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ABSTRACT

TRANSIENT HEAT TRANSFER AND THERMAL

PROPERTIES IN FOOD SYSTEMS
by Isaiah J. Kopelman

The study of the transient state heat transfer is important in
many food processing operations, from the designing as well as the
evaluation of quality viewpoint. For the analytical treatment of heat
transfer problems it will be useful to know more about transient heat
transfer analysis and thermal properties. In this project both transient
heat transfer and the evaluation of thermal ;;roperties were studied.

The project consisted of two studies: a theoretical study and a
laboratory study. The theoretical part of the thesis in itself consisted
of two parts; a study to extend the knowledge and use of the first term
approximation (suggested by Ball, 1923) and an analysis of the thermal
conductivity of two-component homogeneous dispersion systems.
Specifically the theoretical study consisted of a dimensional analysis of
f; derivation of a mathematical expression for the relationship of the
body properties and the system properties as related to the magnitude
of f and j as reflected in the design of an experiment and the evaluation
of experimental data; derivation of a mathematical expression in which

the mass average temperature is a function of the temperature at the
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geometric center; studying the heat transfer properties of low and high
NBi and analysis of the thermal conductivity of a one, two and three
dimensional, homogeneous two-component dispersion system. The
laboratory study consisted of two parts: an investigation of the thermal
conductivity of a foam, a two-component air-sucrose solution, and
evaluation of the thermal diffusivity of several food products.

The expression developed for the thermal conductivity of the
three dimensional two-component homogeneous isotropic system was
evaluated experimentally using a transient heat transfer method in a
high film coefficient system in which the thermal diffusivity of 1.5, 8,
16 and 24 percent by weight air-sucrose solutions foam having various
amounts of air, in three sizes of stainless steel tubings (1', 1.5'" and 2"
O.D.) during heating from 36° F to 96° F and cooling from 96°F to 36°F
were measured.

The analysis of the experimental dgta was carried out using a
Control Data 3600 Digital Computer; the results showed that the values
and the magnitude of the thermal conductivity of the foamed sucrose
matrix compared with the values and particularly with the magnitude of
the developed expression. The thermal diffusivity of several typical
foodstuffs (raw potato flesh, raw and deaerated apple flesh, apple sauce
and meat) was evaluated using the same experimental system.

The analysis of the thermal conductivity of a two-dimensional

homogeneous anisotropic fibrous (or layered) system which showed that
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the thermal conductivity in the direction parallel to the fibers is always
larger than the thermal conductivity in the direction perpendicular to the
fibers was confirmed both by the results of the meat flesh experiments
of this study and by the results of the extensive work related to the

thermal conductivity of meat done by Lentz (1961) and Miller (1963).
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1. INTRODUCTION, LITERATURE REVIEW
AND OBJECTIVES

Most processed foods are subjected to a heat treatment, either
heating or cooling, moderate or severe, once or several times. Both
desirable and undesirable changes in the food product are produced by
the heat treatment. Understanding the heat flow mechanism and knowl-
edge of the thermal properties of the food product are essential in
making analytical studies of food processes such as heating, cooling,
or dehydrating. Analytical heat processing studies are very useful in
designing new processing systems and in improving existing food
processing systems.

In handling and storage of perishable food products, knowledge of
heat transfer and thermal properties are as important or may even be
more important than for processed foods since produce quality may be
directly related to the heat process.

Information regarding the three conduction heat transfer thermal
properties; thermal conductivity, specific heat, and density, for par-
ticular food substances is limited and frequently conflicting; of these
three thermal properties, the thermal conductivity is the most elusive
and variable. Where data do exist, information is often lacking regarding
the composition of the sample, or specifications of the experiments,
temperature difference, and structure of the sample in respect to heat

flow. In some cases the reporters apparently failed to fully understand
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the mathematical models and their results based on misinterpretation
of their data are misleading.

Excluding the information on the specific heat of foodstuffs based
on the work of Siebel (1892), the first recent basic data related to ther-
mal properties of foodstuffs was evaluated by Gane (1936). In add'ition
important data have been generated within the past decade by workers
such as Lentz (1961) and Miller (1963) where the thermal conductivity of
meats and fats mostly in the frozen state was determined using the
guarded hot plate method (steady state conditions); Turrell and Perry
(1957) and Poppendiek (1953) reported specific heat and thermal con-
ductivity of citrus, assuming a spherical geometric shape; Bennett
(1962, 1964) reported the thermal conductivity of Valencia orange and
Marsh grapefruit using the Fitch (1935) method; the Fitch method was
also used by Walters (1963) to determine the thermal conductivity of
chicken breast muscle and skin in the frozen state; the thermal conduc-
tivities of beef, fruit tissue and fish during freeze-drying were deter-
mined under quasi-steady-state Qonditions by Harper (1962) and
Graham et al. (1964). Dickerson (1955) used a system in which the %—’f
of the sample was kept constant to determine the thermal diffusivity of
food substances under transient heat flow conditions. Charm (1963)
presented a trial-and-error method to calculate the thermal conduc-
tivity of frozen food using the heat penetration curve.

The specific heat is relatively an easier property to measure than
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thermal conductivity since it is independent of direction or shape.
Measurement of the specific heat dates back to Siebel (1892). Since then
some of the important work has been done by: Short et al. (1942),
Ordinanz (1946), Staph (1949), Staph and Woolrich (1951), Mannheim et
al. (1955), Janson and Long (1955), Moline et al. (1961), and others.
Their results may be found tabulated in such books as ASHRAE Guide
and Data Book, Anderson (1959), and Charm (1963).

Pflug et al. (1965) observed that thermal diffusivity calculated
using thermal conductivity by the Anderson (1959) equation (equation
6.1.5) is unreasonably high for apples. The difference is probably due
to intercellular air which may occupy approximately 20 to 25% of the
volume of the fruit (Smock and Neubert, 1950; Reeve and Leinbach,
1965) and which the Anderson equation does not take into account. The
Anderson thermal conductivity prediction equation agrees with the
sucrose solution data of Riedel (1951) and presumably agrees with data
for other foodstuff solutions. If an apple was a homogeneous solution of
components--without air--the Anderson equation probably would give
satisfactory results. However, since as much as 25% of the apple
volume may be intercellular air spaces, a new approach to predicting
the thermal conductivity is needed. This point, discussed in detail by
Kopelman et al. (1965), was the initiation point for this study. It was
concluded that in order to study the basic phenomena and the role of the

air in fixing the thermal conductivity, we ought to go to a foodstuff model
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system. A model system makes it possible to vary the composition of
the solid phase and at the same time the amount of dispersed air with
greater stability and a more precise geometrical shape.

This project consisted of two studies; a laboratory study performed
first followed by a theoretical study. (In this thesis the theoretical study
is presented first for greater continuity in the thesis.)

The objective of the experimental phase of this study was divided
into two parts:

1. To investigate the thermal conductivity of air-foamed sucrose
solutions. Specifically to develop an expression for the overall thermal
conductivity of the system and to check it experimentally using air-
foamed and stabilized sucrose solutions, in which the overall system
thermal conductivity is a function of the known parameters, i.e., func-
tion of the thermal conductivity of the continuous and the discontinuous
phases, and their volumetric proportion.

2. To determine the thermal conductivity of several typical food-~
stuffs (raw potato flesh, raw and deaerated apple flesh, apple sauce and
meat).

The objective of the second phase of this study was to conduct a
further investigation of the first term approximation theory and to analyze
the thermal conductivity of dispersion systems. Specifically, to make a
dimensional analysis of f; derive a mathematical expression for the

relationship between the body properties and the system properties as
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related to the magnitude of f and j as reflected in the design of an experi-
ment and the evaluation of experimental data; to derive a mathematical
expression in which the mass average temperature is a function of the
temperature at the geometric center; to study the heat transfer proper-

ties of low and high N i and to analyze the thermal conductivity of a one,

B
two and three dimensional homogeneous dispersion systems.

The accuracy of the solution of any heat transfer problem
depends to a great extent on the accuracy of the thermal property values
used in the analysis. The properties involved in conduction heat trans-
fer are: thermal conductivity, k; specific heat, Cp; and density, p. As
far as density and specific heat are concerned, their determination is a
comparatively simple process. The thermal diffusivity « is of the
utmost importance; however, it is derived from the three thermal
properties, «a = k/Cp p.

There are many methods which at one time or another have been
used for measuring thermal conductivity. The thermal properties of
any material occur in various combinations which may be regarded as
characteristic of, and measured by, different experimental situations.
The methods can be classified under two categories: steady and tran-
sient state. The former usually determines thermal conductivity, and
the latter thermal diffusivity. In fact, most transient state experi-
ments, in principle, not necessarily in practice, make possible

determination of both k and a@. Steady state methods often involve the
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measurement of the quantity of heat transferred and since heat losses
cannot be entirely eliminated, this often presents a difficult problem;
also, the time required for reaching equilibrium and completion of the
test is rather long.

In transient methods, changing temperatures in respect to time
are measured instead of the quantity of heat. These methods suffer
from the disadvantage that it is difficult to know how closely the actual
boundary conditions in an experiment agree with those postulated in the
theory; the effect of a discrepancy of this sort, for example, a contact
resistance at the boundary, is more difficult to allow for, and may be
more important than in steady state experiments. In transient methods
errors in the timing of temperature measurement and in thermocouple
response may produce appreciable error. On the other hand, transient
methods have the advantage of being relatively rapid. Some methods
may be used in situ without removing a sample to the laboratory, which
is very desirable in studying the thermal properties of materials such
as soils and rocks. In a few of the transient methods only the latter
part of the temperature-time curve, in which the solution consists of a

single exponential term, is used.



2. THEORY

2.1 General heat conduction equations

The general differential equation governing the temperature
distribution in a solid body or stationary fluid in rectangular coordinates
is

T 9%T 9T  9°T
pat - K (Gt gz t o)

pC (2.1.1)

The C_ and p are mainly independent of direction and for most of the
liquids and solids neither of them varies substantially with temperature.
The magnitude of thermal conductivity, on the other hand, is not only a
function of temperature but may vary with direction (anistropic mate-
rial) or may vary from point to point (heterogeneous material). If k

varies with direction, equation (2.1.1) can be generalized to

o T_ 3 . oT
P¥p 8t ~ Bx x 8x

9 oT E) T
) + 5y (ky ay)+ 32 (kz 5y (2.1.2)

If heat energy is developed in the differential element in the amount of q
(where q is the heat energy developed in unit volume per unit time)

equation (2.1.1) becomes
T 2
pCp——=kv T+ q (2.1.3)

It will be shown later (see 5. 4) that the value of q is negligible in our
system. (In living fruits and vegetables g is mainly associated with the
heat of respiration.)

For an infinite slab, which is one dimensional heat flow
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(8_'31; = a—g = 0), the general differential equation may be reduced to
oT a%T
Ft— a/axz (2.1.4)
k
where @ = — (2.1.5)
Cp p

The differential equation for one dimensional heat flow in cylindrical
(equation 2. 1. 6) and spherical (equation 2.1.7) coordinates can be found
by transformation of coordinates in equation (2.1. 1) and plugging

oT _ 9T oT _ 8T

B, - 86 - 0 anda—e = B0 = 0 respectively or by energy balance on the

differential element.

oT 1 8T, 9%T

cylindrical coordinates P Cp Bt - k (_r or + o2 ) (2.1.6)
oT 2 9T 8T
1 4 —_— = — — + — . .
spherical coordinates pCp ot k (r or Br?‘) (2.1.7)

2.2 The mathematical and physical meaning of the infinite body with
respect to heat flow

0
T—O

ot
9y 90z

Mathematically the term infinite slab means that
which means that we do not have a temperature drop along the y and z
axis, therefore there is no heat flow in these directions. Practically,
infinite slab condition can be obtained either when the y and z directions
are fairly large with respect to x or when the planes x-y and x-z are
thermally insulated.

The infinite cylinder is a similar concep’; to the infinite slab where
aT _ ot

5, - 06 - 0, consequently there is only radial heat flow. Practical






infinite cylinder conditions exist when the ratio of the length of the
cylinder to its diameter is fairly high (see 2. 5) or by thermally insulat-

ing both ends of the cylinder. At this point we can observe that in a

) )
cylinder where -5%[‘ = 8_3 = 0 the heat flow is parallel to the main axis;

this system is mathematically an infinite slab.
The sphere is always a one dimensional heat flow body (unless unevenly

heated or partially insulated), because of the symmatrical nature of all
oT _ 8T _

the points having the same radius (89 = % -

The infinite slab, infinite cylinder and sphere, because they have

0).

only one characteristic dimension, are three geometric shapes in which
unsteady state heat flow is a function of only two variables, time and
geometric dimension. The solution of unsteady state heat flow problem
in a two variables system is much easier than the solution for a geo-
metric shape having two or three geometric variables (finite cylinder,
cube, etc.). However, it will be shown later (see 2.5) that the solution
of the unsteady state heat flow of geometric shapes (finite cylinder,
cube, rectangular) which are geometric products of simpler shapes
(infinite slab, infinite cylinder) can be expressed as a product of solu-
tions of the simpler shapes.

2.3 Solution of the differential equation of the infinite slab, infinite
cylinder and sphere

As a matter of convenience the origin of the coordinates system

will be taken as the geometric center of the object; the x, y, z coordinates
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will be square to the axes of the object; the thickness of the infinite
slab and the diameter of the infinite cylinder and the sphere will be 2R.
The boundary and initial conditions for objects of any of these
three geometries that are initially at a uniform temperature, Ty, and
are suddenly exposed to an environment of constant temperature T, are:
Initial conditions are:
T =Ty at t=0 for all r (2.3.1)

Boundary conditions are:

5 ,
a—T:O at r=20 fort>0 (2. 3.2)
r

OT h

ar—k(T-Tl) at r=R fort>0 (2. 3.3)

The first boundary condition results from temperature symmetry at the
geometric center. The second boundary condition is the surface heat
flux and it is obtained by comparing the rate of heat trénsfer through the
surface hAr(Tl - T) to Newton's law of heat flux at the surface - Ark -g% .
The exact solution of the differential equation for unsteady state one
dimensional heat flow in an infinite slab (equation 2. 1. 4), infinite cylin-
der (equation 2.1.6) and sphere (equation 2. 1.7) all having the initial
and boundary conditions stated in equations (2. 3.1), (2.3.2), (2.3.3) as

given in Schneider (1957) are listed below:

For the infinite slab:
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where the ﬁi and the roots of the transcendental equation

NBi = ‘31 tan ﬁi (2.3.5)

For the infinite cylinder:

. ﬁ: at
T - T1 © Jl (ﬁ) - 2
2 i r R
- - z (z Jo(B. 5) e 2.3.6
To - Ty i=1 (ﬁi) Jé(ﬁi)+ Jf(ﬁi) o (B; g) ( )
where the [31 are the roots of the transcendental equation
_ J1 (By)
For the sphere: . B2 o t
2 (sin B. - B. cos B.) sin (B. =) -
- @ 2
T-T_ 3 1 1 L iR, R (2.3.8)
To-Ty -1 B.-sinB. cos B, r
i i i B.
iR
where the ﬁi are the roots of the transcendental equation
NBi= 1 - ﬁi cot [3i (2.3.9)
The Biot Number, N_ ., is a dimensionless number which is

Bi

physically a ratio of the thermal resistance R of the interior part of the

k
system and the thermal resistance 111 of the exterior part of the system,
NBi = % . In a system where the NBi can be only approximated, it is

much easier to evaluate that part of the system that will dominate the
heat flow, and in many cases, especially in low and high NBi values, to
have a simple algebraic relationship between the physical and geometric
properties of the system and the heat flow (see 3.5).

All the exact solutions for heat flow in the infinite slab, infinite
cylinder and sphere (equations 2.3.4, 2.3.6, 2.3.8) are series type

solutions, having the following form
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T - Tl - (2310)

To- Ty i
The location parameter is in j and the exponential term contains the time

function, the physical and geometric properties of the body and surface

heat transfer coefficient. Applying Cauchy test for convergency

M

1\;[“-1 shows that all the three series solutions mentioned above do
n M,

converge (the lim

lim

l\r,l[nl turns out to be 0) but are not continuous at t=0.
The number of terms needed for certain convergency depends mainly
on t; the smaller the t the more terms are needed for the same
convergency.

