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ABSTRACT

TRANSIENT HEAT TRANSFER AND THERMAL

PROPERTIES IN FOOD SYSTEMS

by Isaiah J. Kopelman

The study of the transient state heat transfer is important in

many food processing Operations, from the designing as well as the

evaluation of quality viewpoint. For the analytical treatment of heat

transfer problems it will be useful to know more about transient heat

transfer analysis and thermal properties. In this project both transient

heat transfer and the evaluation of thermal properties were studied.

The project consisted of two studies: a theoretical study and a

laboratory study. The theoretical part of the thesis in itself consisted

of two parts; a study to extend the knowledge and use of the first term

approximation (suggested by Ball, 1923) and an analysis of the thermal

conductivity of two—component homogeneous dispersion systems.

Specifically the theoretical study consisted of a dimensional analysis of

f; derivation of a mathematical expression for the relationship of the

body properties and the system properties as related to the magnitude

of f and j as reflected in the design of an experiment and the evaluation

of experimental data; derivation of a mathematical expression in which

the mass average temperature is a function of the temperature at the
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geometric center; studying the heat transfer properties of low and high

NBi and analysis of the thermal conductivity of a one, two and three

dimensional, homogeneous two-component dispersion system. The

laboratory study consisted of two parts: an investigation of the thermal

conductivity of a foam, a two-component air-sucrose solution, and

evaluation of the thermal diffusivity of several food products.

The expression developed for the thermal conductivity of the

three dimensional two—component homogeneous isotropic system was

evaluated experimentally using a transient heat transfer method in a

high film coefficient system in which the thermal diffusivity of l. 5, 8,

l6 and 24 percent by weight air-sucrose solutions foam having various

amounts of air, in three sizes of stainless steel tubings (1", l. 5" and 2"

O. D. ) during heating from 36° F to 96° F and cooling from 96° F to 36° F

were measured.

The analysis of the experimental data was carried out using a

Control Data 3600 Digital Computer; the results showed that the values

and the magnitude of the thermal conductivity of the foamed sucrose

matrix compared with the values and particularly with the magnitude of

the developed expression. The thermal diffusivity of several typical

foodstuffs (raw potato flesh, raw and deaerated apple flesh, apple sauce

and meat) was evaluated using the same experimental system.

The analysis of the thermal conductivity of a two-dimensional

homogeneous anisotropic fibrous (or layered) system which showed that





Isaiah J. Kopelman

the thermal conductivity in the direction parallel to the fibers is always

larger than the thermal conductivity in the direction perpendicular to the

fibers was confirmed both by the results of the meat flesh experiments

of this study and by the results of the extensive work related to the

thermal conductivity of meat done by Lentz (1961) and Miller (196 3).
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1. INTRODUCTION, LITERATURE REVIEW

AND OBJECTIVES

Most processed foods are subjected to a heat treatment, either

heating or cooling, moderate or severe, once or several times. Both

desirable and undesirable changes in the food product are produced by

the heat treatment. Understanding the heat flow mechanism and knowl-

edge of the thermal prOperties of the food product are essential in

making analytical studies of food processes such as heating, cooling,

or dehydrating. Analytical heat processing studies are very useful in

designing new processing systems and in improving existing food

processing systems.

In handling and storage of perishable food products, knowledge of

heat transfer and thermal prOperties are as important or may even be

more important than for processed foods since produce quality may be

directly related to the heat process.

Information regarding the three conduction heat transfer thermal

properties; thermal conductivity, specific heat, and density, for par-

ticular food substances is limited and frequently conflicting; of these

three thermal properties, the thermal conductivity is the most elusive

and variable. Where data do exist, information is often lacking regarding

the composition of the sample, or specifications of the experiments,

temperature difference, and structure of the sample in reSpect to heat

flow. In some cases the reporters apparently failed to fully understand
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the mathematical models and their results based on misinterpretation

of their data are misleading.

Excluding the information on the specific heat of foodstuffs based

on the work of Siebel (1892), the first recent basic data related to ther-

mal properties of foodstuffs was evaluated by Gane (1936). In addition

important data have been generated within the past decade by workers

such as Lentz (1961) and Miller (196 3) where the thermal conductivity of

meats and fats mostly in the frozen state was determined using the

guarded hot plate method (steady state conditions); Turrell and Perry

(1957) and Poppendiek (1953) reported Specific heat and thermal con-

ductivity of citrus, assuming a Spherical geometric shape; Bennett

(1962, 1964) reported the thermal conductivity of Valencia orange and

Marsh grapefruit using the Fitch (1935) method; the Fitch method was

also used by Walters (196 3) to determine the thermal conductivity of

chicken breast muscle and skin in the frozen state; the thermal conduc-

tivities of beef, fruit tissue and fish during freeze-drying were deter—

mined under quasi-steady-state conditions by Harper (1962) and

Graham et a1. (1964). Dickerson (1955) used a system in which the {-23%

of the sample was kept constant to determine the thermal diffusivity of

food substances under transient heat flow conditions. Charm (1963)

presented a trial-and-error method to calculate the thermal conduc-

tivity of frozen food using the heat penetration curve.

The specific heat is relatively an easier property to measure than
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thermal conductivity since it is independent of direction or shape.

Measurement of the specific heat dates back to Siebel (1892). Since then

some of the important work has been done by: Short fl. (1942),

Ordinanz (1946), Staph (1949), Staph and Woolrich (1951), Mannheim g

11. (1955), Janson and Long (1955), Moline _et_al. (1961), and others.

Their results may be found tabulated in such books as ASHRAE Guide

and Data Book, Anderson (1959), and Charm (1963).

Pflug _eLal. (1965) observed that thermal diffusivity calculated

using thermal conductivity by the Anderson (1959) equation (equation

6. 1. 5) is unreasonably high for apples. The difference is probably due

to intercellular air which may occupy approximately 20 to 25% of the

volume of the fruit (Smock and Neubert, 1950; Reeve and Leinbach,

1965) and which the Anderson equation does not take into account. The

Anderson thermal conductivity prediction equation agrees with the

sucrose solution data of Riedel (1951) and presumably agrees with data

for other foodstuff solutions. If an apple was a homogeneous solution of

components--without air--the Anderson equation probably would give

satisfactory results. However, since as much as 25% of the apple

volume may be intercellular air spaces, a new approach to predicting

the thermal conductivity is needed. This point, discussed in detail by

Kopelman_e__t_a_l. (1965), was the initiation point for this study. It was

concluded that in order to study the basic phenomena and the role of the

air in fixing the thermal conductivity, we ought to go to a foodstuff model
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system. A model system makes it possible to vary the composition of

the solid phase and at the same time the amount of dispersed air with

greater stability and a more precise geometrical shape.

This project consisted of two studies; a laboratory study performed

first followed by a theoretical study. (In this thesis the theoretical study

is presented first for greater continuity in the thesis. )

The objective of the experimental phase of this study was divided

into two parts:

1. To investigate the thermal conductivity of air-foamed sucrose

solutions. Specifically to develop an expression for the overall thermal

conductivity of the system and to check it experimentally using air-

foamed and stabilized sucrose solutions, in which the overall system

thermal conductivity is a function of the known parameters, 1. e. , func-

tion of the thermal conductivity of the continuous and the discontinuous

phases, and their volumetric prOportion.

2. To determine the thermal conductivity of several typical food~

stuffs (raw potato flesh, raw and deaerated apple flesh, apple sauce and

meat).

The objective of the second phase of this study was to conduct a

further investigation of the first term approximation theory and to analyze

the thermal conductivity of dispersion systems. Specifically, to make a

dimensional analysis of f; derive a mathematical expression for the

relationship between the body properties and the system properties as
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related to the magnitude of f and j as reflected in the design of an experi-

ment and the evaluation of experimental data; to derive a mathematical

expression in which the mass average temperature is a function of the

temperature at the geometric center; to study the heat transfer proper-

ties of low and high N i and to analyze the thermal conductivity of a one,
B

two and three dimensional homogeneous dispersion systems.

The accuracy of the solution of any heat transfer problem

depends to a great extent on the accuracy of the thermal prOperty values

used in the analysis. The properties involved in conduction heat trans—

fer are: thermal conductivity, k; specific heat, Cp; and density, p. As

far as density and Specific heat are concerned, their determination is a

comparatively simple process. The thermal diffusivity a is of the

utmost importance; however, it is derived from the three thermal

properties, a : k/Cp p.

There are many methods which at one time or another have been

used for measuring thermal conductivity. The thermal properties of

any material occur in various combinations which may be regarded as

characteristic of, and measured by, different experimental Situations.

The methods can be classified under two categories: steady and tran-

sient state. The former usually determines thermal conductivity, and

the latter thermal diffusivity. In fact, most transient state experi-

ments, in principle, not necessarily in practice, make possible

determination of both k and a. Steady state methods often involve the
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measurement of the quantity of heat transferred and Since heat losses

cannot be entirely eliminated, this often presents a difficult problem;

also, the time required for reaching equilibrium and completion of the

test is rather long.

In transient methods, changing temperatures in respect to time

are measured instead of the quantity of heat. These methods suffer

from the disadvantage that it is difficult to know how closely the actual

boundary conditions in an experiment agree with those postulated in the

theory; the effect of a discrepancy of this sort, for example, a contact

resistance at the boundary, is more difficult to allow for, and may be

more important than in steady state experiments. In transient methods

errors in the timing of temperature measurement and in thermocouple

response may produce appreciable error. On the other hand, transient

methods have the advantage of being relatively rapid. Some methods

may be used in situ without removing a sample to the laboratory, which

is very desirable in studying the thermal properties of materials such

as soils and rocks. In a few of the transient methods only the latter

part of the temperature-time curve, in which the solution consists of a

single exponential term, is used.



2. THEORY

2. 1 General heat conduction equations

The general differential equation governing the temperature

distribution in a solid body or stationary fluid in rectangular coordinates

is

8T 8217 821* 82':

pat—k(ax2+ay2+azz)
(2.1.1)

 

pC

The Cp and p are mainly independent of direction and for most of the

liquids and solids neither of them varies substantially with temperature.

The magnitude of thermal conductivity, on the other hand, is not only a

function of temperature but may vary with direction (anistropic mate-

rial) or may vary from point to point (heterogeneous material). If k

varies with direction, equation (2. 1. 1) can be generalized to

8T 8 8T 3 8T 8 8T

pCp at. 8x kX 8X)+ 8y (ky 8y) aZ( zaz (2.1.2)

If heat energy is developed in the differential element in the amount of q

(where q is the heat energy developed in unit volume per unit time)

equation (2. 1. 1) becomes

T 2
pCp——=kVT+q (2.1.3)

It will be shown later (see 5. 4) that the value of q is negligible in our

system. (In living fruits and vegetables q is mainly associated with the

heat of rSSpiration. )

For an infinite Slab, which is one dimensional heat flow



8 8

(5% - 8—: : 0), the general differential equation may be reduced to

BT aP-T

at (2 8X2. (2. 1. 4)

k

wherea2— (2,1,5)

Cp p

The differential equation for one dimensional heat flow in cylindrical

(equation 2. 1. 6) and Spherical (equation 2. l. 7) coordinates can be found

by transformation of coordinates in equation (2. 1. 1) and plugging

8T 8T 8T 6T _ .
az - 89 _ 0 and 80 — 34> — 0 respectively or by energy balance on the

differential element.

 

. . . 8T _ 1 8T 83T
cylindrical coordinates pCp 3t — k (r 8r + 81-2) (2.1.6)

3T 2 8T BZT

‘ ' — : — — + . .Spherical coordinates pCp 3t k (r 8r Era) (2 l 7)

2. 2 The mathematical andJohysical meaning of the infinite body with

respect to heat flow
 

8

T"0Mathematically the term infinite slab means that SI — az —

which means that we do not have a temperature drop along the y and z

axis, therefore there is no heat flow in these directions. Practically,

infinite Slab condition can be obtained either when the y and z directions

are fairly large with respect to x or when the planes x—y and x-z are

thermally insulated.

The infinite cylinder is a similar concept to the infinite slab where

93-83
az _ 89 = 0, consequently there is only radial heat flow. Practical



 



infinite cylinder conditions exist when the ratio of the length of the

cylinder to its diameter is fairly high (see 2. 5) or by thermally insulat-

ing both ends of the cylinder. At this point we can observe that in a

8 8

cylinder where 3% = '5; = 0 the heat flow is parallel to the main axis;

this system is mathematically an infinite slab.

The Sphere is always a one dimensional heat flow body (unless unevenly

heated or partially insulated), because of the symmatrical nature of all

T 0T8

the points having the same radius (50 = 34) —

The infinite Slab, infinite cylinder and sphere, because they have

0).

only one characteristic dimension, are three geometric shapes in which

unsteady state heat flow is a function of only two variables, time and

geometric dimension. The solution of unsteady state heat flow problem

in a two variables system is much easier than the solution for a geo-

metric shape having two or three geometric variables (finite cylinder,

cube, etc. ). However, it will be Shown later (see 2. 5) that the solution

of the unsteady state heat flow of geometric shapes (finite cylinder,

cube, rectangular) which are geometric products of Simpler Shapes

(infinite Slab, infinite cylinder) can be expressed as a product of solu-

tions of the simpler shapes.

2. 3 Solution of the differential equation of the infinite slab, infinite

cylinder and Sphere
 

As a matter of convenience the origin of the coordinates system

will be taken as the geometric center of the object; the x, y, z coordinates
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will be Square to the axes of the object; the thickness of the infinite

slab and the diameter of the infinite cylinder and the Sphere will be 2 R.

The boundary and initial conditions for objects of any of these

three geometries that are initially at a uniform temperature, To, and

are suddenly exposed to an environment of constant temperature T1 are:

Initial conditions are:

T=To at t: 0 for allr (2.3.1)

Boundary conditions are:

8 .,

-a-r-I‘:0 at r=0 fortZO (2.3.2)
r

3T h

ar—k(T-T1) at r—R fort>0 (2.3-3)

The first boundary condition results from temperature symmetry at the

geometric center. The second boundary condition is the surface heat

flux and it is obtained by comparing the rate of heat transfer through the

surface hAr(T1 - T) to Newton's law of heat flux at the surface - Ark 3—: .

The exact solution of the differential equation for unsteady state one

dimensional heat flow in an infinite Slab (equation 2. 1. 4), infinite cylin-

der (equation 2. 1. 6) and sphere (equation 2. l. 7) all having the initial

and boundary conditions stated in equations (2. 3. l), (2. 3. 2), (2. 3. 3) as

given in Schneider (1957) are listed below:

For the infinite slab:

(3: oz t

R2

 

T—Tl

To-T,

2 sin (3. -

1 r
cos ((3; R) e

 

: 2 (2.3.4)

11 (31+ sin (31 cos 0;
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where the Bi and the roots of the transcendental equation

NBi = (31 tan Bi (2.3.5)

For the infinite cylinder:

5: a t

J1(5.) ' 2

i r R

Jami R) e (2.3.6)

 

T'Tl a) 2

._______ : z: __

To - T. i=1 (51)J§(F31)+Ji(fii)
 

where the (31 are the roots of the transcendental equation

 

 

_ J1(fii)
NBi_ (aim (2.3.7)

For the Sphere: 52 a t
r .

2 (sin (1- (3. cos {3.) sin ((3. —) -

U1: 2 _1 1 1 1R e R (2.3.8)
To - T1 1:1 Bi ‘ Sln $1, COS fl]: 5 3

i R

where the (31 are the roots of the transcendental equation

NBi: 1- Bi cot (31 (2. 3.9)

The Biot Number, NBi’ iS a dimensionless number which is

physically a ratio of the thermal resistance {f of the interior part of the

. 1 .
system and the thermal reSistance — of the exterior part of the system,

h

_hR
NBi k In a system where the NBi can be only approximated, it is

much easier to evaluate that part of the system that will dominate the

heat flow, and in many cases, especially in low and high N values, to

Bi

have a Simple algebraic relationship between the physical and geometric

properties of the system and the heat flow (see 3. 5).

All the exact solutions for heat flow in the infinite slab, infinite

cylinder and Sphere (equations 2. 3. 4, 2. 3. 6, 2. 3. 8) are series type

solutions, having the following form



  

Tt
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(2. 3.10)

The location parameter is in j and the exponential term contains the time

function, the physical and geometric properties of the body and surface

heat transfer coefficient. Applying Cauchy test for convergency

Mn

M

 

1 shows that all the three series solutions mentioned above do

n M +

converge (the lim

lim

 

l\r/1n1 turns out to be 0) but are not continuous at t: 0.

