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ABSTRACT

A GRAVITATIONAL INVESTIGATION OF THE SCIPIO OIL
FIELD IN HILLSDALE COUNTY, MICHIGAN, WITH A
RELATED STUDY FOR OBTAINING A VARIABLE
ELEVATION FACTOR

by Donald Warren Merritt

A detailed gravity survey was conducted in the
north central portion of Hillsdale County, Michligan for
the purpose of delineating gravity anomalies associated
with the Sciplio 0il Field. The error in the Bouguer
gravity reduction caused by near surface density vari-
atlions 1in the glacial drift was minimized by a method
developed for obtaining an individual station elevation
factor from the elevation and observed gravity values
of surrounding stations.

Fourier analysls involving band pass fillters 1is
successful in 1solatling elongate positive anomalies
which are assoclated with the geographical location of
the Sciplo Field. These anomalles have a magnitude 1in
excess of 0.2 mgal and are similar to those theoretically
calculated from a geologic model of the producling zone

based on porosity values obtalned from core analysis.



Donald Warren Merritt

The complexity of the Bouguer surface in the study
area precludes the objective use of polynomial and double
Fourier series analysis for delineating anomalies associ-
ated with the production.

A regional gravlty profile striking northeast into
the Michigan Basin reveals a displacement in the uniform
gravity gradient. This displacement, which occurs along
the Albion-Sciplo 0il Field is interpreted to originate
from basement topographlic relief in the form of a fault-
line scarp. Renewed activity along the fault associlated
with the scarp may have established the conditlons neces-
sary for the development of the linear Albion-Scipio 0il

Fleld.
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INTRODUCTION

Objective

The 1957 discovery of oil in an anomalous dolomite
zone 1n the Middle Ordovician rocks of Hillsdale County,
Michigan, led to the eventual development of the Albion-
Scipio 01l Field. Preceding the discovery, the annual
production from the Trenton and Black River Formatlons
in Michigan was slightly in excess of 10,000 barrels. By
1961, the annual productlon approached the 12 million mark
as shown 1in Figure 1. The Alblon-Scipio Field is located
in Hillsdale, Jackson, and Calhoun Counties and, although
the length exceeds 35 miles, the average width 1s less
than one mille.

Geological exploration methods used for extending
the production proved unsatisfactory, resulting in a
large increase in geophysical activity 1lnvolving both
selsmic and gravity methods. The confidentlal nature of
these company conducted 1lnvestigations has resulted in a
paucity of published information on the applicability of
the geophysical approach to delineating the geographical
location of the production.

The lack of published information, other than the

results of an 1solated gravity profile across the area by
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Ferris (1962), provided the incentive for conducting a
gravity investigation in the north central portion of
Hillsdale County. The threefold purpose of the investi-
gation was to develop a method of minimizing the error
in the Bouguer gravity reduction due to near surface
density variatilons, study the applicability of repre-
sentative gravity anomaly enhancement methods for iso-
lating the anomaly directly or indirectly assoclated
with the Sciplo 0il Field, and ascertain the geological
source of the gravity anomaly assoclated with the Scipio

0il Field.

Aggroach

A generalized three dimensional geological model of
the produclng structure was constructed from subsurface
geological data. Appropriate denslty contrasts between
the productive dolomite and the non-productive dolomitic
limestone host rock were assigned to the model, and the
gravity effect of the structure calculated at the surface
elevations. This study provided limits on the magnitude
and configuration of the assoclated gravity anomaly.

The error in the assumed density value used on the
Bouguer gravity reduction may mask the small magnitude
geologically significant gravity anomalies. Thils pro-
blem 1s common to gravity surveylng throughout Michilgan,
but is particularly pronounced 1n the area of the Scipilo

Field. The marked surface topography, and the abrupt



horizontal changes in the composition of the glacial
drift precluded the use of a single density value. As
a result, a method was developed and evaluated through
the use of model studles by which a near surface repre-
sentative density value is obtained from the gravity
data for each station 1in the survey.

The field data was corrected wlth individual
station elevation factors, and the Bouguer gravity was
analyzed with polynomial, double Fourler series and

linear filtering methods.

Locatlion of the Study Area

The geographical location of the area of investi-
gation includes portions of Allen, Litchfield, Scipio,
Fayette, Moscow, and Adams Townships 1n Hillsdale
County, and small portions of Pulaski and Hanover Town-
ships in Jackson County, Michigan. Figure 2 is a location

map of the area of 1lnvestigation.

Physiography of the Study Area

The physiographic character of the county 1is
appropriately described by Veatch (1924) in the statement
that,

« o« o« the relief is largely constructional, due
mainly to the uneven disposition of a thick layer
of glaclal material. The county has the rolling
or blllowy surface, smooth rounded slopes, sandy
and gravelly knobs and ridges, numerous lakes and
swampy depressions, sandy and gravelly plains, and
nearly level clay plains characteristic of land

of glacial origin.
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The elevations in the survey area range from 1,000 to

1,300 feet.



GEOLOGICAL SETTING

In 1957, random drilling resulted in commercial
production from the Middle Ordovician carbonates 1in
Hillsdale County, with subsequent drilling resulting in
the development of the Albion-Scipio Fleld. The pro-
duction comes from the Trenton-Black River Formations
(Figure 3) and is confined to an anomalous dolomite zone
formed in the regionally dolomitic limestone province.
The vertlcal extent of the dolomite zone 1s not defined
due to the lack of drilling below the oil-water contact,
but is at least 610 feet thick.

A structure contour map on top of the Trenton
Formation is shown in Figure 4, illustrating the northwest
regional dip that controls the -2750 foot gas-0ll contact
datum and the -2920 foot oll-water contact datum in the
Scipio Field (Bishop, 1967).

Bishop concludes from his Albion-Scipio Field study
that 1t,

. + « exhibits a northwest-southeast trending

syncline developed on the Middle Ordovician

Trenton limestone. This northwest plunging

syncline has approximately 30 feet of relief,

and 1s directly associated with fracturing,

solution activity, dolomitization, and the

development of a porosity oll trap in the

Trenton-Black River limestones. The Albion-

Scipio Field was formed in Devonian time by a
movement along lines of pre-exlisting weakness

7
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in the basement complex. The movement was re-
flected in the tilted Trenton-Black River lime-
stones not as a single continuous fracture, but
as a system of fractures trending northwest-
southeast. These fractures served as a channel
way for solutions that dissolved the calcium
carbonate and provided sufficient additional
magnesium lons to make possible the precipitation
of dolomite. This solution activity created an
approximate 8-9% loss of volume of the Trenton-
Black River Formations. Devonlan sedimentation
filled the subsiding depression and 1t was no
longer present after Devonian time.