Generally it is known that this type of series, because of its
exponential nature, will converge rapidly and after a certain time, all
the terms after the first become negligible.

McAdams (1954) gives the Hottel and Gurney-Lurie charts which
describe the transient conduction solutions for the infinite slab, infinite
cylinder and sphere by plotting the log of the unaccomplished tempera-
ture change versus a relative time 5‘-’—2 for a constant N_. and a certain

R Bi

radius ratio r/R.

2.4 First term approximation

In the transient heating or cooling of a system beyond a certain
time the temperature as a function of the time and location can be de-

scribed by the first term of equation (2. 3.10).
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2a

T - T " R?
S S U
To - T, j e (2.4.1)

Equation (2. 4. 1) will give a straight line when the log of the unaccom-
plished temperature or log (T - T,) is plotted versus t. If 10-base
logarithms are used equation (2. 4. 1) can be rearranged into the follow-

ing straight line form.

T - T, BZat
o8 T, T %817 2503 R? 2.4-2)
Bf at
log (To- T,) = log [j(T - Ty)] - 2 303 RZ (2. 4. 3)

Equation (2. 4. 3) is a straight line having a slope and an intercept of:

2
-ﬁla

slope = 2303 RZ (2.4.4)

intercept = j (2.4.5)
By introducing a new term f (which is the negative reciprocal of the

slope of the straight line described by equation (2. 4. 3) we get:

2.303 R?
f="—TF—"7"
ﬁla’

(2.4.6)
This approximate asymptotic solution (only one term of the series
solutions is used) was suggested by Ball (1923). A summary of the
various analytical approaches is given by Pflug and Blaisdell (1963).
The slope or f of the straight line, semi-logarithmic heating
curve, is independent of location of the point of measurement since the

slope term does not contain a geometric variable. The equation for f

is the same for the three geometric shapes (infinite slab, infinite
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cylinder and sphere). The j term, however, does depend on location.

There are three j's, center, surface and mass average that are important.

geometric center Jg = |3 |r=0
surface ig = IJIr=R
;A
mass average i j dm where m = mass

Values for jc’ js and jm for infinite slab, infinite cylinder and sphere
are tabulated and plotted in Appendix 1.

The importance of the various j's is that once the straight line of
the heating curve plotted in semi-log fashion is established we can de-
termine the lowest (heating) or highest (cooling) temperature of the body,
the surface temperature and the mass average temperature as a func-
tion of time by using jc’ js’ and jm respectively.

2.5 Temperature-time solution of geometric shapes which are a
combination of an infinite slab and/or infinite cylinder

In many cases the temperature-time solution for two or three
dimensional heat flow is a product of the solutions of one dimensional
heat flow systems, and thus can be written down immediately if these
are known.

As an example we will show that the temperature-time solution
for a rectangular parallelepiped can be expressed as the product of the
temperature-time solution of three infinite slabs each normal to the

other.
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The equation for the three dimensional conduction heat flow in a

rectangular parallelepiped is

82T 8T 83T 1 T
8)(2 + aya + 822 = —a' T (2.5.1)

o+

which its solution is u = ¥ (x, y, z, t).
Consequently the temperature-time solution for the three one
dimensional heat flow infinite slabs in their respective axes are:
u = ¥ (x, t); u, = ¥ (y, t); u = ¥ (z,1t)

(2.5.2) (2.5.3) (2.5. 4)

and each solution satisfies its respective differential equation

9%u ou 9%, ou 9%u ou
x 1 _x y_1_y. z 1 _z

ox® ~a 0ot ° 8y2 T a 0t ° 9z° T «a t

(2.5.5) (2.5.6) (2.5.7)

In the following steps it will be shown that the temperature-time

solution u = Y (x, y, z, t) for the rectangular parallelepiped is the simple

product of the temperature-time solution of the three infinite slabs.

other words

u=u u_ u (2.5.8)

X'y 2z
By differentiating the solution (2.5.8) with respect to x, y, z and t

respectively we get:

9%u
82
w2
X y 'z 0x
9%u o%u
=u u — (2.5.10)

ayz X 'z 8y2

(2.5.9)
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2

0%u ° Y2

azz - uX uy BZZ (2511)

9u ou ou auz

Bt =uyuz—a—t~ +uXuZ —lat +uxuy8_t (2.5.12)

aux ou ou

Replacing the values of T _8tz and th from equations (2.5.5),
(2.5.6) and (2.5.7) in equation (2. 5. 12) we obtain

ou azux aaux E)auz

ot - oz(uy U, 532 + u u, Byz + u uy 922 (2.5.13)

The substitution of equations (2.5.9), (2.5.10) and (2.5.11) in the

9%1 9% = 0%
oxt T ay? T 8g2

appropriate places in equation (2. 5.13) will yield g% = a( )
which is the differential equation for heat conduction in rectangular
parallelepipeds.

A similar procedure can be used to show that the solution for an
infinite cylinder is the simple product of an infinite cylinder and an

infinite slab.

Since the three solutions, ux, uy and uZ have the form (see 2. 4)

je "t/ f, the product solution u will therefore be
R 7 {72
u=|je <€ yJe ” (2.5.14)
After rearranging we get
W= i e-t(l/fx+ l/fy+ 1/1,) (2.5.15)
X'y vz
This product solution has the form j e-t/f as the single solution

and has, therefore, the same properties with respect to j and f. It can

be immediately seen from equation (2. 5.15) that
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N N S (2.5.16)
1 1,1 1
S et g (2.5.17)
u X y z

The practical meaning is that the j and 1/f value for any rectangular
parallelepiped is the product of the j and the summation of the reciprocal
of the f of the three infinite slabs. The j and the 1/f value for the finite
cylinder, for instance, will be the product of the j for the infinite
cylinder and the j for infinite slab and the summation of the reciprocal
of the f respectively.

The question may be asked regarding what is "infinitely long" and
how can we estimate the error introduced when we assume a finite
geometrical shape to be infinite in one or two directions. As a first
consideration it can be noted that any direction whose perpendicular
surface is thermally insulated can be considered to be infinitely long,
since no heat will be flowing in that direction. A finite cylinder of very
small length, for example, if perfectly insulated at both ends can be
considered an infinite cylinder as far as heat flow is concerned. The
contribution of the noninsulated sides in the various directions to the
temperature change of any point depends on the location of the point
with respect to the appropriate surface. Again, if we are referring to
a cylinder, the larger the ratio of the length of a finite cylinder to its
diameter the smaller error is introduced by assuming that the finite

cylinder is an infinite cylinder. In Table 2.1 numerical values in the
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relationship between the length/diameter ratio and the ratio of the calcu-
lated f assuming an infinite cylinder geometry to be correct f are shown.
The values in the table were calculated for NBi - o, however, the mag-

nitude of the results will be the same for any N Of course any finite

Bi’
cylinder having both ends thermally insulated is, as far as heat conduc-
tion, an infinite cylinder. However, it can be seen from Table 2.1 that

practically when the ratio‘of the length to the diameter is 4 the error is

about 2. 67% and it becomes less than 1% when the ratio exceeds 7.

Table 2.1. Comparison of the f value for an infinite cylinder and a

finite one.
NBi assumed to be infinite
Length of Cylinder f Assuming Infinite Cylinder
Diameter of Cylinder f Correct
1.00 1.4267
1.10 1.3526
1.20 1.2963
1.30 1.2525
1.40 1.2177
1.50 1.1896
1.60 1.1667
1.70 1.1476
1.80 1.1317
1.90 1.1182
2.00 1.1067
3.00 1.0474
4.00 1.0267
5.00 1.0171
6.00 1.0119
7.00 1.0087
8.00 1.0067
9.00 1.0053
10. 00 1.0043
11.00 1.0035
12.00 1.0030






3. FURTHER INVESTIGATION OF THE FIRST TERM
APPROXIMATION THEORY AND ANALYZING THE THERMAL
CONDUCTIVITY IN DISPERSION SYSTEMS

3.1 Dimensional analysis of

The value of f in its simple physical definition indicates the time
required for the asymptote of the heating curve to cross one log-cycle,
the time required for a 90% reduction of temperature on the linear
portion of the heating curve.

The f value is a very useful term. From the analytical standpoint
it incorporates into a single term all the transient thermal properties of
the body, its geometrical characteristic and the thermal property of the
external system appearing in transient heat conduction. In other words,
the f term, which is expressed in units of time, shows the overall re-
sults of the body response to temperature change with respect to the
external system. In other words f is the temperature response param-
eter of the body with respect to the external system. We would like to
emphasize that by saying ''the body transient thermal properties'" we
mean the body properties which are functioning in the transient stage,
i.e. the property of the body to conduct the heat, the thermal conduc-
tivity, as well as its property to store it, p Cp. From the practical
standpoint the f term is quite useful, as it can be used to describe,

compare, and predict the character of the temperature response of the

19
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body exposed to certain exterior heat transfer conditions.

By inspection and simple reasoning of the physical meaning of the
simple definition of f we can see that its value is a function of the fol-
lowing parameters:

1. The geometric parameter of the body, R (magnitude--the larger
the geometric parameter the slower is the temperature response).

2. The ability of the body to store heat, p Cp (magnitude--the larger
the p Cp the slower the temperature response).

3. The ability of the body to conduct heat, k (magnitude--the larger
the thermal conductivity the faster the the temperature response).

4. The exterior film coefficient, h (magnitude--the larger the film
coefficient the faster the temperature response).

So far, those independent variables of the dependent f were obtained
by simple reasoning of a temperature change of a body exposed to cer-
tain heat transfer conditions.

In order to express the f value as a function of the above param-
eters we should try to find the total parameters of the system in form of
dimensionless groups. The advantage of dimensionless groups is quite
clear both from the design of experiments and presentation of data.

If Y represents any function we can write

f=¢[R, (pCp), k, h] (3.1.1)
or that

&

f=)\Rg(pCp) k° h" (3.1.2)
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where the coefficient X and the exponents §, 6, ¢ and n are constants.
The dimensional quantities are as follows:

I for length

t for time
T for temperature
H for thermal energy

hence
the dimension of fis t
the dimension of R is I
the dimension of p Cp isHT ! 173
the dimension of k is Ht™! I"! T™!

the dimension of h is Ht™! 172 77!

Substituting the dimensional quantities into equation (3.1.2) we
obtain

th = Ig(H Tl @t i) @t e )" (3.1.3)

For the homogeneity of t, I, T and H respectively we find from

equation (3.1. 3)

for t 1=-e-n
for 1 0=¢-36-¢€-2n
(3.1.4)
for T 0=-6-¢-n
for H 0=06+¢e+n

Solving the relationships in equation (3. 1. 4) we obtain
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6=1
E=2+n (3.1.5)
e=-1-nm

Substitution of 6, £ and ¢ as obtained in equation (3. 1.5) into equation
(3.1.2) we obtain

fl-) R2tn (p Cp)l k1™ "

R%pC _
_ 1
"”_TTB) n (3.1.6)

. __k _hR .
Since a = o C and NBi = _k we obtain
p
fa
E?:xNBf (3.1.7)
fa
7 = b(Ng,) (3.1.8)

Therefore we see that the system consists of two dimensional groups
ER% and NBi'

As a matter of fact Pflug et al. (1965) plotted and tabulated values
in which the jc’ js and jm and %5_ according to Ball's approximate
assrmptote solution were presented as a function of NBi'

The dimensional analysis shows the dimensionless group of the
system, but obviously gives no information of any kind about the coeffi-
cients or the exponentials of the system. In our case we have no idea

of the value of the coefficient \ or the exponential n their magnitude or

dependency. Such information can be obtained only from the exact
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solution, experimental data, reasoning or sometimes intuition. In fact,

while analyzing some properties of the heat penetration curves in low

and high NBi’We showed (see equation 3.5.7) that when NBi approaches 0
fa v 1
R? approaches 2.303 (RA )N "

r Bi

Equating the above equation to equation (3.1.7) when NBi

approaches 0 will yield

\Y
A— 2.303 (RAr)

n-1

fa
approaches o, —3

In equation (3.5.1) we showed that when N R?

Bi
approaches a constant value (which is dependent on the body configura-
tion). This means that when NBi is large

\ — constant*

mn—>0

It is interesting to see that not only the coefficient \ and the

exponential n are functions of N but that the value of n is between

Bi’
-land 0, 0 >n > -1.

3.2 Some properties of f and j

Theoretically both the terms f and j can be used independently

*The value of the constant is dependent on the configuration of the body,

. 2.303 2.303 2.303
and for an example, is equal to 2 2.205% (1r/2)2 for sphere,

infinite cylinder and infinite slab respectively.
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of each other for the evaluation of either of the physical properties of a
system (f for the determination of @ and j for the determination of k) or
in the case where the physical properties are known, to evaluate the

.). However, we

system properties (such as film coefficient, h, or N]31

want to strongly emphasize that because of possible experimental errors,
the f value is much more reliable. For example the experimental j value
will be affected by the initial temperature distribution or an error in
location of the temperature sensing element; the experimental f is not
succeptible to either of these errors. Any errors in conduction along
the thermocouple wires will have a critical influence on the experimental
j value but a small effect on the experimental f value. Any inaccuracies
in timing in respect to the sudden change of temperature will cause the
ordinate to shift. This. obviouslylwill have a big influence on the
experimentally evaluated j value, but will not at all affect the value of
the slope, f. Another point that should be taken into consideration is
that the change of jc in respect to N

i for .5 <N i > 10 is so slight that

B B

its use becomes doubtful, even if the other possibilities for experimental
errors in its determination were eliminated.

A final point is that unless the heating or cooling experiment
yields a good "straight" line, drawing of the straight line becomes very
subjective and any variation in the way the straight line is drawn will
cause relatively small changes in the f value but may cause very large

changes in j.
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3.3 The relationship between the Ng;, the thermal diffusivity ¢, and
the root value B, in form of total derivatives

The relationship between N a and B; in form of total derivatives

Bi’

is important as it gives us the ability to calculate the magnitude of the

effect of change in N ; on B, and @ (or between any other parameters)

B

for any region of N i in the following manner.

B

The basic equation f @ / R?=2.303 / B holds for all values of NBi'

Taking the derivative of a with respect to B;:

da 2.303 _, -2
= R? (—

ap, - 1 (57)
-2
= 3.3.1
B ( )
2.303 R?

as BT =TTy

Next, by taking, for example, the derivative of the transcendental

equation for the infinite slab N_. = B, tan B, we get:

Bi

dNBi = tan By + -—p—l—
dﬁl - ! COSZ ﬁl

(3.3.2)

we obtain an expression that shows the tremendous rate of change of

NBi with respect to B; in the neighborhood of w/2, where both terms

tan B; and i/ cos?® B, tend to become infinite. In low NBi cos B; =~ 1 and
dNg:

tan B; ® B;, therefore 3 ]?1 =2 B;.
Bi
dN ;
The most important derivative is probably da which shows

the relationship of a change in the overall heat transfer properties of
da

the total system and a change in the thermal diffusivity. can be
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obtained by dividing equation (3. 3.2) with equation (3. 3.1)

B
tan B, + —=—
dNBi i cos® B,
da _2a
P
2
. By tan By + (— 5, (3.3.3)
2«
P,

_ _IVNBi+ (cos [31)

L 2a

Equation (3. 3. 3) again shows the tremendous change of NBi with

.» and demonstrates clearly

respect to @ when dealing with large NBl

how in a high N i system a small error in the physical properties can

B

cause a large error in NBi'

in the high N_ . will be very small, and

On the other hand,

da
dNBi Bi

the change in @ due to a change in N_ . will be very small.

Bi

The negative sign in front of equation (3. 3. 3) is obvious as the «a

will decrease when the NBi increases.

