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ABSTRACT

A SYSTEMATIC STUDY OF ADJUSTMENT TIME IN

MODELS OF ECONOMIC GROWTH

BY

Myung Jai Rhee

This dissertation investigates the time length of

the adjustment process to a steady state path for several

models of economic growth. Most modern growth models

attempt to explain actual economic growth in terms of

steady state solutions of a model economy. The practical

relevance of steady state solutions as an approximation of

reality, however, depends upon the adjustment time required

for the model economy to reach a reasonably close vicinity

of steady state path after any initial disturbance occurs.

The investigation begins with a discussion of the

concept of adjustment time. A proportional concept of

adjustment time is adopted and, as a result, the question

of "indicator" variable representing the behavior of the

entire system is raised and discussed. It is demonstrated

analytically and numerically that the proportional adjust-

ment time of a model economy may vary significantly with

the choice of indicator variable, since the time path of an
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indicator variable is generally different from the time

paths of other indicator variables.

The investigation of adjustment time is extended to

growth models with different saving functions such as a

Classical saving function, an Ando-Modigliani saving

function, and a Kaldor saving function. This investigation

is further extended to monetary growth models. The analysis

indicates that change in the specification of savings

behavior within a model or the introduction of money to the

model can have a considerable effect on the adjustment

time. The magnitude and direction of the effect on the

adjustment time, however, are different for different

specifications of savings functions and of models.

In conducting this investigation, relationships

among time paths and adjustment times of different indicator

variables are explicitly derived and are related to the so-

called fundamental equation of a growth model. Thus, the

method adopted in this study organizes previous investi-

gations in a more consistent frame of reference and

eliminates some difficulties associated with different

analytic procedures for different indicator variables and

different specifications of growth models.

It is concluded that the adjustment time of an

economic growth model depends on various factors such as

the indicator variable chosen as a representative of a

system, the values of parameters, and the specification

of the model. Based on the estimates of this study, the
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adjustment time ranges from 14 to 172 years for a 90 percent

adjustment towards its steady state path. Therefore, it

may not be possible to give a proper judgment on the

practical relevance of steady state solutions as an approxi-

mation to actual economic growth until we investigate this

problem of adjustment time for a variety of models,

especially for growth models which reflect more properly

the actual economy. If the adjustment time proves to be

too long, it will be necessary to investigate the dynamic

path of the growth model in full, including both the

adjustment path and steady state path in the analysis of

economic growth.
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CHAPTER I

INTRODUCTION

Growth economics deals in general with the evolution

of an economy over time, which possibly fluctuates in the

short run but exhibits a trend in the long run. Modern

economic growth theory has focused primarily in the

investigation of the long run trend, especially in advanced

industrial economies. Relatively little attention has been

given to the process of adjustment to a steady state, by

which the long run trend is to be explained. In this

dissertation the time length of this adjustment process to

the steady state is investigated.

Economic growth has been a long standing concern of

economists. Both the classical and neoclassical economists

of eighteenth and nineteenth centuries showed a deep

interest in the problem of economic growth. Their method

of analysis, however, is quite different from that of

modern growth theory. As Hicks (20, p. 29) states, "The

causes of economic progress were one of their main concerns.

What is true is that they had a very special approach to

dynamic problems: their method of treating them was by the



tools of static theory. That was a more inadequate treat—

ment." In contrast to these, modern growth theory is

characterized by its explicit and formal use of dynamic

tools such as differential equations in the explanation of

the economic growth process.

Modern growth theory has a relatively short history.

The publication of Harrod (19) in 1939 and a similar but

independently developed paper by Domar (13) published in

1946 are usually claimed to be the beginning of modern

theory of economic growth. Extensive investigations have

been undertaken since then and the theory has developed to

a considerable degree in less than four decades.

Despite the seminal roles of Harrod and Domar in

reawakening interest in the problem of economic growth,

modern growth theory is, perhaps, best represented by the

neoclassical approach, which can be said to stem from

papers by Solow (36) and Swan (40). The neoclassical

approach is characterized by the proposition that an

economy moves towards a path of steady state growth, if

there exists a stable equilibrium, along which the growth

rate of the economy is equal to constant exogeneous growth

rate of the labor force and thus is entirely independent

of the preportion of income saved and invested. Based on

this property of convergence to a steady state, most growth

models attempt to explain the growth process of a real

economy in terms of steady state solutions of a model

economy. Solow's statement (37, p. 4) may well represent

 



the characteristic feature of modern growth theories:

”Most of the modern theory of economic growth is devoted

to analyzing the properties of steady states and to finding

out whether an economy not initially in a steady state will

evolve into one if it proceeds under specified rules of the

game. It is worth looking at some figures if the steady

state picture does actually give a fair shorthand summary

of the facts of life in advanced industrial economies."

It is important, however, to notice that this steady

state path is a special type of path a model economy

follows, which can only be attained theoretically as time

goes to infinity. That is, it takes an infinite amount of

time for the model economy to complete the whole process of

adjustment to the steady state path from any initial (non-

steady state) position. More precisely speaking, the

steady state can never be attained in a real sense and thus

the explanation of reality in terms of steady state

solutions may be meaningless. Steady state solutions as an

approximation of reality may only be justified on the

ground that it takes a relatively short time for the

economy to complete "almost all" of the adjustment process.

Therefore, the practical usefulness of the steady state

solutions as an approximation of reality depends crucially

upon how long the economy takes to reach a reasonably close

vicinity of the steady state path from any initial dis-

turbance. If the adjustment process is too long, steady

state solutions are of very limited value as an explanation





of the growth process of a real economy. If a model economy

adjusts very slowly, as Hahn and Matthews (17, p. 32) have

commented in their survey article, "in order to ascertain

the real-life implications of any given model, it is

necessary to investigate its equilibrium dynamics in full.

This is naturally much more difficult than investigating

the properties of the steady state solution."

The steady state is a very useful analytic concept,

whether it exists or not in reality, for analyzing the long

run trend of economic growth. Along the steady state path

of growth, the growth rates of some variables are constant

over time. This means that each period is essentially

identical to that of the previous period except in scale.

Therefore, a static mode of analysis may be applied to the

essentially dynamic problem of growth. According to

Stieglitz and Uzawa (39, p. 7), "Steady states are to

growth theory what perfect competition and monopoly are to

the theory of firm. One can learn a great deal about the

growth processes from studying these admittedly special

cases . . .," and "if the economy converges with reasonable

speed to the steady state, then the steady state becomes

directly empirically relevant. How quickly the economy

converges is a moot question." In order to add practical

justification to this convenient analytic jargon, there-

fore, a short adjustment time is required. As a first

step to this end, intensive investigation on the adjustment



time for a variety of models is needed. However, relatively

little work has been done on this problem of adjustment.

The main contributions in this area have been made

by Atkinson (5), Conlisk (10), Furuno (15), Ramanathan

(28, 29), K. Sato (32), and R. Sato (33, 34). They measure

adjustment time of a model economy in terms of the time

required for a certain indicator variable of a model

economy to cover a specified proportion of total initial

displacement from the steady state path. That is, they use

the concept of "proportional" adjustment time.

R. Sato (33, 34) investigates, for the first time

in literature, the adjustment time for a neoclassical one-

sector growth model with a Cobb-Douglas production function.

He looks at the adjustment time of the output-capital ratio

(1/v), which converges to a constant value at the steady

state. Assuming that the economy was at a steady state

before being disturbed and that the initial impact was

given by changing saving rate, he measures the required

time for the output-capital ratio to cover a certain pro-

portion of the initial displacement and shows that it may

take a hundred years for the neoclassical economy to cover

90 percent of the initial disturbance from its steady state

path. According to Ramanathan's numerical calculations

(29), for the neoclassical model with C.E.S. production

function, the adjustment time of the growth rate of output

(6) ranges from 22 to over 150 years depending on values

of parameters.



While K. Sato (32) shows that the adjustment process

of the capital-output ratio (v) rather than the output-

capital ratio (l/v) takes from 25 to 37.5 years in covering

90 percent of the initial displacement for the one-sector

vintage model and argues that a realistic modification of

the neoclassical model reduces the adjustment time by as

much as three quarters of R. Sato's, Furuno's estimate

(15), using the output-capital ratio (l/v) as an indicator,

ranges from 3 to 7 centuries in covering the same propor-

tion of adjustment for the neoclassical model with Pasinetti

saving function.

In addition to these, Conlisk (10) estimates the

adjustment time of the growth rate of output (6) for his

modified version of the neoclassical model and Ramanathan

(28, 29) examines two sector growth models. Atkinson (5)

gives numerical estimates for the neoclassical model with

nonneutral technical progress, Goodwin's model of cyclical

growth, and the Shell and Stiglitz's one-sector model with

two types of capital, and concludes (5, p. 151) that

"examination of the time scale provides useful information

about their (growth model's) behavior. This is not alto-

gether surprising, since some kind of time dimension is

implicit or explicit in our thinking about any real

economy; and we should expect the time scale of these

models to be important for understanding their relationship

to the real world."



Even though some research has been done by.the above

investigators on this problem of adjustment time, several

problems still remain uninvestigated. The primary objectives

of this dissertation are to investigate some of these

remaining problems, as outlined below, and to organize

previous findings in a more consistent frame of reference.

The concept of "adjustment time" or "speed" has not

been systematically considered, even though previous

writers have freely used this term according to their

conveniences. The magnitude of adjustment time may depend

not only on the model specifications and values of the model

parameters but also on the definition of adjustment time

itself. Thus, the concept of adjustment time should be

made clarified before attempting to measure the adjustment

time of any particular model economy. Moreover, previous

writers have bypassed another important point, that is,

the multi-dimensional nature of a system. Any economic

system cannot, strictly speaking, be represented by one

variable, but should be represented by a combination of

all the economic variables constituting the system. One

may look at the behavior of a system by examining the

behavior of a particular variable, depending on the nature

or purpose of the analysis. However, the adjustment time

of the variables within a model may not be the same even

if they are interrelated functionally. Therefore, the

adjustment time of any model economy depends on which

variable one chooses as an indicator of the economic
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system. These problems of the concept of adjustment time

and of the choice of an indicator variable are the main

subjects of Chapter II.

In order to get more realistic estimates of the

adjustment time of an economy, the analysis may need to be

conducted for more complex and realistic models. The basic

concepts and methods of the analysis may, however, be more

conveniently pursued for a simple model. In Chapter III,

the analysis of adjustment time for a simple neoclassical

growth model is conducted based on the discussions of

Chapter II. Analytic results and numerical calculations

are given.

The adjustment time responds very sensitively to

changes in model specifications. For example, R. Sato

has shown that it may take, for reasonable values of para-

meters, as much as 50 to 190 years for a simple neoclassical

economy to cover 90 percent of the initial disturbance and

has argued that the neoclassical model may, as a result,

lose its "basic foundations." Meanwhile, according to

other investigators such as K. Sato and Conlisk, the

adjustment time is much shorter for more complex models of

growth. They have shown "a somewhat more Optimistic view"

about the relevance of steady state solutions as an

explanation of reality. In fact, one might expect that the

more flexible and general is the model economy, the shorter

adjustment time may be. Therefore, in order to make a

proper evaluation of the relevance of steady state solutions



as an approximation of reality it may be necessary to

investigate the question for more realistic models.

Simple growth models have adopted the simplest form

of saving function; a constant rate of saving to output.

The analytical simplicity of this type of saving function

is gained, however, only by sacrificing realistic elements

of real life saving behavior. Many economists have analyzed

the effects of different saving behavior on the steady

state path of growth. The effects of different saving

behaviors on the adjustment time, however, have not been

investigated in the literature except by Furuno (15). In

Chapter IV, the effects of different saving functions on

the adjustment time are analyzed.

Another area which has been neglected is the'con-

sideration of monetary elements in investigation of adjust-

ment time. Although some theorizing has been done on the

role of money in the context of the modern growth models,

an investigation of its effects on the adjustment time has

not yet appeared in the literature. This is the subject

of Chapter V. The conclusions of this dissertation are

given in Chapter VI.
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CHAPTER II

ADJUSTMENT TIME IN ECONOMIC GROWTH MODELS

While several writers have investigated the problem

of adjustment time for different growth models, two

basically conceptual problems, as I understand them, are

not yet well discussed. The first is the concept of adjust-

ment time and speed; the second is the choice of indicator

variable of a system. Since the measurement of adjustment

time is based on these basic concepts, this chapter deals

with these problems before attempts are made to measure

the adjustment time in the later chapters.

2.1 Concept of Adjustment Time
 

A model of a growing economy is usually represented

by a set of differential equations. An explicit solution

of this system of differential equations therefore will

give the best information about the behavior of the economic

system over a period of time. Because explicit solutions

are rarely possible or are too complex for most of economic

growth models, however, we are often content with the study

of a limiting case (i.e., steady state case), which can

10
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often be analyzed without an explicit solution. The study

of this special situation, of course, gives much information

about the growth process of the economy.

However, in order for this limiting case to be

relevant as an approximation of reality, the model economy

should be expected to exist in this special situation, the

steady state path. This means that the time-length of the

adjustment process towards a steady state path from any

initial position is required to be very short. The shorter

the adjustment time, the better the steady state situation

can serve as a representation of the growth process of an

economy. If the adjustment time is very long, the practical

usefulness of a steady state solution is much reduced,

since the functioning of the economy is not likely to be

approximated by a steady state path, especially when the

model parameters are often changing over time. This is why

the problem of adjustment time is so important in relation

to the relevance of steady state solutions as an approxi-

mation of reality.

The adjustment time (or speed) in growth theory

refers to the length of time required for an economy not

in a steady state to adjust towards its steady state path.

Even if an economy is initially on a steady state path, it

will no longer be in that steady state once a disturbance

(such as change of saving rate) has occurred in the

economy. The disturbed economy adjusts towards a new
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steady state path which is determined by new values of the

parameters.

Theoretically, it takes an infinite amount of time

for the economy to complete the whole process of adjustment

to the new steady state from any (non-steady state) initial

position. It does not make sense, therefore, to ask how

long an economy takes to complete its entire adjustment

towards a new steady state path. It takes forever.

