A FIELD CONSCLIDATION STUDY OF HiGH ASH
PAPERMILL SLUDGE

Thesis. for the Degres of Ph. D.
MICHIGAN STATE UNIVERSITY
ROBERT P. VALLEE
1973



C.3-

e

This is to certify that the
thesis entitled
A FIELD CONSOLIDATION STUDY OF HIGH ASH

PAPERMILL SLUDGE

presented by

Robert P. Vallee

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Civil Engineering

o Gdenale,S

Major professor

Date Vole \A oy

0-7639



G



ABSTRACT

A FIELD CONSOLIDATION STUDY OF
HIGH ASH PAPERMILL SLUDGE

By

Robert P. Vallee

An experimental papermill sludge landfill was constructed and
monitored to obtain engineering information essential to the development
of guidelines and recommendations for the design and operation of solid
papermill waste landfills. Papermill sludge is an organic clay material
consisting of 32 to 597% kaolinite and having an initial water content of
about 260%. The non-clay fraction is primarily organic cellulose fibers.
The experimental landfill consisted of 2 sludge layers, each initially
10 ft. thick, with sand drainage blankets at the top, middle, and bottom.
An earth dike provided lateral confinement of the soft sludge both
during and after construction. A surface load, consisting of 3 ft. of
natural soil, was placed immediately after construction. The landfill
was instrumented with 32 settlement plates, 16 piezometers, 3 total
pressure cells, and 10 thermistors. Field data obtained during the
first year included settlements, pore water pressures, vertical and lat-
eral earth pressures, temperatures, sludge unit weights, specific
gravities, and water contents. Laboratory work included consistency
limits, ash contents, and consolidation tests run on both fresh and

undisturbed samples of sludge. A detailed description of the field
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behavior is given in the thesis along with predictions based on labo-
ratory results and soil mechanics theory. For each sludge layer the
ultimate settlement, time-rate of settlement, and’pore pressure dissi-
pation are discussed in detail. Several theories that include secondary
compression throughout the consolidation process are included in the
analyses, along with Terzaghi's theory. The lower sludge layer was
loaded gradually (by the upper layer) with time, and its consolidation
behavior is modeled using a computer program to account for the slow
loading. Pore pressures generated during construction and those
existing at the end of primary compression (residual) are analyzed and
discussed. Laboratory consolidation data from the undisturbed samples
are discussed in detail.

It is shown that soil mechanics theory can be used to accu-
rately model the sludge consolidation behavior for different conditions
of loading. Ultimate primary settlements can be reasonably estimated
if appropriate pore pressure changes and void ratio considerations are
included in the settlement analysis. Secondary compression is difficult
to predict from laboratory parameters. The hydrodynamic portion of the
time-settlement relation is accurately modeled by Terzaghi's (1943)
theory, Gibson and Lo's (1961) theory, and Wahls's (1962) theory, when
a representative value for the coefficient of consolidation is used.
Laboratory consolidation tests underestimated this parameter by a factor
of four or more. Consolidation theory can be used to predict pore
pressures up to about 70 percent dissipation. Residual pore pressures
were observed in the sludge at the completion of primary compression.

Pore pressures generated during construction were in general agreement
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with predicted values based on Gibson's (1958) theory. The coefficient
of lateral stress decreased from an initial value close to 0.65 imme-

diately after sludge placement to about 0.32 for the final stages of

consolidation.
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CHAPTER 1

INTRODUCTION

1.1 Need for Study

Solid wastes resulting from the pulp or paper making process are
removed from effluent streams by treatment devices designed to protect
the nation's surface water resources. An estimated 2,500,000 dry tohs
of solid residue are removed annually (Gillespie, Gellman, and Janes,

1970) giving a sludge cake volume close to 200 million cubic yards. The
great majority of these sludges are disposed of on land. A survey
(Gillespie, 1969) by the National Council of the Paper Industry for Air
and Stream Improvement, Inc., indicated that more than 1100 acres of land
are in use as sludge depositories. Sludge disposal on land, in most
cases, lacks long range planning, hence it is achieved on a temporary
rather than a permanent basis. Thorough planning would include the
application of sound engineering principles to all stages of site
selection, design, operation, and completed use of the landfill.

To facilitate this planning, it is essential to have an under-
standing of the many variables that will affect landfill volume change,
settlement, slope stability and bearing capacity. In anticipation of
the industry's need for information on satisfactory disposal practices,
the National Council of the Paper Industry for Air and Stream Improvement
conducted both a questionnaire survey of current land disposal practices

(Gillespie, 1969) and a core sampling investigation of existing sludge



deposits (Gillespie, Mazzola, and Gellman, 1970). The core sampling
program showed that in situ sludge water contents were higher than those
normally encountered in clay soils, with large variations occurring in
the vertical direction. These high water contents suggest that large
settlements can be expected under surface loads. Field vane shear
strengths ranged from 0.12 to 0.37 kg/cm2 indicating low in-situ sludge
stability. Experimental laboratory data (Andersland and Laza, 1971;
Andersland and Paloorthekkathil, 1972) have demonstrated the influence
of a number of variables on the shear strength, permeability, and
consolidation behavior of papermill sludge. The task remained to
verify, with field observations, the accuracy of predictions (based on
laboratory data) of settlement, drainage, and stability for a

constructed landfill.

1.2 Objectives of Study

The general objective of the study is to contribute--through
field observations on an experimental landfill, laboratory work, and
analysis--basic information, relative to the sludge behavior, which is
needed for developing guidelines and recommendations for the design and
operation of solid papermill waste landfills. It is desirable that the
completed sludge landfill be stable and have the potential for a number
of uses, including use as a recreational area or as a foundation for
light construction. Pursuant to this general objective the research
program was directed at the consolidation behavior of the landfill.
Specific items relative to consolidation behavior include:

1. Dewatered pulp and papermill sludges from different mills may have

consistencies which require different placement techniques.



Effectiveness of placement methods used at the experimental site will be
summarized.

2. Consolidation parameters, which include the compression index, coef-
ficient of consolidation, and coefficient of secondary compression, are
useful in prediction of settlement in soils. Comparisons will be made
between the observed field behavior and predictions based on these exper-
imental sludge parameters. These predictions have implications relative
to landfill capacity, settlement of future structures built on the land-
fill, and flow rate and volume of drainage effluent. Various theories
used to mathematically model the consolidating sludge will be reviewed
and their application to the sludge landfill discussed. The laboratory
parameters will be determined for both fresh sludge samples and for
undisturbed samples obtained from the landfill at the completion of
consolidation.

3. Surcharge loads used in combination with drainage blankets are an
effective means for improving the drainage of certain peat and clay
soils. Use of this method in the experimental sludge landfill will be
evaluated as to its potential for obtaining better sludge drainage.

This should result in increased sludge shear strength and improved
landfill stability. In-situ vane shear tests will be run to determine
the increase in shear strength with consolidation.

4. The magnitude of effective lateral stresses has implications relative
to stability analyses involving bearing capacity and slope stability.
The observed change in lateral stresses during sludge placement,
surcharge loading, and consolidation will provide insight as to the
actual stress distribution existing in the sludge.

The field research site was selected in collaboration with the



National Council of the Paper Industry for Air and Stream Improvement,
Inc., and the host papermill. The experimental landfill site, the
dewatered sludge (including hauling to the site), and field laboratory
space were provided by the host papermill. A local contractor
constructed the earth dikes and placed the dewatered papermill sludge
and sand drainage blankets during the summer and fall of 1971. The
author supervised construction of the landfill, took initial sludge
samples, installed instrumentation, and initiated field monitoring of

the landfill. Physical properties and certain stress-deformation charac-
teristics of the sludge were obtained using the soil mechanics labora-

tory facilities at Michigan State University.



CHAPTER II

LITERATURE REVIEW

Information directly oriented to the design and operation of
papermill sludge landfills is very limited. Most of the literature
concerns the separation and concentration of solids from the papermill
waste, with very limited planning and application of engineering prin-
ciples to disposal of the sludge cake on land. Current practices depend
on land available, haul distance, nuisance condition, and local require-
ments for sanitary landfills. Settlement data for these sludge land-

fills is essentially nonexistent except for some laboratory research.

2.1 Current Practice

Sludge disposal procedures followed at a particular mill are
dependent, to some extent, on the quantity and nature of the sludge
produced. Sludge removed from a primary clarifier may range from 1 to
15 percent solids by weight and have an ash content as high as 70 per-
cent. This low consistency undewatered sludge is in some cases pumped
to earthen basins, lagoons, or drying beds for natural dewatering. The
earthen basins or drying beds require adjacent soils which are rela-
tively permeable, such as sands or gravels. After dewatering by natural
drainage, the sludge cake may be covered with soil and left in place
indefinitely, or may be excavated and hauled to some more distant land-

fi11. Gillespie (1969) states that data available for drying beds are

(9)]



too erratic to allow meaningful conclusions to be drawn on the perfor-
mance of this type of dewatering. 1In some cases long pipelines have been
constructed to transport these fluid sludges to large abandoned pits,
especially when the calculated use period exceeds five years. The life
of these pits was usually extended by the construction of dikes to retain
more sludge. Very often, odors emanating from the lagoons or drying beds
during warm weather have become a nuisance to local residents and prop-
erty owners. The practice of pumping clarifier sludge to earthen basins
is limited to smaller mills where the volume of sludge production is low
and where land is available. In most instances this practice lacks long
range planning and solves the disposal problem on a temporary rather than
a permanent basis.

More recent disposal developments (Follet and Gehm, 1966)
include the dewatering of the clarifier sludge by means of centrifu-
gation, vacuum filtration, or mechanical pressing. The resulting sludge
cake may have a solids content as high as 40 percent (equivalent to
150 percent water content) for the high ash sludges. The dewatered
sludge is hauled by truck to the disposal site, in some cases as far as
five miles from the mill. The disposal sites often are abandoned gravel
pits, low lying areas, or other such lands depreciated through use. The
sludge is dumped at the site and distributed with suitable earth moving
equipment. In a few instances, a cell type of landfill with individual
compartments separated horizontally and vertically with a porous material
has been used. The resulting slow drainage has helped to decrease the

VO lume occupied by the residue. Limited information on sludge stability
and sludge drainability has hindered the development of this approach to

Organized landfill operations. This project is intended to provide



information relative to the field consolidation of dewatered sludge so
that the necessary guidelines and rccommendations for the design and

operation of papermill sludge landfills can be developed.

2.2 Consolidation Theory

Natural drainage of water from sludge deposits results in a
decrease in volume with an accompanying settlement of the surface. This
volume change may occur almost entirely in the vertical direction,
approximating one-dimensional compression. The application of surface
loads from additional sludge, soil cover, or construction serves to
increase this volume change or settlement. This phenomenon has been
observed for existing sludge deposits containing high in-situ water
contents. For organized landfill operations it is desirable to predict
this volume change so as to permit the estimation of total sludge
capacity of a landfill and to predict the settlement of any constructed
facilities placed on the sludge landfill.

Very little published information is available regarding the
settlement of papermill sludge landfills. Accordingly, one goes to
related areas, such as soil mechanics, and borrows those theories which
appear to describe the sludge behavior. Consolidation theory involves
the development of an equation from which pressure and void ratio values
may be computed at any point and time in a stratum of consolidating
material. From such an equation the change in overall thickness of the
strata after any interval of time may be determined by integration or
numerical computation. To illustrate the application of certain consoli-

dation concepts, consider a section through a sludge landfill as shown
in Figure 2.la. If it is assumed that leachate drainage results in one-

dimensional compression, i.e. volume change occurs only in the vertical



direction as settlement, then the change in sludge layer thickness, AH,
per unit of thickness, HO, equals the change in volume, AV, per unit of
original volume Vo' It is convenient to work with a small sludge
sample, which can be represented as shown in Figure 2.1lb. Volume-void
relationships show that AV/Vo = Ae/ (1 + eo), where Ae is the change in
void ratio and e, = Vv/vs is the initial void ratio expressed in terms
of the initial void volume, Vv’ and the solids volume, VS. Now the

settlement, AH, can be computed as

_ Ae
AR = H —— . (2.1)

The initial sludge layer thickness, Ho, and the average initial void
ratio, eo, can be determined. The problem now becomes one of deter-
mining the relationship between void ratio and effective normal stress
(loads) and how effective normal stress changes with drainage of water
from the sludge. The theory and procedures needed are given in various
references (Lambe and Whitman, 1969; Leonards, 1962; Lambe, 1951).

These procedures are based entirely on Terzaghi's (1943) one-
dimensional consolidation theory, and although this theory is widely
accepted, it includes certain assumptions that may not apply to papermill
sludge. To determine the significance of these assumptions, several
theories are reviewed below which include one or several of the assump-
tions in their mathematical formulation. The theories of Wahls (1962)
and Gibson and Lo (1961) are included in the settlement analysis of the
sludge landfill and are discussed in detail. Among Terzaghi's assumptions
are: (1) the time lag of compression is caused exclusively by the low
permeability of the material (ignores secondary compression), (2) con-

stant soil compressibility during the load increment (assumes a linear



stress-strain relation), (3) Darcy's law is valid at low hydraulic
gradients (no threshold gradient), and (4) small strain theory is valid.

A theory proposed by Gibson and Lo (1961) for the consoli-
dation of soils exhibiting secondary compression involves the represen-
tation of the soil skeleton by the mathematical model shown in Figure
2.2a. In this rheological model, primary compression is represented by
the transfer of stress from the pore water to the soil skeleton
resulting in an effective stress, Ekt), which causes compression of the
Hookean spring a. This effective stress is also applied to the Kelvin
element, but its compression is retarded because of the presence of the
dashpot 'A'. The effective stress is thus initially carried entirely by
the viscous dashpot, but as time passes the stress is transferred to
spring b, resulting in secondary consolidation. Since the transference
of stress from pore water to soil skeleton is delayed due to the low
permeability of the soil, the effective stress o(t) increases gradually
and hence the compression of spring a is also gradual. Secondary
compression is controlled by the viscous resistance of the soil skeleton
and can occur simultaneously with primary compression, thus eliminating
assumption (1) above.

Gibson and Lo (1961) consider stress and compatibility condi-

tions in the Kelvin element, yielding

f 1 df —
b+)\—t_c(t)

(2.2)

where b is the secondary compressibility, f is the strain in spring b,

% is the viscosity of the soil structure (dashpot 'A'), and t is the

time after load application. Solving this equation helps to yield the



Lo

stress—-strain relationship

-
_ t g(t - 1)
€ = ao(t) + X ag(t)e dt (2.3)
0
where a is the primary compressibility, and t is a dummy variable.
Considering continuity of flow of water through an element of soil,
Gibson and Lo (1961) write

2%5(0) _ e (2.4)

k 3¢
Yy 322 ot

where k is the permeability of the soil, ¢ is the vertical strain at a
point, Y, the unit weight of water, and Z is the distance from the

surface of a soil layer with an impermeable base. Combining equations

2.3 and 2.4 yields the one-dimensional equation of consolidation

=
2— — 2 at =(t - 1)
k3 0(5) = a 8g£t) + xo(t) - %— S o(Z,r)eb dt (2.5)
Yw 3Z 0
Gibson and Lo (1961) solve this equation, for the appropriate boundary
conditions, by the use of Laplace Transforms and the Convolution

Theorem. The solution for a step (instantaneous) load, q,» yields the

following expression for settlement:

[ee]

K-x -X,t K-x -X f
- 8 1 1 2 _ 2) 1
S(t) = (a + b)qOH 1+ 2 % nz <x - >e (x = )e

n=odd 172 172

(2.6)
2 2
nnc
a . 4
a+b'1 1 4H2

where H = thickness of the soil layer, K =
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+\J 2 '
% vk T [ + kT - 4k ] L1
c = —, = , & = (= + ), and

v ay,’ %, 2 a b
R = % . The pore pressure is given by the expression

= /8 _x_2> x(a _i)

4 atb 1 1\ at+b K2 —xlt 2\a+b Kl —x2t anz

v s T a o n X, =X € - X, =X € SiD ToH
172 172
n=odd
(2.7)

For a soil which is infinitely viscous (A+0) or exhibits no secondary
compression (b+>0) the above equations reduce to those of the classical
solution of Terzaghi.

These equations have been programmed for solution by computer
and the program is given in appendix H. The program assumes that the
soil layer is doubly drained and solves for the settlement and pore
pressures (at the eighth points of the layer) for each specified time.
The thickness of the layer is adjusted after each settlement compu-
tation to maintain the appropriate length of drainage path.

For large values of time the settlement becomes

A
—t
S(t) = qu [a + b (1 - eb ):I t > ta (2.8)

and in the limit t-+0, the ultimate settlement of the layer is given as

Sult = (a + b)qu (2.9)

To determine the parameters a, b, and A it is necessary to plot a graph

, where 6, and 6§, are the settlements at times

of log,. (8, - 6,) vs. t
10°72 1 2 1

1

t2 and tl’ respectively, and t2 - tl = At = constant. Using equation
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2.8 the following expression is derived,

= log I - .434 A-t

b (2.10)

log(é2 - 51) 1

:.)_\.At

where I = qub(l - e b ). The intercept of the graph represents

log I, thus
-4
p-—Lx10 (2.11)
TA t
q H(L - e )

The slope of the line is given by .434 %. The value of a can be found

from
-2

e(t ) —t

a = a _ b(l - e ba

9o

) (2.12)

where e(ta) represents the strain at time t = t . Figure 6.4 shows a
plot of log (8, - 61) vs t; for papermill sludge.

The rheological model proposed by Wahls (1962) for the analysis
of primary and secondary consolidation is shown in Figure 2.2b. Here
primary compression is represented by the Kelvin elements and secondary
compression is represented by the secondary dashpots. The time
dependent transfer of stress from the pore fluid to the soil skeleton
is mathematically modeled by the transfer of stress from the viscous
dashpot to the Hookean spring in the Kelvin element. Thus, for an

increment of load, Ap, we can write for the nth element,
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n an 1
Ap =I;+FE (2.13)

where Rn is the compression of the nth Kelvin body, An is the spring
constant for the nth elastic spring, and Bn is the dashpot constant for
the nth viscous dashpot. By solving equation 2.13 for Rn and summing
over all the elements to obtain the total primary compression, Rl’ at

time t, Wahls (1962) arrived at

—Bn
t

= = A
= = - n
Ry é R = 4p % A(-e ) (2.14)
n=0

n=0

Since the Terzaghi solution for primary compression provides a good
representation of the hydrodynamic effect, Wahls (1962) chose his
constants An and Bn to make equation 2.14 identical to the Terzaghi
equation, arriving at the following deformation equation of the

rheological model for primary compression,

Rl = ApAp f(Tv) (2.15)
8 - 1 (2n + )7 2

where f(T ) = 1 - — E ——— exp {- ~—*} T _ ,

v TT2 (2n + l)2 2 A

n=0

© th
A = E A = coefficient of compressibility, T = —= , and c_ =
P n v H2 v

n=0

coefficient of consolidation.
Certain assumptions made by Wahls (1962) concerning secondary

compression lead to its representation by the viscous dashpots linked
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in series with each Kelvin body as shown in Figure 2.2b. The defor-

mation equation of the nth secondary dashpot is assumed to be

= (p0 + Ap) (2.16)

where Rn is the compression of the nth secondary dashpot and Cn is the
dashpot constant of the nth secondary dashpot. Solving this equation
for Rn and summing to determine the total secondary deformation,

Wahls (1962) arrives at the equation

R, = ZE:: R = C, h(T) (2.17)
n=0
where -
2
h(T) = 1.08516 2= E — L e |1+ EEL 1| forT <7
2 2 810 2 v v =
T =0 (2n + 1)

and h(T) = .8353 + loglOTV for Tv > 7 and Ca = AH/HP//Alogt = strain

per cycle log time. Thus the total compression, RT’ caused by a

pressure increment, Ap, is

Rp = Ry + Ry = Adp £(T,) + CH h(T) (2.18)

where ApAp = AHP = total estimated primary compression, and Hp =

thickness of the layer at the end of primary compression. Wahls (1962)
has determined values of the functions f(Tv) and h(Tv) for different

values of Tv and these have been used to determine theoretical
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time-settlement curves for the papermill sludge. It should be noted
that AHP represents primary compression only, and any estimate of
primary compression based on field plezometer readings or laboratory
CC values must have the appropriate theoretical amount of secondary com-
pression subtracted from it. This is discussed further in Chapter VI.
Wahls's (1962) theory provides no estimate of pore pressures.

Garlanger (1972) bases his theory on a soil model described

by Bjerrum (1967), and replaces the Terzaghi equation

d

o

|

- _. 3
. a, =% (2.19)

(o5

where e is the void ratio, t the time, E'the effective normal
stress, and a, the coefficient of compressibility equal to ae/aE', a
constant which assumes a time-independent linear relationship between

void ratio and pressure, with the equation

%%'= gg %% " (%%) . (2.20)
op
, e de Jde
In this equation the compressibility, — , and creep rate, (=) , are

3; ot c
assumed to be functions of both void ratio and pressure. To obtain
numerical values for these relations, the appropriate coefficients are
determined from a plot of logarithm of void ratio versus logarithm of
the effective normal stress. Garlanger (1972) solves equation 2.20
simultaneously with two Terzaghi equations, by a numerical process, to
give the void ratio-time and the pore pressure-time relationships at

every point within the consolidating soil. Although this model

eliminates assumptions (1) and (2) above, it was found to be
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inapplicable to the sludge landfill because the necessary e vs. log p
relationships could not be realized from the undisturbed samples. The
theories discussed thus far require the assumption of a value for the
coefficient of consolidation, c, and as is discussed in Chapter VI,
the time-settlement relation is quite sensitive to this value.
Therefore it might be concluded that although these theories more
accurately model the consolidating soil, the determination of a proper
value for c, may be a far more important consideration in the
settlement analysis.

Janbu (1965) and Davis and Raymond (1965) have included the
nonlinear stress-strain relation of equation 6.2 into the consoli-
dation development to replace Terzaghi's assumed linear relation.
Janbu formulates the differential equation of consolidation in terms

of strain, i.e.

. 32 3VO
_I_= cv g -9 (2.21)
9z 90z

(o5

where € is the strain at a point, c, the coefficient of consolidation,
v, the nominal flow rate associated with a threshold gradient io, and
solves the equation based on different assumed final strain-depth
distributions. Since his model can account for the decrease in strain
with depth shown in Figure 6.3c, it allows consolidation to take place
more rapidly than it would in a solution obtained on the basis of
constant additional stress. Since the laboratory parameters in
Terzaghi's theory underestimate the rate of settlement, such a rate
increase would be desirable. However, there are problems involved in

assuming a proper analytical final strain distribution for use in the
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theory. As seen above, this theory allows for the formation of a
residual pore pressure in the soil based on the concept of a threshold
gradient.

Davis and Raymond (1965) use the non-linear relation of
equation 6.2 in a different method of formulation, based on continuity
and stress conditions, and arrive at the conclusion that Terzaghi's
theofy accurately predicts the time-rate of settlement but overes-
timates the rate of pore pressure dissipation. This theory, along
with Janbu's (1965), involves the assumption of a value of cV in dits
application, and thus is subject to the same explanation given previ-
ously on its limitation in predicting time rate of settlement. There
are also certain contradictions between the conclusions of the two
theories, which makes it difficult to assess which would be the most
applicable to bapermill sludge.

Gibson et al. (1967) have attempted to take into account the
variability of the coefficient of consolidation, and have also elimi-
nated the assumption of small strains. In so doing they have formu-
lated the governing differential equation for a thin clay layer
subjected to large deformations. The solution is obtained for both a
constant CF and a CF linearly related to the void ratio, where CF is
a coefficient closely related to the familiar coefficient of consoli-
dation cv. In the solution of the former case, the linear differ-

ential equation is

c 2%e e (2.22)
2

dc
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(l+eo)

where CF is the term ?IiET_ c, » ¢ the void ratio, and c the distance

from the midpoint of a doubly drained clay layer (at t = 0). This
equation holds without restriction on the form of the relation between

effective stress and void ratio. It also assumes only C_ as constant,

F
with no such restriction being placed on the coefficient of permea-
bility, k, and compressibility, (doc'/de), as in Terzaghi's (1943)
theory. Upon solution of equation 2.22, the effective stresses can be
found by application of a suitable stress strain relation (void ratio
vs. effective normal stress) and the pore pressures obtained from the
effective stresses (constant total stress). The resulting pore
pressures will in general not correspond to those obtained by Terzaghi's
theory, however the early part of settlement will, as in the Terzaghi
case, behave like tl/z. Such a result would indicate that Terzaghi's
theory should adequately predict the time-settlement relation for
papermill sludge even though it undergoes large deformation.

Gibson (1958) has developed a theory which describes the
progress of consolidation in a clay layer increasing in thickness with
time. From this theory it is possible to estimate the pore pressures
that develop in a clay layer or embankment that is being constructed at
a constant rate on soil which is either permeable or impermeable.

Gibson initially considers the case of sedimentation taking place
through still water of depth H(t) to the bottom, the current thickness

of the deposit being h(t). The total vertical stress at a point a

distance x from the bottom is

Ok = y(h - x) + yw(H - h) = O x + P, (2.23)
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where p\dis the pore water pressure, y is the total unit weight of

the deposit material, and EXx is the vertical effective stress. The

continuity equation for one dimensional compression is

O Py 85‘xx

¢, 5 = = =5 (2.24)

Combining 2.23 and 2.24, Gibson obtained the equation governing the

pore water pressure in the sediment,

2
I p ap
woPw_ o oan, dh
Cv;('z_ ot Yuae v Y ¢ (2.25)
where y' = y - Yy ¢ In bank or landfill construction problems with

saturated fill, H(t) = h(t) and equation 2.25 becomes

2
op apw dH

Va)(z = 5T —YE (2.26)

For a permeable base the boundary conditions are P, = 0 at x= 0 and
p =0 at x = H. Gibson solves equation 2.26, subject to the
preceding boundary conditions, for the case of deposition occurring at
a constant rate (H = mt). He presents the solution as a series of
curves of X'H versus pthH for five values of EEE . Using these
curves, pore pressures generated during construction of a sludge layer
can be estimated.

