AN IN - SERVICE FACULTY DEVELOPMENTAL PROGRAM BASED UPON AN ANALYSIS OF FACULTY SELF. PERCEIVED DEFICIENCIES IN BOTH INSTRUCTIONAL AND NON - INSTRUCTIONAL AREAS

Dissertation for the Degree of Ph . D. MICHIGAN STATE UNIVERSITY
RICHARD EDWARD LETTER
1976

This is to certify that the
thesis entitled

AN IN-SERVICE FACULTY DEVELOPMENT PROGRAM BASED UPON AN ANALYSIS OF FACULTY SELF-PERCEIVED DEFICIENCIES IN BOTH INSTRUCTIONAL AND NON-INSTRUCTIONAL AREAS

presented by
Richard Edward Leiter
has been accepted towards fulfillment
of the requirements for
Ph.D._degree in Higher Education

ABSTRACT

AN IN-SERVICE FACULTY DEVELOPMENTAL PROGRAM BASED UPON AN ANALYSIS OF FACULTY SELF-PERCEIVED DEFICIENCIES IN BOTH INSTRUCTIONAL AND NON-INSTRUCTIONAL AREAS

By

Richard Edward Leiter

The purpose of this study was to develop a faculty in-service training program based upon the areas of instructional and non-instructional weaknesses as indicated by each faculty member's self-perception of his or her teaching deficiencies. Within this purpose, the teaching objectives of each faculty member were also surveyed.

Underlying the investigation were the following assumptions:

1. That the process of education is the essential purpose of the American college system.
2. That the classroom instructor should possess a strong understanding of the discipline in which he or she is teaching.
3. That the classroom instructor should understand the process of the art of teaching, which would include communication, evaluation, motivation, and any other aspect that is essential in this process.
4. That every college and university has as its goal the desire to provide outstanding classroom instruction incorporating competency in both the academic discipline and the dissemination of knowledge to students. The population of the study included the faculty members employed at Bob Jones University, Greenville, South Carolina, during the 1975-76 school year. A questionnaire containing eight instructional areas, eight non-instructional areas, and five teaching objectives was used as the basic instrument to collect faculty selfperceptions of teaching needs. The instructional areas included audio-visual materials, class preparation, communication theory, course preparation, curriculum theory, evaluating students, presentation, and teaching techniques and style. The non-instructional areas included history of higher education, history of Bob Jones University, advising and counseling students, characteristics of the college student, understanding standardized tests, tests and measurements, academic policies of Bob Jones University, and administrative policies of Bob Jones University. The five teaching objectives included two objectives on the affective areas of learning and three cognitive teaching objectives.

The statistical analysis to determine significant differences between faculty groupings on the instructional, non-instructional, and teaching objectives was accomplished by using the "F" test to compare equality of
variances and the "t" test to compare equality of means. Both tests were two-tailed tests using the . 05 level of significance.

Conclusions of the study

Within the limitations of this research, the following conclusions were supported:

1. An analysis of the instructional areas produced two major areas of need to the faculty, regardless of their academic division, teaching status, seniority, degree level, age, sex, marital status, undergraduate university attended, or predominant teaching area. These two areas were: (1) evaluation of students and (2) communication theory. Evaluation of students would include the development of valid and reliable examinations, use of objective and essay tests, methods of evaluation other than examinations, term projects, and research papers. Communication theory would include developing an understanding of transmittal of thoughts and ideas from teacher to student, overcoming communication obstacles, developing good communication skills, vertical and horizontal communication networks, and an understanding of the purpose and usefulness of the grapevine.
2. The instructional areas of teaching techniques and style and class preparation were indicated to be
necessary elements for the in-service development by graduate assistants.
3. The instructional area of course preparation was indicated to be a necessary element for in-service development for those with only a bachelor's degree.
4. There were three non-instructional areas that faculty ranked high enough to be included in the faculty development program, regardless of their academic division, teaching status, seniority, degree level, age, sex, marital status, undergraduate university attended, or predominant teaching area. These three areas were: (l) advising and counseling students, (2) characteristics of the college student, and (3) tests and measurements.
5. The analysis of faculty teaching objectives indicated that all faculty, regardless of faculty grouping, considered the three cognitive areas of teaching to be the most important teaching objectives. The two affective teaching objectives were consistently ranked either last or next to last in rank order of importance.

AN IN-SERVICE FACULTY DEVELOPMENTAL PROGRAM BASED
 UPON AN ANALYSIS OF FACULTY SELF-PERCEIVED
 DEFICIENCIES IN BOTH INSTRUCTIONAL AND NON-INSTRUCTIONAL AREAS

By

Richard Edward Leiter

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Administration and Higher Education

ACKNOWLEDGEMENTS

My sincere appreciation and gratitude are extended to the members of my committee, Drs. Paul Dressel, Tom Freeman, and Helen Green for their assistance, and especially to the committee chairman, the late Bill Sweetland, for his many years of unfailing support, en-, couragement, and friendship. I especially want to thank Van Johnson who assumed the direction of the study after the unfortunate death of Bill Sweetland.

Special thanks is also extended to Dr. Gary Guthrie of Bob Jones University for his assistance in the research design and data analysis and to my secretary, Jeri Spears, for her dedication to the task of typing the dissertation.

Finally, the desire of my children, Kim and Greg, to have a "doctor" in the family, and the patience, understanding, and encouragement of my wife, Carolyn, made all this possible.

TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS ii
LIST OF TABLES ∇
Chapter
I. THE NATURE OF THE INVESTIGATION 1
Introduction to the Study 1
Need for the Study 5
Statement of Purpose 8
Hypothesis 9
Underlying Assumptions of the Study 9
Overview of Subsequent Chapters 10
Summary 10
II. RESEARCH AND LITERATURE RELATED TOTHE IMPORTANCE OF FACULTY DEVELOP-MENT PROGRAMS AND THE IMPROVEMENT
OF TEACHING 11
Introduction 11
Review of Selected Studies to Improve College Teaching Through Faculty Development Programs 12
Summary 21
III. PROCEDURES USED IN THE STUDY 23
Introduction 23
Sources of Data 23
Design of the Study 26
Procedures 27
Summary 30
IV. ANALYSIS OF DATA 32
Introduction 32
Operational Definitions and Symbols 33
Section 1 - Analysis of Instructional
Areas 35
Section 1 Summary 72
Section 2 - Analysis of Non-
Instructional Areas 74
Section 2 Summary 103
Section 3 - Analysis of Teaching Objectives 105
Summary 106
V. SUMMARY, FINDINGS AND RECOMMENDATIONS 110
Summary 110
Findings 112
Recommendations 115
Implications of This Study 118
Implications for Further Study 118
BIBL IOGRAPHY 120
APPENDICES
Appendix A - Questionnaire and Cover Letter Sent to Members of the Faculty at Bob Jones University 122
Appendix B - Rank Order of Each Develop- mental Area and Teaching Objective by the Various Faculty Groupings 127
Appendix C - Faculty In-Service Training Program Schedule of Events 129
Table Page
1.1 Tests of Differences in Percentages ofResponse to Criteria Identified byAcademic Deans as "Major Factors" inEvaluating Overall Faculty Performancesas Reported in the Astin and Lee (1966)Study and the Seldin (1973) Study 3
2.1 Percentage Distribution of Ranks Assigned to Each Reason for Faculty Evaluation by Distribution Rank 13
2.2 Percentage of Institutions Assigning First Rank to Respective Reasons for Eval- uation by Institutional Level 14
2.3 Assignment of Principal Evaluation Responsibility for Faculty Development, Number of Institutions 15
3.1 Percentage of Returned Questionnaires by Academic Division of the University 26
4.01 Rank Frequency of Evaluating Students by Academic Division 36
4.02 Rank Frequency of Communication Theory by Academic Division 38
4.03 Rank Frequency of Audio-Visual Materials by Academic Division 39
4.04 Rank Frequency of Course Preparation by Academic Division 42
4.05 Rank Frequency of Evaluating Students by Teaching Status 43
4.06 Rank Frequency of Communication Theory by Teaching Status 45

4.08 Rank Frequency of Class Preparation by
Teaching Status $. ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~$ 48
4.09 Rank Frequency of Evaluating Students by Years of College Teaching 50
4.10 Rank Frequency of Communication Theory by Years of College Teaching 51
4.11 Rank Frequency of Evaluating Students by Highest Degree Completed 52
4.12 Rank Frequency of Communication Theory by Highest Degree Completed 53
4.13 Rank Frequency of Course Preparation by Highest Degree Completed 55
4.14 Rank Frequency of Curriculum Theory by Highest Degree Completed 56
4.15 Rank Frequency of Evaluating Students by Age Grouping 57
4.16 Rank Frequency of Communication Theory by Age Grouping 59
4.17 Rank Frequency of Teaching Techniques by Age Grouping 60
4.18 Rank Frequency of Course Preparation by Age Grouping 61
4.19 Rank Frequency of Teaching Techniques by Sex Grouping 63
4.20 Rank Frequency of Evaluating Students by Undergraduate College 66
4.21 Rank Frequency of Communication Theory by Undergraduate College 67
4.22 Rank Frequency of Curriculum Theory by Undergraduate Institution 68
4.23 Rank Frequency of Advising and Counseling Students by Academic Division 75
4.24 Rank Frequency of Student Characteristics by Academic Division 77
4.25 Rank Frequency of Tests and Measurements by Academic Division 79
4.26 Rank Frequency of Advising and Counseling Students by Teaching Status 81
4.27 Rank Frequency of Student Characteristics by Teaching Status 82
4.28 Rank Frequency of Tests and Measurements by Teaching Status 84
4.29 Rank Frequency of Advising and Counseling Students by Years of College Teaching 85
4.30 Rank Frequency of Student Characteristics by Years of College Teaching 86
4.31 Rank Frequency of Tests and Measurements by Years of College Teaching 88
4.32 Rank Frequency of Advising and Counseling Students by Highest Degree Achieved 89
4.33 Rank Frequency of Student Characteristics by Highest Degree Completed 90
4.34 Rank Frequency of Tests and Measurements by Highest Degree Completed 91
4.35 Rank Frequency of Advising and Counseling Students by Age Grouping 93
4.36 Rank Frequency of Student Characteristics by Age Grouping 94
4.37 Rank Frequency of Tests and Measurements by Age Grouping 95
4.38 Rank Frequency of Advising and Counseling Students by Sex Grouping 97
4.39 Rank Frequency of Student Characteristics by Sex Grouping 98
4.40 Rank Frequency of Tests and Measurements by Undergraduate College 101
r

Introduction to the Study

The quality of college teaching is an area that is receiving more attention than ever before in many of the educational journals. The Ph.D. or its equivalent is not necessarily synonymous with quality instruction. Educators are beginning to recognize that the doctoral program many times provides academic proficiency in a discipline but gives little attention to the area of teaching that disci-, pline. As Paul Dressel has written:

The college student in any given term is fortunate if he has one good teacher. Good, defined in his own terms, involves profound knowledge of the discipline, enthusiasm for teaching, awareness of students as individuals, clarity in presentations and assignments, fairness in grading, and, perhaps above all, an awareness that the course has relevance beyond the confines of the text, the classroom, and campus. The student finds that too many of his teachers are indifferent, unavailable, disorganized, unclear, and incoherent in lectures. discussions, and assignments. ${ }^{1}$

[^0]Because of this lack of teaching expertise on the part of some university instructors and because the existing Ph.D. programs do little in the area of teaching, it becomes necessary to provide a mechanism whereby faculty can receive the training necessary not only to make them proficient in their academic discipline but also comunicators of knowledge.

In a recent study by Peter seldin, ${ }^{2}$ it was shown that classroom teaching is the most important consideration in evaluating faculty. Of 13 evaluation criteria, Seldin found classroom teaching to be the major factor in faculty evaluation. The Astin and Lee ${ }^{3}$ study in 1966 rated classroom teaching as the major factor in faculty evaluation, and the Seldin findings not only reaffirm this but also show a slight increase in the extent to which quality of teaching performance is considered a major factor in faculty evaluation. Table l.l indicates the comparisons on all 13 factors between the Astin and Lee and the Seldin studies. 4
${ }^{2}$ peter seldin, How Colleges Evaluate Professors, (New York: Blythe-Pennington, Ltd., 1975), pp. 21-42, 77-78.
${ }^{3}$ Alexander Astin and Calvin Lee, Current Practices in the Evaluation and Training of College Teachers, (WashIngton, $D_{\text {. C.: American Council on Education, 1967), }}$ pp. 361-365.

$$
\text { 4seldin, p. } 45
$$

TABLE l.l-Tests of Differences in Percentages of Response to Criteria Identified by Academic Deans as "Major Factors" in Evaluating overall Faculty Performance as Reported in the Astin and Lee (1966) Study and the Seldin (1973) Study

		$\begin{gathered} 1966 \\ (N=484) \\ \text { Percentage } \end{gathered}$	$\begin{gathered} 1973 \\ (N=410) \\ \text { Percentage } \end{gathered}$	t
1.	Classroon Teaching	97.6	99.3	2.36
2.	Supervision of Graduate Study	17.8	1.9	8.57
3.	Supervision of Honors Program	14.3	2.9	6.46
4.	Research	31.7	22.2	3.24
5.	Publication	24.5	17.1	2.75
6.	Public Service	16.1	12.9	1.37
7.	Consultation	2.4	0.7	2.36
8.	Professional Societies	23.9	15.8	3.08
9.	Student Advising	46.8	68.8	6.85
10.	Campus Committee Work	32.6	49.5	5.21
11.	Length of Service in Rank	59.9	54.4	1.66
12.	Competing Job Offers	9.8	3.2	4.19
13.	Personal Attributes $\begin{aligned} & t .05=1.96 \\ & t .01=2.57 \end{aligned}$	61.3	53.2	2.59

It is important to recognize that an individual should not go through a concentrated doctoral program simply for the purpose of storing knowledge. Richard Mann has what he considers to be six different styles of teaching that can be very effective and must be understood by the faculty. These are:

The teacher as an expert
The teacher as formal authority
The teacher as socializing agent
The teacher as facilitator
The teacher as ego ideal
The teacher as a person ${ }^{5}$
In all of these areas, Mann is pointing out that a teacher's areas of responsibility go far beyond that of simply being knowledgeable. The teacher must have the ability to transmit this knowledge.

Joseph Axelrod ${ }^{6}$ takes a similar view that the instructor cannot neglect the importance of the area of teaching. Axelrod points out that the instructor must focus upon two elements-astudents and the subject matterand the instructor must not only possess the knowledge of the discipline but also must have the ability to commnicate this knowledge.

[^1]In addition to those who have been mentioned, there have been many other writers in the area of higher education who recognize the importance of the area of teaching. Kenneth Eble ${ }^{7}$ and Frank Finger ${ }^{8}$ both reinforce the emphasis that must be placed on the importance of the area of teaching.

Need for the Study

The previous discussion points out the important role that the understanding of teaching must play in the educational process. There have been some ideas that have been developed to help the college instructor. Wilbert McKeachie ${ }^{9}$ has developed a source book of information for the beginning teacher. His approach is a practical one that presents such problems as preparing for a course, selecting books that could be used in the classroom, using the various teaching techniques, understanding the place of media, and other issues involving examinations, grading, motivation, and evaluation. McKeachie's area of emphasis would be directed towards the new instructor after the instructor has completed his or her academic program. There

[^2]are others who would attempt to instill an understanding of the art of teaching while the student is still in the doctoral program. Paul Dressel, 10 for instance, has written extensively on the relatively new doctor of arts degree. This program is a new degree that would hold many of the traditional Ph.D. requirements in place; but, at the same time, would provide for the inclusion of areas that would be more associated with teaching. The two programs just described, one by McKeachie and the other by Dressel, may be very necessary and important areas to consider. This study, however, takes into consideration those faculty members who have not participated in a doctor of arts program and are now in the teaching profession. This study is essentially a study that will develop a faculty inservice training program based on self-perceived areas of weaknesses in teaching. As Dressel ${ }^{11}$ points out, "If college teaching is to be regarded as a profession, then the education of a college teacher should include experiences which will develop the necessary insights and competencies." Dressel suggests effective teaching should include:

1. Knowledge in depth of some body of content, its structure and methodologies, and ability to present it effectively to students;

[^3]${ }^{11}$ Ibid.. pp. 12-13.
2. Sensitivity to student concerns and motivations and ability to interpret the teacher's field and its implications in such a way as to arouse student interest;
3. Awareness of the relation of his discipline to other disciplines and to the current social scene, and acceptance of the obligation of comunicating these relationships to students;
4. A clear conception of the objectives to be obtained by students taking the teacher's courses and the ability to plan experiences obviously relevant to the attainment of these objectives:
5. Awareness of the learning process and of individual differences in interest and ability such that adaptations of assigned tasks and expectations can be made;
6. Development of feedback procedures whereby the teacher and each of the students are kept informed as to progress:
7. Definitions of standards to be achieved by students and encouragement of students to accept, interpret, and assume some personal responsibility for their attainment;
8. Sensitivity to the values and preconceptions implicit in the teacher's discipline and in the applications of its principles and concepts to social and personal problems;
9. Continuing scholarly activity which keeps the teacher abreast of new developments in his or her field;
10. Awareness of the role which the teacher's course plays in the total undergraduate educational experience and acceptance of responsibility to help the student integrate his experiences in the course with other aspects of his education.