FIELD METHODS

Gravity readings were taken along all available
roads at approximate 500 foot intervals. Additional
traverses were run cross-country where the road system
failed to provide uniform coverage in the area, and
where 1t was deslirable to have additional coverage
across the production. Reglonal coverage was extended
through the use of gravity readings from a previous
quarter mile station spacing survey. Accuracy of the
meter readings was malintained by taklng repeat obser-
vations at each station until duplication was obtained
within 0.2 scale divisions (sd.). World Wide Meter
number 45 (calibration constant of 0.10093 mgal/sd) was
used throughout the survey.

Station elevations were established by leveling.
Elevation control was maintained by tying to U. S. Geo-
logical Survey bench marks and closing all traverse lines.
The largest closure error throughout the survey was less

than 0,25 feet.

11



DATA REDUCTION

Observed Gravity

Base tles were made on an hourly interval and the
mid-hour station reoccupied immediately after the base
tie. Drift curves were used to eliminate meter drift
and tidal effects. The drift rate between base ties was
checked by the mid-hour repeat reading. If the drift
rate exceeded a scale divislon per hour, or the mid-hour
repeat reading did not check within 0.2 sd., the stations
observed within that hour were reoccupiled. After cor-
recting the station readings for meter drift, they were
multiplied by the meter constant to obtain the station

observed gravity.

Latitude Correction

Station distances were calculated from the stadia
intervals and plotted on 7-1/2 minute U. S. Geological
Survey topographic sheets. The station coordinates were
taken from the topographic sheets in reference to the
Michigan Coordinate System, East Zone, established by
the U. S. Coast and Geodetic Survey.

Latitude corrections were made by rotating out of
this system 1nto the latitude and longitude system and

applying a correction factor of 0.0002474 mgal/ft.

12
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Elevation and Mass Correction

General Statement

The elevation correction compensates for the normal
vertical gradient of gravity by applying a correction
factor to the difference in elevation between the station
and a reference datum. The mass correction compensates
for the mass of a horizontal sheet of infinite extent
and thickness equal to thls same elevation difference.
Because both corrections are linear functions of the

elevation, they can be combined and expressed as

g(em) = (0.09406 - 0.01276 o) h (1)

where h 1s the elevation difference in feet between the
statlon and the datum, and o is the density in cgs units
assumed for the material within this interval. Through-
out the remainder of this report, the combined correction
willl be referred to as the elevation factor.

The small magnitude (generally less than 0.3 mgals)
of the geologically significant anomalies 1n the survey
area comblned with the pronounced surface topography and
abrupt horizontal changes in the glacial drift compo-
sition precludes the use of a single density value for
the entlre area. The use of a single density value and
the ensulng errors for other geological conditions are
presented in an excellent review of the subject by

Vajk (1956).
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The relative error in gravity between two stations
for a relative error in density 1is shown in Figure 5 as
a function of the elevation differences. This graph,
modified from Ivanhoe (1957), provides an easy method
for checking the feasibility of a suspected correlation
between an anomaly and the corresponding topographic
feature. For example, a 0.1 mgal anomaly would be
created by a 40 foot high topographic feature if the
density assumed in the Bouguer reduction was 0.2 gm/cc

too low.

Previous Work

The importance of the elevation factor in gravity
surveyling has been stressed in many published papers and
a varlety of techniques have been developed to minimize
this error in the reduction of gravity data. The most
significant of these methods are reviewed to provide
background for the method developed in this study.

Nettleton (1939) was the first to publish a method
for obtaining a local representative elevation factor
from the gravity data. His approach involved

. « . making a special traverse of gravimeter

stations across a topographic feature, reducing

these stations for several different densitiles,
and finding the density value for which the re-
duced curve had a minimum correlation with the
topography. In this method, the sample is an
entire topographic unit and the value obtalned

1s the average density of all material within
the elevation range of the gravity traverse.
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Nettleton's method was later put into a computational
form by Jung (1953).

Siegert (1942) assumes the gravity in the profile
varies linearly with distance. He draws straight lines
through the gravity and elevation values of the stations
on elther side of a station, and interpolates the gravity
and elevation for that station from the straight lines.
This process 1s repeated for all stations in the profile.
For each station, the difference between the actual
gravity and elevation value and the interpolated value

will satisfy the equation

g = -kh (2)
where g = the difference between the actual and inter-
polated gravity,
h = the difference between the actual and inter-
polated elevation, and
k = the elevatlon factor.

The quantity

I(g + Kkh)® (3)

1s minimized and the representative elevation factor
for the entire profile is obtained.

The use of gravity profiles for determining a
local elevation factor is limited to areas where there

is no correlation between the gravity values and the
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topographic features, there are no density changes within
the length of the profile, and the gravity anomalles are
smooth in comparison to the topographic relief. Another
severe limitation of the profile method is the amount of
field work required to establish the areal limits for
which an elevation factor willl apply.

In an attempt to circumvent some of the limitations
of profile methods, Grant and Elsaharty (1962) extended
the principles of profiling to include all of the data in
the survey area. After reducling the gravity data with an
arbitrary constant density value, they digitized both the
elevation and Bouguer gravity maps onto a grid base. Both
of these gridded maps are subjected to a least squares
trend removal process to obtain the residual values. The

true gravity residual (g) 1s then represented by the

equation
g = rg + k(x,y) h (4)
where rg = residual gravity values
h = residual elevation values, and
k(x,y) = the elevation factor to be determined as

some polynomial function of the coordinates.
The coefficients for the elevation factor are ob-
tained by using the least squares method to minimize the
function (g), and are used to alter the original density
value to produce the optimum density value for a given

set of coordinates.
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Legge (1944) suggested using a polynomial function
of the elevation and station coordinates to represent
the Bouguer gravity in the area. The difference between
the polynomlal representation and the actual values 1s
minimized by the least squares method to produce an
elevation factor for a data set. This method 1s developed
here to produce an elevation factor for each station 1n
the survey, based on the observed gravity values and
elevation differences of the immedliately surrounding
stations. The method has the advantage of requiring no
preliminary data reduction, and eliminates the need for
determining the areal limits for which a given density
value should apply.

Approach for Obtalning a
Varlable Elevation Factor

The data set to be used for obtaining an elevation
factor for a given station is composed of observed gravity
and elevation values of all stations which fall within a
predetermined radius of the station. The coordinates of
the stations in the data set are made relative to the
coordinates of the center station and the observed gravity
values of the data set are approximated with a polynomial
equation. The equation 1is a first degree function of the
station elevations, and a first, third, or fifth degree

function of the station coordinates.
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The least squares process produces a set of co-
efficients for the polynomial equation. The coefficient
assocliated with the elevatlion term 1s the desired elevation
factor for the center station and 1s based on the observed
gravity and elevation values of the immediately surround-

ing stations.

