CONTROLOFLASINGFROMAHIGHLYPHOTOEXCITEDSEMICONDUCTORMICROCAVITYByFeng-KuoHsuADISSERTATIONSubmittedtoMichiganStateUniversityinpartialoftherequirementsforthedegreeofPhysicsŒDoctorofPhilosophy2016ABSTRACTCONTROLOFLASINGFROMAHIGHLYPHOTOEXCITEDSEMICONDUCTORMICROCAVITYByFeng-KuoHsuTechnologicaladvancesinthefabricationofopticalcavitiesandcrystalgrowthhaveenabledthestudiesonmacroscopicquantumstatesandemergentnonequilibriumphenomenaoflight-matterhybridsincondensedmatter.Opticalexcitationsinasemiconductormicrocavitycanresultinacoupledelectron-hole-photon(e-h-g)system,inwhichvariousmany-bodyphysicscanbestudiedbyvaryingparticledensitiesandparticle-particleinteractions.RecentlytherehavebeenreportsofphenomenaanalogoustoBose-Einsteincondensatesorforexciton-polaritonsinamicrocavity.Anexciton-polaritonisaquasiparticleresultingfromstrongcouplingbetweenthecavitylightandtheexciton(e-hpair)transition,andtypicallyisonlystableatalowdensity(˘1011to1012cm2orless).Atahigherdensity,ithasbeentheoreticallypredictedthatpairingofelectronsandholescanresultinaBCS-likestateatcryogenictemperatures,whichcanproducecooperativeradiationknownassuperradiance.Inthiswork,weexplorecooperativephenomenacausedbye-hcorrelationandmany-bodyeffectinahighlyphotoexcitedmicrocavityatroomtemperature.High-densitye-hplasmasinaphotoexcitedmicrocavityarestudiedunderthefollowingcon-ditions:(1)thesampleisphotoexcitedGaAs-basedmicrocavitywithlargedetuningbetweenthebandgapEgofquantumwellandcavityresonancetopreventcarriersfromradiativeloss,(2)thedensityofe-hpairsishighenoughtobuildlong-rangecorrelationwiththeassistanceofcavitylightTheFermilevelofelectron-holepairsisabout80meVaboveEg,and(3)thee-hcorrelationisstabilizedthroughthermalmanagement,whichincludesmodulatingtheexcitationpulselasertem-porallyandspatiallytoreducetheheatingandcarrierdiffusioneffect.Wehaveobservedultrafast(sub-10picoseconds)spin-polarizedlasingwithsizableenergyshiftsandlinewidthbroadeningsaspumpisincreased.Withopticallyinducedmultiple-lasingmodeswereproduced,withsequentiallasingtimedependingonenergies.Thesephenomenaareattributedtothespin-dependentstimulatedemissionfromcorrelatede-hpairs.Wefurtherperformedanon-degeneratepump-probespectroscopytoinvestigatedynamiccarrierrelaxation.Wetransientresonanceswithchangesindifferentialvitythatcanlastmorethan1ns.Theresonanceexhibitsapolarization-dependentsplittinginabout1meVundercircularlypolarizedpumping.Alltheaforementionedphenomenacanbeexplainedbythecombinationeffectofcarrier-inducedrefractiveindexchangeandthelight-inducede-hcorrelation.Ourresearchenrichesthestudiesofcouplede-h-gsystemsatroomtemperatureandahigh-densityregime;however,furtherexperimentsandtheoreticalworksarerequiredtoclaimandclar-ifytheformationofsuchcorrelatede-hpairsinahighlyphotoexcitedmicrocavity.Nonetheless,wehavedemonstratedthatmany-bodyeffectscanbeharnessedtocontrollasingdynamicsandener-giesinhighlyphotoexcitedsemiconductormicrocavities.Weexpectanimprovedunderstandingofthemany-bodyeffectresultedfrome-hpairingtohelpthedevelopmentofpolarization-controlledandwavelength-tunablelasers.CopyrightbyFENG-KUOHSU2016ACKNOWLEDGEMENTSIwouldliketothankallthosewhocontributedtotheresearchpresentedinthisdissertation.Fistofall,Iwishtoexpressmydeepgratitudetomyadvisor,Chih-WeiLai,forcountlessguidance,encouragement,andsupport.DuringmyveyearsinPh.D.,Ihavelearnedinvaluableexperiencefromhimsuchasproblemsolvingaswellascommunicationskill.Inaddition,hissupporttomynextcareerstepcouldnotbeoverstated.Secondly,Iwouldliketoappreciatemysecondmentor,WeiXie.Hewaspatientonclearingmyconfusioninresearch,andwasenthusiasticaboutdiscussingphysicswithme,whichenrichedmyphysicsinsightofmyproject.HealsosupportedmewhenIwasdepressedbothinresearchanddailylife.Honestlyspeaking,thetimethatthethreeofusweretogetherwasprobablymyhappiestperiodinmyPh.D.life.TherearemanymembersatMichiganStateUniversityIwouldliketopubliclythankwithhelp-ingmeingraduateprogram.ProfessorBrageGoldingandJohnMcGuirejoineddiscussionsformyprojectswithusefuladviseonresearchdirection.Mycommitteemembersalwaysofferedmegreatguidanceandsuggestions,soIcoulddeliberatetheresearchplanandlearninghowtopresentworkbettertopeopleoutsidemyRezaLoloeegavesupportswithequipmentassistanceallthetimeaswellasthefaithonthemeaningofmywork.BarryTigner,RobBennett,TomHudson,andThomasPalazzoloprovidedgreathelpwithassistanceonelectronicdevicesormechanicaltools.Thesecretariesinthedepartment,DebbieBarratt,KimCrosslan,andCathyCordassistedmealotwithaffairsingraduatelife.Ourgraduatedirector,ScottPrate,waswillingtohelpuswithanyproblems.IwanttoparticularlythankZeynepAltinsel,whogavemelotsofsupportonimprovingmyEnglishspeakingandcommunication.Withoutthem,mygraduateprogramwouldnothaveprogressedsmoothly.IwouldliketoacknowledgeGregTaftfromKMLabscompanywhotaughtmealotaboutthemode-lockedmechanisminlasingandprovidedgreatconsultationontechnicalproblems.Hissupportboostedourprogressontwo-colorpump-probeproject,andthisexperienceinitiatedmyvinterestintheultrafastlaserIamfortunatetohavemanyfriendsduringmygraduateyears,whohavesupportedthroughtraveling,concernandparties.Amongmyfriends,IwanttoparticularlythankmycloseclassmatesfromNationalTaiwanUniversity,whoarealmostmysecondfamilyfortheirconcernandsupport.Morethansevenyearsaftergraduationfromuniversity,Istillfeelourfriendshipstronglyeventhroughweareseparatedinmorethantenplacesnow.Finally,thisdissertationcouldnotbepossiblewithoutthesupportfrommyfamily,especiallymyparents'permanentlove.Althoughweliveatbothendsoftheearth,theyneverstopstandingbehindme.Ithankthemfortheirbackinme,andIlovemyfamilyforever.viTABLEOFCONTENTSLISTOFTABLES.......................................ixLISTOFFIGURES.......................................xCHAPTER1INTRODUCTION...............................11.1Macroscopicquantumphenomena..........................11.2Phasediagraminelectron-holephysics........................21.3Motivationandapproach...............................41.4Outlineandresults..................................6CHAPTER2BACKGROUND(LITERATUREREVIEW).................82.1Quantumwellexcitons................................82.2Microcavityphotons.................................92.3Exciton-polaritons...................................102.4Polaritonlasingandcondensation...........................132.5Polaritonsinpotentiallandscapes...........................162.6Correlatedelectron-holepairsatlargedensity....................192.6.1Meantheoryforexcitons........................202.6.2Condensationofelectron-holepairsatbandgap...............232.6.3Reviewofsuperradiance...........................252.7Opticalorientationandspinrelaxationinsemiconductors..............292.8Transfermatrixmethod................................34CHAPTER3EXPERIMENTALMETHODS........................383.1Samplecharacteristics.................................383.1.1Samplestructureandfabrication.......................383.1.2Samplecharacteristics............................403.2Experimentalsetup..................................423.2.1Imagespectroscopysetup...........................433.2.2Thermalmanagement.............................443.2.3Opticalcontrolandbeamshaping......................453.2.4Polarizationcontrol..............................453.2.5Temporalmeasurementsetup.........................473.3Conclusion......................................49CHAPTER4SPIN-POLARIZEDLASINGINAHIGHLYPHOTOEXCITEDSEMI-CONDUCTORMICROCAVITY.......................504.1Spin-polarizedlasingatroomtemperature......................504.2Spectralcharacteristics................................534.3Emissionpolarizationproperties...........................55vii4.4Dynamicsandenergyrelaxationofluminescence..................584.5Theoreticalmodel...................................604.5.1Carrier-inducedstrongnonlinearity......................614.5.2Spin-dependentstimulatedprocess......................634.6Discussionandconclusion..............................65CHAPTER5TRANSIENTDUAL-ENERGYLASINGINASEMICONDUCTORMI-CROCAVITY.................................675.1Spectralcharacteristics................................675.2Dynamicsofdual-energylasing...........................695.3Polarizationofdual-energylasing..........................715.4Discussion.......................................72CHAPTER6MULTIPLE-PULSELASINGFROMANOPTICALLYINDUCEDHAR-MONICCONFINEMENT...........................746.1Visualizationofharmonicoscillatorsinopticaltrapping...............746.2Dynamicsofmultiple-pulselasing..........................776.3Harmonicoscillatorspropertieswithdensitydependence..............786.4Theoreticalmodel...................................816.4.1Opticallyinducedpotentialandrefractiveindexchanges..........816.4.2Phenomenologicalmodeling.........................826.5Conclusionanddiscussion..............................85CHAPTER7OPTICALLYINDUCEDRESONANCESINASEMICONDUCTORMI-CROCAVITY.................................877.1Resonanceinmicrocavity...............................897.2Polarization-dependentresonanceinmicrocavity..................917.3SimulationResult...................................937.3.1Drude-Lorentzmodel.............................937.3.2Transfer-matrixmethod............................977.4Theoriginofopticallyinducedresonance......................987.5ConclusionandDiscussion..............................100CHAPTER8DISCUSSIONANDFUTUREDIRECTION.................1028.1Summaryanddiscussion...............................1028.2Futuredirection....................................105APPENDICES.........................................107APPENDIXATYPICALVERTICAL-CAVITYSURFACE-EMITTINGLASERCHARACTERISTIC...........................108APPENDIXBREFERENCEOFTERMINOLOGYABBREVIATION........111BIBLIOGRAPHY........................................112viiiLISTOFTABLESTable2.1Parametercomparisonofbosonicquasipartilces..................13Table6.1Fittingparameters.................................84ixLISTOFFIGURESFigure1.1Phasediagramofpairedelectronsandholes....................2Figure1.2Macroscopicquantumstatesinelectron-holesystem...............4Figure2.1Planarsemiconductormicrocavity.........................10Figure2.2Dispersionofexciton-polariton...........................12Figure2.3Polaritonlasingvs.photonlasing.........................15Figure2.4Polaritoninnaturaltrap...............................17Figure2.5Polaritontrappedinnanowire...........................18Figure2.6Polaritontrappedinamesaofsemiconductormicrocavity.............18Figure2.7Schematicofe-hcondensationatbandgap....................24Figure2.8Schematicofsuperradiance.............................25Figure2.9Symbolicdynamicsofsuperradiance........................26Figure2.10SuperradianceinQWwithmagnetic....................27Figure2.11Interpretationofsuperradiancewithdynamicallyred-shiftingenergy......28Figure2.12OpticalOrientation.................................30Figure2.13SchematicofDyakonov-PerelSpinRelaxation..................32Figure2.14Schematicofmultilayerstructure..........................35Figure3.1Microcavitystructure................................39Figure3.2andlaserspectralcharacteristics....................40Figure3.3Microcavitysamplecharacterization........................41Figure3.4Time-dependentpolarizedPLinInGaAs/GaAsMQWs..............42Figure3.5Angle-resolvedimaging/spectroscopysetup....................44Figure3.6WholeExperimentalSet-up............................46xFigure3.7Pump-probesetup..................................48Figure4.1Spin-polarizedlasingatroomtemperature.....................51Figure4.2Nonlinearinput-output...............................52Figure4.3Evs.kkdispersion.................................54Figure4.4Luminescencecharacteristics............................54Figure4.5Emissionpolarizationvs.pump.......................56Figure4.6effect..............................57Figure4.7ExternalEfy.................................57Figure4.8Luminescencedynamics..............................58Figure4.9Spindynamicsofphotoexcitedcarriersatlasingthreshold............59Figure4.10Dynamicsandenergyrelaxation..........................60Figure4.11TransientlasingspectraatP=4Pth........................61Figure4.12Energylevelsofsample...............................62Figure4.13Simulatedcavityshiftingwithband....................63Figure4.14schematicsofspin-dependentstimulatedemission................64Figure4.15Spin-dependentstimulation.............................65Figure5.1Spectralcharacteristicofduallasing........................68Figure5.2Two-statelasinginamicrocavity..........................69Figure5.3Dynamicsofduallasing..............................70Figure5.4Polarizationpropertiesofduallasing........................71Figure6.1Visualizationofthemacroscopicharmonicstates.................75Figure6.2Quantizedstatesinopticallycontrolledpotentials............76Figure6.3Dynamicsofharmonicstates............................77Figure6.4K-spaceimagingspectra..............................78xiFigure6.5Harmonicoscillator:below-thresholddynamics..................79Figure6.6Densitydependenceofharmonicstates......................80Figure6.7resonanceenergyandpolarizedluminescencespectra..80Figure6.8Schematicdiagramsforthetheoreticalframework.................83Figure6.9Simulateddynamicsoftheharmonicstates....................84Figure6.10Simulatedrisetimesandtime-integratedoftheharmonicstates.......85Figure7.1Pumpingschemeofpump-probemeasurement..................88Figure7.2Differential..............................89Figure7.3Dynamicoftheresonance.............................90Figure7.4Angulardispersionoftheresonance........................92Figure7.5Polarization-dependentresonance.........................93Figure7.6Simulationof.............................95Figure7.7Timedependentdielectricconstant.........................96Figure7.8changefromabsorptioneffect.....................97Figure7.9Carriereffectonblankcavity............................99Figure7.10ComparisonofblankcavitywithandwithoutMQWs...............100Figure8.1Diagramofterahertzexperiment..........................105FigureA.1spectrumofVCSEL..........................108FigureA.2NonlinearincreaseandefyinVCSEL....................109FigureA.3Angle-resolvedspectroscopyinVCSEL......................110xiiCHAPTER1INTRODUCTION1.1MacroscopicquantumphenomenaOurworldismainlybytwolimits:themacroscopiclimitdescribedbyNewton'sLaw,andthemicroscopiclimitdescribedbyquantummechanics.Bridgingthesetwolimitsarefewexamplesof"quantummacroscopicstates,"inwhichacorrelationbetweenparticlesmakesthesystembehavelikeamacroscopicsinglestateinclassicalphysics.Themostcommonexampleisthelaser,wherealargenumberofphotonshavethesameenergyandmomentum.Othertypicalphenomena(correspondingtoconstitutedparticles)are(liquidhelium),super-conductivity(boundedelectronpairs,orCooperpairs),andBose-Einsteincondensation(atomicgases)[1,2].Theconstituentparticlesinthesemacroscopicphenomenaareallcompositebosons.Avarietyofquasi-particleswithbosoniccharactersarefoundinsolidstatephysics.Inpar-ticular,theexciton,whichisanelectron-hole(e-h)pairboundedthroughCoulombinteractioninsemiconductors,attractsmuchattentioninresearch.Indilutedensity,excitonsareregardedasbosonswithalighteffectivemass(0.1-1freeelectronmassm0)comparedtothatoftypicalatomicgases;therefore,excitonscouldformBose-Einsteincondensation(BEC)at˘1K[3,4].SincethetransitiontemperatureTcofBECisinverselyproportionaltoitseffectivemass,theTcofexcitons'BECisexpectedtobethreetosixorderofmagnitudegreaterthanthatofatomicgases'BEC.Thestrongcouplingofanexciton(inbulksemiconductorsorquasi-2Dquantumwells)andaphotonresultsinaquasiparticle,knownasanexciton-polariton[5].Likeanexciton,anexciton-polaritonisacompositebosonwithanevensmallereffectivemass(101104m0),andhasbeenconsideredasacandidateforroom-temperatureBEC[6].11.2Phasediagraminelectron-holephysicsFigure1.1Phasediagramofpairedelectronsandholes.Symbolicschematicofpairedelectronsandholes(e-h)phasediagramasafunctionoftemperatureanddensity.Ate-hdensitybelowMott-transitiondensityandT>Tc,whereTcisthecriticaltemperatureforthecondensateofe-hpairs,thesystemphasemightbediluteexcitongases(X),bi-exciton(XX)gases,andexcitonicscatteringprocess.TheMotttransitionisaregionseparatingthesystembetween"conductingstate"(brokene-hpairs)and"insulatingstate"(exciton,e-hpairsarechargeneutral).Atlowe-hdensityandTTc,electronsandholesarealmostfreecarriersformingelectron-holeplasma(EHP).Theinteractionandquantumcorrelationbetweenexcitonsvarydependingontheelectron-holedensityandthetemperature;Fig.1.1illustratesthephasediagramoftheelectron-holesystem.Indilutedensityofelectronsandholes,theexcitonbehaveslikeabosonicparticle,andformsBECintemperaturesbelowtransitiontemperatureTcinwhichthequantumcorrelationamongexcitonsdominatesthesystem.Theexciton"condensate'hasbeenexperimentallyreportedinvariousstudies[7,8,9,10].Whentheelectron-holedensityincreases,theinteractionofe-hpairsbecomescomplicatedduetoscreeningandspineffectsinthee-handexcitonsystem.Atsufhighdensity,screeningofe-hCoulombattractioninhibitsthebindingofe-hpairing,in2whichexcitonsundergoaMotttransitiontoelectron-holeplasma(EHP)[11].However,correlatede-hpairscanstillformaBCS-likestates,neartothequasi-Fermi-levelofanEHP[11,12,13].SuchamacroscopicBCS-likestatewouldresultinacooperativeradiationknownassuperradiance.SuperradianceorsuggestingtheformationofsuchaBCS-likestate,hasbeenreportedinsemiconductorquantumwells(QWs)[14,15,16].Suchastatecouldexistatcryogenictemperaturesaslargethermalwoulddestroythebindingofe-hpairs.Atlargeelectron-holedensityandroomtemperature,theelectronsandholesareusuallyincoherent.Thecommonmacroscopicphenomenoninthisregionislaserthroughphotonstimulation.Theadvancedtechnologyofcavityfabricationenablesthestudyofcoupledphoton-electron-holesystems.Duetotheirbosoniccharacteristics,aswellasbeingacandidateforroomtempera-tureBEC,exciton-polaritons(hybridsoflightandexcitons)havebeenintensivelyinvestigatedinsemiconductormicrocavitysystemsbynumerousscientistsinthepastfewdecades.Theexciton-polaritonhasalifespan,anditisannihilatedintophotonradiationduetotherecombinationoftheelectronandthehole.Therefore,anexciton-polaritons'condensatecouldresultinalargecoherentradiationknownaspolaritonlasing.Sofar,polaritonlasinghasapparentlybeenfoundinGaAs-baseddevices[17,18,19],andCdTe-baseddevices[20].Besidesthe"condensate"study,thebosoniccharacteristicsofexciton-polaritonshavestimulatedotherresearchrelatingtomany-bodyphysicsinthereduceddimensionalsystem