A soil deposit is said to be normally consolidated if the

present effective overburden pressures are the maximum pressures to

which the deposit has ever been consolidated at any time in its
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history. Leonards (1962) discusses in detail the void ratio-effective
stress relationships for normally consolidated soil samples, and these
concepts are used in the interpretation and analysis of consolidation
tests performed on "undisturbed" samples of sludge taken from the
landfill. Figure 2.3 illustrates typical e - log E relationships for
a normally consolidated clay subjected to various loading conditions
and degrees of disturbance. It can be seen that the curve obtained
using small load increments best defines the in-situ void ratio-
effective stress relationship, and that this relationship can be
substantially affected by sample disturbance. There is a sharp break
in the e - log B'curve at a stress level equal to the effective over-
burden pressure for soils that have experienced little secondary
compression. Bjerrum (1967) and Leonards and Ramiah (1959) discuss
the increase in E; (effective stress at which in-situ consolidation
begins) as a result of long term secondary compressions. An increase
in EE can also occur from thixotropic and cementation effects. For
soils that have been substantially disturbed during sampling, there

is no well defined break in the e - log p curve and it is difficult

to accurately determine E;. In the analysis of the consolidation tests
on papermill sludge, the Casagrande (1936) procedure was used to back-
compute E; from the laboratory e vs. log E curves. Since this procedure
was designed for use with overconsolidated clays, it could be in error
in estimating E; for normally consolidated deposits. This is because
the initial portion of a normally consolidated e vs. 1og'5 curve does
not represent a true reload portion as is assumed in the Casagrande

construction. This is discussed further in Chapter VI.
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The application of consolidation theory to pulp and papermill
sludges does have certain limitations, as shown by Andersland and
Paloorthekkathil (1972). They conducted a series of one-dimensional
compression tests on an integrated pulp and papermill sludge and two
secondary fiber mill sludges. Most of their results are relevant to
this study. For example, the composition and solids content of the
dewatered sludge produced at a given mill will vary from day to day.
Since the consolidation parameters are dependent on these factors, the
problem arises as to how much sampling and testing is required to obtain
representative consolidation data for the sludge being placed into the
landfill. Data presented by Andersland and Laza (1972) show the
influence of gas bubbles trapped in the sludge on its permeability.
Hydraulic pressures existing in most sludge landfills will not be large
enough to eliminate this factor, hence the problem of predicting consol-
idation rates becomes more complicated. Energy released during sludge
decomposition will alter the temperature of sludge landfills. Andersland
and Paloorthekkathil (1972) show that temperature change alters the
equilibrium void ratio as well as the coefficient of consolidation. The
observed settlements in the experimental sludge landfill will permit
comparisons with predicted settlements based on laboratory data, thereby
helping to delineate possible limitations of the application of consol-

idation theory to papermill sludges.
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Figure 2.2. Models for the consolidation process. (a) Gibson and
Lo (1961). (b) Wahls (1962).
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CHAPTER IIIL

EVALUATION OF SLUDGE ENGINEERING CHARACTERISTICS

The physical properties and stress-deformation behavior of
the papermill sludge are needed for making predictions for comparison
with observed field behavior of the experimental landfill. Methods
used for the measurement of these engineering characteristics are
described below. Reference is made to standard test procedures where

possible.

3.1 Physical Properties

Physical properties of papermill sludge characterize, to some
extent, the quality of the sludge relative to engineering purposes.
Those properties important to this project include water content, unit
weight, specific gravity, ash (or organic) content, and consistency

limits.

3.1.1 Water Content

The water content of a soil or sludge sample 1is defined as the
ratio of the weight of water to the weight of dry soil or dry sludge
and is usually expressed as a percentage. Drying temperatures for
sludges are the same as used for mineral soils (105 - llOOC). In order
to obtain consistent dry sludge weights, careful control of the oven
temperature is required. Care must be exercised so as to obtain a

representative sample that avoids local variations. A minimum

25
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sample size of at least 10 gm of dry solids is recommended. Lambe
(1951) gives additional information on the water content of soils.

Fresh papermill sludges contain large amounts of water, hence
some prefer to use solids content by weight rather than water content
by weight. The solids content is defined as the ratio of the weight of
solids to the weight of the wet sample. A simple conversion from solids

content to water content is

100

w =100 % dry solids 1] 3.1
ww
where w = N (100) is the water content in percent based on the dry
s

weight of solids, ws, and the weight of water, ww.

Water contents of sludge samples taken from the landfill are
given in Table 5.2 and Figure 5.1. The lower layer had an average
initial water content of 265 percent with a range from 213 to 308
percent. The upper layer had an average initial water content of 257
percent and a range from 212 to 290 percent. All water content samples
were taken shortly after the sludge had been placed in its final
location by the dragline. Variations present are due to: (1) changes
in sludge output from the dewatering plant, (2) localized surface
wetting and drying as a result of weather changes, and (3) different
times of sludge exposure before sampling. It should be noted that
after the construction of a sludge layer the water contents toward the
bottom were less than those at the top because leachate drained from
the sludge into the bottom sand blanket during construction. Appli-
cation of thg surcharge reduced the water content throughout both

sludge layers as the leachate was expelled. The water contents



27

resulting from this are shown in Figure 5.1 and are discussed in

Chapter V.

3.1.2 Unit Weight

The unit weight of sludge is defined as the weight of the
aggregate (sludge plus water) per unit volume. It depends on the
solids content, unit weight of the solid constituents, and the degree
of saturation of the sludge. The natural unit weight can be deter-
mined by careful volume and weight measurements. The unit weight of
fluid sludges may approach that of water (62.4 1lb/cu ft) whereas the
unit weight of dewatered s;udges cannot exceed that for the solid

constituents. The dry unit weight, Yqs may be computed as

G
s
Y4 T T+ e Yw (3.2)
Vv
where Gs is the specific gravity of the solids, e = ~ is the void
s

ratio expressed in terms of the volume of”voids, Vv’ the volume of
solids, Vs, and Yy is the unit weight of water.

Two procedures were used to determine the total unit weight
of the papermill sludge as placed in the landfill. 1In the first
procedure, a truck carrying sludge was weighed both when full and when
empty to determine the toial weight of the sludge being carried. The
volume of the truck box was then determined and divided into the
sludge weight to determine the unit weight. This procedure gave a
total sludge unit weight of 69.7 1b/cu ft. The second procedure
involved packing the sludge by hand into a bucket of known volume

(1/10 cu ft), and then weighing to determine the quantity of sludge in
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the bucket. The sludge was placed into the bucket in 5 lifts, and care
was exercised to be sure that no air pockets were present. The total
unit weight determined from this procedure was 69.0 1lb/cu ft. The
second procedure is similar to the method used for determination of the

unit weight of fresh concrete.

3.1.3 Specific Gravity

The specific gravity of papermill sludge is the ratio of the
weight in air of a given volume of sludge particles to the weight in air
of an equal volume of distilled water at a temperature of 4°C.  The
lower limit for sludge will approximate the specific gravity of the
organic material. The upper limit will correspond to the specific
gravity of the mineral matter, generally greater than 2. Accurate
determination of the specific gravity requires special care because of
the presence of small gas bubbles in the sludge sample. This was
overcome by the application of a vacuum to the pycnometer containing
the water and sludge. Details of the test to determine the specific
gravity of the sludge solids are given under ASTM designation D 854-58.

Oven dry test samples were used for the papermill sludge.

3.1.4 Ash Content, Organic Content

The organic material of sludge, primarily cellulose fibers,
is combustible carbonaceous matter, whereas the mineral constituents
are incombustible and ash forming. In the manufacture of paper,
kaolinite is used in filler and coating operations. In waste paper
reclamation this clay is removed from the fiber and becomes a part of
the paper sludge. The sludge also contains small amounts of aluminum

hydrate, titanium oxide, lime and iron (Gillespie, Gellman, and
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Janes, 1970).

The ash content of papermill sludge is determined by firing an
oven dried sample in a muffle furnace at a temperature of 925 * 25°¢C
(ASTM test method D 586-63). The ash content AC is determined from the

equation

A (2) = welght of ash or residue
c 7 dry weight of sample

x 100. (3.3)

MacFarlane (1969) states that for peat it is standard engineering
practice to determine the ash content as described above and then to
consider the organic content equal to (100 - Ac). Comparative results
(Andersland and Laza, 1971; Andersland and Paloorthekkathil, 1972)
between the ash content determined from the above method and the organic
content determined by the method given in Agronomy No. 9, Sec. 92-3.3
(Black, 1965) supéort the use of (100 - Ac) for estimating the organic
content of papermill sludges. Although the kaolinite also loses its

OH lattice water when fired to 925°C, this dehydration would amount

to only a small portion of the total combustible material.

The ash content of the sludge in the landfill will remain
essentially constant with time (Gillespie, Mazzola, and Gellman, 1970).
This has been attributed to the presence of lignin and clay and the
absence of sufficient nitrogen in the sludge, inhibiting the biolog-

ical breakdown of cellulose.

3.1.5 Consistency Limits

The consistency, or Atterberg, limits indicate the range of

water contents in which a soil or sludge may be considered as a fluid,
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plastic, or solid. The liquid limit is the water content at which the
soil or sludge has such a small shear strength that it will flow and
close a groove of standard width when jarred in a specified manner. The
plastic limit is the water content at which the soil or sludge begins
to crumble when rolled into threads of a specified size. The amount of
water which must be added to change a soil or sludge from its plastic
limit to its liquid limit is an indication of the plasticity of the
material. The plasticity is measured by the plasticity index, which is
equal to the liquid limit minus the plastic limit. Detailed procedures
for the consistency limits are given by Lambe (1951). Values for the
sludge can be found in Table 5.1.

Papermill sludges containing fibers do not readily lend
themselves to the standard consistency tests. The fibers interfere
with the test procedures and probably alter the shear strength of the
material adjacent to the standard groove in the liquid limit test.
Andersland and Laza (1971) show that both the liquid and plastic limits

decrease with a decrease in organic content.

3.2 Stress Deformation Characteristics

The stress-deformation behavior of papermill sludge will deter-
mine its volume change and settlement and will control the stability of
sludge landfills. The methods used for evaluating the consolidation

behavior and the undrained shear strength of the sludge are given below.

3.2.1 Consolidation Behavior

The process of leachate flow from sludge, involving volume
change as a function of time, is called consolidation. When volume

change occurs only in the vertical direction, as in a horizontal sludge
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layer (Figure 2.la), changes in the surface elevation are labeled
settlement. Two forms of volume change in papermill sludges include
primary and secondary compression (Figure 3.1). Primary compression
involves a transference of load from the pore water to the sludge
structure and is accompanied by a change in volume equal to the volume
of water drained from the sludge. The rate at which primary compression
occurs in sludge is directly related to the sludge permeability (the
speed at which pore water can escape). Pore water pressure measurements
taken during the settlement study provide information on this rate of
consolidation. When the excess hydrostatic pressure associated with
primary compression has been dissipated, the change in void ratio
generally continues at a reduced rate. This phenomenon is referred to
as secondary compression and is often expressed by the slope, Ca’ of the
final portion of the time-compression curve plotted on semi-log paper
(Figure 3.1b).

Laboratory consolidation tests (Lambe, 1951) were used to
provide quantitative information on the sludge compressibility. The
Wykeham Farrance consolidation test machine shown in Figure 3.2,
designed by Professor A. W. Bishop, provided consistent laboratory
consolidation test results. The first step required in running a test
on fresh sludge (sludge as placed in the landfill) was to carefully
place the sludge, in small amounts, into a 2-1/2 in. diameter by 3/4 in.
high consolidation ring and to then knead the mass by hand to obtain
a continuous sample free of large air pockets. The top and bottom of
the sample were carefully smoothed off and trimmed to conform to the

right height. The sample was then placed in the cell chamber (with
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perspex wall) shown in Figure 3.2b and the clamp ring and top pressure
pad were situated in their proper location. The cell was then placed
in the consolidation machine (Figure 3.2a) and the load increment
applied. Drainage from the sample took place through two bauxilite
discs, one located on the bottom of the cell and one attached to the
top pressure pad. Deformation of the sample was obtained from a dis-
placement transducer attached to the frame of the consolidation machine
and connected to a Sargent recorder. Recorder output was verified at
the start of testing by comparison to deformations measured with a dial
gauge. In a standard, multiple increment test, stresses of 0.1, 0.2,
0.4, 0.8, 1.6, and 3.2 kg/cm2 were applied for a period of 24 hours to
the sample. Special single increment tests were also carried out,
usually involving a 24 hour time period.

Undisturbed block samples of sludge were obtained from the
landfill when one of the confining dikes was removed for a stability
study. Consolidation tests were run on sludge samples trimmed from
these blocks. After a block was cut from the exposed sludge slope, it
was wrapped in aluminum foil and plastic wrap and placed into a one
cubic foot wooden box. Wax was then poured around the sample and the
box was sealed shut. Three block samples were taken from each sludge
layer at different elevations and transported back to the soil
mechanics laboratory for testing.

Two blocks were chosen to provide samples for laboratory
consolidation tests. Block B was located at the mid-point of the upper
sludge layer, 4.0 ft. below the upper sand blanket, and block F at the

approximate mid-point of the lower sludge layer, 4.0 ft. below the
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middle sand blanket. A total of four consolidation tests were run on
samples obtained from each block. Two of the tests were run with
rapidly applied load increments of 15 min. duration, and two with load
increments of 12 hr. duration. The rapid loading tests were used to
obtain a definitive e vs. log p curve and had load increment ratios less
than one. The 12 hr. tests were run with a load increment ratio of one.
Because of the fibrous nature of the sludge, standard wire
saws and trimming devices could not be used to trim sludge samples from
a block. A regular hand saw was first used to cut a 6" X 6" X 4" chunk
of sludge from a block, and then a small (1 1lb) rotary electric hobby
tool with a rapidly rotating (24000 rpm) 3/4 in. diameter circular saw
tooth blade was used to trim the sludge to the consolidation ring
dimensions (3 in. diameter, 3/4 in. high). Once inside the ring, the
sludge surface was wetted slightly and smoothed to conform to the ring
height. Although this procedure resulted in considerable disturbance,
both through handling and vibration from the saw, the low sensitivity
of the sludge allowed fair results to be obtained. Consolidation
characteristics of the undisturbed samples are summarized in Table 5.3

and Figures 5.5 and 5.6.

3.2.2 Undrained Shear Strength

The undrained shearing resistance of papermill sludge may be
determined using a cylindrical compression test (Bishop and Henkel,
1962) or a vane shear test (Terzaghi and Peck, 1967). The vane shear
test was used to measure the increase in undrained shearing resistance,
with consolidation, at various levels in the experimental sludge

landfill. The vane shear apparatus consists of a four-bladed vane
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attached to the bottom of a vertical rod, as shown in Figure 3.3. The
vane and rcd can be forced into the soft sludge without appreciable
disturbance. The assembly can then be rotated and the shearing resis-
tance computed by using the dimensions of the vane and the observed
torque. The sludge fails along a cylindrical surface passing through
the outer edges of the vane, as well as along the conical surfaces at
the top and bottom of the blades. When the vane is rotated rapidly
through several revolutions, the sludge becomes remolded and the shear
strength in this state can be determined. The ratio of the undisturbed
shear strength to the remolded value gives the sensitivity of the
sludge. Details on the apparatus and procedures for the vane shear

test as used on the project are given in Chapter IV.
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CHAPTER IV

CONSTRUCTION, INSTRUMENTATION AND MONITORING

4.1 Construction of the Experimental Landfill

Construction methods employed at the site are summarized here
for later reference. They are described in terms of the site prepa-
ration and dike construction, sludge placement, drainage blanket place-
ment, and earth surcharge placement. The B. G. Danis Company, Inc.,
Dayton, Ohio, provided equipment and operators. Coordination of
construction operations was handled by the author through Mr. Tom
Danis, Sr. Field work on the papermill sludge landfill commenced on

August 23, 1971.

4.1.1 Site Preparation and Dike Construction

A section of an old gravel pit located close to West Carrolton,
Ohio, and within hauling distance of the papermill was selected for the
experimental sludge landfill site. A pre-construction map of the
immediate gravel pit area and the dike layout is shown in Figure 4.1.
Other areas of this gravel pit already contained large amounts of
dewatered papermill sludge from previous fill operations. A small pond
in the gravel pit, about 400 ft. north of the existing slope, provided
a reference as to the groundwater elevation. This information indicated
that the groundwater level would not be encountered during dike
construction. The pond also served as an outlet for the drainage pipe

installed in the lower sand blanket. Several bench marks were
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established and a stadia survey was completed of the immediate gravel
pit area, as shown in Figure 4.1. From the stadia survey it was
apparent that a maximum dike grade elevation of 95.5 ft. would allow

the entire west dike and part of the south dike to be shaped from the
natural ground. Excavated soil would provide material for the remaining
dike areas. The bottom grade elevation of 77.0 ft. was about 7 ft.
above the groundwater level.

Prior to excavation for the dikes, an 8 in. diameter pipe was
installed to the pond to provide drainage for the sand drainage blankets.
The upper end extended under the north dike and into a gravel pocket in
the lower sand blanket (invert elevation 77.0 ft) as shown in Figures
4.2 and 4.3. The lower end (invert elevation 73.6 ft) drained into the
pond. The gravel drain surrounding the pipe entrance was continued up
the inner dike wall to provide drainage for the middle sand blanket
(Figure 4.3). Observations at the pipe outlet both during and after
construction indicated that it was functioning properly. The pipe
joints were not sealed, hence some seepage to and from adjacent soil
could occur.

The top inside corners of the dikes and the required grades
were established using results from the stadia survey (Figure 4.1). A
one cubic yard 35-ton Link Belt power shovel did the bulk of the
excavation work, while a D-6 caterpillar dozer moved the excavated
earth and shaped the dikes. Excavation began near corner 1 (Figure
4.1), with the power shovel digging into the existing bank and side
casting to the dike area. The dozer would spread the soil toward

corner 2, gradually building up the south dike. As grade was
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approached, the dozer spread the soil toward corner 3, building up the
east dike. The excavated material was a well graded till consisting of
particles ranging in size from clay to gravel. It was easy to handle
and during placement some compaction was achieved from the dozer, thus
permitting construction of a fairly steep inner dike slope. This slope
helped minimize the volume of material required and reduced construction
time.

After the power shovel had completed the excavation near the
top, it was moved to the bottom area and proceeded to excavate down
about 6 ft. to the final grade at elevation 77.0 ft. The excavated
material was used to complete the north and east dikes. Corner 3 was
left low until sand for the lower drainage blanket had been dumped
inside the dike area. When the bottom of the landfill area reached
grade, the power shovel was converted into a dragline unit, and soil
for completing the dikes was obtained outside the fill area. The dozer
spread this soil, and also leveled the sand dumped for the lower
drainage blanket. The gravel surrounding the upper end of the drainage
pipe and extending up the slope (Figure 4.3) was placed near the end of
the dike construction period. Shaping of this 10 ft. wide gravel

chimney drain was handled by the dozer.

4.1.2 Sludge Placement

After the spreading of the sand for the lower sand blanket and
the shaping of the gravel chimney drain, sludge was dumped by truck
over the west and south dikes as shown in Figure 4.4b. The sludge
exhibited a plastic behavior and would not support the usual

construction equipment. The dragline (Figure 4.4a) proved ideal for
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moving the sludge to other locations in the landfill. A lightweight
dozer with extra track width arrived at the site too late for use in
spreading the sludge. Current use of this lightweight dozer by the

contractor indicates that it is quite effective in moving sludge and
that it should be considered for future operations.

Some initial difficulty was encountered when unmonitored
sludge dumping was permitted over a weekend. Unusually high sludge
production (about 300 cu yd/day) caused more area to be used at the
bottom of the landfill than was anticipated, and a sludge flow towards
the center of the site occurred. Two settlement plates with vertical
rods were shoved out of position and required replacement. Leachate
draining from about ten feet of sludge stacked along the west dike
saturated the sand blanket. Temporary channels were dug in the sand
blanket to the drainage pipe to remove the leachate. After the
re-leveling of the sand surface and a more uniform re-placement of the
sludge with the dragline, dumping was continued with daily monitoring.
Shortly thereafter, sludge production dropped to about one-half its
normal rate, delaying the landfill construction. The dragline was used

for the placement of both sludge layers.

4.1.3 Drainage Blanket Placement

Placement of the lower sand blanket was described in the
preceding sections. When the lower sludge layer reached grade it was
roughly leveled with the dragline bucket, and then two telephone poles
cabled together were dragged over the surface. This reduced variations
in the sludge surface to about ¥ 3 inches. Sand was then dumped along

one dike edge and distributed by dragline over the sludge layer. Again
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the two telephone poles were dragged over the surface to give a
reasonably level sand blanket. The use of a lightweight dozer for the
spreading of the sand was not attempted because of the possibility of
its sinking into the sludge and because the surface of the lower sludge
layer was 11 ft. below the top of the dike, as shown in Figure 4.5.
The steep inner dike slopes at this time would have made an attempt to
use a dozer quite dangerous. Sludge placement was resumed upon
completion of the middle sand blanket.

When the upper sludge layer reached grade, the surface was
roughly leveled off with the dragline bucket and then brought to final
elevation by dragging the pole rig over the surface. Sand was dumped
at the dike edge and a lightweight dozer pushed the sand out over the
sludge surface. Because the sand acted as a supporting mat, the small
dozer was readily able to travel over the landfill while spreading the
sand. Placement of the sand with the dozer was considerably faster

than with the dragline.

4.1.4 Earth Surcharge Placement

The earth surcharge was constructed of the same soil used to
build the dikes. It was obtained outside the dike area by the dragline
and dumped onto the landfill surface near instrument group 7. Both the
D-6 and lightweight dozers were then used to spread the soil over the
required area. Some compaction occurred as the dozers operated over the
surcharge. Placement required only 1-1/2 days, hence for analysis
purposes the surcharge was placed instantaneously. The lateral
dimensions of the surcharge were selected (Figures 4.2 and 4.3) so that

one-dimensional consolidation would be approximated at all instrument
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group locations. Field density determinations using tne sand-cone
method established a soil unit weight equal to 130.4 pcf for the
surcharge material. Preliminary consolidation data indicated that the
3 ft. thick soil layer would give time-settlement curves suitable for

the project research objectives.

4.2 Instrumentation and Monitoring

The instrumentation and monitoring of the experimental sludge
landfill provided information, both during and after construction, on
vertical movements, pore water pressures, lateral earth pressures,
temperatures, and undrained shear strengths. Instrument placement and
monitoring commenced on September 10, 1971, with the installation of
settlement plates in the lower sand blanket. Instrumentation of the
landfill continued as construction progressed. Monitoring began with
each instrument installation and was continued throughout the year.
The frequency of readings was based on the relative change in the
observed phenomena, with the most frequent readings (2 per week)
required during the first few weeks after construction. The following
sections describe the settlement plates, piezometers, total pressure
cells, temperature sensors, and vane shear tests used to obtain the

field data.

4.2.1 Settlement Plates

A settlement plate consisted of a 2 ft. by 2 ft. by 1/8 in.
thick aluminum plate with a 3/8 in. diameter steel rod of known length
attached to the center, as shown in Figure 4.6a. Additional rods of

known length were added at each location as sludge placement progressed.
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To minimize the adhesion of the sludge on the steel rod, a 1-1/2 in.

0. D. aluminum tube was placed around each rod when it was installed.
Radiator hose (1-1/2 in. I. D.) provided a flexible connection for the
aluminum tubing. Elevations taken with a surveyor's level (or transit)
on the top of each steel rod were referenced to a bench mark outside
the fill area.

Installation of the plates in a sand blanket and in the sludge
is shown in Figure 4.6. A hole 3 ft. square by 4 to 6 in. deep was
first excavated in the sand or sludge, the bottom was tamped lightly to
densify the material, and using the plate as a guide, the bottom of the
hole was carefully leveled. Then the settlement plate, attached rod,
and aluminum tube were installed in the hole, an initial elevation
reading taken on the plate, and the hole backfilled. Because the
aluminum plates were light, there was no danger of their sinking into
the sludge. The sludge consistency was such that a man could walk on
its surface.

A total of 32 settlement plates were installed at various
levels in 8 instrument groups. The distribution of settlement plates
in each group is shown in Figure 4.7. The lower plate was placed at
the center of the group, with each higher plate offset 1-1/2 ft. from
the center so that no interference could occur between rods and higher
plates. Duplicate locations served as insurance in the event that
certain groups should be accidentally destroyed during construction,
and the additional data served as a check on adjacent groups. Location

of each instrument group is shown in Figure 4.2,
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4.2.2 Piezometers

Piezometers measure the static pressure or head (elevation to
which water will rise in an open standpipe) of the fluid in the pore
space between the solid sludge particles. The pneumatic type piezometer
(Slope Indicator Company model 51401) used on this project did not
require in-place calibration and was not subject to changes in sensi-
tivity. The sensitivity of the transducer approaches 0.5 in. of water.
Because the sludge has a high degree of saturation, the standard Norton
Casagrande type filter with large pore size and low air entry pressure
was used. The transducer (Figure 4.8a) converts the in situ water
pressure into a pneumatic pressure that is relayed to the surface
reading station by means of twin nylon tubing. Pore pressure readings
were taken with the model 51421 (Slope Indicator Company) portable
pore pressure indicator.