The number of terms needed for certain convergency depends mainly

on t; the smaller the t the more terms are needed for the same

convergency.

Generally it is known that this type of series, because of its

exponential nature, will converge rapidly and after a certain time, all

the terms after the first become negligible.

McAdams (1954) gives the Hottel and Gurney- Lurie charts which

describe the transient conduction solutions for the infinite slab, infinite

cylinder and Sphere by plotting the log of the unaccomplished tempera-

ture change versus a relative time gR—E- for a constant N . and a certain
Bi

radius ratio r/R.

2. 4 First term approximation
 

In the transient heating or cooling of a system beyond a certain

time the temperature as a function of the time and location can be de-

scribed by the first term of equation (2. 3. 10).



Tl"
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T - T R2
Q: I

To _ T1 j e (2.4.1)

Equation (2. 4. 1) will give a straight line when the log of the unaccom-

plished temperature or log (T - T1) is plotted versus t. If lO-base

logarithms are used equation (2. 4. 1) can be rearranged into the follow-

ing straight line form.

T“ T1 ‘3th

“git—‘17 = low—m (“-2)

fiiat

10g (T0- T1) = log [j (T - T1)] -m (2.4. 3)

Equation (2. 4. 3) is a straight line having a SlOpe and an intercept of:

2
_‘31a

SlOpe 2. 303 R2
(2.4.4)

intercept = j (2. 4. 5)

By introducing a new term f (which is the negative reciprocal of the

Slope of the straight line described by equation (2. 4. 3) we get:

2.30311a

f=——z—-—
B19

(2. 4. 6)

This approximate asymptotic solution (only one term of the series

solutions is used) was suggested by Ball (192 3). A summary of the

various analytical approaches is given by Pflug and Blaisdell (196 3).

The SIOpe or f of the straight line, semi-logarithmic heating

curve, is independent of location of the point of measurement since the

SIOpe term does not contain a geometric variable. The equation for f

is the same for the three geometric shapes (infinite Slab, infinite



 



14

cylinder and Sphere). The j term, however, does depend on location.

There are three j's, center, surface and mass average that are important.

geometric center JC = '3 |r=O

surface 38 = 'Jlr=R

1 m

mass average jm = 151 J dm where m = mass

Values for jc’ jS and jm for infinite slab, infinite cylinder and Sphere

are tabulated and plotted in Appendix 1.

The importance of the various j's is that once the straight line of

the heating curve plotted in semi-log fashion is established we can de-

termine the lowest (heating) or highest (cooling) temperature of the body,

the surface temperature and the mass average temperature as a func—

tion of time by using jc, js, and jm respectively.

2. 5 Temperature-time solution ofjeometric shapes which are a

combination of an infinite slab and/ or infinite cylinder
 

In many cases the temperature-time solution for two or three

dimensional heat flow is a product of the solutions of one dimensional

heat flow systems, and thus can be written down immediately if these

are known.

As an example we will show that the temperature-time solution

for a rectangular parallelepiped can be expressed as the product of the

temperature-time solution of three infinite slabs each normal to the

other.
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The equation for the three dimensional conduction heat flow in a

rectangular parallelepiped is

a
=—1—T (2.5.1)

a

  

aZT 82T+ azT

8x2 8ya dz2

(
'
5
'

which its solution is u = t)! (x, y, z, t).

Consequently the temperature-time solution for the three one

dimensional heat flow infinite Slabs in their respective axes are:

uX = 41 (X. t); uy = LP (y. t); uZ = LHz, t)

(2.5.2) (2.5.3) (2.5.4)

and each solution satisfies its reSpective differential equation

  

8211 Bu 82u Bu 82u 8u

X -1 _a _x_1___z. Z _ 1 __Z

3x2 — a t ’ 8372 _ a at ’ 822 _ a 1:

(2.5.5) (2.5.6) (2.5.7)

In the following steps it will be Shown that the temperature-time

solution u = 41 (x, y, z, t) for the rectangular parallelepiped is the simple

product of the temperature-time solution of the three infinite slabs. In

other words

uzu u u (2.5.8)

x y z

By differentiating the solution (2.5.8) with respect to x, y, z and t

respectively we get:

 

 

 

8211

azu x

3X2 -- 11y uz 3x2 (2.5. 9)

32 8211
u=u u ——X (2.5.10)

ayz X Z ayZ
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32u 8311z

822 = 11X 11y 822 (2.5.11)

an au Efly 811z

a =uy uZ—a-t— + uXuZ 8t +uX uy 8t (2.5.12)

Bu Bu Bu

Replacing the values of 79-55; fi and 73-; from equations (2.-5. 5),

(2. 5. 6) and (2. 5. 7) in equation (2.5.12) we obtain

 

 

Bu Baux 32u 32u

y z

at _ a (uy uz 8x2 + 11x uz 8ya + ux uy 8z‘2 (2' 5' l 3)

The substitution of equations (2. 5. 9), (2.5. 10) and (2.5. 11) in the

811 azu azu azu

3t — a (3x2 + 8ya + 3Z2)

which is the differential equation for heat conduction in rectangular

apprOpriate places in equation (2. 5. 13) will yield

parallelepipeds.

A similar procedure can be used to Show that the solution for an

infinite cylinder iS the Simple product of an infinite cylinder and an

infinite Slab.

Since the three solutions, ux, uy and uZ have the form (see 2. 4)

-t/f

      

j e , the product solution u will therefore be

_ . -t/f . -t/f . -t/f
—je Xje je z (2.5.14)

After rearranging we get

u=j J J e-t(1/fx+1/fy+ l/fZ) (2.515)

x y z

This product solution has the form j e-t/f as the single solution

and has, therefore, the same properties with respect to j and f. It can

be immediately seen from equation (2. 5. 15) that
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ju= jx Jy 32 (2.5.16)

1 l l l

f — f + f + f (2.5.17)

u x y z

The practical meaning is that the j and l/f value for any rectangular

parallelepiped is the product of the j and the summation of the reciprocal

of the f of the three infinite slabs. The j and the l/f value for the finite

cylinder, for instance, will be the product of the j for the infinite

cylinder and the j for infinite Slab and the summation of the reciprocal

of the f reSpectively.

The question may be asked regarding what is " infinitely long" and

how can we estimate the error introduced when we assume a finite

geometrical Shape to be infinite in one or two directions. As a first

consideration it can be noted that any direction whose perpendicular

surface is thermally insulated can be considered to be infinitely long.

since no heat will be flowing in that direction. A finite cylinder of very

small length, for example, if perfectly insulated at both ends can be

considered an infinite cylinder as far as heat flow is concerned. The

contribution of the noninsulated sides in the various directions to the

temperature change of any point depends on the location of the point

with respect to the appropriate surface. Again, if we are referring to

a cylinder, the larger the ratio of the length of a finite cylinder to its

diameter the smaller error is introduced by assuming that the finite

cylinder is an infinite cylinder. In Table 2. 1 numerical values in the
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relationship between the length/ diameter ratio and the ratio of the calcu-

lated f assuming an infinite cylinder geometry to be correct f are shown.

The values in the table were calculated for NBi —> 00, however, the mag-

nitude of the results will be the same for any N Of course any finite

Bi'

cylinder having both ends thermally insulated is, as far as heat conduc-

tion, an infinite cylinder. However, it can be seen from Table 2. 1 that

practically when the ratioiof the length to the diameter is 4 the error is

about 2. 67% and it becomes less than 1% when the ratio exceeds 7.

Table 2. 1. Comparison of the f value for an infinite cylinder and a

  

finite one.

NBi assumed to be infinite

Length of Cylinder f Assuming Infinite Cylinder

Diameter of Cylinder f Correct

1.00 1. 4267

1.10 1.3526

1.20 1.2963

1.30 1.2525

1.40 1.2177

1.50 1.1896

1.60 1.1667

1.70 1.1476

1.80 1.1317

1.90 1.1182

2.00 1.1067

3. 00 1. 0474

4. 00 1.0267

5. 00 1.0171

6. 00 1.0119

7. 00 1.0087

8.00 1.0067

9.00 1.0053

10.00 1.0043

11.00 1. 0035

12.00 1. 0030



 



3. FURTHER INVESTIGATION OF THE FIRST TERM

APPROXIMATION THEORY AND ANALYZING THE THERMAL

CONDUCTIVITY IN DISPERSION SYSTEMS

3. 1 Dimensional analysis of f
 

The value of f in its Simple physical definition indicates the time

required for the asymptote of the heating curve to cross one log-cycle,

the time required for a 90% reduction of temperature on the linear

portion of the heating curve.

The f value is a very useful term. From the analytical standpoint

it incorporates into a Single term all the transient thermal properties of

the body, its geometrical characteristic and the thermal property of the

external system appearing in transient heat conduction. In other words,

the f term, which is expressed in units of time, shows the overall re-

sults of the body reSponse to temperature change with respect to the

external system. In other words f is the temperature reSponse param-

eter of the body with respect to the external system. We would like to

emphasize that by saying "the body transient thermal properties" we

mean the body properties which are functioning in the transient stage,

i. e. the property of the body to conduct the heat, the thermal conduc-

tivity, as well as its prOperty to store it, p Cp. From the practical

standpoint the f term is quite useful, as it can be used to describe,

compare, and predict the character of the temperature reSponse of the

19
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body exposed to certain exterior heat transfer conditions.

By inSpection and Simple reasoning of the physical meaning of the

Simple definition of f we can see that its value is a function of the fol-

lowing parameters:

1. The geometric parameter of the body, R (magnitude--the larger

the geometric parameter the slower is the temperature response).

2. The ability of the body to store heat, p Cp (magnitude--the larger

the p Cp the Slower the temperature reSponse).

3. The ability of the body to conduct heat, k (magnitude--the larger

the thermal conductivity the faster the the temperature reSponse).

4. The exterior film coefficient, h (magnitude-—the larger the film

coefficient the faster the temperature response).

So far, those independent variables of the dependent f were obtained

by simple reasoning of a temperature change of a body exposed to cer-

tain heat transfer conditions.

In order to express the f value as a function of the above param-

eters we should try to find the total parameters of the system in form of

dimensionless groups. The advantage of dimensionless groups is quite

clear both from the design of experiments and presentation of data.

If 41 represents any function we can write

f: ¢[R,(pcp), k, h] (3.1.1)

or that

f: xR§(pC )6kehn (3.1.2)

P
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where the coefficient )1 and the exponents g, 6, s and 11 are constants.

The dimensional quantities are as follows:

I for length

t for time

T for temperature

H for thermal energy

hence

the dimension of f is t

the dimension of R is I

the dimension of p Cp is HT"1 1'3

the dimension of k is Ht"1 1‘1 T—1

the dimension of h is Ht‘1 1'2 T—1

Substituting the dimensional quantities into equation (3. 1.2) we

obtain

t1 = Ig(H T”l 1‘3)6 (H t”l 1'1 T”)8 (H t‘1 I"2 T”)11 (3.1.3)

For the homogeneity of t, I, T and H reSpectively we find from

equation (3. 1. 3)

fort lz—e-n

forI 0:§-36—e-2~q

(3.1.4)

forT Oz-é-s-n

forH 0=6+£+n

Solving the relationships in equation (3. 1. 4) we obtain
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6:1

§=2+n (3.1.5)

ez-l-n

Substitution of 6, g and e as obtained in equation (3. 1_. 5) into equation

(3.1.2) we obtain

f1 :x R2+ 1’) (p Cp)l k-i-n hT]

RapC .

_ __ Bi
— )t( k ) k (3.1.6)

 

Since a 2 pg and NBi 2 i113 we obtain

P

_fV_a__ n
R2 —>\NBi (3.1.7)

fa

R2. — lMNBi) (3.1.8)

Therefore we see that the system consists of two dimensional groups

f 0

R2 and NBi.

As a matter of fact Pflug $3.1: (1965) plotted and tabulated values

in which the jc, jS and jm and £52 according to Ball's approximate

asymptote solution were presented as a function of NBi'

The dimensional analysis shows the dimensionless group of the

system, but obviously gives no information of any kind about the coeffi—

cients or the exponentials of the system. In our case we have no idea

of the value of the coefficient x or the exponential '0 their magnitude or

dependency. Such information can be obtained only from the exact
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solution, experimental data, reasoning or sometimes intuition. In fact,

while analyzing some properties of the heat penetration curves in low

and high N we Showed (see equation 3. 5. 7) that when N i approaches 0
Bi’

1.3. V 1
R2 approaches 2. 303 (RA ) N .'

r B1

B

 

Equating the above equation to equation (3. 1. 7) when NBi

approaches 0 will yield

 

V

i 4 2. 303 (RA )

r

T) —> 1

In equation (3. 5. 1) we Showed that when NBi approaches 00, EOE-’2;-

approaches a constant value (which is dependent on the body configura-

tion). This means that when NBi is large

)\ —> constant*

“Fl—’0

It is interesting to see that not only the coefficient k and the

exponential n are functions of NBi’ but that the value of n is between

—land0, 02112-1.

3. 2 Some properties of f andj
 

Theoretically both the terms f and j can be used independently

 

*The value of the constant is dependent on the configuration of the body,

. 2.303. 2.303. 2.303

and for an example, is equal to F2 , 2.4052, ——(1r/2)2 for sphere,
 

infinite cylinder and infinite Slab respectively.
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of each other for the evaluation of either of the physical prOpertieS of a

system (f for the determination of oz and j for the determination of k) or

in the case where the physical properties are known, to evaluate the

system properties (such as film coefficient, h, or N ). However, we

Bi

want to strongly emphasize that because of possible experimental errors,

the f value is much more reliable. For example, the experimental j value

will be affected by the initial temperature distribution or an error in

location of the temperature sensing element; the experimental f is not

succeptible to either of these errors. Any errors in conduction along

the thermocouple wires will have a critical influence on the experimental

j value but a small effect on the experimental f value. Any inaccuracies

in timing in respect to the sudden change of temperature will cause the

ordinate to Shift. This, obviouslthill have a big influence on the

experimentally evaluated j value, but will not at all affect the value of

the slope, f. Another point that should be taken into consideration is

> 10 is so Slight thatthat the change of jC in respect to N i for . 5 < N
B Bi

its use becomes doubtful, even if the other possibilities for experimental

errors in its determination were eliminated.

A final point is that unless the heating or cooling experiment

yields a good "straight" line, drawing of the straight line becomes very

subjective and any variation in the way the straight line is drawn will

cause relatively small changes in the f value but may cause very large

changes in j.



 



25

3. 3 The relationship between the NBi’ the thermal diffusivity a, and

tFe root value Bl in form of total derivatives

 

 

The relationship between N 01 and (31 in form of total derivatives

Bi’

is important as it gives us the ability to calculate the magnitude of the

effect of change in N i on (31 and a (or between any other parameters)

B

for any region of N in the following manner.

B1

The basic equation f a / R2 = 2. 303 / Bf holds for all values of NBi'

Taking the derivative of O: with respect to (31:

 

 

da 2.303 2 -2
__ = R __

dp, f (13%)

-2cr

: 3.3.151 ( )

2.303 R2

as Bf : fa

Next, by taking, for example, the derivative of the transcendental

equation for the infinite Slab N = B1 tan (31 we get:
Bi

dNBi — t... t + il—
dB] — 1 C082 p1

 (3.3.2)

we obtain an expression that Shows the tremendous rate of change of

N . with reSpect to £31 in the neighborhood of 1r/2, where both terms

 

 

B1

tan (31 and (Bf/ cos2 (31 tend to become infinite. In low NBi cos (31 -> 1 and

tan (31 z (31, therefore z 2 81.

dBi

dN 1

The most important derivative is probably d a , which shows

the relationship of a change in the overall heat transfer properties of

dNBi

da/

 

the total system and a change in the thermal diffusivity. can be



 



26

obtained by dividing equation (3. 3. 2) with equation (3. 3. 1)

  

 

 

(31

dNBi _ tan F51 + cos2 (31

dd _ _ £9.

(31

51 2

£31 tan {31+ (COS p1) (3.13)

_ - 2a/

(31
 

I _[NB1+ (cos (3,)

L 2a

Equation (3. 3. 3) again shows the tremendous change of NBi with

 

reSpect to a when dealing with large N . and demonstrates clearly

Bi

how in a high NBi system a small error in the physical properties can

cause a large error in NBi'

 

will be very small, andOn the other hand, in the high N

da

dNBi Bi

the change in a due to a change in N will be very small.