Theorx

The first degree polynomial equation can be ex-

pressed as

Ogp = Ko + K1 £x (1) + K2 zy(i) - K3 zh(i) (5)

where Ogp the predicted observed gravity,

K (1)

the coefficients (1 = 0,1,2,3)

x (1) and y (1) = the relative station coordinates,
and h (1) = the station elevations with reference to
some datum.

The function Ogp 1s chosen such that

F (K) = 5 (Og - Ogp)° (6)

is a minimum, where Og is the measured observed gravity.
The coefficients of Ogp are found by solving the equations
obtalned by setting the first partial derivatives of F
equal to zero. These equations may be expressed in

matrix form as:
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[~ 7] B
N 5Xx  £Y  -th | K, 0. |
g
X $X°  IXY -IhX K, 20X
. = (7)
$Y  IXY IY® -zIhY K, $0.Y
g
-$h -IXh -IYh  Ih° K $0_h
L p— - 3.4 - g -

or symbolically as
(A} - [B] = [C] . (8)

The values in the coefficient matrix are obtained
by multiplying both sides of the equation by the inverse

of the A matrix to gilve

[B] = [AJ"Y .« [c] . (9)

The last term in the coefficient matrix is the
elevation factor obtained from the data set. Higher
order polynomials in x and y require expanding the matrix
equations.

Elevation of the Proposed
Method

The accuracy of the proposed method was evaluated
through the use of gravity models. Geological conditions,
ring size, and degree of approximating polynomial were
varied in these models to determine thelr effect on the
accuracy of the method. The accuracy 1is determined by

comparing the known density and Bouguer gravity values
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with the values obtained through the use of the calcu-
lated elevation factor. The Bouguer gravity was calcu-

lated by the equation

GBAc = 0g + Ef x h (10)

where GBAC calculated Bouguer gravity
Og = measured observed gravity and not the
predicted

Ef

calculated elevation factor
h = station elevation.

The observed gravity values from three subsurface
sources were calculated at the surface elevations. The
gravity stations are at 1,000 foot intervals on grid lines
5,000 feet apart. The sources include a glacial drift
layer of varying thickness and density, a model of an
actual buried bedrock river channel, and a reef structure
modeled after the Bell River Mills reef in St. Clair
County, Michigan.

The spatial relationshilp of the reef and the bedrock
channel are shown in Figure 6, while the station locations
and elevatlons are displayed in Figure 7.

Gravity Model of the Glaclal Drift.--The glacilal

drift thickness 1s equal to the magnitude of the station
elevation. A denslty change within the drift was ob-
tained by calculating the observed gravity values at the

station elevations using a density of 2.1 gm/cc and 2.2
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gm/cc. The areal limits for each density are shown at
the top of each map.

The observed gravity values were processed with a
fifth degree polynomial and ring sizes of 6, 8, and 10
thousand feet. The graphs in Figures 8-a and 8-b show
the percentage difference between the known and calcu-
lated density and Bouguer gravity values. The error in
individual station density and station gravity for a
10,000 foot radius 1s shown in Figures 9 and 10.

The graphs show that an 8,000 foot ring radius
produces the most accurate results for both the density
and gravity values. The maps of the density and gravity
errors show the major differences are associated with
the density contrast zone and not with the sharp ele-
vation changes displayed in Figure 7.

Gravity Model of the Glacial Drift and Bedrock

Channel.--The bedrock channel, approximately 1,000 feet
wide and 150 feet thick, extends across the map area and
1s buried immedlately beneath the base of the drift. The
gravitational attraction of this feature was calculated
at the surface elevations using a negative denslity con-
trast of 0.3 gm/cc. The calculated effect, using the
method described by Talwani and Ewing (1960), is pre-
sented in Figure 11.

These station values were algebralically combined

with the glacial drift values and the model processed
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with a third and fifth degree polynomial. A radius of
6, 8, and 10 thousand feet was used for each degree
polynomlal., The difference between the known station
density and the density obtalined from the calculated
elevation factor, along with the difference between

the known and calculated station gravity are shown in
graphic form in Figures 12-a and 12-b for a third de-
gree polynomial. Similar values for the fifth degree
polynomial are shown in Figures 13-a and 13-b. These
figures indicate that a 10,000 foot ring radius produces
the most accurate results, and for that ring radius there
1s very little differenee 1n accuracy between the third
and fifth degree polynomial. The error 1n station den-
sity for a third and fifth degree polynomial and 10,000
foot ring radius is shown in Figures 14 and 15. The
assoclated errors in gravity are shown in Figures 16 and
17.

The graphs for both the third and fifth degree
polynomial and various ring sizes show the 10,000 foot
radius produces the most accurate results, with the
third degree slightly more accurate than the fifth.
There is, however, a marked decrease in accuracy when
compared to the model involving only density variations
in the drift. The maps showlng the error in the calcu-
lated station density and gravity for the fifth degree

polynomlial and ring size of 10,000 feet reveal that
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these errors are assoclated with both the river channel
and the density contrast zone 1n the drift.
Gravity Model of the Glacial Drift and Reef

Structure.--The reef structure was buried 2,500 feet
beneath the glacial drift and assigned a positive den-
sity contrast of 0.45 gm/cc. The gravity effect of
this structure was calculated at the surface elevatilons
by the same method used for calculating the effect of
the river channel. The assoclated anomaly is shown in
Figure 18 and closely approximates the magnitude and
shape of the observed anomaly (Servos, 1965).

The comblned observed gravity values for the river
channel and reef were studied with third and fifth degree
polynomials for ring sizes 6, 8, and 10 thousand feet.
Figures 19-a and 19-b are graphs of the error in density
and gravity for the third degree polynomial and various
ring sizes. Flgures 20-a and 20-b are similar graphs
for the fifth degree polynomial. Figures 21 and 22 are
maps showing station density and gravity errors for the
third degree polynomial with 10,000 foot ring radius.
Similar maps for the fifth degree are shown 1in Figures
23 and 24,

The graphs for this model are almost duplicates
of the graphs for the glacial drift model, revealing
that deep sources with thelr broader anomalies exert

little Influence of the accuracy of the calculated
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elevation factor. This is further emphasized when the
error 1in station density values shown in Figure 23 1is
compared with the glacial drift model values in Filgure
9. This comparison reveals that station for station,
the magniltude of the error 1s the same and these errors
are assoclated with the density contrast zone within the
drift.

Gravity Model of All the Sources.--The combined

gravity effects of the burled channel and the reef
structure are shown in Figure 25. These values were
added to the observed gravity values associated wilth

the glacial drift and the model restudled. The graphs
of the error in density and gravity for the third de-
gree polynomial are shown in Figures 26-a and 26-b,
Similar graphs for the fifth degree polynomial are shown
in Figures 27-a and 27-b. The errors in station density
and gravity for the third and fifth degree polynomials
are shown in Figures 28 through 31. The graphs and maps
for thls model are near duplicates of equivalent graphs
and maps for the model of the bedrock channel.

