisions can be made.

Task Inventory. -- Training analysis team, normally omposed of one job analyst and two persons with job experience, prepares a "task inventory" of the MOS being tudied. Usually four or five inventory drafts are made effore the analysis team is satisfied it is comprehensive and well organized. Next, personnel with on-the-job experience look for ambiguous task statements and tasks mitted. If much feedback is received, the inventory is reworked and checked again by a second group for clarity and omissions. No attempt, however, is made to limit the coverage of the inventory. The function of the task inventory is to describe all of the possibilities as nearly as possible, without describing what should be.


Job Data Collection. -- After review and revision, he task inventory is incorporated into a "checklist-task nventory questionnaire." A pre-test of the questionnaire s made on a small sample of personnel with actual job xperience to ensure it can be administered.

Below are listed one part of the 24 major work
ctivity areas identified in a task inventory for one
DS. This particular area covers the "enlisted evaluation
ystem" which annually tests eligible Army enlisted
ersonnel (EP) in their occupational specialities. About
10,000 EP are tested annually in their primary MOS for

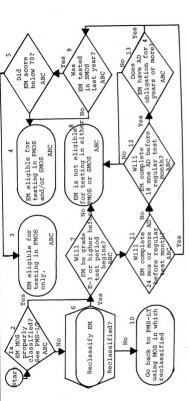
different MOS's; they are tested in their secondary every other year. Administering the monthly EP luation system is a major work function of personnel cialists. The numbers show the percentage of specials performing each task.

1.	Determine number of personnel eligible			
	for testing	27	per	cent
2.	Requisition test aids	26	per	cent
3.	Distribute test aids	26	per	cent
4.	Initiate Commanders Evaluation		_	
	Reports (CER)	36	per	cent
5.	Forward CER for completion	37	per	cent
6.	Check CER for proper completion	34	per	cent
7.	Prepare MOS test roster	23	per	cent
8.	Forward MOS test rosters and CER to		_	
	Test Control Officer	28	per	cent
9.	Coordinate time and place of testing	22	per	cent
10.	Process requests for regular and			
	special make-up testing	23	per	cent
11.	Distribute test results	26	per	cent
12.	Determine eligibility for award or		-	
	retention, or necessity of withdrawal			
	of proficiency pay	30	per	cent
13.	Solicit recommendation for award or		-	
	retention of proficiency pay from			
	commanders	23	per	cent
14.	Prepare request for orders	25	per	cent
15.	Initiate yearly reclassification action		-	
	if required (to include board action).	20	per	cent
			-	
	Selection of Curricula After collecting	ng :	job d	lata,

isions are made about training content. Normally these isions are made at levels of work activity above the statement. The data above, for example, suggest It one fourth of the typical job holders work in the of the EP evaluation system. Sherrill (1970, pp. 6) says:



that 77 per cent of the job incumbents performed one or more of the tasks in this work activity area . . . few personnel specialists performed all of the tasks related to the enlisted evaluation system; however, most of them performed at least one and usually several of the related tasks . . . supervisors indicated they expended significant effort in supervising the enlisted evaluation system and that errors were frequent.


ce this system has a major impact upon morale, pay and icient use of EP skills, the decision was made to lude training on the EP evaluation system in the sonnel specialist course.

Task and Skill Analysis (TASA).--TASA has two basic poses--to identify the specific tasks within the work ivity area to be trained and to describe how each task performed. This attempt to structure and organize the fire work activity requires one of the largest invest-ts of effort. In this analysis, new tasks may emerge previously listed inventory tasks may be dropped. s, a job model is derived from an incomplete descripn. Work activity must be defined in a way that is ervable and measurable while in the analysis, primary sideration is focused on transferring the training to job and realism.

While employing traditional analytical tools, Adjutant General School has increasingly used the gic tree" to perform the TASA.

Figure 2.2 illustrates one part of the seven logic PS constructed for each task of the personnel specialist

.

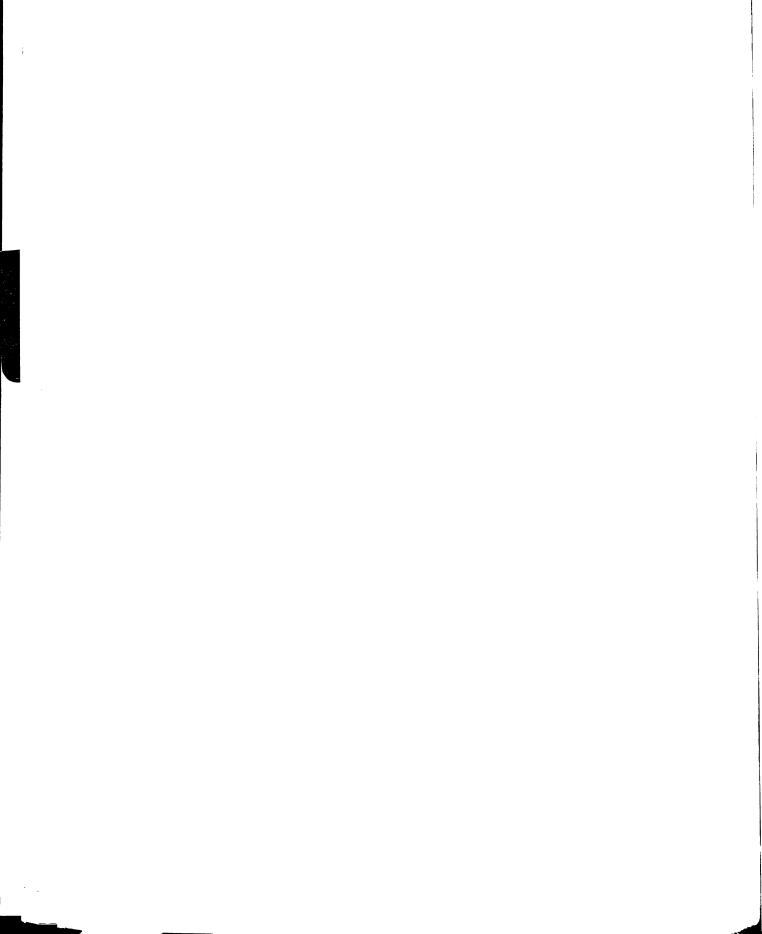


To identify personnel eligible for testing under the Enlisted Evaluation System Receipt of DA Circular announcing tests and access to Enlisted Qualification Records (DA Forms 20). Conditions/Clues: Task:

A, B, and/or C inside each block denotes alternate test version in which that element is to be evaluated Note:

^aSource: Audiovisual Instruction, January 1970, p. 84 (PMS-LT-la, 21 Nov.1968)

Figure 2.2. -- Sub-routine of Logic Tree Used to Determine Enlisted Eligibility Criteria for MOS Testing (After Sherrill).


dentified by the TASA. External initiating and terminating uses determine where to start and stop a logic tree.

urthermore they define the boundaries of each task (the rouping of skills, knowledges, discriminations and deterinations). The task is internally comprised of decisions and discriminations an employee must make. He must enerate the stimuli and responses that lead to completion of the task. Sherrill (1970, p. 44) reports, "of the seven tasks identified for training in this work stivity area, the number of blocks on each logic tree ange from a low of 19 to a high of 97. Thus, no task is equal in size to any other task, yet each task is described at about the same level of specificity."

Criterion Design. --In designing criteria, the task of described and all possible job versions of each task of identified through the various paths within the logic of the training analyst develops a measure for each solved. The training analyst develops a measure for each solved results. Examination of the logic tree reveals not combinations of test questions and problems. The sic task is to design a measurement instrument that will infront the learner with a realistic approximation of the tire task as defined by the logic tree or job model. Ther, the results of the test must be specifically lated to each block on the logic tree.

The aim in test design is to secure a record of ach student's performance related to each "task element" the decisions, discriminations, etc., identified with the task and skill analysis). The simplest way is to ave the student provide it. The interplay of the demands or test realism, and the enormous amount of data prosessed demand that the test allow the students to provide machine scorable record. This is ideal but many courses, ach as the Basic Tractor Operator's Course, require the astructor to observe each student on all machines and cord his performance on every test element. If the assess are large, the data can be recorded on specially finted punched cards to permit machine scoring and allysis.

Special answer sheets can be designed to facilitate st scoring. They should not give unnecessary cues or mpromise job realities. The test must present realistic oblems and give the learner the tools normally available the job. Before new training is developed, the designer build prepare a critique of the new test to be used by the structors, in addition to designing the test instrument. this pretest the instructor can identify the performance ments most frequently missed through the critique key, direct his critique and reteaching at the most importance problem areas.



Design of the Training. -- The bulk of the analysis performed by organizational elements independent of the instructional system. At this point, the completed orgic tree, the critique materials and one version of the criterion test are turned over to the cadre responsible or conducting training. In the army system, Sherrill 1970, p. 86) says:

The instructors are asked to prepare training that represents their best estimate of what is minimally required in the way of learning experiences for their students to perform adequately on the other version of the criterion text which is not shown to them. . . . After the instructional personnel have designed a unit of instruction aimed at each criterion, the new training is implemented, initially on a trial basis with the first available class.

Training Quality Control. -- After the first revised urse is completed, students are given the new tests.

no major problems are encountered in taking the test, maximum time is selected which will allow most students complete the test.

Little has been said about the design of the train-(. Sherrill (1970, pp. 86-87) says that:

in contrast to traditional practice this area has become relatively less important. For over four years the school has attempted to design training materials that would produce the desired results but has uniformly been unsuccessful. Even with the most careful selection of instructional strategies, instructional materials, method and media, it has repeatedly been demonstrated that optimum instructional design cannot be reached until after several training cycles have been completed and the results (as obtained from the criterion test) have been fed back into the training. Initially, considerable effort went into the training design. Even though

considerable effort continues to be made, any time a new criterion instrument is introduced into a particular course, there is now the general acceptance that several classes will have to be completed before the training approaches a desirable quality.

As the school continues to apply the rationale of training design described in this paper to more and more instructional areas, the training quality control step continues to assume a more significant part of the entire process. . . The most powerful tool within the training quality control system is the misrate for each element of performance, or in this case the misrate for each particular test item. The identification of weakness with the instructional design is quite specific. There is no question as to where emphasis and practice . . . should be directed in subsequent revisions of the training.

This type of training design is often vulnerable prote learning. Sherrill (1970, p. 87) says:

There is a real tendency on the part of instructional personnel under the pressure to produce students who can perform successfully, to attempt to teach the process by rote. The effective counter to this problem is the random use of alternate test versions from class to class. Since both test versions require application of the same principles and the same decisions and discriminations but with different cases, the instructional personnel quickly learn that the only way to beat both test versions is to ensure that their students can perform on any possible given versions of the task through understanding rather than by rote.

Students also get the idea that a lot less effort will be required if they settle down and learn how to perform the task than if they attempt to beat the test. Since the design of the criterion test instrument is quite complex in comparison with traditional objective type tests, most of the problems of test compromise have ceased to exist.

Test results can be summarized so decisions conrning students--whether they pass, fail, need retraining recycling--can be made. The basic analytical tool is lled "frequency distribution." No attempt is made to ablish a standard of minimum required proficiency.

tead a standard, or pass/fail point, is established
each criterion test based on an inspection of the
equency distribution.

As performance improved on tests the pass/fail re also increased. Sherrill (1970, p. 88) states:

in fact, more confidence can be placed in the setting of the pass-fail point as the distribution of scores becomes more skewed. Those students who actually did not profit from the instruction became more obvious. At some point, usually between five and ten classes, the average performance on the test tends to level off. . . At this time decisions are made regarding the accuracy of the standard in terms of the score representing sufficient competence for an individual to begin working in this area on the job.

e instructional resources can be added if the minimum re is too low, or they can be reduced if the score is the than needed for entry proficiency.

Implications.--For manpower training the instrucnal design and management approach illustrated contrast
h most present curricula development and evaluation
ctices. Sherrill (1970, p. 89) says the highlights are:

- 1. Both students and instructors respond favorably to these procedures. The contrast between new and old portions of a course are quite noticeable to students. Typically about half of a class will suggest in their written critique of the course, that all of the training be designed like the newly introduced portions of the training.
- 2. The classroom atmosphere is different. 'No students get sleepy.' The academic games played in lecture-centered courses of training are conspiciously absent. There is a dedication of purpose. The students and instructors form a partnership aimed towards achieving the same goals.

- 3. A major effort is invested in developing models and criteria before decisions are made on the time, method, media and instructional strategies. Absolute criteria are used to control the training design and conduct. Student achievement approaches a constant, and within limits, time becomes a variable.
- 4. Versions of the training rationale illustrated could be beneficially applied to public school and university curricula development and course conduct even though Army training courses are job-centered while public school and university curricula are life-centered. The rationale has direct application for more relevant teaching, effective learning and meaningful evaluation in all training programs.

## Supportive Research to Improve Instructional Systems There is much talk about the need for training

actor and machinery operators in developing countries of for manpower training in developed countries, but by little research has been conducted by educational stitutions in this area. Most of the knowledge about ining problems has been gathered by foreign experts king in developing countries, by farm machinery disbutors and dealers serving in overseas sales programs by the recent activity in manpower training of the advantaged. Some companies, like Caterpillar Tractor, as developed elaborate training programs for key people local and foreign market areas, including heavy machinery rators who are literate. But they do not attempt to the illiterate person.

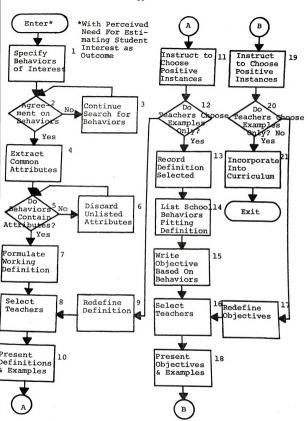
The U.S. Army has developed training programs for actors of specialized road building, airport construction

d shop equipment. However, they deal with literates d stress know-how concerning the various parts and stems and their functions which are not appropriate for e minimally-educated farm-tractor operator. The quesonable success of these training programs in prolonging e life of equipment or in preventing machinery breakwn indicates that a system of training is not yet ailable to do all it purports to do.

To develop the regional concept for training erators, the Massey-Ferguson Company helped establish school for tractor and implement technicians at Buga, lumbia in cooperation with the Food and Agriculture ganization of the UN. (See page 62) Associated with WA, this school is aiming at a higher level to train structors and supervisors, workshop personnel, mechanics a senior government officials. Farmers, middle-school overs and unskilled adults are not yet being trained this school. It is not known how many or what types actual operator training programs are being conducted instructors graduated from this school after they urn home.

## imating Student or Trainee Interest

One should not conclude that a student's skill formance on a final exam reveals any willingness on part to apply this knowledge later on. At the end a course, teachers should measure a student's

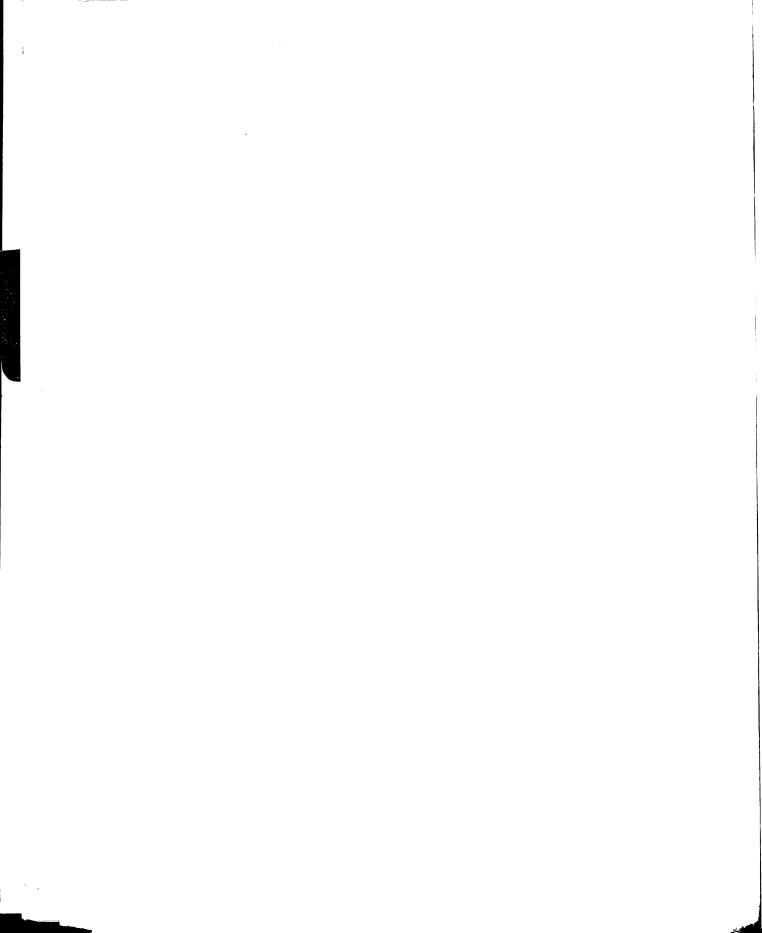

titudes and feelings about a subject to get an indication his future behavior. Yelon (1970, p. 34) says:

most teachers and psychologists have had relatively little success at clarifying expressions of affective processes. . . . How can we formulate a statement of an instructional objective that will include a valid estimate of students' interest and observable, related behavior that we can measure?

Yelon lists five major steps in this strategy milar to one used to determine whether a student has arned a concept: (1) specify behaviors, (2) state common tributes, (3) test working definitions, (4) choose school lated behaviors, and (5) test objectives.

Figure 2.3 is a flowchart, similar to the U.S. my logic tree, used by Yelon (1970, p. 35) to show the eps in this process. The first step (Box 1) lists naviors believed to be expressions of student interest. the second step (Boxes 4-7) attributes common to these naviors are stated to serve as a working definition of dent interest.

During step three (Boxes 8-12) the definitions examined by other teachers. The working definition presented with examples of conforming behavior and conforming response. The teachers choose examples the they believe fit the definition. Then their renses are analyzed to see how many true and false uples were selected. When zero (no) answers are nined the definition is refined until agreement is thed.




re 2.3.--Flow Chart: A Strategy for Estimating Student Interest. (After Yelon) Source: Audiovisual Instruction, Jan. 1970, p. 35.

In step four, behavior samples are looked for in a school, class, group and individual activities which aform to the definition (Box 14). These behaviors are sed to create objectives in the subject in which they a found (Box 15). Student interest and on-going involvent can be shown by participation in at least two or more tivities as part of a stated objective. For example a learner could express appreciation for preventative intenance in two or more of these ways:

- Perform daily pre-service checks on his tractor in the morning
- Constantly check the tractor during operation for needed adjustments
- Make after-operation checks at the completion of the days work
- Study the owners manual to learn more about the care of the tractor
- Ask mechanics and skilled technicians questions to increase his knowledge base

In step five the objective is verified in the same the working definition was refined. Once the activithat satisfy the objectives are agreed upon, the nee's performance is compared to determine the degree instructional outcome--how well was he motivated to Y his learning after training was completed?



## nctional Job and Task Analysis or Training Design

The importance of behavioral objectives has been phasized for some time. If trainers want to structure be and develop a curriculum to train people for them, e jobs must be described in precise terms. The main jective of Jobs in Instructional Media Study (JIMS) 970) was to analyze jobs in more precise terms and tablish data which could be used to restructure and gest training for those jobs.

JIMS discovered that jobs had to be broken down

to tasks, and tasks are separate elements having a screte beginning and end and which can be separated on other tasks. The second discovery was that tasks and be looked at from two directions—from what got e and from what the worker did. The statement "changes crank case oil" does not tell enough about what the ker does. And if there is vagueness about what the ker needs to learn, there cannot be a specific curtum. There must be some way to analyze a task from a points of view—what gets done and what the worker

Functional Job Analysis. -- Tasks can probably best nalyzed by trained specialists through direct observator of people as they perform the tasks in their jobs, ead of through questionnaires or checklists. This nique has been used by the U.S. Labor Department (1965)

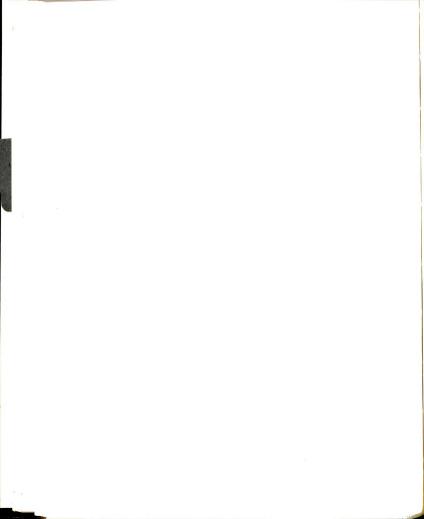
since 1934 in conducting on-the-spot Functional Job Analysis.

A modified form of Functional Job Analysis (FJA) was developed by Sidney Fine of the W.E. Upjohn Institute for Employment Research. Fine helped develop the original FJA while with the U.S. Labor Dept. The modified FJA as used by JIMS (1970, pp. 26-30) includes the following basic tenets:

 First, all tasks are related to Data, People or Things.

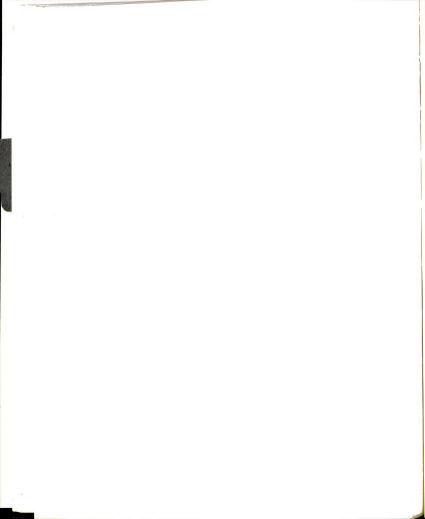
3. In most tasks, however, the emphasis is on

- In performing any task, the worker usually deals with all three of these areas.
- only one orientation--either Data or People or Things. Sernotavicz and Wallington (1970, p. 26) point out that If three worker orientations are found in one task it is a sign that the task has not been analyzed well enough and that there may be two tasks in what was thought to be ne." Preparing a budget is primarily oriented toward ata. Persuading an instructor to use a visual aid is assically People oriented and learning to drive a tractor is focused on Things.
- 4. Tasks can be further classified as to their omplexity. There is a hierarchy of complexity levels or each orientation. Wiley and Wretha (1979) call these evels Functional Skills and list them in order of complexity


in a series of "Worker Function Scales." Definitions of each of the Worker Functions (WF) in the scale is given with examples of each.

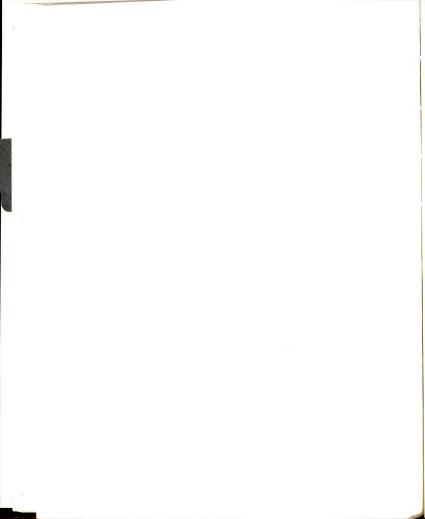
- 5. <u>General Educational Development</u> (GED). This scale tells how much education the worker needs to perform the task. The GED scales are used by the Federal Labor Department (in an attempt) to define needed educational levels more accurately than just "5th grade" or "junior high school." The three GED scales--Reasoning, Mathematics and Language--are based on the curriculum caught at specified grade levels in schools throughout the United States.
- 6. The GED scale allows separate evaluation of the development level a worker needs to perform the task. Y combining the FJA along with the WF, the GED makes it cossible to list and code the educational progress needed to perform the task. Fine (1969) lists all GED scales.
- 7. A scale of Worker Instructions (WI) allow asks to be analyzed by the instructions governing the orker. The WI scale has eight levels ranging from the ery simple and specific instructions where inputs, tools, quipment, procedures and outputs are all specified to eneral and complex instructions where practically nothing specified and the worker must make all the decisions.
- Every task was measured against the three ales of Worker Functions (Data, People and Things),

neral Educational Development (Reasoning, Mathematics and Language) and the Worker Instructions (simple to complex). This permitted distinct classification of tasks come the worker's viewpoint by orientation and by complexity rigure 2.4). Since the matrix would be too complex if aneral Education Development (GED) and Worker Instructions (I) were also shown, the Figure shows only the WF as part the FJA. GED codings and the WI accompany each task sting to provide additional information about the task's mplexity.


- 9. "What gets done" classifies tasks according their products or services. To do this, the JIMS stem identified a number of functions basic to the structional process and called it the Domain of Instructoral Technology (DIT). The definitions of media used DIT were sufficiently broad to let JIMS group the served tasks by functions to tell "what gets done." Therefore 2.4 shows the DIT functions for an instructor DIT functions, unlike the WF, are not hierarchical each orientation. A worker could perform different el tasks on Data at the same time, i.e., compiling ign Data level I and Analyzing Design Data at level IV.

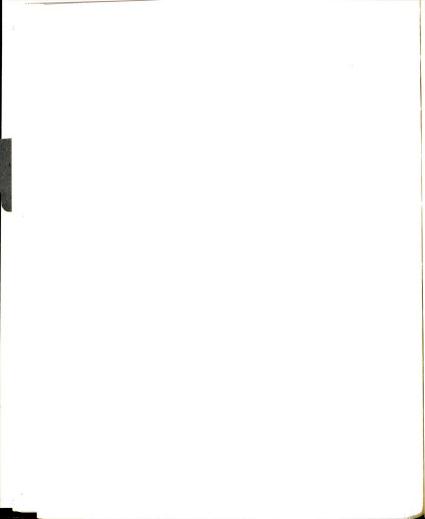
  JIMS the DIT provided an excellent way to classify ks which had been analyzed and in 110 job analyses y identified over 1200 tasks.
- 10. Tasks can be grouped in any number of ways define a specific job according to the needs and




FUNCTIONAL JOB				WHAT GETS DONE? (DIT)													
ANAL:	ANALYSIS		(DII)														
(FJ?	A)			PLANS	PROCURES	PREPARES	DESIGNS	EVALUATES	INSTRUCTS	MANAGES	TESTS	RE-EVALUATES	REVISES	OTHER			
	I	Sorts		1	/L	φwe	st	F	ve	1/		13	(a/s	ks/)			
	II	Compiles	D	2								1					
	III	etc.	A	3	M	ble	λĮ.e	/L	∌vè	1\	V	1	ràs	ks/			
	IV		TA	4							K	1					
	v			5	/H	ij⁄di	n\es	t	Дer	\e1\	V	1\	Tak	sk\s			
	I	Counsels	P	1	/1	φw	/	/	1	1	P	1	1	1	All		
ER	II	Teaches	E	2								1			Lev		
	III	etc.	O P	3	1	ı¥d	d19	1	. \	.\	4	1	1	11	Fun		
	IV		L	4	T						T	7	One	:	tic		
	V		E	5	1	lig	h/	Γ,	1	14		7	rev	61	7		
	I	Operates	Т	1	1/3	гфи	1	1	, /	7	1	1	prie	3/	7		
	II	Services	H	2	2 Function									Idn			
	III	etc.	I N	3	1	Mi/	igi	e\	1	/	1	7	1	11	7		
	IV		G	4													
	v		S	5	1	Ηį	φ		/	/ /	1	1	1	11	$\Gamma$		

gure 2.4.--Functional Job Analysis of What the Worker Does and What Gets Done (after Bernotavicz and Wallington).




FUNCTI JOB		WHAT GETS DONE? (DIT)																
ANALY (FJA						,	,	,		,	,		,		i			
				PLANS	PROCURES	PREPARES	DESIGNS	EVALUATES	INSTRUCTS	MANAGES	TESTS	RE-EVALUATES	REVISES	OTHER				
	I	Sorts		1	/TS	φw¢	s\t	Τe	ve!	11	$\mathbb{Z}$	1/4	a\s)	,s\	Ì			
	II	Compiles	D	2														
	III	etc.	A T A	3	Middle/Level/ Tasks/													
	IV			4							=							
AT	V		••	5	/н3	(gh	est	$A_j$	evk	1	$ egthinspace{1.5em}$	\T;	als k	15				
E	I	Counsels	P	1	/Г9	w/	1	. \	1,		7	/	11		All			
RKER	II	Teaches	E	2							$\supset$				Levels of			
ES	III	etc.	O P L	0	0	O	3	ίm/	iq/d	14	/	1	1	7	/ /	1		Func-
?	IV			4	4							One tions						
F)	v		Е	5	Hi	gh	1	1	1	*	7	Fer	vé y	1				
- /	I	Operates	T H I	1	/17	/w/	1	1	1	7	7	(priv		7				
	II	Services		2	2 Funct							nct	10	n				
	III	etc.					3	Mi	pp/	le\	/	/		7	1	1	1	
	IV		G	4														
	v		S	5	/H/	igh	1	1	1	1		1	1	1				

gure 2.4.--Functional Job Analysis of What the Worker Does and What Gets Done (after Bernotavicz and Wallington).

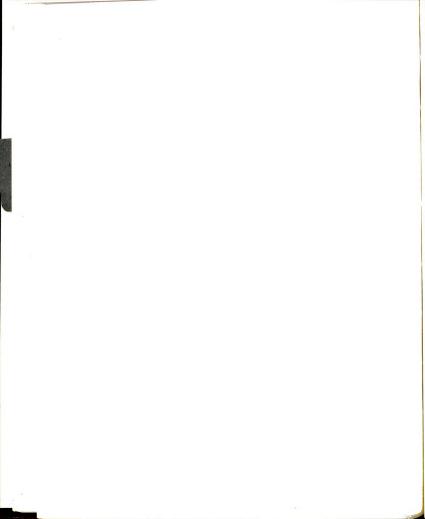


objectives of the person doing the grouping. How can tasks be regrouped to structure curriculum to train people for those jobs? JIMS found there was no "right way" to regroup tasks to define a job structure. Long accepted terms such as "professional," "technicians," "the hardware people" began to have less meaning. The tasks became the prime concern so "getting your hands dirty" was not something that professionals did or did not do. In fact, using the functional matrix of What the Worker Does and What Gets Done to regroup the separate tasks into jobs, forces an organization to define its goals or determine the rationale behind present job structure.

11. Definitions and levels of training and performance have to be established. How does a trainer prepare people for a specific job? Most colleges use the "saturation approach" in which people are trained in a number of areas with the assumption they will find a job in one of them. Most curriculum teach a little about everything and leave the details to be learned on the job. This works in general with college students because they have learned "how to learn" and "how to adapt" through many years of trial and error in course work. Bernotavicz and Wallington (1970, p. 30) say "this approach is completely inequitable for the training of technicians and aids who graduate from short-term training



with immediately usable skills." For this type of worker, training must be more precise and focused on limited skills or combination of them. Obviously, jobs with a wide distribution of tasks require long training periods. Education reserves the term "professional" for people with education degrees, no matter what they do or at what level of competence. JIMS found the DIT function does not give any indication of the level of competence.

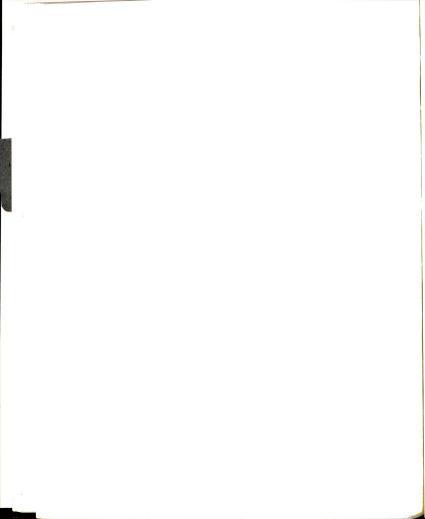

Distinction Between Aides, Technicians and

Specialists.--Jobs are collections of tasks, often varying in competence levels. The measure of "professional" and "para-professional" is best described in the WI coding which reflects both responsibility and the need for supervision. Using these WI codings three general personnel levels evolved: "the specialist (this includes the term 'generalist'), the technician, and 'the aid.'"

The differences between these levels is described by Bernatovicz and Wallington (1970, p. 30).

Aides: have specific instructions about the tasks they perform. The task may be only part of a process, the other parts of which the aide cannot or does not control. . . Aides can be trained for a task in a relatively short period of time since almost everything they need to know is contained in the task. . . If something happens which is not covered by instructions, the aide asks for help and cannot be held responsible for solving the problem.

Technicians: have instructions which deal more with a cluster of tasks leading to a specificied output. The technician may have a choice of routines to reach a given output. He has a broader view of the situation




and is expected to generalize more from task to task than the aide . . . (He) is responsible for the product as long as all of the routines necessary to reach the output have been specified and made available to him.

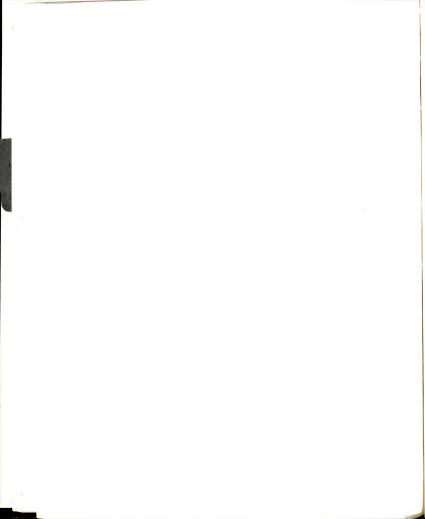
Specialists: don't have as many routines and tasks specified. They become saddled with the general problem and then try to determine what the product should be in the first place and then how best to go about it. Having defined the goals, they are often forced to develop the routines or tasks necessary to implement the goal. They deal with a broad process approach.

If anything varies widely, it is people. The task analyses define only minimal levels of competency and do not include the worker who puts something extra into the job, or finds a better way to do it. People bring their talents and limitations to a task and can alter it significantly.

In summary, JIMS has analyzed hundreds of tasks and placed them in a matrix which can be used in a number of ways to regroup tasks into jobs or to define job requirements. Jobs are collections of tasks which can be analyzed and classified from two distinct viewpoints—what the worker does (Functional Job Analysis) and what gets done (Domain of Instructional Technology). There are three general levels of tasks and people can perform these only on one job level or on a number of levels falling under the general headings of Specialists, Technicians or Aides. The 1200 tasks defined so far are only a small part of the 2000-plus cell matrix. The JIMS staff is attempting to design a curriculum package to demonstrate how to translate behavioral statements of what people do



on the job (curriculum). Third, they are developing a job inventory form which could be used by employers to determine what tasks are now performed within their organization so they can assemble tasks into new jobs. Training institutions could use this analysis to determine what tasks employers need performed and to develop a curriculum to teach those tasks.


### Curriculum Cost-Effectiveness Evaluation

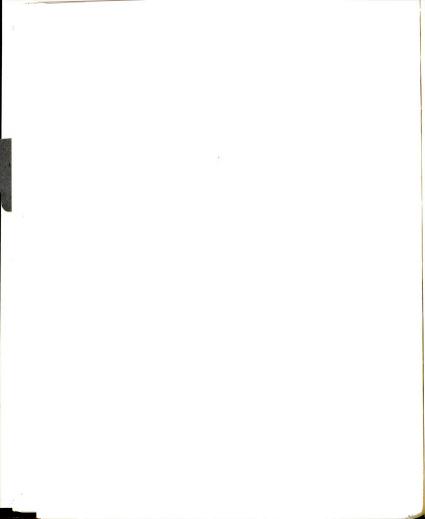
Techniques for rational revision of educational systems have not been widely discussed. Designers must look for efficient methods to control and monitor curriculum developments as a rational subsystem goal within a complete behaviorally-oriented systems approach to education.

An educational system may be defined as a rational, controlled series of relationships between various elements, interacting to produce stated behavioral changes by motivating students to achieve the system objectives. A true system has clearly defined attainable goals and interacting elements to produce the stated behavioral changes.

Specification of Objections. -- Training development and implementation begins with specification of objectives. Then the variables are defined, analyzed, cataloged and controlled to assure achievement of the objectives.

System objectives constitute general educational goals such as value judgments of people who decide to establish a



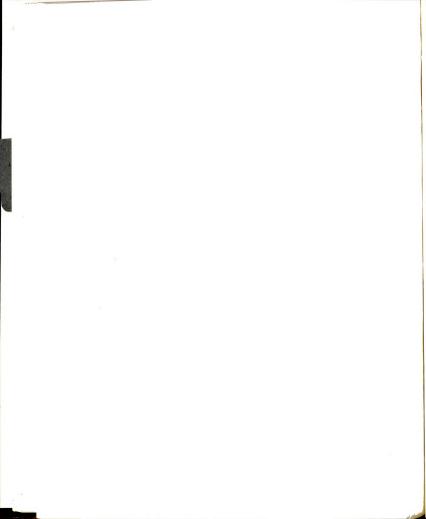

particular education system. Behavioral objectives are precise statements of meaningful units of behavior to satisfy the instructor that a student can perform a task with a desired outcome. System objectives are constants and a system is changed until it can attain them.

Harmon (1970, p. 24) says behavioral objectives should be written and they should include:

- 1. Conditions: Aspects of performance that represent the 'givens' or environment when the behavior is performed; or special factors that should or should not be allowed to interfere with the student while he is performing the desired behavior.
- 2. Behaviors: What the student will actually do to show the instructor or others that he has acquired the behavior associated with the objective.
- 3. Success criteria: How well the required behavior must be performed, how will it be evaluated, and who will evaluate it.

Behavioral objectives are approximations of system objectives. For a system objective where a trainee must learn to drive a tractor, there may be many behavioral objectives, each concerned with a specific aspect of the driving process. Behavioral objectives are empirical. They are chosen, experimented with and changed until their successful attainment by students shows they satisfy the corresponding system objective. This difference is important for cost-effectiveness decisions.

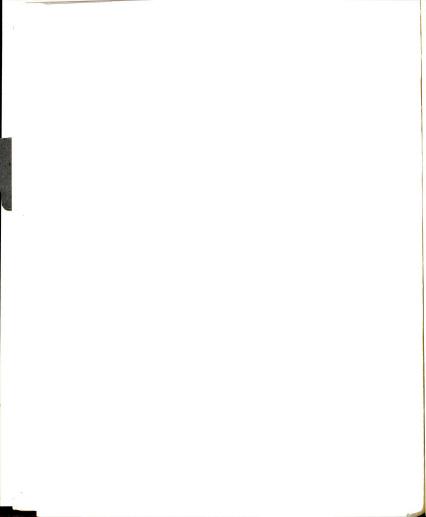
Effectiveness of Existing Systems. -- Insufficient money, time and the special characteristics of a particular situation usually result in a less-than-perfect system.




Every educational system represents many compromises but, after its initial implementation the feedback from evaluation can be used to revise and perfect the system more.

Harmon (1970, p. 25) describes effectiveness in obtaining system objectives as "the degree of positive correlation between the actual repertoire of a student who has achieved all of the behavioral objectives of a system and the repertoire of an ideal student who exemplifies the perfect attainment of the system objective." If a student or trainee passes the behavioral objectives of a system designed to teach machinery operation but cannot operate a tractor safely, the system has low effectiveness.

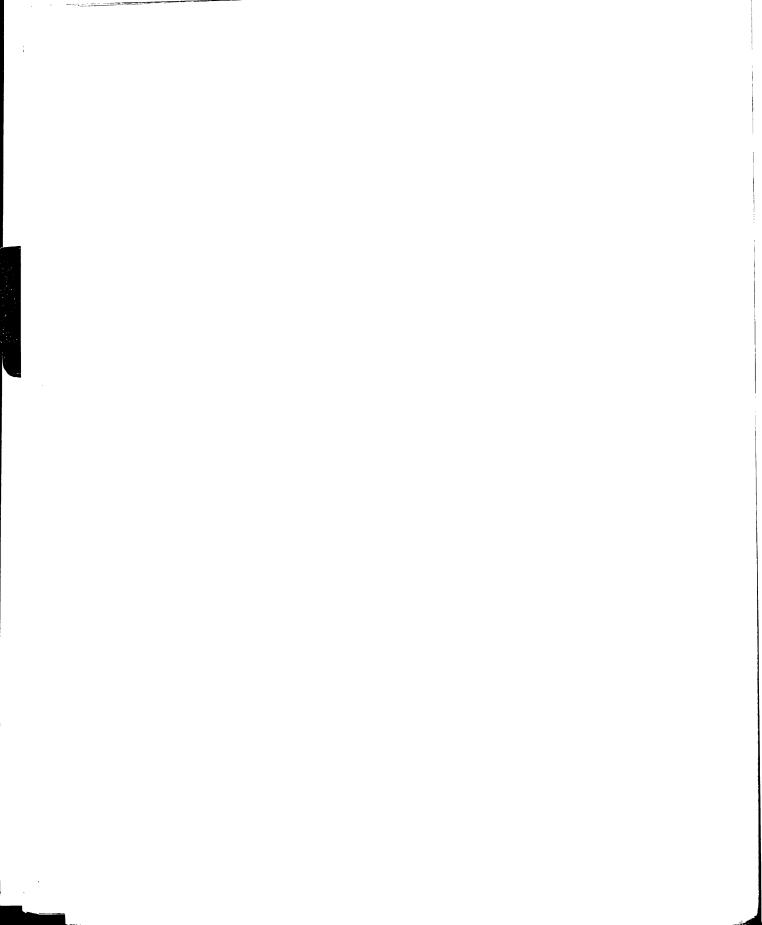
Efficiency in attaining system objectives refers to the time, cost and effort involved in the achievement process. It might be effective in teaching objectives but if the price is too high and the process takes too long the system is inefficient. The first aim of any curriculum effort should be to achieve system effectiveness with efficiency as a secondary goal. Harmon (1970, p. 25) points out that "general system effectiveness is usually obtained as the result of a well thought out initial development and implementation effort. Thereafter, modification and refinement of system effectiveness is carried on simultaneously with a refinement of the system's efficiency."


The process of refining system effectiveness is usually done in the initial testing and validation stages.



The techniques of curriculum development take place after the implementation is completed.

Measuring System Effectiveness.—There are two common ways to measure the effectiveness of a training system. Some use conventional testing process to get a percentage score representing the student's or trainee's success in the lesson. A second way is to allow a student to proceed when he passes a unit behavioral objective, by noting the number of behavioral objectives he has achieved. The first method keys the test questions to specific behavioral so the achievement of each can be determined. The second method is not commonly used today because most educational systems are not geared to individualized instruction and must, therefore, keep all students moving at the same pace.


In testing, each question or performance criteria should embody a specific behavioral objective. Passing or achieving that question means passing the specific objective and vice versa. Using criterion tests in programed instruction is one example. The maximum number of test points should equal the number of behavioral objectives. By evaluating key objectives it is possible to obtain performance without retesting every point in the final evaluation. Cost effectiveness can be maximized by testing smaller units during learning and grouping these into broader comprehensive tests for final analysis.



Harmon (1970, p. 26) suggests measuring effectiveness at milestones "composed of about 20 to 30 behavioral objectives . . . [by] giving the students some sort of test every week or two." . . . In a sophisticated system, results can be recorded on a computer for each interval to simplify the data summation and analysis. The initial step in developing a cost-effectiveness analysis is to generate a list giving an effectiveness score for modules of behavioral objectives. See following example for Unit A:

Unit A Instructional Mod (behavioral object		Eff	eaching ectiveness ss average)	/St		
Orientation	(Obj.	1-10)	80%	\$	25	3.2
Pre-service	(Obj.	11-20)	75%		40	1.9
Control Function	(Obj.	21-20)	90%		42	2.2
Tractor Driving	(Obj.	31-42)	80%		<b>7</b> 5	1.1

System Costs.--Consider only those costs involved in attaining the system's objectives. The cost of teaching tractor driving is found by totaling all of the element costs together. In analyzing training development, costs must be broken down into the same units for which effectiveness can be determined. For the first 10 objectives of Unit A, for example, specific costs must be available for space occupied, instructional time, administrative services, teaching aids and even trainees' time, if they are reimbursed. Unit costs are established by dividing gross unit costs by the number of students or trainees. If units are not of equal duration or students' progress



at different rates, divide the unit costs by a time factor, to get the cost per student per day or per week.

Cost Effectiveness.—Training cost effectiveness
measures what one gets for what one pays. One method is
to divide the trainees average test scores by the total
training unit costs, by the number of students, by the
number of weeks. Comparison of derived indexes permits
a relative ranking of cost-effectiveness by units of instruction. An index of 3.2 is better than 1.1 above but is not
necessarily three times more effective. By converting
the dollar cost figures into percentages of total dollars
spent, it would be possible to make this latter deduction.

An instructional unit is highly cost effective when the costs are low and the results are excellent.

The closer the index is to 100, the higher the unit cost-effectiveness; and the closer to 0 the lower it is.

Cost- Effectiveness	Cost-Effectiveness Index	Effectiveness	Cost	
High	Close to 100	Very high	low	
Low	Close to 0	Very low	high	

If some units cost more than others, costs can be cut by leaving out unnecessary material which might be using valuable training time. On the other hand, a learning experience might not be adequately tested. In this case, additional behavioral objectives can be tested and treated as a separate unit to determine cost-effectiveness.

Key behavioral objectives in each unit must be identified and weighed against the course objectives. Resources can be shifted from units with high cost effectiveness to units measuring low in cost benefits, to maintain a high standard average. For example, a unit scoring high with an index of 100 could have teaching time taken away from it, to perhaps reduce its effectiveness to 80%; and at the same time the saved time could be spent on a unit scoring only 50 to raise its effectiveness to 80% to improve the overall system effectiveness. As Harmon (1970, p. 77) points out, however:

the cost-effectiveness index by itself, however, can never be used as the sole basis for making decisions, since the primary concern of curriculum development is not cost-effectiveness but, the achievement of system objectives. Thus, the final decisions are always human, since it is a human function to decide how closely the systems behavioral objectives approximate the system objectives. . . Perhaps its greatest service is in forcing us to analyze courses of instruction in specific units with respect to the achievement or non-achievement of behavioral objectives.

### Controlling the Quality of Training

A school or course that has a quality control system has the means for evaluating and improving the effectiveness of its training. The purpose of quality control is (1) to ensure that only those students who meet the training objectives satisfactorily graduate from the course, and (2) to provide a means for continuously monitoring the training program and improving it when it is

found deficient (Smith, 1965, pp. v, vii). The Human Resources Research Office studied the technology for developing training and prepared the following general guidelines for controlling the quality of curriculum engineering in military training:

A test--a standardized situation that requires the student to demonstrate that he has mastered one or more objectives of the course--is the most effective of the various means for evaluating a training program.

Tests to monitor the effectiveness of training should (1) directly reflect the course objectives, (b) measure the student's ability to perform the task, rather than his mastery of knowledge and skill components, and (c) be scored on a pass-fail basis for each item.

Tests to diagnose instructional difficulties should (1) directly reflect course objectives, (b) measure the student's attainment of the knowledge and skill components of the task rather than his ability to perform it, and (c) be scored on a pass-fail basis.

An absolute, rather than a relative, scoring system is needed in order to establish a definite standard of student performance.

Two characteristics determine the validity of tests used in quality control of training—the extent to which the test items are direct reflections of the course objectives, and the adequacy with which the test items sample the objectives.

. . . factors that may contribute to test reliability include the conditions under which the test is administered, the instructions given, the student himself, the scoring procedures, and the length of the test.

The major problem in developing the test item is to communicate the question or problem clearly to the student. . . . (a) The language used should be as simple as possible. . . . (b) Care should be taken to see that the test does not provide the student with hints as to the correct answer. (c) Clear guidance should be given to examiners . . . (d) A check should be made to ensure that the conditions stated in the objective are reflected in the item, as tested.

Strong support from all supervisory levels is necessary to make the quality control system work effectively. Everyone must have a clear idea of the purpose and rationales of the system. Widespread and continuing orientation of key personnel is a requirement.

Establishment of a separate unit to perform the key functions of the quality control system is a critical element. The unit should not be a part of, or under the direction of, a particular course supervisor...

Success of a quality control system depends upon interaction of the various elements. The system will be effective only if tests are properly administered and scored, if the reports of testing are understood by the instructional units, if appropriate corrective action is taken and its success measured.

#### Research in Farm Machinery Training Courses

A study made by Bittner (1962) reported some correlations existing between selected aptitude test scores and the grade point averages of students enrolled in the Farm Equipment Service and Sales technical program at Michigan State University from 1956 to 1959. These correlations were used to interpret the significance of aptitude tests in predicting student achievement in course work.

The specific objective was to determine the degrees of relationship that existed between aptitude test scores of 42 students who graduated and their grade point averages in two groups of courses. The first group consisted of non-engineering subjects such as agricultural economics, soils science, business law and psychology in which the students typically had trouble getting good

grades. The second consisted of practical agricultural engineering subjects such as service shop, farm machinery, tractors and power units, drainage and irrigation, rural electrification and farm structures in which students generally had the least difficulty.

The Pearson product-moment coefficient of correlation was used to determine the degree of relationship between each ability test score and each grade point average.

The following aptitude ability test raw scores were utilized in the study:

- A. The Otis Quick-Scoring Mental Ability Test,
  Form Gamma
- B. The Cooperative Reading Test, including; (1)Vocabulary, (2) Rate of Comprehension, and(3) Level of Comprehension
- C. The Differential Aptitude Test, including:
  - (1) Numerical Ability, (2) Space Relations, and (3) Mechanical Reasoning

The coefficient of correlation indicated whether students who obtained high scores on the ability tests also obtained high grade point averages. A correlation of +1 signified the student had the highest ability test score and the highest grade point average. A correlation of -1 showed exactly the reverse order, and a 0 correlation indicated there was no relationship between the two variables.

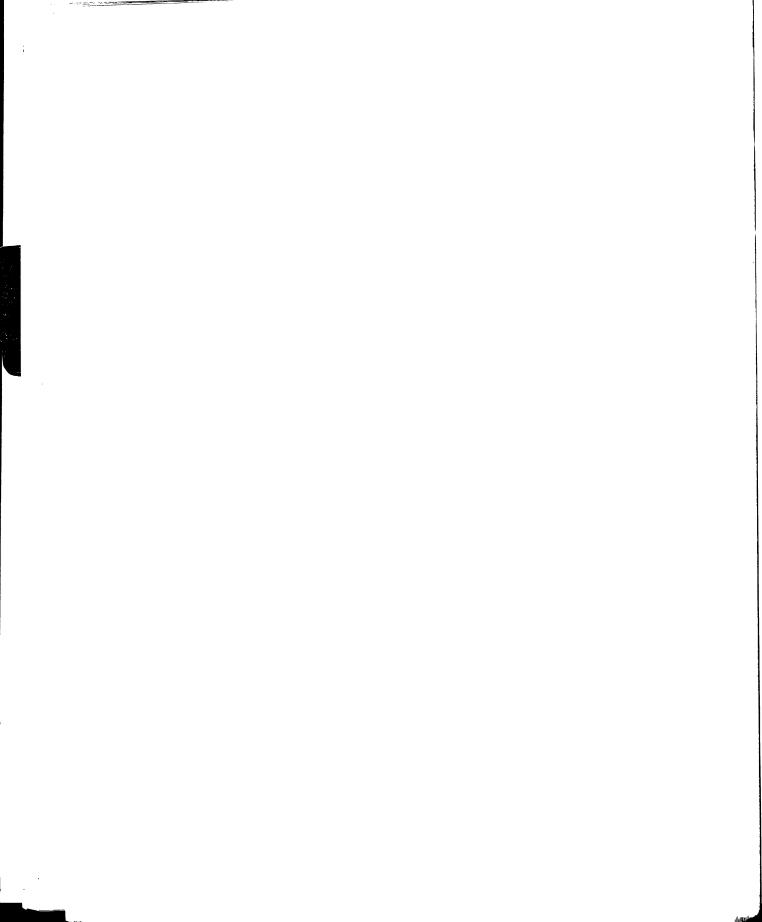
The correlation coefficients obtained by Bittner (1962) are shown in the following chart:

Correlation with Course Grades

Aptitude Tests	Engineering Subjects	Non-Engineering Courses
Rate of Comprehension	+.49	+.70
Level of Comprehension	+.42	+.58
Vocabulary	+.38	+.54
Mechanical Ability	+.44	+.36
Spatial Relations	+.13	+.17
Numerical Ability	+.26	+.17
Otis, I.Q.	+.49	+.31

The highest correlations were between the reading test scores and the non-engineering course grade point averages, ranging from .54 to .70. The lowest correlations also were found between these courses and the differential aptitude test scores. In the technical engineering subjects the best predictors of success were the reading Rate of Comprehension and the Otis I.Q. tests followed closely by the Mechanical Ability aptitude test. Spatial Relations and Numerical Ability tests are apparently of little value in predicting student achievement in practical or technical courses.

The correlation coefficients can be used to indicate the probability that a student with a given aptitude test score will achieve a certain grade. Expectancy tables from Thorndike and Hagen(1955) were used


-	-47 (300)			
i				
ŀ				
	-			

for correlation coefficients r-.00, r-.40, r-.50, r-.60, r-.70, and r-.80 (See Chart below). The correlation coefficient for the Otis, I.Q. and the Rate of comprehension of engineering subjects, for example, was .49. The achievement of a student, whose aptitude test scores fall in the lowest quarter, can be predicted by looking at the expectancy table for r-.50. Of the students in this group, 48% can expect to receive grades falling in the lowest 25% of the grade point averages; and 7.3% can expect to receive grades in the top 25% of the class. In contrast, students or trainees whose aptitude test scores are among the top 25% can expect to do much better, with 48% getting grades in the top quarter of the class and only 7.3% getting the lowest grades. The trainee will probably be more impressed with the possibility that he will do well than with the chance that he might not do good work.

Prediction Accuracy for Correlation Coefficient Value of r=.50*
(Per cent of cases in each column and row)

Quarter on Predictor	Qu 4th	arter on	Criteri 2nd	on _lst
lst 2nd 3rd 4th	7.3 16.8 27.9 48.0	16.8 26.8 29.5 27.9	27.9 29.5 26.8 16.8	48.0 27.9 16.8

Source: Thorndike, R. L. and E. Hagen, Measurement and Evaluation in Psychology and Education (New York: John Wiley and Sons, Ltd., 1955).



#### CHAPTER III

## THE DESIGN OF A SPECIFIC COURSE FOR TRAINING BASIC TRACTOR OPERATORS

## Sample Training Course and Pretest Group

The basic course consists of 65 lessons, complete with measurable behavioral objectives, information for trainees, practical trainee exercises, suggested visual aids and evaluation techniques. With a detailed schedule and an Instructors' Training Program, the course forms the backbone of an Instructors' Manual. The needs and the current results of this training program for the Basic Tractor Operator (BTO) as pretested, and its design and evaluation form the foundation for this thesis. Selected excerpts illustrate the concepts and possibilities of this technique for individualizing instruction and training manpower.

#### Course Sample

To show how the BTO course was conceived and the skills and knowledge developed using systems analysis and operations research techniques, Lesson B-9 on Servicing the Dry-Filter Air Cleaner is discussed and illustrated in detail in this chapter. Positive attitude development was

emphasized in the first lesson of each series (A, B, C, etc.) and Lesson D-1 on General Safety in Controlling the Tractor is used as an example of attitude reinforcement. The complete list of lessons is given in Appendix A in the Sequential Lesson Outline for the BTOC, Grade I.

### Population Sample

A small Grand Rapids area subgroup (23) of a much larger population of migrant workers (10,000) seeking work annually in Michigan was used in this sample study. This particular cluster group was unique because it elected to remain in the northern area during the winter of 1969-70 rather than return south, after the regular harvest season.

Assisted by the United Opportunity for Migrants,

Inc. (UOMI), some individuals found part-time jobs and all

attended an adult education class. Seventeen workers in

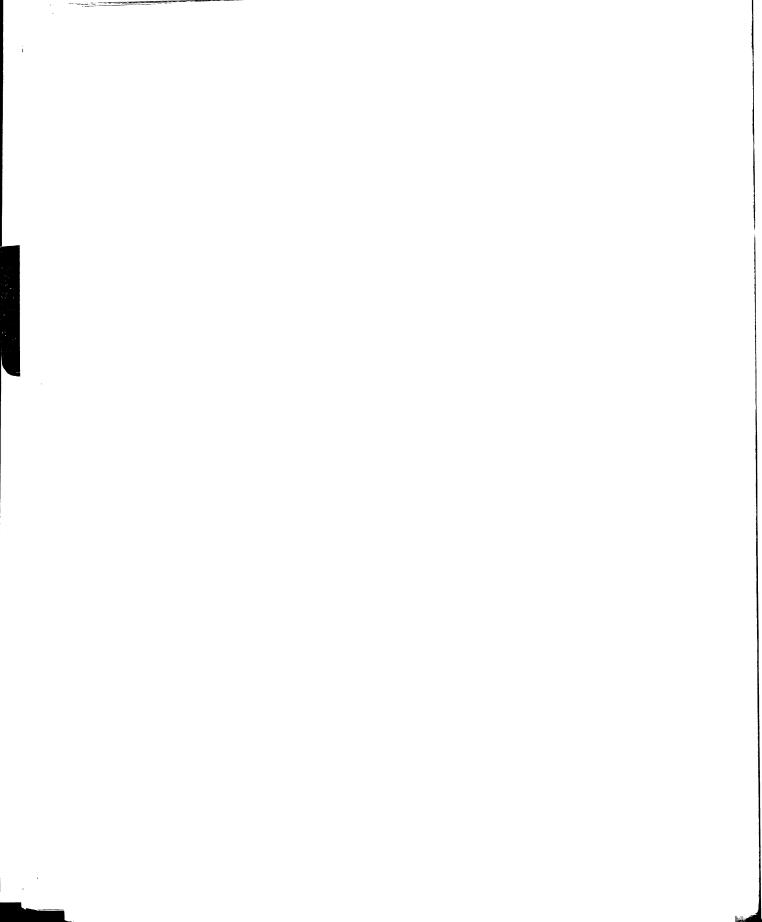
the class expressed an interest in becoming qualified

tractor operators. They were given an opportunity to

attend a special training course on tractor operation and

maintenance. The UOMI coordinator selected trainees on

the basis of interest and willingness to be trained. No


individual was excluded because he lacked previous education,

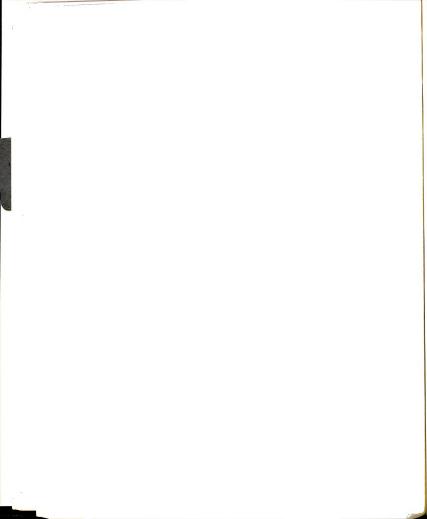
experience, or aptitude. Of the 17 trainees who attended

at least 10 became qualified as Basic Tractor Operators,

Grade I.

The testing program required that the sample group be a geographical cluster of migrant workers able to work




half-time (20 hours) and train half-time (20 hours) each week. A training record was kept on each trainee who attended the course. Several of the 23 workers could not attend because of lack of transportation or housing facilities at the training site.

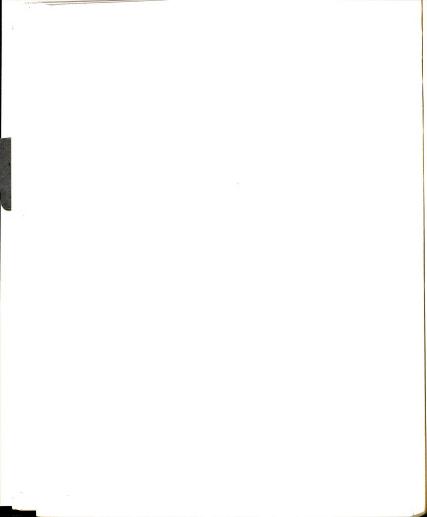
The characteristics of the trainees in this cluster are given in Chapter V. It is believed that this group is similar to the general population of migrant workers seeking year-around employment. Clusters in other geographical areas could be used for subsequent samples in follow-up and validation testing because the cluster and not the individual is selected. Each member of the population is uniquely assigned to a cluster.

Selection of a cluster is also a judgment sampling. The cluster of migrants evaluated, trained, and tested were judged by UOMI to be representative of the total population on the basis of available information. However, variability and bias of the estimates made cannot be measured or controlled. Strong assumptions were made about this unique cluster and their receptivity to and suitability for training.

# Measures for Collecting and Analyzing Data

Trainees were selected by an agency outside the control of the training team. Training was requested for winter 1970 by UOMI in cooperation with the Grand Rapids




(Michigan) Junior College (GRJC). At that time, the training program, lesson plans, and visual aids were under development by a team in the Agricultural Engineering Department at Michigan State University.

The MSU team trained the instruction staff of one master teacher and four assistant instructors—two retired farmers and two MSU agricultural engineering students.

Course designers developed all instruments for enrolling the trainees, testing, and evaluating the program except for the aptitude tests. The Michigan Employment Security Commission was asked to give its standard General Aptitude Test Battery (GATB) to the trainees at one of the adult education classes before training began. This testing, however, was delayed until after training started so identification of aptitudes and worker traits was not made for the migrant cluster.

The forms and instruments developed for the preliminary testing program will be discussed in detail in Chapter IV. They include:

- 1. The Trainee Enrollment Form EV-0.
- Pretest and Post-test Forms for all 65 lessons
   EV-1.
- 3. A Trainee Daily Training Evaluation Form EV-2.



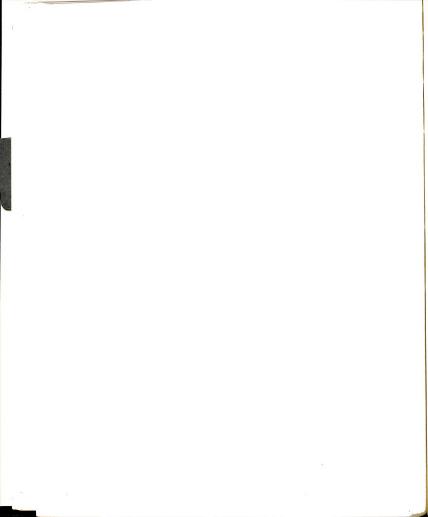
- 4. An Instructor Daily Lesson Evaluation Form EV-3.
- 5. A Trainee Permanent Record Form EV-4.
- 6. Final Evaluation Events 1-7.