Bi

The negative Sign in front of equation (3. 3. 3) is obvious as the a

will decrease when the NBi increases.

Following the same reasoning for Sphere we find that the deriva-

tive of the transcendental equation N = l - $1 cot L31, is:

 

 

Bi

dN . (3
Bi 1

dB, _ - cot (3, - sin, (51 (3.3.4)

dNBi

dfi , in this case, will be very large and approaches 00 when (31

1

approaches Tr, where cot (31 —> -00 and sin (31 —> 0.

dNB

 

da 1 for a sphere can be obtained by dividing equation (3. 3. 4)
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by equation (3.3. 1)

  

 

 

 

[3 (31

- cot 1 + . z

dNBi _ Sin [31

do _ _La

(31

(3 t (3 + (if (3 3 5)1 CO 1 Sinifil . .

Z - 20

131 3

NBl - 1 (Sln fll)

: _ 2 (1

Thus we can observe from equation (3. 3. 5) that for a Sphere the

 

maximum change, will occur when (31 approaches 1r where
da

NBi "" CD and 51.11 ‘31 -’ O.

The mechanism for the infinite cylinder is more laborious since

we have to take the derivatives of the series expression of the Jo((31)

and J1((31), and the infinite cylinder solution will not be presented'here.

dN. dN.

l 1

d ‘31 and d 0’

  

The magnitude of are the same as for the Sphere and

infinite slab. The maximum change in this case of the infinite cylinder

will take place when (31 approaches 2. 4048 .

3. 4 Evaluation of thermal prOperties or system film coefficient using
 

experimental data
 

From Ball' 5 first term approximation we saw that the thermal

properties (such as h) can be theoretically evaluated under any condi-

tion from the heating data (f) and the physical and geometrical
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properties of the body. Also, from the h, f and the geometrical

dimension we can evaluate the physical property, 0. However, in order

to avoid possible misinterpretation of the data which consequently may

lead to wrong results, it is very important that we understand the

overall heat transfer properties of the system, and specifically the

dN i

da in high N
 

possible errors due to the high Bi'

When the objective of the experiment is to determine physical

properties, it is preferable to determine f under conditions where (31

is insensitive to changes in h and, therefore, in the Biot number.

When (31 approaches Tl‘ (for a sphere) , the N i increases so fast (equa—
B

tion 3. 3. 4) that large changes in h have a negligible effect on (31 and,

therefore, on the thermal diffusivity. In other words we have to look

dN .

da is as large as possible--and from equation
 

for a system where

(3. 3. 5) it can be seen that this ratio increases with increasing NBi'

This can be illustrated by considering three Spherical shaped products

of 0. 1 - ft. radius of widely different thermal diffusivities. Let the

materials have properties near those of copper, water, and insulation

material with thermal conductivities of 229 Btu/ hr ft ° F, reSpectively.

The data in Table 3. 1 indicate that it is practically impossible to obtain

NBi values corresponding to (31 values as large as 3. 0 for materials,

such as copper, which have large k values. For products having

thermal conductivities similar to water, as do most foodstuffs, the h

value resulting from heat transfer to or from water at moderate
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velocities will produce an NBi and (31 value greater than 3. 0; for ex-

ample, if h is between 300 and 500 Btu/ hr ft‘2 ° F, the (31 root value is

between 3. 11 and 3. 12. If we arbitrarily pick the value of 3. 115, the

error introduced in the diffusivity calculation (equation'2. 4. 6) is at

most (3.115:a - 3.112)/ 3.112 X100 = 0.33%. The f andj values for

materials with low k values are less sensitive to changes in h. If

condensing steam is employed in heating food products, the exterior

film coefficient obtained will be sufficiently large; thus, for any ma-

terial that has a thermal conductivity equal to or less than water, the

(31 value can be assumed to be 1r. For such conditions, the accuracy

of p and Cp are equally important in the determination of k. Due to

the nature of highly conductive materials such as copper, the NBi

encountered in practice will generally be low and the internal temper-

ature will consequently be nearly uniform. Since the internal

temperature gradient is negligible, the heating or cooling rate

parameter f will be directly prOportional to the Cp and p and in-

versely prOportional to the film coefficient h (see 3. 5).

When the purpose of the experiment is to determine the film

dN

coefficient, the system Should have a low NBi’ or the (151
 

Should be

as small as possible. Any attempt to determine the film coefficient

Btu

of a system where water is the heat transfer media h = 200 m

using a water based model will lead to erroneous results. It can be

seen immediately from f oz/R‘2 = 1n10/(3i‘, that a change of 2% in f or
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a or a change of 1% in R will cause a change of 1% in (31. Since the

NBi of such a system is about 60 we can see from Table 2. 1 that a 1%

change in (31 will have a tremendous effect on the N and therefore,

Bi

on h. If a c0pper model is usedinstead of the water-based model the

NBi will be about .0885 and a similar error of 1% will only cause a 2%

error in the N ., and in h.

B1

In summary we can conclude that: the film coefficient Should be

evaluated in a system where the N is as small as possible! When the

B1

N i is high (> 10),the NB and therefore the evaluated h becomes very

Bi’

sensitive to any change either in the physical or geometric properties

of the overall system. On the other hand, evaluation of the thermal

diffusivity Should be done in a system with a very high NBi so the root

value (31 is insensitive to NBi—-(Or h).

3. 5 Some properties of the heat penetration curves in low and high NBi'

 

In systems having either low or high NBi it is possible to derive

Simple useful correlations between the physical and the geometric

properties of the system and its temperature change. The reason for

seeking either low or high N i is that in these ranges there is only one

B

dominating thermal resistance. As a general rule of thumb a NBi > 50

can be considered to be high while N i < .3 can be considered, to be low.

B

Most of the heat transfer systems involving food or food products

have low NBi when air is the heat transfer medium and high NBi when

water is the heat transfer medium.



31

Table 3. 1. The relationship between the BI, NBi and h for low and high

NBi for three materials of widely differing k values.

 

h, Btu/ hr ft?‘ °F

 

 

51 NBi Ex anded

Copper Water PolyFStyrene

.4 5.40x10‘3 1.23X102 1.78><10'1 2.11><10"a

.6 1.23><10‘l 2.81><10a 4.05><10‘1 4.82><10‘2

LOW .8 2.23><10‘l 5.10><10a 7.35><10'1 8.74><10“2

NBi 1.0 3.57 ><10‘l 8.19 X102 1.18>< 10° 1.40 ><10'l

1.2 5.33><10'1 1.22><103 1.76><10° 2.09><10‘1

1.4 7.58><10‘l 1.73X103 2.50x10° 2.97><10‘1

3.00 3.08 ><10l 7.06 ><104 1.02 ><10‘2 1.20 ><10°

3.08 5.09 x 101 1.17 X105 1.68 X102 2.00 X10°

3.10 7.55><1o1 1.73><105 2.49><10‘2 2.95X10°

131:: 3.11 9.94 x 101 2.28 ><105 3.28 ><10‘2 3.90 ><100

3.12 1.45 X102 3. 33X 105 4.80 ><10‘2 5.70 ><10°

3.13 2.71><102 6.20><105 8.94X102 1.06><10l

3.14 1.97><103 4.51><106 6.51X103 7.73><102
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ngh NBI systems

 

In the high N i system the root value (31 approaches its maximum

B

value of Tr, 2. 40482.(. . and TT/Z for a Sphere, infinite cylinder and in-

. . . . f 2.

finite slab reSpectively. Since F6; = _33502 we can see that the ratio

1

between the f value for a Sphere, infinite cylinder and infinite Slab

having the same characteristic dimensions will be

1. . ____1.___ . ___1__

n"- ~ ' (2. 405)2 ' (Tr/2)?-

1 : 1. 705 ; 4

respectively. If we try to find the relationship between the f value and

the dimension within the Shape itself we observe that in high NBi the

value of Effi- becomes a constant the value of which is different, of

course, for each Shape.

f oz

—-3 = constant (3.5.1)

From equation (3. 5. 1) in high N systems we observe the
Bi

following:

1) The f value is inversely proportional to the thermal diffusivity.

2) The f value is independent of the N i (the root value (31 is con-

B

stant) and the film coefficient h, which means that increasing h

does not improve the total heat transfer in the-high N system.

Bi

3) The f value for a defined geometry is prOportional to the square

of the characteristic dimension.
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In the low NBi region, the exterior resistance dominates (i- > 51:).

Therefore the interior temperature can be considered to be uniform. In

this case the heat balance may be written as follows:

 

dT

VpCp dt —Arh(T1-T) (3.5.2)

VpCp( dT ):dt

Arh T,-T

And after integration:

VpC 2.303

 

 

T" t"

A h 10g [T1 - T] Tl : [t] t! (3' 5' 3)

I‘

VPCPZ.3O3 Tl‘T"

_._.___ 2 n _ 1
Ar h log T1 _ T' t t (3.5.4)

b d f 't tn t! _ f h LT: ._ 1 1 fl _ 1

y e 1111 Ion — W en T1 _ T! — . 01" 0g T1 _ T‘ — .

By inserting this value into equation (3. 5. 4), we obtain:

-2.303VpC

A h
r

 
(-1)= f

2.303VpC

p

A h
I‘

 
f: (3.5.5)

Equation (3. 5. 5) and the following derivations are important in

understanding and interpreting the heat flow mechanism in the low NBi

system.

We shall prove that equation (3. 5. 5) which was derived on the

Single assumption that no temperature gradient exists in the interior
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of the body, can be derived from the exact unsteady solution for the

sphere, infinite cylinder and infinite Slab.

Multiplying and dividing equation (3. 5. 5) by factor of Rz/k yields

 

 

 

pC— R2

2 303.17. _pV__

Ar k

f : hR R (3.5.6)

k

pC

. p = l hR = . .

Since k a and —-—k NBi by rearranging equation (3.5.6) we

obtain:

f a 2. 303 V

z—N .RA (3.5.7)

Bi r

. V . . . .
The respective value (731—) for a sphere, infinite cylinder and

r

infinite slab are:

3 R3 2 a b R

3 " _ a. _Tr._fi‘°‘_l_ _ _R. ___E_1_ _
4nR2‘3’ ani‘z’ 2a1b1_

(3.5.8) (3.5.9) (3.5.10)

Plugging the value of (711-) into equation (3. 5. 7) yields:

  

  

 

2:2 : 2313:: Splhere (3-5-11)

ch; : 31303 infinite cylinder (3- 5- 12)

131

£55- : 2121:3213 infinite slab (3. 5. 13)

f a 2. 303
 

R7 = CNBi (3.5.14)The general form will be
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Now we will proceed to evaluate the effect from the exact solutions

2. 0

standpoint. The equation -%% = —‘-3%—§ which was derived from the

1

exact solution holds for the three mentioned shapes for any NBi. This

equation is very similar to equation (3. 5. 14) but the (3? is replaced by

C NBi (C = 3, 2, 1. for Sphere, infinite cylinder, and infinite slab

respectively).

We will proceed to deve10p the relationship between the NBi and

2

(31 for low NBi°

Sphere

Transcendental equation NBi = l - £31 cot (31. By expanding cot (31

we get:

when 01 is small, (31” << (31 and therefore

fit 2
NBi=1-1+.§.=BJ3

2: 3.515B. 3NBi ( )

Infinite cylinder
 

Jiml)

Transcendental equation N . = (31 —— where Jo((31) and J1()31)
Bl Joflgl)

are Bessel functions of the first kind of order zero and one respectively.

For small value of (31 the values are calculated (Hildebrand, 196 3)

from J ((3) z 751—,— fip, and therefore, when (31 approaches zero,

2 p'

Jo((31) -> 1 and J1(51) -> (31/2, which means that
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NBi z (21(131/2)

Biz 2 NBi (3.5.16)

Infinite slab
 

Transcendental equation N 2 B1 tan B1. When B1 is small,

B1

B1 2 tan B1 and therefore NBi z Bf. (3.5.17)

Inserting the Bf values for the Sphere, infinite cylinder and

infinite Slab as functions of N i as they appear in (3. 5. 8), (3. 5. 9),

 

 

 

B

(3.5.10) into £5; = 273-279-3- will yield:

1

f a 2. 303

~73 = 3N sphere (3.5.18)

Bi

£5; = 313103 infinite cylinder (3. 5. 19)

Bi

£32 2 2131303 infinite slab (3.5.20)

Bi

We obtain a result identical to that obtained in (3. 5. ll), (3. 5. 12),

and (3.5.13).

From the above analysis we may conclude the following regarding

the effect of low N ..

B1

2.303pC V

1) From equation (3. 5. 5) f = h A we observe that under

r

 

the same conditions (h, a, and NBi are constant) the ratio between

the f values of various bodies, no matter how odd their Shape, is
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prOportional to the ratio between their volume/ surface area. If

we compare the f value of a sphere, infinite cylinder and infinite

slab having the same characteristic dimension we find the ratio

to be equal to 1 : 1.5 : 3 respectively, which can be observed

immediately through inspection of equations (3. 5. 11), (3. 5. 12),

(3. 5. 13).

For the same geometry the f will be proportional to any chosen,

but fixed, characteristic dimension to the power of 1 (rather than

the power of 2 as in the case of high N i systems).
B

From equation (3. 5. 5) we can see that the f is prOportional to the

:92 1 . .

k — a in case of high NBiheat capacity Cp p (rather than the

systems), which shows that in low N 1 systems a temperature—
B

change comparison between two bodies should be made with respect

to their heat capacity, pCp rather than their thermal diffusivity, a.

In an air-cooled room (air flow by natural convection) for exam—

ple, it will take c0pper, in Spite of its well- known high thermal

conductivity, k, and thermal diffusivity, a, about the same time

to cool as an apple, both having the same dimension. If we com-

pare a 3" diameter apple assumed to have p = 50 lb/ ft3,

Cp : .85 Btu/lb °F, k : .Z Btu/hr ft °F with a copper sphere

having the same diameter and assumed to have p = 559 lb/ ft3,

Cp : .0915 Btu/ lb °F and k = 223 Btu/hr ft ° F both cooling under

natural convection condition (assumed h = l. O Btu/ hr ft2 ° F)
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f value for the exact solution is about 4. 9 hr and 4. 6 hr for the

c0pper and the apple reSpectively.

f is inversely proportional to the h (the f was independent of the h

in the case of high NBi systems), showing the importance of

improving the exterior film coefficient in order to increase the

overall rate of heat flow.

From inspection of equations (3.5.11), (3. 5.12), (3.5.13) we can

 

 

observe that all have the general form i; = 2' 303 . Taking the

R C NBi

log of both sides we have:

f a Z. 303

log R2 — - log NBi+ log C (3.5.21)

f

or that when E; is plotted versus N we get in low N a straight

Bi Bi

line (slope : -1) (see Figure A. 4 in Appendix 1).

We can describe :15; versus NBi on log-log scale for any odd shape

by simply choosing an arbitrary characteristic dimension used

if-) . The linesconsistently for the computation of fig” N . and (A

r
B1

for the different shapes will be parallel with a slope of -1, each

having a different intercept with the ordinate. To calculate the

curve for the cube we can choose the characteristic dimension,

a, to be half the thickness. We find that

_Y__ (MW _3
A ‘6(2R)‘2 ” 3

I‘

andas

2.303—Y—
A

Q_ r

Rz— N R
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we find tha 'f—C-é = 2°3O3 (3.5.22)

R 3NBi

which as a matter of fact is the same as the curve for a Sphere.

The validity of the equation for the cube can be proved from a

different approach by finding the solution for a cube from the product

solution of three infinite slabs having the same thickness. The line

equation for the infinite slab is

 

f3_2.303 O l- aNBi

3‘ N. r f‘2.303Ra
B1

The product solution will be

1
 

_1_

fcube 1 f1

and as the thickness of the three infinite slabs forming the cube is the

same, their NBi will also be the same, and the product solution will

be, therefore,

  

 

l __ 3

f _ f. . .

cube infinite slab

_ 3QNB1 (f3) _ 2.303

— 2.303 R2 or R‘2 cube _ 3NBi

which is exactly the same as equation (3.5.22).

A comparison of the most important properties in low NBi and

high NBi conditions are summarized in Table 3. 2.
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Table 3. 2. Some properties of low and high NBi systems

ngh NBi Low NBi

> < .