.Many-bodyphysicsincludestopicssuchasquantumvortices[21,22],Berezinskii-Kosterlitz-Thouless(BKT)phases(aboundstateofvor-texandanti-vortex)[23,24],Bogoliubovexcitation[6,25,26],and[27,28].Thequantuminterferencebetweenexciton-polaritonshasalsobeenstudiedinthesuchasnaturaldefectandpotential[29,30,31,32],nanofabrication[33,34,35,36,37,38],andopticalpotential[39,40,41,42].Mostexperimentsonexciton-polaritonsareperformedatcryogenictemperatures,duetothesmallbindingenergyofexcitonscomparedtothermaltion.Nevertheless,theroom-temperaturepolaritonlasinghasbeenreportedinGaN-baseddevices[43,44,45]andZnO-baseddevices[46,47,48],inwhichexcitonsarestableatroomtemperatureasaresultofalargebindingenergy(˘20-60meV).However,theaforementionedpolariton3lasingoccursatadensitymuchlowerthantheMott-density;thisisbecauseahighcarrierdensityenhancesthescreeningeffectandweakenstheformationofexcitons.1.3MotivationandapproachFigure1.2Macroscopicquantumstatesinelectron-holesystem.Simplephasediagramofmacroscopicquantumstatesine-hsystemasfunctionoftemperatureandthedensityofe-hpairs.Thecriticalcarrierdensityseparatedfromthelowandthehighe-hdensityisastheoneatMott-transition,whichistypicallyabout1018cm3.Fig.1.2showsasymbolicdiagramoftheaforementionedmacroscopicquantumstatesatvari-ouslevelsofe-hdensityandtemperature.Basedonthediagram,itisrarethatresearchconvinc-inglypresentsmany-bodyphysicsofparticlesathighdensityandroomtemperature,becausethethermalandscreeningeffectdestabilizethebounde-hpairs.However,theoreticalstud-iesclaimedthatthecondensationofe-hpairspotentiallyexistsnearabandgapofsemiconductorsindenseEHPatroomtemperature[49].Duetotheinsufnumberofexperimentalstudiesofmany-bodyphysicsine-hsystemsathighdensityandroomtemperature,weshoulddevoteoureffortstoexploringthecorrelatede-hpairsatthisregion.4Fromthetheoreticalview,thepresenceoflightwouldenhancethecorrelationbetweenelec-tronsandholes[50,13];therefore,wechosethesemiconductormicrocavityasoursample.Throughtheexaminationofthestudiesofcavitylasersandexciton-polaritonsinmicrocavitysystems,wecanproposeafewreasonswhytheformationofe-hcondensateswasinhibitedatroomtempera-ture.First,theclosedenergydifferencebetweencavityresonanceandthequantumwellbandgap(knownasdetuning)madeithardforthesystemtomaintainahighdensityofe-hpairs,becausetherecombinationofelectronsandholeslimitedtheheightoftheelectron-holegas'sFermi-edge.Second,thethermalheatingandcarrierdiffusionmaydestabilizetheformationofe-hboundpairs.Toaddresstheseissues,weappliedafewdifferentmethods:(1)thecavityresonancewasdetunedto80meVabovethequantumwellbandgap,toprotectdensee-hcarriersfromradiativedecay;(2)theexcitationlaserpulsewastemporallymodulatedbythreeordermagnitudesmallerthantheoriginalone,inordertosuppressthermalheating;(3)theexcitationwasspatiallymodulatedasabeaminordertoreducecarrierdiffusion.Besidesexploringcorrelatede-hpairs,wewouldliketoinvestigatespindynamics.Insemi-conductorlasers,thespinisexploitedtoenhancethelaserperformanceorappliedtospintronicdevices'integration.Thespin-controlledsemiconductorlasers,knownasspinlasers,areproventooperateatthelowerthreshold[51,52,53]andtoofferalargerpolarizationdegree[54,55,56,57,58].Ontheotherhand,excitons,aswellasexciton-polaritons,carryspin.Besidesbeinganewcandidateforspintronicdevices,thespin-dependentpolariton-polaritoninteractionenrichesthephysicsphenomena(seereview[6,59])suchastheopticalspinHalleffect[60,61]andpolar-izationchangeuponpolariton-polaritonscattering[62].However,suchspininteractionhasrarelybeendiscussedintermsoftheaforementionedBCS-likestateofe-hpairsathighdensity,aswellasinsuperradiance.Moststudiesofphotoexcitedquasiparticlesinsemiconductorshaveinvestigatedtheirlumines-cenceproperties;itisrarethattheyexploretheirstatebeforetheannihilationofquasiparticles.Theexcitationenergyisusuallyfarabovetheemissionlevelinordertopreventtheexcitationcoher-encefromimprintingontotheformingcorrelatedquasiparticles;however,exploringthedynamical5spectroscopyofcorrelatedstatesbecomeschallenging,becausepump-probeexperimentsrequiresynchronizedtwolaser-pulsesystems.Inthisdissertation,weaimtodemonstratetherealizationofsuchpump-probespectroscopymeasurement.1.4OutlineandresultsInthenextchapter,Ipresentanintroductiontotheknowledgerelevanttoourwork,includingquantumwellexcitons,microcavityphotonsandexciton-polaritons(abbreviatedaspolaritonsinthefollowingpart),andspinrelaxation.Ialsoreviewselectivearticlesthatarehighlyrelatedtoourwork.InChapter3,Iillustratethestructureanddesignofourmicrocavitysample,anddetailtheexperimentalapparatus.Chapter4to7presentstheexperimentalresultswiththeabstractforeachchapterillustratedinthefollowingparagraphs.InChapter4,room-temperaturespin-polarizedultrafast(˘10ps)lasingisdemonstratedinahighlyopticallyexcitedGaAsmicrocavity.ThismicrocavityisembeddedwithInGaAsmultiplequantumwellsinwhichthespinrelaxationtimeislessthan10ps.Thelaserradiationremainshighlycircularlypolarizedevenwhenexcitedbynonresonantellipticallypolarizedlight.Thelasingenergyisnotlockedtothebarecavityresonance,andshifts˘10meVasafunctionofthephotoexciteddensity.Suchspin-polarizedlasingisattributedtoaspin-dependentstimulatedprocessofcorrelatede-hpairs.ThesepairsareformedneartheFermiedgeinahigh-densityEHPcoupledtothecavitylightInChapter5,sequentiallasingattwowell-separatedenergiesisobservedinahighlyphotoex-citedplanarmicrocavityatroomtemperature.Twospatiallyoverlappedlasingstateswithdistinctpolarizationpropertiesappearatenergiesmorethan5meVapart.Underacircularlypolarizednonresonant2pspulseexcitation,asub-10-pstransientcircularlypolarizedhigh-energy(HE)stateemergeswithin10psafterthepulseexcitation.ThisHEstateisfollowedbyapulsedstatethatlastsfor20Œ50psatalowenergy(LE)state.TheHEstateishighlycircularlypolarizedasaresultofaspin-preservingstimulatedprocess,whiletheLEstateshowsasreduced6circularpolarizationbecauseofadiminishingspinimbalance.InChapter6,theobservationofmacroscopicharmonicstatesisreportedinanopticallyin-ducedinahighlyphotoexcitedsemiconductormicrocavityatroomtemperature.Thespatiallyphotomodulatedrefractiveindexchanges(Dn)enablethevisualizationofsequentialtran-sittransversemodes,correspondingtoharmonicstatesinamicrometer-scaleopticalpotentialatquantizedenergiesupto4meV.Wecharacterizethetimeevolutionoftheharmonicstatesdirectlyfromtheconsequentpulseradiationandidentifysequentialmultiple˘10pspulselasingwithdif-ferentemittingangles,energies,andpolarizations.Suchadynamicmultiple-pulselasingeffectisattributedtolight-inducedcorrelatede-hpairsinahigh-densityplasmaandtheireffectivecouplingtodiscretetransversemodesinthespatiallyphotomodulatedopticalInChapter7,therelaxationprocessofcarriersinahigh-densityEHPisstudiedinanIn-GaAs/GaAsquantum-wellbasedmicrocavityusingopticalpump-probespectroscopictechniques.Atransientoptically-inducedresonanceappearsnearthecavityresonance(Ec)within5psafter2pspulsedpumpexcitationwithnearly0.2eVexcessenergyaboveEc,andthende-cayslowlywithadecaytimeconstantover500ps.TheopticallyinduceddifferentialchangeDR=Rcanexceed50%,whichisthreetofourordersofmagnitudehigherthantypicalpho-tomodulatedmeasurementsinGaAs-basedquantumwellsorvertical-cavitysurface-emittinglasers.ThelargejDR=Rjisthecombinationeffectoftheenhancementofopticalnonlin-earityduetoe-hcorrelationandthecarrier-inducedrefractiveindexchangeinmicrocavitysample.Polarization-dependentpump-probespectrarevealedatransientspinsplittingupto˘1meVwithadecayconstantof30psunderanonresonantellipticalpolarizedpump.InChapter8,Isummarizetheessentialresearchresultsanddiscussthecorrelatede-hpairsissuewithfurtherperspectivesonthisproject.7CHAPTER2BACKGROUND(LITERATUREREVIEW)Inthischapter,Iintroduceafewimportantconceptsandreviewrelevantliteratureaboutthelight-matterinteractingsystems.Inthebeginning,theexcitonandmicrocavityphotonarepresented,andthenfollowedbytheintroductionofthehybridofexcitonandcavityphotonknownasexciton-polariton.Atlowdensityandcryogenictemperature,theexciton-polaritonsbehaveslikebosonicparticles,andarepredictedtobehavelikemacroscopicstateknownasthepolaritoncondensateinthermalequilibriumsystemorpolaritonlaserinnon-thermalequilibriumsystem.Insection4,theissuebetweenconventionallaser,polaritonlaserandpolaritoncondensatewillbediscussed.Insection5,theworkofthepolaritoncontrolinthedesignedisdemonstrated.Athighdensityandroomtemperature,thecorrelatede-hpairsarepredictedtoforminhigh-densityEHP,andmayresultinsuperradiance.Next,Ipresentedtwodistincttheoriesaboutcorrelatede-hpairsatroomtemperature,andreviewrecentexperimentalworkexploringthesuperradiance.Insection7,thespindynamicsofphotoexcitedcarriersinthesemiconductorsisintroduced,andthelightpolarizationisdeterminedbythelifetimeandthespinrelaxationtimeofphotoexcitedcarriers.Finally,Iillustratethetransfermatrixmethod,whichisusedinourtheoreticalsimulationtothemeasuredofmicrocavitysample.2.1QuantumwellexcitonsAsolidnormallyconsistsof1023atoms.Inordertodescribethe1023atomsstate,acommonwayistoregardthestablegroundstateofasystemasaquasivacuumandintroducequasiparticlesasunitsofelementaryexcitations,whichonlyweaklyinteractwitheachother.Thequasivacuumofasemiconductoristhestateofvalencebandandemptyconductingband.AnexcitonisaquasiparticleconsistingofanelectronandaholeboundbyCoulombinteractione2=er,wheree8isthedielectricconstantandristhedistanceofelectronandhole.ThewavefunctionofexcitoncanbeanalogoustoHydrogenatom.Duetothestrongdielectricscreeningandasmalleffectivemassratiooftheholetotheelectron,thebindingenergyofexcitonisabout10Œ100meV.ItsBohrradiusisabout10Œ100Å,thesizeofanexcitonextendsovertensofcellsinthesemiconductor.TheexcitoncanbeconsideredasbosonswhentheexcitoninterparticlespacingismuchlargerthanitsBohrradius.AsemiconductorQWisathinlayerofasemiconductorwithsmallthicknesssandwichedbetweentwobarrierlayerswithlargerbandgap.ThethicknessofthemiddlelayerindesignisnormallycomparabletoexcitonBohrradius.ThereduceddimensionresultinginquantumleadstoexcitonpropertieswithlargerbindingenergyandsmallerBohrradius.2.2MicrocavityphotonsTherearevariouswaysofcavitydesigntophotonsinalocalarea,andhereweintroduceoneparticularcavity:distributedBragg(DBR)basedsemiconductormicrocavity.ThestructureofthiskindofcavityisshownasFig.2.1,whichcontainscavitybarrierswithemittersuchasQWsandwichedbytwoDBRs.TheDBRiscomposedofalternativetwo-layermaterials,andeachthicknessoftheindividuallayerischosentomatchtheBraggconditiond=lc=4ni.Thelciscavityresonancewavelength;niistherefractiveindexofthatmaterialsatlc.Insuchdesign,theinterferenceoftransmittedandlightleadstoexcellenthighvityinaspectralwindowofwidthabout100nm,whichsymbolicspectrumisshowninFig.2.1(b).Theopticalmode(thedipofinFig.2.1(b))insuchFabry-Perotresonatorcanbedeterminedbytransfer-matrixmethod,whichthelightintensityisenhancedinsidecavitybarrierbutdecaysinsidetheDBRmirrors.Fromthecalculationandthedecayinreference[63],wecananeffectivecavitylengthas:Leff=Lc+lc2ncn1n2jn1n2j,whereLcisthephysicallengthofcavity,n1andn2arerefractiveindexoflayersinDBR,andncisrefractiveindexofthecavitylayer.9Figure2.1Planarsemiconductormicrocavity.(a),Schematicofplanarsemiconductormicrocavity,whichtypicallyconsistsofmultiplequantumwells(MQWs)sandwichedbytwodistributedBragg(DBRs).TheDBRismultiplepairsoftwolayermaterials,thethicknessofindividuallayerd=lc=ni,wherelcistheopticalmodeinthecavity.(b)SchematicoftypicalofaDBR-basedsemiconductormicrocavity.Thewidthofhighvityisstopband,whilethedipwithinstopbandisthecavityphotonmode.Themicrocavityisnormallynotperfect,sotheresonantphotonmayleakoffthecavity.ThequalityofcavitycanbequantitativelydescribedbyQ-factorviaQ=w=dw,wherewisthefre-quencyofopticalmode,anddwisthelinewidthofresonantopticalmode.ThisQ-factorrelatesthelifetimetofcavityphotonbyQ=wt.Sincethephotoncannotpropagatefreelyinsidethecavity,thedispersionofphotonisstronglyInaconditionofsmallin-planemomentumkk,thedispersionrelationisapproximatelydescribedbyaparabolicshapewithaneffectivephotonmassmc:E(k)ˇE0+¯h22mck2k(2.1)Theeffectivemassisas:mc=hnccLc,whichisontheorderof105offreeelectronmassm0.2.3Exciton-polaritonsForasemiconductormicrocavityimplementedbyQWwithhighoscillatorstrength,ifcavitypho-tonmodecancoupletoexcitonintheQWresonancewithcondition:theenergyexchange10ratebetweenexcitonandcavityphotonexceedstheexcitondecoherencerateandphotonleakage.TheresultgivestheRabioscillationinatimedomain,leadingtoanormalmodesplittingofpo-laritonbranches.Theenergy-momentum(kk)dispersionofpolaritonissimilartoresolvecouplingtwo-levelsystem,whichHamiltonianis[6]:‹Hpol=‹Hcav+‹Hexc+‹HI=åEcav(kk)‹aƒkk‹akk+Eexc(kk)‹bƒkk‹bkk+åg0(‹aƒkk‹bkk+‹akk‹bƒkk)(2.2)Hereaƒkkandbƒkkarecreationoperatorsofphotonandexciton,respectively.EcavandEexcareenergyofcavityphotonandQWexciton.g0istheexciton-photondipoleinteractionstrength.TheHamiltonian‹Hpolcanbediagonalizedwithtransformation:‹Pkk=Xkk‹bkk+Ckk‹akk‹Qkk=Ckk‹bkk+Xkk‹akk(2.3)TheXkkandCkkarecoefsatisfyingXkk2+Ckk2.The‹Hpolbecomes:‹Hpol=åELP(kk)‹Pƒkk‹Pkk+åEUP(kk)‹Qƒkk‹Qkk(2.4)Here(‹Pkk;‹Pƒkk)and(‹Qkk;‹Qƒkk)arethecreationandannihilationoperatorsofeigenstatesofthesystem.Theseeigenstatesarecalledlowerexciton-polaritonandupperexciton-polaritoncorre-spondingtotheirenergy:ELP;UP(kk)=12Eexc+Ecavq4g20+(EexcEcav)2(2.5)ThedispersionofcavityphotonEcav(kk)isparabolicshape,andtheEexc(kk)isnormallyinsmallkk,thusthedispersionoftypicalexciton-polaritoncanbereferredtoFig.2.2.InFig.2.2,thedispersionofpolaritonsareclosedtoparaboliccurvewithcurvature,thiscurvaturecorrespondstoaneffectivemassofthequasiparticle.Theeffectivemassofexciton-polaritonistypicallyinaorderof101Œ104m0.TheExciton-polaritonhaslifetimedue11Figure2.2Dispersionofexciton-polariton.Thedashedcurveswithlargeandsmallcurvaturearethedispersionofcavityphotonmodeandquantumwell(QW)exciton.AscavityphotonandQWexcitonareinthestrongcouplingregion,neweigenstatesofthesystemappearshownasredcurves,theyarelowerandupperexciton-polaritoncorrespondingtolowerandupperbranches.Theexciton-polaritonhasalifetimeandradiativelydecaytophotonduetotherecombinationofelectronandhole.Thephotoncarriesinformationofenergyandin-planemomentum,whichcanbedetectedintheexperiment.torecombinationofelectronandholefromtheexcitonicpart,whichthelifetimeistypicallyabout1Œ10psatthebottomofbranches.Thespectralpropertiesofexciton-polaritonlikeenergy-momentumdispersioncanbemea-suredbyangle-resolvedphotoluminescence.Intheexperiment,thesemiconductormicrocavityisopticallypumpedatahighenergytoproducelotsoffreee-hpairs.Thesee-hpairsarecoolinginenergythroughcarrier-phononscatteringandpopulateatthepolaritonstate.Thepolaritonscanrelaxenergybytwoways.Oneisthroughexciton-photoninteractionthroughemittingopticaloracousticphonon,anotherisviaCoulombinteractionswithotherpolaritonsorwithfreecarriersinthesystem.Thephotoluminescencedynamicsisdeterminedbyenergyrelaxationrateandsponta-neousemissionrate.Iftheenergyrelaxationrateisslowerthanthepolaritonemissionrate,thentherelaxationofpolaritonstotheloweststateissuppressed,andradiativedecayoccursathigherenergywithkk.Thisphenomenaisknownasrelaxationbottleneck.Theleakagephotonfrom12AlkaliGasExciton(X)X-polaritonm=m01030.1Œ1101104.Bohrradius(nm)0.11010103Spacingn1=3c(nm)˘10210102102103Tc1nK1mK1mKŒ1K1Œ300KThermalization1Œ10ms10Œ100ps1Œ10psLifetimes1Œ100s1Œ100ns1Œ10psTable2.1Parametercomparisonofbosonicquasipartilcestherecombinationofelectronsandholesrevealstheinformationofenergyandkkofthepolaritons.2.4PolaritonlasingandcondensationSimilartoexciton,theexciton-polaritoncanberegardedasabosoninalow-densitylimit.Duetolighteffectivemassoftheseparticles,theyarepredictedtoformbosoniccondensationwithelevatedtemperatureinthesemiconductors.Thetable2.1showsthecomparisonoffewimportantparametersinBose-EinsteincondensationforAlkaligases,excitons,andexciton-polariton.ThepotentialcandidateofBECatroomtemperatureleadsnumerousresearchinvolvingthistopic,butafewconsiderationsshouldbedeliberated:(1)Polaritonlifetimeinamicrocavityistyp-icallyshortas1Œ10ps,whichiscomparabletothermalizationtime.Therefore,thecondensationofexciton-polaritonisreferredtoasadynamicalopen-dissipativecondensation,ora"polariton-laser".Thereissomedebatewhetherthepolaritonachievesthethermalequilibriumtoformacondensate,andthecomprehensivediscussionbetweenthecondensateandthepolaritonlasercanbeseeninreference[64].(2)Athighdensity,thescreeningeffectofexcitonbecomesandattenuatetheoscillatorstrength,leadingthesystemtoplasmaphase.ThetransitiondensityisontheorderofMotttransitionabout10101011e-hpairspercm2.(3)Withincreasingtemper-ature,thethermalenergyexceedsthebindingenergyofexciton,leadingtoinstabilityofexcitoninthesystem.Theexciton-polaritoninaplanarsemiconductormicrocavityisequivalenttoatwo-dimensionalsystem.Anuniform2DsystemofbosonshaveBECtransitiononlyatzerotemperatureinthe13thermodynamiclimitbecauselong-wavelengthdestroythelong-rangeorder.However,suchsystemwithsizerestrainsthedensityandphaseallowingtheformationofcondensateattemperature.Thelong-rangespatialandtemporalcoherenceofpolaritoncondensateshasbeendemonstrated,revealingthesignatureofBEC[65,66].Generallyspeaking,thecoherencelengthofpolaritoncondensateisandrangesontheorderofopticalpumpingspotsize.Themacroscopicpopulationofcoherentpolaritoncouldgivecooperativeradiation,resultinginpolaritonlasing.Arisingquestionishowtomakepolaritonpopulateeffectivelyatonestatewiththekeybeingthestatestimulation".Thestimulationisadistinctfeatureofasystemwithidenticalbosonicparticles,whichdescribesthescatteringrateintoaparticularstateisproportionaltoN+1ifthereisN-particleaccumulateatthatstate.Inconventionallasers,suchstimulationofphotonsisessentialtothelasingmechanismbehind.Similarly,thestatestim-ulationenhancesthepolariton-polaritonscattering,givingpotentialaccumulationatthebottomofthelowestpolaritonbranches.Theearlyreportsonpolaritonlasingfromkkhavebeendemon-stratedonGaAs-baseddevice[17,19],CdTe-baseddevices[20]andGaN-based[43]devices.Thesepolaritonlaserssharefewcharacteristics:(1)Inaninput-outputrelationship(pumpintensityvs.emissionintensity),theemissionwithincreasingpumpshowsasharpsu-perlinearincreasearoundthethresholddensityPth.ThecorrespondinginjecteddensityinQWatPthisabouttwoordersofmagnitudethantheMottdensity.(2)Theenergy-momentumdispersionbelowPthismeasuredwithanagreementofLPdispersioninsteadofcavity-photondispersion.(3)WithincreasepumpingdensitystartingfromPth,butkeepingpolaritonsfrombeingdestroyed,thelasingexhibitsenergyblue-shiftaccompanywithlinewidthbroadening.