The high degree of simllarity in the results for
these two models indicates that near surface sources
exert more Influence than do the deeper sources. A
comparison of the error in density and gravity for all
models 1s provided in Figures 32-a and 32-b. The

results for all models that include the effect of the
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bedrock channel are closely associated and distinctly
less accurate than the results for the models which in-
volve the glacial drift and reef.

Increasing the Density Contrast Within the Drift.--

The previous discussion shows that the errors in the
calculated elevation factor are directly associated with
near surface density contrasts. This source of error
was further investigated by reprocessing the glacial
drift and bedrock channel model with a fifth degree
polynomial after increasing the density contrast within
the drift from 0.1 gm/cc to 0.3 gm/cc.

The error in density values for a 6, 8, and 10
thousand foot radius is shown in Figure 33-a, with the
corresponding error in gravity shown in Figure 33-b.
Although the density contrast was increased threefold, a
ring radius of 8,000 feet or greater, results in 87 per
cent of the density values and 84 per cent of the gravity
values having errors less than 0.1 gm/cc and 0.1 mgal.
The areal distribution of the station density and gravity
errors for the 10,000 foot ring radius are shown in
Figures 34 and 35.

Decreasing the Station Spacing.--There are a definite

number of data polnts required to satisfy any given degree
polynomial, and thus the station spacing will dictate the
minimum ring radius required to insure these data points.
For example, a first degree equation requires only U4 data

points whereas a fifth degree requires 22 data points.



54

98E 3unoi4 VEE 3WNOII

T1INNVHI ¥IAIY QIIYNE ANV LA/¥0 TVIOVTO ONIAT0AN! 1300W

ALIAVED ¥3INONOE NI ¥WONNI ALISNIO NI NONNMI
-0 X (8IVOIIN ¥) 2-01 X (°99/ W By
(] [ ] ] '3 ® - S L 4 1 [4 [} o ot ¢ ] el 9 ] | 4 € L4 | [}
- L] . Ld e . L] L L] — ° ﬁ L] L] L] . . . . — °
- - 0! - -1 0!
2o/wb $'2 gA 292/wWH | 1SVHLINOD ALISN3Q 22/wb $2 BA 25 ,/wb |2 ISYHINOD ALISN3Q
- 102 - ) -0z
- 0000! [ x ot = 00001 € X ot
0008 s o o "~ o008 s o o
= - fed 4
0009 s o \. x o< 0009 s . x\. > ]
< >
] a
L x o\l ot m L L] Q n\o\l Sm
\ \- < \- -
x °\ ] \ \ -
- \. o - n\e -0 3
i d m P ’ a
\n\o » x\u\ . [
X \ o \ \ =
- o — 4o 2 } ° o~
\X - \x“.
ﬂ\o\\m\o ~ os - w\w\ - os
- -4 08 = ° -1 08
~
~- I; (-1} - -4 001




55

e NG Id

ooﬁ mam wc_ [}

1334

¢~ IWINONKIOd 334937

0000I* _SNIQ78 SNIM
NQ\\« \QO\EQ\

YOYY3 ALISNIT NOILVLS

voroe e
2
£
:
:
Pyoooz
0
°
]

-]

-4

LR 4

TINNVHO

(-]
-

*m

‘M e Le Mt e

- e

b 4

‘N "¢ -@

-0

-0 -0

N
L

YIANIY 031408 ANV LS1Ya

o?moongﬂc

. - . . . . .

°~

e *® N

)
~
-
o

‘o
©
™~

‘o

e~ e

‘® -

oo
“n
©
@
e
o
2
-

-
.
.
.
.

e °®

N -m

-0 0O

-0
-]
b
5
~
]
)
.0
o0

WIoV19 9NIATOANI T300W

u-
-
2
-
o s-
-
"-
-
si-
n -
u-
2
.-

1=

F-. ‘-

2ywb p2

= % I » 0 O0 O

- . . . .

N
1
-]

A 4
1
-0 .o

LI
~
‘N
-

‘0 *0 -0 0O

5
-

e 0 = T o0 I~ I

- 2- o g L €

oywbiz ——P

‘9




56

0000!I = SNIJvy 9N'Y
01X (TVON)
HOUYI ALIAVYO NOILVLS

6§ 3uWno 13
ooom 000z 000" 9O
1334
G: TVINONATOd 334930

[ R S A

»-
€~

n.

.

(R R LR &

-0 +0 ‘0 -0

o
-
o
o

°
°
0
0.
© 0o 0o o

-

1=

TINNVYHI YIAIY 314N NV LSI¥Q TVIOVTO 9NIATOAN! 1300W

ol-
€-
-

e S

v

*

o § 9 o

8- & 6 €

2%/ W p—

A S (S O UL R

1= (2 Z

m- 8l ]

e ¢ °

¢ o z

erar or e Em w6 L9 v T

v 2 2

v « !

¢ ® !

& 2 °

¢ wez oS- Er o g8 oA 20

v s :

' 2 ¢

v u s

- ¢ ¢

A S I A

0 & :

° * L

° * :

v * :

0 T v ow &ooez g ook oL
—Pd— o/w b 2

)

e v

‘0 -0 0 -0 -0 -0

‘N e =




57

If the data set encompasses a complex gravity
field, then a higher degree polynomial will be required
to satisfactorily fit the data. Increasing the number
of data points per unit area will permit the use of a
smaller ring size and decrease the complexity of the
gravity fleld in the data set. The result of this com-
bined effect 1s demonstrated in the following study.

The model involving the glacial drift and buried
river channel was processed after calculating the data
on a 1,000 foot grid spacing. The calculated density
values shown in Figure 36 were obtained from using a
first degree polynomial and 1,200 foot ring radius. The
excellent results were obtalned even though the density
values in the glacial drift changed from 2.2 gm/cc to
2.6 gm/cc.

Altering the Elevation Datum.--Vajk (1956) has

shown that the varlable datum to which the observed
gravlity values are reduced through the use of a local
representative elevation factor should be subject to
geological considerations. A study was undertaken to
find what effect the elevation datum had on the calcu-
lated elevation factor.

The observed gravity values for the model involving
all of the sources were calculated at the station ele-
vations. The elevation datum was raised 100 feet, pro-

ducing both positive and negative values as shown in
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Figure 37. These values along with the previously calcu-
lated observed gravity values were used in calculating
the station elevation factor. The results, along with
the results obtained when the elevation datum was

lowered from the original by 100 feet, matched exactly
the values obtained from the original complete model
study. This study shows the calculated elevation factor
i1s a function of the elevation differences, and not a

function of the absolute station elevation.