Given these teaching objectives, it then becomes the responsibility of any given college or university to be able to provide the learning experience for its
existing instructional staff that they may be able to develop a set of teaching competencies.

Statement of Purpose

The purposes of this study were as follows:

1. To determine the areas of instructional and noninstructional weaknesses as indicated by each faculty's self-perception of his or her teaching needs.
2. To determine the teaching objectives of each faculty grouping.
3. To develop a faculty in-service training program based on the faculty member's indication of the areas of instructional and non-instructional weaknesses that will overcome these deficiencies.

Self-evaluation is not new to higher education. Richard Miller ${ }^{12}$ gives his support to the concept of selfevaluation but agrees with Simpson ${ }^{13}$ that the educator must understand the process of self-evaluation. Mayhew's ${ }^{14}$ only objection to self-evaluation was that it not be used as the main basis for determining academic rank or setting

[^4]compensation. The purpose of this study will not violate Mayhew's reservations.

If faculty are required to attend in-service training sessions, what better motivational technique to assure attentiveness and participation than to provide workshops based on areas that faculty requested be included in order that they might become better teachers?

Hypothesis

Since this is a descriptive study, there is no hypothesis in the traditional sense. Because of the need to compare population means between various faculty groupings, there will be, however, many hypotheses tested throughout Chapter Four.

Underlying Assumptions of This Study

The following observations seem to be reasonable
assumptions upon which this study may be based:

1. That the process of education is the essential purpose of the American College System.
2. That the classroom instructor should possess a strong understanding of the discipline in which he or she is teaching.
3. That the classroom instructor understand the process of the art of teaching--communicating, evaluating, motivating, assisting, and any other area that is vital in this process.
4. That every college and university has as its goal to be able to provide outstanding classroom instruction, incorporating competency in both the academic discipline and the dissemination of knowledge to students.

Overview of Subsequent Chapters

In Chapter Two, pertinent literature and related studies will be discussed while in Chapter Three, the design of the study, the instrument, procedure and collection of data, and statistical methodology will be treated. Chapter Four will be devoted to an analysis of the data, which will, in turn, be summarized and interpreted in Chapter Five. Implications and recommendations will also be found in Chapter Five.

Summary

In summation, background and need of the study, statement of purpose, underlying assumptions, were treated in Chapter One. This chapter closed with an overview of subsequent chapters.

CHAPTER II

RESEARCH AND LITERATURE RELATED TO THE IMPORTANCE OF FACULTY DEVELOPMENT PROGRAMS AND THE IMPROVEMENT OF TEACHING

Introduction

Faculty development is becoming an area that is receiving more attention in the professional journals. Many books and articles have been written on the subject of faculty development. As William Bergquist has recently written, wall faculty development programs have re£lected three basic propositions: (1) Teaching is an important aspect of the college faculty member's professional role V and hence should be highly valued, (2) Teaching is frequently not a serious concern in the training of college faculty, (3) Teaching is often neglected in issues of promotion and tenure. Most faculty development programs take note of these three propositions by offering some activities which acknowledge the validity of the first, but which do little to overturn the second two."1

Many faculty development programs that have tried to improve teaching have done so by using indirect

[^5]techniques that do not directly involve teaching. For instance, in past years efforts to improve teaching have included such items as establishing a media center, reducing the number of students in each class, changing the curriculum, being more selective on the admission of students, self-analysis, and many other techniques that have not challenged the area of teaching itself. In 1966, the American Association of University Professors issued a statement on professional ethics. Of the five areas that they included in this statement, one of these areas was The College Teacher's Obligations and Responsibilities to His Institution. As the AAUP describes this area, they indicate that the college teacher should "seek to be an effective teacher and scholar.n ${ }^{2}$

Review of Selected Studies to Improve College Teaching Through Faculty Development Programs

In 1976, the Southern Regional Education Board published their study on faculty evaluation procedures in Southern colleges and universities. As shown on Table 2.1, the two prime reasons for faculty evaluation were (1) faculty development and (2) information on faculty's teaching effectiveness. Faculty development was ranked either first or second by 84% of those responding to the questionnaire.

[^6]TABLE 2.1--Percentage Distribution of Ranks Assigned to Each Reason for Faculty Evaluation by Distribution Rank

Reasons for Evaluation	Percentage of Distribution Ranks lst 2nd 3rd 4th 5th None Total						
Faculty Development	54\%	30\%	11\%	2\%	0\%	3\%	100\%
Information on Own Teaching Effectiveness	46	33	13	4	1	3	100
Information for Decisions on Advancement	36	24	27	6	2	5	100
Equity of Employment Practices	3	13	17	23	20	24	100
Research Data	1	8	24	27	19	22	100

Teaching effectiveness was ranked either first or second by 79% of those responding. As shown on Table 2.2. faculty development at institutions that grant only the bachelor's degree received the highest response for having an evaluation program. ${ }^{3}$

Table 2.3 shows that the input for faculty development at the institutions in the Southern Regional Education Board study include ideas of the evaluated faculty member.
${ }^{3}$ James E. Boyd and E. F. Schietinger, Faculty Evaluation Procedures in Southern Colleges and Universities, (Atlanta, Georgia: Southern Regional Education Board, 1976), pp. 6-7.

TABLE 2.2--Percentage of Institutions Assigning First Rank to Respective Reasons for Evaluation by Institutional Level

Percentage of Institutions Assigning				
Reasons for Evaluation	Rank Doctoral	Master's Bachelor's	Two-Year	
Information for Decisions on Advancement	62%	50%	41%	18%
Faculty Development	38	40	56	66
Information on Own Teaching Effective- ness	35	52	37	53
Equity of Employ- ment Practices	6	1	5	1
Research Data	0	0	1	2

Obtaining input from the faculty member was one of the four most frequent methods of developing a faculty in-service program. ${ }^{4}$

The Southern study also examined a faculty evaluation program at a privately controlled, comeducational liberal arts college. At this school, there were two categories of evaluation efforts within the career development program. These two were self-development evaluation and performance evaluation. The self-development evaluation was a plan designed to help the faculty member in his
${ }^{4}$ Ibid. . p. 13.

TABLE 2.3-AAsignment of Principal Evaluation Responsibility for Faculty Development, Number of Institutions

Source of Principal
Responsibility

For Faculty
Development

Academic Dean or
Vice President 167

Department Chairman 167
President or Provost 10

Faculty Comittee 13

Students 67

Colleagues 9

Self 21
Peers (other institutions) 2
Joint Student-Faculty Group 1
Alumni 4
Other 2
No Response 72
Total 536efforts to improve his skills and to maintain strength inthose areas where he has already achieved expertise. Theperformance evaluation consisted of the following areas:

1. Teaching Effectiveness
2. Relationship to Students Inside and Outside Classes
3. Advising
4. Inter-Disciplinary Teaching in College-Wide Courses
5. Research and Scholarship
6. Participation in Profession
7. Involvement With Student Activities in Campus Programs
8. College Community Government and Leadership
9. Participation in Recruitment and Development Efforts
10. Participation in Civic Affairs, Church Activities and Public Relations5

As can be seen from the above topics, teaching and its interrelationship to other areas are major reasons for faculty development.

There have been other programs that have been instituted to develop the other aspects of a faculty member's training to help make him a more effective teacher. One of these programs is by Dr. Frank w. Finger, of the University of Virginia. His program consists of an optional two-semester graduate seminar entitled "Professional Problems." This course is taken while the student is in his final stages of the doctoral program in psychology. Meetings are conducted weekly in an informal setting, and each student explores one of the many topics that Dr. Finger has on the agenda throughout the seminar. The topics covered essentially include the following subject matter:

1. Introduction: University of Virginia, Professional Problems Seminar
${ }^{5}$ Ibid. . pp. 27-28.
2. The Fields of Psychology
3. History of Academic and Professional Psychology, Organization
4. History of Higher Education
5. The Government of College and Universities
6. Types of Institutions
7. Academic Freedom and Tenure
8. Student Rights and Responsibilities
9. Objective of Higher Education; the Concept ofLiberal Education
10. Varieties of Curriculum
11. Course Planning
12. Techniques of Instruction
13. Practicum in Teaching
14. Evaluation of Learning: Examining and Grading
15. Evaluation of Teachers and Teaching
16. Student-Faculty Relations
17. The Professional Market Place
18. Personnel Problems
19. Information Stories and Retrieval
20. Financial Resources for Higher Education andResearch
21. Social Control: Ethics Accreditation, Legislation ${ }^{6}$As can be seen from the topics described above,Finger is seeking to give the potential college instructoran understanding of the areas involving teaching.
6
Finger, pp. 1044-1049.

Milton Hildebrand of the University of California at Davis has a similar program in the area of biology. Hildebrand's program is directed toward the graduate student who will be entering the teaching profession upon completion of his graduate program. Some of the contents and emphasis of his program include the following:

1. What is Teaching?

2. What is Effective Teaching?
3. Objectives of Teaching
4. Ways to Improve One's Teaching
5. How is Teaching Evaluated?
6. How Should it be Evaluated?
7. Factors Influencing Learning
8. The Curriculum in Biology
9. The Preparation of a Course: Selection of Subject Area, Objectives, Method of Presentation, Students, and Texts
10. The Preparation of Lectures: The Lecture as a Unit, Structure, Relation to Text and Lab, Use of Notes, Timing
11. Examinations: Objectives, Kinds, Characteristics of Good Examinations, Kinds of Questions, Arrangement of Questions, Deriving the Desired Distribution of Scores
12. Grading: Accuracy versus Validity, Alternative Methods, Procedures, Recording and Reporting
13. Teaching by Discussion: Objectives, Advantages, Preparation, Procedures
14. Teaching in the Laboratory
15. Counseling: Objectives, Alternative Systems, Procedures
16. The Creative Elements in Teaching, The Rewards for Effective Teaching

In addition to these activities, each student is required to turn in four of the five following assignments:

1. Prepare in detail the curriculum in biology at your ideal college.
2. Prepare in detail the course you would like most to teach.
3. Prepare in detail one lecture in your course.
4. Prepare a mid-term examination for your course.
5. Write an essay on any other subject relevant to this course (e.g., evaluation of teaching, nature of teaching-learning process, objectives of teaching, programmed teaching, etc.). 7

It should also be noted that Dressel in one of his
publications on improving college teaching included both the Finger and Hildebrand studies in his analysis. ${ }^{8}$ In this same publication of Dressel, he included an analysis of the preparation for college teaching that has been developed in the programs of the Carnegie grant institutions. Some of the topics that are used in these institutions to help prepare a doctoral student for teaching include courses on the history and philosophy of higher education, psychology of learning, observing college

7Donald S. Dean, Preservice Preparation of College Biology Teachers: A Search for a Better Way. (Washington, D. C.: The Commission on Undergraduate Education in the Biological Sciences, 1970), pp. 97-98.
$8_{\text {Dressel }}$ and Delisle, pp. 52-60.
teaching, teaching methods and techniques, research in education, and many specific programs designed to help the doctoral student prepare to teach his discipline. ${ }^{9}$

The doctoral dissertation completed by Joseph DeOrdio involved the development of a faculty development program at Kansas State University. DeOrdio's dissertation explored the development of college faculty, both individually and as a group. He found that there is a great need in higher education for a greater commitment to the process of faculty development. The typical graduate student does not receive proper preparation in learning theory or instructional methods. In his dissertation, he developed a pilot program for in-service training. The major areas of the program included:

1. A faculty seminar on effective instruction
2. Videotaping and playback of classroom presentations
3. Formal instruction on the principles of college teaching

The response to the program at Kansas State University was favorable and well accepted. 10

In another doctoral dissertation completed in 1969,
Douglas Engel found that faculty developmental programs

[^7]generally enjoyed strong support, especially from instructional media departments. He also found that many developmental policies concerning in-service training were established by a comittee on academic affairs and most programs had continuing administrative support. ${ }^{11}$ The Chronicle of Higher Education in 1973 sumana rized the results of a study designed to determine the Characteristics of college teachers. The items that faculty considered essential or very important in their teaching of undergraduates included the following:

1. To develop in the student the ability to think clearly
2. To have the student master knowledge in a discipline
3. To increase in the student the desire and ability to undertake self-directed learningl2

As can be seen with the three above items, faculty consider teaching of the discipline and the ability to get the students to be self-motivated to be essential items in their teaching of undergraduates.

Summary

Thus, the preceding discussion of the related literature and the recent studies on faculty development
${ }^{11}$ Douglas J. Engel, MA Study to Determine the Status of Institutional Development Program" (unpublished Ed.D. dissertation, Indiana University, 1969).

12 "Characteristics of 42,345 College Teachers," Chronicle of Higher Education, August 27, 1973.
attempted to establish some background for the study by the following:

1. Focusing attention on the importance that teaching is now receiving in the many articles and books that are being published.
2. Calling attention to the recent studies that have shown faculty development programs to be essential in improving the performance of college teaching.
3. Highlighting the fact that there are movements underway to develop an understanding of teaching at the graduate level while the student is still in the doctorate program, thus emphasizing the importance of developing an understanding of the teaching process before the student finishes a doctoral program.

It is hoped that this study will contribute the kind of information which will help not only Bob Jones University but other universities as well in developing a faculty in-service training program that will improve the quality of instruction and its subsequent learning on the part of the student. Bergquist and Phillips put it this way:

A comprehensive program of faculty development is consequently one which provides training for faculty in improved classroom performance, which assists the faculty member in developing a supportive environment within his academic organization, and which allows him to examine and reflect on his own personal values and attitudes as they influence his professional life. Instructional development, organizational development, and personal development thus become the essential components of any effective program of faculty development. 13

13
Bergquist and Phillips, p. 6.

PROCEDURES USED IN THE STUDY

Introduction

The purposes of this study were (1) to determine the areas of deficiency on the part of the faculty in both instructional and non-instructional areas and (2) to develop an in-service training program based upon faculty's self-perceived areas of need. The primary intent of this chapter is to describe the research design and the procedures used in this study.

Sources of Data

The population from which the sample was drawn consisted of faculty members presently employed at Bob Jones University, Greenville, South Carolina. This population was chosen since the faculty in-service program will be developed at Bob Jones University using the input from these faculty members.

The basic instrument used to collect faculty selfperceptions of teaching needs was a questionnaire (Appendix A). The questionnaire was designed to have faculty make a self-analysis in the instructional and non-instructional areas that they felt should be included in any faculty
in-service training program, based upon their particular needs. The instructional areas included:

Audio-Visual Materials
Class Preparation
Communication Theory
Course Preparation
Curriculum Theory
Evaluating Students
Presentation
Teaching Techniques and Style
The non-instructional areas included:
History of Higher Education
History of Bob Jones University
Advising and Counseling Students
Characteristics of the College Student
Understanding Standardized Tests
Tests and Measurements
Academic Policies of Bob Jones University
Administrative Policies of Bob Jones University

The questionnaire also was designed to determine the teaching objectives of each faculty member. These teaching objectives were designed to go from the affective to the cognitive areas of teaching. Of the five teaching objectives included in the questionnaire, two of these objectives were affective areas while three were cognitive areas. These teaching objectives were adapted from Paul

Dressel's chapter on Conceptions of College Teaching. ${ }^{1}$
The teaching objectives are shown below:
Develop or reinforce a student's own value system and have the student sensitive to the values of others.

Provide the student with a learning experience that can be used in almost any academic endeavor.

Provide for student mastery of subject matter through the acquisition and assimilation of knowledge.

Instill in the student a sense of accomplishment and satisfaction in giving the student something he can identify as being necessary for his life's work.

Develop in the student an awareness to identify. analyze and formulate solutions to problems.

The questionnaire also asked each faculty member to indicate his preferred time of attending in-service training.

As shown on Table 3.1, there were 253 questionnaires distributed and 228 questionnaires returned. This represents a 90.1 percent response rate. Of the five academic divisions, the College of Arts and Science had a 94.9\% return, the School of Business Administration a 91.7\% return, the School of Education a 93.8% return, the School of Fine Arts a 83.3% return, and the School of Religion a 93.5% return.