[20,67,19,35,26]Thesephenomenaareattributedtopolariton-polaritoninteraction,whichmostlyresultsfromCoulombexchangeinteractionandisarepulsiveforce.Althoughphotonlaserandpolaritonlasersystemallinitiatelasingwiththestimu-lation,theirmechanismsarequitedifferentasillustratedinFig.2.3.Inphotonlasersystem,thelasingemissionresultsfromthestimulationemissionofthephotonintocavitymodeswithoccu-14pationnumberlargerthan1.Itrequireselectronsandholesstayingatmetastablestatestobuildelectronicpopulationinversionbeforestimulationemission.Inpolaritonlasersystem,thelasingistriggerbybosonicstimulationofpolaritons,andlasingenergyisnotrestrictedtocavitymodes.ThisalsoexplainswhytheenergyofpolaritonlasershiftsinsteadofaconstantwithincreasingpumpNormally,thethresholddensityisontheorderof˘1=l2T(lTisthede-Brogliewave-lengthofpolariton),andaboutthreetofourorderofmagnitudelowerthanthatofaconventionallaserthreshold.Figure2.3Polaritonlasingvs.photonlasing.Thediagramdemonstratestheoperationalprincipleofpolaritonlasing(left)andphotonlasing(right),andtheynormallyareoperatedatquitedifferentcarrierdensityregimes.Inpolaritonlasersystemwhiche-hdensityisabout10111013cm3,thegeneratedexciton-polaritonfallsontothelowerdispersionbranchatin-planemomentumkk,thenrelaxestolowestenergystatekk=0bystimulatedcoolingviamultiplephononemissionorpolariton-polaritonscattering.Amacroscopicpopulationofpolaritonatthebottomofdispersioncooperativedecaystoradiationthroughe-hrecombination.Therefore,thepolaritonlasingisnotlockedtocavityphotonmode.Inphotonlasersystemwhiche-hdensityisabout10161018cm3,theinjectedelectron-holepairsrelaxtothebottomofcavitydispersionthroughspontaneouscoolingandbuildupapopulationinversion.Oncethecavityphotontriggersthestimulatedemission,thebunchofe-hpairsrecombinetocoherentradiation.Thisisadaptedfrom[6]Thephotonlasingandpolaritonlasingsometimesareintoweakcouplingregionandstrongcouplingregion,respectively,andtheycanbemeasuredinthesamesamplestructure.Inreference[18],twolasingthresholdswithdistinctlasingenergyareobservedwithincreasingpumpTheyattributedtherstlasingispolaritonlaser.Asinjecteddensitycontinuouslyincreases,15thesaturationof2Dcarrierdensitydiminishesthepolariton,makingthesystemundergoatran-sitiontoweakcouplingandthengivephotonlasingradiation.Inreference[68],theyclaimedtoobservethecrossoverbetweenphotonandexciton-polaritonlasinginasemiconductormicrocav-ity.Inthisresearch,theynon-resonantlypumpedthemicrocavityandperformedenergy-,time-andangle-resolvedmeasurementtocharacterizethetransientcarrierdistributionandeffectivetem-perature.Underhighinjecteddensity,thelasingcommencesatthebottomofcavitydispersion,but50to100pslaterthemainlasingenergyredshifttowardthebottomoflowerpolaritonbranch.2.5PolaritonsinpotentiallandscapesTrappingisausefultoolbothinphysicsresearchandinindustrialapplication.Inphysics,ithelpswithobservingquantummany-bodyphysics,liketheearlyrealizationofBECinatomicgases.Inapplication,theinmicrocavityenhancethelasingefyandlasingthresholdreduction.Inpolaritonsystem,theisnotnecessarytoobservethein-planepolaritoncondensate,butengineeringpolaritoncanstudytheinteractionsandthetransportoftailoredpolaritonsinacomplexenvironment.Thestudyofpolaritonswiththeengineeringcanemulatemany-bodyphenomenainanothersystemsuchasthephysicsinhigh-temperaturesuperconductors,grapheneorfrustratedspin-lattices[69,70,71].Ontheotherhand,theengineeringpolaritontrappingenablestocontrolthewofpolariton,whichcanbeexploitedtooptoelectronicdeviceslikephotonicintegratedcircuitsandlogicelements[72,73].Theexciton-polaritonisconstitutedoflightandmatter,andbothpartscanbesubjectedtotheInthissection,wereviewfewarticlesofpolaritoninthepotentiallandscapes.Wewillhighlightafewcharacteristicofpolaritonlasingbehaviors.Thesimplewaytotrapthepolaritonistakingadvantageoftheubiquitousdefectsinsemicon-ductormicrocavities[30,31].Thesizeofthedefectisaroundfewtotensmicrometerssquare.Undernonresonantexcitation,asequentiallasingmodesmayappearwithanorderofenergies16Figure2.4Polaritoninnaturaltrap.Theexperiment[31]wascarriedoutinanAl0:15Ga0:85As/AlAsmicrocavity.Theexciton-polaritonsweregeneratedfromanon-resonantpumping,andthenformacondensateinanaturaltrapwithsizeof1to10mm2.Theimageshowsthespectral-andtime-resolvedluminescencewithincreasingpumppower.Sequentialmultiplelasingmodesappearathighpumppower,andmayhaveoscillationeffect.Thisisadaptedfrom[31]fromhightolowatpumpmuchabovethelasingthresholdshowninFig.2.4(cŒe).Athigherexcitationpower,thelasingmayappearasanoscillationinasuitablesizeofthedefectshowninFig.2.4.ThesequentiallasingmodeswithoscillationwereattributedtotheinterplaybetweenreservoirfeedingandBosestimulation.Namelywhenthepolaritonsformacondensatethroughbosonicstimulationanddecayswithcooperativeradiation,theexcitonsinthetraparedepleted.Lateron,theexcitonsinneighboringplacewillreplenishthetrap,helpingwiththebuildingofcriticaldensityagainforthenextlasingradiation.Onecommonwaytocreateaistakingtheadvantageofstructureorengineeringadesignedtrap.Inthereference[36],theyopticallypumpedananowireandcontrolledthetrappingsizebytranslatingthepositionofexcitationalongthenanowiredirectionshowninFig.2.5.Whenthedistancebetweentheexcitationandtheedgeofthenanowireisshortenough,quantizedlasingmodeswouldappearinrealspace.AnotherexampleoffabricatingtrappingistocreateamesainasemiconductormicrocavityshowninFig.2.6.Inthethemesahas9mmdiameterwith6nmheight.Aroundtheenergy1.480eV,discretelasingmodescommencebothintherealandthemomentumspace.Theselasingmodesdemonstratediscreteenergiesandthemode-numberchange17Figure2.5Polaritontrappedinnanowire.Intheexperiment[36],aGaAs-basedwiremicrocavity(graybar)wasopticallynon-resonantpumpatdifferentposition.Theedgeofwirecavityandpumpformsafortheformingexciton-polaritons,andthesizeofwascontrolledbythepositionofpumping.Thisisadaptedfrom[36]Figure2.6Polaritontrappedinamesaofsemiconductormicrocavity.ThesamplestructureisasemiconductormicrocavitywithsomemesaonthetopDBR.Alongthez-axis(perpendiculartocavitysurface)thepolaritonsforminterferenceinsuchshownasinrealspaceandmomentumspace.Thisisadaptedfrom[36]dependingonthesizeofthemesa.Inthesetwoexamples,thepolaritons'spatialdistributioninthecabbededucedbysolvingtheSchrodingerequationofquantumharmonicoscillators.However,thedrawbackofthesetwocasesisthatthecannotbecontrolledsincethesamplestructureisedafterthemanufacture.Theopticalpotentialhasbeenpopularforthestudyofparticlesinapotentialbecausethesizeandtheshapeofthecanbexiblycontrolledbylasers.Withtheadvancetechniqueofspatiallightmodulator,theopticalpotentialdesignstimulatesextensiveinvestigationsintheexciton-polariton[39,40,41,42].Inthesereports,multiplepolaritonspotsarecreated18bynon-resonantopticalpumpingwithadesignedshape,andthesepolaritoncondensatesinthemicrocavityareusedtovisualizetheformationofspontaneouslyoscillatingquantumThequantumformsdifferentinterferencepatternsbothintherealandthemomentumspace.Thesepatternsaredeterminedbytheinteractionofquasiparticlesintheanditsshapeandthesizearechangeddependingonthepumppoweraswellastheshape.Inchapter6,wewilldemonstratethemacroscopicharmonicstateinanopticallyinducedcon-atroomtemperature.Thepreviousinvestigationaforementionedhaveintensivelyex-ploredtheimageintherealandthemomentumspace,butthelasingbehaviorinspectral-andtime-resolvedanalysishavebeenrarelystudied.Inourproject,wewillpresentmorecomprehen-sivestudynotonlyonthespectroscopyintherealandthemomentumspace,butalsotheissueofthedynamicsandpolarizationofluminescencefromthesample.2.6Correlatedelectron-holepairsatlargedensityTheprevioussectionsillustratepossibleformationofquasiparticlecondensateatcryogenictem-perature.Withincreasinge-hdensity,exchangeeffectsandthescreeningoftheCoulombinterac-tionine-hpairsdestabilizetheexcitonandanEHPforms.However,sometheoristsusemeantheorytopredictthatthepairedelectronsandholesmayformBCS-likestateneartheFermi-edge.Thesee-hpairsarequitesimilartotheCooperpairsinasuperconductoratcryogenictemperature[13].Thecorrelationofe-hpairsmightbeenhancedbyapresenceoflight[50].Recently,therewasanotherreportarguingthatanenergylevelofbounde-hpairsatthebandgapofthesemiconductorsexistsinthelargedensityEHP[49].Intheexperiment,thebuild-upofmacroscopicelectricdipoleunderincoherentlyexcitationcanresultincooperativedecay,givingknownasorsuperradiance.Thissuperradi-ancecanevenhappenatlargee-hdensity.Althoughsuperradianceiscoherentemissionresemblingphotonlasing,thedynamicsofsuperradianceisquitedifferentfromthatofconventionallasers.Inthissection,Iwillillustratethemeantheoryofexcitons,whichdeducestheBCS-like19stateneartheFermiedge.Next,Iintroducethesecondtheorythatcorrelatede-hpairsformatthebandgapofthesemiconductors.Finally,Ipresentthecharacteristicsofsuperradianceandafewremarksoftherelevantwork.2.6.1MeantheoryforexcitonsInthissubsection,Iwillpresentthemeantheoryabouthowe-hpairsformneartheFermi-edgeofEHP.Inthebeginning,WetheHamiltonianine-hsystem:H=H0+HC(2.6)whereH0=åk[eckaƒc;kac;k+evkaƒv;kav;k](2.7)HC=12åq[Veeqreqreq+Vhhqrhqrhq2Vehqreqrhq](2.8)aƒc;kandaƒv;karecreationoperatorsforelectronsintheconductingandvalenceband,respec-tively.reqandreharedensityoperatorswiththeforms:req=åkaƒc;k+qac;kandrhq=åkaƒv;k+qav;k.ViqisCoulombinteractionandforhomogeneousthree-dimensionsystemVeeq=Vhhq=Vehq=4p=eq.Forparabolicbands,ec(k)=¯h2k2=2meandev(k)=Eg¯h2k2=2mh.Themeantheorystartsfromthefollowingansatzfortheground-stateoftheinteractingelectronandholes:jYMFi=Õk[uk+vkaƒe;kav;k]j0i(2.9)Herej0iisvacuumstateofthesystem,whichtheconductingbandsareemptybutvalencebandsarefull.ukandvkarecomplexcoefwithrelationjukj2+jvkj2=1,andthejvkj2isequivalenttooccupationnumberofe-hpairsinmomentumk.ThedeterminationofukandvkistominimizetheexpectationvalueofCoulombinteractiontermHCinequation2.6.Nextwewilldeterminetheequationsoftheseparameterswhenthesystemisatequilibrium.Supposethee-hdensityishniwiththecorrespondingchemicalpotentialm,thefreeenergyofthe20systemis:F=hH0+HCimhni(2.10)Theequilibriumofthesystemoccurswhenthefreeenergyisminimal,thatis¶F=¶vk=0.Con-sideringonlys-wavepairingisdominateinthesystem,asetofself-consistentequationscanbeobtainedinthefollowing:xk=ekm2åk0Veekk0nk0=ekmåk0Veekk0(1xk0=Ek0)(2.11)Dk=2åk0Vehkk0haƒc;kav;ki=åk0Vehkk0Dk0=Ek0(2.12)E2k=x2k+D2k(2.13)v2k=121xkEku2k=121+xkEkukvk=Dk2Ek(2.14)Heretheequation2.11describestherenormalizedsingle-particleenergyxkperpairmeasuredfromthechemicalpotential,whereek=¯h2k22me+¯h2k22mh.Equation2.12illustratesthe"gapequation",whichissimilartotheoneinBCStheoryinsuperconductors.Dkrepresentsthegapfunctionandisalsoknownastheorderparameter.TheorderparameterDexistsonlywhenbothukandvkarenon-zeroforsomeoverlappingrangeofmomentak,anditalsosymbolizestheoveralldegreeofphasecoherence.Inequation2.13,Ekisthepair-breakingexcitationspectrum,whichcanbeviewedastheenergycostofbreakingonee-hpairinthecondensationandplacingitinanavailablestateofmomentumk.Equation2.14describesthecoefofvkandukasthefunctionofEkandDk.InthefollowingIwilldiscussthestateofsystemwithdifferentregionofe-hpairdensityhni:1.Thedensityhniisthatmeanstheisolatedexcitonsoverlapverylittle.Hencetheparametersofoccupationarevk˝1andukˇ1.Inthislimit,thechemicalpotentialm(measuredfromthebottomofthecombinedelectronandholebands)isnegativeanditsmagnitudeapproaches21to1Ryd,whereRydisthebindingenergyofe-hpair.Thelowestexcitationoccursatk=0,whichcorrespondstoionizationofexcitonintothefreeelectronandhole.2.Asthee-hdensityhniapproachesto,thekineticenergyofelectronandholedomi-natestheinteractionenergy,andmostofthek-statesareoccupied.Weexpectvkisastepfunctionlikevk=Q(jkjkF),wherekFistheFermimomentum.Thewavefunctionwillapproximatelybe:jFMFin!¥!Õjkj1tp.DyakonovŒPerelmechanism(DPmechanism)Figure2.13SchematicofDyakonov-PerelSpinRelaxationInIIIŒVorIIŒVIsemiconductors,thebulkinversionasymmetryinlatticestructureresultsinspin-orbitcouplingintheconductingband.TheHamiltonianofthespin-dependenttermofelectronscanbedescribedby¯hW(p)S,whichisregardedasanenergyofaspininaneffectivemagnetic¯hW.Thiseffectivechangesitsdirectionduetotheelectron32collisions.Forconvenience,Iassumethecorrelationtimeistp,andthespinrelaxationtimeists.Toobtainasimplerelationbetweentsandtp,aspincanbeimaginedtogothrougharandomspinprocessduringtimetwithtotalsquareangleDj2,whichisequivalenttosquareofprecessionanglewithintptimesthenumberofsteps(seeFig.2.13).ThatisDj2=(Wtp)2(t=tp).Thespinrelaxationtimeisasj2(ts)˘1,thusweget:1ts˘W2tp(2.17)Thismechanismgivesacounter-intuitionthatmoreelectroncollisionscouldenhancethespinrelaxationtimeinthesystem.BirŒAronovŒPikusmechanism(BAPmechanism)Thismechanismismostlyseeninnon-equilibriumelectronsinpŒtypesemiconductorsduetotheexchangeinteractionbetweentheelectronandholespins.Therefore,thespinrelaxationrateisproportionaltothenumberofholes,meaningmechanismmightbeimportantinsomep-dopedsemiconductors.InaGaAs-basedsemiconductor,thespinrelaxationtimedependsonnumbersoffactors,liketemperature,momentumrelaxationtime,carrierdensityandcarriertypeslikeelectronorhole.Forexample,inundopedGaAs/AlGaAs(100)QWs,theDPmechanismdominatesathightemperature,whileBAPmechanismisenhancedatlowtemperatureorp-dopedQWs.Eveninthesamematerialofsemiconductors,differentcrystalorientationmighthavedistinctspinrelaxationtimes.ThefamousexampleisGaAs(110)QWsandGaAs(100)QWs[75].Thespinrelaxationtimeatroomtemperatureisabout2nsin(110)QWs,butisaround70psin(100)QWs.TheDPmechanismisthoughttobeimportantinthesesystems.TheeffectivethroughcalculationisperpendiculartoQWsplanein(110)QWscase,butliesinQWsplanein(100)QWs.Therefore,electronspinsprocessrelativestableeffectivein(110)QWs,resultinginmuchlongerspinrelaxationtime.332.8TransfermatrixmethodThetransfermatrixisausefulmethodtocalculatetheeffectiveandtransmissionoflayer-structurematerials.Inourproject,wealsoimplementittosimulatetheofthesemiconductormicrocavity.HereItakeasubsectiontooutlinethismethod.Inthestep,onecouldconsiderhowtoobtainandtransmissionofaparticularmedia,andthestructureofthemediais:n(z)=8>>>>>><>>>>>>:n1;z<0n2;0>>>>>>>>><>>>>>>>>>>:0BB@11nicosqinicosqi1CCA;fors-wave0BB@cosqicosqinini1CCA;forp-wave(2.23)wherei=1;2;3isindexofeachlayer.TheP2isapropagatingmatrix,whichaccountsforthepropagationthroughthebulkofthelayer.Thephasef2is:f2=k2zd=n2wccosq2d(2.24)CombiningcoefinEq.2.22,weobtain:A1B1=D11D2P2D12D3A03B03(2.25)Thusthecolumnvectorsrepresentstheamplitudeofleftmostandrightmostsideofthreelayerstructureconnectedbytheproductof22matricesinsequence.EachsideofinterferenceisrepresentedbyaD-matrix,andthebulkofmaterialsisrepresentedbyaP-matrix.Wecouldextendthisformulaformultilayerstructureshownin(b),andobtain:A0B0=D10 NÕi=1DiPiD1i!Ds(2.26)36Assumingtheincidencewaveisright-travelingwave,andnoleft-travelingwaveappearsinsubstrate(B0s=0),wecanexpresstheRandtransmissionTwithcoefofA0,B0andA0sas:T=A0sA02;R=B0A02(2.27)Inmydissertationproject,thismethodcanbeappliedtosimulatetheofmicrocavitysampleandcomparedtotheexperimentalresult.Ialsousedthismethodtoseetheenergyshiftofcavityresonanceinmicrocavitysampleresultingfromtherefractiveindexchangeinmiddlematerials.37CHAPTER3EXPERIMENTALMETHODSOurgoalistoexplorethemany-bodyphysicsincoupledehgsystematlargedensityandroomtemperature.Inthischapter,Ipresentthesampledesigntoapproachtheissueinsemiconductormicrocavityaswellastheselectionofopticalexcitationtoavoidlasercoherenceimprintedonthesystem.Afterthat,theexperimentalsetupofimaging/spectroscopy,lightpolarizationcontrol,andbeamshapingofexcitationbeamismentioned.Thesemethodsareusedtoexploretheexcitationspatialintensityandpolarizationeffectonthesystem,andalsotocharacterizetheemissionproperties.Inaddition,thecarrierdynamicsinthesystemisinvestigatedbymeasuringtheluminescencedynamicsandabsorption/gainspectrumwiththecorrespondingsetupillustrated.3.1SamplecharacteristicsInordertomaintainhighdensitycarrierinsideamicrocavityandpreventcarriersfromradiativelossbeforelasing,onesolutionisdesigningcavityresonancefarabovequantumwells.Ontheotherhand,myco-workerandIareinterestedinexploringthecoherentstatesinhighEHPbutavoidopticalexcitationaffectingthecarriercorrelation.Thereforetheexcitationischosenatanenergymuchhigherthanemissionenergy,andsuchphotoexcitedcarriersnormallylosespincoher-enceafterlongrelaxation.Iwillintroducesamplecharacteristicsinmoredetailsinthefollowingparagraphs.3.1.1SamplestructureandfabricationThemicrocavitysamplewasdesignedbyDr.Chih-WeiLaiandwasmadebyourcollabora-torsYi-ShanLeeandSheng-DiLin.Thesamplewasgrownonasemi-insulating(100)-GaAssubstratebyusingamolecularbeamexpitaxymethod.Thestructureisentirelyundopedand38Figure3.1Microcavitystructure.(a),Structureofthemicrocavity:InGaAsmultiplequantumwells(MQWs)areembeddedwithinalGaAScavitybetweentwodistributedBragg(DBRs).ThethicknessofGaAsandAlAsinDBRsare61-nmand78-nm,whilethethicknessofInGaAsandGaAsinMQWare6-nmand12-nm,respectively.WeadjusttheantinodesofthecavitylighttotheMQWlayersbyaddingtwotransitionalAlAslayersandaGaAscaplayer.(b),Across-sectionalSEMimageshowingtheactiveregimeandadjacentlayersoftheDBRs.containsalGaAssandwichedbydistributedBragg(DBRs).Thetop(bottom)DBRconsistsof17(20)ofGaAs/AlAsl/4layers,andthecentralcavityconsistsofthreestacksofthreeIn0:15Ga0:85As/GaAsmultiplequantumwells(MQWs)each,positionedattheanti-nodeofthecavitylightd.(Fig.3.1)ThebarecavityresonanceisEcˇ1.405eV(lc=883nm)andtheQWbandgap(E0g˘1.33eVatroomtemperature)istunedthrougharapidthermalannealingprocess(at1010C-1090Cfor5-10ps),inwhichtheInGaAsQWbandgapblueshiftsbecauseofthediffusionofgalliumionsintoMQWlayers.39Figure3.2andlaserspectralcharacteristics.(a)spectrumatkk=0fromthefrontsurfaceofamicrocavitysamplewith1.405eVlasingenergyatthethreshold:measured(blacksolidline)andsimulated(orangesolidline).Thissampleisanas-grownsamplenotsubjecttoarapidthermalannealingprocess.Thesimulationisperformedviaatransfermatrixmethod,includingtheopticalabsorptionintheGaAslayers,butexcludingthecomplexdielectricconstantofexcitons(e-hpairs)inMQWs.Thecavityresonance(Ec)isabout1.41eV.(b)Opticalpumpingschemeintheexperiment.3.1.2SamplecharacteristicsHereIpresentourmicrocavitysamplepropertiesaswellastheenergyshiftinMQWsundernon-resonantpumping.Fig.3.2ismeasuredspectrumfromoneofoursamples.ThecavityresonanceEcisaround1.405eVwithnegligibleTEandTMenergyslittingatsmallemissiondirection(Fig3.3(a),therelationofin-planemomentumandemissionanglewillbeexplainedinthesection3.2.1).ThesmallTE-TMenergysplittingcontributestolaserpolarizationcontrolanddiminishesthecrystallineeffectonlightpolarization.Thepumpingenergyintheexperimentisabout1.58eV(lp=785nm),whichisalocalminimumofvity.Thechoiceofpump-ingenergyistopreventthecorrelationofcarriersatemissionlevelsfromthelasingcoherenceeffect,andinthemeantime,tokeepmaximumtransmittedaslargeaspossible.Thequan-tumwellbandgapisabout1.33eV.Atalowphotoexciteddensity,thechemicalpotentialmisfaroff-resonantwithrespecttoEc,andtheradiativerecombinationofe-hcarriersislargelysup-pressed.madvancestowardEcwithincreasingphotoexciteddensity,thenluminescenceefy40nonlinearlyenhancesandresultsinlaserradiationatthegainovercomesthecavityloss.Fig.3.3(b)demonstratesmattergainspectruminsidethemicrocavity.Figure3.3Microcavitysamplecharacterization.