Installation of the pore pressure transducers first required
excavation of a small hole in the sludge, as shown in Figure 4.8b. At
least 3 inches of sand and water were then placed in the hole, followed
by the transducer, and ample slack was allowed for in the twin nylon
tubing. Next, the piezometer was covered with a minimum of 3 inches
more of saturated sand followed by a layer of wet sludge. The sand
pocket was used because it was unknown how sludge decomposition might
influence piezometer readings. The twin nylon tubes were connected to
a terminal unit housed in a waterproofed wooden box located at the
edge of the landfill. The pore pressure measuring system appeared to
function well, with no pinched or disconnected lines occurring during

construction operations. The observed pore water pressure-time curves
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indicate that the readings are consistent and that they are in agreement
with duplicate piezometers.

A total of 16 piezometers were installed as part of instrument
groups 5, 6, and 7. Their group identification and relative elevation
is shown in Figure 4.7, with group locations given in Figure 4.2.
Piezometers located at the same level as a settlement plate were offset

about 6 to 12 inches from the plate.

4.2.3 Total Pressure Cells

Total pressure cells assist in determining the state of stress
in the sludge mass. The model T-9010 (Terra Tec) cell consists of two
9 in. diameter steel plates welded together at the circumference with
a void between them that is filled with an incompressible oil. The
oil transmits the external pressure to a sensing unit consisting of a
double bellow assembly. Air pressure from the control unit (Terra
Tec model C 1000) is applied through a closed loop system to the inside
of the bellows to balance the external cell pressure. This air pressure
is relayed from the surface reading station to the total pressure cell
by means of twin nylon tubing. Calibration charts based on a hydraulic
and a sand loading give the limits of possible pressures that can act
on the cell by the sludge.

Three total pressure cells were installed in the lower sludge
layer near group 7, as shown in Figure 4.7. Two of the cells were
installed in the vertical position to measure horizontal stresses, and
the remaining unit was installed in the horizontal position to measure
total vertical stresses. The horizontal cell was installed by digging

a hole 1 ft. square by 4 in. deep and placing the cell so that it was
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firmly imbedded in the bottom. An elevation reading was then taken on
the cell surface and the hole backfilled. The vertical cells were push~u
part way into the bottom of a similar hole, and then loose sludge was
placed around the cell and tamped until the cell became firmly imbedded.
An elevation reading was taken on the top edge of the cell before

backfilling was completed.

4.2.4 Temperature Sensors

The temperature sensors are small YSI precision thermistors
which are made of a material whose electrical resistance varies sharply
in a known manner with temperature. Given the resistance reading, the
thermistor temperature is obtained from a calibration chart. Ten YSI
precision thermistors (part #44033) were mounted at 2 ft. intervals on
a 1 in. square wooden pole. The thermistors and wooden pole were
installed via a 4 in. I. D. hollow core auger using a truck mounted
drill rig. Since the augered hole was not expected to remain open
without casing, the wooden pole was lowered through the hollow core of
the auger, and then the auger was carefully pulled up around it. The
elevation of the top thermistor equals 95.43 ft., with the additional
thermistors being located below this at 2 ft. intervals. Thermistor
lead wires followed the pole to the surface and then across the fill to
the readout box. Resistance readings were obtained with a model 300
digital passive scalor from Western Electronics, Inc. Data indicated

that 9 of the 10 thermistors were functioning properly.

4.2.5 Vane Shear Tests

All but one set of vane shear tests were carried out using a

Geonor H-70 heavy field inspection vane borer. It is a hand operated
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unit that comes equipped with a torque wrench, 3 different size vanes,
extension rods, and various accessories. The basic unit, as it would

be set up in the field, is illustrated in Figure 3.3. Undrained shear
strengths up to 12 tons/sq m can be measured with the small vane

(55.9 x 111.8 mm). One final set of vane strengths was taken using a

2 in. 0. D. Acker vane that was pushed into the bottom of a hole augered
to within 6 in. of the test depth. This prevented the capacity of the
torque wrench from being exceeded.

The test procedure for all but the last set first involved
driving, with a sledge, the vane and claw coupling (lower part) into
the sludge to the desired depth. The measurement of shear strength
was then carried out in four stages for each depth. The extension-rod
friction was first measured by turning the torque wrench slowly
clockwise through an arc a little less than 180 degrees. The rods were
then rotated still further in a clockwise direction until the dog-
coupling in the lower vane borer engaged. The measurement of shear
strength was then taken by slowly turning the extension rods clockwise
until the maximum shear reading was obtained. The difference between
the maximum reading and the rod friction reading, with the proper
conversion, equaled the undrained shear strength of the sludge. The
vane was then turned 20 times clockwise in order to remold the sludge
adjacent to the vane and rod. The rod was then rotated 1/2 of a
revolution counterclockwise before measuring the rod friction and shear
strength of the remolded sludge using the same procedure as before.

Shear strengths were obtained at 3 elevations in the upper
sludge layer and at two elevations in the lower sludge layer for all

but the final set. Because of augering through the surcharge and upper
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sand blanket with a hand auger, the upper layer rod friction was low

and difficult to read on the torque wrench. Shear strengths were
relatively easy to obtain. In the lower sludge layer much greater
driving resistance was encountered and rod friction became high. Thus
the vane shear strengths were obtained only at the two higher elevations
in the lower sludge layer. At the lower elevation the capacity of the
torque wrench would have been exceeded using the small vane. The final
set of vane shear strengths, taken using a truck mounted drill rig to
pre-auger to the desired depth, had the strengths recorded at one foot

intervals throughout both layers.
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(a) Installation in a sand blanket.

(b) Placement in the sludge, carpenters level shown
on the plate.

Figure 4.6. Settlement plate.
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(a) Pore pressure transducer.

(b) Installation in a small sand pocket in the sludge.

Figure 4.8. Piezometer.



CHAPTER V

EXPERIMENTAL RESULTS

The experimental results are presented under three headings:

physical properties of the papermill sludge, stress-deformation behavior

of the sludge, and field monitoring. Each section may include both

laboratory test data and field observations.

5.1 Physical Properties of the Papermill Sludge

Physical properties of the papermill sludge used in the experi-
mental landfill are summarized in Table 5.1. Properties given include
the liquid and plastic limits, ash content, solids content, and specific
gravity. Of the eight samples listed, data shown for samples L-1 and
L-2 each represent the average of three different locations at the given
elevation. Data shown for samples U-1 through U-5 represent the average
of three tests on each sludge sample obtained from one given location.
The sludge variability within the landfill is apparent for samples U-1
through U-5, although the average ash content (41.8 percent) is close
to that for samples 2 and 3. The initial solids contents shown in
Table 5.1 range from 26.9 to 34.4 percent by weight. Using equation
3.1, the equivalent water contents range from 190.7 to 271.7 percent.
Additional water content samples taken at several instrument group
locations and elevations are summarized in Table 5.2. These water

contents appear to fall in the vicinity of the liquid limit. The bulk
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unit weight of the papermill sludge was 69.7 lb/cu ft based on the
weight and volume of a truck box full of sludge. Using a standard
1/10 cu ft bucket and careful hand placement, the observed bulk unit
weight was 69.0 1b/cu ft. For the soil surcharge material, the sand
cone method gave a bulk unit weight of 130.4 1lb/cu ft.

Water contents of the sludge in the landfill after completion
of consolidation are shown in Figure 5.1. These values were obtained
from the undisturbed block samples and from grab samples taken from
the exposed slope face. Despite the somewhat wide range of water
contents obtained, the average for the upper layer dropped to 189
percent and the lower layer to 164 percent. Ash contents from samples
obtained from the undisturbed sample blocks in each layer were fairly
close to the average ash contents reported in Table 5.1. Block sample B
for the upper layer had an average ash content, based on three tests,
of 38.6 percent. Sample F for the lower layer had an average of 39.3
percent. This indicates that these block samples can be considered as

representative for each sludge layer for consolidation testing.

5.2 Stress-Deformation Behavior of the Sludge

Laboratory consolidation tests were run on fresh sludge samples
and undisturbed samples taken from the landfill at the end of consoli-
dation to determine parémeters needed for estimating and analyzing the
settlement of the landfill. 1In-place vane shear tests provided data on
the undrained shear strength of the sludge at various stages of consoli-

dation.

5.2.1 Laboratory Consolidation

Results from one-dimensional consolidation tests on fresh
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sludge samples from four different locations are summarized in Table 5.3
in terms of the coefficient of consolidation c,» primary comprescion
ratio r, coefficient of secondary compression Ca’ and the compression
index Cc' Based on the average placement water contents (Table 5.2),
sludge samples U-3 and L-2 (Table 5.1) appear to be reasonably repre-
sentative of the sludge in the landfill. Data for several single
increment tests, such as those recommended by MacFarlane (1969) for
peat, are included. The earlier tests, including U-4-1, U-3-1 through
U-3-9, and L-2-1 were run using the fixed ring container and the loading
methods illustrated in Figures IX-5a and IX-4 in SOIL TESTING FOR
ENGINEERS by T. W. Lambe (1951). All remaining tests were run on the
Bishop consolidation machine. The latter tests were less subject to
equipment errors and inconsistencies. Data from test U-3-10 are used
in Figure 5.2 to show the consolidation characteristics of fresh
sludge and include the void ratio, coefficient of consolidation, and
primary compression ratio plotted against the logarithm of total
effective stress. The high compression index, Cc’ equal to 1.70
represents a highly compressible material. Coefficient of consoli-
dation values from both the logarithm of time and square root of time
fitting methods are included for comparison. The primary compression
ratio shows a sharp drop after the first load increment followed by

an increase with subsequent load increments. This initial drop in r
for loads of 0.1 to 0.2 kg/cm2 appears to be characteristic of the
fresh sludge. Two typical compression dial reading-logarithm of time
curves are shown in Figure 5.3. The coefficient of secondary

compression, Ca, shown in Figure 5.4a, increases slightly over the
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total effective pressure range of 0.1 to 3.2 kg/cmz. Since stress
appears to be a factor in determining the magnitude of secondary
compression (MacFarlane 1969; Leonards and Girault, 1961), the ratio
of Ca to the load increment, Ap, 1s presented in Figure 5.4b. The ratio
Ca/Ap decreases rapidly with an increase in the load increment.
Figures 5.5 and 5.6 show typical consolidation test results
for the undisturbed sludge samples taken from the landfill, and Table
5.4 summarizes the consolidation characteristics for each undisturbed
sample test. In Figure 5.5, two e vs, log‘; curves are shown for each
undisturbed block sample location along with a representative curve
for a sample of fresh sludge. The curves obtained from the rapid
increment tests are at higher equilibrium void ratios than those
obtained from the slow tests because of the absence of secondary com-
pression. The data indicate that the sample obtained from the lower
layer has a lower compression index, lower initial void ratio, and a
higher back-computed overburden pressure than the sample for the upper
layer. The coefficient of consolidation, primary compression ratio,
and coefficient of secondary compression have been plotted against the
logarithm of effective pressure in Figure 5.6. The coefficients of
consolidation were obtained by the square root of time method and vary
widely with pressure for both samples. Substantially higher values
occur at pressures below the effective overburden stress. The primary
compression ratio and coefficient of secondary compression both increase

with an increase in the load increment and effective pressure.

5.2.2 In-Place Vane Shear Tests

Test procedures for measurement of the in-place vane shear
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strength of the sludge were given in Chapter IV. Vane shear strengths
taken after completion of each sludge layer and after partial and total
primary consolidation are summarized in Figures 5.7a and 5.7b. Some
consolidation occurred during placement of each sludge layer, hence an
increase in strength with depth was observed before placement of the
second sludge layer and before placement of the surcharge load. The
degree of sensitivity, defined as the ratio of the undisturbed to the
remolded shear strength is small, ranging from about 1.5 to 2.5. This
is very similar to that of many clays (Terzaghi and Peck, 1967). Both
layers increased substantially in strength during consolidation, as
shown by data taken on March 20, 1972 (Figure 5.7a) and on Sept. 7,

1972, immediately prior to slope excavation (Figure 5.7b).

5.3 Field Monitoring

Field monitoring involved making observations of elevations
from the settlement plates, pore water pressures from the piezometers,
temperatures from the thermistors, and both horizontal and vertical
pressures from the total pressure cells. Figures and graphs are used
to summarize the tabulated data, which are given in Appendices A
through D. The results are presented under the headings of settlement,

pore water pressures, temperatures, and lateral sludge pressures.

5.3.1 Settlement

Time-settlement curves for each instrument group are shown in
Figures 5.8a through 5.8h for both the upper and lower sludge layers.
The upper part of the figure shows the landfill surface elevation, both

during construction and during consolidation, as a function of time.
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Also shown at different times are the vertical locations of the
settlement plates and the relative thickness of each portion of the
sludge landfill. Notation on Figure 5.8, such as <::)- <:> » indicates
that the settlement of plate (::) has been subtracted from the total
settlement of plate <:> » in this case giving the time-settlement curve
for the upper sludge layer.

Upon completion of the upper sludge layer, the rapid placement
of the top sand drainage blanket (2-1/2 days) and surcharge load (1-1/2
days) gave an approximation to instantaneous loading. The settlement
versus square root of time curves for the top sludge layer are presented
in Figures 5.9a and 5.9b for each instrument group. The initial point
is not at zero since some compression of the layer occurred during
placement of the sand blanket and surcharge load. The data plotted
represent obervations taken after completion of the surcharge placement
and give square root of time plots similar to those observed in the
conventional consolidation test. Values for the coefficient of consoli-
dation, c,» backfigured from these plots, are fairly large and vary
some for the different instrument group locations. Settlement-logarithm
curves for the upper and lower sludge layers are shown in Figures 5.10

and 5.11 for each instrument group.

5.3.2 Pore Water Pressures

Piezometers used for the measurement of pore water pressures
gave the data summarized in Figures 5.12a through 5.12g. Pore pressures
are plotted against time in the lower half of Figure 5.12, with the
location of the piezometer in the landfill given in the upper half.

Observed pore pressures in both layers showed a consistent increase with



64

time during placement of the sludge. An abrupt increase in pore
pressure occurs during the rapid placement of the surcharge load and is
followed by dissipation to some residual value, perhaps related to a
threshold hydraulic gradient required for flow. In the upper sludge
layer the observed pore pressure increase at the center of the layer

is close in magnitude to the applied pressure resulting from the
placement of the top sand blanket and earth surcharge load. During

the later stages of consolidation some fluctuations occurred with time for
piezometers in the upper sludge layer and middle sand blanket. High
rainfall, involving seepage into the drainage blankets, appears to be
responsible for this pore pressure fluctuation. The pore pressure in
the middle sand blanket (Figure 5.12g) is the result of a dish effect
produced by the greater consolidation of the central area of the sludge

landfill. Field data are given in Appendix B.

5.3.3 Temperature

Thermistors used for temperature measurement gave the data
summarized in Figure 5.13. An increase in temperature caused by
biological activity is observed, with the higher values occurring in
the lower sludge layer about 50 days after completion of the landfill.
Subsequent temperatures show a pattern indicating that the sludge was
responding to atmospheric and ground temperatures. Inconsistent temper-
atures for thermistor 2 indicate a malfunction or damaged unit. Field

data are given in Appendix D.

5.3.4 Lateral Sludge Pressures

Total pressure cells installed in the lower sludge layer gave

the data summarized in Figure 5.14 for both total lateral and vertical
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pressures. Pore water pressure data from an adjacent pilezometer are
included on Figure 5.14 to permit the computation of effective lateral
and vertical pressures. The measured total pressures increased
gradually during placement of the upper sludge layer and increased
sharply upon placement of the earth surcharge load. Subsequently it
required about 2 months for the lateral pressures to stabilize at a
lower value. The total observed vertical pressure shows an unexplained
increase occurring after the initial increase from application of the
surcharge. This is opposite to what would be expected as leachate
drained from the sludge landfill. Data for pressure cell G7-2 have
been omitted from Figure 5.14 because instrument readings indicated

that there was a malfunction. Field data are given in Appendix C.
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TABLE 5.1 PIIYSICAL PROPERTIES OF THE PAPERMILI, ST 1

« N . . 3 1 )
Sladge sample Consistency limits Ashz Solids3 Specific 1
No. Elevation L P content content gravity
in layer, fi. W W Do 7% by wt.
L.-0 8 5 325.4 141.6 35.7 28.5 2.01
L-1% 2.5 257.3 102.7 42.2 27.2 2.05
1.-2% 7.5 247.7 105.6 43.3 28.2 2.07
u-17* 2.5 184.5 86.0 59. 4 34.4 2.24
u-2"* 4 218.5 101.6 46.5 31.9 2.07
U-3*t 5 297.5 133.0 36.5 26.9 1.91
u-4t 7.5 287.4 122.1 34.2 29.0 1.87
u-s5t 10 302.8 138.6 32.2 28. 4 1.92
*Average of three samples. +Average of 3 tests per sample location.
1

L_--liquid limit. P_--plastic limit. ASTM test methods D 423-66 and
W W D 424-59.

ZASTM test method D 586-63.

3Solids content of fresh sludge. Water content by dry weight given by
the equation 100

% solids by wt.

W‘% = 100[ IJ

1ASTM test method D 854-48.

LLaboratory test sample locations.

R W W W it W WA N A \ x U-5
Upper sludge layer x Ued
x Ue3

x U=2

\ x U=l

S g

Natural soil
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TABLE 5.2 SLUDGE PLACEMENT WATER CONTENTS

Elevation Group No.
in layer -
(ft) 1 2 3 4 5 6 7 8
Lower Sludge Layer
2.5 - - - - 242 292 - -
277
3.0 - 282 - 284 230 - 283 -
245
4.0 - - 308 270 - - 276 298
5.0 - - - - 261 269 262 213
283 240 265 244
264 271 262 219
226 253
7.5 - - - 279 267 - - -
267 266
252
265
253
257
8.0 - - 274 274 273 - 271 -
291 264 246
258
256
9.0 - - 278 275 - - - -
294
10.0 - - - - 280 - - -
267
276
255
Upper Sludge Layer
2.5 262 - - - 268 - 270 -
260 248 270
262 270
262 290
3.0 - - - - 251 - - -
262
6.0 - - - - 251 279 244 -
284 264 262
264 278 271
276 277 261
7.5 - - - - 235 254 232 -
256 237 234
257 234 224
232 269 212

Oven temperature 105°c.

Average initial water and solids contents:
Lower sludge layer 265.7%, 27.4%
Upper sludge layer 257.7%, 28.0%
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Figure 5.7. Vane shear strengths of the sludge in the landfill.
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(c)

Pore pressure versus time curves.

Figure 5.12.
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CHAPTER VI

INTERPRETATION OF RESULTS

The discussion and interpretation of results includes both

laboratory and field data. The material is presented in three sectionms,

including: (1) sludge placement, (2) engineering characteristics of

the papermill sludge, and (3) settlement behavior of the landfill.

6.1 Sludge Placement

A wide variety of equipment is available for papermill sludge
landfill operations. Equipment selected for the project was based
primarily on the contractor's experience with the sludge. The two main
factors considered in the selection included the cost of the equipment
and its ability to meet the project needs. For example, the placement
of the sludge in 10 ft. layers with reasonable uniformity required the
use of a dragline that could reach to the central area of the landfill.
The dragline was ideally suited to handle the loose bulk sludge where
casting and placement were important, and the skill of the operator
helped to minimize hand shovel work adjacent to instrumentation. There
was no problem with operating space requirements, and a firm support
for the dragline was provided by the earth dikes surrounding the
landfill. Sludge was delivered to the site from the dewatering facility
by a large truck and was dumped either over the dike edge or adjacent

to the site. Drainage blankets were placed by dumping sand at the site
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and then distributing it with the dragline and/or dozer. For the top
blanket, adequate support was obtained for the dozer from the sand
pushed ahead of it. For the middle sand blanket, use of the dozer was
avoided because of the possibility of its sinking into the soft sludge
and because of the high dike walls at the time of placement shown in
Figure 4.5. The sand in this case was placed using the dragline and
was leveled by pulling a makeshift drag (two telephone poles tied
together) over the surface. Some hand shovel work was required next

to instrumentation.

6.2 Engineering Characteristics of the Papermill Sludge

The engineering characteristics of the papermill sludge are
discussed under headings which include (1) physical properties,
(2) consolidation behavior, (3) undrained shear strength, (4) stress

state in the sludge, and (5) temperature.

6.2.1 Physical Properties

The water content of the dewatered sludge is unusually high
in comparison to iﬁorganic solls normally encountered in engineering
practice. The average water content for the upper sludge layer was
equal to 257 percent and for the lower layer was equal to 265 percent
for the data summarized in Table 5.2. Both the liquid and plastic
limits shown in Table 5.1 tend to decrease for sludge samples with
higher ash contents. This correlates with the decrease in water
retention when organic content is reduced (Andersland and Laza, 1971).
The presence of fibers in the sludge interfered with the mechanical
test procedures used to determine the liquid and plastic limits, so

that some error may have been introduced in the consistency limits.
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The volume change and settlement discussed in later sections
involves a reduction in water content due to the weight of overlying
sludge and surcharge loads. This reduction is reflected in the reduced
average water content for each layer shown in Figure 5.1. The scatter
of the points shown in this figure can be attributed to sampling from
an exposed slope face and to the initial variability of the sludge in
the landfill.

Specific gravities of the sludge are directly related to the
ash content, with the lower values shown in Table 5.1 corresponding to
samples containing more organic material. Data in Table 5.1 show that
the sludge composition will vary from day to day, with this variation
being dependent on operations at the papermill. The average specific
gravity for the lower sludge layer, equal to 2.04, is not greatly
different from the average for the upper layer, equal to 2.00. This
small difference in average specific gravities, together with average
water contents which are close for both sludge layers, indicates that
initial unit weights should be about the same. The more accurate
determination of the sludge unit weight using the weight and volume of
a truck load of sludge gave a value equal to 69.7 1lb/cu ft. The total
unit weight of the sludge at the completion of consolidation, as
determined from the undisturbed sample consolidation tests assuming
100 percent saturation, was approximately 72.6 1lb/cu ft for the upper
layer and 76.5 1lb/cu ft for the lower layer. The change from the
initial state was small despite the large amount of consolidation that
occurred. The greatly increased shear strength of the sludge at the

completion of consolidation in combination with this low density
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suggests that the sludge could be used effectively as a lightweight fill

material.

6.2.2 Consolidation Behavior

The highly compressible nature of the papermill sludge is shown
in Figure 5.2a, where the linear void ratio-logarithm of pressure curve
gives a compression index, Cc’ of 1.70. This high value for CC is a
result of the high organic and high water contents which are character-
istic of fresh papermill sludge. Andersland and Paloorthekkathil (1972)
have shown the dependence ovaC on these factors. The nonorganic
fraction, primarily kaolinite clay, has a compression index close to
0.25 and also contributes to the compressibility of the sludge.

The variation in the coefficient of consolidation, c,» with
each load increment is illustrated in Figure 5.2b. The square root of
time fitting method gives higher values for <, than the logarithm of
time fitting method. The change in c, during compression depends on

the change in both the permeability and compressibility of the sludge,

since <, equals ka . Here, k is the coefficient of permeability; Yo

v'w
is the unit weight of water; and m, is the coefficient of compressi-
bility of the soil skeleton, equal to - 1 1 P %%:, where e is the void

ratio, and o is the effective stress. It is apparent from Figure 5.2b
that the coefficient of permeability for the sludge has decreased more
rapidly than the compressibility. This has reduced c, for increasing
values of effective stress, as shown in Figure 5.2b.

The variation in primary compression ratio, r, with pressure

is shown in Figure 5.2c. Compression can be separated into three parts
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d d d
such that o + BR-+ Bﬁ equals unity, where D is the total compression

experienced over the load increment and di’ dp, and ds are the initial,
primary, and secondary compression, respectively. In this case, r

d
equals £ and is a measure of the amount of compression that occurs

D
only as a result of pore water expulsion. The variation in r shown in
Figure 5.2c is difficult to explain. For larger loads, Andersland and
Paloorthekkathil (1972) obtain a fairly constant r with pressure,
although there is considerable scatter in their results. The curve in
Figure 5.2c shows results typical for all tests run with the Bishop
consolidation machine at smaller loads. The drop in r with the second
load increment could be due to a reduced hydrodynamic effect associated
with the small amount of pressure added after the first increment
(0.1 kg/cmz). Since secondary compression is a function of stress
level, its effect may increase slightly over the load increment.
However, the load increment is so small that hydrodynamic compression
due to pore water expulsion may exhibit a reduced effect and secondary
compression may become more prominent in the total compression over the
load increment. This is shown by the flatter dial reading versus
logarithm of time curve shown in Figure 5.3a. As the load increments
increase in size, the hydrodynamic effect becomes more dominant and r
increases. The high value of r for the first increment (0 to 0.1
kg/cmz) may be due to the large amount of deformation occurring over
the increment (e changes from 5.35 to 4.51). Figure 5.3b illustrates
the curved shape of the logarithm of time curves associated with larger
load increments.

Figure 5.4a shows the variation in the coefficient of secondary
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compression, Cu, with effective pressure. There is a slight increase
in Ca with pressure, as might be expected because of the greater
deviatoric stresses occurring at higher pressures. However, this is
somewhat compensated for by the increased density and reduced compress-
ibility of the sludge resulting from compression. Andersland and
Paloorthekkathil (1972) show a fairly constant Ca with effective
pressure. Figure 5.4b illustrates the reduction in the ratio Ca /Ap
with increasing load increment.