Complete but limited data were collected in this initial field test of the Basic Tractor Operators' Course and training program. Since the first test group was small, plans were made to expand the testing to one and possibly two foreign countries in August and September 1970 under controlled conditions, using lessons learned as a result of the first test. Requests for financial support to permit this testing were turned down by the research cooperator, Deere and Company. The farm machinery industry experienced severe losses in 1970 and support for testing overseas was withdrawn. The preliminary testing program with Puerto Rican and Mexican descent migrant workers was very encouraging. It is hoped other evaluation tests can be conducted in the near future.

The data were to be put on punch cards and computerized for standard statistical analysis using the chi-square,
t-tests, analysis of variance and/or similar techniques.
But with the small sample of trainees such analysis would
be inconclusive based on numerical techniques. The

training program, course content, and trainee evaluation were therefore studied objectively based on the performance of the trainees and the degree of response to training. This pretest is the beginning of an extensive testing and evaluation program which can be analyzed quantitatively by computer science techniques when sufficient data are available.

## Design of Instructional Systems Using a Modified Structured Learning and Training Environment (MSLATE)


## The Structured Learning and Training Environment (SLATE) Theory of Learning

The SLATE system of instructional design includes the following basic steps according to educational  ${\tt psychologists:}^1$ 

## Carefully analyze training system and develop a system-operating description.

- 1. What are the characteristics of the trainees?
- 2. How are the trainees chosen and what controls their selection?
- Look at the machine the trainee is being trained to operate.
- 4. What assumptions can be made about the training environment?

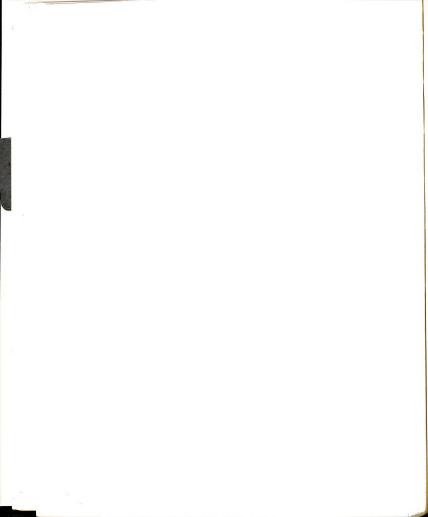
 $^{^{1}}$ R. H. Davis, Associate Director, Educational Development Program and Instructional Development Service, Michigan State University, personal interview, September, 1969.



- List the task jobs by priority for each class operator.
- Show how each task is performed step by step with a flow diagram,
- 7. In the task analysis make a detailed description and describe the conditions under which the task will be carried out.

#### Define the objectives of training.

- State very specific behavioral objectives written in measurable terms.
- Show how each objective is interrelated with the task description and analysis.
- Base the course and lesson content on the desired changes in individual behavior.

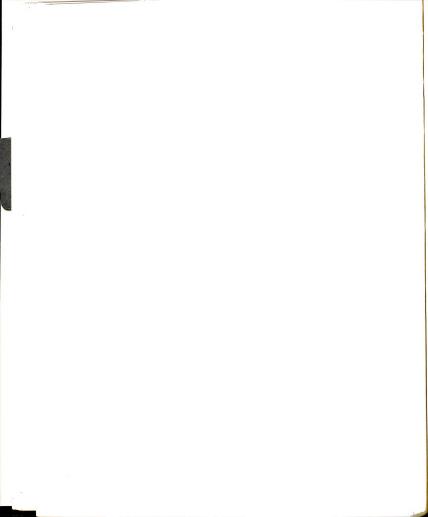

#### Determine how to best achieve the training

#### objectives.

- 1. Determine the kinds of learning involved.
- Use methods best suited for appreciation, awareness, student participation, and interest maintenance.
- Develop the necessary training aids and the lesson plans.

#### Evaluate the training system.

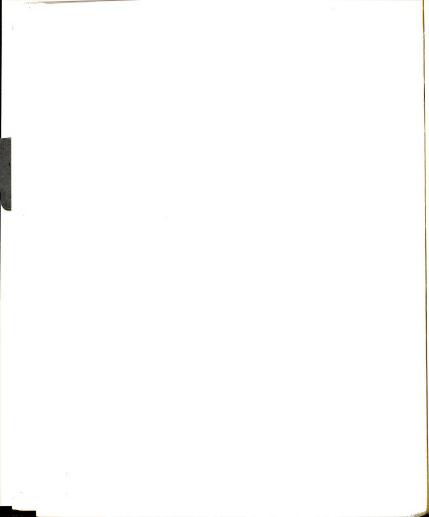
- Measure how students perform in real life situations.
- Use the evaluation to bring about changes in the training program.



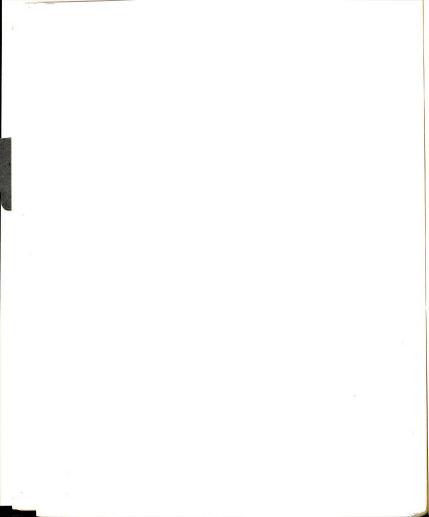

- 3. Consider training as cyclical.
- 4. Develop follow-up programs and refresher training for previous graduates.

### General System Objectives of Agricultural Mechanization Training

Using the concept of a Modified Structured Learning and Training Environment (MSLATE), system objectives were developed to provide a procedure for developing training programs in agricultural mechanization.


- Survey the local, regional, and national needs to determine trade and industry requirements for vocational and occupational skill training.
- Define the skills individuals need to qualify for specific occupations or occupational clusters.
- Select the skills which can be provided in a specific training program of finite length and cost.
- 4. Determine who is eligible for training and who would benefit from such training.
- 5. Appraise each applicant's potential abilities and the suitability of his background and attitudes for training.
- 6. Determine the entry behavioral characteristics of potential or selected trainees.




- 7. Design a training program to provide the essential information and skill training to meet behavioral objectives for a specific machinery operators' course.
- 8. Write the training program to include the behavioral objectives and activities needed to provide suitable experiences, develop skills, and induce positive attitudes in the learner.
- 9. Develop an evaluation procedure and instruments to measure the effectiveness of the training program from the instructors' viewpoint.
- 10. Develop an evaluation procedure and instruments to measure the trainee's achievements in satisfying the behavioral objectives.
- 11. Conduct a preliminary test of the training program with disadvantaged and/or foreignlanguage trainees.
- 12. Use feedback to reappraise the effectiveness of the course format, lesson content, and implementation and revise as required to improve the quality of training.

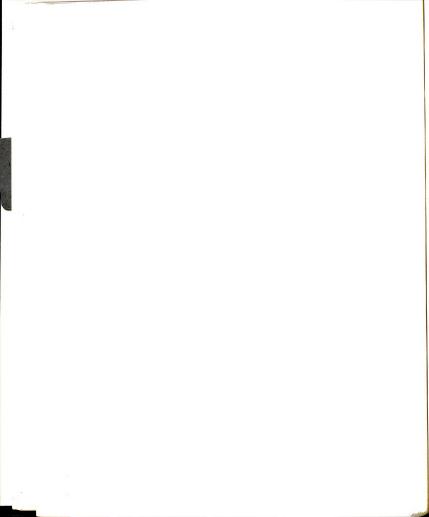
# Specific Objectives of a Farm Tractor Operators' Training Program

To qualify as a basic farm tractor operator the following objectives were established for the trainee:



- 1. Use and describe the function of all tractor instruments and controls.
- 2. Start and properly warm-up the tractor engine.
- 3. Perform all daily and weekly maintenance services according to the manner prescribed in the owners manual.
- 4. Keep simple maintenance service records.
- 5. Skillfully maneuver the tractor.
- 6. Use the tractor with selected implements and associated equipment in productive agricultural operations.
- 7. Adjust and maintain selected implements during field operation.
- 8. Use the tractor and equipment safely as described in owners manual and training course.
- 9. Operate the tractor and equipment on public roads according to the rules established in his country.
- 10. Understand the basic operation of the tractor and its engine as described in this training course.
- 11. Recognize the need for and contact the supervisor or mechanic when the tractor needs care beyond his capabilities.
- 12. Make common sense judgments concerning the wise use of the tractor and use it only in an efficient manner.




### A Systems Conceptual Theory of Trainee Learning Using MSLATE

All learning takes place in a complex environment modified by all the past experiences of the individual. Each input in the new training environment interacts with other new inputs and past influences, to bring about changes within the individual. How rapidly and permanently this change is etched on the trainee depends on the instructor's skill, the quality of the training course, and the amount of distraction of other non-training factors. The entire process must be continually evaluated to minimize the negative influences and accent the positive learning experiences.

Trainee Interaction in an Environment. -- The goal of all teaching is effective learning. The good teacher plays a critical role in modifying the training environment. He does this by individualizing instruction to meet the needs of the trainee(s).

Active learner participation is far superior to passive content memorization. Meaningful materials and tasks are learned more readily than nonsense information. However, there is no substitute for repetitive practice in overt—skill learning or in the memorization of unrelated facts that must be automatized.

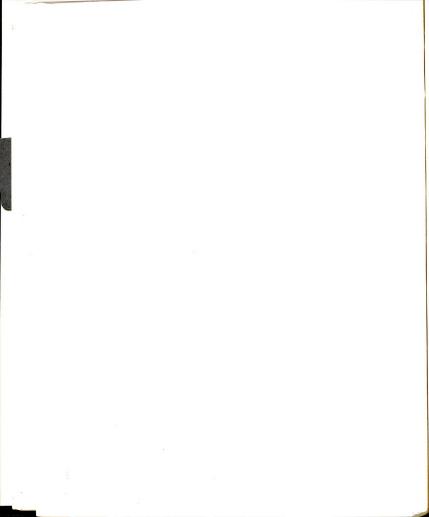
Information concerning good performance, knowledge of his own mistakes and feedback on successful results will also assist the learner. The transfer of knowledge



to new tasks will occur more smoothly if the learner can discover relationships for himself and if he has had experience in applying these principles to a variety of tasks.

Thinking is too often left to chance. Learners think when they encounter obstacles or challenges to action that interest them. By thinking they design and test plausible ways of overcoming blocks or obstructions.

Concepts must be presented in various and specific situations to develop familiarity and breadth. Pupils learn new subject matter that conforms with previous attitudes better than new material that opposes their previous attitudes or views (Dole, 1970, p. 42).


<u>Input-Output-Feedback Relationships in the Learning</u>

<u>Environment.--A learning system consists of three basic</u>

parts:

- Knowledge, including skills and attitudes, worthy of human transfer.
- People, including students, trainees or citizens, desiring or needing (1).
- 3. An instructional system, including teachers, techniques and aids used to facilitate the learning of (1) by (2).

The structured relationship of input, output, and feedback illustrates the three major adjustments that must be satisfied for the training system to maintain compatibility with its environments (Figure 3.1). The environment



#### **MSLATE**

Modified Structured Learning and Training Environment

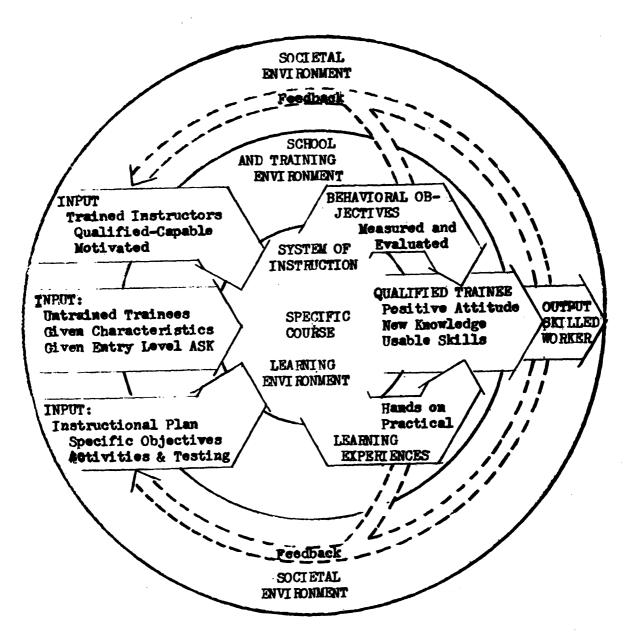
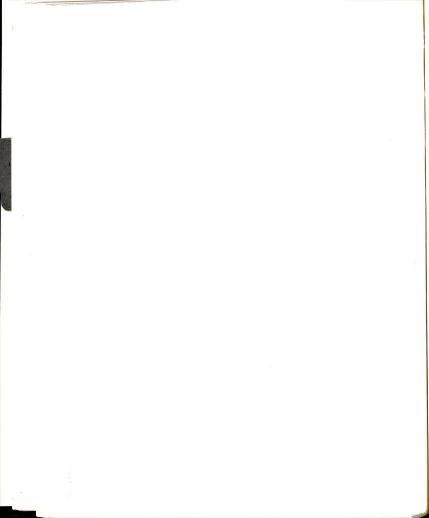


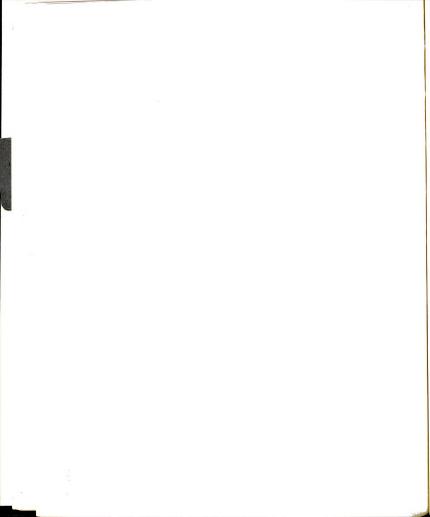

Figure 3.1.--Conceptual Model of MSLATE for developing occupational training rpograms for educationally deprived and disadvantaged youth and adults in developed and developing countries.


also imposes constraints within which the learning system must operate. The resources available outside its immediate environment are limited. Thus, the learning system is judged by its environments by the way it uses these resources, of which man is the most important.

A learning system constantly undergoes change as it attempts to meet the needs and potential of a dynamically growing individual, particularly if he starts at a very low level with high potential. Modification becomes a constant rather than an exception as the system strives to keep up with change, both within itself and with other outside systems impinging upon it.

Initially the training program was conceived as a fairly stable, structured, and well-defined input into an environment. Once it is developed, however, it is constantly molded to meet a particular objective or need. The designers thus called the Basic Tractor Operators' Course a Modified Structured Learning and Training Environment or MSLATE. This is not an original concept but it is unique in its application to manpower training with loweducation level and disadvantaged trainees.

### The Design of a Measurable Instructional System


The system's approach to decision making provided the structured and orderly design, development, and change of the learning system. The objectives of the system

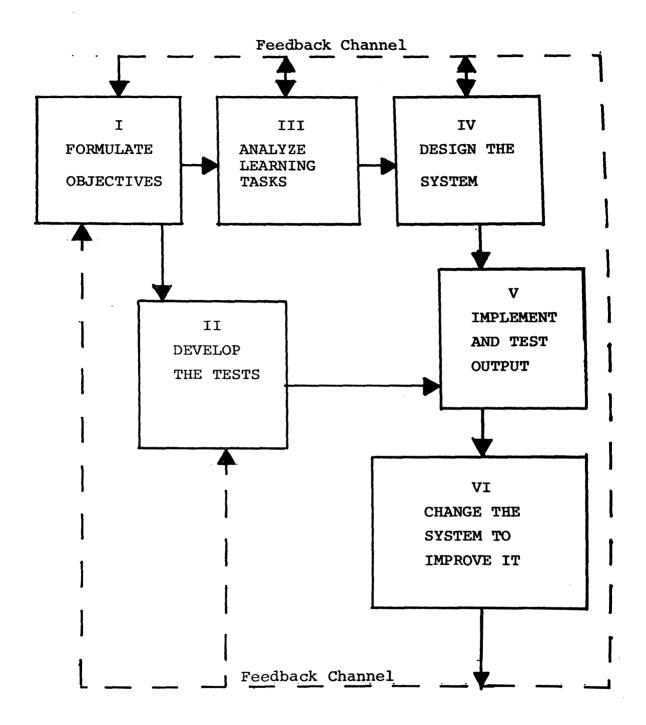
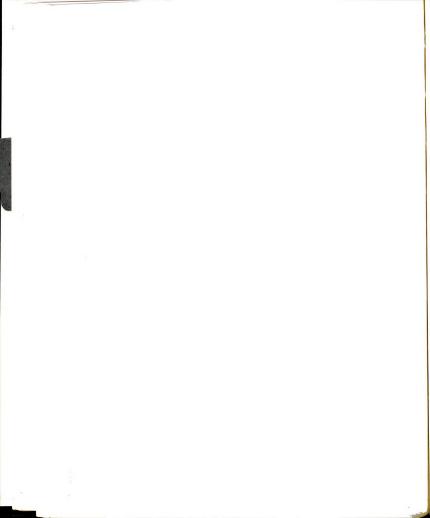


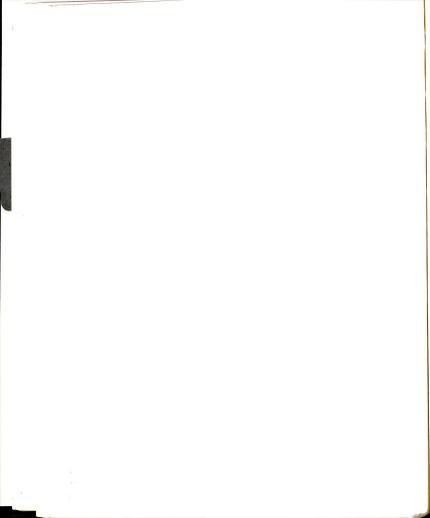
determined what must be done to attain the training objectives. The design was implemented and the output tested by measures formulated by the behavioral objectives. The test findings were interpreted to evaluate the extent individual objectives were reached. When necessary, the system was redesigned to achieve each objective.

These steps are charted in Figure 3.2 and also described by Banathy (1968, p. 29).

- A written statement was formulated describing what the learner is expected to do, know, and feel as a result of his learning experiences. (Formulate Objectives.)
- A criterion test was developed based on objectives and used to test terminal proficiency. (Develop Test.)
- 3. It was determined what must be learned by the trainee to behave in the way prescribed by the objectives. In this analysis, the input capabilities of the learner were assessed to avoid redundant learning (Analysis of Learning Task).
- 4. Alternatives were considered and keypoints identified to enable the learner to master the tasks (Functions Analysis). It was decided who or what had the best potential to accomplish these functions (Component Analysis). Schedules were prepared to show when and where the functions were to be enacted (Systems Design).





Figure 3.2.—An Over-all Structure of the Design of an Instructional System (after Banathy).



- 5. The designed system was tried out and tested, implemented and installed. The performance of the learner was evaluated to assess the degree he behaved in the way predicted by the objectives. (Implement and Test Output.)
- 6. The findings of the evaluation were fed back into the system to adjust it and make any changes needed to improve its performance and output. (Change to Improve.)

More explicit functions that were carried out in designing a measurable instructional system, described above, are presented in the expanded model shown in Figure 3.3.

In Step 4 the distribution of functions among components was considered. Only components which accomplished specific educational functions were used. Given a specific function, the problem was to select from alternative means the one having the best potential to carry out the function. Banathy (1968, p. 64) stated that "one of the rules of component analysis is that the component should fit the function and not the function the component." In the Basic Tractor Operators' Course the best component was selected, based on practicability and economy, from the various alternatives after considering the limitations and constraints inherent in the system environment illustrated in Figure 3.1.



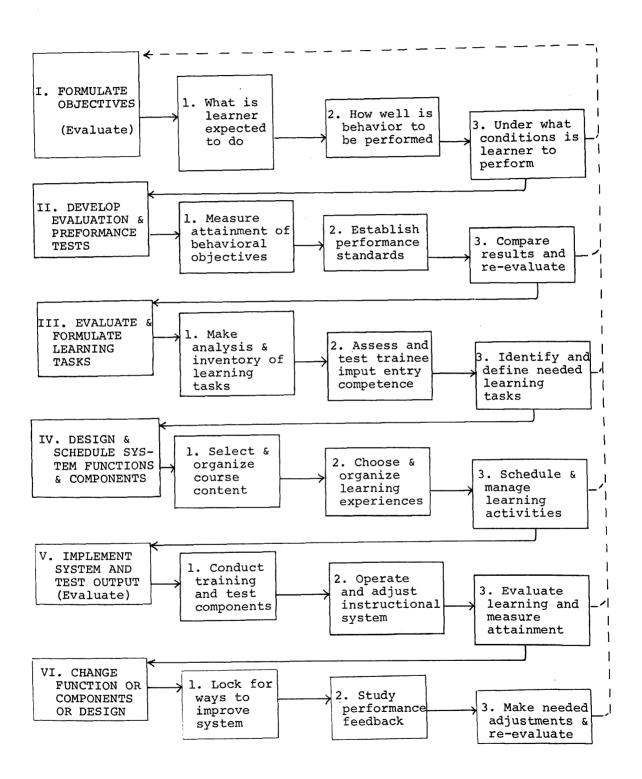
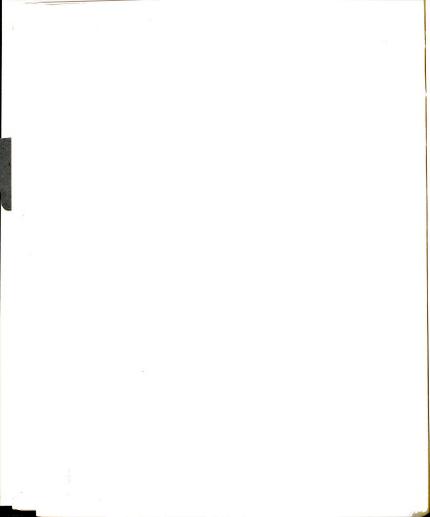
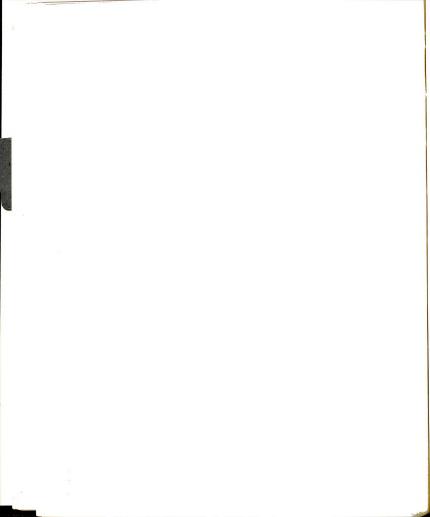




Figure 3.3.--Designing a Measurable Instructional System.



# Building a Training Program to Fit Trainee Needs with PERT

The BTOC was analyzed by the Program Evaluation Review Technique (PERT). This sequence represented the most logical order of events. This is important in the development of a PERT network diagram where activities are important time-consuming elements. The network showed which events must precede others, which may be accomplished simultaneously, and which must follow others.


The graphical representation of this model helped the training director design, implement, test and reevaluate the training program. In Figure 3.3 there is a critical path but it was not included in this simplified diagram. All steps are included but there may be several ways of varying time and resource inputs for each step, determining the critical path for optimum training or cost effectiveness.

### Statement of Training Goals and Objectives

## Identify the Occupational Cluster "Machinery Operators"

Characteristics of machinery operators with job classification of "Driving-Operating" (D.O.T. Code 0.883).

1. Job Functions Related to Data, People and
Things. The worker traits related to Data and People are
insignificant for Driving-Operating but are significant



to things at "level 3" which is described by the Dictionary of Occupational Titles (D.O.T.)

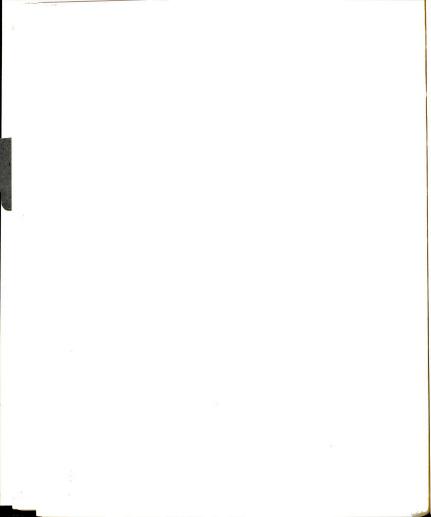
Driving-Operating: Starting, stopping, and controlling the actions of machines or equipment for which a course must be steered, or which must be guided, in order to fabricate, process, and/or move things or people. Involves such activities as observing gauges and dials; estimating distances and determining speed and direction of other objects; turning cranks and wheels; pushing clutches or brakes; and pushing or pulling gear lifts or levers. Includes such machines as cranes, conveyor systems, tractors, furnace charging machines, paving machines and hoisting machines. Excludes manually powered machines, such as handtrucks and dollies, and power assisted machines, such as electric wheelbarrows and handtrucks.

2. Machine Work Types of Jobs. In machine work involving Driving and Operating, the D.O.T. (p. 444) defines the work performed, worker requirements, relating clues, typical training, and methods of job entry.

#### Work Performed

Work activities in this group primarily involve starting, stopping, and moving the controls of machines which must be steered or guided in order to fabricate, process, and/or move materials and products. The work is occasionally performed at the given signals of others. Typical machines are farm tractors, trucks, hoisting machines and charging machines which pave roads, transport people or materials, hoist building supplies, and charge ore into furnaces.

#### Worker Requirements


An occupationally significant combination of: Spatial discrimination; eye-hand-foot coordination; manual dexterity; a preference for working with machines and equipment; the ability to follow instructions; and facility in adapting to routine, repetitive work.

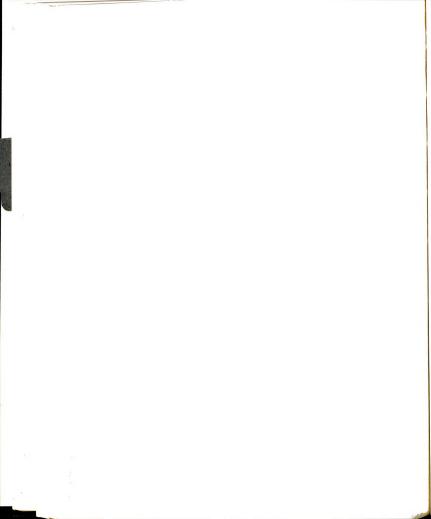
Clues for Relating Applicants and Requirements

Considerable driving experience.

Military experience driving tank, truck, or similar vehicle.

Good vision and general physical condition.
Casual work experience driving truck or farm machine.




Training and Methods of Entry

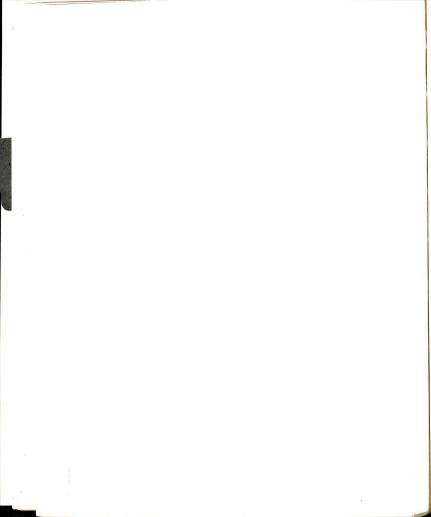
implement system.

Entry into these activities is usually by interest and possession of necessary physical abilities. Casual work experience and other types of exposure to situations involving moving machines can be considered an indication that this might be suitable work. On-the-job training is the usual method by which workers acquire proficiency.

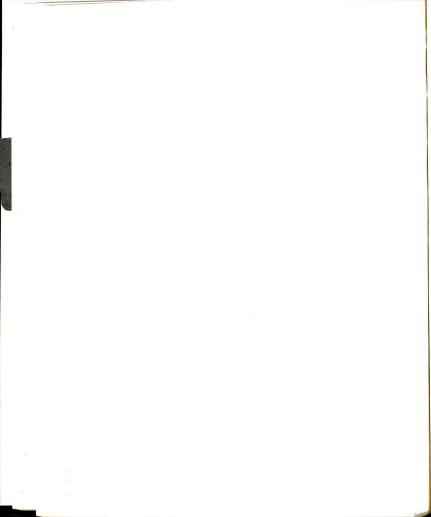
Definition of a specific type of machine operator.—
The D.O.T. lists two job classifications which include the agricultural machinery operator. The "farm equipment operator" (p. 264) and the "tractor operator" (p. 749) are described similarly but the former implies tractor use with some other specialized farming tool as a power and

FARM-EQUIPMENT OPERATOR (agric.) 409.883. Drives and controls farm equipment to till soil and to plant, cultivate, and harvest crops: Hitches soil conditioning implement to tractor and operates tractor and towed implement to furrow and grade soil. Drives tractor and operates designated towed equipment to plant, fertilize, dust, and spray crops. Prepares harvesting machine by adjusting speeds of cutters. blowers, and conveyors and height of cutting head or depth of digging blades according to type, height, weight, and condition of crop being harvested, and contour of terrain. Attaches towed- or mounted-type harvesting machine to tractor, using handtools, or drives harvesting machine to cut, pull up, dig, thresh, clean, chop, bag, or bundle crops. When towing or driving machine to perform combined harvesting operations, may be designated COMBINE OPERATOR. May drive team to pull farm equipment and be designated TEAMSTER. May operate and maintain several types of farm equipment and be designated ALL-AROUND FARM-MACHINERY OPERATOR. May be designated according to crop specialty and farm equipment operated as BEAN-FIELD WORKER; CORN-PICKER OPERATOR; DISK-PLOW OPERATOR; TRACTOR OPERATOR. See Volume II for additional titles.




TRACTOR OPERATOR (agric.) see FARM-EQUIPMENT OPERATOR. -- (any ind.) 929.883. Drives gasoline or diesel powered tractor to move materials, draw implements, pull out objects imbedded in ground, or pull cable of winch to raise, lower, or load heavy material or equipment: Fastens attachments, such as graders, plows, and rollers to tractor with hitchpins. Releases brake, shifts gears, and depresses accelerator or moves throttle to control forward and backward movement of machine. Steers tractor by turning steering wheel and depressing brake pedals. lubricate and repair tractor and attachments. be designated according to type of power utilized as DIESEL-TRACTOR OPERATOR; GASOLINE TRACTOR OPERATOR; or according to type of attachment as LIFT-SCOOP TRACTOR OPERATOR.

Worker traits group: driving-operating (D.O.T. 929.883).--Using the worker traits group of "driving-operating," the D.O.T. (Vol. II, p. 652) defines in a qualifications profile the characteristics and levels of education, aptitude, interest, temperments and physical demands that most tractor operators should have to insure successful job performance.


- 1. General Education Development. Level 3 is preferred but 2 is acceptable. (See chart below for an explanation of these levels of general education.)
- 2. Level of Specific Vocational Preparation.

  Level 4 is recommended with 3 or 5 acceptable where
  - 4 = over 3 months up to and including 6 months
  - 3 = over 30 days up to and including 3 months
  - 5 = over 6 months up to and including 1 year.

The D.O.T. (p. 652) defines Specific Vocational Preparation as:



elopment	Language Development	Comprehension and ex- pression of a level to	File, post, and mail such material as forms, checks, receipts, and hill	Copy data from one record to another,	and type all work from rough draft	or corrected copy. Interview members of household to ob-	tain such information as age, occupation, and number of child-	ren, to be used as data for surveys, or	economic studies. Guide people on tours through histor-	ical or public build- ings, describing such	features as size, value, and points of
Critical Levels of General Education Development (D.O.T. Vol. II, p. 652)  19 Development Mathematical Development	Make	lations involving fractions, decimals and percentages			Use arithmetic to add.	tip]					
l i	understanding	carry out instruc- tions furnished in written, oral, or	Deal with Problems involving several concrete variable	in or from standard- ized situations.	2 Apply common sense understanding to	carry out detailed but uninvolved written	instructions. Deal with problems in-	Volving a few con- crete variables in	or from standardized situations.		

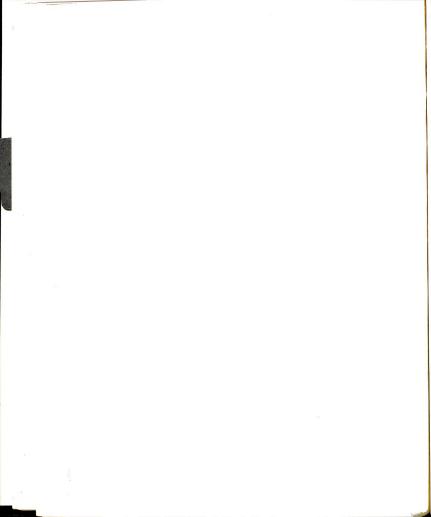


The amount of time required to learn the techniques, acquire information, and develop the facility needed for average performance in a specific job-worker situation. This training may be acquired in a school, work, military, institutional, or avocational environment. It does not include orientation training required of even every fully qualified worker to become accustomed to the special conditions of any new job. Specific vocational training includes training given in any of the following circumstances:

- a. Vocational education (such as high school commercial or shop training, technical school, art school, and that part of college training which is organized around a specific vocational objective);
- b. Apprentice training (for apprenticeable jobs only);
- c. In-plant training (given by an employer in the form of organized classroom study);
- d. On-the-job training (serving as learner or trainee on the job under the instruction of a qualified worker);
- e. Essential experience in other jobs (serving in less responsible jobs which lead to the higher grade job or serving in other jobs which qualify).

Aptitude levels needed. -- Aptitude levels are considered occupationally significant for the specific group, i.e., essential for average successful job performance. While not all of them are necessarily required for each job, some combination of them is essential in every case according to the D.O.T. (Vol. II, p. 652) where

for Intelligence (G), Verbal (V) and Numerical (N):


$$G = 3$$
,  $V = 4$ ,  $N = 4$ 

for Spatial (S), Form Perception (P) and Clerical
 Perception(Q):

$$S = 3$$
,  $P = 4$ ,  $Q = 5$ 

for Motor Condition (K), Finger Dexterity (F),
 and Manual Dexterity (M):

$$K = 3$$
,  $F = 4$ ,  $M = 3$ 

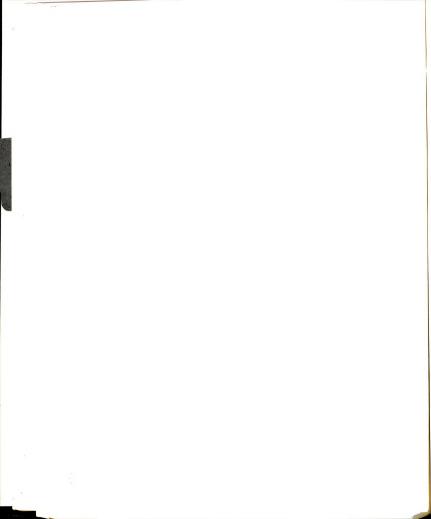


for Eye-hand-foot Coordination (E) and Color
 Discrimination (C):

E = 3, C = 5 (not significant)

where Aptitude level 3 = middle third of population with a
 median degree of aptitude

where Aptitude level 4 = lowest third of population exclusive of bottom 10 % with a low degree of aptitude


where Aptitude level 5 = lowest 10 % of population with a negligible degree of the aptitude.

Interest level desired. -- Interest level for most successful operation was defined by D.O.T. (Vol. II, p. 654) with levels 1, 9, and 3 significant.

Preferences for certain types of work activities or experiences, with accompanying rejection of contrary types of activities or experiences. Five pairs of interest factors are provided so that a positive preference for one factor of a pair also implies rejection of the other factor of that pair.

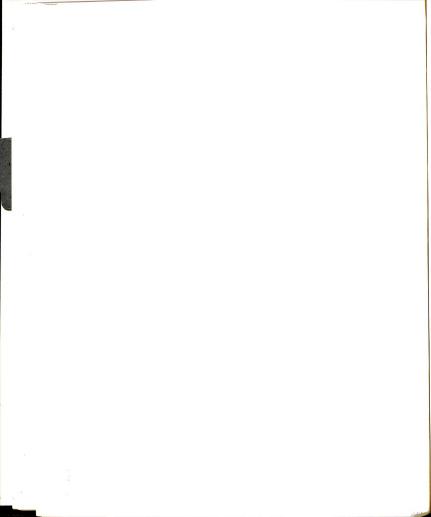
- 1 Situations involving
   a preference for
   activities dealing
   with things and
   objects.
- 2 Situations involving a preference for activities involving business contact with people.
- 3 Situations involving a preference for activities of a routine, concrete, organized nature.
- 4 Situations involving a preference for working for people for their presumed good, as in the social welfare sense, or for dealing with people and language in social situations.

- vs. 6 Situations involving a preference for activities concerned with people and the communication of ideas.
- vs. 7 Situations involving a preference for activities of a scientific and technical nature.
- vs. 8 Situations involving a preference for activities of an abstract and creative nature.
- vs. 9 Situations involving a preference for activities that are nonsocial in nature, and are carried on in relation to processes, machines, and techniques.



- 5 Situations involving a preference for activities resulting in prestige or the esteem of others.
- vs. 10 Situations involving a preference for activities resulting in tangible, productive satisfaction.

Temperaments. -- The occupational demands to which these workers must adjust are levels 2, 3, and Y involving situations where


- 2 = Repetitive or short cycle operations carried
   out according to set procedures or sequences
- 3 = Doing things only under specific instruction, allowing little or no room for independent action or judgment in working out job problems
- Y = The precise attainment of set limits, tolerances, or standards.

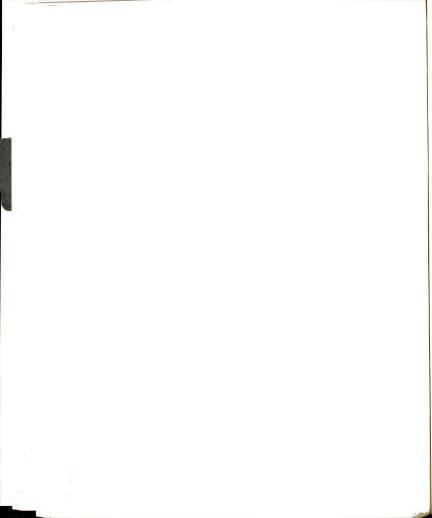
Physical demands. -- Those physical activities required of a worker on the job labeled L, M, H, 2, 3, 4 and 6 where

- 2 = Climb and balance
- 3 = Stoop, kneel, crouch, and crawl
- 4 = Reach, handle, finger, and feel
- 6 = See (acuity, depth perception, field of vision, and accomodation)

# Define Job Competencies Needed by Tractor Operators

After the training need was established it became necessary to specify the competencies needed by the job for which training is being offered. These competencies




will vary with the type of job and the desired proficiency level. A job description is one means of describing these competencies. This description included the skills, knowledge, and attitudes necessary for successful job performance. It also defined the upper and lower limits of job performance.

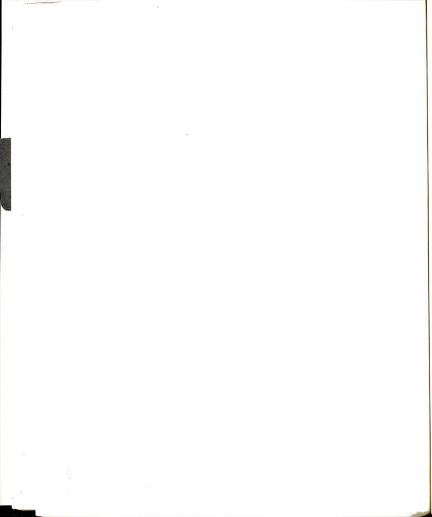
This program was designed to train a Basic Tractor Operator, Grade I, as defined below. Grade II and Grade III operator descriptions are also included to illustrate how the basic operator can advance to higher skills. These operators will need further training and experience.

The Grade I tractor operator will be qualified to work under the supervision of an owner or supervisor of tractor operators. He will operate a tractor with a plow, harrow or trailer efficiently and with safety for himself and the equipment. He will perform daily and weekly maintenance on the tractor and associated equipment and operate the tractor lawfully on public roads. He will not be qualified to perform maintenance beyond the 50-hour checks stated in the owners manual, make major adjustments or repairs on the tractor or make managerial decisions concerning the use of the tractor.

The Grade II operator will be a more advanced operator or owner-operator requiring greater self-reliance. He will be qualified to perform additional maintenance and care of the tractor, including some minor adjustments and repair. Instruction will be carried out on the use of additional tools and implements and the use of PTO and belt pulley supplemental power systems.

The Grade III operator will cover all tractor preventative maintenance and lubrication services through 1000 hours, the operation, adjustment, and care of major tools and implements used in the area. Skills and knowledge will be developed sufficient for independent operation of the equipment. This operator will make all minor adjustments, carry out simple repairs and make managerial decisions contributing to the wise and efficient use of the tractor and its associated implements and tools.



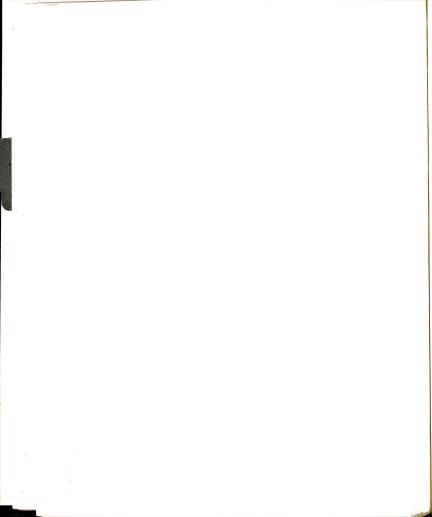

A qualified tractor "operator" is more than a skillful "driver." A good driver can handle and maneuver the tractor skillfully without implements. He can operate a tractor lawfully on public roads. He knows, understands, and practices good driving habits and obeys traffic regulations and rules. He knows the functions of the major controls on the tractor and can use them efficiently to regulate the action of the tractor. A tractor "operator" also has the following attitudes, skills and knowledge:

#### Attitudes:

- Likes machines and wants to learn to use them properly.
- Is reliable.
- 3. Is conscientious and does his best.
- Shows pride by keeping his machines clean and in good condition.
- 5. Takes pride in doing quality work.
- Is not ashamed to ask questions and calls a mechanic or supervisor to do things for which he has not been trained.
- Uses every opportunity to improve himself.

#### Skills:

- Uses all controls of the tractor and selected implements.
- Performs prescribed daily and weekly maintenance services.




- Checks and adds the proper amounts of preselected fuel, oil, and water.
- 4. Hitches and unhitches selected implements to the tractor 3-point hitch or drawbar.
- 5. Selects proper gear and throttle settings for load, task, weather, and field conditions.
- 6. Manipulates the tractor safely and skillfully around the farm and on public roads with and without implements.
- 7. Makes simple preliminary and field adjustments to implements for proper operation.

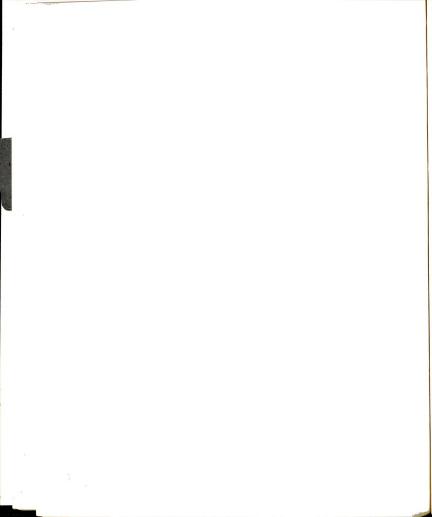
### Knowledge:

- Can explain elementary principles of tractor operation, internal combustion engine, gears, power transmission, and lubrication.
- Understands safety rules pertaining to tractor operation in the field or on the road.
- 3. Knows the governmental regulations concerning tractor operation on public roads.
- 4. Distinguishes quality work from inferior work when plowing, weeding, hauling, etc.
- 5. Recognizes need to call a mechanic or supervisor when the tractor or implement is not working properly.

These are a few of the characteristics needed to be a good tractor operator. Specific qualities are stated in the text of the training program as behavioral objectives.



## Break Job of Basic Tractor Operator into Separate Tasks


The description for machinery and tractor operators and the definition of a Basic Tractor Operator, Grade I were used to break down the job of the basic tractor operator into key tasks for which the operator was to receive training. They were listed in a logical order for learning acquisition. This list became the general outline for the sequential lesson outline and training schedule. (See Appendix A).

### Orientation.

- 1. Appreciate the importance of a tractor operator.
- 2. Learn the basic tractor nomenclature.
- 3. Know the principles of engine care.
- 4. Understand generally how an internal combustion engine works.
- 5. Learn the basic ways a tractor is used in farming.
- 6. Develop a feel for the tractor under motion.
- 7. Know how power is transmitted by the tractor.
- 8. Learn correct way to use common hand tools.

### Servicing the Tractor.

- 9. Develop a positive attitude toward tractor care.
- 10. Learn the system of daily maintenance.
- 11. Know the importance of the fuel system.
- 12. Check and add fuel.
- 13. Check and clean the fuel sediment bowl(s).
- 14. Know how the air system works.
- 15. Clean the air precleaner.
- 16. Check and service the oil-bath air cleaner.
- 17. Check and service the dry-filter air cleaner.
- 18. Know how the engine is lubricated.
- 19. Check and add oil to the crankcase.
- 20. Grease the tractor.
- 21. Know how the cooling system works.
- 22. Check and add water to the radiator.
- 23. Clean the grill and radiator screens.
- 24. Check pressure and add air to the tires.
- 25. Check and tighten the wheel nuts.
- 26. Check and tighten loose nuts and bolts on tractor.

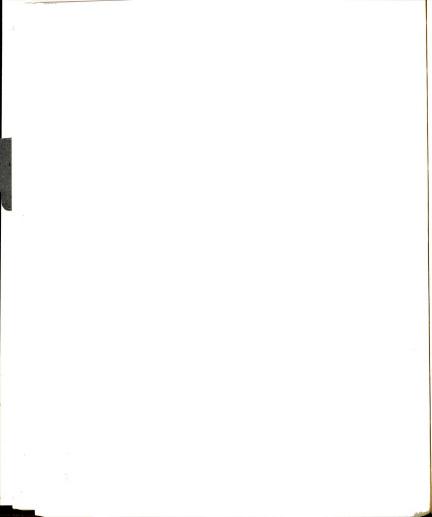


- 27. Know how weekly maintenance is performed.
- 28. Check and add water to the battery.
- 29. Check and service the electrical system.
- 30. Keep maintenance records.

### Start and Warm the Engine.

- 31. Learn to observe safety rules around moving machines.
- 32. Mount the tractor safely.
- 33. Adjust the tractor seat.
- 34. Set the controls properly for starting.
- 35. Warm up the engine properly.
- 36. Read and interpret the alternator light.
- 37. Read and interpret the oil pressure light.
- 38. Read and interpret the water temperature gauge.
- 39. Read and interpret the speed-hour meter.

### Operate the Controls and Maneuver the Tractor.


- 40. Learn driving safety rules.
- 41. Operate the hand and foot throttles.
- 42. Operate the clutch properly.
- 43. Select the transmission gear and range.
- 44. Steer the tractor.
- 45. Read the instruments while driving.
- 46. Use brakes to slow or stop the tractor.
- 47. Use one brake to turn the tractor.
- 48. Stop the engine properly.

### Managing the Tractor and Using Good Judgment.

- 49. Park the tractor properly.
- 50. Operate tractor under difficult conditions.
- 51. Choose proper gears to avoid overloading engine.
- 52. Use differential lock to stop wheel spin (if so equipped).
- 53. Use power shift to increase power on the go (if so equipped).
- 54. Break in a new tractor correctly.
- 55. Manage the use of the tractor.
- 56. Keep accurate operating cost records.
- 57. Add ballast to reduce wheel slip.
- 58. Add ballast to increase tractor stability.
- 59. Learn traffic signs for highway operation.
- 60. Use hand signals for close maneuvering.
- 61. Know traffic rules and regulations.

### Using the Tractor as a Power Source.

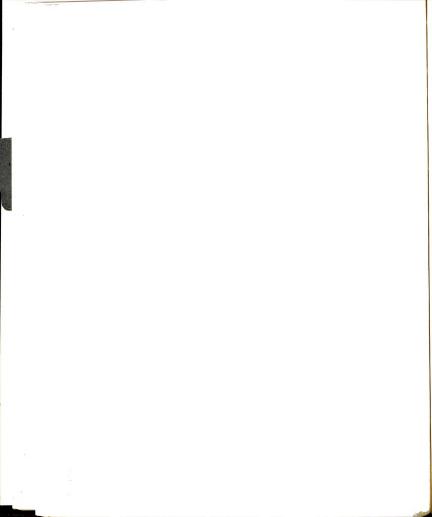
- 62. Know the tractor's four basic power systems.
- 63. Hitch an implement to the drawbar.
- 64. Adjust the tractor drawbar correctly.



- 55. Use the 3-point hitch controls properly.
- 66. Hitch an implement to the 3-point hitch.
- 67. Hitch up a remote controlled hydraulic cylinder.
- 68. Pull and back a two-wheel trailer.
- 69. Pull and maneuver a four-wheel wagon.

#### Safety in Operation.

- 70. Store and properly care for fuel and lubricants.
- 71. Practice human safety around machinery.
- 72. Develop a safety consciousness in operating a tractor.


### Using Tractor with Implements in Productive Farming Operations.

- 73. Prepare tractor to hitch to a mounted disk plow.
- 74. Adjust disk plow for good plowing.
- 75. Check and service disk plow.
- 76. Prepare tractor to hitch to a semi-mounted moldboard plow.
- 77. Adjust moldboard plow for good plowing.
- 78. Check and service the disk harrow.
- 79. Prepare tractor hitch for pull-type disk harrow.
- 80. Adjust disk harrow for field operation.
- 81. Check and service the disk harrow.
- 82. Prepare tractor for power-take-off operation.
- 83. Hitch tractor to a PTO implement.
- 84. Operate PTO implement properly and safely.
- 85. Use tractor with other tools or implements as required.
- 86. Use lights and warning flashers correctly.
- Transport supplies and equipment over road and field safely.
- 88. Recognize when tractor needs service by a mechanic.
- 89. Service the tractor at the end of the day.
- 90. Prepare implements and tractor for storage after

An example of how one of these groups of activities was broken into its separate tasks is shown by Figure 3.5 on the Daily Maintenance Services flow chart.

### Analyze Each Task to Determine the Essential Elements

Each task was then analyzed to determine its essential elements and their inter-relationships. Most of



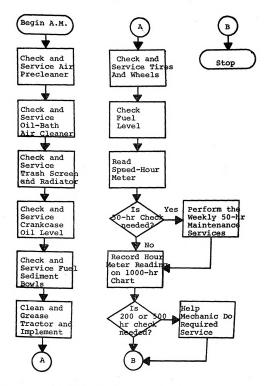
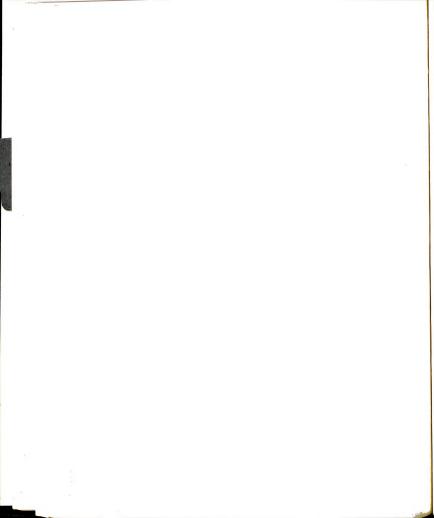



Figure 3.4.--Flow Chart for Lesson B-2: Daily Maintenance Services Before Operation. A Typical Job Function of the Tractor Operator Broken Down Into Task Elements for Analysis.


these tasks were studied by observing an expert operator perform the various steps, asking him questions and then writing down each key step in the process, including skills, judgments and actions.

The data obtained in the task analysis were put into a flow chart using the techniques of Critical Path Method (CPM) and Program Evaluation Review Techniques (PERT) combined into the systems engineering approach for problem solving. These flow charts are called "logic trees" by the U.S. Army. They can be simple or complex, depending on the task and level of responsibility.

For an example of a flow chart on Servicing the Dry-Filter Air Cleaner see Figure 3.6 for lesson B-9.

The flow charts were included at the end of each lesson where skills are involved except for the A series of lessons and B-1. They give the step-by-step procedure for carrying out any of the skills. They were included to insure that none of the steps in making and carrying out the knowledge decisions, proper procedure, or performance of the skills were deleted. These flow charts were designed to be used by the instructor in the following ways [(*) items refer to the steps which must be included to meet minimum certification requirements]:

- 1. As a reference when preparing demonstrations;
- 2. As a quick reference when presenting the step-by-step procedure to the class;



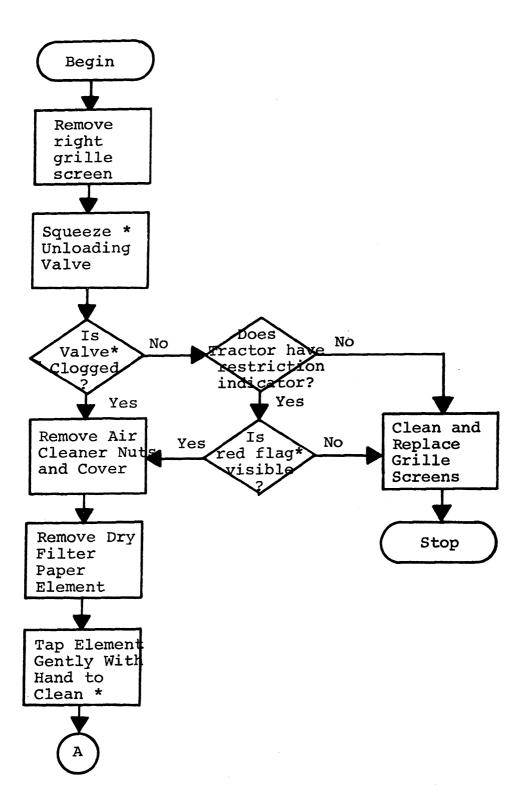
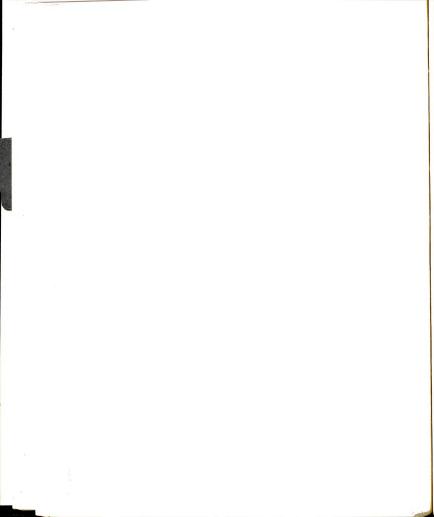




Figure 3.5.--Flow Chart for Lesson B-9: Servicing the Dry-Filter Air Cleaner (Page 1 of 2).



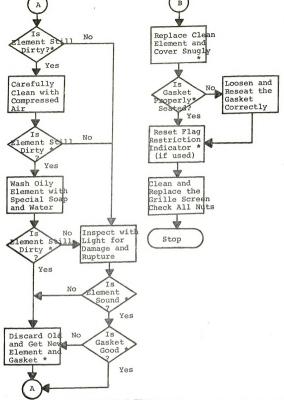
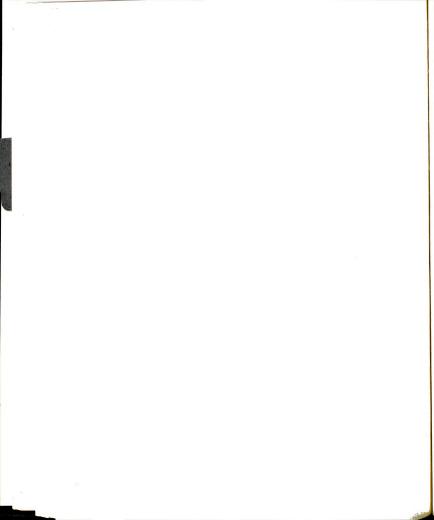
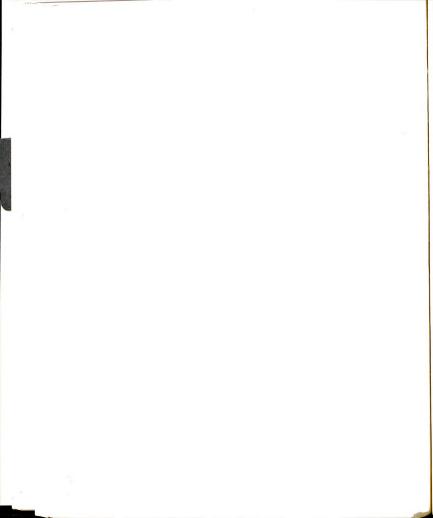




Figure 3.6. -- Flow Chart for Lesson B-9: Servicing the Dry-Filter Air Cleaner (Page 2 of 2).




 As a guide to check each trainee as he performs the skill.

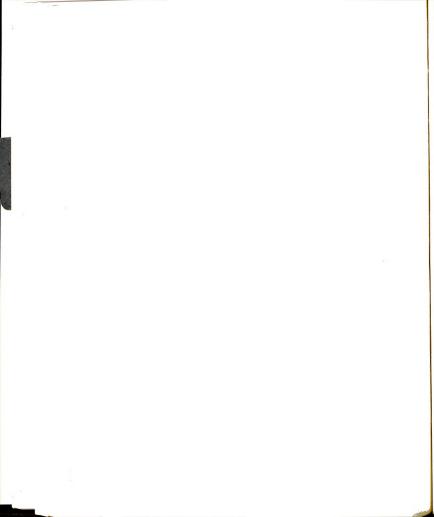
#### State Lesson Goals in Terms of Behavioral Objectives

The first step in the systems approach to design of instructional systems was to state the learning goals or desired changes in individual response in terms of behavioral objectives. Once this was accomplished, the system designer selected lesson content and provided alternative lessons aimed at attainment of the learning tasks. Alternatives, or a range of graded objectives, gave the instructor flexibility in meeting individual differences in trainees and provided for variations in sophistication, degrees of complexity, length of lesson, depth of coverage, and personal interest to meet the needs of the learners. The behavioral objectives told the instructor exactly what the learner should know, feel, and do at the completion of the training program. For examples of behavioral objectives see sample lesson B-9 on page 163 and lesson D-1 on page 159.

The left-hand column of the lesson plan listed the desired trainee behavioral objectives which are the training goals of the course. Where possible, these changes were stated in terms of well defined measurable behavior expected from the trainees. It was difficult at first to express the teaching changes in terms of



behavior changes that could be measured. With practice it was possible to prepare specific behavioral objectives around which the detailed course of instruction was built. Once the behavioral changes were measurable and clearly defined, it was relatively simple to formulate meaningful questions and evaluation instruments to test training progress and attainment of objectives.


It was important for the instructors to become fully aware of what is expected of the trainee upon completion of each lesson. Therefore, objectives of the lesson were studied carefully <u>before</u> any attempt was made to teach the lesson. These objectives are <u>not</u> to be read to the trainees. They simply form the basis for which each lesson was written

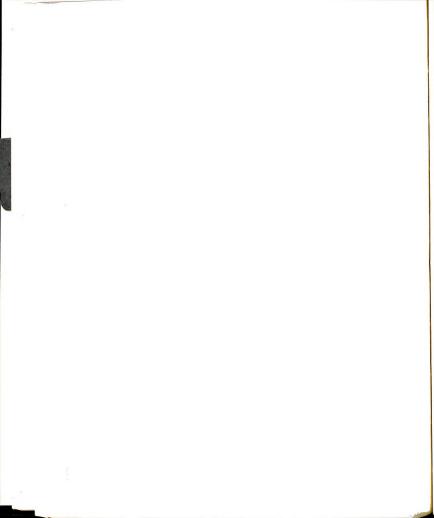
Lesson B-9 has 22 objectives lettered a through u and D-1 has 9 objectives a to i. The first was "to check the dry-type air cleaner weekly." Other lessons may have fewer or even a larger number of objectives. It is imperative that <u>each</u> objective be met. The instructor was cautioned not to overlook any of the objectives stated in the lesson plan.

### Evaluate the Behavioral Objectives for Measurability

The training objectives were written in three different forms:

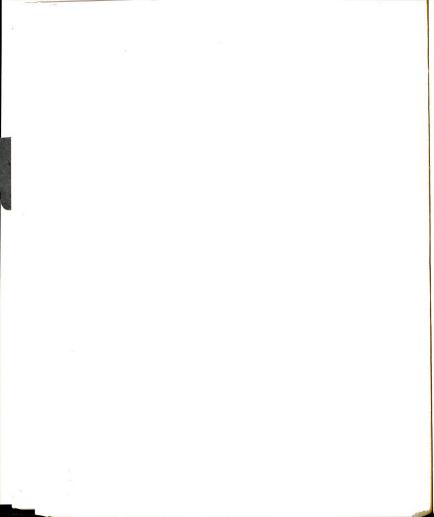
 First, as statements of desired behavioral change around which the lesson was built.




- Second, as questions for trainees in the pretest or post-test to emphasize the kinds of ideas, attitudes and skills to be stressed.
- Third, as indicators of student performance in the final evaluation to see if the trainee had learned and was able to perform satisfactorily in a real life situation.

The same behavioral objectives were stressed and evaluated throughout the course in the small group sessions which constituted the major reinforcement through the structured learning and training environment.

In the final evaluation, event number 5 covered the Daily (10-hour) Maintenance Services for a diesel tractor and event number 6 checked the Weekly (50-hour) Maintenance Services. The trainee was asked to perform these services which included servicing the dry-filter type air cleaner. Certain key objectives were selected for the final evaluation performance test. Not every objective was measured in this evaluation but a cross section covered all the important decisions and skills required for a qualified Basic Tractor Operator, Grade I.


See the following chart for the test items used in the final evaluation of the trainee in performing actual service on the dry-filter air cleaner.