(a)Evs.kkdispersionsfortheTE(left)andTM(right)modesunderacircularlypolarizedpumpat1.579eVandP=0.6Pth.ThephotoexciteddensityatPthis˘231012cm2perquantumwellperpulse.ThesimulatedTEandTMdispersionsareshownasmagentaandblackcurves,respectively.TheTE-TMenergysplittingislessthan50meVatkk=0,allowingtheeffectivecontroloflasingpolarizationbyopticalpumping.(b)Todeterminethedensity-dependentspectralcharacteristicsofPLintheInGaAs/GaAsMQWs,wemeasurethetime-integratedandtime-resolvedPLinthesample,withthetopDBRmirrorlayersremoved,byselectivewetetching[77].PLspectraatP=0.2(blue),0.6(magenta),and1Pth(green)intheabsenceofthetopDBRmirrors.Here,PLisattributedtothespontaneousradiativerecombinationofphotoexcitedcarriersintheInGaAs/GaAsMQWs.ThedualPLspectralpeaksareattributedtotheandsecondquantizedenergylevelsintheMQWs,respectively.TheQWbandgap(E0g)correspondstothegroundstate,thetransitionbetweenthequantizedenergylevelsoftheelectronandtheheavy-hole(e1hh1).E0gcandecreasewiththeincreasingphotoexciteddensity(bandgaprenormalization).mcanbededucedfromPLfromtheexcitedstate(secondquantizedlevels,e2hh2transition).Withanincreasingdensity,E0gredshiftsslightlybecauseofbandgaprenormalization,whereasmblueshiftsconsiderably(˘10meV)asaresultofphasespace(Pauliblocking)atahighphotoexciteddensity(&1012cm2perQW).(c)NormalizedPLspectranear1.40eV,whichdisplaysaspectralblueshiftof15Œ20meVwiththeincreasingphotoexciteddensity(0.1to2Pth).TobetterunderstandhowthematterinInGaAs/GaAsMQWsaffectscavity,determiningthedensity-dependentspectralcharacteristicsofMQWsisnecessary.Timeintegratedphotolumines-cence(PL)inthesamplewithtopDBRmirrorslayersremovedisshowninFig.3.3(b).Themblueshiftsinenergybecauseofbandofelectronsandholes,anditapproachestoEcaspumpclosedtocriticalmagnitude(calledlasingthresholdPth,whichlasingeffectinitiatesinmicrocavity).Thespectralblueshiftscouldbeaslargeas15-20meVwithincreasingphotoex-41citeddensity(0.1-2Pth).ThePLandspindynamicsinMQWsareinvestigatedinFig.3.4.Undernon-resonantlycircularlypolarizedpumping(Episabout200meVaboveEg),unequalorthogo-nalcircularlypolarizedemissionsareobservedwithin10psafterexcitation,indicatingimbalancecarriersspinsexistsinMQWs.Thespinrelaxationofe-hcarrierscanbedeterminedbythede-cayofemissionintensitydifferencebetweentwoorthogonalcircularcomponents,whichdisplaysrelaxationtimelessthan10ps.Figure3.4Time-dependentpolarizedPLinInGaAs/GaAsMQWs.(a)Time-resolvedpolarizedPLI(t)(blacklines:I+(t),co-circulars+=s+component;redlines:I(t),cross-circulars+=s).Time-dependentDoCPrc(t)hasavalueof0.12whenPLintensityincreasestoitsmaximuminabout10ps,andthendecaysrapidlywithaspinrelaxationtimets<10ps.Ontheotherhand,thecarrierdecaytimeismuchlarger,tn˘1ns,asdeducedfromtheoveralldecayoftime-dependentPLintensityI(t)(inset).(b)EffectiveinitialstationaryDoCP,¯rc=Rt=10pst=0I+(t)I(t)I+(t)+I(t)dt,asafunctionofpumpWedetermine¯rctobealwayslessthan0.1inInGaAsMQWswithsimilarphotoexcitede-hcarrierdensities.ThephotoexciteddensityatPthis˘231012cm2perquantumwellperpulse.Thediminishing¯rcwithincreasingpumpabove2Pthsuggeststhatthespinrelaxationtimetsdecreasesfurtherascomparedtocarrierlifetimetnathighphotoexciteddensities,owingtoincreasinglydominantcarrier-carrierscatterings.3.2ExperimentalsetupInordertoanalyzetheradiationpropertiesfromourmicrocavitysample,webuiltacombinationoffewexperimentalsetupstomeasurethelightspectrum,polarizationanddynamics.Theimaging42spectroscopysetupdetectsangularandspectralpropertiesoflight.Acombinationofliquidcrystaldeviceshelpswithcontrolling/analyzingtheexcitation/luminescencepolarizations.Theheatingeffectandcarrierdiffusionarebothsuppressedinthermalmanagementsetup.TemporalimageobtainedfromStreakcamerareveallightdynamicsandprovidesinformationofradiativecarrierdynamicinmicrocavity.Ontheotherhand,theabsorption/gainspectrumismeasuredbytwo-colorpump-probesetuptoexplorewhetheragapopensunderintenseexcitationinmicrocavity.Wewillalsostudythetotalcarriers(includingnon-radiativecarriers)spectralandtemporaldynamicsaswellasthetransientcavityresonanceinthesystem.3.2.1ImagespectroscopysetupWemeasuretheangularandspectralpropertiesofluminescenceinthegeometry(seeFig.3.5).Inaplanarmicrocavity,carrierscoupledtothecavitylightarecharacterizedbyanin-planewavenumberkjj=ksin(q)becauseofthe2Dofbothphotonsandcarriers.Theleakagephotonscanbeusedtodirectlymeasuretheangulardistributionofopticallyactivecarriers.Angle-resolvedluminescenceimagingandspectraoftheseleakagephotonsaremeasuredthroughaFouriertransformopticalsystem.Aremovablef=200mmlens(lensL2inFig.3.5)enablestheprojectionofeithermomentum-space(k-space)orreal-space(r-space)luminescenceontotheentranceplaneoftheslitofthespectrometer.Luminescenceiscollectedthroughanobjectivelens,separatedfromthespecularorscatteredpumplaserlightwithanotch,andthendirectedtoanimagingspectrometer.Asinglecirculartransverselasingmodewithaspatialmodediameterˇ8mmisisolatedinmeasurementbyapinholepositionedattheconjugateimageplaneofthemicrocavitysamplesurface(referredtowholeexperimentalsetupinFig.3.6).Thespectralresolutionisˇ0:1nm(150meV),whichisdeterminedbythedispersionofthegrating(1200grooved/mm)andtheentranceslitwidth(˘200mm).Thespatial(angular)resolutionisˇ0:3mm(6mrad)perCCDpixel.43Figure3.5Angle-resolvedimaging/spectroscopysetup.Luminescencefromthemicrocavityiscollectedbyamicroscopeobjective.TheluminescencewithdistributionF(X;Y)isFouriertransformedintoafarimageinthebackfocalplaneoftheobjectivewithcoordinates(u;v).Thisplaneismappedintok-spacewith(kX;kY),wherekXorkYkk,thein-planemomentum.ThedistributioninthisplaneisrelayedtotheentranceplaneofthespectrometerusingapairoflensesL1andL3(bluelinepath).Tomeasurethereal-spaceimagingplane(r-space)onsample,theL2lensisinsertedtoformtwotelescopesandtheimageisprojectedontheentranceplaneoftheslit(redlinepath).3.2.2ThermalmanagementAtahighpumpthesteady-stateincidentpowertransmittedtothesampleatthe76MHzrepetitionrateofthelaserwillexceed50mWandresultinthermalheatingandcarrierdiffusion.Thetechniquesweusetocontrolthethermalheatinganddiffusionofthephotoexcitedcarriersare(1)temporallymodulatingthepumplaserintensitytosuppressthethermalcarrierheatingand(2)spatiallyshapingthepumpbeamtoenablelasinginasingletransversemode.Steady-statethermalheatingcaninhibitlaseractionandleadtospectrallybroadred-shiftluminescence.Tosuppresssteady-statethermalheating,wetemporallymodulatethe2-ps76MHzpumplaserpulsetrainwithadutycycle(on/offratio)<0.5%byusingadouble-passacousto-opticmodulator(AOM)system[78].Thetime-averagedpowerislimitedtobelow0.2mWforallexperiments.Multipletransversemodescansimultaneouslylasebecauseofthediffusionof44photoexcitedcarriersandcrystallinedisorder,whichleadtoinstabilityandcomplexlasingchar-acteristics.Tocontrolcarrierdiffusion,weholographicallygenerateapumpbeam(areaˇ300mm2)atthesamplesurfacewithaspatialbeamshaperconsistingofatwo-dimensional(2D)liquid-crystalspatiallightmodulator(SLM)[79].3.2.3OpticalcontrolandbeamshapingBesidescontrollingcarrierdiffusionthroughbeamSLMallowsustodesignothershapeofbeamtoaffectlasingbehaviors.Forexample,wecangeneratedouble-hump-shapedbeamservingasopticalandphotonsinsidethecouldformquantum-oscillator-likelasingmodes.TheseexperimentalresultswillbeexplicitlydescribedinChapter6.TheopticalexcitationsetupincludingSLMisshowninFig.3.6.Thefrontsurfaceofthemicrocavityispositionedatthefocalplaneofahigh-numerical-aperturemicroscopyobjectivelens(N.A.=0.42,50,effectivefocallength4mm).A3telescope,aFaradayrotator,apolarizingbeamsplitter,andtheobjectivelensformaFouriertransformimagingsystem.ThelightattheSLMandsamplesurfaceformaFouriertransformpair.The2DSLM(19201080pixels,pixelpitch=8mm)enablesustogeneratearbitrarypumpgeometrieswithaˇ2mmspatialresolutionatthesamplesurfaceusingcomputer-generatedphasepatterns.Asmallgoldmirrorinsertedinfrontofobjectivelensisusedtodirectlaserpumpingmicrocavitysamplewithasmallincidentangle,andispositionedtoblockluminescencelightpathassmallaspossiblebutmaintainpumpinthemeantime.Thepumpcanbevariedbymorethantwoordersofmagnitudeusingaliquid-crystalattenuator.3.2.4PolarizationcontrolThepolarizationstateofthepump/luminescenceiscontrolled/analyzedbyacombinationofliquidcrystaldevices,suchasvariableretarders,polarizationrotators,andGlan-Taylor/Glan-Thomsonpolarizerswithoutmechanicalmovingparts.Apolarizationcompensator(Berek'svariablewave45Figure3.6WholeExperimentalSet-up.Luminescencefromthemicrocavityiscollectedbyamicroscopeobjective(N.A.=0.42,effectivefocallengthf0=4mm).Thecollectionangleisuptoqˇ25inair.Themeasurementofimaging/spectroscopycanbereferredtoFig.3.5,withthelenslabeledwithfocallength(ex:L200meansf=200mm).Intheconjugatereal-spaceimagingplane(r-space),weplacea600-mmdiametercircularaperturetospatiallyisolateluminescenceandasingletransversemodewithinacircularˇ10-mmdiameterareaonthesample.TheimageattheentranceplanecanbedirectedtotheLN-CCDfortime-integratedimaging/spectroscopyortothestreakcamerasystemfortime-resolvedmeasurements.Inthiswemeasuretheangulardistributionofluminescenceask-spaceimages(k-images)orspectra(Evs.kkdispersions)usingrespectivelythe0-orderor1st-orderdiffractedlightfromthegrating.Byinsertingaremovable200mmfocal-lengthlens(L200),weprojectther-spaceluminescencetotheentranceplaneofthespectrometer.46plates)isusedtocompensateforthephaseretardanceinducedbythefromtheminiaturegoldmirrorsurface.Thecircularlypolarizedpumporluminescencewithangularmomentum+¯h(¯h)alongthepumplaserwavevector‹kk‹zisass+(s).Linearlypolarizedlightwithhorizontal(vertical)polarizationisassX(sY).ThepolarizationstateischaracterizedbytheStokesvectorfS0;S1;S2;S3g.S0istheandisdeterminedasS0=I++I=IX+IY=I45+I135.TheStokesvectorcanbenormalizedbyitsS0totheStokesthree-vectors=fs1;s2;s3g.s1=(IXIY)=(IX+IY),s2=(I45I135)=(I45+I135),ands3=(I+I)=(I++I).I+,I,IX,IY,I45,andI135aremeasuredtime-integratedortemporalintensitiesofthecircularorlinearpolarizedcomponents.Thepolarizationstateisrepresentedbyusingthefollowingthreequantities:thedegreeofcircularpolarization(DoCPrc=s3),degreeoflinearpolarization(DoLPrl=qs21+s22),anddegreeofpolarization(DoPr=qs21+s22+s23).Theaccuracyofthemeasuredpolarizationstateisˇ1-2%.3.2.5TemporalmeasurementsetupToknowcarrierenergyandspinrelaxationbetweenexcitationandradiativeemission,weper-formedtime-resolvedmeasurementonluminescenceintensity,transientspectraldistribution,andpolarization.Twowaysareutilizedintemporalmeasurement:(1)spectroscopydetectedthroughStreakcamera(2)absorptionofvespectrummeasuredthroughpump-probetechnique.OurStreakcameraenablestime-resolvedluminescencemeasurementinreal-andmomentumspaceaswellasspectrallytime-resolvedimagemeasurementwith5-pstimeresolutioninoverallsystemsetup.Thismethodprovidesquickinvestigationonradiativecarrierdynamicsinsidethesystem,butitcannotexplorenon-radiativecarrierdynamicsaswellasthefaste-hspinrelaxationifspin-relaxationtimeislessthan5ps.TocompensatetheshortageofStreakspectroscopymeasurementandtoinvestigatethepoten-tialexistenceofcarriercorrelationinthesystem(detailmotivationisintroducedinchapter7),weperformedtwo-colorpump-probeexperimentwithsetupshowninFig.3.7.Thepump-probesetupisbasedonprevioussetupwithfew(1)addprobelaserwithabout20fspulse47Figure3.7Pump-probesetup.ThesetupissimilartoFig.3.6,butthecompensatorisreplacedbychopperduetolimitedspace,andthegoldmirrorisswappedwithbeamsplitter(BS).Theprobepulselaserwithhorizontalpolarizationentersinsystemthroughtheothersideofpolarizedbeamsplitter(PBS),thenmergeswithpumpexcitationfromTi:sapphirelaser.Thusinpump-probesetupherethepolarizationsofpumpandprobepulseareorthogonal.Tosimplifythediagram,liquidcrystaldeviceandpinholealongopticalaxisthroughspectrometersarehidden.widthfromtheotherfaceofpolarizedbeamsplitter(PBS),andthelightpathofprobelasermergeswiththatofpumplaserafterPBS.Inthiscase,thepolarizationsofpumpandprobelaserpulsesafterobjectivelensarealwaysorthogonal;(2)removeAOMsetupinpumplightpath,andreplacecompensatorwithachopperduetolimitedspaceinoriginalsetup.The"on-and-off"ratiothroughchopperissetabout1:100;(3)swapgoldmirror(GM)withbeamsplitter(BS).Forsimplicity,fewopticalcomponentsarehiddeninFig.3.7.TheprobelaserhittingonthemicrocavitycanbetranslatedwithitspositionororienteditsincominganglewithrespecttothesamplesurfacebytuningtwomirrorssetbeforetheprobepassesthroughthePBS.Intheexperiment,thelaserspotsfrompumpandprobelaserareassuredtobespatiallyoverlappedforeachadjustmentoftheprobelaser.TheusageofBSallowustohavelargertuningangleofprobelaser,butitalsoaffectstheac-48curacyoflightpolarizationmeasurementbecausethetransmittanceofhorizontallyandverticallypolarizedlightarenotthesame.3.3ConclusionInsummary,thelargedetuningofcavityresonanceandQWbandgapprohibitsra-diativelossfromcavityandenhancestheaccumulationofphotoexcitede-hpairsinMQWs.ThenegligibleTE-TMsplittingresultsinastraightforwardimplementofspin-controllasers.Non-resonantlypumpingcanavoidlasercoherenceimprintoncarriercorrelation,whichhelpsustostudythephaseofe-h-gsystemathighdensity.Imagespectroscopysetupaccompaniedwithpo-larizationcontroldesignenabletomeasureangularandspectralcharacteristicsoflightaswellasitspolarization,andthesephysicalquantitiesrevealstheE-vs-kkdispersionandspinrelaxationofradiativecarriersinMQWs.TheStreakimageoffersafastinsightincarrierenergyandspindynamicsatthesametime.Ontheotherhand,absorption/gainspectrummeasuredbytwo-colorpump-probesetupuncovertheevolutionofcavityresonanceshiftinganditsdispersion.Allthesemeasurementsbringacomprehensiveunderstandingofphotoexcitedcarrierspinandenergydy-namicsinoursystem,andfurtherhelpwithanalyzingthelasingmechanisminsidethesystem.49CHAPTER4SPIN-POLARIZEDLASINGINAHIGHLYPHOTOEXCITEDSEMICONDUCTORMICROCAVITYInthischapter,Idemonstrateroom-temperaturespin-polarizedultrafastpulsedlasinginahighlyphotoexcitedplanarsemiconductormicrocavity.Theemissionabovecriticalthresholdexhibitsangularlynarrowpulsedlasingwiththepulsewidthabout20ps.TheradiationshowsenergyblueshiftandspectralbroadeningwithincreasingpumpInaddition,theemissionpolarizationcanbecontrolledbyexcitationintensityaswellaspolarizations.Theemissionpolarizationishighlycircularlypolarizedunderellipticallypolarizedpumpingandcanexceedtheinputcircularpolarizationdegree.Alltheseresultswillbepresentedinthefollowingsectionsfollowedbyatheoreticalexplanation.Toinvestigatethelaseractioninmicrocavitywithhigh-densityphotoexcitedcarriers,weop-ticallypumpthesamplenonresonantlybyusing2psTi:SapphirelaserpulsesatEp=1.579eV(lp=785nm)withsquarebeamThelaserpumpisvariedbytwoordersofmagnitude,whichthecreatedphotoexciteddensityrangesfromapproximately51011to1013cm2perQWperpulseandcorrespondstoa2Ddensityparameterrs=1=(a0ppnth)ˇ5.3Œ1.2fora0ˇ15nminInGaAsQWs[80].4.1Spin-polarizedlasingatroomtemperatureThelaserischaracterizedintermsoftheangulardistributionandenergyasfunctionsofthein-planemomentum[angle-resolved(k-space)imagesandEvs.kkdispersions](Fig.4.1).Atthethreshold,theemissionofthemicrocavityinvestigatedherebecomesangularlyandspectrallynar-rowfortheco-circulars+=s+component,wheres+=s+isthehelicityofthepump/emission,respectively.AnintenseradiationmodeemergeswithinanangularspreadDq<3,correspondingtoastandarddeviationDk=0:3mm1ink-space.Approximatingsuchapartiallycoherentbeam50Figure4.1Spin-polarizedlasingatroomtemperature.(a)Angle-resolved[k-space(kX;kY)]luminescenceimagesatthelasingthreshold(P=Pth)forco-circular(s+=s+,leftpanel)andcross-circular(s+=s,rightpanel)components.Here,s=srepresentsthepolarizationofpump/luminescence,respectively.Pthˇ2:5108photonsperpulse(overanareaof80mm2),resultinginaphotoexciteddensitynthˇ31012cm2perQWperpulseforanestimatedabsorptionof10%fornineQWs.Insetsarethecorrespondingrealspace(r-space)luminescenceimages.(b)Energy(E)vs.in-planemomentum(kk)dispersionsalongthekYaxis(kX=0;kY=kk).asaGaussianSchell-modelsource[81],wecandetermineaspatialcoherencelengthof4mm,whichisclosetothespatialdimensionofthelasingmode.Onthecontrary,nolasingactionoccursforthecross-circulars+=scomponent,whichexhibitsanangularlybroadintensitydistribution51andaparabolicEvs.kkdispersivespectrum.Accordingly,theradiationatthethresholdhasahighlycircularpolarization.Figure4.2Nonlinearinput-output.(a)Emissionintegratedoverkk.3mm1unders+(circularly)orsX(linearly)polarizedpump.(b)Radiativeemissionefyvs.pumpunderacircularly(s+)andlinearly(sX)polarizedpump.Next,Iwilldescribethenonlinearinput-outputandpolarizationcharacteristicswithvaryingpumpFig.4.2(a)showstheemission(output)vs.thepump(input)underacircu-larly(s+)polarizedexcitation.Thepumpisthephotonperpulsetransmittedintothemicrocavitywithinacircular10mmdiameterarea.Theoutputnonlinearlyincreasesbyoneorderofmagnitudeforanincreaseintheinputbylessthat20%nearthecriticalphotoexciteddensity.Theonsetofsuchanonlinearoutputfortheco-circularcomponent(s+=s+)isasthethresholdPth(indicatedbyanarrowintheForP&1:5Pth,thecross-circularlypolarizedcomponent(s+=s)alsolases.Underalinearlypolarizedpump(Fig.4.2(a),greendots),thelaseractioncommencesataslightlyhigherpump(P=1:05Pth).This5%thresholdreductionwiththeopticalinjectionofthespin-polarizedcarriersissmallbutcomparedwiththe<1%reductionpredictedforanInGaAs-MQW-basedconventionalspinlasers[82].Ingeneral,suchathresholdreductionislessthan5%inmostlocationsandsamplesstudiedinthiswork.Thetotalemissionunderacircularlypolarizedpumpisclosetothatunderalinearlypolarizedone(Fig.4.2(b)).Theoverallefy(theratiooftheemissionemanatingfromthefront52surface[output]tothepumptransmittedintothemicrocavity[input])reachesaplateauof˘10%atP&3Pth.Intheplateauregime,theoutputlinearlyincreaseswiththeinputandresemblesthecharacteristicsofaconventionalsemiconductorlaser.Themaximalefyrangesfrom3%to11%dependingonexcitedlocationsanddetuningoftheQWandcavityresonance.Anefygreaterthan10%canbeobtained.Absorptioninthenine6-nmthickIn0:15Ga0:85As/GaAsMQWsinthecavityis12%atlp=785nmatroomtemperature.Therefore,anefygreaterthan10%impliesthatessentiallyallofthecarriersphotoexcitedintheMQWscanrecombineradiativelyandcontributetolaseraction.Inanutshell,theradiationexhibitsangularlyandspectrallynarrowlasingatlasingthreshold.Thelaserradiationissimplyaresultofmattergainintheactiveregionofcavityexceedingtheradiativerecombinationloss.Theemissionnonlinearlyincreaseswithincrementpumpandthelasingthresholdsaredifferentfororthogonalcircularcomponents,s+=s,ofemissionsundercircularlypolarizedpumping.Suchdifferencecomesfromunequalspin-carrierinjectioninthereservoirofthesystem.Theefy10%indicatesallphotoexcitedcarriersinMQWscontributestolaserradiation.4.2SpectralcharacteristicsHereIpresentEvs.kkdispersionwithphotoexciteddensitydependenceandstudyspectralchar-acteristicsofemission.Fig.4.3displaysnormalizeddispersionspectraofco-circularemissionatselectivepumpFarbelowlasingthreshold,luminescencefromGaAslayersdominatesandformsanisotropicangulardistribution(notshown).Slightlybelowlasingthreshold,aparabolicEvs.kkappears,whichisequivalenttoeffectivecavityresonancebycarriersinInGaAsMQWs.Atthethreshold,theradiationbecomesspectrallynarrow.Faraboveathreshold,theen-ergyofradiationblueshiftswithincreasingspectrallinewidthwhiletheradiationremainshighlydirectionalwiththepumpInFig.4.4,Istudythespectralcharacteristics.WhenthepumpisincreasedfromP=0.553Figure4.3Evs.kkdispersion.Angle-resolvedspectroscopyatP=0.8,1and4Pth.Figure4.4Luminescencecharacteristics.