Instead, we ask how long it takes for the economy to com-

plete "almost all" of the adjustment process towards its

steady state path. More precisely, we ask hOW’much time is

required to reach a certain prescribed vicinity or neighbor-

hood of the steady state path.

In order to measure properly the adjustment time,

we need a variable which converges to a constant value in a

steady state. When we attempt to measure the adjustment

time using variables which do not converge to a constant

value but which continue to increase, the concept of

adjustment time loses much of its practical meaning. The

values of these variables are infinite in a steady state

and thus adjustment time required to cover even "almost all"

of the adjustment process will be infinite. For this

reason, all previous analysis of the adjustment times of

growth models have used variables which converge to constant

values in a steady state.

An important point in relation to the concept of

adjustment time is how we technically define the adjustment
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time itself. A definition of adjustment time should prOperly

represent the convergence time required to cover "almost

all" of the movement towards a steady state path. The

problem, then, is how to specify the level of "almost all"

of the adjustment. The predeternined level of allowance

may be a certain specified constant value, it may be a

Specific percentage of the initial disturbance from the

steady state value, or it may be based on some other

measure.

Let us consider, for example, a simple neoclassical

growth model1 with an aggregate production function Q(t) =

F(K(t),L(t)), a rate of capital accumulatiOn K5= s Q, and a

proportional growth rate of labor supply L = n.

Where Q(t) national output at time t .

F(K,L) = an aggregate production function with two

factors of production, which is homogeneous

of degree one.

K(t) = amount of capital stock an economy holds at

time t .

L(t) = amount of labor force an economy supplies

at time t .

”
0

ll

dK/dt .

[
-
1
)

II (dL/dt)/L .

s = the saving rate of an economy as a whole.

n = the proportional growth rate of labor force.

 

1Refer to Chapter III of this dissertation for a

more complete discussion of the neoclassical growth model.
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This model economy can be discussed in terms of the

following differential equation, called the "fundamental

equation" of the neoclassical growth model. We can obtain

the fundamental equation by differentiating the capital-

1abor ratio (k=K/L) lagarithmically.

(2.1.1) i = fi - i

_ g9 _

= EEIEL _

k

or,

i = sf(k) - nk

where k = dk/dt, k = k/k, and f(k) (=f(K/L,l)) represents

the intensive form of the aggregate production function

which is homogeneous of degree one.

By solving this differential equation (2.1.1) we

can find the time path of k and of other variables.

Steady state solutions, however, can be found without

explicitly solving the equation. In a steady state, k

converges to a constant value (k*) and thus the steady

state solution is obtained by setting k to zero.

(2.1.2) k* = s f (k*) - nk* = 0

or,

s f (k*) = nk*



15

Now we suppose that the neoclassical economy in a

steady state is disturbed by a change of saving rate from

s to 5 (refer to Figure 2.1.1). As the saving rate
0 1

increases (36 + 31)' the capital-labor ratio (k) begins to

increase from its initial value (kc) and eventually reaches

its steady state value (k*) as time goes to infinity. At

the same time, other variables such as the capital-output

ratio (v), the output per unit of labor (q), and the growth

rate of output (0) also change simultaneously and move from

their initial values (v0, qo, and 6°) to their steady state

values (v*, q*, and 6*) respectively as time goes to

infinity.

The basic concern of this study is how long it takes

for a variable (V,O,k, or q) to adjust from its initial

A

position (v0, Q k or qo) to a certain predetermined
o’ o’

A

value of allowance (v QA' kA' or qA), since the adjustment
A!

time to its steady state value (v*, 6*, k*, or q*) is

infinite and thus meaningless. The adjustment time

required for a variable, x, to reach the specific value,

xA, will be given by (41, p. 437)

(2.1.3) tx(€) = —— dx

The adjustment time of k, for example, is given by
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kA

(2'1'4) t (e) = éE-dk
k dk

ko

kA

dk

sf(k) - nk

ko

since dt/dk = l/(sf(k)-nk) from equation (2.1.1).

The practical problem which remains is how to

technically specify the predetermined level of x, that is

xA. The choice of xA may in principle depend on purpose

and on analytic convenience, but the following proportional

concept has been adopted in previous investigations in this

area.

= *..(2.1.5) xA x0 + ex(x x0)

or,

e _ xA - xo
_ * _

x x xo

where s is a predetermined proportion of adjustment.

Now equation (2.1.3) can be written as follows if

the prOportional concept is adopted.

+ * .—
xo 5: (x x0)

dt

X

0
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This definition of the adjustment time, called

proportional adjustment time, however, causes two problems.

Our basic concern is to find the adjustment time required

to reach a reasonaly close vicinity of the steady state.

If we adopt this proportional concept, the level of the

reasonaly close vicinity may depend on the size of the

initial displacement. They may be far below the steady

state value when the initial displacement is large even for

a high value of s. This means that we may have to change

the adjustment proportion (8) according to the size of

initial displacement in order to test properly the relevance

of steady state solutions as an approximation to reality.

In addition to this difficulty, the proportional

concept causes a more serious problem. The proportional

adjustment time may not be the same for different variables

within a system. In Figure 2.1.1, the values of v k
A’ 011' A'

and qA are the functionally related values of the variables.

Therefore, the adjustment time required for a variable to

reach the predetermined level will be the same whichever

variable we may choose as an indicator. However, the

proportion of adjustment (ev, ea, ck, and sq) is in general

not the same for each variable. In other words, the

preportional adjustment time may be different for different

variables even for the same prOportion of adjustment

(Ev = 86 = eq = 6k).

This difference in adjustment time, of course, is

the combined result of the difference in the shape of the
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adjustment paths, and the definition of proportional

adjustment time. Therefore, the adjustment time of an

economy will depend on which variable we choose as an

indicator of the system as well as on the model specification

and parameters. Thus, this definition of adjustment time

raises the problem of choosing an indicator variable of a

system. Despite these difficulties, this proportional

concept of adjustment time will be adopted in this disserta—

tion simply because no better substitute is available.

Another conceptual problem, which should be clari-

fied, concerns the terminology of adjustment "time" and

"speed." The average adjustment speed (AV) corresponding

to the proportional adjustment time (equation (2.1.6)) may

be defined as

(2.1.7) AV

From this equation, we know that the adjustment

speed is inversely related to the adjustment time (tx)'

For a given magnitude of adjustment (xA - x0), thus, high

adjustment time means low adjustment speed and vice versa.

On this account, the terms adjustment time and speed are

often interchangeably used in literature.

It seems, however, that adjustment time is a better

terminology than adjustment speed, because the conventional

concept of "speed" (i.e., distance per unit time) may cause

some confusion in relation to growth models. For example,
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the proportional adjustment time of the capital-output ratio

(v) for the neoclassical model with a Cobb-Douglas pro-

duction function is constant for a given level of adjustment

proportion.(€v) even though the magnitude of the required

adjustment (x5 - x0) may differ.2 This means that the

adjustment speed is high for longer distances and low for

shorter distances even though the adjustment time is the

same for a given level of adjustment preportion (e). In

this situation it might erroneously be said that "the

variable (v) adjusts at the same 'speed’ regardless of

the size of initial displacement." This is obviously con-

tradictory to the conventional concept of speed.

In comparing the adjustment time of two different

variables, we face another problem, if the terminology of

adjustment speed is used. The "unit" problem of variables

arises. Average speed of adjustment is defined as average

distance covered by unit time interval. However, the

distance and thus speed depend on the units adopted. But

it is not an easy problem to find a completely agreeable

common unit for various variables. In these respects,

adjustment time seems to be a better terminology than

adjustment speed.

 

2Constancy of proportional adjustment time for

given adjustment proportion (5) comes from the linearity of

the time path of v. See equations (3.2.9) and (3.3.5).
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2.2 Indicator Variable of an

Economic System
 

An economic system is composed of various economic

variables. Thus, strictly speaking, the behavior of a

system should be represented by a simultaneous description

of the behavior of all the variables contained in the

system. Even though we may, for practical convenience,

look at the behavior of a system through changes in the

value of a particular variable, it should be made clear

that the behavior of variables within a system may be

different even though they are functionally related. As

discussed in the previous section, the proportional adjust-

ment time is different for different variables for a given

level of adjustment. Previous investigators of the problem

of adjustment time have not given attention to this problem.

Different writers have adopted different indicator vari-

ables without providing any convincing justification for

their choice.3

There is no a priori criterion by which we can

choose an indicator variable. The choice of an indicator

variable depends essentially on the purpose and operational

convenience of the particular analysis. However, it may

be useful to examine the relevance of some variables as an

 

3For example, R. Sato (33) uses l/v and K. Sato

(32) adapts v while Conlisk (10) and Ramanathan (28, 29)

adopt 0.
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indicator variable. For explanatory convenience, system

variables are classified into three types; basic variables,

rate variables, and ratio variables.’

Consider the previous neoclassical growth model.

In this economic system there are three "basic" variables;

output (Q), capital (K), and labor (L). In referring to

the model, however, we often use the proportional rate of

change of these basic variables, which will be called

"rate" variables (6, R, and L). In addition to these rate

variables, we often use "ratio" variables, which are defined

as the ratio of any two basic variables (k = K/L, q = Q/L,

and v = K/Q)-

Basic Variables (9, K, and L)
 

Basic variables, dominant in static analysis, are

not popular in the analysis of dynamic models. When we

use these variables in representing the growth process, as

indicated in the above discussion, we face some mathematical

difficulties in the analysis of steady state properties and

of adjustment time since these variables are changing over

time even in the steady state. This is the main reason why

these variables are rarely used in the analysis of the

growth process in modern growth models which are primarily

concerned with the steady state properties. However, these

variables may have more real-life implications when we are

especially interested in the adjustment process rather than

in the steady state path.
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Rate Variables (Q! R, and L)

The rate variable, "a concept which has been little

used in economic theory," has become "an extremely useful

instrument of economic analysis" since growth economics has

begun to receive the attention of the modern economists

(14, p. 147). These rate variables converge to certain

constant values in a steady state if the economy has a

stable equilibrium. Therefore, a static mode of analysis

can be applied to the dynamic problem of growth when we are

mainly interested in the path of steady state growth. This

may be one of the reasons why rate variables are so popular

in modern growth models. The prOperty of convergence to

constant value in a steady state is a very useful device

also for the measurement of adjustment time. If these

variables were changing in the steady state, it would be

very difficult to measure the adjustment time in the manner

defined above.

For a given growth rate of labor (L = n), a combined

behavior of both R and 6 represents the behavior of the

system. For practical convenience, however, we may choose

either of them as a indicator of the system. The choice

is a matter of purpose and convenience. It seems to me,

however, that the capital stock is not in itself an inter-

esting variable but is sometimes adopted because of its

analytic convenience. National income, on the other hand,

is one of the most important economic variables. Thus, it

may be natural to investigate the growth process of an
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economic system by means of national income. In fact,

Conlist (10) and Ramanathan (28, 29) adopt this variable

(a) for the measurement of adjustment time of their model

economies.

Ratio Variables (k, q, and v)
 

The ratio variables are defined as the ratio of two

basic variables. Thus, we may think of a variety of ratio

variables. It is interesting to note that the inverse

of any ratio variables, in contrast to the other types of

variables, may have economic significance. Many economic

growth models are analysed using one or a combination of

these ratio variables. This may be due to the fact that

most rate variables are functionally related to one of

these ratio variables and most ratio variables converge to

constant values at steady state. If we employ ratio vari-

ables rather than rate variables, growth models can often

be more easily analysed. This is one of the important

advantages associated with their use.

The choice of any particular ratio variable as an

indicator variable may need to be decided on the basis of

analytic convenience on the one hand and the economic

meaning in relation with rate variables on the other hand.

1. Capital-Labor Ratio (k)

This variable has played a dominant role in the

Solow growth model (36) and in recent text books analysis.

When the aggregate production function is homogeneous of
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degree one, the average product of labor (q = Q/L) depends

only on capital per unit of labor (k = K/L). There exist

a number of similarities between this intensive form of the

production function (q = f(k)) and conventional short-run

production function (Q F(L)). Thus, we may utilize many

useful results of microeconomic analysis by choosing k as

an indicator variable. In addition, the time path of other

variables can easily be found through simple relationships

when the time path of k is known. In short, the choice

of k as an indicator variable gives much analytic con-

venience in the analysis of the steady state prOperties.

However, the analytic convenience of this variable is not

so powerful when we are interested in the process of

adjustment towards the steady state mainly because the

growth (differential) equation expressed in terms of k is

very complex and thus it is difficult to derive analytic

solutions. This might be one of the reasons why previous

investigators do not use this variable as an indicator

variable in the analysis of adjustment time.

2. Output-Labor Ratio (q)

Because of its real-life implications we are often

interested in this variable. However, the growth process

expressed in terms of q is less convenient than in k.

Moreover, the real-life implications of this variable are

much reduced when L represents not the simple labor but

effective-labor. We are in a practical sense interested in
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output per worker but not in output per unit of effective

labor. Output per worker in this situation is changing

even in a steady state and thus is inconvenient for the

analysis of steady state and of adjustment time.

3. Output-Capital Ratio (l/v) and Capital-Output Ratio (v)

Most economic growth models are consistent with the

Kaldor "stylized fact" of a constant capital-output (or

output-capital) ratio in a steady state. While the Harrod-

Domar growth model assumes a constant capital-output (or

output-capital) ratio over time by employing a fixed

coefficient production function, the Solow neoclassical

model allows v (or l/v) to vary over time assuming factor

substitutability within the aggregate production function.

However, v (or 1/v) finally reaches a constant value in a

steady state for the neoclassical model. Along with this

historical background, Swan (40) has described the growth

process in terms of this variable rather than k .

We may use either v or l/v when we simply talk

about the constancy of the ratio of the two basic variables.

However, we may have to distinguish these two variables

when we use them in relation to growth process because the

shape of their time paths are not identiCal. The growth

rate of total output (0) has a linear relationship with

l/v if relative factor shares are constant over time. This

relationship can be derived by differentiating the pro-

duction function (Q = F(K,L)) logarithmically and by

utilizing the assumptions of the neoclassical model.
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(2.2.1) Q = nK K + nL L

_ .1.