Following the same reasoning for sphere we find that the deriva-

tive of the transcendental equation N_. = 1 - B; cot B,, is:

Bi
dN_ . ]
Bi 1
ap, - [cot By - SinZ B (3.3.4)
dNBi
ap, in this case, will be very large and approaches » when B,
1
approaches w, where cot B, - -« and sin B, - 0.
dNB

da for a sphere can be obtained by dividing equation (3. 3. 4)
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by equation (3. 3.1)

B+ !
-cot P+ ==
dNBi i sin® B,
da = _2a
P
B, cot B, + (—p—l—)z 3.3.5)
1 CO 1 Sin ﬁl ( .
- -2
ﬁ] 2
Ng; - 1+ (5o 431)
- 2a

Thus we can observe from equation (3. 3. 5) that for a sphere the

maximum change, will occur when B; approaches m where

da

NBi - © and sin B; - 0.

The mechanism for the infinite cylinder is more laborious since
we have to take the derivatives of the series expression of the Jo(B;)
and J;(B;), and the infinite cylinder solution will not be presented here.

dN_ . dN_.

1 1
d ﬁl and d a

The magnitude of are the same as for the sphere and
infinite slab. The maximum change in this case of the infinite cylinder

will take place when B; approaches 2. 4048 .

3.4 Evaluation of thermal properties or system film coefficient using

experimental data

From Ball's first term approximation we saw that the thermal
properties (such as h) can be theoretically evaluated under any condi-

tion from the heating data (f) and the physical and geometrical
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properties of the body. Also, from the h, f and the geometrical
dimension we can evaluate the physical property, «. However, in order
to avoid possible misinterpretation of the data which consequently may
lead to wrong results, it is very important that we understand the
overall heat transfer properties of the system, and specifically the

dN i
o 0 high N

possible errors due to the high Bi

When the objective of the experiment is to determine physical
properties, it is preferable to determine f under conditions where B,
is insensitive to changes in h and, therefore, in the Biot number.

When B, approaches m (for a sphere), the N_. increases so fast (equa-

Bi

tion 3. 3. 4) that large changes in h have a negligible effect on B; and,

therefore, on the thermal diffusivity. In other words we have to look
dN_,.

da is as large as possible--and from equation

for a system where
(3.3.5) it can be seen that this ratio increases with increasing NBi'
This can be illustrated by considering three spherical shaped products
of 0.1 - ft. radius of widely different thermal diffusivities. Let the
materials have properties near those of copper, water, and insulation
material with thermal conductivities of 229 Btu/hr ft °F, respectively.
The data in Table 3.1 indicate that it is practically impossible to obtain
NBi values corresponding to B, values as large as 3.0 for materials,
such as copper, which have large k values. For products having

thermal conductivities similar to water, as do most foodstuffs, the h

value resulting from heat transfer to or from water at moderate
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velocities will produce an N_ . and B, value greater than 3.0; for ex-

Bi
ample, if h is between 300 and 500 Btu/hr ft* °F, the B, root value is
between 3.11 and 3.12. If we arbitrarily pick the value of 3.115, the
error introduced in the diffusivity calculation (equation 2. 4. 6) is at
most (3.115% - 3.11%/3.112 X 100 = 0.33%. The f and j values for
materials with low k values are less sensitive to changes in h. If
condensing steam is employed in heating food products, the exterior
film coefficient obtained will be sufficiently large; thus, for any ma-
terial that has a thermal conductivity equal to or less than water, the
By value can be assumed to be w. For such conditions, the accuracy
of p and Cp are equally important in the determination of k. Due to
the nature of highly conductive materials such as copper, the NBi
encountered in practice will generally be low and the internal temper-
ature will consequently be nearly uniform. Since the internal
temperature gradient is negligible, the heating or cooling rate
parameter f will be directly proportional to the Cp and p and in-

versely proportional to the film coefficient h (see 3. 5).

When the purpose of the experiment is to determine the film
dN

Bi
do

coefficient, the system should have a low NBi’ or the should be

as small as possible. Any attempt to determine the film coefficient

Btu

of a system where water is the heat transfer media h = 200 hr f2°F

using a water based model will lead to erroneous results. It can be

seen immediately from f @/R? = I1n 10/ 8%, that a change of 2% in f or
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@ or a change of 1% in R will cause a change of 1% in B,. Since the
NBi of such a system is about 60 we can see from Table 2.1 that a 1%
change in B; will have a tremendous effect on the NBi and therefore,
on h. If a copper model is used instead of the water-based model the
NBi will be about . 0885 and a similar error of 1% will only cause a 2%
error in the N_ ., and in h.
Bi
In summary we can conclude that: the film coefficient should be

evaluated in a system where the NBi is as small as possible! When the

Ny, is high (> 10),the N

B and therefore the evaluated h becomes very

Bi’

sensitive to any change either in the physical or geometric properties
of the overall system. On the other hand, evaluation of the fhermal
diffusivity should be done in a system with a very high NBi so the root

value B, is insensitive to NBi___(or h).

3.5 Some properties of the heat penetration curves in low and high Ng;.

In systems having either low or high NBi it is possible to derive
simple useful correlations between the physical and the geometric
properties of the system and its temperature change. The reason for

seeking either low or high N i is that in these ranges there is only one

B
dominating thermal resistance. As a general rule of thumb a NBi > 50
can be considered to be high while NBi <.3can be considered to be low.

Most of the heat transfer systems involving food or food products

have low NBi when air is the heat transfer medium and high NBi when

water is the heat transfer medium.
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Table 3.1. The relationship between the B;, Ng; and h for low and high

Npj for three materials of widely differing k values.

h, Btu/hr ft?°F

1
B NBi Copper Water Expanded
Polystyrene
.4 5.40 X 1072 1.23 X 102 1.78 X 107! 2.11X 1072
.6 1.23X 107} 2.81X 102 4.05X 1071 4.82X 1072
Low 8 2.23X 107! 5.10X 10?2 7.35X 107 8.74X 1072
NBi 1.0 3.57 X 1071 8.19 X 102 1.18 X 10° 1.40 X 107!
1.2 5.33X 107! 1.22 X 103 1.76 X 10° 2.09 X 1071
1.4 7.58 X 107! 1.73X 103 2.50x 10° 2.97X 107!
3.00 3.08 X 10! 7.06 X 10* 1.02 X 102 1.20 X 10°
3.08 5.09 X 10! 1.17 X 10° 1.68 X 10?2 2.00 X 10°
3. 10 7.55X 10! 1.73 X 103 2.49 X 102 2.95X%X 10°
High

N_. 3.11 9.94 X 10! 2.28 X 10% 3.28 X 102 3.90 X 10°
3. 12 1.45 X 10° 3.33X 105 4.80 X 102 5.70 X 10°
3.13 2.71 X 102 6.20 X 10° 8.94 X 10% 1.06 X 10!

3. 14 1.97 X 103 4.51 X 108 6.51 X 103 7.73X 102
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High Np; systems

In the high N i system the root value B, approaches its maximum

B
value of m, 2.404826 . and n/2 for a sphere, infinite cylinder and in-
fa 2.303
R® © B

between the f value for a sphere, infinite cylinder and infinite slab

finite slab respectively. Since we can see that the ratio

having the same characteristic dimensions will be

1 . N S . .
e : (2.408)2 ’ (w/2)2
1 : 1.705 . 4

respectively. If we try to find the relationship between the f value and

the dimension within the shape itself we observe that in high NBi the

fa

value of ? becomes a constant the value of which is different, of

course, for each shape.

f—‘; = constant (3.5.1)

From equation (3.5.1) in high NBi systems we observe the
following:
1) The f value is inversely proportional to the thermal diffusivity.

2) The f value is independent of the N i (the root value B, is con-

B

stant) and the film coefficient h, which means that increasing h

does not improve the total heat transfer in the -high N i system.

B

3) The f value for a defined geometry is proportional to the square

of the characteristic dimension.
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In the low NBi region, the exterior resistance dominates (ﬁ > f—:).
Therefore the interior temperature can be considered to be uniform. In

this case the heat balance may be written as follows:

dT _

VpCp Gt - AL b (Ty-T) (3.5.2)
VpCp( 4T V- at

A h 'T;-T -

And after integration:

VpC 2.303

T“ tll
Ap h ].Og [Tl - T] T' = [t] t' (3.5.3)
r
VpC_2.303 T, - T"
— 3N _ 4t

e log 7 = t" - t (3.5. 4)
b d f t tll tl — f h u - 1 1 rrl—_l" — 1
y definition =f when T——r = .1 or log =——x = -1.

By inserting this value into equation (3.5.4), we obtain:

-2.303V pC
A h
r

(-1)=1f1

2.303V pC
P

f= A n (3.5.5)
r

Equation (3.5.5) and the following derivations are important in
understanding and interpreting the heat flow mechanism in the low NB.
system.

We shall prove that equation (3.5.5) which was derived on the

single assumption that no temperature gradient exists in the interior
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of the body, can be derived from the exact unsteady solution for the
sphere, infinite cylinder and infinite slab.

Multiplying and dividing equation (3. 5. 5) by factor of R? k yields

pC_ R?
2.303L P
Ar k
f = TR - (3.5.6)
k
pC
. p_1 hR _ . .
since — a and 'S NBi by rearranging equation (3.5.6) we
obtain:
fa 2.303 V
RZ " N_ R A (3.5.7)
Bi r

The respective value (l) for a sphere, infinite cylinder and

Ay
infinite slab are:
4 g3 2 a;b;R
3 _R. mTR*2 _R. oo
47 R® ™ 3’ 2TR2L 27 2 a;b;
(3.5.8) (3.5.9) (3.5.10)

Plugging the value of (KV-) into equation (3.5.7) yields:

ffsz = 231\?;: spilere (3.5.11)

fRa; = ;—1\1@1_;)2 infinite cylinder (3.5.12)
i

%‘fz— = % infinite slab (3.5.13)

The general form will b ;ﬁ = é ;03 (3.5.14)
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Now we will proceed to evaluate the effect from the exact solutions
. . fa 2.303 . .
standpoint. The equation RE ° __ﬁz—- which was derived from the
1
exact solution holds for the three mentioned shapes for any NBi' This
equation is very similar to equation (3.5. 14) but the B is replaced by
C NBi (C =3, 2,1 for sphere, infinite cylinder, and infinite slab
respectively).

We will proceed to develop the relationship between the NBi and

2
B1 for low NBi'

Sphere

Transcendental equation NBi =1 - B, cot B;. By expanding cot B,

we get:
NBizl—pl(é-%-%. )
when B; is small, B3 < B, and therefore
N .:1—1+Ef:6f/3
Bi 3
B2 = 3N_ (3.5.15)

Bi

Infinite cylinder

J1(By)

Transcendental equation N_ . = B; =5z~ where Jo(B;) and J,(B;)
Bi JO(Bl)

are Bessel functions of the first kind of order zero and one respectively.

For small value of B, the values are calculated (Hildebrand, 1963)

from Jp(ﬁ) ~ 1 Bp, and therefore, when B, approaches zero,

2Pp!
Jo(By) =~ 1 and J,(B;) = B,/2, which means that
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NBi = By(By/2)

2 =
Br =2 NBi (3.5.16)

Infinite slab

Transcendental equation NBi = B, tan B;. When B, is small,
B, = tan B, and therefore NBi = B2, (3.5.17)
Inserting the B? values for the sphere, infinite cylinder and

infinite slab as functions of NBi as they appear in (3.5.8), (3.5.9),

(3.5.10) into %‘; = E_éﬁ will yield:
_f_% _ §.13]03 sphere (3.5.18)
Bi
% = ;1\?;3 infinite cylinder (3.5.19)
i
i—% = 21\'1303 infinite slab (3.5.20)
Bi

We obtain a result identical to that obtained in (3.5.11), (3.5.12),
and (3.5.13).
From the above analysis we may conclude the following regarding

the effect of low N_ ..
Bi

2.303pC_V

1) From equation (3.5.5) f = hA we observe that under
r

the same conditions (h, @, and NBi are constant) the ratio between

the f values of various bodies, no matter how odd their shape, is
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proportional to the ratio between their volume/ surface area. If
we compare the f value of a sphere, infinite cylinder and infinite
slab having the same characteristic dimension we find the ratio
to be equalto 1 : 1.5 : 3 respectively, which can be observed
immediately through inspection of equations (3.5.11), (3.5.12),
(3.5.13).

For the same geometry the f will be proportional to any chosen,
but fixed, characteristic dimension to the power of 1 (rather than

the power of 2 as in the case of high N_. systems).

Bi

From equation (3.5.5) we can see that the f is proportional to the

pCE

1. .
K~ o ncase of high NBi

heat capacity Cpp (rather than the
systems), which shows that in low NBi systems a temperature-
change comparison between two bodies should be made with respect
to their heat capacity, pCp rather than their thermal diffusivity, a.
In an air-cooled room (air flow by natural convection) for exam-
ple, it will take copper, in spite of its well-known high thermal
conductivity, k, and thermal diffusivity, @, about the same time

to cool as an apple, both having the same dimension. If we com-
pare a 3" diameter apple assumed to have p = 50 1b/ft3,

Cp = .85 Btu/lb°F, k= .2 Btu/hr ft °F with a copper sphere
having the same diameter and assumed to have p = 559 1b/ ft?,

Cp = .0915 Btu/1b °F and k = 223 Btu/hr ft °F both cooling under

natural convection condition (assumed h = 1.0 Btu/hr ft? °F)
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f value for the exact solution is about 4.9 hr and 4.6 hr for the
copper and the apple respectively.

f is inversely proportional to the h (the f was independent of the h
in the case of high NBi systems), showing the importance of
improving the exterior film coefficient in order to increase the
overall rate of heat flow.

From inspection of equations (3.5.11), (3.5.12), (3.5.13) we can

observe that all have the general form f—f - £.303 . Taking the
R C NBi
log of both sides we have:
fa 2.303
log RZ = ° log NBi+ log C (3.5.21)

fa, . .
or that when RZ 1s plotted versus NBi we get in low NBi a straight
line (slope = -1) (see Figure A. 4 in Appendix 1).
We can describe %25 versus NBi on log-log scale for any odd shape
by simply choosing an arbitrary characteristic dimension used

l) . The lines

consistently for the computation of i—%, N, . and (
R i A,

B
for the different shapes will be parallel with a slope of -1, each
having a different intercept with the ordinate. To calculate the

curve for the cube we can choose the characteristic dimension,

a, to be half the thickness. We find that

vV __(R)} _R
A T 6((R2R)® " 3
r
and as
2.303—Y—
A
fo r
2 N_.R



39

we find that =% = 2303 (3.5.22)
R® T 3N,

which as a matter of fact is the same as the curve for a sphere.

The validity of the equation for the cube can be proved from a
different approach by finding the solution for a cube from the product
solution of three infinite slabs having the same thickness. The line

equation for the infinite slab is
a N

fa 2.303 or 1 Bi
27 N._. f~ 2.303R?
Bi

The product solution will be

1

4
fcube 1 fi

and as the thickness of the three infinite slabs forming the cube is the

same, their NBi will also be the same, and the product solution will

be, therefore,

1 B 3
f I S
cube infinite slab
3@ Npy f o 2.303

“2.303R: °F (RZ hube = 3N

which is exactly the same as equation (3.5.22).

A comparison of the most important properties in low NBi and

high NBi conditions are summarized in Table 3. 2.
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Table 3.2. Some properties of low and high NBi systems
High NBi Low NBi
>
NBi 50 NBi <.3
fa constant 2. 303
R? C N,
Bi
f independent of NBi or h inversely proportional to
NBjorh
C e
f proportional to —I;L proportional to Cp p
f proportional to R? proportional to R
M 0 -1
Sphere Infinite Infinite Sphere Infinite Infinite
P cylinder slab P cylinder slab
C 3 2 1
f ratio between
the 3 shapes 1 1.7 4 1 1.5 3
B, approaches b 2. 405 w2 0 0 0
Ny, approaches @ ® ® B%/ 3 Bi/2 B2

3.6 The mass average temperature as a function of the temperature
at the geometric center, T,

In many cases knowing the mass average temperature (equation

3.6.1) of a body exposed to transient heat transfer, is important: from
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the standpoint of heat process design and the evaluation of the probable

quality change of the product.