TABLE 3.1--Percentage of Returned Questionnaires by Academic Division of the University

Academic Division	Distributed	Returned	Percent Returned
College of Arts and Science	98	93	94.9%
School of Business Administration	12	11	91.7%
School of Education	16	15	93.8%
School of Fine Arts	96	80	83.8%
School of Religion	31	253	228
			93.5%

Design of the study
As indicated previously, the basic instrument used for the collection of data was the questionnaire. A pilot study of the questionnaire was administered to some of the faculty in the School of Education in order to eliminate ambiguities and redundancy. After this was completed, with the recommended changes incorporated as appropriate, an announcement of the study was made at one of the weekly faculty meetings. These faculty meetings are attended by nearly all faculty within the university. The announcement was to make all faculty members aware of the purpose of the questionnaire that they would soon be receiving. The questionnaire and a cover letter were then mailed to
all instructional staff within the university two days following the verbal announcement at the faculty meeting. The questionnaire contained a code number on the last page in order that follow-up action could be taken on those who had not responded to the first mailing. At the next weekly faculty meeting a second announcement was made to encourage all those who received the questionnaire to complete and submit it as soon as possible. The response to the questionnaire was gratifying, as evidenced by the 90.1\% return rate.

Procedures

After the returned questionnaires were reviewed for accuracy and completeness, they were processed on a Burroughs 1700 data processing system. The tabulated data were then analyzed by each faculty grouping; i.e., area of university, teaching status, seniority, highest degree completed, age, sex, marital status, undergraduate university, and teaching area. Within each grouping, the eight instructional areas, eight non-instructional areas, and five teaching objectives were given relative rank scores from 1 to 8 or 1 to 5 based on the mean rank score of each item in relation to the mean rank score of all other items within each faculty grouping. The relative rank scores, shown on Appendix B, then became the basis for determining those areas requiring further analysis.

The statistical analysis was to determine if one faculty grouping considers an instructional area, noninstructional area, or teaching objective as having a greater or lesser importance than a second faculty grouping. If two faculty groupings do view the in-service needs differently, it would then be necessary to develop different training sessions to meet the differing needs of faculty groups.

Differences between two groups could be caused by different mean responses or by different variances. These two differences can be tested by the standard t-test and the standard F-test. The normal assumptions of these two tests are:

1. An infinite population in relation to sample size
2. A random sample from that population
3. Normality of the sample; or, in the case of large sample statistics, asymptotic normality.

Because of the large response to the questionnaire, the infinite population in relation to sample size has not held true. However, the corrected variance for a finite university is $\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}} \times$ the actual variance. Here, \mathbb{N} equals the size of the universe and n equals the size of the sample. As the sample size n approached the universe size $⿴$, the variance would approach zero. This would cause the t-score to approach infinity since the variance is in the denominator. (Hence, any difference between the
sample means would be significant in the ultimate case of $\mathrm{n}=\mathrm{N}$.$) Therefore, disregarding the universe size results$ in a conservative t-score, any significant t-score is significant, but any t-score that did not test significant could still be significant. This means the type 1 error of rejection of the conclusion when the conclusion should have been accepted is very small, giving confidence that the results stated in Chapter Four were correct.

The random sample assumption is essentially needed to assure that the universe is accurately reflected by the sample. The problem is compounded by the use of a rank scale of one to eight and one to five, which reflects feelings on an issue. Feelings are themselves random, which then provide a random sample of people, each giving a randon response to the questions. Because of the large response and the use of the cumulative statistics, mean and variance, the sample could be said to reflect the response of the whole.

Although some of the assumptions associated with standard statistical analysis were ultimately inconsequential, statistical analysis was still necessary to verify apparent variances. There is a large sample size in relation to universe size, but this still does not account for all faculty. Although ninety percent of the faculty responded, there were still ten percent that did not. Further, the randomness of the response leads to rejection of the deterministic model. It does show,
however, that statistics is not as important as it would have been had the sample been smaller.

Other statistical tests that were considered were:

1. A standard chi square test that would have tested the differences between two groups, each with eight cells. This test would have only told differences and would not have given relative rank between the differences.
2. A multiple range test or analysis of variance. These tests have the fundamental disadvantage of indicating differences without being specific where the differences would be.

As shown from the above analysis, the standard t-test and the standard F-test thus become adequate statistical tests to use in determining differences between two faculty groupings. The t-test was used to compare the equality of means and the F-test was used to compare the equality of variances. Both tests were two-tailed tests and used the .05 level of significance in all statistical analyses.

Summary

The preceding pages of Chapter Three have described the procedures, methods, and sources of data used to develop a faculty in-service progras based upon selfperceived areas of weaknesses in both instructional and non-instructional areas. The population chosen was the
faculty at Bob Jones University. This group had a response rate of 90.1% on the questionnaire that was distributed. All faculty groupings were included in the study, which included full-time, part-time, and graduate assistants, both male and female, all age groups from 21 through over 60, various levels of seniority, bachelor's, master's, and doctoral faculty, and all of the various teaching areas within the university. An analysis of the data collected will be described in the following chapter.

CHAPPER IV

ANALYSIS OF DATA

Introduction

This chapter contains the analysis of the data gathered to develop a faculty in-service training program based on self-perceived weaknesses in both instructional and non-instructional areas. The chapter is divided into three sections:

Section 1 Analysis of instructional areas by the various faculty classifications

Section 2 Analysis of non-instructional areas by the various faculty classifications

Section 3 Analysis of teaching objectives by the various faculty classifications

Because of the time restrictions associated with an in-service program, only those instructional and noninstructional items receiving relative rank scores of 1 , 2, or 3 were analyzed in detail. Those responding to the questionnaire were aware that the more necessary items should be ranked with scores of 1, 2, or 3, while nonessential items would receive lower rank score ratings.

Operational Definitions and Symbols

Mean Rank	This is the average rank score of any faculty area. The individual faculty ranks are totaled and divided by the N.
Relative Rank	This is the position of importance of the instructional or non-instructional area on a rank order scale of 1 to 8 . Relative rank of 1 indicates the item to be the most important area, relative rank of 2 indicates the item to be the second most important area, and continued on to a relative rank of 8 , which is the least important area.
$\mathrm{U}_{\mathbf{a}} \boldsymbol{\&}$	Mean rank score of Arts and Science faculty
$\mathrm{U}_{\mathbf{a l}}$	Mean rank score of faculty who teach ancient languages
$\mathbf{U}_{\mathbf{b}}$	Mean rank score of faculty with bachelor's degree
$\mathbf{U b j u}_{\text {b }}$	Mean rank score of faculty with an undergraduate degree from Bob Jones University
$\mathrm{U}_{\text {bus }}$	Mean rank score of Business faculty
$\mathbf{U}_{\mathbf{C}}$	Mean rank score of faculty who teach in cinema
$\mathbf{U}_{\mathbf{d}}$	Mean rank score of faculty with doctorate
$\mathbf{U}_{\mathbf{e}}$	Mean rank score of Education faculty
$\mathbf{U}_{\mathbf{f}}$	Mean rank score of female faculty
$\mathbf{U f a}_{\mathbf{f a}}$	Mean rank score of Fine Arts faculty
$\mathbf{U f t}^{\text {ft }}$	Mean rank score of full-time faculty
\mathbf{U}_{ga}	Mean rank score of graduate assistants
$\mathbf{U}_{\mathbf{m}}$	Mean rank score of faculty with master's degree
$\mathbf{U}_{\mathbf{m a}}$	Mean rank score of male faculty
$U_{\text {mar }}$	Mean rank score of married faculty
U_{ms}	Mean rank score of faculty that teach mathematics

$U_{\text {non-bju }}$	Mean rank score of faculty who do not have an undergraduate degree from Bob Jones University
$\mathbf{U P t}^{\text {p }}$	Mean rank score of part-time faculty
$\mathbf{U}_{\mathbf{r}}$	Mean rank score of Religion faculty
U_{3}	Mean rank score of single faculty
$\mathbf{U s t}_{\text {st }}$	Mean rank score of faculty who teach in speech theory
${ }^{0}<2$	Mean rank score of faculty with less than 2 years teaching
$\mathbf{U}_{\mathbf{2 - 5}}$	Mean rank score of faculty with 2 to 5 years teaching
U_{6-10}	Mean rank score of faculty with 6 to 10 years teaching
\mathbf{U}_{11-15}	Mean rank score of faculty with 11 to 15 years teaching
U_{16-20}	Mean rank score of faculty with 16 to 20 years teaching
${ }^{\text {U }} \mathbf{> 2 0}$	Mean rank score of faculty with more than 20 years teaching
U_{20-29}	Mean rank score of faculty ages 20 to 29
$\mathbf{0}_{30-39}$	Mean rank score of faculty ages 30 to 39
U_{40-49}	Mean rank score of faculty ages 40 to 49
0_{50-59}	Mean rank score of faculty ages 50 to 59
${ }^{0}>59$	Mean rank score of faculty over 59 years of age

Section 1 - Analysis of Instructional Areas

Analysis of Instructional Areas by Academic Division
Within the academic division faculty grouping, there were four areas that received relative rank scores high enough to justify analysis: Evaluating students, Communication Theory, Audio-Visual Materials, and Course Preparation.

Evaluating Students Three of the five academic divisions in the university ranked this instructional area the most necessary item to be included in any faculty inservice program. As shown in Table 4.01, the other two academic divisions both ranked this item third out of a possible eight. Although education and religion faculty ranked this item third, it must be determined whether there was a significant difference in the mean rank of these two divisions compared with the mean rank of the other three divisions, arts and science, business, and fine arts. The t-test of equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: U_{r}=U_{f a} \\
& H_{1}: U_{r} \neq U_{f a}
\end{aligned}
$$

The hypothesis compares only fine arts and religion. This can be accomplished since the most extreme values are used in the comparison. If the null hypothesis is accepted at the most extreme values, then any value less than the extreme would also be accepted. H_{0} is

TABLE 4.01--Rank Frequency of Evaluating Students by Academic Division

Rank	Arts \& Science	Business	Education	Fine Arts	Religion
1	22	2	2	20	6
2	15	3	4	16	3
3	21	0	2	18	2
4	9	0	0	8	3
5	12	3	1	8	7
6	5	3	2	1	2
7	7	0	3	5	5
8	2	0	1	4	1
$\mathrm{N}=$	93	11	15	80	29
Mean Rank	K 3.3	3.7	4.1	3.1	4.1
Relative Rank	1	1	3	1	3

rejected since the test statistic $t=2.20$ was greater than the critical value of 1.96 (two-tailed test at the . 05 level of significance). The alternate hypothesis is then accepted. Because H_{1} was accepted, it was necessary to then compare religion with the second most extreme value:

$$
H_{2}: U_{r} \neq U_{a \& s}
$$

This hypothesis was rejected because the test statistic $t=1.94$ was less than the critical value of 1.96. In sumary, there was no significant difference
in mean rank scores of religion faculty and arts and science, business and education; but there was a significant difference between religion and fine arts. There were no differences at the . 05 level of significance when comparing equality of variances between any of the academic divisions.

Evaluating students was shown to be an important area of concern regardless of the faculty member's academic division.

Communication Theory Table 4.02 shows that three of the five academic divisions, arts and science, business and fine arts, ranked this item with a relative rank score of 2 , while education and religion faculty gave Communication theory the highest relative rank score of 1 . Although there are differences in both mean rank scores and relative rank scores between the five academic divisions concerning communication theory, it must be determined whether there was a significant difference in these mean scores. The t-test of the equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{a \& s}=U_{f a} \\
& H_{1}: U_{a \& s} \neq U_{f a}
\end{aligned}
$$

The hypothesis compares only arts and science faculty and fine arts faculty. Again, this can be done since the most extreme values are used in the comparison. If the null hypothesis is accepted, then all the other

TABLE 4.02--Rank Frequency of Communication Theory by Academic Division

Rank	Arts \& Science	Business	Education	Fine Arts	Religion
1	19	2	6	17	5
2	20	1	2	10	7
3	9	2	1	8	1
4	15	2	1	11	5
5	8	1	2	8	5
6	13	2	2	6	1
7	7	0	0	17	4
8	2	1	1	3	1
$\mathrm{N}=$	93	11	15	80	29
Mean Rank	- 3.5	3.9	3.1	4.0	3.8
Relative Rank	2	2	1	2	1

academic divisions that have values between arts and science and fine arts would also have equality of means. In this case, the null hypothesis was accepted since the test statistic $t=1.52$ was less than the critical value of 1.96. Because the null hypothesis was accepted, it was not necessary to test the equality of means between any other academic divisions.

There were no significant differences in mean rank scores between any of the academic divisions concerning the instructional area of the communication theory.

Audio-Visual Materials Only one of the five academic divisions ranked this instructional category high enough to justify analysis. As shown in Table 4.03, the

TABLE 4.03--Rank Frequency of Audio-Visual Materials by Academic Division

Rank	Arts \& Science	Business	Education	Fine Arts	Religion
1	12	1	1	8	8
2	10	1	1	10	4
3	6	2	5	6	3
4	8	3	1	12	2
5	13	0	3	10	2
6	13	1	1	9	2
7	8	2	0	9	3
8	23	1	3	16	5
$\mathrm{N}=$	93	11	15	80	29
Mean Rank	5.0	4.5	4.5	4.9	4.0
Relative Rank	6	5	5	6	2

School of Religion ranked audio-visual materials instruction as being the second most important area in a faculty development program. The other academic divisions gave this instructional area a relative rank of either five or six, which is extremely low considering there are only eight instructional areas. The important question,
however, was whether the mean rank score by the faculty in the School of Religion was significantly different than the mean rank scores of the other areas of the university. The t-test of the equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: U_{r}=U_{a} \& s \\
& H_{1}: U_{r} \neq U_{a} \& s
\end{aligned}
$$

Religion was measured against arts and science faculty since the difference in the mean scores is greatest between faculty in the School of Religion and faculty in the College of Arts and Science. If the null hypothesis was accepted for equality of means between religion and arts and science, the hypothesis would also then be true comparing the equality of means between religion faculty and any of the other remaining divisions. In this statistical analysis, the null hypothesis was accepted because the test statistic $t=1.85$ was less than the critical value of 1.96.

There were no differences at the . 05 level of significance when comparing equality of variances between religion faculty and any of the other academic divisions. Although religion faculty ranked audio-visual materials with a relative rank of 2 , the mean rank score of religion faculty was not significantly different from the mean rank score of any of the other academic divisions.

Course Preparation All of the academic divi-

 sions, with the exception of the School of Fine Arts, ranked course preparation as being relatively unimportant. The School of Fine Arts, however, ranked this instructional category 3 out of a possible 8. The rankings of the other academic divisions ranged from 4 to 6 , with three of the academic divisions ranking this item 6 out of 8. It must be determined whether the fine arts mean rank score is significantly different from the mean rank scores of the other areas of the university. The t-test of the equality of means is symbolically written in the following manner:$$
\begin{aligned}
& H_{0}: U_{f a}=U_{e} \\
& H_{1}: U_{f a} \neq U_{e}
\end{aligned}
$$

The School of Fine Arts was measured against the School of Education since the difference in mean scores was greatest between fine arts and education. The null hypothesis in this analysis was accepted because the test statistic $t=1.59$ was less than the critical value of 1.96. Because the null was accepted at the extreme values, it will not be necessary to analyze the mean scores of fine arts and the other academic divisions.

There were no differences at the . 05 level of significance when comparing equality of variances between fine arts faculty and any of the other academic divisions. Although Table 4.04 reflects a marginal mean rank score for fine arts faculty, there was no significant difference
between the mean rank score of fine arts faculty and the mean rank scores of any of the other academic divisions.

TABLE 4.04--Rank Frequency of Course Preparation by Academic Division

Rank	Arts \& Science	Business	Education	Fine Arts	Religion
1	6	0	2	7	2
2	16	2	2	16	2
3	14	2	0	8	3
4	13	3	2	13	7
5	9	0	0	15	3
6	16	0	4	13	8
7	12	3	3	5	3
8	7	1	2	3	1
$\mathrm{N}=$	93	11	15	80	29
Mean Rank	4.4	4.6	5.0	4.1	4.7
Relative Rank	4	6	6	3	6

Analysis of Instructional Areas by Teaching Status

Within the teaching status faculty grouping, there were four areas that received relative rank scores high enough to justify further analysis: Evaluating Students, Commuication Theory, Teaching Techniques, and Class Preparation.

Evaluating Students As shown on Table 4.05, all three classifications, full-time, part-time, and graduate assistant, ranked evaluating students the most important item in any faculty in-service training program. All three classifications ranked evaluating students first

TABLE 4.05--Rank Frequency of Evaluating Students by Teaching Status

Rank	Full Time	Part Time	Graduate Assistant
1	32	12	8
2	20	12	9
3	35	6	2
4	16	2	2
5	19	2	1
7	6	14	1
8	148	2.5	1

with their mean rank scores ranging from 2.9 to 3.7. The t-test of equality of means is written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{\mathrm{ga}}=U_{\mathrm{pt}} \\
& \mathrm{H}_{1}: U_{\mathrm{ga}} \neq U_{\mathrm{pt}}
\end{aligned}
$$

The null hypothesis in this instance was accepted since the test statistic $t=1.54$ was less than the critical value of 1.96.