—nKK+nLn

n s
_K
_V +nLn

where n (= 30 5) represents the elasticity of output
K "(Trio

w.r.t. K and thus capital share of

output in a competitive economy.

_ 80 L . .

nL(— 53-6) represents the elastic1ty of output

w.r.t. L and thus labor share of output.

When nK and are constant in this equation, it is evident
1“L

that Q has a linear relationship with l/v.

In fact, R. Sato measures the adjustment time of a

simple neoclassical economy with a Cobb-Douglas production

function in terms of this variable (1/v). The resulting

estimates, therefore, are consistent with those of Conlisk

and Ramanathan using Q, when the production function is of

the Cobb-Doublas type for which ”K and "L are constant.

However, the capital-output ratio (v) has one

interesting analytic Convenience when the relative factor

shares are constant in the simple neoclassical economy.

The growth process of v is represented by a "linear"

differential equation, which is very convenient in the

analysis of the growth process. From the definition of v,

we know that Q = K/v. By differentiating it logarithmi-

cally,
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= 9. _ 5!.
V V

Substituting equation (2.2.1) into equation (2.2.2), we

obtain the following differential equation.

(2.2.3) v = - nL nv + (l - nK)s

This equation becomes a linear differential equation when

nL and ”K are constant.



CHAPTER III

NEOCLASSICAL ONE-SECTOR MODEL OF GROWTH

The neoclassical one-sector model of economic growth

is the basis for most recent models of economic growth.

One advantage of the neoclassical model is that it can be

set out simply and clearly as a system of equations, and

it is easily adapted to accommodate different assumptions.

The neoclassical model stems from papers by Solow (36) and

Swan (40), which were published in 1956, although.most of

the characteristics of the neoclassical approach were

included in a paper by Tobin (42) published in the previous

year.

The growth model used in this chapter is similar to

that of Solow though some modifications such as inclusion of

capital depreciation and of technical progress have been

added. For this model, a complete analytic solution and

numerical calculations are given for the adjustment time

assuming a Cobb-Douglas technology. As an extension,

numerical analysis is also done assuming a C.E.S. production

function.

29



30

3.1 Neoclassical Growth Model
 

Specification of Model
 

A simple neoclassical one-sector model of growth

may be represented as follows (36 and 44, pp. 32-63):

1. Production Function

There is one commodity (Q) in an economy, the pro-

duction of which utilizes the full capacity of homogeneous

capital (K) and the full supply of homogeneous effective

labor (E), and is represented by the linearly homogeneous

production function.

(3.1.1) Q (t) = F [K (t), E (t)]

Because it is homogeneous of degree one, the pro-

duction function can be represented in its intensive form

as follows.

(3.1.2) q = F (-. l) = f (k)

where q and k represent output per unit of effective labor

(Q/E) and capital per unit of effective labor (K/E)

respectively.

The production function is assumed to satisfy the

following so-called Inada conditions (21 and 44, pp. 37-40).

(3.1.3) (1) 3% = f'(k) > o

2

(ii) d—-f- = f" (k) < o

dk
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II 8(iii) lim f' (k)

k + 0

(iv) lim f' (k) ll

0

(V) f(0) = 0

(vi) f(°°) = °°

2. Capital Formation

A constant fraction (3) of total output is saved

and automatically added to the stock of capital which is

subject to depreciation at a constant rate of 6.

(3.1.4) R = so - 6K

or,

‘ - E2 -K — K 5

where R = dK/dt and R = K/K.

3. Labor Force Growth

The effective labor force (E) grows at a constant

proportional rate (n + 1) independent of any economic

variable in the system, where n is the growth rate of

natural labor force (L) and A is the improvement rate of

labor effectiveness, that is the rate of labor augmenting

technical progreSs.

(3.1.5) a = (n + A) E
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where E = dE/dt and E = E/E.

This neoclassical model is closed since it has three

unknowns (Q, K, and E) and three equations (3.1.1), (3.1.4),

and (3.1.5). Therefore, for given initial values of three

variables (00' K and E0), the time path of the model0'

economy can be found by solving the above system of three

equations. Solow reduces this system, however, to a single

differential equation in terms of the capital-effective

labor ratio (k), which may not, itself, be of ultimate

interest but which helps to describe the growth process of

the system in a simple and convenient way (36, pp. 77-80).

Since k = K/E, we can obtain the following equations

by differentiating it logarithmically and by substituting

equation (3.1.4) and (3.1.5) into the result.

(3.1.6) E = R - E

sQ - 6K
— K (n + A)

— Sf (k) (n + A + 6)

k

or,

k S f (k) - (n + A + 6)k

where R = dk/dt and E = k/k.

This fundamental equation of neoclassical economic

growth, governing the path to be followed by the capital-

effective labor ratio (k), can be interpreted as the rate

of change of the capital-effective labor ratio (k) being

determined by the difference between the amount of saving
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(and investment) per unit of effective labor (sf(k)) and

the amount required to keep the capital-effective labor

ratio constant ((n + A + 6)k) as the effective labor force

grows.

By solving the fundamental equation, we can derive

the explicit time path of the capital-effective labor ratio

(k) and of the time pattern of other variables such as

total output (Q) and capital (K), which are functionally

related to k. Such a growth model leads, in a mathematical

sense, to the study of a differential equation, and in this

study there is no perfect substitute for an explicit

solution. Since analytic solutions are, however, rare for

non-linear differential equations and the immediate concern

of the neoclassical model is with the asymptotic behavior

of the model, researchers have concentrated on the investi-

gation of steady state properties, which can be analysed

without explicitly solving the differential equation.

Steady State Prgperties
 

A path of steady state growth is the time path

along which the proportional rates of growth of all the

relevant variables remain constant over time. Along a

path of steady state growth, then, output (Q), effective

labor (E), and capital stock (K) are all growing exponen-

tially while the capital-effective labor ratio (k), the

growth rate of output (Q) and the capital-output ratio (v)

remain constant.
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The neoclassical economy, under the conditions

specified above, has a unique and stable steady state path

in the sense that whatever the initial values of all the

variables, the economy converges to a steady state path

uniquely determined by the parameters of the model (44,

pp. 35-40). The existence and stability of the steady

state path is shown graphically in Figure 3.1.1. The

intensive production function (q = f(k)) is strictly concave

and has an infinite lepe at k = o and a zero slope at

k = w from the Inada conditions of equation (3.1.3).

Therefore, the straight line q = (n + A + 5)k/s with a

positive slope (n + A + 6)/s, meets f(k) somewhere between

k = o and k = m. This means that there exists a finite

value of k, which satisfies the fundamental equation

(3.1.6). To the left of k* in Figure 3.1.1, output per

unit of effective labor (q) exceeds the output level needed

to maintain the k ratio constant. There is enough

investment both to equip each new E unit of effective

labor with the existing K/E ratio and to increase the K/E

ratio by k. In this case, k > o and k increases. To the

right of k*, there is not enough output per unit of

effective labor to outfit each E unit of effective labor

at existing K/E ratio, so k decreased at a rate of k.

At k = k*, the level of q (=q*) is the amount which yields

just enough investment to maintain k at a constant level

as E grows. Therefore, k = 0 at k = k* and the system

reaches a stable equilibrium.
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Figure 3.1.1

Equilibrium and Stability of Neoclassical Economy
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Since the capital per unit of effective labor (k)

is constant along the steady state path of growth, the

steady state value of k (i.e., k*) is algebraically obtained

by setting k = o in equation (3.1.6).

(3.1.7) k* = s f (k*) - (n + A + 6)k* = 0

or,

s f (k*) = (n + A + 5)k*

Steady state values of the capital-output ratio

(v*) and of the growth rate of output (6*) can be easily

obtained from the constancy of k in the steady state.

(3.1.8) v* =
 

Since k* is constant, v* is constant.

National output (0) is the amount of output per

unit of effective labor (q = f(k)) multiplied by the amount

of effective labor (E), that is Q = f(k)E. By differ-

entiating it logarithmically,

(3.1.9) 6 f(k) + E

f(k) + (n + 1)

Since f(k) is constant in the steady state, 6 is also

constant. That is,

(3.1.10)
0* = n + A
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In conclusion, the neoclassical economy converges

in the long run to the steady state path, along which the

growth rate of output (6) is constant and equal to that of

the effective labor force (n + A) and thus is entirely

independent of the prOportion of income saved. Several

ratio variables such as the capital-output ratio (v) and

the capital-effective labor ratio (k) also are constant in

the steady state. The magnitudes of these ratio variables,

however, depend on the propensity to save (5) as well as

on the other parameters.

3.2 Adjustment Path to Steady State
 

As explained in the previous section, the neo-

classical economy converges in the long run to a steady

state path of growth. The adjustment path of the economy

to steady state is, however, rarely discussed in the

literature, partly because the neoclassical approach is

primarily concerned with the long run characteristics of

economic growth and partly because the assumption of

instantaneous market adjustment is far from reality and

thus the model may not be relevant for the explanation of

the short run phenomena of economic growth.

In order to measure the adjustment time of the

economy, however, we need explicit information on the

adjustment path. Since the proportional adjustment time

may be different for different variables, we need to deal

with several variables which can serve as an indicator
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variable of the system. This section deals in particular

with the adjustment path of the capital-effective labor

ratio (k) because of its dominant role in recent economic

models, the capital-output ratio (v) because of its analytic

simplicity, and finally the growth rate of output (6)

because of its economic importance. The adjustment time

of other variables, if of interest, can be analysed by

exactly the same method as used for the above variables.

The growth path of the capital-effective labor

ratio (k) was given in equation (3.1.6). Rewriting the

equation,

(3.2.1) k = s f (k) - (n + 1 + <5)k

The growth path of the capital-output ratio

(v = k/f(k)) is derived by differentiating it logarithmi-

cally.

(3.2.2) 0 = E - f" (k)

=§_%r

= (l - nk) R

where nk represents the elasticity of output per unit of

effective labor (q) w.r.t. the capital per unit of effective

labor (k). Substitution of equation (3.2.1) into equation

(3.2.2) yields

(3.2.3) G=-(1-nk)(n+)+5)+(1-nk)§
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or,

v=-(l-T)k) (n+1+5)v+(1-nk)s

or,

v = — nE (n + A + 6)v + nE 5

since 1 - ”k = nE when the production function is homo-

geneous of degree one.l Where ”E represents the output

elasticity w.r.t. effective labor (E) and ”K represents

the output elasticity w.r.t. capital (K).

Since the differential equation representing the

time path of v is often easy to manipulate, it is con-

venient to express time paths of other variables in terms

of v. The time path of the growth rate of output (6) can

be expressed in terms of v as follows. By differentiating

the aggregate production function Q = f (K,L),

 

 

(3.2.4) Q = nK K + ”E E

' K 8K Q 3K Q

___ . _a__lg E K = . ___E_ E K
f (k) 3K Q f 0:) (E2) Q

_ . k _
" f (k) ‘f‘ - Bk

Therefore, nE = l - ”K = 1 — ”k for a linearly homogeneous

production function (refer to Allen (2), pp. 41-48).
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A

By substituting equation (3.1.4) for K and equation

A

(3.1.5) for E into equation (3.2.4),

(3.2.5) §= nK EQ—IE—‘S—K + ”E (n + A)

SD

K+[(n+1+5)nE-6)1 

Using this equation, the time path of 6 can be

found if the time path of v is given. It is interesting

to notice that 6 has a linear relationships with l/v

when the output elasticies w.r.t. factors (nK and nE) are

constant over time.

The growth path of k can also be expressed in

terms of V. Since v(=k(f(k)) is a function of k, we can

express k in terms of v. Let g(k) = f (k)/k, then

g(k) = v.

'1

(3.2.6) k = 9 (V9

where g- is an inverse function of 9.

We can find the time path of k using this equation

(3.2.6) if the time path of v is given. Therefore, the

time path of all the variables in question (v, k, and 6)

can be found by solving the differential equation (3.2.3)

and by substituting the solution in equations (3.2.5) and

(3.2.6), which are algebraic equations.



41

Cobb-Douglas Production Function Case

The time path of the capital-effective labor ratio

(v) given in equation (3.2.3) results in a linear differ-

ential equation when the output elasticities of the pro-

duction function are constant over time. Since both output

elasticities w.r.t. capital (nK) and w.r.t. effective

labor (nE) are constant for a Cobb-Douglas (C-D) function,

which satisfies all the Inana conditions of equation

(3.1.3), we adOpt a C - D function to derive analytic

solutions for the time path of v and thus of k and 6.

A Cobb-Douglas function is written as

(3.2.7) Q = A K“ E1-“

where A and (1 are constant parameters of the function.

The output elasticities w.r.t. factors are given by

(3.2.8) I

<
1
)
0
)

x
l
o

E
nK Q

I

Q
2

Q
2

e
l
o

L——

113 6-10.

Substituting these output elasticities into differ-

ential equation (3.2.3), we obtain the following linear

differential equation.

(3.2.9) 6 = -(1 -a) (n + A + 6)v + (l-a)s

The solution of this linear differential equation

is given by (7, pp. 7-12)
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e-(l -o.) (n + 1 + d)t

(3.2.10) v (t) v* + (vo - v*)

or,

v (t) ll

I
'
D

+ t
n

(
D

where v the initial value of v at t = o

o

v* = the steady state value of v at t = m

8 = (1 -o) (n + A + 6)

=*
Bl v

_.____£L___

_n+)(+6

=.ll;:114§
6

= -*
82 VO V

The time path of 6 is expressed as follows for

the C-D function using equation (3.2.5).