T -+

T dm where m = mass (3.6.1)
m m

0

The average mass temperature, Tm, can be used to show the
total heat removed, with respect to time, from the object. In the case
of cooling processed cans, for example, the evaluation of the mass
average temperature will determine the hazard of undercooling, where
a high mass average temperature in the can after processing will cause
discoloration or softening of the product or in the case of high pH
vegetables, it may promote spoilage by providing temperature condi-
tions under which surviving thermophiles may grow. In the case of
overcooling, where the mass average temperature of the container is
too low, not enough evaporation of the water on the outside of the con-
tainer will take place; thus rusting may take place.

The geometric center is, in conduction heating products, the most
common location to measure the temperature because it represents the
slowest heating (or cooling) point, and because technically it is the
easiest location to place the temperature-measuring device. There-
fore, it is important to develop some kind of expression where the mass
average temperature is a function of the temperature at the geometric
center. In the following development we shall assume that sufficient

time has elapsed and that we are dealing with a one term approximation,
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i.e., in the straight line region. In this case, all the heating (or cool-
ing) curves are parallel and different from each other only at the point
of intersection with the ordinate.

Since the general equation of the straight line semi-logarithmic
curve is:

log (T, - T) = - % + log [j(T; - To)] (2.4.3)

We can write the expression for the temperature at the geometric cen-

ter and the mass average temperature respectively as follows:

log (T, - T ) = -+ log [i, (T2 - To)] (3.6.2)
log (T, - T_)= - 1+ 10g 3, (T: - To)] (3. 6. 3)

Subtracting equation (3.6.2) from equation (3. 6. 3) we get

lo 2 m 1 I M1~ 1o (3.6.4)
0 = log T/ . 6.
ng'T gJ(Tl’To)
c c

T, - Tm Jm

—_— = T = . 6.
or T,- T p K (3 5)

c c

after rearranging equation (3.6.5) we get

Tm =T, - K(T, - Tc) (3.6.6)

J
The constant K = —2 is a function of the shape and the NBi and can be
c

evaluated from the appropriate j tables (see Appendix 1 ).

Example 1

A can of food, a finite cylinder, is heated in water or steam or

cooled in water. The Np; is large enough so that the ;l_rp_ will be as follows:
c
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[Jinﬁnite cylinder Jinfinite slab]m __.70X .81

: : _ a
Uintinite cylinder Jinfinite slablc ~ ++807 1+27

K = = .279

And if Ty = 250° F the mass average temperature when the temperature

at the center, TC = 240°F, is

T = 250 - .279 (250 - 240)
m
=250 -2.79 = 247.2°F
Example 2
5" cube of meat having @ = . 005 ft®/hr, k = .29 Btu/hr ft °F
cooled in a room where the h = 5 Btu/hr ft?°F. The N_ . = 5X2.5 _
w B : Bi .29X12

3.6. The jm and jc of NBi = 3.6 for infinite slab is .93 and 1.22 respec-

tively. As we know, from product solution that jcu e

= 13
3 be ~ Jinfinite slab
: _'m .93
find that k = i = 1223

= .444. If T, = 36°F the mass average tem-

perature at the center is 45°F will be

T 36 - . 444 (36 - 45)

m

36 + .444X .9 = 40°F
jm/jc reaches its minimum value when NBi — o, and approaches 1

(no internal temperature gradient) when N 0.

Bi
It should be mentioned that Stumbo (1964) derived an equation in

the same form as equation (3.6.6). In his technique, however, in

order to find the constant K he used a laborious graphical integration

using some of his previous graphical data related to iso-j lines in

cylindrical cans and which was only valid for specific case: body



44

having a cylindrical shape exposed to a media which was either steam

or water (which is for foodstuffs a high N_. system). By the graphical

Bi
integration method for this specific case he found the average value of
the constant, K to be .27 (we found it to be .279).

In this section we have presented the general solution for the
mass average temperature as a function of the temperature at the geo-
metric center, TC, (equation 3.6.6) and have proven that the constant,
K, in this equation is a function of the shape of the object and the N

jm
of the system and is equal to —.
c

Bi

3.7 Analyzing the thermal conductivity of three dimensional, two
dimensional and one dimensional dispersion systems

Materials whose properties do not vary with respect to direction
are called isotropic materials, in contrast to anisotropic materials
whose properties vary with respect to direction. Thus, whether the
material is isotropic or anisotropic, is a function of structure. These
materials should not be confused with homogeneous materials whose

respective properties do not change from point to point nor be confused

with heterogeneous materials which are materials whose properties do

change from point to point. Being a homogeneous or a heterogeneous

material is a function of uneven distribution of compounds, for exam-
ple, wood or layered type material, are anisotropic - homogeneous
materials, while meat flesh having uneven distribution of fat will be

considered to be an anisotropic - nonhomogeneous material. Ground
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beef in which the fat is unevenly distributed is isotropic but nonhomo-
geneous material. Insulation materials are homogeneous isotropic
materials.

Generally speaking we can say that the static thermal property,
the specific heat, is independent of the direction of the heat flow or the
pattern of the individual components. In any homogeneous system (either
isotropic or anisotropic) the specific heat, Cp can be considered to be

C =2 C_ X (fraction weight).
P pi 1

The thermal conductivity which is the transport property, is direction
dependent and may vary significantly with arrangement of the individual
components.

Many materials consist of various components, and other mate-
rials consist of more than one phase. Many other materials may have
structural patterns which may cause the thermal conductivity of the
system to vary with respect to the direction of heat flow. The overall
thermal conductivity of such systems is by reasoning, a function of the
thermal conductivity of the individual components, their proportion and
their pattern. In the following pages we shall try to analyze a few
homogeneous systems and to find the overall thermal conductivity of the
system as a function of the individual component thermal properties
and their relative pattern.

The analysis will be made using a model system having the

properties as follows:
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1. The model will be a 1 unit cube, x =y =12z = 1.
2. Heat flow will be by conduction only.
3. The discontinuous component and the continuous component may

have the same state or may form two phases.

4. The size of the dispersed particles is small in comparison to the
system size.

5. The dispersed component is randomly distributed.

6. The dis/%ontinuous component is dispersed in the continuous com-
ponent in the macro level and not in the atomic or molecular
levels. For example, alloys or impurities in metals are excluded.

For this model system analysis:

k - overall thermal conductivity of the system
kC - thermal conductivity of the continuous component
kd - thermal conductivity of the dispersed component

We shall analyze three basic models:

A. Two-component - three dimensional - isotropic system (the two
components may form two phases) where one component is ran-

domly dispersed in the other to form the non-continuous phase

(Figure 3. 1A).

This model is most important to us since it represents the
experimental model of this study--the air-sucrose solutions foam.
However it is typical of other systems such as butter (water dispersed

in fat), ice cream or apple flesh (air dispersed in liquid). We would
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like again to point out that this model cannot represent alloys or impuri-
ties in metal. In such cases we get random distribution at the atom
level rather than in the macro level, which yields a different crystallo-
graphic pattern. Since the mechanism of heat flow in metals is due to
the outer electron shell, a change or new pattern in the crystallographic
configuration will change the value of the thermal conductivity. It is an
established fact that the thermal conductivity of alloys or impure metals

is usually lower than the thermal conductivities of the principal metals.

B. Two-component - two dimensional - anisotropic fibrous system
(the two components may form two phases) in which the fibers are
parallel to each other and randomly distributed. In this case the
dispersed component (the fibers) are continuous in one direction
and the random dispersion will be two dimensional. (See Figure

3.2A.)

This system is an anisotropic system, and the thermal conductivity
will vary with direction. This model is typical to all fibrous systems
such as meat flesh, wood, fibrous vegetable. This system will be char-
acterized with two thermal conductivities.

k“ - the thermal conductivity in the direction parallel to the fibers

k) - the thermal conductivity in the direction perpendicular to the

fibers
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C. Two (or more) components - one dimensional - anisotropic layered
system (the components may form more than one phase) in which
the components are arranged in parallel layers to form some kind
of a composite layer (figure 3.3A). In this case random distribu-
tion is not necessary and all the components are equal with respect
to the continuous phase (both are continuous in two directions).

The dispersion will be a one dimensional dispersion.

This is an anisotropic system which is typical of all the cases
where the system consists of a composite layered pattern such as fat
layer above the flesh, packed material with respect to the packing mate-
rials and plywood.

In the analysis we shall use the following rules concerning the
computation of the total conductance of conductors connected in series

or parallel.

Total conductance of conductors k=3 Kk X (cross section)
connected in parallel i length i
Total conductance of conductors 15 1
connected in series k cross section
k. X ( ).
i length i

Because our overall system has a unit cross section and length,
the total system conductance will be the same as the system

conductivity.
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Figure 3.1. The diagram of the two component homogeneous three dimen-
sional dispersion system. A. Natural random state. B. The
rearrangement of the components.
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Figure 3.2. The diagram of the two component homogeneous two dimen-
sional fibrous system. A. Natural random state. B. The
rearrangement of the components.
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Figure 3.3. The diagram of the two component homogeneous one dimen-
sional layered system. A. Natural random state. B. The
rearrangement of the components.
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A. Two-component - three dimensional isotropic system

In this case one component is randomly dispersed in the other to
form the discontinuous phase (see Figure 3.1A). Let us assume that the
cube (Figure 3.1A) is sliced in the x-y plane into very thin layers. The
thermal conductivity of one single layer in the three directions will not
be changed if all areas of the discontinuous phase are combined and
rearranged to form a square area M? Based upon additive thermal
resistance when areas are connected in series, the combined rearranged
layers will not change the total thermal resistance. When the discon-
tinuous phase is composed of small enough particles randomly distrib-
uted, it is clear that from a symmetrical standpoint M? is not only equal
for each layer cut in the x-y plane, but its fraction with respect to the
total cross sectional area is independent of the cutting plane. All other
thin parallel layers cut in the y-z plane will have after rearrangement,
the same cross section of discontinuous phase M?2.

Collecting all the discontinuous particles randomly distributed in
the three dimensions will yield a cube (Figure 3. 1B). Since the total
value of the systém is one unit, the volume of this cube M?3 is the void
fraction of the discontinuous phase.

The overall thermal conductivity of the system can be computed
in the following manner: The thermal conductivity of one layer in the
x-y plane in the z direction will be

kc(l-M2)+ de’- (3.7.1)
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and as we have many similar layers (connected in series) along distance
M, the thermal conductivity in the z direction of the unit cube from
z=0to z=M will be

_ 2 2
kc(l M)+de 5.7.2)
M .T.

The thermal conductivity of the rest of the cube (which is the continuous
component in the three directions from z = M up to z = 1) is added in

series and, the overall thermal conductivity is computed as follows:

1 M 1-M
Kk kK I-M)+ k. M2k (3.7.3)
c d c
1 M L, 1-M
k  k -M2®(k -k, k
c c d c
- 2 -
. kc [kC M (kc kd)]
= — - - 5 -
kCM+kC M (kC kd) MkC+M (kC kd)
- 2 -
. kC M (kc kd)
= T
1 - M°(1 kd/kc)+M (1 kd/kc)
1 -M?(-Kk,/k)
k/k = d ¢ (3.7. 4)
c l—Ma(l-kd/k)(l-M)
C
_ 1 -Q
T1-Q(1-M) (3.7.5)
_ 2 _
where Q = M* (1 kd/kc)
When kC > kd equation (3.7. 4) is simplified to
k 1 - M?
kc T~ MZ(1- M) (3.7.6)
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Equation (3.7.5) gives us the overall thermal conductivity of the
two components system as a function of the thermal conductivity of the
individual components and the void fraction.

Because of the symmetrical nature of the system the overall
thermal conductivity is independent of direction.

The two-component - isotropic - three dimensional dispersion
system is the basic model for the experimental work of this study.

Example: Calculation of the thermal conductivity of an apple.
In this case the continuous component will be glucose-water solution
while the dispersed component (about 25% v/v) is air.

kc (of 15% glucose-water solution) = . 3 Btu/hr ft °F

kd (of air) = .0146 Btu/hr ft °F

d
M? (void fraction) = .25

k /kC: .0145/.3 = .0487

M2 = .252/3 = 393

Inserting the values of M2, M, kC and k , into equation (3.7. 4)

d

k 1-.393 (1 - .0487) - .373
3

1
_ = = 7
1 - .393 (1 -.0487)(1 - .63) ~ 1-.138 28

k=.3X.728 =.218 Btu/hr ft°F

If we assume k < kc we get (equation 3.7.6)

d
k 1-.393 _.607 7
3 1-.393(1-.63) .854

k=.3X.71=.213 Btu/hr ft°F
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B. Two-component - two dimensional anisotropic fibrous system

i

The fibers in this model are parallel to each other in the z direc-
tion (see figure 3.2A) We shall try to find the thermal conductivity, Ky,
which is the thermal conductivity in the direction parallel to the fibers,
i.e. in the z direction, and the thermal conductivity, k_wwhich is the
thermal conductivity in the direction perpendicular to the fibers, i.e. in
the x (or y) direction.

By the same reasoning used in the three dimensional dispersion
system, we can see that by slicing the cube we can collect the fibrous
material in one corner, now forming a rectangle which has the dimen-
sions of N : N : 1 in the x, y, and z directions respectively, without
changing the overall thermal conductivity in the respective direction
(figure 3.2B).

Obviously void fraction = N2 X 1.

Based upon the additive property of the thermal conductivities
when they are connected in parallel we find that the thermal conduc-
tivity parallel to the fibers (z direction),

- ENT 2
k“—(l N)kC+N kd

_ 2 2
ky/k_ = (1 - N%) + N*k/k_

I

l-Na(l-kd/kc) (3.7.7)

1-NQ where Q = N (1 - kd/kc)

If kd < kc we get that
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1 - N2

I

ky /X

1 - void fraction (3.7.8)
The thermal conductivity, k; (perpendicular to the fibers in the x

or y directions), is found as follows: First, based upon the additive

property of the thermal conductivities when they are connected in

parallel we can find the thermal conductivity in the y direction from

y = 0up toy =N (figure 3. 3B) is:

(1 -N) kc+de
N (3.7.9)

Second, the thermal conductivity of the rest of the one unit cube,
which is the continuous component in the y direction from y = N up to

y = 1 will be:

7.
TN (3.7.10)

By adding the thermal conductivities, equations (3.7.9) and

(3.7.10) when the conductors are connected in series we find:

1 N 1-N
1 1.
kT (I-Nk_+NE_ Tk (3.7.11)

C N
k C T-N+NKJk t1-N

N+ (1-N)[1-N(1-Kky/k)]
1-N(1-kyk)

and by rearrangement we get

1 -Q
1-Q(1-N)

k [k = (3.7.12)
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where Q = N (1 - kd/kc)
1fkd<kC we get (3.7.13)

1-N

T-N+N (3714

k_l_/kc =

We would like to call the attention of the reader to the similarity
of (3.7.12) to (3.7.5) which was obtained for the three dimensional
randomly dispersed particles.

In the following steps we will find the ratio between the thermal
conductivity in the direction parallel to the fibers, k), and the thermal
conductivity in the direction perpendicular to the fiber, k;. If we
divide k; (equation 3.7.9) by k) (equation 3.7.14) we get

_lm 1-NQ

kK, 1-Q
N+ (l1-N(1-Q)

1-NQ)(1-Q+NQ)
1-Q

1-N+NQ-NQ+NQ?-N?Q?
1-N

1-Q+NQ3(1-N)
1-Q

N Q% (1 - N)
1-Q

-1+ (3.7.15)

Equation (3.7.15) shows the ratio between the overall thermal
conductivity in the direction parallel to the fibers, k", and the overall
thermal conductivity in the direction perpendicular to the fibers, kj,

as a function of the thermal conductivity of the individual components
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and their proportion.
. K
In the following step we show that the ratio T‘l is always greater

or equal to 1. As N is always a positive number smaller than 1

(0 <K N<1)and kd/ kC is always a positive number, Q (see equation
3.7.13) is a number within the following boundaries 1 > Q > -». By
inspection of equation (3.7.18) which describes the ratio le:LIL we can
see that as N, (1 - N), Q2% and (1 - Q) must be positive numbers this

ratio is greater than 1. Only when kc =k Q will be 1, resulting that

a4’
kg = k.