NBi 50 NBi 3

:3- constant 2' 303
R3 c N .

B1

f independent of NBi or h inversely prOportional to

NBi or h

C p

f prOportional to —E— proportional to Cp p

f proportional to R‘2 proportional to R

n 0 -1

S here Infinite Infinite S here Infinite Infinite

p cylinder slab p cylinder slab

C 3 2 1.

f ratio between

the 3 shapes 1 1. 7 4 l 1.5 3

(31 approaches 1r 2. 405 Tr/Z 0 0 0

NBi approaches 00 00 00 1312/ 3 [Sf/2 pf

 

3. 6 The mass average temperature as a function of the temperature
 

at the geometric center, TC

 

In many cases knowing the mass average temperature (equation

3. 6. 1) of a body exposed to transient heat transfer, is important: from
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the standpoint of heat process design and the evaluation of the probable

quality change of the product.

Tz—l- T dm where m 2 mass (3.6.1)

m m

0

The average mass temperature, Tm, can be used to show the

total heat removed, with respect to time, from the object. In the case

of cooling processed cans, for example, the evaluation of the mass

average temperature will determine the hazard of undercooling, where

a high mass average temperature in the can after processing will cause

discoloration or softening of the product or in the case of high pH

vegetables, it may promote spoilage by providing temperature condi-

tions under which surviving thermophiles may grow. In the case of

overcooling, where the mass average temperature of the container is

too low, not enough evaporation of the water on the outside of the con-

tainer will take place; thus rusting may take place.

The geometric center is, in conduction heating products, the most

common location to measure the temperature because it represents the

slowest heating (or cooling) point, and because technically it is the

easiest location to place the temperature-measuring device. There-

fore, it is important to deveIOp some kind of expression where the mass

average temperature is a function of the temperature at the geometric

center. In the following deveIOpment we shall assume that sufficient

time has elapsed and that we are dealing with a one term approximation,
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i. e. , in the straight line region. In this case, all the heating (or cool-

ing) curves are parallel and different from each other only at the point

of intersection with the ordinate.

Since the general equation of the straight line semi- logarithmic

curve is:

log (T, - T) = - % + log [j (T, - To)] (2. 4. 3)

We can write the expression for the temperature at the geometric cen-

ter and the mass average temperature respectively as follows:

log (T, - TC) = - i; + log [3C (T, - To)] (3.6.2)

’6

log (T, - Tm): - —+ log [f (T, - To)] (3.6. 3)
Jm

Subtracting equation (3.6.2) from equation (3.6. 3) we get

 

T1 - T :1 (T1 - To)

log ————-—IE = log .m (3.6.4)

T1 ' T 3 (T1 " To)
c c

T, - Tm jm

-—---—- = —- = .6.or T1 _ T j K (3 5)

c c

after rearranging equation (3.6. 5) we get

TIn = T, - K(T, - TC) (3.6.6)

jm

The constant K = ”.— is a function of the shape and the NBi and can be

c

evaluated from the appropriate 3' tables (see Appendix 1 ).

Example 1
 

A can of food, a finite cylinder, is heated in water or steam or

cooled in water. The NBi is large enough so that the é'IP. will be as follows:

c
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[Jinfinite cylinder Jinfinite slab] m _ .70 X .81
. . _ X

[Jinfinite cylinder Jinfinite slab]c 1' 60 1' Z7

  

K: = .279

And if T, 2 250° F the mass average temperature when the temperature

at the center, TC 2 240°F, is

T = 250 - .279 (250 - 240)

m

= 250 - 2.79 = 247.2°F

Example 2
 

5" cube of meat having a = .005 ftZ/hr, k : .29 Btu/hr ft °F

. . _ 2° _ 5X 2.5 _
cooled 1na room where the h— 5 Btu/hr ft F. The NBi _———,29X12 —

3. 6. The jm and jc of NBi = 3. 6 for infinite slab is .93 and 1.22 reSpec-

'3

 

tively. As we know, from product solution that qube = Jinfinite slab we

Jm . 933
find that k = —j— = 1 223 = .444. If T, 2 36°F the mass average tem-

c .

perature at the center is 45°F will be

I
I

T

m

36 - .444 (36 - 45)

36+ .444X .9 : 40°F

jm/jc reaches its minimum value when NBi -> 00, and approaches 1

(no internal temperature gradient) when N 0.

Bi T

It should be mentioned that Stumbo (1964) derived an equation in

the same form as equation (3.6. 6). In his technique, however, in

order to find the constant K he used a laborious graphical integration

using some of his previous graphical data related to iso -j lines in

cylindrical cans and which was only valid for specific case: body
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having a cylindrical shape exposed to a media which was either steam

or water (which is for foodstuffs a high NBi system). By the graphical

integration method for this specific case he found the average value of

the constant, K to be . 27 (we found it to be .279).

In this section we have presented the general solution for the

mass average temperature as a function of the temperature at the geo-

metric center, Tc’ (equation 3. 6. 6) and have proven that the constant,

K, in this equation is a function of the shape of the object and the N

j

of the system and is equal to ‘32

c

Bi

3. 7 Analyzing the thermal conductivity of three dimensional, two

dimensional and one dimensional dislaersionsystems

 

 

Materials whose prOperties do not vary with reSpect to direction
 

are called isotropic materials, in contrast to anisotropic materials

whose properties vary with reSpect to direction. Thus, whether the

material is isotropic or anisotropic, is a function of structure. These

materials should not be confused with homogeneous materials whose

respective prOperties do not change from point to point nor be confused
 
 

with heterogeneous materials which are materials whose properties do

change from point to point. Being a homogeneous or a heterogeneous
 

material is a function of uneven distribution of compounds, for exam-

ple, wood or layered type material, are anisotropic — homogeneous

materials, while meat flesh having uneven distribution of fat will be

considered to be an anisotrOpic - nonhomogeneous material. Ground
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beef in which the fat is unevenly distributed is isotrOpic but nonhomo—

geneous material. Insulation materials are homogeneous isotropic

materials.

Generally Speaking we can say that the static thermal property,

the specific heat, is independent of the direction of the heat flow or the

pattern of the individual components. In any homogeneous system (either

isotropic or anisotrOpic) the Specific heat, Cp can be considered to be

C = E C X (fraction weight).
p pl 1

The thermal conductivity which is the tranSport prOperty, is direction

dependent and may vary Significantly with arrangement of the individual

components.

Many materials consist of various components, and other mate-

rials consist of more than one phase. Many other materials may have

structural patterns which may cause the thermal conductivity of the

system to vary with respect to the direction of heat flow. The overall

thermal conductivity of Such systems is by reasoning, a function of the

thermal conductivity of the individual components, their proportion and

their pattern. In the following pages we Shall try to analyze a few

homogeneous systems and to find the overall thermal conductivity of the

system as a function of the individual component thermal properties

and their relative pattern.

The analysis will be made using a model system having the

propertie s as follows:
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The model will be a 1 unit cube, x = y = z = 1.

Heat flow will be by conduction only.

The discontinuous component and the continuous component may

have the same state or may form two phases.

The size of the dispersed particles is small in comparison to the

system size.

The dispersed component is randomly distributed.

The disfontinuous component is dispersed in the continuous com-

ponent in the macro level and not in the atomic or molecular

levels. For example, alloys or impurities in metals are excluded.

For this model system analysis:

k - overall thermal conductivity of the system

kC - thermal conductivity of the continuous component

kd - thermal conductivity of the dispersed component

We shall analyze three basic models:

A. Two- component - three dimensional - isotrOpic system (the two

components may form two phases) where one component is ran-

domly dispersed in the other to form the non-continuous phase

(Figure 3. 1A).

This model is most important to us since it represents the

experimental model of this study--the air-sucrose solutions foam.

However it is typical of other systems such as butter (water dispersed

in fat), ice cream or apple flesh (air dispersed in liquid). We would
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like again to point out that this model cannot represent alloys or impuri-

ties in metal. In such cases we get random distribution at the atom

level rather than in the macro level, which yields a different crystallo-

graphic pattern. Since the mechanism of heat flow in metals is due to

the outer electron shell, a change or new pattern in the crystallographic

configuration will change the value of the thermal conductivity. It is an

established fact that the thermal conductivity of alloys or impure metals

is usually lower than the thermal conductivities of the principal metals.

B. Two-component - two dimensional — anisotrOpic fibrous system

(the two components may form two phases) in which the fibers are

parallel to each other and randomly distributed. In this case the

dispersed component (the fibers) are continuous in one direction

and the random diSpersion will be two dimensional. (See Figure

3.2A.)

This system is an anisotropic system, and the thermal conductivity

will vary with direction. This model is typical to all fibrous systems

such as meat flesh, wood, fibrous vegetable. This system will be char-

acterized with two thermal conductivities.

k“ - the thermal conductivity in the direction parallel to the fibers

k_L- the thermal conductivity in the direction perpendicular to the

fibers
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C. Two (or more) components - one dimensional - anisotrOpic layered

system (the components may form more than one phase) in which

the components are arranged in parallel layers to form some kind

of a composite layer (figure 3. 3A). In this case random distribu-

tion is not necessary and all the components are equal with re Spect

to the continuous phase (both are continuous in two directions).

The diSperSion will be a one dimensional dispersion.

This is an anisotropic system which is typical of all the cases

where the system consists of a composite layered pattern such as fat

layer above the flesh, packed material with reSpect to the packing mate-

rials and plywood.

In the analysis we Shall use the following rules concerning the

computation of the total conductance of conductors connected in series

or parallel.

Total conductance of conductors cross section
 

 

 

k : Z k. X .

connected in parallel 1 ( length )1

Total conductance of conductors _l_ _ 23 1

connected in series k _ k X (cross section)

i length i

Because our overall system has a unit cross section and length,

the total system conductance will be the same as the system

conductivity.
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Figure 3. 1. The diagram of the two component homogeneous three dimen-

sional dispersion system. A. Natural random state. B. The

rearrangement of the components.
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Figure 3. 2. The diagram of the two component homogeneous two dimen-

sional fibrous system. A. Natural random state. B. The

rearrangement of the components.
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Figure 3. 3. The diagram of the two component homogeneous one dimen—

sional layered system. A. Natural random state. B. The

rearrangement of the components.
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A. Two-component - three dimensional isotropic system
 

In this case one component is randomly dispersed in the other to

form the discontinuous phase (see Figure 3. 1A). Let us assume that the

cube (Figure 3. 1A) iS sliced in the x-y plane into very thin layers. The

thermal conductivity of one Single layer in the three directions will not

be changed if all areas of the discontinuous phase are combined and

rearranged to form a square area M2. Based upon additive thermal

resistance when areas are connected in series, the combined rearranged

layers will not change the total thermal resistance. When the discon-

tinuous phase is composed of small enough particles randomly distrib-

uted, it is clear that from a symmetrical standpoint M‘2 is not only equal

for each layer cut in the x-y plane, but its fraction with respect to the

total cross sectional area is independent of the cutting plane. All other

thin parallel layers cut in the y-z plane will have after rearrangement,

the same cross section of discontinuous phase Ma.

Collecting all the discontinuous particles randomly distributed in

the three dimensions will yield a cube (Figure 3. 1B). Since the total

value of the system is one unit, the volume of this cube M3 is the void

fraction of the discontinuous phase.

The overall thermal conductivity of the system can be computed

in the following manner: The thermal conductivity of one layer in the

x-y plane in the z direction will be

kc(l-M°)+de° (3.7.1)
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and as we have many Similar layers (connected in series) along distance

M, the thermal conductivity in the z direction of the unit cube from

z=0toz=Mwillbe

k (1 - M2)+ k M2
c d

M (3.7.2)

The thermal conductivity of the rest of the cube (which is the continuous

component in the three directions from z = M up to z = l) is added in

series and, the overall thermal conductivity is computed as follows:

 

 
 

 

 

 

 

 

1 M l-M

k_k (1-M2)+k M2+ k (3'7'3)
c d c

_l_ M + l-M

k‘k -M2(k -k) k
c c d c

— 2 _-

k _ kc[kc M (kC kd)]

‘k M+k -M2(k -k)-Mk +M3(k -k)
c c c d c c d

- 2 -

k_ kC M (kC kd)

_ _ 2 _ 3 _

1 M (l kd/kc)+M (1 kd/kc)

1—M3(1-kd/kc)

: .7.

k/kc l-Mz(1-k/k)(l-M) (3 4)
d c

_ l-Q

—1'Q(1-M)
(3.7.5)

__ a _
whereQ—M (l kd/kc)

When kC >> kd equation (3.7. 4) is simplified to

—k—— 1-1v13 (376)
kc 1-M2(l-M) "
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Equation (3.7. 5) gives us the overall thermal conductivity of the

two components system as a function of the thermal conductivity of the

individual components and the void fraction.

Because of the symmetrical nature of the system the overall

thermal conductivity is independent of direction.

The two-component - isotropic - three dimensional dispersion

system is the basic model for the experimental work of this study.

Example: Calculation of the thermal conductivity of an apple.

In this case the continuous component will be glucose-water solution

while the dispersed component (about 25% v/v) is air.

kC (of 15% glucose-water solution) 2 . 3 Btu/hr ft °F

k (of air) = .0146 Btu/hr ft °F

d

k /k : .0145/.3: .0487

d c

M3 (void fraction) : .25

M3: .252/3 = .393

Inserting the values of M3, M, kC and k into equation (3.7. 4)
d

 

_1_<__ l-.393(1-.O487) _1

3 1- .393(1- .0487)(1- .63) ‘ 1- .138 ‘

k: .3X .728: .218 Btu/hr ft°F

If we assume k < kC we get (equation 3. 7. 6)

 

d

_k__ 1-.393 _.607_ 71

.3’1-.393(1-.63) _.854_'

k: .3X.7l = .213 Btu/hr ft°F
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B. Two-component - two dimensional anisotropic fibrous system

The fibers in this model are parallel to each other in the z direc—

tion (see figure 3. 2A) We shall try to find the thermal conductivity, k“,

which is the thermal conductivity in the direction parallel to the fibers,

i. e. in the z direction, and the thermal conductivity, kJ",which is the

thermal conductivity in the direction perpendicular to the fibers, i. e. in

the x (or y) direction.

By the same reasoning used in the three dimensional diSperSion

system, we can see that by Slicing the cube we can collect the fibrous

material in one corner, now forming a rectangle which has the dimen-

sions of N :N : l in the x, y, and 2 directions respectively, without

changing the overall thermal conductivity in the respective direction

(figure 3. 2B).

Obviously void fraction = N‘2 X 1.

Based upon the additive property of the thermal conductivities

when they are connected in parallel we find that the thermal conduc-

tivity parallel to the fibers (2 direction),

_ _ 2 2
kn—(l N)kC+N kd

_ 2 2
kll/kc (1 N)+N kd/kC

2
l-N (l-kd/kc) (3.7.7)

l-NQwhereQzN (l - kd/kc)

If kd << kC we get that
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1-N‘2I!kn/k

C

1 - void fraction (3.7.8)

The thermal conductivity, k_|_ (perpendicular to the fibers in the x

or y directions), is found as follows: First, based upon the additive

prOperty of the thermal conductivities when they are connected in

parallel we can find the thermal conductivity in the y direction from

y = 0 up to y = N (figure 3. 3B) is:

(1 -N)kC+de

N (3.7.9)

Second, the thermal conductivity of the rest of the one unit cube,

which is the continuous component in the y direction from y = N up to

y 2 1 will be:

k

c
1 _ N (3.7.10)
 

By adding the thermal conductivities, equations (3.7. 9) and

(3.7. 10) when the conductors are connected in series we find:

 

 

1 N l- N
__ : + (3.7.11)

IE]. (1 N) kC+NkC kC

kc N
 —= +l—N

k_1_ 1'N+de/kc

N+ (1 -N) [1 —N (1 —kd/kC)]

l-N(l - kd/kc)

 

and by rearrangement we get

 

_ ‘1‘Q
ki/kc _ 1_ Q(1_ N) (3.7.12)
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where Q = N (l - kd/kc)

ifkd<<kC we get (3.7.13)

l-N

1-N+N2

 
k_L/kc = (3.7.14)

We would like to call the attention of the reader to the similarity

of (3. 7. 12) to (3. 7. 5) which was obtained for the three dimensional

randomly diSpersed particles.