(a)2Dfalse-colorimagesofmicrocavityluminescence/lasingspectravs.thepumpforco-circular(s+=s+,leftpanel)andcross-circular(s+=s,rightpanel)components.Spectraarenormalizedwithrespecttotheco-circularcomponent(s+=s+)foreachpumpNotethattheintensitiesofthes+=sspectrafor0.8Pth1:5Pth),thespectrallinewidthincreasestomorethan2meV.Theoverallemissionenergyshiftswiththeincreasingpumparemorethan10meV,whichislargerthanthecorrespondingenergyshiftofthecavitystopband(<2meV).Thelargeenergyshiftoriginatesfromphoto-modulatedcavityresonanceshifting,whichwillbeexplicitlypresentedinSec.4.5.Thespectralbroadeningisattributedto(1)moreenergyregionreacheslasingcondition(thegainexceedsradiativelossintheactiveregionofthecavity)undermorephotoexcitedcarriersinjected;(2)time-integratedspectralshiftofemissionduetothetime-dependentcavityresonancechange.Itisnoticedthatinfarabovethethresholdregion,co-andcross-circularcomponentsbothlasewiththerisingpeakenergywhileretaininganenergysplittingofˇ1Œ2meV.Thesplittingisaresultofdifferenttime-integratedspectraldynamicsfors+ands,andIwillexplainitindetailattheendofSec.4.4withFig.4.11.4.3EmissionpolarizationpropertiesAsaforementionedintheprevioussection,aspontaneousbuildupofthecircularlypolarizedradia-tionoccursatacriticalphotoexciteddensity.HereIdiscusstheemissionpolarizationpropertiesasfunctionsofphotoexciteddensityaswellasexcitationpolarizationchange.ThepolarizationstatecanbecharacterizedbytheStokesthree-vectors=fs1;s2;s3g,whichisinSec.3.2.4.Fig.4.5demonstratesthedegreeofcircularpolarizationDoCP(s3componentinStokesthree-vector)withpumpdependence.Belowthethreshold,theradiationisunpolarized(¯s3ˇ0).Slightlyabovethethreshold(Pth0.95).ForP>1:5Pth,theradiationbecomesellipticallypolarizedwithreduced¯s3asaresultofincreasingradiationwithanoppositehelicity.Whenthehelicityofthecircularlypolarized55Figure4.5Emissionpolarizationvs.pumpThedegreeofcircularpolarizationDoCP(¯rc),determinedfromtheluminescenceintegratednearkkˇ0(jkkj<0:3mm1)underas+orscircularlypolarizedpump.Thedashedlinesarethecalculatedemissionandthe¯rc,withaspin-dependentstimulatedprocessassumed(seeSection:TheoreticalModel)pumpisswitched,DoCPchangesinsignbutmaintainsthesamemagnitude,i.e.,thepolarizationstateissymmetricwithrespecttothehelicityofthepump.ThepumpDoCPisquantitativelyreproduced(dashedlinesinFig.4.5)byarate-equationmodelassumingaspin-anddensity-dependentstimulatedprocess,whichisfurtherdescribedinSec.4.5.2.Anothermanifestationofthespin-dependentprocessishighlycircularlypolarizedlasingevenunderanonresonantellipticallypolarizedopticalexcitation(Fig.4.6).Here,thepumptrans-mittedintothemicrocavitysampleiskeptconstantwithvaryingpumpcircularpolarization(sp3,representedbythepumpStokesvectortracingameridianatthePoincarésphereshowninFig.4.6(a)).Whentheinitialspin-dependentpopulationimbalanceiscontrolledbyvariationofsp3,theDoCPofthelasingradiation(¯s3)canexceedthatofthepumpfor1:0Pth0.8)occursevenwhenthesp3isaslowas0.5(altitudef=30).Next,Iconsiderapolarization-dependentexternal56Figure4.6effect.(a)Representationofpolarizationstates(Stokesvectors)inaPoincarésphere.Thepumppolarizationisvariedalongthemeridianinthes1-s3(x-z)plane.(b)Thetime-integratedDoCPofthespin-polarizedlaserradiationasafunctionofpumpDoCP(rpc)(blueline)at0.8(blackdots),1.0(magentadots),and1.2Pth(reddots).Thepumpismaintainedataconstantwhenrpcisvaried.Foraf,onlythehexofthemajoritypolarizedemissioncomponentisshown(s+for0f<180andsfor180f<360).Figure4.7External.Externalquantumefy(hex)vs.pumpDoCP,representedbythealtitudef)at1.2,1.0,and0.8Pth.Foraf,onlythehexofthemajoritypolarizedemissioncomponentisshown(s+for0f<180andsfor180f<360).hexoftheminoritycomponentisnotshownbecauseofalowsignal-to-noiseratioforrpc˘1.Errorbarsrepresentthestandarddeviationofhexovervemeasurements.57efy(hex)(Fig.4.7),whichisastheratioofthepolarizedemissionemanatingfromthefrontsurface(output)tothepumptransmittedintothemicrocavityofthesamepo-larization(input).Theexternalefyhexofthemajoritypolarizedemissioncomponentislessthan103belowthethreshold,andincreasesbytwoordersofmagnitudeat1.2Pth.Inbothcases,hexisinsensitivetosp3.Atthethreshold,hexexceeds102forsp3ˇ1(f=90,270),whereasitremains˘103forsp3ˇ0(f=0,180).Thelowhexbelowthethresholdisduetolossthroughnonradiativerecombination,reabsorption,andemissionsintoothernonlasingmodes.Withtheincreasingpumpastimulatedprocessdominatesoverthelossandyieldsadramaticincreaseinhexabovethethreshold.Acompetitionbetweenlossandspin-dependentstimulationcanresultintheobserved"spin(¯s3>sp3)effectunderellipticallypolarizedpump-ing,whichisqualitativelyreproducedbytheaforementionedmodel.4.4DynamicsandenergyrelaxationofluminescenceFigure4.8Luminescencedynamics.Polarizedtime-dependentluminescenceatkk=0forselectivepowerP=0.8,1and4Pthunderacircularpolarized(s+)pump.Blue(red)curvesrepresenttheco-circularI+(t)[cross-circularI(t)]components.Notethatthecross-circularcomponentshownatP=Pthismultipliedbyafactorof100.Thetimezeroisdeterminedfromtheinstrumentresponse(blackdashedcurve),whichismeasuredviapumplaserpulsesoffthesamplesurface.Thetimetracesarespectrallyintegrated(temporalresolutionˇ5ps).Tounderstandthemechanismofthespin-polarizedlaseraction,studyingthepolarizationdy-namicsthroughtime-resolvedpolarimetryandspectroscopyisneeded.Fig.4.8showstheselected58time-resolvedco-andcross-circularlypolarizedluminescence[I(t)]underas+circularlypo-larizedpump.Belowthethreshold,thetime-dependents3(t)reaches˘0.1whentheluminescencereachesitspeak,andthenitdecayswithatimeconstantlessthan10ps,asdemonstratedbytheminimaltransientdifferencebetweenI+(t)andI(t)atP=0.8Pth(Fig.4.8(a)).Atthethreshold,theco-circularcomponentcommencesthepulsedlaseractionwithin30ps,whereasthecross-circularcomponentremainsnegligible[I+(t)=I(t)>100](Fig.4.8(b)),resultinginhighs3(t)within30ps.Thecross-circularlaserpulsecommencesatP>1:5Pth(Fig.4.8(c)).Figure4.9Spindynamicsofphotoexcitedcarriersatlasingthreshold.Polarizedtime-dependentluminescenceatkk=0forP=Pthundercircularly(f=90)andellipticallyf=40polarizedpump.ThecorrespondingDoCP(t)arerepresentedbygraylines.Fig.4.9illustratess3(t)ofemission(graylines)atcircularlyandellipticallypolarizedexcita-tionatlasingthreshold.Themaximumofs3(t)isclosedtounity,andspinrelaxationtimes(decaytimeofs3(t))undertwoexcitationcasesareabout70ps.Theseresultsareindicativeofaspin-dependentstimulatedprocessthroughwhichspinpolarizationis[56,57,86,87,88,89].Thetemporallyandspectrallyresolvedmeasurementsarefurtherconducted,asshowninFig.4.10.Atthethreshold,theradiationremainsspectrallynarrow,withapeakenergythatisnearlyconstantwithtime.Abovethethreshold,theradiationexpandsspectrallywhenthelaseractioncommences,anditgraduallyredshiftswithtime.Inaddition,polarimetricmeasurementsrevealacircularlypolarizedhigh-energycomponentduringtheinitial10Œ20pspulsedradiation,followedbyanunpolarizedlow-energyoneforP>1:5Pth.Fig.4.11presentscross-sectionaltransientspec-59Figure4.10Dynamicsandenergyrelaxation.Temporallyandspectrallyresolvedstreakspectralimagesoftheco-circularcomponentI+(dE;t)atP=1.0,2.0,and4.0Pth.They-axis(dE)isoffsetwithrespectto1:408eV,thelasingenergyatPth.Thetemporalresolutionisˇ30psbecauseofthegrating-induceddispersion.traat4Pthfors+=s+(red)ands+=s(blue)emissioncomponentsandrevealsaforementionedpolarizationproperties.Moreover,thetime-integratedtransientspectraresultsindifferentmeanenergiesforthesetwocomponents,givingenergysplittingshowninFig.4.4(b).4.5TheoreticalmodelTounderstandthespin-dependentpolarizationandspectralcharacteristics,weproposethatwhenthechemicalpotentialofEHPexceedsthebarecavityresonanceEc,afractionofe-hpairsneartheeffectiveEcformscorrelatede-hpairs.Fig.4.12showstheenergylevelsofQWsandEc.Underhigh-intensitypumping,thechemicalpotentialashighas80meVabovebandgapexceedsthesecondquantizedlevelofQWs.TheEcshiftsresultingfromeffectiverefractiveindexchangeinthesystemduetohigh-densityEHP.NeartheEcafractionofthereservoirofEHPconversetocorrelatede-hpairsn0,givingradiativedecay.Oncetheconversionovercomesthedecayandn0exceedscriticaldensity,astimulatedemissionprevailsandresultsinnonlinearlypopulationincreaseinn0andinlaserradiation.Inthefollowingsection,weintroducetheconnectionofexperimentalresultwithourtentativeexplanation.60Figure4.11TransientlasingspectraatP=4Pth.Cross-sectionaltransientspectraattimedelaysextractedfromthetemporallyandspectrallyresolvedstreakimagesofasample.Transientspectraareaveragedover5psandnormalizedtothemaximalpeakintensityoftheco-circularcomponent.Thespectraareequallyscaledbutoffsetverticallyby1.Redlinesrepresenttheco-circular(s+=s+)component,whilebluelinesrepresentthecross-circular(s+=s)one.Theenergyscaleismeasuredwithrespectto1.408eV,whichisthepeaklasingenergyatthethresholdPth.Ininitialtimedelayoffewpsafterpulseexcitation,theemissionisspectrallybroadandblueshiftsbyabout5meV.Fordelayslessthan20ps,theco-andcross-circularcomponentshavethesamespectralpeakenergy(verticaldashedlines),suggestingcarriersinteractionswithsamespinsandoppositespinsarecomparablemagnitudes.Thespectralpeakenergyisdeterminedbythetotalcarrierdensityinsteadofindividualspin-uporspin-downpopulation.Ontheotherhand,theintensityoftheco-circularcomponentishigherthanthecross-circularcomponentwithin20psafterpulseexcitationbecausetheineffectiveinreservoirresultsinimbalancespin-population.Theemissionspectrumreachesamaximumatabout10ps,andthengraduallydecreasesinoverallmagnitudeandredshiftswithtime.Thetemporalenergyredshiftinspectraisattributedtoadescendingchemicalpotentialmwithadecreasingcarrierdensity..4.5.1Carrier-inducedstrongnonlinearityTheobserveddensity-andtime-dependentlasingenergyshiftcanberegardedasaresultofindex-inducedcavityresonanceshift.Thecavityresonanceshift(dEc)isrelatedtothechangeintherefractiveindex(dnc)approximatelythroughdEc=Ec=dnc=nc,wherencistheeffectiverefrac-tiveindexaveragedoverthelongitudinalcavityphotonmode.Therefore,acavityresonanceshiftdE˘10meV(Fig.4.4)requiresasizablereductionoftherefractiveindex,i.e.,jdnc=ncj˘0.7%.SofarquiteafewpaperhavereportedDnchange(Dn˘0:1)inbulksemiconductorsor61Figure4.12Energylevelsofsample.Schematicofsimplebandstructureofquantumwellsink-space(left)andr-space(right).E0gandEflgrepresenttheandsecondquantizedlevelsofquantumwells,respectively.Intheexperimentstudiedhere,thechemicalpotentialmisabout80meVaboveE0gandisclosedtoEflgandbarecavityresonanceEc.ThemmaybebeneathorexceedEc,andnewcavityresonanceE0cpresencesasaresultofphoto-modulatedindexchange.Thecorrelatede-hpairsformnearE0candplayimportantrolesinstrongnonlinearityeffectobservedinresearch.QWs[90],butasfarasweknownonehavereportedonlargeDninmicrocavity.ToexaminethepossibilityofthelargedEcwithrisingchemicalpotentialm,IwouldliketoillustrateoursimulationresultbasedontransfermatrixcalculationandcarrierbandeffectinQWs.Thesimulationwasdevelopedbymyco-worker,WeiXie,andtheresultispresentedonFig.4.13.TheeffectiverefractiveindexchangedninQWs(Fig.4.13(a))canbechangedto0.1ascarrierdensityincreasesto2Pth,wherethePthcorrespondstoe-hdensityDeh=11018cm3.TheEcblueshiftsinenergyabout10meVduetotheaforementionedindexchangednasshowninspectrum(Fig.4.13(b)),whichtheiscalculatedbytransfermatrixmethod.Thesimplemodelwasperformedundertwoassumption(1)thedninMQWsmostlyresultsfrombandeffectduetomlocatednearthehigherquantizedlevelsofQWs;(2)therefractive62Figure4.13Simulatedcavityshiftingwithband.(a)EffectiverefractiveindexchangedninMQWs(solidline)withincreasingpumpThedashedlinerepresentstherefractiveindexofMQWswithoutexcitation.Eflgisthesecondquantizedlevelofquantumwell.(b)spectrumchangewithout(black)andwith(red)presenceofcarrierdensity.Theinsetexhibitsthecavityresonanceshiftwithincreasingphotoexciteddensity.DehisthephotoexciteddensityatthresholdunderexcitationPth.indexofGaAsvarieslittle,asmisbelowthebandgapofGaAs.Oncetakingintoaccounttheaforementionedassumptions,themodelpredictsthe10meVenergyblue-shiftwithdn=n˘0:3%,andtheresultindicatesthesizablecavityshiftispossiblewithhigh-densitycarriersaccumulatedinQWs.4.5.2Spin-dependentstimulatedprocessTomodelthespin-controlledlasingprocesses,weuseasetofrateequationswithspin-dependentstimulatedprocesses.Weconsidertwostatespopulatedwithspin-polarizedelectron-hole(eŒh)pairs:anonradiativeEHPreservoir(Meh)andradiativecorrelatedeŒhpairsatkkˇ0(n0).TheeŒhpairsnonresonantlyphotoexcitedbya2pspulsedpumplaserat1.58eVrelaxrapidly(<5ps)tothereservoirvia,forexample,aspin-preservedscatteringprocesswithLOopticalphonons.Therefore,weassumethatspin-polarizedeŒhpairsareopticallyinjectedintothereservoiratagenerationrateofGpP,wherePisthepumplaserofhelicity.ThespintimeoftheeŒhpairs,1=Wsf,islessthan10ps,asdemonstratedbythepolarizedtime-dependentPLbelowthethreshold(Fig.4.8)aswellasinasamplewithoutthetopDBRmirrorlayers(Fig.3.4).TheeŒhcarriersinthereservoircanalsodissipatethroughreabsorptionandnonradiativerecombi-nation(Gloss).WefurtherassumethatafractionofeŒhpairsneartheeffectiveEcopticallyinduce63Figure4.14schematicsofspin-dependentstimulatedemission:correlatedeŒhpairs(Neh=bMeh).TheconversionofcarriersfromNehtotheradiativen0stateisenabledbythefollowingprocesses:(a)Wk,aspontaneousconversionfromNeh,and(b)Wss,aspin-dependentstimulatedscatteringfromNeh.Then0statecontributestotheleakagephotonsmeasuredexperimentallyatarateassociatedwiththecavityphotondecayrateGc.Thelasingdynamicscanthenbedescribedbythefollowingsetofcoupledrateequations:dMeh(t)dt=Gp(t)PWsfhM+eh(t)Meh(t)iGlossMeh(t)Wss(n0)Neh(t)n0(t)WkNeh(t);dn0(t)dt=Wss(n0)Neh(t)n0(t)+WkNeh(t)Gcn0(t):Thegenerationrateofcarriers,Gp(t),froma2pspulsedlaserpumpisrepresentedbyaGaussiandistributionwithastandarddeviations=2ps.Thespin-dependentstimulationrateWss=W0(1n0=nsat)isphenomenologicallysettodecreasewithdensity,wherethesaturationdensitynsatisobtainedbyofthepumpstationaryDoCP(¯s3).Theparametersareasfollows:W0=1=10[ps1],Wsf=1=10[ps1],Wk=104[ps1],Gloss=1=1000[ps1],Gc=1[ps1],b=0.015,andnsat=200.Givenaspatialmodeareaof10Œ20mm2forthen0state,thecalculatedthresholddensityisabout510105mm2,64Figure4.15Spin-dependentstimulation.(a)CalculatedstationaryDoCP(¯rc)withvaryingpumppolarizationrpc(representedbythealtitude)forP=0.8,1.0and1.2Pth.(b-c)Calculatedpolarizedtime-dependentradiationintensityforco-circulars+=s+[I+(t)]andcross-circulars+=s+[I(t)]componentsunderas+pumpforP=1.0and2.0Pth.ThetheoreticalPthissettothepumpwhenthestationary¯rc=0.5underafullycircularlypolarizedpump(rpc=1).consistentwithexperimentallymeasuredcarrierdensityperQWatthethreshold.Thismodelreproducesthepolarizedlaseroutputes(I)andDoCP(¯s3)asafunctionofpumpP(Fig.4.5)andasafunctionofpumppolarizationsp3(Fig.4.6andFig.4.15(a)).Thepolarizedtime-dependentPLisalsoreproducedqualitatively(Fig.4.8andFig.4.15(bŒc)).4.6DiscussionandconclusionThespin-polarizedlaserstudiedherehasastructuresimilartovertical-cavitysurface-emittinglasers(VCSELs)[91]andmicrocavitiesusedforstudiesofexciton-polaritoncondensates[17,20,19,34,26,21].InVCSELs,thelasingenergyistypicallydeterminedbythebarecavityresonanceandhaslimitedenergyshifts[92,93]andlinewidthbroadening[94,95,96]withincreasingcarrierdensity(seealsotheAppendixA).ThepolarizationpropertiesofVCSELsaretypicallyaffectedbycrystallineanisotropies[97],butquiteafewspin-controlledlasersarereportedinthepasttenyears.[54,58,51,52,56,86,87,88].Incontrasttoconventionalspin-controlledlasers(spinlasers),thespin-polarizedlasingpre-sentedinthisstudydisplays(1)substantialenergyblueshiftofmorethan10meVwithincreasingphotoexciteddensity,(2)spin-dependentenergysplittingsintheabsenceofanexternalmagnetic(3)ultrafastsub-10-pspulsedlasing,and(4)ahighexternalquantumefyof˘10%,65whichmatchesthefractionofcarriersphotoexcitedintheMQWs.Weattributethespin-polarizedlasingtoaspin-dependentstimulatedprocessofcorrelatede-hpairsformedneareffectivecavityresonanceinahigh-densityEHP.66CHAPTER5TRANSIENTDUAL-ENERGYLASINGINASEMICONDUCTORMICROCAVITYAhomogeneousexcitationinaninhomogeneousstructuremaycauseexoticluminescenceunderhigh-photoexcitedinjection.Inthischapter,Idemonstratesequentiallasingattwowell-separatedenergiesinthemicrocavitywiththesamestructurepresentedinthelastchapter.Twospatiallyoverlappedlasingstateswithdistinctpolarizationpropertiesappearatenergiesmorethan5meVapart.Underacircularlypolarizednonresonantpumping,anultrafasttransientcircularlypolarizedhigh-energy(HE)stateemergesquicklyafterexcitation.ThisHEstateisfollowedbyapulsedstatewithamuchlongerlifetimeatalowenergy(LE)state.TheHEstateishighlycircularlypolarizedasaresultofaspin-preservingstimulatedprocesswhiletheLEstateshowsareducedcircularpolarizationbecauseofadiminishingspinimbalance.Inthefollowingsections,theseresultswillbepresentedindetails.5.1SpectralcharacteristicsFirst,Iwillintroducethedensity-dependentenergyshiftsandlinewidthsofemission.Fig.5.1(a)showstheco-circulars+=s+luminescencespectra[S+(E)]atkkˇ0asafunctionofpumpAbovethebifurcationpumpPb1:1Pth,radiationbifurcatesintoadoublet(two-statelasing)withadominantHEstate.InFig.5.1(b),theemissionoftheLEstatereachesaplateaunearabove1:5Pth,whereastheemissionoftheHEstatecontinuestoincreaselinearlywiththepumpSpectrally,theHEandLEstatesdisplaydistinctenergyshiftswithincreasingphotoexciteddensity.Fig.5.1(c)illustratesthepeakenergiesofthetwostateswithincreasingpumpBelowPb,theemissionissingle-peakedandblueshiftsby6meVwhenthepumpincreasesfrom0.5Pthto˘1:1Pth.Whenthepumpincreasesgraduallyfrom1.0Pthto3.5Pth,theHEstateblueshiftslinearlyby5meV,whereastheLEstateredshiftsbylessthan0.567Figure5.1Spectralcharacteristicofduallasing.