These performance checks used in the final evaluation of a Basic Tractor Operator apply only to Event No. 5



Sample of a Partial Performance Test for Basic Tractor Operators
Part 9: Servicing the DNY-Filter Air Cleaner (Diesel Engine)
Front No. 5: The Daily (10 Hr.) Maintenance Services

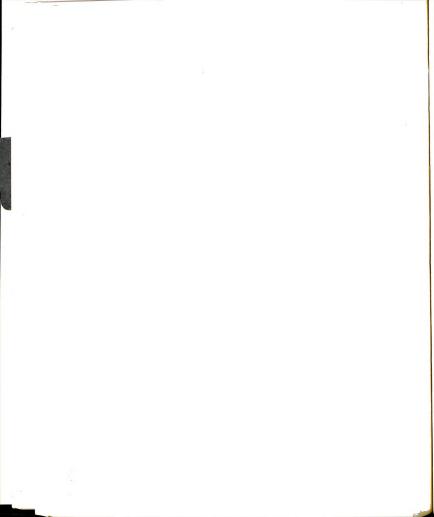
(Start Time_Finish Time_) Times Penalty Total Points The Dry-Filter Air Cleaner Penalty	tal Points Penalty
1. Failure to check dry air cleaner. (a) 2. Dirt not wiped off filter body before servicing. (c) 3. Dust unloading valve not emptied. (d) 3. Dust unloading valve not emptied. (d) 5. Incorrect decision made not to service filter. (e,f) 6. Dry element not removed properly or tapped on hand. (g,h) 7. Dry element not checked for damage or cracks. (j,o) 7. Dry element not checked for damage or cracks. (j,o) 8. Inside of body not wiped out with clean cloth. (p) 9. Dry element replaced incorrectly. (g) 10. Gasket not in place or properly seated. (g) 11. Inner wing nut not tightened securely. (n) 12. Outer wing nut not tightened securely. (n) 13. Restriction indicator not reset. (s) 14. Grille screen not replaced. (u) 15. Excess Time beyond 400 seconds. 16. Excess Time beyond 400 seconds. 17. Excess Time beyond 400 seconds.	
AND TOTAL OF POINTS FOR THE TEN DAILY MAINTENANCE SERVICE	1
	11
Total Raw Score (Negative Points)	



on the Daily (10-hour) Maintenance Services for a diesel tractor; Part 9 on servicing the dry-filter air cleaner. (Letters in parentheses refer to the same behavioral objective in the lesson plan.)

### Building-In Continuous and Total Evaluation

The continuous evaluation starts before the training program begins, progresses through the lesson presentations and culminates in the final evaluation and certification of the trainees as <u>qualified</u> Basic Tractor Operators' Grade I, II, or III, as appropriate. The evaluation was based on the behavioral objectives the course purports to teach. The instruments and techniques for evaluating the trainees and the BTOC are covered in Chapter IV.


### Individualize Instruction for Trainee Involvement and Participation

### Establish a Conducive Learning Environment

To insure a properly structured learning and training environment, the following guidelines were suggested for obtaining and equipping the physical facilities to permit individualized instruction.

## The training location in a developing country should be:

--near services of major farm machinery supplier(s).
--within or adjacent to major agricultural area(s).



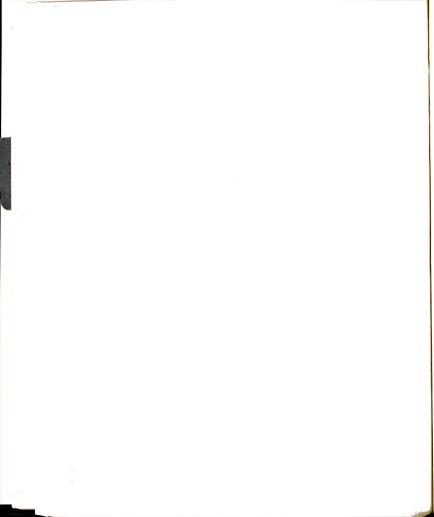
- --easily accessible by a dependable year-round transportation network.
- --reasonably close to a College of Agriculture and Departments of Mechanization.
- --equipped with inexpensive housing for trainees.

#### The Training Facilities Should Consist of:

#### Buildings

- --covered building(s) for conference-discussion and laboratory classes.
- --a covered open shed to house and store field equipment not in use.
- --windows screened against insects and glassed against cold (if required).
- --windows to be coverable for movie and slide presentations during daylight.

#### Utilities

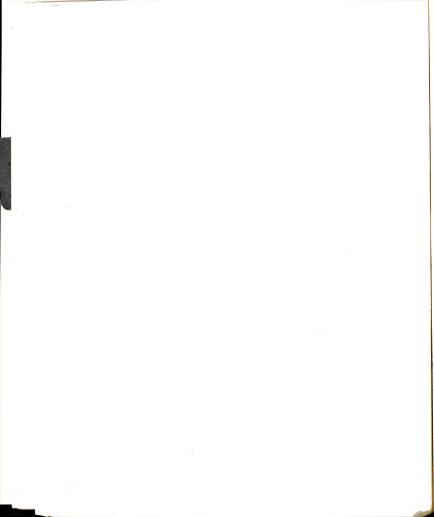

- -- a heating system for cold climate use (if required).
- --a ventilation system for hot weather use and hazardous conditions.
- -- a lighting system for overcast days and night use.
- -- electricity for lights and projection equipment.
- --water for drinking, washing, and general cleanup.
- --toilet facilities equal to average best of area.

#### Accessories

- --chairs with writing arms, or suitable tables and chairs.
- --a blackboard or writing wall (substitute a large pad with felt pens & easel or large portable blackboard if it must be moveable).
- --a projection screen for slides and movies.
- -- a box, table or stand for projector.
- --wall hooks or easel for holding charts.
- --a pointer for charts, blackboard and screen.
  --tables or workbenches to display equipment and
  - -tables or workbenches to display equipment a parts.

#### Supplies

- -- chalk, pencils and felt pens for instructor(s).
- --paper for writing, washing towels, toilet tissue, etc.
- --diesel fuel, oil and grease for practical training and field work.
- --suitable containers, funnels, grease rags, cleaning solvent, etc.




#### Equipment Available Should Include:

- --a minimum of 4 tractors for a class of 20 (ideally prefer 10 tractors for a class of 20 trainees).
- --a minimum of the following inplements for each two tractors
  - a disk or moldboard plow, integral or semi-
  - a disk harrow or field cultivator, pull type or integral mounted.
- --a minimum of the following implements for each four tractors
  - a two-wheel trailer and a four-wheel wagon
  - a rotary mower or other PTO-operated machine such other implements and tools as may be required to meet local needs.
- --one set of common hand tools for each tractor, including such items as wrenches, hammer and punches tire gauge, tire pump and valve stem remover grease gun, oil can, and funnel.

### Some Concepts for Developing Countries and Manpower Training

To make training meaningful and effective, special consideration must be given to the instruction techniques and the methods used to reach low-education level or cross-cultural trainees. Trainees not previously exposed to formal education cannot learn by simply listening to lectures or by engaging in self-study. They must be carefully led through a definite structured program, shown what to do, actually repeat all demonstrations themselves, be constantly evaluated and finally tested for individual performance. To accomplish these broad goals, the following concepts were formulated to assist in developing the Basic Tractor Operators' Course. These were desirable and



not necessarily actual achievements, depending on how the individual instructor performed.

Type and length of instruction (four 40-hour weeks).

	Hours	Remarks
Conference with show-and-tell demonstrations	26	Emphasize discussion
Laboratory and practical exercises	50	Emphasize practice
Training slides, films, etc.	4	When suit- able for interest & variety
Field work and job training	50	Emphasize work train- ing
Examination and testing	30	Measure teaching effective-
		ness

Total hours ± 160

### Idealized training day schedule (eight-hour day).

- Hour 1 Instructor conference-discussion-demonstration.
- Hour 2 Student laboratory and practical exercises.
  Hour 3 Instructor conference-discussion-demonstration.
- Hour 4 Student laboratory and practical exercises.
- Hour 4 Student laboratory and practical exercises Hour 5 Instruction films-discussion-conference.
- Hour 6 Student job training and/or field work.
- Hour 7 Student job training and/or field work.
- Hour 7 Student job training and/or field work. Hour 8 Student job training and/or field work.
- Length of course. -- Mosher (1966, p. 92) makes a

general statement that "a short course [in-service training] that is to include a study of the topic . . . should last at least 11 working days but should probably not be longer than 24 working days." It takes several days for a group of trainees to begin to work well together but no one should be kept away from his normal duties for longer than a month.



Evening classes can be scheduled if time is a limitation and trainees are housed at school.

## Basic instructional assumptions.

--Trainees cannot listen to a straight lecture for more than 15 to 30 minutes at one time.

--Conference discussions should be scheduled early in the morning or afternoon.

--Demonstrations, show-and-tell techniques should be interspersed throughout conference-discussions. -- Laboratory and practical work is preferably

given in late morning or afternoon when trainees are most apt to be tired.

--Trainees can grasp visual pictures more quickly than word pictures.

-- Trainees should become involved in teaching process as much as possible.

-- Trainees must be given every opportunity to handle,

manipulate and practice with the real object. -- Trainees will learn most from actually doing a job or task, first in small groups and then alone.

### Assumptions about use of instructor's training manual.

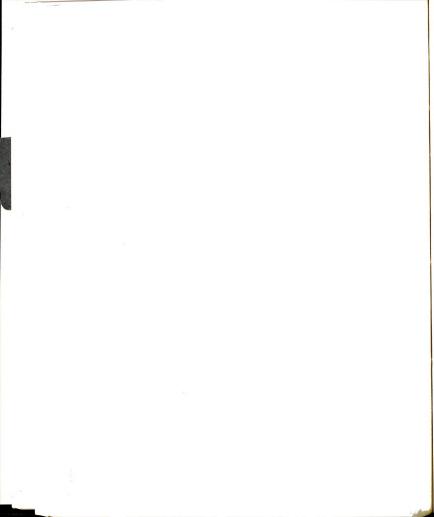
-- For officials planning, budgeting and supervising agricultural training programs.

-- For teaching local instructors in developing countries.

--As a guide for the trained instructor to follow in teaching trainees. (It is not designed for

direct use by the trainees.)

--For identifying the key points that tractor operators must know. A simplified short resume in the local language should be prepared to give to the trainee


Suitable training facilities .-- The national or

local government will provide the necessary training facilities or arrange for them in an area suitable for training.

--Building(s) for classroom instruction.

--Sheltered space for laboratory exercises; covered shelter for machinery storage.

-- Land for practical training and field work. Soil should be well drained and preferably sandy or silt loam to permit annual use.



Area should be large enough to permit each trainee to work at least one hectare (20 trainees = 20 hectares) during each course. End use of land should not be critical to permit tillage several times a year. One area should be reserved for driver training and obstacle courses.

--It may be possible to do custom work for area farmers for the cost of fuel and oil.

--Dormitory for housing students (resident course).
--Cooking and eating facilities (for permanent center and resident course).

Provision of instructors and assistants.--A training class will be built around a core of 20 students.

-- The Basic Instructor staff will consist of two instructors (or one instructor and two assistants).

--Training classes will be given during the off season when possible.

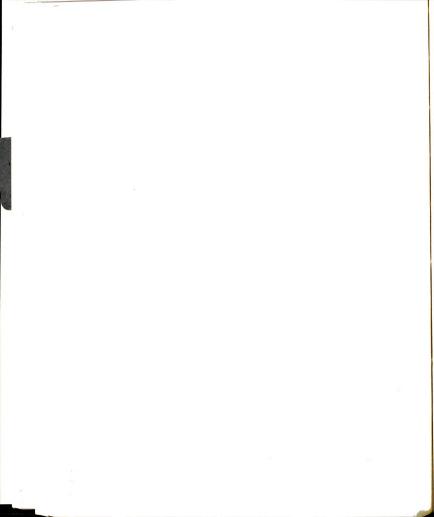
--Local government will provide suitable personnel to be trained as instructors. --Farm machinery manufacturers will assist the training center in every way possible.

# Positive Attitude Reinforcement (Lesson D-1: Orientation)

Throughout the Basic Tractor Operators' Course special emphasis was placed on developing positive attitudes in the trainees. The first lesson in each major series was designed to set the stage for the development of proper attitudes and good work habits which were repeatedly re-emphasized in subsequent lessons.

As an example, safety is an attitude and a frame of mind that was carefully developed. Just as accidents do not just happen, but are caused, safety does not result unless it is stressed by the instructor. Since actions speak louder than words, the instructor set safety standards

in everything he did. He stressed the affirmative by saying "do this" rather than "do not do that," to emphasize the positive approach.


On page 158 the general considerations to be followed in safely operating a tractor are illustrated by Lesson D-1 entitled "General Safety in Controlling the Tractor." The development of a proper attitude was indicated in the behavioral objectives, such as,

- The tractor operator will develop a safety mindedness.
- The tractor operator will recognize the need for alertness and proper training.
- The tractor operator will take proper precautions to warn other people.
- The tractor operator will not allow other persons to ride on the tractor.

The safety theme was explained in the "Information for the Trainees" and further EMPHASIZED under "Instructional Methods" in the Lesson Plan. Finally, the trainee was asked to show how he would practice safety in operating the tractor during the small group trainee activities and during the field practice.

# Idealized Instructor/Trainee/Machine Ratios for Training Tractor Operators

Training relationships. -- For developing countries and manpower training the following guidelines were developed:



# GENERAL SAFETY IN CONTROLLING THE TRACTOR (Page 1 of 6 pages -- 2 to 6 not included) Sample Lesson D-1:

# Behavioral Objectives

develop a safety mindedness. ъ

recognize need for ģ

alertness and proper training.

driving safety will be stressed. This covers all aspects of safety the tractor in the field, on the during maneuver and operation of maintenance services and starting the engine. In this lesson In a previous lesson, safety was emphasized while doing the road and around the farmstead. Information for the Trainees The tractor operator will:

The modern tractor is a powerful tractor safely at all times and great damage or injury to propand dangerous machine. In the careless operator it can cause he must be alert to prevent accidents. Safety can be conmust be trained to handle the hands of an inexperienced or sidered from viewpoints of erty and people.

The operator

starting, driving, stopping and

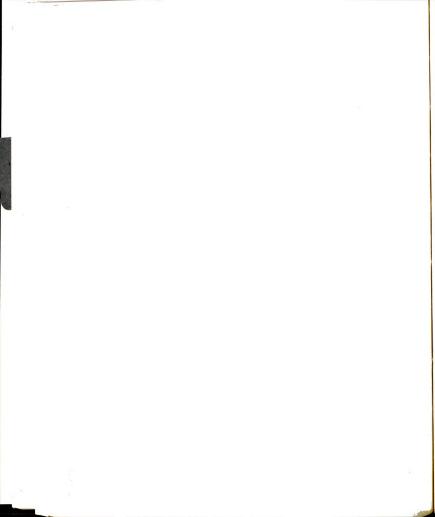
and stationary power use.

to warn and watch out for take proper precautions other people. υ.

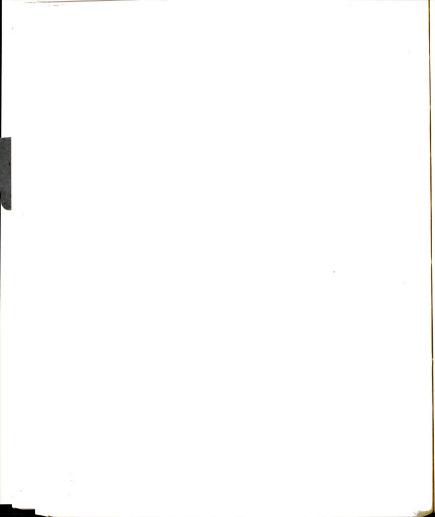
EMPHASIZE safety is Instructional Methods an operator's business. EMPHASIZE training and alertness.

especially careful of children countries oper-In developing ators must be and curious oystanders.

to see that everything is ready to go. The operator's first


might be affected by movement

or use of the tractor.


concern is other people who

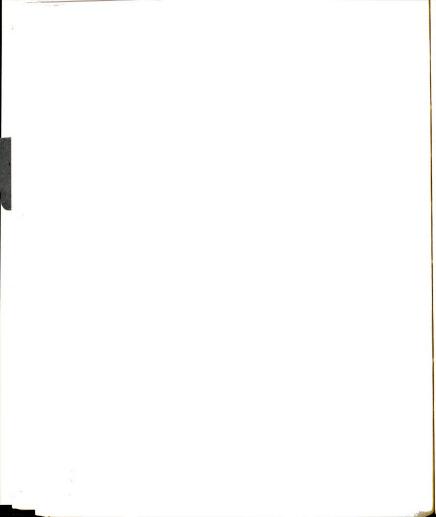
tractor the operator must check

Before starting to move the



- 1. For one qualified instructor with or without assistants:
  - --The ideal instructor/trainee ratio is 1:4 up to 1:6.
  - --The maximum number of trainees one instructor can handle effectively is 10 (up to 30 for large group instruction).
  - --Assistant instructors or group leaders can be used to work with small groups of trainees (up to a maximum of six) under direct supervision of a qualified instructor.
  - --One instructor and one assistant instructor can handle small group instruction for a maximum of 16 trainees, but perferably only 12; with two assistant instructors the maximum class size is 22 with 18 preferred; and with three assistants the maximum size class is 28 with 24 preferred.
  - --For show-and-tell demonstration teaching techniques, the need for large, expensive equipment can be miminized by using individual parts, cutaways, models, drawings and charts.
- 2. With two or more instructors without or with
  - --Ideal instructor/trainee ratio is still 1:4 to 1:6.
  - --Trainees can be divided into separate groups to be taught different subjects by different instructors.
  - --Different subjects can be scheduled concurrently and class groups rotated to utilize scarce facilities or equipment more effectively.
  - --The need for student practice equipment can be reduced if one of the concurrently taught subjects does not require the scarce machine in its presentation.
  - --Assistant instructors for each additional 4 to 6 trainees can be used to enlarge the class size and still retain individualized teaching if sufficient training material is available.
- 3. <u>Size of group</u>.--Mosher (1962, pp. 87-88) says
  "Even in a discussion group about 30 trainees is the maximum number for good results. . . . Normally each class should include 15 trainees. The best number is probably between 20 and 25."




<u>Equipment requirements.--Adequate individualized</u> instruction was based on these guidelines:

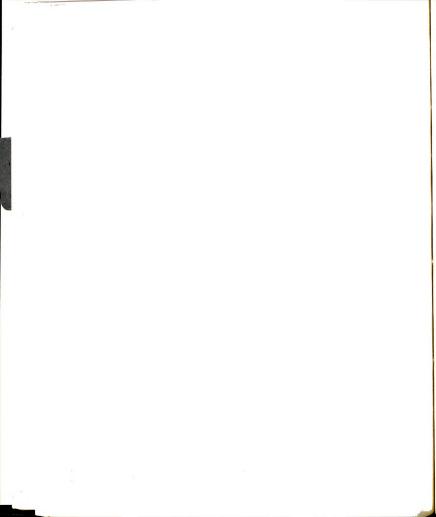
- 1. The ideal tractor/trainee ratio is 1:2.
- --The maximum tractor/trainee ratio for classroom or laboratory use is 1:6.
- -- The maximum tractor/trainee ratio for practical exercises and field training is 1:4.
- 2. The preferred arrangement for equipment is:
- --Ideally each trainee should bring his own tractor to the training center.
- --Trainees without tractors can be assigned to work with a trainee who has a tractor or with school tractors.
- --Each training center shall be equipped with at least two regularly assigned school tractors that can be used for practical field work and on-thejob training.
- --Each school tractor shall be equipped with all necessary attachments, implements and tools used in the training program.
- --Tractors brought in by trainees should be checked and any missing implements and tools furnished by the school.

## Large Group Instruction (Lesson B-9: Servicing the Dry-Filter Air Cleaner)

The instructional program for each element is briefly described below for a typical lesson in the Basic Tractor Operators' Course.

Large group activities.--The head instructor is responsible for making the large group presentations. The lesson material for these discussions was given in the general lesson plan under the heading "Information for Trainees." This material was used as a guide by the instructor. It was not intended to be read to the trainees. The




instructor chose only that information needed by the trainees to qualify them for the job of Basic Tractor Operator, Grade I. If the trainees were completely ignorant, most of it was covered, but if they had some experience only certain parts were used.

The main presentations were made as interesting as possible by utilizing demonstrations and teaching aids to secure and retain the attention of even the most indifferent trainee. The recommended training method was conference-discussion-demonstration to secure trainee involvement (Figure 3.9).

Behavioral objectives.--They are already discussed on pages 148 and 149 and examples are given in sample lessons B-9 and D-1, illustrated on pages 162 and 158, respectively.

Information for trainees. -- The center column of the lesson plan was devoted to "Information for the Trainees." This information was provided for the instructor to stimulate discussions with the trainees. The lecture method bored the trainees and they quickly lost interest. By asking key questions maximum use was made of the large group session to increase the learning effectiveness.

Slides, charts, models, and demonstrations of principles and skills were used to add spice and variety to the conference discussions. All trainees responded to this method once they felt the instructor was talking



# SERVICING THE DRY-FILTER AIR CLEANER (Page 1 of 3 pages -- 2 and 3 not included) Sample Lesson B-9:

Information for Students

# Behavioral Objectives

check the dry-type air The operator will: cleaner weekly ď

of screen or have a student demonstrate

if previously

operator should inspect it every indicator remove the left grille

the air cleaner restriction

screen.

If the tractor is equipped with 50 hours or weekly. To inspect

a dry-type air cleaner the

covered.

Demonstrate removal

Teaching Methods

- cleaner restriction indiscreen to check the air remove the left grille cator. þ,
- clean the element if the equipped with a restricred indicator hand is showing on a tractor tion indicator. ö

# A portion of the red signal may be visible at times during

showing it is an indication that is locked in place and is fully However, if the red indicator This is normal. the element inside the air cleaner should be cleaned. operation.

If the tractor is not equipped the operator should remove the with a restriction indicator d. inspect the unloading valve for clogging.

## Before class, hold tractor running to make the red indirestriction indicator (if tractor is so equipped). intake with the hand over air Point to the

Let

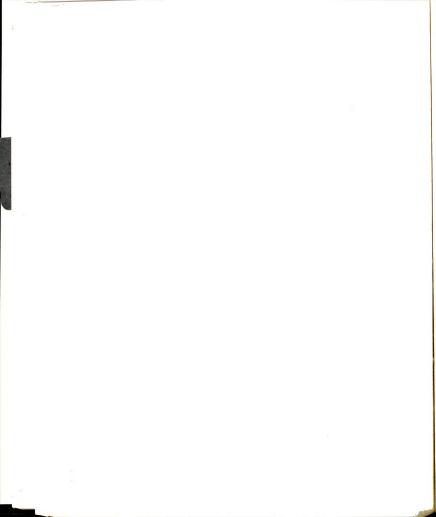
indicator with

the the 1se

red showing

a diagram).

the students see

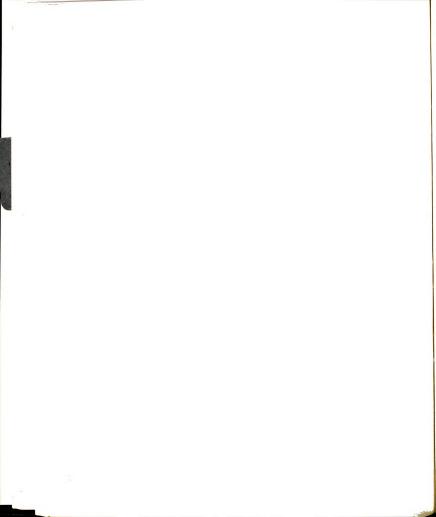

cator come on.

Show example of Demonstrate.

right grille screen and inspect

the dust unloading valve under

element that needs cleaning.




directly to them. The instructor carefully prepared his presentation and made notes to relate, improve or delete portions as required. All demonstrations were rehearsed ahead of time and assistant instructors or group leaders helped in conducting the demonstrations. Drawings and charts were reviewed before class to make sure they were clear and pertinent to the course objectives.

Instructional methods. -- The right hand column of the lesson plan suggested methods for the instructor to achieve lesson objectives. The selection of the teaching method depended primarily upon the trainee's background and the degree of participation (Figure 3.7).

When a point needed emphasis, special care was taken to make sure the trainees understood the material. This was done by raising the voice, repeating and reviewing the point or writing it on the chalk board, etc., depending on the facilities, trainees and cultural factors. Instructors used imagination and ingenuity to find new and interesting ways to help the trainees learn the material.

Slides were used to help reinforce the learning process. Instructors used teaching aids and practical exercises whenever possible to clarify or reinforce a point since trainees learned faster when they used their eyes and hands as well as their hearing. See Figure 3.8 on the type of instruction recommended for different training levels.



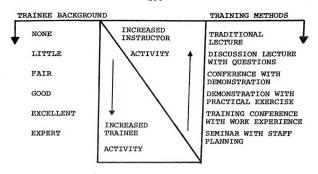



Figure 3.7.--Selection of Training Method Based on Trainee's Background.

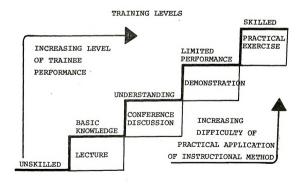
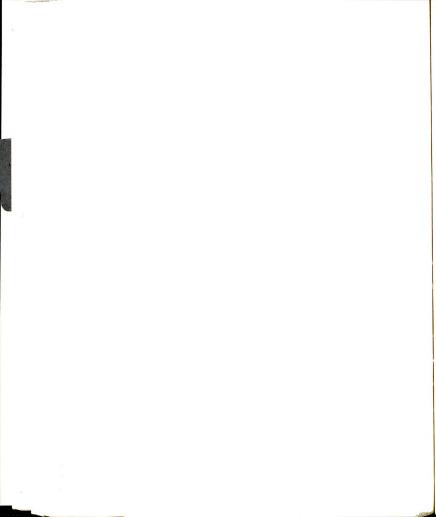




Figure 3.8.--Training Levels Achieved with Various Methods of Instruction.



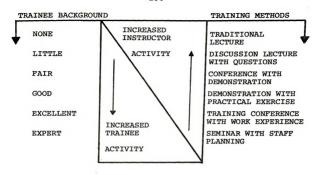



Figure 3.7.--Selection of Training Method Based on Trainee's Background.

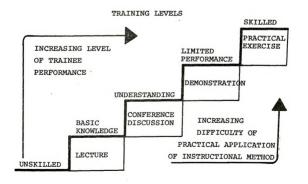
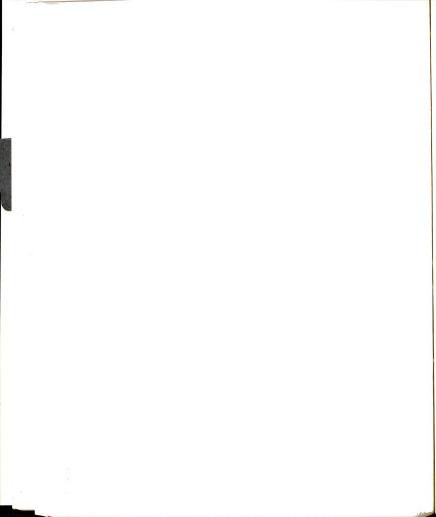
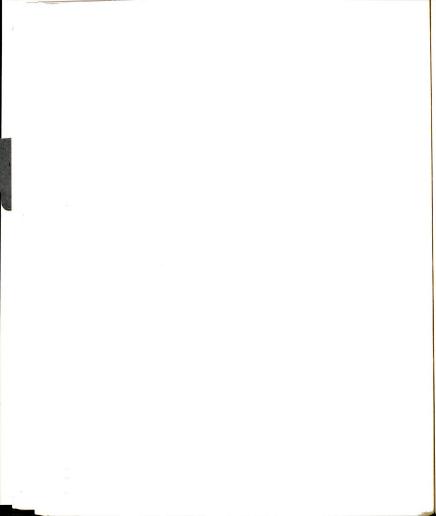




Figure 3.8.--Training Levels Achieved with Various Methods of Instruction.




Mosher (1962, p. 99) states that

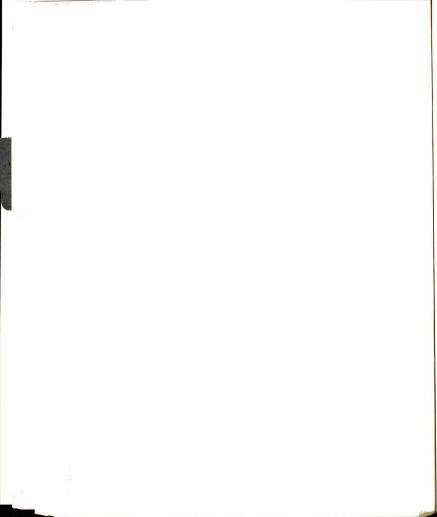
In preparing for each session, keep in mind that the primary purpose of . . preparation is to plan the session to secure maximum participation by the trainees. They will learn only as they participate. . . They will learn very little as passive listeners (or non-listeners) to materials presented orally by the trainer. A secondary objective is to plan for a varied presentation of each topic.

The type of worker desired determines the teaching method to be employed. For example, if only unskilled workers are needed, the lecture method will suffice. But if a skilled workman is to be trained, the most informative and personalized instruction must be used such as the conference, demonstration, and practical exercise. See Figure 3.8 for the training level achieved by different types of instruction.

## Small Group Participation (Lesson B-9: Trainee Activities)

Except for the introductory lessons, a trainee activity sheet was included with all lessons in the Basic Tractor Operators' Course. (See page 169.) These forms were designed for instructors and assistants as a guide in conducting small group sessions. One instructor or assistant cannot effectively train more than four or five trainees at a time in these sessions. The activity sheets were developed in conjunction with the "daily trainee evaluation forms." Used with the evaluation forms they provided a simple and accurate method of recording trainee progress and competency for each lesson.




Preconditions.—The first column on the activity sheets listed the preconditions that were arranged <u>before</u> class. In some cases these preparations simply called for having a tractor available. Other times more elaborate preparations were needed, such as draining oil from the crankcase so the trainee would find a low oil level when he made the daily maintenance check. It was important to set up the conditions before the trainees arrived for class.

Instructions to trainees.—The "instructions to trainees" were either in the form of questions or directions. It was necessary for the full meaning of every instruction to be clear to the trainee, since his response depended upon his perception of the question. All material asked had been previously covered by the instructor. Each trainee in the group responded to several questions in the lesson and the questioning continued until the correct response was attained. Trainees were not belittled for an incorrect response, but were encouraged by giving them questions which they could get right from time to time. If none of the trainees responded correctly, the instructor used the opportunity to reteach the material.

Questions were very effective when properly used.

Questions improved the discussion by (1) increasing

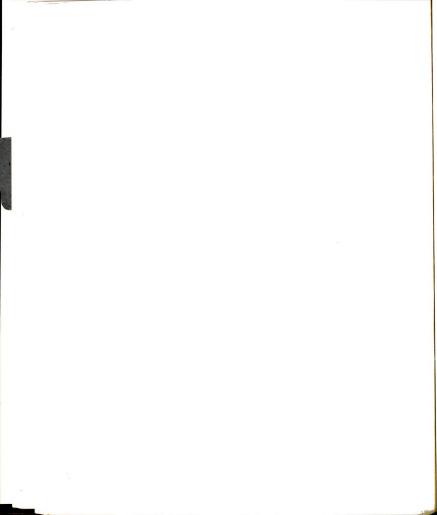
interest, (2) stimulating thinking, (3) fitting the instruction to the class, (4) bringing out student experiences,



- (5) providing drill, (6) emphasizing main points, and
- (7) testing effectiveness of training.

One way to develop thought-provoking questions is:

- State the fact to be taught--extra riders are not allowed on the tractor.
- Change the statement into a direct questionare extra riders allowed on the tractor?
- 3. Reword the question so it can be discussed-why are extra riders not allowed on the tractor?


Checklist for instructors.--The checklist was designed as a series of numbered responses to help the instructor determine if the trainees responded correctly to the instructions given. As the trainee answered, the number of the response question was placed in the appropriate

For example: If the first trainee answered correctly to item one, the number "l" was placed in the "correct" column. If the second trainee missed the next question, "2", but the third trainee got the same item correct, a "2" was placed in the "incorrect" column for trainee number two and a "2" also in the "correct" column for trainee three. Questioning was continued until all items were answered correctly.

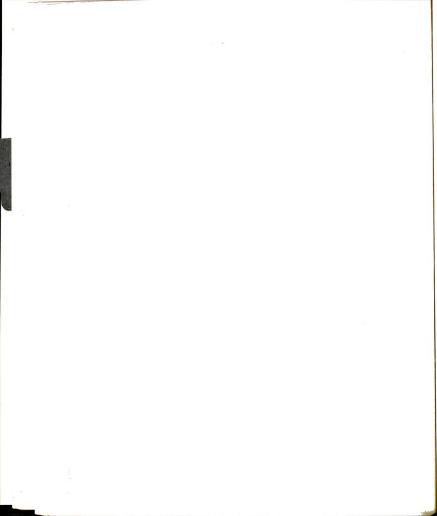
column on the Trainee Daily Evaluation Form (Figure 3.9).

The daily rating of attitudes, skills, and knowledge will be covered under Evaluation in Chapter IV.

Each lesson covered specific objectives and the instructions to the trainees were designed to determine



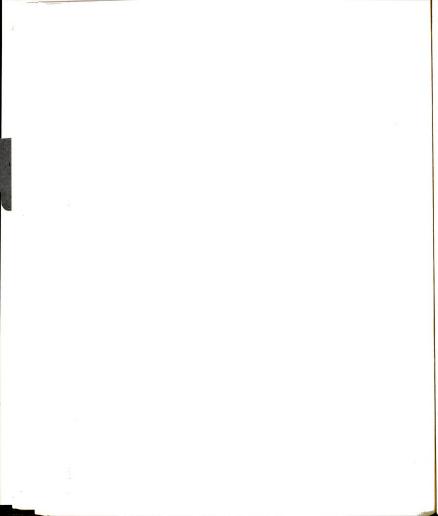
Form EV-2	RAINEE	DAILY T	RAINING EVALUATION
Instructor Bolton			
Date <u>May l</u> Group <u>D</u>	<del></del>		
	Daily	Rating	Key(*) Checkpoints
Name of Trainee	A	s K	Correct Incorrect
Number B-9 Lesson: Dry Air Cleaner			
1. Jose	0	1 2	1
2. Juon	+	2 2	2
3. Roberto	+	3 3	2
4. Validiz	-	2 2	


Figure 3.9.—Sample Procedure for Filling Out a Trainee Daily Evaluation Form for the Basic Tractor Operators' Course.

if the trainee had achieved these objectives. The student responses were divided into:

- Essential material indicated by an "*";
- Desirable but not critical information or skills to meet the minimum requirements.

The trainee was expected to know and perform all of the starred (*) items to meet the minimum standard established for a "qualified" Basic Tractor Operator, Grade I. If the trainee mastered all objectives he would receive a higher rating.


Instructional aids. -- The right hand column of this sheet was devoted to a list of instructional aids which could be used with each small group session. As many of



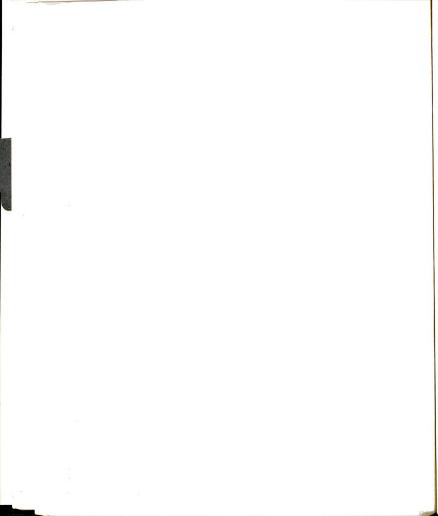
Trainee Activities for Lesson B-9: SERVICING THE DRY-FILTER AIR CLEANER (Page 1 of 2--2 not included)

Checklist Instructional Aids Did the trainee:	<pre>1.*respond that With rag or hand he would check block passage to the air cleaner? air cleaner to make engine smoke.</pre>	e the Clean c lle nd point ir	3.answer cor- Dirty filter no rectly?(dry longer serviceable filter type)	4.remove right Compressed air grille screen and check?	5.point to the Filter element right spot? cleaner (for use with water)	6.*empty the dust Defective or
Instructions to Trainees Checkli Did the trainee	WHAT WOULD YOU DO IF THIS HAPPENED TO YOUR TRACTOR?	LOCATE THE AIR CLEANER. 2.*remove left grill screen and to the air cleaner?	WHAT TYPE OF AIR CLEANER 3.answer co. IS IT? filter type	DOES IT HAVE A RESTRIC- 4.remove r TION INDICATOR? grille scr	POINT TO THE INDICATOR 5.poir (IF SO EQUIPPED).	CHECK THE AIR CLEANER 6.*emp
Preconditions	Tractor smoking badly while running with dry-filter type air cleaner.			Set restriction indicator to show red warning flag.		Dirty air filter in need of cleaning.

*Trainee must know all starred (*) items.



these aids were used as possible to add interest to the course and to help the trainee learn more easily and quickly.

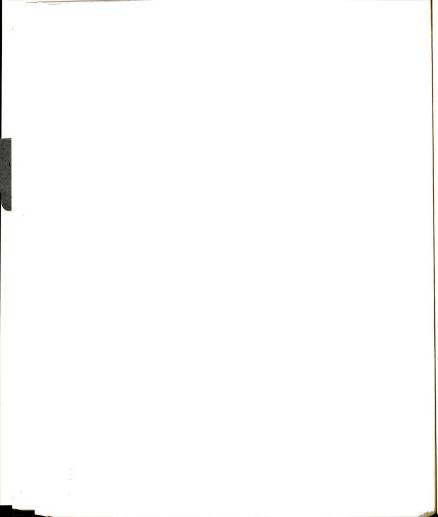

## Teaching Aids and Audio-Visual Materials

## Actual Objects

The best possible teaching material is an actual object. For training tractor operators there was no better object than the tractor itself. For this reason emphasis was placed upon an adequate number of tractors for each training class--preferably at least one tractor for each two trainees but not over four or five per tractor. The instructor had a tough job trying to keep four men meaningfully occupied while he attempted to instruct one man on the tractor; or while one man was performing practical work with the tractor, he kept the other four trainees busy and provided meaningful learning experiences for them without the tractor.

## Parts and Components of Objects

Junked parts of a tractor engine, transmission, drive train, etc., were shown to trainees to impress the need for maintenance. Indelible reminders were created by showing them gears, bearings, crankshafts, etc., which had been damaged or broken by neglect, carelessness, or harmful operation. A gear with one or more teeth broken

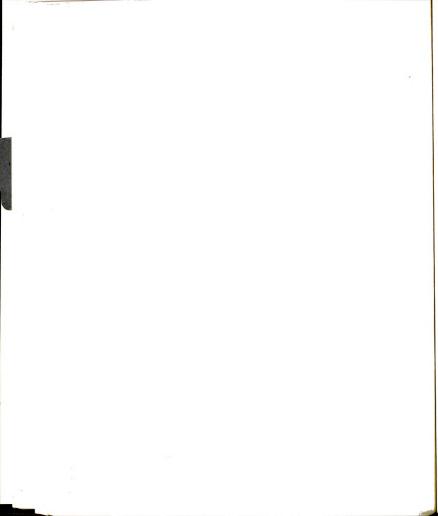



out made a visible and lasting impression on the trainee when he was shown what happens when he "clashes gears."

Bearings worn out by lack of lubrication helped the trainee remember to grease the tractor regularly. Even though he understood only partially, damaged parts gave him a reason to perform maintenance services and do other things he had not been accustomed to doing prior to training. Disassembled parts also helped the trainee to understand how they look and fit together inside the tractor. In describing a piston ring, the trainee who has seen one and thoughtfully looked at it automatically recalls its picture in his mind when the instructor mentions it again.

## Models and Visual Simulators

Smaller or larger scale models that work were used to show the trainee what happens when the engine fires or the crankshaft revolves. One of the best visual simulators produced for teaching the principles of the 4-stroke cycle diesel or gasoline engine is a single cylinder in two dimensions. It is available in colored plastic with moveable crankshaft, connecting rod, piston, and valves. It was used with a directional light source, such as an overhead projector, to throw a greatly enlarged colored picture in motion on a wall or screen. A similar simulator is available for the 2-stroke cycle engine. The cost of these models (with a book of black and white transparencies on the internal combustion engine) in the United States is



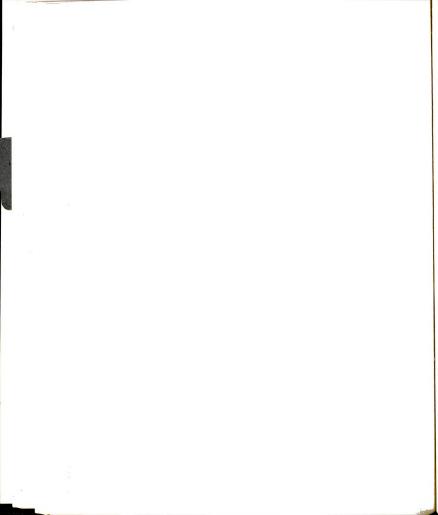

\$23.00 plus shipping from the 3-M Company, St. Paul, Minnesota. See Appendix A for more complete details on these visual aids.

# Colored Slides and Filmstrips

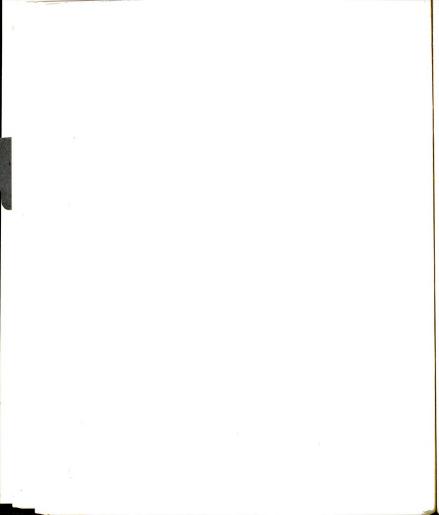
Slides and filmstrips, preferably in color, were used to enlarge the trainee's vision to help him understand what goes on inside the air cleaner and other parts that cannot be easily visualized from the outside. In the Michigan State University Basic Tractor Operators' Course, certain key slides were used to add interest and variety to the large group presentations. Prepared slides also made it easier for the instructor to have certain well-made visuals readily available which he could explain in a personal show-and-tell conference and demonstration. A simple manually operated slide projector can greatly enlarge the picture so that everyone can see it without adding cost or complexity to the training program. Appendix A includes a list of suggested 2 x 2 slides.

In addition, to build rapport with the trainees, the instructor used his camera to record on film some of the activities and personalities that make up every training program. Everyone delighted seeing themselves in a picture, particularly, when it showed them happily doing something. Doing things well which are fun were characteristics of the training program.




# Motion Picture Training Films

While training films were not included as part of the prescribed Structured and Learning Training Environment, there is no reason why the training director should not capitalize upon their use to enhance the after-hours school and job training situations. For instance, most major farm machinery manufacturers and their distributors in all countries have some very instructional and enjoyable color films. When asked, they will gladly show them with their own projectors to a school or training institute, extension meeting or other gathering. All the training director needs to do is contact them sufficiently in advance and provide a suitable indoor or outdoor setting with electricity. These films can be shown anywhere with a portable electric generator.

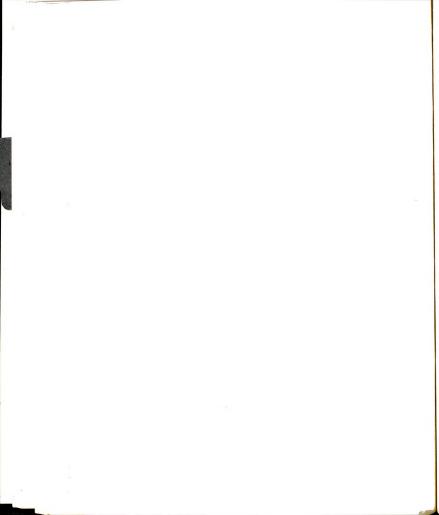

### Other Teaching Aids

Other types of teaching materials and media were employed by the trained instructor whenever they provided an advantage, or an opportunity to more effectively reinforce a point. Some that were used are:

- l. Large wall charts with exploded views in color and graphs available from many industrial and agriculturally oriented firms.
- 2. Sales and promotional literature handed out to trainees on a selected basis to whet their appetites and stimulate interest in new ideas and machines.



- 3. Owners manuals and other supporting teaching materials were effectively used with illiterate and semiliterate trainees to encourage them to read and "study" on their own. At the end of the course, a simple booklet in the trainee's language could be given to him to remind him of the main points covered during the course. and Company have prepared a follow-up booklet in Spanish for the trainee's reference after graduation (1969). stressed safe, intelligent, and economical operation, with special emphasis upon the required daily and weekly maintenance services which the trainee has been taught during the course. If his name is printed on it carefully with a felt-tip pen, he will treasure it and proudly show it to all his friends, as well as take pains to preserve it for later reference and use. The important point was to make it personal and to make him feel that he is important and has made a real achievement in becoming a qualified tractor operator. Such booklets were also developed by Bartlett (1963) with the South African Sugar Research Experiment Station.
- 4. All experienced instructors make effective use of the chalk-board, flip-chart, sand-box, bulletin board and similar instructional aids. Precautions were taken to make sure the illustrations were large enough to be easily seen by all trainees, and that they were clearly drawn or sketched to be readily understood. All sketches

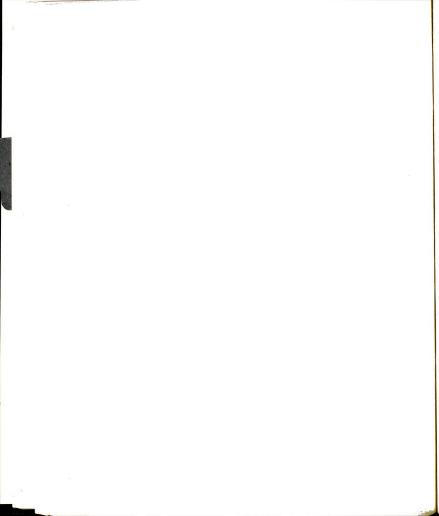



used were heavily marked or lined and positioned so they could be easily seen by all trainees. The instructors were cautioned to talk to the trainees and not to the black-board and to make sure that they did not turn their backs on them and muffle their words. The trainer was cautioned not to chew or smoke or do similar acts which cause him to speak indistinctly or garble his words. His rate of speaking was slow, measured and crisp, with variable tone and inflection. Maintaining eye contact was important to sensing the pulse of his audience and their mood.

5. See Appendix A for a partial list of suggested visual teaching and learning aids. Though not complete, it suggests possible types and sources of material now available. Interested instructors should write to individual firms on official school letterheads and request their latest catalogs and a copy of all available training materials in which they are interested.

# Summary: The Design of a Specific Training Program for Qualifying Low-Education Level Trainees as Basic Tractor Operators

Using the techniques of a modified SLATE (Structured Learning and Training Environment) and learning systems research, a detailed instructional program was developed for training instructors to teach low-educational level personnel to become qualified basic tractor operators. First, the functions of a basic tractor operator were defined in terms of job knowledge and skills. From these definitions, job

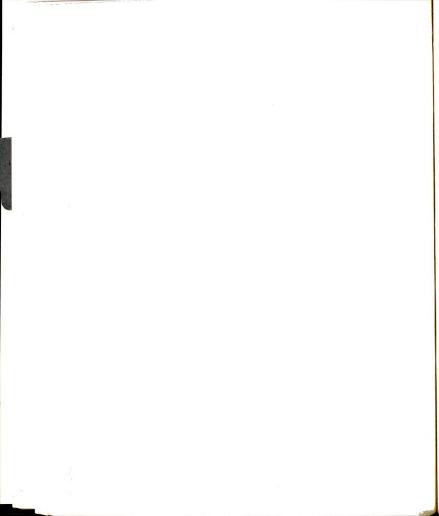



descriptions were written and broken down into specific tasks. Each individual task was outlined in a flow chart showing the order of performance and the skills and decisions required to perform the task.

Using the flow charts a brief lesson plan was prepared for each major skill or knowledge required. The Behavioral Objectives which define the goals for the trainees were listed first. Next, Information for Trainees was prepared as a guideline for the instructor to help trainees meet the objectives. Instructional Methods were also suggested, by which the objectives could be met most effectively.

Trainee Activity Sheets were prepared for use in small group sessions. These included specific directions and questions for the instructor to give to the trainees and a Teaching Checklist of the key points which each trainee should know. Certain required key points were starred with asterisks (*) which each trainee must be able to perform or know to qualify as a basic tractor operator. A list of possible Teaching (or visual) Aids was given suggesting slides, models, machine parts and demonstrations to make training effective and interesting.

A series of questions (usually 10) was prepared as a <u>pretest</u> for each lesson to determine the trainee's entry behavior level. The same questions were designed to be used as a <u>post-test</u> at a later point in the training



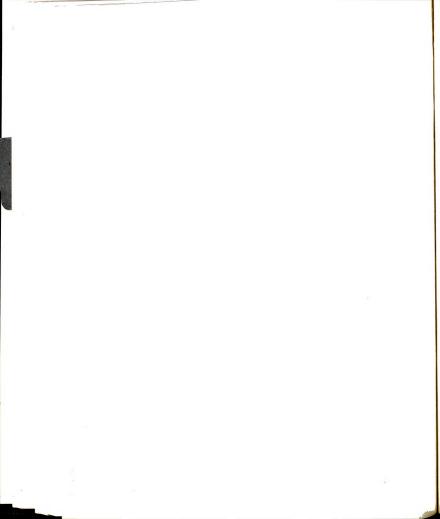

program to check comprehension and retention of the knowledge learned. The flow charts, also asterisked for required items, were designed to be also used as a posttest check of skill performance.

A Daily Trainee Evaluation form was prepared to allow the instructors to rate each trainee after the completion of each lesson. Included was a method to evaluate the trainee's attitude, skills, and knowledge. This form facilitated the detection of problems that the trainees were having and was the basis for measuring progress.

It was suggested that each trainee take the General Aptitude Test Battery (GATB) to determine his suitability and receptivity to training in machinery operation. These scores can be compared to the results of the training program to see if there is the expected correlation with success or failure in training.

A record of the trainee's progress and final rating was summarized on a <u>Trainee Permanent Record</u> to be retained by him for possible use in seeking employment.




#### CHAPTER IV

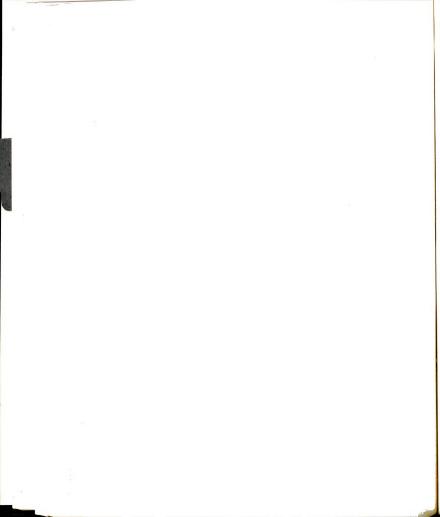
TECHNIQUES AND INSTRUMENTS FOR EVALUATING
TRAINEE ATTITUDES, SKILLS, AND KNOWLEDGE

# General Concept of Evaluation and Testing

Evaluation is a means of gauging the extent to which objectives of a project of activity have been achieved. Course objectives lead to activities which must be evaluated. As soon as they were stated, ways of evaluating their achievement were considered. Activities were then chosen pertinent to the objectives and with consideration for their evaluation. Doll reiterates that the thinking process in instructional design should follow this sequence: "from objectives, to evaluation, to activities which are useful in achieving the objectives, and whose effects can be properly evaluated" (R.C. Doll, 1970, p. 147).

The purpose of education, according to Banathy
"is to ensure the attainment of specified knowledge,
skills, and attitudes—thus, <u>learning</u> is the purpose
around which the system is to grow." In designing curriculums, he says it "is learning which should be in
focus" (B. H. Banathy, 1968, p. 24). On the basis of this




discussion, it is suggested that <u>instruction</u> is the process rather than the purpose of education.

processes and functions that are introduced into the environment of the learner to facilitate the mastering of specific learning tasks. Hence, any interaction between the learner and his environment toward the attainment of specific and purposeful knowledge, skills and attitudes was viewed as instruction. The effectiveness of an instructional system, therefore, was measured by assessing the degree it provided for the learner a system for learning. A training system serves its purpose to the extent that it brings about in the environment of the learner all the possible interactions that result in the attainment of the desired performance.

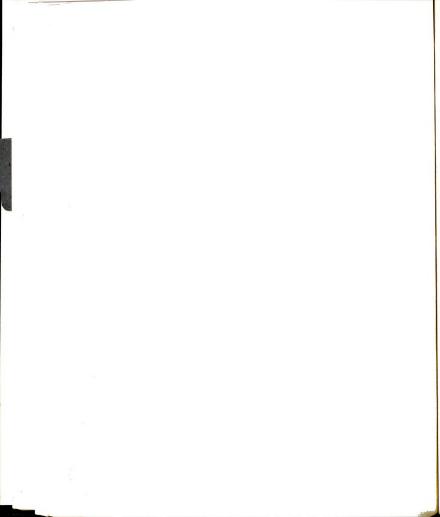
## Won't Do Versus Can't Do

Training may be simply defined as an "attempt to influence behavior." Goss says "The effect of training should be to increase both the trainee's ability to do, and his willingness to do, the assigned job" (W. R. Goss, 1970, p. 46). Frequently overlooked is the fact that training and testing must prepare the trainee for the job environment as well as the job.

Training programs cannot be designed, conducted or tested in a sterile or imaginary environment. In industry or business, some indicators of personnel



problems and need for training are (1) low production rates, (2) high rejection rates, (3) high absenteeism, (4) large number of grievances, and (5) a high employee turnover rate.


 $\label{eq:continuous} \mbox{It is important to acknowledge, Goss (p. 46)} \\ \mbox{cautions}$ 

that not all personnel problems can be solved by training. Sometimes it's a matter of 'won't do' rather than 'can't do.' Sometimes unsatisfactory performance is due to weaknesses in the system rather than lack of employee skill or willingness. Many a plant with high rejection rates has spent money on training, when they should have spent it on replacements for worn-out tools.

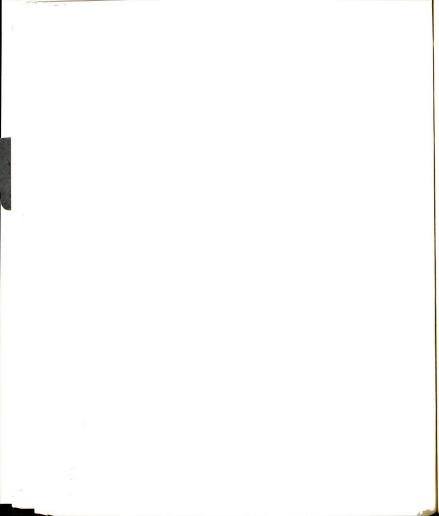
Before testing the trainer must look at the total training concept. To determine if the problem is won't do versus can't do, ask the question, "Given adequate tools, could the man do the job?" If he could but is not, then the problem is not a simple lack of skill or knowledge. Perhaps a simple aid is all the worker needs; or perhaps the supervisor is the one who needs training.

#### How Well Must Trainee Learn?

The problem must be verbalized before a solution can be developed. Without specific objectives, there can be no meaningful, definable accomplishment. Meaningful means measurable and trainers must not only identify what the trainee must know and what he must be able to do, but the tests must state <a href="https://www.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu.now.edu



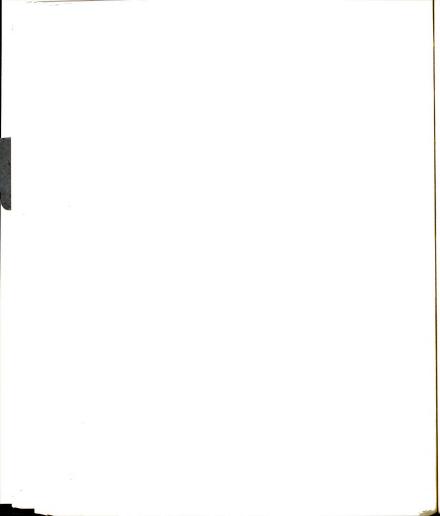
The evaluation of the achievement of objectives is sometimes short-circuited by moving directly to experiences through which objectives are achieved. However, the very means of evaluating objectives will suggest suitable learning experiences. This prevents instructors from getting lost in a forest of activities and experiences. It also keeps them from trying to develop tests to measure meaningless and extraneous material.


Evaluation procedures were designed to measure attainment of every desired behavior the objective expresses, such as changes in attitude, appreciation and interests which are difficult to assess. Pencil and paper tests do not fulfill this need; therefore, more ingenious test instruments and methods were devised to measure learning.

This chapter discusses the instruments developed specifically for measuring the effectiveness of training and the attainment by the learner of the stated objectives of the Basic Tractor Operator's Course, Grade I.

Emphasis was placed on performance testing and standards for certification.

#### Aptitude Evaluation


In recruiting and selecting trainees one of the first factors to consider is mechanical aptitude. Some

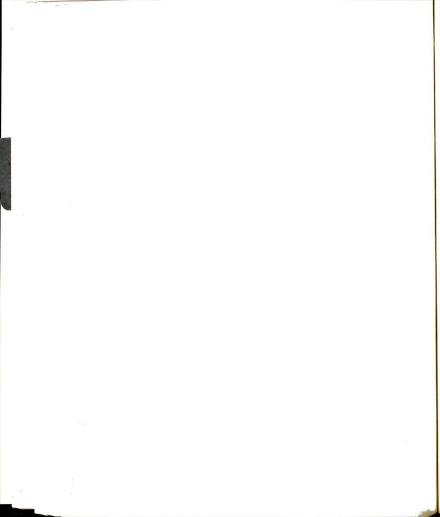


individuals possess little information about mechanical devices or their nature. Others have considerable aptitude in solving problems involving mechanical reasoning and in understanding the operation of mechanical things. Some people have a natural interest in, and a desire to learn more about, the mechanical arts and the technical crafts around them; while others are indifferent to various types of machines and have little or no curiosity about them. Various types of tests have been developed to identify persons who are mechanically inclined.

The use of occupational test batteries, together with other information obtained through proper interviewing and counseling, offers an objective measure of an applicant's potential skills and aptitudes for certain types of work. Testing helps to standardize the selection process and adds validity to the assessment of an individual's abilities in comparison with other individuals previously evaluated with similar characteristics. The selection of trainees for specific training programs on the basis of standardized tests is based on the fact that individuals vary greatly among each other physically, in ability to learn, in ability to produce, and in specific aptitudes or innate capacities. Where available such tests should be used as partial criteria for the selection process.

The experience background of the trainee gave an indication of his ability and aptitude in mechanical

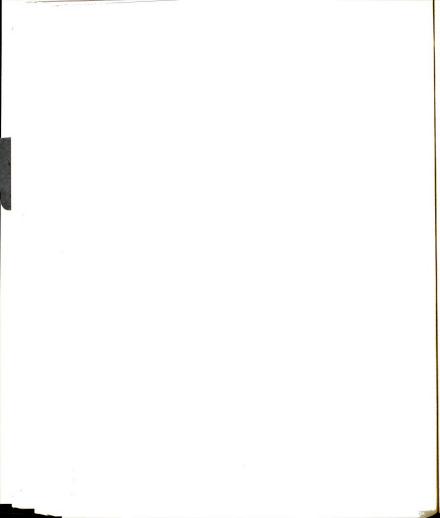



skills. For tractor operator trainees, much of this information was obtained through a personal interview using the suggested enrollment form (Appendix C).

Since trainees' backgrounds are so varied around the world, it is impossible to set general minimum standards for entry into the training program. However, for greatest success in training, preferred candidates should:

- Have a minimum of a 4th or 5th grade education or its equivalent.
- Be a minimum of 15 years of age with special consideration given to middle school leavers.
- Be interested in agriculture and vocational training for an agricultural occupation.
- Have a job opportunity where they can be employed upon satisfactory completion of the training course.

#### Each trainee, in addition must:


- Have the consent of parent or guardian to take training if under age.
- Agree to, and have the means, to stay until the course is completed.
- Have arrangements for transportation to and from the training site.



# Use of Occupational Tests and Test Batteries

Occupational training tests—such as the US
Employment Service General Aptitude Test Battery (GATB),
the Differential Aptitude Tests, Purdue and Minnesota
Tests—are one means of measuring a person's ability to
acquire specific job skills and knowledge. Tests measuring job potentiality are called aptitude tests and
measure an applicant's learning ability for jobs which
require no previous training or experience. Different
tests may be combined in a test battery to measure the
aptitudes of inexperienced trainees to take special
training to acquire specific skills for a number of jobs
or occupational clusters.

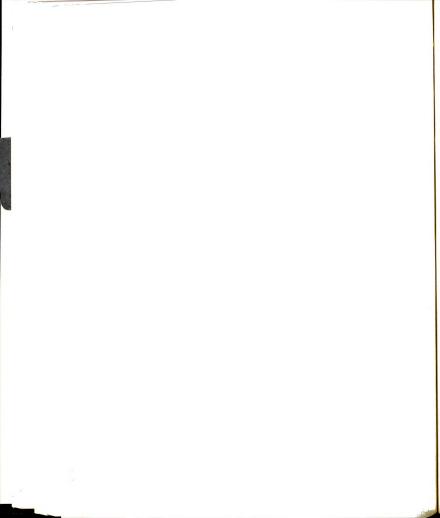
Employment Security Commission's Test Division for many occupations. It is desirable to use tests relating to a group or cluster of jobs, since changing technology demands that workers have the ability to perform in several related jobs. Furthermore, the specific identified occupations already number over 40,000 and it is impossible to set up a separate test for each one which could be taken meaningfully by an applicant. But, tests can be taken which survey groups of occupations to determine his suitability for training in the general area. The safe and skillful operation of complicated



mobile machinery in agriculture or industry is an example of a cluster of occupations requiring special skills and special training for an operator to become qualified to perform them.

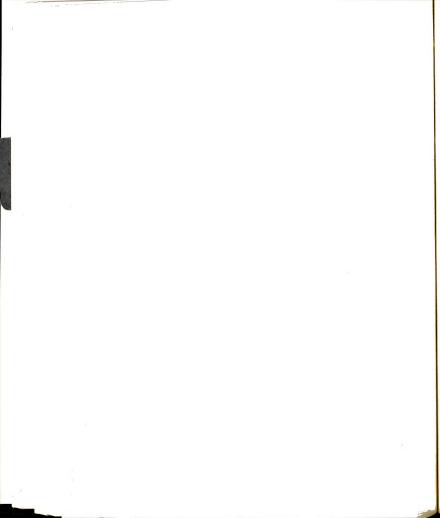
# Advantages of Occupational Tests

According to the Federal Employment Security Commission, some of the advantages of using carefully designed and administered occupational pretests are:


- a. Trainee abilities can be more appropriately matched to job requirements or skill areas.
- b. Test-selected applicants of highest performance can reach a higher level of training skills with the same amount of training.
- c. Test-selected applicants of high performance can reach a given level of skill with less training.
- d. The productive capacity of the individual can be forecast with reasonable accuracy.
- e. It increases the trainee's self confidence and builds morale and competence.
- f. It reduces the requirements for training and reduces waste in materials and resources.
- g. Tests do not require any previous experience or training.
- h. The tests indicate what type of on-the-job training may be suitable for newly recruited workers lacking developed skills.
- i. The tests are very useful in selecting trainees for vocational courses (US Department of Labor, 1968, p. 125).