In the following steps we will find the ratio between the thermal

conductivity in the direction parallel to the fibers, k", and the thermal

conductivity in the direction perpendicular to the fiber, k_L. If we

divide k_L (equation 3. 7. 9) by k" (equation 3. 7. 14) we get

kn l-NQ

k_,_ l-Q

N+(1-N)(1-Q)

 

(l-NQ)(1-Q+NQ)

l-Q

l-N+NQ-NQ+NQ°-N2Q2

l-N

 

l-Q+NQ°(l-N)

l-Q

 

NQ°(1-N)

1-Q

 
1+ (3.7.15)

Equation (3. 7. 15) Shows the ratio between the overall thermal

conductivity in the direction parallel to the fibers, k", and the overall

thermal conductivity in the direction perpendicular to the fibers, k_L,

as a function of the thermal conductivity of the individual components
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and their proportion.

k"

In the following step we show that the ratio E is always greater

or equal to 1. As N is always a positive number smaller than 1

(0 _<_ N g l) and kd/ kc is always a positive number,Q (see equation

3. 7. 13) is a number within the following boundaries 1 2 Q _>_ -00. By

k

inspection of equation (3. 7. 18) which describes the ratio i we can

see that as N, (l - N), Q‘2 and (1 - Q) must be positive numbers this

ratio is greater than 1. Only when kC = k Q will be 1, resulting thatd’

k" = k_L.

This means that regardless of the values of the thermal conduc-

tivities of the components or their proportion, the thermal conductivity

in the parallel direction, k“, in the fibrous system, is always larger

than the thermal conductivity in the perpendicular direction, k_L. They

will bé equal only when kC = k or obviously in the trivial cases
d

N = 1, N = 0.

Let us check the prOperties of the function k11/ kJ_ vs kd/ kC

(equation 3. 7. 18) with respect to its maximum or minimum value.

NQ2(1_N)

l-Q

 
kll/k_l_: 1+ (3.7.15)

The first derivative is:

C1(I‘ll/13L) _ 2NQ(1-N)(1-Q)+NQ3(l-N)

dQ " (her2

 

(1- N)NJZQ - 2Q°+ Q2) _ (1 - N)N (2Q — Q2)

(1 -Q)"‘ _ (1 -Q)a
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The second derivative is:

2

3211/23 (l-N)NL(1-Q)°(Z-ZQ)+(ZQ-Q°)Z(l-Q)]

sz (1 -Q)4

: (l-N)N(l-Q) [2+2Q2-4Q+4Q-2Q°]

(1-Q)4

22(1—N)N(l—@

(l-Q)4

Since (1 - N) N and (l — Q) are positive numbers, the second derivative

has a positive value. This means that the function has a minimum

value. The minimum value can be found by equating the first derivative

to zero.

EMT.) _ (1-N)N(ZQ-Q°)

dQ ' (l-Q)"

There are four solutions to the above equation

1. N20

2. N21

3. Q22

4. Q20

The first and the second solutions are meaningless because when N

equals 1 or 0 we have only one component. The third solution where

Q : z, is impossible as Q < 1, (Q > 1 means that either kC or kd has a

negative value). The only solution possible is, therefore, Q = 0, in

other words k = k So the value of kH/kias a function of k /k for

c d c

d.

any void fraction, has a minimum value of (= l ) when kC = kd.
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C. Two-component - one dimensional - anisotropic layered system

In this case the components are arranged in parallel layers to form

some kind of composite layer system (see figure 3. 3A).

From figure (3. 3A) we can see that we can collect all the layers

of the same component to form a rectangle which has the dimensions of

P : 1 : l in the x, y, and 2 directions, respectively (see Figure 3. 3B).

Obviously the void fraction 2 l X l X P. Adding the thermal con-

ductivities of the areas when they are parallel to each other we get

kH=kC(l-P)+de

kl) 6

‘12:: l-.P(1-kd/kc) (3.7.1)

The thermal conductivity in the parallel direction will be

 

 

_1___1.'i+ 1-P

k_,_ kd kc

OI‘

EL- kd
kc Pkc+kd(1-P)

Dividing by k and rearrangement we get

(1

12L 1

F:l-P(l-k/k) (3.7.17)

c c d

 

The controlling effect of one of the components having a relatively low
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thermal conductivity in a perpendicular flow system in contrast to its

lesser importance in the parallel flow case can be observed by inspec-

tion of equation (3. 7. 17) and equation (3. 7. 16) reSpectively.

(Note the Similarity between equations (3. 7. 16) and (3. 7. 17). If

we divide k" by k_L we get

kn
E [1 — p (1 - kd/kCH [1 - P (1 - kC/kdfl

=1
2

P (1 - kc/kd) - P (l - kd/kc)+ P (l - kd/kc)(l - kc/kd)

_.. _ — z -

_ 1+ P( 2+kC/kd+kd/kc) P (2+ kc/kd+ kd/kc)

1+ (1 - P) P (-2 + kC/kd+ kd/kc) (3.7.18)

Since the term (-2 + kC/kd + kd/ kc) is always positive (unless

k = kC in which case it becomes zero), regardless of the value of k

d d

and kc’ and since P is positive and smaller than 1 it turns out that

(l - P')P (-2 + kc/kd + kd/kc) is always positive which consequently

k

—L' > 1.

k_L

fibrous system the thermal conductivity in the parallel direction is

causes This means that in the layered pattern system as in the

always larger than the thermal conductivity in the perpendicular direc-

tion. The actual magnitude depends upon the values of the thermal

conductivities of the individual components and their prOportion.

Let us check the properties of the function kn/kL vs kd/ kC

(equation 3. 7. 18) with respect to its maximum value.

ku/IEL:l+(l-P)P(-2+kC/kd+kd/kc) (3.7.18)

The first derivative is
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d(k“ /k_L) 1

dW

whereW=k /k

d c

The second derivative is

2

————d(kn/k1.) - (1 - P) P (—Z—)
sz “ W3

Since 0 g P g l and W is positive the second derivative is positive too.

This means that the function has a minimum value. The minimum value

can be found by equating the first derivative to zero.

d(kn / k4.)

dW
= (l-P)P(1—V$-2):O

There are fan? solutions to the above equation

1. P21

2. W: -1

3. W=l

4 a

The splat-10m 2:0,P = l, is meaningless and the second solution,

W = -1, is impossible as it shows that one of the components has a

negative thermal conductivity. The only real solution possible is,

therefore, W = l, or in other words, kC : kd. So the value of k|'/kJ_

as a function of kd/ kC for any void fraction has a minimum value (= 1 )

when kC = kd.

Let us check the properties of the kH/k_L equation (equation 2.7. 18)

with respect to the void fraction P.
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The first derivative is

d(k“/k_L)

dP

: (-2 + kC/kd+ kd/kCHl - P - P)

The fact that the second derivative is negative indicates that the function

has a maximum. The maximum is obtained by equating the first deriva-

tive to zero. By doing so we found that P : 1/2. This means that if we

vary the void fraction P, the ratio between the thermal conductivity in

the parallel direction to the thermal conductivity in the perpendicular

direction in the layered system will reach a maximum value when the

void fraction is . 5, i. e. the two components are of equal volume.

We would like to point out that in fibrous and layered systems by

measuring the thermal conductivity in each of the two directions,

parallel and perpendicular, and knowing two of the three parameters,

kc, kd or void fraction it is possible to compute the third.

All the equations (3. 7.4), (3. 7. 7), (3.7.12), (3.7.16) and (3.7.17)

develOped for the overall thermal conductivity of the system in the

direction parallel and perpendicular for the three models (three dimen—

sional, two dimensional and one dimensional dispersion system) must

and do satisfy the following limits:

1. WheanNsz‘l k=k

2. WheanlzN P=O k:k

3. Whenkczkd kzkczkd
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In Table 3. 3 we present the condensed table for the overall thermal

conductivity of three dimensional, two dimensional and one dimensional

homogeneous diSperSion systems.

In this section we analyzed and presented the overall thermal

conductivity of a three dimensional isotropic system, a two dimensional

anisotrOpic fibrous system and one dimensional anisotropic layered

system as a function of the thermal conductivity of the individual com—

ponents, their proportion and relative pattern. We have shown that in

the case of the anisotropic fibrous or layered system the thermal con-

ductivity in the direction parallel to the fibers or layers is always

larger than the thermal conductivity in the direction perpendicular to

the fibers or layers.
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Table 3. 3. The overall thermal conductivity of three dimensional, two

dimensional and one dimensional homogeneous dispersion

systems

. . Two dimensional One dimensional
Three dimenS1onal . . . .
isotropic system anisotropic anisotropic

fibrous system layered system

Dimension

ofthe MzMzM l:N:N l 1:P

rectangular

fraction

._ 2 _ z _
Q-M (1 kd/kc) Q N (1 kd/kc)

k” 1 N l P 1 k /k )

k - Q - ( _ d c

c

1 - Q

k ' l - Q (1 - M)

_‘5 1 ‘ Q 1

k 1—Q(l-N) l—P(l-k/k)
c c d

12— 2 1 1 + 1 - Q
_L

+ k /k + k /k )
c d d c   
 



4. THE EXPERIMENTS

In this study we Shall evaluate the thermal diffusivity of the exper-

imental samples using a transient heat conduction method. The thermal

diffusivity, a, has almost the same basic Significance in transient heat

conduction as the thermal conductivity, k, has in steady-state heat

conduction. In the steady-state heat conduction system, the thermal

conductivity is the only body thermal prOperty that should be known (or

that can be determined) in order to evaluate the experimental heat

transfer data, while for transient heat conduction both the thermal

diffusivity, a, and the thermal conductivity, k, must be known (or can

be determined).

In many cases, especially in high N systems, as was discussed

0

in the previous section, because of the lack of sensitivity of the root

Bi

value (3, to N , it is not necessary to know the thermal conductivity to

Bi

analyze the transient system nor is it possible to determine the thermal

conductivity directly.

4. l Considerations in the selection of the experimental method
 

Measurements of the thermal conductivity, k, by the accurate

guarded hot-plate method was ruled out because of the large size sam-

ple (8" X 8") required by this method. This method can be applied

usually for solid, hard materials that can be machined to a smooth

and relatively incomprisable uniform plate. Because of the limitation

64
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in the sample preparation techniques, this method could have been

applied only to foodstuffs in the frozen state (Lentz, 1961; Miller,

1963).

The measurement of the thermal conductivity, k, by the Cenco-

Fitch method which was used by Bennet (1962, 1964), Walters (196 3),

was attempted. This method is based on the measurement of heat

quantities with respect to time, flowing in a one dimensional direction

from a constant temperature source through the sample to the heat

sink. At the start of this project a Cenco-Fitch type apparatus having

a 180 gr heat Sink which is 1-1/4” diameter chrome-plated c0pper

plug as shown in Figure 4. l was constructed and tested. Calibration

of this apparatus using a 1/4" thickness of 50-Silastic Silicone Rubber

as a standard, Showed that the error due to the end effect and heat

losses from the sink were more than 15%. This magnitude of the error

is approximatly the same as that found by the above mentioned authors.

It was decided to reject this method because of the following:

1) One of the necessary conditions for the Cenco—Fitch technique

p is to have no significant surface thermal resistance, i. e. good contact

between the source and the Sink metal surfaces at the top and bottom

surfaces of the sample. This can be accomplished by applying pressure

which may cause unpredictable errors due to such effects as extrusion

of liquid, changing the thickness and changing the physical properties.

2) In the Cenco—Fitch technique the heat flow is assumed to be one
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1. COPPER SINK

2.8AMPLE

3. CONSTANT TEMPERATURE COPPER SOURCE

4. STYROFOAM

5. CONTROLLED TEMPERATURE BATH

6. PRESPEx SLEEVE

7. 30".-CAGE COPPER-CONSTANTAN THERMOCOUPLE

Figure 4. 1. Modified Cenco-Fitch apparatus.
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dimensional and, therefore, must be one dimensional from the source

to the Sink throughout the sample. The larger the ratio of the dimension

which is perpendicular to heat flow to the dimension which is parallel to

the heat flow the smaller the heat losses throughout the ends. In this

technique the maximum practical ratio that can be obtained in a food

sample will be in the neighborhood of 1 1/4 : 1/4. This ratio is quite

poor, and the unpredictable heat losses could be expected to be fairly

high.

3) Because heat flow is measured with respect to time (unsteady

state), any heat loss from the sink itself, which is unavoidable and

practically unmeasureable, will cause an error.

In summary, it appeared to us that this method has the combined

major handicaps of steady state and transient methods.

4. 2 The selected method
 

The method used in this study was a transient heat conduction

method, by which the thermal diffusivity was determined directly by

measuring the temperature change at the geometric center with respect

to time of an initially uniform temperature sample suddenly exposed to

a constant temperature.

For simplicity with respect to the sample itself and the general

design of the apparatus, a cylindrical configuration of the Specimen was

chosen.



68

The basic differential equation for the infinite cylinder initially

at a uniform temperature and suddenly exposed to an environment of

constant temperature is stated in equation (2. 1. 6). The exact solution

and the boundary conditions which must be satisfied are stated in equa-

tions (2.3.6), (2. 3.1), (2.3.2) and (2.3. 3) respectively. By following

the discussion in section (2. 4) we can see that by measuring the tem—

perature at the geometric center, taking into account only the first term

of equation (2. 3. 6) and plotting the logarithm of the unaccomplished

temperature difference vs time, we can get the following relationship.

_ (In 10) R‘2
— fflf (4.2.1)

The derivation of the equations impose certain conditions which

must be fulfilled experimentally:

1. Equation (2. 3. 6) holds only for one dimension radial heat flow,

8

i. e. 33‘ : 0), and required, theoretically that the cylinder be infinitely

long. We fulfill this requirement by a) having a large ratio *

length of cylinder

diameter of cylinder

 

b) thermally insulating the ends.

2. Equation (2. 3. 6) requires that the initial temperature of the sam-

ple be uniform. This requirement is accomplished by submerging the

 

>“Ratio value between 6 to 12 in the air-sucrose solutions foam.

Ratio value between 3 to 6 in the foodstuffs.
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sample in a controlled temperature environment for an adequate period

of time (at least three f values).

In spite of the fact that we intend to determine the film coefficient

of the system (in order to evaluate the NBi)’ we tried to build our sys-

tem in such a way that the film coefficient and therefore the NBi will be

aS large as possible. It is quite obvious that in a large N i system the

B

(3, is insensitive to the N so any change or error in the film coefficient
Bi’

h (and therefore in N i) will cause only a Slight change in (3,, and there-

B

fore in the thermal diffusivity 0:. (See also sections 3. 3 and 3. 4). A few

of the impressive advantages of this method are: 1) No heat quantities

are measured. 2) The exact location of the thermocouple is not critical.

The thermocouple was placed at the geometric center because it was

convenient. 3) The timing of the sudden change of temperature is not

critical.

4. 3 The experimental system (see Figures 4. 2 and 4. 3)
 

The main components of the experimental apparatus were:

Temperature controlled water tanks. 30," X 30" X 28" lZ-guage
 

steel tanks having 3" standard nipple as the outlet standing on four 6"

high 2" X 2" X 1/4” legs——these tanks were fabricated and were used

as the hot and cold water baths.

Top tank. 35" X 25" X 10" 12—gauge steel standing on three 42 ” long

2" X 2" X 1/4'' legs, having two 6" diameter 12" longoutlets for
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discharge into the two temperature controlled tanks located below the

top tank.

 

Test section. Forty inch long 4 1/2'l diameter standard water pipe was

welded to the tOp tank. About 10” from the bottom a 3" long cone end

bronze support with conical end was supported vertically in the middle

of the pipe by two 5" long perpendicular machine bolts 2" apart. This

conical end bronze support is the lower support for the sample.

Piping. The suction part of the piping system consisted of 3” pipes.

The discharge part was gradually increased from 2" discharge to the

4 1/2" size of the vertical main pipe. A set of valves was installed in

such a way that the water flow could either pass through or by-pass the

rotameter. The temperature controlled water tanks were connected to

the pump by a 3" three-way bronze plug valve.

_PLLDE- The pump was a 3 Hp, 1750 RPM centrifugal pump manufactured

by Delco, and has a maximum capacity of 175 GPM. Because of the

relatively low pressure drop throughout the system the value of 175 GPM

flow rate was the same for all three sizes of stainless steel tubes.

 

Temperature controls. The heat supply to the high temperature tank

was obtained by adding hot tap water directly from the main building

supply system. The actual flow of the hot water was controlled within

. 5° F by a Foxboro Type F-37 prOportioned valve activated by a 0-200° F

Brown Potentiometer Model 152P13Pj_63-11 controller. The tempera-

ture in the cold temperature tank was maintained throughout the test by
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Figure 4.3. The experimental system.