(a)Normalizedtime-integratedspectraoftheco-circular(s+=s+)emissioncomponentforjkkj<3mm1.(b)EmissionoftheHEstate(solidredcircles),theLEstate(solidbluetriangles),andthesum(solidblacksquares).(c)Peakenergies(solidshapes)andlinewidths(errorbars)oftheHEstate(solidredcircles)andLEstate(solidbluetriangles).Thepeakenergiesbelowthethresholdarerepresentedbythesolidblacksquares.Theemissiones,peakenergies,andlinewidthsaredeterminedbyofthespectrawithmultiple-Gaussianfunctions.Thephotoexciteddensityatthethresholdpump(Pth)isncˇ21012cm2perquantumwellperpulse.meV.ThisresultindicatesthattheenergydifferencebetweentheHEandLEstatesenhanceswithincreasingphotoexciteddensity.AbovePb,thelinewidthoftheHEstateincreasesfrom˘0.3meVatPthto3meVat4Pth.Ontheotherhand,theLEstateremainsspectrallynarrowwithalinewidthof1meVorless.Next,Iillustratethespectralcharacteristicsink-spaceandr-space.Fig.5.2(a)showsthek-spaceimagingspectraoftheco-circularemissioncomponentforselectedpumpes.Anearlyparabolicenergyversusin-planemomentum(Evs.kk)dispersioncurveemergeslightlybelowthethreshold(Pˇ0:8Pth).Atthethreshold(pumpP=Pth),theradiationbecomesdirectional(angular-spreadDkk1mm1)andspectrallynarrow(linewidthDE0.3meV)(Fig.5.2(b)).Thetime-integratedemissionspectraappeartobifurcateintoadoubletwhenthepumpisincreasedabove2Pth.Thetwolasingstatesarespatiallyoverlappedin-plane,asevidencedinther-spaceimagingspectra(Fig.5.2(c)).68Figure5.2Two-statelasinginamicrocavity.(a)Angularlyresolved(k-space)imagingspectraoftheco-circular(s+=s+)emissioncomponentatP=0.8,1.0,2.0,and3.3Pth.(b)Time-integratedspectraat0.8(solidblackline),1.0(solidredline)and3.3Pth(solidblueline).(c)Real-space(r-space)imagingspectraat2.0Pth.Thek-spacespectrashownin(aŒb)aremeasuredthroughapinhole,asrepresentedbythegraybox.5.2Dynamicsofdual-energylasingThespectraldoubletsthatappearintime-integratedspectroscopymeasurementsaretemporallyseparated,asshowninthetime-dependentpolarizedluminescencespectraatkkˇ0(Fig.5.3).Whentwo-statelasingoccurs,luminescencefromtheHEstateappearswithin10psafterpulseexcitationanddecayswithatimeconstantt0d˘10ps.AftertheHEstatediminishes,theLEstateappearsandthendecayswithatimeconstantt00d˘30Œ50ps.HereIdiscussthedensityandtimedependenceofthepeakenergiesoftheHEandLEstates.Inthehighlyphotoexcitedmicrocavitystudiedhere,EHPofdensityˇ1to51012cm2perQWperpulseareformedfollowingnonresonant2pspulseexcitationasaresultofrapid(<10ps)energy69Figure5.3Dynamicsofduallasing.(aŒc)Time-dependentspectraoftheco-circularcomponentatkkˇ0underP=1.0,2.0,and3.3Pth.TheenergydEismeasuredwithrespectto1.415eV,thelasingenergyatthethreshold.(d)Polarizedtime-dependentluminescenceoftheHEstateatdE=5meV[HE0asindicatedin(c)](solidanddashedredlines)andtheLEstatedE=5meV[LE0asindicatedin(c)](solidanddashedbluelines)forP=3.3Pth.dissipationthroughopticalphonons.WhenthechemicalpotentialmoftheEHPapproachesEc,theaveragerefractiveindexnearEccanbeconsiderablytheresultisasizableblue-shiftoftheeffectivecavityresonance(E0c).ThepeakenergyoftheHEstateincreaseswiththepump(Fig.5.1),whichcanbeunderstoodasaresultofthelight-inducedrefractiveindexchangeandtheconsequenteffectivecavityresonanceshift[98].Furthermore,underpulseexcitation,theeffectivecavityresonanceE0cdecreasesovertimetowardthebarecavityresonanceEcowingtothetemporaldecayofthereservoircarriers(Fig.5.3).Slightlyabovethethreshold,theHEstateemergesasaburstofspectrallybroad˘10pspulsedradiation,spurredbythestimulationofthemajorityoftheopticallyactivecarriers.Thisrapiddepletionoftheopticallyactivee-hpairsinthereservoirprecipitatesadropinE0c.Afterwards,theLEstateensurestheradiationfromalocal70whichisreplenishedwithe-hcarriersviaspatialdiffusion(Fig.5.2and5.3).Theprolongedreplenishmentofe-hpairsfromthereservoircausesatemporalred-shiftoftheLEstateover&50ps(Fig.5.3).Theincreasingpumpresultsinanapparenttime-integratedspectralred-shift(Fig.5.1(c)and5.3(bŒc)).Atcryogenictemperatures,similarmultipleburstsofradiationhavealsobeenobservedinlocalizedexciton-polaritoncondensatesformedinaspatiallyinhomogeneousmicrocavity.Thesedynamicrelaxationoscillationsappearastheresultoftheinterplaybetweencarrierdiffusion(gain)andBosestimulation(depletion)[31].5.3Polarizationofdual-energylasingFigure5.4Polarizationpropertiesofduallasing.(a)Stationarydegreeofcircularpolarization(DoCP=¯rc)oftheHEstate(solidandopenredtriangles)andLEstate(solidandopenbluetriangles)undercircularlypolarizeds+pump(upperpart,solidtriangles)orspump(lowerpart,opentriangles).DoCP=¯rc=(A+A)=(A++A),whereAreferstotheareasofco-circular(A+)andcross-circular(A)componentsoftheHEandLEspectralpeaksandareobtainedbyofthetime-integratedspectra(Fig.5.2)withmultiple-Gaussianfunctions.The¯rcoftheHEstatesincreasesfromzerotonearunityforPth0.8)initially,butitdecreaserapidlytolessthan0.1whenthepumpisincreasedabove2.0Pth.(b)Thetime-integratedpolarizedspectraS(E)oftheco-circular(s+=s+!S+(E),blackcurve)andthecross-circular(s+=s!S(E),redcurve)componentsatP=Pth.Theenergy-dependentDoCP(E)=¯rc(E)=[S+(E)S(E)]=[S+(E)+S(E)](bluecurve)showsamaximal¯rc(E)ˇ0.8,whichislargerthanthespectrallyaveraged¯rcshownin(a).InFig.5.4,Istudythepolarizationpropertiesofthetwolasingstates.Fig.5.4(a)showsthe71¯rcoftheHEandLEstatesasafunctionofpumpThe¯rcoftheHEstaterisesfromnearlyzerotounityatthreshold,remainsabove0.9forPth500pstimeconstantlargelybecauseofthenonradiativeloss.(b)Spatialluminescencedistributionintegrateduptoadelayof50psafterpulseexcitation,revealingadouble-hump-shaped(c)Time-dependentluminescencespectraatP=0.9Pth.Thefalsecolorrepresentsthesquarerootoftheluminescenceintensity.(d)Time-dependentluminescenceintensityfortheE3(black),E2(red)andE1(blue)harmonicstates.Theintensityisintegratedoveraspectralrangeof1meVcenteringtheenergies,asindicatedbythedashedlinesin(c).onlyincreasesslightlywithdensity.ThespectrallinewidthsincreaseslightlyfortheE1state,byaboutafactorof10fortheE3state.Next,westudythedensity-dependentdynamics.Fig.6.6(c)showstherisetimesandpulsedurationsforE3,E2,andE1.Theproductofthevariancesofthespectrallinewidth(DE)andthepulseduration(Dt)isfoundtobeclosetothatofatransform-limitedpulse:&4¯handˇ1¯hfortheE3=E1andE2states,respectively.Theseharmonicstatesaremacroscopicallycoherentstateswithphaseandintensityinducedbyinteractions.79Figure6.6Densitydependenceofharmonicstates.(a)Temporallyandspectrallyintegratedemissionvs.pumpAllthreemodesdisplaynon-linearincreasesinintensitybymorethantwoordersofmagnitude,andsaturateat1:1,1:2and1:3Pth,respectively.(b)Peakenergy(solidshapes)andlinewidths2DE(errorbars)vs.pumpThesestatesspectrallyblueshiftby1to4meV.Thespectrallinewidths(DE)andpulsewidths(Dt)arereciprocalwithaproductofDEDtˇ4¯h(¯h)forE3andE1(E2),whichisclosedtotheuncertainty(Fourier-transform)limit.(c)Risetimevs.pumpforthethreestatesE1(blue),E2(red)andE3(black).Theerrorbarrepresents2Dt.Figure6.7resonanceenergyandpolarizedluminescencespectra.(a)Resonanceenergy(theenergyofemissionmodeatkkˇ0inK-spacespectralmapping)versusphotoexciteddensityunderatightly-focusedcircularpumpingbeam(radius˘1mm).Thespectralpeakcanbeconsideredastheeffectivecavityresonanceanddisplaysasizablespectralblueshiftwithincreasingthephotoexciteddensity.Suchanenergyshiftwithphotoexciteddensityisthebasisofopticallyinducedharmonic(potential)usingaspatiallymodulatedpumpbeamDˇ41012cm2perquantumwellperpulse.(b,c)Normalizedspectraintegratedoverk-spaceasafunctionofpumpinthedouble-hump-shapedpumpingcase:Co-circularly(b)andcross-circularly(c)polarizedcomponent.Quantizedharmonicstatesareformedabove˘0:8Pth.Belowthethreshold,theluminescencefromallstatesisunpolarized.Abovethethreshold,theE3stateishighlycircularlypolarized,whereastheE1statehasadiminishingcircularpolarization.Thefourthquantizedstate(E4)isweakly806.4TheoreticalmodelHereIpresentatheoreticalexplanationofsection6.1fromaviewofquasiparticle,andgivesimu-lationresultsofluminescencedynamicsandtime-integrated6.4.1OpticallyinducedpotentialandrefractiveindexchangesThetransverseopticalmodesbyaspatiallymodulatedrefractiveindexcanalsobeunder-stoodasanopticallyinducedpotentialforaquasiparticle.ConsideringtheelectromagneticinaplanarFabry-Pérotcavitywithamediumofa2Dspatiallymodulatedeffectiverefractiveindexn(r),wecanexpresstheHelmholtzequationfortheelectricinthefollowingform:¶2F(r;j;z)¶r2+n2(r)k20F(r;j;z)=0(6.1)TheelectricFinthecavitycanbedecomposedintolateralandtransversecomponents,andapproximatedasF(r;j;z)µy(r)exp[in(r)kz(r)z)],wherek20=k2z(r)+k2k(r),andkk(r)andkz(r)aretransverseandlongitudinalwavenumbersinthevacuum,respectively.Forsimplicity,weconsiderthe1DcaseandreduceEq.6.1to:¶2F(x;z)¶x2+n2(x)[k20k2z(x)]F(x;z)=0(6.2)Applyingtheeffective-massapproximationforsmallkk,weexpressthein-planedispersionEc(kk)intermsofaneffectivemassmfortheexcitation:Ec(kk)=Ec0+Ejj=(n¯hkz)22m+(n¯hkk)22m,wherem¯h2n2k2z2Ec0=¯hn2kz2c.Eq.6.2canthenbemappedtoatime-independentSchrödingerequationbyreplacingtheelectricamplitudewiththeprobabilitywavefunctionfofahypotheticalquasiparticlewithaneffectivemassminthepresenceofapotentialV(x),thus:¯h22m¶2f(x)¶x2+[V(x)Ec]f(x)=0(6.3)81Replacingtheeffectivemassforanopticalcavitymodewithlongitudinalwavenumberkz,weobtain¶2f(x)¶x2+n2kz¯hc[EcV(x)]f(x)=0(6.4)ComparingEqs.6.2and6.4givesV(x)=¯hckz(x)=Ec0(x)(6.5)Therefore,Ec0(x)andEkcorrespondtothepotentialV(x)andthekineticenergyofaquasi-particleofmassm.ConsideringEc0(x)µ¯hcn(x)Lc,whereLcistheeffectivecavitylength,wecanrelatethepotentialtothespatiallymodulatedrefractiveindexDn(x)¯nasfollows:V(x)=V[1+DV(x)V]=Ec01+Dn(x)=¯nˇEc0(1Dn(x)¯n),where¯nand¯Varetherefractiveindexandpotentialatx=0.Thus,thespatialmodulationofthepotential(DV(x))andrefractiveindex(Dn(x))haveaone-to-onecorrespondence:DV(x)¯VˇDn(x)¯n.6.4.2PhenomenologicalmodelingAsdiscussedinsection6.4,thespatialmodulationoftherefractiveindexcanbeconsideredaspatiallydependenteffectivepotentialforaquasiparticlewithaneffectivemassassociatedwiththebarecavityresonanceandmeanrefractiveindex.Themultipletransverseopticalmodesareequivalenttoharmonicstatesinharmonic(potential).Weuseasetofrateequationsthatconsiderastimulatedprocessandthespatialdistributionofe-hcarriers.WeconsiderthetemporalevolutionofthereservoirdistributionNR(x;t)andquantizedsatesni(t).Thee-hpairsphotoexcitednon-resonantlybya2pspulselasercooldownrapidly(<5ps)tothebandedge.ThecooledcarriersinthereservoirNR(x;t)aresubjecttonon-radiativeloss(Gnr)andthusresultinaslowdecrease(˘0.1meV/ps)inthechemicalpotentialm.Afractionofthereservoircarriers[Neh(x;t)=bNR(x;t)]couldcoupleeffectivelytothecavitylightwhenmadvancestowardthecavityresonanceEc(Fig.6.8),resultinginquasiparticlescoinedascorrelatede-hpairs.Thedouble-hump-shapedspatialdistributionofe-hplasmaresultsintheestablishmentofaharmonicchemicalpotential(V(x)µx2)inwhichthestandingwavesofamacroscopic82Figure6.8Schematicdiagramsforthetheoreticalframework.(aŒb)Energyleveldiagramsatdelayst1andt2(t1500ps.Fig.7.3(d)representsdensity-dependentresonanceatDtˇ0+andselectivepumpnearandbelowthreshold.Theenergypeakofresonanceblueshiftsinabout3meVwhenpumpincreasesfrom0.5to1Pth,andthelinewidthofdepthnarrowsgradually.Theenergypeakoftheresonancevarieswithdifferentprobingangles,andsuchangle-resolvedresonanceappearstobeaparaboliccurve.Thiscurveresemblestheangle-resolvedspectrumofluminescencefromthemicrocavitysample.Fig.7.4demonstratestheangulardispersionoftheresonanceunderpumppower0.9PthatDt=10ps(black)and680ps(red).Theerrorbarsrep-resenttheFWHMofthedepth.Theblackandreddashedlinesareparaboliccurvesforangle-resolvedresonanceenergypeak,whilethebluelinerepresentsthecurveoflumines-cencespectralpeakatdifferentanglesshownintheinset.Theconsistencyoftheblackdashedlineandthebluelineindicatestheluminescencespectrummatchestotheresonanceat10Œ50psaftertheexcitation.7.2Polarization-dependentresonanceinmicrocavityUndercircularlypolarizedpumping,thedifferentialechangebyprobingwithorthogonalcircularlypolarizedcomponentsaredifferent,indicatingourmicrocavityunderhighphotoexcita-tionischiralcharacteristics.Fig.7.5(a)showsthedifferentialchangebelowlasing91Figure7.4Angulardispersionoftheresonance.Angle-resolvedresonances(thepeakofthedifferentialspectrum)atDt=10ps(black)and˘700ps(red)underpumpingP=0.9Pth.Theerrorbarrepresentthefullwidthhalfmaximum(FWHM)ofthedifferentialDashedlinesaresimulatedparaboliccurves,whilebluelineisparaboliccurveofangulardispersionspectrum(insetofphotoluminescenceat0.9Pth.threshold(0.9Pth)atDt=0undercircularlypolarizeds+andlinearlypolarizedsxpumping.Aenergypeakdifferenceabout0.8meVappearsbetweens+=s+(red)ands+=s(blue)compo-nentsoftransientinducedresonance.Fig.7.5(b)tracesdowntheenergypeakofresonancefordifferentcomponents.Thetransientspin-dependentsplittingdecreasesfrom0.8meVtozerowithdecaytimeinabout50ps.Thesplittingoftransientresonancerevealsthattheopticalresponsesofmicrocavityfortwoorthogonalcircularlypolarizedlightaredifferent.Undercircularlypolarizedpumping,itcreatesanunbalancedpopulationofspin-upandspin-downcarriersinreservoirwithin0-50ps.Whenthemicrocavityisprobedbycircularlypolarizedlight,thes+canonlyrespondtospin-upcarriers.Therefore,theunequalspin-polarizedcarriersresultsinenergysplittinginpump-probespectroscopy,andsuchsplittingdecreasesduetothereducingpopulationdifferenceofspin-polarizedcarriers.Thedelaytimeisrelatedtospinrelaxationtimeofpho-toexcitedcarriers,andislargerthanlasinglifetime˘10ps.Theunbalancedspincarriersisthe92essentialrequirementtoinitiatespin-dependentstimulationandthespin-polarizedlasingpresentedinChapter4.Figure7.5Polarization-dependentresonance.(a)Differentialspectraundercircularlypolarized=sigma+pumpingandlinearlypolarizedsxpumping.Theco-circulars+=s+(polarizationofpump/probe)andcross-circulars+=scomponentsarerepresentsasredandbluedots,respectively.Thecross-linearcomponentisshownasblackdots.(b)Energypeaksofthedifferentialspectrain(a)withashapeof1010mm2.ThedifferenceDEofenergypeaksoforthogonalcircularcomponentsappearsatDt=0,anddiminishestozerowithdecaytimeapproximatedabout25ps.7.3SimulationResultThelargejDR=Rjcanbeseenastheeffectofcarrier-inducedrefractiveindexchangeinphotoex-citedmicrocavity.Inthefollowingparagraphs,Iwillpresentafewmethodstosimulatespectrumandexploretheeffectofrelaxingcarriersinthewholesystem.Thediscussionaboutpo-tentialexistenceoftheexistingcorrelatede-hpairswillbementionedlater.7.3.1Drude-LorentzmodelBeforepresentingthetheoreticalmethods,Iwouldliketooutlinetheconnectionbetweentheandthedielectricconstante.Theformeroneisacommonmeasurementinoptics,andthelatterisoneofimportantpropertiesinmaterials.ThedielectricconstanteaffectstheCoulomb93forcesbetweentwopointchargesinmaterials,soitcanmodifytheopticalpropertiesofmaterialsifechanges.Therefractiveindexnistypicallyusedtorepresenttheopticalparameterofmaterials,andrelatestothedielectricconstantbyn=pe.Therefractiveindexisnormallyafrequencydependencedenotedasn(w),wherewisthelightfrequency.Themicrocavitysamplewiththestructureofmultiplelayeredmaterialscanberegardedasawholesamplewitheffectiverefractiveindexofsamplen(w).Thecanbededucedby:R(w)=n(w)1n(w)+12accordingtoFresnelequation.Ifthedielectricconstantisrealnumber,thenitcanbeexperimentallydeterminedbymeasuringR(w).However,thedielectricconstantistypicallyacomplexnumberinmathandcannotbededucedbyspectrumonly.Althoughe(w)cannotbeobtainedpreciselyfromthespectrum,wecouldapplyfewsimplemodelstostudythesystempropertiesunderintenseopticalpumping.ThemodelweuseisDrude-Lorentz(DL)model.Itdescribesthattheopticalresponseofchargecarriersinmaterialsisrepresentedasasetofharmonic(damped)oscillators,andthee(w)willbe:e(w)=e(¥)+åiw2piw2oiw2igiw(7.1)Heree(¥)isas"high-frequencydielectricconstant",whichrepresentsthecontributionofalloscillatorsatveryhighfrequencies(comparedtothefrequencyrangeinconsideration).Theparameterswpi,woi,andgiarethe"plasma"frequency,thetransversefrequency(eigenfrequency)andthelinewidth(scatteringrate),respectivelyofi-thLorentzoscillators.The"Drude"inmodel'snamedescribestheresponseoffree(unbound)chargecarriers,andthewoiiszerointhiscase.IntheDLmodel,theLorentzoscillatorsareindependent,andthespectrumnormallycanberepresentedbythesumofindependentLorentzoscillators.Fig.7.6(a)giveanexampleshowingaspectrum(blackdots)obtainedinourexperimentwithoutpumping.ThesimulationcurvebasedonDLmodelisshownasredline.TheDLmodeldescribesamaterialsystemwithfreecarriers;however,theDLmodelcannotwellwiththeunderpumping.Thisresultindicatesthattheoscillatorsdescribedbyclassicalopticsinthemodelareinteractinginsteadofbeingindependent.Onecouldalso94Figure7.6Simulationofrspectrawithoutandwithpresenceofpumpingin(a)and(b),respectively.Theblackdotsrepresentmeasuredandredlinesaresimulation.Thesimulationmethodusedin(a)isclassicalDrude-Lorentz(DL)model,whilein(b)aFano-shapedoscillatorisaddedinDLmodel.witnessthedifferencefromtheresonanceshape.TheresonanceintheDLmodelistypicallysymmetricresemblingtheLorentzshape,buttheoneinourmeasurement(Fig.7.2)isasymmetric.TheasymmetricshapeofresonanceissimilartotheFano-resonancereportedinotherinteractingsystems.Therefore,weDLmodelbyswappingoneoftheLorentzoscillatorswithaFano-shapedLorentzoscillator,whichtheformofdielectricconstantis:e=w2pw2ow2igw1+iwpw2+wpwqwow2(7.2)Herewqisaninsertedparameterthatgivesasymmetricshape.Ifwq=0,theaboveequationrecoverstotheaforementionedDLform.Thewqrelatestoq-factorinFano-resonancetheoryby:q=wo=wq.Ifthewq(orsmallerq)islarger,thenasevereasymmetricresonanceshapeisobtained.ThesimulationresultofDLmodelwithFano-resonanceisshowninFig.7.6(b).Afteropticalpumping,thepopulationdistributionofphotoexcitedcarriersvariesintimeandenergy,thuswewillexplorethesecarriers'dynamicsincludingnon-radiativecarriersthroughstudyingthetime-dependentdielectricconstant.Fig.7.7demonstratesthe(blackdots)withpumpingindelaytimeDtat(a)0psand(b)670ps.ThesimulatedcurveshowninredlineisbasedonDLmodelwithadditionalFano-shapedLorentzresonance.Fig7.7(c)representsdi-electricconstantinrealparter(black)andimaginarypartei(red),withthesolidandshortdashed95Figure7.7Timedependentdielectricconstant.underpumping(blackdots)withsimulation(redline)basedonDLmodelwithadditionalFano-resonanceshownat(a)Dt=0and(b)Dt=670ps.(c)spectralresolveddielectricconstantinrealpart(e1,blackline)andimaginarypart(e2,redline).ThesolidandshortdashedlinerepresentthecaseatDt=0and670ps,respectively.