This means that regardless of the values of the thermal conduc-
tivities of the components or their proportion, the thermal conductivity
in the parallel direction, k" , in the fibrous system, is always larger
than the thermal conductivity in the perpendicular direction, kj. They

will be equal only when kc = k , or obviously in the trivial cases

d
N =1, N=0.
Let us check the properties of the function k"‘/ ky vs kd/ kc

(equation 3.7.18) with respect to its maximum or minimum value.

ky/k, = 1+—W (3.7.15)

The first derivative is:

dig /i) N Q (1-N)(1-Q) +NQ*(L-N)
aQ (1-Q)°

(1-N)N@2Q-2Q°+Q%) _ (1 -N)N (2Q - Q%)
(1-Q)3 (1-Q)°
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The second derivative is:

d?(k; /ky)
dQ?

Q-N)NJ(I1-Q2@2-2Q+((2Q-Q%2( -Q)]
(1-Q)*

_(1-N)N1-Q) [2+2Q%- 4Q + 4Q - 2Q7]
B (1-Q)*

_2(1-N)NQ1-Q)
B (1-Q)*

Since (1 - N) N and (1 - Q) are positive numbers, the second derivative
has a positive value. This means that the function has a minimum
value. The minimum value can be found by equating the first derivative

to zero.

dep/l) (1 - ) N (2 - @)
aQ (1 -Q)°

=0

There are four solutions to the above equation

1. N=0
2. N=1
3. Q=2
4. Q=0

The first and the second solutions are meaningless because when N
equals 1 or 0 we have only one component. The third solution where

Q = 2, is impossible as Q <1, (Q > 1 means that either kc or kd has a

negative value). The only solution possible is, therefore, Q = 0, in

other words k = k So the value of k“/k_l_as a function of k ,/k for
c d ¢

q

any void fraction, has a minimum value of (=1) when kc = kd.
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C. Two-component - one dimensional - anisotropic layered system

In this case the components are arranged in parallel layers to form
some kind of composite layer system (see figure 3. 3A).

From figure (3. 3A) we can see that we can collect all the layers
of the same component to form a rectangle which has the dimensions of
P:1:1in the x, y, and z directions, respectively (see Figure 3. 3B).

Obviously the void fraction = 1 X 1 X P. Adding the thermal con-
ductivities of the areas when they are parallel to each other we get

k"=kc(l-P)+de

i 16
kc— leP(l—kd/kC) (3.7.16)

The thermal conductivity in the parallel direction will be

1 _P, 1-P
ki kg kg
or
= “q
kC Pkc+kd(l-P)

Dividing by kd and rearrangement we get

K| 1

= . (3.7.17)
k., 1-P(1-k/k)

The controlling effect of one of the components having a relatively low
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thermal conductivity in a perpendicular flow system in contrast to its
lesser importance in the parallel flow case can be observed by inspec-
tion of equation (3.7.17) and equation (3.7.16) respectively.

(Note the similarity between equations (3.7.16) and (3.7.17). If

we divide k" by k| we get
ky)

0 [1-P(1-ky/k)[1-PQ-k/k)]

=1

2
P (1- kc/kd) -P(1- kd/kc)+ Pe(1 - kd/kc)(l - kc/kd)

-— - - 2 -
=1+ P ( 2+kc/kd+kd/kc) P (2+kc/kd+ kd/kc)

1+ (1 -P)P(-2+ kc/kd+ kd/kc) (3.7.18)

Since the term (-2 + kc/kd + kd/ kc) is always positive (unless

k,= kC in which case it becomes zero), regardless of the value of k

d d

and kc’ and since P is positive and smaller than 1 it turns out that

(1 - PP (-2 + kc/kd + kd/kc) is always positive which consequently
LY
Ky

fibrous system the thermal conductivity in the parallel direction is

causes This means that in the layered pattern system as in the
always larger than the thermal conductivity in the perpendicular direc-
tion. The actual magnitude depends upon the values of the thermal
conductivities of the individual components and their proportion.
Let us check the properties of the function k"/lil_ vs kd/ kC
(equation 3.7.18) with respect to its maximum value.
k||/lEL:1+(l-P)P(-2+kC/kd+ kd/kc) (3.7.18)

The first derivative is
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i L N T
S - 1-P)P (-4

where W = k ,/k
d ¢

The second derivative is

d? (k) /k) 5
Taw? - (1-P)P (W)

Since 0 < P <1 and W is positive the second derivative is positive too.
This means that the function has a minimum value. The minimum value

can be found by equating the first derivative to zero.

d(ky /&)
aw

:(l—P)P(l—V;—Z):O

There are fouv¥ solutions to the above equation

1. P=1
2. W= -1
3. W=1
4. P=o0

The solwtions B=p,P = 1, is meaningless and the second solution,

W = -1, is impossible as it shows that one of the components has a
negative thermal conductivity. The only real solution possible is,
therefore, W = 1, or in other words, k_ =k, So the value of ky/ky
as a function of kd/ kC for any void fraction has a minimum value (=1)
when kC = kd.
Let us check the properties of the k) /k| equation (equation 2.7.18)

with respect to the void fraction P.
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The first derivative is

d(k”/k_.L)
dpP

= (-2 + kc/kd+ kd/kc)(l -P-P)

The fact that the second derivative is negative indicates that the function
has a maximum. The maximum is obtained by equating the first deriva-
tive to zero. By doing so we found that P = 1/2. This means that if we
vary the void fraction P, the ratio between the thermal conductivity in
the parallel direction to the thermal conductivity in the perpendicular
direction in the layered system will reach a maximum value when the
void fraction is .5, i.e. the two components are of equal volume.

We would like to point out that in fibrous and layered systems by
measuring the thermal conductivity in each of the two directions,
parallel and perpendicular, and knowing two of the three parameters,
kc, kd or void fraction it is possible to compute the third.

All the equations (3.7.4), (3.7.7), (3.7.12), (3.7.16) and (3.7.17)
developed for the overall thermal conductivity of the system in the
direction parallel and perpendicular for the three models (three dimen-
sional, two dimensional and one dimensional dispersion system) must
and do satisfy the followi’ng. limits:

1. When M =N =P =1 k=k

2. When M =N=P=20 k=k

3. WhenkC:kd k:kc:kd
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In Table 3.3 we present the condensed table for the overall thermal
conductivity of three dimensional, two dimensional and one dimens'ional
homogeneous dispersion systems.

In this section we analyzed and presented the overall thermal
conductivity of a three dimensional isotropic system, a two dimensional
anisotropic fibrous system and one dimensional anisotropic layered
system as a function of the thermal conductivity of the individual com-
ponents, their proportion and relative pattern. We have shown that in
the case of the anisotropic fibrous or layered system the thermal con-
ductivity in the direction parallel to the fibers or layers is always
larger than the thermal conductivity in the direction perpendicular to

the fibers or layers.
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Table 3.3. The overall thermal conductivity of three dimensional, two
dimensional and one dimensional homogeneous dispersion
systems

. . Two dimensional One dimensional
Three dimensional . . . .
isotropic system anisotropic anisotropic
fibrous system layered system

Dimension

of the M:M: M 1:N:N 1:1:P

rectangular

Void M3 N2 P

fraction

- M2 (1 - - -
Q =M*”(1 kd/kc) Q=N{(1 kd/kc)
“ l1-N 1-P(1-k,/k)
Py “NQ " P - kylk
c
1 -Q
~h 1-Q 1
k 1-Q(1-N) 1-P(l1-k/k,
C c' d
1+ (1-P)P (-2

Ky 2] -

LA 1+ NQ°(1 -N)

k) 1-Q

+ kc/kd+ kd/kc)




4. THE EXPERIMENTS

In this study we shall evaluate the thermal diffusivity of the exper-
imental samples using a transient heat conduction method. The thermal
diffusivity, @, has almost the same basic significance in transient heat
conduction as the thermal conductivity, k, has in steady-state heat
conduction. In the steady-state heat conduction system, the thermal
conductivity is the only body thermal property that should be known (or
that can be determined) in order to evaluate the experimental heat
transfer data, while for transient heat conduction both the thermal
diffusivity, @, and the thermal conductivity, k, must be known (or can
be determined).

In many cases, especially in high N

)
in the previous section, because of the lack of sensitivity of the root

Bi systems, as was discussed

value B; to N i it is not necessary to know the thermal conductivity to

B
analyze the transient system nor is it possible to determine the thermal

conductivity directly.

4.1 Considerations in the selection of the experimental method

Measurements of the thermal conductivity, k, by the accurate
guarded hot-plate method was ruled out because of the large size sam-
ple (8" X 8") required by this method. This method can be applied
usually for solid, hard materials that can be machined to a smooth

and relatively incomprisable uniform plate. Because of the limitation

64
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in the sample preparation techniques, this method could have been
applied only to foodstuffs in the frozen state (Lentz, 1961; Miller,
1963).

The measurement of the thermal conductivity, k, by the Cenco-
Fitch method which was used by Bennet (1962, 1964), Walters (1963),
was attempted. This method is based on the measurement of heat
quantities with respect to time, flowing in a one dimensional direction
from a constant temperature source through the sample to the heat
sink. At the start of this project a Cenco-Fitch type apparatus having
a 180 gr heat sink which is 1-1/4" diameter chrome-plated copper
plug as shown in Figure 4.1 was constructed and tested. Calibration
of this apparatus using a 1/4" thickness of 50-Silastic Silicone Rubber
as a standard, showed that the error due to the end effect and heat
losses from the sink were more than 15%. This magnitude of the error
is approximatly the same as that found by the above mentioned authors.
It was decided to reject this method because of the following:

1) One of the necessary conditions for the Cenco?Fitch technique

~ is to have no significant surface thermal resistance, i.e. good contact
between the source and the sink metal surfaces at the top and bottom
surfaces of the sample. This can be accomplished by applying pressure
which may cause unpredictable errors due to such effects as extrusion
of liquid, changing the thickness and changing the physical properties.

2) In the Cenco-Fitch technique the heat flow is assumed to be one
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I. COPPER SINK

2. SAMPLE

3 CONSTANT TEMPERATURE COPPER SOURCE

4. STYROFOAM

5. CONTROLLED TEMPERATURE BATH

6. PRESPEX SLEEVE

7. 30" GAGE COPPER-CONSTANTAN THERMOCOUPLE

Figure 4.1. Modified Cenco-Fitch apparatus.
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dimensional and, therefore, must be one dimensional from the source
to the sink throughout the sample. The larger the ratio of the dimension
which is perpendicular to heat flow to the dimension which is parallel to
the heat flow the smaller the heat losses throughout the ends. In this
technique the maximum practical ratio that can be obtained in a food
sample will be in the neighborhood of 1 1/4 : 1/4. This ratio is quite
poor, and the unpredictable heat losses could be expected to be fairly
high.
3) Because heat flow is measured with respect to time (unsteady
state), any heat loss from the sink itself, which is unavoidable and
practically unmeasureable, will cause an error.

In summary, it appeared to us that this method has the combined

major handicaps of steady state and transient methods.

4.2 The selected method

The method used in this study was a transient heat conduction
method, by which the thermal diffusivity was determined directly by
measuring the temperature change at the geometric center with respect
to time of an initially uniforrh temperature sample suddenly exposed to
a constant temperature.

For simplicity with respect to the sample itself and the general
design of the apparatus, a cylindrical configuration of the specimen was

chosen.
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The basic differential equation for the infinite cylinder initially
at a uniform temperature and suddenly exposed to an environment of
constant temperature is stated in equation (2.1.6). The exact solution
and the boundary conditions which must be satisfied are stated in equa-
tions (2.3.6), (2.3.1), (2.3.2) and (2. 3. 3) respectively. By following
the discussion in section (2. 4) we can see that by measuring the tem-
perature at the geometric center, taking into account only the first term
of equation (2. 3.6) and plotting the logarithm of the unaccomplished
temperature difference vs time, we can get the following relationship.

_ (In 10) R?

=i (4.2.1)

The derivation of the equations impose certain conditions which

must be fulfilled experimentally:

1. Equation (2. 3. 6) holds only for one dimension radial heat flow,
d
i.e. Bg = 0), and required, theoretically that the cylinder be infinitely

long. We fulfill this requirement by a) having a large ratio *

length of cylinder
diameter of cylinder

b) thermally insulating the ends.
2. Equation (2. 3. 6) requires that the initial temperature of the sam-

ple be uniform. This requirement is accomplished by submerging the

*Ratio value between 6 to 12 in the air-sucrose solutions foam.

Ratio value between 3 to 6 in the foodstuffs.
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sample in a controlled temperature environment for an adequate period
of time (at least three f values).

In spite of the fact that we intend to determine the film coefficient
of the system (in order to evaluate the NBi)’ we tried to build our sys-
tem in such a way that the film coefficient and therefore the NBi will be

as large as possible. It is quite obvious that in a large N i system the

B

B, is insensitive to the N so any change or error in the film coefficient

Bi’

h (and therefore in N i) will cause only a slight change in B;, and there-

B
fore in the thermal diffusivity @. (See also sections 3.3 and 3.4). A few
of the impressive advantages of this method are: 1) No heat quantities
are measured. 2) The exact location of the thermocouple is not critical.
The thermocouple was placed at the geometric center because it was

convenient. 3) The timing of the sudden change of temperature is not

critical.

4.3 The experimental system (see Figures 4.2 and 4. 3)

The main components of the experimental apparatus were:

Temperature controlled water tanks. 30" X 30" X 28" 12-guage

steel tanks having 3" standard nipple as the outlet standing on four 6"

high 2" X 2" X 1/4" legs--these tanks were fabricated and were used

as the hot and cold water baths.

Top tank. 35" X 25" X 10" 12-gauge steel standing on three 42" long

2" X 2" X 1/4" legs, having two 6' diameter 12" long outlets for
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discharge into the two temperature controlled tanks located below the

top tank.

Test section. Forty inch long 4 1/2" diameter standard water pipe was
welded to the top tank. About 10" from the bottom a 3" long cone end
bronze support with conical end was supported vertically in the middle
of the pipe by two 5" long perpendicular machine bolts 2" apart. This
conical end bronze support is the lower support for the sample.

Piping. The suction part of the piping system consisted of 3" pipes.

The discharge part was gradually increased from 2' discharge to the

4 1/2" size of the vertical main pipe. A set of valves was installed in
such a way that the water flow could either pass through or by-pass the
rotameter. The temperature controlled water tanks were connected to
the pump by a 3" three-way bronze plug valve.

Pump. The pump was a 3 Hp, 1750 RPM centrifugal pump manufactured
by Delco, and has a maximum capacity of 175 GPM. Because of the
relatively low pressure drop throughout the system the value of 175 GPM
flow rate was the same for all three sizes of stainless steel tubes.

Temperature controls. The heat supply to the high temperature tank

was obtained by adding hot tap water directiy from the main building
supply system. The actual flow of the hot water was controlled within
.5°F by a Foxboro Type F-37 proportioned valve activated by a 0-200°F
Brown Potentiometer Model 152P13P-_6 3-11 controller. The tempera-

ture in the cold temperature tank was maintained throughout the test by
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Pigure 4.3, The experimental system. A. Overall view of the experimenta
C. Refrigeration coils and their controls. D. Inserting tl
the sample was installed. F. View of top tank once the te:

stem. B. Piping system and rotameter.
mbled sample. E. View Of top tank after
begun.
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a refrigeration system which consisted of a 3 Hp, R-12 condensing unit
and two 50 ft long 1/2" I.D. copper coils. The temperature was con-
trolled within . 5°F by a Minneapolis-Honeywell Transistorized Ampli-
fier Relay Temperature Controller Model L7038 having a range of

10 to 80°F.

Temperature measurements. The temperatures in all the experiments

except the metal cylinders were measured and recorded with a 12 point
3 minute cycle temperature recording potentiometer, -40°F to +140°F
span, 1°F least division Model 153X64P12-X-71, manufactured by
Minneapolis-Honeywell. The temperature change of the metal cylinders
was measured and recorded every 1 second by a multi-channel one
minute cycle recording potentiometer. All of the thermocouples used
in this study were No. 30 gauge copper-constantan wire, with enameled

glass wrapped, fiberglass overwrapped insulation.