Summary of the Model Studies

An individual elevation factor can be obtained at
each station in the survey through the use of the pro-
posed least squares process. The use of the observed
gravity and elevation values of the surrounding stations
negates the need for making preliminary data reductions.
Evaluation of the assets and limitations of the method
through the model studies indicate the following:

1. Rapid variations in the surface topography do
not affect the calculated elevation factor when
the topographlic expression 1s not associated
with a near surface density change. This
eliminates the possibility of creating anomalies
which are topographically assoclated.

2. An intermediate density value is obtained in
the immediate vicinity of a sharp near surface

denslty change.
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3. Steep gravity gradients caused by near surface
sources have a negative effect on the accuracy.

4, The magnitude and lateral extent of the nega-
tive effect caused by sharp density changes
and steep gravity gradients related to near
surface sources is greatly reduced by decreas-
ing the station spacing.

5. The calculated elevation factor, being a
function of the station elevation differences
within the data set, permits the reduction of
the data to some geologlically significant non-
horizontal datum with the calculated elevation
factor, and then to a horizontal datum with
a pre-selected elevation factor.

Elevation and Mass Correction for
the Field Data

An elevation factor was calculated for each station
in the survey by using a fifth degree polynomial equation
and a ring radius of 10,000 feet. A third degree poly-
nomial was used on the elevation values shown in Figure
38 to provide the residual values shown in Figure 39.
These residual values were then combined with the ob-
served gravity values 1n the least squares process and
an elevation factor calculated for each station. The
calculated station density values are shown in contour

form in Figure 40,
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FIGURE 38.--Contour map of the survey elevations.
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FIGURE 39.--Contour map of the residual elevations
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FIGURE U40.--Variable density map from the least

CI = 0.10 gm/cc
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The calculated station elevation factor was used
to correct the station observed gravity value to the
third degree polynomial elevation datum. A constant
elevation factor equivalent to a density value of 2,30
gm/cc was employed to correct from the polynomial datum
to a horizontal datum equal to the lowest station ele-
vation in the survey. Thls density was selected as
representative of the surface density on the basis of
the values shown in Figure 40.

Profile A-A' in Figure 41 illustrates the relation-
ship between the calculated density values, the residual
elevations, the Bouguer gravity using a constant density
of 2.2 gm/cc, and the Bouguer gravity using the calcu-
lated elevation factor. Figure 42 is the Bouguer gravity

map after employing the variable elevation factor.
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FIGURE 42.--Bouguer gravity map after employing the

variable elevation factor.



METHODS OF DATA ANALYSIS

One of the major differences between geological
and gravitational interpretational methods is the geo-
logical desire to recapture, through the use of surface
fitting methods, the three dimensional expression of
the mapped parameter. Gravitational interpretations, on
the other hand, are usually manifested in deviations
from a predicted surface. The primary reason for this
difference 1s the direct nature of geologilcal infor—
mation as opposed to the indirect nature of gravitational
data., Furthermore, the clustered nature of well data
does not lend itself to residual analysis, whereas, the
inexpensive gathering of gravity data permits the ac-
gquisition of more evenly distributed information.

Unlike the geologlcal situation, where each inter-
val or formation conveys specific information and is a
measurable entlty, the Bouguer gravity map contains in-
formation from or caused by geological conditions extend-
ing from the surface down to and including the basement
complex. Since the mapped parameter is a composite, 1t
becomes necessary to extract and display those signals
which may be caused by or related to some known or

hypothesized geological situation.
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The extractlon or isolation of selected infor-
mation from the Bouguer gravity map may be accomplished
by several different methods. The methods used in this
study include polynomial analysis, double Fourler series
analysis, and linear filtering methods. The latter two
methods were selected for their ability to quantify the
type of information to be extracted from the total map.
Furthermore, the parameters of the desired information
can be ascertained from geologlical and geophysical model
studies. Polynomial analysis has been wldely used as
an lnterpretational technique in the State of Michigan
and 1s included as a standard of comparison.

Polynomial Approximations to the
Bouguer Surface

Polynomial approximations to the Bouguer gravity
surface using the least squares criterion are generally
used for the removal of the long wavelength regional
component. The degree of the approximation polynomial
which will satisfactorily represent the regional is
subject to personal interpretation and is influenced by
the distrlbution and spacing of the data points, the
complexity of the regional, and the slze of the map
area.

The major limitation of the polynomial approach
is the inability to specify the range of wavelengths to

be lsolated. Silgnal extraction thus takes the form of
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increasing the degree of the polynomial until the
residual values display elther known local geological
situations, or hypothesized conditions. If an anomaly
can be associated with a specific known geological
entity, then predictions concerning the occurrence of
similar features in the map area can be made on a
comparison basis. The other approach is to compare the
residual anomalles with an expected anomaly, where the
magnitude and configuration of the expected anomaly 1is
obtained through model studies employlng theoretical
bodies.

The seventh degree polynomial representation of
the regional resulted in the residual values for profile
A-A' shown in Figure 43 and for the map area shown in

Figure 44,

Double Fourier Series Analysis

The recent use of the double Fourler series for
surface fitting of irregularly spaced geological data
has teen described by James (1966). 1In the present in-
stance, the purpose 1s to represent the Bouguer gravity
(Gba) as a function of the two coordinates x and y. This
function may be considered to be oscillatory in these
two mutually perpendicular directions and representable

by the equation

Gba = £ (x,y).
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FIGURE 44,--Map of the residual values from the
7th degree polynomial approximation
to the Bouguer surface.
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If the function 1s considered to have a fundamental
wavelength of 2L along the x direction and 2H along the

y direction, then the double Fourier series 1is:

., mn TmX ™
Gba = I f tm,n [am,n Cos —t— Cos —ﬁl
m=0 n=0
+ bm,n sin 5X cos =
(11)
+ cm,n Cos 1%£ Sin 1%1
+ dm,n Sin E%E Sin E%X
where
gm,n = 1/4 m=n-=20
tm,n = 1/2 m=0,n>0, orm>0, n=20
tm,n = 1 m>0, n>0

The series 1is linear wilth respect to its coeffici-
ents and thus the least squares method may be used to
calculate these coefficients in a manner similar to that
used in calculating the coefficlents for the polynomial
functions. The A matrix is now composed of the sums of
squares and cross-products of the Fourler series terms,
the B matrix 1s the column vector of coefficlents, and
the C matrix is a column vector of sums of products of

observed values and individual Fourier series terms.
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The double Fourier series has an advantage over
polynomial analysis in that specific wavelengths may be
included in the regional values. A present limitation
1s the large computer memory requirements which prevent
calculating coefficients for other than the fundamental
wavelengths, and the flrst five harmonics in both
directions. These limitatlons prevented the calcu-
lation in the regional expression of wavelengths less
. than 20,000 feet in the x direction and 24,000 feet in
the y direction.

The residual values shown in profile A-A' of
Figure 45 were obtained by removing from the Bouguer
gravity map a fundamental wavelength in both directions
of 120,000 feet, along with the first five harmonics in
the x direction and the first four harmonics 1n the y

direction. Figure U6 is a map of the residual values.