The results of the consolidation tests on the undisturbed
samples of sludge are somewhat different from the results of the tests
on the fresh samples of sludge. The e vs. log'; curves are typical of
those that might be obtained from a moderately disturbed normally consol-
idated soil sample. Theoretical values of S; have been back-computed
from the curves using the Casagrande procedure and are shown in Figure
5.5. Using a sludge unit weight of 72.0 lb/ft3 and an average residual
pore pressure of 1.2 psi, the calculated in situ vertical effective
stress for the upper layer sample is .301 kg/cmz, which agrees closely
with the back-computed values shown. However the lower layer calculated
effective stress is .55 kg/cmz, which 1s less than the values shown for
the lower layer in Figure 5.5 (.65 - .77 kg/cmz). This discrepancy
could be the result of using the Casagrande procedure to back-compute
;o' Disturbance effects relative to this are discussed below. The
pressures computed by the two methods for the lower layer lie close
together on the log scale even though the difference in their magnitudes
is fairly high.

The vertical effective stress calculated in the lower layer

from the total pressure cell and piezometer data of Figure 5.14 is
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.77 kg/cm2 (water calibration), which agrees closely with the back-
computed value from the e vs. log E curve. However it is the author's
opinion that this pressure 1is too high, primarily because of the
increase in measured total pressure exhibited by the pressure cell after
surcharge application. If the value of total‘pressure measured at the
completion of surcharge application is used to compute the in situ
stress, a value of .65 kg/cm2 is obtained. This discrepancy is
discussed further in a following section on the stress state in the
sludge.

Since the sample obtained from the lower layer was under a
greater in situ effective stress than the upper layer, it would be
expected that the lower layer would have a lower initial void ratio
and higher back-computed ;;. The difference in Cc between the two
sample locations is likely a result of the non-homogeneity of the
sludge in the landfill. Somewhat higher ash contents were present in
the lower sludge layer, which would help to account for this difference.

The high values of <, at stresses below the effective
overburden pressure shown in Figure 5.6a are related to the sample
disturbance and are difficult to physically interpret. As Terzaghi and
Peck (1967) point out, a perfectly undisturbed sample recovered from
the ground would be subjected to an all around capillary pressure with
an intensity of approximately 0.7 to 0.9 times the effective overburden
pressure. If this sample were to be loaded in an oedometer to a stress
level less than this, it would theoretically have to swell to reach
equilibrium under the lower effective stress. The addition of load at

this lower stress level would then cause the sample to follow a reload
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curve until the initial in situ conditions (eo, E;) were again reached.
Since there is always some degree of disturbance that occurs in
sampling, however, a good undisturbed sample will usually result in a
flat curve below E;, similar to that shown in Figure 2.3. The
relatively high degree of disturbance of the sludge samples caused a
breakdown in the capillary pressures and, as a result, the samples
were consolidated when subjected to stresses below the effective over-
burden pressure. The resulting compression occurred rapidly until
equilibrium was reached, yielding high values of c,e The e vs. log P
curve does not represent a reload curve in the usual sense, as no
swelling occurred, and its shape would change depending on the degree
of sample disturbance. Thus the observed compression below ;; can be
quite variable, and the resulting values of c,s Ca’ and r can be
affected.

The low primary compression ratios below B; in Figure 5.6b
indicate that creep of the soil skeleton is a significant portion of
the measured deformation in this stress region. The reduced hydro-
dynamic effect associated with this can be related to the capillary
and disturbance effects discussed above. The values of the
coefficient of secondary compression shown in Figure 5.6c are also
smaller at low stresses, indicating that the field consolidation has
increased the resistance of the soil skeleton to creep deformation.
The magnitude of Ca increases steadily over the entire stress range
and approaches that of fresh sludge at the higher pressures. The
sample from ghe lower layer has values of Ca which are somewhat less
than the upper layer, again indicating reduced compressibility of the

soll skeleton due to the higher consolidation pressure.
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6.2.3 Undrained Shear Strength

The undrained vane shear strengths summarized in Figure 5.7
show a large dependence on the degree of consolidation. The slightly
greater initial strength in the upper layer (11/11/71) as compared to
the lower sludge layer (10/14/71) can be explained by the lower average
initial water content (footnote, Table 5.2) in the upper layer. The
increase in strength with depth shows up with only partial consoli-
dation. Laboratory data (Andersland and Laza, 1971) show a linear
relationship between undrained strength and consolidation pressure.
Sensitivity of the sludge in terms of the ratio of the undisturbed to
remolded strength is small, ranging from about 1.5 to 2.5. This is
comparable to that for many inorganic clays (Terzaghi and Peck, 1967).
Very significant increases in strength have occurred in 3-1/2 months,
as shown by data obtained on 3/20/72. Most of this improvement in
strength presumably occurred during primary consolidation. There
was also a strength increase after this period, as shown by the data
in Figure 5.7b. Secondary compression could be responsible for a
large portion of this increase.

According to recent data presented by Bjerrum (1972), the vane
shear strengths summarized in Figure 5.7 do not represent the actual
field undrained shear strengths needed in a slope stability analysis.
Bjerrum (1972) recommends that the vane shear strengths be adjusted

according to the relation

(

)field = (Su)vane H (6.1)

S
u

where s, is the undrained shear strength and p a parameter which is
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dependent on the plasticity index. For the sludge plasticity index of
about 150, Bjerrum's (1972) chart gives a value of u = 0.6. A comparison
of (su)vane. u values with preliminary laboratory undrained triaxial

data gives reasonable agreement.

6.2.4 Stress State in the Sludge

Both the vertical and the lateral total stresses recorded on
the total pressure cells (Terra Tec model T-9010) located near the
middle of the lower sludge layer are summarized in Figure 5.14 for the
period covering sludge placement, surcharge loading, and consolidation.
Values determined from the water calibration curve are probably on the
low side, with the real pressures falling between the water and sand
calibration curves. As consolidation proceeded after completion of the .
landfill, the horizontal pressures decreased while the vertical
pressures increased. This increase is contrary to what would be
expected because as water drains from the sludge and leaves the area,
the total vertical pressure should decrease. It is presumed that this
peculiar behavior is due to certain limitations of the total pressure
cell.

Subtraction of the pore pressures (piezometer G7-3) from the
total pressures gives the effective stresses. Taking the ratio of the
effective horizontal to vertical stress gives an estimate of the
coefficient of lateral earth pressure, Ko. After completion of the lower
layer, measured values of Ko were .63 (water cal.) and .68 (sand cal.).
Immediately after surcharge application these values were reduced to
0.38 and 0.48, respectively. For the final stages of consolidation

the values for K dropped to 0.30 (water calibration) and 0.34 (sand
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calibration). These final values of Ko should approximate normal
consolidation of the papermill sludge.

Since the stress-strain relation shown in Figure 6.1 for
papermill sludge does not exhibit a peak, the determination of a
friction angle, ;; requires that a somewhat arbitrary failure strain
(thus stress difference) be assumed. Andersland and Laza (1971) assumed
20 percent strain as failure and calculated a friction angle of approx-
imately 57° for the sludge. This would correspond to a Ko value of .16
using the empirical relation, Ko = l-sin z, for normally consolidated
inorganic clays (Lambe and Whitman, 1969). Although this does not agree
with the field value of KO, a smaller assumed failure strain would result
in a Ko value that would be more consistent with field observations.
Since the stress-strain curve has a break in it at approximately
3 percent strain, anything above this value could conceivably represent

"failure."

Thus it is possible to compute, from the field value of Ko’
a friction angle for the sludge equal to 43° that could be argued to be
theoretically correct. These results indicate the limitations involved

in estimating the in situ lateral effective stresses in papermill

sludge.

6.2.5 Temperature

Temperatures at various levels in the sludge landfill, with
corresponding dates, ;re summarized in Figure 5.13. Difficulties with
the installation of the thermistors delayed the initial temperature
readings until about 1 month after placement of the surcharge load. The
temperature rise due to increased biological activity appears to have

peaked about 50 days after completion of the landfill. The maximum
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temperature rise of about 7°C occurred in the upper half of the lower
sludge layer. Subsequent winter weather reduced the sludge temperatures
at all levels until spring and summer, when the seasonal warming effects
prevailed. During January and February, when average monthly air temper-
atures were close to zero degrees centigrade, sludge temperatures ranged
from about 3°C near the surface to 20°C in the bottom sand blanket.
Warmer spring air temperatures decreased this range in temperatures, and
in the early part of August the colder temperatures were near the bottcm
of the landfill. The warmer summer temperature, plus a period of low
rainfall, appears to have influenced the pore pressure readings shown

in Figure 5.12 for the upper portion of the top sludgé layer. This will
be discussed in a later section on pore pressure dissipation.

Although it has been shown that temperature can alter the
equilibrium void ratio, coefficient of consolidation, coefficient of
secondary compression, and primary compression ratio (Andersland and
Paloorthekkathil, 1972), its effect has not been incorporated into any
practical consolidation theory and thus it can be included in an
analysis only qualitatively. The variation in the parameters mentioned
above was found to be small for a temperature range of 6°C to 38°C, 80
any temperature changes occurring in the landfill (assuming no dessi-
cation) would have only a slight effect on its behavior. Temperatures
were not measured in the landfill during construction or for the first
month after surcharge placement, so data covering the period of primary

compression are absent.

6.3 Settlement Behavior of the Landfill

The settlement behavior of the landfill is discussed under two
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headings: the upper sludge layer and the lower sludge layer. Both
sections include information on (1) loading and general field observa-
tions, (2) ultimate settlement, (3) time-rate of settlement, and (4)

pore pressure dissipation.

6.3.1 Upper Sludge Layer

6.3.1.1 Loading and Field Observations.--The upper sand

blanket and earth surcharge provided a total applied load of about
490 psf on the surface of the upper sludge layer. This load was applied
in a period of about 4 days (Figure 5.8), with most of the surcharge
placement occurring on the last day. This loading rate approximates an
instantaneous loading condition. Because of the landfill area involved,
the resulting settlement is due to drainage and compression in the
vertical direction only. The similarity of time-settlement curves
(Figure 5.8) between instrument groups supports this fact. Any
difference in the ultimate settlement between groups can be attributed
to small differences in load application (maximum * 3 inches in
surcharge thickness) and nonhomogenity of the sludge, with respect to
water content, occurring ddring placement (Table 5.2). The major
difference involved instrument group 7, where excess settlement occurred
because soil for the surcharge was piled there prior to spreading with
a dozer.

The square root of time and logarithm of time versus settlement
curves (Figures 5.9 and 5.10) for the upper sludge layer provide infor-
mation on the amount of primary and secondary compression, the coeffi-

cient of consolidation, s and the coefficient of secondary
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compression, Ca. The square root of time curves in Figure 5.9 were
prepared on the assumption that the initial point (commencement of
compression) occurred at the completion of surcharge placement. The
bend in the upper portion of the curve results from the fact that
about 3 inches of settlement occurred at most instrument groups during
surcharge load placement. However, the assumed initial point gives an
average c_, equal to 0.0626 inz/min for 90 percent consolidation, that
is in agreement with the logarithm of time curves (Figure 5.10) and the
pore pressure dissipation curves (Figure 5.12). The logarithm of time
curve fitting method shows that primary settlement was complete after
about 750 hours, and was then followed by secondary compression.
Primary compression is rate controlling and determines the shape of the
curve only during the initial stages of settlement because it occurs
more rapidly than secondary compression. Using the time-settlement
curves for instrument group 6 (Figure 5.8f) as representative of the
sludge landfill, primary compression is computed to be 16.7 inches and
secondary compression, 4.1 inches (for a total t = 238 days). The pore
pressure dissipation curves (Figure 5.11d) confirmed that primary
compression was essentially complete at about 34 days,

The decreasing secondary compression rate, shown in Figure
5.10, is not in full agreement with the laboratory curves shown in
Figure 5.3. The laboratory curves showed a linear relation between
settlement and logarithm of time after a relatively short transition
curve.

The settlement experienced over the last time interval shown

on the settlement versus logarithm of time curves for the upper layer
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(Figure 5.10) was larger than expected. This was due to a drying of the
upper haif of che layer as a result of high summer temperatures and low
rainfall. As shown in Figure 5.12c, piezometer G5-8 exhibited a large
reduction in pore pressure over this time interval. Calculations showed
that approximately 65 percent of the total settlement over this interval
occurred in the upper half of the layer. Thermistors 1 and 3 (Figure
5.13a) showed increased temperatures in the upper half of the upper
sludge layer at the time of the last reading (t = 327 days).

To illustrate the correlation between landfill settlement and
leachate drainage, a comparison has been made, in Figure 6.2, between
the measured leachate flow rate, Qm, at the drainage pipe outlet shown
in Figures 4.1 and 4.3 and the calculated flow rate, Qc’ based on the
slope of the time-settlement curves (Figure 5.8). All but one of the
points shown give QC greater than Qm' This would be expected because
the drainage system was not constructed to be leakproof and leachate
was undoubtedly lost into the dike and the material surrounding the
pipe. The point shown for 11/12/71 was calculated from the slope of
the time-settlement curve for the lower layer only, since the upper
layer was not yet completed. Because leachate was draining from the
upper layer also, the point should be displaced to the right to be more
accurately located. It was assumed that for the upper layer one half
of the flow went to the top of the layer and the other half to the
drainage pipe. Despite the uncertainties involved in the flow rate
measurements, the correlation to the settlements is fairly good. Heavy
rain after December 1, 1971, caused infiltration of rainwater into the

pipe and flow rates measured at the pipe outlet increased considerably.
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6.3.1.2 Ultimate Settlement.--For plastic clays and organic

SO1LS (Lnéiuoing papermill sludge) Eﬁizg}g;maggﬂfﬁgplement estimate must
inciude both primary and secondary compression. When data are not
available from previous experience, the parameters needed for a settle-
ment analysis are obtained frém laboratory tests and extrapolated to
field behavior. The following discussion reviews several procedures

fur estimating ultimate settlement and applies them to the experi-
mental sludge landiill. |

A common method for estimating ultimate primary settlement uses

the stress-strain relation

Cc Ef
©TTre 07 (6.2)
o o

‘ . ds . . . .
where € =4z is the vertical strain at a point, Cc the compression

index, e, the initial void ratio, 5; the initial effective normal

vertical stress, and Ef the final effective normal vertical stress.

Equation 6.2 is an extension of equation 2.1. 'The total or ultimate

primary settlement, AH, for a sludge layer of initial thickness, H, can

be found by integration.

H =
. CC ,cf _ :
S = AH = S l_—‘:— log 10 %—— dz (6.3)
0 o o

Application of this equation to in situ soil layers is straightforward
since the soil is in static equilibrium with a fixed groundwater table,
“which readily permits the computation of changes in effective vertical

stresses. However, in the sludge landfill the presence of excess pore
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pressures both before loading, due to the weight of overlying sludge,
and after completion of primary compression, a residual pore pressure
assumed due to an insufficient gradient for flow, complicate computation
of the effective stresses. The procedufe followed in the application

of equation 6.2 is illustrated in Figure 6.3. The initial effective
stresses in the sludge after placement of the upper sand blanket are
given in Figure 6.3a. Pore pressures represent field data from
instrument group 7 just prior to surcharge loading. The sand blanket
was not yet placed at other instrument groups when these data were
obtained. Total vertical stresses were computed using a constant

sludge unit weight equal to 70 pcf. Initial void ratios were taken

from a laboratory e - log ; curve at the effective stresses, 5;, shown.
Final effective vertical stresses are given in Figure 6.3b. That
portion of the final stresses due to the overburden weight of sludge

and sand is actually different from those shown by an amount dependent
on the decrease in the sludge water content. This effect would be to
reduce the overburden pressure. For this analysis it was assumed that
this reduction in overburden pressure would not greatly alter the
results. Subtracting the residual pore pressure in Figure 6.5 from the
total stresses in Figure 6.3b gave the final effective normal stresses.
Substitution of the stresses from Figures 6.3a and 6.3b into equation 6.3
gave the strain values shown in Figure 6.3c. - Integration of this strain
over the thickness of the upper sludge layer provided an estimate of the
ultimate primary settlement equal to 18.1 inches. Since this value is
close to the observed primary settlement of 16.7 inches, use of equation
6.2 appears to be justified. For design purposes the use of equation 6.2

will be somewhat limited, since no methods are available for predicting
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residual pore pressures. Initial pore pressures generated during sludge
placement can be estimated by the procedure discussed in the next
section.

The accuracy of the analysis shown in Figures 6.3 and 6.12 can
be seen from Table 6.1. Here the settlements calculated from the
assumed strain distribution are compared to the actual settlement of
the upper and lower halves of the two sludge layers. The end of primary
compression for the field calculations was taken from the pore pressure
dissipation curves (Figure 5.12), and the total primary settlement at
this time was found from the settlement-time curves (Figure 5.8). Any
settlement of the plates located at the mid-point of each layer that
occurred prior to completion of the sludge layer had to be subtracted
from the total primary settlement because the strain analyses of
Figures 6.3 and 6.12 have initial conditions that occur after completion
of the layer. The analyses appeared to underestimate the settlement of
the lower half of each layer and overestimate the settlement of the
upper half, with the actual settlement corresponding to a nearly
constant strain condition.

MacFarlane (1969) has proposed that the ultimate primary

settlement in peat be computed on the basis of the equation

f
AH =r x AH (6.4)

where AHf is the total primary settlement of a peat layer in the field,
Ho the initial thickness of the peat layer in the field, AHL the
f
initial compression of the laboratory sample, and Ho the initial
L
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thickness of the laboratory sample. This method required that a repre-
sentative laboratory sample be tested in an oedometer under an increment
vo% load equal to the load applied in the field. The averagé unit strain
in the laboratory spebimed is then equated to the average unit strain
in theffieid peat layer to obtain'ﬁhe settlément. An average primary

settlement of 19.4 inches was obtained using average data from 5 labora-

tory tests with an applied load equal to 3.4 psi (weight of sand
blanket plus soil surcharge). This method overestimates the QCtuai
primary settlemenﬁ by about 2.7 inches. The validity of equation 6.4
is dependent on several factors including (1) the se;ecgion of a fully
representative laboratory'sample,.(Z) the preparation of the laboratory
saméle at a representative average initial void ratio fo; the layer,
and (3) the different strain rates for the laboratory sample as compared
to the field.

Secondary compression may be estimated on'the basis of the
equation (MacFarlane, 1969)

L

t
|%

Mg = HC, log), (6.5)

where AHS is the settlement due .to segondary compression, Ca the

coefficient of secondary compréséion equal to the strain‘(relative to

Hp) occurring over one cycle of the secondary portion of the settle-
'

ment-logarithm of time curve, t the field time considered, Fp the

estimated field time for pfimary compression, and Hp the thickness of

the sludge layer at time tpf Usi§g a laboratory value of <, equal to

0.017 inz/min to calculate tp equal to 103 days, and using a laboratory

value of Ca equal to 0.0150 gives an estimate of AHS equal to 0.4 inch
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for a t equal to 176 days (total t = 238 days). When a more realistic
value of tp equal to 34 days is used, the secondary compression becomes
1.0 inch. Since the actual secondary compression is close to 4.1
inches, the laboratory value of Ca appears to be too low.

Gibson and Lo's (1961) theory can be used to estimate the
ultimate settlement of the upper sludge layer by the use of equation 2.9.
Substituting the parameters shown in Figure 6.4 into this equation, with
q, equal to 3.4 psi and H equal to 120 inches, gives an estimate of
ultimate settlement equal to 22.4 inches for the upper sludge layer.
Primary compression, represented by (a ° q, ° H), equals 20.3 inches
and secondary compression, represented by (b ° q, ° h), equals 2.1
inches. Although the primary compression has been overestimated and
the secondary compression underestimated, the total compression
estimate appears reasonable. This method is subject to the same uncer-
tainties in extending laboratory test data to the field prediction of

settlements as was discussed earlier.

6.3.1.3 Time-Rate of Settlement.--Time-rate of settlement

predictions involving primary consolidation are generally based on the
Terzaghi (1943) consolidation theory. This theory involves the solution

of the differential equation

[
c
[S%)
c

u_ . 23 (6.6)

where u is the excess pore water pressure, t the time after application
of load, z the distance from the mid-point of a doubly drained stratum,
and <, the coefficient of consolidation. The solution of equation 6.6

for various boundary conditions is given by Terzaghi (1943), Leonards



125

(1962) and others. The degree of consolidation, U, for a given time,
t, is commonly expressed as some function of the time factor, Tv’ equal
to 4Cvt/HZ. The use of this theory in estimating the time settlement
relation for the upper sludge layer is illustrated in Figure 6.6. Since
this theory cannot model secondary compression, it has been used in
combination with equation 6.5. Here tp was taken as the time at which
92 percent consolidation was theoretically reached (Tv = 1.00).

Using MacFarlane's (1969) method, the total primary compression
was taken equal to 19.4 in. and the secondary compression equal to 0.4
in. This procedure relies on laboratory data and can be considered
representative of a design estimate. Curve (:) in Figure 6.6a shows
the observed time-settlement relation for instrument group 6 in the
landfill, and curve <:> gives the time-settlement relation using
Terzaghi's theory and parameters based on the field data. Curve (:)
considers primary compression equal to 16.7 in. and secondary
compression equal to 4.1 in. (Ca = 0.0556). The laboratory parameters
give an underestimate of the time-rate of settlement. Part of the
discrepancy between actual and calculated curves results from the
assumption that the theoretical curves start after completion of
surch;rge placement whereas the field curve begins earlier. A plot of
settlement versus logarithm of time for curves (:) and (:) is shown
in Figure 6.6b. This figure illustrates how the secondary portion of
the field curve is concave upwards, as compared to the linear secondary
portion of the theoretical curve. This would indicate that the field
compression curve exhibits Type I (Lo, 1961) secondary compression.

However, as mentioned earlier, the laboratory curves, even with one
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3.4 psi load increment recorded for a week, did not indicate this
behavior. The lower layer also exhibits this upward curvature in the
secondary range. However, the field pore pressures indicate that slow
pore pressure dissipation is still occurring in this layer, and so this
curvature may be part of the transition zone between the primary and
secondary compression regions.

Gibson and Lo's (1961) theory has been used to obtain the
theoretical time-settlement curves shown in Figure 6.6c. Curves for
three different values of <, have been plotted, none of which closely
follow the actual field settlement curve over the entire range of
time. Part of the difference results from the predicted ultimate
settlement being slightly larger than the actual settlement. At times
up to approximately 300 hours, the theoretical curves for the two
higher values of c, are closely parallel to the field curve, but
between 300 and 1000 hours the settlement predicted from theory
increases at a faster rate than the actual settlement. For the given
parameters, Gibson and Lo's (1961) theory predicts that the ultimate
settlement is reached very rapidly, without the development of a linear
(with log time) secondary compression curve. The theoretical type of
secondary compression that develops from this theory is dependent on
the value of a parameter, N, equal to Hz/%"b‘cv. Values of this
parameter for the sludge landfill are large (700 for c, = .063 inZ/min)
and result in the theoretical curves shown in Figure 6.6c. For N
values of approximately .04, secondary compression occurs for a much
longer period of time. The low value of the viscosity measured in

4

the laboratory (6.95 x 10 lb/inzlmin) appears to be the soil property

largely responsible for the theoretical results obtained, being on the



127

order of lO2 to 103 times smaller than values obtained from clays tested
by Gibson and Lo (1961). The dependence of the development of secondary
compression on layer thickness is apparent from N, which helps to explain
the difference between the lab and field secondary compression bhehavior.
Wahls's (1962) theory has been used to obtain the two
theoretical curves shown in Figure 6.6d. As discussed in Chapter II,
AHP in equation 2.18 represents primary settlement only, and since
Wahls's theory assumes that secondary compression can occur simultan-
eously with primary compression, it is necessary to establish a value
of AHp from the parameters given. This was done by assuming an initial
value of primary settlement equal to 16.7 in., obtained from field
settlement and pore pressure data, and subtracting from this the
theoretical amount of secondary compression that occurred during the
time necessary to reach this amount of settlement (assuming Tv = 1.0
for the end of primary compression). This can be computed as AHp =

16.7 - (.0147)+(103)-(.8684) = 15.4 in. Here 0.0147 = assumed Ccl

103 = Hp, and 0.8684 = h(Tv). Thus the time settlement relation is

given by
AH(t) = 15.4 f(Tv) + (103)(.0147) h(Tv) (6.7)

The results obtained from Wahls's theory are similar to those that were
obtained using Terzaghi's theory. The back computed field value of <,
(.0626 inz/min) accurately models the settlement up to the end of
primary compression, and the laboratory determined value of Ca(.0147
inz/min) appears to be too low. A larger value of Ca would accurately

model the settlement for only a limited time because Wahls's theory
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assumes a secondary compression rate that is linear with log time while
the field secondary compression rate is decreasing with log time. Since
Wahls's theory includes secondary compression in its mathematical formu-
lation, it results in a smoother curve in the transition region than
the method that was used to model secondary compression with Terzaghi's
theory.

Assumptions in Terzaghi's theory which may cause deviation
from the field results have been discussed in Chapter II. In addition
to these, Terzaghi's theory also assumes that the soil is fully
saturated. Any gas present in the sludge prior to surcharge application
would be compressed on application of the load, giving an immediate
settlement. This may be responsible for part of the 3 in. of settlement
which occurred during surcharge placement. Pore pressures generated
upon loading (Figure 6.7) are less than the applied load, indicating

that there was partial dissipation during this loading period.