(3.2.11) 6 = 9§-+ [(1 -o) (n + 1 + a) - a]

Substitution of the expression for v (equation (3.2.10))

into equation (3.2.11) yields

 (3.2.12) 6 = . “3 -8t + (e - 6)

Bl + Bze

6 = [6* - a(6* +6)] + a(§* + 5)/

A A -et

(Qo - Q*)e

(do - 6*) + a(O* + 6) ]

 

[l -

 

2This is the expression Conlisk (10, p. 551)

adepts for his simple model.



where Q0

The

(3.2.13)

Therefore,

(3.2.14)
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the initial value of Q at t = o

as
—- + (6 - 6)

v0

as
——————— + (6 - 6)

Bl + 32

the steady state value of 6 at t = m

V? + (e — 6)

as
—— + (e - 6)

Bl

n + A

 

time path of k is obtained as follows.

v = k

f(k)

= k

A k“

= A-l kl -a

.1.

k = (Av)1-a

_1__

-6t l-o

where the following relationships hold.

k
0

= the initial value of k at t = o

1

(Avdfi

_l_

l-a

=[A(B1+B2)]
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k* = the steady state value of k at t = m

l

(Av*)l_a

_l_

1-o
= \

(A31,

The shapes of the time paths of the variables

(v, 6, and k) may be determined using first and second

order derivatives of their time paths. By taking first and

second order derivatives of the time path of v (equation

(3.2.10)) w.r.t. time t,

(3.2.15) 6 = -932e'9t

and,

-- _ 2 -8t

v — 8 Bze

By differentiating the time path of 6 (equation

(3.2.11)),

(3.2.16) 6 = -cmv"2 6

and,

6 = ozsv—2 (2v.1 62 - 6’)

By differentiating the time path of k (equation

(3.2.14)),

1
(3.2.17) _:_ ___

A1 a l
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__1__E_
1-a 1-a

.. = A V [av
-1 {’2

(1-002

+ (1 - om?) 

Suppose that the neoclassical economy is disturbed

by a change of saving rate from so to 31 where 81 > s
0

Then, it is evident from Figure 3.2.1, which shows the

adjustment of the neoclassical economy, that the initial

value of the capital-output ratio (Va) is smaller than the

steady state value of the variable (v*). Thus, B2(==vo - v*)

is negative. In this case, therefore, v > o and 6' < 0

since B2 is negative. This means that the time path of v

is strictly concave from the origin. It follows from

O.

A

equation (3.2.16) that that 6 < o and Q > 0, which means

that the time path of 6 is strictly convex from origin.

It also follows that k > o from equation (3.2.17), but

the sign of k‘ is not clear. It depends on the level

of v and the value of 0. However, we know that H has

a positive value as time goes to infinity because v goes

to zero as time goes to infinity. Thus, the time path of

k has a positive lepe (k) during all time intervals and a

negative rate of change of the slope (k°) at large values

of t. Based on this information the time paths of the

variables can be plotted out as in Figure 3.2.2.
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slope = %— _h'I—‘gAfl k
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l

Slope = ‘7;-

(n+:+6) k

1
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Figure 3.2.1

Adjustment of Neoclassical Economy with Cobb-Douglas

Production Technology
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Figure 3.2.2

Time Paths of Capital-Output Ratio (a), Growth Rate of

Output (b), and Capital-Effective Labor Ratio (c)
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3.3 Adjustment Time to Steady State
 

The variables in question (v, 6, and k) of the neo-

classical model reach their steady state values as time

goes to infinity. We are interested here in the time

required for an indicator variable of the economy (v, 6, or

k) to cover a certain prOportion of an initial displacement

from its steady state value, which has been defined as the

prOportional adjustment time of the variable.

As shown in Chapter II, the proportional adjustment

time is different for different variables because the

shape of time path of a variable is in general different

from that of other variables even for a given level of

proportion of adjustment. The proportional adjustment

time of a variable (tx) for a given level of adjustment

preportion (e) has been given in equation (2.1.6).

Rewriting the equation,

x + s * —

o (x x0)

3.3.1 ___. 95
( ) tx (6) dx dx

where x0 and x* represent initial and steady state values

of x reSpectively, and s = (x (t) - xo) / (x* - x0).

Solving this equation (3.3.1) the following equation,

which determines the time required for the variable (x) to

complete 1005 percent of the initial displacement towards

its steady state value (x*) from its initial value (x0).

can be derived.
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(3.3.2) tx(€) = H (x*, x0, 8)

However, it is difficult to find analytic solutions for

most of economic growth models if the production function

does not take a specific form.

Cobb-Douglas Production Function Case

Since we can easily derive an explicit formula for

the adjustment time corresponding to equation (3.3.2) for

the neoclassical model with a Cobb-Douglas production

function, we examine the C - D case first.

1. Adjustment Time of v

The expression for the adjustment time of the

capital-output ratio (v) can be derived in the following

manner. From the definition of 5v,

v (t) - v

(3.3.3) 6 = 0
v v* - v

o

 

By substituting the expression for v(t), v0, and v* from

equation (3.2.10) into equation (3.3.3),

6t

 

(3.3.4) 6 = (B1 + B2 e ) - (B1 + BZ)

v B1 - (Bl + 32)

-8t

= l - e

Taking logarithm for both sides, we obtain the following

formula for the adjustment time of v (tv).
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3

_ 1 1

(3.3.5) tv — 5 log (1 _ €)

 

It is important to notice that the adjustment time

of v is independent of the size and cause of the initial

impact. This property comes, of course, from the linearity

of the time path of v. This equation (3.3.5) shows that

the adjustment time has an inverse relationship with

9[= (l- a) (n + A + 6)]. It means that the larger are the

growth rate of the effective labor force (n + A), the rate

of capital depreciation (6), and the relative share of

labor (1 - a), the shorter is the adjustment time for a

given prOportion of the adjustment (6). More precisely,

at

(3.3.6) (i) 1553 = i1: log I1 2 8) < o 

 

(ii) —§’fi=§@l%=-I£é%)1ogI-lég)<o

(iii) 3;} = 2;;- g—g— = - (lg—g-Hog (13%) < 0

(iv) a—g—g=-§-;--g%=- (%)109(-1%€-)<0

(V) SIT-ITS = 8:6 3(1300 = ‘ £2531) 1°9 (1%?”

(Vi) Egg = ETIIET > o

 

3This is the formula K. Sato (32, p. 265) adopts to

measure the adjustment time of the neoclassical vintage

model.
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A

2. Adjustment Time of Q

The expression for the adjustment time of the growth

rate of output (Q) is derived in the same manner as in the

capital output ratio (v). From the definition of 66'

(3.3.7) Q (t) " Q0

0* - 00

 

By substituting the expressions for 6(t), 60, and 6*

from the equation (3.2.11) into equation (3.3.7),

 

as as

[VT-I?)- + (8 ' 5)] " [a 'I’ (9 - 5)]

e“ =
Q as as

[51,- + (6 " 5)] - [‘70- + (9 ‘ 5)]

By arranging this expression,

 

 

  

 

1 __1
(3.3.8) v(t) v0

66: _%___;

V V0

= v (t) - vo v*

v* - vo v(t)

B

= (1 - e 6t) ( 1 _et)
31+32e

Taking logarithm on the both sides, we obtain the following

formula for the adjustment time of 6.

B1 + 632

(l-e) B

1
(3.3.9) t = — log [ ] 

0
)

C
D

1



 

 

It is evident from this equation (3.3.8) that the

adjustment time of the growth rate of output (6) is the same

as that of the output-capital ratio (l/v). This is so

because of the linear relationship between them when the

production function is of the Cobb-Douglas form for the

neoclassical model. Therefore, R. Sato's estimates using

l/v (33, 34) are the same for 6.

It is evident from equation (3.3.9) that t6 has

an inverse relation with 6(= (l-a) (n+A+6)) and a

positive relationship with e. Mathematically,

(3.3.10) B + EB

 

 

ate

. Q _ -1 1 2
(1) —3g — 35 log [(1 _ 6) Bl] < o

.. Q _ 1 1 2

(11) ‘SE ’ 6 (1 - 6) (131 + 632) > °

It is interesting to note that t6 is independent

of saving rate (3) from the second expression of equation

(3.3.9) if the initial position of the economy is specified

in terms of 60 rather than in terms of initial values of

other variables. Therefore, R. Sato's conclusion (33,

p. 21) that "(1) the greater the initial saving ratio, the

longer the adjustment period. (2) The higher the new

saving ratio, the shorter the adjustment period" may be
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valid only if the initial position of the economy is not

expressed in terms of initial value of the growth rate of

output (60)-

3. Adjustment Time of k

A similar expression of the adjustment time of the

capital per unit of effective labor (k) is also found by

the same method. From the definition of 8k,

k(t) - k
(3.3.11) 6

k" k*-—ko

O
 

Manipulating this equation in the same manner as in v and

Q, we obtain the adjustment time of k.

B

 

 

(3.3.12) tk = % log[ 2 1-a l

-.%— 1+
[8311 a + (1 - 6) (Bl + B2) a] -B1

or,

1 (k0 l-a _ k* l-a)/A

tk = 6 log [ek* + (l - €)ko]l-a - k*l-Ol /A

This equation (3.3.12) also shows that tk has an

inverse relationship with 8 and a positive relationship

with e.

4. Comparison of Adjustment Time

Since the adjustment time formulas have been

derived for the several variables in question it may be

useful to compare the time required for these variables to
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complete the same proportion of their adjustment; that is,

Ev = 80 = Ek' Let us rewrite the formulas for convenient

comparison.

_ l 1

t ’6109(I:E

1 B]. + EBZ

t6 ’ 6 109 [(1-5) Bl]

 

B / B

_ 1 2 1
tk _ '9' lOg[ 1.. l-OI ]

176

32
e + (1-6) (1 + §—) ] -1

1

The difference of adjustment time between t6 and

t is given by
v

1 EB2
(3.3.13) t6 - tV = E log (1 + —§I)

Since B1 = v* and B2 = vo - v* from equation

(3.2.10), the equation (3.3.13) can alternatively be

expressed in the following way.

— *)

(3.3.14) _ 1 6("0 V
t6 " tV — ‘6- log [1 + V* ] 

Therefore,

. . * A

if B2 < o (1.e. vo < v ), tv > tQ

and,

° ° * A
if B2 > o (1.e. vo > v ), tv < tQ
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This means that the relative magnitude of adjustment time

depends on the direction of the adjustment. When K. Sato

(using v) criticized R. Sato (using % and thus 6), arguing

that the adjustment time of a neoclassical economy could be

reduced by a realistic modification of the model, he

examined the case of upwards adjustment (vo < v*). Thus,

K. Sato's argument could have been more effective if he had

made estimates of adjustment time for the case of downwards

adjustment (vo > v*).

The difference between t6 and tv decreases as

(vo - v*) becomes smaller. In other words, the difference

of adjustment time becomes smaller as the size of initial

disturbance becomes smaller. This is an expected result

because the shapes of time paths of both v and 6 become

more similar and can be linearized as the size of displace-

ment becomes smaller. The pr0portional adjustment time,

as discussed in Chapter II, is same for the variables

which have the same shapes of time paths.

The difference between to and tv becomes larger

as the proportion of adjustment (6) becomes bigger. This

is due to the fact that as 6 becomes larger the size of

adjustment becomes larger and thus the difference in shapes

of the time paths of 6 and v become more pronounced.

Analytic comparisons of tk and tv, and tk and t6 are

difficult because of the complexity of the time formula of

k. Numerical illustrations will give some ideas for the

relative magnitude among tv, t6' and tk'
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5. Numerical Calculation

It has been shown that the prOportional adjustment

time of an economy depends both on which variable is chosen

as an indicator of the system and on the values of para—

meters of the economic system. Table 3.3.1 shows the

prOportional adjustment time of the variables discussed

(v, 6, and k) for a neoclassical model with a Cobb-Douglas

production function having the values of parameters adOpted

by R. Sato (33). We know that this economy adjusts to a

steady state path where 6* = n+A = 0.035 as time goes to

infinity.

The adjustment times of the variables are, however,

quite different from each other, even for a given level of

adjustment prOportion. When an initial growth rate of out-

put is 0.025 (i.e., 6 = 0.025), for example, the capital-
0

output ratio (v) takes 101.2 years, the growth rate of

output (6) takes 172.0 years, and the capital per unit of

effective labor (k) takes 81.4 years for a 90 percent

adjustment towards their steady state values. It is also

interesting to note that the adjustment time of 6 becomes

A

shorter and that of k becomes larger as Qo increases for a

given level of 6*.

The adjustment times of 6 and k are different for

different levels of initial values even for the same level

of adjustment prOportion (6), while the adjustment time of

v is the same for a given level of adjustment proportion

regardless of the size of initial disturbance because of



T
a
b
l
e

3
.
3
.
1

A
d
j
u
s
t
m
e
n
t

T
i
m
e

(
i
n

Y
e
a
r
s
)

o
f

N
e
o
c
l
a
s
s
i
c
a
l

E
c
o
n
o
m
y

W
i
t
h

C
o
b
b
-
D
o
u
g
l
a
s

P
r
o
d
u
c
t
i
o
n

F
u
n
c
t
i
o
n

V
a
l
u
e
s

o
f

P
a
r
a
m
e
t
e
r
s
:

n
=
0
.
0
1
5
,

A
=
0
.
0
2
,

6
:
0
.
0
,

a
=
0
.
3
5
,

s
=
0
.
1
2
5
4

A Q
o
=
0
.
0
2
5

A
d
j
u
s
t
m
e
n
t

0
0
:
0
-
0
3
5
9

Q
o
=
0
.
0
5

P
r
o
p
o
r
t
i
o
n

A
A

A
(
6
)

t
v

t
Q

t
k

t
v

t
o

t
k

t
v

t
Q

t
k

 
 
 

 

0
.
1

0
.
2

0
.
3

0
.
4

4
.
6

9
.
8

1
5
.
7

2
2
.
5

3
0
.
5

4
0
.
3

5
3
.
0

7
0
.
5

1
0
1
.
2

2
0
.
8

3
7
.
8

5
2
.
9

6
7
.
4

8
1
.
9

9
7
.
4

1
1
5
.
1

1
3
7
.
4

1
7
2
.
0

3
.
4

7
.
3

1
1
.
7

1
6
.
8

2
3
.
0

3
0
.
7

4
0
.
7

5
5
.
3

8
1
.
4

4
.
6

9
.
8

1
5
.
7

2
2
.
5

3
0
.
5

4
0
.
3

5
3
.
0

7
0
.
5

1
0
1
.
2

4
.
3

9
.
2

1
4
.
7

2
1
.
2

2
8
.
9

3
8
.
4

5
0
.
7

6
8
.
2

9
8
.
3

4
.
7

1
0
.
0

1
5
.
9

2
2
.
8

3
0
.
9

4
0
.
0

5
3
.
5

7
1
.
4

1
0
2
.
0

4
.
6

9
.
8

1
5
.
7

2
2
.
5

3
0
.
5

4
0
.
3

5
3
.
0

7
0
.
5

1
0
1
.
2

2
.
1

4
.
7

1
1
.
5

1
6
.
3

2
2
.
7

3
1
.
5

4
5
.
2

7
1
.
2

5
.
8

1
2
.
0

1
8
.
8

2
6
.
4

3
5
.
2

4
5
.
7

5
9
.
0

7
7
.
5

1
0
8
.
5

 

57



58

the linearity of its time path. As the initial (non-steady

state) position is specified closer to the steady state

path (Qo = 0.0359), however, the adjustment times become

closer to each other, since difference in the shapes of

time paths is not so influential when the initial disturbance

is small.