# Pretraining Tests

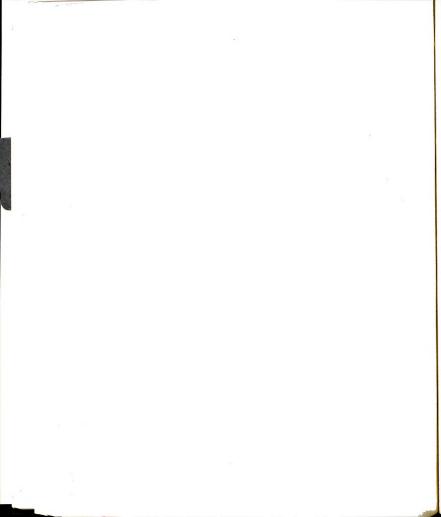
# Mechanical Aptitude Tests Currently Available


The Detroit Mechanical Aptitudes Examination,

Form A (H. J. Baker, P. H. Voelker, and A. C. Crockett) .--



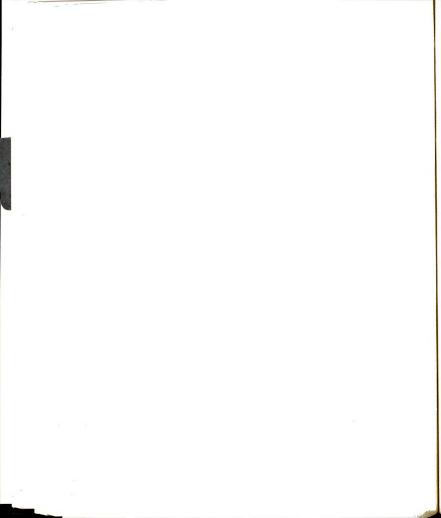
Parts of this test would be unsuitable for low-education level trainees since it requires a reading and mathematics knowledge too advanced for the average disadvantaged trainee. It consists of seven parts: (1) matching pictures of tools with the correct word description, (2) filling in or marking a series of blank circles, (3) determining the relative size of similar objects of the same form, (4) working simple mathematical problems, (5) fitting pieces of pictures together in the proper relationship, (6) multiple-choice questions on tools, mechanical devices and processes, and (7) determining the direction of rotation and speed of two belted pulleys in various combinations. See Appendix B for sample test pages.


The Purdue Mechanical Adaptability Test (C. H. Lawshe and J. Tiffin, 1964).—This test also requires an extensive English vocabulary and knowledge of mechanical processes. It uses no pictures or photographs but simply asks questions which can be answered by a Yes, No, or Don't Know response. The test deals with information of a mechanical, electrical or related nature. People who know the answers to these questions can do certain jobs better. Conversely, many other jobs can be done just as well by people who do not know the answers. The test allows 15 minutes to answer 60 questions. See Appendix B for sample test pages.



The Revised Minnesota Paper Form Board Test, Series AA (R. Likert and W. H. Quasha, 1941). -- This test consists of 64 geometric figures divided or cut into various size and shaped parts. The parts are arranged irregularly in five squares with only one square of the five unassambled parts having the right size and shape parts to make the correct figure. The trainee must decide which figure shows how the parts fit together to make the solid figure. Sometimes the parts have to be turned around or turned over in order to make them fit. The parts are cut from simple geometric figures such as triangles, circles, squares, parallelograms, diamonds and crosses. They progress from simple two-part straight line cuts to five-part multiple curve and line cuts. trainee has 20 minutes to answer 64 problems. Appendix B for sample pages of the test.

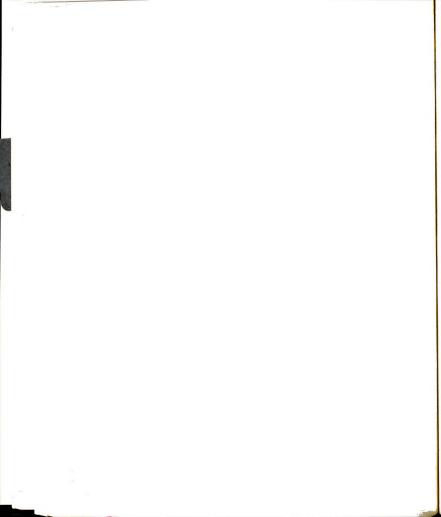
The South African Form Series Test (F.S.T)


(R. H. Blake, 1970).--This non-verbal performance test measures the inductive reasoning ability of semi-literate Bantu workers. The subject is required to infer from a given sequence of symbols how this sequence is continued. The test has been in use for a number of years for classifying and selecting Bantu workers for a number of secondary industries in South Africa and adjacent countries. It consists of four practice items and 18 test items. The items are in a form of a pattern or



sequence of symbols. Each symbol has a particular size, color and shape. In the test, three sizes—big, medium and small—and three colors—red, yellow and blue—and three shapes—circle, square and triangle—are used to develop a coded sequence. Part of a sequence is presented and the trainee is required to continue it by fixing the plastic discs onto a strip of masking tape. The test items become more and more difficult as the test progresses. Instructions are given verbally in the subjects' native language with the aid of two demonstration posters. The test is administered only to Bantu industrial workers falling into the educational range from nil to about fifth grade level. It takes about 35 minutes including 10 to 15 minutes for instructions.

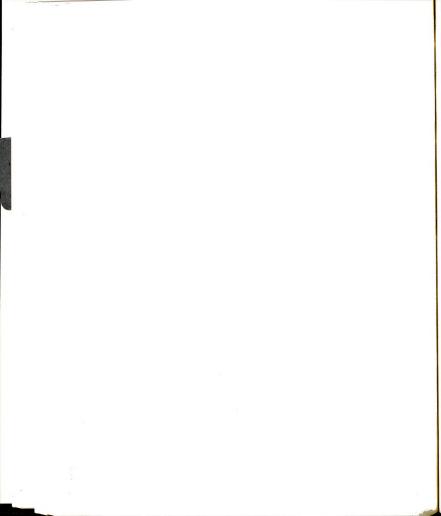
# General Aptitude Test Batteries


The US Employment Service General Aptitude Test
Battery (GATB) (1970, p. 19).—To help establish individual entry behavior characteristics, all trainees
enrolled in the Basic Tractor Operators Course should
be given a series of general and mechanical aptitude
tests. One widely used test in the US, the GATB, was
developed by the US Department of Labor. In the US this
test is administered by the local office of the State
Employment Security Commission. Overseas, the training
officer would give and interpret the results of this or



similar tests. The tests should be given prior to the start of the training program so that the instructor can obtain some idea of the general ability of and the variability among applicants. See Appendix B for sample pages.

After completion of the Basic Tractor Operator's training program (3 to 4 weeks full time), it was suggested that the GATB be given a second time and the results compared to the original test to determine any positive change made during the intensive training program. The first test would predict or identify those trainees most likely to do better than average, as well as those least likely to do well. These predictions can be compared to the results of the BTOC to see if they correlate with it in identifying above average potential operators trainable with a minimum of expense and time, as well as weeding out those unlikely to make good.


It is difficult and risky for people with little mechanical background to use tests developed in another country with a high level of technology. But there may be certain parts of multiple battery tests which are just as valid for them. The purpose of preliminary testing is to see if basic aptitudes can be measured under controlled conditions to predict the most promising trainees.

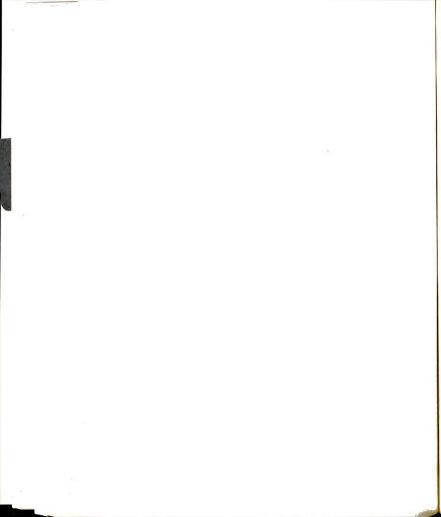


The present verbal GATB tests include: the general learning ability verbal tests on "vocabulary" and "arithmetic reasoning," a numerical test on "computation" and a "clerical perception test" on name comparison. The <a href="non-verbal">non-verbal</a> GATB tests which are believed suitable for testing foreign-language applicants for training as tractor operators are:

- A general learning ability spatial test on "3-dimension space"
- Two form perception tests on "tool matching" and "form matching"
- 3. Two manual dexterity tests on "placing" and "turning"
- 4. Two finger dexterity tests on "assembling" and "disassembling"
- 5. One motor coordination test on "mark making."

In giving these aptitude tests it is important that the very same procedure and manner be followed each time by the testing examiner. It is desirable that the same person give the entire battery of tests to all trainees to be compared and trained in the same environment. To control error, the examiner should use the same number of practice sessions, offer the same encouragement and interest to relax the trainees and spur them on to their best efforts.




A special form EV-1 (Appendix C) was prepared to record the GATB tests for each applicant. The raw test scores were to be converted to standard test scores for basis of comparison. Based on these scores, comparisons could then be made between trainees and with other population groups having similar characteristics.

Special Aptitude Test Battery (SATB).--Trainees who have at least a fifth-grade reading level in English can take the entire battery of 12 GATB tests. For trainees with little or no formal education, or education in a different language, the Employment Security Commission suggested that only the eight non-verbal parts of the GATB be used.

A new non-verbal version of the GATB, called the Special Aptitude Test Battery or SATB, was scheduled to be released during the summer of 1970. When available, this test can be used with trainees with less than a fifth-grade reading level. This test still has not been released as of the date of this writing.

For use in Latin American and other Spanishspeaking areas, there is a Spanish language GATB.

Arrangements for it must be made well in advance and the
testing officer must be trained and certified by the
particular State Employment Security Commission. The
examiner must also be well versed in the Spanish
language.



Six aptitudes which will be measured by the Special (non-verbal) Aptitude Test Battery are: (1) general intelligence, (2) spatial aptitude, (3) form perception, (4) motor coordination, (5) finger dexterity and (6) manual dexterity. For a more detailed description of these aptitudes and the tests which are used to measure them, see Appendix B, for the nine aptitudes measured by the 12 tests in the General Aptitude Test Battery. Also see Appendix B, for definitions of the aptitudes measured by the GATB.

Aptitude tests do not pin-point for the trainee exactly what career he should follow or give exact answers to specific questions, such as: Can I be an engineer? or Should I plan to become a tractor operator? They can give reasonable answers to more general questions such as: What would be the better job for me--office worker or tractor operator? Do my particular assets fit the requirements for a mechanic? It should be kept in mind that any test is not a perfect predictor for all people. It does not tell a trainee who scores low that success is impossible. It does inform him that he may have a tougher time than his classmates and is not very likely to do well. A boy who gets a high score could also fail because of laziness or other reasons not related to his ability measured by the tests.

The Differential Aptitude Tests (DAT) (G. K.

Bennett, H. G. Seashore and A. G. Wesman, 1947).--DAT

measures verbal reasoning, numerical ability, abstract

reasoning, clerical speed and accuracy, mechanical

reasoning, space relations, language usage spelling and

language usage grammar. These tests of an individual's

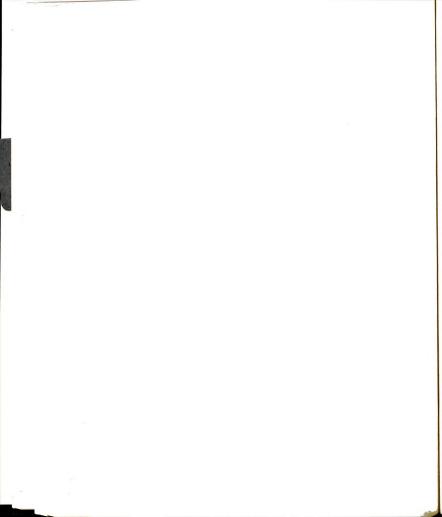
capacity to learn help predict how he can expect to

develop in school and in a job by evaluating his relative

strengths and weaknesses as they may affect his progress.

The results of DAT tests should be used along with other

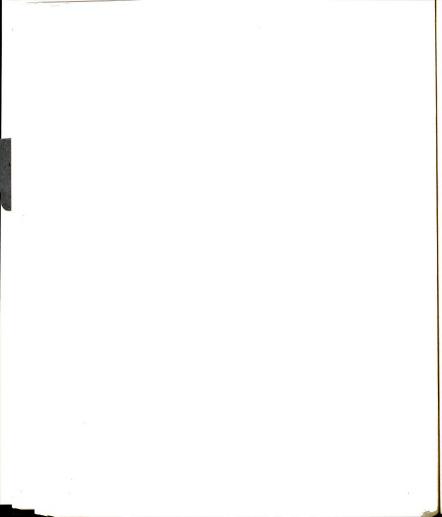
information such as school grades, hobbies, interests,


ambitions, character qualities, personality traits, health,

ability to work with others, skill in doing hard tasks and

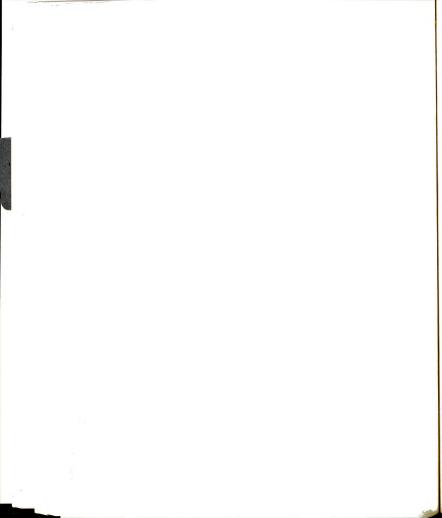
willingness to learn.

Verbal reasoning: This test tells how well a person understands ideas expressed in words and how clearly he can think and reason with words. It is probably the best all-around predictor of how well trainees can do in school. Trainees who score well should consider more advanced education. Persons who do poorly should perhaps go into work calling for less verbal ability, such as production work in a factory or on a farm without expecting to become manager.


Numerical ability: This test tells how well a trainee understands ideas expressed in numbers and how clearly he can think and reason with numbers. Scores on



this test predict, to some extent, success in nearly all high school and college courses. It is useful in technical careers not requiring a college degree.


Abstract reasoning: This test indicates how well the trainee understands ideas not presented in words or numbers. Using diagrams, this test measures how easily and clearly a person can reason when problems are presented in terms of size or shape or position or quantity or other non-verbal, non-numerical forms. This test along with space relations and mechanical reasoning, helps to predict success in many kinds of mechanical, technical and skilled industrial work. Trainees who score low on Verbal Reasoning but fairly high on Abstract Reasoning indicate an ability to reason in certain ways despite a verbal shortcoming. Remedial work in vocabulary, reading and similar exercises can strengthen verbal reasoning power.

Clerical speed and accuracy: This tells a trainee how well he does paper work so important in offices, stores, warehouses and laboratories. It measures how quickly and accurately a person can compare and mark written lists such as names or numbers. It is the only test that demands fast work, and where speed in doing a simple task counts heavily. Girls tend to score higher than boys on this test.

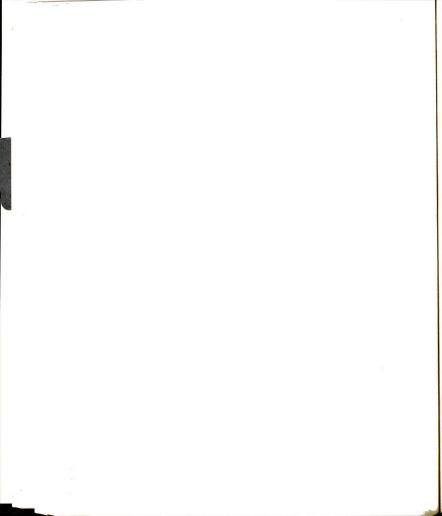


Mechanical reasoning: This test shows how easily a trainee grasps the common principles of physics he sees in everyday life. It indicates how well he understands the laws governing simple appliances, machinery, tools and motion. Trainees who do well on this test usually like to find out how things work. They often are better than average at learning how to construct, operate or repair complicated equipment. A high mechanical reasoning score gives added evidence of aptitude in the fields of science and engineering. Men in agriculture and industry who become technicians, shop foremen, repair specialists and skilled machine operators tend to be at least average in mechanical reasoning. People who do poorly may find the work rather hard or uninteresting in shop courses and physical sciences which demand thinking and planning, rather than just skill in using their hands.

Space relations: This test measures one's ability to visualize or imagine the shape and surfaces of a finished object before it is built, just by looking at the drawings or sketches that would be used to guide workmen in building it. Trainees planning for careers not requiring college training should consider their space relations score in comparison with other aptitudes in deciding whether to look for jobs or training courses that deal with real objects—large or small, watches or tractors—rather than with people or finances, for example.



Language usage: Spelling measures how well a person can spell common English words. It is among the best predictors of ability to earn good grades in high school and academic courses.


The three most important tests for measuring the ability of low-education level trainees are the non-verbal tests on mechanical reasoning, abstract reasoning and space relations. For an example of the Mechanical Reasoning DAT Test, see Appendix B.

## Pretests and Post-Tests for a Specific Course of Instruction

Establishing Pre-training Entry-Level Knowledge
by Test and Interview. -- The first pretest is given to
trainees during the orientation lesson before they start
the actual training program. During orientation they
also complete a Trainee Enrollment Record. The preliminary pretest and enrollment questionnaire give the
instructor an understanding of the trainee's background
and form a basis for evaluating the trainee's progress at
the end of training.

Using Individual Lesson Pretests to Determine

Trainee Attitudes and Knowledge.--Prior to each succeeding
lesson a short "test" is given as a pretest to all
trainees to help evaluate their previous knowledge about
the agricultural tractor and its associated equipment.
These evaluations help to fix the trainee's entry level



for each major lesson from which progress can be measured.

On an average, trainees are asked ten questions or

exercises. Whenever possible, they take part in a

practical exercise to demonstrate their ability and

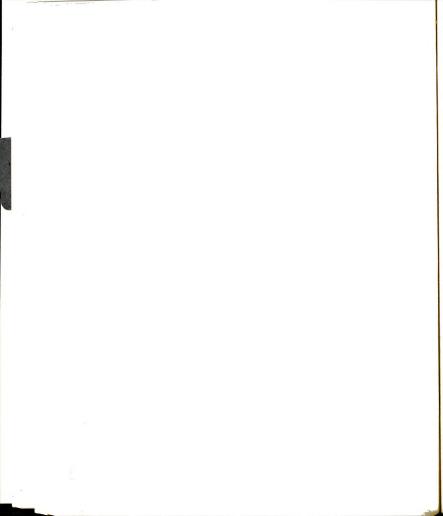
learned skills. When this is impractical because of time

or the nature of the subject, the instructor asks trainees

questions based on the desired behavioral objectives

established for the course.

For ease in teaching and scoring the answers are put on a standardized form so the same method can be used each time. The possible answers must be carefully explained to the trainees. The trainee selects what he believes to be the "best" answer. The answer "Not Important" can be interpreted by the trainee as "This information is not important for me as a tractor operator." The answers "Don't Know," "Yes," "No," or "True," and "False" are self explanatory but must be explained to the trainees. Teaching assistants make sure their trainees mark the answer in the proper place on the answer sheet.

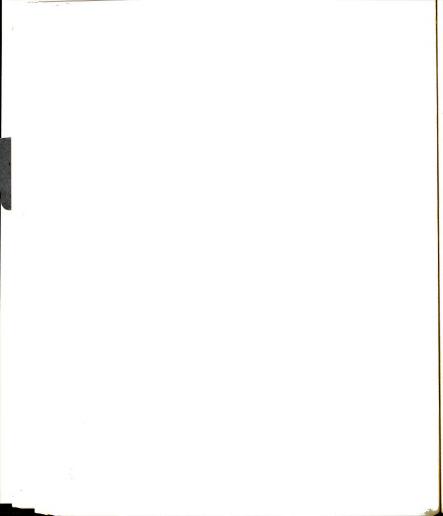

See Page 204 is this Chapter for a sample lesson Pretest/ Post-test for Lesson D-4, Selecting Transmission Gear and Range.

Administering Oral and/or Written Tests to

Trainees with Low Educations. -- Special instructions were

prepared for using tests with low-education level

trainees. These instructions to the teacher were included
in the first lesson of each series in the chapter.




## Concurrent Training Tests

## Training Activities and Exercises

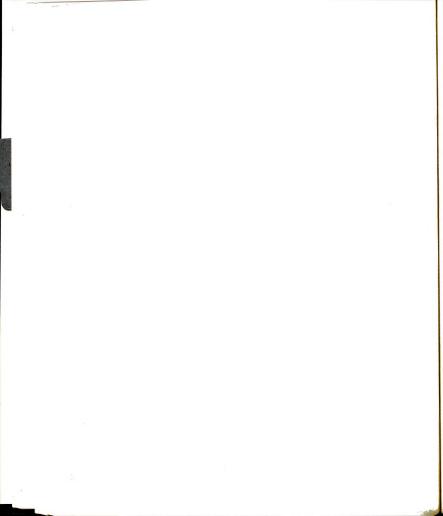
Small Group Activities. -- The small group was designed to permit maximum freedom in individualizing course instruction. It is desirable to hold the number of trainees per instructor to a maximum of four to five to enable the small group leader or assistant instructor to work closely with each individual trainee. In carrying out the Trainee Activities discussed in Chapter III, the instructor has the opportunity to get to know each trainee individually and to discover his weaknesses and strengths. By using the guidelines given in these activities and by referring to the flow charts which accompany the majority of the lessons, he made sure that all trainees had equal opportunity to participate and to perform the various skills and exercises. learning situations involved both laboratory and field practicals, depending upon the nature of the subject and its objectives.

As each trainee performed the skill or practical exercise the instructor observed and recorded the results, giving the trainee ample time to practice and come up to his apparent attainment level. Evaluation is part and



parcel of the teaching process, and as the trainee went through the learning process he was graded by the instructor for attitude, skill and knowledge (ASK).

The instructor "tested" each trainee in turn so that all were asked about the same number of questions or called upon to demonstrate a particular point or step.


No one trainee was allowed to monopolize the stage nor hang back without participating. The instructor made each trainee's experiments a lesson for all the others. He kept them busy, attentive and alert by directing questions and asking for appropriate comments or "help" from them if he perceived they were losing interest or their attention was wandering. It worked very well to place one of the sharper trainees with each small group. They helped the slower members by explaining terms or by working with them, until they came up to an acceptable level of performance or knowledge.

Using Flow Charts as Instruction Guides. Lesson

D-4: Selecting Transmission Gears.--A special type of

flow chart or logic tree was devised as a training aid in

teaching and testing the trainee on his skills, attitudes



and knowledge. See Figures 4.1 and 4.2 on the procedure for selecting the proper transmission gear and range on a modern diesel tractor. This flow chart was designed as an exercise to familiarize the trainee with the process of choosing the correct gear and range. It is not a procedure to be followed each time the transmission is shifted.

Flow charts are an excellent visual tool for defining an entire process. They clearly delineate the important steps and show a logical order of approach for solving any problem. Other flow charts were used to check the trainee's progress and to guide him in making the next correct step. They helped the instructor by ensuring that no step was left out and that all critical considerations were made in arriving at a decision. The flow chart identified all decisions that had to be made and the resultant follow-up to undertake.

The flow chart also indicated the kind of knowledge needed and the types of attitudes important in a process. Once the process or skill was analyzed in a flow chart it was used as a method of trouble-shooting or evaluation. As a logical order of action it was a blueprint for systematic problem solving. While the flow charts were designed for the use of the instructor to improve his teaching, they can also be used by literate trainees to

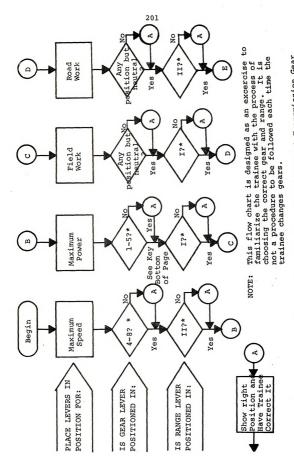
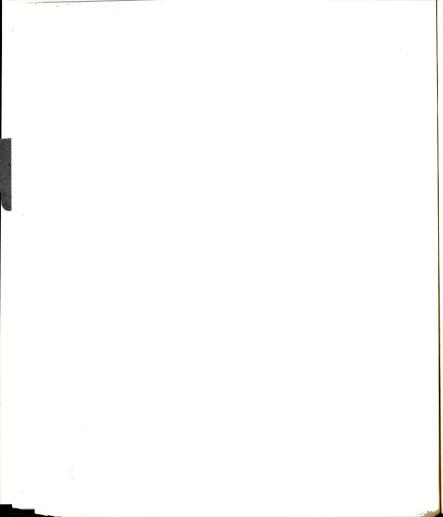
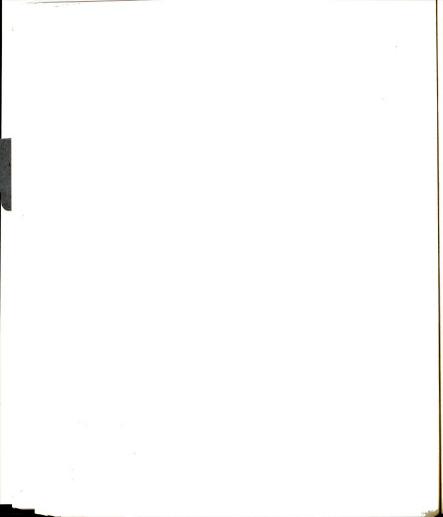
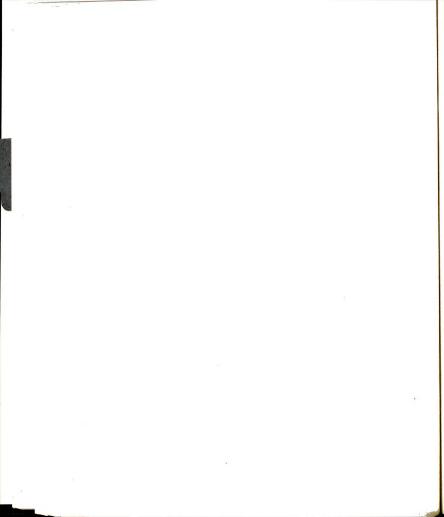





Figure 4.1. --Flow Chart for Lesson D-4: Selecting Best Transmission Gear and Range Combination. (Page 1 of 2)



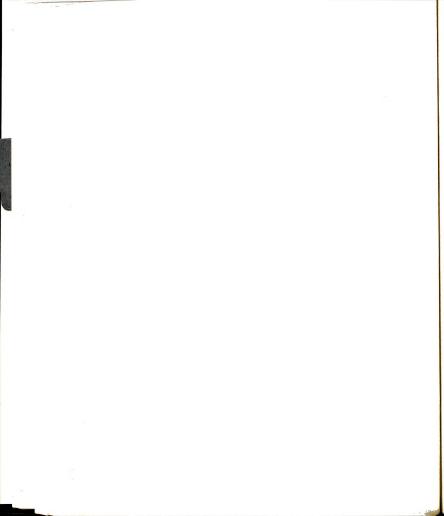
-4: Selecting Best Transmission Gear (Page 2 of 2) Figure 4.2. -- Flow Chart for Lesson D-4: and Range Combination.




help them do their tasks more efficiently and effectively without back-tracking or repeating. See also Figures 3.5 and 3.6 in Chapter III for other examples of flow charts.

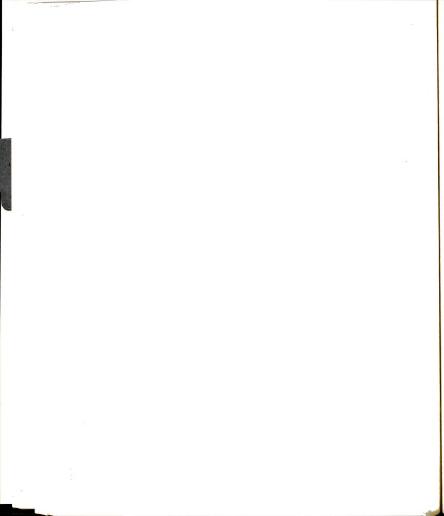
Lesson Evaluation and Post-test: Revised Post-test

Stated as Questions. -- During the main presentation by the chief instructor to the large group, and during the laboratory work period in the small groups, the trainees were further evaluated and checked by each group leader or teaching aide. Using the "teaching checklist" under "Trainee Activities" at the end of each lesson, the trainees took the same pretest a second time as a post-test to see if they had learned the key points. If time permitted the small group instructor made up additional questions or exercises to test the practical application of knowledge and skills presented in the lesson. By reviewing the results of the pretests and post-tests, the instructor pinpointed the weak points and the areas needing further clarification.


An example of a revised pretest/post-test stated as questions with a "Yes," "No," or "Don't Know" answers is illustrated on page 204 for Lesson D-4 on selecting the transmission gear and range.

Keeping the 1,000-Hour Tractor Service Record. -For the illiterate operator, a 1,000-hour service record
was made on heavy paper similar to the model in Appendix C
labeled UM-1. This form was designed after one made by



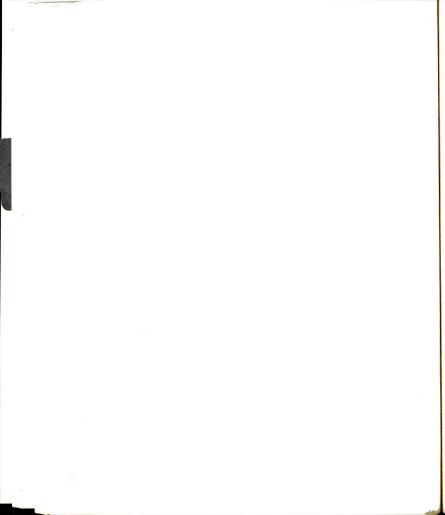

## SAMPLE LESSON D-4: SELECTING TRANSMISSION GEAR AND RANGE TRAPLE TRAINING EVALUATION NO. 39

Date Trainee Trainee  Trainee  Trainee  Mon't Know Yes No Shifted Shifted Spround Ground	25	hift	81
re 2  S TO TEACHER, ASSISTANTS, AND TRAINEES" LESSC ds for the tractor?  forward speeds for the gear lever identified umber of each pair, such as 3-7?  Deere tractor must the transmission first be ired range before it can be shifted into gear rator use the Owners Manual to determine the stor each gear and engine speed?  transmission levers be placed in neutral to the transmission levers here.	the tractor?  6. In an emergency can the diesel tractor be started by towing?  7. In towing it it permissible to pull the tractor at speeds  up to 30 mph?		ge g



Bartlett so that the uneducated operator merely looks at his tractor speed-hour meter and matches the number he sees in the middle of the dial with the same number on the chart (George Bartlett, 1966, pp. 6-10). At the end of each day he circles this number on the 1,000-hour chart. Each time the circled number is close to, or within, a red color-marked column, he knows that his tractor needs to be given the lubrication and maintenance services pictured on the daily maintenance guide chart for the "A" (red) or 10-hour service. See Appendix C.

Ideally the operator should stop and service the tractor whenever the hour meter reads any multiple of 10 hours; but in order to form good habits of regular service, it was desirable to perform certain services at the beginning and end of every work day. Each time the circled number reached a green, yellow or orange square on the right hand side of the chart, the operator knew that the tractor had to be given additional service. Again, the pictorial maintenance guide gave a quick reference to the required "B" (green) 50-hour maintenance services to be performed weekly by the operator. At this time he also assisted the mechanic in doing all of the services called for by the yellow- and orange-colored boxes containing the "C" and "D" services numbered 250, 500, 750 and 1,000 hours as recorded by the tractor hour meter.



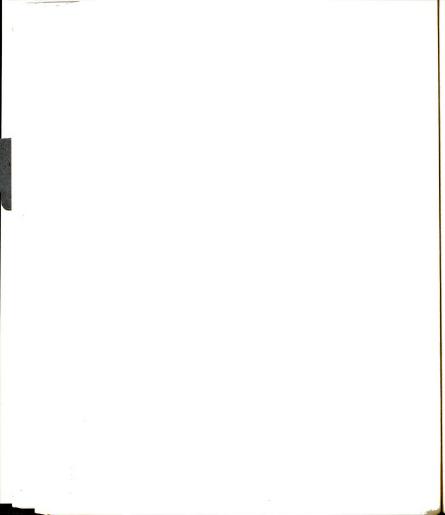

For the literate operator, a simpler chart marked UM-2 was developed with only key numbers in the column headings (see Appendix C). The operator counts the spaces and checks the proper box at the end of each day. Each time the A service is performed, he initials the box. At the 50-hour intervals he also initials the B, C, or D boxes as required and assists the mechanic in performing the C and D services called for as shown on the Maintenance Guide for the 250,500, 750 and 1,000-hour periods.

Using the Pictorial Maintenance Charts.--The daily maintenance services are pictured on a Pictorial "A" Daily (10-hour) Maintenance Guide Chart Form UM-3. The operator service checks were listed in a logical systems order in two columns from top to bottom. Each picture was numbered in sequence and color-keyed in red to indicate it is a service to be performed daily. A brief statement below each picture indicated the service to be carried out (see Appendix C).

The weekly maintenance services are illustrated on a Pictorial "B" Weekly (50-hour) Maintenance Guide Chart, Form UM-4 (Appendix C). In the same manner it was color-keyed in green to indicate that it corresponded to the green boxes on the 1,000-hour tractor Service Record.

Trainee Daily Training Evaluation (Form EV-2).-Assessing trainee progress requires daily evaluation of
each trainee, lesson by lesson. A form called the "Trainee




Daily Training Evaluation" was provided for tabulating this information (see Appendix C). If this information is accurately kept, the instructor can individualize the course so that every trainee will be kept up-to-date and successfully complete all course requirements. Wherever deficiencies were noted, special efforts were made to review that trainee before he got so far behind that he was unable to make up his deficiencies.

The Daily Training Evaluation form worksheet was designed to be used by the instructor to keep a running record of each trainee in the small group sessions. Space was provided for each trainee's name under each lesson. The daily rating for attitudes (A), skills (S), and knowledge (K) was made at the end of each lesson session. The data from this form were transferred to Form EV-4, the permanent record for each trainee.

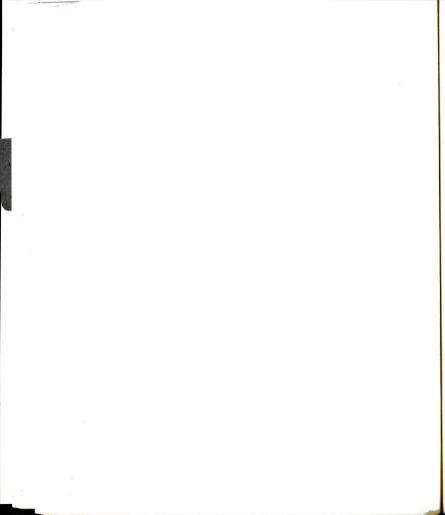
Rating Trainee Attitudes, Skills and Knowledge

(ASK).--

1. Attitude (A): Because the attitude of the trainee played a critical role in his success or failure as a tractor operator, it was necessary to attain some measure of his attitudes while in training. When attitude rating was taken daily a fairly accurate picture became apparent by the end of the training period. In making judgments about attitudes, the instructor was careful not to let previous work or attitudes of the trainee influence



the current evaluation. The trainees were rated according to the following scale:

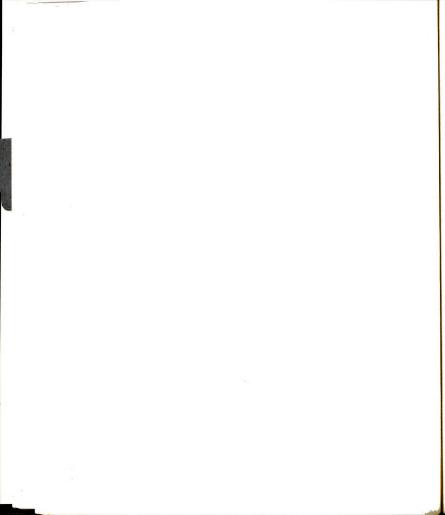

- + = Positive
- = Negative
- 0 = Neutral

Following is a list of suggested criteria for making judgments concerning attitudes. These criteria are used by Bartlett (p. 10) with the South African Sugar Association.

## Plus (+) Minus (-) Interested 1. Not interested 2. Methodical Unmethodical 3. Energetic Makes little effort 4. Calm Nervous 5. Keen Bored 6. Steady Variable 7. Cautious Impulsive 8. Relaxed Tense 9. Controlled Confused 10. Attentive Inattentive

When it was not possible to make any deductions concerning attitude, a "O" for neutral was given as the evaluation mark.

- 2. Skills (S) and Knowledge (K): Most students did better when they were learning skills rather than the more theoretical aspects of the training program. Since lessons vary in the proportion they involve skills or knowledge, space was provided to make a judgment for each. The trainees were graded from 0 to 3 as follows:
  - 0 = <u>Unqualified</u>. Trainee knows less than 80
     per cent of the starred (*) items. He
     needs considerably more review and retesting.




- 1 = Needs more work. Trainee missed from 1 to
  20 per cent of the starred (*) items. A
   little more review and retesting on the
   missed points will qualify him.
- 2 = <u>Qualified</u>. Trainee knows all or 100 per cent of the starred (*) items. He receives a passing rating.
- 3 = <u>Superior</u>. The trainee knows all starred (*) items and at least 80 per cent of the unstarred or nice to know items.

This rating scale was placed at the bottom of the evaluation sheet for convenient reference by the instructor.

3. Checkpoints: The instructor recorded the correct and incorrect checkpoints in the appropriate column of the Trainee Daily Training Evaluation form according to the method described previously under the use of the activity sheets (see Figure 3.9, page 168).

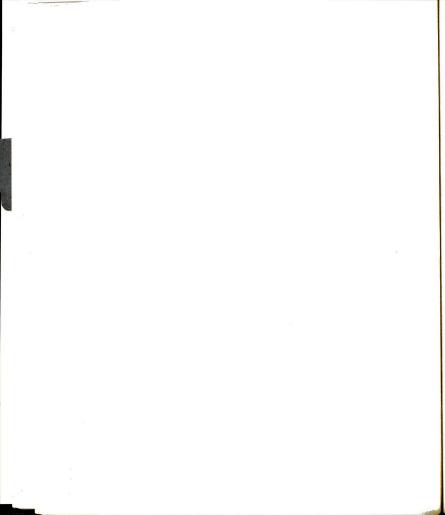
The remainder of the evaluation sheet was devoted to space for recording each trainees' scores on the pre- and post-tests as well as a space for any pertinent remarks about his progress. If the decision was made to review each starred item with each trainee for a final evaluation, the appropriate spaces under "Final Rating" were used. This facilitated quick comparison of the trainee's performance during the small group sessions and in the final evaluation.



Evaluating Each Trainee and Keeping a Daily

Progress Record.—At the end of each day, the instructor
and his teaching assistants evaluated each trainee on all
lessons covered that day. These marks were recorded on
special Trainee Daily Evaluation Forms by each instructor
for his group of trainees. Each trainee was asked a
representative number of questions and his answers to
specific behavioral objective checklist questions were
recorded as correct or incorrect. The instructor used
this as a basis for assigning a weighted value for
"Attitudes," "Skills" and "Knowledge" (ASK) upon the
completion of each lesson. This same process was
followed for all lessons in the course.

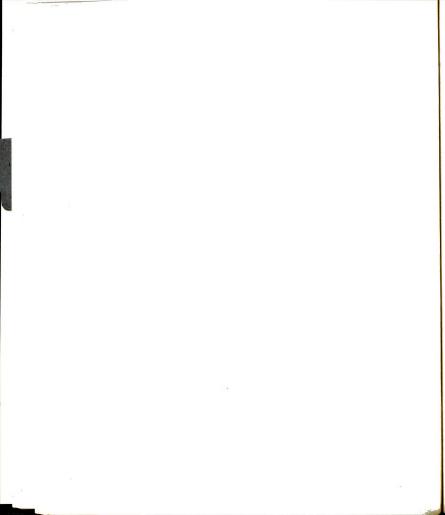
By observing each trainee daily in a small group, by having a daily recorded evaluation on each trainee's performance and by comparing the pretest and post-test scores on the training evaluation, the instructor had an up-to-date and meaningful check on each trainee's progress. The daily evaluation form also showed where the trainee was weak and which topics in each lesson needed more attention to bring him up to the desired training standards.


## Daily Reviews and Evaluation Rating

Instructor's Daily Lesson Evaluation (Form EV-3).-This form was designed to encourage the instructor to

carry out self evaluation of his teaching techniques and of the course instructional objectives (see Appendix C). By promptly writing down his assessment of the days activities, what was good and what could be improved, he had a source of feedback to reinforce his realization of better teaching. Without taking this step or making a sincere effort to change, most such good intentions would soon be forgotten or excused as being unimportant. Not only must the instructor continuously evaluate and critically review the progress of each trainee, but he must assess the quality of the learning environment for which he, the instructor, is responsible.

During the preliminary test and trial run all instructors were asked to help weed out the "bugs" by making constructive criticisms. They were to challenge any items that should be changed, left out or added-to make it easier for the instructor to teach or the trainee to learn. Special attention was given to suggestions on how to improve instructional methods, techniques, training aids and evaluations. They were to note each item that worked especially well and to explain why anything else did not do the job expected of it.

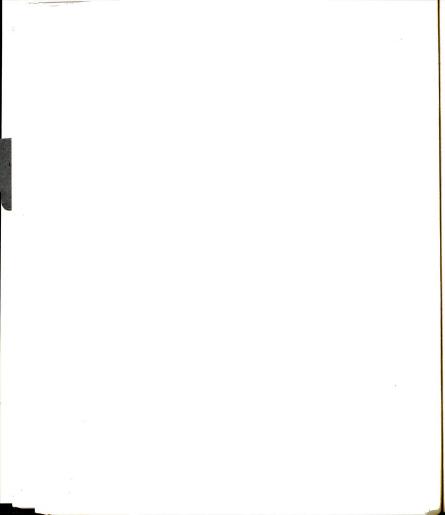

When the training program was set up on a halftime basis, the instructor's Daily Evaluation form and the Trainee's Daily Evaluation Form were to be filled out for each four hours, or half day, of instruction. For a



full-time training program lasting three to four weeks, the evaluations were made at the end of each day.

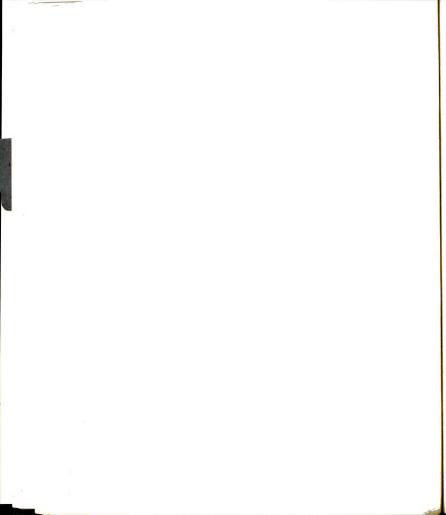
Noting Deficiencies and Grading Each Trainee. The Trainee's Daily Training Evaluation, Form EV-2, was designed to be used with any lesson with any trainee. For ease in keeping track of the overall progress of each trainee, space was provided to record test scores for each trainee as well as to give him an individual rating on his ASK accomplishments for each lesson. The instructor made notes on individual trainees as he saw the need.

In evaluating each trainee, the instructor emphasized success rather than failure. But, at the same time it was redundant to mark down only the things the trainee gets right. While looking for strength in the trainee, the instructor at the same time looks for weakness in his teaching. After he felt the trainees had reached their optimum training achievement, based on their entry knowledge level, their apparent capability and the amount of time allowed for the lesson, the instructor tested all trainees as extensively as possible. If he knew that a trainee "knew" the answer, it was pointless to ask him to repeat it. It was more valuable to ask someone who "may not know it" to reinforce his learning process and drive the point home. The good instructor selectively asked the trainees to perform or to explain some point in




order to maximize learning and to reinforce its retention through meaningful repetition.

Making a Composite Evaluation of ASK.--In making the individual lesson and daily evaluation on each trainee, the instructor concentrated only on how and what the trainee did for a particular lesson or a specific situation. He studiously avoided being influenced by what happened yesterday or the lesson previously. If this is done the record will reflect the trainee's real progress much more accurately. The sum total of all assessments for attitude then indicated a change in attitude as well as the type of attitude. This is likewise true for skill and knowledge development and attainment.

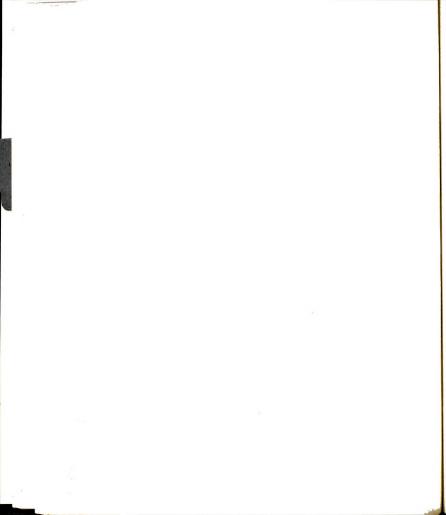

When the trainee completed all of the lessons in a series, and likewise all of the series, the instructor reviewed and tabulated a weighted overall average evaluation which gave an accurate indication of the trainee's attitude and his attainment of the desired behavioral objectives. This "one grade" is then based on a realistic appraisal, supportable by sound judgment, and a performance rating based on a rational and continuous evaluation of an individual's progress and potential.

Objective evaluation cannot be claimed for a "single grade" assigned at the end of the course by an instructor after the training is done. Too often bias and prejudice, as the result of some temporary short



coming, will cause the instructor to down-grade a trainee who otherwise has done well. Furthermore, the instructor may let his personal likes or dislikes "unduly influence" his final decision if he must suddenly come up with one grade after the course or training is completed. Some trainees and students are particularly adept at what is commonly called "brown nosing" and may take advantage of a weak-willed or non-objective instructor. Some instructors also do not like to be challenged by their pupils and will penalize the otherwise superior student by "putting him in his place" by down-grading him. They may then rationalize that the smart student was obstreperous or a threat and "deserved" what he got.

Form EV-4 was designed to serve as a permanent record of the trainee's achievements (Appendix C). It is filled out using the data collected in the daily evaluations of individual lessons. This form was given to the trainee along with the certificate showing that he successfully completed the training program. Spaces were provided for test scores from the aptitude tests, if these were taken, as well as for the actual scores received by the trainee on the Final Evaluation Events discussed in the next section.




## Post-Training Tests

## Final Evaluation of Trainees

Criteria for Performance Testing.—To set quantifiable training objectives, suitable for performance testing, the job was looked at to see what the worker does and the conditions under which he worked. What judgments and decisions must he make and what knowledge is required? What problems are likely and what is the worker expected to do in each case? Performance criteria are the testing criteria for determining if the trainee has mastered the objectives required by the job. Training cannot be proven to have taken place if the training objectives cannot be stated and tested in quantifiable terms.

To define good job analysis in the Basic Tractor Operators' Course, the skill and knowledge factors were isolated and then quantified by applying dimensions to the questions, "How well must it be done," and "How well must it be known?" Measurements were expressed in terms of time, accuracy and/or completeness. The values used as the training objectives, and test criteria, represented the performance of an acceptable, minimally qualified worker. By building a test item for each key objective in the lessons, it was possible to describe the minimal capabilities of any man who successfully completed the program. Thus, testing approached certification.



Performance testing evaluation was based on real work tests closely replicating the job environment.

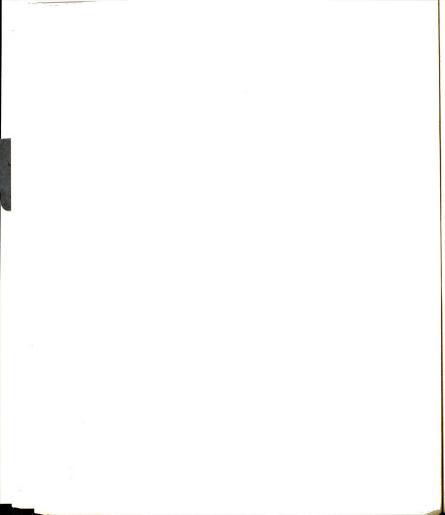
Performance on a paper and pencil test is no guarantee that the trainee can do the job. Considerable imagination and work was required to construct a performance-based training and testing program.

In cross-culture training, translations must be used with great care. Goss pointed out,

since any use of graphics requires symbolic translations on the part of the learner, and each translation offers possibilities for error, the trainer should minimize such translations. Photographs or real hardware are preferable to stylized drawings. Good drawings are better than words. The trainee should not be required to give written responses unless written responses are a part of the job (W. R. Goss, 1970, p. 48).

For example, when it was impracticable to use real instruments, actual photographs or drawings of the instrument with different readings were used. The trainee was required to make the readings with the required accuracy and within the given time standards for the real job. The testing stations were also like the real world job situation. As Goss (p. 48) again emphasizes "Only with real performance testing is it possible to guarantee or certify competence of a trainee."

The final testing plan was based on the stated training objectives. In a complete analysis, all need-to-know items must be distinguished from the nice-to-know. The latter were eliminated from the test and carefully

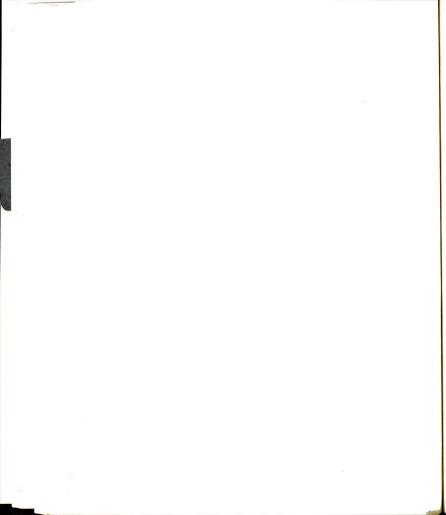



reviewed to see if they could be dropped from the training course to increase the cost-effectiveness. Goss (p. 48) says

the test should be constructed so that a fully qualified trainee will score 100 percent. That is the only passing grade. A trainee who cannot score 100 percent is not ready to go on the job and some kind of retraining or remediation is required.

Ideally, the test would cover every item of critical skill and knowledge in simulated job conditions. By testing, the trainer can isolate those areas where knowledge, skills and even attitude is inadequate. If a trainee cannot respond at the entry level for a job, he needs additional training, but only in those areas where testing has indicated a weakness.

When the testing had been carefully and realistically developed, the instructional program was written to simply teach the test. Testing methods used in the real world were used in teaching. While some simulators were used, actual objects are much better and were used for all training whenever they were available. Photographs can be used but as Goss (p. 48) points out "if it is necessary to use photographs for testing, these should be the key elements of the training package." All decisions on course content, material format, program duration and media selection were made on the basis of the testing strategy and test design.



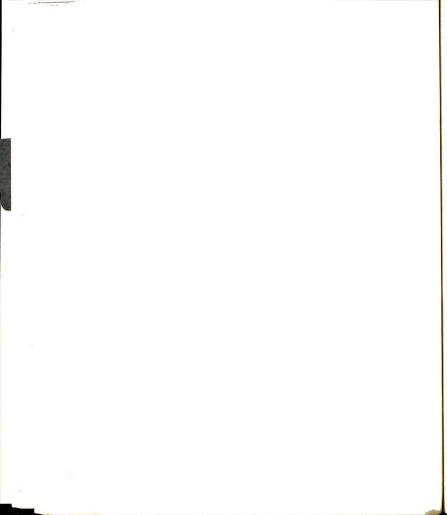

Prior to building the program around a test design, the tests were used as pretests on a sampling of intended trainees to determine their validity. The idea of using the same test at the beginning and end of the program constitudes a breach of security in "traditional teaching."

However, if the test is truly a performance test, the main concern is that the trainee be able to pass the test, and not how he gets the information. In fact, if the trainee could study at home and/or get answers from his companions, it would be just as good as formal classroom training, and much less expensive.

Setting Performance Factors.—Qualification as a Basic Tractor Operator was based on attainment of a selected number of key Attitude, Skill and Knowledge (ASK) points. Items considered crucial to development of a satisfactory level of achievement were indicated with an asterisk (*). To pass the training program and be certified as a qualified Basic Tractor Operator, Grade I, each trainee had to know or be able to perform all of these steps with a positive attitude. There were all degrees and shades of "satisfactory ASK" and each trainee had to be considered individually, as well as collectively, in comparison with others.

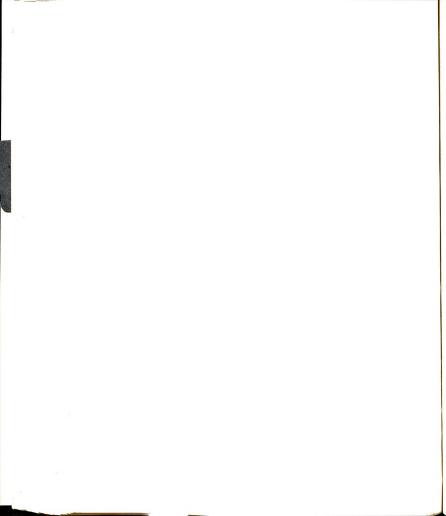
To establish some reasonable guidelines for ASK attainment a Trainee Activities exercise was developed for each lesson (see Lesson B-9 on page 169, Chapter III).




Each key point marked with an (*) was based on a behavioral objective. Since it is impossible to evaluate each trainee in a Final Evaluation on every single point covered during the course, special events were developed to selectively cover a representative cross section of the critical ASK points in the course. These points are covered in the Seven Final Events partially illustrated in Appendix D.

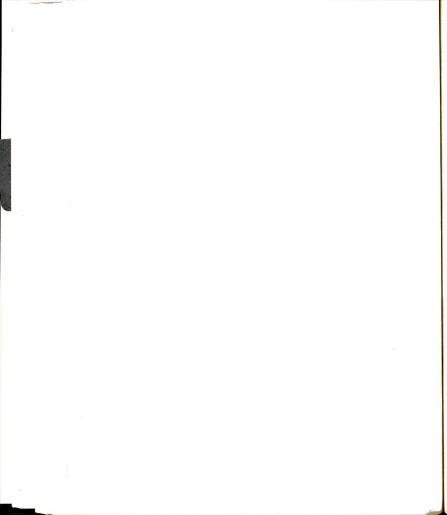
In addition to the starred items (*), there were a number of other points in each lesson which would be helpful for the trainee to know, but which were not considered crucial to the basic job performance. They were generally stepping stones in the learning process or they furnished additional information to the more capable trainee. If the trainee knew and can do most of these non-starred points, as well as the starred ones, he was a "superior trainee' who would probably make a better-than-average tractor operator. If the trainee did not know all of the starred points, he was deficient but could probably be brought up to standard with some extra work. If the trainee could not keep up with his peers and just did not seem to "catch on," he was considered sub-standard and not of sufficient caliber to warrant further training.

Using Outside Evaluators and Judges for the Final


Evaluation. -- In order to evaluate all trainees in a

reasonable time, it was necessary to conduct three to




four of the Final Evaluation events simultaneously. This use of outside judges and officials in the final evaluation was very beneficial. First, the trainees knew they must perform well and they were apt to do much better and try harder since they realized this was serious business. They were, in fact, judged on what they could do! They also had to show a stranger that they knew how to do it or understood the question. Second, this provided more realism and objectivity, and also prevented the instructor who may have been teaching the trainees from jumping to unwarranted conclusions. The trainee may have known it several days or weeks ago, but does he know how to do it now? Third, outside evaluators probably treated all trainees alike and were less influenced by past events. They tended to avoid the pitfalls of prejudice because the trainee was just an individual, judged solely by his performance and ability based on a unique set of circumstances which allowed a fair comparison between him and the course objectives. The regular course instructors helped with the final evaluation and acted as time keepers, safety judges, etc.

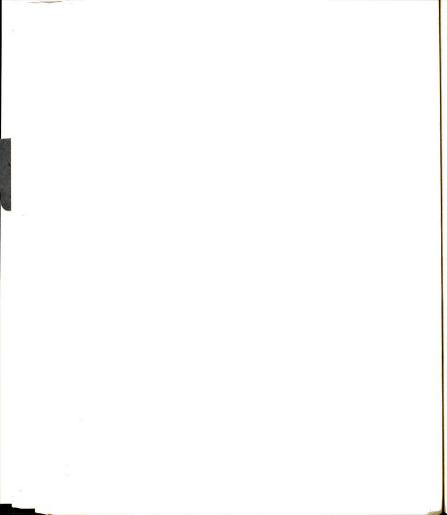
The judges and officials were carefully trained and rehearsed so they knew what to expect; and so they also presented a uniform set of test conditions. They understood each skill and attitude and could assess a fair grade. The assessment of attitude was made much



four of the Final Evaluation events simultaneously. This use of outside judges and officials in the final evaluation was very beneficial. First, the trainees knew they must perform well and they were apt to do much better and try harder since they realized this was serious business. They were, in fact, judged on what they could do! They also had to show a stranger that they knew how to do it or understood the question. Second, this provided more realism and objectivity, and also prevented the instructor who may have been teaching the trainees from jumping to unwarranted conclusions. The trainee may have known it several days or weeks ago, but does he know how to do it now? Third, outside evaluators probably treated all trainees alike and were less influenced by past events. They tended to avoid the pitfalls of prejudice because the trainee was just an individual, judged solely by his performance and ability based on a unique set of circumstances which allowed a fair comparison between him and the course objectives. The regular course instructors helped with the final evaluation and acted as time keepers, safety judges, etc.

The judges and officials were carefully trained and rehearsed so they knew what to expect; and so they also presented a uniform set of test conditions. They understood each skill and attitude and could assess a fair grade. The assessment of attitude was made much

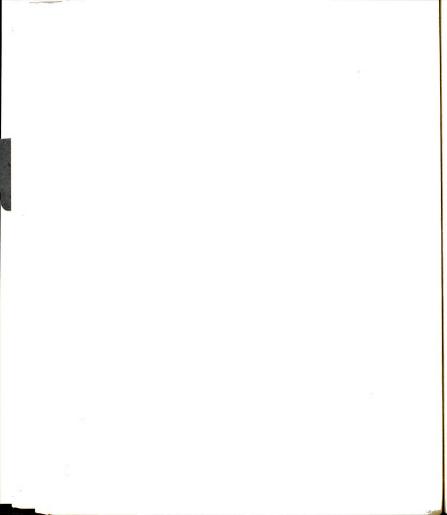



less difficult by looking at it as either "positive" or "negative." If it was impossible to clearly reach a decision, the attitude was considered "neutral."

Evaluating and Recording ASK on Trainee Permanent

Record Form EV-4.—The results of each Final Event were
recorded on individual score sheets. The Safety Score
Sheet, Event No. 1, was used to record the safety violations for several events. After the evaluating, scoring and recording were completed on the Event Score Sheets, the final results were posted on the Trainees' Permanent
Record. See Appendix C.

The trainee record form was designed as a onepage summary sheet of the trainee's performance during
the total training program. Space was provided for daily
and final evaluations of each lesson. Space was also provided for scores received during final evaluation when the
seven events are used. The instructor took time to compute
the class average for the final evaluation and ranked each
trainee in his class. Copies of this record were used
as reference for possible employers of the trainees
receiving certification from this training program.

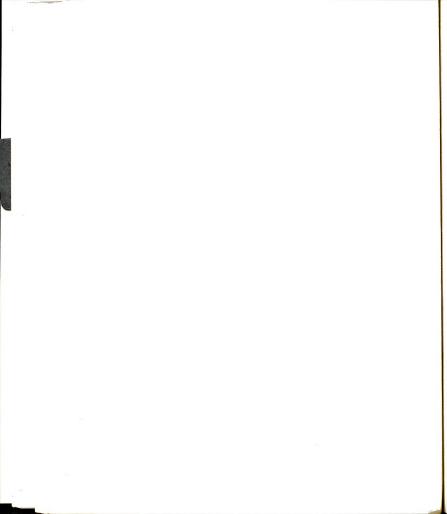

<u>Operator Trainees by Complete Retesting.--Although each</u> trainee was evaluated daily to ascertain his progress, it was considered essential to carry out a final evaluation to measure his retention of skills and knowledge after training.



The final evaluation was done primarily on a 1:1 instructor-to-trainee ratio. This was based on the need for accurate evaluation of the trainee's ability to perform the required skills unassisted by any other person. To qualify as a Basic Tractor Operator, a trainee had to perform all or 100% of the starred (*) items on the activity sheet and flow chart checklists. The oral or written post-tests were given as a group exercise with each trainee marking an individual score sheet. Trainees were placed so they could not copy from each other.

Some reasons for testing were to (a) motivate the trainee, (b) help the instructors and trainees check their progress, (c) find gaps in learning, (d) provide a measure progress, (e) set and maintain standards, (f) use as an effective teaching tool and (g) use as a guide for counseling. While the aptitude test indicates whether a trainee "can learn," and the achievement test "has he learned," the proficiency test measures "how well he can apply what he has learned."

The final evaluation can be performed by two different methods at the discretion of the instructor. The first method re-evaluates the competency of the trainee in the skills and knowledge of each lesson by testing for all the starred items in each activity list and by giving each of the pretests again as a post-test. This would, of course, be a very long and detailed means




of evaluating each trainee. But, when it was completed the instructor would have a complete picture for judging the competency of the trainee. The flow charts with the critical items starred (*) can be used to check the judgment and skill aspects of the training program. The information would be recorded on a second daily evaluation sheet and the results transferred to the appropriate part of the Trainee Permanent Record Form EV-4, Appendix C.

Operators by Selective Testing.—The second method of evaluation tests for only selected or crucial skills and knowledge determined to be representative of the total course of instruction. This method was adopted for the final evaluation of Basic Tractor Operator trainees. Seven different events were developed for comprehensive performance testing of each individual trainee on safety, driving, machinery operation, maintenance, attitudes and knowledge based on the pre-post tests as follows:

- Event 1. Driving Safety
- Event 2. Two-wheeled Skilled Driving Course
- Event 3. Attaching and Detaching Drawbar and PTO equipment
- Event 4. Using the 3-point Hitch Mounted Mold-board Plow
- Event 5. Daily Maintenance Services
- Event 6. Weekly Maintenance Services
- Event 7. Oral or Written Post-Tests.