C. Refrigeration coils and their controls.

the sample was installed.

72

A. Overall View of the experimental system.

F. View of top tank once the test has

 
B. Piping system and rotameter.

D. Inserting the assembledsample. E.v'1ew of top tank after

begun
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a refrigeration system which consisted of a 3 Hp, R- 12 condensing unit

and two 50 ft long 1/2" I. D. c0pper coils. The temperature was con-

trolled within . 5° F by a Minneapolis-Honeywell Transistorized Ampli-

fier Relay Temperature Controller Model L7038 having a range of

10 to 80° F.

Temperature measurements. The temperatures in all the experiments
 

except the metal cylinders were measured and recorded with a 12 point

3 minute cycle temperature recording potentiometer, -40° F to +140° F

span, 1° F least division Model 153X64P12-X-71, manufactured by

Minneapolis-Honeywell. The temperature change of the metal cylinders

was measured and recorded every 1 second by a multi-channel one

minute cycle recording potentiometer. All of the thermocouples used

in this study were No. 30 gauge c0pper-constantan wire, with enameled

glass wrapped, fiberglass overwrapped insulation.

4. 4 The experimental procedure
 

The Specific tests in this study were:

a. Air-sucrose solution. The air—sucrose two-phase system, "a foam",

was studied using 1. 5, 8, 16, 24 percent sucrose concentration each

having about 4 different air concentrations.

‘b. Fresh apple tissue.

c. Deaerated apple tissue.

d. Raw potato.

e. Beef lean meat.
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The tubes used in this study, for supporting the samples, were 1"

1 1/2” and 2" O. D. stainless steel type 316 having a wall thickness of

. 012".

Each of the samples was run in a 1", 1 1/2” and 2" stainless tube

(except for the apple tissue which was run in l" and 1 1/2" only).

Each sample in the stainless steel tube was heated from 36°F to

96°F (heating), and cooled from 96° F to 36° F (cooling). These two

temperatures encompass the range of temperatures encountered in the

cooling and precooling of fruits and vegetables.

Preparation of the foamed sucrose solutions
 

To have an immobilized system it was necessary to add a solidi—

fication agent. Agar, a polysaccharide, was added in the amount of l. 5%

w/w to all the tests throughout this study. For the purpose of calcula-

tion it was assumed that the agar has the same thermal prOperties as

sugar; therefore, an 8% sugar solution consists of 6. 5% sugar and 1. 5%

agar, and a l. 5% sugar sample contained only agar.

All foamed sucrose solutions were prepared in a Waring Blender

Model PB-5A equipped with a standard 1 quart calibrated blending

bowl. Six hundred gr of the appropriate sucrose solution having 1. 5%

w/w agar were placed in the blending glass. During blending the foam

inducer D-100* was added from a 10% aqueous solution and air was

 

* Manufactured by Gunther Products Inc, , Galesburg, Illinois.
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incorporated. After the designed volume and Specific gravity were

reached, the viscous solution was quickly poured into the 1", 1 1/2" and

2" stainless steel tubes. The tubes were sealed with 1 1/2” thick plug of

Polystyrene foam insulation and corked by the bakelite plug (see Figure

4. 5). After the thermocouple lead wire was fastened to the bakelite plug,

the assembled unit was immersed in a 36° F bath to accelerate solidifi-

cation. The temperature of the sugar solution and the liquified agar

were such that the temperature during blending was about 90° F. It was

important to maintain this temperature because if the temperature was

too low, the solution could solidify before pouring, and if the temperature

of the solution was too high, the solution may not be Viscous enough to

prevent the air bubbles from rising. Control of the amount of air in-

corporated during blending was achieved by controlling the foam density,

which was measured by withdrawing 100 ml of foam in a tared graduated

cylinder and weighing it to the nearest . 1 gr.

To avoid any microbiological activity 25 ppm of HgClz was added

to the sucrose and agar stock solutions.

After finishing a heat penetration experiment,the gel was pushed

gently from the stainless steel tube and by accurate determination of

the weight and volume of the gel the true specific gravity and the actual

amount of air was calculated.
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Preparation of the raw potato samples

Procedure. 1" 1 1/2" and 2" raw potato plugs were formed by pushing
 

the stainless steel tubes through a whole raw potato. Both ends of plugs

were cut square and packed carefully end to end into the stainless steel

tubes to form a combined plug of about 7" length. A thermocouple was

placed in a hypodermic needle and by using a bakelite guide-plug, corked

into the tOp end of the stainless tube steel, the hypodermic needle was

inserted down to the geometric center of the 7" long potato plug, then,

holding the thermocouple the hypodermic needle was pulled back. Three

inches of polystyrene foam insulation were packed into both ends of the

7" potato plug followed by the tOp and bottom bakelite plugs.

Analysis of the potato.
 

Total solids (by vacuum A. O A. C. 1960) 18. 45% w/w

Density (by water displacement A. O. A“. C. 1960) 1. 07 gr/cm3

Preparation of the raw apple samples
 

Procedure. Maclntosh apples were cut in halves. A plug was made by
 

pushing a stainless steel tube through the apple flesh. The end of the

plug was cut square. From each half one plug was put aside for the

deaeration process. The other plug was packed into the stainless steel

tube. The process was repeated until the total length of the combined

apple flesh plugs was 7". The loading procedure was repeated for the

deaerated plugs. The thermocouple placement procedure was the same

as for the raw potato flesh.
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Apple flesh deaeration procedures. The apple flesh plugs were sub-
 

merged in a 15% sucrose-water solution in a desiccator. The desiccator

was connected to a water-vacuum pump and a 28" Hg vacuum was

applied. It was found that in order to get complete deaeration and re-

placement of the air Spaces by the sucrose solution in a 3/4" thickness

of apple plug, the 28" Hg vacuum should be applied for a few hours.

There is an excellent visual criterion for the progress of deaeration:

When the vacuum is released the solution penetrates immediately into

all of the deaerated Spaces and the spaces become translucent. When

complete deaeration is achieved, the Slice is completely translucent and

now has the same Specific gravity as the solution. The escape of the

expanding air’did not change the shape nor the strength of the apple

plug, on the contrary, the deaerated translucent apple Slices were

firmer than the raw apple.

The leaching losses during deaeration were considered to be

negligible since the infiltration medium and the apple had the same

carbohydrate concentration (Reeve, 1953).

In order to avoid any microbiological activity during deaeration

500 ppm of benzoic acid was added to the solution. Browning was

eliminated because of the apple plugs being submerged and the use of

high vacuum.

Analysis of the raw apples.

Total solids (by vacuum A. O. A. C. 1960) 14. 4 w/w
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Average density (by water displacement A.O.A.C. 1960) .773 gr/cm3

Amount of air (using equation 5. 2. 5) 26. 5% v/v

Preparation of the beef meat samples
 

Procedure. The l", 1 1/2" and 2" beef lean meat plugs were formed by
 

pressing a Special cutter with a hydraulic press (see Figure 4. 4C)

through a Square (square in respect to the meat grain) piece of frozen

lean meat. Two sets of 1", 1 1/2" and 2" meat plugs were obtained; one

set where the cutting plane was parallel to the grain, the second set

where the cutting plane was perpendicular to the grain.

The meat plugs were packed end to end into the 1", 1 1/2" and 2"

stainless tubes to form approximately a 7" combined plug. The tubes

were placed in a lathe and a 5/64" drill was used to drill a hole to the

geometric center. The procedure for the thermocouple placement was

the same as for raw potato.

Analysis of the beef lean meat
 

Density (by water displacement A.O.A.C. 1960) 1.08 gr/cm3

The chemical analysis for moisture content and fat were done on the

ground meat by the methods described by Howard and Aurand (196 3).

Moisture content 71. 5% w/w

Fat 5 . 6% w/ w

Protein (by difference) 22. 9% w/w
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Preparation of the apple sauce samples
 

Procedure. The l", 1 1/2" and 2" apple sauce samples were prepared
 

using 2 qt jar commercial apple sauce (brand name "Musselman").

Analysis of the apple sauce.
 

Density (by weighing 100 ml of apple sauce

in volumetric flask) 1. 07 gr/cm3

Total soluble solids (as sucrose)

(by refractometer) l9. 5% w/w

Total solids (by vacuum A. O. A. C. 1960) 21. 2% w/w

Acidity (expressed as dehydrous citric acid) . 41% w/w

The procedure for a test run
 

The procedure for a test run was the following: After submerging

the sample in the temperature-controlled tank in order to equilibrate it

at a uniform initial temperature, say 36° F, it was transfered to the main

4. 5" test section, placed and fastened vertically in the center of the test

section. The pump was turned on with the 36° F water flowing through

the test section for about 5 minutes to assure a uniform initial tempera-

ture. The temperature of the heating medium was changed suddenly by

turning the direction of the three—way valve, thus pumping the 96° F

water by the sample. In order to avoid a sizable change of temperature

of the temperature controlled tanks the first portion of water pumped

right after the sudden change was drained from the top tank. After this

portion was discarded, the drain outlet was sealed and the adequate 6"
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outlet of the top tank was opened to maintain cycling of the water. The

experiment was terminated when the temperature at the geometric cen-

ter was within 3° F of the medium temperature.

4. 5 Metal cylinders
 

In order to determine the film coefficient applicable to samples

evaluated throughout this study, 6" long c0pper and aluminum cylinders

of l", 1 1/2" and 2" diameter were made (see Figure 4. 4). These

metals were chosen because of their high purity, machinability, high

thermal diffusivity and respectively moderate change in thermal prop-

erties with‘temperature. A 5/64" hole was drilled to the geometric

center. A 30 gauge copper-constantan thermocouple was placed in a

hypodermic needle with a Square-cut end which was inserted into the

hole to the geometric center, then, holding the thermocouple in place,

the hypodermic needle was pulled back. A small amount of the (copper

or aluminum) filings were poured into the hole, then pressed down by

the hypodermic needle around the thermocouple wire. The hypodermic

needle was then pulled back and more filings were added. The same

process was repeated until the hole was completely filled and the ther-

mocouple packed tightly. The top of the hole was sealed with a drop of

electrical dope. To assure good contact between the thermocouple

junction and the cylinder a drop of SAE No. 5 instrument oil was placed

into the bottom of the hole at the beginning of the packing procedure.
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I a C

Figure 4.4. A. The metal cylinders. B. Assembling a metal

cylinder. C. Cutter for preparing meat sample.

   
A B C

Figure 4.5. A. Pouring the sucrose solution. B. The

assembled sample. C. The sucrOSe solution gel.
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The various electrical resistances were measured before and after

placement of the thermocouple, and no detectable difference (< . 1 ohms)

in the resistance (max. of 12 ohm) was noted.

The copper and the aluminum were assumed to have the following

thermal properties (McAdams, 1954).

 

 

k C a

p P

lb/ft3 Btu/hr ft ° F Btu/lb ° F ftz/hr

Copper 559 223 .0915 4. 360

Aluminum 169 117 .2140 3.235

 

A cbmputer program was written for the calculation of the first term

approximation of the relationship between the f and the film coefficient,

h, for the infinite cylinder for the three sizes of copper and aluminum

for all NBi ranges.



5. BASIS FOR ANALYSIS OF DATA

In this section 1) we shall define the limits of the straight line

semi-logarithmic curve and the time-average temperature. 2) We shall

compute by the least square method the Specific heat and the thermal

conductivity of air as a function of the temperature. 3) We Shall Show

the way the film coefficient of the system was evaluated. 4) We shall

Show the magnitude of the generated heat during the experiment. 5) We

shall Show the magnitude of the free convection. 6) We shall Show the

size of the air foamed bubbles. All the computations throughout this

study such as the heat transfer computations, generating Bessel func-

tions, the computation of the statistical least Square fitting curve and

the analysis of the results were done on the Control Data 3600 Digital

Computer.

5. 1 Defining the limits of the straight line semi-logarithmic curve and

the time-average temperature

 

 

Here we shall first define the limits of the straight line semi-

logarithmic curve and we shall draw the straight line between those

limits for the determination of the s10pe and the intersection with the

ordinate. Second, we shall find the temperature correSpondent to the

average time of those limits, the time—average temperature.

It was observed that the best points suitable for drawing the straight

line semi-logarithmic heating or cooling curve are those where the time

83



84

value, t, is between the limits . 4 X f g t g 1.08 X f. In this region the

straight line is already established, but yet it is far enough from the

zone where the unaccomplished temperature becomes small enough that

the fluctuation of the media temperature may introduce some error. We

assume that the NBi is large enough (which it is--see Table 6. 1) that the

jc value for the infinite cylinder can be taken to be 1. 6. It can be seen

.either graphically or mathematically that the temperatures correspond-

ing to t = . 4 f, and t = l. 08 f (which are the limits of the straight line

semi-logarithmic curve where the straight line portion is drawn) are

independent of the diameter of the infinite cylinder or its f value, and

will be the same for all the cylinders regardless of their f value provid-

ing that the j value and the initial and media temperature are the same.

The limits of this region can be found by inserting the appropriate

values of T, = 96° F, To = 36°F and T, : 36°F, To = 96°F for heating

and cooling reSpectively, and the value of t/f of . 4 and l. 08 for the

lower and upper limits respectively into the equation of the straight line

semi-logarithmic curve:

log (T, - T) = i + 10g[j(T1- T,)]
f

The reSults are:

lower limit upper limit

heating T : 57. 8°F T 2 88°F

cooling T = 74. 2°F T 2 46°F
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The average time—temperature of those limits will be the temper-

ature correSponding to the average t/f of the upper and lower limits, i. e.

6%) average = __4_+_-21_0§ : .74. Using the above equation this average

temperature was found to be 78. 5°F for heating and 53. 5° F for cooling.

Throughout this study the thermal prOpertieS will be evaluated and

compared at T = 78. 5° F for heating and at T : 53. 5° F for cooling.

5. 2 Evaluation of the physical constants
 

Here we Show the source and the way we evaluated the film coef-

ficient of the system, the thermal properties of the air (the dispersed com-

ponent), and the thermal properties of the air-sucrose solutions foam

needed for the analysis of the data.

Sucrose solutions
 

Specific heat, Cp. An equation for the specific heat of an aqueous
 

sucrose solution as function of per cent sucrose was computed by the

least Square method, using the following data given by Honig (1935)

 

 

 

for 68°F.

% sucrose 0 10 30 50 65

Btu --

Cp 1b .F 1.00 .9428 .8299 .7213 .6406

 

The equation was found to be

sz 3.746><10'6sa— 5.77X10'3S+ 1.000 (5.2.1)

S - percent sugar by weight
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Density. The density of the aqueous sucrose solutions was taken for

20°C from Honig (1953), Table 16.

Thermal conductivity, kL' Honig (1953 - Table 11) tabulates the values
 

of the thermal conductivity, k , of aqueous sucrose solutions ranging

L

from 0 percent sucrose up to 60 percent for a temperature range of 32°F

to 144° F (at intervals of 18°F). Using these values, equations were

computed using the least square method where the thermal conductivity

of sucrose solutions, k , was a function of the sucrose concentration

L

for a given temperature. The general form was k = A S + B (equation

L

5.2.2), and each temperature has different values of A and B. The

value of A and B for heating (average-time temperature = 78. 5° F) and

cooling (average-time temperature = 53. 5° F) were found to be:

 

 

 

heating A = - .189 X 10'2 B = .351

cooling A: -.181X10'2 B = .337

k =AS+B (5.2.2)

L

Air

Thermal conductivity, kA. The thermal conductivity of air, kA, was

calculated as a function of temperature according to the equation

(International Critical Tables, 1929):

T 1 5k 2 k ,273+125), c) (52.3)

A A0 ‘TC+125 ‘273
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h
a

I
!

absolute temperature, ° K

w

HA0 thermal conductivity of air at 0°C 2 .0140 Btu/ hr ft ° F

Air-sucrose solutions foam
 

Density. The amount of air (v/ v) in the air-sucrose solutions foam

was evaluated by determining the density of the foam as follows: The

foamed sample was removed from the stainless tubing and the volume

and weight of the gel were determined. After knowing the density, the

amount of air was determined by the following material balance:

pL(1-a)+ pAazpl (5.2.4)

where

pL - density of the sucrose solution

pA - density of the air

p - density of the air sucrose solution foam

a - volume fraction of air

as pA << pL we get by rearrangement of equation (5.2. 4)

 

(5.2.5)

Specific heat. The specific heat of any system is a function of the prod-
 

uct of the weight fraction of the individual components and their respec-
 

tive individual Specific heat. It is well justified to say that in most of

the systems having gaseous components as well as liquid and/or solid

components, the specific heat of the total system, due to the relatively
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low density of the gaseous phase (and therefore its low weight

fraction) will be the specific heat of the non-gaseous components. Since

the vflght of the foaming air in any of our experiments is very small

with respect to the weight of the sucrose SOlution, the Specific heat of

the foamed sucrose solutions can be justified to be taken as the specific

heat of a sucrose solution having the same sucrose concentration.