Communication Theory Full-time and part-time teaching faculty ranked communication theory the second most important item that should be included in any inservice faculty training program. As shown on Table 4.06, graduate assistants, however, ranked communication theory third in importance. To check the equality of means between graduate assistants and full-time and part-time faculty, the hypothesis is written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{g a}=U_{f t} \\
& H_{1}: U_{g a} \neq U_{f t}
\end{aligned}
$$

Although there was a difference in relative rank scores between graduate assistants (relative rank score of 3) and full- and part-time instructors (relative rank score of 2), there was no significant difference in their mean rank scores. The test statistic of $t=0.97$ was less than the critical value of l.96. The null hypothesis was then accepted--there were no differences between full-time,

TABLE 4.06--Rank Frequency of Communication Theory by Teaching Status

Rank	Full Time	Part Time	Graduate Assistant
1	31	10	8
2	28	7	5
3	15	3	3
4	22	5	1
5	14	6	1
6	15	5	1
7	6	148	3

part-time, and graduate assistant teaching staff concerning the instructional area of communication theory.

Teaching Techniques Graduate assistants ranked teaching techniques a relative rank score of 2. Full-time and part-time instructional staff gave this instructional category a relative rank score of 4 and 6, respectively. Because of the newness of teaching, graduate assistants may well believe teaching techniques instruction to be very important to them since they have essentially never taught. In comparing the equality of means between graduate
assistants and the other two teaching classifications, the hypothesis is written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{g a}=U_{p t} \\
& H_{1}: U_{g a} \neq U_{p t}
\end{aligned}
$$

The test statistic in this instance of $t=2.25$ was greater than the critical value of 1.96. The null hypothesis was rejected in favor of the alternative hypothesis which states that there was a significant difference in mean rank scores by graduate assistants concerning teaching techniques and non-graduate assistants. As shown on Table 4.07, there were 38 graduate assistants. This number does not change substantially from year to year and does represent a sizeable group entering the teaching profession in some capacity every year. Teaching techniques was an important area of concern to this group of instructors.

$$
\text { Class Preparation As shown on Table } 4.08 \text {. }
$$

class preparation did not receive relative rank scores that were exceptionally high. However, the graduate assistant classification does show a relative rank score of 4 out of a possible 8 , which was higher than relative rank scores of 7 by both full-time and part-time faculty. In comparing whether graduate assistants' mean rank score

TABLE 4.07--Rank Frequency of Teaching Techniques by Teaching Status

Rank	$\begin{aligned} & \text { Full } \\ & \text { Time } \end{aligned}$	Part Time	Graduate Assistant
1	14	1	6
2	20	4	2
3	21	7	9
4	23	8	7
5	19	4	5
6	19	4	4
7	21	7	3
8	11	7	2
N $=$	148	42	38
Mean Rank	4.4	5.0	4.0
Relative Rank	4	6	2

was significantly different from the other two teaching classifications, the hypothesis is symbolically written:

$$
\begin{aligned}
& H_{0}: U_{g a}=U_{f t} \\
& H_{1}: U_{g a} \neq U_{f t}
\end{aligned}
$$

The test statistic of $t=2.52$ was larger than the critical value of 1.96 . The null hypothesis was rejected, indicating there was a significant difference between the need for class preparation instruction by graduate assistants and the same need on the part of non-graduate assistants.

TABLE 4.08--Rank Frequency of Class Preparation by Teaching Status

Rank	Full Time	Part Time	Graduate Assistant
1	13	5	4
2	9	3	6
3	18	1	8
4	12	5	2
5	15	5	7
6	30	7	4
7	27	74	3
	148	5.2	38
Mean Rank	5.2	7	4.2
Relative Rank	7	7	4

There were no differences in comparing equality of variances in any of the statistical comparisons shown alone.

The other instructional areas of audio-visual materials, course preparation, presentation, and curriculum theory received relative rank scores indicating that none of the instructional staff, regardless of their teaching classification, felt they should be included in any in-service training program.

Analysis of Instructional Areas by Years of College Teaching

Within the years of college teaching grouping there were only two areas that ranked high enough to justify analysis: Evaluating Students and Communication Theory.

Evaluating Students In this faculty classification, there were six different groupings based upon the number of years of teaching. Four of these ranked evaluating students the most important area in an in-service training program, while two of these groups ranked evaluating students second in importance. As shown on Table 4.09, mean rank scores ranged from a low of 3.0 to a high of 3.7. In evaluating the equality of means, the hypothesis is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{2-5}=U_{\text {under }} 2 \\
& H_{1}: U_{2-5} \neq U_{\text {under }} 2
\end{aligned}
$$

The test statistic of $t=1.78$ was less than the critical value of l.96. There was no significant difference in mean rank scores between any of the groupings based on Years of college teaching. Evaluating students was shown to be a very important item at all levels of seniority.

Communication Theory As shown on Table 4.10,

 there was a diversity in relative rank scores. Two of the seniority groupings ranked this instructional area first, three ranked it second, and one ranked it third.TABLE 4.09--Rank Frequency of Evaluating Students by Years of College Teaching

Rank	<2	$2-5$	$6-10$	$11-15$	$16-20$	>20
1	13	13	11	4	4	7
2	13	11	6	5	3	3
3	9	9	10	3	5	7
4	4	5	3	2	2	4
5	11	4	8	4	1	3
6	5	2	3	1	2	0
7	7	3	4	0	3	3
8	3	1	2	1	1	0

In comparing the equality of means, which ranged from $\mathbf{3 . 2}$ to 4.0, the hypothesis is symbolically written as follows:

$$
\begin{aligned}
& \mathrm{H}_{0}: U_{6-10}=U_{\text {under }} 2 \\
& \mathrm{H}_{1}: U_{6-10} \neq U_{\text {under }} 2
\end{aligned}
$$

Because the test statistic of $t=1.87$ was less than the critical value of 1.96 , the null hypothesis was accepted. There was no significant difference between mean rank scores on communication theory by years of college teaching.

TABLE 4.10--Rank Frequency of Communication Theory by Years of College Teaching

Rank	<2	$2-5$	$6-10$	$11-15$	$16-20$	>20
1	13	7	13	4	6	6
2	10	8	13	2	4	3
3	5	5	2	4	2	3
4	12	11	4	2	0	5
5	3	5	5	2	4	5
6	7	5	5	2	4	1
7	4	6	5	2	1	3
8	65	48	47	20	21	27
M $\quad 4$	4.0	3.9	3.2	4.0	3.4	3.7
Rean Rank	2	2	1	3	1	2

There were no differences in comparing equality of variances in either of the comparisons described above. Analysis of Instructional Areas by Highest Degree Completed

Within this faculty grouping, there were four areas that received relative rank scores high enough to justify analysis: Evaluating Students, Communication Theory, Course Preparation, and Curriculum Theory.

Evaluating Students All three of the categories, bachelor's degree, master's degree, and the doctorate, ranked evaluating students with a relative rank score
of 1. As shown on Table 4.11, the mean rank scores only varied from 3.2 to 3.6. The hypothesis for comparing the

TABLE 4.ll--Rank Frequency of Evaluating Students by Highest Degree Completed

Rank	Bachelor's	Master's	Doctorate
1	14	29	9
2	17	21	3
3	9	26	8
4	4	15	1
5	14	11	1
6	5	7	3
7	7	10	0
	2	125	31
Mean Rank	72	3.4	3.2
Relative Rank	1	1	1

equality of means is symbolically written:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{\mathrm{d}}=\mathrm{U}_{\mathrm{b}} \\
& \mathrm{H}_{1}: \mathrm{U}_{\mathrm{d}} \neq \mathrm{U}_{\mathrm{b}}
\end{aligned}
$$

The test statistic of $t=0.73$ was less than the critical value of 1.96. All degree levels indicate this area to be extremely important.

Communication Theory All three degree levels ranked communication theory with a relative rank score of 2. As shown on Table 4.12, the mean rank scores only varied from a low of 3.4 to a high of 3.8. In testing

TABLE 4.12--Rank Frequency of Communication Theory by Highest Degree Completed

Rank	Bachelor's	Master's	Doctorate
1	17	24	8
2	10	24	6
3	7	10	4
4	13	19	2
5	4	16	4
6	9	10	5
7	11	15	2
8	1	7	0
$\mathrm{N}=$	72	125	31
Mean Rank	3.7	3.8	3.4
Relative Rank	2	2	2

the equality of means, the hypothesis is written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{\mathrm{d}}=\mathrm{U}_{\mathrm{b}} \\
& \mathrm{H}_{\mathrm{l}}: \mathrm{U}_{\mathrm{d}} \neq \mathrm{U}_{\mathrm{b}}
\end{aligned}
$$

The test statistic of $t=0.81$ was less than the critical value of l.96. There were no differences in mean
rank scores of the instructional area of communication theory based on the highest degree completed.

Course Preparation This instructional category received a relative rank score of 3 by bachelor's and master's faculty and a relative rank of 6 by doctoral instructors. Because of the difference in relative rank scores, it was necessary to analyze whether there were differences between their mean rank scores which vary from a low of 4.1 to a high of 5.l. The hypothesis is written:

$$
\begin{aligned}
& \mathrm{H}_{0}: U_{\mathrm{d}}=\mathrm{U}_{\mathrm{b}} \\
& \mathrm{H}_{\mathrm{l}}: U_{\mathrm{d}} \neq \mathrm{U}_{\mathrm{b}}
\end{aligned}
$$

The test statistic of $t=2.20$ was greater than the critical value of 1.96 . The null hypothesis was rejected in favor of the alternative hypothesis. Because the hypothesis to test the extreme values was rejected, it was necessary to develop a third hypothesis written:

$$
\mathrm{H}_{2}: \mathrm{U}_{\mathrm{d}} \neq \mathrm{U}_{\mathrm{m}}
$$

Testing this hypothesis, the test statistic of $t=1.80$ was less than the critical value of 1.96 and the hypothesis was rejected. There was a significant difference, then, between course preparation by bachelor's degree people versus doctoral degree instructors, but there was no difference between master's people and doctoral teaching staff. Table 4.13 indicates that there were 72 faculty with a bachelor's degree or nearly

TABLE 4.13--Rank Frequency of Course Preparation by Highest Degree Completed

Rank	Bachelor's	Master's	Doctorate
1	7	9	1
2	14	20	4
3	10	15	2
4	13	19	6
5	7	16	4
6	8	29	4
7	8	4	5
N	5	125	31
Mean Rank	72	4.4	5.1
Relative Rank	3	3	6

one-third of all the instructional staff. This grouping then represents a sizeable number and, because they only possess a bachelor's degree, course preparation would appear to be very important for this group of instructors. Curriculum Theory Only one category ranked curriculum theory high enough to warrant analysis. Faculty with the doctorate ranked curriculum theory with a relative rank score of 3 versus a relative rank score of 6 by both bachelor's and master's instructors. This could have been expected, considering doctoral faculty may be more research and theoretical oriented and have
more interest in areas of higher education other than teaching itself. The data in Table 4.14 show that the mean rank scores range from 4.1 to 4.9. In testing the

TABLE 4.14--Rank Frequency of Curriculum Theory by Highest Degree Completed

Rank	Bachelor's	Master's	Doctorate
1	10	14	2
2	5	13	7
3	7	19	4
4	6	13	7
5	9	21	2
6	15	12	3
7	10	12	21
m	10	125	31
Mean Rank	72	4.6	4.1
Relative Rank	6	6	3

equality of the mean rank scores, the hypothesis is written as follows:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{\mathrm{d}}=\mathrm{U}_{\mathrm{b}} \\
& \mathrm{H}_{1}: \mathrm{U}_{\mathrm{d}} \neq \mathrm{U}_{\mathrm{b}}
\end{aligned}
$$

The test statistic of $t=1.50$ was less than the critical value of 1.96 . The null hypothesis was accepted, indicating that although doctoral faculty gave curriculum
theory a high relative rank score, the mean rank score was, in fact, not significantly different than the mean rank score of bachelor's and master's degree instructors. Analysis of Instructional Areas by Age Grouping

Evaluating Students Of the five categories of age, four of the five ranked evaluating students 1 while only one category ranked it other than 1 . As shown on Table 4.15, the age grouping over the age of 59 ranked

TABLE 4.15--Rank Frequency of Evaluating Students by Age Grouping

Rank	21-29	30-39	40-49	50-59	>59
1	22	13	10	7	0
2	16	15	9	0	1
3	10	15	13	5	0
4	6	3	5	6	0
5	14	8	8	1	0
6	4	3	4	2	0
7	8	5	3	2	2
8	3	3	2	0	0
$\mathrm{N}=$	83	65	54	23	3
Mean Rank	3.4	3.3	3.5	3.3	5.3
Relative Rank	1	1	1	1	7

evaluating students with a relative rank score of 7 . In testing whether or not a relative rank score of 7 was significantly different than the other four relative rank scores of 1 , the hypothesis is written in the following manner:
$H_{0}: U_{\text {over }} 59=U_{30-39}$
H_{1} : U ${ }_{\text {over }} 59 \neq \mathrm{U}_{30-39}$
The test statistic of $t=1.59$ was less than the critical value of 1.96 . The mean rank score then of the age group over 59 was not significantly different than the mean rank score of all the other age groups.

Comunication Theory As shown on Table 4.16, three of the five age groups ranked communication theory with a relative rank score of 2 while the upper two age groupings (50-59, and greater than 59) ranked commanication theory a relative rank score of 4 . Testing for the equality of means, the hypothesis is shown below:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{30-39}=\mathrm{U}_{50-59} \\
& \mathrm{H}_{1}: \mathrm{U}_{30-39} \neq \mathrm{U}_{50-59}
\end{aligned}
$$

Since the test statistic of $t=1.71$ was less than the critical value of 1.96 , there was no difference in mean rank scores between any of the age groupings.

Teaching Techniques Only one of the age groupings ranked teaching techniques with a relative rank score high enough to justify analysis. The age group over 59 gave teaching techniques a relative rank score of 1. As

TABLE 4.l6--Rank Frequency of Communication Theory by Age Grouping

Rank	21-29	30-39	40-49	50-59	>59
1	16	18	13	2	0
2	16	13	5	6	0
3	7	5	6	3	0
4	17	8	5	2	2
5	4	6	11	2	1
6	8	7	9	0	0
7	11	8	3	6	0
8	4	0	2	2	0
$\mathrm{N}=$	83	65	54	23	3
Mean Rank	3.8	3.4	3.8	4.3	4.3
Relative Rank	2	2	2	4	4

shown on Table 4.l7, this age grouping only has an $N=3$. In testing whether there was a significant difference in the mean rank score of this age grouping with any of the other mean rank scores, the hypothesis is shown below:

$$
\begin{aligned}
& H_{0}: U_{\text {over }} 59=U_{30-39} \\
& H_{1}: U_{\text {over }} 59 \neq U_{30-39}
\end{aligned}
$$

The test statistic of $t=1.33$ was less than the critical value of 1.96. There was no significant importance associated to the mean rank score of those in the age grouping over 59 when compared with the mean rank scores of the other four age groups.

TABLE 4.17--Rank Frequency of Teaching Techniques by Age Grouping

Rank	21-29	30-39	40-49	50-59	>50
1	9	3	6	2	1
2	9	8	5	4	0
3	13	13	8	2	1
4	14	8	11	5	0
5	10	8	6	3	1
6	11	10	3	3	0
7	10	10	8	3	0
8	7	5	7	1	0
$\mathrm{N}=$	83	65	54	23	3
Mean Rank	4.4	4.6	4.5	4.3	3.0
Relative Rank	4	5	5	3	1

Course Preparation The age grouping over 59 again was the only age group that ranked course preparation high enough to justify analysis. As shown on Table 4.18, this age group gave course preparation a relative rank score of 2. Again, because of the low N, the test statistic in comparing mean scores does not show any significant difference in mean rank scores. The $t=1.76$ was less than the critical value of 1.96 .

In summary, there are only two instructional areas that were ranked important based upon age grouping-evaluating students and communication theory. The two

TABLE 4.l8--Rank Frequency of Course Preparation by Age Grouping

Rank	21-29	30-39	40-49	50-59	>59
1	9	5	3	0	0
2	16	6	13	3	0
3	10	9	3	3	2
4	10	9	3	3	2
5	10	8	6	3	0
6	13	10	11	7	0
7	7	10	6	3	0
8	5	6	2	1	0
$\mathrm{N}=$	83	65	54	23	3
Mean Rank	4.1	4.7	4.3	4.9	3.3
Relative Rank	3	6	4	6	2

areas of teaching techniques and course preparation that received high mean rank scores by the age category of 50 and above were not significantly different than the mean rank scores of the other age groups.