Event 1--Driving Safety: Since one of the main objectives of this training program was to instill correct attitudes and safety habits, each trainee was

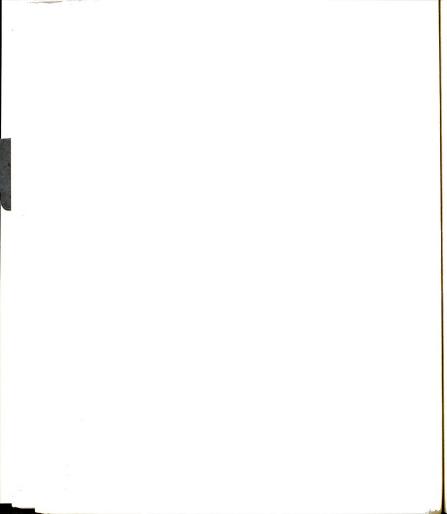


graded for safety at the same time he was evaluated in events 2, 3, and 4. In these events one judge or evaluator was given the sole responsibility of watching for unsafe practices. Each time an unsafe practice was observed it was recorded on the contestent's form for Event No. 1. The same form was used for all events (2-4). There was no time limit in this event. See Appendix D.

Event 2--Two-Wheeled Trailer Driving Course: In this event the operator backed a tractor to a two-wheeled trailer or implement, hitched the implement to the tractor (adjusted the drawbar if necessary), then backed and drove the tractor and trailer through a predescribed and marked course, being careful not to deviate from the prescribed course. This event took an average of 20 minutes per trainee. While points were deducted for excessive time, this was not a speed test. Trainees not taking other tests were allowed to watch this event. An audience increased the competitive spirit and generally the quality of performance.

Event 3--Attaching and Detaching Drawbar and PTO

Equipment: In this timed event the trainee backed the


tractor to a piece of PTO-driven equipment, adjusted the

drawbar if necessary, attached the implement and PTO

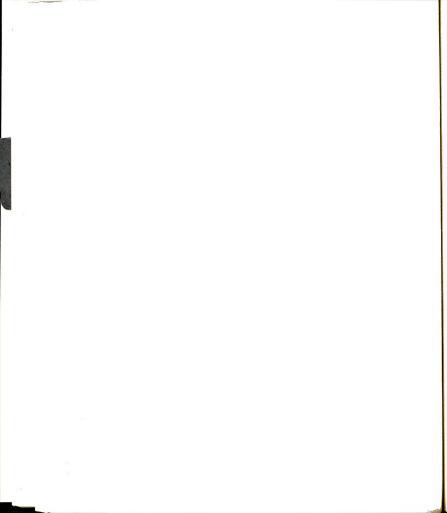
connections, started the equipment and brought it up to

the recommended PTO speeds, stopped the PTO, then unhitched

the implement and put the tractor back in its original



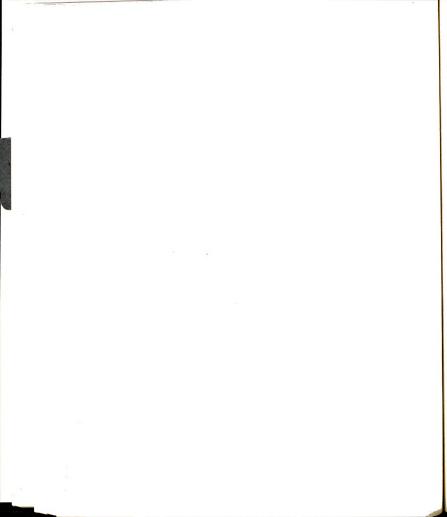
position. This event took 15 to 20 minutes per trainee with points deducted for excessive time.


Event 4--Hitching, Adjusting and Using the Moldboard Plow under Field Conditions: In this timed event, the trainee backed the tractor to the plow and attached it, adjusted the hitch if necessary, took the plow to the field and plowed one round, made the necessary field adjustments, returned the plow and tractor to the original position, unhitched the plow and parked the tractor at the starting point. He was scored on safety, quality of plowing and efficiency of work. This event took 20 to 30 minutes per trainee. See Appendix D.

Event 5.--Performing Daily Maintenance Services:

In this event, the trainee performed all of the daily maintenance services on the tractor provided. He was scored on his thoroughness and ability to carry out the required maintenance. This event lasted 20 to 30 minutes per trainee. Trainees not being evaluated were not allowed to be present while another was being tested in both this and the following event because of staged maintenance deficiencies.

Event 6--Performing Weekly Maintenance Services:


This event was similar to Event 5 except that the trainee was asked to perform all of the weekly maintenance services required on the given tractor. The scoring and the time required were the same as for Event 5. See Appendix D.

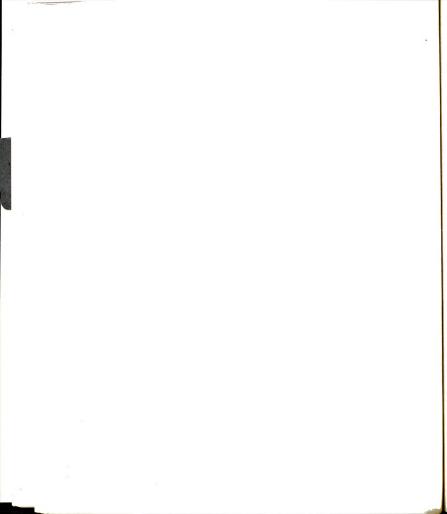


Event 7--Oral or Written Post-Tests: Each of the previous events may be carried out concurrently if there are enough judges to score the various tests. The oral and/or written post-tests were carried out as Event 7 with the total group of trainees. If the trainees cannot read, the instructor read the questions to them. Each trainee used a master answer sheet provided to record his answers. The 150 selected questions were taken from the previous pretests included in the manual. For scoring purposes the total points recorded on the final evaluation form were the number of items missed. The total number of correct answers was not recorded.

The points for each event were added together for the total raw score. In all of the events the points given were negative, i.e., they were for things that the trainee failed to do, or did improperly. The individual events were ranked with the lowest score receiving first place and the highest score last place. The final evaluation took 1½ to 2 days for the total group. Details on the procedure to follow in carrying out each event were given at the beginning of each event's evaluation form or scoring sheet.

Certification and Follow-up.--Upon successful completion of the training program, the trainee was certified as a qualified Basic Tractor Operator, Grade I, and given proper recognition. Two formats were suggested for



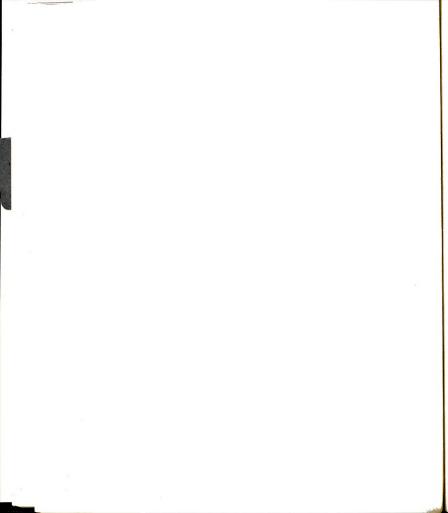

a possible certificate. See Appendix C for a sample of one format. At the graduation exercise the certificate was presented with proper honor and ceremony.

Care was taken to keep the certification standards high. This reflected a good image for the training program as well as the trainees. For this reason, minimum standards (the starred (*) items) were delineated in the training course. Intensifying the training program would be better than lowering standards if trainees have difficulty meeting the basic requirements.

Proper recognition was used to increase interest and enthusiasm for training. Any method appropriate for creating this rapport can be used. Increased social status, a better position, higher wages and other incentives were used as possible motivators.

A record of each trainee's achievements while in training accompanied him as he left the program. All possible assistance was given to make sure that each successful trainee was employed upon graduation. To insure successful experience for the operator following training it was recommended that the institution sponsoring the training conduct a follow-up program. Such a program was to include

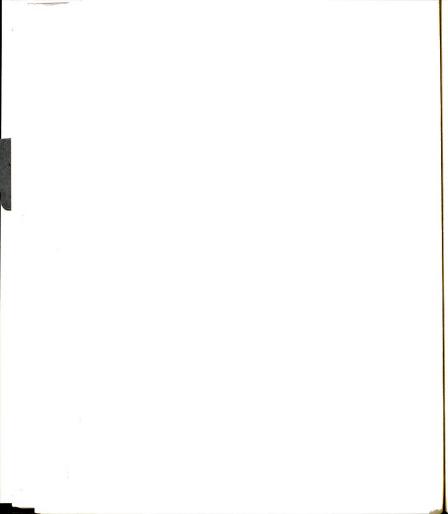
a. systematic visits to each operator on-thejob to help him with any problems he might have;




- b. recognition by rewards and incentives to encourage proper maintenance, wise use of equipment and the keeping of proper records, and
- c. follow-up refresher courses to increase competency and promote upward job mobility.

#### Summary

The objective of the Basic Tractor Operators' training program was to train trainees efficiently and to provide instructors with the necessary instruments and techniques for effective teaching. Highly skilled training can be given to low-education level trainees by following a carefully structured program of instruction and evaluation.


The large number of skills to be learned in a tractor operators' course makes it difficult to teach and evaluate each individual trainee without special techniques for evaluation and testing. Each of the evaluation instruments developed for the BTOC--the pretest, post-test, daily training evaluations, instructors, lesson evaluation, and final evaluation events--were discussed in this chapter. In addition the use of occupational tests, mechanical aptitude tests and general aptitude test batteries were described with their implications for improving the selection of trainees and making the training program more relevant to their needs.



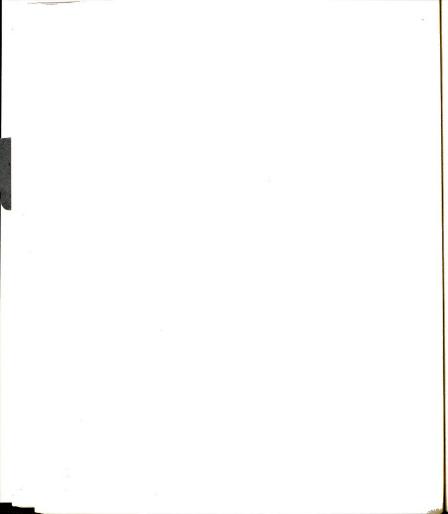
To attain high training efficiency, the "lock-step" method of group training must be minimized. By using daily trainee evaluations and pretests it is possible to structure the training course so that each trainee learns only those things he needs to know for qualification. In teaching performance testing based on behavioral objectives, a practical training program should be based on four principles:

- 1. Accomplishment must be measured against very specific statements of measurable behavioral objectives.
- 2. Evaluations and tests must be planned to measure the key objectives established as standards for qualification.
- 3. The course of instruction must be built around the test with lesson objectives designed to prepare the trainee to pass the performance tests.
- 4. The training must be individualized and meet the needs of individual trainees, starting where they are and going as far and as fast as they are capable.

The instruments presented in this chapter permit the instructor to continuously check trainee progress and to measure his own teaching effectiveness.



#### CHAPTER V

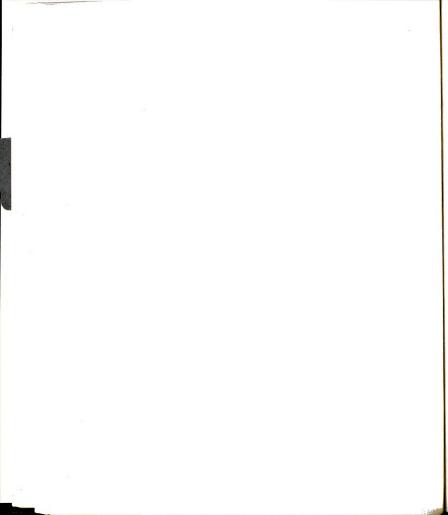

FIELD TESTING A SPECIAL PROGRAM IN
MICHIGAN FOR TRAINING ADULT MIGRANT
WORKERS AS BASIC TRACTOR OPERATORS

## Cross-Cultural Training of Spanish Speaking Workers

## United Migrants for Opportunity, Inc.

In the Grand Rapids area, the United Migrants for Opportunity, Inc. (UMOI) has worked with migrant laborers from the southern United States in an attempt to rehabilitate them into permanent agricultural jobs. In the fall of 1969 UOMI conducted an adult education class for 23 Spanish-speaking farm laborers to teach them basic English, reading and writing. After five months of part-time training ending in March 1970, the most advanced students were reported to be at about the fourth or fifth grade reading level. Some of them could neither speak nor understand the language clearly.

To qualify for better jobs, they needed practical vocational and technical training to equip them for year-round employment on western Michigan fruit, vegetable or general farms. The most critically needed occupational

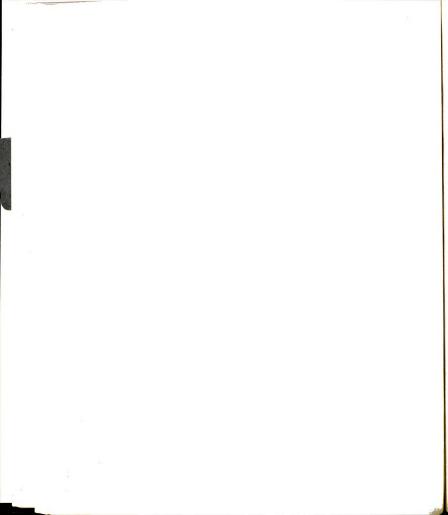



skills were reported by a Rural Manpower Survey to be tractor and machinery operators (J. S. Bolen and H. J. Doss, 1970). Growers and farmers stated they needed dependable workers qualified as tractor operators with some maintenance experience.

Through the State Department of Vocational Education and the Grand Rapids Junior College, the UOMI requested that the migrants be given training by a proposed Michigan State University Course for "Basic Tractor Operators." Although the course was just being developed by MSU it was an excellent opportunity to pretest the course early in its development.

The Grand Rapids School District hired a special master teacher and sent him to MSU for several days to be trained to instruct the basic tractor operator's course. It was also arranged for two assistant instructors to come for a one day consultation on the course. One member of the MSU staff worked with the master teacher and was present each day during the actual training to evaluate the course and practical work.

The United Migrants for Opportunity, Inc. provided each trainee with approximately \$50.00 + \$5.00 for each dependent (up to a maximum of four) per week while they took adult training. The Michigan Department of Education furnished the equipment and paid for the facilities to conduct the tractor operators training course.

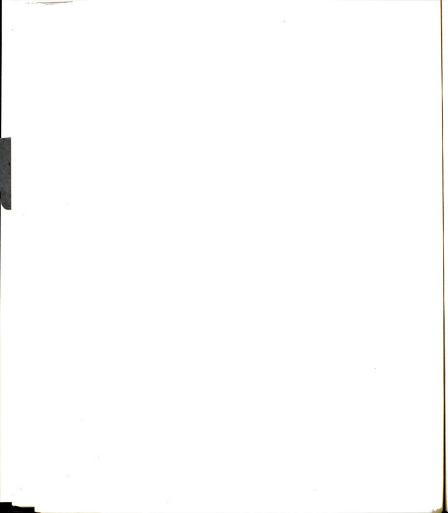



This pretest enabled the course designers to try out the training program with non-English speaking nationals to see how well it met their needs and problems. The projected time schedule was checked, the content critically evaluated, the teaching techniques refined and many of the visual aids developed and tested. The feedback was then evaluated and applied to the training program and basic tractor operator's course to improve its design and implementation.

### Rural Manpower Training

The adult migrant training program was a new concept in structured education in agriculture by the Mighican Department of Education and the Rural Manpower Center at Michigan State University. It was conceived as a basic course in agricultural machinery for Michigan fruit farms and built around the Basic Tractor Operator's Course, Grade I. The purpose of the program was to provide a fundamental training course in modern agriculture for a group of ex-migrant workers. It was planned to enable persons with a low educational level to become experienced, basic Agricultural Tractor Operators and to learn basic knowledge about fruit farming operations.

The Rural Manpower Center stated that farmers, and their employees, require special training to operate modern farm machinery effectively and safely, to adjust it properly and to keep it serviceable. Most agricultural




workers must be taught the basic mechanics of machine systems, the need for lubrication, service and intelligent operation.

The major objective of this course was to upgrade the operator's skill and knowledge and to create in him a new set of attitudes to permit maximum utilization of this new capability. The greatest problem of intelligently utilizing and applying farm machinery is educating the operator adequately.

### Conceptual Structure of an Operator's Course

The bulk of the eight week (half-time) course was focused on the fundamentals of basic tractor care and use. A basic tractor operator was defined as one who, after training and sufficient practical experience, can operate the tractor skillfully, can use it in conjunction with selected tools and implements in specific farming operations and can properly perform specified daily maintenance and preventive maintenance services. Furthermore, he shall constantly seek to improve his knowledge and skill; have the conviction that a better understanding of how a tractor and implement works is necessary for its proper operation and maintenance; have a positive attitude toward his work; be conscientious in performing all tasks; and be dependable in carrying out instructions. If the tractor breaks down or is damaged through lack of care or abuse, he, as the operator, is to blame.



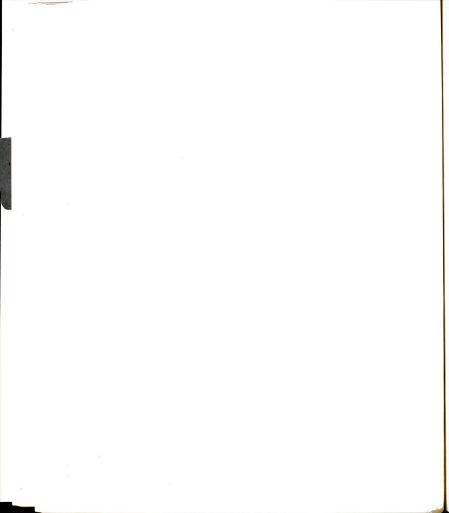
The outline for the Basic Tractor Operator's

Training Course was planned in two subject areas. The

first area covered a basic tractor operator's training

course. The second area involved a special orientation to

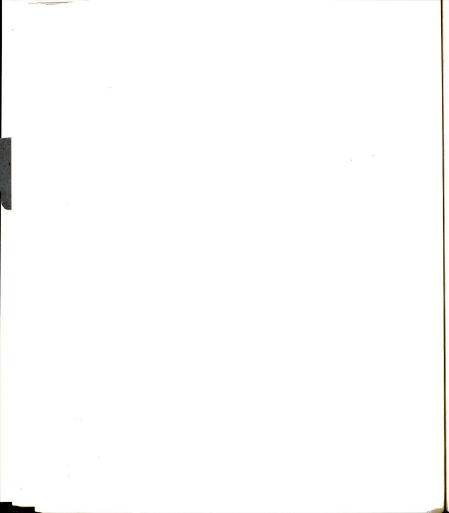
Michigan fruit farming operations.


- I. A Basic Tractor Operator's Course (Diesel-Engine Wheel Tractor)*
  - A. Getting Acquainted with the Tractor
  - B. Getting the Tractor Ready for Work:
    Prestarting Checks
  - C. Starting and Warming the Engine
  - D. Operating the Controls and Maneuvering the Tractor
  - E. Managing the Tractor: Using Good Judgment
  - F. Using the Tractor as a Power Source
  - G. Emphasis on Safety Considerations
  - H. Using the Tractor with Implements in Productive Farming Operations
- II. Special Orientation to Michigan Fruit Farming Operations (Short Course Workshop)
  - A. Operation and Care of Sprayers
  - B. Harvesting and Pruning Equipment
  - C. Spray Chemical Usage and Safety
  - D. Cultural Practices for Weed Control
  - E. Fertilizer Use and Application
  - F. Fuel and Chemical Precautions

### Training the Instructors

The Need for Special Training to Develop Qualified Instructors

In any systems approach to training there is a logical sequence that should be followed in developing

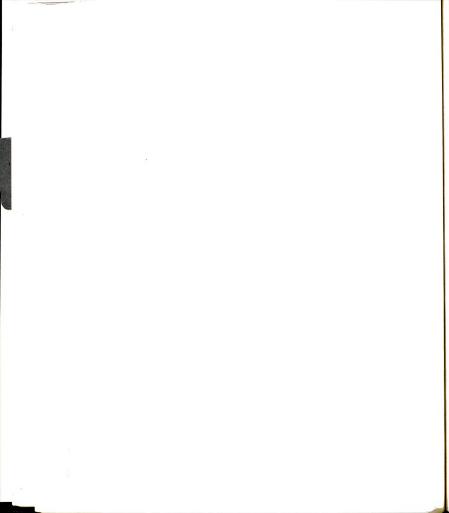

^{*}See Appendix A for the detailed Sequential Lesson Outline under each section above.



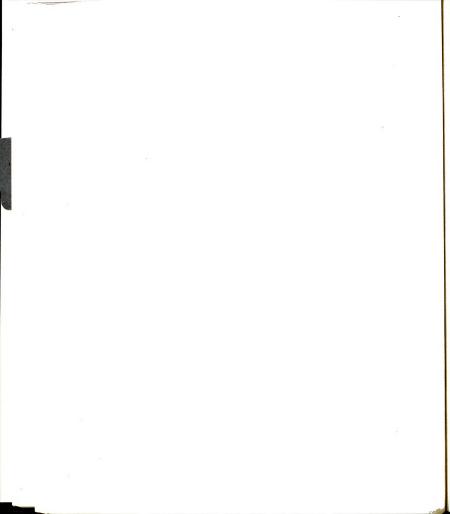
training programs for tractor operators. Unless this sequence is methodically carried out, serious questions are raised about the social and economic value of such training and there is a high probability of failure to meet objectives.

The "Instructors Manual" for the Basic Tractor
Operator's Course briefly outlined the essential steps in
planning and conducting a training program. It presented
a structured course of methods and materials which, when
carefully followed, guaranteed effective training of
skilled workmen in developing nations. While none of the
key steps should be deleted, the material content can be
changed to fit the individual needs and entry knowledge
of the trainees.

The program of instruction was written as a guide for qualified instructors. To become qualified, an instructor must be specifically trained to work with loweducation level and disadvantaged trainees. For best results he should be experienced in teaching methods and knowledgeable about modern diesel tractors and farm machinery. Nevertheless, instructors should not be allowed to instruct until they have successfully completed an Instructors Training Program similar to the one outlined in this section.




The following key steps were considered crucial for organizing and conducting a tractor operators training program:


- a. Determine the need for training. (Will the trainees be employed upon completion?)
- b. Determine what skills the trainees need.
  (Are the objectives of the proposed program compatable with the needs?)
- c. Determine the potential trainees. (Are there sufficient people who want and could take the proposed training?)
- d. Appraise each applicant's suitability for training. (Who can pretest and evaluate an applicant's entry behavioral characteristics?)
- e. Determine the resources available for training.

  (What arrangements need to be made for facilities, equipment and instructors?)
- f. Determine the proposed time table and schedule.

  (How will the imputs be coordinated for maximum utilization?)
- g. Train the instructors, assistants and group leaders. (How will training be given to the instructional staff?)
- h. Assemble the trainees and get them off to a good start. (How will rapport be established and proper motivation and incentives provided?)

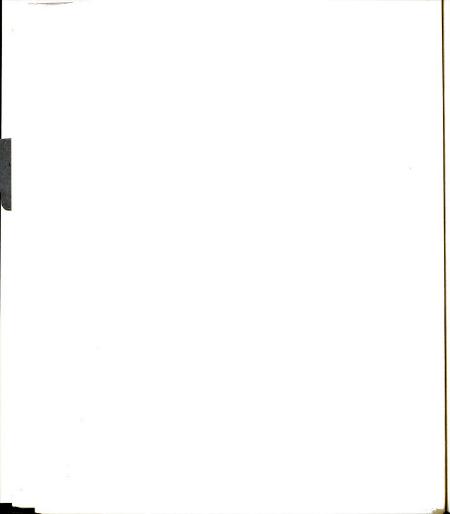


- i. Pretest trainees before each lesson to determine entry knowledge. (How will instruction be individualized to meet the needs of each trainee?)
- j. Conduct structured learning and training in a suitable environment. (How will trainees be actively involved in the learning process?)
- k. Assess each trainee's progress during training. (How will individualized instruction be used in correcting deficiencies?)
- 1. Repeat steps "i through k" until all training is completed. (How will instructors ensure that all training objectives are met?)
- m. Conduct the final evaluation on behavioral objectives. (What kind of performance tests will be used to measure the trainees' mastery of the course objectives?)
- n. Certify successful trainees as Qualified Basic
  Tractor Operators. (What standards will be
  used for certification?)
- o. Assist the local employment service in placement of graduates. (What procedure will be
  followed in establishing trainees in suitable
  jobs?)



- p. Assess the success of the training program in meeting community needs. (What type of follow-up and evaluation program will be carried out in self analysis?)
- q. Revise and modify the training program as required. (How can the training be improved based on feedback from instructors, trainees, employers and others?)

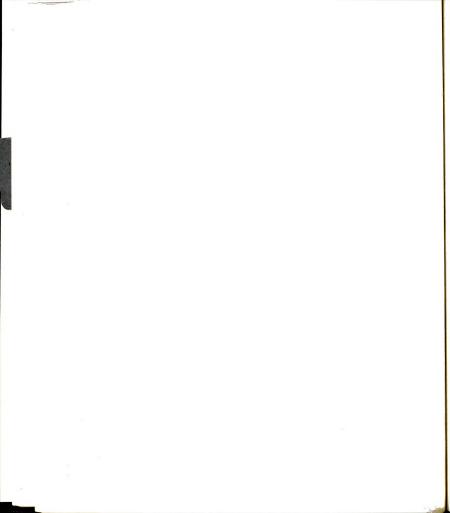
# A Suggested Training Course for New Instructors


The format for a special course of instruction for all first-time teachers selected to conduct the Basic Tractor Operators' Course was prepared in outline form.

Every instructor must be trained in effective methods of teaching if the training program is to succeed.

The Suggested Training Course for Instructors was built around a one to two-week program as follows:

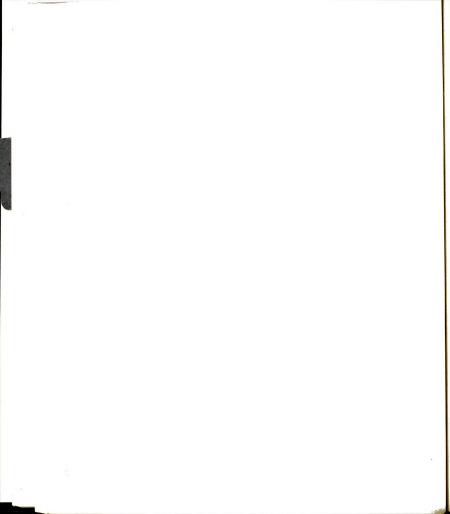
### First Week


- I. Forward, Background, Need and Orientation
- II. Objectives of Training
- III. Assessing the Trainees Background
  - A. GATB or Similar Aptitude Tests
  - B. Personal Interview
  - C. Enrollment Form
  - D. Using Lesson Pretest Evaluations
- IV Trainee Selection (interviews and pretests)



- V. Using Lesson Materials (large group sessions)
  - A. Introduction
  - B. The Course Outline
  - C. Behavioral Objectives
  - D. Trainee Information
  - E. Instructional Methods and Materials
  - F. References and Sources

### Second Week


- VI. Supervising Trainee Activities (small group sessions)
  - A. Introduction
  - B. Preconditions
  - C. Instructions to Trainee
  - D. Checklist
  - E. Flow Charts
- VII. Recording Trainee Daily Progress
  - A. Using the Trainee Evaluation Forms
  - B. Using the Post-Test Evaluation
- VIII. Final Trainee Evaluation
  - A. Conducting the Evaluation
    - 1. Driving Skills Course
    - 2. Flow Charts
  - B. Using the Evaluation Form
  - C. Qualification and Rating
  - D. Certification



Reference. -- The responsibility for a successful and useful training program was placed primarily with the administrator and/or the instructor. The "Instructor's Manual" presented a series of carefully researched guidelines to be followed in setting up and conducting effective learning situations for disadvantaged trainees. Such trainees often have very different value systems and experiences, and vague concepts of work discipline. One crucial issue was the development of proper attitudes concerning the need for preventive maintenance of machinery and a cost-to-benefit consciousness.

As a guide the "Instructor's Manual" was <u>not</u> designed to be read verbatum by the instructor to the trainees. The instructor was encouraged to involve the students as early and as much as possible in "hands on" learning "by doing" experiences throughout the training program.

The effective instructor made full use of the guidelines in teaching his assistants and using them to put on skits, demonstrations and practical exercises. As the training coordinator, the master instructor planned thoroughly, informed his assistants of their responsibilities, made full use of available resources, and enlisted the help of business, industry, government and education leaders. He also continuously evaluated



his own effectiveness and his assistants, and constantly assessed the progress of the trainees, counseling them as needed.

Evaluating the Learned "ASK" Attained by the Trainees. -- The following concept was developed for the training of instructors charged with conducting the structured learning and training environment designed to impart sophisticated skills and attitudes to unsophisticated trainees.

Instructions to Instructors and Training

Assistants: This training program consists of a series of lessons, activities and evaluations designed to help you effectively train unskilled people to become qualified farm tractor operators.

The goals of the training program are stated as behavioral objectives which will change the individual lives of the trainees. The activities are selected to help the learner perceive and achieve each behavioral objective. The evaluations are based on crucial activities to be performed by the trainees to see if they understand and have mastered the stated behavioral objective. The evaluation centers around carefully defined and measurable behavioral objectives to determine the degree the trainee has developed the desired attitudes, skills and understanding.

The evaluation is a continuous process starting before orientation and continuing after the completion

of the formal training course. As an instructor, you are most concerned with the daily evaluation before each lesson, during each lesson and after each lesson. You are also expected to help with the final evaluation at the end of the course.

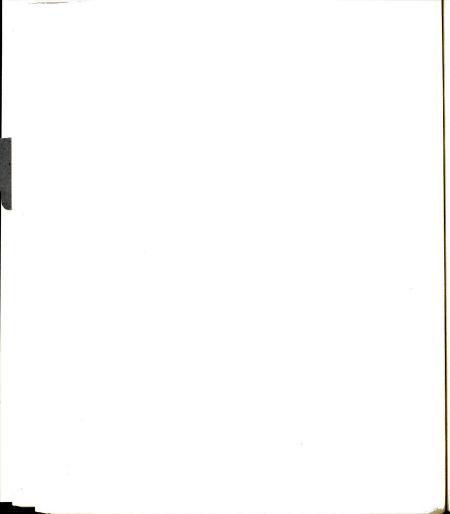
The first lesson in each task cluster (such as A-1, B-1, etc.) contains brief instructions to you and the trainees. Refer to this first evaluation form if in doubt what to do. Record each evaluation as it is made for each trainee. Do not try to wait until the end of the day and jot it down from memory. Base each evaluation on what the trainee actually does or says at the time of testing. Do not let past performance, personal bias or prejudice influence your rating. Rate each trainee on attitude, skill and knowledge based on his performance and response.

been given an extra set of the "Trainee Activities" sheets and a clipboard. Place the "Trainee Daily Lesson Evaluation" form for the lessons to be evaluated on the clipboard first. Put the "Trainee Activities" sheets for the lessons being evaluated on top of this. In this way you can maintain control of the situation, even on a windy day in the field. The loose end of the "Trainee Daily Lesson Evaluation" form can be held down on the clipboard with a rubber band so it is easy to write on as

you lift up the questions on the "Trainee Activities" sheets with your non-writing hand. For easy-to-view exercises, the "flow charts" can be used and each item checked right or wrong as the trainee performs the task. In this way you will be sure the trainee does all steps in a logical and systematic way without leaving any out.

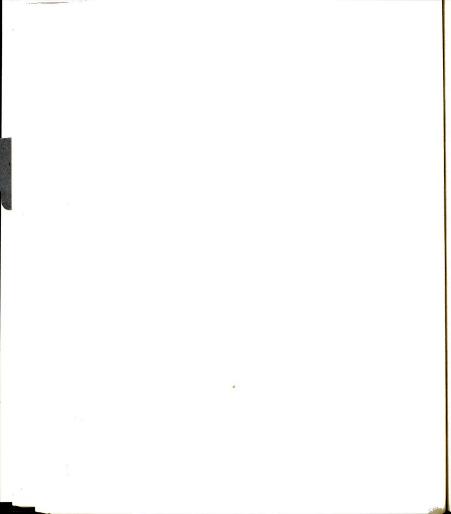
For the final evaluation, each trainee will be responsible for all the starred (*) items, so these should be stressed throughout the training. Opportunity must be given to each trainee to answer as many of the questions as possible and to perform each critical skill himself, sometime during the small group activities and practical exercises.

## Using Teaching Assistants or Small Group Leaders


A Place for the Para-professional. -- In vocational-technical education there is an increasing demand for professional or technical teachers. Many potential instructors in a community may not be trained as teachers, but can be readily trained in the art of teaching. This was done in the Basic Tractor Operators Course by selecting and providing them with the opportunity to attend a training program for instructors designed to fulfill their requirements. Many people, although skilled in their particular craft or trade, cannot provide the necessary guidance and learning experience needed by the learner to become qualified. Moreover, the training program needs

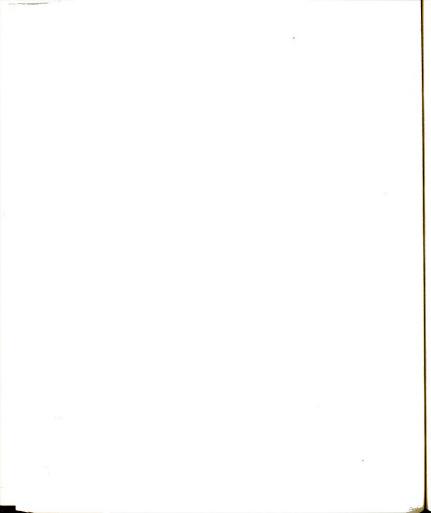
to build good will and cultivate the friendship of the entire community.

The Belding Course for Adult Migrant workers was held on the farm of the chief instructor, Dr. Edward Hotchkiss. He was paid a flat fee for the use of his land to provide realistic training. The land was in the Soil Bank and after plowing, harrowing and dragging, it was reseeded to a legume cover crop. Since these trainees were being groomed to work on Michigan fruit and vegetable farms, they also received some familiarity training on orchard sprayers, dusters and rotary mowers.


# Observation and Suggestions Based on the Belding Pretest Program

Identification of Trainees Desiring Training.—
An unexpected problem with migrant workers was the spotty attendance of certain trainees and a rather extensive turnover. Since the United Opportunity for Migrants, Inc. made the request for the training course and guaranteed a minimum number of trainees and their regular attendance, there was little that the instructor or the cooperators could do to improve attendance. Some of the initial trainees left about half-way through the course to take jobs as tractor operators in Texas, New Jersey, New York and Michigan. They were not certified or recommended in any way by the sponsors of the training program. Nevertheless, the mere fact that they had attended the course

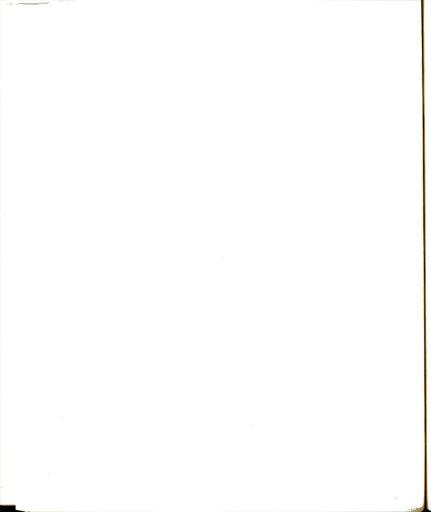



for four weeks half-time was enough of an advantage to enable them to get better jobs. Perhaps it should be brought out here that one of the intangible benefits of such a program of MSLATE training is that it helps the trainee develop confidence, to be able to relate to his employer and to express himself more clearly and positively.

Before a training program is initiated in a community potential trainees must be positively identified. Trainees must quarantee that they are sincerely interested and will attend once the course is offered. An organizational meeting for all interested applicants is a good way to accomplish this. Following this meeting, all applicants should be asked to attend a second meeting to take general aptitude tests such as the Michigan Employment Security Commission Test called the General Aptitude Test Battery (see Chapter IV, pages 189-194). are serious will take the tests and those who are not can be dismissed from the list. At this or another meeting the trainee applicants should be interviewed to get a complete picture of their background and potential. Based on the aptitude tests and the interview, the Training Program Selection committee can select those whom it feels would benefit most from this training. needs of the individual trainees should be considered, as well as those of the community to which they plan to return after training.



Instructors Must be Trained Before Teaching the Course. --Of all the lessons learned during the pre-test, the most significant was that any instructor, regardless of his qualifications, must receive special training to do a satisfactory job of teaching low-education level trainees. Degrees and past or present teaching experience are not enough. The instructor must be taught how to use the Instructor's Manual as a Guide and not as a crutch. This can be effectively done only by putting the would-be instructor through a carefully structured Instructor's Training Program as outlined on page 238-239.


The instructor selected to teach the Belding Basic Tractor Operator's Course for Adult Migrant Workers was sent to MSU to work with the course developers and received this basic training. It was not adequate, however, since he himself did not actually get up and go through a series of representative lessons as if he were teaching it. As a result the instructor did not prepare adequately before trying to teach each lesson. depended on the Manual too much, even going so far as to simply read it. Very few demonstrations were prepared ahead of time nor did he follow the suggestions for visual aids and demonstrations. Slides were shown sometimes without previewing or planning for their use. In short, he could have done a much better job with more preparation. In spite of all the short comings in the "large group" presentations, the trainees learned because



of the effective way the "small group" activities were carried out by the instructor and his assistants.

The Program of Training Must be Well Organized and the Plan Followed .-- Because of the initial spasmodic attendance mentioned above, the instructor was always having to go back and bring those who were previously absent up to date. In extremes the attendance varied from 17 one day to five the next, and this raised hob with the training program. Part of the problem was that half-day sessions were held on three days a week, and a full day was scheduled on Saturday (to which many of the trainees did not come) to accommodate the instructor. Some trainees said they worked, others said they had other things to do on Saturday. Others simply did not want to make the effort to come or said they had no transportation. It is better to have the training scheduled every day rather than skipping a day in between, and to have it either in the morning or the afternoon but not mixed. However, part of the volunteer instructors could not come on certain days due to a conflict with their regular jobs.

Since a large amount of material must be covered systematically the instructor must follow a plan. Otherwise he becomes lost in detail, irrelevant or too advanced material, and never clearly identifies the key points a basic tractor operator must know nor the skills he must



learn. Without a definite plan and schedule he will also lose track of the evaluation and abort most of the pretesting, post-testing and daily evaluation which otherwise keeps him informed. The sequence of the lessons was carefully worked out and should be followed unless the instructor has a cogent reason for making a change.

The time it takes to cover any lesson will depend on the knowledge and skill level of the trainees at the beginning of the lesson, the extent of the language barrier, the rapport that exists between the instructors and trainees and how well prepared the instructors are to provide the best learning environment. The number of hours needed to cover the course is given in Table 5.1. The low figure is for more advanced trainees working under more favorable conditions with experienced qualified instructors. The higher figure is estimated for lower-level trainees being taught by a first-time or mediocre instructor under less than ideal conditions. The Belding preliminary test fell half way between these figures and took about 160 hours.

Suitable Equipment Must be Available. -- Sufficient equipment must be provided in good running condition so it can be used extensively by the trainees for the practical field experience. Sometimes the trainee's family or employer furnishes the tractor he will be trained to use. Ideally this would provide each trainee with a

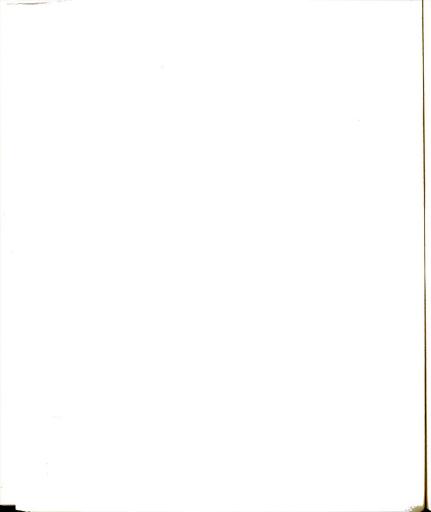
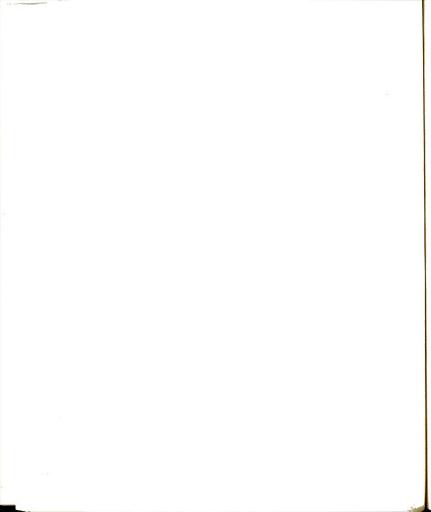
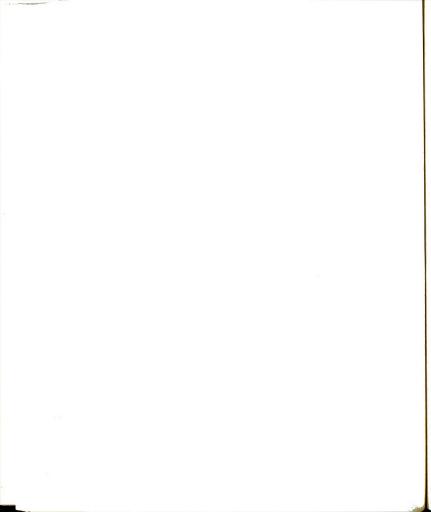




TABLE 5.1. -- Estimated number of hours to train a Basic Tractor Operator, Grade I.

Chapter	or Major Topics	Estimated Instr	Estimated Hours of Instruction
		Minimum*	Maximum**
A.	Getting acquainted with the tractor	80	1.2
B.	Getting the tractor ready for work	28	40
ပ်	Starting and warming the engine	80	12
D.	Operating the controls and maneuvering the tractor	14	30
ы	Managing the tractor and using good judgment	80	16
Ē	Using the tractor as a power source and prime mover	œ	16
ტ	Emphasis on safety considerations	e	4
н	Using the tractor with implements in productive farming operations	32	64
	TOTAL Number of Hours	109	to 196
	Approximate Number of 8-hour Days	14	to 24
	Approximate Number of 6-hour Days	18	to 33
	Approximate Number of 5 Day 40-hour Weeks	8	to 5

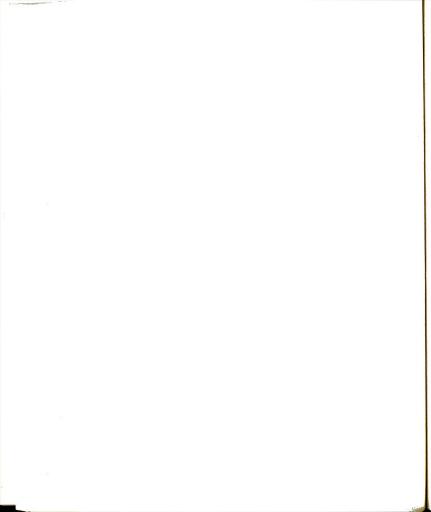
* Above average trainees


** Below average trainees.



machine for which he alone would be responsible. In cases where the Agricultural Development Bank or similar agency is planning to loan the applicant a sum of money to buy a tractor, they may make it contingent upon the fact that the applicant provides proof that he has passed some type of mechanization training program, or, that he be enrolled in such a course and graduate before he receives the loan to purchase the tractor and associated equipment.

In this preliminary test new tractors were rented to supply one tractor and basic tools for each group of five trainees at the Belding Adult Migrant Worker Tractor Training Program. During the eight weeks of half-time training, the trainees put 49 to 51 hours on each of the three tractors. Most of this was put on during the last two weeks when the trainees were operating the tractors and implements daily to gain field experience.

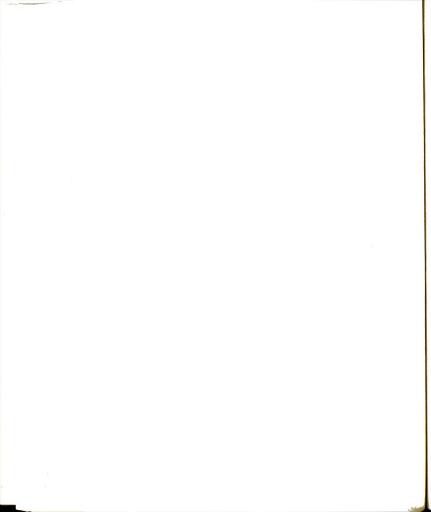

As far as learning the skills and procedure to follow in performing the daily pre-operation service checks and the weekly maintenance checks, it would be better to have good used tractors rather than brand new machines for the trainees to work on, take care of and maintain. The used tractors and machines are less expensive and more readily available in most communities. The cost/benefit ratio would be more favorable and defendable when expanding the training program



for more less-advantaged persons. The implements, of course, should be typical of those commonly used in the country or region and must be in serviceable condition (see Chapter III, page 153).

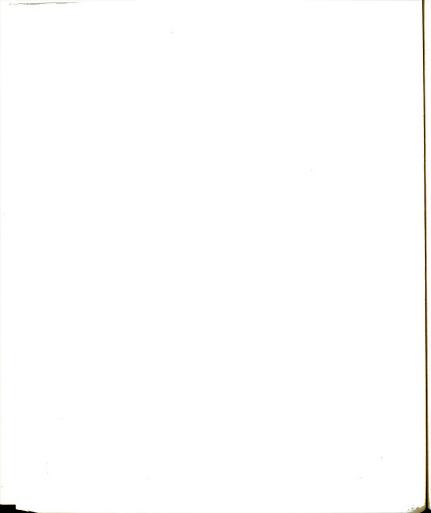
Eacilities Must be Conducive to Learning.—For effective learning the training physical environment must facilitate the presentation by the instructors and retention by the trainees of the essential facts and skills. The trainees must see and hear easily, be reasonably comfortable so they can concentrate on what is being studied and not be distracted by outside audio or visual competition. The assignment of not over five trainees to a small group is essential if each trainee is to be able to see what the instructor is doing at all times around the tractor. The small groups should be far enough apart so that the noise and movement of one does not affect the others.

If trainees are too uncomfortable they lose interest and may not even return the next time. The building or shed must not be too hot or too cold, too dark or too bright, too stuffy or too windy. In the pretest migrant program held in early spring, the barn was too cold and windy and the trainees were not adequately dressed. Fortunately, a one-room "standard country school" was nearby where large group presentations were made. A portable heater was used but the fan made so




much noise that it had to be turned off during the large group sessions to hear the instructor. The fumes from the unvented heater also gave some of the trainees headaches. In the summer, bright sunlight and heat will be a problem unless the class is held under a shaded building and curtains can be drawn. If slides or filmstrips are to be shown, the windows must be darkened.

If the trainees want to take notes and if they are to fill in the answers for the pretests and post-tests, they will need a small writing arm chair or a table. Hot coffee and bread or rolls at the longer mid-morning break helped refresh the trainees. Many of them apparently did not eat an adequate breakfast.


Adequate light for dark days or during rainy weather is necessary to maintain training efficiency. For safety, only electric lights should be used. Since part of the servicing and maintenance activities will involve fuel and solvents, no smoking should be allowed and no flame-type lights or heaters should be used around the tractors. The instructor must make sure there is adequate ventilation for alertness and that tractors will not be run unless doors or windows are open or the exhaust is piped outdoors.

The Timing and Scheduling Must be Acceptable to
the Trainees.--Generally a training program should be
held during the off-season or just before the land

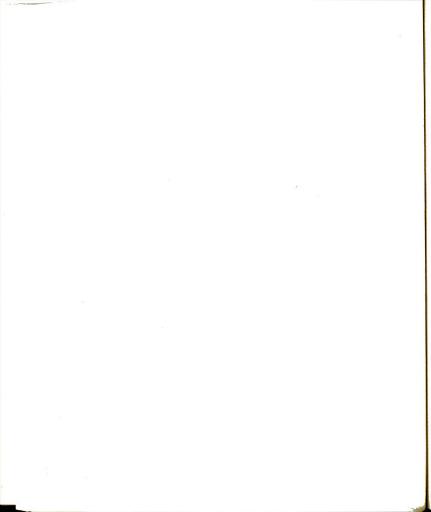


preparation season. If trainees are working, the school must be fitted around their schedule. Many employers will grant some time off to take more advanced training and some will even pay the trainee his regular wage or a stipend. For unemployed migrant laborers the State of Michigan paid a small stipend to encourage them to go on and to offset some of the cost of transportation. Several trainees had to travel up to 60 miles one way to attend the school.

The first two weeks, in fact, the attendance was very spasmodic and generally poor. Although the trainees were supposed to team up and ride together this did not seem to work. Finally, all trainees were asked to report to a central location in Grand Rapids and were then bused to the training site some 35 miles away, using a small bus from the Grand Rapids School District. Attendance was markedly improved except on Saturday. Trainees were coming on Tuesday and Thursday mornings and Friday afternoons for four hours and then all day Saturday. This should have been the best day but it interferred with the personal habits and weekend shopping of the families. As a last resort the schedule was shifted from Saturday to Monday and Wednesday mornings and from Friday afternoon to Friday morning so the training was held on five consecutive mornings without encroaching on the weekend. After this the attendance improved almost 100 per cent.



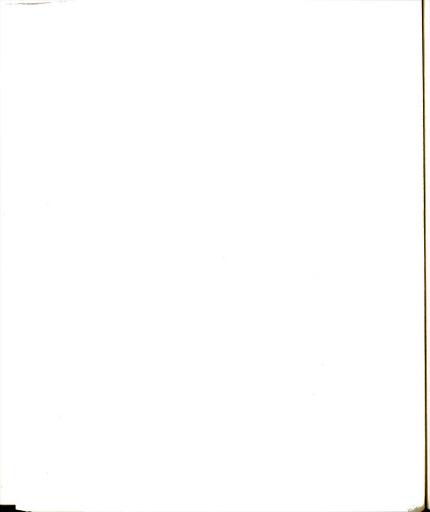
The question is naturally raised, why wasn't it done this way in the first place? The answer is that not only must the trainees be considered, but the assistant instructors also had to be accommodated. Some of the assistants and supervisors could not attend mornings because of University classes and their regular work. After the training was changed to mornings, two assistant instructors could no longer help out and the work load had to be doubled for the others since one small group had to be dropped. Some of both was done and it worked out all right since the number of students also dropped from 17 to 12 the last three weeks as several trainees left to take jobs.


When working with volunteer instructors, in which the work with migrants, etc., is not their main job, schedules must be adapted to get quality instructors. Both of the University students (a junior and senior agricultural engineer) did excellent jobs as assistant instructors. The retired farmers also did good jobs but it took a lot more effort for them to follow the schedule, to keep the records properly, to supervise their trainees constantly and to conduct daily evaluations.

Training Program Responsibility Must be Assigned,

Accepted and Agreed Upon by Sponsors, Instructors, Parents

and all Cooperating Groups. -- For a training program of this


nature to be successful, it is absolutely essential that

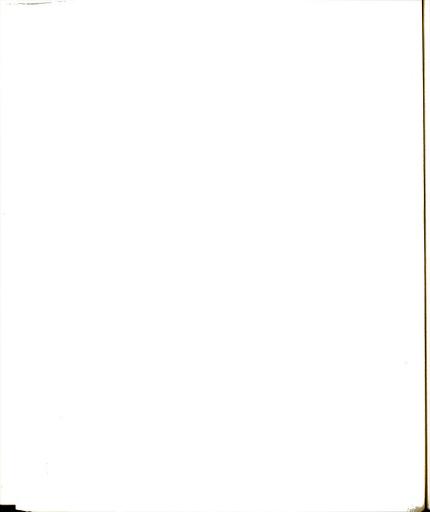


each cooperator know what he is supposed to do and then to accept personal and collective responsibility to see that it is done. In this case the United Opportunity for Migrants, Inc., was supposed to insure that the trainees wanted the course, that they were committed to it, that they had transportation to it, and that they would be there every scheduled day to take advantage of it. There were many slips the first half of the course and a firm commitment was not accepted by O.M.I. until they were told, in effect, that if the trainees did not start coming regularly, the developers of the course who were also supervising its presentation, would withdraw their support and the instruction materials, thereby cancelling the training program.

The instructors, themselves, accepted a special commitment, especially when they were well paid. In this case the chief instructor was well qualified by virtue of education and experience, with a BS in mechanical engineering and a MS and PhD in vocational education.

He was currently teaching mechanics and technical courses as a professor with the Grand Rapids Junior College and also farming part-time in fruit production. Furthermore, he was supposed to be bilingual in Spanish and interested in migrant workers. The sponsors were disappointed in the presentations and effort put forth by the instructor because a much better job could have been done. Perhaps

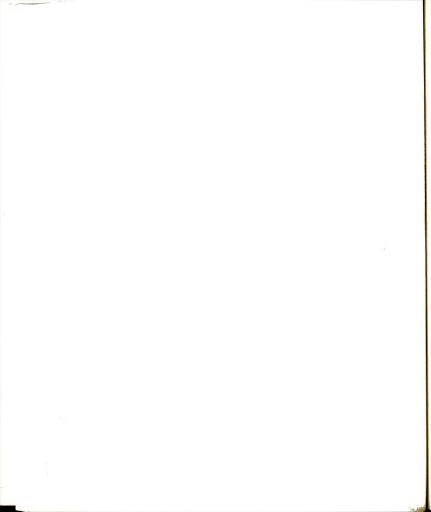



he felt like he "knew it all" but this is no reason for not preparing ahead of time or thoroughly knowing the material. In general the classes were not as well organized as they could have been and there was a tendency to jump the gun and "get them on the tractor" because the instructors correctly diagnosed that the trainees were losing interest.

This re-emphasizes Mosher's statements that "the most important ingredient in an effective training course is a good teacher" and "the trainer has two tasks in a program of in-service training: to <u>design</u> and to <u>manage</u> a learning experience for his trainees" (S. T. Mosher, 1966, pp. 8-9). He points out (p. 11) that

If a trainer has thoroughly prepared in advance he can rely on the printed materials and his individual lesson plans . . . for the subject matter of the course. He can then devote his full attention to managing the learning experiences of trainees by joining with them in learning more about agricultural development, involving all trainees in the process and using a wide variety of different teaching methods.

### Pre-entry Characteristics of Migrant Trainees


The following information covers only the 12 trainees who completed the Basic Tractor Operators' Course in June, 1970. Most of the trainees were from Puerto Rico and were under 30 years of age. They averaged six and one-half years of foreign schooling except for one trainee educated in the U.S. The trainees possessed no trade skills except carpentry. Half of the trainees had no farm

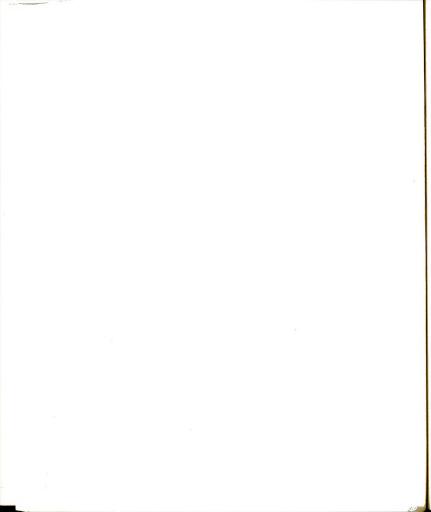


experience and the others had only limited training as field laborers. Seven had some factory experience of a meager nature while three had worked over a year in industry.

All trainees reported they could ride a bicycle,
75 per cent claimed they could repair it, and 50 per cent
had owned one. Since migrant workers must travel from job
to job, it was not too surprising that 75 per cent said
they could drive an automobile, 67 per cent reportedly were
licensed drivers, and 58 per cent claimed they had done
some repair work on one. Half of the automobile drivers
stated they could also drive a truck, but only one claimed
to be able to repair it. Four men stated they had operated
a wheel tractor and two men a crawler tractor before training.
The other trainees had no familiarity with engine-powered
agricultural machinery.

A majority of the trainees wanted to become tractor operators because it was an important job and would give them more job opportunities. Other important reasons were that they liked to take care of machines, to make decisions, to use their hands and to do things in an orderly way. All trainees reported they had used some of the common tools and equipment. The hammer, wrench, screwdriver and hand saw were mentioned most often. Half of the men had used small field tools such as a drill, cultivator, disk, plow and mower.




#### Use of Lesson Pretests and Post-tests

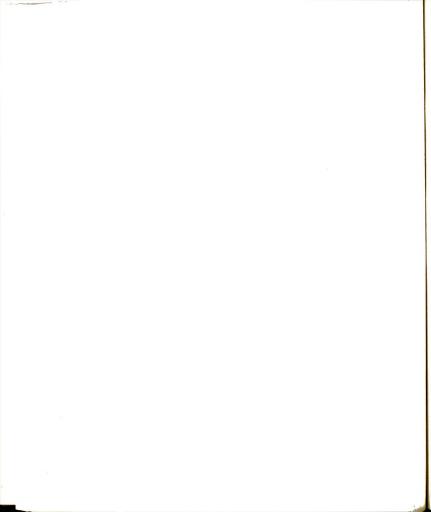
One purpose of the lesson pretests was to measure the trainee's progress during training by comparing his initial attitudes and knowledge with subsequent progress on an identical post-test.

A complete series of pretests and post-tests were not given due to the intermittent attendance at the beginning of the course and because the instructor did not follow the schedule at the end of the course. The validity of the tests is questionable because it cannot be sure the trainees clearly understood the statements or questions they were being asked to answer. Part of this was due to the bilingual difficulty the instructor had in translating the technical terms.

A statistical summary and item analysis was made of each question of the A, B, and C-series pretests taken by the 12 trainees. These comprised 35 of the 65 lessons in the BTO course. The number of trainees taking any one test varied however, due to illness, transportation problems, personal problems and changes in enrollment due to drops and adds. Only half of the 12 trainees attended all training sessions.

The inconsistent level of knowledge indicated by
the pretests suggests they may not objectively measure what
the trainee knows as he enters training. Since most of the
trainees successfully completed the course and were graduated




as qualified tractor operators, this also indicates the trainee's entry background is not important in selecting or rejecting trainees based on knowledge or attitudes before training. The measurement of apparent mechanical aptitudes and skills before training is still desirable as a predictor of trainability.

In cross-cultural training it is very debatable that adequate communication takes place in written tests, even with oral explanation, when the trainee cannot comprehend the written language. The communication depends entirely on the instructor's ability and skill in bringing about verbal understanding. Half way through the course, the pretests were stated as questions rather than nonpersonal statements and this seemed to have more meaning for the trainees.

The value of the pretests and post-tests is not well defined by this initial preliminary test of the BTOC with Spanish-speaking migrant trainees. Incomplete testing made it impossible to compare entry knowledge with training progress as measured by the post-tests. The deficiency in bilingual communication raised serious questions about the trainees' comprehension of the questions and their response to them.

#### Daily Evaluation of Trainees by Instructors

During the small group activities each instructor reviewed the material presented in the large group sessions




and asked the trainees questions. Then the instructor asked trainees to perform various tasks and evaluated them on their responses to the lesson behavioral objectives. After the lesson was finished, he rated each trainee on his performance using the ASK scale. About one-third of the way through the course, the instructors were familiar enough with the system that it was decided to drop the listing of individual checkpoints and only make the ASK numerical rating from "0 to 3" to simplify the record keeping. It was difficult to get the instructors to keep an up-to-date record on each trainee and to rate them quantatively after each lesson. The instructors were not to blame, however, because spasmodic attendance of some trainees made teaching and evaluating difficult.

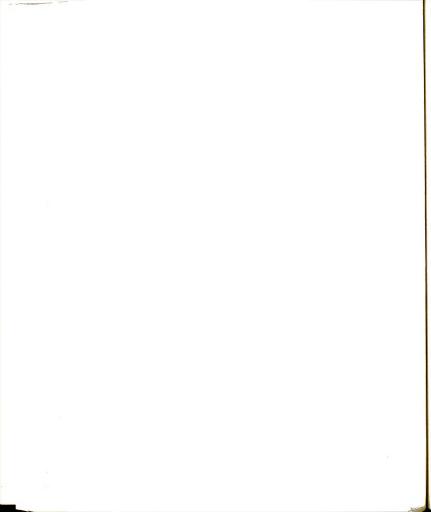
Based on the preliminary field test, daily rating of trainees by instructors is highly desirable. It helps them think through how the trainees are learning and how good a job they are doing in teaching. The system of using "o" for neutral, "-" for negative and "+" for positive attitude; "0" for Unqualified, "1" for Needs More Work, "2" for Qualified and "3" for Superior skills and knowledge worked well in measuring and evaluating trainee progress and performance in meeting lesson behavioral objectives.

# Summary of the Final Evaluation of Tractor Operator Trainees

Each trainee was evaluated by outside judges in a series of seven events covering a cross section of the



critical points specified as key behavioral objectives.

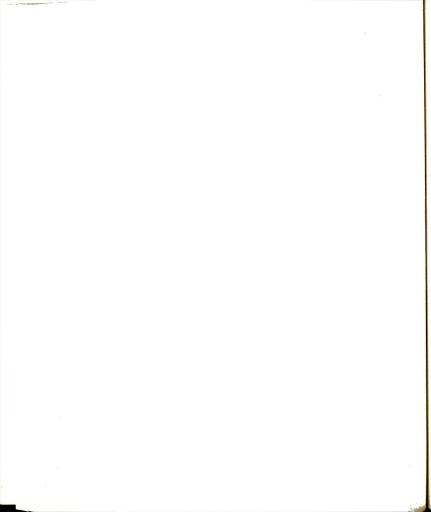

Six events were performance-type tests of actual work situations in which the trainee was asked to do certain tasks and then evaluated on what he did. Scoring was based on observance of performance and the response to the evaluator's instructions and questions. How well the trainee performed was measured by a time factor and the quality of his work.

For each error, omission or sub-standard performance the trainee was assessed penalty points. See Appendix A.

The seventh event was an oral/written test on knowledge and attitudes administered by the bilingual instructor. It consisted of 150 questions selected from the pre-post tests covering the most important points from the 65 lessons.

The scoring scale was absolute although the pass/
fail point was determined after the evaluation was completed.

Some trainees did relatively poorly in some events and much better in others. The pass/fail point was based on the weighted total score of all events so that an excessive penalty for safety, for example, would not necessarily disqualify a contestant. A total of 3500 points was allowed for the final evaluation with each event having an approximate weight of 500 points. The raw scores for the skill driving event were divided by four while the raw scores of the oral/written test were multiplied by




four to give this balance. The adjusted negative raw score for all events was then substracted from 3500 to get the final positive evaluation score.

By using test feedback the instructor can detect which parts of the course need more attention and possible revision. He should use this information to review his teaching techniques and revamp the lessons as needed. The variable nature of the misses on some parts indicated that both good and poor students had difficulty knowing what was wanted or in misinterpreting the test question.

For small groups of trainees, test item statistics are unreliable. They are also suspect for any new program until it has been taught and evaluated at least three to four times. The MSU Office of Evaluation Services suggests a minimum of 50 students for meaningful results in test analysis. For good results the group should be increased to 100 or more students.