(d)spectralresolvedrefractiveindexwithsameas(c).linesymbolsthecaseatDt=0andDt=670ps.Fig7.7(d)illustratesthecaseofrefractiveindexandtheextinctionfactork.Thekassociateswithabsorptionabyformulaa=2wck,wherewisthelightfrequency.NearDt=0,theeishowsconcaveshapenearresonanceaccompaniedwithsmallera.Thedepthofeiisclosedbutnotthesametothepeakofresonance,whilethetransitionofer(frompositivetonegative)aswellastheminimumofnissameastheresonancepeak.Astimeincreases,theoverallshapeofdielectricconstantredshiftsinenergywithattenuatedampli-tude.Theconcaveshapeofkimpliesthatthedecreasingabsorptionnearcavityresonanceallowsprobelaserlightpenetratedintosampleinsteadofbouncingback,sothevitydropsnearthecavity.96Figure7.8changefromabsorptioneffect.Differentialchangeresultingfromdifferentdecreasingimaginarypartofrefractiveindexof(a)GaAsand(b)InGaAs.7.3.2Transfer-matrixmethodThesecondwaytosimulateisthetransfer-matrixmethod,anditgivessomeinsightaboutcarriersimpactonthesystem,too.Thetransfer-matrixmethodisbasedonMaxwellequationplusthecontinuousconditionfortheelectricastheelectromagneticacrossboundariesfromonemediumtoanother.Iftheisknown,thestackoflayerscanberepresentedasasystemmatrix.OneexampleofsimulationbythismethodisalreadyshowninFig.3.2,IalsodiscussedtheresonanceshiftwiththerefractiveindexchangeinducedbybandeffectofcarriersinSec.4.5.NowIconsideriftheabsorptionofthesystemisbyalargedensityofcarriers,howthesystembehavesonitsspectrum.Theopticalabsorptionofthesystemassociatestotheimaginarypartoftheeffectiverefractiveindex.Thereducedimaginarypartoftherefractiveindexinthesystemcouldenhancethecontrastoflocalminimumandmaximumofvity.Ourmicrocavitysampleconsistsofthreelayermaterials:GaAs,AlAsandIn0:15Ga0:85As(abbreviatedasInGaAsforconvenience).IwillnotconsidertheabsorptioneffectfromAlAssincethebandgapofAlAsis2.12eV,whichisfarabovethepumpingenergy.Theimaginarypartoftherefractiveindexniofonematerialiszeroiflightenergyisbelowmaterial'sbandgap(noabsorption).Fig.7.8illustratesdifferential97changefromdifferentreduceddegreeofabsorptionpartof(a)GaAslayersand(b)InGaAslayers.GaAsandInGaAsarealsothemainconstituentmaterialsofDBRandMQW,respectively.Inanenergyrangeabovethebandgapofsemiconductors(GaAsorInGaAs),thereducingnicanresultinlargerlocalmaximumandsmallerlocalminimumofectivity.ComparingtheeffectfrombetweenGaAsandInGaAs,theGaAspartgivesmorebecausethethicknessofGaAsismuchlargerthanthatofInGaAs.Intheexperimentalresult(Fig.7.2(c)),the50%magnitudeofDR=Rrequiresthechangeofimaginaryrefractiveindexupto40%inGaAsor60%inInGaAs.Thisdeductionarisestwounansweredquestions:(1)Canalarge-densityfreeEHPresultsin40%changeinabsorptionofGaAs?SofarIhaven'tfoundanyworkreportedaboutlargechangeofabsorptioninsemiconductorsduetohigh-densityEHP.(2)Howtoexplainaninconsistenceofchangebetweentheexperimentalresultandsimulation.TobetheresonanceintheexperimentappearatenergybelowtheGaAsbandgap;however,thechangenear880nmisverysmallinoursimulationmodel.Thesimulationmodelwithtransfermatrixmethodisbasedontheclassicalopticsinthesystemoffreecarriers.Therefore,theinconsistenceindirectlyimpliesthataninteractionbeyondclassicalphysicsexistsinoursystem.7.4TheoriginofopticallyinducedresonanceFromprevioussection,alargedensityoffreecarriercancausecarrier-inducedrefractiveindexchange,butitcannotexplainalltheresultofthelargemagnitudeofDR=R.Theopticallyinducedresonanceisattributedtothecombinationeffectofcarrier-inducedrefractiveindexchangeinDBRlayersandtheenhancementofopticalnonlinearityduetoe-hcorrelationinMQW.Inthissection,IwillpresenttwocontrolexperimentstoexplorehowmuchcontributionofsucheffectcomesfrompurecavityorDBRlayers.ThecontrolexperimentisthemeasurementofDR=RfromacommercialVCSEL,whichisthoughtnoe-hcorrelationplayinginroleandistypicallynoabsorptioninDBRlayers.ThemagnitudeofDR=Rislessthan5%,whichissmallerthanoursimulation.Itdemonstratesagain98Figure7.9Carriereffectonblankcavity.spectra(blackdots)andsimulation(red)under(a)nopumpingand(b)pumping,respectively.ThesimulationisbasedonDLmodel.thattheabsorptioninDBRlayersindeedchangestheopticalpropertiesofmicrocavitysample.ThesecondcontrolexperimentisthemeasurementofDR=Rfromamicrocavitysamplewithquantumdots(QDs).Thissampleisobtainedfromourcollaborators,Lin'sgroup,anditcontains19topDBRlayersand24bottomDBRlayerswiththesamecompositestructurewithmicrocavitysamplepresentedbefore.ThebareEcisshiftedtoaround˘885nm.Thesamplehasmuchsmalleractiveregion(thetotalvolumeofQDs)comparedtopreviousmicrocavitysamplewithMQW;therefore,thee-hcorrelationissuppressed.Forconvenience,IcallthemicrocavitysamplewithQDsasblankcavity.Fig.7.9demonstratestheofblankcavityunderaconditionof(a)theabsenceofpumpingand(b)thepresenceofpumping.Undertheopticalpumpingbeamasmalldipappearsat˘883nm,whichisblueshiftcomparedtobarecavityresonance.TheredlinesarethesimulationbasedonDLmodel,whichwellwiththesetwospectra.ThisimpliestheblankcavitycanbedescribedbythesumofindependentLorentzoscillatorsnomatterifthesystemisopticallypumpedornot.TheopticalresponseofthemicrocavitywithMQWandblankcavityarequitedifferent,andtheircomparisonisshowninFig.7.10.TheleftpanelsshowDR=Rmeasuredinoursample,andtherightpanelsshowDR=Rmeasuredintheblankcavity.Thetopandbottompanelsareusingandtightlyfocusedspotbeamofpumping,respectively.Underthesameorder99Figure7.10ComparisonofblankcavitywithandwithoutMQWs.(aŒb)DifferentialspectraofthemicrocavitywithMQWsunderorfocusedexcitation.(cŒd)Sameconditionsas(aŒb)butthesamplesarethemicrocavitywithoutMQWsintheactiveregion.photoexciteddensity,theenergyshiftintheblankcavityis10meV,whichismuchshorterthanthatinoursample.Moreover,thelinewidthofresonanceinthesampleisbroaderthanthatintheblankcavity.Itgivesanevidencethatthelight-inducede-hcorrelationinMQWtheopticalpropertiesnearEc,andthee-hcorrelationmakesmorethan50%contributionsonjDR=Rj.7.5ConclusionandDiscussionInconclusion,atransientoptically-inducedresonanceappearsnearEcwithin5psafter2pspulsepumpexcitationwithnearly0.2eVexcessenergyaboveEcandthendecaysslowlywithmorethan500psdelaytimeconstant.ThedifferentialchangeDR=Rmeasuredintwo-color100pump-probespectroscopycanexceed50%,whichisthreetofourordersofmagnitudehigherthantypicalphotoexcitedmeasurementintheGaAs-basedquantumwellorsemiconductormicrocavity.Theopticallyinducedresonanceisattributedtothecombinationeffectofcarrier-inducedrefractiveindexchangeinDBRande-hinteractioninMQW.Theenergypeakofsuchresonancecanshiftin5meVundertightlyfocusedpumpingwithtwodecayrates.Ontheotherhand,theresonancehasenergysplittingundercircularlypolarizedpumpingwithbeamindicatingourmicrocavityischiralcharacteristics.Anyspectrumchangeassociateswitheffectiverefractiveindexchangeinasystem,butsuchcarrier-inducedindexchangecannotbetotallyattributedtoopticalconstantchangeduetofreecarriers.Isimulatethepump-probebyDLmodelwithanadditionalFano-shapedLorentzoscillator.Theofasymmetricshapeoftheresonanceindirectlyimpliesourmicrocavityisaninteractingsystemunderopticalpumping.Next,thesimulationwithtransfer-matrixmethoddemonstratesthat50%DR=Rneeds40%changeinabsorptionofGaAs,whichseemsunlikelyinafreeEHPsystem.Last,IpresentcomparisonofDR=RmeasurementbetweenmicrocavitywithMQWandblankcavity,whichboththeenergyshiftwithphotoexciteddensityaswellasthemagnitudeofDR=Rinourmicrocavityarelargerthantheothercase.Itrevealsthatthelight-inducede-hcorrelationcanmodifytheopticalresponsenearEcwiththecontributionofthemagnitudeofDR=Rexceeding50%.101CHAPTER8DISCUSSIONANDFUTUREDIRECTION8.1SummaryanddiscussionInthissection,Iwillillustratetheofourworkandsummarizetheessentialexperi-mentalresults.Inmythesiswork,myco-workersandIexploredthecooperativephenomenacausedbye-hcorrelationinahighlyphotoexcitedmicrocavityatroomtemperature.ThephotoexcitedcarriersformEHPwithFermilevelabout80meVabovethebandgapEgofQWinmicrocavity.AfractionofelectronsandholesinEHPcantransformtolight-inducedcorrelatede-hpairswithenergynearbutnotlockedtocavityresonanceEc.Thesecorrelatede-hpairsresultsinlasingradiationwhenthephotoexciteddensityexceedsthecriticaldensity.Fewexperimentalresultsarelistedanddiscussedinthefollowingtosupportthatthelasingradiationstudiedhereisthestimulatedemissionofcorrelatede-hpairsinsteadofcavityphotons:DynamicsofPLunderexcitation:WhenthemicrocavitysampleispumpedbyexcitationwithpowerfarabovelasingthresholdPth,abroad-bandlasingradiationcom-menceswithtransientlasingenergyred-shiftingintimedomain(Fig.4.10-c).TheeffectiveEcdeterminedbytherefractiveindexofDBRisalmostedwithin100psafterexcitation.Therefore,thered-shiftoflasingradiationcanexcludethelasingmechanismfromconven-tionallaserinwhichthelaserenergyislockedtoEc.TheenergyshiftofPLresultsfromthechemicalpotentialdropofcorrelatede-hpairsduetothedissipationofEHP.Thedy-namicsofPLresemblestheinthesemiconductorQW[14,15,16]withthesimilarphotoexciteddensitybutatcryogenictemperature.Spontaneousconstructionofquantumcorrelationisacrucialfactorresultinginthesemacroscopiccooperativephenom-ena.SuchcorrelationcanbeenhancedwiththeassistanceofEcandmakeitpossible102torealizequantummany-bodyphenomenaatroomtemperature.Therefore,theenergylevelofcorrelatede-hpairsisnearbyEcwithestimatedDE˘15meVrangenearbyEc.DynamicsofmultiplelasingfromharmonicThemultiplelasingwithdiscreteenergiesfromharmonicappearwithseparaterisingtimeinanorderofhightolowenergy(Fig.6.3).Theconditionforlasingfromeachenergystaterequiresthattheenergyofcorrelatede-hpairsisresonanttothetraversecavitymodeinducedbytheopti-callyinducedThechemicalpotentialofcorrelatede-hpairsdropsduetothedissipationofe-hpairsinEHP,sothesequentialmultipleslasingcommencefromhightolowenergystates.Inconventionallasertheory,itisexpectedthatthegroundstateoftraversemodescommenceslasingradiationwhichisinconsistenttoourexperimentalresult.Largedifferentialtancechangeinpump-probespectroscopy:Themagnitudeofdiffer-entialchangeDR=Rinpump-probespectroscopyisaslargeas0.5(Fig.7.2).TheDR=Ristheresultofeffectiveveindexchangeduetothecombinationoftwoeffects:thereductionoflightabsorptioninDBRmaterials,andtheenhancementofnonlinearitycausedbye-hcorrelation.FromtheresultofFig.7.10,theDBRcontributestoabout40%DR=R,andthee-hcorrelationleadsto60%DR=R.Besidestheexplorationofcorrelatede-hpairsatroomtemperature,ourworkprovidescom-prehensiveanalysisandpotentialimpactforapplications.Theselectivemeritsofmyresearchinclude:Theangle-resolvedspectroscopywithincreasingpumpismeasuredtocharacterizetheenergy-momentumdispersionofphotoexcitedcarriers.ThedynamicofluminescenceaswellasthetransientopticalconstantchangeareexploredthroughStreakimageandpump-probespectroscopy.Thepump-probeexperimentalsetupincludessynchronizedtwolasersystems,whichincreasesthefeasibilityofdynamicalinvestigationinsemiconductorsespe-ciallywhentheenergydifferencebetweentheexcitedpumpandPLexceeds200meV.These103measurementdeterminesthetransientEcandthedynamicsofthecorrelatede-hpairswithphotoexciteddensity.Theluminescencedisplayshighlycircular-polarizedlasingradiationeventhemicrocavitysampleisexcitedbynonresonantellipticallypolarizedlight(Fig.4.6).Itisuncommonbe-causethespinrelaxationtimeofphotoexcitedcarriersisless10psandthelasercommencesat20-30psafterexcitation,sothelasingradiationisexpectedtobeunpolarized.Thespin-polarizedlasingfrommicrocavityisattributedtoaspin-dependentstimulatedprocessofcorrelatede-hpairs.Theluminescencepolarizationchangewithpumppolarizationcancon-tributetopolarization-controlofspinlasers.Themicrocavityunderopticallyinducedharmonicproducessequentialmultiplelasing.Thedispersionofluminescenceresemblesthequantumharmonicoscillator,andthepatternofharmonicstatescanbeadjustedbytuningthebeamsize(Fig.6.2).Thebeamshapingtechniquecanbeutilizedtogenerateotherdesiredopticalpotentialtocontrolthebehaviorofluminescence.Ilistmypublicationsrelevanttoourworkinthefollowing:Ch.4:Ultrafastspin-polarizedlasinginahighlyphotoexcitedsemiconductormicro-cavityatroomtemperature.[F.Hsu,W.Xie,Y.Lee,S.Lin,andC.Lai,Phys.Rev.B91,195312(2015)]Ch.5:Transientdual-energylasinginasemiconductormicrocavity.[F.Hsu,W.Xie,Y.Lee,S.Lin,andC.Lai,Sci.Rep.5,15347(2015)]Ch.6:Multiple-pulselasingfromharmonicstatesinahighlyphotoexcitedmicrocavity.[W.Xie,F.Hsu,Y.Lee,S.Lin,andC.Lai,arXiv:1502.00040(2015)]Ch.7:Transientrstudiesofopticallyinducedresonancesinasemiconductormicrocavity.[inpreparation]1048.2FuturedirectionFromprevioussections,wehaveaconjecturetointerpretexperimentalresults:thecorrelatedelectron-holepairsformatbelowtheFermi-edgeofelectron-holeplasmainthepresenceofthecavitylightd.Thesecorrelatede-hpairsformamacroscopiccoherentstatethroughaspin-dependentstimulatedprocess,resultingincircularlypolarizedsuperradiance-likeradiation(las-ing).Lasingenergydependsonthedensityofcorrelatede-hpairsandredshiftswithtimeasaresultofdissipationviaradiation.Figure8.1Diagramofterahertzexperiment.Theparabolic-likecurvesherearethebandofquasiparticle(ortheelectron-holepairings)inquantumwells.Photoexcitedelectron-holepairsthebandabovethesecondquantizedlevels.Thecorrelatede-hpairsareassumedtoformbelowtheFermi-edgesurfaceofquasiparticle.Thecorrelatede-hpairsareexpectedtobeionizeduponFermi-edgesurfaceifthesampleisexcitedbyasecondlasingpulsewithcontrolledenergymatchingthedifferencebetweenFermi-edgesurfaceandtheenergylevelofcorrelatede-hpairs.Tocorrelatede-hpairsandtheenergylevelofe-hpairs,weproposeanexperimentshowninFig.8.1.Atunableterahertz(THz)lightsourceisusedtoexcitethehigh-densityplas-mas,andtheconsequentluminescence/radiationgeneratedbythe2-pspulsepumpexcitationismonitored.IfthereisagapcausedbytheBCS-likewithcorrelatede-hpairsoragapbetweenthecondensede-hpairsandthequasi-Fermilevel,theradiationwouldbegreatlysuppressedwhenTHzlightsourceisinresonancewiththegapthatmightbeashighas20meV.105Thereisstillalackofmicroscopictheoreticalunderstandingofthedensitydependentlasingenergyandlinewidthcausedbythepossibleformationofcorrelatede-hpairsatroomtemperature.Wehopetheresultsonlasinginhighlyphotoexcitedmicrocavitiesasreportedinthisthesiswouldleadtofurtherdevelopmentstoharnessmany-bodyeffectsandspindegreeoffreedomtocontrollasingorsuperradiance.106APPENDICES107APPENDIXATYPICALVERTICAL-CAVITYSURFACE-EMITTINGLASERCHARACTERISTICFigureA.1spectrumofVCSEL.thespectrumofVCSELprovidedfromGlobalCommunicationSemiconductors,LCCcompany.Thebarecavityresonanceisaround850nm.Theredarrowshowsexcitationwavelength785nmusingintheexperiment.Herewecompareluminescencecharacteristicsofourmicrocavitysamplewithconventionalvertical-cavitysurface-emittinglaser(VCSEL).ThecomparedlaserprovidedbyGlobalCommu-nicationSemiconductorsInccompanyis10Gps850nmVCSEL(Do188-VCSEL).ThespectrumisshowninFig.A.1.Intheexperiment,weopticallypumpVCSELwiththesameexci-tationof785-nmTi-sapphirelaserpulse.TheVCSELexhibitsnonlinearincreaseoutputvs.inputwithrelativehighlasingthresholdcomparedtoourcase(Fig.4.2).Thelargestefy(sameinSec.4.1)ofoutputintheexperimentwecanachieveislessthan0.5%at1.3Pth(Fig.A.2(b)).ComparedtoourresultFig.4.2(b),theefyreaches3%at1.3Pth,andthedifferencecanbelargerifwecomparethemwiththesametransmittedpumpTheVCSELstudiedhereexhibitslinearlypolarizedradiationinpreferenceatabovelasingthreshold,whichisdifferentthatourmicrocavitylaserpreferscircularpolarization.ThecrucialdistinctionbetweenourmicrocavitylaserandconventionalVCSEListhelarge108FigureA.2NonlinearincreaseandinVCSEL.(a)outputversusinputunderlinearlypolarizedexcitation.Thebluearrowsdenotesthelasingthreshold,correspondingto5108photoncountsperpulsetransmittedintoVCSEL.(b)Outputefyasafunctionofpumpwithlinear(black)andcircular(red)polarizations.Theefyiscalculatedfromtheratiobetweentheoutputandinputshownontheleft.energyshift.Fig.A.3demonstratetheangle-resolvedspectroscopyatselectedpumpinVC-SEL.Belowlasingthreshold,parabolic-likedispersionemergesatthebarecavityresonance1.456eV(l=852nm).Nearandabovethreshold,radiationbecomesspectrallyandangularlynarrowwithenergyexactlyatbarecavity.Comparedtospectralcharacteristicsofourresult(Fig.4.4),theenergypeakofoursampleexhibits10meVwithincreasingpumpTheoriginoflargeenergyshiftisthelargedetuningbetweenquantumwellbandgapandcavityresonance,whichenhancesaccumulationofe-hdensityresultinginphotomodultedindexchange.109FigureA.3Angle-resolvedspectroscopyinVCSEL.(a)Angle-resolvedspectroscopyinVCSELwithselectedpower0.8,1and1.3Pthmeasuredfromsx=sxcomponent.(b)2DimageofspectraversuspumpEachslicerepresentsnormalizedspectrumobtainedfromtime-integratedspectrumneark'0.110APPENDIXBREFERENCEOFTERMINOLOGYABBREVIATIONThefollowingtableliststheabbreviatedwordsorterminologyfrequentlyusedinthisdissertation:BEC)Bose-EinsteincondensationDBR)distributedBraggDoCP)degreeofcircularpolarizationFWHM)fullwidthhalfmaximume-h)electron-holee-h-g)electron-hole-photonEHP)electron-holeplasmaMQW)multiplequantumwellPL)photoluminescenceQD)quantumdotQW)quantumwellSLM)spatiallightmodulatorVCSEL)vertical-cavitysurface-emittinglaserDR=R)differentialchange111BIBLIOGRAPHY112BIBLIOGRAPHY[1]M.H.Anderson,J.R.Ensher,M.R.Matthews,C.E.Wieman,andE.A.Cornell,fiObser-vationofBose-Einsteincondensationinadiluteatomicvapor,flScience269,198(1995).[2]K.B.Davis,M.O.Mewes,M.R.Andrews,N.J.vanDruten,D.S.Durfee,D.M.Kurn,andW.Ketterle,fiBose-EinsteinCondensationinaGasofSodiumAtoms,flPhys.Rev.Lett.75,3969(1995).[3]L.V.KeldyhandA.N.Kozlov,fiCollectivepropertiesofexcitonsinsemiconductors,flSov.Phys.JETP27,521(1968).[4]E.HanamuraandH.Haug,fiCondensationeffectsofexcitons,flPhys.Rep.-Rev.Sec.Phys.Lett.33,209(1977).[5]C.Weisbuch,M.Nishioka,A.Ishikawa,andY.Arakawa,fiObservationofthecoupledexciton-photonmodesplittinginasemiconductorquantummicrocavity,flPhys.Rev.Lett.69,3314(1992).[6]H.Deng,H.Huag,andY.Yamamoto,fiExciton-polaritonBose-Einsteincondensate,flRev.Mod.Phys.82,1489(2010).[7]J.L.LinandJ.P.Wolfe,fiBose-EinsteincondensationofparaexcitonsinstressedCu2O,flPhys.Rev.Lett.71,1222(1993).[8]A.Mysyrowicz,E.Benson,andE.Fortin,fiDirectedBeamofExcitonsProducedbyStimu-latedScattering,flPhys.Rev.Lett.77,896(1996).[9]L.V.Butov,C.W.Lai,A.L.Ivanov,A.C.Gossard,andD.S.Chemla,fiTowardsBose-Einsteincondensationofexcitonsinpotentialtraps,flNature417,47(2002).[10]D.Snoke,S.Denev,Y.Liu,L.Pfeiffer,andK.West,fiLong-rangetransportinexcitonicdarkstatesincoupledquantumwells,flNature418,754(2002).[11]C.R.andK.Ploog,fiFrequencyanddensitydependentradiativerecombinationprocessesinIIIâA¸SVsemiconductorquantumwellsandsuperlattices,flAdv.Phys.40,535(1991).[12]S.Schmitt-Rink,C.Ell,andH.Haug,fiMany-bodyeffectsintheabsorption,gain,andluminescencespectraofsemiconductorquantum-wellstructures,flPhys.Rev.B33,1183(1986).