While for a case where 6* < 60 (that is, v* > vo)

i.e., cases where 60 = 0.0359 and 60 = 0.05, the adjustment

time of 6 (t6) is shorter than adjustment time of v(tv).

The adjustment time of 6 is larger than adjustment time of

v when 6* > 60 (that is, v* < vo) i.e., case where 60 = 0.025,

which has been discussed above.

Later investigators of adjustment time have modified

values of the parameters adopted by R. Sato. K. Sato,

especially, argues that the estimates of the adjustment

time by R. Sato are not realistic because R. Sato does not

consider capital depreciation (i.e., 6 = 0.0). In fact, the

adjustment time of the variables (v, 6, and k) becomes

shorter as (l—a) (n+A+6) increases. Estimates of the

adjustment time for more conventional parameter values for

a C-D case are given in the discussion of the C.E.S. pro-

duction function case with a unitary elasticity of sub-

stitution.

C.E.S. Production Function Case
 

Cobb-Douglas production function has a unitary

elasticity of substitution. Therefore, the effect of
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elasticity of substitution (0) on the adjustment time remains

to be investigated. We examine here the role of the elasti-

city of substitution in determining the adjustment time by

adOpting a C.E.S. production function for the neolcassical

one-sector model.4 The Cobb-Douglas function is treated

here as a special case where 0 = 1 for convenient compari-

son. Since it is difficult to find analytic solutions,

however, we concentrate on numerical analysis.

A C.E.S. production function is written as

.1

(3.3.15) Q = A [ax-p + (1-a)E'p]'B

or,

_p -1
q = A [ak + (l-a)] D

where A, a, and p are constant parameters of the function.

The elasticity of substitution between factors (0)

and output elasticities w.r.t. factors (nK and ) are
”E

given as follows (2, pp. 52—55).

 (3.3.16) 0 =

 

4The C.E.S. production function does not satisfy

the Inada condition, which means that a stable steady state

path may not exist for certain values of parameters.

Despite this fact, it is here assumed that a steady state

path exists for the one-sector model. In fact, it is

numerically verified that there exists a steady state path

and it is locally stable for the values of initial con-

dition and parameters adepted in this analysis. See

Burmeister and Dobell (9, pp. 30-36), and Wan (44, pp.

37-40) for details.



and,

(3.3.17) nK =

0E:

The time
0
2
'
s

a
)

M
D

60

D
I
N

Il Q <
; I

Q <

_p l— l

= l - av 0II

I
—
‘

I 3E

Q

path of the capital-output ratio (v) given

in equation (3.2.3) is modified by substituting equations

(3.3.16) and (3.3.17) into equation (3.2.3).

(3.3.18) v = - ”E (n + A + 6) v + ”E s

= - (1-av 'p) (n + 1 + 6) v + (1 - av 'p) s

= a(n + A + 6) v -0+1 -asv-p- (n+A+6)v +S

2-1 1-1
= (n+A+6)v 0 - asv 0 - (n+A+6)v + s

The time paths of the growth rate of output (6) and

the capital per unit of effective labor (k) are expressed

in terms of v as follows from equations (3.2.5) and (3.3.17),

and equations (3.2.6) and (3.3.15).

(3.3.19)

and,

(3.3.20)

I
O II

S n

v

 

+ [(n + A + 6) nE -6]

1

l- 3 + as-

1

(n + A) - a(n + A + 6) 3
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k

AIak-p + (1-a]- %

By expressing this equation (3.3.20) explicitly for k,

 

1

(3.3.21) (Av)p -a —
k — I 1.0 :I p

O'

1 - l ———

1 - a

Therefore, the time paths of all the variables in

question (v, 6, and k) can be found by solving the differ—

ential equation (3.3.18) and by substituting the solution

into equations (3.3.19) and (3.3.21). Since analytic

solutions for both the time path and for the adjustment

time are difficult to find, however, we have obtained

numerical solutions to the differential equation (3.3.19)

using a fourth-order Runge-Kutta method (16, pp. 388-399).

Numerical estimates for 90 percent adjustment are

given in Table 3.3.2. The adjustment time for the C.E.S.

function with o = 1, that is for the Cobb-Douglas function,

is about one-third of that for the previous R. Sato case

(refer to Table 3.3.1). This is simply because (l-a)

(n+A+6), which has an inverse relationship with adjustment

time from equation (3.3.5), (3.3.9) and (3.3.12), increases

in this case.

While the adjustment time of the variables is not

affected by changes in saving rate for the C-D function

A

case when initial condition is specified in terms of Q0,
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it is affected by changes in the saving rate for the C.E.S.

function with a non—unitary elasticity of substitution.

The magnitude of elasticity of substitution affects

the adjustment time of the variables under investigation,

but its effect is not large according to our estimates,

which are consistent with Ramanathan's estimates (29).



CHAPTER IV

EXTENSION OF THE MODEL: SAVING BEHAVIOR

To this point, the analysis of the adjustment time

has been restricted to the neoclassical growth model with a

simple saving function, a constant rate of saving to out-

put. The analytic simplicity of this type of saving

function is gained, however, only by sacrificing realistic

elements of real-life saving behavior and thus the esti-

mated adjustment time may lose much of its practical value.

Consumption (or saving) behavior has been exten-

sively investigated in relation to static macroeconomics by

Dusenberry, Friedman, Modigliani and Brumberg, and others

(8, pp. 167—197). Kaldor, Pasinetti, and Samuelson and

Modigliani, among others (44, pp. 184-214), have attempted

to integrate these earlier works into the subsequent

development of modern growth theory. As is characteristic

of modern growth theory, however, analytic emphasis has

been given to the effect of different forms of saving

behavior on the steady state path rather than to their

effect on the general growth process including both the

adjustment process and the steady state path.

64
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More Specifically, the effect on the adjustment time

of alternative forms of saving behavior has not been

investigated in literature except by Furuno (15) who

examined a neoclassical model with Pasinetti saving function

by numerical methods. Since different forms of saving

behavior have different effects on the adjustment time of

an economy, further investigations for a variety of saving

functions are needed. For this reason three types of

saving functions--a Classical saving function, an Ando-

Modigliani saving function, and a Kaldor saving function--

are adOpted for use in the neoclassical model discussed in

Chapter III. All other specifications of the neoclassical

growth model discussed in Chapter III are maintained in

this chapter.

4.1 Classical Saving Function
 

The Classical saving function makes the saving

ratio (5) a function of the profit rate (r). If the reason

for saving and investing is to increase future consumption

possibilities one might expect that as the rate of return

on investment (r) falls with a rising capital-effective

labor ratio (K/E), the rate of saving should also fall,

since the future consumption payoff is reduced.

A Classical saving function, under this assumption,

can be written as (8, pp. 402-06).

(4.1.1) 8 = s (r)
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where 3 represents an overall saving rate of the economy and

s'(r) (=ds/dr) is positive.

Since the rate of return on capital (r) is equal to

marginal product of capital (f' (k)) in a competitive

economy, r = f' (k). From the assumption on the production

function of the neoclassical model (equation (3.1.3)),

f'(k) decreases as the capital per unit of effective labor

(k) increases, that is f" (k) < 0. Therefore, the overall

saving rate of the economy (3 (r)) is decreasing as k is

increasing because 5' (r) > 0. That is,

(4.1.2) ds(r) < o

dk

Combining this Classical saving function with the

neoclassical growth model discussed in Chapter III, we can

derive its fundamental equation. By substituting the

saving function (5 = s(r)) into the fundamental equation

of the neoclassical economy (equation (3.1.6)),

(4.1.3) it = s(r) f(k) - (n + A + 6)k

This is the fundamental equation of the neoclassical

economy with the Classical saving function.

The Classical saving function ensures the existence

of a stable equilibrium in the neoclassical one-sector

growth model if the production function satisfies the Inada

conditions of equation (3.1.3), as Figure 4.1.1 shows. To

the left of k*, k >o because s(r) f(k) >(n + A + 6)k and

thus k is increasing towards k*, while to the right of k*,
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Figure 4.1.1

Equilibrium and Stability of Neoclassical Economy

with Classical Saving Function
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k<o because s(r) f(k)<(n + A + 6)k, and thus k is decreasing

towards k*. From this fact, it is clear that k* is a stable

equilibrium (8, pp. 403-403).

The steady state solution of this economy can be

found from the equation (4.1.3) by setting k = 0.

(4.1.4) s(f'(k*)) f(k*) - (n + A + 6)k* = o

where parameters (n + A) and 6 represent the growth rate

of effective labor (E) and the depreciation rate of capital

(K).

Steady state values of the capital-output ratio (v)

and the growth rate of output (6) are easily obtained as

follows.

(4.1.6) 6* = (fA(k*) E)

=6

= n + A

= constant

where the variables with star (*) represent steady state

values of the variables.

Although the steady state results obtained from the

model with the classical saving function are similar to

those for the model with the simple constant rate saving

function, it should be recognized that the level of k*

and v* may be, in general, different for different saving
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functions. These differences in the level of k* and v* are

partly related to the difference in adjustment time between

two models.

The problem of adjustment time can be more easily

analysed using the time path of the capital-output ratio

(v) rather than that of the capital-effective labor ratio

(k). The time path of v has been derived for the neo-

classical model with constant rate of saving in Chapter III,

which is equation (3.2.3). We can obtain the time path of

v for the neoclassical model with the Classical saving

funtion by simply substituting the Classical saving function

(equation (4.1.1)) into the equation (3.2.3).

(4.1.7) 6 = -n (n + A + 6)v + n s(r)
E E

where nE represents the output elasticity w.r.t. the

effective labor.

Cobb-Douglas Production Function Case
 

When the production function takes a form of Cobb-

Douglas function, the time path of v can be simplified as

follows.

(4.1.8) {I = - (1 - a) (n + 1 + 6)v + (1-6) s(r)

where ”E = (l-a) for a Cobb-Douglas function which takes

the form of Q = AKa Ll-a.
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When the saving rate (8) depends on the profit rate

(r), however, it is difficult to find analytic solutions

for the adjustment path and adjustment time even for a

Cobb-Douglas production function. In order to simplify the

problem we assume, for heuristic purposes, the following

particular type of Classical saving function, which is

convenient for finding analytic solutions.

(4.1.9) 3 = 51 - szv

where 51 and 32 represent positive constants.

This particular saving function satisfies the

pr0perty of the Classical saving function that the saving

rate is an increasing function of r and thus a decreasing

function of v, because r has a negative relationship

with v. By adopting this particular form of the Classical

saving function, the time path of v can be written as

follows for the Cobb-Douglas production function case.

By substitution equation (4.1.9) into equation (4.1.8),

(4.1.10) {7 - (l-a) (n + A + 6)v + (1-a) (sl - 32v)

- (l-a) (n + A + 6+ $2)v + (l-a)s1

 

1This specific form of saving function is adopted

only for analytic simplicity. It can be justified, however,

if the Classical saving function takes the form of s =

s - a/r. Since r = a/v for a Cobb-Douglas function, 8 =

31 - av/a = 31 - szv where 32 = a/a.
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The solution of this linear differential equation

is given by

(l-a) (n+A+6+sz) t
(4.1.11) v (t) v* + (vO - v*) e-

or,

-(1-a) (n+A+6+sz) t
B-I-Bv (t) 1 2 e

where vo the initial value of v at t = o

v* = the steady state value of v at t = w

 

51

n + A + 6 + 52

= *
Bl V

82 = (vO - v*)

Since this time path of v (equations (4.1.10) or

(4.1.11)) is the same as that for the constant rate of

saving case (equation (3.2.9) or (3.2.10)) except for a

minor modification of the coefficient of the equation, the

prOportional adjustment time of v for this Classical

saving function case is easily obtained using equation

(3.3.5), which represents the adjustment time for the neo-

classical model with constant rate of saving. We can now

derive the following equation which represents the adjust-

ment time required for v to cover 1006 percent of initial

disturbance towards its steady state path for this Classi-

cal saving function case.



72

l

(4‘1'12) tv = (l-a) (n+A+6+s

 

1

2) log (1‘5)

The time path and adjustment time of the growth

rate of output (6) can be easily obtained using equations

(3.2.12) and (3.3.9), which represent adjustment path and

time of 6 for the constant rate of saving case. The growth

path of 6 for this Classical saving function is derived by

using equation (3.2.12).

 

A S '" S V

(4.1.13) Q = a[ l V 2 1+ [(l-a) (n+A+6) - 5]

as].

= T + [(l‘a) (n+A‘I’O‘I'Sz) " $2 - (5]

Since time path of v is given in equation (4.1.11), the

time path of 6 is obtained by substituting equation

(4.1.11) into equation (4.1.13).

The preportional adjustment time of 6 for this

Classical saving function model is derived using equation

(3.3.9).

(4.1.14) 1 B + EB

_ 1 2

t0 ’ (1-6) (n+A+6+sz) l°9 [(l-e)Bl ]
 

The adjustment path and adjustment time of the

capital-effective labor ratio (k) can also be easily

obtained using equations (3.2.14) and (3.3.12), which

represent their relationships for the constant rate of

saving case. The growth rate of k for this Classical

saving function is derived using equation (3.2.4).
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(4.1.15) 1%;
k = (Av)

Since the time path of v is given in equation (4.1.11),

the time path of k is found by substituting equation

(4.1.11) into equation (4.1.15).