5. 3 Film coefficient values
 

The film coefficients of the system for each stainless steel tube

size for cooling and heating were evaluated by using the copper and

aluminum cylinders (they are Shown in Figure 4. 4A). The temperature-

time change at the geometric center was measured every second by a

multi-channel one-minute cycle recording potentiometer. The f value

was converted into the equivalent h values. The film coefficient, h,

obtained by the two different metals agreed within 5%. The two film

coefficients, h, obtained from the copper and aluminum were averaged

and used in the computation of the experimental thermal conductivity,

11E. The average film coefficient value evaluated from the copper and

aluminum cylinders for cooling and heating are tabulated in Table 5.1.

The general magnitude of these film coefficients was anticipated and was

quite satisfactory, both from the flow cross section aSpect when a com-

parison was made with respect to the tube diameter, since the larger

tube provides higher velocity, .or in equal flow where comparison is
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Table 5. 1. Film coefficient, h, Btu/ hr ft‘2 °F as related to size and

 

 

 

media

Tube diameter

1" 1.5!! 2!!

Heating 1170 1270 1380

Cooling 797 855 1170

 

made with reSpect to the medium since the Viscosity is larger in cool-

ing then in heating.

5. 4 Magnitude of the generated heat during the experiment
 

The conduction equation (equation 2. 3. 6) which is used in this

study for the computation of the thermal diffusivity is based on the

assumption that no heat is generated in the system. We shall Show that

the generated heat in our system can be neglected compared with the

rate of heat removed by conduction.

The possibility of generated heat arises in this study only in

those cases where living biological materials are involved, specifically

raw apple and potato flesh.

We shall assume that we are dealing with the straight line portion

of the semi-logarithmic curve and as an example we shall compare the

heat removed with the heat generated at the average-time temperature,

i. e. , 78. 5° F for heating and 53. 5° F for cooling.
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Role of heat removed. The equation of the straight line of the semi-
 

logarithmic curve is

log (T, - T) = -% + log [j (T, - T0)] (5.4.1)

by differentiating the temperature, T, with respect to time, t, we get:

—— = -— (5.4.2)

Taking the f of an 1. 5" stainless steel tube packed with apple flesh to be

about 20 minutes, we find, using equation (5. 4. 2) that

 

=4 ' ==t.875°F/min

In other words +. 875° F/min and —. 875° F/min are the rates evaluated

in 78. 5° F and 53. 5° F for heating and cooling respectively.

Rate of heat generated. If we take the quo of an apple to be 2.5; the

C 

Cp = . 85 Btu/1b ° F as the respiration reference point at 60° F, we find

the respiration rate at the average-time temperature of heating and

cooling as follows:

(78. 5 - 60)/ 18

X 2. 5 7750 Btu/ day ton
q78. 5°F : q60°F

(53.5 - 60)/18

X 2. 5 2160 Btu/ day ton
q53.5°F : 960°]?

From the above it can be seen that
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pg) _ 7750

dt ‘

 

( .003l6°F/min
78.5°F 24X 60X .85X 2000

£12 2160

dt 53.5°F — 24X 60 X .85 X 2000

 

( .000882° F/min

Comparison of the rate of temperature change due to heat flow by con-

duction from the media with the rate of temperature change due to bio-

logical respiration, Shows that the latter is by far smaller (. 33% for

heating and . 1% for cooling) for the 1. 5" tube. This contrast is even

higher if the analysis is made using the 1" tube.

The small contribution of the heat of respiration at the average

time justifies neglecting the heat of respiration throughout the test. In

low NBi (such as cooling in low air velocity) in which the probable f is

larger, or in systems exposed to respiration-favorable temperatures

having a Small temperature driving force the relative contribution of

the heat of respiration will be much larger and probably should be taken

into account.

In cases where the elapsed time Since t = 0 until comparison is

made iS short, the necessity of taking into account more than one term

in the general temperature distribution solution Should be considered.

The method and the Significance of comparing the heat of respiration to

the conductive heat transfer is mainly dependent on the values of j, Q“),

t and the actual temperature distribution at the time the comparison is

made.
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5. 5 Magnitude of free convection
 

In all the experiments throughout this study we are assuming that

by using or creating immobilized water in our system heat was flowing

due to conduction heat transfer only. In cases where air spaces are

involved it is necessary that we prove that the air Spaces are small

enough that natural convection can be neglected.

Briggs (1954) Showed that if the product of the Grashof and Prandtl

numbers is less than 600 in self-consistent units, convection will not

 

OCCUI‘.

C H
L3 3 A

( p 3.3 t)(-E—)£600 (5.5.1)

In our system the most favorable conditions for convection in the

air Spaces, as far as the above criteria are concerned, will be:

1. On the surface. It is only at surface that our maximum At of

60°F can occur. This maximum value of At = 60°F at the surface occurs

only in the starting of the experiment and decreases immediately.

2. During the cooling cycle (due to higher viscosity in cooling).

The maximum size of the air space which under the conditions stated

above yields N r g 600 can be calculated aS follows:
G

PZgPC
_.____E 2 x ___1_

( pk )air atT=496°R Z 10 ft3°F

(McAdams, 1954)

2 X106XAtX 113$ 600

2>< 106x 60X L3g600

L. = .0171 ft: 5.2 mm

min
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This minimum L of 5. 2 mm is of course far larger than the air Spaces in

any of our experiments (See 5. 6); it is interesting to note that in compu-

tation of the magnitude of natural convection in spaces containing sucrose

solution (apple flesh), the maximum NGr NPr taking the average cell

size to be about 500 micron (Reeve, 1953) was found to be less than 100.

Therefore, for the experimental conditions stated, as for this system,

the convection heat transfer may be considered to be negligible.

5. 6 Size of the air-foamed bubbles
 

Photographs of sections of a few of the air-sucrose solutions foam

were made and two of them are Shown inFigure 5. 1. The size distri-

bution of the bubbles was found as follows:

20% of the bubbles have a diameter smaller than . 05 mm

15% of the bubbles have a diameter between .05 mm to . 1 mm

50% of the bubbles have a diameter about .1 mm

15% of the bubbles have a diameter larger than .1 mm

The bubbles have a Spherical shape and seemed randomly dis-

tributed. As noted in section 3. 7 the size of the bubbles, as long as

they are small and randomly distributed, should not affect the overall

thermal properties of the system.



solution gel.

Cross section of airFigure 5. 1. foamed sucrose

scale (mm) |  

% sucrose 8, % air 16

 

% sucrose 24, % air 8
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6. RESULTS AND DISCUSSION

In this section we shall give the results of the experimental part

of the study and its related discussion. The major computer program

(program COND) was used for the computations of:

1. The predicted thermal conductivity, k , and the predicted thermal

T

diffusivity, a for all tests using equation (equation 3. 7. 5) developedT’

for three dimensional homogeneous isotrOpic system.

2. The experimental thermal conductivity, E, and its standard devi-

ation using the experimental data by solving and satisfying the root equa-

tion of the cylindrical transcendental equation. This experimental

thermal conductivity, kE, which is an unknown value, cannot be calcu-

lated directly from the equation (4. 2. 1) which relates its value to the

k

experimental data. The equation f 5% / R‘2 : In 10/ (3% can only be

P

solved Simultaneously by trial and error with the transcendental equa—

' N —hR— Jlml) Th t h 'th b1 kd'tion Bi — kE — , JON-31) . ose s eps are S own in e oc iagram

(Figure 6. 1). As it can be noted from Figure 6. 1 the computation of a

Single experiment is terminated when the value of the assumed thermal

conductivity, kE, is within . 1% of the thermal conductivity evaluated

using the transcendental equation.

An expression was developed (equation 3. 7. 5) in this study where

the overall thermal conductivity of a two-component three-dimensional

homogeneous-isotropic dispersion system, kE, is a function of the

95
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Figure 6. 1. Block diagram for the computation of the experimental

thermal conductivity, kE

 

Previous computations

Assume (kE), = .05

1
Computation of the Biot number

P NB, = h R / 94>.

1
Generating the Jo (B,) and J, (B,) starting with

  
 

 
 

 

 

  
 

 

B, : .05 and cycling until a B, is found where

the N . computed using the equation
Bi

_ J1(B1) . . .
NBi — B, 510031) Will be Within .1% of the NBi

computed uSing, the equation NBi = h R/ (kE)1 .

1
Computation of the new thermal conductivity

k

(k ) from i /R2= 1n10/PT
E3 Cpp
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thermal properties of the single components and their reSpective con-

centrations. This expression deve10ped in section 3. 7 willhold for any

two-component system, providing the system will fulfill the require-

ments posed in the above mentioned section. We think that the air-

sucrose solutions foam system as well as the apple flesh evaluated in

this study can be considered to be such a system, and we, therefore,

Shall in the following discussion check and compare the magnitude of the

predicted thermal conductivity, k , calculated from equation (3. 7. 5)

T

with that obtained from the experimental results with respect to various

parameters. We propose that agreement between the magnitudes of the

values calculated from the developed expression and these values

obtained from the experimental data, evaluated from a few points of

View, will prove that the basic assumptions used to develop the expres-

sion and the reasoning behind the development are in agreement. As

long as the magnitudes of our comparisons are about the same, we

should not be disturbed if the experimental results differ moderately

from those obtained using the developed expression. If the values

obtained in the several comparisons are of about the same magnitude,

this agreement will take care of the most important part, the identity

of the functional groups. A proportionality constant, if needed, will

take care of any deviation of the results, if any.

Table 6. 1 is the condensed input-output of program COND.

It contains all the basic input information and most of the output results

of this study.
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All the points appearing in the figures in this section are experi-

mental points and their best fit (least square method) first degree

polynomial appears in the form of solid lines. The broken lines are the

results of the prediction equations.

Sucrose matrix
 

We would like to point out that although the developed expression

in orthogonal coordinates (equation 3. 7. 5) is very close to the form of

k = b AIR + d, its real form is of a second degree equation. Since the

difference between the first degree form and the second degree, as

obtained by the least squares method, was very small, we decided to

present the deve10ped expression in the form of a first degree equation,

so comparison between its values and the experimental results (which

are expressed in the first degree form) could be made on the basis of

s10pe and intercept with the ordinate. In Figures 6.2, 6. 3, 6. 4 and 6. 5

the experimental thermal conductivity, E (which is the average of the

experimental thermal conductivity for the three sizes of the stainless

(according tosteel tubings), and the predicted thermal conductivity, kT

the deve10ped expression, equation (3. 7. 5) are plotted, for cooling and

heating, versus the amount of air for l. 5, 8, l6 and 24 percent sucrose

respectively. A polynomial of the first degree, having the form k = b

AIR + d (b and d are constants, AIR 2 percent air v/ v), for all cases

was calculated by the least square method. The constants for these
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polynomials are tabulated in Table 6.2. By inspection of Figures 6.2,

6. 3, 6.4, and 6. 5, we can see that in all cases the cooling lines are

lower than the reSpective heating lines. This is to be expected for both

the theoretical and the experimental lines, since when k < kC the thermal

d

conductivity of the two component system is dependent (see equation

3. 7. 6) in a linear fashion on the thermal conductivity of the continuous

phase (the sucrose solution), k , which itself is prOportional to the

L

temperature.

In all the above mentioned figures (except for the l. 5 percent

sugar case), the experimental line for cooling is more or less parallel

(within 5%) to the reSpective experimental heating line. This parallel

relationship between the experimental heating and cooling lines is satis-

factory due to the fact that the change in the thermal property for the

sugar system is almost linear with reSpect to temperature. Therefore,

we can expect the lines for the experimental heating and cooling to have

the same slope, but be shifted with respect to their intersection with the

ordinate.

ST is the ratio between the experimental thermal conductivity, kE

for each experiment and its predicted value, kT, and SJ is the ratio

between the experimental lag factor jc for each experiment and its pre-

dicted value. The average values of ST and SJ and their standard

deviations for the various experimental groups as computed from Table

6. l are tabulated in Table 6. 3.
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Table 6.2. Coefficients of the equation of the thermal conductivity kE and

kT with respect to air for various sucrose concentrations.

The equation has the form of k = b AIR + d

 

 

 

 

g Heating Cooling

a) 3'3 .

‘3 :3 Experimental Predicted Experimental Predicted

‘* E k k k k
0 a) E T E T

.5; a
8 10316 d 103b d 103b d 103b d

1.5 -3.844 . 35517 -3.891 . 34878 -4.547 . 33510 -3.739 . 33481

8.0 -3.649 . 34190 -3.706 .33623 -3.831 .3242? -3.607 .3234?

16.0 -3.351 .32484 -3.582 .32169 -3. 491 .30863 -3.373 . 30891

24.0 -2.907 . 31146 -3.410 . 30636 -3.025 .29732 -3.262 .29441         
Table 6. 3. The average ST 2 kE/kT and the average SJ = jC/TjC and their

standard deviation.

 

 

 

ST 2 kE/kT SJ = JC/TjC

Standard Standard

Average deviation Average deviation

All the experiments 1.0003 .0450 .9641 .0852

Sucrose matrix—- —

heating experiments 1.0282 . 0265 . 9944 . 0940

Sucrose matrix--

cooling experiment .9894 .0369 .9250 . 0757

All the experiments

beside the sucrose

matrix .9690 .0548 .9811 .0506  
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From Table 6. 3 it can be seen that the average ST for the sucrose

matrix is slightly larger than 1 for heating, and slightly smaller than 1

for cooling. The average ST for the whole study is surprisingly 1. 0004.

The divergence of the average SJ from 1. 0 and the standard deviation of

the SJ are greater than those of the ST. This higher divergency of SJ

should not be surprising since the errors in the measurement of the lag

factor, jc’ are well known and are discussed in section (3.2). It is

interesting to note from Table 6. 1 that the theoretical lag factor, ch,

for all experiments has the same value of 1. 602 which is an asymptotic

value of high NBi system. This again shows the impossibility of using

the lag factor, 30’ as a characteristic variable in a high N i system,

B

even if the possibilities for experimental error in its determination were

eliminated.

Figure 6. 6 shows the relationship in the sucrose matrix between

the amount of air and w, where w is a dimensionless ratio between thermal

conductivity of the foamed sucrose solution, k, and the thermal conduc-

i.e.tivity of the same sucrose solution having zero air, (k)Zero air ,

Wzk/(k) .. whaslimitsof0<w£l.

zero air

From Figure 6. 6 we can see that the scattering of experimental

points around the experimental least-square line is approximately pro-

portional to the amount of air. This is quite expected since the greater

the amount of air entrapped in the sample the more complicated the

system and the larger are the probably discrepancies with respect to
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air distribution and liquid phase continuity. However, we are very

pleased and even surprised to see that the predicted line obtained by

plotting the amount of air versus k /(k ) . almost coincides
T T zero air

with the experimental line. The equations of the lines are:

Experimental
_ 2

= - . X , . .
line kE/(ILE)Zero air 1 1028 10 AIR + 1 000 (6 1 1)

Predicted
_

= - . x 2 . ..
line kT/(kT)zero air 1 1140 10 AIR + 1 000 (6 11)

The experimental thermal conductivity, kE, and the predicted thermal

conductivity, k , of the air- sucrose solutions foam for both heating and
T

cooling are plotted versus the amount of air in Figures 6. 7 and 6. 8.