The other instructional areas of audio-visual materials, class preparation, curriculum theory, and presentation did not receive rank scores high enough to justify analysis. These instructional areas were ranked as being unimportant at all levels of age grouping.

There were no differences in comparing equality of variances in any of the above comparisons. Analysis of Instructional Areas by Sex Grouping

There are three areas in this category that received scores high enough to discuss: Evaluating students, Communication Theory and Teaching Techniques.

Evaluating Students Both male and female faculty ranked evaluating students with a relative rank score of 1. Their mean rank scores ranged from 3.2 to 3.6. In testing whether there were any differences in equality of means, the hypothesis is shown below:

$$
\begin{aligned}
& \mathrm{H}_{0}: U_{\mathrm{ma}}=U_{f} \\
& \mathrm{H}_{1}: U_{\mathrm{ma}} \neq U_{f}
\end{aligned}
$$

The test statistic of $t=1.30$ was less than the critical value of l.96. There was no significant difference between the mean scores of male and female faculty concerning evaluating students.

Communication Theory Both male and female faculty gave communication theory a relative rank score of 2 and both had a mean rank score of 3.7. There were no significant differences in the mean rank scores when comparing equality of means.

Teaching Techniques As shown on Table 4.19, male faculty ranked teaching techniques with a relative rank of 3, while female faculty gave this instructional area a relatively unimportant rank score of 6 . The

TABLE 4.19--Rank Frequency of Teaching Techniques by Sex Grouping

Rank	Male	Female
1	12	9
2	16	10
3	21	16
4	23	15
5	12	16
6	15	12
7	15	16
	6	14
Mean Rank	120	108
Relative Rank	4.2	4.8

hypothesis to test the equality of means between their two mean rank scores is shown below:

$$
\begin{aligned}
& H_{0}: U_{m a}=U_{f} \\
& H_{1}: U_{m a} \neq U_{f}
\end{aligned}
$$

The test statistic of $t=2.03$ was greater than the critical value of 1.96. The null hypothesis was then rejected in favor of the alternative hypothesis. There was a significant difference in mean rank scores between male and female faculty concerning the instructional area of teaching techniques.

The other instructional areas of audio-visual materials, class preparation, course preparation, curriculum theory, and presentation were given relatively unimportant rank scores by both male and female faculty.

There were no differences in the three categories analyzed above when comparing equality of variances. Analysis of Instructional Areas by Marital Status

The only areas that scored high enough to analyze were Evaluating Students and Communication Theory.

Evaluating Students Both single and married faculty ranked evaluating students with a relative rank score of l. Single faculty gave evaluating students a mean rank score of 3.2 while married faculty gave evaluating students a mean rank score of 3.5. In comparing the equality of means on evaluating students, the test statistic $t=0.93$ was less than the critical value of 1.96. There was no difference in mean rank scores of evaluating students between single and married faculty. Communication Theory Both single and married faculty gave communication theory a relative rank score of 2. There was very little difference between their mean rank scores, with single faculty having a mean rank score of 3.7 while married faculty had a mean rank score of 3.8 . In comparing the equality of means, the test statistic $t=0.23$ was less than the critical value of 1.96 . There was no difference between mean rank scores of communication theory based on marital status.

The other instructional areas of audio-visual materials, class preparation, curriculum theory, and presentation received rank scores that would indicate that faculty do not consider these areas to be very important in any in-service training program. The areas of course preparation and teaching techniques, however, received marginal rank scores and may be given consideration when developing the actual in-service program. Analysis of Instructional Areas by Undergraduate College

Three areas will be analyzed in this section: Evaluating Students, Communication Theory, and Curriculum Theory.

Evaluating Students As shown on Table 4.20, those faculty that received their undergraduate training at Bob Jones University ranked evaluating students with a relative rank score of 1 while non-BJU undergraduates ranked evaluating students with a relative rank score of 2. In comparing whether or not there was any difference in equality of means, the hypothesis is written as follows:

$$
\begin{aligned}
& H_{0}: U_{b j u}=U_{n o n-b j u} \\
& H_{1}: U_{b j u} \neq U_{\text {non-bju }}
\end{aligned}
$$

The test statistic of $t=1.86$ was less than the critical value of 1.96. Although there was a difference in mean rank scores, this difference was not significant.

TABLE 4.20--Rank Frequency of Evaluating Students by Undergraduate College

Rank	BJU	non-BJU
1	43	9
2	36	5
3	32	11
4	15	5
5	26	5
6	9	4
7	15	4
N	48	48
Mean Rank	3.3	3.9
Relative Rank	1	2

Communication Theory Table 4.21 also shows a difference in relative rank scores between BJU and nonBJU undergraduates. Bob Jones University undergraduates ranked communication theory with a relative rank score of 2, while non-BJU undergraduates ranked communication theory with a relative rank score of 1 . In comparing the equality of means between these two groups, the hypothesis is written as follows:

$$
\begin{aligned}
& H_{0}: U_{b j u}=U_{\text {non-bju }} \\
& H_{1}: U_{b j u} \neq U_{\text {non-bju }}
\end{aligned}
$$

TABLE 4.21--Rank Frequency of Communication Theory by Undergraduate College

Rank	BJU	non-BJU
1	37	12
2	29	11
3	19	2
4	27	7
5	18	6
6	19	5
7	23	0
M $=$	8	48
Mean Rank	180	3.4

In this hypothesis, the test statistic of $t=1.20$ was less than the critical value of 1.96 , indicating that there was no significant difference between the mean rank scores between the two groups.

Curriculum Theory As shown on Table 4.22, curriculum theory received a relative rank score of 3 by nonBJU undergraduates, which is substantially higher than the relative rank score of 6 by those that received their

TABLE 4.22--Rank Frequency of Curriculum Theory by Undergraduate Institution

Rank	BJU	non-BJU
1	21	5
2	19	6
3	20	10
4	20	6
5	27	5
6	22	8
8	24	27
Mean Rank	180	6
Relative Rank	4.7	48

undergraduate training at Bob Jones University. In testing whether this indicates a significant difference, however, the hypothesis is shown below:

$$
\begin{aligned}
& H_{0}: U_{b j u}=U_{\text {non-bju }} \\
& H_{1}: U_{b j u} \neq U_{\text {non-bju }}
\end{aligned}
$$

Although the mean rank scores are different, the test statistic of $t=1.16$ was less than the critical value of 1.96 , indicating that there was no significant difference between the two groups concerning this instructional area.

The other instructional areas of audio-visual materials, class preparation, course preparation, presentation, and teaching techniques had mean rank and relative rank scores that would indicate that these areas were not considered to be of importance in developing an in-service training program.

Analysis of Instructional Areas by Predominant Teaching Area

There were a number of areas that were analyzed in this faculty category since there are a large number of teaching areas.

Evaluating Students There are 17 different teaching areas within the university. Of these 17 teaching areas, 6 of these areas ranked evaluating students first, 6 ranked evaluating students second, 4 ranked evaluating students third, and 1 ranked evaluating students fourth. The hypothesis to test whether there was any significant difference in mean rank scores among these 17 groups is shown below:

$$
\begin{aligned}
& H_{0}: U_{a l}=U_{s t} \\
& H_{1}: U_{a l} \neq U_{s t}
\end{aligned}
$$

This analysis compared the most extreme values between ancient language (which had a relative rank score of 4) and speech theory (which had a relative rank score of 1). In the analysis, the test statistic of $t=3.47$ was greater than the critical value of l.96. The null hypothesis was then rejected in favor of the alternative
hypothesis stating that there were significant differences between the ancient language teaching area and the other divisions of the university. This significant difference in mean rank scores exists between the ancient language teaching area and the speech theory teaching area. All other areas within the university show no significant differences in mean rank scores in this instructional area of evaluating students.

Communication Theory Communication theory has a little more variance in the mean rank scores and relative rank scores than did evaluating students. There were six teaching areas that ranked communication theory with a relative rank score of 1 , four teaching areas assigned a relative rank score of 2 , three teaching areas assigned a relative score of 3 , one teaching area assigned a relative rank score of 4, two teaching areas assigned a relative rank score of 5 , and one teaching area assigned a relative rank score of 7. The testable hypothesis was again set up using the most extreme values in the mean rank scores. In this analysis, speech theory was compared with the mathematical sciences to see whether or not significant differences exist:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{\mathrm{st}}=\mathrm{U}_{\mathrm{ms}} \\
& \mathrm{H}_{1}: \mathrm{U}_{\mathrm{st}} \neq \mathrm{U}_{\mathrm{ms}}
\end{aligned}
$$

The test statistic of $t=3.59$ exceeds the critical value of 1.96. There were significant differences between speech theory and mathematical sciences and the
null hypothesis was rejected in favor of the alternative hypothesis. In comparing whether or not there were significant differences between speech theory and other teaching areas beside mathematical sciences, it was found that there were significant differences with the areas of applied sciences, business administration, secondary education, English, ancient languages, music, office administration, social science, and natural science. There were no significant differences between any of the other predominant teaching areas. The mean rank scores of all of the other 16 areas when compared with each other were not significantly different. The only difference was in those previously indicated with the speech theory area. The other areas of instruction, audio-visual materials, class preparation, course preparation, curriculum theory, presentation, and teaching techniques did not have many rank scores that would justify discussion. There were, however, some exceptions. The teaching area of religion did indicate a relative rank score of 1 for audio-visual materials. This, however, was not statistically significant with a test statistic of $t=1.91$. which was less than the critical value of 1.96. Elementary education ranked curriculum theory with a relative rank score of 1 and this rank score did have significance at the .05 level when compared with modern languages, music, and mathematical sciences.

Section 1 Summary This section analyzed the instructional areas by the various faculty categories. It is important to remember that each faculty member's rating of the instructional areas reflects his self-perception of the items that should be included in the faculty in-service program based upon his particular deficiencies.

The two major areas of importance to all faculty, regardless of their academic division, teaching status, seniority, degree level, age, sex, marital status, undergraduate university attended, or predominant teaching area, were evaluating students and communication theory.

Evaluation of students would include the development of valid and reliable examinations, use of objective and essay tests, methods of evaluation other than examinations, term projects, and research papers.

Communication theory would include an understanding of transmittal of thoughts and ideas from teacher to student, overcoming communication obstacles, developing good communication skills, vertical and horizontal communication networks, and an understanding of the purpose and usefulness of the grapevine.

Other instructional areas that were considered to be important, but not necessarily by all faculty, included instruction in teaching techniques and style and class
preparation by graduate assistants, course preparation for those with only a bachelor's degree, and curriculum theory for faculty in elementary education.

Section 2-Analysis of Non-Instructional Areas Analysis of Non-Instructional Areas by Academic Division

Within the academic division faculty grouping, there were three areas that received relative rank scores high enough to justify analysis: Advising and Counseling Students, Student Characteristics, and Tests and Measurements.

Advising and Counseling Students Four of the five academic divisions in the university ranked this non-instructional area as being the most necessary element in any faculty in-service training program. One area, the School of Religion, gave advising and counseling students a relative rank score of 2. As shown on Table 4.23, the religion faculty had a mean rank score of 3.1 , which is higher than all of the other mean rank scores. The t-test of equality of means to determine if there were any significant difference in mean rank scores between religion faculty and any of the other divisions of the university is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{r}=U_{f a} \\
& H_{1}: U_{r} \neq U_{f a}
\end{aligned}
$$

The hypothesis compares only fine arts and religion faculty. The null hypothesis was rejected since the test statistic $t=2.37$ was greater than the critical value of 1.96. The alternate hypothesis was then accepted. There was a significant difference between mean

TABLE 4.23--Rank Frequency of Advising and Counseling Students by Academic Division

Rank	Arts \& Science	Business	Education	Fine Arts	Religion
1	34	4	5	29	7
2	26	3	3	24	4
3	10	1	4	12	7
4	10	1	2	8	5
5	7	2	1	4	3
6	3	0	0	1	2
7	1	0	0	2	1
8	2	0	0	0	0
$\mathrm{N}=$	93	11	15	80	29
Mean Rank	2.4	2.5	2.4	2.3	3.1
Relative Rank	1	1	1	1	2

rank scores of religion faculty and fine arts faculty. Because H_{1} was accepted, it was then necessary to compare the mean rank score of religion faculty with the mean rank score of the second most extreme value. The hypothesis is symbolically written in the following manner:

$$
\mathrm{H}_{2}: \mathrm{U}_{\mathrm{r}} \neq \mathrm{U}_{\mathrm{a} \&} \mathrm{~s}
$$

This hypothesis was rejected because the test statistic $t=1.66$ was less than the critical value of 1.96. In sumary, there were no significant differences between mean rank scores in the category of advising
students between any of the academic divisions of arts and science, business, education, and fine arts. There was, however, a significant difference between religion and fine arts. Although there was a significant difference between these two academic divisions, the faculty in the School of Religion did rank advising and counseling students with a relative rank score of 2 , which is extremely high.

Advising and counseling students was thus shown to be an important area of concern, regardless of the faculty member's academic division.

Student Characteristics As shown on Table 4.24, arts and science, business, and fine arts faculty each indicated a relative rank score of 2 for the area of student characteristics, while education and religion faculty indicated a relative rank score of 3. In determining whether or not there were any significant differences between the mean rank scores in any of these divisions, the most extreme values were used in the analysis with the hypothesis symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{\mathrm{a}} \& s=\mathrm{U}_{\mathrm{fa}} \\
& \mathrm{H}_{1}: \mathrm{U}_{\mathrm{a}} \& s \neq \mathrm{U}_{\mathrm{fa}}
\end{aligned}
$$

The test statistic of $t=2.97$ was larger than the critical value of l.96. The null hypothesis was then rejected in favor of the alternate hypothesis. Because of this, it was necessary to compare the second most

TABLE 4.24--Rank Frequency of Student Characteristics by Academic Division

| Rank |
 Science | Business |
| :--- | :---: | :---: | :---: | :---: | :---: | | | | | | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 12 | 2 | 1 | 21 |
| 2 | 28 | 3 | 4 | 29 |

extreme values and the hypothesis and is symbolically shown below:

$$
\mathrm{H}_{2}: \mathrm{U}_{\mathrm{e}} \neq \mathrm{U}_{\mathrm{fa}}
$$

The test statistic in this hypothesis of $t=2.62$
was larger than the critical value of 1.96. Because of this, it was necessary to compare a third alternative hypothesis symbolically shown below:

$$
H_{3}: U_{r} \neq \mathbf{U}_{f a}
$$

The test statistic of $t=2.68$ was larger than the critical value, which then makes it necessary to test a fourth alternate hypothesis. The hypothesis which tests the next most extreme value is symbolically shown below:

$$
\mathrm{H}_{4}: \mathrm{U}_{\mathrm{e}} \neq \mathrm{U}_{\mathrm{bus}}
$$

This hypothesis had a test statistic of $t=1.21$, which was less than the critical value of 1.96 .

In summary, it was shown that there were significant statistical differences between fine arts faculty and the faculty in the Schools of Arts and Science, Education, and Religion; but there were no other statistical significances outside those just described.

Tests and Measurements As shown on Table 4.25, three of the academic divisions gave this non-instructional category a relative rank score of 3 , one division a relative rank score of 2 , and one division a relative rank score of l. Although all relative rank scores would fall within the classification of appearing to be important, it was necessary to compare their mean rank scores to see whether or not there were any significant differences between the academic divisions. The comparison for the equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathbf{U}_{\mathbf{f a}}=\mathbf{U}_{\mathbf{r}} \\
& \mathrm{H}_{\mathbf{1}}: \mathbf{U}_{\mathbf{f a}} \neq \mathbf{U}_{\mathbf{r}}
\end{aligned}
$$

TABLE 4.25--Rank Frequency of Tests and Measurements by Academic Division

Rank	Arts \& Science	Business	Education	Fine Arts	Religion
1	21	2	5	17	11
2	6	1	2	7	8
3	16	2	3	11	4
4	19	3	2	10	0
5	10	2	2	7	1
6	6	0	0	5	2
7	8	0	1	13	1
8	7	1	0	10	2
$\mathrm{N}=$	93	11	15	80	29
Mean Rank	K 3.8	3.6	2.9	4.3	2.7
Relative Rank	3	3	2	3	1

The most extreme values were compared in this hypothesis with the test statistic $t=2.89$ being generated. Since this value was greater than the critical value of 1.96 , the null hypothesis was rejected in favor of the alternate hypothesis. A second alternate hypothesis was necessary and is symbolically written below:

$$
\mathrm{H}_{2}: U_{a \& s} \notin U_{r}
$$

The test statistic in this hypothesis of $t=2.33$ was greater than the critical value of 1.96 . It was then
necessary to develop a third alternate hypothesis, which is symbolically shown below:

$$
\mathrm{H}_{3}: \mathrm{U}_{\mathrm{fa}} \neq \mathrm{U}_{\mathrm{e}}
$$

The test statistic in this hypothesis of $t=2.03$ was also greater than the critical value of 1.96. It becomes necessary then to develop a fourth alternate hypothesis, which is symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{4}: U_{a} \& s \neq U_{e} \\
& \text { The test statistic in this instance of } t=1.58
\end{aligned}
$$

was less than the critical value of l.96. The hypothesis was accepted showing that there were no further significant differences.