6.3.1.4 Pore Pressure Dissipation.--Use of equation 6.2 for

estimating total primary settlement requires information on initial pore
pressures. The pore pressures shown in Figure 6.3a resulted from
stresses induced by the sand blanket and weight of the sludge. Pore
pressures resulting from the placement of the sand blanket were assumed
equal to its load (100 psf) throughout the layer. Initial pore
pressures resulting from the sludge layer increasing in thickness with
time were estimated using Gibson's (1958) theory. Pore pressures from
this theory are presented in Figure 6.8 for both laboratory and field
values of c, along with the measured pore pressures. The observed

pore pressures fall between the predicted values, with the exception
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of the 30 in. depth. No duplicate piezometer readings are available for
this depth, hence a recording error or malfunction is possible. The

115 psf pore pressure in the middle sand blanket may have influenced the
value at the 90 in. depth. Except for these factors Gibson's (1958)
theory appears to accurately predict pore pressures generated during
sludge placement.

Pore pressure dissipation during placement of the sand and
surcharge load appeared to be responsible for Au/Ap values less than
unity, as shown in Figure 6.7. The pore pressure increase at the
center of the layer ranged from 94 to 99 percent of the applied load,
whereas at the 1/4 point pore pressures were about 85 percent of the
applied load. The Adata point for group 7 in Figure 6.7b represents
only the surcharge load, whereas for the other groups the pore pressures
include application of the sand plus surcharge load. Adding a 100 psf
load due to the sand layer for group 7 gives a point very close to
Au/Ap equal to unity, as shown by the second point.

Residual pore pressures summarized in Figure 6.5 represent data
from the pore pressure versus time curves in Figure 5.12. The data in
Figure 6.5 represent average values of u. obtained from these curves.
Piezometer 8 in group 5 appears to have a reduced pore pressure at 327
days due to drying of the earth surcharge and the upper portion of the
upper sludge layer during a relatively dry summer. The fluctuation
in pore pressures after 90 days appears to be due to measurement devia-
tions and environmental effects, such as seasonal wetting and drying.
Pore pressures in the middle sand blanket are the result of the sand
forming a bowl shape because of less settlement along the periphery of

the landfill, thus holding water up to a certain elevation.
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The field pore pressure dissipation curve at the mid-point of
the upper sludge layer in instrument group 6 is compared, in Figure 6.9a,
to. computed curves based on Terzaghi's (1943) theory. The initial
excess pore pressure used for computation was assumed equal to the
difference between the maximum and residual pore pressures. The labora-
tory value of c, (0.0170 inz/min) gives pore pressures substantially
higher than the observed pore pressures during the consolidation period.
Using the c, (0.0626 in2/min) value based on field data, Terzaghi's
(19435 theory slightly overestimates the pore pressures (curve 3) up to
about 70 percent dissipation and thereafter gives an underestimate.

The slower dissipation rate occuring after about 70 percent dissipation
was also observed in the laboratory by Andersland and Paloorthekkathil
(1972). The pore pressures predicted from the theory of Gibson and Lo
(1961) are in close agreement with those of Terzaghi, as shown in
Figure 6.9b.

The decrease in pore pressure dissipation rate after 70 percent
dissipation may be the result of non-Darcy flow in the sludge. Mitchell
and Younger (1967) discussed this effect in detéil and concluded that
there are indications that deviations from Darcy's law exist in many fine-
grained soils subjected to low hydraulic gradients but that not much
direct field evidence is available concerning seepage or consolidation
to corroborate this effect. The recorded field dissipation curves
(Figures 5.12 and 6.9) indicate that non-Darcy flow does exist in the
sludge landfill and that this flow precedes the formation of residual
pore pressures in both sludge layers. These residual pore pressures
imply the existence of a threshold gradient in the sludge below which

no flow occurs. For a threshold gradient, io’ drainage will occur
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only when

du
r

i>i =_l_
°o Y, dz

(6.8)
where 1 is the existing hydraulic gradient, u. the residual pore
pressure at depth z, and Yo the unit weight of water. If this gradient
can be considered a constant property, then integration of equation
6.8 will give a theoretical distribution of the residual pore pressures
shown in Figure 6.10. The observed residual pore pressure distribution
summarized in Figure 6.5 is influenced by the pore pressures in the
middle sand blanket. If the pore pressure in the sand blanket was
reduced to zero, as it would be if complete drainage were possible, and
if the value at the lower one-quarter point was reduced, the resulting
distribution would likely agree with theory. Assuming that the theory
represents the field conditions, using the maximum residual pore
pressure at the center of the layer gives a value for io equal to 0.885.
Below this gradient primary consolidation will cease, with no additional
dissipation of pore pressures,

Reasons quoted by Mitchell and Younger (1967) for the
development of non-Darcy flow and a threshold gradient include:
(1) resistance to flow caused by cations in the electrical double layer
surrounding the clay particles, (2) particle movements leading to
reversible void plugging and unplugging, and (3) the existence of a
quasi-crystalline adsorbed water (leachate) structure. If any of these
reasons apply to papermill sludge, the author believes that (3) would
best help explain the development of a threshold gradient. Since the

existence of such a gradient implies a no-flow condition it would seem
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necessary for the water (or leachate) to develop a quasi-crystalline
structure that could be considered as solid below the threshold
gradient. Grim (1968) also favors this quasi-crystalline concept to
explain the clay-water system. It should be noted that the chemical
makeup of the leachate and the presence of large amounts of organic
material in the sludge could have a marked effect on the leachate flow
properties at low gradients. Andersland and Laza (1972) observed that
a threshold gradient was required to initiate flow in the sludge only
in the case of low backpressures, and that when the undissolved gas in
the pore fluid was reduced to zero this gradient was not necessary.
Such a result would indicate that gas generation in the sludge
contributes to the reduced leachate flow rate and residual pore
pressure formation observed in the landfill. In addition, there might
also be chemical interactions between organic compounds in the leachate
and the clay particles, such as the adsorption of polar organic
molecules onto the surface of the clay. Chemical reactions such as
this might also lead to the development of a threshold gradient.

The pore pressure dissipation and time-settlement curves
predicted from Terzaghi's (1943) theory are based on the assumption of
a unifo;m initial excess pore pressure. Because deviations from this
assumption can cause changes in the dissipation-settlement relations,
its validity is examined in Figure 6.11. From this figure it can be
seen that the increase in pore pressures from their initial values to
the maximum values generated under the applied loads is fairly uniform.
Since the residual pore pressures are relatively close in magnitude to
the initial pore pressures, the assumption of a uniform initial excess

pore pressure in Terzaghi's theory appears to be valid. If the
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residual pressures were much different from the initial pressures, then
the condition of one-dimensional consolidation would best be analyzed
with water flow controlled by v = k(1 - io), where v is the velocity
of flow and k is the coefficient of permeability. This condition is
described by Mitchell and Younger (1967) and the inclusion of a
threshold gradient in the consolidation process is covered by Janbu

(1965).

6.3.2 Lower Sludge Layer

6.3.2.1 Loading and Field Observations.--The lower sludge

layer supported an applied load of about 1290 psf from the weight of

the middle and upper sand blankets, the upper sludge layer, and the
earth surcharge. The upper sludge layer was placed at a fairly constant
rate over a period of about 30 days. The settlement and pore pressure
changes observed in the lower sludge layer are summarized in Figures 5.8
and 5.11. Pore pressures were generated in the lower sludge layer
during placement of the upper sludge layer, however, some dissipation
and settlement also occurred concurrently with this sludge placement.
The surcharge placement induced an immediate increase in pore pressures
throughout the lower sludge layer, followed by.their dissipation and

the resulting curved time-settlement relation.

The logarithm of time and square root of time curve fitting
methods used in a settlement analysis assume an instantaneous appli-
cation of load. In the case where loads are increased at some rate,
such as for the lower sludge layer, these curves are of limited value.
The logarithm of time versus settlement curves for the lower sludge

layer in Figure 5.11 provide information on the secondary compression
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behavior of the sludge. The curve appears to show a decreasing
secondary compression rate rather than a constant rate. The charac-
teristic S-shape for the entire curve has been flattened due to the
gradually increased load resulting from sludge placement of the upper
layer. Separation of the settlement into primary and secondary portions
is more difficult for the lower sludge layer. The square root of time

fitting method cannot be used.

6.3.2.2 Ultimate Settlement.—--The ultimate primary settlement

of the lower sludge layer is computed to be 32.8 inches in Figure 6.12,
using equation 6.2. The procedure is the same as described for the
upper layer, with Figure 6.12a giving the stresses in the sludge after
placement of the middle sand blanket and Figure 6.12b the stresses after
application of the surcharge. Since the lower sludge layer has been
subjected to larger effective stresses for a longer period of time than
the upper layer, the amount of secondary compression should be greater.
If 7 inches is assumed for secondary compression, based on the same
primary compression ratio as for the upper layer, this leaves about
29 inches for primary compression. This means that equation 6.2
overestimates the primary settlement, but considering all the
assumptions involved, this estimate appears reasonable.

A check on the total stresses calculated at the mid-point
of the lower layer in Figure 6.12b can be made using the total pressure
cell data from Figure 5.14. The calculated total vertical stress at
the mid-point is 1740 psf (12.1 psi) whereas that shown in Figure 5.14
varies from 11.8 to 13.2 psi (water calibration). Since the slow

increase in total vertical stress measured by the pressure cell cannot
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be explained, it is assumed that the actual stress falls between 11.8
and 13.2 psi, giving support to the calculated value of 12.1 psi.

A consolidation test using a single load increment equal to
1290 psf (0.63 kg/cmz) was carried out on a sludge sample from the lower
layer to provide a basis for estimating the ultimate primary settlement
by MacFarlane's (1969) method. Using data from test No. L-2-4 in
equation 6.4 gives a value for primary settlement equal to 35.3 inches.
This value is closer to the actual field settlement of 36 inches, which
includes both primary and secondary settlement. It is possible that
the high initial void ratio of the laboratory sample, greater than the
average initial in situ void ratio of the field layer, permitted
greater volume change than is representative for the sludge layer.

It'is difficult to determine from the field data the exact
amount of secondary compression in the lower sludge layer. For analysis
purposes a value of Ca equal to 0.0556 and a tp equal to 26 days (total
t = 60 days) were used in equation 6.5. For.H equal to 94 inches a
value of 4.7 inches was obtained for the secondary compression for
t = 204 days (total t = 238 days). The use of a value of Ccl back-
figured from the upper layer along with a tp equal to 26 days, appeared
realistic in light of the high amount of primary consolidation that
occurred throughout most of the loading period. The value of 4.7 inches
of secondary compression appears low based on results from the upper

sludge layer.

6.3.2.3 Time-Rate of Settlement.--A theoretical estimate of

the time-settlement relation for the lower sludge layer requires that

the loading be represented by the numerical procedure shown in
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Figure 6.13. The placement of the upper sludge layer and upper sand
blanket has been modeled as an applied stress linearly increasing with
time, and the surcharge has been represented as an instantaneously

applied stress. Equation 6.6 is placed in finite difference form (Harr,

32u

322

1966) with %% and becoming

du _ lim ulzg, £,44) - ulzg, £y) Y494 T Yy (6.9)
t  At>0 At - At

and
324 JYitl,g T 2ug gt YLy (6.10)
822 (Az)2

Substituting these expressions in equation 6.6 gives
ui,j+l = ui,j(l - 2a) + (ui+l,j + ui—l,j)a (6.11)

c At

where o is and is assumed equal to 1/6 (Scott, 1963), At is the

(AZ)2

time increment, Az equals H/8 (H is the thickness of the layer), and

<, is the coefficient of consolidation. Using the time factor Tv equal
to cvt/(H/Z)Z, and a equal to 1/6, results in a value for ATv equal to
1/96. To model the linear stress, a unit initial pore pressure (stress)
is first applied throughout the layer. This is allowed to dissipate
over the interval ATv equal to 1/96, at which time another unit of pore
pressure is added to obtain a new pore pressure distribution. This
process is repreated over the required number of increments (n) as

shown in Figure 6.13, where n is defined as t equal to

cv(ts)/a(Az)Z, and te is the time at which the surcharge is applied.

s/p¢

Since At is fixed, the number of increments n is dependent on the values
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of <y and t, For the sludge landfill with c, = 0.063 inz/min, n was

equal to 113. The percent consolidation, defined as

H
U(e) =1 -2 X w8y, (6.14)
o ©
where u(t) is the excess pore pressure at any time t and u, is the
initial excess pore pressure, has been evaluated numerically, using the
trapezoidal rule, for the finite difference formulation described.

For the linearly increasing load, u, at any time t 1is equal to
the total number of increments of pore pressure applied up to time
t (u0 =natt = ts). To obtain the settlement at time t it is
necessary to determine the load acting on the lower layer at that
time. The settlement of the lower layer then equals the ultimate
settlement for that load multiplied by the percent consolidation based
on the above consolidation theory. Estimates of the ultimate settlement
of the lower sludge layer for three different elevations of the upper
sludge layer (different loads) are given in Figure 6.14 for use in
obtaining the theoretical time-settlement curve.

In the lower sludge layer it was assumed that the pore
pressures measured in the field after application of the middle sand
blanket acted as ''static'" pore pressures for analysis purposes. This
means that they have been considered as both the initial and the
residual pressures, and they must be added to the excess pressures
calculated from the above theory to obtain the actual pore pressures.
Since the actual residual pore pressures are slightly different from

the above assumed values, the consolidation percentages calculated by
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the theory contain a small error. Gibson's (1958) theory would provide
accurate values of pore pressures generated in the sludge due to its
own weight if estimates of initial pore pressures were needed for
design purposes.

Using a computer program written for the above analysis
(Appendix G), two theoretical time-settlement relations for the lower
sludge layer have been determined and are shown in Figure 6.15a, along
with the actual field settlement curve for group 3. The two theoretical
curves occur after surcharge placement, one being calculated using <,
equal to 0.063 in2/min and the other with ¢ equal to 0.015 inz/min.

A <, equal to 0.063 inz/min was assumed during the linear loading range
and was chosen based on the analysis of the upper sludge layer. Values
of tp equal to 26 days and Ca equal to 0,0556 (from the upper layer
analysis) were used in calculating the secondary compression. The
ultimate primary settlements used in the analysis are those shown in
Figures 6.12 and 6.14. The three analyses shown in Figure 6.14 were
used during linear loading and the 32.6 inches in Figure 6.12 was used
after surcharge application. The computer program assumes an average
thickness for the sludge layer for the computations duriné linear
loading and adjusts the thickness after each settlement computation
after surcharge application.

The theoretical procedure above appears to give an adequate
time-settlement relation for the lower layer. Although the occurrence
of secondary compression has been poorly modeled, the governing factor
affecting the time-settlement relation still appears to be the selection
of a representative value of c, The fact that the actual settlement

curve falls above the curve for ¢, equal to 0.063 inz/min would indicate
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that <, has decreased during the settlement process. This would be in
accordance with the laboratory data, which show a drop in <y with an
increase in deformation and effective stress (Figure 5.2).

Leonards (1962) describes a simple procedure, suggested by
Terzaghi, for obtaining the time-settlement relation of a clay layer
subjected to a constant rate of loading. Using this procedure, the
theoretical curve shown in Figure 6.15b has been drawn and is seen to
agree very well with the field curve and the previous theoretical
solution of Figure 6.15a. The solution was obtained by using the
Terzaghi procedure in the linear loading range and then combining it
with the solution for an instantaneous loading after the application

of the surcharge.

6.3.2.4 Pore Pressure Dissipation.--A comparison between the

predicted and measured pore pressures at the mid-point of the lower
sludge layer is shown in Figure 6.16. The initial pore pressure was
assumed equal to the residual value of 2.3 psi and was added to the
excess pore pressures generated during loading. Pore pressures generated
during the linear loading period were estimated using a value of <,
equal to 0.063 in2/min. This estimation appears to give a reasonable
approximation to the measured pore pressures. Two predicted curves are
shown after surcharge application, one representing a <, equal to

0.063 inz/min and the other a <y equal to 0.015 inz/min. The larger

c, value predicts pore pressure dissipation more rapidly than it occurs.
This again suggests that <, has decreased for the lower layer as a
result of its consolidation under the linearly'increasing load. The

measured pore pressures fall between the two theoretical curves for
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a period of 30 days after surcharge placement, after which they
dissipate more siowiy. This would correlate with the decrease in the
rate of pore pressure dissipation which occurred after 70 percent
dissipation in the upper sludge layer (Figure 6.9).

Initial pore pressures generated in the lower sludge layer
due to its own weight are shown in Figure 6.17, and residual pore
pressures remaining after consolidation are shown in Figure 6.5. The
inictial pore pressures were obtained by subtracting 100 psf (stress due
to the middle sand blanket) from the pore pressure readings taken
immediately after placement of the middle sand blanket. These pore
pressures agree fairly well with those that would be predicted using
Gibson's (1958) theory. Residual pore pressures shown in Figure 6.5
were obtained in a manner similar to the upper sludge layer. After 327
days (Figure 5.12) the pore pressures had stabilized sufficiently so
that they could be labeled '"residual" for analysis purposes. The
values are somewhat higher than those measured in the upper sludge
layer, indicating that a higher threshold gradient exists in the lower
layer. The higher sludge density of the lower sludge layer in combi-
nation with any gas formation due to sludge decomposition may have
contributed to the formation of the higher residual pore pressufes.
Using the maximum observed residual pore pressure at the mid-point of
the lower layer gives a value of io equal to 1.63.

The Au/Ap ratios shown in Figure 6.7 are somewhat less for
the lower sludge layer as compared to the upper layer. The lower ratios
may be the result of partial drainage having occurred during placement

of the upper sand blanket and surcharge. A shorter length of drainage
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path existed in the lower layer than the upper layer at the time of
surcharge application. The theoretical pore pressure increase shown

in Figure 6.16 is consistent with the field measurements and would
support this explanation. Because the surcharge covers a fairly large
areé it would appear that the reduction in the Au/Ap ratio is not due to

reduced stresses in the lower sludge layer.

Table 6.1 COMPARISON OF ACTUAL AND CALCULATED PRIMARY SETTLEMENTS.

Location Computed settlement Actual field
from Figure 6.3 or 6.12 settlement
Upper sludge layer
Upper half 10.8 in 9.0 in
Lower half 7.3 in 8.0 in

Lower sludge layer
Upper half 19.6 in 14.7 in
Lower half 13.2 in 14.3 in
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Figure 6.10. Theoretical final pore pressure distribution at the end
of consolidation if a threshold gradient exists.
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Figure 6.11. Comparison of initial, maximum, and residual pore
pressures for the upper sludge layer.
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Figure 6.13. Load increasing linearly with time followed by an
instantaneous surcharge application.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Field Consolidation

An experimental papermill sludge landfill was constructed and
monitored to obtain engineering information essential to developing
guidelines and recommendations for the design and operation of solid
papermill waste landfills. The landfill consisted of 2 sludge layers,
initially 10 ft. thick, with sand drainage blankets at the top, middle,
and bottom. An earth dike provided lateral confinement for the soft
sludge during and after construction, and 3 ft. of natural soil provided
the surface load. The landfill was instrumented with 32 settlement
plates, 16 piezometers, 3 total pressure cells, and 10 thermistors.
Field data were obtained, during the year, on settlement, pore water
pressures, vertical and lateral earth pressures, temperature, sludge
unit weights, specific gravity, and water contents. Laboratory work
included consistency limits, ash contents, and consolidation tests on
both fresh and undisturbed samples of sludge. Comparisons have been
made between field settlement behavior and predicted behavior using
laboratory test parameters, backfigured field parameters, and soil
mechanics theories, including those on consolidation and pore pressure
dissipation. Conclusions are given under the following headings:

(1) settlement, (2) pore pressures, and (3) stress and temperature

conditions.

163



7.1.1 Settlement

164

1. Reasonable estimates of ultimate primary settlement for

the sludge can be obtained using equation 6.2, provided that both the

initial and residual pore pressures are used in computing effective

stresses. A laboratory value for the compression index Cc appears to

be appropriate, and

the initial void ratio e, for the field sludge

layer may be taken from a laboratory void ratio-logarithm of pressure

curve at the appropriate stress level.

2. MacFarlane's (1969) method, using data from a single

increment laboratory consolidation test, overestimates primary

settlement. Results for this method gave estimates of primary

settlement that were closer to the actual total settlement of each

sludge layer. This may be due to the high initial void ratio of the

laboratory samples.

3. ' Gibson
of total settlement
loéding conditions.
assumed value of <,
reached without the

compression curve.

the parameters a, b,

and Lo's (1961) theory provides an accurate estimate
and time-rate of settlement under instantaneous

The time-settlement relation is dependent on the
and predicts that the ultimate settlement is
development of a linear (with log time) secondary
Careful laboratory tests were required to determine

and A used in this theory.

4. The field settlement versus logarithm of time curves shown

in Figures 5.10 and

rate with log time.

5.11 exhibit a decreasing secondary compression

This behavior was observed for both the upper and

lower sludge layers although it was not experienced with any of the

samples tested in the laboratory.

T YT

b2 ¥ —rw (e
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5. Lstimates of secondary compression, based on equation 6.5
and Wahls's (1962) theory, are too low for laboratory values of the
coefficient of secondary compression, Ca’ Backfigured field parameters
yielded appropriate estimates for the upper sludge layer, while a
somewhat arbitrary value of tp had to be assumed for the lower sludge
layer.

6. Terzaghi's (1943) theory and Wahls's (1962) theory appear
to adequately predict the hydrodynamic portion of the time-settlement
relation for the sludge, provided that an appropriate value for the
coefficient of consolidation, c, is used in each theory. Satisfactory
results were obtained for both the upper and lower sludge layers for
the different conditions of loading. The coefficient of consolidation
appears to decrease with an increase in field consolidation similar to
the decrease shown by laboratory tests. Environmental factors (surface
drying, etc.) influenced the time-settlement relation for the upper
sludge layer in the landfill.

7. Settlement rates for the landfill gave a good estimate
of the flow rate for leachate draining from the papermill sludge.

8. Undisturbed samples taken from the landfill yielded
valuable information concerning the sludge's laboratory e vs. log P
relationship and the variation, with effective stress, in the
coefficient of consolidation, c,» primary compression ratio, r, and
the coefficient of secondary compression, Ca’ that occurred with

field consolidation followed by sampling and laboratory testing.

7.1.2 Pore Pressures

1. Gibson's (1958) theory gives estimates of pore pressures
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generated during sludge placement that are in accordance with field
observations. Pore pressures in the sludge were influenced by excess
pore pressures that built up in the middle sand drainage blanket. These
were the result of incomplete drainage and were caused by greater
settlement occurring in the central portion of the landfill.

2. Terzaghi's (1943) theory and Gibson and Lo's (1961) theory
accurately predicted pore pressures in the upper sludge layer up to
about 70 percent dissipation, provided that an appropriate value for
the coefficient of consolidation was used. It was also possible to
predict pore pressures for the lower sludge layer, which experienced
different conditions of loading. After 70 percent dissipation, the
pore pressures decreased at a slower rate and eventually appeared to
stabilize at some residual value. This indicates that a thresholdv
asradient exists for the sludge in the landfill, below which little or
no flow of pore water can occur. Pore pressures may also be influenced
by environmental factors, as demonstrated by the pore pressure fluctu-
ations of the upper sludge layer with time.

3. The assumption of a uniform initial excess pore pressure
for use with Terzaghi's theory appears to be reasonable because of the
closeness in magnitude between the initial pore pressures generated

during sludge placement and the residual pore pressures.

7.1.3 Stress and Temperature Conditions

1. The undrained shear strength of the sludge increased
considerably during consolidation and is greatest at points in the
landfill that are under the highest effective stresses. A linear

relationship between undrained strength and consolidation pressure
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was indicated by the data shown in Figure 5.7. Sensitivity of the
sludge in terms of the ratio of undisturbed to remolded vane strength
was less than two.

2. The vertical stress measured close to the mid-depth of the
lower sludge layer by the total pressure cells was in fair agreement
with the stress calculated on the basis of material unit weights,
indicating that the measured lateral stresses should be equally accurate.

3. The coefficient of lateral stress, Ko, based on total
stress and pore pressure data, decreased from about 0.65 immediately
after sludge placement to about 0.32 for the final stage of consoli-
dation.

4. Temperature increase due to increased biological activity
peaked about 50 days after completion of the landfill giving a maximum
temperature rise close to 7°C 1in the upper half of the lower sludge
layer. Thereafter sludge temperatures were determined by ground and

seasonal air temperatures.



REFERENCES

168




REFERENCES

American Society for Testing and Materials, Book of ASTM Standards,
Parts 11 and 15, Philadelphia, Pennsylvania.

Andersland, O. B., and Laza, Robert W., "Permeability of High Ash
Papermill Sludge,'" Journal of the Sanitary Engineering Division,
Proc. ASCE, Vol. 98, No. SA 6, December, 1972.

Andersland, O. B., and Laza, Robert W., ''Shear Strength and
Permeability of High Ash Pulp and Papermill Sludges,' Tech. Rpt. 1
for the National Council of the Paper Industry for Air and Stream
Improvement, Inc., Div. of Engineering Research, Mich. State Univ.,
E. Lansing, Mich., 1971.

Andersland, O. B., and Paloorthekkathil, John M., ''Consolidation
Behavior of High Ash Pulp and Papermill Sludges,' Tech. Rpt. 2 for
the National Council of the Paper Industry for Air and Stream
Improvement, Inc., Div. of Engineering Research, Mich. State Univ.,
E. Lansing, Mich., 1972,

Bishop, Alan W., and Henkel, D. J., The Measurement of Soil Properties
in the Triaxial Test, Edward Arnold (Publishers) Ltd., London, 1962.