In this preliminary test with 12 migrant trainees, the indicated item analysis cannot be considered a fair indication of the performance of these performance tests. First, it is desirable for trainees to get all questions right on a pass-or fail test for qualification. If the performance test score is absolute, the only passing grade for all test items is 100 per cent. Because this is not realistic in a cross-cultural training program, where communication is often questionable, a lower pass/fail point was established. By studying the item analysis, it is



possible to raise the minimum acceptable absolute score by removing ambiguous or high difficulty items from the test.

With a language problem it is pointless to have more than one option in addition to the correct one in a final evaluation. The trainee must be able to distinguish whether the test item is correct or incorrect because he will be graded on his ability to do the job right in real life.

## Certification of Trainees as Qualified Basic Tractor Operators, Grade I

Ten of the 12 trainees were certified as having successfully passed the course to become qualified as Basic Tractor Operators, Grade I. The tenth trainee was conditionally qualified since he made significant progress from his entry level at the beginning of training. Using the results of the Final Evaluation Events, the training staff ranked the trainees and selected a pass/fail point for certification. In considering whether the trainee was qualified, they also looked at the daily training evaluations made by the small group instructor and the progress made during training in achieving the course objectives.

A list of the individual scores for each of the seven final events is shown in Table 5.2. The test scores are adjusted negative scores where the lowest score is best and the highest score is poorest. Under each event the best and worst scores are underlined. The pass/fail point was set at 2300 points out of a maximum of 3500 positive points.

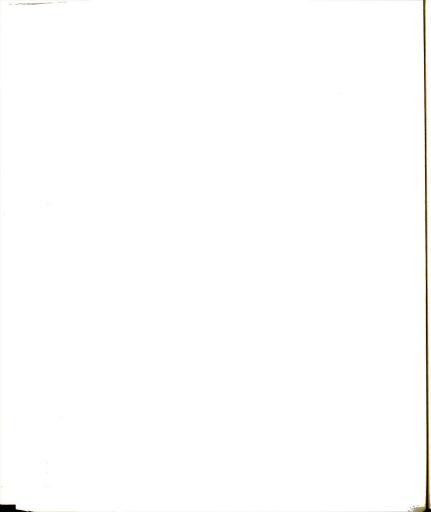
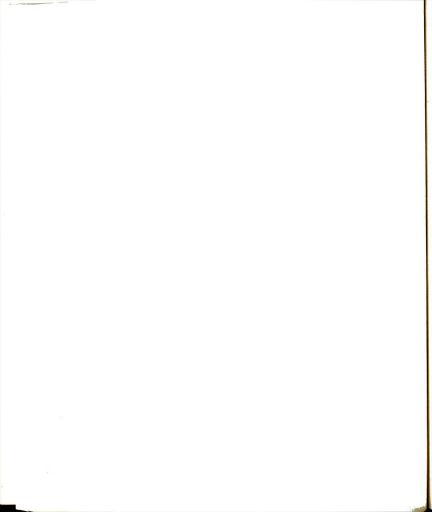
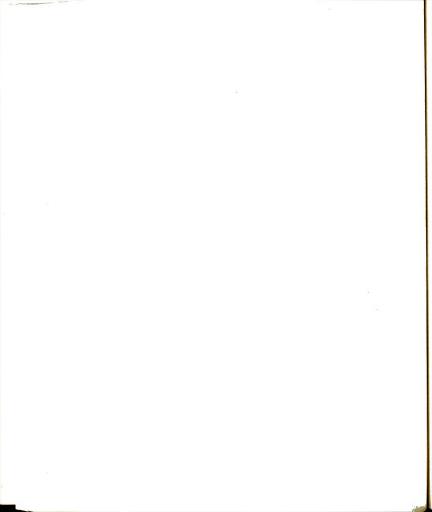




TABLE 5.2. --- Summary of Final Evaluation Scores of Migrant Trainees Completing The Basic Tractor Operators' Course, Grade I (June 1970).*

Trainee Name										
	Safety Event	Driving Event	PTO Event	Plowing Event	Mainte Daily	Maintenance Daily Weekly	Written Event	Neg. Score	Pos.	Rank
	50	06	94	70	의	06	ωl	-412	3084	1
	10	71	96	7.8	06	110	112	-567	2933	7
	100	75	104	20	150	20	128		2873	٣
	250	82	102	156	06	160	128		2529	4
	210	171	112	200	06	70	152	-1005	2495	rO
	100	231	120	182	40	80	264	-1017	2483	9
	0	308	191	40	30	100	400	-1069	2431	7
_	360	82	101	75	130	130	216	-1094	2406	80
	170	105	233	109	80	140	320	-1157	2343	0
	210	164	147	147	270	110	152	-1200	2300	10
	470	129	100	108	160	175	192	-1334	2165	11
	300	263	216	232	140	20	232	-1438	2067	12

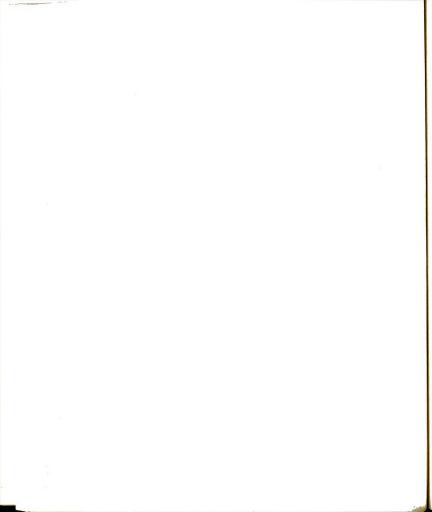
daily evaluation and rating on attitudes, skills and knowledge were also considered in arriving at the cut-off point for certification as a qualified Basic Tractor Operator, datade I. points was then deducted from the maximum score. The pass/fail point was set a' 2300 points for this evaluation. Progress during training and the instructor's trainees were graded on performance tests and assessed penalty points for each error, omission or sub-standard performance. The total raw score of negative The maximum possible score for the seven events was 3500 points.




The best scores were received by the upper 50 per cent of the class and the poorest scores by the lower 50 per cent, with one exception. The trainee ranked seventh overall received the best score on both the safety and plowing events but the lowest score on both the skilled driving and oral/written knowledge events.

Since the score on the performance tests depended on how many event items each trainee missed and on their weighted value, the scores varied considerably. The negative scores ranged from a minimum of 0 to a maximum of 470, with only one score for any event exceeding 400. This was also necessary to compute the item analysis and analyze the tests on the computer using the scoring scanner which had a maximum capacity of 400 points.

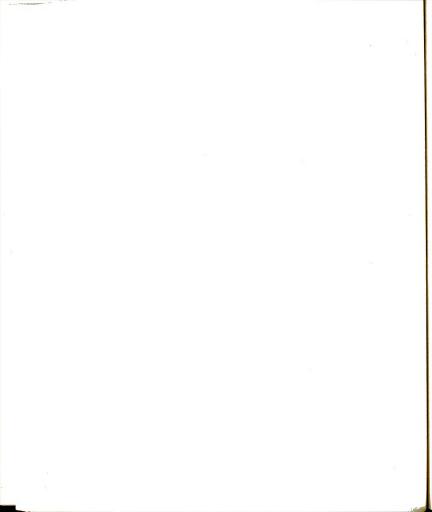
The trainee receiving the high score was disqualified because of heavy penalties for safety violations. Since safety was stressed throughout the course, the safety judges were critical of any unnecessary risks or hazards. This trainee was penalized for skidding his wheels in starting and for not giving way to a spectator. Except for this he would have scored considerably better and been qualified. This was the one score exceeding 400 points.


Most of the difficulty in the skill driving course occurred while the trainee was trying to back the two-wheel trailer down a long narrow lane only two feet wider than



the vehicle. For each stake marking the lane that was dislodged or knocked down, the trainee lost 100 points. Perhaps this penalty was too severe.

The trainee who made the lowest grade on the oral/written knowledge test would have done much better but he failed to turn in his answer sheet for the first 87 test questions. Consequently he was heavily penalized, losing about 180 points based on the same percentage he got right on the last half of this event. This would have advanced him to fourth place in rankings.

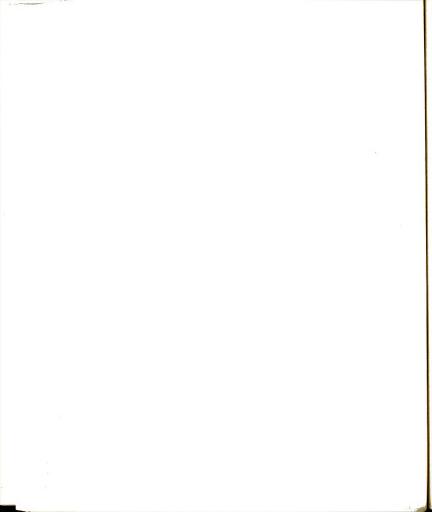

The final evaluation events were an excellent learning experience. Most of the trainees performed better than they had at any practice session. Since they were observed and evaluated by strangers who knew them only as numbers, they were serious and did their best. A practice run under the same conditions used for the final evaluation helped build confidence and relieve worry. Some of the trainees repeated the skilled driving event later on the second day for prospective employers. The judges of this event remarked it was surprising how much they improved once they were familiar with the procedure and the pressure was reduced. Some trainees reduced their penalty points by half or more on this event. This was one reason the driving event was reweighted to make it more equitable with the value of the other events.



The trainees performed very well in these events considering the detailed inquiry made in testing the course behavioral objectives. Evaluators commented on the progress these trainees had made in such a short time. Although the training got off to a slow start with about half of the first two weeks wasted due to poor attendance, the entire course was finished in seven and one-half weeks (half-time). The final evaluation was given the last two days of the course, and was equivalent to three weeks of full-time training on the tractor with three basic field implements—the plow, disk harrow and mower—plus an additional half week on orchard sprayers and equipment used in fruit farming.

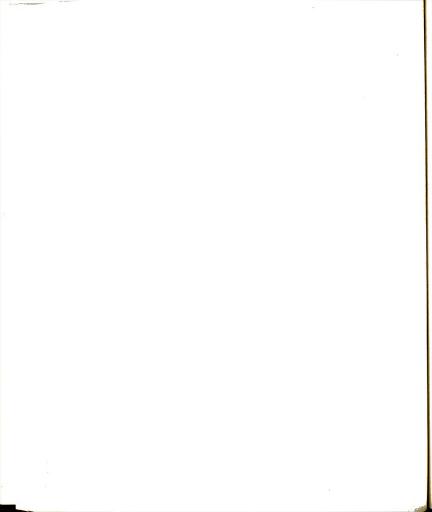
An appropriate graduation ceremony was held for the trainees by the sponsor of the course, the Grand Rapids Junior College. Certificates of completion were presented to each of the 10 trainees certified as qualified Basic Tractor Operators, Grade I. The two trainees who did not qualify were given certificates of attendance.

These trainees are now employed in better jobs and half of them are driving tractors as their major responsibility—four as full—time tractor operators and two as part—time operators. The other six are hoping to become full—time operators in the near future. Based on this follow—up and the trainees' present job performance, the course design and plan for the Modified Structured Learning and

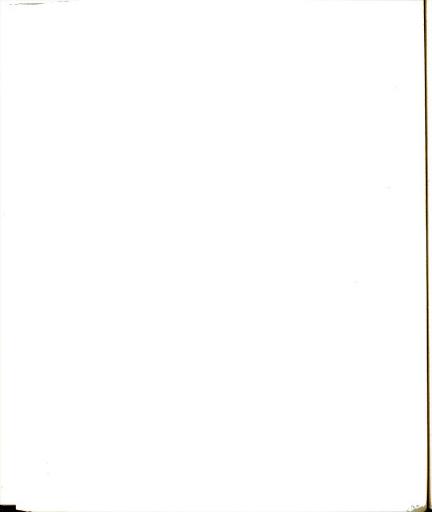



Training Environment, using the systems engineering approach, was successful in training disadvantaged adults as skilled machinery operators.

### Summary


At the request of United Migrants Opportunity, Inc., the Basic Tractor Operators' Course was pretested with Spanish-speaking adult migrant workers. A short workshop was held to train instructors to work with cross cultural trainees. Emphasis was placed on behavioral objectives and trainee evaluation. The attainment of key objectives and individualized instruction were stressed in training. Para-professionals were used as assistant instructors but it was found that more training was needed for effective teaching.

The BTOC was given half-time over an eight week period to a group of 12 to 17 trainees. Hands on and practical training was given in productive farming operations. Lessons learned during the pretest were that potential trainees must be positively identified and interested; all instructors must be more adequately trained; the training program must be well organized and the plan followed; suitable equipment must be available for individualized instruction; facilities must be conducive to learning; the scheduling must be acceptable to trainees; and responsibility for training must be accepted and agreed upon by all cooperating groups.




The pre-entry characteristics were given for the 12 trainees completing the BTOC. The validity of the pretests and post-tests were discussed. Based on the difficulty of bilingual communication, the pretests may not measure what the trainee knows as he enters training. Furthermore, the trainees pretraining knowledge and attitudes are apparently not important in selecting or rejecting potential trainees. In the daily evaluation of trainees it was found unnecessary to list individual checkpoints after the instructors became familiar with the training program. The post lesson evaluation of trainees for positive, negative or neutral attitude and the numerical rating of skills and knowledge from 0 to 3 was found effective in assessing trainee progress.

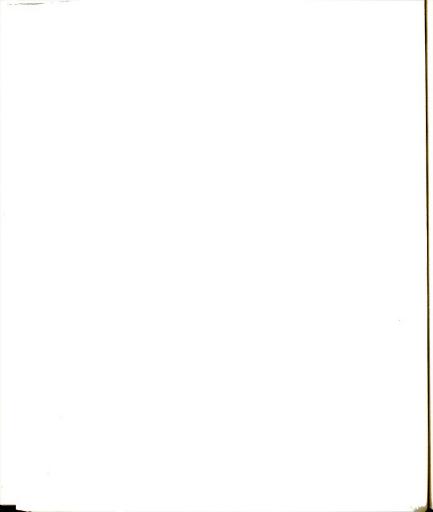
After all lessons in the training program were completed, each trainee was individually tested on the starred (*) items in the checklists of all major lessons. To demonstrate his proficiency the trainee performed all skills without assistance from the instructor or other trainees. The emphasis was on "doing" with special attention to daily and weekly maintenance services, skillful tractor handling, safe operation, adjusting and using the tractor with implements and actual field performance. Attitudes and knowledge were also tested with a written and oral exercise.



A special Final Evaluation Form was scored for each major event. In conducting the skill tests, such as servicing the air cleaner, the flow chart at the end of the lesson was used as a scoring guide, with the critical items marked with an asterisk (*). When the tests were completed, the scores on the final evaluation form were summarized and the trainees ranked and given a qualified or non-qualified rating. The ten successful trainees were awarded certificates of completion in an appropriate ceremony.



#### CHAPTER VI

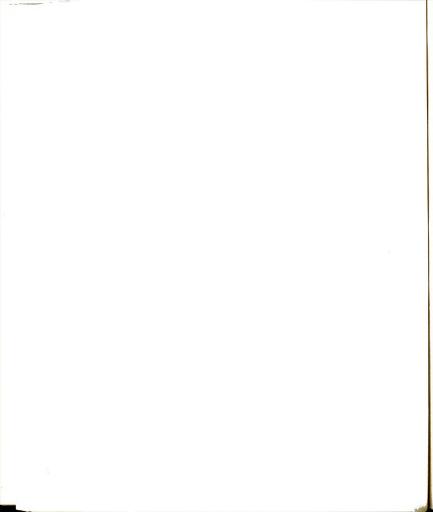

#### SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

#### Summary of Results of Research

### The Use of MSLATE and Systems Analysis to Develop Occupational Training

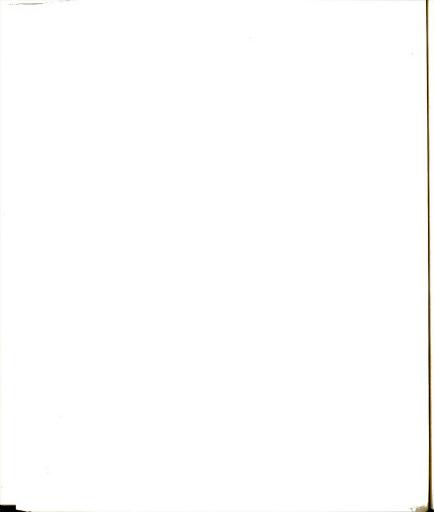
The following sequence was used in developing an occupational training program for basic tractor operators using systems analysis in a modified structured learning and training environment (MSLATE). The training was designed specifically for disadvantaged and low-education level trainees in both developing and developed countries.

- The tractor operator's job was defined and described in a functional job analysis based on what the worker does and what gets done.
- The job of the Basic Tractor Operator, Grade I, was broken into tasks and analyzed by flow charts and operations research techniques.
- 3. Desired behavioral objectives were written for each task element for a minimally qualified operator. The Basic Tractor Operators' Course (BTOC) was written and evaluated on these key criteria.
- 4. Lesson plans were prepared around the behavioral Objectives with suggested instructional techniques and teaching aids.




- 5. Pretests, daily training evaluations and final performance testing were based upon the behavioral objectives and developed currently with the lesson plan.
- 6. Trainee activities were developed for individualized instruction and maximum trainee involvement in small group sessions.
- 7. A suggested schedule and training plan was developed for a three- to four-weeks' intensive course designed to meet the needs of cross-cultural teaching and learning.
- 8. The basic format for an Instructor's Manual was developed to teach trainers how to use the Basic Tractor Operators' Course and training program.
- 9. Plans were made to conduct preliminary tests of the Basic Tractor Operators' Course overseas in at least two countries.
- 10. Visual aids and demonstrations were developed for use with the lesson plans of the Basic Tractor Operators' Course.

## Pretesting the Basic Tractor Operators' Course with Spanish-Speaking Migrant Workers

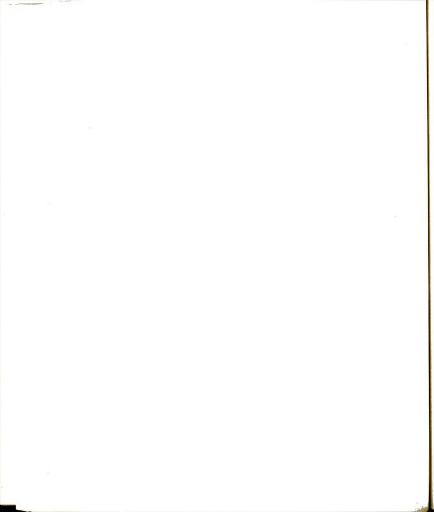

To conduct a preliminary test of the Basic Tractor Operators' Course with Spanish-speaking migrant workers, the following procedure was carried out:

 Upon request from the United Opportunity for Migrants, Inc., and the Grand Rapids (Michigan) Junior



College, a special program course for training tractor operators for fruit farms was prepared for adult migrant workers seeking permanent skilled jobs in agriculture.

- 2. Based upon availability and qualifications, instructors for the proposed course were selected for a training program in the Grand Rapids area.
- 3. Equipment and facilities were arranged through the Rural Manpower Center at Michigan State University and the Michigan Department of Vocational Education.
- 4. A short familiarity workshop on course design, teaching techniques, and training implementation was held with the head instructor and the four assistants. Behavioral objectives and continuous evaluation of trainees was emphasized.
- 5. Arrangements were made for one of the two course designers to attend all training sessions, to evaluate the course content and the trainees' progress and to assist the instructors in conducting training.
- 6. The Basic Tractor Operators' Course with a special orientation class on fruit farming was conducted over an eight-weeks' period in half-day training sessions.
- 7. The final trainee evaluation was conducted by outside evaluators under actual field conditions. Each trainee was individually tested and scored in seven performance tests representing course objectives.

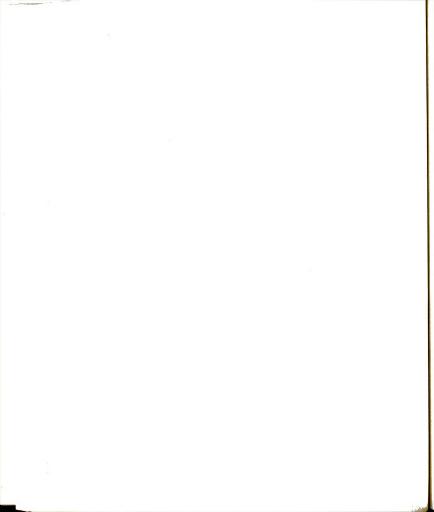



- 8. The trainee's performance was judged on preestablished minimum standards on a pass or fail basis, with 83 per cent of those completing the course becoming qualified as Basic Tractor Operators, Grade I.
- Feedback from the testing program was used to revise and improve the course design and training program.
- 10. Realizing the need for it, as evidenced by the feedback, a suggested training program was developed to train instructors to more effectively teach and use the Basic Tractor Operators' Course for upgrading the skills of disadvantaged and low-education level trainees.

## Achievements of the MSLATE Occupational Training Program

Specific achievements of the Modified Structured
Learning and Training Environment systems approach to
occupational training in agriculture were:

- 1. The design of a universal training program format for use in training qualified operators for agricultural wheel tractors which can be adapted to the brands and models of various manufacturers.
- The development of an Instructor's Manual as a guideline to help trainers and instructors do a more effective job of cross-cultural teaching.
- 3. The production of a detailed program of instruction and core of learning activities which can be selectively taught to trainees of any education level and

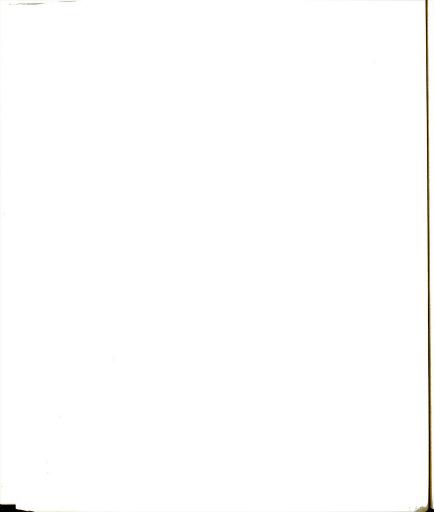



background by adding or deleting course materials from a prepared sequence of lessons.

- 4. The creation of a program of training with built-in evaluation and learning activities based upon clearly defined and measurable behavioral objectives.
- 5. The formulation of a "hands on" practical type training program for machinery operators especially suited to the needs of trainees with low-education levels and non-mechanical backgrounds such as those found in disadvantaged environments.
- 6. The organization of a skilled training program which makes more efficient use of instructors in individualized instruction and multiplies the traditional 1:1 instructor-to-pupil ratio up to 1:5.
- 7. The development of a general set of useful teaching aids such as colored slides, charts and models which can be produced and purchased at low cost and which can be easily transported for use by training centers and schools.
- 8. The provision of skill training for a segment of the nation's manpower—the migrant agricultural worker not served previously by any training program.

#### Analysis of Hypotheses

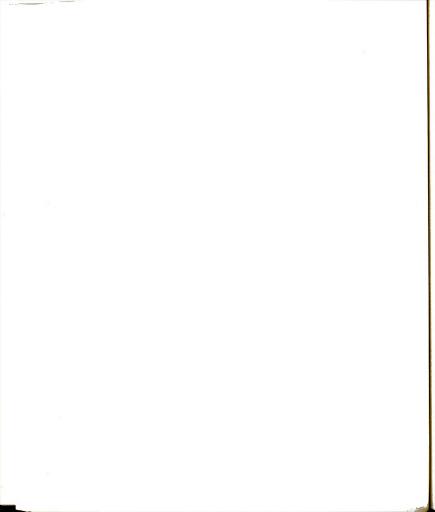
 A different type instructional program is required to adequately train disadvantaged or low-education




level personnel to operate complex machinery in both developing and developed countries.

To meet the need for an occupational training program structured to impart skills to disadvantaged persons with low-education levels or a record of past failures, the systems approach was used to develop a complete course for a tractor operator. Using the learning concept of SLATE developed by educational psychologists, a modified MSLATE training program was developed for a Basic Tractor Operators' Course (BTOC). The difficulties experienced by manpower training programs and the lack of opportunities for disadvantaged workers to learn an occupational skill, suggested that previous training was either unavailable or inadequate. The BTOC was given to a random group of migrant trainees as a preliminary test of the course. success of the program in qualifying 10 of the 12 trainees who completed the course showed that such training can be effectively accomplished. The problems and difficulties in communicating cross-culturally and in instilling positive behavioral changes support the acceptance of this hypothesis.

2. A properly structured training program will significantly decrease the time it normally takes to train qualified machinery operators.


The average training program used to teach occupational skills lasts from six months to two years for machinery operators. One specific training program, the

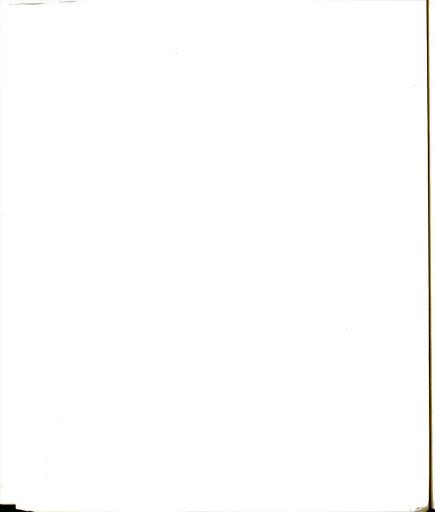


Narosurra Mechanization Training Scheme in Kenya, attempts to train African farmers and contractors in three months. The goal of the BTOC was to design a structured course that could be taught more efficiently in one-third to one-half that time. As developed and pretested, the BTOC of 65 lessons was programed and taught in less than four weeks' full time. The achievement of qualification by the majority of trainees in this shorter time indicates this hypothesis is accepted.

3. A meaningful final evaluation of illiterate or low-education level tractor operator trainees can be made by using especially designed performance tests and visual observation procedures.

Evaluation processes were incorporated into the BTOC from the beginning pretests to the seven-event final evaluation which covered two days of performance tests. The difficulty of measuring achievements of trainees with low levels of formal education was given special attention in the BTOC program. Performance testing using an absolute pass or fail scoring system was accepted as the only method of ascertaining whether the trainee met qualification standards. To rank trainees, penalty points were assessed for errors or omissions during the individual tests. The few deficiencies assessed trainees during the final evaluation and the general concensus of the outside evaluators that contestants had performed well under

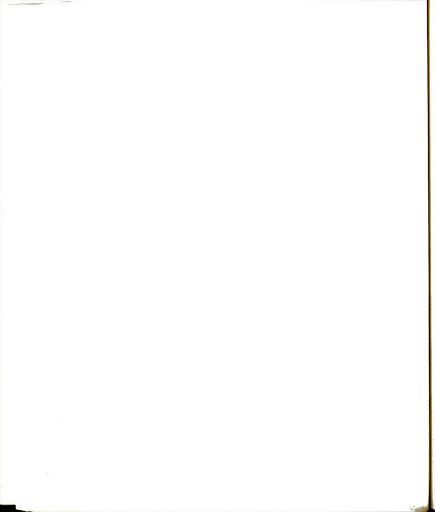



real-life conditions leads to the acceptance of this hypothesis.

4. From a cultural mix, it is possible to select trainees more receptive to training by a series of pretests to identify those who have higher than average aptitudes and states of trainability, irrespective of literacy level.

Because the release of the new non-verbal Special Aptitude Test Battery (SATB) being produced by the U.S. Employment Service was delayed, this hypothesis was not tested. The Michigan Employment Security Service was reluctant to use the regular GATB on trainees with low educational levels when it was hoped the new SATB would be available. Thus no testing was done before training began and no data were collected to accept or reject this hypothesis. This testing is urgently needed to evaluate applicants' potential.

5. With relevant behavioral tests to identify and compare mechanical aptitude and general learning perception, it is possible to predict which trainees, of various cultural backgrounds, are most likely to become good tractor and machinery operators.


Since the new SATB was not yet available, and since the current behavioral tests were deemed unsuitable for measuring the mechanical aptitude and learning perception of trainees with low educational levels from foreign cultures, these predictions were not made in

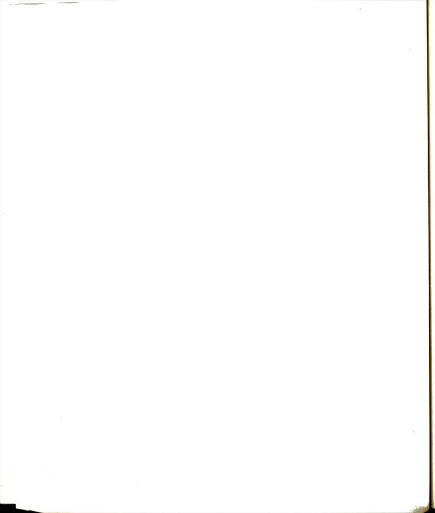


this study. The new SATB and the South African Form Series
Test should be evaluated in future research to determine
their suitability. This hypothesis also can be neither
accepted nor rejected since no aptitude pretesting was
done with the migrant trainees. Again further research
is needed in this particular area.

6. Trainees given a specially designed program of instruction based upon structured learning will learn faster and remember longer than those given the usual lengthy random course or brief and unorganized training.

The fact that the trainees could take 160 hours of training and pass both daily and final evaluations on attitudes, skills, and knowledge indicates that this hypothesis is correct. The individual performance in the final two-day evaluation of applied learning showed that the trainees made acceptable progress in attaining course objectives. Their rate of learning and length of retention was not compared with that of individuals given the usual few days of haphazard training or with that of those taking a much longer and different type of course. While indications point to acceptance, the hypothesis can be neither accepted nor rejected at this time since comparisons do need to be made.




7. The bilingual local leader, adequately trained as an instructor, can more effectively train local people of his own language and background.*

As preliminary testing of the program was not carried out in foreign countries as planned during the summer of 1970, this phase of the validation plan was not conducted. Based upon the limited training given to instructors in the U.S. pretest program with migrant workers and upon the need for additional instructor training, it was clear that more adequate instructor training is needed everywhere. The hypothesis as stated can be neither accepted nor rejected based upon lack of overseas evaluation of instructors.

8. By providing an instructor with a detailed training program and a definite period of in-service training to learn how to use it, a superior type of uniform instruction will be presented to trainees.

The short time allowed to finish developing the BTOC before pretesting it, the unavailability of the selected instructor to take more than two days of in-service training, and the late appointment of assistant instructors did not permit the offering of an adequate instructor training program. The teaching quality of instructors was below expectations because they lacked sufficient

These hypotheses were not tested because the overseas testing portion of the validation program for the Basic Tractor Operators' Course was cancelled. They are not germane to this study at this point in its development but are suggested as possible projects for future research.

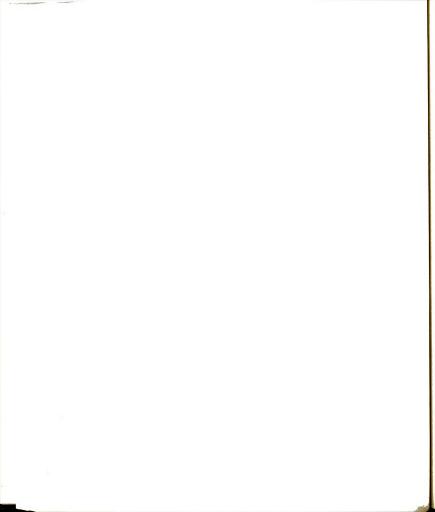


preparation. Detailed training programs and visual aids do not guarantee superior teaching. A structured training program, however, will provide uniform training if it is followed. The hypothesis as stated cannot be evaluated because the in-service training program given to instructors was inadequate. However, as before stated, the feedback from the trail with migrant trainees indicated that instructional training was needed.

9. Uneducated trainees can learn to become good machinery operators capable of exercising basic judgments and decisions by completing a practical course of "hands on" real-life training.

Trainees from disadvantaged backgrounds with low levels of education successfully completed a half-time eight weeks' BOTC. They were given both knowledge and skill training with emphasis on attitude development. Through practical application, they learned to make rational judgments and decisions. The hypothesis is conditionally accepted based upon the results of the preliminary trial program with Spanish-speaking migrant workers from Puerto Rica and Mexico.

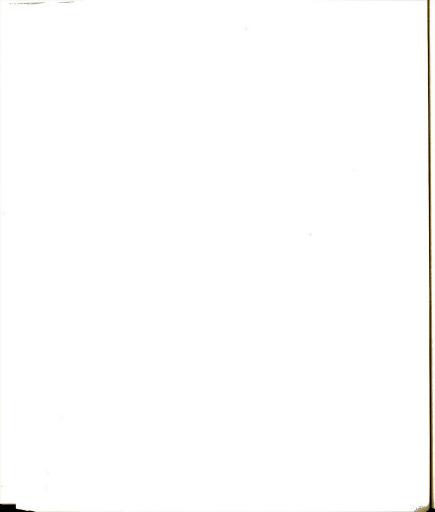
10. Tractors and other machinery used and cared for by trained operators will last longer, require fewer repairs, have lower operating costs and have a higher hourly productive output than machinery driven by "drivers" who are untrained or are trained by traditional methods.*



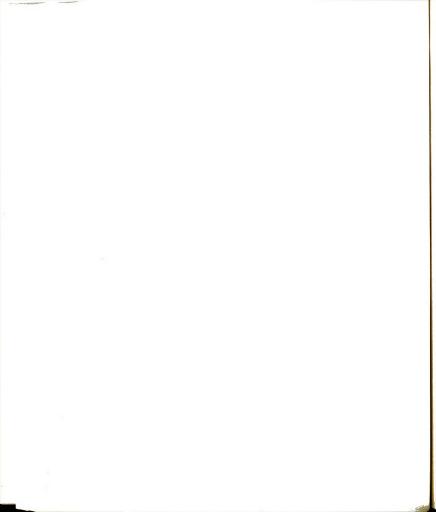

Limited records and analysis indicate this is true, but the hypothesis was not tested during this study. Research is suggested to collect the data needed to compare the effects of good operator training upon machinery life, operating costs, and work output. No data is available from this study to either support or reject this hypothesis.

### Conclusions of Study

General conclusions were made about mechanization training based upon the need for training and the subsequent development of an occupational training program for qualifying tractor operators:

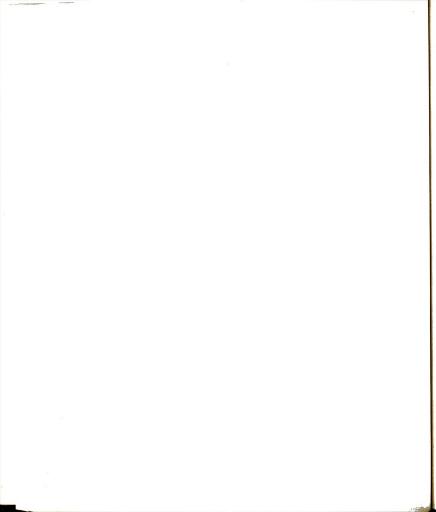

- 1. All farmers and machinery operators require specialized training to safely and properly operate and maintain today's sophisticated farm tractors and implement systems.
- 2. Without adequate training, tractor and machinery operators cannot be expected to perform daily and weekly preventive maintenance practices which prolong machine life and protect both man and machine from abuse and damage.
- 3. In the hands of untrained and inexperienced drivers, tractors and their associated equipment do very poor to mediocre work and become economically unprofitable to use.
- 4. Performance-oriented training programs based upon a pass-fail absolute rating system must be provided




by industry and governments to users and purchasers of new and unfamiliar equipment if it is to be used rationally, efficiently and economically.

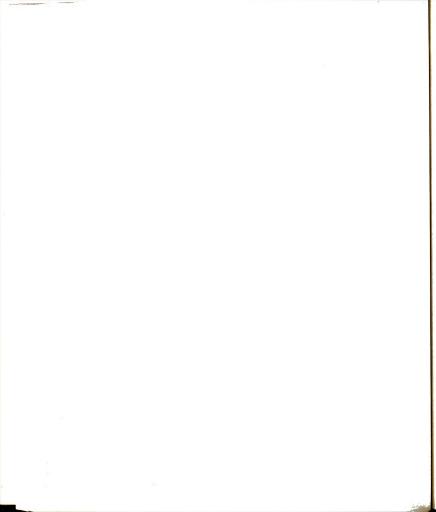
- 5. The adoption and effective use of modern agricultural machinery and ideas is limited primarily by the inadequate knowledge, experience and judgment of the men who attempt to use it in developing countries. Often the wrong types of equipment are selected for introduction into a country.
- 6. There is a large unfilled demand to train loweducation level trainees to become qualified machinery operators and mechanics in developing nations.
- 7. Improved training programs are needed at all levels of agricultural and industrial employment, from the lowest machine operator to the top administrator, to upgrade the attitudes, skills and knowledge of employees and to develop capable supervisory and management personnel.
- 8. A new concept of "mechonomics" needs to be applied to the problems of agricultural mechanization in which special attention is devoted to man, his machines, and their management.

Some specific conclusions were reached about training tractor operators and the development of a basic course of instruction for cross-cultural occupational training as follows:




- 1. The systems engineering approach to curriculum design offers a unique way to clearly define training objectives, the course content, and the evaluation program needed to develop effective occupational training.
- 2. The modified structured learning and training environment provides the basis for individualizing instruction and fitting it to trainee needs for upgrading and for efficient use of available resources.
- 3. The detailed preparation of a structured training program for machinery operators was a sizeable task resulting in a course of 65 lessons for the basic tractor operator of a diesel-powered wheel-tractor.
- 4. The Basic Tractor Operators' Course (BTOC) along with the training guidelines forms an Instructor's Manual which can be used as a guide in conducting more effective occupational training programs.
- 5. The effectiveness of a cross-cultural training program to teach trainees with low educational backgrounds depends primarily upon the instructor and his willingness to relate it to their needs.
- 6. The major short-coming of the present BTOC is its adaptation primarily around one brand and model of a diesel-powered tractor. This was done purposely in developing this first course to serve as a model.
- 7. The major short-coming of the machinery operator training program for the disadvantaged worker as it was

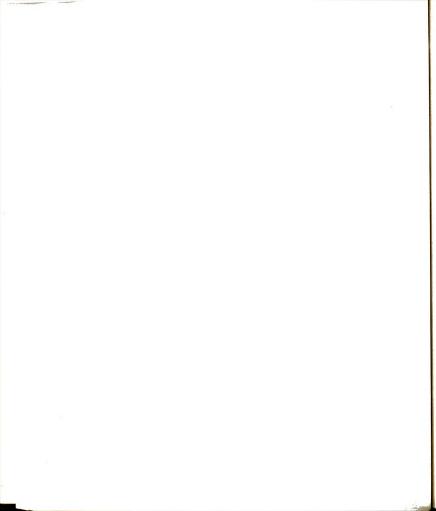



presented to the migrant group was the lack of adequate pre-instruction training for the instructional staff.

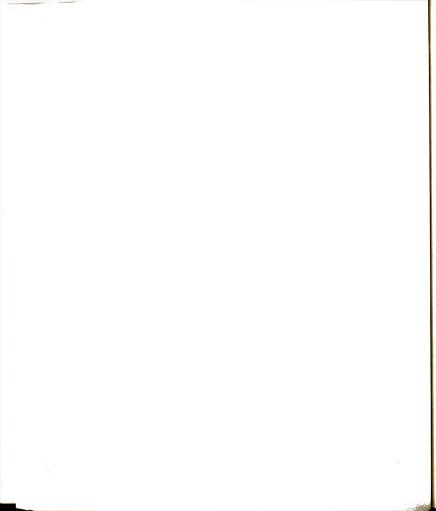
- 8. Further testing of the BTOC is needed in overseas areas to check its validity under cultural conditions with locally trained bilingual trainers and minimally educated trainees.
- 9. Future tests should be conducted under controlled experimental conditions to analyze the effectiveness of training and response of pretested selected trainees as compared to randomly chosen trainees.
- 10. The proposed non-verbal Special Aptitude Test
  Battery (SATB) being developed by the U.S. Employment
  Service, or similar tests, should be used experimentally
  to evaluate the potential capability of trainees and to
  determine those most likely to become successful tractor
  or machinery operators.
- The task of training skilled manpower for tomorrow's needs requires vast resources and increased attention by educators.
- 12. Most developing countries now face, or soon will face, a crisis in manpower development and training. Only with improved manpower training programs for the masses can the crises be minimized in today's advancing and constantly changing technology.



### Potential of the Basic Tractor Operator Training Program for Manpower Development


- The acquisition of basic tractor operator skills by low-education level trainees can provide a new source of manpower skills for the accelerated development of emerging nations.
- 2. The universal format developed for the Basic Tractor Operators' Course, built around the MSLATE and engineering systems approach, can be used to develop other similar mechanization courses for more effective agricultural and industrial manpower training.
- 3. The special training material developed for the BTOC, Grade I, can be tailored to specific technological needs and reproduced for world-wide distribution to public and private institutions and agencies in developing countries to improve the effectiveness and reduce the cost of operator training programs.
- 4. The availability of a proven method of training and a course of structured learning would make it possible for governments to establish new training facilities, wherever needed, with a minimum of expense.
- 5. An effective, inexpensive course of skilled instruction would permit governments and industry to carry out training locally, to encourage the decentralization of industry and business and to create new job opportunities for thousands of disadvantaged rural people.




- 6. Trainees with the basic skills of a wheeltractor operator can learn additional skills to up-grade
  their ability levels as machinery operators, factory and
  construction workers to more fully and effectively employ
  mechanical power in economical applications.
- 7. Dealers and manufacturers can assist in the introduction of new technology by providing the latest information and equipment. This will insure availability of the necessary teaching aids and technical data to maintain a high level of training validity.
- 8. The use of a follow-up program conducted with BTOC graduates could ascertain training strengths and weaknesses. Feedback from this program can provide the basis for constant improvement of the course and for the planning of refresher and up-grading courses.

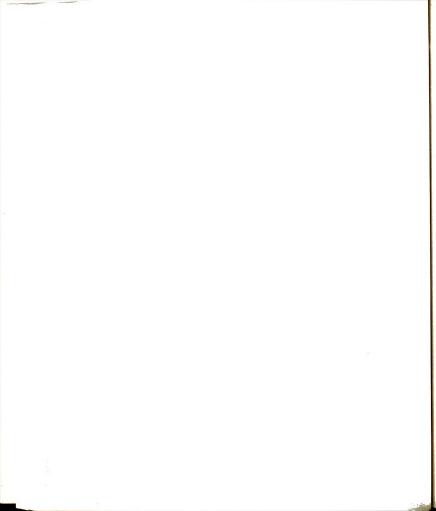
## Possible Uses and Applications of the Study

1. The development of a universal training program for tractor and machinery operators can enable individual farm machinery manufacturers to more easily train their own company and dealer personnel. These key people can then act as master instructors to train local people as qualified tractor and machinery operators. They can also train government workers and vocational staff members from educational institutions who can conduct training for farmers and students enrolled in various training institutes and similar government programs.



- 2. The special training materials and instructional programs developed and tested in this study can be made available to individuals and organizations already engaged in training programs for agricultural mechanization. With the Instructor's Manual as a guide, the BTOC can be used to up-grade the caliber of training, to standardize the type of training, to provide for continuous progress, and to increase confidence in the ability of the school and its instructors to do an outstanding job.
- 3. The development of a training program aimed at minimal education levels can permit governments to tap a vast unused source of manpower and to find employment for young adults and school leavers now unemployable. Such training can be a stepping stone to better jobs and can provide new opportunities for rewarding work for the rural disadvantaged.
- 4. The design, production, and world-wide dissemination by major farm machinery companies of practical and tested training programs and materials can permit governments to update present obsolete and inadequate training programs to more efficiently meet the needs of developing economies.
- 5. The development of a universal detailed Instructor's Manual can assist private organizations, plantations, and large commercial agricultural enterprises in improving the caliber of training already being given.



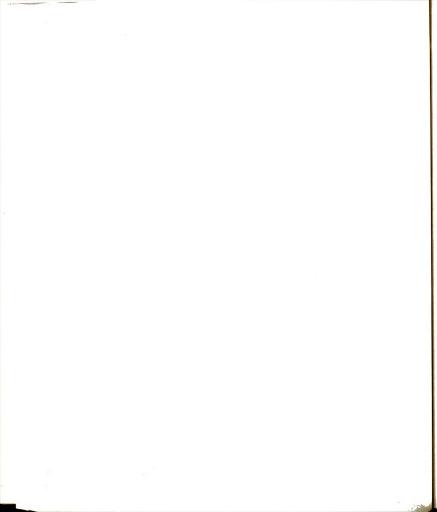

6. The production of a simplified operators' manual, based upon the Basic Tractor Operators' Course, in the primary local language of a nation would permit training institutions and schools to give a useful reference manual to all graduates of tractor operator courses.

### Selection of Course Material to Individualize Instruction

As an example of how the BTOC can be adapted to meet the needs of different skill levels and time requirements, the following procedure is suggested:

The trainees should be selected and pretested to establish entry level knowledge. Based on the facilities and the time available, the instructor can tailor the training program to the trainees' needs by selectively using the prepared lesson materials. The course is divided into eight major sections lettered A through H. Each section is important and should be included in a complete course to train the minimally-qualified basic tractor operator. All of the material presented in sequence forms a three- to four-weeks' course.

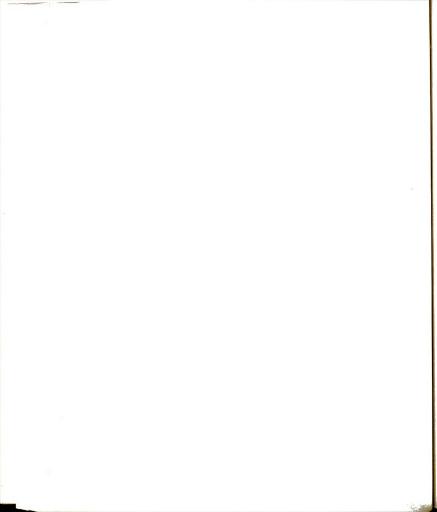
Although this course is designed to train a Grade I operator, it can also be used selectively for providing short intensive courses to prepare tractor drivers and for retraining or up-grading current operators. For example, if operators are already proficient in maneuvering the tractor but are weak in care and maintenance procedures, a one-week's




course could be set up using only Section B of the lesson material. The material is very flexible as each section can be used singly. Different combinations of lessons in a section can be used to meet individual needs by choosing only those parts required to bring trainees up to the acceptable standard.

# The Concept of Mechanization System of Mechanization

This term is defined as a function of man, his machine, and its management. Of these three elements, man is the critical resource controlling the degree and quality of output from both other sub-systems. Only when man is well trained, has sufficient experience, and can balance the constraints of all systems to optimize their inter-relationships can he achieve success to any degree. The product output or the behavioral change of this mechanomic system is dependent to a variable degree upon many other factors, all of which can retard or accelerate the productivity of these major parts.


There are many people in various governments of the world who say, "It can't be done" or "It won't work," when they refer to the mechanization of agriculture. Many poorly planned and even less ably implemented attempts have been made to accelerate agricultural development. There have been many striking failures. Some of these could be blamed upon inadequate information, others upon

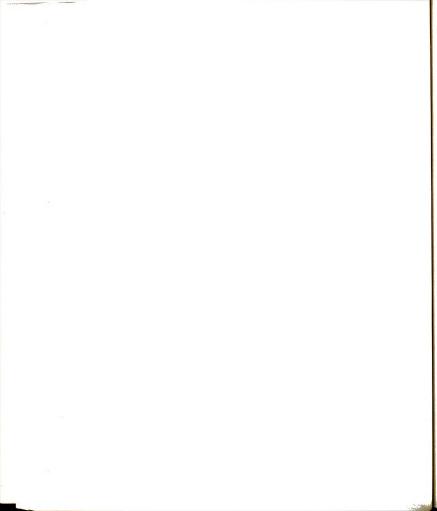


lack of an acceptable market, some upon the failure to provide adequate supporting services, and still others upon natural calamities and disasters beyond man's control. Very seldom was the machine completely at fault or was there a lack of desire to do better. Nevertheless, behind each of these failures stood short-sighted, poorly trained, or inadequately prepared men. All of these failures could have been prevented by thorough investigation prior to adequate preparation.

Training is critical to the mechonomics concept of man as a director of power. A machine is simply an extension of man's creativity and individual power directed and controlled to perform otherwise impossible tasks. Machines may be programed to carry out routine tasks according to a prepared plan. However, unless a machine is or can be made flexible, it soon becomes obsolete and is discarded. The capacity of man himself to continually size up changing conditions and redirect his plans, machines, and actions makes him superior to any machine so far conceived.

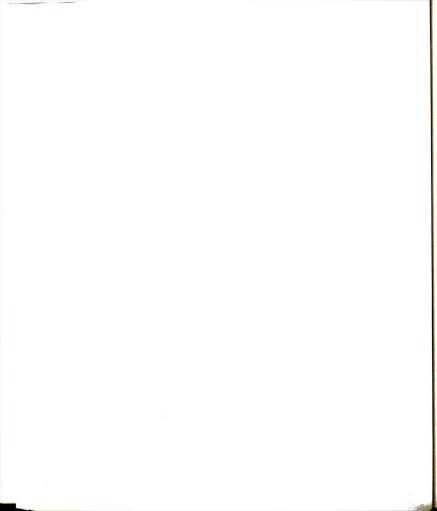
For people who go routinely through life, the big problems are learning how to get along with the machines and systems that other men have created. Since they have not had a part in creating the machine or system thrust upon them, they often have little idea about why it should be used or how. These people must be taught how to manage themselves and their machines. It is not an easy task nor




one that can be solved rapidly in our current "society of instants."

Mechonomics implies a clear analysis of the problems, a concrete definition of objectives, the making of a realistic plan, the establishment of priorities of action for each plan element, and the allocation of necessary implementing resources. At each step key people must be used to train additional manpower or to up-grade the training of existing employees to assume greater responsibility. In any organization the aggregate team effort counts, but it can only be summed if each individual does his job thoroughly and uses his machine correctly.

The machine as a key element only pays dividends when it makes possible the creation of more wealth than it consumes. Machines are expensive resources that add to costs every hour that they are not productively employed. This may mean the allocation of additional manpower and management to keep the machine maintained and busy. Even under almost impossible subsistence-level farming and short-term credit, private purchasers of tractors in Thailand have been able to pay for modern wheel-tractors too large for their traditional small farms by hustling and by applying the principle of "mechonomics."

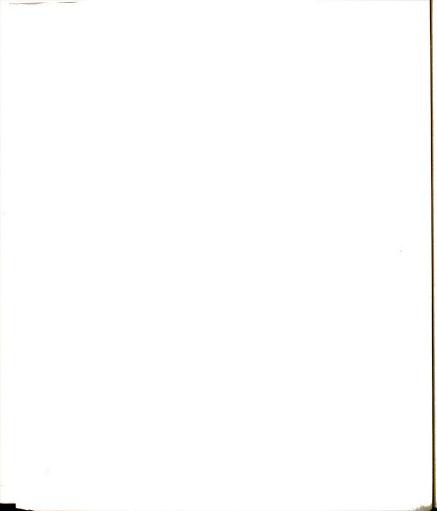

Chancellor (1970) points out that four men in
Thailand are used to operate a tractor and keep it busy.

If necessary, the three drivers operate it 24 hours a day



while a fourth man spends full time scouting for more work. Two of the drivers also double as mechanic and as cook. The flexibility of this system permits any man to do any job necessary to keep the revenue coming in to pay the operating bills and the purchase payments. Good management and flexibility also require that the machine be used in one area as much as possible for efficiency; but when the rate of return decreases, the machine is moved to another area where opportunities are greater. This illustrates how the concept of mechanomics works. Excellent management is essential. It must be practiced by all operators even to the sacrifice of personal desires when timing is critical or work loads demand. Larger organizations can hire others to do some of the less pleasant or more arduous tasks; but such employees must be wisely selected, thoroughly trained, and continuously supervised. Otherwise man will neglect his machine and its job, shrug off problems and responsibilities, and let management worry about the decreasing productivity and increasing costs.

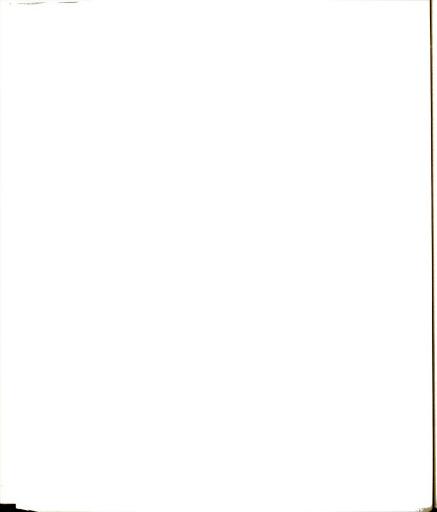
Much more attention needs to be given to the concept of mechanomics and how it can be used in developing nations to promote a vigorous agricultural growth. There is a definite place in every nation's development for the introduction of rational engine-powered agriculture. Just when and where it can be used most effectively, how it will be used, who will be responsible for its development, and




what resources will be employed are specific questions to be decided at the particular time and stage of development. Some imbalance is needed to stimulate development and to produce new markets, new products, and new ideas which in turn will lead to further expansion and development. The concept behind mechanomics continually creates more intricate and complicated machines requiring more systematic and complex management by more highly skilled and responsible men.

#### Recommendations for Further Research

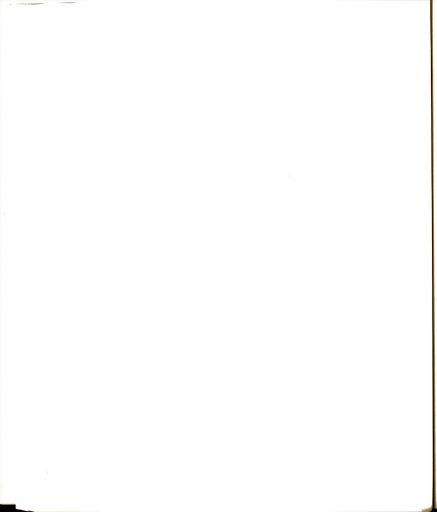
# Suggested Follow-Up and Overseas Testing of the Basic Tractor Operator's Course


The preliminary test of the BTOC with migrant workers of Spanish descent indicated that the training program will work across cultural boundaries. How well it will serve in a foreign country when administered by local trainers to their own people is yet to be determined. The migrant workers trained in this preliminary testing program had more mechanical background than is normally found in overseas rural trainees or middle school leavers. The fact that many U.S. migrant workers use automobiles in moving from job to job gives them a decided advantage in familiarity with mechanical devices. Overseas testing is needed to determine whether trainees with little or no mechanical background can be trained as successfully in developing countries.



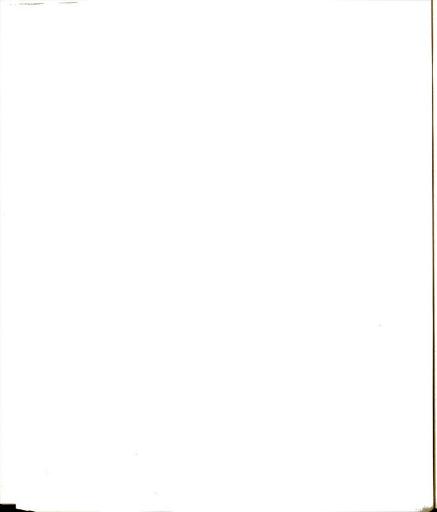
The BTOC was built around a medium-size (50-60 hp.) modern diesel tractor because this is the most popular size in rapidly developing countries as well as in most of the U.S. As a next step, the content of the BTOC should be adapted to other brands of tractors and self-propelled machines for more general application of principles.

Because of withdrawal of funds, the overseas testing phase could not be carried out during 1970 when this research was conducted. The initial testing program should be continued with a carefully planned random-block experimental design in at least two countries. Trainees should be selected by some form of random cluster sampling to get a true cross-section of the low-education and disadvantaged groups for comparison with other pretested select groups. After identification, the trainees of the random sample should be brought together and evaluated objectively, using the best techniques and instruments available. It is suggested that the new U.S. Employment Service Special Aptitude Test Battery or similar tests be used to measure each trainee's apparent aptitudes under identical conditions. This test should be supplemented with interviews and consultation to help establish the trainee's educational and work experience background and entry level into training.


It is suggested that the follow-up testing program be conducted in one African and in one Asian or Latin



American country. In Africa, the most favorable site is at the Narosurra Mechanization Training Scheme in Kenya which could draw students from member nations of the East African Community (ECA). This large, privately operated farm and training center has already had considerable experience in training African farmers in modern agricultural practices and has indicated genuine interest and a desire to cooperate on a testing program. With a large number of applicants waiting to enter their regular three-months' mechanization course, random sampling could be used to identify a test group to receive training in the Basic Tractor Operators' Course.

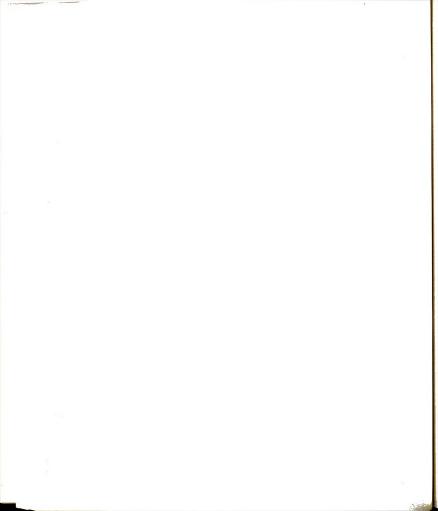

Since other students will have just completed, or may be concurrently taking training under the Narosurra program, a direct comparison could be made between the two groups trained under the same environmental and cultural conditions. The pretests and/or post-tests of the BTOC could be given to both groups of trainees, in addition to the final evaluation events, to measure the attainment of objectives and qualification as Basic Tractor Operators.

A second similar testing program could be held in Argentina, Brazil, Columbia, or Mexico in Latin America, or in India, Iran, Malaysia or Thailand in Asia. Comparisons could be made between cultural groups and within cultural groups when other training programs are offered from which students could be evaluated.



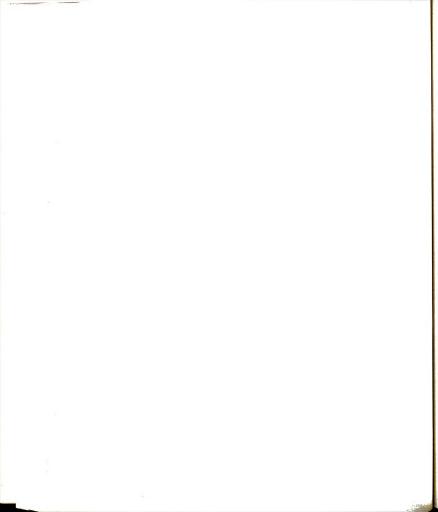
Each testing program should be analyzed in two phases: First, measurements should be made of the effectiveness of selecting and training local teachers in a condensed but intensive instructors' training program. The instructor trainee should actually teach bona fide students and should be rigorously examined by outside evaluators on learning methods, teaching techniques, subject matter, communication, and practical skills. The instructor should be able to perform every skill at least as well as he expects the trainee to do it. The instructor who cannot demonstrate how to do a specific task, and how well it should be done, has no place in vocational technical applied learning.

Second, the new instructors should be helped to identify the trainees, analyze their entry level, and observe their training in the regular full-length Basic Tractor Operators' Course. The outside coordinator can assist in pretesting the trainees and getting the instructors off to a good start. It is most desirable that the new instructor have a successful experience with his first class. He will undoubtedly need to be guided and prodded to keep him on the right track. If the instructor is not careful, he will drift back to old lecture habits, will neglect daily evaluation, and will fall into a lock-step process without individualizing the instruction and keeping it practical and on schedule. The outside evaluator should



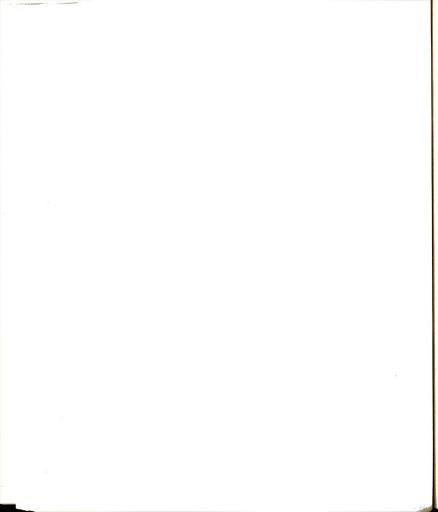

not interfere with the instruction but should make sure that problems are resolved before they impair training. The lesson plan and schedule must be followed, to permit a comparative evaluation of the total training program.

# Follow-Up Courses for Up-grading Tractor and Machinery Operators


Material for the proposed Advanced Tractor Operator Course, Combine-Harvester Operator Course, and Crawler Tractor Operator Course has not been developed at this time but is suggested as a follow-up to this work. It is suggested that these courses can be patterned after the Basic Tractor Operators' Course and developed as complementary manpower training. A brief description of the possible nature of these courses follows:

Advanced Tractor Operator, Grade II (1-2 Weeks' Refresher Course) This follow-up and refresher training program should be designed to up-grade the Basic Tractor Operator, Grade I to the more advanced operator or owner/ operator stage requiring greater self reliance. The Grade II Operator should be qualified to perform additional maintenance and service on the tractor, including some minor adjustments and simple repairs. Instruction should be carried out on the use of additional tools and implements with special emphasis on PTO and belt-pulley operated implements and equipment. New developments in farm machinery and agricultural production practices should also be stressed.



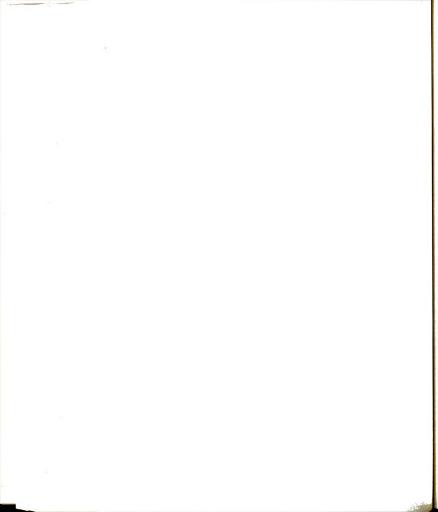

Fully Qualified Tractor Operator, Grade III (2-4 Weeks' Contractor/Supervisor Course) This training program should cover all tractor preventive maintenance and lubrication services through 1,000 hours. It should also instruct the trainee in the operation, adjustment and care of all major tools and implements used in the area. Skills and knowledge should be developed which are sufficient for independent operation of the equipment. operator should be able to make all minor adjustments and carry out all routine repairs and service. He should be capable of making managerial decisions contributing to the wise and efficient scheduling and use of the tractor and its associated implements and tools. The Grade III Tractor Operator should be qualified to operate as a private contractor or tractor-hire service. He could supervise from 5 to 10 Grade I and II operators in a mechanization project, tractor-hire service, or large commercial farm or plantation. He should be able to follow written instructions and carry out the recommendations given in the owners' manuals and instructional materials.