In summary, although there were significant differences between three of the areas as shown above, the majority of faculty indicated that the non-instructional area of tests and measurements was important and should be included in any faculty in-service training program. Analysis of Non-Instructional Areas by Teaching Status Within the teaching status faculty grouping, there were three areas that appear to be necessary for further evaluation: Advising and Counseling students, Student Characteristics, and Tests and Measurements. Advising and Counseling Students All three faculty teaching classifications, full-time, part-time, and graduate assistants ranked this non-instructional
area with a relative rank score of 1 , indicating this to be the most important area for them that should be included in any faculty in-service training program. As shown on Table 4.26, the mean rank scores ranged from

TABLE 4.26-mRank Frequency of Advising and Counseling Students by Teaching Status

Rank	$\begin{aligned} & \text { Full } \\ & \text { Time } \end{aligned}$	$\begin{aligned} & \text { Part } \\ & \text { Time } \end{aligned}$	Graduate Assistant
1	52	19	8
2	40	7	13
3	16	9	9
4	21	3	2
5	14	2	1
6	1	2	3
7	3	0	1
8	1	0	1
$\mathrm{N}=$	148	42	38
Mean Rank	2.5	2.2	2.8
Relative Rank	1	1	1

2.2 to 2.8. The t-test of equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: U_{\mathrm{ga}}=U_{\mathrm{pt}} \\
& \mathrm{H}_{1}: U_{g a} \neq U_{\mathrm{pt}}
\end{aligned}
$$

The test statistic of $t=1.58$ was less than the critical value of l.96. All areas within teaching status thus indicate advising and counseling students to be an extremely important area of concern.

Student Characteristics All three areas within this faculty grouping ranked student characteristics with a relative rank score of 2. As shown on Table 4.27, the TABLE 4.27--Rank Frequency of Student Characteristics by Teaching Status

Rank	Full Time	Part Time	Graduate Assistant
1	25	6	9
2	44	17	10
3	33	6	5
4	22	5	7
5	12	4	3
6	8	2	0
7	3	1	3
8	1	1	1
$\mathbf{N}=$	148	42	38
Mean Rank	3.0	3.0	3.1
Relative Rank	2	2	2

mean rank scores ranged only from 3.0 to 3.1. In testing for equality of means, the hypothesis is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{g a}=U_{f t} \\
& H_{1}: U_{g a} \neq U_{f t}
\end{aligned}
$$

The null hypothesis was accepted since the test statistic of $t=0.33$ was less than the critical value of 1.96. There were no significant differences between fulltime, part-time, and graduate assistant faculty in the category of student characteristics. All three faculty teaching classifications consider student characteristics to be necessary in any faculty in-service training program.

Tests and Measurements As shown on Table 4.28, all three of the teaching categories ranked this noninstructional area with a relative rank score of 3. The mean rank scores ranged from a score of $\mathbf{3 . 2}$ by graduate assistants to a score of 4.0 by full-time faculty. The t-test of equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{g a}=U_{f t} \\
& H_{1}: U_{g a} \neq U_{f t}
\end{aligned}
$$

The test statistic of $t=1.76$ was less than the critical value of $1.96 ;$ thus, the null hypothesis was accepted, indicating there were no significant differences between any of the teaching classifications in the noninstructional areas of tests and measurements.

TABLE 4.28--Rank Frequency of Tests and Measurements by Teaching Status

Rank	$\begin{aligned} & \text { Full } \\ & \text { Time } \end{aligned}$	$\begin{aligned} & \text { Part } \\ & \text { Time } \end{aligned}$	Graduate Assistant
1	33	10	13
2	16	3	5
3	22	10	4
4	18	8	8
5	16	4	2
6	12	1	0
7	16	4	3
8	15	2	3
$\mathrm{N}=$	148	42	38
Mean Rank	4.0	3.5	3.2
Relative Rank	3	3	3

Analysis of Non-Instructional Areas by Years of College Teaching

Within this faculty grouping, there were the same previous three areas that received relative rank scores high enough to justify further analysis: Advising and Counseling Students, Student Characteristics, and Tests and Measurements.

Advising and Counseling Students As shown on Table 4.29, all six seniority categories ranked advising and counseling students with a relative rank score of 1 .

TABLE 4.29--Rank Frequency of Advising and Counseling Students by Years of College Teaching

Rank	<2	2-5	6-10	11-15	16-20	>20
1	22	20	16	4	9	8
2	13	12	12	8	5	10
3	11	7	8	3	2	3
4	8	5	6	3	1	3
5	4	4	3	1	2	3
6	3	0	1	1	1	0
7	2	0	1	0	1	0
8	2	0	0	0	0	0
$\mathrm{N}=$	65	48	47	20	21	27
Mean Rank	2.8	2.2	2.5	2.6	2.5	2.4
Relative Rank	1	1	1	1	1	1

The mean rank scores ranged from 2.2 to 2.8. In testing for the equality of means, the hypothesis is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U<2=U_{2-5} \\
& H_{1}: U<2 \neq U_{2-5}
\end{aligned}
$$

The null hypothesis was accepted since the test statistic of $t=1.86$ was less than the critical value of 1.96. There were no significant differences between any of the categories of years of college teaching in the area of advising and counseling students. All levels of
seniority consider this area to be the most important noninstructional item that should be included in any faculty in-service training program.

Student Characteristics As shown on Table 4.30,

TABLE 4.30--Rank Frequency of Student Characteristics by Years of College Teaching

Rank	<2	2-5	6-10	11-15	16-20	>20
1	11	8	10	3	1	7
2	19	15	19	4	8	6
3	12	9	5	7	4	7
4	9	7	6	3	4	5
5	5	4	4	2	2	2
6	3	4	0	1	2	0
7	5	1	1	0	0	0
8	1	0	2	0	0	0
	$N=65$	48	47	20	21	27
Mean Rank	3.2	3.0	2.8	3.0	3.2	3.6
Rela Rank	:ive 2	2	2	2	2	2

all six levels of seniority ranked student characteristics with a relative rank score of 2. The mean rank scores
ranged from 3.2 to 3.6. The t-test of equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: U<2=\mathrm{U}>20 \\
& \mathrm{H}_{1}: U<2 \neq \mathrm{U}>20
\end{aligned}
$$

The null hypothesis was accepted since the test statistic of $t=1.50$ was less than the critical value of 1.96. There were no significant differences between mean rank scores at any level of seniority. This noninstructional area is thus considered to be an important area that should be covered in the faculty in-service training program.

Tests and Measurements As shown in Table 4.31, all levels of seniority ranked this non-instructional area with a relative rank score of 3 . The mean rank scores ranged from 3.6 to 4.2. The t-test of equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{2-5}=\mathrm{U}_{16-20} \\
& \mathrm{H}_{1}: \mathrm{U}_{2-5} \neq \mathrm{U}_{16-20}
\end{aligned}
$$

The null hypothesis was accepted since the test statistic of $t=1.03$ is less than the critical value of 1.96. Tests and measurements was an important area at all levels of seniority.

Analysis of Non-Instructional Areas by Highest Degree Achieved

Within this faculty grouping, there were again the same three areas that received relative rank scores
high enough to analyze further: Advising and Counseling Students, Student Characteristics, and Tests and Measurements.

TABLE 4.31-~Rank Frequency of Tests and Measurements by Years of College Teaching

Rank	<2	2-5	6-10	11-15	16-20	>20
1	18	10	12	5	3	8
2	9	5	4	2	3	1
3	8	12	9	0	3	4
4	9	5	6	6	4	4
5	5	6	2	3	2	4
6	3	5	3	2	0	0
7	5	3	8	0	4	3
8	8	2	3	2	2	3
$\mathrm{N}=$	64	48	47	20	21	27
Mean Rank	3.7	3.6	3.8	3.8	4.2	3.8
Relative Rank	3	3	3	3	3	3

Advising and Counseling Students As shown on Table 4.32, bachelor's and master's degree faculty ranked this non-instructional area with a relative rank score of 1, while those faculty with a doctorate ranked this area with a relative rank score of 2. The t-test of equality of means to determine if there were any significant

TABLE 4.32--Rank Frequency of Advising and Counseling Students by Highest Degree Achieved

Rank	Bachelor's	Master's	Doctorate
1	30	45	4
2	18	30	12
3	11	17	6
4	6	16	4
5	2	11	4
6	4	2	0
7	1	2	1
	12	125	0
Mean Rank	2.3	2.5	2.9
Relative Rank	1	1	2

differences between the mean rank scores is symbolically written in the following manner:
$\mathrm{H}_{0}: \mathrm{U}_{\mathrm{b}}=\mathrm{U}_{\mathrm{d}}$
$\mathrm{H}_{1}: \mathrm{U}_{\mathrm{b}} \neq \mathrm{U}_{\mathrm{d}}$
The null hypothesis was accepted since the test statistic of $t=1.82$ was less than the critical value of 1.96. Advising and counseling students is shown to be an important area, regardless of the degree level of the faculty member.

Student Characteristics As shown on Table 4.33, bachelor's and master's faculty ranked this
non-instructional area with a relative rank of 2 , while those with the doctorate ranked this as the most important non-instructional area in the faculty in-service training program. The mean rank scores ranged from 2.8 to 3.1 .

TABLE 4.33--Rank Frequency of Student Characteristics by Highest Degree Completed

Rank	Bachelor's	Master's	Doctorate
1	14	19	7
2	27	36	8
3	13	23	8
4	6	23	5
5	6	12	1
6	2	8	1
7	3	3	1
8	1	125	31
Mean Rank	72	3.1	2.8
Relative Rank	2	2	1

The t-test of equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{m}=U_{b} \\
& H_{1}: U_{m} \neq U_{b}
\end{aligned}
$$

The null hypothesis was accepted since the test statistic of $t=1.25$ was less than the critical value of
1.96. Student characteristics was shown to be an area that should be included in the faculty in-service training program.

Tests and Measurements As shown on Table 4.34,

TABLE 4.34--Rank Frequency of Tests and Measurements by Highest Degree Completed

Rank	Bachelor's	Master's	Doctorate
1	14	33	9
2	7	16	1
3	13	16	7
4	14	17	3
5	9	10	3
6	5	74	1
7	6	12	3
8	4	125	31
Mean Rank	72	3.7	3.8
Relative Rank	3	3	3

all three degree levels ranked tests and measurements with a relative rank score of 3. The mean rank scores only varied from 3.7 to 3.8. The t-test of equality of means is symbolically written in the following manner:

$$
\begin{aligned}
& H_{0}: U_{m}=U_{d} \\
& H_{1}: U_{m} \neq U_{d}
\end{aligned}
$$

The null hypothesis was accepted since the test statistic of $t=0.14$ was less than the critical value of 1.96. Tests and measurements was shown to be an area of concern that should be included in the faculty in-service training program.

Analysis of Non-Instructional Areas by Age Grouping

Within this faculty grouping, there were again the same three areas that received relative rank scores high enough to analyze further: Advising and Counseling Students, Student Characteristics, and Tests and Measurements.

Advising and Counseling Students As shown on
Table 4.35, four of the five age groupings ranked advising and counseling students with the highest rank score possible. One age grouping, those over 59, ranked advising and counseling students with a relative score of 2. In testing for the equality of means between those over 59 and all other age groups, the hypothesis is symbolically written as shown below:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}>59=\mathrm{U}_{40-49} \\
& \mathrm{H}_{1}: \mathrm{U}>59 \neq \mathrm{U}_{40-49}
\end{aligned}
$$

The null hypothesis was accepted since the test statistic of $t=1.36$ was less than the critical value of 1.96. There were no significant differences between any of the age groupings in the category of advising and counseling students.

TABLE 4.35--Rank Frequency of Advising and Counseling Students by Age Grouping

Rank	21-29	30-39	40-49	50-59	>59
1	27	25	21	6	0
2	22	16	12	9	1
3	15	9	6	4	0
4	9	5	9	2	1
5	3	8	4	1	1
6	3	1	2	0	0
7	2	1	0	1	0
8	2	0	0	0	0
$\mathrm{N}=$	83	65	54	23	3
Mean Rank	2.6	2.4	2.4	2.4	3.7
Relative Rank	1	1	1	1	2

Student Characteristics
As shown on Table 4.36, all age groupings ranked student characteristics with a relative rank score of 2 , with the exception of the age group over 59 , which gave this category a relative rank score of 4. In testing for the equality of means, the hypothesis is symbolically shown below:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}>59=\mathrm{U}_{50-59} \\
& \mathrm{H}_{1}: \mathrm{U}>59 \neq \mathrm{U}_{50-59}
\end{aligned}
$$

Since the test statistic of $t=1.98$ was greater than the critical value of 1.96 , the null hypothesis was rejected in favor of the alternate hypothesis. Because

TABLE 4.36--Rank Frequency of Student Characteristics by Age Grouping

Rank	$21-29$	$30-39$	$40-49$	$50-59$	>59
1	15	12	5	8	0
2	26	23	18	4	0
3	15	13	10	6	0
4	12	8	10	2	2
5	8	3	5	2	1
6	2	2	5	1	0
7	4	2	0	0	0
8	1	2	65	2	0

the alternate hypothesis was accepted, a second alternate hypothesis must then be tested to determine if there were any significant differences beyond the two age groups in the first alternate hypothesis. A second alternate hypothesis is symbolically shown below:

$$
H_{2}: U_{50-59} \neq U_{30-39}
$$

Since the test statistic of $t=1.77$ was less than the critical value of 1.96 , there was no significant difference between the groups shown in the second alternate hypothesis. In summary, there were no differences between
any of the five age groupings concerning student characteristics, with the exception of the age group over 59 with the age group of 50-59. The faculty between ages 21 and 59 consider student characteristics to be vital in the in-service training program, while faculty over 59 do not consider this area to be that important.

Tests and Measurements Table 4.37 shows that

TABLE 4.37--Rank Frequency of Tests and Measurements by Age Grouping

Rank	21-29	30-39	40-49	50-59	>59
1	24	14	12	5	1
2	10	7	4	3	0
3	10	12	11	2	1
4	11	8	10	5	0
5	6	8	5	3	0
6	8	3	1	0	1
7	7	7	7	2	0
8	7	6	4	4	3
$\mathrm{N}=$	83	65	54	24	6
Mean Rank	3.6	3.9	3.8	3.9	3.3
Relative Rank	3	3	3	4	1

faculty over 59 ranked tests and measurements to be the most important item in the faculty in-service training program, while three of the categories ranked this
non-instructional area with a relative rank score of 3 , and one age grouping ranked this area with a relative rank score of 4. In testing the equality of means, the hypothesis is symbolically shown below:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{30-39}=U_{\text {over }} 59 \\
& \mathrm{H}_{1}: U_{30-39} \neq U_{\text {over }} 59
\end{aligned}
$$

Since the test statistic of $t=0.38$ was less than the critical value of 1.96 , the null hypothesis was accepted, thus showing that there were no significant differences in mean rank scores between any of the five age groupings concerning tests and measurements. Analysis of Non-Instructional Areas by Sex Grouping As has been the case in the past few areas of analysis, the same three non-instructional areas received relative rank scores high enough to justify analysis: Advising and Counseling Students, Student Characteristics, and Tests and Measurements.

Advising and Counseling Students As shown on Table 4.38, both male and female faculty ranked advising and counseling students as the most important item in the faculty in-service training program. The mean rank scores differ from 2.2 to 2.8. In testing whether there were significant differences between the mean scores, the hypothesis is symbolically shown below:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{U}_{\mathrm{ma}}=\mathrm{U}_{\mathbf{f}} \\
& \mathrm{H}_{1}: \mathrm{U}_{\mathrm{ma}} \neq \mathrm{U}_{\mathbf{f}}
\end{aligned}
$$

TABLE 4.38--Rank Frequency of Advising and Counseling Students by Sex Grouping

Rank	Male	Female
1	29	50
2	36	24
3	20	14
4	15	11
5	13	4
6	3	1
8	3	1
M	120	108
Mean Rank	1.8	2.2

Since the test statistic of $t=2.77$ was greater than the critical value of 1.96 , there was a significant difference between mean rank scores based upon sex. However, since both male and female faculty ranked advising and counseling students with the highest relative rank score possible, the conclusion was that female faculty indicated a greater rank frequency of rank scores of 1, 2, or 3 than did the male faculty. Although there were differences in mean rank scores, both male and female faculty
consider advising and counseling students to be the most important area in the faculty in-service training program. Student Characteristics As shown on Table 4.39, both male and female faculty ranked student characteristics to be the second most important item in the

TABLE 4.39--Rank Frequency of Student Characteristics by Sex Grouping

Rank	Male	Female
1	22	18
2	30	41
3	23	21
4	19	15
5	9	10
6	8	2
7	6	1
8	3	0
Mean Rank	120	108
Relative Rank	3.2	2.7

faculty in-service training program. Their mean rank scores ranged from 2.7 to 3.2. In testing for differences in equality of means, it is found that there was a significant difference between male and female faculty
with the test statistic of $t=2.36$ being greater than the critical value of l.96. However, since both male and female faculty ranked student characteristics with a relative rank score of 2 , the difference in mean rank scores can only be attributed to a greater frequency of female rank scores of 1,2, and 3.