Bjerrum, Laurits, "Engineering Geology of Norwegian Normally-
Consolidated Marine Clays as Related to Settlements of Buildings,"
Geotechnique, London, 17:81-118, 1967.

Bjerrum, Laurits, "Embankments on Soft Ground,'" Proc., Specialty
Conf. on Performance of Earth and Earth-supported Structures, Am. Soc.
of Civil Engrs., II:1-54, June, 1972.

Black, C. S., ed., Methods of Soil Analysis, No. 9 in the series
Agronomy, Am. Soc. Agronomy, Inc.. Part 2, 1965.

Casagrande, A., 'The Determination of the Preconsolidation Load and
Its Practical Significance,'" Proceedings, lst International Conference
on Soil Mechanics and Foundation Engineering, Cambridge, 3:60, 1936.

Davis, E. H., and Raymond, G. P., "A Non-linear Theory of Consoli-
dation," Geotechnique, London, 15:161-173, 1965.

Follett, Robert, and Gehm, Harry W., '"Manual of Practice for Sludge
Handling in the Pulp and Paper Industry,'" National Council of the
Paper Industry for Air and Stream Improvement, Inc., Tech. Bull.
No. 190, June, 1966.

169



170

Garlanger, John E., "The Consolidation of Soils Exhibiting Creep
Under Constant Effective Stress, ''Geotechnique, London, 22:71-78,
1972,

Gibson, R. E., "The Progress of Consolidation in a Clay Layer
Increasing in Thickness with Time," Geotechnique, London, 8:171-
182, 1958.

Gibson, R. E., and Lo, K. Y., "A Theory of Consolidation for Soils
Exhibiting Secondary Compression,' Norwegian Geotechnical Institute,
Publication 41, Oslo, Norway, 1961.

Gibson, R. E., England, G. L., and Hussey, M. J. L., "The Theory of
One-dimensional Consolidation of Saturated Clays,' Geotechnique,
London, 17:261-273, 1967.

Gillespie, W. J., "Summary Report--Questionnaire Survey--Sludge Cake
Disposal on Land,'" National Council of the Paper Industry for Air
and Stream Improvement, Inc., Unpublished, September 1969.

Gillespie, W. J., Gellman, I., Janes, R. L., "Utilization of High
Ash Papermill Waste Solids," Proc. 2nd Mineral Waste Utilization
Symposium, IITRI, Chicago, Ill1l., 1970.

Gillespie, W. J., Mazzola, C. A., and Gellman, I., "Landfill
Disposal of Papermill Waste Solids,' presented at the 7th TAPPI
Air and Water Conference., Minneapolis, Minn., June 7-10, 1970.

Grim, R. E., Clay Mineralogy, McGraw-Hill Book Co., Inc., New York,
1968.

Grim, R. E., Applied Clay Mineralogy, McGraw-Hill Book Co., Inc.,
New York, 1962,

Harr, M. E., Foundations of Theoretical Soil Mechanics, McGraw-Hill
Book Co., In., New York, 1966.

Janbu, N., "Consolidation of Clay Layers Based on Non-linear Stress-
strain,'" Proc. 6th Internat. Conf. on Soil Mech. and Found. Eng.,
I1:83-87, 1965.

Lambe, T. William, Soil Testing for Engineers, John Wiley and Soms,
Inc., New York, 1951.

Lambe, T. William, and Whitman, Robert V., Soil Mechanics, John Wiley
and Sons, Inc., New York, 1969.

Leonards, G. A., Foundation Engineering, McGraw-Hill Book Co., Inc.,
New York, 1962.

Leonards, G. A., and Ramiah, R. K., "Time Effects in the Consolidation

of Clay," STP No. 254, ASTM, 116-130, (1959).

s e e

PRSP

{8 mmaadm



171

Leonards, G. A., and Girault, P., "A Study of the One-dimensional
Consolidation Test," Proc. 5th International Conf. on Soil Mech., and
Found. Engr., Dunod, Paris, 1:213-218, 1961.

Lo, K. Y., "Secondary Compression of Clays,'" Journal of the Soil Mech.
and Found. Div., ASCE, 87:SM4:61-87, 1961.

MacFarlane, Ivan E., ed., Muskeg Engineering Handbook, Univ. of Toronto
Press, 1969.

Mitchell, J. K., and Younger, J. S., "Abnormalities in Hydraulic Flow
Through Fine-grained soils," STP No. 417, ASTM, pp. 106-139, 1966.

Scott, R. F., Principles of Soil Mechanics, Addison-Wesley Publ. Co.,
Inc., Reading, Mass., 1963.

Terzaghi, Karl, Theoretical Soil Mechanics, John Wiley and Sons, Inc.,
New York, 1943.

Terzaghi, Karl, and Peck, Ralph B., Soil Mechanics in Engineering
Practice, 2nd ed., John Wiley and Sons, Inc., New York, 1967.

Wahls, Harvey E., "Analysis of Primary and Secondary Consolidation,"
Journ. of the Soil Mech. and Found. Div., ASCE, 88:SM6:207-231, 1962.




APPENDICES

172




173

*239 ‘[ ‘ou a3e(d jJusawiarl3es 2 ‘ou dnoald 03 sI3J31 [-2D 930N

IL°LL  92°8L T6°LL S9°LL  TPLL  OL°LL  HO°8L LZ°8L 2L/11/6
2WLL 92°8L  26°LL S9°LL €bCLL TLCLL SO°8L LZ°8L W /1/8
0L°LL $7°8L 06°LL %9°LL Ob°LL 69°LL 20°8L S2°8L 2/¥/S
1L°LL  v2°8L 16°LL ¥9°LL I¥°LL OL°LL %0°8L 92°8L 2L/0%/¢
89°LL T12°8L L8°LL 79°LL 6E°LL 89°LL 10°8L €2°8L 2L/%2/1
0L°LL $Z°8L 06°LL ¥9°LL Tb°LL 0L°LL €0°8L SZ°'8L 2/€/1
€L°LL  92°8L  26°LL  L9°LL  €VCLL 2LCLL SO0°8L  82°8L Nu\vv\ﬁ
WLl 9Z7°8L  26°LL 99°LL TbcLL TLCLL S0°8L  8Z°8L TL/0g/Tl
WLL SZU8L  16°LL S9°LL TCLL TLtLL v0C8L  LT8L T1L/ST/2
€L°LL  ST7°8L  €6°LL  S9°LL  €bLL  OLLL  ¥0°8L 9Z°'8L 1L/9/21
PLLL  92°8L  €6°LL  L9°LL  ¥PCLL  TLCLL BO8L  L2°8L 1L/1/21
€L°LL 82°8L €6°LL  S9°LL  TcLL  O0LLL  €0°8L  9Z°8L T1L/2Z/11
€L°LL GT7'8L  €6°LL L9TLL THCLL  TLLL £0°'8L  LZ°8L 18/81/11
€L°LL  92°8L  w6°LL  L9°LL  E€¥CLL  €L°LL  ¥0°'8L  8€°8L TL/ST/IT
2WeLL  SZ°8L  S6°LL  l9°LL  whCLL  €L°LL €0°8L  LZ°8L T1L/21/11
€L°LL 82°8L S6°LL  OL'LL  €W°LL  SL°LL  L0°'8L 8Z°8L TL/0T/11
bLLL LZ°8L  L6°LL 2LCLL kLl 08°LL  80°8L  Ie°8L  1L/6/11
PLLL  67°8L L6°LL  69°LL  BPLL  6L°LL  LO0°'8L 0€£°8L 1L/S/TI
BLLL LZ°8L 96°LL  €L°LL €PCLL 9LtLL  LO'8L  LZ°8L 1L/Z/11
GLLL T1€°8L  66°LL  SLULL  SP°LL  08°LL 11°8L  1£°8L 1L/9Z/01
LLLL  2€°8L  00°8L  9L°LL LB LL 18°LL  O1'8L  g€€°8L 1L/22/01
GL'LL 2§°8L 86°LL  WLLL 9F°LL 08°LL O1°'8L 0g£°8L 1L/02/01
GL'LL 0£°8L  66°LL SL°LL  ShLL  8L°LL 60°8L  1g°8L T1L/%1/01
€L°LL T€°8L  66°LL  SLTLL  9v°LL  6L°LL  80°8L 1£°8L 1L/8/01
€L°LL  T€°8L 00°8L 9LLL  9F°LL  6L°LL 60°8L 1g°8L 1L/S/01
00°8. 0G°8L 02°8.L 00°8L 0L°LL 00°8L 0€£°8. 0§°8L 1L/01/6

23eq
1-8D 1-LD 1-9D 1-¢D 1-yD  1-¢D  x1-2D -1 HALVId

‘LI ‘NOILVATTH

LIYMINVTIL ANVS WOL10O9 FHL 1V SNOILVAJATH JILVId LNEIWNITILLIS

[-V ITdVL



174

1668 ¥HL°06 8Z2°06 98°08 88°I8 IS°I8 2¢€°18 2L/11/6
G668 81°06 0¢-06pa3ewep gg°08 88°'I8 €5°I18 9¢€°18 2L/1/8
00°06 ¥$Z°06 SE€°06 SL°L8 88°08 88°I8 SS°I8 S€°18  2L/%/S
90°06 0€°06 I¥°06 18°L8 16°08 26°I18 LS°I8 8€°18 2L/0Z/¢
60°06 €€£°06 SH°06 28°L8 06°08 16°18 95°I8 LE°I8 2L/%%/2
8106 €06 P$5°06 16°L8 S6°08 GS6°I8 6S°I8 Iv°18 2L/¢/1
62°06 95°06 S9°06 66°L8 2018 00°28 S9°'I8 9v°I8 L/¥I/1
6€°06 L9°06 SL06 90°88 20°I8 10°28 L9°I8 0S°I8 1./0¢/21
€5°06 98°06 16706 22°88 L0°I8 90°28 €L°I8 €S°I8 1./s1/21
0L'06 €0°T6 80°'16 S£°88 PHI'I8 €1°28 6L°18 09°18 1./9/21
28°06 91°16 12°16 #%Hb°88 61°18 91°28 #8°I8 €9°18 1./1/21
LT'T6 IS°16 $S°T6 99°88 €Z°'I8 G2°28 26°18 OL°'I8 1L/22/11
P16 SL°16 8L°16 28°88 2¢€°I18 0£°28 66°18 LL°'I8 1L/81/11
99°16 20°26 20°26 86°88 L£'I8 LE€°78 S0°28 28°18 1./ST/11
20°26 "6 9¢°26 €2°68 9y I8 Sb28 vI°28 16°18 1./21/11
P26 TL°26 79°26 LS°68 LS°I8  ¥S°78  ¥2°28 66°18 I1L/01/11
6G°26 68°26 I18°26 S9°68 09°'I8 85°28 82°28 S0°28 IL/6/11
78°2 0l°'¢6 2I°€6 S8°68 89°I8 29°28 9¢°28 01°28 1./¢/11
00°¢6 €£°€6 0€°€6 20°06 SL°18 0OL°28 Ob°28 L1°28 1L/2/11
I8°¢6 00°¥6 88°€h 1./L2/01
$9°06 06°18 €6°28 29°28 S€°28 1./92/01

00°28 %0°€8 €L°28 9¥°Z8 1L/2Z/01

10°T6 €0°28 80°€8 8.°28 6¥°28 1./0Z/01

81°'28 LZ°¢€8 06°28 L9°28 T1L/%1/01

62°28 0b°€8 ¥0°€¢8 18°28 1./8/01

LE'Z8 1S5°¢8 €2°¢8 26°28 1L/S/01

I1°¢8 —  €9°¢8 — 1./62/6

26 °¢8 —  15°€8 1L/L7/6

3req

b-LD =90  ¥-SD  F€-LD  7-8D  T-LD  7-9D  Z-SD  HIVId

14 ‘NOILVAJTA

SYFAVT IDANTS ¥dddN ANV ¥dMOT THL J0

SINIOd -dIN HHL 1LV SNOILVAJTH ILVId INIWHTLLIS

-V JdTdVL



175

8V 'S8 L9°S8  69°S8 S9°G8  L9°G8 IS°S8  $8°S8  09°98 w/I1/6
IS°S8  69°G8 I1.°S8 L9°G8 69°S8 $S'S8  .8°S8 19°s8  ¢L/1/8
€5°G8 0L°S8 HL°S8 89°G8 IL°G8 85°S8 06°'S8 ¥9°S8  2L/¥/S
85°G8 9L°S8  6L°S8 ¥L°G8 9L°S8 €9°S8 G6°S8  69°S8 2L/07/¢
09°G8 9L°G8 08°G8 GL°G8 8L°S8 S9°G8  96°G8 0L°S8 2L/%Z/?
99°G8 €8°G8 L8°G8 28°G8 G8°GS8 2L°G8 €0°98 LL°S8 2L/¢/¢
9L°68 06°G8 L6°G8 68°G8 €6°G8 08°S8 2I°98 98°G8 2L/¥I/1
28°68 L6°G8 ¥0°98 L6°G8 10°98 68°S8 6I1°98  26°S8 1L/0¢/2
96°68 91°98 91°98 90°98 €1°98 66°S8 87°98 €0°98 1./S1/21
80°98 91°98 82°98 8I1°98 GZ2°98 11°98 6€£°98 ¥»I'98 1L/9/21
91°'98 $2°98 9£°98 92°98 €£°98 02°98 L¥'98 12°98 1./1/21
LE98 €P°98 95°98 €F°98 2598 OF°98 99°98  0F°98 12/2Z/11
05°98 S5°98 69°98 95°98 99°98 $S°98 6L°98 25°98 IL/8I/TI
¥9°98 L9°98 €8°98 L9°98 6L°98 89°98 26°98 $9°98 IL/SI/I1I
¥8°98 ¥8°98 H0°L8 $8°98 L6°98 88°98 2I°L8 08°98 I1./2I/T11
L6°98 20°L8 €L°L8 86°98 PHI‘L8 €0°L8 €£°L8 9698 T1L/01/11
80°L8 Z1°L8 SE°L8 90°L8 02°L8 €1°L8 ¢€¥°L8 S0°L8 1L/6/11
€2°L8 62°L8 L¥P°L8 8I°L8 €£°L8 62°L8 19°L8 61°L8 1L/S/TI
€EP°L8  OP°L8 €9°L8 9¢°L8 6F°L8  FPL8 LL°L8  62°L8  TL/P/T1
08°L8 L8°L8 80°88 2,°L8 Z6°L8 16°L8 0Z2°88 SL°L8 1./92/01
66°L8 60°88 62°88 ¥6°L8 01°88 L1°88 8F'88 €£6°L8 1./22/01
0T'88 SI'88 1$°88 €0°88 G2°88 GZ°'88 25°88 86°L8 1./0Z/01
6%°88 99°88 28°88 9¥°88 $9°'88 85'88 G6°'88  Lb°'88 IL/%1/0I

areq
€-8D €-LD €-9D €-6D €-$D €-¢D €-2D €-1D dIVId

‘LA ‘NOILVATTI

LANNYTE ANVS TAAIN FHL 1V SNOILVATTH TLVTd INIWNITILIS
€~V JdTdVL



176

¥9°'¥6  €L°¥6  SL°P6  88°¥6 W 'P6  66°F6  L8°¥6  86°¥6 2L/11/6
€L'P6  08°¥6 P8'F6  P6F6  €8°F6  90°G6  P6°F6 90 °S6 L/1/8
I8'¥6 06°¥6 S6°¥6 H0°'S6  €6'¥6  9T°S6  S0°S6  LI'S6 WL/¥/S
88'¥6 86°F6 €0°G6 I1°G6 00°G6 €2°G6 €1°S6 GZ°'S6 2L/0%/¢€
€6°'¥6 20°G6 80°G6 91°G6 S0°S6 LZ27°GS6 91°S6  62°'S6 IL/¥Z/1
$0°66 €1°G6 61°S6 L2°G6 91°G6 8€°S6 82°S6  1I¥°S6 2L/€/?
81°'G6 LZ°S6 vE'S6  H°S6  1£°G6  25°G6  €¥°S6  ¥S'S6  L/¥1/1
0€°66 0FP°S6 L¥'S6  $S°S6  €b°S6  €9°G6 SS°S6  L9°S6 1L/0¢/2I
05°66 09°G6 89°G6 GL'S6 €9°G6  ¥8°S6 LL°G6  88°G6 T1L/ST/Z1
69°G6 18°96 L8°G6 96°GS6 €8°'S6  H0°96 86°S6 60°96 1./9/21
G8°'G6 L6°S6 S0°96 €L°96 66°G6  02°96 91°96 SZ°96 1L/1/21
L2°96 ¥H°96 09°96 85°96 F°96 S9°96 ¥9°96 1L°96 1L/2Z/11
6S°96 8L°96 G896 16°96 HL'96 66°96 66°96 HO°L6 IL/8T/TI
26°96 20°L6 61°L6 €2°L6 LO0°L6  €£°L6  €£°L6  8E°L6 IL/ST/1I
6V L6  85°L6  ZLL6  69°L6  6S°L6  88°L6  I8°L6  L8°L6 T1L/ZT/11
¥8°L6 2€°86 GI'86 0OI'86 10°86 €2°86 S£°86 2€°86 [L/01/1I

ale
G-8D G-LD S§-9D G-6D G-$D G-¢€D G-29 ¢-1D dALVId

"Ld ‘NOILVAJTA

LHAYMNVTY ANVS dOL JHL 1V SNOILVAWUTH JILVId LNIWITLILIS
-V dT7dVL



177

TABLE B-1
PORE WATER PRESSURES FOR THE BOTTOM SAND BLANKET

AND LOWER SLUDGE LAYER
PORE PRESSURE, PSI

PIEZOMETER G5-1 G7-1 G5-2 G5-3 G6-3 G7-3 G5-4 G7-4
INITIAL EL.FT 78.0 78.5 81.0 83.5 83.6 83.9 83.0 86.4
Date

10/15/71 .10 .30 2.50 2.65 2.00 2.15 1.95 1.65
10/21/71 .05 .45 2.80 2.90 2.90 2.30 2.15 1.70
10/28/71 0.0 .30 3.20 3.50 3.50 3,25 2.70 2.50
11/4/71 .10 .25 3.70 4.40 4.15 3.50 3.30 2.75
11/10/71 0.0 .20 3.80 4.30 4.25 4.20 3.35 3.55
11/12/71 0.0 .50 6.20 6.20 6.70 6.65 5.90 5.80
11/15/71 .10 .30 6.10 6.60 6.90 5.90 5.25 5.55
11/18/71 0.0 .30 5.60 6.60 6.50 5.85 4.90 5.35
11/22/71 0.0 .20 4.80 5.85 5.85 5.45 4,55 4.65
12/1/71 0.0 0.0 3.55 5.00 4.90 4.50 4.65 4.00
12/15/71 0.0 .10 3.35 4.45 4,60 4.25 4.55 4.50
12/30/71 0.0 .20 3.15 3.95 4.20 4.05 4.65 4.10
1/13/72 0.0 0.0 2.85 3.60 3.80 3.70 4.25 3.70
2/3/72 .10 0.0 2.60 3.20 3.60 3.50 4.00 3.50
2/24/72 30 0.0 2.40 2.80 3.20 2.90 3.80 3.20
3/20/72 .30 0.0 2.10 2.50 2.70 2.50 3.50 3.00
5/4/72 .20 .10 2.00 2.40 2.50 2.40 3.50 2.90
8/1/72 .30 .30 1.90 2.25 2.30 2.25 3.10 2.40
9/6/72 .25 .40 2.00 2.25 2.25 2.25 3.25 2.60
9/11/72 .50 .35 2.00 2.30 2.45 2.35 2.15 2.65
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TABLE B-2
PORE WATER PRESSURES FOR THE MIDDLE SAND BLANKET

AND UPPER SLUDGE LAYER

PORE PRESSURE, PSI

PIEZOMETER G5-5 G7-5 G5-6 G7-6 Gb5-7 Gb6-7 Gi-7 Gb5-8
INITIALEL.FT88.1 88.3 91.3 91.4 93.9 93.8 94.0 95.5
Date

10/21/71 .30 .20 -- -- -- -- -- --
10/28/71 .60 .50 -- -- -- -- -- --
11/4/71 .70 .75 1.20 1.00 -- -- -- --
11/10/71 .80 1.05 2.10 2.45 1.20 .85 2.35 .95
11/12/71 1.30 1.35 4.60 4.80 4.20 4.00 4.40 2.80
11/15/71 1.10 1.20 3.90 3.95 3.50 3.50 3.75 2.25
11/18/71 1.20 1.25 3.55 3.45 3.10 3.10 3.30 2.00
11/22/71 1.15 1.25 3.00 2.90 2.65 2.65 2.80 1.70
12/1/71 1.00 1.10 2.30 2.10 2.10 2.10 2.10 1.20
12/6 /71 -- -- 2.30 2.20 1.95 1.95 2.00 1.15
12/15/71 1.15 1.15 2.80 2.25 1.80 1.80 1.80 1.50
12/30/71 1.05 1.10 2.41 2.30 1.45 1.45 1.50 1.30
1/1;/72 1.20 1.10 2.50 2.20 1.50 1.35 1.50 1.10
2/3/72 1.20 1.10 2.20 2.00 1.50 1.00 1.50 90
2/24/72 1.30 1.00 2.20 2.00 1.50 1.00 1.90 --
3/20/72 1.40 1.30 2.10 1.70 1.30 1.00 1.60 . 80
5/4/72 2.00 1.40 2.20 2.10 1.70 1.20 2.10 1.30
8/1/72 1.50 1.10 2.00 2.00 1.10 .90 1.60 .25
9/6/72 2.00 1.60 2.10 1.95 1.85% .90 1.60 .05
9/11/72 1.90 1.50 1.80 2.00 1.25 1.00 1.70 .05

*Drilling rig near here at time of reading.
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TALBLE C-1 TOTAL PRESSURE CELL DATA

TOTAL
PRESSURE CELL G7-Horliz. G7-2 Vert. G7-3 Vert.
INITIAL ELEVATION 83. 60. 83.78 83.48

Date I Wt  S# 1 ] S I w S
10/15/71 9.0 4.3 5.0 7.7 3.0 3.5 8.1 3.5 4.1
10/21/71 9.5 4. 5.7 8.2 3.6 4.1 8.3 3.7 4.2
10/28/71 10.8 6.0 6.9 10.1 5.2 6.1 9.2 4.5 5.2
11/4/71 11.8 7.0 8.1 10.2 5.2 6.1 9.8 5.0 6.0
11/10/71 13.9 9.1 10.5 12.8 8.2 9.3 11.1 6.3 7.2
11/12/71 16.3 11.7 13.2  -== === -=- 13.3 8.6 9.8
11/15/71 16.5 11.9 13.4 13.1 8.5 9.7 13.1 8.5 9.7
11/18/71 16.5 11.9 13.4 12.8 8.2 9.3 12.8 8.2 9.3
11/22/71 16.6 12.0 13.5 12.2 7.7 8.8 12.5 8.0 9.1
12/1/71 16.9 12.2 13.7 12.7 8.1 9.2 12.0 7.3 8.6
12/15/71 17.2 12.7 14.2 13.9 9.1 10.5 11.4 6.9 7.9
12/30/71 17.7 13.0 14.6  -=-= === === 11.1 6.3 7.2
1/13/72 17.8 13.1 14.7 15.0 10.2 11.8 10.7 6.1 7.1
2/3/72 18.0 13.2 15.1 15.8 Discontinued 10.5 6.0 7.0
2/24/72 17.9 13.2 14.9 15.9 10.3 5.8 6.8
3/20/72 18.0 13.2 15.1 16.3 10.3 5.8 6.8
5/4/72 18.0 13.2 15.1 16.6 10.2 5.5 6.5
8/1/72 17.3 12.7 14.2 --- 9.5 4.9 5.8
9/6/72 17.3 12.7 14.2 --- 9.7 5.1 6.0

* I - INSTRUMENT READING

+ W - TOTAL PRESSURE, WATER CALIBRATION, Psi

# S- TOTAL PRESSURE, SAND CALIBRATION, Psi

NOTE: CELL G7-2 GAVE ERRATIC DATA (MALFUNCTIONED) AND

THESE VALUES ARE AN AVERAGE OF FOUR DIFFERENT
READINGS.
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TABLE E-1

UNDISTURBED VANE SHEAR STRENGTHS

UPPER SLUDGE LAYER

Elev. below -1/, _ o Vane
sludge top 2-1/2 ft. 5 ft. 7-1/2 ft. Size
Date R* M* S§ R ™M S R M S
10/14/71 0 245 1.23 0O 240 1.70 0 570 2.85 LARGE
10/14/71 0 300 1.50 0O 485 2.43 0 620 3.10 LARGE
10/14/71 0 175 1.75 0 230 2.30 0 330 3.30 INTER.
10/14/71 0 190 1.90 0 200 2.00 0 360 3.60 INTER.
11/11/71 0 255 2.55 20 320 3.00 62 395 3.33 INTER.
11/11/71 0 100 2.00 20 150 3.00 60 265 4.60 SMALL
[-lcvation -25 in. -50 in. -75 in.
3/20,72 35 330 5.90 60 400 6.80 130 465 6.70 SMALL
3/20/72 45 320 5.50 140 380 4.80 185 480 5.90 SMALL
*R ROD FRICTION READING
*M MAX. READING
#S SHEAR STRENGTH, T/M’
LOWER SLUDGE LAYER
Elev. below
. -2- . -5 ft. -7-1/2 ft.
sludge top 2-1/2 ft 5 ft 7-1/
TORQUE WRENCH
11/11/71 170 480 3.10 220 670 4.50 CAPACITY SMALL
EXCEEDED
11/11/71 155 360 4.10 250 545 5.90 OFF SCALE SMALL
Elevation -25 in. -40 in.
3/20/72 340 720 7.60 370 850 9.60 SMALL
3/20/72 560 ~950 7.80 CAPACITY EXCEEDED SMALL

Nk e e g



TABLE FK-2 REMOLDED VANE SHEAR STRENGT!IS

UPPER SLUDGE LAYER

Elev. below Vane
sludge top -2-1/2 ft. -5 ft. -7-1/2 ft. Size
Date Rx M* sS4 R M S R M s
10/14/71 0 180 .90 0 135 .68 0 340 1.70 LARGE
10/14/71 0 210 1.05 0 260 1.30 0 340 1.70 LARGE
10/14/71 0 110 1.10 0 130 1.30 0 190 1.90 INTER.
10/14/71 0 120 1.20 0 120 1.20 0 150 1.50 INTER.
11/11/71 0 135 1.35 20 160 1.40 62 240 1.78 INTER.
11/11/71 0 40 .80 20 70 1.00 55 150 1.90 SMALL
Elevation -25 in. -50 in. -75 in.
3/20/72 25 180 3.10 25 185 3.20 90 240 3.00 SMALL
3/20/72 30 155 2.50 80 230 3.00 130 280 3.00 SMALL

LOWER SLUDGE LAYER
Elev. below
sludge top -z-_1/z ft. -5 ft. -7-1/2 ft.