Linear Filtering Methods

Digital filtering of space oriented data has be-
come a powerful tool for interpreting gravity data.
This study makes use of the approach presented by
Fraser, Fuller, and Ward (1966) which employs various
filters on profile data to either enhance or eliminate
anomalies of specified characteristics. The theory
underlying the filtering methods used in this report

is presented in the following section.
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Theory
The input to a linear filter ¢(x) is related to

the output ¢'(x) by the convolution of the filter with

the data

oo
¢'(x) =/ ¢ (x - 1) W(T)dr (12)
- 00
where the weighting function W(t) is the response of
the filter to an impulse.
Dean (1958) has shown that a digital representation
of a continuous time domain filter, expressed here as a

distance domain filter, can be represented by the equation

¢(x) = £ W(kAx) ¢(x - kAx)Ax (13)
k

where the smooth variable T has been replaced by the
discrete variable kAx, with Ax representing the data
increment.

The problem of building a filter with the desired
frequency response 1s accomplished through the use of
Fourler transforms. The Fourier integral representation
of a general filtering function can be expressed in the

form

g(x) = [ F(g) e2™9% 4o (14)

- 00

where
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~-2miox

F(o) = J g(x) e dx . (15)

—o

F(o) is the density function which describes the
amount of the frequency that 1s present in the function
g(x) and is called the transform of g(x). The Fourier
integral thus decomposes the distance domaln functilon
g(x) into frequencies of intensity F(o).

When the desired frequency response of a filter
is specified, the filtering function g(x) may be obtained
from the inverse transform of F(o). For example, the
ideal rectangular filter will pass frequencies in the
band (Fo - AF) < F < (Fo + AF)) without distortion, and
reject all frequencles outside of this band.

The inverse transform of F(o) 1s g(x) and may be

expressed as

g(x) = [ F(o) Cos 2moxdo + 1 f F(o) Sin 2moxdo. (16)

By specifying F(o) as a real, even function, g(x) 1is con-
strailned to be real and even, thus avolding a space phase
shift. These constraints cause the second integral to

drop out, resulting in

Fo+AF
I Cos 2moxdo
Fo-AF

g(x)

(17)

f;[31n 2n(Fo + AF) x - Sin 2n(Fo - Af)x].
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After applying the addition and subtraction formulas
to the sine function, the filtering function takes the

form
g(x) = #% Cos 2m Fox Sin 2mAfx. (18)

This infinite length filter 1s shortened to a
finite length by applying the hanning function (Blackman

and Tukey, 1958),

1/2(1 + Cos I |x] < T

S(x) = (19)

where 2 T is the desired filter length in unlts of dis-
tance. In practice, it was found necessary to include
the Lancos sigma factor to compensate for the Gibbs
phenomenon (Hamming, 1962). The weighting function used

in this study now becomes
W(k) = g(kAx) S (kAx) sigma (kAX)Ax (20)

where the Lancos sigma factor 1is expressed as
Sigma (k) = [Sin %’l]/k—r_l?- . (21)

The frequency response of this modified filter is
calculated from the Fourier transform of the weighting

function:



80

T
[ g(x) s(x) Lancos (x)e

-2miox

w

F(o) dx, (22)

which may be expressed in summation form as

F(g) 2 2
k

w(k) Cos 2mokAx. (23)
0

o~

The above presentation follows that of Fraser,
Fuller, and Ward (1966) with the exception of the Lancos
sigma factor. The response of both low pass and band
pass filters used in the study are shown in Figure U47.

The requirement of uslng evenly spaced data was
met by contouring the Bouguer gravity and interpolating
onto a 500 foot spaclng in the x direction for lines
1,000 feet apart in the y direction. The program ex-
tended the ends of the lines the necessary number of
data points so that the number of filtered statlons
equaled the number of input points. The extended values
were projected through the use of the mean slope of the

end ten stations.

Band Pass Flltering

The 1deal band pass filter will pass without ampli-
tude or phase distortion all information which has a
frequency within a speciflied range, and reject all other
information. For example, the fillter with a center

frequency equivalent to a 5,000 foot half wavelength
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and a band pass of half the center frequency will pass
all information with half wavelengths between 2,500 and
7,500 feet.

Each data line was processed with band pass fil-
ters having center frequencies equivalent to half wave-
lengths of 20,000, 10,000, and 5,000 feet with band
widths of half the center frequency. Profile A-A' in
Figure 48 presents: (a) the Bouguer gravity, and the
assoclated anomalies with half wavelengths between,

(b) 10,000 and 30,000 feet, (c) 5,000 and 15,000 feet,
(d) 2,500 and 7,500 feet, and (e) 1,250 and 3,750 feet.
The maps associated with the first three filters are
shown in Figures 49 through 51. The anomalies associ-
ated with the fourth filter are too small in magnitude
and random in shape to be geologically significant.

Low Pass Fllters That Include
the Reglonal

Low pass filters were used 1n the analysis to
emphasize the longer wavelength iInformation. This was
accomplished by passing all information with half wave-
lengths from infinity to 20,000 feet, 10,000 feet, 5,000
feet, and 2,500 feet. The effect of including the pro-
gressively shorter wavelength anomalles in the regional
is shown in profile A-A' of Figure 52, and in map form

in Figures 53 through 56.
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FIGURE 49,--Residual map of half wavelengths from

10,000 to 30,000 feet
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FIGURE 50.--Residual map of half wavelengths from

5,000 to 15,000 feet.
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FIGURE 51.--Residual map of half wavelengths from
2,500 to 7,500 feet.
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FIGURE 53.--Residual map of half wavelengths from
infinity to 20,000 feet.
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FIGURE 54.--Residual map of half wavelengths from
infinity to 10,000 feet.
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FIGURE 56.--Residual map of half wavelengths from
infinity to 2,500 feet.
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High Pass Filters That
Exclude the Regional

High pass filters may be used to display the
shorter wavelength anomalles in the same way as low
pass fllters are used to bring forth the long wave-
lengths. The high ?egional gradlents that predominate
in the results of the low pass filter are now effectively
removed by convolving the data with filters that elimi-
nate anomallies with half wavelengths greater than 20,000
feet, 10,000 feet, and 5,000 feet. These results are
shown in profile form in Figure 57, and in map form in
Figures 58 through 60.