Tests and Measurements Both male and female faculty ranked tests and measurements with a relative rank score of 3. There was no significant difference between the mean rank scores with the test statistic of $t=1.95$ being less than the critical value of 1.96. Analysis of Non-Instructional Areas by Marital Status

Both single and married faculty ranked these three areas with relative rank scores of 1, 2 , and 3, respectively. There were no significant differences between the mean rank scores on any of these three noninstructional areas. The test statistic for advising and counseling students was $t=0.29$; for student characteristics, the test statistic was $t=0.23$; for tests and measurements, the test statistic was $t=0.10$. All test statistics are below the critical value of 1.96 . Analysis of Non-Instructional Areas by Undergraduate University Attended

The same three areas that have been analyzed throughout the non-instructional areas will again be analyzed in this section: Advising and Counseling students, Student Characteristics, and Tests and Measurements.

Advising and Counseling Students Both faculty categories ranked advising and counseling students as the most important non-instructional area to be included in the faculty in-service training program. In testing for equality of means between these two groups, the test statistic of $t=1.01$ was less than the critical value of 1.96. There were no significant differences between undergraduate college attended and the importance of advising and counseling students.

Student Characteristics Both categories of
faculty ranked this non-instructional area with a relative rank score of 2. Their mean rank scores differed from 2.8 to 3.5 , and the test statistic of $t=2.50$ indicated that there was a significant difference in mean rank scores between these two groups. This was attributed to the higher rank frequency of rank scores of 1, 2, and 3 by those who received their undergraduate training at Bob Jones University. Both groups consider this noninstructional area to be an important area to be covered in the faculty in-service training program.

Tests and Measurements As shown on Table 4.40, both categories of faculty ranked this non-instructional area with a relative rank score of 3 . The test statistic in comparing the quality of means was $t=1.50$, which was less than the critical value of l.96. There were

TABLE 4.40--Rank Frequency of Tests and Measurements by Undergraduate College

Rank	BJU	non-BJU
1	46	10
2	18	6
3	30	6
4	27	7
5	19	3
6	12	16
8	180	8
Mean Rank	3.6	48
Relative Rank	3	4.2

no significant differences in mean rank scores between these two groups.

Analysis of Non-Instructional Areas by Predominant Area
Advising and Counseling Students, Student Characteristics, and Tests and Measurements will again be the three areas that will be analyzed in this section. Advising and Counseling Students Thirteen of the teaching areas ranked advising and counseling students with a relative rank score of 1 , three ranked advising and counseling students with a relative rank score of 2, and one area ranked advising and counseling
students with a relative rank score of 3 . The seventeen predominant teaching areas generate 136 individual comparisons. Only one of the 136 comparisons generated a t-score above the critical value of 1.96. The comparison between ancient language faculty and the music faculty generates a test statistic of $t=2.03$. All of the other 135 group comparisons showed no significant differences between mean rank scores.

Student Characteristics Ten of the teaching areas ranked student characteristics with a relative rank score of 2 , six ranked student characteristics with a relative rank score of 3 , and one area ranked this item with a relative rank score of l. Of the 136 group comparisons, only nine groups had test statistics greater than the critical value of 1.96 . The areas that produced significant differences in mean rank scores were between music, natural sciences, and speech theory. Tests and Measurements Three teaching areas ranked tests and measurements with a relative score of 1 , three with a relative rank score of 2 , six with a relative rank score of 3 , and five with relative rank scores greater than 3. Of the 136 group comparisons, there were 14 groups that had mean rank scores which generated statistical significance above the critical value of 1.96. All 14 areas were in the two areas of music and religion when compared with other teaching areas of the university. Music did have a relative rank score of 6 , while religion
faculty indicated a relative rank score of 1 . The music significance could be expected since evaluation of music students is not based upon conventional testing techniques but is more on actual performance.

Section 2 Summary Section 2 of this chapter analyzed the non-instructional areas by the various faculty categories. It is again important to remember that each faculty member's rating of the non-instructional areas reflected his or her self-perceptions of the items that should be included in the faculty in-service training program.

The three major areas of importance to faculty, regardless of academic division, teaching status, seniority, degree level, age, sex, marital status, undergraduate university attended, or predominant teaching area were advising and counseling students, characteristics of the college student, and tests and measurements.

Advising and counseling students would include an overview of basic psychology with emphasis on determining root problem areas, understanding the existing sources of guidance within the university, and identification of problems which may be encountered.

Characteristics of the college student would include the nature of the college student, goals, aspirations, family background, mental abilities and a comparative analysis of present and prior college students.

Tests and measurements would include a basic understanding of research data, using descriptive and inferential statistics, histograms, correlation-scatter diagrams, standard error, hypothesis testing, regression, and analysis of variance and co-variance.

Specific recommendations on the mechanics and organization of these three areas in the faculty inservice progran will be discussed in Chapter Five.

Section 3 - Teaching Objectives

This section of Chapter Four was designed to determine if there were any differences in teaching objectives between any of the various faculty categories within the university. The teaching objectives included three cognitive objectives in the areas of problem solving, student mastery of subject, and critical thinking and two affective objectives which included a student's value system and the providing of a learning experience. This section was also designed to determine whether any of the possible differences in teaching objectives would influence the manner in which a faculty in-service program would be developed.

As shown on Appendix B, virtually all faculty categories considered the cognitive teaching objectives to be the first, second, or third in relative importance in their teaching. The two affective teaching objectives were consistently ranked last or next to last throughout the various faculty categories. The noted exceptions were in seniority where those with 16 or more years of teaching considered the reinforcement of a student's value system to rank as high as second in importance and the age grouping over 59 also ranked the affective teaching objective of the reinforcement of a student's value system with a relative rank of two out of five. In only one instance did either of the two affective teaching objectives receive a relative rank score of 1.

This was by the art faculty. These same art faculty, however, ranked two cognitive areas second and third in importance with the final affective teaching objective receiving a relative rank score of 4. In testing for equality of means between any of the faculty categories in the cognitive teaching objectives, there were virtually no areas within the university where faculty mean rank scores showed a significant statistical difference between any of the other categories within the same grouping. The age grouping over 59 did have statistical significance with the problem solving approach teaching objective; but, with only an N of 3 , there would not appear to be enough faculty to justify the development of a separate program for only three instructors.

Of the 17 predominant teaching areas, 16 of these ranked one of the three cognitive areas as being the most important teaching objective.

In summary, there would not appear to be any basis for developing a faculty in-service training program along cognitive or affective lines since virtually all faculty throughout the university consider the cognitive teaching objectives to be the most important.

Summary

This chapter analyzed the data that were gathered to develop a faculty in-service training program based on self-perceived weaknesses in both instructional and
non-instructional areas. The data were analyzed along three basic divisions:

Section 1	Analysis of instructional areas by the various faculty classifications
Section $2 \quad$Analysis of non-instructional areas by the various faculty classifica- tions	
Section $3 \quad$Analysis of teaching objectives by the various faculty classifications	

Based on an analysis of the instructional areas, there were two major areas of importance to faculty, regardless of their academic division, teaching status, seniority, degree level, age, sex, marital status, undergraduate university attended, or predominant teaching area, which were the evaluation of students and communication theory. Evaluation of students included how to develop valid and reliable examinations, use of objective and essay tests, methods of evaluation other than examinations, term projects, and research papers. Communication theory would include developing an understanding of transmittal of thoughts and ideas from teacher to student, overcoming communication obstacles and developing good communication skills, vertical and horizontal communications, and an understanding of the usefulness of the grapevine. Other areas that were considered to be important were instruction in teaching techniques and style and class preparation by graduate assistants, course preparation for those with only a bachelor's
degree, teaching techniques and style for male faculty. and curriculum theory for those in the elementary education area.

An analysis of the non-instructional areas showed that advising and counseling students, characteristics of the college student, and tests and measurements to be the three most important areas to be included in the faculty in-service training program, regardless of the faculty grouping. Advising and counseling students would include an overview of basic psychology with emphasis on determining root problem areas, understanding of existing sources of guidance within the university, and the identification of problems which may be encountered. Characteristics of the college student would include the nature of the college student, goals, aspirations, family background, mental abilities, and a comparative analysis of present and prior college students. Tests and measurements would include a basic understanding of research data using descriptive and inferential statistics, histograms, correlation-scatter diagrams, standard error, hypothesis testing, regression, and analysis of variance and covariance.

An analysis of faculty teaching objectives showed that virtually all faculty, regardless of faculty grouping, indicate the cognitive areas of teaching to be the most important teaching objectives. These would include the development in the student of an awareness to
identify, analyze, and formulate solutions to problems, providing for student mastery of subject matter through the acquisition and assimilation of knowledge, and instilling in the student a sense of accomplishment and satisfaction in giving the student something he or she can identify as being necessary for his or her life's work. The affective teaching objectives were ranked either last or next to last in order of importance. Thus, there was no basis for differentiating between faculty in-service training based on either cognitive or affective teaching objectives.

An analysis of when the in-service workshops should be scheduled showed that the majority of faculty would prefer to have in-service training take place prior to the start of a school year. Additionally, no faculty member had ever had any graduate courses designed specifically to be a preparation for college teaching.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary
The purposes of this study were:

1. To determine the areas of instructional and noninstructional weaknesses as indicated by each faculty's self-perception of his teaching needs.
2. To determine the teaching objectives of each faculty member.
3. To develop a faculty in-service training program based on the faculty member's indication of the areas of instructional and non-instructional weaknesses that will overcome these deficiencies.

In-service training becomes a key element in the improvement of classroom teaching since the undergraduate and graduate programs essentially do not prepare an individual for college teaching. The assumptions of this study were:

1. That the process of education is the essential purpose of the American College System.
2. That the classroom instructor should possess a strong understanding of the discipline in which he is teaching.
3. That the classroom instructor understand the process of the art of teaching--communication, evaluating, motivating, assisting, and any other area that is vital in this process.
4. That every college and university has as its goal to provide outstanding classroom instruction, incorporating competency in both the academic discipline and the dissemination of knowledge to students.

An analysis of the literature focused attention on the importance that teaching is now receiving in the many articles and books that are being published. The literature also called attention to the recent studies which show that faculty development programs are essential in the improvement of the performance of college teaching. There are also movements underway to develop an understanding of teaching at the graduate level while the student is still in the doctoral program, thus emphasizing the importance of developing an understanding of the teaching process before the student finishes a doctoral program.

The population from which the sample was drawn consisted of faculty members employed at Bob Jones University, Greenville, South Carolina, during the

1975-76 school year. This population was chosen since the faculty in-service program will be developed at Bob Jones University using the input from these faculty members. The basic instrument used to collect faculty self-perceptions of teaching needs was a questionnaire. There were 253 questionnaires distributed and 228 returned for a response rate of 90.1%. The questionnaire was designed to have faculty make a self-analysis of the instructional and non-instructional items on the questionnaire and rank order the eight instructional items, the eight non-instructional items, and the five teaching objectives.

Findings

Based on the analysis of the instructional areas, there were two major areas of importance to faculty, regardless of their academic division, teaching status, seniority, degree level, age, sex, marital status, undergraduate university attended, or predominant teaching area. These two areas were evaluation of students and communication theory. Evaluation of students would include the development of valid and reliable examinations, use of objective and essay tests, methods of evaluation other than examinations, term projects, and research papers. Communication theory would include developing an understanding of transmittal of thoughts and ideas from teacher to student, overcoming communication
obstacles, developing good communication skills, vertical and horizontal communication networks, and an understanding of the purpose and usefulness of the grapevine. Other instructional areas that were considered to be important, but not necessarily by all faculty categories, included instruction in teaching techniques and style and class preparation by graduate assistants, course preparation for those with only a bachelor's degree, and curriculum theory for faculty in elementary education.

An analysis of the non-instructional areas
indicated that there were three major areas that were important to all faculty, regardless of their academic division, teaching status, seniority, degree level, age, sex, marital status, undergraduate university attended, or predominant teaching area. These three areas were advising and counseling students, characteristics of the college students, and tests and measurements. Advising and counseling students would include an overview of basic psychology, with emphasis on determining root problem areas, understanding the existing sources of guidance within the university, and the identification of problems which may be encountered. Characteristics of the college student would include the nature of the college student, goals, aspirations, family background, mental abilities, and a comparative analysis of present and prior college students. Tests and measurements
would include a basic understanding of research data, using descriptive and inferential statistics, histograms, correlation-scatter diagrams, standard error, hypothesis testing, regression, and an analysis of variance and covariance. There were no non-instructional areas outside these three areas that any smaller faculty grouping considered an essential element in the faculty in-service training program.

The analysis of faculty teaching objectives indicated that virtually all faculty, regardless of faculty grouping, considered the cognitive areas of teaching to be the most important teaching objectives. These areas included the development in the student of an awareness to identify, analyze, and formulate solutions to problems, provide for student mastery of subject matter through the acquisition and assimilation of knowledge, and the instilling in the student a sense of accomplishment and satisfaction in giving the student something that can be identified as being necessary for his or her life's work. The two affective teaching objectives were consistently ranked either last or next to last in rank order of importance. Thus, there would appear to be no basis for differentiating between cognitive and affective teaching objectives in the development of the faculty in-service training program.

Recommendations

The recommendations contained are based upon the assumption that the faculty in-service training program will be two and one-half days in length or a 20-hour in-service program.

Recommendation 1: The most important area that faculty indicated should be included in the in-service training program was the area of advising and counseling students. It is recommended that a four-hour block of instruction be dedicated to this area. The university's psychology department should have the responsibility for developing this area. In addition to a review of basic psychology and student problem analysis, part of this workshop should include the case problem method of study. Either real or hypothetical situations should be developed for faculty to discuss and develop solutions.

Recommendation 2: The area of evaluating students, which included the development of valid and reliable examinations, use of objective and essay tests, methods of evaluation other than examinations, term papers, and research papers, should also be a four-hour block of instruction. The School of Education should have the prime responsibility for developing this area. In addition to workshop instruction involving all faculty, this area should also have specialized instruction by academic division or predominant teaching area that would be appropriate for each department within the university.

Recommendation 3: A three-hour block of instruction should be included in the area of communication theory. This would essentially include the idea of thought transmittal and methods to assure effective communication. The areas of journalism and oral communication within the university should have joint responsibility for developing this facet of the faculty in-service training program. The area of communication theory would lend itself well to the case method approach in being able to identify and resolve problem areas of communication in either real or hypothetical situations.

Recommendation 4: A four-hour block of instruction should be dedicated to the area of tests and measurements. This would include a basic understanding of research data, using descriptive and inferential statistics, histograms, correlation-scatter diagrams, standard error, hypothesis testing, regression, and analysis of variance and covariance. The mathematics department within the university should have the responsibility for developing and conducting this area of the faculty inservice training program.

Recommendation 5: There were four different areas that various groups of faculty considered to be important and to be included in the faculty in-service training program. These included teaching techniques and style, class preparation, course preparation, and audiovisual materials. It is recommended that a two-hour
block of instruction be conducted for each of these areas. The instruction in these areas would be conducted simultaneously and faculty would have the choice of attending one of the many areas involved. The School of Education should have the responsibility for the development of the workshops in all of these areas. Recommendation 6: One of the majors areas of interest by faculty was the area involving student characteristics. This area would include the nature of the college student, goals, aspirations, family background, mental abilities, and a comparative analysis of present and prior college students. It is recommended that this in-service area not be handled during the 20hour in-service training time but be conducted sometime throughout the academic year during one of the weekly faculty meetings. The data compiled by the American College Testing Program for Bob Jones University should be the source for this area. It is recommended that the Registrar's Office have the responsibility for the development of this area.

After the completion of the in-service program, an evaluation of each workshop will be undertaken. Based upon the data assembled from each workshop evaluation, it will be determined whether similar type items should be included in future faculty in-service training programs, whether the item should be expanded, or dropped entirely.

Appendix C summarizes the organization of events and time period for the faculty in-service training program as it actually occurred.