TORQUE WRENC

11/11/71 155 345 1.90 200 440 2.40 CAPACITY HmaLL
11/11/71 140 280 2.80 205 330 2.50 EXCEEDED SMALL
Elevation -25 in. -40 in.
3/20/72 235 435 4.00 - -- -- SMALL

*R ROD FRICTION READING

*M MAX. READING

#S SHEAR STRENGTH, T/M°



Siudge

teme
nin.

diel reading
in.

~ 104

i

February 15, 1972

oy ENTIONAL CONSO LI CJn

[hA 1A

c-ob ot nnisd warer content 250%, wt. dry spoecimen 2605 patis.

time
min.

dial reaging
in. x 10

time
min.

dial reading
in. x 10

load kg/cmz

load 1 kg/cm?

load 4 kg/(:m2

0.00
0.25
0.50
1.00
2.25
4.00
6.25
9.00
12. 25
16.00
20.25
25.00
36.00
49.00
120.00
240.00
580. 00
1440.00

0
311
395
522
700
836
9238
980

1006
1031
1048
1063
1082
1093
1128
1147
1168
1200

.00
.10
.25
.50
.00
.25
.00
.25
.00
.25
.00
.25
.00
.00
49.
120.
240.
580.
1440.

00
00
00
00
00

0
120
185
250
340
475
575
640
675
705
720
740
750
770
785
825
856
890
930

0.
0.
.25
.50
.00
. 25
.00
. 25
.00
.25
.00
.25
.00
.00

49.
120.
240.
580.
1440.

00
10

00
00
00
00
00

0
115
180
255
355
525
660
760
845
873
903
933
950
977
993

1043
1074
1103
1137

load kg/cm‘2

load 2 kg/crn2

load 8 kg/cm2

0.00 0 0.00 0 0.00 0
0.10 115 0.10 95 0.10 60
0.25 175 0. 25 125 0.25 90
0.50 244 0.50 153 0.50 125
1.00 331 1.00 185 1.00 170
2.25 470 2.25 240 2.25 240
4.00 570 4.00 300 4.00 305
6.25 630 6.25 425 6.25 350
9. 00 670 9.00 480 9.00 390
12. 25 697 12.25 510 12.25 420
16. 00 718 16.00 533 16. 00 440
20. 25 735 20. 25 544 20. 25 460
25.00 750 25.00 560 25.00 475
36.00 765 26.00 570 36.00 495
49. 00 785 49.00 595 - 49.00 510
120. 00 832 120.00 635 120.00 555
240. 00 863 240.00 655 240.00 580
580. 00 897 580.00 675 580. 00 600
1440. 00 937 1440.00 710 1440.00 640
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CONVENTIONAL CONSOLIDATION DATA

Sludge U-3-1, initial water content 306%, wt. dry specimen 23. 9 gms.

February 28, 1972

tirme
min.

dial rcaging
in. x 10

time
min.

dial reading
in. x 10

time
min.

dial reading
in. x 104

load . 1 kg/crn2

load .4 kg/crnZ

load 1.6 kg/cn‘l2

0.00
0.10
0.25
0.50
1.00
2.25
4.00
6.25
9.00
12.25
16.00
20.25
25.00
36.00
49. 00
120.00
240.00
580.00
1400. 00

0
130
175
215
275
390
505
605
690
755
805
835
855
885
905
945
965
995

1025

.00
.10
.25
.50
.00
.25
.00
.25
.00
.25
.00
.25
.00
.00
49.
120.
240.
580.
1480.

00
00
00
00
00

0
65
105
145
210
300
373
423
460
480
495
510
515
530
540
565
590
610
635

.00
.10
.25
.50
.00
.25
. 00
.25
. 00
.25
.00
.25
.00
.00

49.
120.
240.
580.
1450.

00
00
00
00
00

0
70
110
153
210
283
337
380
409
455
483
500
512
525
537
565
583
605
635

load . 2 kg/cmZ

load .8 kg/cm2

load 3.2 kg/cnrl2

0.00
0.10
0.25
0.50
1.00
2.25
4.00
6.25

. 9.00
12.00
16.00
20. 25
25.00
36.00
49. 00
120.00
240.00
580.00
1460.00

0
50
85

120
175
260
330
380
420
450
470
490
500
520
535
575
600
630
665

0.
0.
0.
0.
1.
2.
4.
6.
9.
12.
16.
20.
25.
36.

00
10
25
50
00
25
00
25
00
25
00
25
00
00

49.00

120.
240.
580.
1440.

00
00
00
00

0
70
110
155
220
320
410
465
485
495
500
505
515
520
525
545
560
570
585

B N=-OO0OO0O

.00
.10
.25
.50
.00
.25
. 00

6.25

9.
12.
16.
20.
25.
36.
49.

120.
120.
580.
1410.

00
25
00
25
00
00
00
00
00
00
00

0
95
140
192
262
360
428
475
507
325
540
550
560
570
578
603
620
640
660

load . 8 kg/cm®

720.00

190



TABLE F-3 CONVENTIONAL CONSOLIDATION DATA

185

Sludge u-3-3, initial water content 271%, wt. dry specimen 24.7 gms.
March 11, 1972

time
min.

dial reading time
in. x 104 min.

dial reading
in. x 10

time
min.

dial reaging
in. x 10

load .1 kg/cm2

load . 4 kg/cmZ

load 1.6 kg/cmz

0.00 0 0.00 0 0.00 0
0.10 70 0.10 43 0.10 87
0.25 105 0.25 72 0. 25 135
0.50 145 0.50 105 0.50 195
1.00 200 1.00 150 1.00 280
2.25 290 2.25 227 2.25 420
4.00 375 4,00 290 4. 00 498
6.25 455 6.25 337 6.25 550
9. 00 510 9.00 372 9.00 587
12.25 555 12. 25 400 12.25 600
16. 00 585 16.00 420 16.00 605
20. 25 610 20. 25 433 20. 25 610
25.00 620 25.00 448 25.00 615
36.00 655 36.00 468 36.00 622
49. 00 665 49.00 485 49. 00 628
120. 00 700 120.00 540 120. 00 640
240.00 725 240. 00 568 240. 00 650
580. 00 760 580. 00 583 580. 00 662
1580. 00 795 1460.00 606 1480. 00 682
.2 2 2
load .2 kg/cm load .8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 30 0.10 62 0.00 75
0.25 53 0. 25 93 0. 25 126
0.50 80 0.50 127 0.50 185
1.00 120 1.00 173 1.00 263
2.25 187 2.25 242 2.25 378
4.00 247 4. 00 286 4.00 464
6.25 293 6.25 307 6.25 520
9. 00 327 9.00 320 9.00 551
12. 25 350 12.25 330 12.25 570
16. 00 373 16.00 337 16. 00 580 *
20. 25 388 20. 25 342 20. 25 583
25.00 400 25.00 348 25.00 590
36.00 415 36.00 357 36.00 602
49. 00 428 49.00 365 49,00 610
120.00 468 120.00 382 120. 00 627
240. 00 492 240. 00 392 240. 00 642
580. 00 520 580. 00 412 580. 00 658
1470. 00 555 1450. 00 460 1430. 00 683

load .8 kg/cm2

1444. 00

192
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TARLE F-4 CONVENTIONAL CONSOLIDATION DATA

Sludge U-3-7, initial water content 299%, wt, dry specimen 23.0 gms.
March 27, 1972

time dial reading time dial reading time - dial reading
min. in. x 10 min. in. x 10 min. in. x 10
load .1 kg/cm2 load . 4 kg/crn2 load 1.6 kg/crnZ
0.00 0 0.00 0 0.00 0
0.10 125 0.10 40 0.10 90
0.25 170 0.25 63 0.25 145
0.50 220 0.50 93 0.50 213
1.00 300 1.00 133 1.00 292
2.25 440 2.25 200 2.25 410
4,00 585 4.00 262 4,00 475
6.25 730 6.25 340 6.25 516
9.00 850 9.00 383 9.00 547
12.25 945 12.25 401 12.25 575
16.00 1020 16. 00 414 16. 00 594
20. 25 1075 20. 25 423 20. 25 601
25.00 1110 25.00 430 25.00 610
36.00 1145. 36.00 440 36.00 622
49, 00 -—- 49. 00 448 49, 00 -———
120.00 1215 - 120.00 460 120.00 637
240. 00 1235 240.00 468 240. 00 643
580.00 1270 580.00 478 580. 00 655
1660.00 1310 1430.00 500 1450. 00 660
2 2 2
load .2 kg/cm load . 8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 35 0.10 50
0.50 &3 0.50 103 lever hit floor
1.00 122 1. 00 140 increment no good
2.25 187 2.25 195
4. 00 241 4.00 250
6.25 283 6.25 298
9. 00 315 - 9.00 322
12.25 335 12.25 225
16.00 354 16.00 345
20. 25 368 20. 25 351
25.00 380 25.00 355
36.00 400 36.00 365
49. 00 410 49,00 373
120.00 440 120. 00 389
240. 00 460 240.00 398
580. 00 478 580.00 406

1460. 00 498 1420.00 422 1530. 00 600
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TABLE F-5 CONVENTIONAL CONSOLIDATION DATA
Sludge U-3-8, initial water content 272%, wt. dry specimen 24.5 gms.

April 3, 1972

time dial reading time dial reaging time dial reading

min. in.x 104 min. in. x 10 min. in. x 104
load .1 kg/cm2 load .4 kg/cmZ load 1.6 kg/cm2
0.00 0 0.00 0 0.00 0
0.10 115 0.10 60 0.10 108
0.25 155 0.25 93 0.25 158
0.50 200 0.50 130 0.20 210
1.00 260 1.00 182 1.00 280
2.25 370 2.25 253 2.25 383
4.00 470 4.00 325 4. 00 433
6.25 590 6.25 407 6.25 465
9.00 690 9.00 465 9.00 488
12. 25 735 12.25 510 12,25 503
16. 00 760 16.00 532 16.00 515
.20. 25 775 20. 25 553 20. 25 525
25.00 785 25.00 . 570 25.00 532
36.00 805 36.00 -—- 36.00 550
49.00 815 49.00 --- 49.00 558
120.00 840 120. 00 640 120.00 580
240. 00 560 240.00 657 240.00 593
580. 00 890 580. 00 673 580. 00 610
1465.00 925 1420.00 713 1440. 00 630
2 2 2
load .2 kg/cm load .8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 40 0.10 43
0.25 63 0.25 - 145
0.50 95 porous stone hung up 150.00 210
1.00 138 on ring--reading of 1.00 295
2.25 205 340 obtained--new 2.25 428
4.00 253 increment applied 4.00 515
6.25 290 6.25 570
9.00 315 9.00 600
12.25 333 12.25 622
16.00 345 16.00 637
20. 25 358 20. 25 648
25.00 368 25.00 657
36.00 325 36.00 670
49.00 397 49.00 678
120. 00 430 120. 00 705
240.00 453 240. 00 722
580. 00 480 580. 00 743
1430. 00 518 1425. 00 770



TADLE I'-6 CONVENTIONAL CONSOLIDATION LDATA

Sludge U-3-9, initial water content 313%, wt. dry specimen 22.06 gias.
April 9, 1972

time dial reading time dial reading time dial reading

min. in. x 104 min. in. x 10 min. in. x 104

load .1 kg/cn12 load . 4 kg/crn2 load 1.6 kg/'crnZ
0.00 0 0.00 0 0.00 0
0.10 90 0.10 53 0.10 115
0.25 130 0. 25 77 0.25 158
0.50 175 0.50 108 0.50 208
1.00 240 1.00 150 1.00 275
2.25 355 2.25 215 2.25 378
4.00 505 - 4.00 270 4.00 465
6.25 660 6.25 320 6.25 512
9.00 795 9.00 405 9.00 532
12.25 925 12. 25 472 12.25 550
16.00 1035 16.00 518 16.00 565
20. 25 1125 20. 25 550 20. 25 580
25.00 1185 25.00 580 25.00 590
36.00 1255 36.00 610 36.00 602
49. 00 1295 49. 00 625 49. 00 610
120.00 1365 120.00 655 120.00 632
240. 00 1405 240. 00 690 240.00 645
580. 00 1435 580.00 715 580.00 660
1495. 00 1495 1450. 00 748 1430. 00 682

2 2 2
load . 2 kg/cm load . 8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 30 0.10 62 0.10 85
0.25 50 0. 25 90 0.25 130
0.50 73 0.50 115 0.50 182
1.00 110 1.00 148 1.00 260
2.25 175 2.25 180 2.25 390
4.00 230 4.00 200 4.00 505
6.25 280 6.25 215 6.25 590
9.00 315 9.00 225 9.00 635
12.25 350 12.25 237 12.25 662
16.00 380 16.00 243 16.00 682
20. 25 400 20. 25 252 20. 25 695
25.00 415 25.00 258 25.00 705
36.00 440 36.00 270 36.00 720
49. 00 460 49.00 275 49. 00 730
120.00 495 120.00 292 120.00 755
240. 00 520 240.00 305 240.00 770
580. 00 550 580. 00 315 580.00 782
1460.00 595 1440. 00 333 1480. 00 802
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TABLE F-7 CONVENTIONAL CONSOLIDATION DATA

Sludge L-2-1 bag 1, initial water content 256%, wt. dry specimen 26. 2
April 18, 1972

gms.

time dial reailing time dial reading time dial reading

min. in. x 10 min. in. x 104 min. in. x 10

load .1 kg/cm2 load . 4 kg/cmz load 1.6 kg/cm2
0.00 0 0.00 0 0.00 0
0.10 120 0.10 45 0.10 60
0.25 170 0. 25 75 0.25 90
0.50 215 0.50 110 0.50 128
1.00 280 1.00 155 1.00 180
2.25 590 2.25 230 2.25 255
4.00 510 4.00 293 4.00 315
6.25 630 6.25 335 6.25 355
9.00 730 9.00 370 9.00 382
12.25 820 12. 25 395 12. 25 400
16. 00 895 16.00 412 16. 00 410
20. 25 945 20.25 430 20. 25 420
25.00 985 25.00 443 25.00 430
36.00 1030 36.00 465 36.00 445
49. 00 1055 49.00 475 49. 00 455
120. 00 1105 120.00 515 120. 00 480
240.00 1140 240.00 535 240.00 500
580.00 1170 580. 00 557 580. 00 518
1430. 00 1210 1470. 00 645 1480 540
2 2 2

load .2 kg/cm load .8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 43 0.10 60 0.10 75
0. 25 70 0. 25 93 0. 25 115
0.50 100 0.50 133 0.50 162
1.00 140 1.00 188 1.00 230
2.25 210 2.25 275 2.25 330
4,00 265 4.00 350 4.00 395
6.25 312 6.25 443 6.25 440
9.00 352 9.00 493 9. 00 470
12. 25 383 12.25 515 12.25 495
16. 00 405 14.00 535 16.00 512
20. 35 422 20. 25 545 20. 25 525
25.00 440 25.00 553 25.00 530
36.00 458 36.00 563 36.00 545

- 49.00 472 49.00 567 49. 00 552
120. 00 515 120.00 572 120.00 572
240.00 540 240. 00 578 240. 00 590
580. 00 570 580.00 581 580. 00 608
1450. 00 595 1530.00 600 1445. 00 620

-
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TABLE I'-8 BISHOP CONSOLIDATION DATA

Sludge U-3-10, initial water content 283%, wt. dry specimen 18.1 gms.
April 29, 1972

time dial reading time dial reading time dial reading

min. in. x 104 min. in. x 10 min. in. x 10

load .1 kg/'c:m2 load . 4 kg/cm2 load 1.6 kg/crn2
0.00 0 0.00 0 0.00 0
0.10 220 0.10 55 0.10 65
0.25 270 0.25 80 0.25 95
0.50 330 0.50 110 0.50 132
1.00 420 1.00 155 1.00 182
2.25 560 2.25 225 2.25 255
4.00 670 4.00 275 4.00 315
6.25 745 6.25 315 6.25 365
9.00 800 9.00 345 9. 00 395
12. 25 840 12.25 365 12.25 420
16.00 860 16.00 385 16. 00 442
20. 25 875 20. 25 400 20. 25 458
25.00 885 25.00 410 25.00 470
36.00 905 36.00 435 36.00 490
49. 00 920 49.00 450 49. 00 505
120. 00 950 120.00 495 120.00 545
240.00 975 240.00 525 240. 00 570
580. 00 1010 580.00 565 580. 00 600
1440. 00 1045 1460.00 600 ~1420.00 630

. 2 2 2

load . 2 kg/cm load . 8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 45 0.10 60 ‘ 0.10 55
0.25 70 0.25 95 0. 25 85
0.50 100 0.50 130 0.50 120
1.00 135 1.00 180 1.00 165
2.25 195 2.25 258 2.25 232
4.00 235 4.00 318 4.00 288
6.25 270 6.25 365 6.25 332
9.00 295 9.00 402 9.00 362
12. 25 315 12. 25 430 12.25 388
16. 00 330 16.00 450 16.00 405
20.25 345 20. 25 468 20. 25 420
25.00 355 25.00 480 25.00 430
36.00 370 36.00 502 i 36.00 450
49.00 385 49.00 520 : 49. 00 465
120. 00 425 120.00 560 120. 00 505
242.00 460 240.00 590 240. 00 528
580.00 500 580.00 625 580. 00 548

1415. 00 535 1450.00 660 1440. 00 575
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TABLE F-9 BISHOP CONSOLIDATION DATA

Sludge U-3-12, initial water content 278%, wt. dry specimen 18.7 gms.
May 16, 1972

time dial reading time dial reading time dial reaging

min. in. x 104 min. in. x 10 min. in. x 10
load .1 kg/cmZ load . 4 kg/'crn2 load 1.6 kg/crnZ
0.00 0 0.00 0 0.00 0
0.10 130 0.10 40 0.10 62
0.25 190 0.25 62 0.25 93
0.50 262 0.50 90 0.50 130
1.00 365 1.00 130 1.00 178
2.25 540 2.25 193 2.25 252
4.00 675 4.00 240 4.00 312
6.25 775 6.25 275 6.25 355
9.00 835 9.00 298 9.00 390
12.25 870 12.25 320 12. 25 412
16.00 890 16. 00 338 16.00 433
20. 25 910 20. 25 355 20. 25 450
25.00 920 25.00 362 25.00 462
36.00 945 36.00 385 36.00 483
49.00 955 49.00 405 49. 00 495
120.00 980 120.00 440 120.00 535
240.00 1005 240.00 472 240.00 562
580. 00 1040 580. 00 515 580. 00 590
1440.00 1070 1470.00 560 1490. 00 622

2 2 2

load . 2 kg/cm load . 8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 35 0.10 555 0.10 55
0.25 55 . 0.25 90 0.25 85
0.50 78 0.50 123 0.50 115
1.00 110 1.00 175 1.00 162
2.25 160 2.25 248 2.25 230
4.00 203 4.00 308 4.00 280

- 6.25 225 6.25 355 6.25 328
9.00 245 9.00 387 9.00 355
12.25. 262 12.25 412 12. 25 380
16. 00 275 16.00 532 16.00 400
20. 25 285 20. 25 448 20. 25 412
25.00 295 25.00 462 25.00 428
36.00 313 36.00 482 36.00 448
49. 00 325 49.00 495 49.00 . 458
120.00 358 120.00 540 120. 00 493
240.00 385 240.00 572 240.00 518
© 580.00 412 580. 00 608 580. 00 540

1440.00 450 1440. 00 640 1480. 00 570



TABLE F-10
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BISITOP CONSOLIDATION DATA

Sludge L-2-2 bag 1, initial water content 274%, wt. dry specimen 19.0
May 24, 1972

gms.

time dial reading time dial reading time dial reading
min. in. x 10 min. in. x 10 min. in. x 104
load .1 kg/cm2 load . 4 kg/'crnZ load 1.6 kg/crn2
0.00 0 0.00 0 0.00 0
0.10 195 0.10 38 0.10 60
0.25 265 0.25 62 0.25 90
0.50 340 0.50 88 0.50 125
1.00 445 1.00 125 1.00 175
2.25 625 2.25 187 2.25 243 -
4. 00 800 4.00 235 4. 00 300
6.25 945 6.25 272 6.25 338
9.00 1050 9.00 298 9.00 370
12.25 1110 12.25 320 12. 25 395
16. 00 1150 16.00 340 16.00 405
20. 25 1175 20. 25 350 20. 25 421
25.00 1190 25.00 365 25.00 432
36.00 1210 36.00 385 36.00 458
49.00 1220 49,00 400 49. 00 468
120.00 1255 120. 00 940 120.00 505
240. 00 1270 240. 00 470 240.00 528
580. 00 1290 580. 00 500 580. 00 550
1440. 00 1440.00 535 1530. 00 580
2 2 2
load .2 kg/cm load . 8 kg/cm load 3.2 kg/cm
0.00 0 0.00 0 0.00 0
0.10 25 0.10 62 0.10 60
0.25 45 0. 25 90 0.25 90
0.50 63 0.50 123 0.50 122
1.00 90 1.00 170 1.00 167
2.25 135 2.25 240 2.25 234
4. 00 175 4,00 298 4. 00 285
6.25 205 6.25 342 6.25 327
9.00 225 9.00 372 9.00 353
12. 25 242 12. 25 400 12.25 373
16.00 255 16. 00 418 16. 00 390
20. 25 263 20. 25 432 20. 25 400
25.00 273 25.00 448 25.00 412
36.00 285 36.00 470 36.00 435
49. 00 300 49. 00 485 49.00 450
120.00 330 120.00 522 120.00 478
240.00 355 240.00 550 240. 00 498
580.00 383 580. 00 578 580.00 520
1440. 00 420 1440.00 610 1510. 00 545

i3
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TABLE F-11 BISHOP CONSOLIDATION DATA
Sludge L-2-3 bag 1, initial water content 263%, wt. dry specimentl?. 4

June 5, 1972 gms.
time dial reading time dial reading time dial reading
min. __in. x 10% min. ___in. x 10 min. in. x 10

load .1 kg/cn12 load . 4 kg/cnnZ load 1.6 kg/'cnn2
0.00 0 0.00 0 0. 00 0
0.10 140 0.10 45 0.10 64
0.25 203 0.25 70 0.25 92
0.50 232 0.50 98 0.50 123
1.00 372 1.00 136 1.00 170
2.25 545 2.25 198 2.25 238
4.00 695 4.00 244 4.00 292
6.25 818 6.25 280 6.25 337
9.00 890 9.00 305 9.00 363
12.25 940 12.25 322 12. 25 390
16.00 970 16.00 338 16.00 406
20. 25 990 20.25 352 20. 25 420
25.00 1042 25.00 363 25.00 430
36.00 1020 36.00 385 36.00 453
49. 00 1032 49. 00 --- 49. 00 480
120.00 1058 120. 00 433 120.00 503
240.00 1075 240.00 463 240. 00 525
580. 00 1095 580.00 492 580. 00 548
1440. 00 1125 1400.00 522 1490. 00 580
' 2 2 2
load .2 kg/cm load . 8 kg/cm load 3.2 kg cm”
0.00 0 0.00 0 0.00 0
0.10 30 . 0.10 63 0.10 60
0.25 45 0. 25 93 0.25 85
0.50 63 0.50 127 0.50 116
1.00 90 1.00 176 1.00 160
2.25 133 2.25 248 2.25 225
4.00 165 4.00 304 4.00 280
6.25 190 6.25 347 6.25 320
9.00 208 9.00 375 9.00 348
12.25 222 12.25 400 12.25 370
16.00 233 16.00 418 16.00 391
20. 25 243 20. 25 432 20. 25 405
25.00 251 25.00 443 25.00 4.8
36.00 270 36.00 463 36.00 435
49.00 278 49.00 475 49.00 468
120. 00 308 120. 00 513 120.00 485
240.00 328 240.00 538 240.00 507
580.00 358 580. 00 565 580. 00 534

1460.00 390 1570. 00 590 1270. 00 560



TABLE F-12 BISHOP CONSOLIDATION DATA
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Sludge U-5-2, initial water content 263%, wt. dry specimen 19.6 gms.
June 19, 1972