The proportional adjustment time of k for this

Classical saving function model is found using equation

(3.3.12), which represents the adjustment time of k for

the constant rate of saving model.

1

(4°1'16) tk = (l-a)(n¥A+6+s
 

log

2)

B

I 2 1-0,]
l

63 I§5 + 1—e (B +B )I:E] -B[ l ( ) 1 2

 

1

We can determine the effect of this Classical

saving function on the adjustment time by comparing the

adjustment time formulas for the two cases-—the Classical

saving function and the constant rate of saving. Each of

the adjustment formulas for the Classical saving function

model (equations (4.1.12), (4.1.14), and (4.1.16)) has one

additional positive constant (52) in its denominator, when

compared to the adjustment formulas for the constant rate

of saving model (equations (3.3.5), (3.3.9), and (3.3.12)).

This means that the adjustment time for the Classical

saving function model is, other factors being equal,

shorter than the adjustment time for the constant rate of
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saving model. The difference in the adjustment time of the

capital-output ratio (v), for example, is given by

8

(4.1.17) tV - tv (r) = fi3 log[
1

l-e

 

l> o

where tv and tv(r) represent the adjustment time of v for

the constant rate of saving model and that of the Classical

saving function model respectively, and H = (l-a)(n+A+6)

(n+A+6+sZ).

As this equation (4.1.17) indicates, the differ-

ence in adjustment time is larger as the value of 32

increases. This means that as saving rate responds more

sensitively to the profit rate: the adjustment time becomes

shorter.

4.2 Ando-Modigliani Saving Function

According to Ando and Modigliani, consumption (C)

depends on both labor income (W) and net wealth, which is

given by capital stock (K) in our simple one—sector economy.

Thus, the Ando-Modigliani (A-M) consumption function can be

expressed in the following way (3 and 8, p. 409).

(4.2.1) C = ClW + CZK

where c1 and c2 are marginal prOpensities to consume out

of wage income and wealth, respectively, which satisfy the

condition that o<c2<cl<l.

This consumption function can be converted into a

saving function in the following manner. Since the economy

has been assumed to be full employment equilibrium condition,
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(4.2.2) U
) II Q - C

Since the economy's total output (Q) is divided into wage

income (W) and profit income (P) in the two factors (labor

and capital) economy (that is, Q = W + P), and profit

income is the profit rate on capital (r) multiplied by the

amount of capital (K) (that is, P = rK),

(4.2.3) 8 = (l - c1) Q - (c2 - clr) K

Thus the overall saving rate (3) is given by

(4.2.4) 5 = g

(1 - Cl) - (c2 - cl r)v

where v represents the capital—output ratio and it is

assumed that (c2 - c1 r) > o.

The overall saving rate, as a result, depends on

both the profit rate (r) and the capital-output ratio (v).

Substituting this overall saving rate into the fundamental

equation of the neoclassical economy (equation (3.1.6)), a

modified fundamental equation for the A-M saving function

can be derived.

(4.2.5) 2 = [(1 - cl) - (c2 - c1 r v] f (k) - (n+A+6)k

A stable equilibrium exists if (n+A+6)/s does

not increase as k increases. In general it is assumed

for the life-cycle behavior that the saving rate (3) falls
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as k rises and, thus as v rises. Indeed, this will be

the case if (c2 - c1 r) > 0. Therefore, the one sector

model with the A—M consumption function has, if we accept

the assumption (c2 — cl r) > o, a stable equilibrium (8,

pp. 410-12).

We derive the time path of the capital-output ratio

(v) using the same approach as has been used in the

previous analysis, since the investigation of adjustment

time can be more easily handled with this equation.

Equation (3.2.3) can be used as a starting point in deriving

the time path of v. By substituting equation (4.2.4) into

equation (3.2.3),

(4.2.6) 6 =

= -nE (n + A + 6)v + ”E [(l-cl) - (CZ-cl r)v}

= -nE [n + A + 6 + (oz-cl r)] v + ”E (l - Cl)

Since this differential equation is difficult to solve

analytically we concentrate, as before, on the Cobb-Douglas

production function case.

Cobb-Douglas Production Function Case

Since the rate of profit on capital (r) is equal

to marginal product of capital in competitive economy, r

is expressed as follows for the Cobb-Douglas production

function.
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II
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)
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e

(4.2.7)

I

<
|
Q

where <1 is the output elasticity w.r.t. capital.

By substituting this equation into equation (4.2.4),

(4.2.8) (
.
0 II (1 - Cl) — (c2 - cl r)v

where c3 = l - cl (1 - a).

The resulting saving rate (8) associated with the

A-M consumption function takes exactly the same form as the

particular type of Classical saving function (equation

(4.1.9)) discussed in the previous section 4.1. This means

that the effect of the A—M saving function on the adjust-

ment time is the same as that of the particular type of

Classical saving function used in the analysis above, even

if the magnitude of the effect (that is the reduction of

adjustment time) may be different depending on the values

of coefficients (s1 and s2; c3 and c2) of two saving

functions.

The adjustment path of the capital-output ratio

(v), for example, is obtained by substituting equation

(4.2.8) into the equation (4.2.6).

(4.2.9) v=-(1-—a)(n+A+6+c2)v+(l-a)c3
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By solving this linear differential equation and by

manipulating the solution in the same manner as in section

3.3, we obtain the following formulas for the adjustment

time of v.

_ ‘__1 '1

v — (l - a) (n + A + 6 + c2) log ( - e)

 

(4.2.10) t

Comparison of the adjustment time of v for two

cases--a Classical saving function model (equation (4.1.12))

and the Ando-Modigliani saving function model (equation

(4.2.10))--indicates that two equations are the same except

that c2 is substituted for 32‘ We know from equation

(4.2.10) that as the marginal prOpensity to consume out of

wealth (c2) goes up, the adjustment time is reduced, while

the adjustment time is not affected by a change in the

marginal prOpensity to consume out of wage income (c1)

because the equation does not contain Cl’

4.3 Kaldor Saving Function

The idea that it may be fruitful to distinguish

between the prOpensities to save of capitalists and workers,

or between the prOpensities to save out of different kind

of income, has a long history in economics (22, p. 143).

In recent years, Kaldor (23) has suggested a saving

function, originally prOposed as a "Keysian alternative

theory of distribution," which has become one of the

distinguishing characteristics of the Cambridge School.
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According to Kaldor, an aggregate saving (S) con-

sists of the saving from wage income (W) and the saving

from profit income (P) (8, pp. 406-08), which leads to

(4.3.1) S = sw W + 3p P

where it is assumed that the marginal propensity to save

out of wage income (sw) is less than that of profit income

(sp). Since Q = W + P in a two factor economy,

(4.3.2) S = sw Q + (3p - sw) P

Therefore, the overall saving rate is given as

(4.3.3) 3 = g

_ _ B
— sw + (3p SW) 6

= sw + (5p - sw) r v

Substituting the overall saving rate into the

fundamental equation of the neoclassical economy (equation

(3.1.6)), we obtain a modified fundamental equation for the

Kaldor saving function model.

(4.3.4) h = [sw + (5p — sw) r v] f (k) - (n+A+6)k

It is not difficult to prove that the neoclassical one-

sector model with the Kaldor saving function has a stable

equilibrium (8, pp. 407-08).



80

In order to investigate the effect of the Kaldor

saving function on the adjustment time, we derive the time

path of the capital-output ratio (v) by substituting

equation (4.3.3) into equation (3.2.3).

(4.3.5) {I -n (n + 1 + 6)v + n [s + (s - sw) r v]
E E W p

= -nE [n + A + 6 - (sp - sw) r] v + nE sw

In order to determine the adjustment time, it is

necessary to specify a production function. The Cobb-

Douglas production function, which has been adOpted in the

previous chapters, is not relevant for the Kaldor saving

function since it is reduced to a constant saving rate

when the relative factor shares are constant. Recognizing

r = a/v for a Cobb—Douglas function,

_ _ 2
(4.3.6) 5 — sw + (3p sw) v v

= sw + a (sp - sw)

= constant

C.E.S. Production Function Case
 

Alternatively, we can assume that the aggregate

production function is of the C.E.S. type in order to

determine the effect of this Specification of the saving

function on the adjustment time. When we adopt a C.E.S.
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production function, the time path of v takes the

following form.2

(4.3.7) v = - ”E (n + A + 6)v + nE s

271,- 1—l

: a (n+A+6)v - asv 0- (n+A+6)v + s

where the following C.E.S. function is assumed:

l. The production function takes the form of

-1

Q = A [0IK—p + (l - a)E-p] p

or,

1

q = A [ak-p + (l - a)]-6

2. The elasticity of substitution between factors is

1

1 + p

 

3. The profit rate is

1

(1V 0H II

o
)

o
)

7
:
I
0

II

4. The output elasticities w.r.t. factors are

1-1
0

- 32 _
- 3K — av

D
I
N

”K

 

2C.E.S. production function does not satisfy the

Inada condition, which means that a stable steady state

path may not exist for certain values of parameters.

DeSpite this fact, it is here assumed that a steady state

path exists. It is numerically verified in fact that there

exists a stable equilibrium for the parameters adopted in

this investigation. See Burmeister and Dobell (9, pp.

30-36), and Wan (44, pp. 37-40).
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The Kaldor saving function takes the following form

when the production function is of the C.E.S. type.

From Equation (4.3.3),

(4.3.8) 3 = sw + (5p - sw) r v

-1

= sw + (5p - sw) av o v

1-1
= sw + (5p - sw) av o

By substituting this overall saving rate into

equation (4.3.7), we can get the time path of v for the

neoclassical model with the C.E.S. function and the Kaldor

saving function.

2 2 1

(4.3.9) v = -a (sp - sw)v2 -3 + a(n + A + 6)v2-3

1
1 -_

+ a(sp 25w) v o - (n + A + 6)v + sw

The time path of the growth rate of output (6) is

derived starting with equation (3.2.5).

”K 9

(4.3.10) 6 = V

 

+[nE (n+A+6)-6]

By substituting the expressions for ”K and nE into the

above equation,

I
I
-
‘

1— .1.
O+CXSV 0'(4.3.11) 6 = (n + 1) - a(n + 1 + 6)v
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By substituting the saving rate (3) of Kaldor saving function

into the equation,

2 1

6 1"l - - a(n + A + 6)v 3
2

(4.3.12) 6 = a (s - sw) v

P

1
+01. V 0

SW

+ (n + A)

The time path of the capital-effective labor ratio

(k) is derived from the definition of v.

(4.3.13) V = I—(k_)

k
 

1

AIak-p + (l - a)]—3

By solving this equation explicitly for k ,

o

1 1
(Av)0 -a 1'0

1 - a 1

(4.3.14)

 k = [

Since the differential equation (4.3.9) is difficult

to solve analytically, a numerical method--a fourth-order

Runge-Kutta procedure (l6)--is adopted to measure the

adjustment time of the variables. Estimates of the adjust-

ment time required for an indicator variable to cover

90 percent of its initial diSplacement are given in

Table 4.3.1, where the case with o = 1 represents the

Cobb-Douglas case and the case with sw = sp represents the

constant rate of saving case.

The results indicate that an increase in the growth

rate of effective labor (n+A), in general, reduces the
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Table 4.3.1

Adjustment Time (in Years) of Neoclassical Economy

with Kaldor Saving Function

Values of Parameters and Initial Position:

a=0.25, 6=0.05, e=.90, QO=0.05

 

 
 

 

Parameters Adjustment Time

0 n+A sw sp tv t6 tk

0.5 0.42 0.15 0.15 31.4 23.7 31.4

0.1 0.3 25.2 19.8 25.2

0.0 0.6 16.5 13.9 16.5

0.52 0.15 0.15 28.0 31.2 28.0

0.1 0.3 22.9 24.9 22.9

0.0 0.6 15.4 16.2 15.4

1.0 0.42 0.15 0.15 33.4 29.5 34.0

0.52 0.15 0.15 30.1 31.1 30.0

2.0 0.42 0.15 0.15 37.1 35.1 38.4

0.1 0.3 47.5 44.7 49.5

0.0 0.6 84.9 81.1 91.5

0.52 0.15 0.15 33.7 34.1 33.4

0.1 0.3 42.3 42.9 41.8

0.0 0.6 72.2 73.5 70.8
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adjustment time regardless of the elasticity of substitu-

tion (0). They also indicate that as the elasticity of

substitution increases, other things being equal, the

adjustment time increases. The effect of the saving rate

on the adjustment time is, on the other hand, quite

dependent upon the elasticity of substitution. The adjust-

ment time decreases as (sp - sw) increases when 0 < l ,

while the adjustment time increases as (sp - sw) increases

when 0 > 1 . The saving rate does not affect the adjust-

ment time when 0 = l . In conclusion, the adjustment time

for the Kaldor saving function model compared to that for

the constant rate of saving model, depends upon the elasti-

city of substitution. The Kaldor saving function raises

the adjustment time when 0 > 1 , does not affect the

adjustment time when 0 = l , and reduces the adjustment

time when 0 < l .

It is interesting to note that the saving rate of

the Kaldor saving function (equation (4.3.3)) is very

similar to the saving rate of the Ando-Modigliani saving

function (equation (4.2.4)). Both are expressed as a

function of the profit rate (r) and the capital-output ratio

(v). In fact they may be treated as a category of saving

functions for the economy where the physical capital (K) is

the only asset and thus the only source of profit income

(P). However, they are not identical because the profit

income (P) in the Kaldor saving function is not identical

to the capital stock (K) in the A-M function, since the
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profit rate (r) changes as K changes. The difference

between the two saving functions has been demonstrated for

the Cobb-Douglas production function. While the Kaldor

saving rate is constant, the A-M saving rate is a decreasing

function of k and thus v .

Despite this difference, some information on the

effect of the Ando-Modigliani saving function on the adjust-

ment time for the model with the C.E.S. production function

can be inferred from the estimates of the effect of the

Kaldor saving function on the adjustment time. For the A-M

saving function, the time path of the capital-output ratio

(v) can be derived by combining equation (4.2.4) and

(4.3.7).

2

(4.3.15) v = -62 cl v2 6 + a(n+A+6+cz) v2 Q
I
H

1..