Combining High and Low
Pass Fllters

A selective comblnation of high and low pass filters
will result in a band pass representation. This process
of data evaluation was accomplished by using a low pass
filter to remove all half wavelengths greater than 20,000
feet and then re-evaluating the residuals with fillters
that removed half wavelengths less than 10,000 feet,
5,000 feet, and 2,500 feet. The anomalies shown in pro-
file A-A' of Figure 61 represent half wavelengths be-
tween (a) 10,000 and 20,000 feet, (b) 5,000 and 20,000
feet, and (c¢) 2,500 and 20,000 feet. The residual maps
from using these filters are shown in Figures 62 through

64 .
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FIGURE 58.--Residual map of half wavelengths less
than 20,000 feet.
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FIGURE 59.--Residual map of half wavelengths less
than 10,000 feet.
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FIGURE 63.--Residual map of half wavelengths from
5,000 to 20,000 feet.
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INTERPRETATION

Detectable gravity anomalies which may be associ-
ated with the Sciplo 0il Fileld have two posslble origins.
The first source 1s the density contrast between the
producing dolomite and the non-producing dolomitic
limestone. The other is lithologic or structural changes
within the basement complex. The magnltude and shape of
the anomalies which could be expected from the densilty
contrast directly associated with the producing body

were dellineated by model studies.

Model Study of the Sciplo 01l Field

The geometrical form for the model was obtained by
spotting all wells in the survey area and outlining the
limits of production. A 610 foot thick three dimen-
sional body was constructed, with vertical sides con-
forming to the irregular shape of the outlined pro-
duction.

The density contrast between the producing and
non-producing lithologles is governed by thelr con-
trasting compositlion and porositles. Core analysis from
wells in the Scipio Field provided by the McClure 01l

Company 1ndicate a 1 per cent porosity for the dolomitic

101
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limestone, and a 4 per cent average value for the dolo-
mite. These porosity values were assoclated with density
values through the use of a graph presented by Roth
(1965). This graph, which gives the relationship be-
tween the denslty and porosity of water saturated dolo-
mite and limestone, produced density values of 2.73

gm/cc for the dolomitic limestone and 2.79 gm/cc for

the dolomite.

The body was given a northwest plunge equivalent
to the regional dip of the Trenton Formation and the
gravity effect was calculated at the surface elevations.
The magnitude and configuration of the anomaly, calcu-
lated through the method described by Talwanl and Ewing
(1960), is shown in Figure 65.

Geological Factors Which Will
Distort the Anomaly

Geological factors in the Trenton-Black River
sequence and higher in the section in the Nlagaran
sequence will cause distortions in the gravity anomaly
now shown by the model study.

The 4 per cent porosity value associated with the
Scipio Fleld is an average value and may not represent
local conditions. Table 1 shows the porosity values
obtained from core analysis for six different wells in
the field. These values range from 6.4 per cent down

to 1.5 per cent, and would produce density values from
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-

FIGURE 65.--Calculated gravity anomaly of the Scipio
0il Field for a density contrast of 0.05
gm/cc between the dolomite and dolomitic
limestone.
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2.75 gm/cc to 2.85 gm/ce. This density range would
result in density contrasts between the dolomite and
the host rock from the low value of 0.02 gm/cc up to
0.12 gm/cc, with assocliated non-measurable anomalies

up to anomalies with magnitudes in excess of 0.2 mgals.
For example, an average density contrast of 0.125 gm/cc
would result in the anomaly shown in Figure 66.

A further complicating factor is that all producing
wells do not contain a complete dolomite section. Ells
(1962) points out that ". . . the amount of dolomiti-
zation of Trenton-Black River rocks along the Trend
varlies vertically and laterally within the sectlon, and
is by no means conslstent throughout."

Reefing conditions 1in the Nlagaran rocks will cause
further distortions 1n the observed anomaly when the
reefal development 1is directly assoclated with the geo-
graphical location of the production. Ells believes
the ". . . association of the reefs with the folds 1is
probably entirely coincidence since reefs and reef 1like
masses are found throughout the Niagaran complex of this
region." He does, however, say that ". . . the orien-
tation, shape, and silze of the reefs may be directly
related to the lineation and deformational patterns of
the Trend." Ferris proposes that the Trend 1s a direct
result of the reefs, but the studies by Ells and Bishop
fail to reveal any reefal pattern consistent with the

Trenton-Black River production.
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FIGURE 66.--Calculated gravity anomaly of the Scipio
0il Field for a density contrast of 0,125
gm/cc between the dolomite and the dolo-
mitic limestone.
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Residual Map Interpretation

Model studies of the Scipio Fleld indicate anomalies
originating within the geological section of the Trenton-
Black River sequence will be characterized by E-W anomaly
widths between 5,000 and 10,000 feet and range in magni-

tude from zero to greater than 0.2 milligals.

Least Squares Residuals

Least squares residuals obtained from the seventh
degree polynomial approximation to the station gravity
values indicate the complexity of the Bouguer surface in
the map area excludes the objective use of polynomial
analysis. The residual values shown in Figure 44 do not
conform to the expected pattern indicated by the model
study. The residual pattern is similar to that obtained
through high pass filtering methods when anomalies with
widths greater than 20,000 feet are removed. This pattern
is evidenced by comparing Figures 44 and 58.

Double Fourier Series
Residuals

Double Fourler series residuals presented in Figure
46 were also obtained from operating on the station
gravity values and begin to display the expected anomaly
pattern. Curtailing the N-S wavelength dimension has
resulted in the circular anomaly pattern observed in
the lower portion of the map. The personal interpre-

tation involved in the hand contouring of the residual
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values causes some of the discrepancies observed when
comparing this map with the gridded machine contoured
residual values resulting from band pass and high pass
filtering methods involving similar wavelengths. A
re-evaluation of the double Fourier series approach

would provide more useful results.

Band Pass Filtering

Band pass flltering with the band pass limited to
the expected half wavelength range 1s successful in
delineating linear patterns which coincide with the
general pattern of production. E-W anomaly widths be-
tween 5,000 and 15,000 feet shown in Figure 50 demon-
strate the ability of extracting selected pertinent
information from the Bouguer gravity map. Anomalies
ranging from 2,500 to 7,500 feet in width shown 1n

Figure 51 further refine the anomaly pattern.

High Pass Filtering

High pass filtering also delineates the linear
anomalies associated with the outlined production.
Figures 59 and 60 include anomalies up to 10,000 feet
and 5,000 feet respectively. The 1inclusion of the
shorter wavelengths has the negative effect of showlng
non-pertinent information which locally distorts the

anomaly pattern.
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The geographical distribution of the well data
does not permit quantitative evaluation of linear
anomalies deplcted but not associated with the pro-
duction. The similarity in magnitude and shape of
these anomalles and the anomalies associated with the
production indicate that geological conditions exempli-
fying the producing zone may exist elsewhere in the map

area.

Regional Interpretation

Ells (1962, 1966) has speculated that the lineation
and Iinterconnection of the synclines associated with the
Alblon-Scipilo Field is controlled by slight lateral move-
ment along a basement fault. Basement control for this
same feature 1s also suggested by Rudman, Summerson, and
Hinze (1965) on the basils of correlative regional gravity
anomaly trends which primarlly originate from structural
and lithologic variations within the basement rocks.