T Y IS ’1

time dial rcading time dial reading time dialrcaging
min. in. x 104 min. in. x 10 min. in. x 10
load .1 kg/crnz load . 4 kg/brnz load 1.6 kg/crn2
0.00 0 0.00 0 0.00 0
0.10 89 0.10 50 0.10 65
0. 25 150 0.25 75 0. 25 100
0.50 210 0.50 105 0.50 135
1.00 290 1.00 150 1.00 187
2.25 420 2.25 215 2.25 265
4.00 527 4.00 265 4,00 325
6.25 595 6.25 303 6.25 377
9.00 630 9.00 330 9.00 413
12.25 660 12.25 350 12. 25 442
16.00 678 16.00 366 16.00 463
20. 25 690 20. 25 382 20. 25 480
25.00 700 25.00 393 25.00 495
36.00 715 36.00 418 36.00 520
49, 00 725 49.00 428 49. 00 535
120.00 753 120.00 473 120.00 575
240. 00 773 240.00 502 240. 00 600
580. 00 798 580. 00 538 580. 00 633
1440. 00 830 1430.00 580 1470.00 670
2 2 2
load .2 kg/cm load . 8 kg/cm load . 8 kg/cm
0.00 0 0.00 0 0.00 0
0.10 35 0.10 64 1095. 00 67
0. 25 53 0. 25 96
0.50 77 0.50 134
1.00 108 1.00 187 2
2.25 156 2.25 265 load .1 kg/em
4.00 192 4.00 328
6.25 220 6.25 375 0.00 0
9.00 235 9.00 410 245,00 377
12.25 253 12. 25 438
16.00 265 16.00 460
20. 25 272 20. 25 474
25.00 283 25.00 490
36.00 295 36.00 510
49. 00 312 49. 00 523
120.00 342 120.00 570
240.00 365 240.00 595
580. 00 398 580.00 628
1430. 00 435 1470.00 670



TADDLI -0 0 SINCILED INCR MENT CONSOLIDATION DAl A

Studpe U-2-4 Sludge U-3-6
initial water content 302% initial water content ?
in:tial void ratio 5. 64 initial void ratio 5. 48
wt. dry specimen 23.1 gms. wt. dry specimen 23. 7 gms.
load 0-. 24 kg/cm® 3/23/72 load 0-.24 kg/em® 3/25/72
time dial reading time dial reading
min. in. x 104 min. in. x 104
0. 00 0 0.00 0
0.10 190 0.10 220
0.25 273 0. 25 330
0.50 378 0.50 455
1.00 520 1.00 630
2.25 776 2.25 930
4. 00 1018 4. 00 1185
6.25 1200 6.25 1358
9.00 1328 9.00 1470
12.25 1397 12.25 1520
16.00 1448 16.00 1550
20. 25 1472 20. 25 1570
25.00 1490 25.00 1585
36.00 1510 36.00 1605
49. 00 1518 49.00 1620
120.00 1540 120. 00 1648
240.00 1558 240. 00 1678
580. 00 1570 580. 00 1705
1312.00 1597 1440. 00 1745

Sludge U-3-5
initial water content 291%
initial void ratio 5. 40

wt. dry specimen 24.0 gms.
2

load 0-.24 kg/cm® 3/24/72
0.00 0
0.10 265
0.25 380
0.50 500
1.00 680
2.25 993
4.00 1258
6.25 1448
9.00 1550

12.25 1610
16.00 1640
20.25 1660
25.00 1673
36.00 1705
49,00 1710
120. 00 1737
240. 00 1755
580. 00 1783

1450. 00 1805
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TABLE F-15 UNDISTURBED SAMPLE DATA, RAPID LOAD INCREMENTS

Sample B test No. 1 Sample B test No. 2
initial water content 237% initial water content 2347
initial void ratio 4.65 initial void ratio 4.65
wt. dry specimen 29.5 gms. wt. dry specimen 29.5 gms.
load applied every 25 min. 10/12/72 load applied every 15 min. 10/17/72
load dial reading load 2 dial reading
kg/cm in. x 104 kg/cm in. x 104
0.00 0 0.00 0
0.10 296 0.05 126
0.20 548 0.075 192
0.30 792 0.10 255
0.40 1002 0.15 409
0.60 1382 0.20 500
0.80 1714 0.25 649
1.00 1974 0.30 806
1.50 2450 0.35 919
2.00 2775 0.40 1025
3.00 3213 0.50 1226
4.50 3602 0.60 1396
0.80 1712
1.00 1959
1.50 2422
2,00 2733
1.00 2654
0.40 2427
1.04 2554
1.75 2727
2.24 2893
3.24 3240
4,24 3513
0.40 3000

0.10 2638
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TABLE F-15.—--Continued.

Sample F test No. 1 Sample F test No. 2
initial water content 165% initial water content 168%
initial void ratio 3.50 initial void ratio 3.52
wt. dry specimen 39.4 gms. wt. dry specimen 38.8 gms.
load applied every 15 min. 11/9/72 load applied every 15 min. 11/15/72
load dial reading load dial reading
kg/cm in. x 104 kg/cm in. x 104
0.00 0 0.00 0
0.05 65 0.05 58
0.10 132 0.10 121
0.20 261 0.20 233
0.30 408 0.30 357
0.40 517 0.40 449
0.50 607 0.50 536
0.60 707 0.60 615
0.70 816 0.70 699
0.80 919 0.80 796
1.00 1093 1.00 993
1.50 1497 1.50 1414
2.00 1838 2.00 1735
3.00 2272 3.00 2192
4.50 2691 4.50 2625
1.00 2412 1.00 2335

0.10 1904 0.10 1799
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TABLE F-16 UNDISTURBED SAMPLE DATA

Sample B test no. 3, initial water content 230%Z, wt. dry specimen 30.4
Oct. 23, 1972

gms

time

time dial reading dial reading time dial reading
min. in. x 104 min. in. x 104 min. in. x 104
load .05 kg/cm2 load .40 kg/cm2 load 1.6 kg/cm2
0.00 0 0.00 0 0.00 0
0.10 43 0.10 74 0.10 93
0.25 54 0.25 107 0.25 133
0.50 66 0.50 145 0.50 178
1.00 78 1.00 195 1.00 245
2.25 90 2.25 259 2.25 351
4.30 96 4.00 300 4.00 431
6.25 99 6.25 329 6.25 488
12.25 103 9.00 350 12.25 559
36.00 111 12.25 364 25.00 620
750.00 132 16.00 373 50.00 655
2 36.00 405 100.00 690
load .10 kg/cm 100.00 443 720.00 780
0.00 0 720.00 514 2
0.10 32 9 load 3.2 kg/cm
0.25 45 load .80 kg/cm 0.00 0
0.50 60 0.00 0 0.10 91
1.00 78 0.10 95 0.25 126
2.25 99 0.25 133 0.50 166
4.00 111 0.50 180 1.00 225
6.50 120 1.00 248 2,25 322
9.00 125 2.25 352 4.00 410
12.25 130 4.00 430 6.25 466
100.00 158 6.25 485 9.00 510
700.00 185 9.00 520 12.25 542
2 12.25 540 20.00 583
load .20 kg/cm 20.00 591 40.00 630
0.00 0 100.00 664 100.00 660
0.10 48 310.00 720 300.00 706
0.25 68 730.00 749 700.00 738
0.50 92 2
1.00 122 load 1.8 kg/cm
2.25 158 0.00 0
4.00 180 720.00 -259
6.25 194 )
9.00 204 load .1 kg/cm
12.25 212 0.00 0
36.00 235 375.00 =575
190.00 270
710.00 296
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TABLE F-17 UNDISTURBED SAMPLE DATA

Sample b test no. 4, initial water content 196%, wt. dry specimen 34.7

Nov. 1, 1972 gms
time dial reading time dial reading time dial reading
min. in. x 10% min. in. x 10% min. in. x 10
load .05 kg/cm2 load .40 kg/cm2 load 1.6 kg/cm2
0.00 0 0.00 0 0.00 0
0.10 33 0.10 48 0.10 77
0.25 44 0.25 66 0.25 106
0.50 55 0.50 87 0.50 138
1.00 69 1.00 104 1.00 183
2.25 85 2.25 122 2.25 260
4.00 96 4.00 139 4.00 331
7.00 106 6.25 154 6.25 393
9.00 109 12.25 167 9.00 446

12.25 113 16.00 173 15.00 542
16.00 116 66.00 203 25.00 603
27.00 121 100.00 214 55.00 680
100.00 133 300.00 226 100.00 720
300.00 142 675.00 236 300.00 770
730.00 149 (bad load increment) 685.00 782
load .10 kg/cm2 load .80 lgg/cm2 load 3.2 kg/cm2
0.00 0 0.00 0 0.00 0
0.10 12 0.10 100 0.10 72
0.25 20 0.25 140 0.25 44
0.50 27 0.50 185 0.50 132
1.00 38 1.00 256 1.00 170
2.25 52 2.25 352 2.25 239
4.00 65 4.00 429 4.00 298
6.25 75 6.50 506 6.25 350
9.00 81 9.00 553 9.00 397
16.00 90 12.25 602 15.00 464
30.00 98 16.00 638 25.00 520
100.00 115 25.00 693 55.00 588
710.00 138 54.00 765 100.00 623
2 100.00 810 300.00 691
load .20 kg/cm 300.00 862 720.00 708
0.00 0 735.00 758 2
0.10 22 load .80 kg/cm
0.25 33 0.00 0
0.50 41 745.00 ~-228
1.00 65 2
2.25 87 load .10 kg/cm
4.00 100 0.00 0
6.25 112 670.00 =503
9.00 122
15.00 133
30.00 142
100.00 153
300.00 164
775.00 173
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TABLE F-18 UNDISTURBED SAMPLE DATA

Sample F test no. 3, initial water content 170%, wt. dry specimen 39.0

Nov. 27, 1972 gms
time dial reading time dial reading time dial reading
min in. x 10% min. in. x 10% min. in. x 104
load .05 kg/cm2 load .40 kg/cm2 load 1.6 kg/cm2
0.00 0 0.00 0 0.00 0
0.10 30 0.10 45 0.10 75
0.25 38 0.25 61 0.25 102
0.50 46 0.50 80 0.50 134
1.00 57 1.00 107 1.00 182
2.25 68 2,25 141 2.35 258
4.00 74 4.00 165 4.00 325
6.25 78 6.25 180 6.25 379
9.00 80 9.00 190 9.00 423

12.25 82 12.25 198 12.25 451
100.00 90 32.00 218 20.00 500
830.00 99 100.00 242 40.00 545

2 700.00 281 100.00 597
load .10 kg/cm 2 300.00 650
0.00 0 load .80 kg/cm 730.00 683
0.10 18 0.00 0 2
0.25 23 0.10 67 load 3.2 kg/cm
0.50 29 0.25 92 0.00 0
1.00 36 0.50 119 0.10 79
2.25 45 1.00 154 0.25 108
4.00 50 2,25 206 0.50 143
6.25 54 4,00 242 1.00 196
9.00 56 6.25 268 2.25 287
100.00 73 9.00 287 4,00 368
600.00 86 12.25 302 6.25 437
2 40.00 360 9.00 493
load .20 kg/cm 100.00 385 12.25 - 534
0.00 0 200.00 405 30.00 635
0.10 26 720.00 435 50.00 670
0.25 34 110.00 720
0.50 44 275.00 750
1.00 56 750.00 783
2,25 72 2
4.00 82 load .80 kg/cm
6.25 90 0.00 0

12.25 99 660.00 =277
113.00 127 2
740.00 152 load .10 kg/cm

0.00 : 0

650.00

-593



203

TABLE F-19 UNDISTURBED SAMPLE DATA

Sample F test no. 4, initial water content 163%, wt. dry specimen 40.1
Dec. 6, 1972

gms

time dial reading time dial reading time dial reading
min in. x 10 min. in. x 104 min. in. x 10%
load .05 kg/cm2 load .40 kg/cm2 load 1.6 kg/cm2
0.00 0 0.00 0 0.00 0
0.10 28 0.10 28 0.10 75
0.25 34 0.25 37 0.25 99
0.50 40 0.50 48 0.50 126
1.00 47 1.00 62 1.00 167
2.25 57 2.25 84 2.25 239
4.00 63 4.00 100 4.00 305
6.25 67 6.25 112 6.25 354
9.00 70 9.00 121 9.00 395
12.25 71 12.25 127 12.25 426
16.00 73 32.00 145 16.00 450
175.00 82 100.00 163 32.00 500
710.00 87 300.00 180 70.00 548
2 660.00 192 134.00 581
load .10 kg/cm 2 414.00 624
0.00 0 load .80 kg/cm 1200.00 668
0.10 16 0.00 0 2
0.25 20 0.10 70 load 3.2 kg/cm
0.50 25 0.25 90 0.00 0
1.00 30 0.50 113 0.10 76
2.25 38 1.00 146 0.25 99
4.00 43 2.25 198 0.50 130
6.25 46 4.00 239 1.00 175
9.00 49 6.25 267 2.25 251
12.25 51 9.00 291 4.00 323
.16.00 52 12,25 309 6.25 388
100.00 64 32.00 350 9.00 442
725.00 77 100.00 391 12.25 482
2 300.00 421 16.00 515
load .20 kg/cm 740.00 446 32.00 593
0.00 0 100.00 665
0.10 23 400.00 725
0.25 29 970.00 757
0.50 36 2
1.00 45 load .80 kg/cm
2.25 58 0.00 0
4.00 67 430.00 -264
6.25 73 2
9.00 78 load .10 kg/cm
16.00 84 0.00 0
67.00 99 930.00 -558
360.00 117
710.00 127
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APPENDIX G

COMPUTER PROGRAM FOR LOAD INCREASING LINEARLY WITH
TIME FOLI.OCWED BY AN INSTANTANEOUS SUTRCHARGE APPLICATION

PROGHAM SLUDGE ( INPUTSOUTPUT)
DIMENSION P (20209) e TP(2U0200U)e UL(200)s UZ(Z200) s PP(20U0) e 1 (200
le TM1(200)eTM2(201)

FN = CONTROL CARD (1f=1i,0 rPrOOGKRAM TERMINATES)

NCV = COFF, OF CuNSUOLe A 10%##3 INe#u2/M[n, (CVL) INTEGER FORM
NH = AVGe THICHRWNESS uf LAYEKR (ine) DURINLO LINEAR LUADING

NDT = TOTaL TIME 9F LINEAR LUAD IN MIN,

1 '= INCREMFMTS OF TIME SOLVED AF TER SUKRCHAKRGE APPLICATIUN

CV]l = CCtFa. OF Cuvdube UF LAYDK DURING LINEAK LUAULINO

GAaMl TU LAMI = UNIT wlTe UF MATL2S UScD IN LINEAR LUAD SEOME
GAMG = UNIT wTe 1F SURCHARGE MAT2L

HY TO H3 = HT, OF MAT2LS IN LINEAR LOAD SEGMENT

Ha = Hles OF SUKCHAKROLE MAT=zL

Cv2 = COtEFe. OF CUNSOLe UF LAYEKR AFTER SURCHARGE LUADING
P(leM) TU P(9,M) = INITIAL VALUES OF PORE PRESSURE

ULT> = ULTIMATE PRIMARY SETILeMENT UNDER TOTAL LOAD (IN.)

HN1 INITIAL THICKNESS OF LAYER (INe)

i
50 RFEAI 3 Ewn
3 FOrRMAT (F1043)
IF(ENebWela)3C0ew0
40 READ 2eNCVeiNHeN['"TeTeCV1a0AM]s0AM2Ce(GAM s HAMG
2 FORMAT (415+45F 13439
REAVGeH]L1 92 eH39iHa e Cve
4 FORMAT (5F1043)
M = 1
RFAIN Se (P(LeM)eL=109)
5 FARMAT (9FR.2)
READ 694ULTSeH ]
69 FOrRMAT(2F1Ge0)

DETERMINE NUe UF INCREMENTS FOR SIEP FuNCTION DETERMINED BY THr
VALUES OF CVeDTeANU H :

NXDT = (4#NCVENDTH#96) /(100 CH#NH#NH)

XNT = nXOT

HN=iNH

Y = OAM]#H]1+GAMZ2H#12+0AM3*H]
. = OAM4ytHa

X = Y/XDT

SET HUUNDAKY PuUrE PreSSURES = V60U FUrR ALL T1IMeS

DO /7 N = legu)
P(len) = 0,00
P(9enN) = 000
TP(led) = Fo00
TR{ve:) = Qo000

7 COnT UK
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CALCULATE PUKRE PRESSUKES GENERATED RY UnLT INCREASES L STHP LOAD
(LINEAR LOADING) Fuk EACH TIME INCREMENT

LXDT = NADT=1

DO 6 K = 1eLXDT

DO!Y L = 28

P(LsK*l) = P(L-K)*Z./j.O(P((L*l)oK)+P((L-l)-K))“l./b.*l.UU
CONTINUE

COPTINUE

CALCULATE ACTUAL POKE PRESSURES GENERATED AT END OF LINEAK LOAULLING
( In PSF )

Dn: 10 L = 149
PP(L) = A#P (LsNXDT)
CONTINUE

CALCULATE PERCENT CONSOLIDATION UNLEK THE EXISTING APPLLIED SITHLSS
FOR THE LINEAR LOADING (USING TRAPEZULDAL RuLk)

SuUM = 0,00

XT| = 0.00

DOl 11 K = 14NALT
XT| = XT+1.00

DO. 12 L = 148

B E ((2e#AT)=P(Lor)=P((L+1)eK))/(16,0%XT)
SUM = SUM+B
CONTINUE

ULHK) = SUM#10ye0
SUM = 0.00
COPTINUE

SE” INITIAL VALUE> OF PORE PKESSURE FUR SURCHARGE INCREMENTAL
LOADING. HERE £ (UR TP(Le1)) CUOULD Bt MADE EQUAL TU FIELD VALULS

DN 13 L = 248
TPi(Lel) = PP(L)+/L
CONTINUE

CALCULATE ‘PURE PRCSSUKRESs PERCENT CONSOLIDATIONe AFTER SURCHARGE
APPLICAT I[ON

J=1-1

DO 15 K= leJ

DO 17 L = 248

TP(LeK+1) = TP(LON)#2e/3e+(TPI(L*1)eR)+TP((L=1)9K))®]1./6.
CONT INUE

CONTINUE

DSUM = 0,0

DO 20 K = 11

DN 21 L = 144 :
D = ((Y47)#2 e=TE(Lanr)=TP((L+1)eR))I/ (160 (Y+/))
pDSUM = NSum+D
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21 CHNI i uE

U2 ({K) = DSUM¥1{n,

DQ‘)M = OOUO
20 CONTInuL

T(l) = 0,00

TMl(1)=0.0

TM2(1)=0.00

DO 30 N = 24200

T(N) = T(N=1)+1./96,

TML(N)=(T(N)#HN#HN) /(4. 0%CV]1#*]1aal,.)
30 CONTINUE

DO 29 N=2,1

H=zHN1= (U2 (N) +U2 (N=1)) /200 .%ULTS

TMA(N) = (T(N) PH#*H) / (4e 0FCV2* 144U, )
29 CONTINUE

i

PRINT OUT V/ALUES

PRINT 39eNXDToCVlenHaXoYoZ
39 FOHMAT(“I“Q“NXUT = He]3e2Xe%#CV] = #eFSe301Xe%SUe [Ne/MALlNe®e2Xe#INH
1= 2el30lXe#IN#He2A0%R = #oF S, 20 Ae#PSF/INCHREMENTH 92X a%Y = #4F,101
PRXUPSF (LTNF AR STRESS)I#e2Ae% /7 = #4FS,lelAe#PSE (SURCHAKGE) #)
PrRInT 31
1 FORVMAT (0% e 334?00k WxESSURESe PERCENT COHSOLINATIUNS DUE O L INE
AR APPLIED STwr Sy
PRINT 33
33 FORMAT(#0# e lHX o= 0% e ha¥r{/H% e R e H/ 4 g5 XK g% 3H/BHeG X o ¥ H/2% g5 X0
1#SH/ 8% eaX e #3H/ 4R e X e B Tr/BE g SXe e HX e #UN e TA9# T IMEJDAYSH)
DO 100 K = 1enaADT
PRINT 3SeKeT (K) e (P(LeK)el = 199)sULl (K)o IM](K)
35 FORMAT (#0# e[ 3elXeH#T = #qFT7e599FHeleFBelosFBe1)
100 CONTINUE
PRINT 4le(PP(L)eL = 1e9) ULl (NXDT)
41 FORMAT (#Q#e%#PP ( IN PSF )#elXe]10F8,.,1)
PRINT 80s(CVZ
B0 FORMAT (#0# ¢ 1SXe#PLKE PRESSURESe PERCENT CONSOLIDATIUNe pUr 10 SURC
1HARGE ANYD LINEAR LOAD# e9Xe¥CVZ = #eF5H o301 Xe#SWe [Ne PR MINe#*)
PQINT 33
DO 101 K = 11
PRINT 45eReT (K)o (TP (LaRK) oL = 149)9sU2(K) e TML(K)
45 FORMAT (#0% e [3elXe¥] = #4F 1o e9FHeUoFB8eleF8e1)
101 CONTINUE
GO 'TO SO
300 CONTINUE
END
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APPENDIX H

COMPUTER PROGRAM FOR THE SOLUTION TO THE EQUATIONS
IN THE THEORY OF GIBSON AND LO (1961)

PROGRAM GIRSON (INnPuTl«UT20T)
REAL LAM]
DIMENSLION S(9))

I = NOe UF TIMtS OESIkeD FO2 spilgrvenyl ComPUTATLON
WO = APPLIED Lual (Fs])

A = PRIMary COMPRESSISILITY (Suel ve/lrie)

B = SECONMUarY COvPkESSE <Ll Y (Swotte/Lme)

LaMl = VISCOSTITY (L2e/50elNe/ i vat

H1 = tlaYRw THICkuESS (1)

Cv = COEVFELCIENT OF CuRSALINAl N ASd ] te/Mlive)

T = TIME (HOURS)

READ PRIMARY DATA

READ Sele0eAsBel Al eriaeCV
FORMAT(ISehF1763)

L=0

J=v

S(J)=ved

CONTINUE

M=

Ir(J'E.()-l){"“ Y‘J‘ ‘4
H=Hl/£.0

H=1=S(J)/z."

KEAD [1™ME Fow SEfiLe~7 ol ComRataiiay

RFAD 4T
ForMaT(Flo, )

J=Jd+1

XM=] o0 *R/ N
xm:(Hauz;/(dﬁcv%Lgr‘,
Tl‘-"r*éUo
ULTS=(A+r) #us 2

CALCULATE SETTLEMeNE 2T Tive = 1

SUM:OQU

DO 20 N=le29e2

YN=N
XK]S(NF#23#3 1 gl 20 0y) /(a2 Fn¥)
ALPHA= (10 /A%) e /m) /L 60
BETAa=1.0/(LAM] %)

XTI ((ALPHASAK ] ) #F 2 (0 220 [ LTFAR L))
To2=S50RT(x11)

Kl1=AL2HA+4aK |




2u

22

2Q8

X11l=(rl+T2)/2.)
X22=(Rl=T2)/2.vu
V3==]1.,0%x114#T}
Va==1.,0%X,.2%T)

VS=e AP (V3)

VA=t XP (V4)

Xk2=A/ (A+13) # XK )
E=(AKZ2=X11)/7(X1)=AC2)
El1=t#Vv6

E2=(KK2=X22)/ (AYL=X/22)
E3=t2#*Vvy

G=(rl=t3) /Y%

SHIM=Svi+y

ConTl gue

Kozleut ((Be)/3eialnsit )i 50)
S(J) =L Ty¥R
XT=4el)/ 3elain® ((Ars)/n) ity
K:H/Qo\)

Conit [

-
—

Cal_iJuaTs PORT Secssuv=>s T

SHY 1=t e

NO 2 =ted51al

INI= N

XK1= (#2283, 1qlesot((V) /(o gtmita,
ALPIAS(led/a+Yeli/r) /LA
KETaz]let/ (lLAM]#R)

XTI=((ALFPRA+XKT) ## 2« (0, p%*rE1A®YK

T2=5aQrT (aT1)
R1=ALPIHA+XK ]
X1l=(r1+T) /72008
Xe2=(rl=T2)/2.0

VISA/ (A+rd) =x22/Xn )
V2=A/(a+i4)=x11 /a0
VEELSWNL I SR ES B
Va==]let¥#APrw0]
Ve=k X2 (Y 3)

VASEXP (Ve)
WIS(XL1I#VY)/Z(R]11=K22)%V5
W= (K22 #V2)/ (R11=A2) VD
wiIS (N3, 1alhs/) /7 (2,90m)
Wa=5IN(A43)
Y=(w]=w2)#iig

YI=Y/4N

SUMi=5'M1+Y1

Comnl [Hius

U=alssuvl

L=u+l

If(LevTo)GO TO 7/

1)
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6 PRINT #0
BG FOMAT (Rl #T 1At (HOU9S) R Loxo¥SETTLEMENT (1NCHES) ® 4l 0A«HUERTH (1IN
le)#oJUAOHPONE PitpSSURE (PS] )% e i IAC#SGUYR [OX#SUM]F)
7 PZ=RH/4.0
IF(ZybuaPL)ral e
& PRINT 90T o5 () ez abeSUaeSLEg]Y
9Q F()H"AT(*\3*043K~F."‘--"0l')KQ"—l"‘-o?.‘o;QK!;onllexcf:ll'o(.‘vljxvf:j\).qo")xol: 10e
14) :
9 IF(LpEaeP7)00 TO Y2
1d PRIANT 9la/ael)
YUl FORAAT (% eqxeF 1 1 e 3 0F i, )
11 M:M+}
IF(Mgbued)GU TO Do
7=7+M/4 4
GO 10 18
40 COMNIJNUF
END
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