Implications of This Study

Because of the major purpose of this study, it would be anticipated that teaching at Bob Jones University would become more effective with the faculty more responsive to the needs of students and to his or her responsibilities in the classroom. Bob Jones University is a teaching oriented institution as compared to a teaching/ research university. Teaching loads at Bob Jones University are higher than at most institutions. Faculty spend a great deal of time in the classroom with as many as five different class preparations each week.

The workshops that faculty indicated should be presented to improve his or her teaching included classroom presentation, class preparation, and use of the various ways of evaluating students. Two of the areas that faculty indicated to be extremely important were the areas of communication theory and advising and counseling students. Faculty should become more perceptive in his or her dealings with students as a result of the workshops in all of these areas.

Implications for Further Study

This study which developed a faculty in-service training program at Bob Jones University can be
duplicated at any other college or university that desires to improve the quality of classroom instruction. Similar procedures could be adopted whereby another institution could gather, compile, and evaluate the areas that faculty members consider to be important in faculty in-service training programs. If higher education is truly concerned with the improvement of classroom instruction, one way to determine those areas that need improvement is to ask those who are involved in the process of teaching. If the faculty in-service training programs contain those items that faculty consider to be necessary for them, the in-service training program then takes on added meaning for those who participate. The faculty involved should be more alert and responsive and more willing to cooperate and endeavor to glean from each workshop knowledge that will improve their classroom performance.

	Alexander, and Lee, Calvin, Current Practices in the Evaluation and Training of College Teachers. Washington, D.C.: American Council on Educa- tion, 1967 .
Axlerod	Joseph. The University Teacher as Artist. San Francisco: Jossey-Bass, 1973.
	t, William H., and Phillips, Steven R. A Handbook for Faculty Development. Washington, D.C.: The Council for the Advancement of Small Colleges, 1975.
Boyd, J	James E., and Schietinger, E. F. Faculty Evaluation Procedures in Southern Colleges and Universities. Atlanta, Georgia: The Council for the Advancement of Small Colleges, 1975.
	teristics of 42,345 College Teachers." The Chronicle of Higher Education. August 27, 1973.
Dean,	nald S. Preservice Preparation of College Biology Teachers: A Search for a Better Way. The Commission on Undergraduate Education in the Biological Sciences, 1970.
De Ordi	io, Joseph P. "Faculty Development in Higher Education: Conceptualization and a Pilot Program." Unpublished Ph.D. dissertation, Kansas State University, 1970.
s	Paul L., and De Lisle, Frances H. Blueprint for Change: Doctoral Programs for College Teachers. Iowa City, Iowa: The American College Testing Program, 1972.
	, and Thompson, Mary M. College Teaching: Improvement by Degrees. Iowa City, Iowa: The American College Testing Program, 1974.

Eble, K	Kenneth E. Professors as Teachers. San Jossey-Bass, 1972.
Engel,	Douglas J. "A Study to Determine the Status of Institutional Development Programs." Unpublished Ed.D. dissertation, Indiana University, 1969.
Finger,	Frank W. "Professional Problems: Preparation for a Career in College Teaching." The American Psychologist, No. 24 (November, 1969).
$\text { Mann, } R$	Richard. Memo to the Faculty, No. 45. Ann Arbor, Michigan: University of Michigan, 1971.
Mayhew,	L. B. "A Tissue Committee for Teachers." Im- proving College and University Teaching, xV. 1967.
McKeach	hie, Wilbert. Teaching Tips: A Guide for the Beginning College Teacher. Lexington, Mass.; D. C. Heath, 1969.
Miller,	, Richard D. Evaluating Faculty Performance. San Francisco: Jossey-Bass, 1972.
Seldin.	- Peter. How Colleges Evaluate Professors. New York: Blythe-Pennington, LTD., 1975.
Simpson	n, R. H. Teacher Self-Evaluation. New York: The MacMillan Company, 1966.
	```ment on Professional Ethics." American Association of University Professors Bulletin, LV (March, 1966).```

APPENDICES

## APPENDIX A

## QUESTIONNAIRE AND COVER LETTER SENT

TO MEMBERS OF THE FACULTY AT
BOB JONES UNIVERSITY

Dcar Faculty Mornber:

Attached you will. find the questionnaire to which I referred in a recent faculty meeting. Becanse lam writing my doctoral disscrtation on faculty development in higher education, I am asking you to reflect for a moment and make a self-- appraisal of your teaching strengths and weaknesses and your objectives as a teacher. The ultimate purpose of this dissertation project is (1) to establish a methorlology for devcloping in-service programs and (2) to determine what in-service programs would be most appropriate at Bob Jones University.

Aiser you have completed the questionnaire, please place it in the mailbox designated "weculty Development Survey Forms" located at the faculty mail credenzas in cither the Alumni Building (first floor, off center lobby), Fine Arts Building (outside Music Library), or the Science Building. Please return cornpletod questicnnaires no later than Friday, November 21, 1975.

Although I do not ask for your name, you will notice a number on the last page of the questionmaire. This number can identify you, if necessary, but will be used only to determine who has not returned the questionnaire. Your anonymity will not be compromised.

I appreciate your cooperation in responding to the questionnaire and in helping me complcte miy final doctoral requirement. If you do not understand an item, please call me et Extension 243 or at home, 268-0430. Your complete, honest, and independent response is cssential.

Do it now.

Thank ycu.

Richard E. Leiter, Dean
School of Business Administration

PARTA-Backgrourd Information - Circle the number besicic the applicabie response in each of the items below.
(1) Arca of University Assigned

1 College of Arts and Science
2 School of Business Adminietration
3 School of Edducation
4 School of Fine Arts
5 School of Religion
(2) Teaching Statur

1 Full-time
2 Part-time

- 3 Graduate Assistant
(3) Years of Full-time College or Cornmunity Coliege Tcaching Experience

1 Less than 2 ycars
2 2-5 years
3 6-10 years
4 11-15 years
5 16-20 years
6 Over 20 years

(11) Did yuu have any graduate courses desifned specifically to be a preparation for college teaching suchas Philoscpliy of Higher kducation, Instruction in Higher Fducation, Student Counseling in Higher Education. etc.?

1 Yce
2 No
Li yis, itsjicate cuarse tilic and widit hours.

Pert B. This section containo two categoriss entitled "Instructional Areas" and "Non-Instructional Areas." Each one contains cight itoms. Rank the cight instructional items in order of importance ac.cording to where you feel improvements could be made in your teaching. (For example, a rank of I beside "Teaching Techniquea" would indicate that you believe "leaching Techniquee" training to be the most important item for you and should be part of any faculty in-service training program. A rank of 2 beside "Course Preparation" would indicate you believe this would be the ecend most important in-service training area, again for you. The bottom rankings would indicate that you ere faniliar with these areas and in-service training would not appreciably benefit you.) Rank order all items, beginning with 1 as most important end cnding with 8 as least importent, being carcful to usc each number only once.


Part B. (Continued) Rank the following eight non-instructional iteme in order of importance in what would provide you the greatest additional knowledgo and understanding in higher education. Rank order all items, beginning with 1 as the most important and ending with 8 as the least important, again being careful to use each number only once.

	Non-Instructional Arcas	Dencription
(23)	History of Higher Education	Origin of higher education from inception to present time; emphasis on American higher education; evolution of the American college syatem.
(2.4)	History of Bob Jones University	Background on the founding of Bob Jones University; biography of Bob Jones. Sr.; chronology of major evente in the history of Bob Jones Univeraity.
(25).	Adviving and Counseling Students	Overview of basic psychology with emphasis on determining root problem areas; understanding of existing sources of guidance within the University: identification of problems which may be encountered
(26)	Characteristics of the College Student	Nature of the college student, goals, aspirations. family background, mental abilities; comparative analysis of present and prior college etudente.
(27)	Underatanding Standardized Teste	Parpose of nuch tests as American College Test (ACT) and the Graduate Record Exam (GRE); interpretation of test results.
(28)	Tests and Measuremente	Designed to provide a basic understanding of research data, using deecriptive and inferential statistics; histograms, correlation-scatter diagrams, standard error, hypothesis testing, regression, analysis of variance and co-variance.
(29)	Academic Policies of Bob Jones University	Background and philosophy behind nonaccreditation, no academic rank structure, grade point system, etc.
(30)	Administrative Policies of Bob Jones University	Non-ac:ademic areas such as housing and subsistence provisions, non-salary fringo benefits. family educational bencfits, etc.

Part C. Rank order the following five items in the order of what you consider your teaching role or objectives to be.

1 - Most important teaching objective
2 - 2nd most important teaching objective
3-3rd most important teaching objective
4-4th most important teaching objective
5 - 5th most important teaching objective
(34) $\qquad$ Develop or reinforce a student's own value system and have the student sensitive to the values of others.
(35) $\qquad$ Provide the student with a learning experience that can be used in almost any academic endeavor.
(36) $\qquad$ Provide for student mastery of subject matter through the acquisition and assimilation of knowledge.
(37) $\qquad$ Instill in the student a sense of accomplishment and satisfaction in giving the student soniething he can identify as being necessary for his life's work.
(38) $\qquad$ Develop in the student an awarencss to identify, analyze and formulate solutions to problems.

Part D. Workchop Scheduling - Rank order the following four items according to your time preference of in-service scheduling, beginning with 1 as your most preferred meeting time and ending with 4 as your least preferred meeting time.
(41) $\qquad$ Weekday evening (During school year)
(42) $\qquad$ Weekday late afternoon (During school year)
(43) $\qquad$ Saturday morning (Durirg school year)
(44) $\qquad$ Prior to start of echool year
$\qquad$ Other (Specify) $\qquad$
(47-49) $\qquad$

## APPENDIX B

## RANK ORDER OF EACH DEVELOPMENTAL AREA AND TEACHING OBJECTIVE BY THE VARIOUS FACULTY GROUPINGS



8	52	41	08	9	51	1	65	1	-	ec	ct	,	9	9	6	;	- R
1	c	$\tau$	$\Sigma$	1	$\tau$	$\tau$	2	5	$\tau$	c	$\tau$	$\varepsilon$	$\tau$	1	5	$\tau$	yorozedy eojapos mitiond
c	1	5	,	"	1	1	1	2	1	1	- $\tau$	1	c	$\varepsilon$	2	$\varepsilon$	
$z$	5	$\tau$	$\tau$	$\tau$	P.	$\varepsilon$	,	1	$\varepsilon$	$\tau$	5	5	$\tau$	2	\%	5	
7	9	$\leqslant$	$\varepsilon$	$\varepsilon$	"	5	5	$\varepsilon$	$s$	5	$\stackrel{ }{ }$	$\tau$	5	¢	$\tau$	4	-sany:odxz aipzirn oppiciz
5	$\tau$	\%	5	5	$s$	,	$\varepsilon$	,	$\rangle$	-	c	,	,	$\checkmark$	$\varepsilon$	1	
$\ell$	:	$L$	4	8	8	1	$L$	9	8	9	9	4	9	9	9	3	nea jo eryoryoc entiensejatann
5	5	$s$	5	5	5	$s$	$\varepsilon$	5	5	7	7	5	5	5	$\varepsilon$	$\rangle$	ars 30 eosorioci oreprer
2	c	$\varepsilon$	,	$\varepsilon$	1	,	9	$\stackrel{ }{ }$	1	ז	$\tau$	$\tau$	c	$\tau$	,	c	
$\stackrel{ }{ }$	\%	*	2	7	*	¢	8	$\varepsilon$	"	5	5	,	7	,	5	5	
$\varepsilon$	1	$\tau$	$\varepsilon$	2	$\varepsilon$	2	$\tau$	$\tau$	$\varepsilon$	$\tau$	$\varepsilon$	$\varepsilon$	$\tau$	2	$\tau$	2	
1	2	I	1	1	$\tau$	1	1	1	$\tau$	1	$\tau$	1	1	$\varepsilon$	1	1	
8	8	8	8	6	1	8	5	4	1	8	1	8	1	8	$L$	- 8	Kayeiantua sover ate jo cioseith
9	9	9	9	-	9	9	9	8	9	1	8	9	9	$L$	8	4	
9	9	$\leqslant$	9	5	9	$\tau$	'	2	2	$\varepsilon$	,	5	5	$\stackrel{ }{ }$	$L$	5	
8	8	$\ell$	8	9	8	9	6	5	$\varepsilon$	8	9	8	8	4	9	,	voineacogas
1	1	1	1	P	2	$\varepsilon$	$\tau$	1	9	1	£	$\tau$	2	$\tau$	$\tau$	$\varepsilon$	
$\varepsilon$	$\leqslant$	9	$\varepsilon$	8	"	1	9	4	,	6	$\tau$	$!$	9	5	,	8	Grosuj Evinsizins
2	2	"	4	2	5	9	$\varepsilon$	$\varepsilon$	$\checkmark$	9	5	9	7	9	$\varepsilon$	8	-0;3pipcesj
5	6	$\tau$	$\tau$	1	$\varepsilon$	5	I	$\checkmark$	1	$\tau$	1	$\varepsilon$	$\varepsilon$	8	I	2	
9	9	8	5	"	6	8	$s$	$\varepsilon$	9	9	9	1	1	8	8	$L$	vorjexedose :svis
1	5	$s$	9	6	1	6	9	9	5	$s$	$\checkmark$	,	6	$\varepsilon$	5	9	
																	รesy foxoisenjewl
		号菏					$\stackrel{y}{2}$	cie					!   $\stackrel{y}{4}$			2	
							ละ	$5 \pi$		$-\frac{10}{2}$	$\frac{1}{3}$	$\frac{\pi}{30}$	R				

## APPENDIX C

## FACULTY IN-SERVICE TRAINING PROGRAM SCHEDULE OF EVENTS

BOB JONES UNIVERSITYFaculty In-Service Training Program
Schedule of Events
Friday. September 3, 1976
Morning Session - EMPHASIS: THE STUDENT
Advising and Counseling (Program coordinated by
the Psychology Department and the UniversityCounselor's Office)
Small Group Sharing Sessions
Afternoon Session - Mini-Sessions
Course Preparation
Objectives, Syllabi
Library Resources
Class Preparation
Lesson Plans
Successful Teaching Criteria
Audio-Visual (Hands on Media Workshop)Student Evaluation
Subjective Test Development and Evaluation
The Development of Objective Tests
Test Validity and ReliabilityTest Data Interpretation
Evening Session
50th Anniversary Banquet
Saturday. September 4. 1976
Morning Session - EMPHASIS: THE TEACHER
Graduate Assistant Comments
Communication (Program coordinated by the OralCommunications Department)
Theory
Video Tape Presentations and EvaluationUnique Techniques in Teaching
Afternoon Session - Repeat of Friday afternoon Mini-Sessions
Monday. September 6, 1976
Morning only - Departmental Meetings



[^0]:    ${ }^{1}$ paul L. Dressel and Mary M. Thompson, College Teaching: Improvement by Degrees, Monograph Thirteen (Iowa City, Iowa: The American College Testing Program, 1974). p. 1.

[^1]:    5Richard Mann, Memo to the Faculty, No. 45 (Ann Arbor, Michigan: University of Michigan, August, 1971), p. 2 .
    ${ }^{6}$ Joseph Axelrod, The University Teacher as Artist, (San Francisco: Jossey-Bass, 1973), pp. 10, 12.

[^2]:    ${ }^{7}$ Kenneth Eble, Professors as Teachers, (San Francisco: Jossey-Bass, 1972), pp. 25-26, 179-180.

    8rank Finger, "Professional Problems: Preparation for a Career in College Teaching," The American Psycholo gist, No. 24 (November, 1969), pp. 1044-1049.

    9wilbert McKeachie, Teaching Tips: A Guide for the Beginning College Teacher, (Lexington, Mass., D. C. Heath, 1969).

[^3]:    ${ }^{10}$ Paul L. Dressel and Frances H. Delisle, Blueprint for Change: Doctoral Programs for College Teachers (Iowa City, Iowa: American College Testing Program, 1972), pp. 16-17.

[^4]:    12 Richard C. Miller, Evaluating Faculty Performance, (san Francisco: Jossey-Bass, 1972), pp. 35-38.
    ${ }^{13}$ R. H. Simpson, Teacher Self-Evaluation, (New York: The MacMillan Company, 1966), pp. 47-56.
    ${ }^{14}$ L. B. Mayhew, "A Tissue Committee for Teachers," Improving College and University Teaching, XV (Winter, 1967), 5-10.

[^5]:    ${ }^{1}$ William H. Bergquist and Steven R. Phillips, A Handbook for Faculty Development (Washington, D. C.: The Council for the Advancement of Small Colleges, 1975), p. 3.

[^6]:    ${ }^{2}$ "Statement on Professional Ethics, " American Association of University Professors Bulletin, LV (March, 1966), 57-58.

[^7]:    ${ }^{9}$ Ibid. . pp. 61-62.
    10Joseph P. DeOrdio, "Faculty Development in Higher Education: Conceputalization and a Pilot Program" (unpublished Ph.D. dissertation, Kansas State University, 1970) 。