Q
I
H

+ a(2cl - l) V - (n+A+6+c2)V + (l - c 1)

Comparison of two time paths of v-—the Kaldor case

(equation (4.3.9)) and the A-M case (equation (4.3.15))--

indicates that they are in fact the same form of differ—

ential equation with different coefficients. Recognizing

this fact, we may expect that the A-M saving function

affects the adjustment time in a similar to the Kaldor

saving function. It should be noticed, however, that the

time path of v for the A-M case has one more element in

the coefficients of the terms v2 - 3 and v , which may

be analytically regarded as the increase in the growth
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rate of effective labor (n+A). Therefore, we may say that

the A-M saving function will have an effect on the adjust-

ment time analogous to the combined effect of the Kaldor

saving function and an increase of (n+A). Though the net

effect will depend on the magnitude and direction of both

effects, we may in general say that the A-M function

decreases the adjustment time, compared to that for the

constant rate of saving model, when 0 g 1 and raises the

adjustment time when 0 > 1 .



CHAPTER V

EXTENSION OF THE MODEL: INCLUSION OF MONEY

Thus far, our investigation of adjustment time has

been based on growth models in which only flows of real

goods and stocks of a real capital good have been con-

sidered. That is, the models examined so far have been

exclusively "real" models without financial assets.

In fact, money is one of the characteristic features

of modern economy. The role of money in the capitalist

economy has been extensively investigated, especially in the

context of "static" macroeconomics. Some theorizing has

been attempted in the context of modern growth models.

However, the role of money in the modern economy is com-

plex, and existing theory is not satisfactory, eSpecially

from the point of View of modern growth models. "The only

consensus economists can reach today about monetary growth

models is that much work remains to be done" (44, p. 264).

The effect of the inclusion of money in growth

models on the adjustment time has not been explicitly

analyzed in the literature. In order to illustrate this

type of analysis, we will consider three types of monetary

88
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growth models.1 One model focuses on the role of money as

a consumption good, while another considers money as a

production good. Both of these growth models can be

regarded as "neoclassical" in the sense that they assume

the presence of money but avoid the problem of capacity

utilization and unemployment by continuing to assume auto-

matic equality of planned saving to desired investment.

The third model called the "Keynes-Wicksell" type model,

assumes that there are independent savings and investment

functions. Therefore, in this type of model neither the

full utilization of capital nor the full employment of

labor is assumed.

In order to simplify the analysis, we concentrate

on the adjustment time of the capital-output ratio (v).

The analysis for the other variables can be also done, as

in the previous chapters, if of interest. It is also

assumed for simplicity that no technical progress and no

depreciation of capital exists. The extension of the

model to include these factors is a simple algebraic matter.

5.1 Money as a Consumption Good

According to portfolio balance theory, the existence

of money (M) affects the consumption behavior of consumers,

since the public's total wealth consists of not only

 

1Numerical illustration is not given in this chapter

since it is difficult to estimate values of parameters,

within a limited time, defined in the functional relation-

ships of the monetary growth models.
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physical capital (K) but also of real balances (M/P) in

the two asset world. A monetary growth model based on

this idea has been formulated by Tobin (42, 43). Monetary

growth models of this type continue, as in the basic neo-

classical model discussed in the previous chapters, to

avoid the problems of capacity utilization and unemployment

by assuming that there are no independently determined

investment devices but rather that all saving plans are

realized.

Following Stein's representation (38) of Tobin's

model (43), let the specifications of the model be given

in the following way:

1. Production Function

The aggregate production function is of the neo-

classical type satisfying all the Inada conditions.

(5.1.1) Q = F (K, L)

From the prOperty of linear homogeneity, output per worker

(q) is given by

(5.1.2) q = f (k)

where k = K/L.

2. Labor Force Growth

The labor force (L) grows at a constant propor-

tional rate (n).



(5.1.3) L = L e

3. Price Change

The price level (P) changes at a rate of TI which

brings equilibrium in the money market.

(5.1.4) P = P e

4. Expected Rate of Inflation

The expected rate of inflation (he) is always

assumed to be equal to the equilibrium value of the rate

of price change (v*).

(5.1.5) Ire = n*

5. Money Supply

The money supply (MS) increases at a constant

prOportional rate (u), which is controlled by the govern-

ment. 2

(5.1.6) M = M e

The supply of real balances per worker (ms) is given by

(5.1.7)
m = __

 

 

2All money is assumed to be of the outside type

which constitutes debt of the government and has a yield

rate Specified by the government.
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6. Demand for Money

The demand for real balances per worker (m0) is

positively related to the capital per worker (k) and

negatively related to the eXpected rate of inflation (fie).

D_M
(5.1.8) m — PIE

R (k, fie)

where R1 (=8R/3k) > o and R2 (=3R/ane) < o

7. Consumption Function

Consumption per worker (C/L) is a function of the

disposable income per worker, which constitues the sum of

output per worker (f(k)) and the increament of real balances

per worker [(%)/L].

151
(—)

(5.1.9) -%= g [f (k) + -%--1

where g' > o.

By utilizing these assumptions, we can derive a

modified version of the fundamental equation for the neo-

classical economy with money. To make the analysis more

simple, consumption per worker is assumed to be a linear

function of disposable income, which is the assumption

Tobin adopts in his 1965 article.
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(”1)
C _ P

(913-)

= (1 - sd) [f (k) +TI

where (l - sd) is the marginal propensity to consume out of

diSposable income, which is assumed to be positive. By

converting this equation into a saving function,

L
'
I
I
O

M
"15’

Q-L(l-sd) [f (k) +—i—]

)

"
U
l
z
-

Thus, the overall saving rate (5) is given by

=§
(5.1.12) 5 Q

— (l - s

(
4
6
3
:
-

Sd d)

By differentiating equation (5.1.7) logarithmi-

cally, we obtain the following equation.

(5.1.13) (1‘ng = (u - 1:) ms

Substituting equation (5.1.13) into equation (5.1.12), we

obtain the overall saving rate in this monetary economy.

(u - fl) mS

(5.1.14) 5 = d) f (k)- (l - s  

5d
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It is important to note that this overall saving

rate is not yet completely specified in the sense that the

value and sign of (u - n) is undetermined because n is not

specified in this neoclassical model. We may assume,

however, that (u - N) is positive since an increase in real

balances will raise consumption and thus reduce saving.

A

Accepting this interpretation, we transform this saving

rate into a simplified form, which is essentially the same

modification performed by Stein (38, p. 88). “V

_ _ s

where sm is positive constant which satisfies that sd >

sm m.

By utilizing the equilibrium condition of the money

market we can show that

(5.1.16) 3 = 5d - sm R (k, ne)

This equation implies that the overall saving rate is

negatively related to real balances and thus negatively

related to k and positively associated with "e since

Rl > o and R2 < 0. That is,

(5.1.17) 5 = s [R (k. Ne)l

where s' (=ds/dr) < o , as/Bk < o , and as/ane > o .

The fundamental equation of this monetary growth

Inodel is derived as follows. Since k = K/L, we obtain

the following equation differentiating it logarithmically.



w
)

II x
)

I

b
>

(5.1.8)

}.<=sf(k)-nk

By substituting equation (5.1.17) into equation (5.1.18),

we arrive at the fundamental equation of this monetary

growth model.3

(5.1.19) 12 = s [R (k, 178)] f (k) - n k

We derive the time path of the capital-output ratio

(v) since the problem of adjustment time is most easily

examined in terms of the time path of v . Since v =

k/f(k) we obtain the time path of v by differentiating

it logarithmically.

 

(5.1.20) 3 = i2 - fA(k)

= k - nk k

= (1 " nk) k

3
This neoclassical economy has a stable equilibrium

when "e = n*. See Stein (38, pp. 96-97) and Burmeister and
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Substituting equation (5.1.19) into equation (5.1.20),

5 [R (k. “e” f (k)

(l "' Wk) [ k "" n]
 (5.1.21) 3

(1 - nk) s [R (k. wen

= V _(l-nk)n
 

or,

e = — n (1 - nk) v + (1 - nk) s [R (k, né)]

where nk = (Bq/Bk) (k/q).

Comparing the time path of v (equation (5.1.21))

for this monetary economy with the time path of v

(equation (3.2.3)) for the barter economy discussed in

Chapter III, we see that the only difference is in the

overall saving rate. While saving rate of the barter

economy is constant, the saving rate of the monetary

economy is a function of real balances per worker (m),

which depends both on capital per worker (k) and on the

expected rate of inflation (we). Since the saving rate is

the only difference, we can determine the adjustment time

of this monetary economy by specifying the saving rate in

more detail.

When the economy is in a steady state, real

balances per worker are constant. Therefore, we know from

equation (5.1.7) that
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(5.1.22) m* = (u - n - fl*) = 0

or,

N* = u - n

Since “e = N* from assumption (5.1.5), we obtain

(5.1.23) “e = u - n

Then the saving rate is represented by

(5.1.24) 5 = s [R (k, u - n)]

where as/Bk < o and as/a(u-n) > 0.

Since (u-n) is an exogeneous constant determined by

the government, the saving rate is changed only by a change

of k for a given value of (u-n). In other words, the

saving rate (8) is decreasing as k is increasing for a

given level of (u-n). The analytic behavior of this saving

rate is quite similar to that of the Classical saving

function (equation (4.1.1)) discussed in Chapter IV, even

though the underlying economic reasons are very different.

While the saving rate is positively associated with the

profit rate on capital and thus is negatively associated

‘with the level of capital per worker (k) for the Classical

saving function, the saving rate for this monetary model is

:negatively related to the demand for real balances and

‘thus negatively related to capital per worker (k).
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Since we have already examined the effect of the

Classical saving function on the adjustment time, we may

use the results given in Chapter IV in determining the

adjustment time of this monetary economy. As it is the

case for the Classical saving function model, it is diffi-

cult to derive any analytic result if the saving function

does not take a particular form. If we assume that the

saving rate is a linear function of the capital-output

ratio (v) as is assumed for the Classical saving function,

we know that the adjustment time of the monetary economy

can be easily found for a model with a Cobb-Douglas pro-

duction function.

Suppose that the saving rate is a linear function

of the capital-output ratio (v), which may be one possible

form of the saving rate because the saving rate is a

decreasing function of k, and k has a positive relationship

with v.

(5.1.25) 3 = 31 - 32 (u - n) v

where 31 and 32 are positive constant for given value of

(u - n) where 3s2/3(u-n) < o and thus as/3(u-n) > 0.

Assuming that the production function is of the

Cobb-Douglas type, we can obtain the following linear

differential equation by substituting equation (5.1.25)

into equation (5.1.21).
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(5.1.26) G — (1 - a)n v + (1 - a) [s1 - s [u-n] v]
2

(l—a) [n+5 (u-n)]v+(l-—a)s
2 l

where a is the elasticity of output w.r.t. capital.

Recalling the adjustment time formula (equation

(4.1.12)) of the Classical saving function model, we can

obtain the following adjustment time formula for this

monetary economy with a Cobb-Douglas function.

_ l l

(5'1°27) tv _ (l-d) (n+sz) log [1:3]

 

where n is the growth rate of labor and 5 represents the

proportion of adjustment covered by time tv.

Comparing this adjustment time to that of the neo-

classical barter economy discussed in Chapter III, it is

evident that the introduction of money reduces the adjust-

ment time since the equation (5.1.27) has an additional

positive constant (52) in the denominator. It is worth-

while, however, to note that the above:resu1t is reached

partly due to the assumption that the expected rate of

inflation (He) is equal to the equilibrium value of

inflation (v*). If we specify the price expectation

differently, the effect on the adjustment time of this

monetary growth model may be different.

Suppose that the government increases the expansion

rate of the money supply from 110 to 111 . Then, the

expected rate of inflation (He) will increase from (uo - n)
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to (ul - n) since "e = u — n. This means that the

demand for real balances are reduced for a given capital

intensity and thus the saving rate increases since it has

a negative relationship with real balances. Therefore,

the economy will move to a higher level of capital intensity

and a higher level of output per worker (refer to Figure

5.1.1). However, it is important to note that the saving

rate gradually decreases from this initial rate as the

economy moves to a higher k, since the demand for real

balances will increase as k increases. Equation (5.1.27)

represents the adjustment time required for the capital-

output ratio (v) to cover 1008 percent of the total dis-

placement (v* - vo) towards its steady state value (v*)

from its initial value (vo).

5.2 Money as a Production Good

Among the criticisms of Tobin by Levhari and

Patinkin (25), Tobin's negligence of money as a means of

production was one major point. Money as an explicit

medium of exchange raises, according to them, the pro-

ductivity of the economy by permitting a more efficient

means of distribution and hence a greater rate of pro-

duction with given aggregate inputs of capital and labor.

For this reason, they argue that aggregate output may be,

at least, a non-decreasing function of real balances,

regardless of whether money is of the inside or of the

outside type. The model discussed in this section still

‘
f
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Equilibrium in Monetary Growth Model of Tobin
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assumes, following the neoclassical approach, that the rate

of capital is identically equal to planned savings and all

markets are always in the equilibrium situation regardless

of the rate of price change.

Let all the assumptions of the previous monetary

growth model in section 5.1 be maintained except that con-

cerning the production function and the saving function.

The saving rate is assumed constant as in the barter model

of the neoclassical economy. The production function of

Levhari and Patinkin's economy can be described as follows.

(5.2.1) q = f (k. m)

where f1(=3f/3k) > o and f2(=3f/3m) ; 0. When the

economy already has a fully develOped set of financial

institutions, the increase in real balances does not affect

the productivity of capital per labor (k) and thus f2 = o.

The fundamental equation of this monetary model

is derived as follows by substituting equation (5.2.1)

into equation (5.1.18),

(5.2.2) 12 = s f (k, m) - n k

In order to find the prOportional adjustment time

of the capital-output ratio (v) for this model, we first

derive the time path of v. From the definition of v,

k
(5.2.3) V = f(k,m)

 

By differentiating it logarithmically.
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(5.2.4) 3 = E - f (fl, m)

= E - nk E - “m 8

= E (1 - nk) — ”m 8

where ”k = (3Q/3k) (k/q) and nm = (sq/8m) (m/Q)-

Substituting equation (5.2.2) into equation (5.2.4), we

obtain the time path of v in terms of the following differ-

ential equation.