Combine-Harvester Operator, Grade I (2-3 Weeks' Course) This course should train the graduate of a Basic Tractor Operators' Course to work with special grain, fiber, or commercial food harvesting and processing machinery such as small grain combines, maize picker-shellers, cotton harvesters, or specialized harvesters for crops such as



tomatoes, cherries, and apples. The operator should be given special fundamental training in crop characteristics, harvester adjustments, operating techniques, crop conditioning problems and machine and business management. The trained operator should be able to completely service the machine daily, make major adjustments and minor repairs. He should understand the principles of operation of the separating and processing mechanisms so that he could solve common problems and adapt the machine to changing field, crop, and environmental conditions.

Crawler Tractor, Wheel-Dozer, Motorized Scrapers, and Similar Machines, Grade I (2-4 Weeks' Course) graduate of the BTOC could take training on any of these basic earth-moving and shaping machines. Many special schools offer training programs in the heavy construction field. It would not be the purpose of this course to compete with any of these programs. A special course could be offered, however, in the major rural problems of building farm ponds, small-scale earth dams, terraces, revetments, levees, drainage and irrigation structures and similar agricultural water and erosion control facilities. trained operator would learn how to make work estimates, price out jobs, work on a schedule and follow specifications. He would be trained in the art and basic science of making cuts, fills, excavating, hauling, packing, and



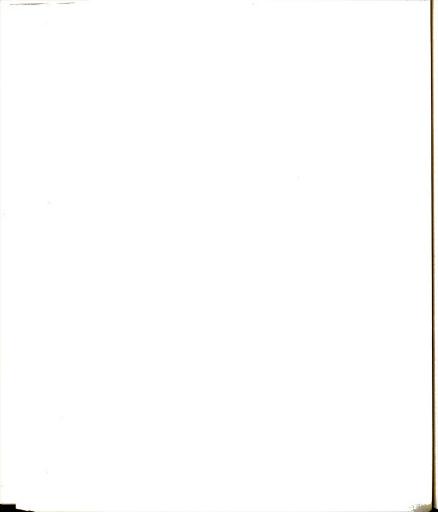

otherwise moving and reforming large volumes of earth and rock. After graduation he should be qualified for employment and, with sufficient experience, to set up his own business as a rural contractor.

### Verify the Validity of Current Aptitude Tests in Measuring Trainee Potential

Selected aptitude tests should be given to all trainees prior to instruction in a standardized course such as the BTOC. A series of controlled experiments should be conducted to verify the hypotheses that certain types of standardized mechanical and non-verbal aptitude tests such as the GATB or SATB can be used to help predict which applicants of low education level and/or non-mechanical backgrounds are most receptive to training and are most likely to become qualified tractor or machinery operators. At the same time, it should be verified that these tests can also eliminate those applicants least likely to succeed.

If the trainee does well in an aptitude test such as the GATB or SATB, it is hypothesized that he will also do well in a training program for machinery operators. However, some parts of the GATB may not be reliable as indicators of trainability in foreign countries. The scores of each part of the GATB or other aptitude test should be compared with the course evaluations and the final testing. Analysis should be made of the pre-training



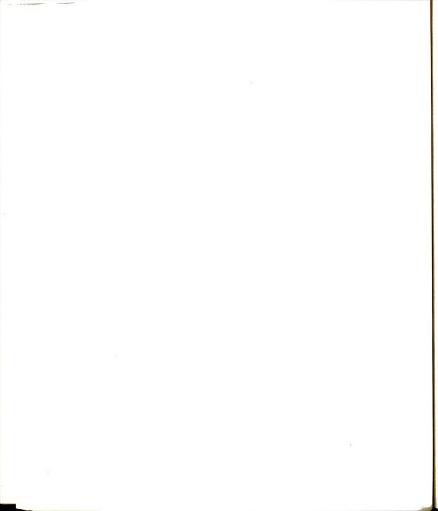

GATB or aptitude test scores and the final course evaluations to see if there is significant correlation between the high and low aptitude scores and the high and low training achievements.

If certain sections of the GATB or other aptitude tests prove valid in predicting which trainees are most likely to succeed or fail, their use would improve training efficiency and increase the percentage of successful graduates and their competence. This testing procedure could result in a considerable economy of effort and training resources and pave the way for structuring more efficient training programs.

## Develop and Prove New Aptitude Tests for Trainees with Low-Education and Non-Mechanical Backgrounds

If currently available standardized aptitude tests are proven unsatisfactory for measuring undeveloped capabilities in trainees from other cultures, new instruments should be developed. A proposed general mechanical aptitude indicator for trainees with little formal education and/or experience with mechanical devices was prepared but not tested as a part of the Basic Tractor Operators' Course.

The objective of such a test should be to discover which applicants possess desirable and discernable mechanical aptitudes which can be amplified by training. Such a test should pinpoint trainees with unique aptitudes or combinations of aptitudes who could be readily trained in the

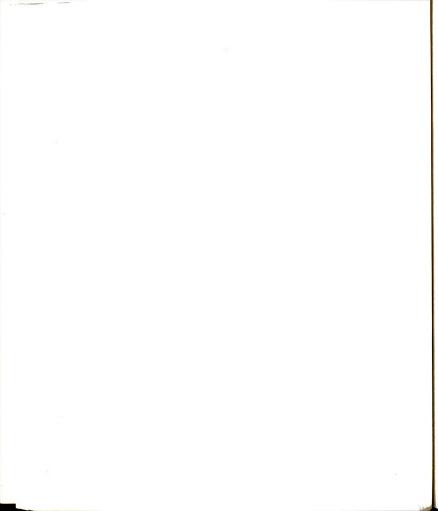



skills for several mechanical and technical vocations.

Each vocation could lead from the simple to the more complex occupation such as from tractor driver to mechanic or field supervisor.

The proposed simple aptitude test should be made up of pictures and drawings of various types of simple and common tools and devices and their parts. Not all items will be found in all countries and some may have slightly different forms than those suggested on the test instrument. However, each country's coordinator should be able to substitute other items which would be more appropriate for his own culture and locale.

The proposed non-verbal cross-cultural aptitude test would be used to weed out persons exhibiting little mechanical inclination and to select only those potential trainees who have pronounced and desirable general intelligence and mechanical traits. The degree to which applicants possess such latent ability may require that strictly rural youth be compared only with each other; similarly, that city youth be compared only with their peers. Such tests, dealing with very simple and common mechanical devices and calling for perception and judgments about the nature and functions of such devices, should measure general capability.



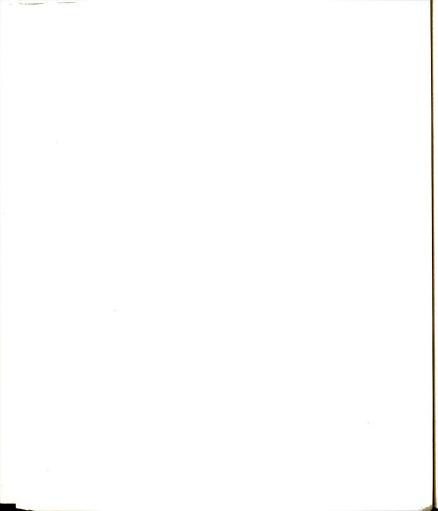

## Comparison of Costs Versus Benefits of Untrained and Trained Machinery Operators

Surveys and studies conducted in Asia and Africa have reported that efficient mechanization of agriculture is largely still a pipe dream. The life of imported machinery is extremely short, and the cost of operation is disproportionately high because of mis-application of the machinery and the way in which it is maintained and operated. Tractors improperly used and maintained soon break down after only a few hours of use. Repairs cost several times the normal rates. Hard-to-replace parts such as tires and batteries are quickly damaged beyond repair, and the life expectancy for the complete machine is less than half that attained in developed countries.

It is believed that machinery operated and maintained by qualified operators will last much longer, require fewer repairs, have a lower operating cost, and produce at a higher hourly output rate than will machinery used by drivers who are poorly trained by the traditional methods now in use throughout most of the world. However, no data on controlled experiments comparing the costs to benefits of trained operators versus untrained drivers are available at this time.

Much information could be obtained from model farmers, private contractors, government mechanization schemes, development bank projects, and UN special

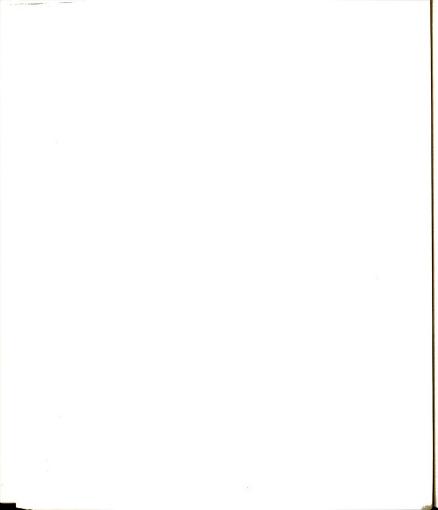



development fund projects in Asia, Africa, and Latin

America. Agricultural machinery manufacturers could initiate
controlled experiments in cooperation with educational and
research institutions to prove the degree to which training
pays. Every project manager knows that untrained operators
increase costs considerably. However, there is no verified
evidence to determine how costly it is not to train and use
qualified machinery operators. Possible courses of action
to secure such information are:

- 1. Initiate research to determine and record operating and service costs on machines operated by untrained or inadequately trained drivers.
- 2. Keep operating and service cost records on tractors and machines operated by graduates of courses such as the BTOC under similar conditions. Also obtain repair and service cost records on tractors and machines operated by graduates of any other specialized mechanization training programs, such as Narosurra in Kenya.
- Compare the job performance, work output, service and repair costs among the groups above.

### Comparison of Total Costs of Combine and Tractor Operations by Trained and Untrained Operators and the Effect upon Logistical Support

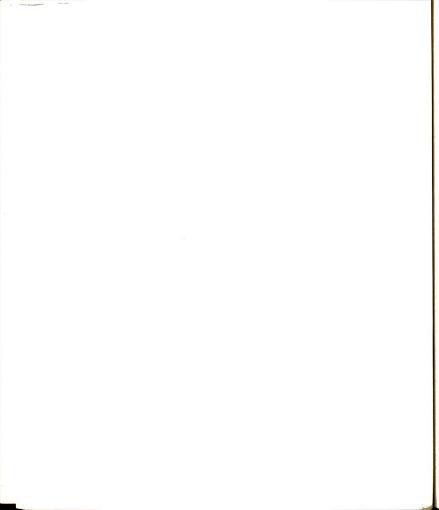

It is suggested that a study be initiated with dealers of major farm machinery who have or can get accurate records on the costs of repair and maintenance of machines



sold and serviced by them. The study should compare the difference in costs of operating a combine or tractor under similar conditions and constraints except for the degree of training the operator has received. The objective would be to prove that the cost of training is more than justified by reduced costs of operation and increased output; or conversely that training does not make a material difference in the total costs of operation of modern machinery, and therefore does not return a cost benefit.

Similarly, a study could be made using such information as that which could be obtained from the well-kept maintenance records of such organizations as state farms in Turkey, government irrigation schemes in Sudan, and private and publicly operated contract-hire-services in Sudan, Iran, and Kenya. Such a study should include:

- 1. Types of repairs, when they occurred, causes, and whether they were related to operator ignorance or negligence.
- 2. Life expectancy of a machine and estimates of repair costs of older machines when operated by the two types of operators.
- 3. The amount of investment needed for parts, and the quantities needed to support every 100 machines when operated by the two types of operators.
- 4. The frequency and duration of breakdowns during seasonal work when machines were operated by the two types.

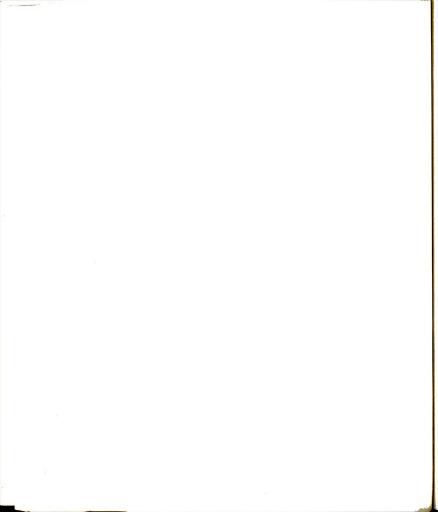



- 5. The most frequent causes of failure of combines and other machines when operated by the two types.
- 6. The type of training needed to prevent failure or to reduce maintenance and repair costs when problems were caused by the untrained operator.
- 7. The effect upon a dealer's service and maintenance load imposed by the two types of operators.

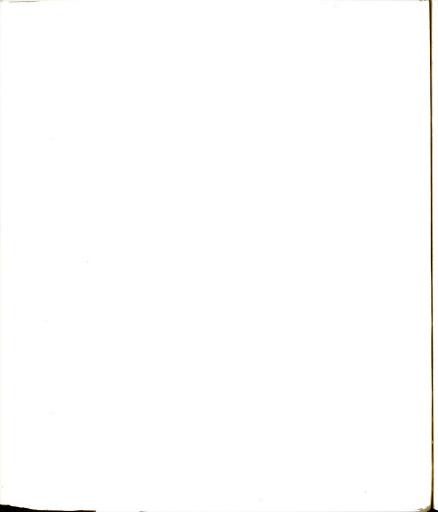
# Improving Training Programs Offered by Manufacturers, Institutions, and Governments

Most agricultural machinery manufacturers recognize that their responsibility extends beyond the design and production of the best possible machinery for the developed and developing countries. Concurrent with making machinery available to world markets is the need to provide training to ensure its efficient and economical use. No one is in a better position to provide proper training on the operation and care of specific equipment than the original manufacturer.

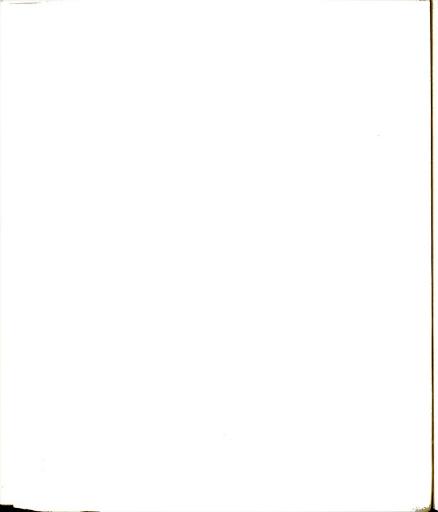
For the next decade and longer, the bulk of sophisticated farm machinery will be imported into the developing countries. This puts primary responsibility for adequate training in its use directly on the manufacturer and the importer. Simultaneously, both industry and government sponsored training resources are limited by the high cost of establishing new overseas manufacturing plants to provide cheaper products and job opportunities, the increasing cost



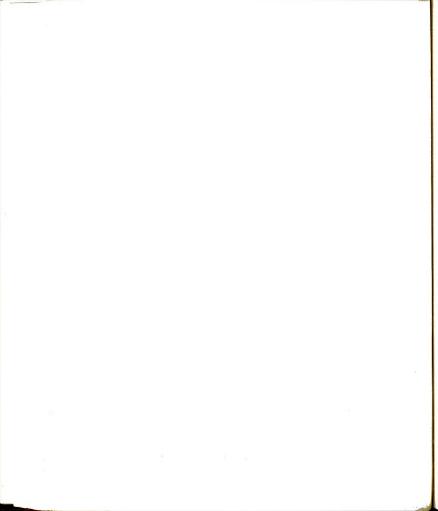

of design, the slowly developing markets, and the constraints of credit, supportive infra-structure, and lack of skilled personnel.


Assuming that suitable machinery is available for use in developing countries, that dealers can and will supply adequate parts and service, that governments will provide credit, price supports for agricultural products, and other policies to encourage the mechanization of agriculture,—the main limitation is manpower training. There is a large unfilled demand for qualified instructors and practical training methods prepared especially for use with the disadvantaged. Improved training skills and knowledge are needed at all levels in agriculture and in industry in both private and public enterprises.

Manufacturers cannot offer formal training to every farmer and user. Thus such organizations must work closely with government and educational agencies. For successful market development, the industry must provide some training on the operation and maintenance of its products.


Opportunities for up-grading skills and techniques must be supported by a cooperative effort between industry, government, and educational institutions. In these efforts to improve training programs, the machinery manufacturers must take the lead in supplying facts, technical advice, and suggested training programs.




The Basic Tractor Operators' Course, supported by Deere and Company and reported by this study, is one example of a cooperative effort made by a manufacturer, an educational institution, and a state government agency. This project illustrates the possible achievements which might be attained through enlarged cooperation. Universal and more efficiently structured training programs must be designed in order to utilize limited resources to develop the latent abilities of the great numbers of disadvantaged. Such training would help to provide needed food, employment, personal satisfactions in achievement for many, and generally higher standards of living for all countries.

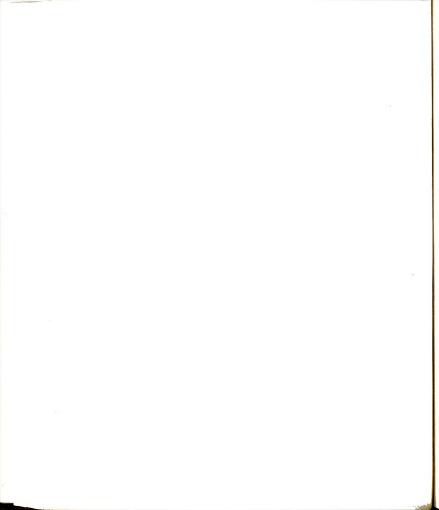


The Basic Tractor Operators' Course, supported by
Deere and Company and reported by this study, is one example
of a cooperative effort made by a manufacturer, an educational institution, and a state government agency. This
project illustrates the possible achievements which might
be attained through enlarged cooperation. Universal and
more efficiently structured training programs must be
designed in order to utilize limited resources to develop
the latent abilities of the great numbers of disadvantaged.
Such training would help to provide needed food, employment,
personal satisfactions in achievement for many, and generally
higher standards of living for all countries.



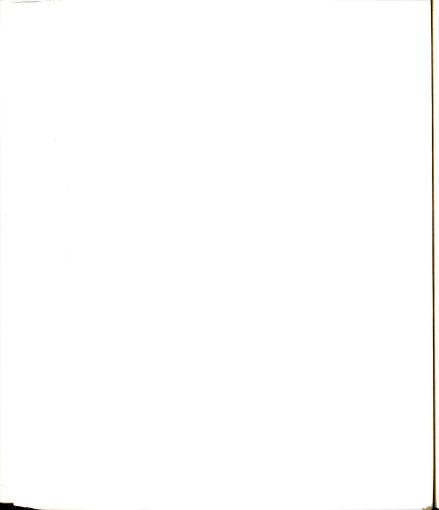
BIBLIOGRAPHY




#### BIBLIOGRAPHY

- A.P.O. Secretariat. Expert Group Meeting on Agricultural Mechanization. Asian Productivity Organization. Vol. I, APO Froject SYP/III/67. Tokyo, Japan: June 1968, pp. 356.
- A.P.O. Secretariat. Expert Group Meeting on Agricultural Mechanization: Analysis of Agricultural Mechanization. Asian Productivity Organization. Vol. II, APO Project SYP/III/67. Tokyo, Japan: October 1968, pp. 151.
- Baker, H. J.; Voelker, P. H.; and Crockett, A. C. <u>Detroit</u>

  Mechanical Aptitudes Examination, Form A. The Test

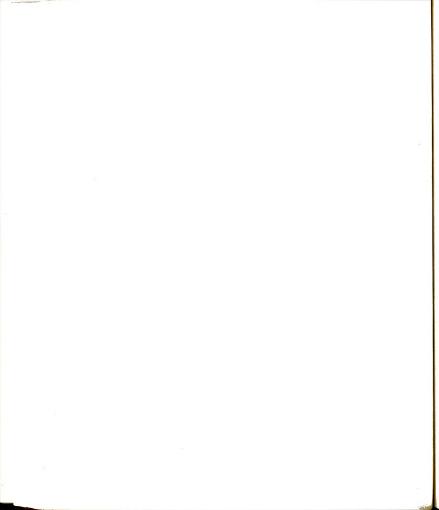

  Division of Bobs-Merrill Co., Inc. Indianapolis,
  Indiana: Howard W. Sams and Co., 1969.
- Banathy, B. H. Instructional Systems. Palo Alto, California: Fearson Publishers, 1968, pp. 189.
- Barnes, Kenneth K. "The Quality Machine Operator."

  Implement and Tractor. Vol. 85, No. 6, March 7, 1970, p. 18.
- Bartlett, George. General Manager, Illovo Sugar Estates Limited, Illovo Natal, South Africa. Personal Communication, June 29, 1970.
- Bartlett, George. General Manager, Illovo Sugar Estates Limited, Illovo Natal, South Africa. Personal Communication, to C. J. Mackson, November 25, 1969.
- Bartlett, George. Tractor Maintenance, Lubricants, Systems,
  Management, Buildings and Equipment. Bult. No. 5,
  2nd ed. Industrial Field Mechanisation and Labour
  Saving Committee, South African Sugar Association,
  Natal, South Africa, 1966, pp. 22.
- Bennett, G. K.; Seashore, H. G.; and Wesman, A. G. <u>Dif</u>ferential Aptitude Tests: Mechanical Reasoning, Form A. New York: The Psychological Corporation, 1947.
- Bernotavicz, F. D., and Wallington, Jim. Act I of JIMS, Audiovisual Instruction. May 1970, pp. 25-30.



- Blake, R. H. National Institute for Personnel Research, South African Council for Scientific and Industrial Research, Johannesburg, South Africa. Personal Letter. September 18, 1970.
- Bittner, R. H. The Correlation of Aptitude Test Scores and Grade Point Averages of Students Enrolled in the Farm Equipment Service and Sales Program, Michigan State University. March 1962, p. 9. (Unpublished Report.)
- Bolen, J. S., and Doss, H. J. Survey of Full-Time Fruit
  Farm Employees in West Central Michigan. Rural
  Manpower Center, Michigan State University, March
  1970.
- Bolton, Clinton G. Assistant Professor of Agricultural Engineering, American University of Beiruit, Lebanon. Personal Communication, October 10, 1970.
- Booysen, S. S. Three-Day Tractor Drivers' Course: Notes on the Application of the Programme. South African Sugar Association, March 1969, pp. 12. (Mimeographed.)
- Boshoff, William H., and Corbett, G. C. A Report on Agricultural Engineering Training and Education in Africa, RAO, Rome, December 1965.
- CENTO. Traveling Seminar. Farm Tools and Implements.
  Conducted Oct-Nov. 1966 in Iran, Pakistan and Turkey.
  Published by Central Treaty Organization, Ankara,
  Turkey. Sept. 1968, pp. 147.
- Chancellor, William. <u>Tractors Versus Tradition in Thailand.</u> Paper Presented at a Seminar. <u>East Lansing</u>, Michigan: Michigan State University, December 1970.
- Charles, C. W. Labor Coordinator, ILO, Africa Division.

  Personal Interview. Addis Ababa, Ethiopia, March
  1969.
- Churchman, C. W. "On the Design of Educational Systems." Audiovisual Instruction. May 1965, pp. 361-365.
- Coulthard, T. L. "Agricultural Engineering in Developing Countries; West Africa." Canadian Agricultural Engineering. Vol. II, No. 2. November, 1969, pp. 46-47.
- Curso Avanzado. Convenio Entre Tractorista Y Tractor.
  Division de Ultramar, Deere and Company, 1969, pp. 70.



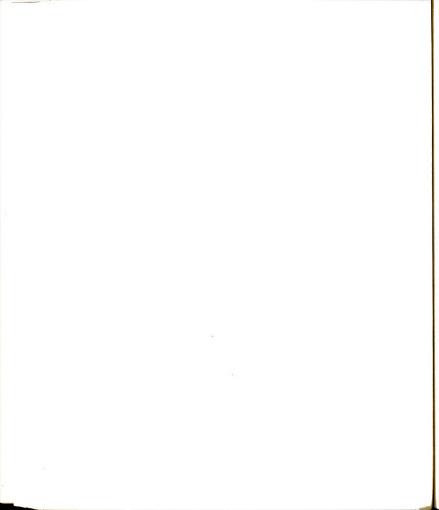

- Cyrs, T. E., Jr., and Lowenthal, Rita. "A Model for Curriculum Design Using A Systems Approach." Audiovisual Instruction. January 1970, pp. 16-18.
- Davies, Cornelius. Appendix to FAO Development Paper No. 44. Originally Published 1954, Reprinted 1964, FAO, Rome, pp. 12.
- Davis, R. H. Asociate Director, Educational Development Program and Development Service, Michigan State University. Personal Interview, September 1969.
- DAT. Your Aptitudes as Measured by the Differential
  Aptitude Tests, Forma L and M. New York: The
  Psychological Corporation, 1963.
- Denike, G. N. "Agricultural Engineering in Developing Countries: Present Status--Prime Needs--a Symposium on East Africa and West Africa."

  Canadian Agricultural Engineering. Vol. II, No. 2, November 1969, pp. 42-49, 77.
- Doll, R. C. <u>Curriculum Improvement: Decision Making and Process.</u> Boston: Alynn Bacon Publishers, 1970, p. 192.
- Downing, C. M. Technical Officer, Division of Agricultural Services, FAO, Personal Interview. East Lansing, Michigan: July 1970.
- ECA Secretariat. Africa's Economic Transformation and Implications for Educational and Manpower Development. Economic Commission for Africa, UNESCO & OAU Conference on Education and Scientific and Technical Training in Relation to Development in Africa, Nairobi, Kenya: July 1968, p. 10.
- Editors, Training Technicians for World Agriculture.

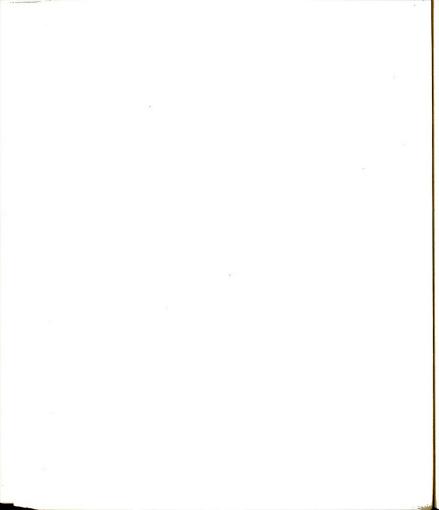
  M-F View. Toronto, Canada: Massey-Ferguson,
  Limited, March-April 1968, p. 7.
- Eraut, M. R. "An Instructional Systems Approach to Course Development." <u>AV Communication Review</u>. Vol. 15, 1967, pp. 92-10I.
- Fine, Sidney A. A Systems Approach to Job Design and

  Manpower Utilization. Washington, D.C.: The
  W. E. Upjohn Institute for Employment Research,
  1969.
- French, George T. Senior Vice President, Deere and Company, Moline, Illinois: Personal Communication to C. J. Mackson, November 5, 1970.




- Gagne, R. M., ed. <u>Psychological Principles in System</u>

  <u>Development</u> New York: Holt, Rinehart & Winston, 1962.
- Gilpin, J. "Design and Evaluation of Instructional Systems." AV Communication Review. Vol. 10, 1962, pp. 75-84.
- Glaser, R. "Psychological Bases for Instructional Design."


  AV Communication Review. Vol. 14, 1966, pp. 433-449.
- Goss, W. R. "Teaching the Test." <u>Training in Business and</u> Industry. April, 1970, pp. 46-49, 65.
- Harmon, Paul. "Curriculum Cost-Effectiveness Evaluation." Audiovisual Instruction. January 1970, pp. 24-26, 76-77.
- I.B.R.D. Special Report. Agricultural Mechanization in East African Countries. The International Bank for Reconstruction and Development, Nairobi: Permanent Mission in Eastern Africa, A.D.S. Report No. 3, 1966. (Mimeographed.)
- Izifundo Ngempatho Kagandaganda I Fordson Major Ne Dexta.

  Industrial Field Mechanization and Labour Saving
  Committee. South African Sugar Association, Natal
  1963, pp. 12.
- Kaufman, R. A. A System Approach to Education—Derivation and Definition. Los Angeles: University of Southern California, Original Paper, 1968.
- Kline, C. K.; Bolton, C. G.; and Mackson, C. J. A Basic Tractor Operators' Training Program. Agricultural Engineering Department, Michigan State University, and Deere and Company, September, 1970.
- Kline, C. K.; Green, D. A. G.; Donahue, R. L.; and Stout, B. A. <u>Agricultural Mechanization in Equatorial Africa</u>. Research Report No. 6, Institute of International Agriculture. East Lansing, Michigan: Michigan State University, December 1969, pp. 560.
- Lave, R. E., Jr., and Kyle, D. W. "The Application of Systems Analysis to Educational Planning."

  Comparative Education Review. Vol. 12, 1968, pp. 39-56.
- Lawshe, C. H., Jr., and Tiffin, J. <u>Purdue Mechanical</u>
  Adaptability Test, Form A, Men. Division of Education and Applied Psychology. Lafayette, Indiana:
  Purdue University, 1946.



- Lee, A. M. "Instructional Systems: Which One?" Audiovisual Instruction. January 1970, pp. 30-31.
- Lehman, H. "The Systems Approach to Education." Audiovisual Instruction. February, 1968, pp. 144-148.
- Low, Michael. Managing Director, Narosurra Farm Mechanisation Training Scheme Limited, Eldama Ravine, Kenya. Personal Communication. June 4, and October 6, 1970.
- Mackson, C. J. A Feasibility Study of Agricultural Mechanization Training in Selected Developing Countries. Special Report, Michigan State University to Deere and Company, January 1969, pp. 58.
- Maddison, Angus. Foreign Skills and Technical Assistance in Economic Development. OECD, Paris 1964, pp. 4-5, Table 1. (Mimeographed.)
- Merrill, M. D. "Components of a Cybernetic Instructional System." Educational Technology, April 1968, pp. 5-10.
- Mosher, S. T. Training Manual for Group Study of Getting
  Agriculture Moving: Essentials for Development
  and Modernization. Agricultural Development
  Council, Inc., 1966, p. 128.
- Pothecary, B. P. "The Contribution of the Agricultural Engineer Towards Development of Agriculture in the Sudan." British Journal of Farm Mechanization. NIAE, Jan. 1967, pp. 60-66.
- Siertsema, S. 1970 Quarterly Progress Report. South American Farm Mechanisation Training Centre, Report No. 15, July 1970, p. 9.
- Sherrill, J. L. "Curricula, Criteria Construction and Training Quality Control." Audiovisual Instruction. January, 1970, pp. 42-45, 84-89.
- Smith, R. G., Jr. "Controlling the Quality of Training, Technical Report 65-6." <u>Human Resources Research office</u>. June, 1965.
- Smith, R. G., Jr. "The Design of Instructional Systems, Technical Report 66-18." <u>Human Resources Research</u> Office. November, 1966.



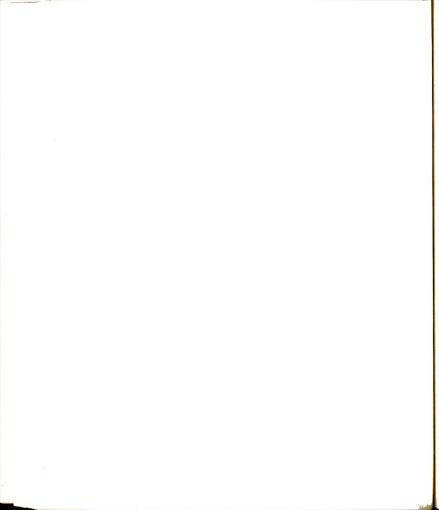
- Thorndike, R. L., and Hagen, Elizabeth. Measurement and Evaluation in Psychology and Education. New York: John Wiley and Sons, Ltd., 1955.
- Tosti, D. T., and Ball, J. R. "A Behavioral Approach to Instructional Design and Media Selection." AV Communication Review, Vol. 17, 1969, pp. 5-25.
- U.N. Secretariat. Training of National Technical Personnel for Accelerated Industrialization in Developing

  Countries. United Nations Document E/3901/Add. 1, p. 36.
- U.S. Department of Labor. Manual for the USES General

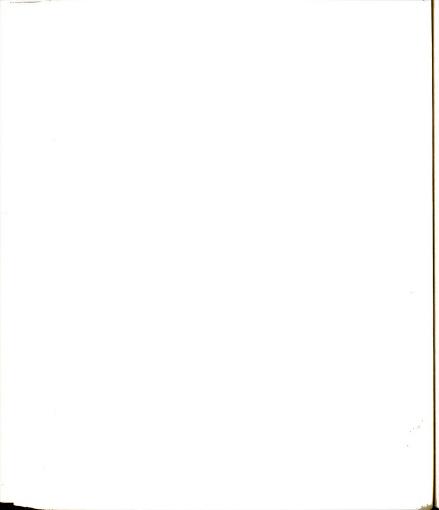
  Aptitude Test Battery, B-1002, Section I: Administration and Scoring. U.S. Employment Service,

  Washington, D.C.: U.S. Government Printing Office,

  January 1968, p. 125.
- U.S. Department of Labor. <u>Dictionary of Occupational</u>
  <u>Titles, Vol. 1, Definitions of Titles, 3rd ed.</u>
  Washington, D.C.: U.S. Government Printing Office, 1965.
- U.S. Department of Labor. <u>Dictionary of Occupational</u>
  <u>Titles, Vol. II, Occupational Classification</u>,


  3rd ed. Washington, D.C.: U.S. Government Printing Office, 1965.
- U.S. Employment Service. GATB, Books I and II, Form B,

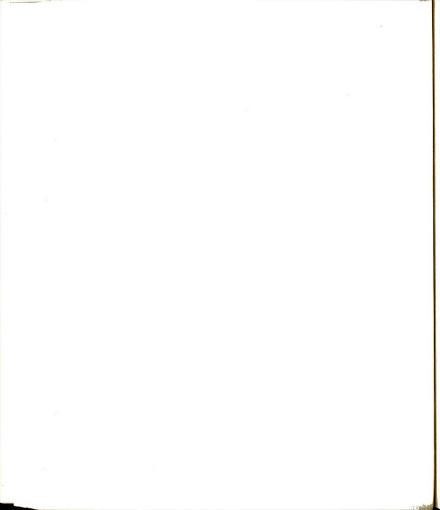
  Separate-Answer-Sheet Form. Controlled Item, B-1002


  B, U.S. Department of Labor. Washington, D.C.:

  U.S. Government Printing Office, Reprinted 5/1/70,
  p. 19 each.
- Wiley, W.W., and Fine, S. A. Methods for Manpower
  Analysis. No. 3. A Systems Approach to New
  Careers. Kalamazoo, Michigan: The W. E. Upjohn
  Institute for Employment Research, 1969.
- Williams, H. S. <u>Technical Education for Development</u>, quoted in ECA report, p. 4.
- Wilson, Fergus B. Education and Training for Rural Development in Africa. FAO/Danish Seminar on Long-Term Planning of Home Economics for Selected English-Speaking Countries in Africa, Aarhus, Denmark: 1968, p. 9.
- Yelon, S. L. "A Strategy for Estimating Student Interest."

  <u>Audiovisual Instruction</u>. January 1970, pp. 34-35.




APPENDICES



### APPENDIX A

### BASIC TRACTOR OPERATORS' COURSE, GRADE I

- 1. Sequential Lesson Outline (3 pp.)



### TRACTOR OPERATORS' TRAINING PROGRAM BASIC COURSE - GRADE

## SEQUENTIAL LESSON OUTLINE

## GETTING ACQUAINTED WITH THE TRACTOR Å.

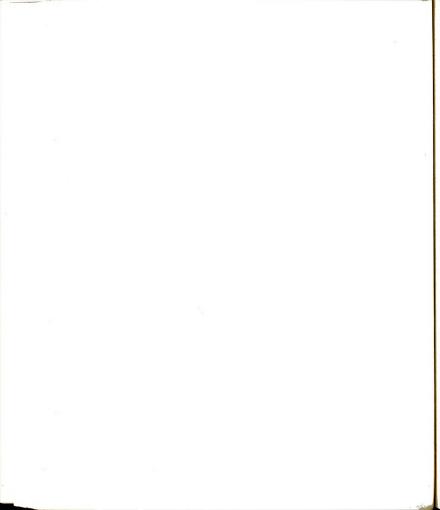
Fractor Nomenclature Orientation

Internal Combustion Engines Principles of Engine Care

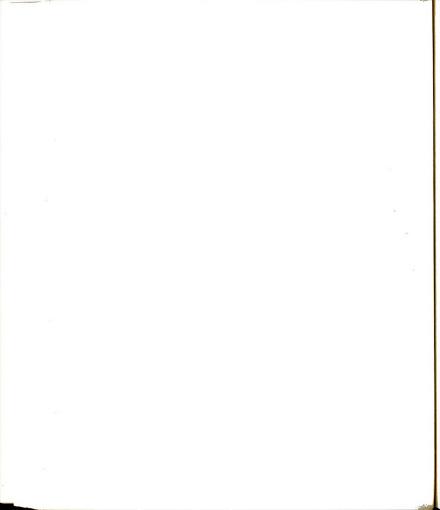
Principles of Tractor Operation Preliminary Driving

Power Transmission Common Hand Tools GETTING THE TRACTOR READY FOR WORK - PRESTARTING CHECKS æ.

The 10-hour Daily (A) Maintenance Services Need for Care and Maintenance


Checking and Adding Fuel The Fuel System

Servicing the Oil Bath Air Cleaner Servicing the Dry Filter Type Air Cleaner Servicing the Sediment Bowls The Air System Servicing the Precleaner


The Engine Lubrication System 9-25

Servicing the Crankcase 0il Greasing the Tractor The Cooling System Servicing the Cooling System Checking the Tires and Wheels

The 50-hour (B) Maintenance Services



- Servicing the Battery and Electrical System Keeping Maintenance Records
- STARTING AND WARMING THE ENGINE ن
- General Procedure and Safety
- Mounting and Dismounting the Tractor
  - Adjusting the Seat 4.
- Setting Controls for Starting
- Starting and Warming the Engine
  - Reading the Alternator Light
- Reading the Oil Pressure Light
- the Water Temperature Gauge Reading
  - Reading the Speed-hour Meter
- OPERATING AND MANEUVERING THE TRACTOR <u>.</u>
- General Safety in Controlling the Tractor
  - Using the Hand and Foot Throttles
    - Using the Clutch
- Selecting the Transmission Gear and Range
  - Using the Steering Wheel
- Checking Gauges and Controls During Operation
- Using the Brakes to Slow or Stop the Tractor Using the Brakes to Assist in Steering a Slow Moving Tractor
  - Stopping the Engine and Parking the Tractor
- MANAGING THE TRACTOR USING GOOD JUDGMENT ш.
- Operating the Tractor Under Difficult Conditions Matching Gears and Engine Speed and Avoiding Overload
  - Using the Differential Lock and Power Shift
    - Breaking in the New Tractor Tractor Management and Records
      - - Wheel Slip and Traction
- Fraffic Signs, Signal Lights, and Road Markings
  - Traffic Rules, Regulations, and Hand Signals



## USING THE TRACTOR AS A POWER SOURCE <u>.</u>

The Basic Power Systems and Power Safety Adjusting and Hitching to the Drawbar -2.6.4.0.6.

Using the 3-point Hitch Controls Attaching and Detaching 3-point Hitch Implements Hitching and Using the Double Acting Remote Hydraulic Cylinder

Pulling and Backing a Two-Wheeled Trailer or Implement Pulling and Backing a Four-Wheeled Wagon or Trailer

## SAFETY FACTORS . G

Selection and Safe Storage of Fuels and Lubricants Guidelines for Human Safety

۳.2.

Guidelines for Tractor Safety

# USING THE TRACTOR IN PRODUCTIVE FARMING OPERATIONS ÷

Plowing With an Integral Disk Plow Disking With an Integral Disk Harrow Plowing With an Integral Moldboard Plow

3.5.

### Basic Tractor Operators Course (Grade I) (for low-education level trainees in developing and developed countries)

### INSTRUCTOR'S DAILY TRAINING PROGRAM SCHEDULE (Three to Four Weeks)

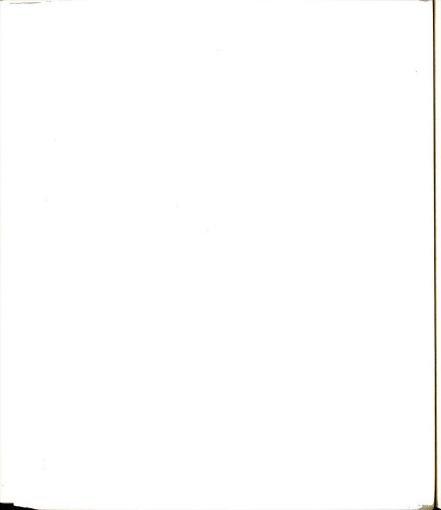
KEY:	AD -	Administration	AO - Actual object	
	BR -	Break	APM- All previous ma	terial
	CD -	Conference demonstration	CH - Chart and graph	ıs
	EV -	Evaluation	FC - Flow chart	
	FR -	Field practical	IE - Individual Eval	uation
	LP -	Laboratory practical	MF - Movie Film	
	RE -	Review	SL - Slide and strip	film
	TA -	Aptitude test	SM - Simulated model	
	TI -	Pretest	TA - Trainee activit	ies

Hour		Instruction Method	Lesson Number	Main Subject	Visual Aid	Special Conditions
8:15	15	CD		Welcome by sponsors and school government officials		
	25	CD	A1	Orientation and purpose of course.  Show slides or short film on tractor farming(furnished by Farm Machinery Mfgr)	SL MF	Orientation. Set stage for punctuality, postive attitude, enthusiasm
	5	BR		Break		
)	35	AD		Administration: Prepare trainee and course records. Obtain trainee data and information.	ws	Registration
	15	Tl		Pretest A-1 for tractor operators.		Pretest of general knowledge.
	10	BR		Break		
10	40	TA		Aptitude of student skills and knowledge-may give simple non-werbal tests on mechanical and special aptitude, manual and finger dexterity.	TF	Compare aptitude of individuals under same conditions.
	15	Tl		Pretest A-2 on trainee knowledge.	AO	Pretest on farm tractor.
	5	BR		Break		

0 01 ;

Instructor's Daily Training Program Schedule

Hour	Time Period	Instruction Method	Lesson Number	Main Subject	Xigual	Special Conditions
11	15	CD	A2	Tractor nomenclature, general		Parts of diesel wheel tractor.
	40	LP		Identification and name of key parts.	СН	Large wall chart from tractor mfgr.
	5	RE/EV		Review: evaluation and questions	APM IE	Small group evaluation. Individual evaluation.
12	60	AD		Lunch		
1	15	T1	А3	Pretest A-3 of trainees knowledge.	TF	Pretest on engine care.
	40	CD		Principles of engine care.	AO/SM	Instructor demon- strates need for engine care,
	5	BR		Break		
2	15	Tl		Pretest A-4 on trainee		Pretest on diesel
	15	CD	A4	The internal combustion engine.	SL	Show slides of 4 cycle engine. Demonstrate how engine works.
	20	LP		How an engine runs	WM	Use one-cylinder plastic model.
	10	BR		Break		
3	15	T1		Pretest A-5 on trainee know- ledge.	TF	Pretest on tractor operation.
	20	CD	A5	Principles of tractor operation and use.	A0	Emphasize proper attitude.
	20	LP	A6	Preliminary tractor driving- use of selected controls.	AO	Instructor demonstrates tractor and shows trainees basic controls.
	5	BR		Break		
4	10	T1		Pretest A-6 on trainee knowledge.	TF	Pretest on driving the tractor.
	30	LP		Preliminary driving-simple manuvering.	A0	Trainees drive on marked figure 8, course for familarity.
					1	


MODERATE ...

... 1

22

### Instructor's Daily Training Program Schedule

Hour	Time Period	Instruction Method	Lesson Number	Main Subject	Visual Aid	Special Conditions
	15	R&E		Review-daily evaluation and questions	IE	Trainees not driv- ing can take some post tests.
	5	BR		Break		
5	20	Т2		Post tests on day's work: Principles of operation. Tractor nomenclature and preliminary driving.	AO	The post tests may be given next day or even later in the middle of t week. Since the post tests are the same as the pretes once the trainees have gotten accustomed to taking them, it should take not ov 10 minutes per tes
						,



### LIST OF SUGGESTED VISUAL AIDS

1. Actual Objects: The best training aids are the actual objects themselves or parts thereof. The real thing is best in the final analysis because it is more vivid and being life size it has a greater impact upon the trainee. Nevertheless, charts, slides, films, illustrated books, models and a host of ingeneous "home-made" training materials can help to get a point across and reinforce the learning experience. Some sources and types of teaching aids are listed under eight major headings: booklets and manuals, catalogs, charts, films models, references, result demonstrations and slides and filmstrips.

Booklets and Manuals

a) The Agricultural Tractor

 Operator's Manual, John Deere 1020/2020 (0M-T29489) John Deere Co., Moline, Ill (1969)

 Motaurs Diesel, Fonctionnement et Entretien, Ministere de L' Agriculture. Centre, National d'Etudes et d'Experimentation de Machinisme Agricole, 4th Edition, Antony, France (1967).

 Nebraska Tractor Test Data, 1970, University of Nebraska, Dept. of Agr. Engr., Lincoln, Nebraska 68503 (1970).

4) Service Manual-For the Doctor of Motors, Perfect Circle, 6th Edition, Dana Corporation, Toledo, Ohio 43601 (1967).

5) Farm Tractors, Engr. Bult. FT-535, Standard Oil Div., American Oil Co., Chicago, Ill., 60680 (1964).

 Tractor Maintenance: Bult #5 (2nd Ed) Industrial Field Mechanization and Labor Saving Committee, South African Sugar Assn, Durban, South Africa (1966).

### b) Fuels and Lubricants

 Engine Protection Through Lube and Fuel Filtration, AC Spark Plug Div., General Motors Corp., Flint Michigan 48556.

 Selecting and Storing Tractor Fuels and Lubricants, American Assn. for Vocational Instructional Materials, Athens, Ga. 30601 (1964).

 Bearings and Their Lubrication, Engr. Bult. B-2265, Standard Oil Div., American Oil Co., 910 S. Michigan Avenue Chicago, Illinois (1962).

 Keep It Clean! No. 50316, C.A. V. Agricultural Dept., C.A. V., Ltd., Acton, London W. 3, England (1963).

 Thirty-Three Reasons for Oil Consumption, Form # 8040, Sealed Power Corp., International Div., Muskegon, Mich. 49443.

### c) 4H Tractor Program, USA

- Tractor Care and Safety: Getting Acquainted with Your Tractor, 1st year (1963)
- Tractor Care and Safety: Assuring Safe Efficient Operation, 2nd yr (1964)
- 3) Tractor Care and Safety: Improving your Skills, 3rd yr (1964)

i.

 Machinery Care and Safety: 4th and Advanced Years (1964)
 Operating Farm Tractors and Machinery-Efficiently and Safely, Iowa State Univ. of Science and Technology, Coop. Extension Service. Ames. Iowa.

d) Internal Combustion Engines

 Diesel the Modern Power, Public Relations Staff, General Motors. Detroit. Mich. 6th Edit. 48202 (1968)

Power Goes to Work, Public Relations Staff, General Motors,

Detroit, 48202 (1969).
3) A Power Primer, Public Relations Staff, General Motors, Detroit

48202 (1969).

4) The Story of Power, Public Relations Staff, General Motors,

Detroit 48202 9th Printing (1969)

 A Tractor Log Book, Shell and BP Farm Service, East Africa, Nairobi, Kenya (1968).

 Tractor Tips - Champion Spark Plug Co., Toledo, Ohio (1969)
 Understanding and Measuring Horsepower: Motor, Engines, Tractors: American Association for Vocational Instructional Materials. Athens. Ga (1969).

8) Borg Warner 1970 Tune-up Specifications; Cars, Trucks, Tractors; Manual 70-D, years 1961-70, Automotive Parts Div., Borg-Warner Coro..Franklin Park, 111. 60131.

e) Tools and Implements

 ABC's of Hand Tools: Their Correct Usage and Care. General Motors Corp., Detroit, Mich. Reprinted (1967).

2) Disk Plows, Farmers Bult #2121, USDA, U.S. Government Printing

Office, Washington, D.C. 20402, Revised (1963).

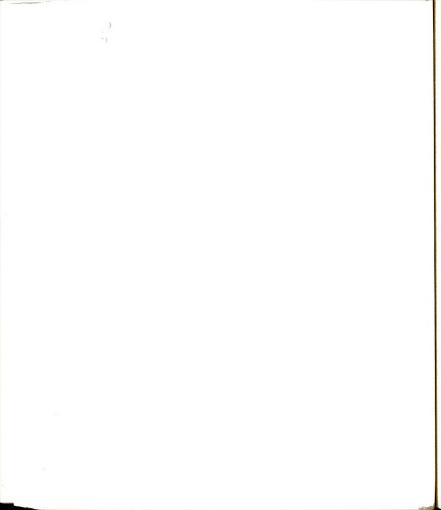
Moldboard Plows, Farmers Bult #2172, USDA, U.S. Government
Printing Office, Washington, D.C. 20402, Revised (1961).

f) Testing and Aptitude Measurement

 Detroit Tests of Learning Aptitude, Examiner's Handbook, Bobbs-Merrill Co., Howard W. Sams & Co., Indianapolis, Indiana 46268, Revised (1967).

 Detroit Tests of Learning Aptitude; Pictorial Material for Tests 1,3,9,12,14,16 and 17. Bobbs-Merrill Co., Howard W. Sams Co., Indianapolis, Indiana 46268, Revised (1968).

 4H Tractor and Machinery Programs: Guide for Extension Agents to Compily with U.S. Dept. of Labor Regulations on Hazardous Occupations in Agriculture, Coop. Extension Service. Michigan State University, East Lansing, Mich. 48823 (May,1970).


 General Aptitude Test Battery, B-1002. Section I: Administration and Scoring, Manual for United States Employment Service, U.S. Dept. of Labor, Manpower Administration, Washington,

D.C. 20210 (Jan. 1968). 5) GATB: Book I, B-1002B (Separate-Answer Sheet Form,)U.S.

Employment Service, U.S. Dept. of Labor, Manpower Administration Washington, D.C. 20210 (May, 1970).

 GATB: Book II, B-1002B, (Separate-Answer Sheet Form) U.S. Employment Service, U.S. Dept. of Labor, Manpower Administration, Washington, D.C. 20210 (May 1970)

7) Mechanical Aptitude and Spatial Relations Test -ARCO
Editorial Board, ARCO,219 Park Avenue S., N.Y., N.Y. 10003 (1966)



- 8) Testing Student Achievements and Aptitudes, by J. S. Ahmann, (1962) 118 pp.
- What Every Driver Must Know, Public Information Office, Michigan Dept. of State, Lansing, Michigan (1969).

### Catalogs

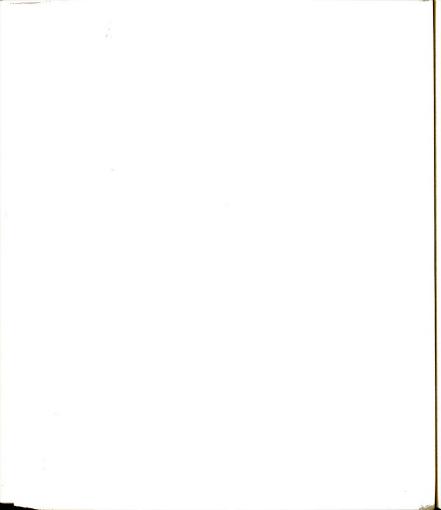
- a) Aids to Educators from General Motors, Public Relations Staff, General Motors, Detroit, Mich. 7th Edit. (1969).
- b) The 1970 School Catalog, Visual Products Div. 3-M Company,

3-M Center, St. Paul, Minn. 55101 (1970).

c) Teaching aids, Publications, Filmstrips and Slides, American Association for Vocational Instructional Materials, Athens, Ga. 30601 (1969).

d) Catalogo de Libros y Folletos en Espanol del RTAC - 1968 Centro Regional de Ayuda Technica, Agencia Para El Desarrollo International (A.I.D.)-Mexico (1968).

### 4. Charts


- a) Diesel-Cycle Diagram, Public Relations Staff, General Motors Corp., Detroit, Mich 48202, 22' x 30"'
- b) Four-Stroke Cycle and Flame Travel, Public Relations Staff, General Motors, Detroit, Michigan 48202
- c) Typical Gear Combinations. Public Relations Staff, General Motors. Detroit, Mich 48202.
- d) Rear axel assembly, Public Relations Staff, General Motors, Detroit, Michigan 48202.
- e) Set-ups for Upsets--Operate Safely! National Safety Council. Chicago, Ill. (F3905-B, 1969) 17" x 23"

### 5. Films, Movie

- a) Educational Films, Joint UM-MSU Film Catalog, East Lansing, Mich. (1969)
- b) GM Films, 1970, General Motors Motion Picture Catalog. 29th Edition, Public Relations Staff, Film Library. GM Building. Detroit, Michigan 48202.
- c) Films of the U.S. Dept. of Agriculture, Agric. Handbook, No. 14, 1968, Supt. of Documents, U.S. Government Printing Office, Washington.D.C. 20241.

### Models

- a) Realistic Metal Scale Model Tractors, Ertl Co., Dyersville, IOWA
- b) Plastic Model 6-cylinder Engine with Moving Parts, Revel Mfgr. Co.
- c) Four-cycle Engine, Working Piston, Plastic Device, 3M Visual Products Div., St. Paul, Minn. 55101 (1969).
- d) Two-cycle Engine, Working Piston, Plastic Device, 3M Visual Products Div., St. Paul, Minn. 55101 (1969).



### 7. References

a) General

 Agricultural Engineering Training and Education in Africa, by Boshoff, W.H. and G.G. Corbett, FAO Report, Rome, Italy (1965)

 Agricultural Engineering Education in Developing Countries, by E. F. Olver, Agr. Engr. Dept., Univ. of Illinois, (May 1970).

 Assessing and Reporting Training Needs and Progress-Personnel Methods Series No. 3,U.S. Civil Service Commission, Washington D.C. (Revised 1961).

4) Audio-Visual Instruction, by RE de Kieffer, (1965) 117 pp. 5) The ABC's of the Critical Path Method, Levy, Thompson and

West. Reprint from "Harvard Business Review" (Sept.-Oct. 1963).

 Relating Principles of Learning to Instructional Activity, Proceedings of Symposium on Instruction, North Central Region Resident Instruction, Colleges of Agriculture, Univ. of Illinois (June, 1967).

 Education and Training for the World of Work: A Vocational Education Program for the State of Michigan, by H.T. Smith, The W. E. Upjohn Institute for Employment Research, 300 S. Westnidge Ave., Kalamazoo, Mich. 49007 (1963).

 Education and Agricultural Development-Freedom from Hunger Compaign, Basic Study #15, UNESCO, Paris, France (1964).

 Guide for Village Workers-Extension Methods by Ministry of Food and Agriculture, India (1955), USDA, Wash. D.C. (Reprint 1967) 55 pp.

10) Preparing Instructional Objectives, R. F. Mager, Fearon Publishers,

Palo Alto, Calif (1962).

 Schooling for Individual Excellence. D.H. Parker, Thomas Nelson and Sons, N.Y., N.Y. (1965).

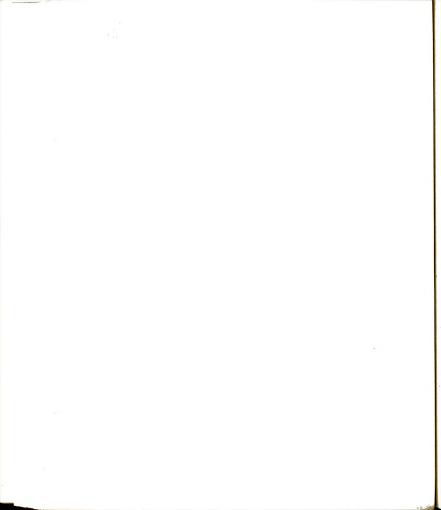
12) Training Manual: for Group Study of Getting Agriculture Moving, by A.T. Mosher, Editor, Agricultural Development Council, Inc., 630 5th Ave., N.Y., N.Y., 10020 (1967).

13) Where to Get and How to Use Free and Inexpensive Teaching Aids, by Schain and Polner (1963).

b. U. S. Army Publications on Training

 Controlling the Quality of Training, by R.G. Smith, Jr. Technical Report 65-6, Research and Development, Dept. of Army, Ft. Belvoir, Va. (1965).

 The Demonstration Method, Lesson Reference File, IG. 005-2, U.S. Army Engineer School, Ft. Belvoir, Va. (1968).


3) Development of Instructors, I.G. 030-2, US Army Engr. School, Ft. Belvoir, Va. (1967).

 Diagnostic Procedures (Diesel Engine) M.006-8, M.206-7, US Army Engineer School, Ft. Belvoir, Va. (1970).

 Development of Supervisors, IG.030-1, US Army Engineer School, Ft. Belvoir, Va. (1968).

 Instructors Manual, Instructor Training Course, US Army Engineer School, Ft. Belvoir, Va. (1968).

7) Student Manual, Instructor Training, US Army Engineer School, Ft. Belvoir, Va. (1968)?).



8) Introduction to Diesel Engines, M.006-1, M.206-1, US Army Engineer School, Ft. Belvoir, Va. (1969).

9) Methods of Evaluation, IG.006-1, US Army Engineer School. Ft. Belvoir, Va. (1968).

10) Operator Selection and Training, T210-510, US Army Engineer School, Ft. Belvoir, Va. (1968).

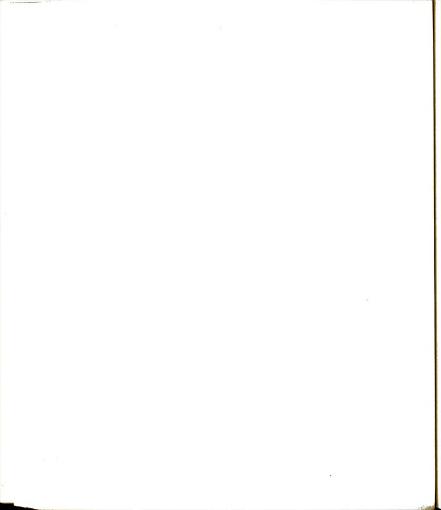
Principles and Types of Aids, IG.004-1, US Army Engineer School, Ft. Belvoir, Va. (1968).

12) Preparation of an Instructors Lesson Plan, IG. 003-1, U.S. Army Engineer School, Ft. Belvoir, Va. (1967).

- 13) Psychology of Learning, IG.002-1, US Army Engineer School, Ft. Belvoir, Va. (1966).
- 14) Training Conference Method, IG. 005-1, US Army Engineer School, Ft. Belvoir, Va. (1967).

Ungraded and Graded Practical Exercises, IG. 006-3, US Army, Engineer School, Ft. Belvoir, Va. (1968).

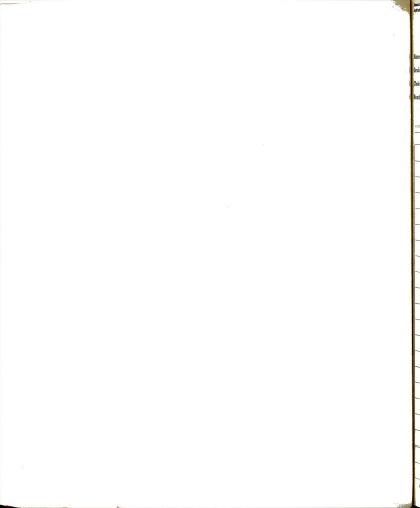
### 8. Result Demonstrations


a) American Premier Diesel Fuel: Demonstration Kit on the Additive Story, The American Oil Co., Chicago, Illinois (1961).

Demonstration Manual on Farm Tractor Safety: For Use by Agricultural Leaders When Demonstrating with the Farm Safety Kit, Farm Division, National Safety Council, Chicago, Ill.

c) Seeing is Believing. Strow and Cowing, USDA, Washington. D.C. 1960), 12pp.

### 9. Slides and Filmstrips


- a) Color Filmstrips and Slide Sets of the USDA, Miscell. Publication No. 1107, Supt'd of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (1968).
- b) Suggested Slides from John Deere for use in a Basic Tractor Operators Course (See our book and list available slides here)
  - 1) <u>Lesson A-1: Orientation</u> a. Happy Tractor and Operator (JD:cartoon)
  - 2) Lesson A-2: Tractor Nomenclature
    b. Close-up view of Drivers Platform (JD:T 15338)
  - 3) Lesson A-3: Principles of Engine Care
    a. Happy Tractor and Operator (See slide "a", Lesson A-1)
    - c. Engine is the Heart of the Tractor (JD OPTD: L,10-DEF)
    - d. Air Needed for Combustion (JD: FOS-30 #6)
       e. Cutaway View of Diesel Tractor (JD:L, 9-DEF)
  - 4) Lesson A-4: Internal Combustion Engines f. Diesel Fuel System (JD: FOS-30 #13)
    - g. Intake and Exhaust Systems (JD: FOS-30 #14)
    - h. Cooling System (JD:FOS-30#16)
    - i. Lubrication System (JD:FOS-30 #15)
    - j. Summary Power Trains (JD:FOS-30#30)



### APPENDIX B

### SAMPLE PAGES OF SEVERAL CURRENT APTITUDE TESTS

- Detroit Mechanical Aptitudes Examination, Form A (pp. 2 of 8)
- 2. Purdue Mechanical Adaptability Test, Form A Men (pp. 2 of 4)
- Revised Minnesota Paper Form Board Test, Series AA (pp. 2 of 6)
- 4. U.S. Employment Service GATB, Book II, Form B (pp. 2 of 19)
- 5. Differential Aptitude Tests, Mechanical Reasoning, Form A (pp. 2 of 19)
- 6. Nine Aptitudes Measured by the GATB
- 7. Definitions of Aptitudes Measured by the GATB

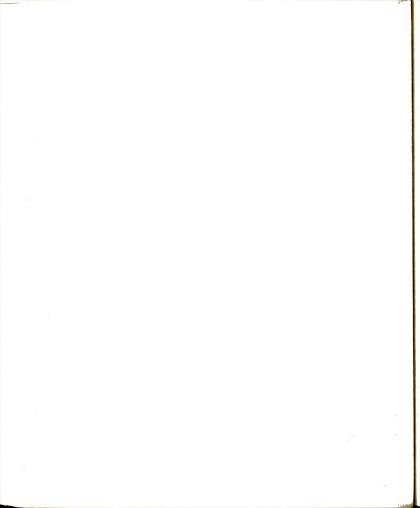


## THE HIT STISSE OF THE BODDS-MERRILL COMPANY, INC. SUBSIDIARY OF HOWARD W. SAMS & CO., INC. 4300 WEST 6200 STREET - INDIANAPOL'S 6, INDIANA

#### Printed in U.S.A.

### DETROIT MECHANICAL APTITUDES EXAMINATION, FORM A

First		Last	1 ears	Months
de	School		Date	
ice of Occupati	ion (1)	(	(2)	
aber of Tools in	n Home			
Copyris The righ	ht to modify or print this :	sker, Paul H. Voelker, and A. material for use in the Detroit the Detroit Board of Education	public schools has be	in U. S. A. en assigned


No. Score 1 2 al

Rating.....