In order to 1lnvestigate the correlation between
the basement and the Albion-Scipio Field, a representative
regional gravity profile shown in Figure 67 has been
drawn from the southern part of Branch County through
Hillsdale County to the center of Jackson County. The
profile strikes northeast approximately perpendicular
to the strike of the "Trend" and the regional gravity
contours. The source of the gravity profile is unpub-
lished gravity surveys which have observations at one-

fourth mile 1ntervals along all roads.
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The dominant aspect of the profile is the negative
gradient to the northeast. This negative gradient is on
the southwestern edge of the gravity minimum which
borders the Mid-Michigan Gravity High. This large posi-
tive gravity feature and its bordering negatives has a
marked similarity to the Mid-Continent Gravity Hlgh
which extends from Lake Superlor southward into Kansas
(Thiruvathukal, 1963). Bacon (1957) on the basis of
gravity data and Hinze, O'Hara, Trow, and Secor (1966)
from aeromagnetic data suggest that this feature extends
through Lake Superior and connects with the Mid-Michigan
Gravity High. Thiruvathukal (1963) has modeled several
possible geological sources for the regional gravity high
and its parallel minimums. He suggests that the gravity
lows may be due to clastic wedges similar to those ob-
served associated with the gravity minimums of the Mid-
Continent gravity feature at the western end of Lake
Superior. An alternative interpretation offered by him
involves a downward flexure of the crust beneath the
Mid-Michigan gravity feature. White (1966) also suggests
thlis as a possible source for the minimum gravity ano-
mallies assoclated with the Mid-Continent Gravity High in
the Lake Superior region.

The Bouguer gravlity anomaly map of the survey area
shown in Figure 42 indicates a marked change in the re-
gional gradient along the strike of the outlined pro-

ductlion. This 1s more clearly shown in Figure 53 which



112

includes gravity anomalies of half wavelengths from
20,000 feet to infinity. This change in gradient 1is
illustrated on the regional gravity profile of Figure
67 as a flattening of the gradient east of the Albion-
Scipio Field. Approximately four miles further east
the gradient increases and coincides with the gradient
observed to the west of the "Trend." Detalled magnetic
data 1s unavallable for this area, but the regional
vertical magnetic intensity anomaly map (Hinze, 1963)
does not display a simllar anomaly.

The decrease in the gravity gradient east of the
Albion-Scipio Field 1s interpreted to be the result of a
positive gravity anomaly which interrupts the normal
gradient and originates from a semi-infinite slab or
fault source. The gradlents of the loslated positive
anomaly suggests that the center of the anomalous mass
is at a depth of approximately one mile. This depth
would place the source of the anomaly at or near the
basement surface (Cohee, 1945). This type of anomaly
could be attributed to topographic relief on the basement
surface with a scarp located approximately one-half mile
east of the Albion-Sciplo Fileld. Assuming that the
Cambrian sandstones which butt up against and overlie
this feature have a density of 2.45 gm/cc and the base-
ment rocks have a density of 2.70 gm/cc, the 2.5 mgal
anomaly would necessitate having around 800 feet relief

on the basement scarp.
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This interpreted basement feature may be either
a fault or fault line scarp which parallels the Albion-
Scipio Field. Reactivation of this feature 1n Paleozoic
time could have fractured the overlying competent sedi-
ments and provided the necessary conditions for the

development of the Albion-Scipio reservoir.

Summary of Interpretation

Residual

Three different methods were used in removing the
regional effects from the Bouguer anomaly map. The poly-
nomial and double Fourier series methods mathematically
approximate the gravity surface, and the residuals are
obtained by taking the difference between the statlion
value and the approximated surface at the data point.
The complexity of the Bouguer surface in the survey area
rendered both of these methods to be unsatisfactory.

Fourier analysis operates on data which has been
Interpolated onto a uniform spacing. The band pass and
high pass filters displayed all data having wavelengths
within a predetermined band or range. These filters
were successful in delineating linear anomalies coinci-
dent with the outlined production. The anomalles are
similar to the 0.2 mgal anomalies theoretically calcu-

lated from a gravity model of the producing zone.
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Regional
All of the reglonal maps display a change in the

regional gravity gradient paralleling the outlined pro-
duction. A regional profile striking northeast into
the basin reveals thils to be a displacement in the
regional gradient. Basement topographic relief in the
form of a fault-line scarp is postulated as the cause
of this displacement, and renewed activity assoclated
with thls zone may have provided the necessary condil-

tions for the development of the Albion-Scipio Fileld.



CONCLUSIONS

A detailed gravity survey was conducted in the
north central portion of Hilllsdale County, Michigan,
for the purpose of delineating gravity anomalies associ-
ated with the Scipio 0il Field. A method was developed
and tested with theoretical model studies, whereby a
station elevation factor can be calculated for each
station in the survey. Thls method involved using a
polynomial function of the elvatlion and station coordi-
nates to obtain the desired elevation factor.

Conclusions drawn from the model studies assocl-

ated with the variable elevatlon factor:

l. Rapld variations in the surface topography do
not affect the calculated elevation factor when
the topographic expression 1s not assoclated
with a near-surface density change. This
eliminates the possibllity of creating
anomalies whilch are topographically associ-
ated.

2. An 1intermedlate density value is obtained in
the immediate viclnity of a sharp near-surface

density change.
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3. Steep gravity gradients caused by near-surface
sources have a negative effect on the accuracy.

4, The magnitude and lateral extent of the nega-
tive effect caused by sharp density changes
and steep gravity gradients related to near
surface sources 1s greatly reduced by de-
creasing the station spacing.

5. The calculated elevation factor, being a
function of the station elevation differences
within the data set, permits the reduction of
the data to some geologically significant non-
horizontal datum with the calculated elevatilon
factor, and then to a horizontal datum with a
pre-selected elevation factor.

Conclusions related to the fleld data studiles:

The fileld data was corrected with a calculated
individual station elevation factor and three different
approaches used in removing the regional effects from
the Bouguer anomaly map. The polynomial and double
Fourler series methods were not effective in adequately
removing the complex regional component present in the
study area. Band pass and high pass filtering of the
gridded Bouguer map effectively 1solated elongate dis-
contlinuous anomalies colncident with the outline of the
production. These anomalies are simllar in magnitude

and shape to theoretical anomalies calculated from a
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gravity model of the producing zone which employs poro-
sity and density values obtained from core analysis.

Conclusions related to the reglional profile:

A regional profile striking northeast into the
basin reveals a displacement in the uniform gravity |
gradlent., This displacement occurs along the Alblon-
Scipio Field and is interpreted to originate from base-
ment topographlc relief in the form of a fault-line
scarp. Renewed activity along the fault assoclated
scarp may have established the conditions necessary

for the development of the linear Albion-Scipio Field.
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