From these graphs and from the table of coefficients (Table 6. 2) we

observe that the slope b, of both the experimental lines and the predicted

lines decreases when the sugar concentration increases. This common

behavior of the predicted and the experimental lines is expected and

more than welcome, so to speak: since as the sugar concentration

increases the thermal conductivity of the continuous phase, kL, decreases

and since the thermal conductivity of the dispersed phase (air), kA, is

constant, the difference between kL and kA will be smaller and the

thermal conduct1v1ty of the sucrose solution foam, kE, (kL 2 kE _>_ kA)

will be, therefore, less air-dependent (i. e. slope presented in 1TB: AIR

coordinates is smaller). The fact that the magnitude of change for both

the experimental and the predicted lines is the same supports the validity
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Figure 6. 7. Summary of the heating results. Experimental (solid lines)

and predicted (broken lines) thermal conductivity vs. percent

air in heating.
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of the equations developed for the two phase system. The value of the

constant d is inversely proportional to the sucrose concentration; this

is obvious since d, the intercept of the curve with the ordinate, is

the thermal conductivity for zero air.

The functional group £15" throughout our study approaches a

constant value. It has been noted above that all the experiments were

performed in a high NBi system (well over 100). In these N regions

Bi

the % becomes a constant and is different for each geometrical shape

(see equation 3. 5.1).

f oz

—-p; = constant

log f = 2 log R + constant (6.1. 3)

or taken between limits

log (fl/f2) = 2 log (Rl/RZ) (6. l. 4)

or the slope of the straight line obtained when f is plotted vs. R on a

log- log scale is constant (E = 2). Since each set of experiments con-

sisted of three values of f and three values of R, we obtained three

slopes, E1_2, E3_3 and E1_3. The slopes, E, for all the air-sucrose

solutions foam matrix, their various average and standard deviations

were computed and the computer output is presented in Table 6. 4.

From Table 6. 4 we can observe that the s10pe, E, is generally

about 2. As a matter of fact, the average E for the heating matrix,

cooling matrix, or the total matrix, is about 1. 98-1.99 . We would like
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to point out that the value of E should be just below 2, because E

approaches 2 from below as N 00.

B17

C arbohjdrate sample
 

The carbohydrate type products which were examined in this

system were raw potato flesh, raw apple flesh and apple sauce. The

experimental data associated with these experiments are tabulated in

the main input-output table (Table 6. 1). In Figure 6. 9 the experimental

thermal conductivity, kE, for each case (each point on the figure repre-

sents the average value for the various cylinder sizes) is plotted versus

the predicted thermal conductivity, kE’ using equation (3. 7. 5).

From Figure 6. 9 we can see that the experimental thermal con-

ductivity, kE, of the apple sauce and the raw potato are about the same

as their respective predicted thermal conductivity, k As far as theT'

apple flesh is concerned the experimental thermal conductivity, KB,

was lower than the predicted values. One of the major probable reasons

for this discrepancy is the inaccuracy of the diameter of the apple flesh

with respect to the stainless steel tube. From this standpoint, both the

air-sucrose solutions foam and the apple sauce have the most accurate

shape because they take the shape of the tube when they are poured;

whereas, the rigid plugs of apple flesh did not conform exactly to the

shape of the tube.

It is interesting to see from Figure 6. 9 the increase in the thermal
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Figure 6. 9. The predicted thermal conductivity, kT’ vs. the

experimental thermal conductivity, kE, for the

carbohydrates type products.
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conductivity of the raw apple flesh after the air was deaerated and

replaced by liquid. This increase was expected from our theoretical

equation which takes into account the thermal properties of the individual

phases and the percentage of air. The determination and comparison

of the thermal conductivity of the raw apple flesh to the deaerated

product demonstrates again that the thermal conductivity of raw apple

flesh cannot be approximated (as was done in the past by a few re-

searchers) by using Anderson approach (equation 6. l. 5). The Ander-

son's equation says that the thermal conductivity of a carbohydrate type

fruit is the same as the thermal conductivity of a sucrose solution

having the same percent of carbohydrates as the fruit. The Anderson

thermal conductivity prediction equation agrees with sucrose solution

data of Riedel (1951), and presumably agrees with data on other food-

stuffs not containing air. Since as much as 25% of the apple volume

may be intercellular spaces the Anderson equation is not applicable.

Calculation of the thermal‘conductivity of our apple according to the

Anderson approach will approximate the thermal conductivity of an

apple, if the air is replaced with liquid having the same concentration

of carbohydrates as the apple juice.

k = (% moisture/lOO)kW + .15(1oo - % moisture)/lOO (6.1. 5)

It is worthwhile mentioning that one of the basic results of the

development of an overall thermal conductivity of the two-component
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homogeneous isotrOpic system is that as long as the dispersed particles

are randomly dispersed and small enough in comparison to the whole

unit, they do not necessarily have to be of a single geometry nor of a

single size. If the diSpersed particles are small and randomly dis-

tributed, the area void fraction for any cross section of the system will

be the same. This means that the thermal conductivity of the two-

component system is a function of the thermal conductivities of the

individual components and the volumetric void fraction only, and inde-

pendent of the size or the shape of the particles in the dispersed phase.

The air-sucrose solutions foam are systems where the dispersed phase

(air) is found in various sizes of one single shape (sphere). The

spherical particles are quite small (see section 5. 6) which not only

satisfies the requirements for elimination of free convection (see sec-

tion 5. 5), and having a small ratio between the individual particle size

and the system size, but increases indirectly (by having more dispersal

particles) the chances of the particle being randomly distributed. In

the case of the apple flesh the air is dispersed to form intercellular

channels having sizes of . 3 mm up to 1 mm (Reeve, 1954). The air

channel size in the apple flesh, as in the case of the air- sucrose solu-

tions foam, obviously fulfill the basic requirements with respect to

size and random distribution. It is interesting to note that the air

channels in the apple flesh are not closed type cells (as in the case of

air-sucrose solutions foam) but are inter- connected to one another
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(otherwise deaeration would not be possible! ).

It has been mentioned that the experimental system was designed

to have a large NBi’ so that the da/ dNBi or its equivalent dkE/dNBi

would be as small as possible. By using the modified program COND

we computed the projected change of the experimental thermal conduc-

tivity, 1113, should the film coefficient change. In other words what was

AkE

Ah

 

the of our system? Two examples were computed and the results

are shown in Table 6. 5.where the new thermal conductivity of the

reference point (kE) were tabulated vs the percent change in the

RV

film coefficient with respect to the actual experiment condition. From

Table 6. 5 we can see that the film coefficient in our system is so high

that even if a change would occur which will cause the film coefficient

to be reduced by 50% or to be doubled its assumed value (evaluated from

the copper and aluminum cylinders), the error in such extrame changes

(which are very unlikely to happen) in the determination of the experi-

mental thermal conductivity, kE, will not exceed . 4%. Practically we

Ak

E z 0. (See also 3.4, 3.5.)can say that in our system Zh—

Beef lean meat
 

A few-experiments were done with raw meat. The average

thermal conductivity and diffusivity for the three tubing diameters are

tabulated in Table 6. 6. The specific heat of the raw meat used in the

computation of the thermal conductivity from the thermal diffusivity
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Table 6.5. The influence of changing the film coefficient h on

the experimental thermal conductivity, kE

100 h h 6. NB; a5 kE kE

h * eru
RV 2 13. __§I!__. (k ) *

hr ft °F 0.2 hr ft °F 5 RV

Test No. 40

40.00 400.00 2.350717 51.02 0.0059517 0.300705 1.024015

50.00 505.00 2.300177 05.09 0.0059043 0.305497 1.015107

00.00 702.00 2.374394 70.50 0.0050734 0.303073 1.010041

70.00 019.00 2.370000 91.91 0.0050510 0.302377 1.000441

80.00 930.00 2.302104 105.32 0.0050354 0.301400 1.003751

90.00 1053.00 2.304059 110.74 0.0050229 0.300057 1.001005

100.00 1170.00 2.300097 132.15 0.0058130 0.300050 1.000000

110.00 1207.00 2.300302 145.50 0.0050049 0.359500 0.990041

120.00 1404.00 2.309740 158.97 0.0057902 0.359101 0.997509

130.00 1521.00 2.390910 172.39 0.0057925 0.350017 0.990553

140.00 1030.00 2.391917 105.00 0.0057077 0.350522 0.995735

150.00 1755.00 2.392704 199.22 0.0057035 0.350207 0.995020

160.00 1072.00 2.393542 212.04 0.0057790 0.350044 0.994400

170.00 1909.00 2.394210 220.05 0.0057700 0.357047 0.993001

100.00 2100.00 2.394003 239.40 0.0057737 0.357073 0.993375

190.00 2223.00 2.395334 252.00 0.0057712 0.357510 0.992941

200.00 2340.00 2.395011 200.29 0.0057009 0.357370 0.992551

210.00 2457.00 2.390242 279.09 0.0057000 0.357240 0.992197

220.00 2574.00 2.390034 293.10 0.0057049 0.357133 0.991077

230.00 2091.00 2.390992 300.52 0.0057032 0.357020 0.991504

240.00 2800.00 2.397320 319.94 0.0057010 0.350931 0.991310

250.00 2925.00 2.397022 333.30 0.0057001 0.350042 0.991070

Test No. l54

40.00 400.00 2.307001 141.42 0.0050093 0.272401 1.000433

50.00 505.00 2.391297 177.20 0.0050540 0.271719 1.005011

60.00 702.00 2.393500 213.13 0.0050452 0.271212 1.003737

70.00 019.00 2.395105 240.97 0.0050304 0.270051 1.002400

00.00 930.00 2.390390 204.01 0.0050333 0.270501 1.001399

90.00 1053.00 2.397337 320.07 0.0050294 0.270370 1.000022

100.00 1170.00 2.398089 356.53 0.0050202 0.270202 1.000000

110.00 1287.00 2.390704 392.40 0.0050237 0.270005 0.999492

120.00 1404.00 2.399210 428.27 0.0050215 0.209951 0.999009

130.00 1521.00 2.399049 404.15 0.0050197 0.209054 0.990711

140.00 1638.00 2.400019 499.92 0.0050102 0.209771 0.990405

150.00 1755.00 2.400341 535.00 0.0050100 0.209700 0.990139

100.00 1072.00 2.400022 571.73 0.0050150 0.209037 0.997907

170.00 1909.00 2.400070 007.01 0.0050140 0.209502 0.997702

100.00 2100.00 2.401090 043.44 0.0050137 0.209532 0.997520

190.00 2223.00 2.401207 079.30 0.0050129 0.209400 0.997357

20°~00 2300.00 2.401404 715.10 0.0050121 0.209449 0.997210

210.00 2457.00 2.401024 750.07 0.0050114 0.209413 0.997070

220.00 2574.00 2.401770 700.79 0.0050100 0.209300 0.990957

230.00 2091.00 2.401903 022.03 0.0050103 0.209351 0.990047

240.00 2808.00 2.402025 050.50 0.0050090 0.209323 0.990740

250.00 2925.00 2.402137 094.30 0.0050093 0.209290 0.990054

 

* . . .
Reference value corresponds to the actual experiment condItIons
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Table 6. 6. The thermal diffusivity, the thermal conductivity and the j

value for the raw meat flesh

 

 

. Average Average _

Heat flow in ' thermal thermal Aver SJ —

respect to Media . . . . . age . .

rains d1ffusw1ty conduct1v1ty JC/TJ

g ftz/hr Btu/hr ft °F 30 C

Perpendicular Heating .00361 . 200 1. 47 .863

Perpendicular Cooling . 00404 .223 1. 48 . 913

Parallel Heating . 00454 . 251 1. 56 . 974

Parallel Cooling . 00490 .271 l. 55 .970

 

was taken arbitrarily from the literature to be .82 Btu/1b ° F. The

specific gravity for the raw meat was experimentally found to be 1. 08.

It is difficult to evaluate the thermal prOperties of raw meat in a

temperature range above the freezing point. The problems involved

start with the difficulty of obtaining the needed accurate shape, loss of

liquid and other problems yield unpredictable discrepancies in the

results due to the fact that raw meat above the freezing point is a rela-

tively soft nonhomogeneous material. These are probably the reasons

why the thermal properties of raw meat in most cases have been evalu—

ated for the temperature range below the freezing point.

The main purpose of the raw meat experiments was to get some

idea of the thermal properties and to understand the system and the

problems involved. We would like to point out again that in this study
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the thermal diffusivity was found directly from the experimental data and

the thermal conductivity was evaluated by picking an arbitrary value

(from the literature) for the specific heat. The parameters in the lean

meat test were cooling and heating; heat flow in the direction parallel

and perpendicular to the meat grain. The values of the thermal conduc—

tivity, the thermal diffusivity and jc of the lean meat tests are tabulated

in Table 6. 6. From Table 6. 6 we can observe that there is no appre-

ciable difference between the thermal conductivity for heating or cooling

in the respective raw material.

Before going further we would like to point out that our so-called

" heat flow parallel to the meat fibers" is far from being parallel. The

reason for this is that the heat flow in our system is radial heat flow.

The meat fibers in order to be considered parallel to heat flow should

be arranged in radial form, i. e. the fibers will represent the radii - like

sun rays. This situation does not occur in meat, and as the fiber

arrangement can be assumed to be parallel in rectangular coordinates,

we actually find that the direction of the fibers with respect to the heat

flow varies from being completely perpendicular to completely parallel.

The value of the thermal conductivity, in the so-called perpendicular

direction will be, obviously, some value between the value of the

thermal conductivity in the parallel direction and the value of the

thermal conductivity in the perpendicular direction.

From Table 6. 6 we can see that the thermal conductivity when the
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heat flow was parallel to the meat fibers is larger for both cooling and

heating than the thermal conductivity in the so-called perpendicular

direction. The phenomena of meat flesh having a higher thermal con-

ductivity in the direction parallel to the fibers than in the perpendicular

direction was observed before by a few researchers, among them

Lentz (1961) and Miller (1963). We would like to point out that the

analysis we have made in section 3. 7 shows that in the fibrous (or

layered) homogeneous system the thermal conductivity in the direction

parallel to the fibers is always larger than the thermal conductivity in

the direction perpendicular to the fibers. We were quite satisfied that

both the extensive experimental investigations of Lentz (1961) and

Miller (1963) with respect to the thermal conductivity of meat and the

few results that we have obtained in this study confirm the analysis.



 



7 . SUMMARY

The study consisted of two phases, a laboratory study followed by

a theoretical study. The conclusions reached in this study are as follows:

f

1) By dimensional analysis we showed that: *3- : )\ N and from
n

R Bi

the exact solution that for high and low N i x and 71 approach constant

B

values.

2) The evaluation of the film coefficient h should be carried out in

is small as possible. WhenN > 10, h is verya system where the N Bi

Bi

sensitive to changes or errors in either the physical or geometric

prOperties of the overall system. On the other hand evaluation of the

thermal diffusivity, oz, should be done in a system with a high NBi so that

the root value [31 is insensitive to NBi (or h).

3) In the high N i system f is independent of N (or h), and is
B Bi

proportional to Cp p /k (reciprocal of the thermal diffusivity) and R2. In

low NBi system, the f is inversely prOportional to NBi (or h) but directly

prOportional to Cp p (heat capacity) and R.

4) The ratio between f values of a sphere to an infinite cylinder

to an infinite slab is 1: 1. 5-1. 7 : 3-4 respectively (the low ratio values

are for the high N systems and the large ratio values are for the low

Bi

NBi systems).

5) The mass—average temperature can be expressed as a function

of the temperature at the geometric center Tm = T. -K (T1 - TC ), where

K = Jm/JC'

122
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6) The overall thermal conductivity of three dimensional homo-

geneous isotropic system, two dimensional anisotropic fibrous system

and one dimensional anisotropic layered system was expressed as a

function of the thermal conductivity of the individual components and the

relative proportion of the components.

7) The thermal conductivity of a homogeneous fibrous (or layered)

system is always larger in the direction parallel to the fibers (or layers)

rather than in the direction perpendicular to the fibers (or layers). In

fact, in such systems, the maximum and minimum overall system

thermal conductivity will be in the direction parallel and perpendicular

to the fibers (or layers) respectively.

8) In the layered system the ratio between the thermal conduc-

tivity in the direction parallel to the layers to the thermal conductivity

in the direction perpendicular to the layers with respect to the void

fraction, P, will reach a maximum value when P = . 5.

9) The experimental thermal conductivity of an air-sucrose

solutions foam agreed with the values and particularly with the various

magnitudes of the predicted expression for the two- component three-

dimensional dispersion system. This prediction equation for the overall

system thermal conductivity of the two-component three-dimensional

homogeneous-isotropic system as a function of the thermal conduc-

tivities of the single components and their proportion, should hold for

many other systems such as butter (water dispersed in fat), ice cream,

or insulation materials.
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