	A.		Δ	э	1	R	P								8
		2		Ĭ		<b>₽</b>		8 P	Y.	1	g A	₹ F	3 w	2	l o
								9I A	gI p	II o	I3 w	12 I2	II Å	10 F	6
1								8	2	9 A	g w	Į į	8 p	7	I P
								9I W	12	14	I3	y I2	II P	10 F	6
								λ λ	p 23	22	ZI F	20	19	m 81	LI A
								35	31 F	30 A	67 ur	i 82	ZZ K	97 p	52
-								0₺ P	39	38	2E J	30 F	32	34	33
								48 F	∠ħ J	1 94	gy p	u u	¢3	V 42	I I
								99	λ λ	24   	Δ Δ	1 1	I G	09 p	67
								1 19	m 63	p 29	19 A	09 £	1 69	28 F	29
								T2	17	04 J	69	89 A	49 F	Å 99	99 p
								98	62 P	84 W	11 K	9 <u>L</u>	12 1	1/4	13    F
								¥ 88	78 V	98	m 85	₩ ¥	P 83	Z8	18
								96	98 K	¥6	£6	76 p	16	06 tu	68 A
-			1					10°	103	701 102	101	100 ur	66 K	86 ¥	46 
								A III	III	110	100 F	801	101	901 p	102
								1 ISO	116 <b>K</b>	118	ZII P	116	u u	114	113
1								p ISS	127	150 F	125	124	123	122	ısı
								136 F	132 A	134	133 133	132	131 q	130	159 v
1						1		u Idd	143	I#5	IFI	y I40	133 K	138	132
								125 X	121	120	6+I 0	m 148	<b>∠</b> †I	91·I	142    K



	A	1 chisel		2	shovel		3	hammer		saw	(
<b>=</b>	B	1 pliers		2	screw driver		3	pencil	4	file	(
	1	1 shovel		•	COM		2	axe	4	level	(
	2	1 wrench			saw file			pencil		scythe	(
	9	1 bell			thread			hat		thimble	(
-	3 1				knife		_	shears		pliers	
	5	1 clippers 1 light bulb			oil can		_			syringe	(
	6	1 shears			tin snips			pliers		clippers	ì
	7	1 wrench			-			od clamp		onkey wrencl	h (
=0	8	1 needle			spoon			nail punch		glass cutter	
	9	1 teapot			freezer			double boiler		skillet	` ` `
	10	1 soldering iron			masher			nail punch		bit	ì
	11	1 trowel			shovel			dibble		butter knife	e (
	12	1 bit			nail			countersink		screw	(
Stronger	13	1 corkscrew			can opener			crochet hook		glass cutter	ì
	10 14	1 water			faucet			awl		hose	ì
	15	1 pickle fork			salad fork			dividers		can opener	(
	16	1 shears			tin snips			pliers		clippers	(
		1 freezer			emery wheel			potato ricer		egg beater	(
		1 knife			•			-		dividers	(
					outside calipe						(
		1 awl			nail punch wrench			glass cutter		hand drill	(
		1 masher						gravy ladle		trowel	(
		1 slaw cutter			tool box			dividers		miter box	(
		1 switch			electric plug			current		bulb	(
		1 potato ricer			nut cracker			wood clamp		sieve	(
2	24	1 steam gauge		2	micrometer		3	level	4	knife	(
<b>&gt;</b>	25	1 butter knife	:	2	draw knife	;	3	mallet	4	cleaver	(
	26	1 hack saw		2	back saw	;	3	coping saw	4	keyhole saw	• (
	27	1 "S" wrench	3 mor	ık	ey wrench 3	an	gl	e wrench 4	allig	gator wrench	(
=======================================		1 micrometer			calipers			iron clamp		vise	(
<b>D</b> y2	29	1 nail set	:	2	awl		3	screw driver	4	auger	(
3	30	1 washing boar	d :	2	level	4	3	plane	4	slaw cutter	(
9	31	l buttonhole sc	issors :	2	tin snips	:	3	clamps	4	dividers	(
13	<b>32</b>	1 pencil holder	4	2	emery wheel	5	3	egg beater	4	hand drill	(
<u>3</u>	3	l dividers				outs	3 <b>i</b> (	de calipers	4 ins	ide calipers	(
<b>Q</b> -co3	4	l wrench			hand drill			screw driver	4	egg beater	(
<b>7 1 1 1 1 1 1 1 1 1 1</b>	5	l stocking darn	er 2		$\mathbf{mallet}$			dowel	4	wood clamp	(
3	6	l plane	2		glass cutter			putty knife	4	draw knife	(
3		l inside calipers			outside <mark>calip</mark> e					compass	(
	-	''S" wrench			monkey wren					$\mathbf{micrometer}$	(
3		l alligator wren			angle wrench			"S" wrench		pipe wrench	ı (
<b>703</b> 4	0 1	clamp	2	} ·	vise	g	3	micrometer	4	wrench	(



Nam	Α			Date		
	Last		First	Month	Day	Year
				SAMPLE	TEST	FILE
2R DK RS %ile		PURDUE	PERSONNEL	. TESTS		Form A Men

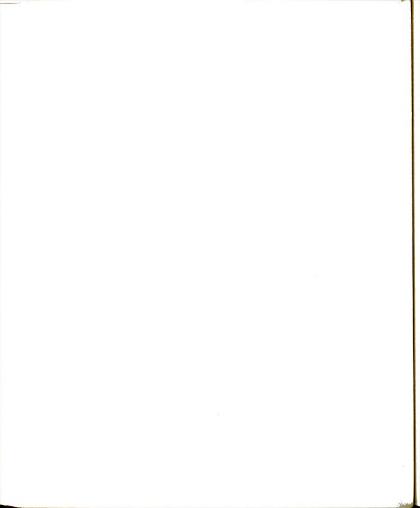
# PURDUE MECHANICAL ADAPTABILITY TEST

by

C. H. Lawshe, Jr., and Joseph Tiffin
Division of Applied Psychology, Purdue University

#### DIRECTIONS

The questions in this test deal with simple information of a mechanical, electrical, or related nature. Certain jobs can be done better by people who know the answers to these questions. Many other jobs, however, can be done just as well by persons who do not know the answers.


Here is a sample question.

Tes No Know  ls. Is an emery wheel used in sharpening tools?				Don't	
la. Is an emery wheel used in sharpening tools?		Yes	No	Know	
	la. Is an emery wheel used in sharpening tools?				

Note that there are three squares after the question. If you believe the answer is "yes", place an "X" in the square under the word "YES"; if you believe the answer is "no", place an "X" in the square under the word "NO". If you do not know the answer, place your "X" in the square under "DON'T KNOW".

You are to make one "X", and only one "X", after each question.

You will not know the answers to all the questions, but do the best you can. It will not pay you to spend a great deal of time on any one question. You have fifteen minutes which is plenty of time if you do not spend too much time on questions you do not know.



			ro	rm A	
		Yes	No	Don't Know	
31	. Will ordinary solder repair aluminum kitchen ware?				
32	. Is re-capping the same as re-treading?				
33	. Are manifold gaskets and oil pan gaskets usually made of the same material?				
34	. When a crossed belt connects two pulleys, will they revolve in the same				
	direction?				
	. Does paint dry faster than japan lacquer?				
	. Is it possible to step-up or step-down household voltage?				
	. Are reaming operations a part of drill-press work?	_			
	. Can a dry cell battery be temporarily revived by heating slightly?				
	. Is it necessary to take a finishing cut when turning soft wood?				
	. Is a hydrometer used to test an automobile battery?				
	. Is oil placed in the crank case of an automobile to protect the differential?				
	Do any of the tubes in a radio have two prongs at the bottom?				
	. Can sand be used to clean spark plugs?				
44.	Should the waste pipe of plumbing fixtures be vented?				
45.	Does an automobile stop light operate through a transformer?				
46.	Does a radio tuning-coil wind up and unwind as the radio tuning knob is turned back and forth?	-		<b>—</b>	
47	Is an ordinary ball peen hammer the best hammer with which to pound out			П	
.,.	fender dents?	П	П	П	
48.	Can Sal Amoniac be used to clean a soldering iron?	П		П	
49.	Should the grounded terminal on an automobile battery be insulated?	П	П		
50.	Is a mitre box used by a cabinet maker?		П	П	
51.	Are most automobile batteries 6-volt batteries?	$\overline{\Box}$	П		
52.	Will aluminum paint cover more surface than the better grades of white lead?	П	П	П	
53.	Are the wires in an electric iron reversible?			П	
54.	Is gloss paint used to prime wood which is to receive several coats?				
i5.	When using an oil-finish on wood, is boiled linseed oil more satisfactory than raw linseed oil?				
6.	Do car generator bearings become corroded with use?				
7.	Is BX the same as rigid iron conduit?				
8.	Do bell transformers ordinarily deliver approximately 50 volts?				
9.	In a valve-in-block engine, are valve springs below the valve heads?				
0.	Is nitric acid used in storage batteries?				



# READ THE FOLLOWING DIRECTIONS VERY CAREFULLY WHILE THE EXAMINER READS THEM ALOUD

ook at the problems on the right side of this age. You will notice that there are eight of them, umbered from 1 to 8. Notice that the problems o DOWN the page.

irst look at Problem 1. There are two parts in he upper left-hand corner. Now look at the five gures labelled A, B, C, D, E. You are to decide thich figure shows how these parts can fit toether. Let us first look at Figure A. You will otice that Figure A does not look like the parts 1 the upper left-hand would look when fitted pether. Neither do Figures B, C, or D. Figure does look like the parts in the upper left-hand orner would look when fitted together, so E is RINTED in the square above 1 at the top 1 the page.

ow look at Problem 2. Decide which figure is the rrect answer. As you will notice, Figure A is notice answer, so A is printed in the square nove 2 at the top of the page.

he answer to Problem 3 is B, so B is printed in ie square above 3 at the top of the page.

Problem 4, D is the correct answer, so D is inted in the square above 4 at the top of e page.

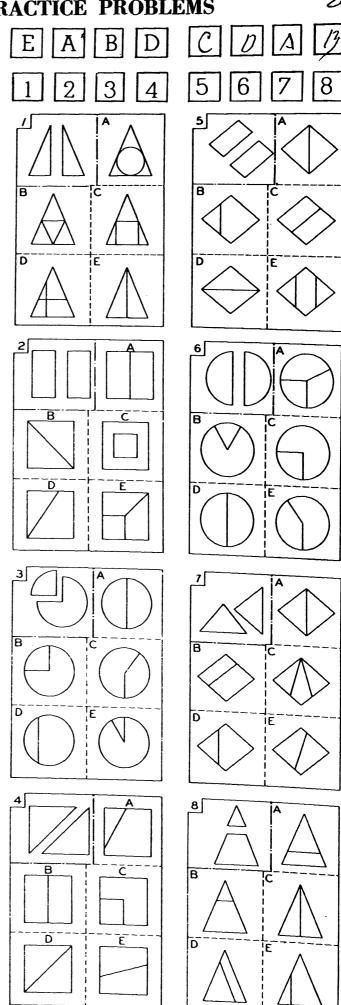
ow do Problems 5, 6, 7, and 8.

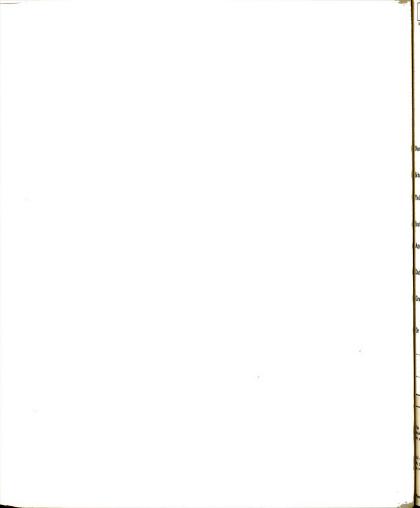
RINT the letter of the correct answer in the ware above the number of the example at the p of the page.

#### O THESE PROBLEMS NOW.

your answers are not the same as those which e examiner reads to you, RAISE YOUR HAND.

## O NOT OPEN THE BOOKLET UNTIL YOU RE TOLD TO DO SO.


me of the problems on the inside of this booklet e more difficult than those which you have alady done, but the idea is exactly the same. In the problem you are to decide which figure shows parts correctly fitted together. Sometimes the rts have to be turned around, and sometimes by have to be turned over in order to make them. In the square above write the correct swer to Problem 1; in the square above 2 ite the correct answer to Problem 2, and so on the the test of the test. Start with Problem 1, it go DOWN the page. After you have finished column, go right on with the next. Be careful to go so fast that you make mistakes. Do not and too much time on any one problem.


INT WITH CAPITAL LETTERS ONLY.

KE THEM SO THAT ANYONE CAN READ EM.

NOT OPEN THE BOOKLET BEFORE YOU E TOLD TO DO SO.

U WILL HAVE EXACTLY 20 MINUTES TO THE WHOLE TEST.





Percentile Norms Used

SERIES AA

## REVISED MINNESOTA PAPER FORM BOARD TEST

Prepared by R. Likert and Wm. H. Quasha

Fill in the blanks below (name, age, etc.)

## BUT DO NOT TURN OVER OR OPEN THE BOOKLET UNTIL THE SIGNAL IS GIVEN

### PRINT WITH CAPITAL LETTERS

(Last)		(First)	(Middle)
or Institution			
s Date(Month)		(Day)	(Year)
tor's or Foreman's Name	3		
ast Birthday		Sex	
f Birth	(Month)	(Day)	(Year in which you were born)
	r School 1234	5 6 7 8 High School ind the grade you are now in)	1234 College 12345
I Am Now In: Gramma:	<b>( </b>	are the great for the non-this	
I Am Now In: Gramma			
I Am Now In: Gramma			

rts in most of the problems are taken from the Minnesota Paper Form Board Tests which appear in Paterson, Donald G.; Elliott, Richard M.; in, L. Dewey; Toops, Herbert A.; and Heidbreder, Edna. "Minnesota Mechanical Ability Tests," University of Minnesota Press, pages 94-101. Used

Copyright 1941 by Rensis Likert and Wm. H. Quasha.

its reserved. No part of this test may be reproduced in any form of printing or by any other means, electronic or mechanical, including, but not limited tocopying, audiovisual recording and transmission, and portrayal or duplication in any information storage and retrieval system, without permission negative permission or duplication.

Published by

The Psychological Corporation, 304 East 45th Street, New York, N. Y. 10017



### UNITED STATES EMPLOYMENT SERVICE

## **GATB**

### **BOOK II**

(Separate-Answer-Sheet Form)

#### GENERAL DIRECTIONS

This booklet has several different parts. Before you begin each part, you will be told how to do it and you will have some exercises to practice on.

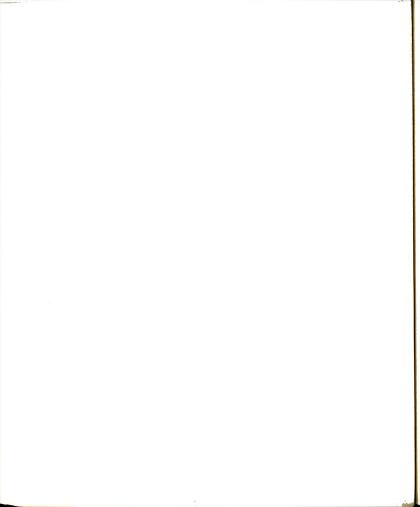
Be sure to read the instructions so you will know what to do. If you do not understand the practice exercises, ask questions about them.

You will be told when to start and when to stop working.

Be sure to begin immediately when you are told to "Begin."

When you complete a page read the instructions at the bottom of the page so you will know whether to go on to the next page or to stop and wait for further instructions.

Work as quickly as you can without making mistakes.


Stop immediately when you are told to "Stop."

You probably will not be able to finish in the time allowed, so do as much as you can.

You will indicate your answers by making pencil marks on a separate answer sheet. Make sure your answer marks are heavy and black. Erase completely any answer you wish to change. Use only the special pencils that are provided.

Make no marks on this booklet.

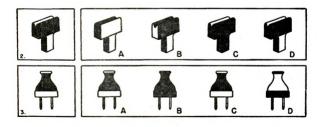
Do not turn this page until you are told to do so:



#### PART 5

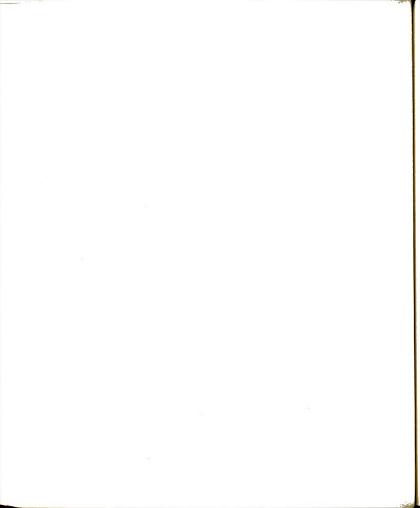
#### INSTRUCTIONS

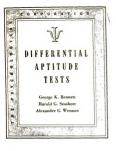
On this page are some exercises in comparing figures.


Look at exercise 1.



Notice that only figure B is exactly like figure 1 at the left.


Look at the practice box in the Part 5 section of the answer sheet. Notice that in the row for practice exercise 1 the space under letter B has been filled in.


Here are some practice exercises. In each one find the lettered figure which is exactly the same as the numbered figure. Then blacken the space under the correct letter in the Part 5 Practice section of the answer sheet. Do not turn this page when you finish these two practice exercises. Make no marks in this booklet. Make heavy black marks in the answer spaces.



Do not turn this page until you are told to do so.

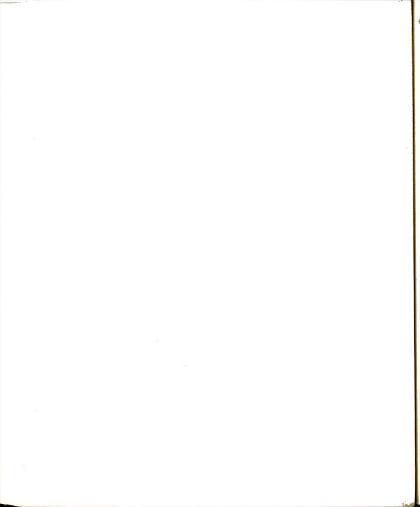
On the following pages are more exercises like these. Do them in the same way. Make no marks in this booklet. Make heavy black marks on the answer sheet. Work as fast as you can without making mistakes. You will be allowed 5 minutes.



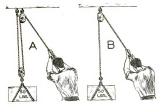


## MECHANICAL REASONING FORM A

Do not open this booklet until you are told to do so.

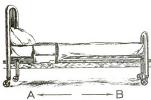

On your SEPARATE ANSWER SHEET, print your name, address, and other requested information in the proper spaces.

In the space after Form, print an A.


Then wait for further instructions.

#### DO NOT MAKE ANY MARKS IN THIS BOOKLET

Copyright 1947 The Psychological Corporation 522 Fifth Avenue New York 18, N. Y.



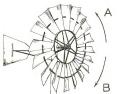

#### PUT YOUR ANSWERS ON THE ANSWER SHEET.



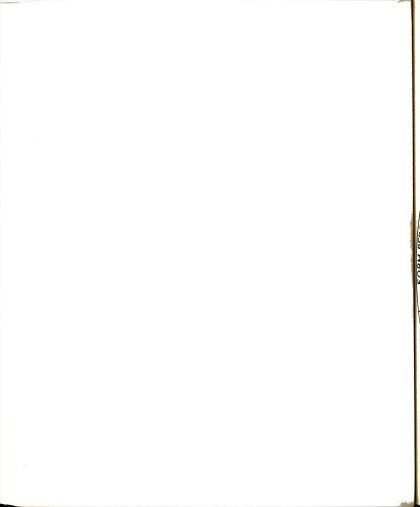
5

Which man must pull harder to lift the weight? (If equal, mark C.)

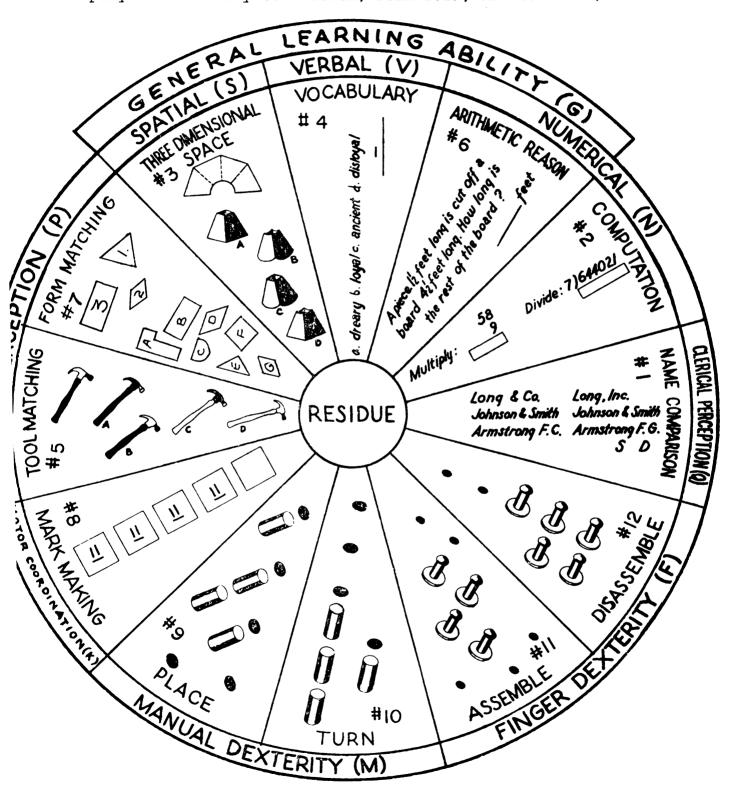


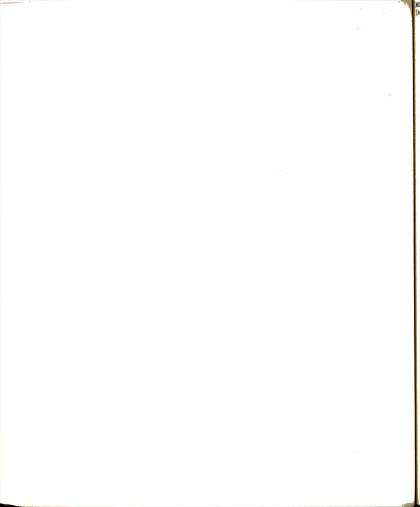

Which way has this bed just been rolled? (If either, mark C.)




7 .

Which tread must stop for the tractor to turn in the direction shown?


(If neither, mark C.)



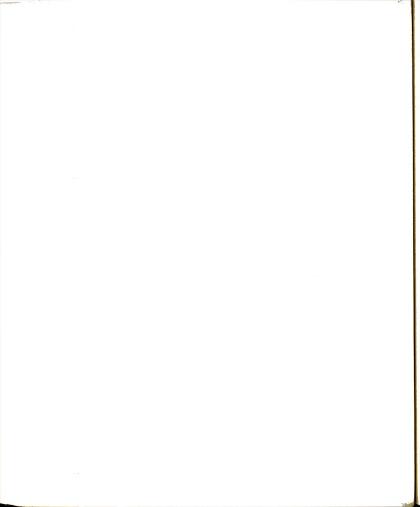

In which direction is this windmill more likely to turn? (If either, mark C.)



The Nine Aptitudes Measured by the Twelve Tests in the General Aptitude Test Battery. (Courtesy Michigan Employment Security Commission, Form 2029, Revised 2-69)





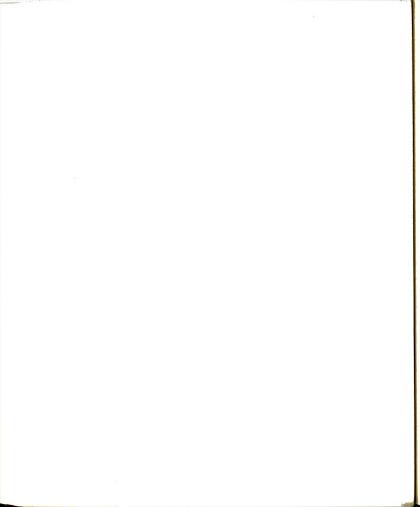

## EMPLOYMENT SERVICE DIVISION

#### TEST UNIT

## DEFINITIONS OF APTITUDES MEASURED BY B-1002

The nine aptitudes measured by B-1002 are defined below. The letter used as the symbol to identify each aptitude precedes each definition. The part or parts of the GATB measuring each aptitude follow each definition.

- G General Learning Ability. -- The ability to "catch on" or understand instructions and underlying principles; the ability to reason and make judgments. Closely related to doing well in school. Measured by Parts 3, 4, and 6.
- V Verbal Aptitude. -- The ability to understand meaning of words and ideas associated with them, and to use them effectively. The ability to comprehend language, to understand relationships between words and to understand meanings of whole sentences and paragraphs. The ability to present information or ideas clearly. Measured by Part 4.
- N <u>Numerical Aptitude</u>. -- Ability to perform arithmetic operations quickly and accurately. Measured by Parts 2 and 6.
- S Spatial Aptitude. -- Ability to think visually of geometric forms and to comprehend the two-dimensional representation of three-dimensional objects. The ability to recognize the relationships resulting from the movement of objects in space. Measured by Part 3.
- P Form Perception. -- Ability to perceive pertinent detail in objects or in pictorial or graphic material. Ability to make visual comparisons and discriminations and see slight differences in shapes and shadings of figures and widths and lengths of lines. Measured by Parts 5 and 7.
- Q Clerical Perception. -- Ability to perceive pertinent detail in verbal or tabular material. Ability to observe differences in copy, to proofread words and numbers, and to avoid perceptual errors in arithmetic computation. Measured by Part 1.
- K Motor Coordination. -- Ability to coordinate eyes and hands or fingers rapidly and accurately in making precise movements with speed. Ability to make a movement response accurately and swiftly. Probably related to reaction time. Measured by Part 8.
- F Finger Dexterity. -- Ability to move the fingers, and manipulate small objects with the fingers, rapidly or accurately. Measured by Parts 11 and 12.
- M Manual Dexterity. -- Ability to move the hands easily and skillfully. Measured by Parts 9 and 10.

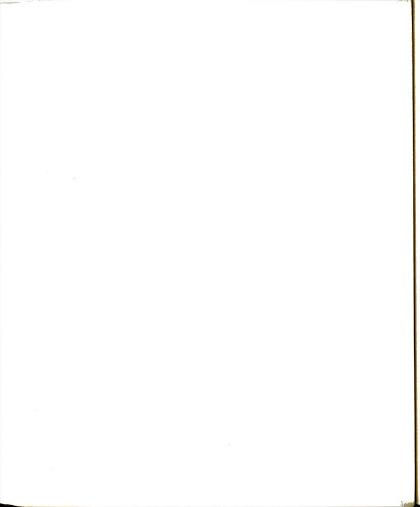



### APPENDIX C

## FORMS USED IN THE BASIC TRACTORS OPERATORS'

## COURSE, GRADE I

- 1. Trainee Enrollment Record (EV-0)
- 2. General Aptitude Test Battery Series (EV-1)
- 3. Trainee Daily Training Evaluation (EV-2)
- 4. Trainee Permanent Record (EV-3)
- 5. Instructor's Daily Training Evaluation (EV-5)
- 6. Suggested Graduation Certificate
- 7. 1000-Hour Tractor Service Record
- 8. Pictorial "A" Daily (10-hr) Maintenance Guide Chart
- 9. Pictorial "B" Weekly (50-hr) Maintenance Guide Chart

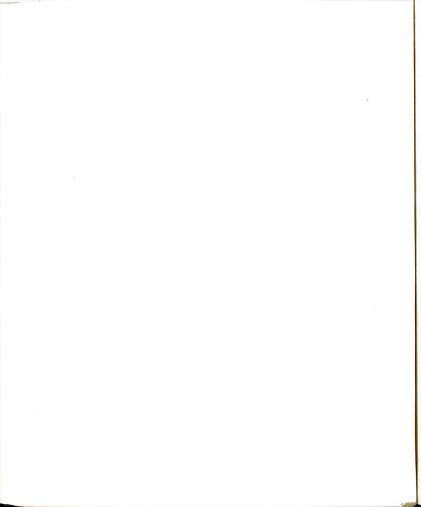



## 344

## TRAINEE ENROLLMENT RECORD

## BASIC TRACTOR OPERATORS COURSE: GRADE I

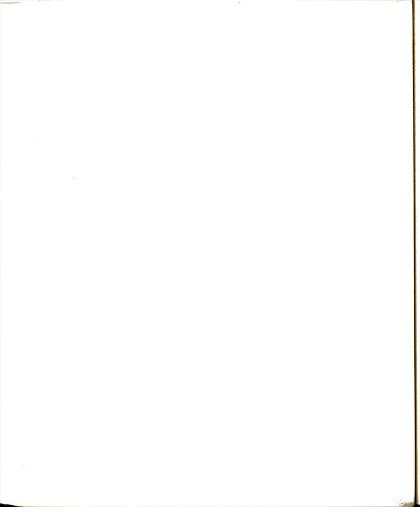
	Date
Training site	Course Sponsor
PERSONAL DATA	
Name of Trainee	Nationality
Present Address	
	Age
Home Address	
Present Employer (if any)	
Trainee's Sponsor	
Type of Work You do	
EDUCATION	
School (s) Attended	
Highest Grade Completed	
Any Special Training Taken	
	ksmith, etc.)
WORK EXPERIENCE	
Farming	
Factory	




#### TRAINEE ENROLLMENT RECORD

#### BASIC TRACTOR OPERATORS COURSE: GRADE I

#### MECHANICAL EXPERIENCE


	I have Ridden	I can Operate	I have Owned	I can Repair	No Experience	I am Licensed Operator
Animal drawn implements						
Bicycle		-				
Automobile	-					
Truck						
Wheel tractor		-		-		
Crawler tractor						
WHAT DO YOU LIKE TO DO?						
ReadWrite		S	ing		Weave	
Study Go t	o School		Ma	ke thing	s of Wood	
Make things of Metal		Make t	hings of	cloth/r	ope, etc	
Work with Animals		Work with	fruit/v	egetable	s	
Work with Field Crops						
I WANT TO BECOME A TRACTO	R OPERAT	OR BECAUS	Ε:			
I like mechanical th	ings			I	like to use	machines
It is an important j	ob in ag	riculture	:	It	is a skille	ed job
It is easier than do	ing hand	field wo	rk	I	like to work	outdoors
It will give me more	job opp	ortunitie	es.	It	; is a higher	paying job
It will increase my	standing	with my	friends	It	makes me mo	ore important
I believe agricultur	e has a	good futu	ire	M\	father want	s me to



#### TRAINEE ENROLLMENT RECORD

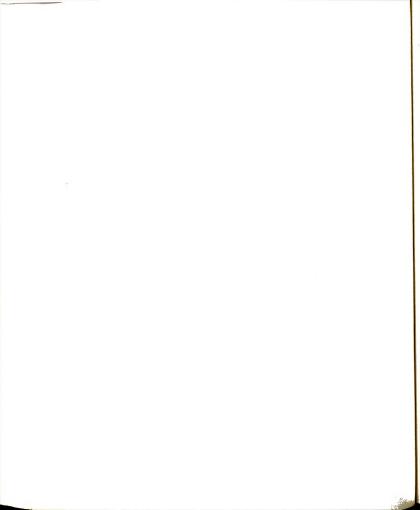
#### BASIC TRACTOR OPERATORS COURSE: GRADE I


I BELIEVE I WILL MAKE A GOOD TRACTOR OPERAT	FOR BECAUSE:
I like to take care of machinery	I like to work alone
I like to work for somebody else	I like to make decisions
I like to do things in an orderly way	I like to use my hands
I believe that training is important	I want to continue to learn
I hope to have my own farm someday	I like to work with hand tools
I understand machinery	I practice safety
I am a careful worker	
I HAVE USED THE FOLLOWING TOOLS AND EQUIPME	ENT
Hammer	Sprayer
Wrench	Duster
Screwdriver	Fertilizer spreader
Hand saw	Hand planter
Ruler	Pruning shears
File	Lawn mower
Post hole digger	Cultivator
Pick ax	Plow
Shove1	Disk
Hoe	Seeder
Grass cutter	Drill
Ax	Mower
	Other



Form EV-1

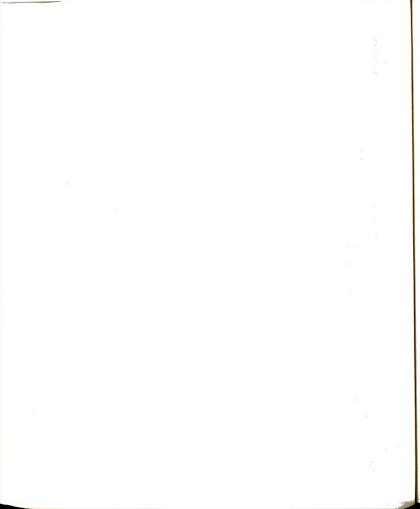
GENERAL APTITUDE TEST BATTERY SCORES*
FOR
BASIC TRACTOR OPERATORS COURSE TRAINEES


GATB Standard Score**												
*Converted test scores based on Dept. of Labor validations. **Based on closest cluster of machinery operator occupations.	Иате Сотр	ļndшоე	3-Dim Space	Vocab	Tool	Arith Reas	Form Match	Wake Mark	Place	nnuT	məssA	məssssiO
No. Name	*	*2	Э	<b>4</b> *	2	<b>*</b> 9	7	8	6	10	11	12
1st												
2nd												
% Change												
1st												
2nd												
% Change												
lst												
2nd												
% Change												
lst												
2nd												
% Change												
lst												
2nd												
% Change												
						^						



April 27, 1970

GENERAL APTITUDE TEST BATTERY SCORES*
FOR
BASIC TRACTOR OPERATORS COURSE TRAINEES


	i				5								
GATB Standard Score**													
*Converted test scores based on Dept. of Labor validations. **Based on closest cluster of machinery operator occupations.	Иате Сотр	1ndwo)	3-Dim Space	Nocsp	Tool	AtirA Reas	Form	Make	Place	uunı	төггү	Disassem	
No. Name	*	2*	8	4*	ro.	*9	7	00	6.	10	=	12	
1st													
2nd								Ī			T	T	
% Change									T			T	3
lst											$\parallel$	I	47
2nd									T	1	T	T	
% Change												Γ	
lst													
2nd											$\vdash$		
% Change												Γ	
1st													
2nd								T			$\dagger$	Γ	
% Change											T	T	
lst													
2nd												Г	
% Change													



								4	
FORM EV-2a		TRAINEE	TRAINEE DAILY TRAINING EVALUATION	EVALUATION					
Date					Eval	Evaluator			
Name of Trainee	Daily Rating* A S K	Key (*) Correct	Checkpoints Incorrect	Pre-	Post- test		Final Rating*	Instructor's Remarks on Trainee's Progress	Т
Lesson;									
2.									Т
3.									Τ-
4.									T-
5.									Т
Lesson:									Т
1.						+	-		348
3.							-		_
4.									
5.									_
Lesson:									
2.									
3.									
4.									
ъ.									_
*Rating Scale: "A"	= + positive - negative O neutral	"S" and	"S" and " $K^{\rm H}=3=$ Superior 2 = Qualified 1 = Needs more work 0 = Unqualified	or more work	2 = Qual 0 = U	ified nquali1	jed		
1						Section of the second	-		

100 T

Instructors:					110	LINE	E RE	COND								
2.										7	ra	ine	e			_
										URSE: GRADE I						
Location:		SI	JMM	RY	0F	TRA	ININ	G EVA	LUAT	ION AND RATING	_					
	_						_			I	at					
		val:	uati			-		Post			EV	alı	ati	ons	Tes	Post
A. Getting Acquainted		S			S		rre	rost	D	Operating Tractor	P.	6	1	먑	Pre	Post
1. Orientation	F.	۳	Ť.	۳	-	-	_	_		General Safety	f٠	H	T	<del>         </del>	+-	
<ol><li>Tractor Nomenclature</li></ol>										Using Throttles	T	П	+	†	_	
3. Engine Care										Using Clutch	Γ	П	I	П		
4. Int. Comb.Engines										Using Transmission	1	П	I	П		
5. Tractor Operation	_	_		_						Steering Tractor	L	Ш	1	Ш	_	
5. Prelim.Driving 7. Power Transmission	-	_	-	<u> </u>	_		_			Reading Instrum. Stop. Slow Tractor	Ļ	Н	_	Ш	1	
B. Hand Tools	-	-	_	_	_	_	-	-		Brake Fast Tractor		Н	+	ш.	-	
B. Prestarting Checks	<b>-</b>	-	$\vdash$		-	_	-			Parking Tractor	+	Н	+	Н-	-	
1. Need for Maintenance	$\vdash$	-		_		-	-			Managing Tractor	t	H	+	H	-	
2. Daily Maintenance										Difficult Tractor	t	H	+	H	<del>                                     </del>	
3. Fuel System									2.	Avoid overloading	t	H	$^{+}$	#		
. Check and Add Fuel										Differential Lock		П	T			
. Sediment Bowl	-			_						Break-in Tractor	Г	П	I			
6. Air System	$\vdash$		-	_	-1					Records & Costs	┺	Ц	_	Ш		
7. Air Precleaner 3. Oil Bath Air Cleaner	-		$\vdash$	_	-		-			Slip & Traction	丿	Н	+	1	-	
Dry Type Air Cleaner	Н	-	$\vdash$		-					Traf.Signs&Signal	1	Н	+	H	-	
. Engine Lubr. System	Н		$\vdash$	$\neg$		-				Using Tractor	⊢	Н	+	Н-	-	
. Service Crankcase					-		_			Power	╁	Н	+	Н	+-	-
. Greasing Tractor									1.	Basic Pow.Systems	t	H	+	+	$\vdash$	
3. Cooling System									2.	Hitch to drawbar	T	T	$^{+}$	+		
. Service Cooling Sys										3-Point Hitch	T			T		
. Tires & Wheels										Attach. to 3-Pt.	Г		$\perp$			
. 50-hr Maintenance	_	_	$\rightarrow$	_	_	_	_			Remote Hydr. Cyl.		П				
. Battery & Electrical		-	-	-	-	-	-			2-Wheel Trailer	┡	Н	+	Н-	_	
Maint. Records	$\vdash$	-	-+	$\dashv$	-+	-	-			4-Wheel Wagons Safety Factors	⊢	Н	+	+	-	
Starting Engine L. Proced. & Safety	$\vdash$	$\dashv$	$\dashv$	$\dashv$	$\dashv$	$\dashv$				Fuels&Lubricants	1-	Н	+	+	$\vdash$	
. Mount Tractor	$\vdash$	$\dashv$	$\dashv$	$\neg$	$\dashv$	$\neg$				Human Safety	H	+	+	+	_	
3. Adjust Seat			_	7		_				Tractor Safety	H	+		+		
. Set Controls			1		$\neg$					Tractor Farming	-	$\top$	т	$\top$		
. Start Engine										Disk Plowing		I	$\Box$			
. Alternator light					$\exists$					Mldbrd. Plowing		$\Box$	$\Box$			
7. Oil Pres. Light			_		_					Disk Harrowing		1	$\perp$			
. Temp. Gauge	-	-	_	-	-	_	-			Plant.& Cultivate	Н	4	+	4	_	
. Speed Hr. Meter	$\vdash$	-	-	-	-	-	-			Spray. &Mowing Other	Н	+	+	+	$\vdash$	
					$\perp$				0.	Other	$\vdash$	_				
A = Attitude Rating	: +		Pos	iti	ve	-	= Ne	cativ	. 0	- Neutral						
S = Skills K = Knowledge } Rating		_ "		-14	610	a	1 =	Subet	nda	rd 2 = Oualified		3 .	Su	per	tor	
K = Knowledge	. 0	- 0	nqu	arr	LIC	u		Jubse	inda	ra r garrirea			-	1		
INAL EVALUATION (Minim						-			-	GATB SCORES	=	-	TNS	TRIIC	TOR	REMARK
vent 1Driving Safe						ver	age			Test 1=Names						
vent 2 1wo-wheel co		e					lass	of:		Test 2=Compute	_	_				
vent 3 Drawbar & P					1 R				_	Test 3=Space	_					
vent 4 Plowing					ali					Test 4=Vocab Test 5=Tools	-	-				
vent 5 Daily Mainte				Un	qua	lif	ed			Test 5=Tools Test 5=Reason Test 7=Forms	=	=				
vent 6Weekly Maint	ena	nce	C				e is	sued:		Test 8=Marking Test 9=Place	Ξ	_				
vent 7Post tests					te:					Test 9=Place	-	-				
Total Points:				0f	fic	ial	:		_	Testll=Assemble_	Ξ					
										Test12=Disassemb	Le					



Trainees' Comments

Instructors' Comments

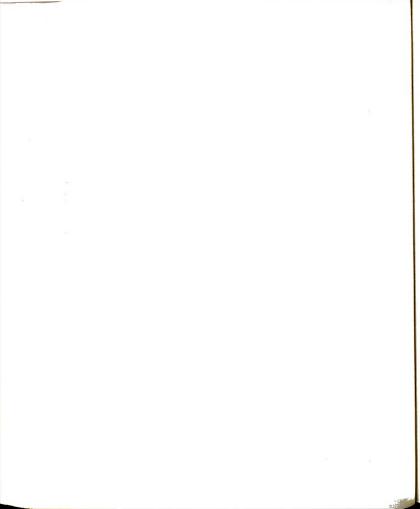
OBJECTIVES:

Were they clear and well chosen? Were they met in the lesson and activities? What are your suggestions for What were the problem areas?

Was it appropriate for the students? Was it clear or confusing? INFORMATION:

additions or improvements?

Suggestions for additions or improvements? Was it sufficient to cover the lesson? What were the problem areas?


METHODS OF INSTRUCTION:

Were they well received by the students? Were they appropriate for the students and the lessons? What were the problem areas?

Suggestions for additions or improvements? STUDENT EXERCISES:

What were the problem areas? Suggestions for additions or improvements? Were they appropriate and necessary? How were the students all kept busy?

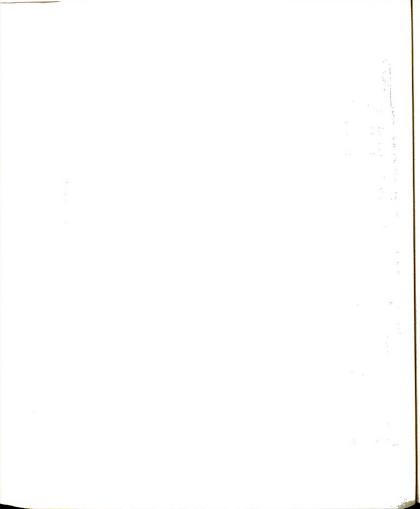
Please use the reverse side to comment further if the alloted space is insufficient. Also, if any information or methods were used that are not included in the teachers manual, please indicate and comment on their effectiveness.

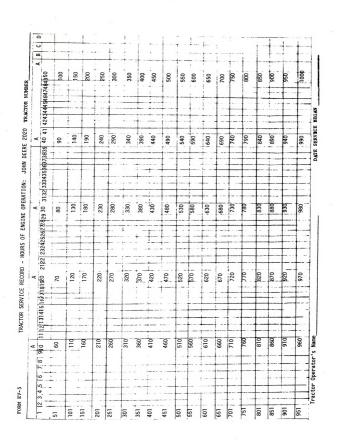


# Michigan State Aniversity COOPERATIVE EXTENSION SERVICE

Certificate of Recognition to

for meeting the qualifications of


BASIC TRACTOR OPERATOR


GRADE




NAME	-	NAME
LITLE		TIT

TITE







1. Check Air Precleaner



2. Check Oil Bath Air Cleaner



3. Check Radiator Water Level



4. Check Crankcase Oil Level



5. Check Fuel Filter Sediment Bowl



Front Axle Grease Fittings
6. Grease Tractor and Implement



7. Inspect Tires and Wheels



8. Check Fuel Tank Level & Refill

# "B" 50-Hour MAINTENANCE GUIDE CHART







1. Check Hydraulic Oil Level



5. Check Wheel & Lug Nuts and Tires







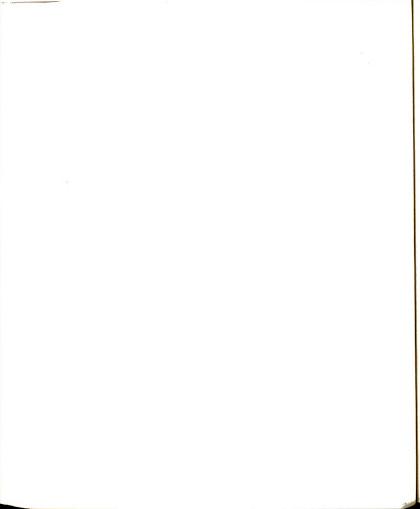
2. Check Brake Action







3. Check Clutch Free Travel (1")

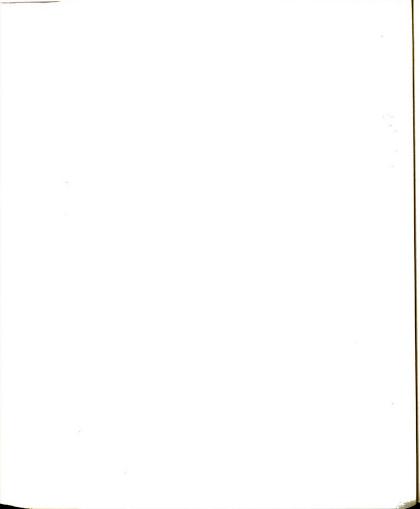

7. Check Dry-Type Air Cleaner





4. Check Tire Air Pressure

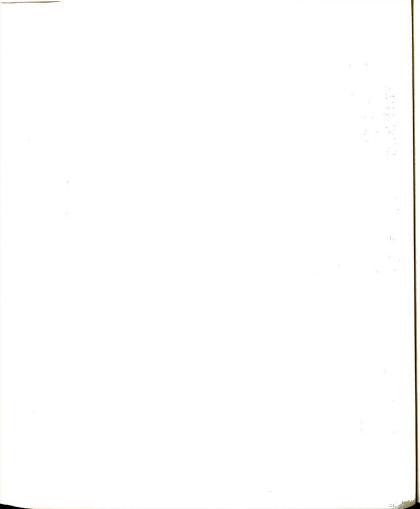
8. Check Hr-meter & Record Maintenance




### APPENDIX D

# FINAL EVALUATION EVENTS USED IN THE BASIC TRACTOR OPERATORS' COURSE, GRADE I

- 1. Event No. 1: Driving Safety
- Event No. 4: Hitching, Adjusting, Plowing with and Unhitching a Moldboard Plow
- Event No. 6: Performing the Weekly (50-hr)
   Maintenance Services


(Events 2, 3, 5 and 7 not included here.)



# FINAL EVALUATION

# EVENT NO. 1 DRIVING SAFETY

rocedure	concestant no.
Each contestant will be scored on safety any time he i This includes the practice period as well as before, d Safety judges will be on hand to record violations dur	uring and after the driving events.
Scoring	
Starting Safety	No. of times Points added
<ol> <li>Failure to check neutral position.</li> <li>Failure to disengage clutch while starting engine.</li> <li>Failure to check disengaged position of PTO.</li> </ol>	x 100 x 10 x 50
Oriving Safety	
1. Failure to engage clutch gently. 2. Failure to ride on seat or stand safely on platform. 3. Skidding or spinning wheels when starting. 4. Turning too short and fouling implement. 5. Operation of tractor at unsafe speed. 6. Moving tractor with other speed. 6. Londestarts, returtion where fficials, other contestarts, returtion where fficials, other leaves the ground. 6. Any turn which causes inside rear wheel to leave the ground. 6. In the way of the speed of the spee	x 10 x 50 x 50 x 20 x 100  Disqualifies Contestant  x 50 x 20 x 100 x 50
ther Safety	
Smoking.  Extra riders.  Loose fitting clothing.	x 20 x 100 x 50 x 50
Total Points Ac	ddad .



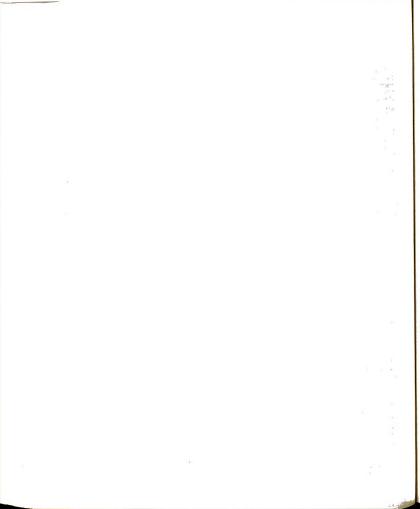
### EVENT NO. 4

### HITCHING, ADJUSTING, PLOWING WITH AND UNHITCHING A MOLDBOARD PLOW

Contactant	No	

### Procedure

Two judges will be used for timing, observing and measuring and marking scores. One judge should watch safety practices and keep time. No assistance will be permitted in hitching or adjusting the implement. The 3-point hitch will be thrown out of adjustment by turning the right lift link a number of turns.


The contestant or trainee will start and warm up the tractor at the starting line. On sign from the judge he will back up to the plow, spot the tractor, set the transmission in Park or Lock and/or at least one brake when the tractor is so equipped, and dismount. Then he will connect the plow making sure the fixed or swinging drawbar is in the short position. After checking the plow for damage, worn or missing parts he will connect the left drawbar link first, the right link second and the center top link last. The plow should be raised slowly with the hydraulic lever and then leveled approximately from front to rear and side to side. The operator then drives to the furrow, lowers the plow into the ground and drives a short way to check the plow's performance.

If the plow is not properly set, the operator should correct the adjustments. The depth control should be set for 7 to 9 inches and the LD lever set in one of the LD positions to give both depth and load control. The moldboard plow should adequately cover the trash. All furrows should be the same size with the plow properly leveled. The operator should drive with the right wheel in the furrow without crowding the furrow wall or running up on the previously plowed land. The tractor wheel spacing is preset for the correct cut of the first bottom. The rolling coulters should slice the trash and make a clean furrow wall. The tail wheel should counter the side thrust on the tractor for easy steering.

At the end of the land the operator should lift the plow at the correct point and make hits turn. He may slow down the engine for better control in turning out of and into the next furrow. For this exercise he will complete one round. For best plowing he should match the load to the proper gear and engine speed. Plowing will probably be done in third gear, although conditions could require one gear lower or permit one gear higher for best results. The throttle should be set for full power at 2500 rpm under load. At the end of the return trip he should lift the plow at the proper point and return to the starting area. The contestant will unhitch the plow and park the tractor at the starting line.

### Rules.

- 1. Safety will be observed at all times using the score sheet for Event No. 1. Ten percent of the safety score will be added to the plowing score.
- 2. Whenever dismounting from the tractor, the transmission must be in "Park" or"Lock" and/or at least one brake set.
- This is not a speed event but points will be deducted after exceeding a reasonable time. Time begins on signal from the judge at the starting line and stops when the particular operation under test is completed, such as hitching, plowing and unhitching.
- 4. A penalty will be assessed for plowing at depths either shallower than 7 inches or deeper than 9 inches, and also for nonuniform depths.
- 5. All adjustments, including depth settings, must be made by the contestant himself.
- 6. The quality of plowing will be judged on: (a) evenness of crowns; (b) straightness of furrows; (c) uniform depth of furrows; (d) proper depth of furrows; (e) proper entry and removal at headlands; (f) trash coverage; (g) general appearance and control; and (h) the straightness and coverage of backfurrows and deadfurrows if used.



### EVENT NO. 4

# HITCHING, ADJUSTING, PLOWING WITH AND UNHITCHING A MOLDBOARD PLOW Page 2 Contestant No._____

Proc	cedure		
trac	purpose of this event is to test the operator's skill and tor with an implement to perform a basic farm production o nomically. Each contestant or trainee will be scored on sa er driving events.	peration effe	ctively and
Scor	ring		
Hito	ching 3-point Plow (Time StartTime Finish) <u>No. o</u>	f times	Points added
2. 3. 4. 5. 6. 7. 8. 9.	Each extra pull-up to spot tractor. Failure to put transmission in Park or Lock. Failure to put drawbar in short position. Failure to set selector lever in "D" position. Connecting center or top length before draft links. Connecting right draft link before left draft link. Poor spotting of tractor or lift arm making hitching difficult. Failure to insert and lock quick-lock pins. Failure to back up to lock draft link extensions. Failure to lock adjusting handle on top center link. Raising implement too rapidly and not checking for	x x x x x x x	10
	bind.	x	10
	Total time exceeding 300 seconds.  ving Moldboard Plow (Time Start Time Finish )	sec. x 1/4	
	Failure to reset selector lever into one of LD		
2. 3. 4. 5. 6. 7. 8. 9.	positions.  Failure to lower plow at correct point at headland.  Failure to level plow from front to rear.  Failure to level plow from side to side.  Failure to readjust coulter if needed.  Crowding furnow wall with right front or rear wheel.  Driving erratically or zigzagging.  Driving erratically or zigzagging.  Failure to look back and check work of the plow.  Failure to raise plow at correct point at headland.  Total time exceeding 900 seconds.	x x x x x x x x x x x x x x x x	10 10 20 20 10 10 10 10 10
	ity of Plowing		
2. 3. 4. 5.	Furrows not even and crowned.  Furrows not straight.  Plowing depth less than 7 or greater than 9 inches.  Right bottom cutting too wide a furrow.  Coulters not slicing sod and trash properly.  Depth of plowing not uniform, varying more than 1 in.	x x x	10 10 10 10 10 10
Oper:	ation of Tractor-Plow Unit		
2. (	Throttle not set for full power.  Overloading or lugging the engine.  Spinning wheels or digging in.  Riding clutch or brakes.	x x	10 10 10 10
	tching (Time StartTime Finish)		
2. I	Failure to remove top center link first.  Failure to replace quick lock pins in 3-point hitch.  Pulling away too quickly and/or upsetting implement.  Total time exceeding 200 seconds	x 1	0 0 0

Total Raw Score Hitching Plowing Quality Operation Unhitching

### EVENT NO 6

### PERFORMING THE WEEKLY (50-HOUR) MAINTENANCE SERVICES

### Procedure

Contestant No.

This exercise is designed to test the trainee's knowledge and ability to perform the 50-hour maintenance services. The trainee should be able to recognize the need for, check and perform correctly the services called for at the end of each 50 hours as indicated on the speed-hour meter. Only one trainee should be present at a time for evaluation and the trainees should not explain the test to other trainees who have not been evaluated.

### Preconditions

Before the trainee is asked to carry out the needed maintenance the tractor should be prepared by setting up the following conditions:

> Speed-hour meter should read a multiple of 50 (tape can be used). Speed-hour meter should be available.
>  Record forms should be available.

Transmission oil should be one quart low.

Various types of oil (including transmission oil) should be available.

Rags and equipment for filling transmission should be available.

Loose battery cable (corroded if possible).

Loose battery hold-down strap.

Two battery cells with low electrolyte level. One rear light that doesn't work.

10. Clutch with insufficient clutch"free travel." 11. Brakes out of adjustment.

- 12. One tire with insufficient air pressure (preferably rear tire). 13. One tire with excess air pressure (preferably front tire).
- 14. One valve stem (on rear tire loaded with water) in lowest position.
- 15. Total of three loose lug nuts on various wheels.

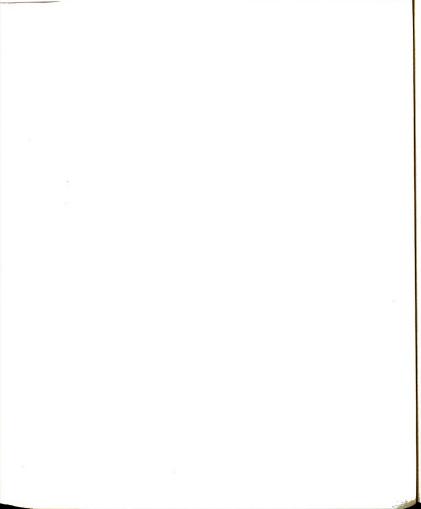
Restriction indicator showing red for dry-element air cleaner.

17. Dirty element in dry-filter-type air cleaner.

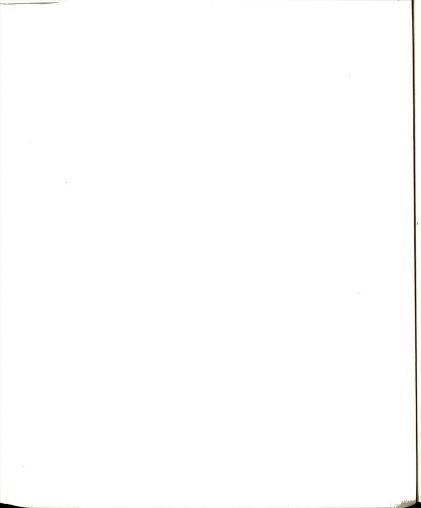
18. Tractor on a sloping surface.

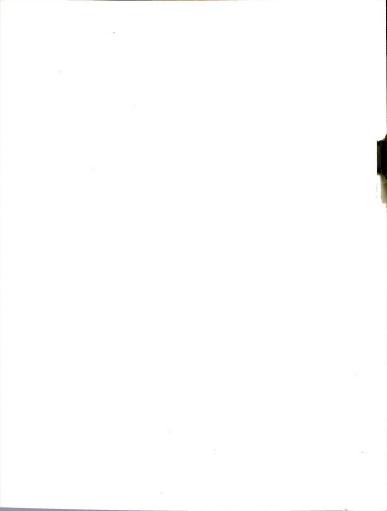
When these conditions are ready the instructor may proceed to give the trainee the following instructions: CHECK THE SPEED-HOUR METER AND PERFORM THE REQUIRED MAINTENANCE ON THIS TRACTOR. Since Event No. 5 evaluated the trainee's proficiency in performing the daily maintenance services the instructor may simply ask the trainee to name the daily services he would perform first.

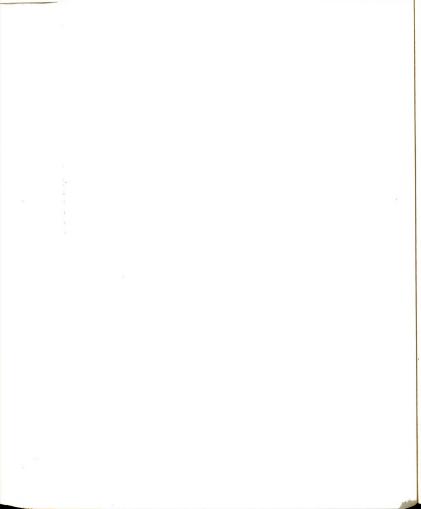
Mark off the number before each item as the trainee correctly makes each check. Place the appropriate number in each blank indicating the number of times the trainee failed to make the required checks. EXAMPLE: If the trainee failed to check three battery cells for electrolyte level, place the number three (3) in the blank under "No. of Times." This number is multiplied by 5 to give 15 points in the blank on the right.


If the trainee fails to make a check and indicates that he is finished, the instructor should mark that he failed to make that check. The instructor should then ask the trainee to perform the checks that were neglected and proceed to determine the trainee's proficiency at performing those checks.

When the trainee reaches the point of beginning to correct a faulty situation the instructor may stop the trainee and instruct him to proceed on to other checks. This will facilitate leaving the same conditions for each trainee being evaluated. EXAMPLE: When the trainee has determined that the oil level in the transmission is low he should get the correct oil to add to the transmission. At the point at which he is about to pour in the oil the instructor should stop him and ask him to proceed as if the oil had been added. On the tires the instructor can ask how much air should be added or released.


# EVENT NO. 6


# PERFORMING THE WEEKLY (50-HOUR) MAINTENANCE SERVICES Page 2


	TEM OWITHG THE MEEKET (50 HOOK) THEMENUTE		
Total Time U	sed	Contestant No	
Scoring			
Speed-hour M	eter	No. of Times	Points Added
2. Failed t	o read speed-hour meter correctly. o record hours correctly. o perform daily maintenance services.	x x x	10 10
	and Hydraulic Oil		
2. Failed t 3. Did not t 4. Failed t 5. Failed t 6. Failed t 7. Failed t 8. Failed t 9. Failed t 10. Failed t 11. Did not 12. Failed t	o check oil level. o level tractor before checking. know where to check oil. o have engine running while checking. o have rockshaft lowered while checking. o clean around dipstick and/or filler cap. o wipe off and replace dipstick before reading o read dipstick correctly. o choose correct oil. o add correct amount of oil. know where to add oil. o replace dipstick and/or cap tightly.	X X X X X X X X X X X X X X X X X X X	20 10 10 10 10 10 10 10 10 10 10 10
Battery and	Electrical System		
<ol> <li>Failed t</li> <li>Failed t</li> <li>Failed t</li> <li>Failed t</li> <li>Failed t</li> </ol>	o check battery cells for electrolyte. o check battery cables for tightness. o check battery terminals for corrosion o add distilled water to low cells. o check and tighten hold-down clamps. o check tractor lights (front and rear). o wash hands after checking battery.	x x x x	5 10 10 5 10 5 10
Brakes			
	o check brakes for sponginess and report. o check brakes for uneven action and report.	x	10 10
Clutch Free	Travel		
<ol> <li>Failed t</li> <li>Failed t</li> </ol>	o check for clutch free travel. o know how to check (at least 1 inch needed).	x	10
Tires and Wh	eels		40
<ol> <li>Failed t</li> <li>Failed t</li> <li>Failed t</li> <li>tires fi</li> </ol>	o check air pressure in tires. o know correct pressure needed. o add or release air to correct pressure. o have valve stem at top when checking (for lled with water). o check wheel lug nuts.	x x x	20 10 10 10 5
<ol> <li>Failed t</li> <li>Failed t</li> </ol>	o find loose nuts and tighten. O find and report cuts, bulges in tires.	x	10 10
	ype Air Cleaner		00
2. Failed t 3. Failed t 4. Failed t 5. Failed t 6. Failed t 7. Failed t	o check dry-filter-type air cleaner. o check restriction indicator (if present). o check unloading valve. o remove filter and element and check. o clean dirty element correctly. o replace element correctly. o reset restriction indicator.	x x x x	20 10 10 10 10 10 10
MSU June 197	O Total Points		