4.4 The experimental procedure

The specific tests in this study were:
a. Air-sucrose solution. The air-sucrose two-phase system,''a foam",
was studied using 1.5, 8, 16, 24 percent sucrose concentration each
having about 4 different air concentrations.
‘b. Fresh apple tissue.
c. Deaerated apple tissue.
d. Raw potato.

e. Beef lean meat.
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The tubes used in this study, for supporting the samples, were 1"
1 1/2" and 2" O.D. stainless steel type 316 having a wall thickness of
.0o12'".

Each of the samples was run in a 1", 1 1/2" and 2" stainless tube
(except for the apple tissue which was run in 1" and 1 1/2" only).

Each sample in the stainless steel tube was heated from 36°F to
96° F (heating), and cooled from 96°F to 36°F (cooling). These two
temperatures encompass the range of temperatures encountered in the

cooling and precooling of fruits and vegetables.

Preparation of the foamed sucrose solutions

To have an immobilized system it was necessary to add a solidi-
fication agent. Agar, a polysaccharide, was added in the amount of 1. 5%
w/ w to all the tests throughout this study. For the purpose of calcula-
tion it was assumed that the agar has the same thermal properties as
sugar; therefore, an 8% sugar solution consists of 6.5% sugar and 1. 5%
agar, and a 1.5% sugar sample contained only agar.

All foamed sucrose solutions were prepared in a Waring Blender
Model PB-5A equipped with a standard 1 quart calibrated blending
bowl. Six hundred gr of the appropriate sucrose solution having 1.5%
w/w agar were placed in the blending glass. During blending the foam

inducer D-100%* was added from a 10% aqueous solution and air was

* Manufactured by Gunther Products Inc., Galesburg, Illinois.
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incorporated. After the designed volume and specific gravity were
reached, the viscous solution was quickly poured into the 1", 1 1/2" and
2" stainless steel tubes. The tubes were sealed with 1 1/2" thick plug of
Polystyrene foam insulation and corked by the bakelite plug (see Figure
4.5). After the thermocouple lead wire was fastened to the bakelite plug,
the assembled unit was immersed in a 36°F bath to accelerate solidifi-
cation. The temperature of the sugar solution and the liquified agar
were such that the temperature during blending was about 90°F. It was
important to maintain this temperature because if the temperature was
too low, the solution could solidify before peuring, and if the temperature
of the solution was too high,the solution may not be viscous enough to
prevent the air bubbles from rising. Control of the amount of air in-
corporated during blending was achieved by controlling the foam density,
which was measured by withdrawing 100 ml of foam in a tared graduated
cylinder and weighing it to the nearest .1 gr.

To avoid any microbiological activity 25 ppm of HgC1l, was added
to the sucrose and agar stock solutions.

After finishing a heat penetration experiment,the gel was pushed
gently from the stainless steel tube and by accurate determination of
the weight and volume of the gel the true specific gravity and the actual

amount of air was calculated.






76

Preparation of the raw potato samples

Procedure. 1" 1 1/2" and 2" raw potato plugs were formed by pushing
the stainless steel tubes through a whole raw potato. Both ends of plugs
were cut square and packed carefully end to end into the stainless steel
tubes to form a combined plug of about 7' length. A thermocouple was
placed in a hypodermic needle and by using a bakelite guide-plug, corked
into the top end of the stainless tube steel the hypodermic needle was
inserted down to the geometric center of the 7" long potato plug, then,
holding the thermocouple the hypodermic needle was pulled back. Three
inches of polystyrene foam insulation were packed into both ends of the
7" potato plug followed by the top and bottom bakelite plugs.

Analysis of the potato.

Total solids (by vacuum A.O A.C. 1960) 18. 45% w/w

Density (by water displacement A.O.A.C. 1960) 1.07 gr/cm?

Preparation of the raw apple samples

Procedure. MacIntosh apples were cut in halves. A plug was made by
pushing a stainless steel tube through the apple flesh. The end of the
plug was cut square. From each half one plug was put aside for the
deaeration process. The other plug was packed into the stainless steel
tube. The process was repeated until the total length of the combined
apple flesh plugs was 7'". The loading procedure was repeated for the
deaerated plugs. The thermocouple placement procedure was the same

as for the raw potato flesh.
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Apple flesh deaeration procedures. The apple flesh plugs were sub-

merged in a 15% sucrose-water solution in a desiccator. The desiccator
was connected to a water-vacuum pump and a 28" Hg vacuum was
applied. It was found that in order to get complete deaeration and re-
placement of the air spaces by the sucrose solution in a 3/4'" thickness
of apple plug, the 28'" Hg vacuum should be applied for a few hours.
There is an excellent visual criterion for the progress of deaeration:
when the vacuum is released the solution penetrates immediately into
all of the deaerated spaces and the spaces become translucent. When
complete deaeration is achieved, the slice is completely translucent and
now has the same specific gravity as the solution. The escape of the
expanding air did not change the shape nor the strength of the apple
plug, on the contrary, the deaerated translucent apple slices were
firmer than the raw apple.

The leaching losses during deaeration were considered to be
negligible since the infiltration medium and the apple had the same
carbohydrate concentration (Reeve, 1953).

In order to avoid any microbiological activity during deaeration
500 ppm of benzoic acid was added to the solution. Browning was
eliminated because of the apple plugs being submerged and the use of
high vacuum.

Analysis of the raw apples.

Total solids (by vacuum A.O.A.C. 1960) 14.4 w/w
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Average density (by water displacement A.O.A.C. 1960) .773 gr/cm?

Amount of air (using equation 5.2.5) 26.5% v/v

Preparation of the beef meat samples

Procedure. The 1", 1 1/2" and 2" beef lean meat plugs were formed by
pressing a special cutter with a hydraulic press (see Figure 4. 4C)
through a square (square in respect to the meat grain) piece of frozen
lean meat. Two sets of 1", 1 1/2" and 2" meat plugs were obtained; one
set where the cutting plane was parallel to the grain, the second set
where the cutting plane was perpendicular to the grain.

The meat plugs were packed end to end into the 1', 1 1/2" and 2"
stainless tubes to form approximately a 7' combined plug. The tubes
were placed in a lathe and a 5/64" drill was used to drill a hole to the
geornétric center. The procedure for the thermocouple placement was
the same as for raw potato.

Analysis of the beef lean meat

Density (by water displacement A.O.A.C. 1960) 1.08 gr/cm?
The chemical analysis for moisture content and fat were done on the
ground meat by the methods described by Howard and Aurand (1963).

Moisture content 71.5% w/w

Fat 5.6% w/w

Protein (by difference) 22.9% wiw
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Preparation of the apple sauce samples

Procedure. The 1', 1 1/2" and 2" apple sauce samples were prepared
using 2 qt jar commercial apple sauce (brand name "Musselman'').

Analysis of the apple sauce.

Density (by weighing 100 ml of apple sauce

in volumetric flask) 1.07 gr/cm?

Total soluble solids (as sucrose)

(by refractometer) 19. 5% w/w
Total solids (by vacuum A.O.A.C. 1960) 21.2% w/w
Acidity (expressed as dehydrous citric acid) .41% w/w

The procedure for a test run

The procedure for a test run was the following: After submerging
the sample in the temperature-controlled tank in order to equilibrate it
at a uniform initial temperature, say 36°F, it was transfered to the main
4.5'" test section, placed and fastened vertically in the center of the test
section. The pump was turned on with the 36° F water flowing through
the test section for about 5 minutes to assure a uniform initial tempera-
ture. The temperature of the heating medium was changed suddenly by
turning the direction of the three-way valve, thus pumping the 96°F
water by the sample. In order to avoid a sizable change of temperature
of the temperature controlled tanks the first portion of water pumped
right after the sudden change was drained from the top tank. After this

portion was discarded, the drain outlet was sealed and the adequate 6"
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outlet of the top tank was opened to maintain cycling of the water. The
experiment was terminated when the temperature at the geometric cen-

ter was within 3°F of the medium temperature.

4.5 Metal cylinders

In order to determine the film coefficient applicable to samples
evaluated throughout this study, 6" ldhg copper and aluminum cylinders
of 1", 1 1/2" and 2" diameter were made (see Figure 4.4). These
metals were chosen because of their high purity, machinability, high
thermal diffusivity and respectively moderat.e change in thermal prop-
erties with temperature. A 5/64" hole was drilled to the geometric
center. A 30 gauge copper-constantan thermocouple was placed in a
hypodermic needle with a square-cut end which was inserted into the
hole to the geometric center, then, holding the thermocouple in place,
the hypodermic needle was pulled back. A small émount of the (copper
or aluminum) filings were poured into the hole, then pressed down by
the hypodermic needle around the thermocouple wire. The hypodermic
needle was then pulled back and more filings were added. The same
process was repeated until the hole was completely filled and the ther-
mocouple packed tightly. The top of the hole was sealed with a drop of
electrical dope. To assure good contact between the thermocouple
junction and the cylinder a drop of SAE No. 5 instrument oil was placed

into the bottom of the hole at the beginning of the packing procedure.
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i
e .
19a -

Figure 4.4. A, The metal cylinders. B. Assembling a metal
cylinder. C. Cutter for preparing meat sample.

A B o)

Figure 4.5. A. Pouring the sucrose solution. B. The
assembled sample. C. The sucrose solution gel.
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The various electrical resistances were measured before and after
placement of the thermoceouple, and no detectable difference (< .1 ohms)
in the resistance (max. of 12 ohm) was noted.

The copper and the aluminum were assumed to have the following

thermal properties (McAdams, 1954).

k C @
P p
1b/ft3 Btu/hr ft °F  Btu/lb °F ft?/hr
Copper 559 223 . 0915 4. 360
Aluminum 169 117 .2140 3.235

A computer program was written for the calculation of the first term
approximation of the relationship between the f and the film coefficient,
h, for the infinite cylinder for the three sizes of copper and aluminum

for all NBi ranges.



5. BASIS FOR ANALYSIS OF DATA

In this section 1) we shall define the limits of the straight line
semi-logarithmic curve and the time-average temperature. 2) We shall
compute by the least square method the specific heat and the thermal
conductivity of air as a function of the temperature. 3) We shall show
the way the film coefficient of the system was evaluated. 4) We shall
show the magnitude of the generated heat during the experiment. 5) We
shall show the magnitude of the free convection. 6) We shall show the
size of the air foamed bubbles. All the computations throughout this
study such as the heat transfer computations, generating Bessel func-
tions, the computation of the statistical least square fitting curve and
the analysis of the results were done on the Control Data 3600 Digital
Computer.

5.1 Defining the limits of the straight line semi-logarithmic curve and
the time-average temperature

Here we shall first define the limits of the straight line semi-
logarithmic curve and we shall draw the straight line between those
limits for the determination of the slope and the intersection with the
ordinate. Second, we shall find the temperature correspondent to the
average time of those limits, the time-average temperature.

It was observed that the best points suitable for drawing the straight

line semi-logarithmic heating or cooling curve are those where the time

83
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value, t, is between the limits .4 X f <t < 1.08 X f. In this region the
straight line is already established, but yet it is far enough from the
zone where the unaccomplished temperature becomes small enough that
the fluctuation of the media temperature may introduce some error. We
assume that the NBi is large enough (which it is--see Table 6. 1) that the
jc value for the infinite cylinder can be taken to be 1.6. It can be seen
.either graphically or mathematically that the temperatures correspond-
ingtot=.41, andt=1.08 f (which are the limits of the straight line
semi-logarithmic curve where the straight line portion is drawn) are
independent of the diameter of the infinite cylinder or its f value, and
will be the same for all the cylinders regardless of their f value provid-
ing that the j value and the initial and media temperature are the same.
The limits of this region can be found by inserting the appropriate
values of T; = 96°F, Ty = 36°F and T, = 36°F, To = 96°F for heating
and cooling respectively, and the value of t/f of . 4 and 1. 08 for the
lower and upper limits respectively into the equation of the straight line
semi-logarithmic curve:

log (Ty - T) = -~ + log [j (T, - To)]

f

The results are:

lower limit upper limit

57.8°F T = 88°F

heating T

cooling T =74.2°F T = 46°F
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The average time-temperature of those limits will be the temper-
ature corresponding to the average t/f of the upper and lower limits, i.e.
(-%) average = i+21—08 = .74. Using the above equation this average
temperature was found to be 78. 5°F for heating and 53.5°F for cooling.

Throughout this study the thermal properties will be evaluated and

compared at T = 78. 5°F for heating and at T = 53.5°F for cooling.

5.2 Evaluation of the physical constants

Here we show the source and the way we evaluated the film coef-
ficient of the system, the thermal properties of the air (the dispersed com-
ponent), and the thermal properties of the air-sucrose solutions foam

needed for the analysis of the data.

Sucrose solutions

Specific heat, Cj. An equation for the specific heat of an aqueous

sucrose solution as function of per cent sucrose was computed by the

least square method, using the following data given by Honig (1935)

for 68°F.
% sucrose 0 10 30 50 65
Btu -
Cp b °F 1.00 .9428 .8299 L7213 . 6406

The equation was found to be
Cp= 3.746 X 10782 -5.77X10"3S+ 1.000 (5.2.1)

S - percent sugar by weight
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Density. The density of the aqueous sucrose solutions was taken for

20°C from Honig (1953), Table 16.

Thermal conductivity, kL' Honig (1953 - Table 11) tabulates the values

of the thermal conductivity, k., of aqueous sucrose solutions ranging

L
from O percent sucrose up to 60 percent for a temperature range of 32°F
to 144° F (at intervals of 18°F). Using these values, equations were
computed using the least square method where the thermal conductivity
of sucrose solutions, k_, was a function of the sucrose concentration

L

for a given temperature. The general form was k. = A S + B (equation

L
5.2.2), and each temperature has different values of A and B. The

value of A and B for heating (average-time temperature = 78.5°F) and

cooling (average-time temperature = 53.5°F) were found to be:

heating A=-.189X 1072 B = .351

cooling A=-.181X10"2 B = .337

kL:AS+B (5.2.2)
Air
Thermal conductivity, kp. The thermal conductivity of air, kA’ was
calculated as a function of temperature according to the equation
(International Critical Tables, 1929):

T. 15
kK -k 273 + 125) ¢ ) (5.2.3)

A~ TAO ‘TC+125 273
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=3
"

absolute temperature, °K

=
I

N thermal conductivity of air at 0°C = .0140 Btu/hr ft °F

Air-sucrose solutions foam

Density. The amount of air (v/v) in the air-sucrose solutions foam
was evaluated by determining the density of the foam as follows: The
foamed sample was removed from the stainless tubing and the volume
and weight of the gel were determined. After knowing the density, the

amount of air was determined by the following material balance:

pL(l-a)+ pAa:pl (5.2.4)
where

P, - density of the sucrose solution

Pp density of the air

p - density of the air sucrose solution foam

a - volume fraction of air

as py < P, we get by rearrangement of equation (5.2. 4)

(5.2.5)

Specific heat. The specific heat of any system is a function of the prod-

uct of the weight fraction of the individual components and their respec-

tive individual specific heat. It is well justified to say that in most of
the systems having gaseous components as well as liquid and/or solid

components, the specific heat of the total system, due to the relatively
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low density of the gaseous phase (and therefore its low weight

fraction) will be the specific heat of the non-gaseous components. Since
the weight of the foaming air in any of our experiments is very small
with respect to the weight of the sucrose solution, the specific heat of
the foamed sucrose solutions can be justified to be taken as the specific

heat of a sucrose solution having the same sucrose concentration.