3 f (k, m) _ A
 (5.2.5) 6 = (1 - nk) [ k n] - ”m m

= (1- nk) g- [(l-nk) n+nmrfiI

or,

6 = - [(1 - ”k) n + ”m S] v + (1 - ”k) s

In order to make the analysis simple, we assume

that production function is the Cobb-Douglas type with

three factors of production.

(5.2.6) _ a l-a 1‘a‘8

where a and B are constant parameters.

By converting this production function into the intensive

form,
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t
‘
I
I
O

(5.2.7) q =

a 1-d—B

where k = K/L and m = M/(PL).

The output elasticities w.r.t. factors are given by

a k
5.208

= _3_ =

I I ”k 8k q 0‘

m 3m q

By substituting these elasticities into equation (5.2.5),

we can obtain the following equation.

(5.2.9) v=-[(1-d)n+(l-a-B)m]v+(l-a)s

The time path and the adjustment time of this

monetary economy will vary greatly depending on the value

of m, for given values of the other parameters, if

(l-a-B) # 0. Let us specify m by utilizing the assumptions

of this model. From the assumptions on the demand for real

balances (equation (5.1.7)) and on the expected rate of

inflation (equation (5.1.21)),

(5.2.10) m = R (k, we) = R (k, u - n)

By differentiating it logarithmically, we derive the pro-

portional rate of change of m.

A

(5.2.11) m = §kk+§(u-n) (u-n)
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Since (u - n) is assumed an exogeneous constant, (u 2 n) = 0.

Therefore,

(5.2.12) 5 = 5k E

where 5k (=(3m/3k) (k/m)) is the elasticity of demand for

real balances per worker with reSpect to k , which is

assumed to be positive.

By substituting equation (5.2.2) into equation (5.2.12),

(5.2.13) fi = g [S f (t. m)

k ' “1

 

_ 5 ‘3k _ §

— v n k

 

Substituting this equation (5.2.13) into equation (5.2.9),

we derive the time path of v for the monetary growth model.

s 5k

._ [(1 - a)n + (l-a-B) ( v.
 (5.2.14) 6 ) - n 5k)]v + (1-d)s

-n[(l-a) - (l-a-B) §klv + 8[(l-a) - (l-a-B) §kl

When 5k is constant, this equation (5.2.14) is a

familiar linear differential equation. The adjustment time

of v, then, is given by

1_
.31.(5.2-15) tv “ (I-a)n - (1-a-B)n 5k 109 [l-e]

 

Comparing this equation (5.2.15) with the equation

(3.3.5) for the adjustment time of the neoclassical barter

economy, this formula has an additional negative constant

in the denominator since (l-a-B) > o and §k > o. This
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means that the existence of money increases the adjustment

time for this monetary economy compared to that for the

barter economy. The existence of money, in this model,

makes the economy converge more slowly towards the steady

state path. If (l-a-B) = 0, this monetary model becomes

identical to the barter economy and thus there will be no

change in the adjustment time and steady state solutions.

Suppose that the government raises the expansion

rate of money supply from 110 to ul . The demand for

real balances per worker are reduced because the expected

rate of inflation (We = u-n) rises from (uo - n) to

(ul - n). As real balances per worker (m) fall, the output

per worker (q = f(k, m)) goes down. Therefore, the economy

moves to a lower level of capital intensity and of output

per worker (refer to Figure 5.2.1). The proportional

adjustment time towards a new steady state is given by

equation(5.2.15).

5.3 Keynes-Wicksell Approach
 

The analytic simplicity of the neoclassical models

examined in the previous sections is based on assumptions

which sacrifice reality with respect to disequilibrium

phenomena. These are probably of considerable importance

in a monetary economy. Several writers such as Rose (30),

Stein (38), and Nagatani (27), called prOponents of the

Keynes-Wicksell approach, have attempted to build models

which include such disequilibrium phenomena. The
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Equilibrium in Monetary Growth Model of Levhari-Patinkin
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characteristic features of this approach are (38, p. 97);

"(a) prices are changing if, and only if, the goods markets

is not in equilibrium and (b) there are independent savings

and investment functions."

In this section, we will examine the adjustment time

for Stein monetary growth model (38). We assume, following

Stein, that the production function is of the neoclassical

type and that the Specifications of the money and labor

markets are the same as those in the previous neoclassical

monetary growth models. In other words, all the assumptions

of the neoclassical monetary growth model in section 5.1

continue to hold except the equations for capital formation

and price change. In addition, the economy is assumed to

be in a period of continued inflation, as is assumed by

Stein.

(1) The price (P) is changing if and only if there

exists disequilibrium in the goods market. The rate of

price change (n) is assumed to be proportional to excess

aggregate demand deflated by the stock of capital.

Id Sd)

(5.3.1) n = 101-(~— - E"

where Id and Sd represent the desired level of invest-

ment and planned level of saving respectively, and I. is

assumed to be a positive constant.

(2) During inflationary periods (n > o), the

desired level of investment (Id) exceeds the planned level

of saving (Sd). Actual saving (S) and investment (I) are
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assumed to be less than desired investment but more than

planned saving.

(5.3.2) I_S—aId+(l-

 

where the coefficient a is institutionally determined

such that o < a < 1 during the period of excess aggregate

demand.

We derive the fundamental equation of Stein model

using the above assumptions. Rearranging assumption

(5.3.1),

Id d

_ §_(5.3.3) R_ — + K

>
2
|
=
I

By substituting this equation (5.3.3) into equation (5.3.2),

d d
(5.3.4) "_I_ 1 s _ s

K‘R”a(1+R—)+(l a)?

=.a_1T.+_S_E

A K

Since Sd = 5d Q ,

(5 3 5) fi = El + £3.5151
.. A k

where sd is the constant rate of the desired saving to out-

put.

A

Since k = E - n , we derive the fundamental

equation of this monetary growth model in the following way.
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= s f (k) _ an

7
“

(5.3.6)

E = 5d f (k) - (n - g1) k

Let us now consider the adjustment time of this

model. The time path of the capital-output ratio (v) is

derived as before. Since v = k/f(k), we obtain the

following equation by differentiating it logarithmically.

(5.3.7) 0 — E - ”k R

Substituting equation (5.3.6) into this equation (5.3.7),

we obtain the time path of v .

(5.3.8) 6 = - (1 - nk) (n — $1) v + (1 - nk) sd

Assuming that n is constant, the time path of v

is expressed as follows for a Cobb-Douglas production

function since ”k = a.

(5.3.9) 6 = - (1 - a) (n - $1) v + (1 - o) sd

This is a familiar linear differential equation.

When the time path of v is expressed by a linear differ-

ential equation, the prOportional adjustment time of v is

given by
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_ 1 1

(5.3.10) t — log (1:?)

V (l-a) (n- 3%)

 

Since this equation contains an additional negative

constant ( - §1) when compared to the time formula for the

barter economy, we know that the adjustment time of this

model is larger than that of the barter economy if other

things are equal.

Therefore, the existence of money raises the

adjustment time for the Stein model during the periods of

continuous inflation. It is worthwhile to note that this

result comes from his rather controversial assumption

(equation (5.3.l)) concerning the actual formation of

capital.

Suppose that Stein economy enjoys initially a stable

price level (n = o) and then goes into an inflationary

period, the rate of inflation (n) being constant. In this

inflationary period actual saving is larger than planned

saving and thus the economy will move to a higher steady

state situation which is represented in Figure 5.3.1.

Equation (5.3.10) represents the adjustment time (tv)

required for the capital-output ratio (v) to cover 1006 per-

cent of the initial displacement (v* - vo) towards its

steady state value (v*) from its initial value (vo) for

the Stein monetary growth model.
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CHAPTER VI

CONCLUSIONS

In this study the adjustment time towards a steady

state path--the time path which explains the long run

trend of growth in the economy--has been investigated for

several models of economic growth. Adjustment time is of

considerable importance because the relevance of a steady

state solution as an approximation to reality depends

crucially on the length of timeethe model economy takes to

adjust to its steady state path after a disturbance occurs.

Initially two related conceptual problems--the

first concerning the measurement of adjustment time and

the second the choice of an indicator variable--are raised

and discussed. A proportional measure of adjustment time

is adopted for use in the study despite some drawbacks

associated with it. In particular its use leads to

problems regarding the choice of an indicator variable

which represents the adjustment process of the entire

system, since the time paths of adjustment towards a steady

state are generally different for different variables

within a system.

113
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Several possible indicator variables have been

examined, but ultimately the choice of an indicator variable

depends on the nature and purpose of the analysis. It has

been demonstrated analytically and numerically for several

neoclassical growth models that the adjustment times of

indicator variables, Specifically the capital-output ratio

(v), the growth rate of output (6), and the capital-

effective labor ratio (k) are quite different from each

other, eSpecially when the economy is initially far from its

steady state paths. It is also noted that for a neo-

classical model with a Cobb-Douglas production function the

adjustment time required to cover a given proportion of

total diSplacement is constant for the capital-output ratio

regardless of the size of the initial displacement. On the

other hand the proportional adjustment time of the growth

rate of output decreases and that of the capital-effective

labor ratio increases as the initial value of the growth

rate of output increases. It is also shown that the

adjustment time of the output-capital ratio (l/v) is the

same as that of the growth rate of output (6) for this

particular neoclassical model with a Cobb-Douglas tech-

nology.

Second, it has been shown that the adjustment time

responds very sensitively to changes in values of the

parameters of a system. It has been demonstrated that the

growth rate of labor forces, the rate of technical progress,

‘the rate of capital depreciation, and the labor share of
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total output are very influential on the adjustment time.

Their inverse relationship with the adjustment time has

been analytically derived for a neoclassical model with a

Cobb-Douglas technology and a numerical illustration has

been given adopting a C.E.S. production function. It has

also been shown numerically that changes in the elasticity

of substitution between factors of production affects the

adjustment time. As the value of the elasticity of sub-

stitution becomes larger, the adjustment time generally

increases.

It has been shown, in fact, that R. Sato's argument

that a neoclassical economy takes 100 years for 90 percent

adjustment towards its steady state (which, if true,

reduces much of the practical value of neoclassical models)

can easily be attacked by slightly raising the values of

any of the above parameters. Criticisms of R. Sato by

later investigators such as K. Sato and Conlisk are partly

based on such modifications of parameter values.

Third, it has been demonstrated that the adjustment

time depends sensitively on the specification of savings

behavior used in a growth model. The constant savings

rate of the standard neoclassical model is, in general,

not an influential factor, and its level has no impact on

adjustment time when the production function of the model

is of a Cobb—Douglas type and the initial position of the

economy is expressed in terms of the growth rate of output.

It has been shown, however, that the use of either a
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Classical, an Ando-Modigliani, or Kaldor saving function in

a growth model has a significant influence on the adjust-

ment time of the economy. The magnitude and direction of

the effect depend on the elasticity of substitution of the

production function.

It has been demonstrated that the use of either a

Classical or an Ando-Modigliani saving function reduces

significantly the adjustment time for a neoclassical model

with a Cobb-Douglas production function, while the intro-

duction of a Kaldor saving function has no effect because

it is reduced to a constant rate of saving in the Cobb-

Douglas case. The more sensitive the savings rate is to

the adjustment in the economy, the more the adjustment time

is reduced.

Numerical calculations have been given for a Kaldor

saving function, adopting a C.E.S. production function.

When the elasticity of substitution is less than unity, the

Kaldor saving function leads to an adjustment time shorter

than that for a model with a constant rate of saving.

Results of the analysis also indicate that as the marginal

prOpensity to save out of profit increases the adjustment

time becomes shorter. When the elasticity of substitution

is greater than unity the savings behavior represented by

the Kaldor saving function implies a larger adjustment

time, and in this case adjustment time increases as the

marginal propensity to save out of profit increases. It

has been also mentioned that similar results may hold for
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an Ando-Modigliani saving function because of the similarity

of two saving functions.

Fourth, three different types of monetary growth

models have been investigated, partly to demonstrate that

the adjustment time depends on the specification of a model

as well as on values of its parameters, and partly to

demonstrate that the existence of money affects adjustment

time. It has been shown that the adjustment time is

reduced, under certain assumptions, for a monetary growth

model which includes money as a consumption good and thus

the existence of money affects the overall saving rate of

economy.

The adjustment time increases, on the other hand,

for a monetary growth model in which money is considered

to be a production good. In this case the existence of

money affects production in the economy, even when levels

of labor and capital are constant. The adjustment time

also increases for the third model called a Keynes-Wicksell

type model, which allows, in contrast to the above models,

independent saving and investment functions and, as a

result, both actual saving and investment are affected by

the existence of money.

Finally, in addition to the above results,

relationships among time paths and adjustment times of

different indicator variables are explicitly derived.

Using these relationships, previous findings in this area

of adjustment time by several researchers choosing different
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indicator variables as a representative of a model are

organized in a more consistent frame of reference. In

conducting this investigation, method of analysis is also

more systemized by adopting the analytic procedure by which

time paths of indicator variable are directly derived from

the so-called fundamental equation of a growth model.

Therefore, the method adopted here eliminates some diffi—

culties associated with different analytic procedures for

different indicator variables and different specifications

of growth models.

In conclusion, the adjustment time of an economic

growth model depends on various factors such as the

indicator variable chosen as a representative of the model,

the Specification of the model, and the values of the

model parameters. Based on the estimates given in this

dissertation for example, it ranges from 14 to 172 years

for a 90 percent adjustment towards the steady state path

of growth. Therefore, it may not be possible to give a

prOper judgment on the practical relevance of steady state

solutions as an approximation to actual economic growth

until we investigate this problem of adjustment time for a

variety of models, especially for growth models which

reflect more properly the actual economy. As more realis-

tic models of economic growth are developed, the analysis

of their adjustment time should accompany the investigation

of their steady state properties until the validity of

steady state solutions as an approximation of reality is
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established. If the adjustment time proves to be too

long, it will be necessary to investigate the dynamic path

of the model economy in full, including both the adjustment

path and the steady state path in the analysis of the

economic growth process.
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