[13]P.B.LittlewoodandX.J.Zhu,fiPossibilitiesforexcitoncondensationinsemiconductorquantum-wellstructures,flPhys.ScriptaT68,56Œ67(1996).[14]G.T.N.NoeII,J.H.Kim,J.Lee,Y.Wang,A.K.Wojcik,S.A.McGill,D.H.Reitze,A.A.Belyanin,andJ.Kono,fiGiantburstsfromasemiconductormagneto-plasma,flNaturePhysics8,219(2012).113[15]J.H.Kim,G.T.N.NoeII,S.A.McGill,Y.Wang,A.K.Wojcik,A.A.Belyanin,andJ.Kono,fiFermi-edgefromaquantumdegenerateelectron-holegas,flSci.Rep.3,3283(2013).[16]K.Cong,Y.Wang,J.H.Kim,G.T.NoeII,S.A.McGill,A.Belyanin,andJ.Kono,fiSuper-fromphotoexcitedsemiconductorquantumwells:Magnetictemperature,andexcitationpowerdependence,flPhys.Rev.B91,235,448(2015).[17]H.Deng,G.Weihs,C.Santori,J.Bloch,andY.Yamamoto,fiCondensationofsemiconduc-tormicrocavityexcitonpolaritons,flScience298,199(2002).[18]H.Deng,G.Welhs,D.Snoke,J.Bloch,andY.Yamamoto,fiPolaritonlasingvs.photonlasinginasemiconductormicrocavity,flProc.Natl.Acad.Sci.U.S.A.100,15,318(2003).[19]R.Balili,V.Hartwell,D.Snoke,L.Pfeiffer,andK.West,fiBose-Einsteincondensationofmicrocavitypolaritonsinatrap,flScience316,1007(2007).[20]J.Kasprzak,M.Richard,S.Kundermann,A.Baas,P.Jeambrun,J.M.J.Keeling,F.M.Marchetti,M.H.Szymaska,R.Andre,J.L.Staehli,V.Savona,P.B.Littlewood,B.De-veaud,andL.S.Dang,fiBose-Einsteincondensationofexcitonpolaritons,flNature443,409(2006).[21]K.G.Lagoudakis,M.Wouters,M.Richard,A.Baas,I.Carusotto,R.Andre,L.S.Dang,andB.Deveaud,fiQuantizedvorticesinanexcitonŒpolaritoncondensate,flNaturePhys.4,706(2008).[22]G.Roumpos,M.D.Fraser,A.Lof,S.A.Forchel,andY.Yamamoto,fiSinglevortex-antivortexpairinanexciton-polaritoncondensate,flNautrePhys.7,129(2011).[23]V.L.Berezinskii,fiDestructionoflong-rangeorderinone-dimensionalandtwo-dimensionalsystemspossessingacontinuoussymmetrygroup.II.quantumsystems.flSov.Phys.JETP34,610(1972).[24]J.M.KosterlitzandD.J.Thouless,fiOrdering,metastabilityandphasetransitionsintwo-dimensionalsystems,flJ.Phys.C66,1181(1973).[25]N.N.Bogoliubov,fiOnthetheoryof,flJ.Phys.(USSR)11,23(1947).[26]S.Utsunomiya,L.Tian,G.Roumpos,C.W.Lai,N.Kumada,T.Fujisawa,M.Kuwata-Gonokami,A.Lof,S.A.Forchel,andY.Yamamoto,fiObservationofBogoli-ubovexcitationsinexciton-polaritoncondensates,flNaturePhys.4,700(2008).[27]A.Amo,D.Sanvitto,F.P.Laussy,D.Ballarini,E.delValle,M.D.Martin,A.Lemaitre,J.Bloch,D.N.Krizhanovskii,M.S.Skolnick,C.Tejedor,andL.Viña,fiCollectivedy-namicsofapolaritoncondensateinasemiconductormicrocavity,flNature457,291(2009).[28]G.Nardin,G.Grosso,Y.Leger,B.Pietka,F.Morier-Genoud,andB.Deveaud-Pledran,fiHydrodynamicnucleationofquantizedvortexpairsinapolaritonquantumflNaturePhys.7,635(2011).114[29]C.W.Lai,J.Zoch,A.C.Gossard,andD.S.Chemla,fiPhaseDiagramofDegenerateExcitonSystems,flScience303,503(2004).[30]D.Sanvitto,A.Amo,L.Viña,R.André,D.D.Solnyshkov,andG.Malpuech,fiExciton-polaritoncondensationinanaturaltwo-dimensionaltrap,flPhys.Rev.B80,045,301(2009).[31]M.DeGiorgi,D.Ballarini,P.Cazzato,G.Deligeorgis,S.I.Tsintzos,Z.Hatzopoulos,P.G.Savvidis,G.Gigli,F.P.Laussy,andD.Sanvitto,fiRelaxationOscillationsintheFormationofaPolaritonCondensate,flPhys.Rev.Lett.112,113,602(2014).[32]H.S.Nguyen,Z.Han,K.Abdel-Baki,X.Lafosse,A.Amo,J.S.Lauret,E.Deleporte,S.Bouchoule,andJ.Bloch,fiQuantumofzero-dimensionalhybridorganic-inorganicpolaritonsatroomtemperature,flAppl.Phys.Lett.104,081,103(2014).[33]R.I.Kaitouni,O.ElDaif,A.Baas,M.Richard,T.Paraiso,L.P.,T.Guillet,F.Morier-Genoud,J.D.Ganiere,J.L.Staehli,V.Savona,andB.Deveaud,fiEngineeringthespatialofexcitonpolaritonsinsemiconductors,flPhys.Rev.B74,155,311(2006).[34]C.W.Lai,N.Y.Kim,S.Utsunomiya,G.Roumpos,H.Deng,M.D.Fraser,T.Byrnes,P.Recher,N.Kumada,T.Fujisawa,andY.Y,fiCoherentzero-stateandp-stateinanexci-tonâA¸Spolaritoncondensatearray,flNature450,529(2007).[35]D.Bajoni,P.Senellart,E.Wertz,I.Sagnes,A.Miard,A.Lemaître,andJ.Bloch,fiPolaritonlaserusingsinglemicropillarGaAs-GaAlAssemiconductorcavities,flPhys.Rev.Lett.100,047,401(2008).[36]E.Wertz,L.Ferrier,D.D.Solnyshkov,J.R.,D.Sanvitto,A.Lemaitre,I.Sagnes,R.Grous-son,A.V.Kavokin,P.Senellart,G.Malpuech,andJ.Bloch,fiSpontaneousformationandopticalmanipulationofextendedpolaritoncondensates,flNaturePhys.6,860(2010).[37]E.Wertz,A.Amo,D.D.Solnyshkov,L.Ferrier,T.C.H.Liew,D.Sanvitto,P.Senellart,I.Sagnes,A.Lemaitre,A.V.Kavokin,G.Malpuech,andJ.Bloch,fiPropagationandampli-dynamicsof1Dpolaritoncondensates,flPhys.Rev.Lett.109,216,404(2012).[38]M.Maragkou,A.J.D.Grundy,E.Wertz,A.Lemaitre,I.Sagnes,P.Senellart,J.Bloch,andP.G.Lagoudakis,fiSpontaneousnongroundstatepolaritoncondensationinpillarmicrocav-ities,flPhys.Rev.B81,081,307(2010).[39]F.Manni,K.G.Lagoudakis,T.C.H.Liew,R.Andre,andB.Deveaud,fiSpontaneouspatternformationinapolaritoncondensate,flPhys.Rev.Lett.107,106,401(2011).[40]G.Tosi,G.Christmann,N.G.Berloff,P.Tsotsis,T.Gao,Z.Hatzopoulos,P.G.Savvidis,andJ.J.Baumberg,fiSculptingoscillatorswithlightwithinanonlinearquantumflNaturePhys.8,190(2012).[41]P.Cristofolini,A.Dreismann,G.Christian,N.Franchetti,N.G.Berloff,P.Tsotsis,Z.Hadz-ibabic,P.G.Savvidis,andJ.J.Baumberg,fiOpticalphasetransitionsandtrappingofpolaritoncondensates,flPhys.Rev.Lett.110,186,403(2013).115[42]A.Dreismann,P.Cristofolini,R.Balili,G.Christian,F.Pinsker,N.G.Berloff,Z.Hatzopou-los,P.G.Savvidis,andJ.J.Baumberg,fiCoupledcounterrotatingpolaritoncondensatesinopticallyannularpotentials,flPNAS111,8770(2014).[43]S.Christopoulos,G.B.H.vonHögersthal,A.J.D.Grundy,P.G.Lagoudakis,A.V.Ka-vokin,J.J.Baumberg,G.Christmann,R.Butté,E.Feltin,J.-F.Carlin,andN.Grandjean,fiRoom-temperaturepolaritonlasinginsemiconductormicrocavities,flPhys.Rev.Lett.98,126,405(2007).[44]A.Das,J.Heo,M.Jankowski,W.Guo,L.Zhang,H.Deng,andP.Bhattacharya,fiRoomtemperatureultralowthresholdGaNnanowirepolaritonlaser,flPhys.Rev.Lett.107,066,405(2011).[45]P.Bhattacharya,T.Frost,S.Deshpande,M.Z.Baten,A.Hazari,andA.Das,fiRoomtem-peratureelectricallyinjectedpolaritonlaser,flPhys.Rev.Lett.112,236,802(2014).[46]T.Guillet,M.Mexis,J.Levrat,G.Rossbach,C.Brimont,T.Bretagnon,B.Gil,R.Butte,N.Grandjean,L.Orosz,F.Reveret,J.Leymarie,J.Zuniga-Perez,M.Leroux,F.Semond,andS.Bouchoule,fiPolaritonlasinginahybridbulkZnOmicrocavity,flAppl.Phys.Lett.99,161,104(2011).[47]W.Xie,H.Dong,S.Zhang,L.Sun,W.Zhou,Y.Ling,J.Lu,X.Shen,andZ.Chen,fiRoom-temperaturepolaritonparametricscatteringdrivenbyaone-dimensionalpolaritonconden-sate,flPhys.Rev.Lett.108,166,401(2012).[48]D.Xu,W.Xie,W.Liu,J.Wang,L.Zhang,Y.Wang,S.Zhang,L.Sun,X.Shen,andZ.Chen,fiPolaritonlasinginaZnOmicrowireabove450K,flAppl.Phys.Lett.104,082,101(2014).[49]P.P.Vasil'evandI.V.Smetanin,fiCondensationofelectron-holepairsinadegeneratesemi-conductoratroomtemperature,flPhys.Rev.B74,125,206(2006).[50]C.ComteandG.Mahler,fiDynamicStarkeffectininteractingelectron-holesystems:Light-enhancedexcitons,flPhys.Rev.B34,7164(1986).[51]J.Rudolph,D.Hagele,H.M.Gibbs,G.Kihitrova,andM.Oestreich,fiLaserthresholdreductioninaspintronicdevice,flAppl.Phys.Lett.82,4516(2003).[52]J.Rudolph,S.Dohrmann,D.Hagele,M.Oestreich,andW.Stolz,fiRoom-temperaturethresholdreductioninvertical-cavitysurface-emittinglasersbyinjectionofspin-polarizedelectrons,flAppl.Phys.Lett.87,241,117(2005).[53]M.Holub,J.Shin,D.Saha,andP.Bhattacharya,fiElectricalspininjectionandthresholdreductioninasemiconductorlaser,flPhys.Rev.Lett.98,146,603(2007).[54]H.Ando,T.Sogawa,andH.Gotoh,fiPhoton-spincontrolledlasingoscillationinsurface-emittinglasers,flAppl.Phys.Lett.73,566(1998).[55]I.Zutic,J.Fabian,andS.D.Sarma,fiSpintronics:fundamentalsandapplications,flRev.Mod.Phys.76,323(2004).116[56]S.Hovel,N.C.Gerhardt,M.R.Hofmann,J.Yang,D.Reuter,andA.Wieck,fiSpincon-trolledopticallypumpedverticalcavitysurfaceemittinglaser,flElectron,Lett.41,251(2005).[57]N.Gerhardt,S.Hovel,M.Hofmann,J.Yang,D.Read,andA.Wieck,fiEnhancementofspininformationwithverticalcavitysurfaceemittinglasers,flElectron,Lett.42,88(2006).[58]S.Iba,S.Koh,K.Ikeda,andH.Kawaguchi,fiRoomtemperaturecircularlypolarizedlasinginanopticallyspininjectedvertical-cavitysurface-emittinglaserwith(110)GaAsquantumwells,flAppl.Phys.Lett.98,081,113(2011).[59]I.A.Shelykh,A.Kavokin,Y.G.Rubo,T.C.H.Liew,andG.Malpuech,fiPolaritonpolarization-sensitivephenomenainplanarsemiconductormicrocavities,flSemicond.Sci.Technol.25,013,001(2010).[60]A.Kavokin,G.Malpuech,andM.Glazov,fiOpticalspinHalleffect,flPhys.Rev.Lett.95,136,601(2005).[61]C.Leyder,M.Romanelli,J.P.Karr,E.Giacobino,T.C.H.Liew,M.Glazov,A.Kavokin,G.Malpuech,andA.Bramati,fiObservationoftheopticalspinHalleffect,flNaturePhys.3,628(2007).[62]P.Renucci,T.Amand,X.Marie,P.Senellart,J.Bloch,B.Sermage,andK.V.Kavokin,fiMicrocavitypolaritonspinquantumbeatswithoutamagneticAmanifestationofCoulombexchangeindenseandpolarizedpolaritonsystems,flPhys.Rev.B72,075,317(2005).[63]A.V.Kavokin,J.J.Baumberg,G.Malpuech,andF.P.Laussy,Microcavities(OxfordSci-encePublication,2007).[64]T.Byrnes,N.Y.Kim,andY.Yamamoto,fiExcitonŒpolaritoncondensates,flNaturePhys.10,803(2014).[65]T.Horikiri,P.Schwendimann,A.Quattropani,S.A.Forchel,andY.Yamamoto,fiHigherordercoherenceofexciton-polaritoncondensates,flPhys.Rev.B81,033,307(2010).[66]S.S.Hodgman,R.G.Dall,K.G.H.Manning,A.G.Baldwin,andA.G.Truscott,fiDirectmeasurementoflong-rangethird-ordercoherenceinBose-Einsteincondensates,flScience331,1046(2011).[67]D.Bajoni,P.Senellart,A.Lemaitre,andJ.Bloch,fiPhotonlasinginGaAsmicrocavity:Similaritieswithapolaritoncondensate,flPhys.Rev.B76,201,305(2007).[68]E.Kammann,H.Ohadi,M.Maragkou,A.V.Kavokin,andK.G.Lagoudakis,fiCrossoverfromphotontoexciton-polaritonlasing,flNewJ.Phys.14,105,003(2012).117[69]N.Y.Kim,K.Kusudo,C.Wu,N.Masumoto,A.Lof,S.N.Kumada,L.Worschech,A.Forchel,andY.Yamamoto,fiDynamicald-wavecondensationofexci-tonâA¸Spolaritonsinatwo-dimensionalsquare-latticepotential,flNaturePhys.7,681(2011).[70]T.Jacqmin,I.Carusotto,I.Sagnes,M.Abbarchi,D.D.Solnyshkov,G.Malpuech,E.Ga-lopin,A.Lemaitre,J.Bloch,andA.Amo,fiDirectobservationofDiracconesandainahoneycomblatticeforpolaritons,flPhys.Rev.Lett.112,116,402(2014).[71]N.Masumoto,N.Y.Kim,T.Byrnes,K.Kusudo,A.Lof,S.A.Forchel,andY.Yamamoto,fiExcitonŒpolaritoncondensateswithbandsinatwo-dimensionalkagomelattice,flNew.J.Phys.14,065,002(2012).[72]T.C.H.Liew,A.V.Kavokin,andI.A.Shelykh,fiOpticalcircuitsbasedonpolaritonneuronsinsemiconductormicrocavities,flPhys.Rev.Lett.101,016,402(2008).[73]T.C.H.Liew,A.V.Kavokin,T.Ostatnicky,M.Kaliteevski,I.A.Shelykh,andR.A.Abram,fiExciton-polaritonintegratedcircuits,flPhys.Rev.B82,033,302(2010).[74]M.W.Wu,J.H.Jiang,andM.Q.Weng,fiSpindynamicsinsemiconductors,flPhys.Report61,61(2010).[75]Y.Ohno,R.Terauchi,T.Adachi,F.Matsukura,andH.Ohno,fiSpinrelaxationinGaAs(110)quantumwells,flPhys.Rev.Lett.83,4196(1999).[76]P.Yeh,OpticalWavesinLayeredMedia(WileyInterscience,2005).[77]G.C.DeSalvo,W.F.Tseng,andJ.Comas,fiEtchratesandselectivitiesofcitricacid/hdrogenperoxideonGaAs,Al0:3Ga0:7As,In0:2Ga0:8As,In0:53Ga0:47As,In0:52Al0:48As,andInP,flJ.Electrochem.Soc.139,831(1992).[78]E.A.Donley,T.P.Heavner,F.Levi,M.O.Tataw,andS.R.Jefferts,fiDouble-passacousto-opticmodulatorsystem,flRev.Sci.Instrum.76,063,112(2005).[79]L.A.RomeroandF.M.Dickey,fiLosslesslaserbeamshaping,flJ.Opt.Soc.Am.13,751(1996).[80]R.Atanasov,F.Bassani,A.D'Andrea,andN.Tomassini,fiExcitonpropertiesandopticalresponseinInGaAs/GaAsstrainedquantumwells,flPhys.Rev.B50,14,381(1994).[81]A.T.FribergandR.J.Sudol,fiPropagationparametersofgaussianSchell-modelbeams,flOpt.Commun.41,383(1982).[82]M.Oestreich,J.Rudolph,R.Winkler,andD.Hagele,fiDesignconsiderationsforsemicon-ductorspinlasers,flSupperlatticesMicrostruct.37,306(2005).[83]C.Gothgen,R.Oszwaldowski,A.Petrou,andI.Zutic,fiAnalyticalmodelofspin-polarizedsemiconductorlasers,flAppl.Phys.Lett.93,042,513(2008).[84]J.Lee,R.Oszwaldowski,C.Gothgen,andI.Zutic,fiMappingbetweenquantumdotandquantumwelllasers:Fromconventionaltospinlasers,flPhys.Rev.B85,045,314(2012).118[85]J.Lee,S.Bearden,E.Wasner,andI.Zutic,fiSpin-lasers:Fromthresholdreductiontolarge-signalanalysis,flAppl.Phys.Lett.105,042,411(2014).[86]N.C.Gerhardt,M.Y.Li,J.H.,H.Hopfner,T.Achemann,andM.R.Hofmann,fiUltra-fastspin-inducedpolarizationoscillationswithtunablelifetimeinvertical-cavitysurface-emittinglasers,flAppl.Phys.Lett.99,151,107(2011).[87]N.C.GerhardtandM.R.Hofmann,fiSpin-controlledvertical-cavitysurface-emittinglasers,flAdv.Opt.Technol.2012,268,949(2012).[88]H.Hopfner,M.Lindemann,N.C.Gerhardt,andM.R.Hofmann,fiControlledswitchingofultrafastcircularpolarizationoscillationsinspin-polarizedvertical-cavitysurface-emittinglasers,flAppl.Phys.Lett.104,022,409(2014).[89]M.AdamsandD.Alexandropoulos,fiParametricanalysisofspin-polarizedVCSELs,flIEEEJ.QuantumElectron.41,287(2009).[90]B.R.Bennett,R.A.Soref,andJ.A.delAlamo,fiCarrier-inducedchangeinrefractiveindexofInP,GaAsandInGaAsP,flIEEEJ.QuantumElectron.26,113(1990).[91]K.Iga,F.Koyama,andS.Kinoshita,fiSurfaceemittingsemiconductorlasers,flIEEE.J.QuantumElectron.24,1845(1988).[92]C.Chang-Hasnain,fiTunableVCSEL,flIEEEJ.Sel.TopicsQuantumElectron.6,978(2000).[93]F.Koyama,fiRecentadvancesofVCSELphotonics,flJ.Lightw.Technol.24,4502(2006).[94]C.H.Henry,fiTheoryofthelinewidthofsemiconductorlasers,flIEEEJ.QuantumElectron18,259(1982).[95]C.H.Henry,fiPhasenoiseinsemiconductorlasers,flJ.Lightw.Technol.4,298(1986).[96]Y.ArakawaandA.Yariv,fiTheoryofgain,modulationresponse,andspectrallinewidthinAlGaAsquantumwelllasers,flIEEEJ.QuantumElectron21,1666(1985).[97]K.PanajotovandF.Prati,PolarizationdynamicsofVCSELs,inVCSELs(SpringerBerlinHeidelberg,2013).[98]W.Xie,F.K.Hsu,Y.S.Lee,S.D.Lin,andC.W.Lai,fiMultiple-pulselasingfromanopticallyinducedharmonicinahighlyphotoexcitedmicrocavity,flarXivp.1502.00040(2015).[99]F.K.Hsu,X.W.,Y.S.Lee,S.D.Lin,andC.W.Lai,fiUltrafastspin-polarizedlasinginahighlyphotoexcitedsemiconductormicrocavityatroomtemperature,flPhys.Rev.B91,195,312(2015).[100]P.R.EasthamandP.B.Littlewood,fiBosecondensationofcavitypolaritonsbeyondthelinearregime:Thethermalequilibriumofamodelmicrocavity,flPhys.Rev.B64,235,101(2001).119[101]K.KamideandT.Ogawa,fiGround-statepropertiesofmicrocavitypolaritoncondensatesatarbitraryexcitationdensity,flPhys.Rev.B83,165,319(2011).[102]K.Kamide,M.Yoshita,H.Akiyama,M.Yamaguchi,andT.Ogawa,fiFano-resonancegainbydephasingelectron-holeCooperpairsinsemiconductors,flJ.Phys.Soc.Jpn.81,093,706(2012).[103]X.Zhu,M.S.Hybertsen,andP.B.Littlewood,fiElectron-holesystemrevisited:Avaria-tionalquantummontecarlostudy,flPhys.Rev.B54,13,575(1996).[104]M.WoutersandI.Carusotto,fiExcitationsinanonequilibriumBose-Einsteincondensateofexcitonpolaritons,flPhys.Rev.Lett.99,140,402(2007).[105]J.Keeling,P.R.Eastham,M.H.Szymanska,andP.B.Littlewood,fiBCS-BECcrossoverinasystemofmicrocavitypolaritons,flPhys.Rev.B72,115,320(2005).[106]K.KamideandT.Ogawa,fiWhatdeterminesthewavefunctionofelectron-holepairsinpolaritoncondensates?flPhys.Rev.Lett.105,056,401(2010).[107]M.Yamaguchi,K.Kamide,T.Ogawa,andY.Yamamoto,fiBEC-BCS-lasercrossoverincoulomb-correlatedelectron-hole-photonsystems,flNew.J.Phys.14,065,001(2012).[108]M.Yamaguchi,K.Kamide,R.Nii,T.Ogawa,andY.Yamamoto,fiSecondthresholdsinBEC-BCS-lasercrossoverofexciton-polaritonsystems,flPhys.Rev.Lett.111,026,404(2013).[109]D.S.Jin,M.R.Matthews,J.R.Ensher,C.E.Wieman,andE.A.Cornell,fiTemperature-dependentdampingandfrequencyshiftsincollectiveexcitationsofadiluteBose-Einsteincondensate,flPhys.Rev.Lett.78,764(1997).[110]C.J.PethickandH.T.C.Stoof,fiCollisionalfrequencyshiftsofabsorptionlinesinanatomichydrogengas,flPhys.Rev.A64,013,618(2001).[111]M.O.OktelandL.S.Levitov,fiOpticalexcitationsinanonidealbosegas,flPhys.Rev.Lett.83,6(1999).[112]R.J.Donnelly,fiThetwtheoryandsecondsoundinliquidhelium,flPhys.Today62,34(2009).[113]P.G.Lagoudakis,M.D.Martin,J.J.Baumberg,G.Malpuech,andA.V.Kavokin,fiCoexis-tenceoflowthresholdlasingandstrongcouplinginmicrocavities,flJ.Appl.Phys.95,2487(2004).[114]H.Ohadi,E.Kammann,T.C.H.Liew,K.G.Lagoudakis,A.V.Kavokin,andP.G.Lagoudakis,fiSpontaneoussymmetrybreakinginapolaritonandphotonlaser,flPhys.Rev.Lett.109,016,404(2012).[115]R.H.Dicke,fiCoherenceinspontaneousradiationprocesses,flPhys.Rev.93,99(1954).120[116]V.V.Zheleznyakov,V.V.Kocharovskii,andV.V.Kocharovskii,fiPolarizationwavesandsuper-radianceinactivemedia,flSov.Phys.Usp.32,835(1989).[117]Y.D.Jho,X.Wang,J.Kono,D.H.Reitze,X.Wei,A.A.Belyanin,V.V.Kocharovskii,V.V.Kocharovskii,andG.S.Solomon,fiCooperativerecombinationofaquantizedhigh-densityelectron-holeplasmainsemiconductorquantumwells,flPhys.Rev.Lett.96,237,401(2006).[118]Y.D.Jho,X.Wang,D.Read,J.Kono,A.A.Belyanin,V.V.Kocharovskii,V.V.Kocharovskii,andG.S.Solomon,fiCooperativerecombinationofelectron-holepairsinsemiconductorquantumwellsunderquantizingmagneticflPhys.Rev.B81,155,314(2010).[119]D.S.ChemlaandD.A.B.Miller,fiRoom-temperatureexcitonicnonlinear-opticaleffectsinsemiconductorquantum-wellstructures,flJ.Opt.Soc.Am.B2,1155(1985).[120]M.Colocci,M.Gurioli,andV.Vinattieri,fiThermalionizationofexcitonsinGaAs/AlGaAsquantumwellstructures,flJ.Appl.Phys.68,2809(1990).[121]M.H.Szymanska,J.Keeling,andP.B.Littlewood,fiNonequilibriumquantumcondensationinanincoherentlypumpeddissipativesystem,flPhys.Rev.Lett.96,230,602(2006).[122]P.MandelandM.Tlidi,fiTransversedynamicsincavitynonlinearoptics(2000âA¸S2003),flJ.Opt.B:QuantumSemiclass.Opt.6,R60(2004).[123]C.J.Chang-Hasnain,J.P.Harbison,G.Hasnain,A.C.VonLehmen,L.T.Florez,andN.G.Stoffel,fiDynamic,polarization,andtransversemodecharacteristicsofverticalcavitysurfaceemittinglasers,flIEEEJ.QuantumElectron.27,1402(1991).[124]H.Zhang,G.Mrozynski,A.Walrabenstein,andJ.Schrage,fiAnalysisoftransversemodecompetitionofVCSELsbasedonaspatiallyindependentmodel,flIEEEJ.QuantumElec-tron.40,18(2004).[125]J.P.Reithmaier,M.Rohner,H.Zull,F.Schafer,A.Forchel,P.A.Knipp,andT.L.Reinecke,fiSizedependenceofopticalmodesinphotonicquantumdots,flPhys.Rev.Lett.78,378(1997).[126]S.W.Koch,F.Jahnke,andW.W.Chow,fiPhysicsofsemiconductormicrocavitylasers,flSemicond.Sci.Technol.10,739(1995).[127]R.Sarzala,T.Czyszanowski,M.Wasiak,M.Dems,L.Piskorski,W.Nakwaski,andK.Panajotov,fiNumericalself-consistentanalysisofVCSELs,flAdv.Opt.Technol.2012,17(2012).[128]D.Campi,G.Coli,andM.Vallone,fiFormulationoftheopticalresponseinsemiconductorsandstructures,flPhys.Rev.B57,4681(1998).[129]C.Tanguy,fiAnalyticalexpressionofthecomplexdielectricfunctionfortheHulthenpoten-tial,flPhys.Rev.B60,10,660(1999).121[130]Y.H.Lee,A.Chavez-Pirson,S.W.Koch,H.M.Gibbs,S.H.Park,J.Morchange,A.Jef-fery,N.Peyghambarian,L.Banyai,A.C.Gossard,andW.Wiegmann,fiRoom-temperatureopticalnonlinearitiesinGaAs,flPhys.Rev.Lett.57,2446(1986).[131]L.Huang,J.P.Callan,E.N.Glezer,andE.Mazur,fiGaAsunderintenseultrafastexcitation:responseofthedielectricfunction,flPhys.Rev.Lett.80,185(1998).122