5.3 Film coefficient values

The film coefficients of the system for each stainless steel tube
size for cooling and heating were evaluated by using the copper and
aluminum cylinders (they are shown in Figure 4. 4A). The temperature-
time change at the geometric center was measured every second by a
multi-channel one-minute cycle recording potentiometer. The f value
was converted into the equivalent h values. The film coefficient, h,
obtained by the two different metals agreed within 5%. The two film
coefficients, h, obtained from the copper and aluminum were averaged
and used in the computation of the experimental thermal conductivity,
l«;E. The average film coefficient value evaluated from the copper and
aluminum cylinders for cooling and heating are tabulated in Table 5. 1.
The general magnitude of these film coefficients was anticipated and was
quite satisfactory, both from the flow cross section aspect when a com-
parison was made with respect to the tube diameter, since the larger

tube provides higher velocity, or in equal flow where comparison is
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Table 5.1. Film coefficient, h, Btu/hr ft? °F as related to size and

media
Tube diameter
lll l. 5" 2"
Heating 1170 1270 1380
Cooling 797 855 1170

made with respect to the medium since the viscosity is larger in cool-

ing then in heating.

5.4 Magnitude of the generated heat during the experiment

The conduction equation (equation 2. 3.6) which is used in this
study for the computation of the thermal diffusivity is based on the
assumption that no heat is generated in the system. We shall show that
the generated heat in our system can be neglected compared with the
rate of heat removed by conduction.

The possibility of generated heat arises in this study only in
those cases where living biological materials are involved, specifically
raw apple and potato flesh.

We shall assume that we are dealing with the straight line portion
of the semi-logarithmic curve and as an example we shall compare the
heat removed with the heat generated at the average-time temperature,

i.e., 78.5°F for heating and 53.5°F for cooling.
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Role of heat removed. The equation of the straight line of the semi-

logarithmic curve is

log (Ty - T) = -+ + log [j (Ty - To)] (5.4.1)

by differentiating the temperature, T, with respect to time, t, we get:

e ——— (5.4.2)

Taking the f of an 1. 5" stainless steel tube packed with apple flesh to be

about 20 minutes, we find, using equation (5. 4.2) that

=*——= = * ,875°F/ min

In other words +.875°F/min and -.875° F/ min are the rates evaluated

in 78.5°F and 53.5°F for heating and cooling respectively.

Rate of heat generated. If we take the a go of an apple to be 2.5; the

C

Cp = .85 Btu/lb °F as the respiration reference point at 60°F, we find
the respiration rate at the average-time temperature of heating and

cooling as follows:

X 2. 5(78. 5-60)/18

97g.5°F ~ Y0° F 7750 Btu/day ton

X 2. 5(53. 5-60)/18

From the above it can be seen that
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(g _ 7750
dt )78.5°F T 24X 60X .85X 2000

.00316° F/ min

4T 2160
dt '53.5°F ~ 24 X 60 X .85 X 2000

( = .000882° F/ min

Comparison of the rate of temperature change due to heat flow by con-
duction from the media with the rate of temperature change due to bio-
logical respiration, shows that the latter is by far smaller (. 33% for
heating and . 1% for cooling) for the 1.5" tube. This contrast is even
higher if the analysis is made using the 1" tube.

The small contribution of the heat of respiration at the average
time justifies neglecting the heat of respiration throughout the test. In
low NBi (such as cooling in low air velocity) in which the probable f is
larger, or in systems exposed to respiration-favorable temperatures
having a small temperature driving force the relative contribution of
the heat of respiration will be much larger and probably should be taken
into account.

In cases where the elapsed time since t = 0 until comparison is
made is short, the necessity of taking into account more than one term
in the general temperature distribution solution should be considered.
The method and the significance of comparing the heat of respiration to
the conductive heat transfer is mainly dependent on the values of j, Qjo,

t and the actual temperature distribution at the time the comparison is

made.
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5.5 Magnitude of free convection

In all the experiments throughout this study we are assuming that
by using or creating immobilized water in our system heat was flowing
due to conduction heat transfer only. In cases where air spaces are
involved it is necessary that we prove that the air spaces are small
enough that natural convection can be neglected.

Briggs (1954) showed that if the product of the Grashof and Prandtl

numbers is less than 600 in self-consistent units, convection will not

occur.
C p
L3 p? A
22 8L () < 600 (5.5.1)

In our system the most favorable conditions for convection in the
air spaces, as far as the above criteria are concerned, will be:

1. On the surface. It is only at surface that our maximum At of
60°F can occur. This maximum value of At = 60°F at the surface occurs
only in the starting of the experiment and decreases immediately.

2. During the cooling cycle (due to higher viscosity in cooling).
The maximum size of the air space which under the conditions stated

above yields N r < 600 can be calculated as follows:

G

PPgBC )
= X _—
T airat T=496cr " 2710 oy (MeAdams, 1954)

2 X 108X At X L3 < 600
2 X 109X 66 X L3 < 600

L . =.0171 ft=5.2 mm
min
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This minimum L of 5.2 mm is of course far larger than the air spaces in
any of our experiments (see 5.6); it is interesting to note that in compu-
tation of the magnitude of natural convection in spaces containing sucrose
solution (apple flesh), the maxirfmm NGr NPr taking the average cell
size to be about 500 micron (Reeve, 1953) was found to be less than 100.

Therefore, for the experimental conditions stated, as for this system,

the convection heat transfer may be considered to be negligible.

5.6 Size of the air-foamed bubbles

Photographs of sections of a few of the air-sucrose solutions foam
were made and two of them are shown in.Figure 5.1. The size distri-
bution of the bubbles was found as follows:

20% of the bubbles have a diameter smaller than .05 mm

15% of the bubbles have a diameter between .05 mm to .1 mm

50% of the bubbles have a diameter about .1 mm

15% of the bubbles have a diameter larger than .1 mm

The bubbles have a spherical shape and seemed randomly dis-
tributed. As noted in section 3.7 the size of the bubbles, as long as
they are small and randomly distributed, should not affect the overall

thermal properties of the system.
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% sucrose 8, % air 16

scale (mm) | | |
0 1 2 3 4

Figure 5.1. Cross section of air-foamed sucrose
solution gel.



6. RESULTS AND DISCUSSION

In this section we shall give the results of the experimental part
of the study and its related discussion. The major computer program
(program COND) was used for the computations of:

1. The predicted thermal conductivity, k,,, and the predicted thermal

T

diffusivity, «,,, for all tests using equation (equation 3.7.5) developed

T
for three dimensional homogeneous isotropic system.

2. The experimental thermal conductivity, kE’ and its standard devi-
ation using the experimental data by solving and satisfying the root equa-
tion of the cylindrical transcendental equation. This experimental

thermal conductivity, kE which is an unknown value, cannot be calcu-

lated directly from the equation (4.2.1) which relates its value to the

k
experimental data. The equation f C_Ep / R? = 1n 10/ B% can only be
p

solved simultaneously by trial and error with the transcendental equa-

hR _ Jy1 (By)
' Jo (By)

(Figure 6.1). As it can be noted from Figure 6.1 the computation of a

tionN_ . = — =
Bi kE

Those steps are shown in the block diagram
single experiment is terminated when the value of the assumed thermal
conductivity, kE’ is within . 1% of the thermal conductivity evaluated
using the transcendental equation.

An expression was developed (equation 3.7.5) in this study where

the overall thermal conductivity of a two-component three-dimensional

homogeneous-isotropic dispersion system, kE is a function of the

95
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Figure 6.1. Block diagram for the computation of the experimental
thermal conductivity, kE

Previous computations
Assume (kE)l = .05

i

Computation of the Biot number
Npj = B R/ (kg),

A

Generating the J, (B;) and J, (B,) starting with

B, = .05 and cycling until a B; is found where
the N i computed using the equation

B
_ Iy (By) . e
NBi = B T, () will be within .1% of the NBi

computed using the equation NB =h R/ (kE)1 .

i
Computation of the new thermal conductivity

k

(kE) from FE— / R%=1n 10/B?
2 p P

Comparing the (kE) with (kE)
2 1

(k) = ()

Completion of the computations
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thermal properties of the single components and their respective con-
centrations. This expression developed in section 3.7 will hold for any
two-component system, providing the system will fulfill the require-
ments posed in the above mentioned section. We think that the air-
sucrose solutions foam system as well as the apple flesh evaluated in
this study can be considered to be such a system, and we, therefore,
shall in the following discussion check and compare the magnitude of the

predicted thermal conductivity, k,,, calculated from equation (3.7.5)

T
with that obtained from the experimental results with respect to various
parameters. We propose that agreement between the magnitudes of the
values calculated from the developed expression and these values
obtained from the experimental data, evaluated from a few points of
view, will prove that the basic assumptions used to develop the expres-
sion and the reasoning behind the development are in agreement. As
long as the magnitudes of our comparisons are about the same, we
should not be disturbed if the experimental results differ moderately
from those obtained using the developed expression. If the values
obtained in the several comparisons are of about the same magnitude,
this agreement will take care of the most important part, the identity
of the functional groups. A proportionality constant, if needed, will
take care of any deviation of the results, if any.

Table 6.1 is the condensed input-output of program COND.

It contains all the basic input information and most of the output results

of this study.
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All the points appearing in the figures in this section are experi-
mental points and their best fit (least square method) first degree
polynomial appears in the form of solid lines. The broken lines are the

results of the prediction equations.

Sucrose matrix

We would like to point out that although the developed expression
in orthogonal coordinates (equation 3.7.5) is very close to the form of
k = b AIR + d, its real form is of a second degree equation. Since the
difference between the first degree form and the second degree, as
obtained by the least squares method, was very small, we decided to
present the developed expression in the form of a first degree equation,
so comparison between its values and the experimental results (which
are expressed in the first degree form) could be made on the basis of
slope and intercept with the ordinate. In Figures 6.2, 6.3, 6.4 and 6.5
the experimental thermal conductivity, kE (which is the average of the
experimental thermal conductivity for the three sizes of the stainless
steel tubings), and the predicted thermal‘ conductivity, kT (according to
the developed expression, equation (3.7.5) are plotted, for cooling and
heating, versus the amount of air for 1.5, 8, 16 and 24 percent sucrose
respectively. A polynomial of the first degree, having the form k = b
AIR + d (b and d are constants, AIR = percent air v/v), for all cases

was calculated by the least square method. The constants for these
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Experimental (data points and solid lines) and predicted

(broken lines) thermal conductivity vs. percent air in heating
and cooling of 1.5% sugar solution.
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ke =-3649x 103 x AIR +.34190
kr =-3706x 10" 3x AIR +.33623

ke =-3.831 x 10-3x AIR + 32427
ky =-3.607x 10"3x AIR + .32347
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Figure 6. 3. Experimeﬁtal (data points and solid lines) and predicted
(broken lines) thermal conductivity vs. percent air in heating
and cooling of 8% sugar solution.
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Heating K€ =~3-351 X103 x AIR +.32484
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Figure 6. 4. Experimental (data points and solid lines) and predicted
(broken lines) thermal conductivity vs. percent air in
heating and cooling in 16% sugar solution.
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_ kg=-2907 x 103 x AIR +.31146
Heating 4 = -_3410 x 103X AIR + 30636
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Figure 6.5. Experimental (data points and solid lines) and predicted
(broken lines) thermal conductivity vs. percent air in heating
and cooling of 24% sugar solution.
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polynomials are tabulated in Table 6.2. By inspection of Figures 6.2,
6.3, 6.4, and 6.5, we can see that in all cases the cooling lines are
lower than the respective heating lines. This is to be expected for both

the theoretical and the experimental lines, since when k, < kc the thermal

d
conductivity of the two component system is dependent (see equation
3.7.6) in a linear fashion on the thermal conductivity of the continuous

phase (the sucrose solution), k., which itself is proportional to the

L
temperature.

In all the above mentioned figures (except for the 1.5 percent
sugar case), the experimental line for cooling is more or less parallel
(wifhin 5%) to the respective experimental heating line. This parallel
relationship between the experimental heating and cooling lines is satis-
factory due to the fact that the change in the thermal property for the
sugar system is almost linear with respect to temperature. Therefore,
we can expect the lines for the experimental heating and cooling to have
the same slope, but be shifted with respect to their intersection with the
ordinate.

ST is the ratio between the experimental thermal conductivity, kE
for each experiment and its predicted value, kT, and SJ is the ratio
between the experimental lag factor jC for each experiment and its pre-
dicted value. The average values of ST and SJ and their standard

deviations for the various experimental groups as computed from Table

6.1 are tabulated in Table 6. 3.
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Table 6.2. Coefficients of the equation of the thermal conductivity kg and
kT with respect to air for various sucrose concentrations.

The equation has the form of k = b AIR + d

s Heating Cooling
B
a E’: Experimental Predicted Experimental Predicted
SR k k k k
o & E T E T
@ g
S 10° b d 103 b d 103 b d 103 b d
1.5 (-3.844 | .35517 | -3.891 | .34878 | -4.547 | . 33510 | -3.739 |. 33481
8.0 | -3.649 | . 34190 | -3.706| .33623( -3.831 | .32427 | -3.607 |.32347
16.0 | -3.351 | .32484 | -3.582| .32169 | -3.491 | .30863 | -3.373 |.30891
24.0 | -2.907 | .31146 | -3.410| .30636 | -3.025| .29732 | -3.262 |.29441

Table 6. 3. The average ST = kE/kT and the average SJ = jC/Tjc and their

standard deviation.

ST = kE/kT SJ = JC/TjC
Standard Standard
Average deviation Average deviation
All the experiments 1.0003 . 0450 . 9641 . 0852
Sucrose matrix---
heating experiments 1.0282 . 0265 . 9944 . 0940
Sucrose matrix--
cooling experiment .9894 . 0369 . 9250 . 0757
All the experiments
beside the sucrose
matrix . 9690 . 0548 . 9811 . 0506
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From Table 6. 3 it can be seen that the average ST for the sucrose
matrix is slightly larger than 1 for heating, and slightly smaller than 1
for cooling. The average ST for the whole study is surprisingly 1.0004.
The divergence of the average SJ from 1.0 and the standard deviation of
the SJ are greater than those of the ST. This higher divergency of SJ
should not be surprising since the errors inthe measurement of the lag
factor, jC, are well known and are discussed in section (3.2). It is
interesting to note from Table 6.1 that the theoretical lag factor, ch,
for all experiments has the same value of 1.602 which is an asymptotic
value of high NBi system. This again shows the impossibility of using

the lag factor, jc, as a characteristic variable in a high N i system,

B
even if the possibilities for experimental error in its determination were
eliminated.

Figure 6.6 shows the relationship in the sucrose matrix between
the amount of air and w, where w is a dimensionless ratio between thermal
conductivity of the foamed sucrose solution, k, and the thermal conduc-

tivity of the same sucrose solution having zero air, (k) i.e.

zero air’

w = k/ (k) w has limits of 0 < w < 1.

zero air’
From Figure 6.6 we can see that the scattering of experimental

points around the experimental least-square line is approximately pro-

portional to the amount of air. This is quite expected since the greater

the amount of air entrapped in the sample the more complicated the

system and the larger are the probably discrepancies with respect to
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Figure 6. 6. The ratio w vs. % air for all the sucrose matrix
experiments.
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air distribution and liquid phase continuity. However, we are very
pleased and even surprised to see that the predicted line obtained by
plotting the amount of air versus kT/(kT)Zero air almost coincides

with the experimental line. The equations of the lines are:

Experimental .
= -1. X _ 1
line kp/ (k) oo air 1.1028 X 1072 AIR + 1.000 (6.1.1)
Predicted s
= -1. X , 1.
line K/ (), oo nip 1.1140 X 1072 AIR + 1.000 (6.1.1)

The experimental thermal conductivity, kE’ and the predicted thermal

conductivity, k., of the air-sucrose solutions foam for both heating and

T
cooling are plotted versus the amount of air in Figures 6.7 and 6. 8.
From these graphs and from the table of coefficients (Table 6.2) we
observe that the slope b, of both the experimental lines and the predicted
lines decreases when the sugar concentration increases. This common
behavior of the predicted and the experimental lines is expected and
more than welcome, so to speak: since as the sugar concentration

increases the thermal conductivity of the continuous phase, k decreases

L}

and since the thermal conductivity of the dispersed phase (air), k

A is

constant, the difference between kL and kA will be smaller and the
thermal conductivity of the sucrose solution foam, kE’ (kL > kE > kA)
will be, therefore, less air-dependent (i.e. slope presented in kE: AIR

coordinates is smaller). The fact that the magnitude of change for both

the experimental and the predicted lines is the same supports the validity
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Figure 6.7. Summary of the heating results. Experimental (solid lines)

and predicted (broken lines) thermal conductivity vs. percent
air in heating.
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COOLING
Equation of the line Equation of the line
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Figure 6.8. Summary of the cooling results. Experimental (solid lines)
and predicted (broken lines) thermal conductivity vs. percent
air in cooling.
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of the equations developed for the two phase system. The value of the
constant d is inversely proportional to the sucrose concentration; this
is obvious since d, the intercept of the curve with the ordinate, is

the thermal conductivity for zero air.

The functional group %a; throughout our study approaches a
constant value. It has been noted above that all the experiments were
performed in a high N

i system (well over 100). In these N regions

B Bi

the % becomes a constant and is different for each geometrical shape
(see equation 3.5.1).

fa
—3 = constant

log f = 2 log R + constant (6.1.3)
or taken between limits

log (f;/f2) = 2 log (R;/R>) (6.1.4)
or the slope of the straight line obtained when f is plotted vs. R on a
log-log scale is constant (E = 2). Since each set of experiments con-
sisted of three values of f and three values of R, we obtained three
slopes, E;_,, E,_; and E,_;. The slopes, E, for all the air-sucrose
solutions foam matrix, their various average and standard deviations
were computed and the computer output is presented in Table 6. 4.

From Table 6.4 we can observe that the slope, E, is generally
about 2. As a matter of fact, the average E for the heating matrix,

cooling matrix, or the total matrix, is about 1.98-1.99. We would like
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to point out that the value of E should be just below 2, because E

approaches 2 from below as N .

Bi

Carbohydrate sample

The carbohydrate type products which were examined in this
system were raw potato flesh, raw apple flesh and apple sauce. The
experimental data associated with these experiments are tabulated in
the main input-output table (Table 6.1). In Figure 6.9 the experimental
thermal conductivity, kE, for each case (each point on the figure repre-
sents the average value for the various cylinder sizes) is plotted versus
the predicted thermal conductivity, kE, using equation (3.7.5).

From Figure 6.9 we can see that the experimental thermal con-
ductivity, kE’ of the apple sauce and the raw potato are about the same
as their respective predicted thermal conductivity, kT. As far as the
apple flesh is concerned the experimental thermal conductivity, kE,
was lower than the predicted values. One of the major probable reasons
for this discrepancy is the inaccuracy of the diameter of the apple flesh
with respect to the stainless steel tube. From this standpoint, both the
air-sucrose solutions foam and the apple sauce have the most accurate
shape because they take the shape of the tube when they are poured;
whereas, the rigid plugs of apple flesh did not conform exactly to the

shape of the tube.

It is interesting to see from Figure 6.9 the increase in the thermal
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conductivity of the raw apple flesh after the air was deaerated and
replaced by liquid. This increase was expected from our theoretical
equation which takes into account the thermal properties of the individual
phases and the percentage of air. The determination and comparison
of the thermal conductivity of the raw apple flesh to the deaerated
product demonstrates again that the thermal conductivity of raw apple
flesh cannot be approximated (as was done in the past by a few re-
searchers) by using Anderson approach (equation 6.1.5). The Ander-
son's equation says that the thermal conductivity of a carbohydrate type
fruit is the same as the thermal conductivity of a sucrose solution
having the same percent of carbohydrates as the fruit. The Anderson
thermal conductivity prediction equation agrees with sucrose solution
data of Riedel (1951), and presumably agrees with data on other food-
stuffs not containing air. Since as much as 25% of the apple volume
may be intercellular spaces the Anderson equation is not applicable.
Calculation of the thermal.conductivity of our apple according to the
Anderson approach will approximate the thermal conductivity of an
apple, if the air is replaced With liquid having the same concentration

of carbohydrates as the apple juice.
k = (% moisture/ lOO)kW + .15(100 - % moisture)/100 (6.1.5)

It is worthwhile mentioning that one of the basic results of the

development of an overall thermal conductivity of the two-component
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homogeneous isotropic system is that as long as the dispersed particles
are randomly dispersed and small enough in comparison to the whole
unit, they do not necessarily have to be of a single geometry nor of a
single size. If the dispersed particles are small and randomly dis-
tributed, the area void fraction for any cross section of the system will
be the same. This means that the thermal conductivity of the two-
component system is a function of the thermal conductivities of the
individual components and the volumetric void fraction only, and inde-
pendent of the size or the shape of the particles in the dispersed phase.
The air-sucrose solutions foam are systems where the dispersed phase
(air) is found in various sizes of one single shape (sphere). The
spherical particles are quite small (see section 5.6) which not only
satisfies the requirements for elimination of free convection (see sec-
tion 5.5), and having a small ratio between the individual particle size
and the system size, but increases indirectly (by having more dispersal
particles) the chances of the particle being randomly distributed. In
the case of the apple flesh the air is dispersed to form intercellular
channels having sizes of . 3 mm up to 1 mm (Reeve, 1954). The air
channel size in the apple flesh, as in the case of the air-sucrose solu-
tions foam, obviously fulfill the basic requirements with respect to
size and random distribution. It is interesting to note that the air
channels in the apple flesh are not closed type cells (as in the case of

air-sucrose solutions foam) but are inter-connected to one another
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(otherwise deaeration would not be possible!).

It has been mentioned that the experimental system was designed

to have a large NBi’ so that the da/dN ; or its equivalent dkE/dNBi

B
would be as small as possible. By using the modified program COND

we computed the projected change of the experimental thermal conduc-

tivity, kE’ should the film coefficient change. In other words what was
Akp
Ah

the of our system? Two examples were computed and the results
are shown in Table 6.5 where the new thermal conductivity of the
reference point (kE)RV were tabulated vs the percent change in the
film coefficient with respect to the actual experiment condition. From
Table 6.5 we can see that the film coefficient in our system is so high
that even if a change would occur which will cause the film coefficient
to be reduced by 50% or to be doubled its assumed value (evaluated from
the copper and aluminum cylinders), the error in such extrame changes
(which are very unlikely to happen) in the determination of the experi-
mental thermal conductivity, kE, will not exceed . 4%. Practically we

AkE

Ah = (0. (See also 3.4, 3.5.)

can say that in our system

Beef lean meat

A few experiments were done with raw meat. The average
thermal conductivity and diffusivity for the three tubing diameters are
tabulated in Table 6.6. The specific heat of the raw meat used in the

computation of the thermal conductivity from the thermal diffusivity
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Table 6.5. The influence of changing the film coefficient h on
the experimental thermal conductivity, kE
100 o Ay Ngi % ke )
RV ———— ft BTU (k) . *
hr ft© °fF hel hr ft °F E” RV
Test No. 40
40,00 468,00 2,358717 51,62 10,0059517 0.368705 1,024045
50.00 585,00 2,368177 65,09 0,0059043 0.365497 1,015107
60,00 702,00 2.374394 78,50 0.,0058734 N.363673 1,010044
70,00 819,00 2,378808 91,91 0,0058516 0.362377 1,006441
80,00 936,00 2,382404 105,32 0,0058354 0+361408 1,003754
90,00 1053,0n 2,3846%9 418,74 0.0058229 0.360657 1,001665
100,00 1170,00 2,386697 132,15 0.0058130 0.360058 1,000000
110,00 1287,00 2,388362 145,56 0,0058049 0.359568 0,9986414
120,00 1404,0n 2,389746 158,97 0.,0057982 0.359161 0,997509
130,00 1524,00n 2,390916 172,39 0,0057925 0.358847 0,996553
140,00 1638,00 2,391917 185,80 0,0057877 0.358522 0,995735
150,00 1755,00 2,392784 199,22 01n,0057835 n.358267 0,995026
160,00 1872,00 2,393542 212,64 0,0057798 0,358044 0,994406
170,00 1989,00 2,394210 226,05 0,0057766 0,357847 0,9938614
180,00 2106,00 2,394803 239,46 0,0057737 0.357673 0,993375%
190,00 2223,00 2,395334 252.88 0.0057712 0,357516 0,992941
200,00 2340.00 2,395811 266,29 0,00572689 0.357376 0,992551
210,00 2457,00 2,396242 279,69 0,0057668 0.357248 0.992197
220,00 2574,00 2,396634 293,10 0.0057649 N.357133 0.,991877
230,00 2691,00 2,396992 306,52 0.0057632 n.357028 0.991584
240,00 2808,00 2,397320 319,94 0.0057616 0.356931 0,991316
250,00 2925,00 2,397622 333,38 0.0057601% 0.356842 0,994070
Test No. 154
40,00 468,00 2,387881 141,42 0,0050693 0.272481 1,008433
50,00 585,00 2.391297 177,26 0,0050548 0.271719 1,005611
60,00 702,0n 2,393568 213,13 0.0050452 0.271212 1,003737
70,00 819,00 2.,395185 248,97 0,0050384 0.27085% 1,002400
80,00 936,00 2,396396 284,A1 0,0050333 0.270581 1,001399
90,00 1053,00 2,397337 320,67 0.0050294 0.270370 1.000622
100,00 1170,00 2,398089 356,53 0,0050262 0.,270202 1.000000
110,00 1287,00 2,398704 392,40 0,0050237 0.270065 0,999492
120,00 1404,00 2,399216 428,27 10,0050215 0.269951% 0,999069
130,00 1521,00 2,399649 464,15 0.0050197 01.269854 0,998711
140,00 1638,00 2,400019 499,92 10,0050182 01.269771 0,998405
150,00 1755,00 2.,400341 535,86 0,0050168 0.269700 0,998139
160,00 1872,0n 2,400622 571,73 0,0050156 0.269637 0,997907
170.00 1989,00 2,400870 607.61 0.0050146 n.269582 0,997702
180,00 2106,00 2,401090 643,44 0,0050137 0.269532 0,997520
190,00 2223,00 2,401287 679,30 0,0050129 n.269488 0,997357
200,00 2340,00 2,401464 715,10 0,0050121 0.,269449 0.,997210
210,00 2457,00 2,401624 750,A7 0,0050114 0.269413 0,997078
220,00 2574,0n 2.,401770 786,79 0,0050408 0.269380 0,996957
230,00 2691,00 2,404903 822,63 0.,0050103 01.269351 0,996847
240,00 2808,0n 2,402025 858,50 0.0050098 0.269323 0,996746
250,00 2925,0n 2,402437 894,30 0,0050093 n.269298 0,996654

*Reference value corresponds to the actual experiment conditions
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Table 6.6. The thermal diffusivity, the thermal conductivity and the j
value for the raw meat flesh

3 Average Average -
Heat flow in ] thermal enacy Aver SJ =
respect to Media 3 Tt g age : .
g diffusivity conductivity 3:./T5

g ft?/hr  Btu/hr ft°F  Je & e
Perpendicular Heating .00361 .200 1.47 .863
Perpendicular Cooling .00404 .223 1.48 =913
Parallel Heating .00454 .251 1.56 .974
Parallel Cooling . 00490 .271 1.55 .970

was taken arbitrarily from the literature to be .82 Btu/lb °F. The
specific gravity for the raw meat was experimentally found to be 1.08.

It is difficult to evaluate the thermal properties of raw meat in a
temperature range above the freezing point. The problems involved
start with the difficulty of obtaining the needed accurate shape, loss of
liquid and other problems yield unpredictable discrepancies in the
results due to the fact that raw meat above the freezing point is a rela-
tively soft nonhomogeneous material. These are probably the reasons
why the thermal properties of raw meat in most cases have been evalu-
ated for the temperature range below the freezing point.

The main purpose of the raw meat experiments was to get some
idea of the thermal properties and to understand the system and the

problems involved. We would like to point out again that in this study
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the thermal diffusivity was found directly from the experimental data and
the thermal conductivity was evaluated by picking an arbitrary value
(from the literature) for the specific heat. The parameters in the lean
meat test were cooling and heating; heat flow in the direction parallel
and perpendicular to the meat grain. The values of the thermal conduc-
tivity, the thermal diffusivity and jc of the lean meat tests are tabulated
in Table 6.6. From Table 6.6 we can observe that there is no appre-
ciable difference between the thermal conductivity for heating or cooling
in the respective raw material.

Before going further we would like to point out that our so-called
"heat flow parallel to the meat fibers" is far from being parallel. The
reason for this is that the heat flow in our system is radial heat flow.
The meat fibers in order to be considered parallel to heat flow should
be arranged in radial form, i.e. the fibers will represent the radii - like
sun rays. This situation does not occur in meat, and as the fiber
arrangement can be assumed to be parallel in rectangular coordinates,
we actually find that the direction of the fibers with respect to the heat
flow varies from being completely perpendicular to completely parallel.
The value of the thermal conductivity, in the so-called perpendicular
direction will be, obviously, some value between the value of the
thermal conductivity in the parallel direction and the value of the
thermal conductivity in the perpendicular direction.

From Table 6.6 we can see that the thermal conductivity when the
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heat flow was parallel to the meat fibers is larger for both cooling and
heating than the thermal conductivity in the so-called perpendicular
direction. The phenomena of meat flesh having a higher thermal con-
ductivity in the direction parallel to the fibers than in the perpendicular
direction was observed before by a few researchers, among them
Lentz (1961) and Miller (1963). We would like to point out that the
analysis we have made in section 3.7 shows that in the fibrous (or
layered) homogeneous system the thermal conductivity in the direction
parallel to the fibers is always larger than the thermal conductivity in
the direction perpendicular to the fibers. We were quite satisfied that
both the extensive experimental investigations of Lentz (1961) and
Miller (1963) with respect to the thermal conductivity of meat and the

few results that we have obtained in this study confirm the analysis.






7. SUMMARY

The study consisted of two phases, a laboratory study followed by

a theoretical study. The conclusions reached in this study are as follows:

1) By dimensional analysis we showed that: 2 =N in and from

R2 B
the exact solution that for high and low NBi N\ and n approach constant
values.

2) The evaluation of the film coefficient h should be carried out in
a system where the NBi is small as possible. When NBi > 10, h is very
sensitive to changes or errors in either the physical or geometric
properties of the overall system. On the other hand evaluation of the
thermal diffusivity, @, should be done in a system with a high NBi so that
the root value B; is insensitive to NBi (or h).

3) In the high NBi system f is independent of NBi (or h), and is
proportional to Cp p /k (reciprocal of the thermal diffusivity) and R%. In
low NBi system, the f is inversely proportional to NBi (or h) but directly
proportional to Cp p (heat capacity) and R.

4) The ratio between f values of a sphere to an infinite cylinder
to an infinite slab is 1: 1.5-1.7 : 3-4 respectively (the low ratio values
are for the high NBi systems and the large ratio values are for the low
NBi systems).

5) The mass-average temperature can be expressed as a function
of the temperature at the geometric center Tm =T, -K(T; - TC ), where
K = jm/jc.

122
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6) The overall thermal conductivity of three dimensional homo-
geneous isotropic system, two dimensional anisotropic fibrous system
and one dimensional anisotropic layered system was expressed as a
function of the thermal conductivity of the individual components and the
relative proportion of the components.

7) The thermal conductivity of a homogeneous fibrous (or layered)
system is always larger in the direction parallel to the fibers (or layers)
rather than in the direction perpendicular to the fibers (or layers). In
fact, in such systems, the maximum and minimum overall system
thermal conductivity will be in the direction parallel and perpendicular
to the fibers (or layers) respectively.

8) In the layered system the ratio between the thermal conduc-
tivity in the direction parallel to the layers to the thermal conductivity
in the direction perpendicular to the layers with respect to the void
fraction, P, will reach a maximum value when P = . 5.

9) The experimental thermal conductivity of an air-sucrose
solutions foam agreed with the values and particularly with the various
magnitudes of the predicted expression for the two-component three-
dimensional dispersion system. This prediction equation for the overall
system thermal conductivity of the two-component three-dimensional
homogeneous-isotropic system as a function of the thermal conduc-
tivities of the single components and their proportion, should hold for
many other systems such as butter (water dispersed in fat), ice cream,

or insulation materials.
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Figure A. 3. js vs NBi for infinite slab, infinite cylinder and sphere.
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